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Cancer is one of the deadliest diseases
of our time. Whilst the war on cancer
has cost many millions of dollars,

the mechanisms underlying its
formation, progression, therapeutic
cure or control are still not fully
uncovered. An interdisciplinary
effort that brings together clinicians,
biologists, and quantitative scientists
is demanded. Mathematical modeling
and computational simulations bring
to the table sophisticated tools for
analyzing experimental data as well
as for systematic, quantitative and
multi-scale in silico experimentation.
Taken together, such interdisciplinary
approach promises to shed light on
the underlying rules and/or complex
interactions between tumor cells,
tumor and stromal cells, as well as
other components of the tumor
microenvironment, and ultimately
predict treatment outcomes.
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In this research topic we will present the state-of-the-art in integrative cancer modeling (such
as theoretical models based on biological or clinical data, and experimental results influenced
by underlying mathematical and physical theories) and their applications to cancer biology
and treatment. This collection of papers will showcase computational models addressing

the most important current challenges in oncology, such as prognostic screening, metrics of
tumor cell response to treatment, cancer cell mechanotransduction, cancer stem cell biology,
metastatic cascade steps, and reciprocal co-evolution of tumors and their microenvironment.
Quantitative and qualitative models included in this topic will discuss tumor initiation,
development of pre-invasive tumors, transition from dormancy to malignancy, tumor
angiogenesis, tumor cell signaling, complexity of the cellular, physical and chemical structure
of the tumor microenvironment, and various models of anticancer treatment: chemo-,
radio-, immuno-, hormone and adaptive therapies. This collection could then serve as an
encyclopedic resource for the breadth of mathematical and computational techniques that can
be applied to tumor modeling, including ordinary and partial differential equations models,
individual-cell-based models, hybrid cellular automata models, bio-fluid approaches, game
theory approaches, stochastic and multi-scale modeling.
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Cancer is one of the deadliest diseases of our time. While the war on
cancer has cost many billions of dollars, the mechanisms underlying
tumor development, progression, and therapeutic cure or control
are yet to be fully understood. An interdisciplinary effort that brings
together clinicians and biologists with mathematical and computa-
tional modelers is therefore necessary. Mathematical modeling and
computational simulations bring to the table sophisticated tools
for analyzing experimental data as well as for systematic, quanti-
tative, and multi-scale in silico experimentation. Taken together,
such an interdisciplinary approach promises to shed light on the
underlying rules of the intra-, inter-, and extracellular mechanisms
behind complex tumor dynamics, with the ultimate aim to predict
patient-specific treatment outcomes.

The papers in this Special Topic span a broad spectrum of can-
cer cell-related subjects from intracellular modifications in indi-
vidual cells to complex interactions between tumor cells and tumor
microenvironments to emerging behaviors of cell populations on
the organ and whole body scale. Quantitative modeling has been
applied to virtually every type of tumor. This collection includes
papers on brain, ovarian, and colon cancers, as well as on melano-
mas, leukemias, sarcomas, and head and neck tumors. The models
also addressed various stages of tumor development including its
initiation, growth, invasion of the surrounding stroma, tumor cell
migration, and intravascular transport, as well as metastatic colo-
nization. Various types of anticancer treatments have been dis-
cussed in this Special Topic, including chemotherapy, radiotherapy,
immunotherapy, and differentiation therapy. From a mathematical
point of view, the models range from deterministic to stochastic,
from continuous population dynamics to agent-based individual
cell models, from fluid dynamics to Monte Carlo simulations and
energy minimization models.

We divided the papers in this Special Topic into five categories.
In the first, the subcellular mechanisms and their impact on a single
cell and population-level heterogeneity are considered. Dynamics
on the subcellular scale include intracellular gene modulations or
extracellular diffusion of soluble factors. Leenders and Tuszynski
(1) discuss both stochastic and deterministic models of p53 protein
regulation that play a crucial role in cellular stress and DNA damage
response. Kimmel and Corey (2) show that large variations in the
timing of transitions from neutropenia to acute myeloid leukemia
can be explained by stochasticity in cell driver mutations. Howk
et al. (3) use a single cell model of two-hit mutations of normal
cells into endometrial cancer cells to predict the frequency of cancer

stem cells in endometrial cancer. Jain and Jackson (4) present a
hybrid model that simulates the dynamics of vascular endothelial
growth factor (VEGF) diffusion and its binding to endothelial cell
receptors, which triggers endothelial cell activation and polarization
during angiogenesis. Finley et al. (5) consider another angiogen-
esis model centered on VEGF and its molecular interactions that
has been calibrated to experimental data and shows that in vivo
VEGF secretion rates are significantly lower than most reported
in vitro measurements, which has profound implications for anti-
angiogenic treatment.

The second class of papers contains mechanical models of
tumor invasion that are influenced by both the physical forces
and chemical factors necessary to degrade the host tissue. Deakin
and Chaplain (6) present a mathematical model focusing on both
soluble and membrane-bound metalloproteinases (MMPs) and
their relative role in the degradation of highly dense collagen struc-
tures and cross-linked fibers. Mumenthaler et al. (7) discuss an
integrative experimental-computational approach to understand
MMP-mediated tissue degradation. The fluid-generated forces
exerted on the cell either by the interstitial fluid or shear stress
in the blood circulation are reviewed by Mitchell and King (8)
from both experimental and computational perspectives. Katira
et al. (9) discuss interdependence of mechanical and biological
pathways within the cell and how intracellular and environmen-
tal mechanical properties, such as stiffness and adhesivity, lead to
changes in cell behavior, including transformation into malignancy.
Wallace and Guo (10) analyze mathematical models of avascular
tumor growth and conditions under which the models reproduce
the growth dynamics of in vitro spheroids.

The third group of studies investigates cancer stem cells. With
experimental stem cell purification and reliable identification still
in its infancy, mathematical models highlight the population-level
dynamics resulting from different stem cell kinetics. Rodriguez-
Brenes etal. (11) discuss homeostasis in stem cell lineages through
tightly controlled feedback mechanisms that regulate stem cell
proliferation and self-renewal. Enderling et al. (12) examine how
tumors grow if the cancer population is fueled by a cancer stem cell,
showing that tumors exhibit a variety of irregular morphologies
and harbor stem cell fractions that vary by many orders of magni-
tude and evolve over time. Bachman and Hillen (13) investigate how
conventional radiotherapy can be complemented by differentiation
therapy that forces stem cells into differentiation to increase their
sensitivity to radiation.
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The next group of articles focuses on interactions between the
tumor and its microenvironment. Szabé and Merks (14) discuss
avascular and vascular tumor growth and evolution using the
Cellular Potts model. Orlando et al. (15) examine tumor cell evo-
lution at the tumor core and its invasive edge, focusing on the effects
of colonization tradeoffs on tumor invasion dynamics. Steinkamp
etal. (16) integrate in vivoxenograft mouse models and mathemati-
cal models to study tumor attachment, invasion, and vasculariza-
tion in the ovary, showing that local factors and mesothelial lining
features strongly influence invasion.

The final group of studies focuses on the use of quantitative
models to improve treatment modalities. Patient-specific math-
ematical neuro-oncology approaches are reviewed by Baldock
et al. (17). Kim (18) presents a mathematical model based on
microRNAs that balance cell proliferation and migration in dif-
ferent microenvironmental conditions in glioblastoma, suggest-
ing a post-surgery injection of chemoattractants and glucose to
counteract the diffusive spread of residual cells. Hawkins-Daarud
etal. (19) discuss a model of fluid accumulation in gliomas during
anti-angiogenic therapy and discuss the implications of the envi-
ronmental response to tumor growth on medical imaging. Rejniak
etal. (20) present an integrative study examining penetration and
efficacy of therapeutic agents in relation to tumor tissue archi-
tecture. DePillis et al. (21) use a model of dendritic cell therapy
on melanoma, showing how dosage and schedule modifications
enhance immunotherapy efficacy.

The images featured on page 2 of this e-book showcase compu-
tational models discussed in detail in this Special Topic. Clockwise
from top left: a schematic of miR-451 activity in the model of Kim
(18); a 2-D slice through the ovarian tumor simulated using the
Potts model of Steinkamp et al. (16); a 3-D simulation of malignant
glioma cells from Baldock et al. (17); cancer stem cell-driven tumor
growth from Enderling et al. (12).
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INTRODUCTION

Among the vast number of mechanisms utilized by cancer cells to
sustain cell division, the inactivation of the essential tumor sup-
pressor and transcription factor p53 is one of the most frequent
and effective strategies. Therefore, restoring the activity of the
p53-signaling pathway is currently one of the most promising ther-
apeutic strategies for fighting this disease (Levine and Oren, 2009).

In normal cells, p53 plays a central role in the regulation of the
cell cycle, apoptosis, DNA repair, and senescence (Teodoro et al.,
2007); p53 responds to cellular stress, such as hypoxia or DNA
damage, by accumulating in the nucleus, regulating the expression
of target genes, and activating/inactivating various pathways in
order to maintain the normal function of the cell (Maltzman and
Czyzyk, 1984; Kastan et al., 1991; Graeber et al., 1994). Indeed,
it appears that whenever the integrity of a cell’s genetic code is
threatened, p53 is there to protect it. This conclusion has led p53
to be called the guardian of the genome (Lane, 1992).

However, the p53-signaling pathway is inoperative in almost
all types of human cancer; factors that inactivate p53 specifically
include genetic mutations or deletions (Feki and Irminger-Finger,
2004), defective post-translational modifications, and interactions
with its main endogenous inhibitors, MDM2 (Momand et al.,
1998) and MDMX (Shvarts et al., 1996). Excitingly, a number
of these tumors have been shown to have a less invasive phenotype
upon restoration of p53 activity (Olivier et al., 2002; Ventura et al.,
2007; Suad et al., 2009; Mandinova and Lee, 2011).

With the cost of drug development on the scale of hundreds
of millions to billions of dollars per new drug entity — and ris-
ing — there is strong need to look for any possible acceleration and
improvement to the efficiency and accuracy of the development
process (Paul et al.,, 2010). Thanks to the increasing comput-
ing power available to researchers, it is now becoming affordable
and practical to attempt to use in silico models to improve the

The protein pb3 is a key regulator of cellular response to a wide variety of stressors. In
cancer cells inhibitory regulators of p53 such as MDM2 and MDMX proteins are often
overexpressed. We apply in silico techniques to better understand the role and interac-
tions of these proteins in a cell cycle process. Furthermore we investigate the role of
stochasticity in determining system behavior. We have found that stochasticity is able to
affect system behavior profoundly. We also derive a general result for the way in which ini-
tially synchronized oscillating stochastic systems will fall out of synchronization with each

Keywords: p53, cell cycle, cancer, stochastic modeling, deterministic modeling, desynchronization

development process. One way to do this is to improve the ability of
researchers to select appropriate proteins, or interactions between
proteins, as targets for drug development by better understanding
their function in protein interaction networks.

The purpose of this study is to gain new insights into the func-
tioning of p53, a central protein in cell cycle regulation. A simple
model of p53 oscillations in response to ionizing radiation is pre-
sented. Additionally, the behavior of stochastic and deterministic
representations of the same model system is compared.

CELL CYCLE
The protein p53 is a regulator of the cell cycle and cell fate. Under
normal conditions, a cell will normally progress through several
stages. In the G1 phase (first gap phase) the cell grows in size to
prepare for DNA synthesis. After G1, the cell moves into S phase
(synthesis phase), during which new DNA is synthesized. Cells that
are not replicating can also leave G1 and enter the GO phase, a state
in which they do not grow, and can remain quiescent indefinitely.
Next comes the G2 phase (second gap phase), where cells grow
further and complete their final preparations for mitosis. Mitosis
then occurs and the cycle can begin anew (Lodish et al., 2008). A
damaged cell may need to halt its cycle or even self-destruct in a
process called apoptosis. Apoptosis is necessary for normal devel-
opment and homeostasis of multicellular organisms, and is also a
desirable outcome for cancer cells during cancer chemotherapy.
In order to ensure that the process of cell division is carefully
regulated, the cell has a number of checkpoints. These checkpoints
are conditions that a cell must meet in order to progress in the
cell cycle. For example, one checkpoint in G1 ensures that a cell
has grown sufficiently in size to move into S phase and replicate
its DNA. Another checkpoint that occurs in G1 is mediated by
the protein p53: when DNA is damaged, p53 halts the cell cycle
until the damage is repaired; this prevents the cell from trying
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to duplicate the damaged DNA. When p53 is inactivated, this
checkpoint no longer functions. A cell attempting to duplicate
damaged DNA is likely to accumulate mutations (Alberts et al.,
1994). Figure 1 diagrams the relevance of p53 to the cell cycle.

p53

The protein p53 responds to many stressors including ultravio-
let light (Maltzman and Czyzyk, 1984), ionizing radiation (Kastan
et al., 1991), hypoxia, heat (Graeber et al., 1994), improper cell
adhesion (Nigro et al., 1997), ribonucleotide depletion (Linke
etal., 1996), and infection by influenza (Turpin et al., 2005). Some
viral proteins are known to interact with p53, for example hepatitis
B virus HBx protein (Truant et al., 1995) and the large T antigen
of simian virus 40 (Dobbelstein and Roth, 1998). The protein p53
has been demonstrated to induce cell cycle arrest, senescence, and
apoptosis, with the specific outcome dependent on the extent and
type of stress, and the genetic background of the cell (Vousden
and Lu, 2002). The expression of p53 is tightly regulated by the
cell (Sugrue etal., 1997; Lodish et al., 2008). In order to help it exe-
cute its various functions p53 is post-translationally modified at
many sites to determine its response (Meek and Anderson, 2009;
Dai and Gu, 2010). The protein p53 transcriptionally regulates
numerous genes, with a pattern that varies depending on the type
of stress and the cell type (Zhao et al., 2000). In addition to its tran-
scriptional activity, p53 plays a transcription-independent role in
apoptosis by binding to several anti-apoptotic proteins (Mihara
et al., 2003).

The protein p53 is known to be mutated in approximately 50%
of human tumors (Soussi and Wiman, 2007; Brown et al., 2009;
Freed-Pastor and Prives, 2012). In addition, in tumors with wild
type p53 it is common for p53 expression to be misregulated. For
example, proteins that have a part in downregulating p53, such
as MDM2 and MDMX, are commonly overexpressed in human
tumors (Momand et al., 1998; Danovi et al., 2004). Furthermore, it
has been demonstrated that restoration of p53 function can cause
tumors to regress in vivo (Ventura et al., 2007). The importance of
p53-signaling in cancer progression, and its therapeutic implica-
tions, have been investigated in previous mathematical models
(Gammack et al., 2001; Perfahl et al., 2011), which highlights
further our study.

Note that simply removing the limitations on a cell imposed
by p53 is not enough for it to become cancerous; for a cell to
become cancerous it must accumulate multiple hallmarks includ-
ing: self-sufficiency in growth signals, insensitivity to anti-growth
signals, limitless replicative potential, sustained angiogenesis, and
the ability to migrate to other tissues (Hanahan and Weinberg,
2011). When such traits accumulate in a cell lacking functional
P53, the probability of a cell becoming cancerous rises (Alberts
etal., 1994).

MDM2

The protein MDM2 is a key player in the regulation of p53 (Bond
etal.,2005) and it has been found that MDM2 is commonly ampli-
fied in human cancers (Momand et al., 1998). MDM2 has been
shown to be an E3 ubiquitin ligase for p53 (Honda et al., 1997).
This means that MDM?2 can mark p53 for degradation by the
proteasome. As such, amplification of MDM2 leads to reduced

p53 activation

p53 activation
failure

FIGURE 1 | Diagram of p53 and the cell cycle, showing possible
outcomes of stress and p53 activation.

FIGURE 2 | Relationships between MDMX, MDM2, and p53. MDM2
inhibits p53 and is promoted by it. MDM2 inhibits itself and this effect is
reduced by MDMX. MDMX inhibits p53 directly, and is itself inhibited by
MDM2.

p53 levels (Haupt et al.,, 1997; Kubbutat et al., 1997). MDM2
production is also induced by p53, forming a feedback loop (Barak
et al., 1993). Figure 2 illustrates the interactions of MDM2 with
p53. Additionally, MDM2 helps to regulate itself by autoubiquiti-
nation, meaning it marks itself for degradation by the proteasome
(Fang et al., 2000). MDM2 possesses a nuclear localization signal,
which is a structure on the protein that induces the cell to import
the protein into the cell nucleus (Chen et al., 1995). MDM2 also
has a cryptic nucleolar localization signal, which flags the protein
for localization to the nucleolus, but only when MDM2 binding
to another molecule changes the conformation of the signaling
region (Lohrum et al., 2000).

In 2004 several small molecule inhibitors for the p53-MDM2
interaction were discovered (Vassilev et al., 2004). One of these
inhibitors, Nutlin-3, was in Phase I clinical trials for retinoblas-
toma (Secchiero et al., 2011). Nutlins may also have some p53-
independent effects, and these may be related to MDM2. It has
been shown in some cell lines that MDM?2 is upregulated by
hypoxia independently of p53 (Gillespie, 2007). Furthermore, it
has been shown that Nutlin-3 can radio-sensitize hypoxic cells
that are p53 null, although it has a greater effect on cells with
wild type p53 (Supiot et al., 2008). Additionally, Nutlin-3 has
been shown to bind to several anti-apoptotic proteins other than
MDM2, further complicating any analysis of its effects (Ha et al.,
2011). MDM2 inhibitors bind to the protean competitively and
occlude the binding site with p53 (Barakat et al., 2010). To the
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best of our knowledge Nutlins do not alter the autoubiquitination
properties of MDM2.

MDMX

Another important regulator of p53 is MDMX, a homolog of
MDM2 (Shvarts et al., 1996; Finch et al., 2002). MDMX is com-
monly overexpressed in tumors, and its upregulation has been
shown to promote tumor formation (Danovi et al., 2004). Unlike
MDM2, however, MDMX expression is not induced by DNA dam-
age (Shvarts et al., 1996). MDMX binds to both MDM2 (Sharp
et al,, 1999) and p53 (Shvarts et al, 1996). MDMX binding
to MDM2 inhibits MDM?2 autoubiquitination (Okamoto et al.,
2009). Furthermore, MDM2 ubiquitinates MDMX (De Graaf
et al., 2003). The interaction of MDMX and p53 has been shown
to inhibit p53 activity (Marine et al., 2007). Figure 2 schemati-
cally depicts the relationships between p53, MDM2, and MDMX.
MDMZX possesses a cryptic nuclear localization signal (LeBron
etal., 2006), so it can only reach the nucleus while bound to other
proteins. MDMX is normally located primarily in the cytoplasm
(Gu et al., 2002).

Small molecule inhibitors of MDMX have only recently been
discovered (Reed et al., 2010). Although initial results show some
efficacy against cancers with upregulated MDMX in cell culture
(Wang et al., 2011), more work will need to be done to show
whether or not they will be active in vivo, as well as whether or not
it is the MDMX interaction or some off-target interaction that is
causing the effect.

UPSTREAM REGULATORS

There are many feedback loops known to affect p53, and the
behavior of the p53 system is mediated by a number of upstream
regulators (Harris and Levine, 2005). For example, the protein
ATM is activated in response to ionizing radiation (Bakkenist and
Kastan,2003). Active ATM phosphorylates p53 (Banin etal., 1998),
MDM2 (Maya et al.,, 2001), and Chk2 (Matsuoka et al., 2000). A
related protein, ATR, phosphorylates p53 in response to single
strand breaks in DNA (Tibbetts et al., 1999). Chk2 along with
Chkl also phosphorylate p53 (Shieh et al., 2000). These phospho-
rylations disrupt the ability of MDM2 to affect p53 (Zhang et al,,
1998; Chehab et al., 2000; Maya et al., 2001).

OTHER FEEDBACKS

Aside from the MDM2 loop, there are other feedbacks affecting
p53, although many of these involve also MDM2. The ARF protein
is known to bind to MDM2 and promote its degradation (Zhang
et al., 1998). ARF causes both MDM?2 and MDMX to be localized
to the nucleolus (Weber et al., 1999; Jackson et al., 2001). ARF is
negatively regulated by p53 in a complex manner, thus forming a
feedback loop (Stott et al., 1998; Lowe and Sherr, 2003). MDM?2
activity becomes enhanced by a feedback in which p53 upregulates
cyclin G, which then forms a complex with PP2A phosphatase.
This complex then dephosphorylates MDM2, removing the inhi-
bition caused by the phosphorylation effect (Harris and Levine,
2005). The Wipl protein is induced by p53 and is able to mod-
ify ATM and Chk2, deactivating these proteins, and thus resulting
in a stronger interaction between p53 and MDM2 (Fiscella et al.,
1997; Fujimoto et al., 2006; Shreeram et al., 2006). Pirh2 has a

more direct feedback with p53. Like MDM2, Pirh2 and COP1
both ubiquitinate p53 and are upregulated by p53 (Leng et al.,
2003; Dornan et al., 2004).

PROTEIN LEVEL OSCILLATIONS?

Lahavetal. (2004), Geva-Zatorsky et al. (2006),and Geva-Zatorsky
etal. (2010) all directly observed sustained oscillations of p53 and
MDM2 levels in the nuclei of individual cells. It is worth noting,
however, that these single cell studies used MCF-7 cells. MCF-7
cells were initially used to study p53 because they exhibit wild type
p53 (Lahav et al., 2004). Unfortunately, the MCF-7 cell line has a
mutation in an MDM2 intron causing upregulation of MDM?2 (Hu
etal.,2007), lacks ARF (Stott et al., 1998), and possesses amplified
MDMX (Danovi et al., 2004). Because of this, any assumption that
any wild type cell would behave similarly to an MCE-7 cell with
respect to p53 regulation is questionable at best. Unfortunately,
there are no similar single cell studies of non-tumorigenic cell
lines at the time of writing this paper. Also of note is the finding
by Batchelor et al. (2011) that MCF-7 cells respond differently to
damage induced by ultraviolet light than they do to double-strand
breaks induced by gamma radiation or radiomimetic drugs. Geva-
Zatorsky et al. (2006) also pointed out that undamped oscillations
of p53 levels may appear damped in studies of cell populations
due to the individual cells falling out of sync with each other.
Damped oscillations have been observed in populations of non-
tumorigenic cell lines, for example in entire mice (Hamstra et al.,
2006).

PREVIOUS MODELING WORK

A number of models of p53 response to DNA damage have been
proposed in the past. These models are based on a variety of
approaches and serve a number of functions. Some basic models
use built-in time delays on p53 induction of MDM2 transcrip-
tion, such as some of the models developed by Geva-Zatorsky
etal. (2006). In contrast, the model presented by Lev Bar-Or et al.
(2000) used coupled differential equations to create time delay
effects. There are advantages and disadvantages to each of these
approaches. In a real cell, proteins are not produced instantly
in response to a promoter. Both transcription and translation
processes take time, and transport of the mRNA and the protein to
the cytoplasm does not happen instantaneously. An explicit time
delay deals with this problem directly, but may be more difficult
to analyze than coupled equations. It also adds to the complex-
ity of any computer algorithm made for stochastic simulations.
A set of coupled equations, on the other hand, will start to show
effects of induced protein production in the protein levels instan-
taneously, but the effect will be very small until some time has
passed. In a stochastic system the protein levels are quantized and
instead of instantaneous effects there is simply a small but non-
zero possibility of instantaneous effects. In both the stochastic and
deterministic cases adding more steps in the form of more cou-
pled equations makes the system both more realistic and more
computationally intensive. Another factor to consider is that p53
induces the transcription of MDM2 mRNA, and that mRNA is
active for a time. Because of this, the actual rate of MDM2 pro-
duction is dependent on a weighted average of past p53 levels
rather than p53 levels at some specific time in the past. Using a
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single delayed p53 term to describe MDM2 production is therefore
problematic. One way around this problem is to use a delay term
for the production of the MDM2 mRNA rather than the MDM?2
protein, as was done by Cai and Yuan (2009). Ma et al. (2005)
investigated the number of p53 pulses that occur in response
to DNA double-strand brakes using a model made from three
linked modules, simulating DNA repair, ATM activation, and the
p53-MDM2 feedback loop. Linking together multiple systems like
this, in particular linking to systems that can be easily perturbed
experimentally, may be a good way to develop models that are
straight-forward to test. Batchelor et al. (2008) proposed a model
based on abstracted signal and inhibitor systems interacting with
MDM2 as well as active and inactive p53. This model was cre-
ated to investigate the possible effects of ATM, CHK2, and WIP1
on p53 behavior. They included an equation for an input signal
that converted p53 from an inactive form to an active form, and a
p53 induced inhibitor that reduced the effects of the signal. There
have also been past efforts to look at stochastic models of the p53
regulatory system. Cai and Yuan (2009) modeled p53-MDM2 and
MDMX interactions and analyzed some of the effects of intrin-
sic noise. Their model has MDM2 mRNA being produced with
a time delay. It also includes ubiquitinated states of proteins and
a deubiquitination term, rather than just assuming all ubiquiti-
nated proteins are degraded. Puszynski et al. (2008) developed a
complex stochastic model of p53 behavior aimed at showing how

stochastic effects lead to variability of cell fate in a bistable model.
Their model includes a cytoplasmic compartment and a nuclear
compartment, although p53 is not included in their cytoplasmic
compartment. In addition to the negative feedback of MDM2 and
P53 they include a positive feedback involving a series of events
that lead to MDM2 being sequestered in the cytoplasm where it
can no longer degrade p53.

Table 1 summarizes the key differences between the models.
Ultimately, the differences in the models have as much, if not more,
to do with differences in what the researchers were trying to inves-
tigate, rather than with differing assumptions about p53 behavior.

MATERIALS AND METHODS

THE MODEL

Since it has been observed that stochastic effects can cause a pop-
ulation of cells that undergo undamped oscillations to appear as
if they were undergoing damped oscillations (Lahav et al., 2004;
Geva-Zatorsky et al., 2006), it is interesting to compare a stochas-
tic model of cell behavior to a deterministic one. By using both
stochastic and deterministic versions of the same model it will be
possible to look at the process of desynchronization between cells,
which causes oscillations to appear damped, and to search for any
other effects by which stochasticity could influence the system. As
we shall see later, further investigation revealed several unexpected
ways in which stochasticity influenced the system.

Table 1 | Key features of various models of p53 behavior.

Model Stochasticity MDMX Compartments Time delayed Stress Other notes
equations signal

Geva-Zatorsky These models do not have
et al. (2006) saturable MDM2 production

Model 1 Limited noise No No No No Linear Model

Model 2 Limited noise No No No No

Model 3 Limited noise No No Yes No Linear Model

Model 4 Limited noise No No No No

Model 5 Limited noise No No No No Linear Model

Model 6 Limited noise No No Yes Yes
Lev Bar-Or None No No No Yes Stress is abstract and gets
et al. (2000) repaired
Ma et al. In the stress and repair No No Yes Yes Complex stress and repair
(2005) modules only modules
Batchelor et al. No No No Yes Yes p53 promotes an inhibitor of
(2008) the stress signal
Cai and Yuan Yes Yes No Yes No Includes phosphorylated
(2009) proteins
Puszynski Yes No Yes, but not for p53 No Yes Includes many other proteins
et al. (2008)
Our model Stochastic and non-stochastic No Only for MDM2 No No Details in Section “Materials

versions were implemented

and Methods”
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In this model p53 induces the transcription of MDM2 mRNA in
the nucleus; there are three steps between induced transcription
of MDM2 by p53 and the arrival of MDM2 proteins in the cell
nucleus. Induced transcription is assumed to be proportional to
[p53]/(K5‘8 + [p53]1'8) as was seen in the binding properties
found by Weinberg et al. (2005). MDM2 mRNA is also produced
at a basal rate. After being produced in the nucleus, the MDM?2
mRNA proceeds to the cytoplasm, where it is translated and even-
tually decays. Even though mRNA from MDM2’s different pro-
moter regions are translated at different rates, they are treated as
one species. Because the two types of mRNA are assumed to decay
at the same rate, this amounts to absorbing the difference in trans-
lation rates into the mRNA production rates. Cytoplasmic MDM?2
moves to the nucleus at a constant rate, and all other behaviors that
cytoplasmic MDM2 could exhibit are ignored in this model. ARF
was given constant production and degradation rates. Once in the
nucleus, MDM2 can become bound to ARE, which removes both
proteins from the system. Additionally, MDM2 autoubiquitinates,
which is a process that also removes it from the system. Figure 3
provides a schematic diagram of this system.

Using the principle of mass-action and the saturable tran-
scription kinetics mentioned above, the system’s behavior can
be mathematically described in terms of a system of differential
equations. In addition to all the chemical reactions in Figure 3
the system of differential equations includes the production and
degradation of p53, basal transcription of MDM2 mRNA, decay
of cytoplasmic RNA, decay of ARF, and production of ARF. The
equations are as follows:

d [p53]

St = ky — ki [p53] [IMDM2yudiear] — dp [p53]
d [RNAnuclear] [P53] '8
— - = kn —HQW —ko [RNAyclear]
d [RNAcytoplasmic]
T = kO [RNAnuclear] - drc [RNAcytoplasmic]
d [MDMzcytoplasmic]

= kT [RNAcytoplasmiC]

— ki [MDMzcytoplasmic]

dt

d [MDM2
w =k [MDMzcytoplasmic]

dt
2
- dmn [MDM cyloplasmlc:l
— ks [MDM2yclear] [ARF]
d [ARF]

dr =k —d, [ARF] — ks [MDM2yclear] [ARF]

with kp, being the production rate of p53, k; being the rate
at which MDM2 ubiquitinates p53, and d, being the rate of
MDM2-independent p53 degradation. Here, kp, is the rate of p53-
independent MDM2 mRNA production, k; is the maximum rate
of p53-dependent MDM2 mRNA production, Kp is the dissocia-
tion constant for p53 on the MDM?2 promoter region, and ky is the
rate of MDM2 mRNA transport to the nucleus. In the equations
above, dy is the decay rate of MDM2 mRNA in the cytoplasm,
kt is the translation rate for MDM2 mRNA, and k; is the rate of

Cytoplasm
1.66*10?%s
MDM2 MDM2 RNA
9*10/s
Nucleus 810%/s
6*10“/nMs
MDM2 — p53 —eMDM2 RNA
(1.5*10%/s)[p53]'®
TG*m‘mms (12.3nM2+[p53]'¢)
2.76*10°/nMs

FIGURE 3 | A schematic of the model of p53 including MDM2
sequestration by ARF. The blue boxes denote molecular species in the
cytoplasm. The yellow boxes indicate molecular species in the nucleus.
Arrows denote movement between compartments, barred lines indicate
degradation, and circles indicate inducing production.

nuclear localization for MDM2. MDM2 autoubiquitination hap-
pens at the rate dy,, and MDM2 binds to ARF at the rate k3.
Lastly, ARF is produced at the rate k, and degraded at the rate d,.
The binding properties of p53 and the MDM2 promoter have been
investigated experimentally by Weinberg et al. (2005), who showed
that the appropriate Hill coefficient for the Hill function is 1.8.

A list of the values used for these parameters can be found in
Table 2. The initial conditions were chosen by letting the system
run until it settled into a stable limit cycle and then by using
the values for the time when nuclear MDM2 levels were at a
maximum.

Experimental observations of the p53-MDM2 feedback loop
have found periods of oscillations between 4 and 7h (Geva-
Zatorsky et al., 2006, 2010). Due to scarcity of experimentally
verified data, most of parameters in the model were chosen by
hand in order to produce oscillations with a similar period. Some
of the parameters were constrained by experimental data. Kp was
found to be 12.3nM by Weinberg et al. (2005). Some exper-
imental results suggested that the half-life for MDM2 mRNA
should be in the range of 1-2h (Hsing et al., 2000; Mendrysa
et al., 2001), so this constrained our choice of the decay rate.
The MDM2 translation rate, k1, was assumed to be one protein
per mRNA molecule per minute, approximately the value esti-
mated by Cai and Yuan (2009). The transport rate for MDM?2
mRNA was constrained to be in the range of 5-40 min, based
on Mor et al. (2010). The half-life of the ARF protein, d,, was
chosen to be 6h based on Kuo et al. (2004). Complex for-
mation rates were assumed to be 6 x 1074/nMs, a reasonable
rate for protein—protein interactions (Northrup and Erickson,
1992). It was further assumed that the p53-MDM2 interaction
would always result in p53 degradation. MDM2-independent p53
turnover was assumed to give a half-life of 10 h for the p53 pro-
tein; this is essentially negligible in this model, but this term was
included in the model so that a bifurcation value could be cal-
culated for it. Cytoplasmic volume was assumed to be 1000 wm?
with a nuclear volume of 100 um?. The values for p53 production,
ARF production, basal MDM2 mRNA production, p53 induced
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Table 2 | Parameters used in the model.

Parameter Description Value Value (alternate expression)
Kp p53 Production 0.5 proteins/s 8.30x 1073/nM's
k1 MDM2 dependent p53 degradation 9.963 x 107/ 6x 10~%/nMs
dp p53 Decay 1.925 x 10~5/s 10 h half-life
km p53-Independent MDM2 production 1.5 x 1073 RNA/s 1 RNA per 666's
ko p53-Dependent MDM2 production 15 x 1072/s Maximum of 1 RNA per 66 s
Kp Dissociation constant 740 proteins 12.3nM
ko RNA transport from nucleus to cytoplasm 8.0x 107%/s 14.4 min for half the proteins to move
drc MDM2 mRNA decay in cytoplasm 1.444 x 1074/ 1h 20 min half-life
k1 Transcription rate 1.66 x 10~2 proteins/s One protein per RNA per min
ki Protein transport from cytoplasm to nucleus 9.0x 107%/s 12.4 min for half the proteins to move
dmn MDM2 autoubiquitination 1.66 x 1077/s 2.76 x 1079/nM s
Ka ARF production 0.5 proteins/s 8.30 x 1073/nM's
da ARF decay 3.209 x 10~5/s 6 h half-life
k3 MDM2-ARF complex formation rate 9.963 x 106/s 6x 107%/nMs
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FIGURE 4 | p53 and MDM2 oscillating in the deterministic model. p53 is in black, MDM2 is in red.

MDM?2 mRNA production, MDM2 nuclear import, and MDM2
autoubiquitination were unknown. These unknown parameters
were chosen manually in order to produce oscillations similar to
the ones observed in experiments on single cells. Although only
one set of parameters was produced for this model, the choice
is certainly not unique given the somewhat loose selection crite-
ria. The model produces oscillations with a period of 6.4 h as can

be seen in Figure 4. Bifurcation points for the model are listed
in Table 3. The bifurcation points were found numerically using
Matlab (MathWorks, Inc.).

STOCHASTIC SIMULATION ALGORITHM
The Gillespie algorithm is one of the most commonly used
methods of stochastic simulation (Gillespie, 1977). The Gillespie
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Table 3 | Bifurcation points in the deterministic model.

Parameter Bifurcation value Oscillatory behavior

Kp 0.215/s Undamped: 0.215 < k, < 1.462

kp 1.462/s Damped: kp <0.215U kp > 1.462

I3 2.903 x 107%/s Undamped: 2.903 x 10°% < k; <
1.834 x 10~°

k4 1.834 x 1075/s Damped: k1 <2.903 x 1078 Uk >
1.834 x 1075

dp 4.237 x 107%/s Undamped: dp < 4.237 x 1074

km 2.788 x 1073/s Undamped: km <2.788 x 1073

ko 7501 x 1073/s Undamped: 7501 x 103 <k, <0.118

ko 0.118/s Damped: k» <7501 x 103 Uk, >0.118

Ko 253.083 Undamped: 253.083 < Kp < 1723.058

Kp 1723.058 Damped: Kp <253.083U Kp > 1723.058

ko 7010 x 105/ Undamped: 7010 x 1078 <kq <
6.160 x 1073

ko 6.160 x 1073/s Damped: kg <7010 x 1078 U kg >
6.160 x 1073

dre 8.714 x 10-5/s Undamped: 8.714 x 107° < d¢ <
2.704 x 10~

drc 2.704 x 10~%/s Damped: dre <8.714 x 1072 U dyc >
2.704 x 10~

ky 8.760 x 1073/s Undamped: 8.760 x 1073 < k7 <
2.936 x 1072

kt 2.936 x 1072/s Damped: kT <8.760 x 1073 U k7 >
2.936 x 1072

ki 6.845 x 107%/s Undamped: 6.845 x 1076 < k; <
1.559 x 1072

ki 1.659 x 10~%/s Damped: ki <6.845 x 1078 U ki >
1.559 x 1072

dron 1.251 x 107/ Undamped: dmn < 1.251 x 1076

ka 0.324/s Undamped: 0.324 < k5 <0.963

Ka 0.963/s Damped: k; <0.324U k, > 0.963

da 2.088 x 1073/s Undamped: da <2.088 x 1073

k3 5.866 x 10~%/s Undamped: k3 >5.866 x 10~°

algorithm has the advantage of being exact, unfortunately, it is also
computationally expensive. In order to conduct our investigation
we chose to instead use an approximate simulation, because the
Gillespie algorithm is too slow for the required complexity and
number of simulation runs.

The algorithm we created was based on the concepts of a finite
difference integrator. In a finite difference integrator a system of
differential equations is evaluated by first calculating each of the

derivatives at a point in time, then multiplying them by the time
step size, and finally updating each of the variables by the corre-
sponding amount. In our algorithm, rather than being evaluated
as a single set of derivatives each chemical reaction is evaluated
separately. When the simulation evaluates a chemical reaction, the
first step is to use the law of mass-action and the average of the
current chemical concentrations, and their concentrations after
the last time the reaction was evaluated, to find an expectation
value for the number of times the reaction will occur during this
time step. Next, the expectation value for the number of times
the reaction will occur is set as the expectation value for a Pois-
son random number generator and the result is the number of
times the reaction will actually occur during that time step. This
gives the algorithm a strong resemblance to the well known tau
leap method (Gillespie, 2007), in which Poisson random num-
bers are used in combination with the Gillespie algorithm to
improve efficacy. In order to improve efficiency while preserv-
ing accuracy in our algorithm, an adaptive time step is used. The
program evaluates each reaction 0.5 times per simulated second,
with N chosen such that the expectation value for a particular
evaluation of a reaction is lower than a preset threshold mul-
tiplied by the quantity of the chemical molecules involved. In
this way parts of the system that are changing rapidly are eval-
uated with a low enough time step to prevent numerical errors,
without needing to waste additional computations on the slower
reactions.

Figure 5 shows some examples of individual simulation runs
for this model. The stochastic nature of the simulation leads to
a number of interesting differences arising from the desynchro-
nization of the individual model runs as well as from applying a
distribution of p53 values into the non-linear function for MDM?2
production.

RESULTS

DESYNCHRONIZATION IN GENERAL

In order to understand how the individual stochastic realizations
of our model fall out of synch with each other let us first consider
how stochastic systems may fall out of synchronization in general.
An experiment averaging protein levels across many cells is analo-
gous to looking at the average of many runs of a stochastic system.
As such, it is interesting to consider how aggregate average behav-
ior differs from the behavior of individual model runs. A given
run of the stochastic model will not necessarily just be equal to the
deterministic model plus noise. At any given step the stochastic
model’s variables depend on the values of the variables at the pre-
vious time step. For a periodic model this will result not only in
noise moving variables up and down but also in random stepping
forwards and backwards of the model’s phase. Consequently, an
ensemble of model runs will fall out of synchronization over time.
Imagine for simplicity a stochastic model based on a deterministic
model with a variable given by A sin(wt + ¢). In the stochastic
model random chance continuously moves each run in the ensem-
ble toward or away from the next peak. Considering the central
limit theorem applied over a large number of runs, one would then
expect the distribution of timing of the peak in individual runs to
approach a normal distribution. If all the runs are initialized from
the same starting point, then the amplitude of the mean will not
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FIGURE 5 | Examples of time courses in the stochastic model. p53 is in black and MDM2 is in red.

be A sin(wt 4+ ¢) but rather it will be

will increase proportionally to the square root of time, the stan-

dard deviation o can be expanded as /7, where o is a parameter

o 1 Vi . ’ ’
A/ e 202 sin (wt—i—(p—i—wt)dt
oo O 27

because the timing of each run will be shifted with a Gaussian
weighting given to the shift. Since the width of the distribution

Ae”

related to the rate of desynchronization. This integral then works
out to be

sin (ot + @)
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stochastic model in blue. (B) Shows the comparison for p53 with the
deterministic model in black and from the mean of 5,000 runs of the
stochastic model in green.
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FIGURE 7 | (A) Comparison of p53 levels in the deterministic model in black to a curve fitted to it from the function f (t) = a, + a; sin (ot + ¢;) +
n(2 .
a, sin 2wt + ¢,) in red. (B) Comparison of p53 levels in the stochastic model in black to a curve fitted to it from the function f (t) = a, + e 7 a, sin (ot + ¢1) +

Consider a 27 periodic function that is integrable on the inter-
val from — to m. This function could be expressed as a Fourier
series such that

f= ? + Z [a, cos (nt) + by, sin (nt)]
n=1

or equivalently

P

f(t)z2

+

2

[a,, sin (nt + g) + b, sin (m‘)]

n=1

Applying the result above we find that the function will be
changed by desynchronization to become

242

= % + i [an sin (nt + g) + by sin (nt)]f%‘”

n=1

Since the decay is proportional to the square of the frequency,
any function will rapidly take on the appearance of a single
decaying sine-function curve as time progresses.
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DESYNCHRONIZATION IN THE STOCHASTIC MODEL

The damping caused by desynchronization in the stochastic model
can be seen in Figure 6. The deterministic and stochastic systems
can be compared by fitting a curve to the time series for p53.
Specifically:

f(t) = ap + ay sin (ot + ¢1) + a2 sin Qwt + ¢2)

for the deterministic model, and

2

o ocz
f (t) =ap + 67%a1 sin (ot + ¢@1) + ef% a sin Qot + ¢3)

for the stochastic model. Table 4 lists the parameter estimates for
the deterministic model as well as 95% confidence intervals for the
stochastic model. Figure 7 shows graphs of the functions and their
best fits. The best fit was determined by using least squares regres-
sion on the mean p53 values from 5,000 instances of the stochastic

model. The upper and lower bounds were found by using boot-
strapping on the 5,000 instances that were used to compute the
best fit. The 95% confidence intervals for the amplitude and phase
of the second sine curve ended up being very large due to the curve
fitting function jumping between local minima. To ensure that the
algorithm was being run at a high enough numerical precision,
an additional 5,000 instances were generated with the acceptable
error parameter in the code selected to equal 10 times the value
used in this analysis. The resulting new confidence intervals were
compared to the ones from the higher accuracy runs. In all cases
significant overlap of the intervals was found, suggesting that the
acceptable error was set low enough in the high accuracy runs to
result in only negligible deviations from an exact solution.

The differences between the stochastic model’s behavior and the
deterministic model’s behavior are statistically significant. Most
striking is that the frequency of the oscillations was changed by
stochastic effects. The same analysis has been done on nuclear

Table 4 | Comparisons of the parameters found when fitting the
deterministic model’s p53 levels to the function f (t) = a9 +

a; sin (wt + @1) + a; sin (2wt + @) and the stochastic model’s p53
levels to the function f (t) = ay + e_% a; sin (0t + @) +

4ot .
e~ 2 apsin 2wt + ¢3).

Table 5 | Comparisons of the parameters found when fitting the
deterministic model’s nuclear MDMZ2 levels to the function f () = ap +
a; sin (wt + @1) + a; sin (2wt + @) and the stochastic model’s nuclear
MDM2 levels to the function f () = ao + e~ " ay sin (ot + @1) +

42t .
e~ 2 apsin (2wt + ¢@3).

Parameters Parameters Lower bound Upper bound Parameters Parameters Lower bound Upper bound
fitted to fitted to for stochastic for stochastic fitted to fitted to for stochastic for stochastic
deterministic  stochastic parameters parameters deterministic  stochastic parameters parameters
model model model model
a  NA 21.8/s'? 21.2/s'? 22.5/5'?2 a  NA 20.7/s'? 20.2/s'? 21.3/s'2
o  273x107%s 2.63x107%s 2.62x107%/s 2.64 x 107%/s o 273x107%s  2.63x107%s  2.62x107%/s 2.63 x 107%/s
Ap 332 346 345 347 A 302 345 343 346
Ay =348 —396 —406 —388 Ar =314 -372 -379 —365
f1 1.21 1.40 1.38 1.43 f1 -1.72 —1.49 —1.51 —1.47
Ay 105 136 —136 144 Ay =71 -78.5 -82.8 —74.6
) 0.633 -1.16 —36.6 13.6 fa -1.73 —0.80 -0.87 -0.73
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FIGURE 8 | Comparison of nuclear MDM2 levels in the stochastic
model in black to a curve fitted to it from the function

a0t

f@)=a+ e‘% a, sin (wt + @) + e~ 7 a,sin 2wt + @,) in red.
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FIGURE 9 | A comparison of the function 22" hetween the

function applied to mean p53 values in black and the mean of the
function when applied to the distribution of p53 values in red.
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MDM2 levels, which can be seen in Figure 8 and Table 5. The
discrepancy between the fitted curve for MDM2 levels and the
levels from the simulation hints at another difference between sto-
chastic and deterministic systems, which will be discussed below.
It is also worth noting that this stochastic model only consid-
ers the differences between cells due to noise in a few chemical
reactions. In a real cell there would be many more factors con-
tributing to desynchronization. Even simply adding mRNA for the
p53 and ARF included in this model raises the desynchronization
parameter a from 21.8 to 23.5s~ 2 (a mean of 30 mRNA mol-
ecules was used for this simulation). Additionally, differences in

cell volume would increase desynchronization by altering protein
concentrations between cells.

CHANGES DUE TO NON-LINEAR EFFECTS

The mean of a stochastic ensemble for the stochastic model devi-
ates from the deterministic model not just from desynchronization
but also due to non-linear effects. For a non-linear function
applied to a distribution of inputs, the mean of the function
will not necessarily be equal to the function of the mean. In
other words, as is well known in statistics, the following is usu-
ally true: <f{x)> # f(<x>), unless f is a linear function of x.
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FIGURE 10 | Comparison of stochastic and deterministic models when
p53 production is near the lower bifurcation point. (A) Shows the
comparison for MDM2 with MDM2 from the deterministic model in red and
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Production of MDM2 mRNA in this model is clearly non-linear
[P53]18
kiS4 (p53]"
compares the function of the mean to the mean of the func-
tion for this case. Mean MDM2 values in the stochastic model
are determined by <f(p53)> (the red curve in Figure 9) which
has a different amplitude then fl<p53>) (the black curve in
Figure 9). This discrepancy causes the behavior of the system to
change relative to the deterministic case, which only has mean
p53 values. This is also the most likely source of the discrep-
ancy between the fitted curve in Figure 8 and the actual levels
of MDM2. With production that behaves differently, the initial
conditions in the simulation would not have represented a point
on the limit cycle for MDM2 levels. As a consequence, the system
would have been moving toward the limit cycle at the same time
as it was desynchronizing. The simple fitted curve cannot possi-
bly account for this, which is why it did not fit well. p53 levels
would also have been affected by this but this does not seem to
have been a large enough effect to be readily noticeable on the

graph.

Although the effect on the amplitude of the oscillations with
the original parameters was relatively small, amounting to approx-
imately 5%, the non-linear effects can be larger in other situations.
Consider the case when the p53 production rate is set near to the
lower bifurcation point, as shown in Figure 10. In this case the
mean level of MDM?2 from the stochastic model ends up being
higher than the maximum amplitude of the oscillations in the
deterministic model. A similar phenomenon occurs when p53
production is near the upper bifurcation point as is shown in
Figure 11.

because it is proportional to f(p53) = . Figure 9

EXCURSIONS FROM THE MEAN
Stochastic effects continue to play an interesting role in the sys-
tem’s behavior even as we move past the upper bifurcation point,
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FIGURE 13 | Comparison of the function P
d

function applied to mean p53 values in black and the mean of the
function when applied to the distribution of p53 values in red.

between the

so that the deterministic model exhibits damped oscillations. For
Figures 12-14, p53 production was set to 1.6, putting the system
into the realm of damped oscillations. In Figure 12 we can see
that as the oscillations decay, the MDM2 levels settle in at a value
significantly higher in the stochastic model than the determinis-
tic one. From Figure 13 we can see that the non-linear effects of
variable p53 levels are still altering behavior, but something more
is occurring this time. In Figure 12B we see that mean p53 levels
are settling in at a level higher in the stochastic model than in
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the deterministic one. This seems strange in light of the higher
MDM2 levels but Figure 14 shows the reason. The stochastic
nature of the system is sufficient to cause significant excursions
from the mean even though the oscillations should be decaying.
Some of the oscillations that occur later on are even larger than
the initial pulse. Similar behavior has been observed in other sto-
chastic models such as the one presented in McKane and Newman
(2005), but has not been previously observed in a model of the
P53 system.

DISCUSSION

The stochastic work we present in this paper differs from previ-
ous modeling efforts in that its goal is primarily to compare the
behavior of stochastic and deterministic realizations of the same
model. This requires only a simple model; therefore much of the
complexity of the p53 system can be ignored. Since the model
presented in this work is not aimed at addressing DNA repair, or
dealing with the problem of variable damage being done, it does
not include such systems. The model presented here also differs
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FIGURE 14 | Examples of individual stochastic realizations when p53 production is past the upper bifurcation point. p53 is in black MDM2 is in red.
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from the previous models in a few other ways. Unlike in other
models, MDM2 autoubiquitination was assumed to happen at a
rate proportional to the square of MDM2 concentration. Given
that MDM2 forms heterodimers with MDMX (Sharp et al., 1999),
that MDMX inhibits MDM2 autoubiquitination (Okamoto et al.,
2009), and that MDM?2 ubiquitinates MDMX (De Graaf et al.,
2003), it seems likely that one MDM2 molecule is ubiquitinating
a second MDM2 molecule.

The work on the deterministic and stochastic models presented
here demonstrates that the effects of stochasticity on the behavior
of genetic regulatory networks cannot be dismissed without care-
ful consideration. In our system stochastic effects altered every
aspect of system behavior. In addition to desynchronization lead-
ing to the appearance of decaying oscillations, the amount of
MDM2 in the system increased and the period of the oscilla-
tions changed. The changes in MDM2 levels became more obvious
when p53 production was near bifurcation points. When the sys-
tem was put into a state with decaying oscillations, the quantity
of MDM2 still remained above that in the deterministic model,
showing that stochasticity still alters behavior as the system is near
a steady state. Furthermore, stochastic systems will not necessar-
ily undergo damped oscillations even when assigned parameters
that would cause damped oscillations in a deterministic system.
Instead, they may show sporadic oscillation-like excursions from
the mean behavior. It would seem then that even for cells in a
steady state, the distribution of protein levels across a popula-
tion and over time could wreak havoc with attempts to model cell
behavior. This has implications for researchers wishing to model
cell-level processes, as systematic errors could occur in determin-
istic models with no obvious way to compensate for them. As
computers and algorithms improve, it may be the case that simply
moving to stochastic modeling of cell populations will become the
most practical solution.

The demonstration that stochasticity can be relevant is very
general, but it was also shown that the magnitude of the effects
could vary significantly between systems. The effect on mean pro-
tein levels could be around 5%, as in the original parameter set,
or around 50%, as in some of the parameter sets with differing
p53 levels. The obvious way to experimentally test the relevance
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INTRODUCTION

Angiogenesis, the formation of new blood vessels from existing vasculature, is important
in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial
growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies
aimed at inhibiting tumor angiogenesis. Systems biology approaches, including compu-
tational modeling, are useful for understanding this complex biological process and can
aid in the development of novel and effective therapeutics that target the VEGF family
of proteins and receptors. We have developed a computational model of VEGF transport
and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tis-
sue, blood, and tumor. The model simulates human tumor xenografts and includes human
(VEGF421 and VEGF465) and mouse (VEGF g and VEGF1g4) isoforms. The model incorpo-
rates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and
VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble
factors: soluble VEGFR1 (sFlt-1) and a-2-macroglobulin. The model accounts for transport
via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance.
We have fit the model to available in vivo experimental data on the plasma concentration
of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to esti-
mate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial
cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are signifi-
cantly lower (0.007-0.023 molecules/cell/s, depending on the tumor microenvironment)
than most reported in vitro measurements (0.03-2.65 molecules/cell/s). The optimized
model is used to investigate the interstitial and plasma VEGF concentrations and the effect
of the VEGFneutralizing agent, VEGF Trap (aflibercept). This work complements experimen-
tal studies performed in mice and provides a framework with which to examine the effects
of anti-VEGF agents, aiding in the optimization of such anti-angiogenic therapeutics as
well as analysis of clinical data. The model predictions also have implications for biomarker
discovery with anti-angiogenic therapies.

Keywords: systems biology, mathematical model, computational model, angiogenesis, tumor xenograft model,
anti-angiogenic therapy, cancer

binding to and activating its receptors VEGFR1 and VEGFR2,

Angiogenesis is the formation of new blood capillaries from pre-
existing vessels, and is a process involved in physiological function,
such as exercise and wound healing, as well as disease conditions,
including cancer, peripheral and coronary artery diseases, pre-
eclampsia, and age-related macular degeneration (AMD). The
vascular endothelial growth factor (VEGF) family is a key pro-
moter of angiogenesis and vascular development. The VEGF fam-
ily includes five ligands: VEGF-A, VEGF-B, VEGF-C, VEGF-D, and
placental growth factor (PIGF). One of the most widely studied
members is VEGF-A, commonly referred to as VEGE. Alternative
splicing of VEGF produces different isoforms, including VEGF; 5,
VEGFi65, VEGF 39, and VEGF,¢6 in humans. Expressed rodent
isoforms are one amino acid shorter than human isoforms; there-
fore, the subscripted number is one less. Additionally, there are
VEGF,y, isoforms, which have been shown to be endogenous
anti-angiogenic species (1, 2). VEGF promotes angiogenesis by

and co-receptors called neuropilins (NRPs). Signal transduction
through the receptors promotes many cellular processes, includ-
ing cell proliferation, migration, and survival (3). VEGFR1 and
VEGEFR2 are expressed on endothelial cells (ECs), cancer cells, and
other cell types, including bone marrow-derived cells and neu-
rons [see (4) for review]. NRPs are expressed on various cell types,
including ECs, tumor cells, and muscle fibers (4).

Angiogenesis has been targeted to treat diseases character-
ized by reduced vascularization (“pro-angiogenic therapy”) (5, 6)
or to inhibit the formation of new blood vessels in conditions
leading to hypervascularization (“anti-angiogenic therapy”) (7,
8). Of particular importance is anti-angiogenic therapy targeting
tumor vascularization. Bevacizumab (9) is a recombinant mon-
oclonal antibody that neutralizes VEGF and is approved by the
Food and Drug Administration to treat colorectal cancer, glioblas-
toma, kidney cancer, and non-small cell lung cancer. Aflibercept
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(Regeneron) is a soluble decoy receptor approved to treat metasta-
tic colorectal cancer and wet AMD. The drug is also in clinical trials
to evaluate its anti-angiogenic effect on various forms of cancers
(10). Aflibercept binds to VEGF more tightly than bevacizumab
(11) and forms a 1:1 complex with VEGF and PIGF (12). In addi-
tion to therapies that target the VEGF ligand, several tyrosine
kinase inhibitors (TKIs) have been developed to target phosphory-
lation of VEGF receptors, as well as other pro-angiogenic receptors
including platelet-derived growth factor (PDGF) receptors and
fibroblast growth factor (FGF) receptors (13, 14).

Systems biology approaches, including quantitative experimen-
tal methods and mathematical modeling, have been applied to
study angiogenesis (15—17). Computational models complement
experimental studies and can aid in the development and opti-
mization of effective therapeutics (18). Despite extensive basic
science and translational research to develop anti-angiogenic ther-
apies, little is known about the drugs’ mechanism of action, how
and why tumors become resistant to the treatment, or the patient
population that can benefit most from these drugs. Identifying bio-
markers that can be used to predict the patients whose tumors will
respond favorably to anti-angiogenic treatment is of great inter-
est (19-21). Computational approaches can shed light upon these
issues by providing a framework to generate and test hypotheses
related to VEGF kinetics and transport in the body (14, 22).

We have previously developed an experiment-based compart-
ment model of VEGF distribution in non-tumor-bearing mice,
which estimates the distribution of VEGF in the body (23). Addi-
tionally, the model was used to fit kinetic parameters and to
predict the rate at which VEGF is secreted by muscle fibers,
which is difficult to measure experimentally in vivo. In this work,
we present an expanded model that includes a tumor compart-
ment and incorporates several new features: EC secretion of
VEGE, soluble factors that influence VEGF levels, and a dynamic
tumor volume. These new elements lead to a more physiolog-
ical model and incorporate experimental observations relevant
to VEGF kinetics and transport in the whole body, which can
be compared to experimental data. Thus, this work represents a
significant expansion to our previous models (23-26). We first
re-calibrate the two-compartment model (no tumor is present)
using in vivo experimental data and estimate the rates at which
VEGEF is secreted by muscle fibers and ECs, as well as the clearance
rates of unbound and complexed VEGF Trap, and the bind-
ing affinity of VEGF trap. We then fit the three-compartment
model to available in vivo experimental data in order to esti-
mate the rate of VEGF secretion by muscle fibers, ECs, and tumor
cells. We demonstrate how the model can be applied to inves-
tigate the effect of neutralizing VEGF using VEGF Trap. These
results contribute to our understanding of the efficacy of VEGF
Trap in specific tumor types. We also estimate the concentra-
tions of VEGF in different compartments, which can be validated
experimentally.

RESULTS

RE-CALIBRATION OF TWO-COMPARTMENT MODEL CAPTURES
DYNAMICS OF BOUND AND COMPLEXED VEGF TRAP

The previous two-compartment model simulating non-tumor-
bearing mice (23) did not include EC secretion of VEGF or soluble

factors. Therefore, we first refit the expanded two-compartment
model that includes these additional features in order to match
in vivo experimental data (12). The fitting optimized the val-
ues of five parameters: VEGF secretion rate of muscle fibers
(q{,“ﬁlé%le), VEGF secretion rate of ECs (q{z,%GF), clearance rate of
VEGF Trap (ca), clearance rate of the VEGF/VEGF Trap complex
(cva), and dissociation constant of VEGF and VEGF Trap (Kg).
As described in the methods, although the experimental protocol
used by Rudge and coworkers utilizes subcutaneous administra-
tion of VEGF Trap, we simulate intravenous administration and
assume 100% of the reported dose is administered. The fitting
procedure allows us to estimate the values of the free parameters
using in vivo experimental data.

The optimized parameter values are shown in Table 1, and
all raw data from the optimization is given in File 1 in Supple-
mentary Material. The optimized value of K4 is comparable to
the reported in vitro measurement of 0.6 pM (11), providing con-
fidence in the fitting procedure. The optimization predicts the
muscle fibers secrete very little VEGF (0.002 molecules/cell/s), and
the standard deviation of the optimized values is high. This sug-
gests that the model is not sensitive to the value of (q{,nﬁlecFle).
To investigate this possibility, we varied muscle secretion from
0 to 0.02 molecules/cell/s and used the model to estimate the
concentrations of unbound VEGF Trap and the mouse VEGF
(mVEGF)/VEGF Trap complex. This sensitivity study revealed
that increasing (¢8s°) up to one order of magnitude does
not significantly change the fit, as shown in Figure 1. These
results indicate that there may not be sufficient data to deter-
mine VEGF secretion from muscle fibers. Specifically, it is dif-
ficult to separate the contribution of VEGF from muscle fibers,
compared to ECs. This result is not specific to the data used
here, but more generally that plasma measurements cannot be
used to determine endogenous VEGF production from multiple
sources.

SENSITIVITY ANALYSIS REVEALS MODEL PARAMETERS THAT
INFLUENCE VEGF CONCENTRATIONS

In the three-compartment model, the values of several parame-
ters are based on characterization of the human VEGF (hVEGF)
system due to a lack of quantitative experimental measurements
in mice. We previously investigated sensitivity to individual para-
meters, including vascular permeability, lymphatic drainage, and
properties of the anti-VEGF agent (25). In that work, parameters

Table 1 | Estimated model parameters from optimization of
two-compartment model.

Parameter Units Optimal Standard
value deviation

Normal secretion Molecules/cell/s  0.002 0.003

EC secretion Molecules/cell/s  0.057 0.004

Tumor secretion Molecules/cell/s  N/A N/A

Clearance of free VEGF Trap s~ 13x107° 2x1077

Clearance of bound VEGF 5! 25x106 2x1077

Trap

Kq of VEGF Trap pM 0.29 0.011
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were varied one by one. Here, we perform a modular sensitiv-
ity analysis, where we investigate how variability in three sets of
parameters (model inputs) influence mouse and hVEGF concen-
trations and sVEGFR1 levels in normal tissue, blood, and tumor
(model outputs). Specifically, we investigated the effect of VEGF
receptor expression, transport parameters, and kinetic parameters
using the extended Fourier Amplitude Sensitivity Test (eFAST),
as described in the Section “Materials and Methods.” Two indices
provide an estimate of the sensitivity of the model output to model
parameters. The first FAST index quantifies the variance of a model
output with respect to the variance of each input. The total FAST
index quantifies the variance of a model output with respect to
the variances of each input and covariances between all combi-
nations of inputs. If total FAST indices are larger than the first
FAST indices, it means that the parameter is more important in
combination with other parameters rather than individually.

The FAST indices for each set of model inputs are shown in
Figure 2. When investigating the effect of tumor cell receptor
expression, VEGF and sVEGFR1 concentrations are sensitive to the
density of NRP co-receptors. Additionally, the level of VEGFR1 is
an important determinant of hVEGF concentration in the tumor.
In the transport module, the rate of lymphatic flow from normal

or tumor tissue in concert with other transport parameters is esti-
mated to influence hVEGF levels in plasma and normal tissue. Sol-
uble VEGFRI1 concentrations, as well as mVEGF levels in plasma
and normal tissue, are particularly sensitive to the permeability of
the normal tissue to VEGF and VEGF/sVEGFR1 complexes. Indi-
vidual parameters investigated in the kinetic module are predicted
to influence VEGF and sVEGFR1 concentrations, rather than in
combination with other kinetic parameters. VEGF and sVEGFR1
levels are particularly sensitive to VEGF ;¢4 and VEGF)65 binding
to NRP co-receptors and VEGF binding to VEGFR1. These results
aid in our understanding of how uncertainty in the values of par-
ticular parameters influence the model output. Additionally, the
sensitivity analysis provides quantitative data to support obtaining
additional experimental measurements of specific parameters that
significantly influence model outputs.

THE RATE OF VEGF SECRETION BY HUMAN TUMOR CELLS IS
DEPENDENT ON THE TUMOR MICROENVIRONMENT

Tumor cells are a source of VEGF; however, there is a lack of in vivo
data for VEGF secretion rates. Therefore, we have used in vivo
experimental data on the plasma concentration of free VEGF Trap
and VEGF Trap bound to mouse and hVEGF to determine VEGF
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FIGURE 2 | Sensitivity indices of model parameters. The extended Fourier
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indices) and covariances in combinations of model inputs (total FAST indices).
A modular approach was used to investigate the sensitivity to (A), tumor
receptor expression; (B), transport parameters; and (C), kinetic parameters.
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secretion rates in mice bearing human tumor xenografts. Here,
we use the clearance rates of unbound and complexed VEGF
Trap predicted in the two-compartment model and experimentally
determined VEGF binding affinity. However, the VEGF secretion
rates (q{,“ﬁ‘é%le, q{i,%GF, and tumor VEGF secretion, q{}gr(‘% ) were opti-
mized to fit experimental data. We optimize the VEGF secretion
rates since there is large variability in the predicted rate of muscle
secretion obtained using the two-compartment model.

The VEGF secretion rates were predicted using the optimiza-
tion algorithm, assuming the tumors follow either the average
(baseline) or fast tumor growth profiles. We use data from Rudge
et al. (12), where tumors were allowed to grow to ~100 mm?>,
and then the tumor-bearing mice were injected with VEGF Trap
(“anti-VEGF”) twice weekly for 2 weeks. Various dosages of VEGF
Trap were used, and the concentrations of free VEGF Trap and
the mVEGF/VEGF Trap complex and hVEGF/VEGF Trap com-
plex in the blood were measured. These measurements can be
directly compared to model estimates where the anti-VEGF agent
is administered intravenously. The optimized model provides a
good fit to the experimental data, as shown in Figure 3. The
average and standard deviation of the predicted VEGF secre-
tion rates from the optimization runs are in Figure 4 and
Table 2, and File 1 in Supplementary Material contains the
raw data.

CIRCULATING LEVELS OF VEGF TRAP AND HUMAN VEGF/VEGF TRAP
COMPLEX AND MAXIMUM CONCENTRATION OF TOTAL VEGF TRAP
VARY WITH DOSE

To our knowledge, the dynamic levels of free and complexed VEGF
Trap in tumor-bearing mice have not been reported. These data are
useful in elucidating the mechanism of action of VEGF Trap and
to determine if the dosage is sufficient to neutralize VEGF secreted
by the tumor. Therefore, we used the optimized model for A673
rhabdomyosarcoma human xenograft to predict the concentra-
tion profiles for free VEGF Trap and VEGF Trap bound to hVEGF
(Figure 5). The level of VEGF Trap bound to hVEGF is more than
an order of magnitude lower than the concentration of mVEGF
complexed with VEGF Trap. This result is consistent with the find-
ing that normal production of VEGF eclipses the production from
tumors, as described by Rudge and co-authors (12). Addition-
ally, the level of free VEGF Trap remains well above the level of
the hVEGF/VEGEF trap complex for up to 14 days. This indicates
effective dosing, as the VEGF-neutralizing agent is able to neu-
tralize all VEGF secreted by the tumor. The HT1080 fibrosarcoma
tumor response is similar (data not shown).

VEGF TRAP IS PREDICTED TO DEPLETE UNBOUND VEGF IN THE BODY

The optimized model of a tumor-bearing mouse provides a
framework with which to study the concentration of unbound
VEGEF before and after administration of VEGF Trap. As expected,
endogenous levels of unbound VEGF are highest in the normal
tissue and plasma, and the concentration of hVEGF is highest
in the tumor, based on the source of mouse and hVEGE. Before
any injection, mVEGF concentration is estimated to range from
0.17 to 1.47 pM in mice with A673 tumors, based on 1 SD above
and below the average predicted VEGF secretion rates (Table 3).
Unbound hVEGF in the tumor is estimated to be ~0.5 pM. We also
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FIGURE 3 | Predicted systemic VEGF Trap levels. The model predicts the
plasma levels of free VEGF Trap (black lines), mouse VEGF bound to VEGF
Trap (blue lines), and human VEGF bound to VEGF Trap (red lines). VEGF Trap
was administered twice per week for 2 weeks at doses of 0.5, 1, 2.5, 10,
and 25 mg/kg. The simulated results are shown for the optimized model
where the secretion rates of VEGF by myocytes, EC, and tumor cells were
fit to experimental data (circles). We use the mean (solid lines) and 1 SD
(dashed lines) of the fitted secretion rates. (A) A673 tumor; and (B), HT1080
tumor. Results for fast-growing tumor are in Figure A1 in Appendix.

present free VEGF concentration during twice-weekly injections of
VEGEF Trap at 2.5 mg/kg (Figures 6A,B). The model estimates that
free VEGF in the body is first depleted before increasing slightly
before the next injection. Thus, the model can be used to under-
stand the effect of anti-VEGF agents on systemic and tissue levels
of VEGFE.

In addition to using the model to estimate the concentration
of unbound VEGE, we have also determined the percentage of free
VEGEF in the form of VEGF;¢4 or VEGF;¢5. The isoform secretion
ratio for VEGF;64:VEGF120 in muscle is 92:8 and 90:10 in EC, and
the secretion ratio for VEGF45:VEGF2; in tumor cells is 50:50,
as described in the Section “Materials and Methods.” These ratios
determine the fraction of VEGF ;44 or VEGF 45 in the compart-
ments; and, the fractions at which the isoforms are present change
with time and drug dose. Here, we consider a dosage of 2.5 mg/kg.
After the first anti-VEGF injection, the percentage of free mnVEGF
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in the form of VEGF¢4 is ~90% in all compartments (Figure 6C,
left). The percentage of hVEGF in the form of VEGF 45 in tumor
is slightly lower than the percentage of VEGF 65 in normal tissue
and plasma (44-49%, as compared to 55%; Figure 6D). These
types of model predictions can aid in biomarker identification, as
the concentration of specific VEGF isoforms may predict tumors
that will respond to anti-VEGF treatment or other anti-angiogenic
therapies.

We also apply the model to investigate the total levels of cir-
culating VEGF in plasma. The soluble factors sVEGFR1 and o-2-
macroglobulin («2M) bind to VEGF and contribute to circulating
levels of VEGE. Thus, total circulating VEGF is comprised of free
VEGF, VEGF bound to sVEGFR1, and a2M-bound VEGF (both
the native and active forms). VEGF bound to the VEGF Trap drug
is also included. We again allow the tumors to reach a volume of
100 mm? before simulating twice-weekly injections of VEGF Trap
at varying doses. Before the first injection, the relative amounts of
free, sVEGFR1-bound, and a2M-bound circulating VEGF are 80,
4, and 16%, respectively. One day after the first injection of VEGF
Trap, the composition of the circulating VEGF changes, depending
on the drug dose (data not shown). If we consider a drug dose of
2.5 mg/kg, the relative amounts of free, sVEGFR1-bound, a2M-
bound, and VEGF Trap-bound VEGF are 0.6, 0.03, 5, and 94%,
respectively. Thus, the VEGF Trap displaces the soluble factors
bound to VEGE
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FIGURE 4 | Optimized VEGF secretion rates. The model parameters were
optimized to fit experimental data, and the values of normal, EC, and tumor
VEGF secretion rates were determined. The mean optimal secretion rates
and standard deviation of 20 optimization runs are shown. Results for
fast-growing tumors are in Figure A2 in Appendix.

DISCUSSION

We have developed a compartment model of VEGF distribution
in tumor-bearing mouse. The model incorporates tumor-specific
properties, including the rate of tumor growth and VEGF secre-
tion. We have used in vivo experimental data for the levels of free
and bound VEGF Trap in mice bearing human tumor xenografts
in order to predict the endogenous rate of VEGF secretion by
myocytes and ECs and compared them to the predicted secretion
rates in normal mice. We also predicted the rate at which cells from
different human tumor xenografts secrete VEGE. To our knowl-
edge, VEGF secretion rates can only be obtained from in vitro
experiments and cannot be directly measured in vivo; however,
VEGF concentrations that depend on the secretion rates can be
measured experimentally, although such interstitial measurements
are presently not available. Therefore, this work provides new
insight into VEGF levels in a pre-clinical in vivo model of cancer. In
addition, using the optimized model for tumor-bearing mice, we
have estimated the concentration of VEGF in the mouse following
administration of VEGF Trap, as well as the distribution of VEGF
in mice and circulating levels of VEGF Trap and the VEGF/VEGF
Trap complex. These results show that the concentration of free
VEGF in the tumor depends on the tumor-specific properties such
as the rate of tumor growth and the amount of VEGF secreted
by tumor cells. Lastly, we used the predicted level of VEGF Trap
and hVEGF/VEGF Trap complex to compare various dosages. The
model predicted that all hVEGF originating from the tumor is
neutralized at higher doses of the drug. This demonstrates an
important application of the model: to incorporate tumor-specific
properties and investigate the efficacy of different drug doses.

We used the two-compartment model to estimate VEGF secre-
tion rates, clearance of free and bound VEGF Trap, and the binding
affinity of VEGF Trap for normal mice. The value of binding affin-
ity of VEGF Trap estimated by the model is comparable to the
experimentally measured value (11). Additionally, the estimated
EC secretion is comparable to the experimentally determined value
0f 0.028 molecules/cell/s (27). However, the predicted rate at which
muscle cells secrete VEGF is very low, and varying this parameter
over one order of magnitude does not significantly change the fit.
In contrast, EC secretion can be specified and changing this para-
meter drastically influences the fit to experimental data (results not
shown). These results may indicate that the rate of VEGF secre-
tion from muscle and ECs cannot be simultaneously estimated
using the available experimental data. That is, measurements of
free and bound VEGF Trap in plasma do not allow us to distin-
guish how muscle and ECs contribute to VEGF levels. Additional
experimental measurements such as interstitial levels of VEGF in

Table 2 | Estimated VEGF secretion rates from optimization of three-compartment model.

Tumor Baseline tumor growth profile* Fast growth profile

Normal EC Tumor Normal EC Tumor
AB73 0.011+£0.007 0.009+0.008 0.009+5 x 107° 0.009 +0.006 0.009 +£0.008 0.007+£4 x 1075
HT1080 0.007 +0.006 0.008+0.008 0.023+£3x 1074 0.007 £0.006 0.008+0.008 0.017+£3x10°°

*Secretion rate is given in molecules/cell/s. We report the mean = SD of the 20 optimization runs.
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Table 3 | Estimated concentrations of free VEGF before VEGF Trap injection.

Tumor Range of free VEGF (pM)*
Mouse Human
Normal Plasma Tumor Normal Plasma Tumor
AB73 0.17-1.47 0.04-0.61 0.002-0.02 5.03 x 1075-5.30 x 10~ 1.18 x 1073-1.20 x 1073 0.49-0.50
HT1080 0.07-1.27 0.02-0.54 0.001-0.02 1.26 x 1074-1.34 x 104 2.95x 1073-3.05 x 1073 1.23-1.26

*Calculated using (mean =+ SD).

skeletal muscle are needed in order to predict VEGF secretion by
muscle fibers with confidence. Currently, interstitial VEGF con-
centrations are only available in human tissue (28-33); however,
similar studies in mice are of great interest.

We found that fitted parameters from normal mice were not
sufficient to match the levels of unbound and complexed VEGF
Trap in the model of tumor-bearing mice. We first attempted to

use the fitted parameters from the two-compartment model in the
model of tumor-bearing mice and use in vivo experimental data to
fit the rate of VEGF secretion from tumor cells. However, the model
overestimated the amount of VEGF Trap complexed with mVEGF
(results not shown). We are able to more closely fit the experi-
mental data for the tumor-bearing mice by optimizing the three-
compartment model independent of the optimized model for
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rhabdomyosarcoma human tumor xenograft. We use the mean of the
fitted secretion rates.

normal mice. This indicates that endogenous VEGF secretion may
be different in normal and tumor-bearing mice (Tables 1 vs 2).
Experimental studies are needed to validate these results; however,
evidence shows that VEGF secretion is reduced following admin-
istration of VEGF Trap (34) or other anti-angiogenic therapies
(35-37).

The three-compartment model predicted that the in vivo
tumor VEGF secretion rates needed to fit experimental data are
lower than data obtained from in vitro measurements. In vitro
experimental measurements of the VEGF secretion rate vary
widely: 0.03-2.65 molecules/cell/s (38—41). We predicted that
human tumors secrete VEGF at rates range ranging from 0.007
to 0.023 molecules/cell/s. Interestingly, there is little variabil-
ity in the predicted tumor secretion rate, as indicated by the
small standard deviation (~107> molecules/cell/s). Having exper-
imental measurements of the plasma concentration of VEGF
Trap bound to hVEGF (i.e., VEGF originating from the tumor)
enables us to predict the rate at which the tumor secretes VEGF

in vivo. In this way, xenograft models are preferable to syn-
geneic tumor models, in which VEGF derived from tumor and
other tissues are indistinguishable. Similarly, plasma measure-
ments in human patients would not be sufficient to specify tumor
VEGE. Thus, xenograft models provide unique insight into the
effects of anti-angiogenic therapies and are relevant to human
studies.

Tumor VEGF secretion is predicted to depend on the tumor
microenvironment. HT1080 tumors are predicted to secrete ~2-
fold more VEGF than A673 tumors. Additionally, average- and
fast-growing tumors are predicted to secrete different amounts of
VEGE, where VEGF secretion in fast-growing tumors is slightly
lower than that of tumors that grow at an average rate. To our
knowledge, experimental data for VEGF secretion rates is limited
to in vitro measurements. Therefore, the ability to use the model
to determine the VEGF secretion from in vivo data and track and
quantify normal and tumor VEGF are important features of the
model.
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Using the optimized model, it is possible to estimate VEGF
concentrations in the mouse before and after VEGF Trap admin-
istration. In the model, we allowed the tumor to grow for 2 weeks
before the VEGF Trap injection. Just before the injection, the
estimated plasma VEGF levels are within the range of exper-
imental measurements in mouse of 0.3-1.4pM (42, 43). The
model indicates that plasma VEGF depends on properties of
the tumor, such as volume, a result that is validated by exper-
imental evidence (44). Using the model, free VEGF in muscle
interstitium is predicted to range from 0.2 to 1.5pM. To our
knowledge, interstitial VEGF in normal tissues has only been quan-
tified in human samples. Interstitial muscle VEGF in humans
ranges from 0.3 to 3pM (28-33, 45). It is not clear how this
concentration range varies across species. However, since the
range of plasma VEGF measurements is similar between mice
and humans, where human plasma VEGF is measured to be 0.4
3 pM (46), it is possible that interstitial VEGF is also comparable
in mice and humans. Thus, our model results and predictions
provide a framework to compare VEGF distribution in differ-
ent species and can be experimentally validated. Additionally,
we are able to predict the concentration of specific VEGF iso-
forms (i.e., the percentage of free VEGF in the form of VEGFe4
or VEGFi¢5, as compared to the shorter isoforms VEGF;y or
VEGFi,;). These results may be useful in identifying predictive
biomarkers for anti-VEGF treatment, where the level of VEGF1;
is being evaluated as a biomarker (47, 48). We also applied the
model to estimate the relative contribution of sVEGFR1-bound
and a2M-bound VEGF to total circulating VEGE. The soluble fac-
tors compete with anti-VEGF agents; therefore, it is of interest to
investigate the effect of sVEGFR1 on the response to anti-VEGF
treatment. In this way, the model complements studies evaluat-
ing SVEGFR1 as a potential biomarker to predict resistance to
anti-VEGEF treatment (49).

We can also compare the estimated levels of plasma VEGF gen-
erated by the model following administration of VEGF Trap with
experimental studies. In vivo studies of mice with breast tumor
xenografts indicate the plasma VEGF is reduced following VEGF
Trap treatment, particularly at the higher doses (34). Addition-
ally, Hoff and coworkers report that VEGF Trap is able to bind all
free VEGF 11 days after treatment in an experimental model of
rat glioma (50). These studies support the computational model
predictions. However, we are not aware of animal studies that
provide the time course of VEGF and VEGF/VEGF Trap concen-
tration, which is an important contribution of the model and
can complement pre-clinical studies that investigate the efficacy
of VEGF Trap.

We show that interstitial tumor VEGF levels depend on specific
properties of the tumor. To our knowledge, there are no experi-
mental measurements for interstitial tumor VEGF concentrations.
However, a sampling of available experimental measurements of
total VEGF in tumor tissue (free and bound VEGFE, both intracel-
lular and extracellular) reveals a wide range of values, depending
on tumor type and size. File 1 in Supplementary Material shows a
compilation of measurements of tumor VEGF for various tumor
types. Experimental studies to measure free VEGF in tumor tissue
in mouse models would provide much needed quantitative data
to test and validate the model predictions presented here.

MODEL LIMITATIONS

We consider the model presented here to be a minimal model
that accurately reproduces experimental data, both qualitatively
and quantitatively. The model includes several assumptions, which
may be addressed as quantitative data become available. For exam-
ple, we assume the normal tissue is skeletal muscle, although other
tissues and organs secrete and contain VEGF (51), but are not
as well-characterized as muscle. We include two major VEGF
isoforms (VEGF,9/VEGF,1 and VEGF144/VEGF145); however,
other isoforms such as VEGF;g3/VEGF g9 (52) and VEGF
(53, 54) also influence angiogenesis and may impact anti-VEGF
therapies. Recent studies also show that other VEGF ligands and
receptors contribute to angiogenesis (55—57), and the model can be
expanded in the future to include these molecular species. Addi-
tionally, although platelets contain large amounts of VEGF and
contribute to angiogenesis (58), we have not included them in
the model as the rate and conditions under which they secrete or
unload VEGF are unknown. We assume that as the tumor grows,
the relative proportions of interstitial space, vascular volume, and
tumor cells remain constant. However, experimental studies indi-
cate that these proportions should change as the tumor grows (59).
Finally, we have not included the effects of anti-VEGF treatment
on tumor volume or vascular permeability. Pre-clinical studies
show tumor growth inhibition and even regression of the tumor
following anti-angiogenic therapy that targets VEGFE. We have per-
formed preliminary studies where the tumor volume is constant
after 1 week of anti-VEGF treatment since experimental studies
indicate that tumor growth is halted during 2 weeks of twice-
weekly VEGF Trap injections (34). We found that the predicted
tumor secretion rate is slightly larger when accounting for tumor
growth stagnation. This is because the tumor is smaller and con-
sists of fewer cells. Therefore, the amount of VEGF that must be
secreted on a per cell basis in order to obtain a certain level of VEGF
or VEGF/VEGF Trap complex is higher. Tumor permeability may
decrease with anti-angiogenic therapy, as the tumor normalizes
neovasculature and it begins to resemble normal vessels; how-
ever, we have not included that effect in the current model. In
a human model of VEGF transport and kinetics, we considered
“low” and “high” vascular permeability between the tumor and
blood (22). Interestingly, the model predicts that tumor VEGF can
increase above the pre-treatment level depending on properties of
the tumor microenvironment, even when tumor permeability is
high. Future computational studies may investigate the effect of
anti-VEGF treatment on tumor volume and vascular permeability
in greater detail.

CONCLUSION

The compartment model presented here provides a framework
to investigate the action of VEGF-targeting agents for particular
types of tumors. The physiologically based and experimentally val-
idated model, based on currently available animal data, predicted
the dynamic concentrations of molecular species and other biolog-
ical parameters that are difficult to quantify experimentally. Thus,
the model complements pre-clinical experiments, can aid in the
development of agents that target VEGF and inhibit angiogenesis,
and may be useful in evaluating biomarkers of anti-angiogenic
therapies. The model can be extended to human patients; this is
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particularly important since in 2012 aflibercept has been approved
to treat metastatic colorectal cancer in humans (60).

MATERIALS AND METHODS

COMPUTATIONAL MODEL

We have expanded the two-compartment model of VEGF dis-
tribution in the mouse (23) to include tumor tissue (“tumor
compartment”). The model is illustrated in Figure 7. Geometric
and kinetic parameters for the normal and blood compartments
have been fully detailed in (23). By simulating a human tumor
xenograft (tissue that grows from human cancer cells that have
been injected into the mouse), we also incorporate hVEGF iso-
forms and cross-species reactions between ligands and receptors.
Specifically, we include VEGF1,; and VEGF, 45, which are secreted
by tumor cells. The human isoforms can bind to human receptors
present on tumor cells, as well as mouse receptors on endothelial
surfaces in the body (normal and tumor EC) and muscle fibers in
the normal compartment. Additionally, the mouse isoforms bind
to mouse receptors on muscle fibers and ECs and human recep-
tors on tumor cells. The model can also be adapted to simulate
mouse syngeneic tumors, where the tumor cells secrete VEGF 9
and VEGF¢4; in this case, only mVEGEF is present in the model. In
this work, however, we have focused on human tumors. The mol-
ecular interactions between VEGF and its receptors are illustrated
in Figure 8.

In addition to introducing the tumor compartment, we include
VEGF interactions with two soluble factors: soluble VEGFRI1
(sVEGFR1) and a2M and introduce VEGF secretion by ECs. Sol-
uble VEGFR1 is secreted by ECs and transported throughout
the body, enabling it to interact with VEGF in all compart-
ments. The soluble factor a2M is present in two forms: native
and active (a2Mg,) (61). Both forms are present at high con-
centrations (nanomolar to micromolar levels) (62), and due to

their size (720kDa MW), we assume that both forms are con-
fined to the blood compartment. The model predicts the levels
of free VEGF in the tissue interstitium and in plasma. These
soluble factors interfere with assays that measure VEGF concentra-
tion, making it difficult to distinguish between VEGF that is truly
free versus VEGF that is bound to trapping molecules (63). Both
sVEGFR1 and a2M can sequester VEGF and reduce the levels of
free VEGE. Therefore, it is important to include these factors in
the model.

We have also included VEGF secretion by ECs, as experimen-
tal studies demonstrate that EC are a source of VEGF (64, 65).
The luminal and abluminal endothelial surfaces secrete VEGE,
and luminal secretion is predicted to be a major determinant of
plasma VEGE. Due to EC secretion of VEGF, the compartments are
relatively autonomous, since the concentration of VEGF in each
compartment is determined primarily by the secretion rate in that
compartment, as well as the microenvironmental variables of the
compartment; however, transport between compartments is also
important.

The model is described by 258 non-linear ordinary differential
equations (ODEs), including 53 for the normal compartments,
126 for the blood, and 79 for the tumor compartment. In addi-
tion to the ODEs that describe how the species’ concentrations
vary with time, we include an equation for the tumor volume,
such that the model simulates VEGF distribution in tumor-bearing
mice, immediately following inoculation of tumor cells. The initial
tumor volume is 107% cm?. A sampling of experimental data for
the volume of xenografts generated from MCF-7 and MDA-MB-
231 breast cancer cells (66—74) reveals various growth profiles. We
fit the data to exponential curves, accounting for a range of tumor
growth profiles (Figure 9). The growth curves fit experimental
data well, within the time scales used in the model (i.e., <6 weeks).
In cases where the model is run for longer times, different growth
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FIGURE 7 | Three-compartment model of VEGF. The model is comprised
of three-compartments: normal tissue, blood, and tumor. VEGF,5 and
VEGF,¢, are secreted by myocytes in the normal tissue and by EC in all
compartments. Tumor cells secrete the human isoforms VEGF,,; and
VEGF,¢s. VEGF receptors (VEGFR1 and VEGFR2) and co-receptors (NRPs)
are localized on parenchymal and endothelial cells. Soluble VEGFR1 and

glycosaminoglycan (GAG) chains are present in the interstitial space.
Alpha-2-macroglobulin (@2M) is present in the blood. Molecular species
are transported between compartments via microvascular permeability
(k,) and lymphatic drainage (k). All isoforms of unbound VEGF in the
tissue compartments are subject to proteolytic degradation (kge,) and are
removed from the blood via plasma clearance (cy).
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FIGURE 9 | Tumor growth profiles. \We investigate the growth profiles of two categories of tumors: average- (blue) and fast-growing (green) tumors, based on
available experimental data. The data are fit to exponential curves, and the growth equations are given in the File 2 in Supplementary Material.

curves should be used in order to capture the full range of tumor
growth dynamics for the desired time scale. The complete set of
equations, chemical reactions, and glossary of terms are given in
File 2 in Supplementary Material.

SIMULATION OF ADMINISTRATION OF VEGF TRAP

Experimental studies utilize a subcutaneous injection of VEGF
Trap (“anti-VEGF”); however, the authors of the experimental
study state that the bioavailability of the drug is the same whether
injected subcutaneously or intravenously (12). The current model
does not include a subcutaneous compartment; therefore, we sim-
ulate an intravenous injection, which inherently assumes that all of

the drug appears in the blood. Injection lasts for 1 min (the dura-
tion does not affect the results, within limits) and is performed
once the tumor reaches a particular volume, according to experi-
mental methods described by Rudge et al. (12). Various doses of
VEGF Trap are used, as reported by Rudge and coworkers (12)
(0.5, 1, 2.5, 10, and 25 mg/kg).

SENSITIVITY ANALYSIS

In order to understand the impact of various parameters, we per-
form variance-based global sensitivity analyses using the eFAST
(75). The eFAST method estimates the sensitivity of model out-
puts (i.e., VEGF concentration) with respect to variations in model
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parameters. The three-compartment model is run multiple times
with different parameter sets, where all parameters are varied from
their baseline values. Variance for a parameter i is:

o0
D=2y (Af,j + Bf,j)
p=1

where A;j and B; are the Fourier coefficients of the cosine series
and sine series, respectively, for the frequency, j, associated with
the parameter i and include harmonics, p, of the base frequency.
The total variance in the output is:

oo

Do =2 (47 + B

j=1

The variances are used to estimate two indices that provide a
measure the sensitivity: first-order FAST indices, S;, and the total
FAST indices, St;. The first-order indices measure the local sensi-
tivity and do not account for interactions with other parameters:

D
Dtotal

Si

The Total FAST indices measure of global sensitivity and
take into account second- and higher-order interactions between
parameters. St; are calculated by excluding the effects of the
complementary set of other parameters:

Dy

Sri=1-—
' Diotal

The eFAST method has been applied to systems biology models
(76), and our laboratory has previous used the method to inves-
tigate the sensitivity of VEGFR?2 signaling (77). In this work, we
apply eFAST to investigate the sensitivity of steady state VEGF
concentrations with respect to kinetic parameters, transport para-
meters, and receptor expression levels. We use Simlab 2.2 from
Econometrics and Applied Statistics Unit EAS at the Joint Research
Centre of the European Commission to implement eFAST.

NUMERICAL IMPLEMENTATION

The model equations were implemented in MATLAB using the
SimBiology toolbox and were solved with the Sundials solver. The
model is available in SBML format at: http://www.jhu.edu/apopel/
software.html

PARAMETERS

Geometry

The geometric parameters for the tumor compartment are sum-
marized in Table A1 in Appendix. The tumor cells are assumed to
have the same volume as the MCF-7 breast tumor cells, which
have a mean diameter of 12 m (78). A sphere of this diam-
eter would have a volume and surface area of 905pm?® and
452 wm?, respectively. However, since tumor cells are not spher-
ical, we assume a dodecahedral cell of the same volume, which
has a surface area of 497 pm?. The average luminal diameter of

capillaries in growing MCF-7 xenografts is 13.94 um (79), and
imaging of tumor vasculature supports this value (80). We assume
an EC thickness of 0.5 pm, which would yield a cylindrical cross-
sectional area of 175um? and an outer perimeter of 46.9 pm.
However, microvessels are not cylindrical. Therefore, to find the
true perimeter, we used a relationship between total perimeter
and total cross-sectional area in breast cancer capillaries, where the
increase in perimeter is 23% (81, 82), yielding a capillary perimeter
of 57.7 pm.

The extracellular fluid volume fraction in the breast tumor
xenografts has been shown to range from 33 to 76% (78). Another
measurement reports the extracellular fluid volume in MCEF-7
tumors to be 40% (83). We assume a value of 45%, which is divided
into interstitial space and intravascular space. We set the volume
fraction of intravascular space to be 10%, which is within the
range of available experimental data (84—86). Given the capillary
dimensions described above and an intravascular volume of 10%,
the capillary density is calculated to be 655 capillaries/mm?. Based
on a cell thickness of 0.5 pm, the volume occupied by the ECs of
the microvessels is 1.5%. Cancer cells occupy the remaining tissue
volume of 53.5%. The volume fractions of microvessels and tumor
cells are then used to calculate the total surface area of all vessels
and tumor cells per unit volume of tissue: 378 cm? EC surface/cm?
tissue and 2939 cm? tumor cell surface/cm? tissue.

The interstitial space is composed of extracellular matrix
(ECM), and basement membranes associated with the microves-
sels (endothelial basement membrane, EBM) and tumor cells
(parenchymal basement membrane, PBM). The thickness of the
basement membranes is assumed to be 50 and 30 nm, for the EBM
and PBM, respectively, yielding volume fractions of 0.0081 and
0.0015 cm?/cm? tissue. The remaining volume of the interstitial
space is the ECM volume (34.04%).

Each region of the interstitial space can be represented as a
porous medium that contains a solid fraction composed primarily
of collagen that is unavailable to VEGF, and a fluid fraction that is
accessible to VEGE. The size of the pores further limits the volume
available for VEGF to diffuse. Therefore, the available volume in
the ECM and basement membranes is calculated as the product
of the volume, fluid fraction, and partition coefficient. The fluid
fraction is the non-collagen fraction and is calculated by using the
total collagen content in interstitial space. Given limited data for
this measurement, we used 5%, the same value as in our previous
models (24, 25, 87). The ratio of basement membrane collagen to
total body collagen is assumed to be 0.3, which yields 0.0482 for the
ratio of ECM collagen to total body collagen. The fluid fractions
are then 0.7 for the basement membranes and 0.9318 for the ECM.
The partition coefficient is the ratio of available fluid volume to
interstitial fluid volume. We take 0.9 for the partition coefficient for
the EBM (88), and the same value is used for the ECM and PBM,
as it is difficult to distinguish basement membranes and the ECM
(89). The available fluid volume for the ECM, EBM, and PBM are
therefore 0.2916, 9.720 x 10™%, and 5.082 x 1072 cm?®/cm? tissue,
respectively.

Concentrations
Receptor densities and ECM binding site densities are listed in
Table A2 in Appendix. VEGFR1, VEGFR2, and NRP1 on the
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luminal and abluminal surfaces of diseased EC surfaces and on
tumor cells are based on quantitative flow cytometry measure-
ments in ECs isolated from tumor tissue, as described in (25). We
assume NRP2 surface concentration on tumor cells at the same
level as NRP1.

Kinetics

To our knowledge, there are no data for the kinetics of mVEGF
isoforms binding to glycosaminoglycan (GAG) chains or mouse
receptors or cross-reactions between human and mouse isoforms
and receptors. Therefore, we assume the kinetic rates for VEGF
binding to and dissociation from receptors, co-receptors, and GAG
chains in the ECM and basement membranes are the same as in
our previous papers, based on experimental data (23-25, 87) and
are given in Table A3 in Appendix. We use experimental data from
Papadopoulos (11) for the on and off rates of VEGF binding to
VEGEF Trap.

Transport

Transport parameters for VEGEF, anti-VEGF, and the VEGF/anti-
VEGF complex are listed in Table A4 in Appendix. Parameters
that govern transport between the normal and blood compart-
ments are the same as in our previous model (23). Here, we explain
specific transport parameters required for the addition of soluble
factors sVEGFR1 and a2M and the tumor compartment. As in the
previous model, myocytes are a source of VEGF and secrete the
VEGEF isoforms VEGF;,y and VEGFig4 at a ratio of 8:92 (90, 91).
Additionally, tumor cells secrete VEGF into the tumor interstitium
at a ratio of 50:50 for VEGF,;:VEGF 45, based on experimental
quantification of mRNA isoform expression levels (92-96). Here,
we also consider VEGF secretion by EC. We set the secretion ratio
of VEGF20:VEGF 64 by EC to be 10:90, similar to the isoform
ratio in muscle tissue, since to our knowledge, this ratio has not
been determined experimentally. Additionally, we assume normal
and tumor EC secrete the same amount of VEGF; tumor EC are
a small fraction of the total EC in the body, thus this assumption
should not affect VEGF distribution. The rates of VEGF secretion
by muscle fibers, EC, and tumor cells are determined by para-
meter optimization, fitting to experimental data from Rudge and
coworkers (12).

This expanded model includes soluble factors sVEGFR1 and
a2M. ECs are a source of sVEGFRI1, and the rates of secre-
tion by normal EC was set to 6 x 1073 molecules/cell/s. Similar
to VEGF secretion, we assume that sVEGFR1 secretion rate is
the same for tumor EC. At steady state, the model estimated
the distribution of sVEGFRI in the body to be 0.4, 2.1, and
0.04 pM in the normal, blood, and tumor compartments, respec-
tively. The level of sVEGFRI in the plasma is within the range
of experimental measurements, which range from 1 to 10 pM
(97, 98). The clearance of a2M was set at 2.62 x 107> min~—!,
based on experimental measurements of the half-life, #1, (99),
using In(2)/t1/,. The synthesis of a2M was then estimated from
mass balance at steady state, where the concentrations of native
and active a2M are 1.4uM (62) and 14 nM, respectively. We
assume that the concentration of active a2M is 100-fold lower
than that of the native form, based on experimental data for
humans (100-102).

Molecular species are removed from the system via two
mechanisms: plasma clearance and proteolytic degradation. The
values of these parameters are in Table A4 in Appendix.
For the normal endothelium, the permeability to sVEGFRI1
and VEGF/sVEGFRI is calculated using an empirical relation
between the Stokes—FEinstein radius, ag, and molecular weight
[ag = 0.483 x (MW)?-386], the corresponding theoretical macro-
molecular permeability-surface area product, PS (103), and the
capillary surface area, S. Taking microvascular permeability as
PS/S,and the calculated value is on the order of 10~ cm/s, between
the normal and blood compartments. Since tumor vasculature is
more permeable than normal microvessels (104), we assume that
the microvascular permeability between the tumor and blood is
an order of magnitude higher than permeability between normal
and blood for both VEGF and the anti-VEGF or complex. There-
fore, the permeability to VEGF is 4 x 10~7 and 3 x 10~/ cm/s for
the anti-VEGF and VEGF/anti-VEGF complex. The permeability
to sVEGFRI and VEGF bound to sVEGFR1 is 1.5 x 1077 cm/s.

Parameter estimation

The estimation of the VEGF secretion by muscle fibers, ECs,
and tumor cells was achieved using the “Isqnonlin” function in
MATLARB, as previously described (23). This algorithm solves the
non-linear least squares problem using the trust-region-reflective
optimization algorithm (105, 106), minimizing the weighted sum
of the squared residuals (WSSR):

n

. . 2
min WSSR(6) = min Z [Wi (Cexperimental,i — Gsimulation, 1(6))]

i=1

where Ceyperimental, i 18 the ith experimentally measured plasma
concentration data point, Csimulation, i(6) is the ith simulated
plasma concentration at the corresponding time point, W; is the
weight taken to be 1/Cexperimental, i» and # is the total number of
experimental measurements. The minimization is subject to the
upper and lower bounds of the free parameters, 6.

The two-compartment model was used to determine the rate
of VEGF secretion by muscle fibers and ECs (“normal” and “EC”
secretion, respectively), clearance of free and bound VEGF Trap,
dissociation constant of VEGF and VEGF Trap. These five free
parameters were fit to experimental data for the concentration
profiles of VEGF/VEGF Trap complex and unbound VEGF Trap
in mice at different doses of VEGF Trap (12), with a total of 58 data
points. The initial value of the secretion rates was generated within
the lower and upper bounds of 1.5 x 10~® and 2 molecules/cell/s,
respectively. The lower bound corresponds to 10 pg/ml and was
set based on the limit of detection of standard ELISA kits used to
measure (63). The half-life of VEGF Trap in mouse serum has been
reported as 72h (107), which corresponds to a clearance rate of
1.6 x 10~* min~!, assuming clearance rate is equal to In(2)/half-
life. The upper and lower bounds of the clearance rates were one
order of magnitude above and below this value, respectively. The
upper and lower bounds for the dissociation constant were set to
0.25 and 5pM, based on experimental data (11, 12). The base-
line value of permeability of the normal tissue to VEGF Trap is
3 x 1078 cm/s, as described above, and the bounds were one order
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of magnitude above and below this value. The optimal parame-
ter values are reported as the mean and standard deviation of the
20 runs.

We used the three-compartment model to determine the rate

at which VEGF is secreted by tumor cells (“tumor secretion”) and
permeability of diseased tissue to free and complexed VEGF Trap.
Tumor secretion was optimized to fit experimental data for the sys-
temic VEGF Trap levels (free and complexed) reported by Rudge
et al. (12). Experimental data for two human tumor xenografts
(A673 rhabdomyosarcoma and HT1080 fibrosarcoma) were used
separately; the total number of data points was 11 for A673
tumors and 10 for HT1080 tumors. Twenty runs were performed
for each tumor, which either followed the average (baseline) or
fast growth profile. This yields two conditions for each tumor
type. The optimal secretion rates are reported as the mean and
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APPENDIX

Table A1 | Geometric parameters.

Value Units Reference

Tumor cell external diameter 12 wm Paran et al. (78)
Volume of one cell 905 um3 Calculated (see manuscript)
Surface area of one cell 497 uwm?2 Calculated (see manuscript)
MICROVESSELS
Average luminal diameter 13.9 nwm Schaefer et al. (79)
Endothelial cell thickness 0.5 nwm Based on normal microvessels (108)
Average external diameter 14.9 wm Calculated (see manuscript)
Cross-sectional area of one vessel 175.3 um? Calculated (see manuscript)
Perimeter of one vessel 577 pm Calculated (see manuscript)
Capillary density 655 Capillaries/mm? Calculated (see manuscript)
VOLUMEFRACTIONS
Interstitial space 35.0% cm?/cm? tissue Based on (78, 83)
Cancer cells 53.5% cm?/cm? tissue Calculated (see manuscript)
Microvessels of which intravascular space 11.5% cm?/cm? tissue Calculated (see manuscript)
10.0% cm?/cm? tissue Based on (84-86)
SURFACEAREAS
Tumor cells 2939 cm?/cm? tissue Calculated (see manuscript)
Microvessels 378 cm?/cm? tissue Calculated (see manuscript)
[BASEMENTMEMBRANES (BM)
Thickness of tumor cell BM 30 nm Based on (109)
Basement membrane volume (tumor cells) of which available to VEGF 0.00807 cmd3/em3 Calculated (see manuscript)
0.00508 cmd3/em? tissue Calculated (see manuscript)
Thickness of microvessel BM 50 nm Based on (109)
Basement membrane volume (microvessels) of which available to VEGF 0.00154 cm?®/cm?® tissue Calculated (see manuscript)
0.000972 cmd3/ems tissue Calculated (see manuscript)
Extracellular matrix volume of which available to VEGF 0.3375 cmd3/cm? tissue Calculated (see manuscript)
0.2892 cmd/cm? tissue Calculated (see manuscript)

Table A2 | Concentrations in tumor compartment.

Value Units

Luminal EC 3750 Dimers/EC
Abluminal EC 3750 Dimers/EC
Tumor 1100 Dimers/TC
Luminal EC 300 Dimers/EC
Abluminal EC 300 Dimers/EC
Tumor 550 Dimers/TC
Luminal EC 39,748 Dimers/EC
Abluminal EC 39,748 Dimers/EC
Tumor 39,500 Dimers/TC
Tumor 39,500 Dimers/TC
ECM binding density 0.75 uM

EBM binding density 13 uM

PBM binding density 13 uM

EC, endothelial cell; TC, tumor cell.
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Table A3 | Kinetic parameters.

Value Unit Reference

Kon 3x 107 M~1s~1 Mac Gabhann and Popel (37), Stefanini et al. (24)
Koft 1073 s~ Mac Gabhann and Popel (87), Stefanini et al. (24)
Kg 33 pM Mac Gabhann and Popel (87), Stefanini et al. (24)
Kon 107 M=1s~1 Mac Gabhann and Popel (37), Stefanini et al. (24)
Koff 10-3 5! Mac Gabhann and Popel (87), Stefanini et al. (24)
Kg 100 pM Mac Gabhann and Popel (87), Stefanini et al. (24)
Kon 3.2 x 108 M~1s~1 Mac Gabhann and Popel (37), Stefanini et al. (24)
Koft 10-3 57! Mac Gabhann and Popel (87), Stefanini et al. (24)
Kg 312.5 pM Mac Gabhann and Popel (87), Stefanini et al. (24)
Kon 4.20 x 10° M-1s~1 Mac Gabhann and Popel (37), Stefanini et al. (24)
Koft 1072 57! Mac Gabhann and Popel (87), Stefanini et al. (24)
Kg 24 pM Mac Gabhann and Popel (87), Stefanini et al. (24)
ke 1014 (mol/cm?)=1 51 Mac Gabhann and Popel (37), Stefanini et al. (24)
Koff 1072 5! Mac Gabhann and Popel (87), Stefanini et al. (24)
KeviesR2, N1 3.1x10™8 (mol/cm?)=1 s~ Mac Gabhann and Popel (37), Stefanini et al. (24)
Koffv165R2, N1 10-3 s Mac Gabhann and Popel (87), Stefanini et al. (24)
Keviesnt, R2 10 (mol/cm?)~1s~1 Mac Gabhann and Popel (87), Stefanini et al. (24)
Koffv165N1, R2 10-3 s~ Mac Gabhann and Popel (37), Stefanini et al. (24)
Kint 2.8x10™4 5! Mac Gabhann and Popel (87), Stefanini et al. (24)
Kon 3.75 x 108 M-1s~1 Calculated

Kot 1.35x 107 51 Papadopoulos et al. (11)

Ky 0.36 pM Papadopoulos et al. (11)

Kon 4.10 x 107 M~1s~1 Calculated

Kot 2.01 x107° 5! Papadopoulos et al. (11)

Ky 0.49 pM Papadopoulos et al. (11)

Kon 2.15 x 107 M-1s~1 Calculated

Kot 1.23 x 107° 5! Papadopoulos et al. (11)

Ky 0.572 pM Papadopoulos et al. (11)

Kon 2.80 x 107 M=1s~1 Calculated

Kot 1.64 x 107° 5! Papadopoulos et al. (11)

Ky 0.586 pM Papadopoulos et al. (11)

Kon 25 M=1s~1 Calculated

Koff 104 s~ Assumed

Ky 4.0 uM Bhattacharjee et al. (110)

Kon 2.4 x 102 M=1s~1 Calculated

Koff 104 s~ Assumed

Ky 0.42 uM Bhattacharjee et al. (110)

(Continued)
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Table A3 | Continued

Value Unit Reference

Kon 3x 107 M-Ts™! Assumed, based on VEGF binding to VEGFR1
Koff 10-3 s~ Assumed

Ky 33 pM Assumed

Kon 5.6 x 108 M=1s~1 Calculated

Koff 1072 s1 Assumed, based on VEGFR1 coupling to NRP1
Ky 1.8 nM Fuh et al. (111)

Kon 4.20 x 105 M—1s~1 Assumed, based on VEGF g5 binding to GAG
Kot 102 s~ Assumed

Ky 24 pM Assumed

Table A4 | Transport parameters.

Value Unit Reference

VEGF 4.0x1078 cm/s Stefanini et al. (24)
Anti-VEGF and VEGF/anti-VEGF complex 3.0x 1078 cm/s Stefanini et al. (24)

Soluble VEGFR1 15x 1078 cm/s Calculated, see text

Soluble VEGFR1/VEGF complex 1.5 x 1078 cm/s Calculated, see text
[PERMEABILITY BETWEENTUMORANDBLOOD
VEGF 4.0x 1077 cm/s Assumed, see text
Anti-VEGF and VEGF/anti-VEGF complex 3.0x 1077 cm/s Assumed, see text

Soluble VEGFR1 1.5x 107 cm/s Assumed, see text

Soluble VEGFR1/VEGF complex 15x 1077 cm/s Assumed, see text
CLEARANCE
VEGF 2.3x 107" min~! Folkman (112)

Anti-VEGF 8.9x 104 min~! Yen et al. (23)
VEGF/anti-VEGF complex 2.8x 1074 min~" Yen et al. (23)

Soluble VEGFR1 3.0x 1074 min~! Wu et al. (113)

Soluble VEGFR1/VEGF complex 3.0x 1074 min~! Wu et al. (113)
Alpha-2-macroglobulin («2M) 2.6x10°3 min~! Hudson et al. (99)
a2M/VEGF complex 2.6x 1073 min~! Assumed, based on a2M
a2M/VEGF/anti-VEGF complex 2.6x 1073 min~! Assumed, based on a2M
Activated alpha-2-macroglobulin (¢2Msst) 2.4 %1071 min~! Imber and Pizzo (114)
a2M/NVEGF complex 2.6x10°3 min~" Assumed, based on a2Mgst
DEGRADATION
Soluble VEGFR1 1.2 x 1072 min~" Assumed based on VEGF
Soluble VEGFR1/VEGF complex 1.2x 1072 min~! Assumed based on VEGF
SYNTHESIS
Alpha-2-macroglobulin 1.8 x 1010 Molecules/cm? tissue/s Calculated, see text
Activated alpha-2-macroglobulin 1.6 x 1010 Molecules/cm?® tissue/s Calculated, see text
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FIGURE A1 | Predicted systemic VEGF Trap levels for fast-growing
tumors. The model predicts the plasma levels of free VEGF Trap (black
lines), mouse VEGF bound to VEGF Trap (blue lines), and human VEGF
bound to VEGF Trap (red lines) for fast-growing tumors. VEGF Trap was
administered twice per week for 2 weeks at doses of 0.5, 1, 2.5, 10, and 25
mg/kg. The simulated results are shown for the optimized model where the
secretion rates of VEGF by myocytes, EC, and tumor cells were fit to
experimental data (circles). We use the mean (solid lines) and 1 SD (dashed
lines) of the fitted secretion rates. (A) A673 tumor; and (B) HT1080 tumor.
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FIGURE A2 | Optimized VEGF secretion rates. The model parameters
were optimized to fit experimental data, and the values of normal, EC, and
tumor VEGF secretion rates were determined. The mean optimal secretion
rates and standard deviation of 20 optimization runs for fast-growing
tumors are shown.
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1. INTRODUCTION

Vascular endothelial growth factor (VEGF) is the most studied family of soluble, secreted
mediators of endothelial cell migration, survival, and proliferation. VEGF exerts its function
by binding to specific tyrosine kinase receptors on the cell surface and transducing the
effect through downstream signaling. In order to study the influence of VEGF binding on
endothelial cell motion, we develop a hybrid model of VEGFinduced angiogenesis, based
on the theory of reinforced random walks. The model includes the chemotactic response of
endothelial cells to angiogenic factors bound to cell-surface receptors, rather than approxi-
mating this as a function of extracellular chemical concentrations. This allows us to capture
biologically observed phenomena such as activation and polarization of endothelial cells
in response to VEGF gradients across their lengths, as opposed to extracellular gradients
throughout the tissue. We also propose a novel and more biologically reasonable functional
form for the chemotactic sensitivity of endothelial cells, which is also governed by activated
cell-surface receptors. This model is able to predict the threshold level of VEGF required
to activate a cell to move in a directed fashion as well as an optimal VEGF concentration
for motion. Model validation is achieved by comparison of simulation results directly with
experimental data.

Keywords: mathematical model, angiogenesis, VEGF binding dynamics, endothelial cell migration, hybrid modeling

stimulate EC activation, survival, proliferation, migration, and

Motility — random, directed, and collective — is a fundamental
property of cells. Coordinated cellular motion leads to all physio-
logical tissue patterns, a consequence of integration across multi-
ple temporal and spatial scales. However, when this integration is
aberrant, the properties that emerge lead to a critical bifurcation
point in cancer progression: angiogenesis. Angiogenesis, the for-
mation of new blood vessels from pre-existing ones, provides the
necessary blood supply for the growth and nourishment of solid
tumors beyond a few millimeters in diameter (Hanahan and Wein-
berg, 2000; Augustin et al., 2009). Tumor angiogenesis is associated
with an extremely complex, yet well-ordered series of events at the
center of which is the enhanced replicative potential and motil-
ity of endothelial cells (ECs) that line the inner surface of blood
vessels (Folkman, 1985; Hanahan and Weinberg, 2000).

The multistep process associated with successful angiogenesis
can be summarized as EC degradation of the adjacent basement
membrane, migration (sprouting), proliferation, alignment, tube
formation, branching that increases near the tumor leading to a
brush-border, anastomosis (fusion of vessels), synthesis of new
basement membrane, recruitment of parenchymal cells, network
remodeling, and a return to quiescence (Folkman, 1985; Yan-
copoulos et al., 2000; Conway et al., 2001; Augustin et al., 2009).
Precise coordination and integration of molecular, cellular, and tis-
sue level interactions is required for angiogenesis to be successful
from initiation to stabilization of a functional vascular plexus.

Under conditions of hypoxia, tumor cells induce angiogenesis
by releasing a wide variety of polypeptide angiogenic factors that

maturation. Members of the vascular endothelial growth factor
(VEGF) family have been identified as the predominant amongst
these angiogenic factors that regulate EC phenotype (Yancopou-
los et al., 2000; Jain, 2002; Ferrara, 2004; Hicklin and Ellis, 2005).
VEGF has been implicated across a range of human cancer and
preclinical studies have shown that VEGF stimulates survival of
existing vessels, promotes new vessel growth, and contributes to
vascular abnormalities such as tortuousness and hyperperme-
ability. The angiogenic effects of the VEGF pathway are primar-
ily initiated through the interaction of VEGFA and its natural,
endothelial cell specific receptor, VEGFR2, which is up-regulated
during angiogenesis (Neufeld et al., 1999; McMahon, 2000; Con-
way et al., 2001). Dimerization and activation of VEGFR?2 results
in mitogenic, chemotactic, and prosurvival signals (Nor et al,,
1999; Ferrara et al., 2003; Ferrara, 2004), which help to determine
endothelial cell phenotype.

The various steps of the angiogenic cascade require endothelial
cells to take on spatio-temporally varying phenotypes; that is, at
any given time and at any specific spatial location within a devel-
oping sprout, ECs can have a proliferative, migratory, or quiescent
phenotype. For example, tip cells are highly migratory and lead the
extending sprout through the extracellular matrix (ECM), whereas
stalk cells, which form the vessel lumen and recruit support cells,
can be either proliferative or quiescent. It has been shown that
endothelial cells compete for the tip cell position through relative
levels of VEGF-receptors (Jakobsson et al., 2010). While much is
known about the sequential morphogenetic processes required for
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angiogenesis and the growth factors that drive it, far less is known
about how cellular and molecular mechanisms are coordinated to
control cell motility decisions and phenotype choices. In order to
advance the understanding and manipulating of the processes that
occur during angiogenesis, it is critical to understand how indi-
vidual cells interpret the biochemical signals that come from their
unique microenvironment.

For decades, mathematical models have been employed to help
address some of the pressing questions associated with tumor
angiogenesis. As discussed in detail in Jackson and Zheng (2010),
Zheng et al. (2013), existing models of tumor-induced angio-
genesis can be characterized as continuous approaches (Balding
and McElwain, 1985; Byrne and Chaplain, 1995, 1996; Anderson
and Chaplain, 1998a,b; Holmes and Sleeman, 2000; Levine et al.,
2001; Arakelyan et al., 2002; Sleeman and Wallis, 2002; Manous-
saki, 2003; Plank and Sleeman, 2003, 2004; Plank et al., 2004;
Levine and Nilsen-Hamilton, 2006; Schugart et al., 2008; Billy
et al., 2009; Xue et al., 2009; Travasso et al., 2011), wherein cells
are assumed to have a continuous distribution; discrete or hybrid
models (Stokes and Lauffenburger, 1991; Anderson and Chap-
lain, 1998b; Tong and Yuan, 2001; Plank and Sleeman, 2003, 2004;
Sun et al., 2005; Bartha and Rieger, 2006; Gevertz and Torquato,
2006; Frieboes et al., 2007; Milde et al., 2008; Capasso and Morale,
2009; Owen et al., 2009; Perfahl et al., 2011), wherein cells are
modeled as individual agents and diffusible chemicals are mod-
eled as a continuum; and cell-based formulations (Peirce et al.,
2004; Bauer et al., 2007; Bentley et al., 2009; Qutub and Popel,
2009; Weislo et al., 2009; Jackson and Zheng, 2010; Liu et al.,
2011) wherein explicit incorporation of different properties of
individual cells allows collective behavior of cell clusters to be
predicted from the behavior and interactions of individual cells.
Reviews of these models that appeared in or before 2009 can be
found in Mantzaris et al. (2004), Peirce (2008), Qutub et al. (2009).
However, these models suffer from the following limitations. Con-
tinuum descriptions of biological motion such as chemotaxis are
derived by averaging quantities such as cellular and vascular den-
sities, and therefore apply to the macroscopic behavior of a large
number of cells. However, the initial stages of new capillary devel-
opment requires only a small number of cells in a highly discrete
arrangement, which is better described by treating cells as indi-
vidual agents. Further, even when a hybrid or cell-based approach
has been adopted, endothelial cell movement, and/or microvessel
formation speed and direction is typically assumed to depend on
extracellular chemokine concentrations, whereas it is known that
cells integrate the chemical signal via receptors on their surfaces in
order to make behavioral decisions (Nor et al., 1999; Ferrara et al.,
2003; Ferrara, 2004).

In order to study the influence of VEGF binding on EC motion,
we develop here a hybrid model of VEGF-induced angiogenesis
that is based on the theory of reinforced random walks. We will
include in our model, the chemotactic response of endothelial
cells to angiogenic factors bound to cell-surface receptors, rather
than approximating this as a function of extracellular chemical
concentrations. This will allow us to capture biologically observed
phenomena such as the activation and polarization of endothelial
cells in response to VEGF gradients across their lengths. We will
also propose a novel and more biologically reasonable functional

form for the chemotactic sensitivity of cells, which is also governed
by activated cell-surface receptors.

In the sections that follow, we will first develop a model to
describe the motion of a single EC that has a tip cell phenotype.
The motion of an EC across a 1 mm? domain will be simulated, and
average time taken by the cell to reach the tumor (VEGF source)
computed as a function of source strength. We will then extend
this model to study the early stages of blood vessel formation
and sprout extension. In particular, we will capture the follow-
ing growth pattern of developing sprouts, typically observed in
experiments. Sprouts arising from parent vessels are observed to
grow parallel to each other initially (Paweletz and Knierim, 1989),
with anastomoses between tip cells and stalk cells, or between
two tip cells observed to occur a certain distance into the stroma.
As the developing vessels near the source of chemoattractants,
new sprouts emerge in a process called sprout branching, which
increases with proximity to the source. This has been described
as a “brush-border” effect (Muthukkaruppan et al., 1982; Sholley
etal., 1984). We will also investigate the effect on vascular develop-
ment of the source strength of VEGFE. Model validation will follow
from a qualitative comparison of simulations with experimental
data on neovascularization of the rat cornea taken from Sholley
etal. (1984).

2. MATERIALS AND METHODS
2.1. MODEL DEVELOPMENT: SINGLE CELL MOTION UNDER THE
INFLUENCE OF VEGF
A vital characteristic of all cells is their ability to sense their envi-
ronment and respond to it, such as motion toward or away from an
external, chemical stimulus. The response of endothelial cells to a
chemokine like VEGF involves the following two major steps that
a mathematical description of this process needs to account for: (i)
detection of the signal (via gradient of bound VEGF to cell-surface
receptors) and (ii) transduction of the external signal into an inter-
nal signal that controls the pattern of movement (Mantzaris et al.,
2004). The theory of reinforced random walks, where a master
equation governing cell movement is derived directly from the
governing biology, as opposed to discretizing a continuous equa-
tion of macroscopic motion, provides a natural framework for
modeling the movement of individual endothelial cells that initi-
ate vascular sprout development. We remark that for simplicity, the
effects of the extracellular matrix on EC motion are not explicitly
considered at this time so that the cell is assumed to migrate on a
homogeneous and isotropic medium. Further, on the time-scale of
interest, cell proliferation, and death are assumed to be negligible.
We begin our model development by first simulating a single
EC moving under the influence of VEGEF. The EC is interpreted as
a (biased) random walker that adapts its motility decisions under
the influence of activated VEGF-receptors on its surface. We con-
sider a 2-dimensional spatial domain, with a tumor locatedat x = 1
serving as the source of VEGEF, and a parent vessel located at x =0
providing individual ECs to begin sprout development, as shown
in Figure 1A. The tumor secretes VEGF under the condition of
hypoxia, which diffuses toward the parent vessel. VEGF is taken up
by cells lining the parent vessel, transforming them into sprout tip
cells. These migrate up its chemical gradient, pulling behind them
the developing capillaries. The principal dynamics that we wish to
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FIGURE 1 | (A) Geometry of the model domain. A source of VEGF (e.g., a
tumor) is situated at x = 1. VEGF diffuses toward a parent vessel located at
x =0, and is taken up by endothelial cells lining it. The activated cells
migrate up gradients of VEGF, elongating behind them capillaries. (B-D)
Motion of a cell on a 2-d lattice in response to VEGF stimulus. The cell
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begins at position (n, m) in (B). VEGF molecules are shown in red. The
number of activated VEGF-receptors is greatest on the cell surface at
lattice site (n+ 1/2, m), and the probability of motion in this direction is the
greatest. Consequently, the cell is likely to move from site (n, m) to (n+2,
m), as shown in (C,D).

capture with the model are the binding and uptake of VEGF by the
sprout tip cells, the subsequent activation of cell-surface receptors,
and the chemotactic response of the cells to this stimulation. To our
knowledge, thislevel of molecular detail has not been implemented
previously in a model of tumor-induced angiogenesis.

The cell is located initially at spatial position x =0, y = 0.5, and
will move in response to a local, cellular gradient of VEGE, which
has its source at x =1. A schematic of this process is shown in
Figures 1B-D. Following Plank et al. (Plank and Sleeman, 2003;
Plank et al., 2003, 2004), we base our spatial discretization on
purely biological considerations. As per the approach developed
in Plank and Sleeman (2003), Plank et al. (2003), Plank et al.
(2004), Othmer and Stevens (1997), the following master equa-
tion is used to describe a biased random walk (in two dimensions)
of the endothelial cell, moving under the influence of VEGF in its
local environment:

9Pn,m
at

=T W) Pt + T 0 (W) Pt
+ t\,/n;tl W) Pnm—1+ t‘,/n7+1 w) Prnym+1
- (ﬁflnf W)+ TH-(w) + 7,05 (w)

+ T (W) P

Here, p,m(t) describes the probability that a cell is at site (n,
m), at time t. 'f:,an (), and 7:‘/"? (+) are the transition probabil-
ities per unit time for a one step horizontal jump to (n+£ 1, m),
or a one step vertical jump to (n, m = 1) respectively. The vector
W gives the concentration of the chemoattractant C, at the lattice
sites. In order for the master equation to translate to the standard
diffusion-chemotaxis equation for cell movement in the contin-
uum limit, it is assumed that the dependence of transition rates at
lattice site (1, m) is localized to chemoattractant concentration at
sites (n=£1/2, m) and (n, m = 1/2). This is reasonable, since we
may think of a cell present at lattice site (n, m), with its bound-
aries extending to half the lattice length. The cell can therefore
sense the chemical concentrations at these half-lattice sites, and
make a decision where to move, as illustrated in Figures 1B-D.
Under these assumptions, W = (.. ., C_y—1/2,m> C—nm> C—nt-1/2,m>
C—n-‘rl,m) .. )

The mean waiting time at the (n, m)th site is given
by 1/ (T W)+ T (W) + Tl W)+ T () we
make the assumption that the decision of where to move in
space is independent of the decision when to move in time.
Mathematically, this is equivalent to setting

Tl W) + THS (W) + T E (W) +TY (W) =k (2)
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That is to say, the cell makes a decision to move (or to stay
still) after a constant amount of time, k. One way to satisfy these
assumptions is the following choice of transition probabilities, as
made by Othmer and Stevens (1997)):

THi _ 1 T (Cn:tl/Z,m)
mm k t (Cn+l/2,m) 4+t (Cn—l/Z,m) ’
+7 (Com+172) + 7 (Coym—172) (3)
Ev,f 1 T (Cumt1/2) )

k t (Cn+1/2,m) +7 (Cnfl/Z,m)
+7 (Coym+172) + 7 (Crm—1/2)

for some function 7(C) of the chemoattractant. The choice of the
functional form for 7(C) is based on the particular form of the
chemotactic sensitivity desired, and is explained in the following
section. A grid of mesh size h is chosen, thereby fixing x = nh.
Passing to the continuum limit h — 0 and 1/4k — oo such that
h*/4k= Dy, where D, is the diffusion coefficient of ECs, Othmer
and Stevens (1997) show that the master equation (1) translates to
the familiar diffusion-chemotaxis equation (4), for cell motion.

ap

5. = DpAp =V (px (O VC), @)

where the chemotactic sensitivity x (C) = Dy(In 7(C))’. To get a
completely discretized model of the motion of the cell, the time
derivative of p in equation (1) is approximated by a simple forward
difference scheme, with k as the time step, given by

hZ

k=——.

(5)

A diagrammatic representation of the motion of the cell is
shown in Figure 1. The cell starts out at time ¢ at the lattice site
(n, m) (Figure 1B). Endothelial cells are large enough to detect
gradients of chemoattractants across their length, which is typi-
cally 20 um (Vadapalli et al., 2000). In contrast to existing models
of cellular chemotaxis, in which cells typically respond to free,
extracellular chemokine concentrations, or their gradients in the
surrounding tissue, the model developed here will capture the
response of ECs to VEGF that is bound to cell-surface receptors.
VEGF-VEGFR2 binding is known to be the signal that initi-
ates endothelial motility, therefore incorporating this molecular
response is important for a realistic description of cell motion.

The cell detects bio-available VEGF by taking it up at the half-
lattice sites (Figure 1B). The model will thus make the crucial
distinction between VEGEF that is free to bind to the cell, versus
VEGF that might be sequestered in the underlying extracellular
matrix, unavailable to the cell. Based on the numbers of activated
receptors at its four sides, the cell becomes polarized and attains a
bias in a particular direction. It correspondingly elongates in this
direction (Figure 1C). Finally, the rear of the cell detaches from
the underlying matrix and contracts, and the cell has now moved
to the site (n+1, m) (Figure 1D). We remark that it has been
observed experimentally that ECs may respond to chemoattrac-
tant concentration differences of as small as 2% across their length,

frequently at concentrations at which molecular fluctuations are
significant (Mantzaris et al., 2004). In our model, fluctuations of
the order of 100 molecules of VEGF per cell are significant enough
to alter its polarization, and hence its direction of motion.

22. A NOVEL CHEMOTACTIC SENSITIVITY FUNCTION
An important difference that sets this model apart from those
preceding it, is the choice of the chemotactic sensitivity function
x (C). Various choices have been proposed thus far in the modeling
literature for x (C), for a review of the most commonly used func-
tional forms (see Ford and Lauffenburger, 1991). The simplest
choice is to assume that the chemotactic sensitivity is constant,
x(C) = xo (Keller and Segel, 1971a,b). However, this implies that
the chemotactic sensitivity is unchanging in the presence of the
chemoattractant, and does not account for the desensitization of
cells which has been experimentally observed to occur in regions
of high chemokine concentrations (Kuppuswamy and Pike, 1989;
Wang et al., 2000; Kurt et al., 2001). To overcome this, Lapidus and
Schiller (1976), and later Murray (2003) used the functional form
x(C) = x0/(K + C)?,also known as the receptor-kinetic law. This
has the advantage that it is able to account for the desensitization of
receptors when ¢ is large. Yet another popular phenomenological
choiceis x (C) = xo/(K 4+ C), where K is the dissociation constant
of the chemokine binding to the receptors (Balding and McElwain,
1985; Anderson and Chaplain, 1998b; Plank et al., 2003).

Although the choices mentioned above have been widely used
in the angiogenesis literature, there are a few biological issues that
these choices do not address. Firstly, they indicate that when no
chemokine is present at a site, the chemotactic sensitivity is the
greatest, and that the sensitivity decreases as chemokine concen-
trations increase. However, there is experimental evidence which
points toward the existence of a minimum threshold level of chem-
ical stimulus required for the cell-surface receptors to become
activated, and for the cell to start moving in a directed fashion
(Favier et al., 2006; Liu et al., 2006). This threshold has been incor-
porated in the cell-based model of tumor angiogenesis by Bauer
etal. (2007). Secondly, the above functions do not account for the
fact that the amount of chemokine required to desensitize cells
depends on the concentration of cells present at the lattice site.
For instance, while 10 fg of VEGF is enough to desensitize a single
EC, it is not enough for 10 cells. Finally, for an external chem-
ical signal to elicit a chemotactic response from a cell, it needs
to be detected by the cell, and transduced into an internal signal
controlling cell motion. Neutrophils have been shown to sense
chemical gradients of 1% across their lengths, under optimal con-
ditions (Wang et al., 2004; Levine et al., 2006), while this number
can be as low as 0.1% for axons (Wang et al., 2004). In general,
eukaryotic cells are reported to be able to polarize and migrate in
a directed fashion in alignment with chemical gradients of about
2% across their lengths (Franz et al., 2002). It is therefore biolog-
ically more reasonable to assume that the chemotactic response
of cells is dependent on the gradients of activated receptor com-
plexes formed on the cell surface when the chemokine binds to its
receptors, rather than gradients of free chemokine concentration
throughout the tissue.

To address these concerns, we propose that the chemotactic
sensitivity function should in fact be a function of the activated
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receptor concentration, A. In this case, equation (4) for the motion
of a cell in 2 dimensions transforms to the following:

ap

o »yAp— V- (x (A) pVA). (6)

Correspondingly, the transition probabilities in equation (1)
will now be functions of concentration of activated receptor
complexes on the cell surface a and not extracellular VEGE That is,

THE _ 1 T(Apt1/2,m)
wm k T(An+1/2,m) + T(An—l/Z,m)
+T(An,m+l/2) + T(An,m—l/z) )
1 T(An,m=1/2)
T &

k T(Ant+1/2,m) + T(An—1/2,m)
+t(Anmy172) + T(Anm—1/2)

We have to add equations for the binding of chemokine to their
cell-surface receptors, which will need to be solved wherever a cell
is present (see Section 2.3). Biologically, the chemotactic sensitiv-
ity x(A)vA can be interpreted by breaking it down as follows: a
velocity x(A) imparted to the cell due to the presence of bound
chemokine on its surface, and a gradient y7A which governs the
direction of motion. This gradient simply means that the cell is
able to sense the amount of chemokine bound to its various faces,
and is correspondingly able to align itself for motion in this direc-
tion. Therefore, a is in fact taken to be the amount of activated
receptors per cell face. We choose a velocity function that satisfies
the requirements that there can be no chemotaxis in the absence
of a signal, and that the cell gets desensitized in the presence of
excess signal. One such functional form is:

x (A) = xoAe /K, (8)

The maximum of this function occurs at A = K, while its max-
imum value is given by yoKe™!. In order for this choice to be
consistent with the discrete formulation, the function t(A), from
equation (3) must be taken as follows;

xoK

T (A) = exp [ 1‘; (K= (K+4) e—A/K)] . 9)
P

The parameters x¢ and K are unknown in our model for-
mulation, and would ideally be determined from experimental
observations. K specifies the fractional occupancy of the receptors
on the cell surface at which its chemotactic response is the greatest,
while x( determines the maximum value of this response. Here,
values of these parameters are chosen to produce biologically real-
istic simulation results. Figure 2B plots the chemotactic sensitivity
equations (8) as a function of the fraction of activated receptors on
a cell face, for a particular choice of K and x(. We can see that at
zero fractional activation, the cell remains inactive. The sensitivity
peaks at 5% fractional activation of receptors, and decays there-
after. Also shown for comparison are the receptor-kinetic law, and
constant chemotactic sensitivity.

23. VEGF-VEGFR2 BINDING DYNAMICS

We now describe the equations governing the rates of change of
the concentrations of free VEGF (C), free VEGFR2 (R), VEGF-
VERFR2 monomers (M), and activated VEGF-VEGFR2 dimer
complexes (A). Beginning with free VEGE, we assume that the
processes of diffusion and natural decay dominate the dynamics,
which are represented by the reaction-diffusion equation:

oc =D.AC—a.C—f(p)C.

57 (10)

Here, D, is the diffusion coefficient of VEGE, and «, is its rate
of decay in tissue. The uptake of VEGF by the migrating EC has
also been accounted for via the term f{(p)C, which is derived in
the following discussion. As in Anderson and Chaplain (1998b), a
line source of tumor cells is assumed at x = 1 that produces VEGF
at a constant rate, so that C(1, y, t) = Cy. At each of the remain-
ing domain boundaries x =0 and y =0, 1, a no-flux condition is
imposed on free VEGE. Figure 2A shows the distribution of VEGF,
expressed in non-dimensional terms, as determined by equation
(10) across the domain.

At each half-lattice site surrounding a site occupied by an EC,
free extracellular VEGF (C) binds to free cell-surface receptors,
VEGEFR2 (R), to form activated dimerized receptor complexes (A).
Following Jain et al. (2008), we assume ligand-induced dimeriza-
tion to be the dominant mechanism by which VEGF activates
VEGEFR?2, as represented by the following chemical reactions:

ke1

C + R=M
krl
ku

M + R=A

kr2

k
A2 2R

the rates of forward reactions are indicated above the reaction
arrows, while those of reverse reactions are indicated below the
reaction arrow.

This reaction diagram can be converted to the following system
of differential equations using principles of mass balance:

dcC

E = —2771kf1CR + kM, (11)

dR

e = —Zkfl CR+ n3kp M — kszR + 24k A + 2774kpA,
(12)

dM

I =2n5kp1 CR + kn M — nskpy MR + 216 kpp A, (13)

dA

The multiplicative factor 2 in some of the equations accounts
for the possibility that there may be two ways for that product
to form. The constants 1; represent the ratios of weights of dif-
ferent molecules and have been introduced to express chemical
concentrations in units of pg/mm?. The values of these constants
are given in Table 1 and have been estimated from Ferrara et al.
(2003), Stewart et al. (2003).
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assumed to respond to activated VEGFR2 on their surfaces, with
chemotactic sensitivity taken as: (C) as proposed in equation (8); (D) cells
are assumed to respond to free VEGF with chemotactic sensitivity as
defined in equation (8) with activated receptor concentration A replaced by
free VEGF concentration C; (E) receptorkinetic law, for which

T(A) = eV KoK -5 s = 0.4416 (pg/mm?) mm?/h, K =2 pg/mm?; and (F)
constant, x,=0.0046 mm?/(pg/mmq)/h.

Since EC migration and sprout elongation occurs on a time-
scale of several hours to days, and the biochemical reactions
equations (11-14) occur on a time-scale of several scones to min-
utes, we assume that the VEGF-receptor complex concentrations
M and A are at quasi steady state. This is equivalent to setting
the left hand sides of equations (13) and (14) to zero, and solving
for M and A. Further, by conservation of total receptor number,
we have R+ n3M + 2n4A = RyN, where Ryis the total number of
receptors per EC face and N is the number of ECs (N =1 in the
case of single cell migration, and N = the total number of tip cells
in the case of capillary formation). We therefore deduce that at
quasi steady state,

—2a8—y+0pB
eV Cad 4y —0B) +4aB(n+8) 6 — )
B 2B(n4 +9) ’

(15)

where,
ki1 Ry na (kp — 2kr1)
o = S EEEe————— = -
Zkfl C+ ki 2kf1 C+ ki
2k k
T 6 = R¢N. (16)
n5n7kf2

In all that follows, equation (15) will be used to estimate the
concentration of activated VEGF-VEGFR2 dimers in the domain.
Adding equations (12) and (14) and substituting in equation (11)
gives the following equation for the uptake of VEGF by ECs:

dcC

dt

Therefore, in equation (10) the cellular uptake function
f(p)C=—noky,Al(p), where I(p) is an indicator function that has

= —nokyA. (17)
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Table 1 | Parameter values relating to the molecular weights of VEGF
and VEGFR2.

Parameter  Value Units

no 0.1101 pg VEGF per pg VEGFR2-VEGFVEGFR2

1 0.2250 pg VEGF per pg VEGFR2

12 0.1837 pg VEGF per pg VEGFR2-VEGF

n3 0.8163 pg VEGFR2 per pg VEGFR2-VEGF

N4 0.4494  pg VEGFR2 per pg VEGFR2-VEGFVEGFR2

75 1.2250 pg VEGFR2-VEGF per pg VEGFR2

n6 0.56506  pg VEGFR2-VEGF per pg VEGFR2-VEGFVEGFR2
n7 2.2250  pg VEGFR2-VEGFVEGFR2 per pg VEGFR2

a value of 1 at half-lattice sites where EC boundaries are present
and is zero otherwise. Observing that nok, < ac (see parame-
ter values in Table 2), we make a final simplifying assumption that
due to the constant production and rapid diffusion of extracellular
VEGE, cellular uptake will not significantly effect its concentration,
that is, f{p) C is neglected. Thus, the equation governing free VEGF
dynamics is taken to be

aC
— =D.AC — «a.C.

” (18)

2.3.1. Summary of model equations

The principle variables in our model are: p(n, m, t), the proba-
bility that a cell occupies lattice site (n, m) at time ¢; C(x, y, t),
the concentration of free VEGF at position (x, y) and at time ¢
in pg per lattice site volume, where each lattice site has a height
of 1 mm and a base equal to the surface area of a cell; R(4, j, t),
the concentration of free VEGFR2 at half-lattice sites (3, j) and at
time t in pg per lattice site volume; M (3, j, t), the concentration of
VEGF-VEGFR2 monomers at half-lattice sites (4, j) and at time ¢
in pg per lattice site volume; and A(4, j, t), the concentration of free
activated VEGFR2-VEGF-VEGFR2 dimers at half-lattice sites (3, j)
and at time ¢ in pg per lattice site volume. We remark that R, M,
and A can only take positive values at neighboring half-lattice sites
where a cell is present, and are 0 otherwise. Equations (1), (7), and
(9) that describe the biased random walk of a cell under the influ-
ence of activated VEGF-receptors have already been discussed. The
following conditions are imposed on the transition probabilities
for cell motion as described by equation (1) to ensure that no cell
exits the domain:

T O=TRH,0=T"O=T 3 10=0 (19

Here, N; = 1/h, h being the lattice size so that 1 < n,m < N, + 1.

24. PARAMETER ESTIMATION

A list of parameter values and sources is given in Table 2. The ran-
dom motility coefficient of endothelial cells has been estimated
to lie within the range 7.2 x 1074-7.2 x 1073 mm?/h (Ander-
son and Chaplain, 1998b). Consequently, intermediate value of
1.44 x 10”4 mm?2/h is assumed. The rates k.1 and k¢l are chosen to
ensure that the equilibrium disassociation constant kp = k;1/kfl

has a value of 30.375 pg/mm?® (Wang et al., 2002). VEGF bind-
ing is known to induce receptor aggregation; therefore, as in Jain
et al. (2008) we assume that the rate of formation of a dimerized
VEGF-VEGFR2 complex is greater than the rate of formation of
a monomer VEGF-VEGFR2 (that is, k2 ( kl). Further, because
the dimerized complex A is the signaling form of VEGFR?2, it is
reasonable to assume that A is more stable than the monomer
complex M, that is, k.2 = k;I. The size h of the lattice on which
the cell moves is taken to be 20 um, since typical microvascular
endothelial cell volume is about 400 um (Vadapalli et al., 2000),
while its thickness is about 1 um (Levine et al., 2002). Finally, the
parameters xo and K relating to chemotactic sensitivity are cho-
sen to reproduce cell motion and capillary formation profiles that
are biologically realistic.

25. METHOD OF SIMULATION
The time interval over which the movement of the cell is simu-
lated, is divided into subintervals of length k, given by the mean
waiting time of the cell at any lattice site. The cell moves on a lattice
of step-size h. Activated VEGFR2 concentrations are calculated at
half-lattice sites, neighboring a site where the cell is currently sit-
uated. The method of simulation of cell movement is based on
that described in Plank et al. (2003). Briefly, at each time step, the
movement of the cell is simulated according to the master equa-
tion (1), with the probabilities of moving up, down, left, and right
calculated according to equation (3). Equation (9) quantifies the
dependence of the transition probabilities on the levels of acti-
vated VEGFR?2 on each cell face as given by equation (15). The full
interval [0, 1] is divided into five subintervals, each of length pro-
portional to the probabilities of moving or staying still. A random
number g lying within this interval is generated, and depending on
the sub-interval in which it lies, the cell either executes a motion
in the corresponding direction or stays stationary. Thus, the cell
moves left if g € [0,7;%,_), moves right if g € [, 7;H,; + 7',51,”"'),
and so on.

The results of the single cell motion model are discussed in
Section 3.1.

2.6. ADAPTATION OF SINGLE CELL MOTION MODEL TO SIMULATE
CAPILLARY FORMATION

To simulate capillary formation in response to a VEGF stimulus
from a tumor source, we modify the single cell motion model
described above as follows. As mentioned earlier, we motivate our
model of capillary formation by the experiments of Sholley et al.
(1984) wherein inflammatory neovascularization of the rat cornea
was induced by cauterization using silver nitrate and levels of EC
proliferation and degree of vascular profusion measured periodi-
cally. From these experiments, the average rate of sprout extension
into the cornea is estimated to be 0.26 mm/day or 0.78 mm in
3 days. In our model, we do not account for vessel maturation; a
process that typically occurs after 3 days of vessel formation. Con-
sequently, we simulate vessel growth for lengths <0.78 mm. With
this constraint, a parent vessel, from which sprout tips will migrate
toward the tumor, is assumed at x = 0.22 mm. As in the single cell
model, a line of tumor cells is assumed at x = 1, providing a con-
stant source of VEGE. For ease of computations, the domain size
is reduced to 0.5 mm in the y-direction, and initially 4 sprouts are
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Table 2 | List of parameter values for single cell motion.

Parameter Value Units Reference

Dp 144 x 1074 mm2/h See text

De 3.60 x 107! mm?2/h Mac Gabhann and Popel (2005)

ac 0.65 Per hour Serini et al. (2003)

kel 1.69 Per (pg VEGF/mm?3)/h Wang et al. (2002)

k1 0.02 Per hour Wang et al. (2002)

k2 k1 x 100 Per (pg VEGRVEGFR2/mm3)/h See text

k2 k;1/100 Per hour See text

Kp 0.6667 Per hour Wang et al. (2002)

Ry 0.02 pg receptors per cell face Stewart et al. (2003), Mac Gabhann and Popel (2004)

h 0.02 mm Vadapalli et al. (2000), Levine et al. (2002)
0.07 Hours See equation (5)

X0 0.05 mm? per hour per (pg/mm3)~" See text

K 2.00 pg/mm3 See text

assumed to have formed along the parent vessel at y =0.1,0.2,0.3,
and 0.4 mm.

It is known that specialized ECs situated at the tips of the
sprouts, called tip cells, are activated by, and respond to VEGE,
by chemotactic migration (Hangai et al., 2002; Gerhardt et al.,
2003). We therefore keep track of these leading cells in our simu-
lations. As a tip cells moves, it pulls behind it a developing vessel.
Hence, receptors on its tail are made unavailable for binding VEGF
at any given time. This eliminates the possibility for the tip cell to
back-track. By keeping track of all the lattice sites a tip cell visits,
we know the location of the newly formed vessel behind it.

The processes of branch formation and anastomoses forma-
tion of loops by capillary sprouts are also included explicitly in
our model. At each time step, as the tip cells migrate under the
influence of VEGE, probabilities of motion to adjacent lattice sites
are calculated. Anastomoses between the tip cell and a sprout may
occur if a sprout is present at a site which the tip cell wants to move
to. We assume that the probability of tip cell loss as a result of such
an event is 1%. Likewise, as in Anderson and Chaplain (1998b), it
is assumed that if another tip cell is encountered at a site, only one
of these cells continues to grow (with a probability 99%), while
the rest of the time, a loop is created with the loss of both cells.

Sholley et al. (1984) have demonstrated that sprout extension
cannot occur in the absence of mitosis. While we do not explicitly
model cell division, the dependence of capillary extension on it is
accounted for in the processes of capillary elongation and branch
formation as follows. The proliferation of cells is known to be
regulated by total concentration of activated cell-surface receptors
(Gerhardt et al., 2003). Thus, in our model, the tip cell integrates
the total VEGF bound to it and sprout extension via tip cell motion,
and branch formation is only possible if there are enough acti-
vated VEGFR2 on its surface. The effect of proliferation on tip cell
motion is simulated by introducing a scaling factor of P,,(A;) that
multiplies the movement probabilities of each cell, where A, is the
total concentration of activated VEGFR2 on the cell. P, is assumed
to be a positive, increasing, and saturating function of A;, with a
saturating value of 1. Thus, for small values of A, the probability of
capillary extension will be ~ 0 due to an insufficient proliferation

stimulus. Here, we take P,,(A;) = 1/(1 4 e ~4t) which is plotted
as a function of the fraction of total activated VEGFR2 per tip cell
in Figure 5D.

We further assume that the generation of new sprouts occurs
only from existing sprout tips. This is in keeping with the fact
that there is a region of proliferating cells just behind the tip cell
(Sholley et al., 1984), which could give rise to new branches. As
in the case for P, the branching probability Py is also taken to
be an increasing and saturating function of A;. This will result in
the creation of the brush-border effect. Similar rules for branching
have been applied previously by Anderson and Chaplain (1998b).
Here, we take P,(A;) =1/(upl + e~ mb2(Ar = A0)y wwhich is plotted
as a function of the fraction of total activated VEGFR2 per tip cell
in Figure 5D.

2.6.1. Parameter estimation for capillary formation model

A list of parameter values that are different or new in the capillary
formation model is given in Table 3. For consistency with the sin-
gle cell model, we keep the time step-size k unchanged at 0.07 h.
Further, the diffusion rate of a tip cell, say Dy, has been estimated
to be much smaller than the diffusion rate D, of an individual EC
(Anderson and Chaplain, 1998b; Levine et al., 2001). Therefore, the
lattice size h for the capillary model needs to be altered accordingly.
Equation (5) is used to estimate h = +/4kD; ~ 0.001lmm. Finally,
the parameters (L, (p1, Up2 and Ay relating to the movement
probability and branching probability are chosen to reproduce
capillary formation profiles that are biologically realistic.

2.6.2. Simulation methodology for capillary formation model

The simulation methodology is similar to that of single cell motion
described in section 2.5, with the additional computation of
accounting for branching and anastomoses for each tip cell, and at
each time step. Briefly, in addition to generating a random number
g, which is used to determine the direction of tip cell motion, two
further random numbers are generated (q, and q;) by uniformly
sampling the interval [0, 1]. We use g, to determine whether or
not anastomoses occurs, and gy, is used to determine whether a
new branch forms, in accordance with the rules described above.
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Table 3 | List of parameter values for capillary formation.

Parameter Value Units Reference
Dy 3.60x mm?Z/h (Levine
10-6 et al., 2001)

h 0.001 mm See text

k 0.07 Hours See text
m 300 Dimensionless See text
Y 30 Dimensionless See text
b2 0.25 per pg VEGFR2-VEGFVEGFR2/mm?3  See text
Ao 40 pg VEGFR2-VEGFVEGFR2/mm?3 See text

The results of the capillary formation simulation are discussed
in Section 3.2.

3. RESULTS

3.1. SINGLE CELL MOTION

Simulations of the system governing a single endothelial cell
migrating up a gradient of VEGF, as described by equations (1),
(7), (9), and (15), were run in two dimensions, with unbound
VEGF profile described by equation (18). The average time in
hours it takes for the cell to travel across the domain is plotted
in Figures 2C-F, as a function of Cy, the maximum free VEGF
concentration at a lattice site, for various possible choices of the
chemotactic sensitivity function x(-). Standard deviations and
average times are computed over 500 runs of the model.

Figures 2C,E,F depict the cases when x(-) is assumed to be a
function of activated VEGFR2 on the cell surface. When x () is as
defined in equation (8), the model captures the existence of a min-
imum level of VEGF stimulus required for directed cell motion,
as well as desensitization of VEGFR2 at high VEGF concentra-
tions (see Figure 2C). As Cy increases from 0.002 pg/mm?, the
average EC migration time is observed to first decrease and then
increase, attaining a minimum of 8.23h at Cy =0.015 pg/mm°.
A typical cellular trajectory is plotted in Figure 3C for this opti-
mal value of Cy, and the corresponding movement probabilities
at any lattice site are plotted in Figure 3D. Note that since the
VEGF profile is invariant along the y-direction, the movement
probabilities are also invariant along this axis — they only vary as
x varies. The probabilities show a large bias toward stepping to
the right, while steps to the left are very unlikely to occur. This is
because: (i) the chemokine gradient across the cell length has an
average value of 1.32%, over the entire domain, which lies within
the reported value of 1-2% at which eukaryotic cells become polar-
ized; and (ii) the fraction of activated receptors on any cell face is
sufficiently large, with an average value of 9%, over the entire
domain.

As Co is decreased below 0.015, the average migration
time is predicted to increase exponentially. For instance, when
Co =0.002 pg/mm?, the average migration time is predicted to
be 37.46 h, and the cell exhibits a high degree of randomness in
its motion, as evident from a typical cellular trajectory shown in
Figure 3A. The corresponding movement probabilities at any lat-
tice site plotted in Figure 3B show that a definite bias is apparent
for motion to the right only close to x =1. This is because the
fraction of activated VEGFR2 on any cell face is very low, with a

maximum of < 2%, even though the chemokine gradient across
the cell length has an average value of 1.46%. Thus, the model is
able to account for the fact that if chemokine concentrations are
too low, cell-surface receptors do not achieve a sufficient degree of
activation.

As Cy is increased beyond its optimal value of 0.015-
0.08 pg/mm?, the model replicates the desensitization effect which
has been observed to occur when receptors are over-exposed to
chemokines. It now takes the cell an average of 35.77 h to migrate
across the domain. From Figure 3E, we observe that typical cell tra-
jectories exhibit a large degree of random motion. Now, activated
receptor gradients across the cell have an average value of only
1%. Further, the fraction of activated receptors that vary between
18 and 34% across the domain so that the negative exponential in
equation (8) dominates resulting in a very slight bias of movement
to the right (see Figure 3F).

For comparison, we also consider the cases where
x(A)=xo/(K+A)?* or the receptor-kinetic law and when
x (A) = constant = . As can be seen from Figure 2E, while the
receptor-kinetic law captures the desensitization of VEGFR2 at
high concentrations of VEGE, the cell still displays a high degree
of directed motion for very low values of Cy. For instance, when
Co = 0.002 pg/mm? the average migration time is as low as 16.08 h
as compared to 37.46 h in the earlier case. In contrast, the exis-
tence of a minimum activation threshold for VEGF is predicted
by assuming y (A) = xo, as evident from Figure 2F. However, this
model is unable to capture receptor desensitization at high val-
ues of Cy, and in fact, the average migration time is predicted to
decrease monotonically with Cp.

Finally, for illustration purposes, we also consider the case when
x (+) has the same qualitative properties as in equation (8), but the
cell now responds to free VEGF rather than activated VEGFR2,
that is, x(C) = xoce 'K (see Figure 2D). While the graph is
qualitatively similar to Figure 2C, the fastest migration of the EC
across the domain is occurs at Co = 7.5 pg/mm?>. This is biologi-
cally implausible since for such high receptor activation levels, the
fraction of activated VEGFR2 on any cell face > 0.97 throughout
the domain, and the cell should be completely desensitized to the
chemical gradient around it.

3.1.1.  Effect of receptor expression level on cell migration

An important parameter in our simulations of EC migration is
Ry, the expression level of VEGFR2 per cell. This is known to
be highly variable across cell lines, and it is even possible to find
different values for Ry for the same cell line. We therefore con-
duct a sensitivity analysis on the migration times of an EC across
the domain as Ry is varied, the results of which are graphed in
Figure 4. For the baseline simulations discussed earlier, a value of
R =1230,000 receptors per cell or 0.08 pg/cell (Stewart et al., 2003;
Mac Gabhann and Popel, 2004) was used (see Figures 2 and 3). We
now simulate the effect on cell migration of increasing Rr from
a minimum of 46,000 to a maximum of 1,115,000 receptors per
cell for various values of Cy, the maximum free VEGF concen-
tration at a lattice site. For each of the cases when Ry = 115,000
(Figure 4B), RT = 230,000 (Figure 2C), R = 460,000 (Figure 4C),
and Rr=1,150,000 (Figure 4D), the average migration time of
the EC is predicted to first decrease and then increase, as Cy
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is increases. Thus, for a large range of values of Rr, the model
captures the existence of an activation threshold of VEGFR2, and
their desensitization when exposed to high VEGF concentrations.
However, when Ry is very low (46,000/cell, Figure 4A), receptor
desensitization is not predicted. This is possibly due to a high value
of the parameter K, which is held fixed in all our simulations. As
can be seen from equation (8), K determines the concentration of
activated VEGFR2 per cell face at which the chemotactic sensitivity
x (A) is maximum.

Next, as can be seen from a plot of fastest migration times
versus receptor expression in Figure 4E, the EC migrates more
rapidly across the domain as Rt increases. The fastest migration
time is predicted to be 8.25 h, for Rt > 460,000/cell. Interestingly,
the maximum free VEGF concentration at which EC migration
is fastest decreases with increasing Ry (Figure 4F). Thus recep-
tor over-expression is predicted to lower the activation threshold

for ECs, possibly because gradients of activated VEGFR2 become
more pronounced across the cell.

3.2. CAPILLARY FORMATION

Simulations of the system governing capillary network formation
under the influence of VEGF, described in section 2.6, were run in
two dimensions. Averages and standard deviations of all observed
quantities were calculated from 100 runs of the model.

The first case considered is when the sprout tips move across
the domain in the least amount of time. This occurs when the
maximum concentration of unbound VEGF Cy = 0.015 pg/mm?,
as deduced from the single cell simulations. The results from a typ-
ical simulation are shown in Figure 5A. We begin with 4 initially
formed sprout tips at x = 0.22 mm. As the tip cells migrate across
the domain, they lay down behind them capillary sprouts. As the
vascular network penetrates deeper into the stroma, branching is
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time for a single cell to cross the domain as a function of increasing Ry,
solid triangle corresponds to baseline simulations. (F) The maximum free
VEGF concentration at a lattice site (C,) at which cell migration is fastest,
as a function of increasing Ry, solid triangle corresponds to baseline
simulations.

observed to occur leading to the brush-border effect. The model
predicts that it takes on average 1170 = 27 steps or 3.38 & 0.08 days
for the vasculature to reach the tumor source at x =1 mm. Our
model is validated by the experiments in Sholley et al. (1984) where
the vascular sprouts traveled the same distance in 3 days. Further
validation follows by observing that the vascular networks gener-
ated by our model are qualitatively similar to those observed by
Sholley et al. (1984).

Next, the effects of low (0.005pg/mm?) and high
(0.030 pg/mm?) maximum VEGF concentrations on vascular for-
mation are investigated. As remarked earlier, we do not model
vessel maturation, which is typically observed after ~3 days of
vessel formation. Model simulations are run for a maximum of
1170 time steps and the average degree of vascular penetration
into the stroma, along with the fraction of sprouts that remain

viable (that is, have at least one active tip cell) at the end of this
time is computed. When Co = 0.005 pg/mm?, the average lengths
of sprouts formed is predicted to be 0.2 = 0.1 mm, with only 40%
of the initial sprouts still viable after 1170 time steps. Sprouts
that remain viable after 1170 time steps extend a greater distance
(0.4 £ 0.03 mm) into the stroma. However, these display virtually
no branching, with the average number of branches per sprout
only 1.1 & 0.4. Figure 5B shows the results of a typical simulation.
As can be seen, there has been no branching and all but the first
sprout have anastomosed with themselves to form closed loops.
This is due to an insufficient bias to move forwards, coupled with
a low value of the scaling factor Py, (see section 2.6).

Finally, when Cy=0.030pg/mm?, the average lengths of
sprouts formed after 1170 time steps is predicted to be
0.6 £0.1 mm. As can be seen from a typical simulation shown
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FIGURE 5 | (A-C) Typical vascular networks formed by 4 initial sprouts located
along x =0.22 at positions y=0.1, 0.2, 0.3, 0.4; x being plotted along the
abscissa and y along the ordinate — migrating across a 2-dimensional domain
under the influence of VEGF for various values of C,, the maximum VEGF
concentration per lattice site. (A) Optimal VEGF concentration,

C, =0.015 pg/lattice volume. The bias of movement is overwhelmingly in the
forward direction. Branching and anastomoses are observed to occur as the
vasculature penetrates deeper into the stroma. The resulting networks are
qualitatively similar to those observed experimentally in Sholley et al. (1984).
(B) C, =0.005 pg/lattice volume. The amount of VEGF is too low to induce
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proliferation or polarization of the tip cell, leading to a poorly developed and
stunted vasculature that does not reach the VEGF source within the time
frame of simulations (3 days). (C) C, =0.030 pg/lattice volume. Due to a high
VEGF concentration, overstimulation of endothelial cells occurs, and
extensive branching, anastomoses and lateral movement of the tip cell is
observed. Due to excessive lateral movement, the vasculature that does not
reach the VEGF source within the time frame of simulations (3 days). (D)
Assumed branching probability P, of the migrating tip cell (black curve), and
assumed extension probability P,, of the capillary (blue curve), expressed as
functions of total fraction of activated VEGFR2 per cell.

in Figure 5C, extensive branching and anastomoses are observed.
Given the density of vessel branches, it is reasonable to expect that
several of these may fuse into one another resulting in thicker and
more dilated vessels, which is a morphology consistent with vas-
cular hyperplasia, as seen in Lee et al. (2005). The higher VEGF
concentration implies that the vessels have a weaker bias for for-
ward motion, and lateral movement of vessels as well as movement
against the gradient of VEGF are observed to occur. These phe-
nomenon have been observed in vivo, and have been numerically
simulated previously (Anderson and Chaplain, 1998b; Plank and
Sleeman, 2004; Sun et al., 2005; Zheng et al., 2013).

4. CONCLUSION

We have developed a hybrid model of cellular chemotaxis and
capillary formation under the influence of VEGE. The migrat-
ing cell, whether by itself or as the tip cell “pulling” behind it
a developing sprout, was treated as an agent. Its movement was
simulated stochastically with movement probabilities based on
the theory of biased random walks. On the other hand, due to
its fast diffusion coefficient, VEGF dynamics were governed by a
continuum reaction-diffusion equation. Using this approach, we
first simulated the motion of a single cell on a two-dimensional
grid, following the gradient of VEGF laid down by a constant
source. Next, our model was adapted to simulate the formation
of new vessels from pre-formed sprouts along a parent vessel,
also under the influence of a constant source of VEGE such

as a tumor. Events such as branching and anastomoses, which
are observed to occur in vivo, were incorporated explicitly in
the model. The rate of vessel formation closely matched that
observed experimentally (Sholley et al., 1984) under an optimal
VEGF concentration. Additionally, as the forming vessels neared
the VEGF source, a brush-border effect due to increased branch-
ing was predicted, thus proving both quantitative and qualitative
validation of our approach. Using this framework, we also tested
the effects of excessive as well as low levels of VEGF signaling
on vascular development. Insufficient chemotactic and mitotic
cues from VEGF resulted in stunted and solitary vessels, while an
over-stimulation induced a high degree of branching and lateral
movement.

An important difference that sets our model apart from similar
hybrid models of chemotaxis is the inclusion of a molecular level
detail of interaction between VEGF and its cell-surface receptor
VEGEFR2, the activation of which polarizes the cell and induces
directed motion. This has been observed experimentally as well —
endothelial cells respond to gradients of chemokines across their
lengths, rather than to free chemokine concentrations. These gra-
dients have been shown to be between 1 and 2%, which was seen
in the numerical simulations as well, thus validating our model.
Crucially, a chemotaxis sensitivity function was proposed that
incorporated biological detail hitherto ignored by commonly used
sensitivity functions currently. The model could thus capture real-
istic dynamics, such as the requirement of a minimum activation
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level of cell-surface receptors and receptor desensitization in high
concentrations of VEGE.

Angiogenesis, both physiological and pathological, is a highly
complex process, and understanding its mechanisms can lead to
significant breakthroughs in the treatment of diseases such as
cancer that depend on it. To this end, it is vital that modeling
efforts keep up with current advances in experimentation. Our
model provides such a framework, in which it is easy to build
in biochemical and biomechanical forces guiding vessel forma-
tion. In fact, a number of highly detailed and complex hybrid
models of vascular tumor growth have recently been proposed
(Frieboes et al., 2007; Owen et al., 2009; Perfahl et al., 2011)
and a significant strength of our model is that it can easily be
incorporated into these. The inclusion of greater biological detail
would only increase confidence in the predictive power of such
models.

In addition, a number of refinements of the model proposed
here are under active consideration. For instance, EC response
to cell-surface bound VEGF has already been explicitly included.
However, for the ease of computation, certain simplifying assump-
tions were made. Most notably, activated VEGFR2 were assumed
to be in quasi steady state. Further, only the tip cell was tracked,
while VEGF uptake by stalk cells was ignored. Cell death was
also omitted, while the processes of cell proliferation, branching,
and anastomoses were included phenomenologically. We plan to

extend this model by relaxing some of these assumptions. Lattice-
based models of angiogenesis face the criticism that the capillary
networks generated by them are artificial to a certain extent, as
they are forced to follow the lattice used to discretize the model.
A first step would therefore be to develop a lattice-free version of
our model of capillary formation, in which the ECs move without
geometric constraints. Such models have been applied to capillary
formation previously (Plank and Sleeman, 2004; Frieboes et al.,
2007).

Other model refinements include incorporation of the relation
between extra cellular matrix or ECM and vascular morphology.
ECs require the ECM to gain traction in order to move. To facil-
itate their migration, ECs also secrete proteolytic enzymes such
as matrix metalloproteinases (MMPs), that degrade collagen and
elastin and clear a path for the ECs to follow. As ECs interact with
the matrix, they also cause the release of matrix bound angiogenic
factors such as VEGE, which are then available to induce further
pro-angiogenic activity (Mantzaris et al., 2004). Further, pericytes,
macrophages, and angiopoietins are also important determinants
of developing vascular morphology and maturation (Levine et al.,
2000; Plank and Sleeman, 2003), and need to be considered explic-
itly. The framework presented here is highly flexible, and would
allow for the inclusion of the above processes, grounding it further
in biology, and enhancing its usefulness as a tool to understanding
the process of angiogenesis.
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INTRODUCTION

Random mutations and epigenetic alterations provide a rich substrate for microevolutionary
phenomena to occur in proliferating epithelial tissues. Genetic diversity resulting from ran-
dom mutations in normal cells is critically important for understanding the genetic basis of
oncogenesis. However, evaluation of the cell-specific role of individual (epi-)genetic alter-
ations in living tissues is extremely difficult from a direct experimental perspective. For this
purpose, we have developed a single cell model to describe the fate of every cell in the
uterine epithelium and to simulate occurrence of the first cancer cell. Computational simula-
tions have shown that a baseline mutation rate of two mutations per cell division is sufficient
to explain sporadic endometrial cancer as a rare evolutionary consequence with an inci-
dence similar to that reported in SEER data. Simulation of the entire oncogenic process
has allowed us to analyze the features of the tumorinitiating cells and their clonal expan-
sion. Analysis of the malignant features of individual cancer cells, such as de-differentiation
status, proliferation potential, and immortalization status, permits a mathematical character-
ization of malignancy at the single cell level and a comparison of intra-tumor heterogeneity
between individual tumors. We found, under the conditions specified, that cancer stem
cells account for approximately 7% of the total cancer cell population. Therefore, our math-
ematical modeling describes the genetic diversity and evolution in a normal cell population
at the early stages of oncogenesis and characterizes intra-tumor heterogeneity. This model
has explored the role of accumulation of a large number of genetic alterations in oncoge-
nesis as an alternative to traditional biological approaches emphasizing the driving role of
a small number of genetic mutations. A quantitative description of the contribution of a
large set of genetic alterations will allow the investigation of the impact of environmental
factors on the growth advantage of and selection pressure on individual cancer cells for
tumor progression.

Keywords: evolution, oncogenesis, genetic mutation, endometrial cancer, fitness, phylogenetic analysis, tumor
heterogeneity, mathematical modeling

mutations in the proliferating uterine epithelial tissue and may be

An evolutionary model has been established to describe the entire
process of tumor development in colorectal cancer with detailed
molecular mechanisms for the stepwise oncogenic progression
driven by sequential accumulation of several genetic mutations
(Fearon and Vogelstein, 1990; Jones et al., 2008a). However, in our
view, this model can be expanded to understand evolution among a
population of normal cells in the uterine epithelium with inclusion
of random mutations. Several studies have estimated the mutation
rates in normal cells to be around 1077 per cell per generation (for
a specific gene) through measurement of the frequency of muta-
tions in the gene in proliferating cells (Elmore et al., 1983; Araten
et al., 2005). The more accurate estimates are done in a living tis-
sue and a rate of ~5-10 x 10~'% mutations per base pair per cell
per generation is reported (Jones et al., 2008a). This rate can be
approximately translated into about two to three mutations per
cell per division. This reported mutation rate of two to three ran-
dom mutations per cell per generation would produce billions of

sufficient to explain the large number of genetic mutations uncov-
ered in human tumors (Gallo et al., 2012; Kuhn et al., 2012; Liang
etal.,2012). Interestingly, these studies have not found a significant
difference in the mutation rate between normal and transformed
cells (Elmore et al., 1983; Araten et al., 2005; Jones et al., 2008a),
indicating that the genetic diversity universally reported in cancer
cell populations may be present in normal cell populations as well,
serving as fertile ground for evolution at the earliest stage of onco-
genesis. Therefore, genetic mutations in normal cells can provide
significant genetic diversity for subsequent selection, allowing for
a unique, albeit extremely rare, consequence: a cell may escape the
typical fate of normal cells and become immortalized.

However, the process of evolution in a normal cell popula-
tion is rarely a popular cancer research subject. Normal cells in
a tissue are often not considered to harbor any dysfunctional
mutations nor are they considered to demonstrate any pheno-
type commonly seen in cancer. Furthermore, any suggestion that
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minor random mutations are sufficient for oncogenesis in some
cancers may be seen as a contradiction to the genetic theory that
certain notable genetic mutations and oncogenic pathways are the
driving forces for tumor development. These seeming contradic-
tions can be reconciled by considering that a significantly larger
number of pathways than was commonly believed are present
in well-developed tumors (Jones et al., 2008b), meaning that the
genetic slot machine for transformation of an individual cell has
many reels. Phenotypically normal cells, with no apparent growth
advantage, may quietly harbor multiple accumulated alterations in
multiple pathways before transformation by a single major muta-
tion or by minor mutations in remaining key pathways. While
the chance of complete transformation of an individual cell may
be negligible, genetic diversity represents the non-negligible col-
lective chances of many individual cells, each with a particular
set of mutations after a number of generations with a steady
mutation rate.

The appearance of the first cancer cell, the tumor-initiating
cancer cell (TICC) which propagates to form the entire cancer cell
population in a tumor, seems to be an extremely rare occurrence.
For instance, endometrial cancer incidence is about 6 per 100,000
women at reproductive age according to the SEER database (2008,
female, all races, <50 years) and the peak cell number in the uterine
epithelium is several billion with monthly turnover, which gives
an approximate probability of the occurrence of the TICC of less
than 5 x 10~!° per normal cell per year. This manuscript, utilizing
mathematical modeling and numerical simulation, tests whether
the baseline mutation rate in a normal cell population, such as the
uterine epithelium, is sufficient for the rare occurrence of a TICC.
Simulation of the longitudinal and prospective process of tumor
initiation and development, including following the evolution of
individual normal cell lines in the uterine epithelium, has allowed
us to describe the clonal progression of a TICC into a clinically
detectable tumor.

MATERIALS AND METHODS

The goal of this manuscript is to explore whether the baseline
mutation rate in a normal endometrial cell population is suffi-
cient to explain endometrial cancer incidence. We will also explore
whether description of the fate of every single cell in our model can
demonstrate in sufficient detail the development of heterogeneity
within the mass, and the corresponding properties of the ancestor
cells of endometrial tumors. This is analyzed through numerical
simulations of a recently published model for the proliferation of
uterine epithelial cells (Dai et al., 2011).

OUTLINE OF CELL PROPAGATION

The mathematical model under consideration views the prolifer-
ation of epithelial cells in terms of a continuous-time bifurcating
process. The simulation begins with an initial progenitor cell. The
time required for the cell to either divide or die is governed by
a set of equations describing various properties of the cell (Eqs
1-7, individual variables are described in Tables 1 and 2). In
the event of division, the daughter cells inherit their properties
from the parent cell, with the quantitative values of the proper-
ties subject to stochastic variation. We then follow the fates of
each daughter cell, which follow Eqs 1-7 independently. The cells

are simultaneously viewed as traversing a differentiation pathway,
with each cell existing along a spectrum from progenitor cell to
a fully differentiated descendant clone typically seen in the uter-
ine epithelium (Dai et al., 2011). Therefore the cell’s properties are
also influenced due to this “biological progression.” The size of the
uterine epithelium is determined by the total number of descen-
dant cells existing at time # The fate of each individual constituent
cell is calculated through Monte Carlo simulation.

Cell cycle status value:
t
c(t) = / o (s) ds, where t,, denote the cell’s birth time (1)
th
Programmed proliferation potential:

1
o (t) = = (10-g () g (2)
Programmed differentiation coefficient:

K (1) =378 [1— 7440 ] 4 0.03¢ (1) (3)

t
Generation number: g (t) = 1 + floor </ la (s)] ds) (4)
0
Resistance potential: r (£) = k (t) (ocp () —a (t)) (5)

n
Differentiation coefficient: k () = k; (t) + Z m; (6)

i=1
N . da
Proliferation potential rate of change: i r()y+B@ (7)

The cell cycle status c(¢) of a cell, governed by the cell’s
growth rate (proliferation potential) a(¢), denotes the progres-
sion toward apoptosis (death) or division (bifurcation) in the
branching process. When a cell is born at a time t,, this value
is 0. If c(t*)=1 for some t* > t,, the cell undergoes division
into two daughter cells, while if ¢(#*) = —1 for some t* > t,, the
cell undergoes apoptosis. This measurement of cell cycle status is

related to P (t) = 2/ i a(s)ds, the solution of the differential equa-
tion for doubling of a population, dP/dt = In(2)a(t)P. However,
we utilize the measurement c(t) since, in the above mathematical
system, we are considering the fate of a single cell instead of a
population.

Equations 2—4 describe a hypothetical trajectory (fate) of a sin-
gle cell which is genetically determined and automatically proceeds
along cellular time, g, free of any perturbing influence, such as
genetic alterations and environmental factors. Equations 2 and
3 describe the parallel process of a cell’s proliferation [a(t)]
and differentiation [k,(f)]. Equation 4 represents cellular time
(g generation), which is determined by factors related to cell divi-
sion such as telomere length, and depends on physical time (¢ in
months, and related to patient age). Equations 5-7 incorporate
the hypothetical trajectory, perturbations from it, and resistance
to these perturbations as part of homeostasis. Additional explana-
tion of the rationale of these equations were provided previously
(Dai et al., 2011).

OUTLINE OF CELL PROPERTIES
Each cell’s status is described by four quantities: proliferation
potential (o), differentiation coefficient (k), resistance potential
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Table 1 | Terms for hypothetical cellular growth of a single cell.

Term Definition Unit Description
c(t) Measurement of the status of Cycle The status of a cell cycle is provided with a numerical value in order to describe the
cell cycle of a cell with a quantitative progression of cell proliferation. A cell cycle exists between two endpoints:
numerical value between death and birth (of two daughter cells). In either case, the cell ceases to exist. A cell divides
—1and +1 if c(t)=1, dies if c(t)=—1, for some t > t,, where t, is the time that the cell was born
N(t) Size of a tissue or a mass at Cell The total number of cells in a tissue or a mass at time t with summation of the value of all
time t individual cells. A clone is comprised of all descendant cells from a progenitor cell borne
from asymmetrical division of a tissue stem cell
t Physical time, as it relates to Month It is the physical time and can be assigned with a unit of day, month, or year. We assume
patient age and menstrual cycle that 1year =12 months and 1 month =30 days for convenience
ap(t)  (Programed) proliferation Cycles/month ~ Programed rate of a cell's multiplication according to the cell’'s progression in clonal
potential (Eq. 2) development (progression of generations) and expressed as the number of cell cycles per
unit time
Kp(t) (Programed) differentiation 1/month Measurement of a cell's differentiation status, commonly with a range from 0 to Kmax (@
coefficient (Eq. 3) tissue specific constant)
glt) Generation number (Eq. 4) Cycle Measurement of lineage progression in a clone and cellular senescence. A daughter cell

assumes a new generation value of g+ 1 with g as the parent generation number. It has
the same unit as the cell cycle. It represents how a cell perceives senescence, and is
determined by its cellular mechanism, for instance by telomere length. Although g(t) and
division (d) synchronize most of time, there is a possibility that they may differ. For
instance, active telomerase may maintain telomere length after many divisions

These terms are for cells living under conditions free of any genetic insults and environmental influences, a hypothetical scenario used as a frame of reference to

study the effect of genetic and environmental factors on cell growth.

Table 2 | Terms for the growth of a single cell.

Term Definition Unit Description
m; Mutational 1/month Quantifies the effect of each genetic alteration on a cell’s ability to maintain differentiation
coefficient (Eq. 6) status, k(1)
alt) Proliferation Cycles/month A measurement of the number of completed cell cycle per unit time. A cell’s proliferation
potential (Eq. 7) potential is the function of resistance potential (r) and environmental stimulation (B) over time
(t) in Eq. 7, indicating the pace of cell cycling under influence. Therefore, cell death induced by
anti-growth signals can be simulated by a negative a induced by a negative p over time
k(t) Differentiation 1/month Measurement of a cell’s differentiation status under influence as the sum of programmed
coefficient (Eq. 6) differentiation coefficient and mutational effect
r(t) Resistance Cycles/month? Measurement of a cell’s inherent ability to adhere to the development program by restoring
potential (Eq. 6) a(t) to ap(t) which will lead to the control of cell number and progression of differentiation
B(t) Environmental Cycles/month? All environmental factors affecting cell multiplication. Hormonal stimulation on cell

coefficient (Eq. 7)

proliferation is an example

These terms are for experimental measurement of (clonal) cellular growth under our experimental observations with genetic insults and under environmental

influences.

(r), and generation number (g). A cell lineage begins with the progression along the differentiation pathway (g). This parameter
birth of an initial progenitor cell at time ¢ = 0. Its physical position may be viewed as a measurement of how a cell perceives the
within the lineage is given by the number of divisions the cell is  passage of time, which may not necessarily sync with the num-
removed from the initial progenitor cell (d). An alternate mea- Dber of divisions its lineage has undergone. Progression of a cell’s
surement of progression is used to measure a cell’s biological g value is accompanied by the gain of additional mutations and
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a corresponding alteration in a, and k,, which denote behaviors
inherent to position along the differentiation pathway (Table 1).

An individual cell’s proliferation potential is denoted by a(t),
and is distinguished from its programed rate that is inherent
to its position along the differentiation pathway [o,(t)]. The
cell has a draw toward this inherent rate which is reflected by
da/dt ocap(t) — a(t), but may be influenced by other environ-
mental effects (such as hormones). The strength of this restorative
force is defined by the cell’s differentiation coefficient (k). Cells
early in the lineage have a limited ability, due to their similar-
ity with the initial progenitor cell, to maintain homeostasis with
respect to properties inherent to the differentiation pathway. Con-
versely, this ability is increased, consistent with their similarity to
the fully differentiated cell type, for cells late in the lineage. This
idealized restorative strength is denoted k, and is inherent to a cell’s
position along the pathway. Mutations alter this ability, resulting
in the cell’s k-value. The cell’s resistance potential (r) defines its
ability to resist deviations from normal proliferative behavior, and
cells early in the pathway have a weak resistance to alterations in
proliferative behavior, while those later in the pathway will have a
strong resistance, provided there are few strong mutations affect-
ing the cell. A more thorough description of these terms has been
provided previously (Dai et al., 2011).

ENVIRONMENTAL AND MUTATIONAL EFFECTS
Simulations are performed with p ~N (5, 0.5%) to represent rela-
tively low hormone level with constant mean (). = 5) and SD = 0.5

to indicate a slight variation of hormone levels among individual
cells, consistent with a typical postmenopausal hormone level. A
fixed and typical mean P value allows us to focus on the role of
genetic diversity (accumulation of m; in an individual cell) among
the population. The importance of overexposure of estrogen, and
other environmental factors in endometrial oncogenesis will be
reported in separate manuscripts. We also assume two mutations
per cell division in accordance with the hypothesis under con-
sideration. As a consequence of evolution in epithelial cells due
to immortalization and de-differentiation, a clinically detectable
tumor is defined as a mass of at least 10° cells derived from an
initial progenitor cell. In this early exploration of the model, the
initial progenitor cells within the uterine epithelium are assumed
identical and independently follow the seven equations.

RESULTS

CELLULAR PROLIFERATION AND DIFFERENTIATION IN THE UTERINE
EPITHELIUM

We first examine the clonal expansion from a progenitor cell in
order to understand the life cycle of epithelial cells in the uter-
ine epithelium. Simulations are initiated with an initial progenitor
cell born through asymmetric division or differentiation of a tis-
sue stem cell. The clone is allowed to proliferate until it dies out.
The size curve of each clone over time for a single progenitor
cell is fairly consistent, however, as can be seen from 1,000 ran-
domly selected trajectories generated through simulation of the
fate of 10° progenitor cells (Figure 1). We find that the peak size

Development of non-tumorous masses
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FIGURE 1 | Graphic illustration of trajectories for the number of living cells within a clone and its lifespan (days) over time. One-thousand trajectories,
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of each clone ranges from 1,024 to 1,277 cells, with a median
value of 1,033.5 cells and a standard deviation of 16.2. This can be
interpreted both as the typical fate of a clone spawned from each
progenitor cell and is the common physiological scenario. Thus,
for any cell and any clone, their lifespan is limited and they follow
a predictable course and fate. One feature of tissue homeostasis,
interpreted as the maintenance of a relatively stable cell number,
is largely accomplished by the balance between two mechanisms,
the constant commitment of tissue stem cells to produce new cells
and the limited lifespan (number of generations) of individual
cells to allow cell death. Thus, a significant extension of a cell’s
lifespan and a substantial expansion of its descendant size beyond
the typical physiological range will disrupt tissue homeostasis and
serve as an early step of oncogenesis. Analysis of simulations on
10% progenitor cells has shown that the lifespan of the clones was
found to have a wider range, varying between 205 and 901 days,
with a median of 576 days and a standard deviation of 67.5, a
significant extension from the observation in Figure 1. Immortal-
ization will be expected if the simulation involves a significantly
larger population.

Indeed, a further analysis of the fates of 305,505,000 prog-
enitor cells resulted in the detection of 8 tumors, translated

into an endometrial cancer incidence of 94 tumors per 100,000
menopausal women, similar to the epidemiological data of 78
per 100,000 women based on the 2008 SEER database for all
races of age >50. This also yielded an empirical probability
of 2.61862 x 1078 [95% confidence interval (1.13053 x 1078,
5.15998 x 1078)] that a progenitor cell will spawn a primary
tumor under the experimental conditions. Our simulation has
shown the progression from common physiological tissue regen-
eration (in 10° randomly selected progenitor cells) to partial
immortalization (in 10° progenitor cells) and the occurrence of
neoplasm (in 3 x 103 progenitor cells), demonstrating oncogen-
esis as a seemingly rare stochastic event which occurs only in a
sufficiently large number of simulations under specific environ-
mental (hormone) conditions. More importantly, this experiment
indicates that a random mutation rate of two per cell division may
be sufficient for sporadic endometrial cancer.

PHYLOGENETIC TREE ANALYSIS

A unique ID is assigned to each cell born during the lifespan of
the clone. The cell passes information about its lineage to each
daughter cell after division by assigning the daughter cell the ID
10x + i, where x is the ID of the parent and i is either 1 or 2,

1,226,369

A

Progenitor
Cell (g=1)
1,226,291 78
/\ = i
1,226,222 69 PN P
31 1,226,191 45 4 5% 7% 3 S
PN S P 0 5 10 26
16 15 17 1,296,174 26 20 7 17
1,226,170
B MRCA
(g=16)
20,853 1,205,316
20,780 73 1,205,316 0
/\ PN
0 20,780 B0
P ()/\73 468,908 736,408
225,890 243,018 393,327 343,081

FIGURE 2 | Phylogenetic tree for illustration of lineage relationship formed within the first five divisions; (B) a subset of the phylogenetic tree,
during the earliest stage of oncogenesis. The number indicates the size centered on the most recent common ancestor (MRCA) of the tumor of
of descendants in the tumor from the cells (nodes). (A) The lineage map generation 16.
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unique to each daughter. Figure 2 shows how a tumor arises from
a clone. Figure 2A shows the number of descendants from each
cell in the first five generations starting from a progenitor, which
eventually give rise to the most recent common ancestor (MRCA)
of a tumor, where division 1 denotes the birth of the progeni-
tor cell through an asymmetric division of a stem cell. Note that
there is one dominant branch with more than 10° descendants,
whereas other branch points have few descendants (the node with
78 descendant cells in the tumor), which coexist with the tumor
and survive longer than a typical normal cell because of slow pro-
gression in the completion of senescence (and cell death) due to
a low a value. Cell feature analysis shows that they have a high
k-value (still differentiated) and are not immortalized since their
generation number is less than 12 [see Cells within the tumor that
are not descendant from MRCA(0.995) in Appendix]. Figure 2B
shows the MRCA of the tumor at generation 16 with subsequent
divisions demonstrating different lineages with varying descen-
dant sizes. Thus, there is remarkable clonal heterogeneity in that
the number of descendant cells varies substantially in different
branches.

THE PHENOTYPIC HETEROGENEITY OF THE TUMOR-INITIATING
CANCER CELLS

The heterogeneity of a tumor during its clonal development was
analyzed by considering distributional information aggregated
from 74 tumors generated through this mathematical model. The
heterogeneous features in individual cells are described based on
three criteria: the immortalization status by generation number g,
proliferation status by proliferation potential a, and differentiation
status by differentiation coefficient k. The median time required
to form masses of size 10° cells was found to be approximately
270 days.

We utilized a phylogenetic analysis of each tumor in order to
examine the development of endometrial cancer. The MRCA of
x X 100% of the mass of 10° cells will be denoted by MRCA(x).
We first considered the number of divisions between the MRCA(x)
and the initial progenitor cell. The lifespan typical for a normal cell
clone is commonly estimated to be between 10 and 12 divisions,
where cells would reach the fully differentiated cell type and enter
senescence. Some cells, as our analysis shows, remain in the process
of their senescence for some time before their death. Data for
MRCA(x) from the 74 tumors is presented in Table 3. MRCA(1)
is found to be 1 division for each mass, however MRCA(0.999)
and MRCA(0.995) jump to a median of 16.7 and 17.2 divisions,
respectively, which indicates the immortalization (Table 3A).

The phenotype of MRCA(x) can be further defined by the
values for its proliferation potential (o) and its differentiation
coefficient (k) in addition to the generation number in Table 3A.
Data for these values are provided in Tables 3B,C, respectively.
The evolution of low k-values is the underlying mechanism of
uncontrolled tumor growth due to loss of differentiation, as this
parameter defines the differentiation status of a cell. As this value
decreases, the cell becomes more susceptible to any external stim-
ulation such as hormones. The MRCA for all cancer cells in a
tumor must be a cancer cell if, as we assume based on consen-
sus in the literature, cancer is monoclonal in origin (Weinberg,
2007; Hanahan and Weinberg, 2011). We define, based on the

Table 3 | (A) d For MRCA(x); (B) o for MRCA(x); and (C) k for MRCA(x).

MRCA(x) Median SD Min Max
(A)

1 1 0 1 1
0.999 16.70 2.36 9 22
0.995 17.20 2.09 1 22
0.99 17.30 2.05 " 22
0.95 18.18 2.34 13 23
0.90 18.72 1.99 14 23
0.80 19.04 2.18 14 24
0.70 19.62 2.35 14 25
0.60 20.22 2.41 14 27
0.50 21.18 2.43 15 28
(B)

1 2.95 0.004 2.80 3.09
0.999 3.43 1.25 113 5.95
0.995 3.66 1.41 113 6.26
0.99 3.73 1.41 1.13 6.26
0.95 4.23 122 1.66 7.39
0.90 4.49 1.39 1.66 739
0.80 4.65 1.49 1.66 739
0.70 6.02 1.97 1.66 795
0.60 6.66 1.72 2.24 7.95
0.50 6.563 1.44 4.24 9.12
(c)

1 1.90 0.015 1.65 2.24
0.999 0.23 0.05 0 1.43
0.995 0.18 0.03 0 0.90
0.99 0.17 0.03 0 0.90
0.95 0.1 0.02 0 0.76
0.90 0.08 0.01 0 0.30
0.80 0.07 0.01 0 0.30
0.70 0.07 0.01 0 0.30
0.60 0.05 0.005 0 0.30
0.50 0.03 0.002 0 0.27

analysis of the formation of 74 tumors, a TICC as a cell with the
median properties of MRCA(0.995). Although there is substan-
tial heterogeneity in the phenotypes among MRCA(0.995)s, these
cells are immortalized with generation number g between 11 and
22, proliferative with o between 1.1 and 6.3, and most impor-
tant of all, de-differentiated with k between 0 and 0.9. We define
a typical TICC as a cancer cell with the following median fea-
tures: k=0.18,a = 3.66, g = 17. Consequently, we define a typical
tumor-initiating cancer stem cell (TICSC) as a TICC with com-
pletely undifferentiated status: k=0, o = 3.66, ¢ = 17. Using the
features of a typical TICC, simulation of the fate of 10,300 TICCs
showed a 71.7% probability that they will spawn a tumor, while
the corresponding TICSC had roughly a 94% probability.

DISTRIBUTIONAL ANALYSIS OF THE HETEROGENEITY OF A TUMOR
FORMED BY A TICC

The primary tumor formed from a TICC is a heterogeneous mass
of cells. Continuous proliferation of cancer cells have resulted
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in the accumulation of an increasing number of genetic muta-
tions and produced a cancer cell population with an enormous
genetic diversity, which will drive further tumor evolution and
progression. This genotypic and phenotypic variability increases
the difficulty for a therapeutic intervention, such as targeted ther-
apies aiming at a specific genetic alteration, to kill all cancer cells.
A distributional analysis of a single tumor formed from a TICC
was performed in order to analyze the spectrum of phenotypes
and overall properties of the tumor. Table 4 describes the division
number d of each cell within the clinically detectable mass, that is,
the number of divisions that have passed between the cell and the
initial progenitor cell. Note that most cells possess at least d = 30,
with a median value of d =44, indicating that almost all cancer
cells in a tumor are immortalized.

The intra-tumor heterogeneity is also illustrated by the distri-
bution of k-values within the mass. A terminally differentiated
cell will typically have a k ~ 4.0, indicating a strong capability to
maintain homeostasis. However, Table 5 shows that the median
k-value within the mass is only 0.3, with no values above 1.7, illus-
trating the de-differentiation (malignant transformation) that the
cells have undergone. Interestingly, there are approximately 7% of
cancer cells with k =0, indicating that they are completely undif-
ferentiated, and are the cancer stem cell portion in the tumor (see
Evolution of low k-values in the mass in Appendix). Finally, we
consider the heterogeneity in cell proliferation through analysis
of the distribution of proliferation potential among cancer cells
within the mass in Table 6. We observe that 98% of cells are
proliferative [a(#) > 0], with a median value of o =10.3.

ANALYSIS OF THE MEDIAN PROPERTIES OF TUMORS FORMED BY
TICCs AND TICSCs

We extend the above analysis to 500 tumors generated from TICCs.
The median properties of each tumor are recorded, and the dis-
tribution of these values is then analyzed. Table 7A lists statis-
tical information for the median properties of the 500 tumors
produced by TICCs, with corresponding histograms presented in
the Figures A3(A)—(C) in Appendix. Based on this information,
we define a median cancer cell (MCC) in a clinically detectable
tumor as a cell with the properties: k=0.295, a =10.3, g =45.

The tumors appear to be very similar with respect to median pro-
liferation potentials and division numbers, both of which have
statistical properties similar to normal distributions. However, the
distribution of median k-values deserves more attention. Whereas
most tumors had median k-values similar to the single TICC
tumor examined above (median and mean of k around 0.3), some
of the median values are significantly lower, approaching k =0.
These tumors are poorly differentiated and particularly aggressive,
with the capability to undergo rapid proliferation when receiving
environmental stimulation conducive to growth. For the pur-
pose of controlled comparison, we define a median cancer stem
cell (MCSC) in a clinically detectable tumor as a MCC with a
completely undifferentiated feature: k =0, « =10.3, g =45.

A similar analysis was performed on 500 tumors spawned from
TICSCs, with distributions for the median properties presented in
Table 7B and illustrated as histograms in the Figures A4(A)—(C)
in Appendix.

COMPARISON OF THE MEDIAN PROPERTIES OF TUMORS AMONG
THOSE FORMED BY A TICC VS. TICSC

The types of distributions derived from the median properties
from the 500 tumors are unknown. However, the non-parametric
two-sample Kolmogorov—Smirnov test (Hollander and Wolfe,
1999) can be utilized to examine whether the empirical distri-
butions of a specific property are statistically equivalent among
primary tumors formed from either a TICC or TICSC.

The distributions of median values of k, &, and 4 among tumors
formed by TICCs were tested against the corresponding distribu-
tions among tumors formed from TICSCs. In each case, we find
that the null hypothesis can be rejected to at least a 99% confidence
(0: p=0.00428, k: p=1.3 x 10717, d: p=9.5 x 10~17). We con-
clude that a qualitative difference exists between tumors formed
from a cancer cell as compared to those formed from a cancer stem
cell. However, it should be noted that the median of the median
properties appear to be similar for the primary tumors regardless
of whether they were spawned from a TICC or TICSC.

DISCUSSION
Carcinogenesis as an evolutionary consequence can be viewed as
the result of environmental selection among billions of genetically

Table 4 | d-Value cdf for cancer cells in a clinically detectable tumor.

do 28 30 32 34 36 38 40
Pr(d < do) 1.34E-5 8.81E-5 6.28E—4 2.89E-3 1.18E-2 41ME-2 0.126
do 41 42 43 44 45 46 47
Pr(d < do) 0.207 0.328 0.489 0.673 0.818 0.927 0.993
Table 5 | k-Value cdf for cancer cells in a clinically detectable tumor.

ko 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pr(k < ko) 0.0695 0.210 0.351 0.500 0.641 0.762 0.857 0.922 0.962
ko 0.9 1.0 1.1 12 1.3 14 15 1.6 1.7
Pr(k < ko) 0.984 0.994 0.998 0.9994 0.99986 0.99996 0.999991 0.999999 1
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Table 6 | a-Value cdf for cancer cells in a clinically detectable tumor.

) —75 -5 -25 0 2

Pr{a < ap) 8.33E-5 1.50E-3 6.25E-3 1.91E-2 4.26E-2
ag 4 5 6 7 8

Pra < ag) 8.72E-2 0.120 0.163 0.216 0.280
ag 9 10 n 12 13

Pr{a < ap) 0.359 0.451 0.556 0.669 0.784
ag 14 15 16 17 18

Pra < ap) 0.883 0.954 0.989 0.9992 1

Table 7 | Properties of the distributions of median values of cancer
cells among 500 tumors derived from (A) TICC and (B) TICSC.

Property Median Mean SD Skewness Kurtosis
(A)

k 0.295 0.271 0.0672 —-2.34 6.87

a 10.3 10.326 0.236 7.10E-4 3.15

d 45 44.978 1.90 0.484 2.96
(B)

k 0.31 0.297 0.0469 —-4.13 18.72

a 104 10.36 0.207 0.0835 3.42

d 43 43.92 1.79 1.63 739

diverse cells in a tissue. Theoretical approaches have the unique
strength of modeling the behavior of individual cells in a tissue and
to construct the landscape of a dynamic and diverse cell population
in order to identify and define a much smaller spectrum of cancer
cells. This prospective strategy is necessary and should be comple-
mentary to the common biological approach to characterize the
decisive role of a single or a few genetic alterations.

We have developed a mathematical model to simulate evolution
in an epithelial tissue with an individual cell as the basic member
and the entire tissue as the population. This model is unique in
that it assigns quantitative value (due to varying m;) to genetic
features in each individual cell and a quantitative value (o) of
growth advantage translated from combined effect of genetic fea-

n

tures (Z m,-) and environmental factors ($) in a single cell at a
i=1

given time. Hormone level (§), the dominant environmental factor

in uterine epithelium, is fixed at a level typical for the majority of

menopausal women. The influence of these environmental factors

will be further explored in a future manuscript.

Our simulations have shown that a rate of two random muta-
tions per cell division has the potential to provide sufficient genetic
diversity for enabling evolution among the simulated uterine
epithelial cells. The rare event of immortalization and malignant
transformation is observed when the simulation has been per-
formed for a sufficiently large number of progenitor cells with
the resultant cancer incidence comparable to the level found in
epidemiological data. Our model of normal cells in the uterine
epithelium gives phylogenetic context to the clonal progression
of a TICC into a clinically detectable tumor and, more generally,
simulates the longitudinal and prospective process of tumor devel-
opment, including evolution in a normal cell population, the birth

of the TICC and formation of a tumor. Cancer cells and can-
cer stem cells are defined based on their major features which
distinguish them from normal (non-cancer) cells such as the
status of de-differentiation (k-value), uncontrolled proliferation
(o value), and immortalization (g value). Since all these three
criteria are quantitatively expressed, a meaningful definition of
cancer cells and cancer stem cells at the single cell level and of
a tumor at the clinical level can be derived by their probability
to form a tumor and a metastatic lesion in defined environmen-
tal conditions. The empirical and pathological terms of benign
tumor, precancerous lesion, well-differentiated tumor (good out-
come), and poorly differentiated cancer can be quantitatively and
progressively described by the probability for tumor progression
and development of metastatic diseases under a specific genetic
and environmental set of conditions. Furthermore, interaction
of genetic factors (m;) and environmental factors (B) can be
quantitatively studied along a timeline to determine their com-
bined effect (probability) on tumor development. Additionally,
our model is built upon the description of single cells, and can
thus be used to describe intra-tumor heterogeneity based upon
features of individual cells. Description of cell-specific features is
important to understand the heterogeneous nature of a tumor
and to identify the cells with the greatest potential for metasta-
sis. While the difference in heterogeneity between tumors can be
described statistically as we did in Section “Comparison of the
Median Properties of Tumors Among Those Formed by a TICC
vs. TICSC,” documentation of the features of individual cells,
such as immortalization, proliferation, and de-differentiation,
also allows investigation of the malignant potential of individ-
ual cells, for instance, to investigate the difference in metasta-
tic potential between a cancer stem cell and a non-stem cancer
cell.

This manuscript is primarily focused on the understanding
of genetic diversity in evolution. The important role of environ-
mental factors in the selection of cells with fitness has not been
presented, and remains a relevant subject for this model. Addi-
tionally, our model remains a single cell model which should be
further developed to include terms to address cell—cell interac-
tions and the role of tissue structure. For instance, angiogenesis
and the molecular mechanisms underlying migration of cancer
cells from the primary tumor are extremely important factors
to determine cancer cell migration dynamics and the efficacy of
metastasis.

Taken together, our model has provided a novel approach
to demonstrate genetic diversity and evolutionary dynamics in
a normal cell population at the earliest stage of oncogenesis.
Cell-specific description of genotypes and phenotypes has also
provided a potentially powerful tool to quantitatively analyze and
understand the evolutionary process in tumor development.
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APPENDIX

RESULTS

Cells within the tumor that are not descendant from MRCA(0.995)
There are a few cells remaining in the developed tumor that are
descendant from early branch points during the development of
the mass (Figure A1(A) in manuscript). All other cells are from
the main branch forming the tumor, with the branch point spawn-
ing the tumor found to be MRCA(0.995). Among the 74 tumors
under analysis, the number of cells not emanating from the main
branch was found to range from 38 to 728, with a median value of
244.824. These cells have undergone between 11 and 12 divisions,
with a median of 11.0196 (Figure A1(A)). Their k-values are quite
high (Figure A1(B)), and values range from 2.64 to 4.45, with a
median of 3.37. These cells are following the inherent physiological
lifespan, and are near the point of senescence. They are undergo-
ing or preparing to undergo apoptosis. This is evidenced by their
proliferation potentials (Figure A1(C)) which ranges from —3.37
to 0.164 with a median value of —0.44. These “remnant” cells are

still following the normal status of development and will soon
die out.

Evolution of low k-values in the mass

The evolution of low k-values within the mass as it develops is
illustrated by quantile plots in Figure A2, where the quantiles
are determined based on the proportion of the tumor with these
low k-values at the time the mass reaches 106 cells. After these
low k-values appear, they quickly (over a period of approximately
1 month) form subpopulations comprising roughly 25% of the
mass. This evolution is likely occurring within the dominant sub-
population that is driving the formation of the tumor. We find
that roughly 7% of the mass will comprise cells with k=0, cells
that have lost all draw toward behavior inherent to the path-
way and thus have stem cell-like behavior, with approximately
13% having k < 0.033 and 18% having k < 0.067. Moreover, the
dynamic nature of the composition of the tumor during its early
development is illustrated in Figure A2.
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Table A1 | Data for the max sizes of masses that eventually die out.

Experiment Median Mean SD Skewness Kurtosis
A 5 16496.5 83716.5 6.78706 52.5286

B 5 13981.3 75298.7 790778 75.1809

C 5865 123907 220817 2.04835 6.35482

Table A2 | Proportion of masses with max sizes surpassing thresholds.

Experiment 10K 50K 100K 200K 300K 400K 500K 600K 700K 800K 900K
A 0.092 0.053 0.042 0.024 0.02 0.015 0.013 0.008 0.005 0.001 0

B 0.08 0.05 0.038 0.023 0.014 0.01 0.009 0.005 0.003 0.002 0.002
C 0.47 0.35 0.287 0.21 0.157 0.122 0.094 0.069 0.042 0.025 0.01
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FIGURE A1 | (A) Histograms for the median values of division number, d, of
cells that are not descendant from the main branch. Values are recorded
from 74 primary tumors. The properties in these histograms are similar to
those of “normal” cells, ones that are following the differentiation pathway.
(B) Histograms for the median values of differentiation coefficient, k, of
cells that are not descendant from the main branch. Values are recorded
from 74 primary tumors. The properties in these histograms are similar to
those of “normal” cells, ones that are following the differentiation pathway.
(C) Histograms for the median values of proliferation potential, a, of cells
that are not descendant from the main branch. Values are recorded from 74
primary tumors. The properties in these histograms are similar to those of
“normal” cells, ones that are following the differentiation pathway.
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FIGURE A2 | Quantile plots for the evolution of low k-values during the formation of primary tumors. Proportion of the mass with [(A)-left] k=0,
[(B)-middle] k <0.033, and [(C)-right] kK <0.067.
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FIGURE A3 | (A) Histograms for the median values of differentiation
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median values of proliferation potential a from 500 tumors spawned from
TICCs. (C) Histograms for the median values of division number d from 500
tumors spawned from TICCs.
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We present a stochastic model of driver mutations in the transition from severe congenital
neutropenia to myelodysplastic syndrome to acute myeloid leukemia (AML). The model
has the form of a multitype branching process. We derive equations for the distributions
of the times to consecutive driver mutations and set up simulations involving a range of
hypotheses regarding acceleration of the mutation rates in successive mutant clones. Our
model reproduces the clinical distribution of times at diagnosis of secondary AML. Sur
prisingly, within the framework of our assumptions, stochasticity of the mutation process
is incapable of explaining the spread of times at diagnosis of AML in this case; it is nec-
essary to additionally assume a wide spread of proliferative parameters among disease
cases. This finding is unexpected but generally consistent with the wide heterogeneity of
characteristics of human cancers.

Keywords: severe congenital neutropenia, myelodysplastic syndrome, acute myeloid leukemia, branching process,

driver mutations, clonal evolution

INTRODUCTION

Granulocytes are essential for host defense and survival. Their
importance is apparent in severe congenital neutropenia (SCN).
Life-threatening infections in children with SCN can be avoided
through the use of recombinant granulocyte colony-stimulating
factor (GCSF). However, SCN often transforms into secondary
myelodysplastic syndrome (sMDS) and then into secondary acute
myeloid leukemia (SAML). A great unresolved clinical question is
whether chronic, pharmacological doses of GCSF contribute to
this transformation (Glaubach and Corey, 2012). A number of
epidemiological clinical trials have demonstrated a strong associ-
ation between exposure to GCSF and sMDS/sAML (Dong et al,,
1995; Donadieu et al., 2005; Rosenberg et al., 2006; Germeshausen
et al., 2007; Carlsson et al., 2012). Mutations in the distal domain
of the GCSF Receptor (GCSFR) have been isolated from patients
with SCN who developed sMDS/sAML or patients with de novo
MDS (Beekman and Touw, 2010). Most recently, clonal evolution
over approximately 20 years was documented in a patient with
SCN who developed sMDS/sAML (Beekman et al., 2012). Clonal
evolution of a sick hematopoietic progenitor cell in SCN involves
perturbations in proximal and distal signaling networks triggered
by a mutant GCSFR. Transition from SCN — sMDS — sAML
involves chance mechanisms such as mutations, drift and tran-
scription, and receptor noise, which require that stochastic models
are needed (Whichard et al., 2010).

In the present paper we use stochastic modeling to under-
stand the wide range of times at which the transition to sSAML
occurs. We develop a model in the form of a multitype branch-
ing process, which allows one tying population genetics and

population dynamics aspects of the transition from SCN to sMDS
to SAML, and validating it against existing evidence. Branching
processes have been used widely to model mutation, selection, and
drift processes in populations of variable size, to which the classical
Wright—Fisher model does not apply (Cyran and Kimmel, 2010).
We adopted approach similar to that developed in Nowak’s group
(Bozic et al., 2010), modified to bring out stochastic time intervals
between successive driver mutations.

The model we developed allows predicting the time at tran-
sition to sAML given the probability of each successive driver
mutation, the number of mutations needed, and the proliferative
potential of each successive mutated clone of hemopoietic stem
cells. We can then compare these times to observed distribution
of times at transition. As documented in the paper, the outcome
is intriguing: stochasticity inherent in the mutation process is
insufficient to explain the wide distribution of times at transition
(ranging from 1 to 38; Table 1). Additional factors are required,
one of which may be a wide interpatient spread of proliferative
potential of the mutant clones.

POPULATION GENETICS AND POPULATION DYNAMICS MODEL OF THE
SCN — sMDS — sAML TRANSITION

Missense, nonsense, and frameshift mutations, and dysregulated
alternative splicing in GCSFR have been isolated in patients with
MDS/AML. In the study of Beekman et al. (2012), nonsense and
missense mutations in GCSFR arose during the course of the
disease. In the model we envision, population genetics, and pop-
ulation dynamics of proliferating bone marrow cells are closely
intertwined.

www.frontiersin.org

April 2013 | Volume 3 | Article 89 | 74


http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/10.3389/fonc.2013.00089/abstract
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/10.3389/fonc.2013.00089/abstract
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/10.3389/fonc.2013.00089/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MarekKimmel&UID=75962
http://www.frontiersin.org/people/SethCorey/89610
mailto:kimmel@rice.edu
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive

Kimmel and Corey

Stochastic transition from inborn neutropenia to AML

Table 1 | Summary of life histories of patients transitioning from
severe congenital neutropenia (SCN) to secondary myelodysplastic
syndrome (sMDS) to secondary acute myeloid leukemia (SAML)
(Walter et al., 2012).

Phase of Age at diagnosis Number of co-existing

disease (years) mutations

SCN 0-0.5 1*

MDS 1-12 1-3 £ chromosomal loss or gain**
AML 2-38 1-9 + chromosomal loss or gain***

*ELANE, HAX1, G6PC, WAS, CSF3R.

**GCSF3R, ZC3H18, LLGL2; RAS + monosomy 7

***RUNX1, ASXL1, p300, CEBA, CSF3R, MGA,SUZ12, LAMB,FBXO18,
CCDC15,4+ monosomy 7 trisomy 21.

POPULATION GENETICS PERSPECTIVE

Proliferating healthy cells in the bone marrow mutate at ran-
dom times, possibly influenced by super-pharmacological doses of
GCSE A summary of possible mutations and their consequences
for proliferation dynamics of granulocyte precursors is depicted
in Figure 1. GCSF signaling occurs through its cognate receptor,
GCSEFR. It involves both proximal signaling networks consisting
of signaling molecules such as Lyn, Jak, STAT, Akt, and ERK, and
distal gene regulatory networks consisting of transcription factors.
Together, these signaling networks promote proliferation, survival,
and differentiation. In patients with SCN, the earliest known muta-
tion to contribute to transformation to secondary MDS or AML is
a nonsense mutation in the GCSFR gene. This mutation leads to
a truncated receptor, GCSR delta 715 (Glaubach and Corey, 2012,
and reference therein).

It follows from a simple calculus of mutation events that as
long as the cell population size is kept in check, the rate at
which new mutant clones appear in the population is rather low.
When the population expands, new mutant clones arise faster (see
further on).

In our model we take the view that carcinogenesis is driven
by a succession of small-scale (e.g., point) mutations in specific
loci. Other viewpoints (epigenetic effects, karyotypic alterations,
intercellular interactions, etc.) have been suggested. In treatment-
related MDS some drugs (e.g., many alkylating agents) induce
t-MDS primarily via large scale alterations that lead to karyotypic
instability (Bhatia, 2011).

POPULATION DYNAMICS PERSPECTIVE

Limited mutation load at the SCN phase causes neutropenia and
fluctuations of cell population size. With time, accumulation of
driver mutations causes expansion of mutant clones, which how-
ever are not yet expanding at a dramatic rate. At some point in
time, mutations accumulate sufficiently to cause a major change
in the proliferation law and the now malignant cell population
starts rapidly expanding.

Our model is based on the following hypotheses (Figure 2):

1. At the time of diagnosis of SCN, GCSF therapy is initiated,
which induces an initial series of X driver mutations, occurring
at random times.

2. The X-th mutation causes transition to the MDS, during which
further Y mutations occur.

3. After X + Y mutations, the AML stage begins, during which
the subsequent mutant clone grow at increasing rate, which in
turn shortens times at which still new mutations appear.

In the model, the increasing proliferation rate of successive
mutant clones causes acceleration of growth of the malignant bone
marrow stem cell population, which shortens the time interval to
appearance of new clones, which in turns increases proliferation
rate, and so forth; this results in a positive feedback. As we will
see, the stochastic nature of the process (the times to appearance
of each next mutant are random) causes a spread of the timing
of the subsequence mutations, particularly the first X mutations
during the SCN phase. This may result in the transition to MDS
not manifesting itself for a very long time in a fraction of cases.

ROLE OF STOCHASTIC DYNAMICS IN THE MODEL

We explain some other intuitions underlying the model. For a
new subclone, stochastic theory is used to estimate extinction
probability, with extinction after more than a few cell genera-
tions being negligible in view of the growth advantage of the new
clone. However the time at which the next mutation occurs in
a cell clone is also stochastic and it is as a rule more dispersed
for the slower-growing clones. Therefore the time to reaching the
threshold number of bone marrow stem cells (which in our model
defines the time at SAML diagnosis), is a random variable. One of
the questions we ask is if dispersion of this time matches the wide
distribution of the times at diagnosis (Rosenberg et al., 2010).

MATERIALS AND METHODS

MATHEMATICS OF THE MODEL

The population-genetic effect of population size-dependent accu-
mulation of mutations occurs as a natural consequence of the pro-
liferation law in the form of a multitype Galton—Watson branching
process:

1. Consecutively arising surviving mutant clones are numbered
with the index k, ranging from 1 to K; time interval between
the appearance of the k-th and k 4 1-st surviving mutant clones
is denoted by 1. k-th mutant cells have accumulated k driver
mutations (assuming the clone in SCN bone marrow at diag-
nosis has a single cell with one driver mutation, which seems a
defendable idealization).

2. All clones expand as Galton—Watson branching processes (see
further on). Cell life length is constant and equal to 7, and at
that time the cell either produces two progeny with probability
by (cell type k) or dies (or becomes quiescent or differentiated,
which does not make a difference for disease dynamics) with
probability 1 — by.

3. A cell of type k can mutate upon its birth (for definiteness) to
type k + 1 with probability w.

These three rules allow one derive the probability distributions
of time intervals 1y, probabilities of survival of each clone, and
expected growth laws of each clone. Mathematical details fol-
low from the theory of Galton—Watson branching process; see
for example the monograph by Kimmel and Axelrod (2002).
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FIGURE 1 | Dynamic stochastic model of impaired differentiation in
granulocyte precursors. GCSF signaling occurs through its cognate
receptor, GCSFR. It involves both proximal signaling networks consisting
of signaling molecules such as Lyn, Jak, STAT, Akt, and ERK, and distal
gene regulatory networks consisting of transcription factors. Together,

these signaling networks promote proliferation, survival, and
differentiation. In patients with severe congenital neutropenia, the earliest
known mutation to contribute to transformation to secondary MDS or
AML is a nonsense mutation in the GCSFR gene. This mutation leads to a
truncated receptor, GCSFR delta 715.

We assume that cell division is effective with probability b, i.e.,
the probability generating function (pgf) of the number of prog-
eny cells per parent cell has the form f(s) = bs®> + (1 — b). The
extinction probability g is the smaller solution of the equation
q=f(q), which is less than 1 if the process is supercritical. In
our case,

q=b+1-b)=q=(b""-1); be (051 (1)

Similarly, the expected number of progeny of a cell is equal to
f'(1—) = 2b, hence the expected number of cells at time ¢ is equal
to N () = (2b)“'D), which yields the value of A

exp(ht) = 2b)TD = % =1n(2b) /T. (2)

We will use “continuous” time ¢ for notational convenience.
However, we consider generations of cells dividing at discrete times
t;=1T, where T is the average cell cycle time. As it is known, the

expected (mean) growth law in the Galton—Watson process has
the form

de
E [# cells, at time ¢, in a clone started at time #;] =f

[N(t) =exp(M(t —1tp))], as t — oo. (3)

To determine the distribution of time to a mutation creat-
ing a new non-extinct clone, we consider a newborn cell. In this
cell, mutation may occur with probability u, and if the extinc-
tion probability of the mutant clone is g’, then the probability
that the cell does not produce a new mutant clone is equal

i
to 1 —u(1—q'). Until time t;=iT, approximately }_ N (t;) =
i=0

N (o) (exp )T — 1) (exp \T) — 1)71 new cells are born,
and assuming independence, we obtain

Pr [no mutant initiating nonextinct clone appears until
time t; = iT]

= Pr [t =: time to nearest nonextinct
i (4)
, XN
mutant clone > = iT] = (1—u(1—q))~°

= (i)™

exp (WT)IT11

apO -1 — ud(exp(ct)—l) )

where, for the k-th mutant population

a=(1—(1=qep1) m) = (1 — ux bk — 1) /bit1) »
c=N=InQ2b) /T,

d=(exp(T)— 1) = @b — )7L
Since the distribution tail of random variable t; has the form
Prt > 1] = a4(EPO=1) — exp (=In(a™')d (exp (cv) — 1)).
it can be algorithmically generated using the inverse tail method

w=c 'In(nr/(dlna) + 1), (5)
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FIGURE 2 | Proliferating healthy cells in the bone marrow mutate at
random times, possibly influenced by super-pharmacological doses
of GCSF. As long as the cell population size is kept in check, genetic drift,
and selection remove many of the mutants, whereas some mutants

persist. WWhen the population expands, new mutant clones become more
easily established. At some point, a qualitative change in the proliferation
rate occurs and the now malignant cell population starts rapidly
expanding.

where r is a pseudo-random number uniformly distributed from
0 to 1. In this framework, a sample path of the number of cells
in the k-th mutant clone (which contains cells with k mutations
accumulated) is equal to

k-1
<> T

N (1) = exp ()\k (t _ Z]’fz—ll Tj)) otherwise

(6)

The derivations presented are quite similar to those of Bozic
et al. (2010), except that in that paper, expected times E(ty)
to the next mutation have been used. Here, we are interested
in exposing stochastic variability in the time course of the
SNC — sMDS — sAML transition. Another refinement would be
to use distributions of cell counts instead of expected values Ni(t).
This would result in serious computational problems, arguably
without much impact on the results.

MODELING THE SNC — sMDS — sAML TRANSITION

Equations 1 and 2 allow generating realizations of times to suc-
cessive driver mutations under different values of mutation rates
and proliferative characteristics of the mutant clones. We make the
following assumptions:

1. Transition to sMDS requires one or two somatic driver muta-
tions, whereas the transition to SAML requires at least three
somatic driver mutations (cf. Table 1).

2. Diagnosis of SAML requires presence of 10* leukemic HSC. For
details of computations leading to this estimate, see further on.

3. Successive mutant clones have increasing proliferative poten-
tial. We assume a power law for the coefficients b;, which seems
to lead to fits that do not contradict data:

bi =min (0.5+ A (e + (i — 1)), 1), ™)

where coefficients A, €, and k are considered further on.

4. Asitwill be seen, it is necessary to assume that the coefficients A
be generated from a probability distribution instead of assum-
inga constant value. We assume the distribution function F4(a)
selected so that the times of at diagnosis of SAML fit available
statistics (for details see further on).

ESTIMATE OF THE NUMBER OF LEUKEMIC CELLS

We carried out computations based on two literature sources and
then used rounding to the nearest order of magnitude to obtain
a working threshold number of the leukemic initiating cells (LIC)
(Bonnet and Dick, 1997). In both cases we assume that the vol-
ume of human bone marrow is equal to V =1700ml and that
LIC cells constitute a fraction { =107° of leukemic bone mar-
row mono-nucleated cells (BMMNC). We also assume that in
SAML, fraction p=0.8 of BMNNC is constituted by leukemic
cells.
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Estimate 1

Dedeepiya et al. (2012) provide an estimate of the number
of BNNMC per 1ml B=3.67 x 10°. This results in an esti-
mate of the number L of LIC cells in the entire bone marrow
L=px V¥ xV x B=4991 cells.

Estimate 2

Bender et al. (1994) provide estimates of B in the range from
3.02 x 10° to 4.71 x 10°. This results in L=4107 = 5535 cells.
These estimates are remarkably consistent. Rounding to the near-
est order of magnitude results in a working estimate of L= 10*
cells.

TIME AT DIAGNOSIS OF sAML AND DISTRIBUTION OF PARAMETER A
Under given values of parameters k and € as well as mutation rates
uy, the time at diagnosis of SAML, defined as the time T from
initiation of GCSF treatment such that

Y ONe(D) =1L
k

depends on parameter A according to an approximate power law
T = f (A) = exp (a) AP,

where < 0. This dependence, which was obtained via simulation
studies (not shown), allows finding the distribution of A thatleads
to a clinically observed distribution of the time of SAML diagnosis
according to the following expression for distribution tails

Fy(a)=1—-Fr (f (a),

where Fr (t) = Pr[T > t] is the tail of the distribution of time
T. This in turn allows generating pseudo-random realizations of
A according to the expression

A= (FF (R) = (exp () E' R)?, (9)

where R is a pseudo-random number from the uniform distribu-
tion on the (0, 1) interval.

We need to approximate the tail of the distribution of the time
at diagnosis of SAML. A recent source is the paper by Rosen-
berg et al. (2010). These authors reported results of a prospective
study of 374 SCN patients, and included estimates of hazard rates
and cumulative probability of sMDS/sAML as a function of time
after GCSF treatment. Hazard rate grows for the first 5 years and
then plateaus. To simplify computations we adopted a piecewise
constant estimate of the hazard rate hy(t)

0.01
0.02

t €10, 3)
t €[3,00)

hT(t)Z{

with time in years. Comparing with Figure 1A in Rosenberg et al.
(2010) we see that hp(t) remains within the confidence band
computed based on the prospective study. Using the expression

t
Fr(t) = exp (—/ hr (v) dr)
0

and inverting the tail function Fr (t) we complete the derivation
of expression Eq. 8 (elementary details not shown).

OVERVIEW OF PARAMETER ESTIMATION

The form of expression Eq. 8 and plausible estimates of parameters
k and ¢ as well as of mutation rates uy, are difficult to be uniquely
determined with the data available at the present time. We used
the following heuristic procedure:

1. Driver mutation rates increase from the reference value by a
factor of 5, starting mutation 3, so that u; , = ubut uz 45 = 5u.
The increase is needed for the later mutations to occur in quick
succession, so that mutation 3 occurs before Y Ni (T) > L,

k

with L = 10* being a relatively low value.

2. Reference driver mutation rate had to be set equal to 0.00034,
10 times higher than the value estimated by Bozic et al. (2010).
This is required for enough mutations to accumulate before the
threshold time T.

3. Proliferation rate increases as power k of the mutation number,
value k =2 provides sufficient acceleration to explain relative
rapidity of the AML stage. The offset parameter ¢ = 0.02 keeps
proliferation rate before mutation 1 sufficiently low.

4. Once estimates of parameters uy, k, and € are obtained, esti-
mates of the power law parameters o and § are determined by
a simulation study, and the generator of random parameter A
is obtained via expression Eq. 8.

RESULTS

SIMULATED COURSE OF DISEASE

Figure 3 depicts the impact of successive driver mutations on
the natural course of the SCN — sMDS— sAML transition.
Figure 3A depicts counts Nj(¢) of cells in successive mutant
clones as a function of time, under model as in Eq. 7 with
A =0.005,& =0.02,and k = 2. Straight lines with increasing slopes
are counts of cells in successive mutant clones. We observe that
the time intervals separating the origins of successive clones are
decreasing with each mutation event. Thick dashed line repre-
sents the total mutant cell count. It is also interesting to observe
that clones with increasing numbers of mutations dominate tran-
siently, until they are replaced by other clones with higher pro-
liferative capacity (selective value). Figure 3B depicts relative
proportions n;(t) = N;j(t)/ZjNj(t) of cells belonging to successive
mutant clones.

TIME AT sAML DIAGNOSIS

It is somewhat surprising that under any combination of coeffi-
cients A and k, the range of simulated times at SAML diagnosis is
rather narrow. Figure 4B depicts ranked simulated times at SAML
diagnosis under model as in Eq. 7 with A =0.005, ¢ =0.02, and
k = 2. Spread of these values is narrow, with interquartile range
between 15 and 21. Systematic simulation experiments demon-
strate that this is the case for a wide range of A and k parameter
values. This outcome is in contrast to the wide spread of times
at diagnosis summarized in Table 1 and that based on Rosenberg
et al. (2010).

Simulation-estimation experiment outlined in the Methods
demonstrates that distribution of simulated times (counting form
initiation of CGSF treatment) at SAML (Rosenberg et al., 2010)
is reproduced by our model. Figure 4A cumulative distribution
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FIGURE 3 | Summary of successive driver mutations in the natural
course of the SCN — sMDS — sAML transition. (A) Counts N(t) of cells
in successive mutant clones, under model as in Eq. 7 with A=0.02, ¢=0.2,
and k = 2. Straight lines with increasing slopes: counts of cells in
successive mutant clones. Thick dashed line: Total mutant cell count. (B)
Relative proportions ni(t) = N(t)/Z;N/(t) of cells belonging to successive
mutant clones. Further details as in the Section “Mathematics of the
Model.”
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FIGURE 4 | Cumulative distributions of the model-generated times at
diagnosis of sSAML. (A) Simulations under model as in Eq. 7 with A
generated using Eq. 8, e=0.2, and k =2. (B) Simulations under model as in
Eq. 8 with A=0.02, ¢=0.2, and k=2.

of the times at SAML diagnosis under model as in Eq. 7 with
k=2, €=0.02, and A generated from the distribution in Eq. 8
with ¢ = —0.655 and p = —0.912.

CONCLUSION

The process of development and replacement of leukemic clones
is influenced by the processes of genetic drift and selection (Wal-
ter et al., 2012). These forces are usually analyzed by geneticists
in the framework of the Wright—Fisher or coalescent model (see
Discussion and references in Cyran and Kimmel, 2010). However,
in the case of expanding cell clones, the more appropriate popula-
tion process seems to be one of the types of branching processes;
in our case, the Galton—Watson process (Kimmel and Axelrod,
2002). In the particular version of the multitype Galton—Watson
process that we use, genetic drift’s mechanism is the loss of vari-
ants through extinction and selection is embodied in the principle
that each next surviving clone is proliferating faster (has greater
fitness).

A characteristic feature of human cancers is very wide het-
erogeneity with respect to extent of involvement, genotype and
rate of progression, and spread (Michor et al., 2004; Hanahan
and Weinberg, 2011). This is in contrast to induced animal
tumors, which are relatively uniform. Secondary AML, result-
ing from a transition from SCN via myelodysplastic syndrome,
is not an exception, with onset varying from 1 to 38 years of age
and with wide variability of mutational background (Table 1).
It is interesting, and we consider it a major result, that such
spread of the age of onset is not due solely to stochastic nature
of mutation-driven transitions, but it requires a large variabil-
ity in proliferative potential from one disease case to another.
Also, this distribution of coefficient A, which parameterizes
the proliferative potential, is right-skewed, with slowly evolving
(low-A) clones prevailing. This provides a testable hypothesis
about distribution of proliferating rates in leukemic stem cell
clones.

The model presented in this paper addresses certain aspects
of the SNC — sMDS — sAML transition. Among other, although
we might derive an expression relating the number of driver
(selective) mutations to the corresponding count of accumulated
passenger (neutral) mutations (similarly as it was done in Bozic
et al. (2010), we do not have at our disposal sequencing data to
validate such an expression. Also, we do not attempt here to fit the
distribution of the age at diagnosis of the sMDS, since we are miss-
ing data on individual life histories, which would involve somatic
mutation as well as sequencing data.

From the mathematical point of view, the current model is also
somewhat simplified. It considers each new mutation to provide
more selective advantage to the arising clone. This is in appar-
ent disagreement with the recent observation of Beekman et al.
(2012), of mutations which appear at the sMDS stage and disap-
pear at the SAML stage. The linear structure of mutation confers
desirable simplicity to modeling but is not necessarily realistic.
In the framework of multitype branching processes and special
processes such as Griffiths and Pakes branching infinite allele
model (Griffiths and Pakes, 1988; Kimmel and Mathaes, 2010),
more complicated scenarios can be gaged.
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