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COMPUTATIONAL MODELS 
IN ONCOLOGY: FROM TUMOR 
INITIATION TO PROGRESSION TO 
TREATMENT 

Cancer is one of the deadliest diseases 
of our time. Whilst the war on cancer 
has cost many millions of dollars, 
the mechanisms underlying its 
formation, progression, therapeutic 
cure or control are still not fully 
uncovered. An interdisciplinary 
effort that brings together clinicians, 
biologists, and quantitative scientists 
is demanded. Mathematical modeling 
and computational simulations bring 
to the table sophisticated tools for 
analyzing experimental data as well 
as for systematic, quantitative and 
multi-scale in silico experimentation. 
Taken together, such interdisciplinary 
approach promises to shed light on 
the underlying rules and/or complex 
interactions between tumor cells, 
tumor and stromal cells, as well as 
other components of the tumor 
microenvironment, and ultimately 
predict treatment outcomes.

Images of computational models of tumors discussed 
in this e-book; clockwise from top-left: Kim (2013), 
Steinkamp et al. (2013), Baldock wt al. (2013), Enderling et 
al. (2013).
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In this research topic we will present the state-of-the-art in integrative cancer modeling (such 
as theoretical models based on biological or clinical data, and experimental results influenced 
by underlying mathematical and physical theories) and their applications to cancer biology 
and treatment. This collection of papers will showcase computational models addressing 
the most important current challenges in oncology, such as prognostic screening, metrics of 
tumor cell response to treatment, cancer cell mechanotransduction, cancer stem cell biology, 
metastatic cascade steps, and reciprocal co-evolution of tumors and their microenvironment. 
Quantitative and qualitative models included in this topic will discuss tumor initiation, 
development of pre-invasive tumors, transition from dormancy to malignancy, tumor 
angiogenesis, tumor cell signaling, complexity of the cellular, physical and chemical structure 
of the tumor microenvironment, and various models of anticancer treatment: chemo-, 
radio-, immuno-, hormone and adaptive therapies. This collection could then serve as an 
encyclopedic resource for the breadth of mathematical and computational techniques that can 
be applied to tumor modeling, including ordinary and partial differential equations models, 
individual-cell-based models, hybrid cellular automata models, bio-fluid approaches, game 
theory approaches, stochastic and multi-scale modeling.
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stem cells in endometrial cancer. Jain and Jackson (4) present a 
hybrid model that simulates the dynamics of vascular endothelial 
growth factor (VEGF) diffusion and its binding to endothelial cell 
receptors, which triggers endothelial cell activation and polarization 
during angiogenesis. Finley et al. (5) consider another angiogen-
esis model centered on VEGF and its molecular interactions that 
has been calibrated to experimental data and shows that in vivo 
VEGF secretion rates are significantly lower than most reported 
in vitro measurements, which has profound implications for anti-
angiogenic treatment.

The second class of papers contains mechanical models of 
tumor invasion that are influenced by both the physical forces 
and chemical factors necessary to degrade the host tissue. Deakin 
and Chaplain (6) present a mathematical model focusing on both 
soluble and membrane-bound metalloproteinases (MMPs) and 
their relative role in the degradation of highly dense collagen struc-
tures and cross-linked fibers. Mumenthaler et al. (7) discuss an 
integrative experimental–computational approach to understand 
MMP-mediated tissue degradation. The fluid-generated forces 
exerted on the cell either by the interstitial fluid or shear stress 
in the blood circulation are reviewed by Mitchell and King (8) 
from both experimental and computational perspectives. Katira 
et  al. (9) discuss interdependence of mechanical and biological 
pathways within the cell and how intracellular and environmen-
tal mechanical properties, such as stiffness and adhesivity, lead to 
changes in cell behavior, including transformation into malignancy. 
Wallace and Guo (10) analyze mathematical models of avascular 
tumor growth and conditions under which the models reproduce 
the growth dynamics of in vitro spheroids.

The third group of studies investigates cancer stem cells. With 
experimental stem cell purification and reliable identification still 
in its infancy, mathematical models highlight the population-level 
dynamics resulting from different stem cell kinetics. Rodriguez-
Brenes et al. (11) discuss homeostasis in stem cell lineages through 
tightly controlled feedback mechanisms that regulate stem cell 
proliferation and self-renewal. Enderling et al. (12) examine how 
tumors grow if the cancer population is fueled by a cancer stem cell, 
showing that tumors exhibit a variety of irregular morphologies 
and harbor stem cell fractions that vary by many orders of magni-
tude and evolve over time. Bachman and Hillen (13) investigate how 
conventional radiotherapy can be complemented by differentiation 
therapy that forces stem cells into differentiation to increase their 
sensitivity to radiation.

Cancer is one of the deadliest diseases of our time. While the war on 
cancer has cost many billions of dollars, the mechanisms underlying 
tumor development, progression, and therapeutic cure or control 
are yet to be fully understood. An interdisciplinary effort that brings 
together clinicians and biologists with mathematical and computa-
tional modelers is therefore necessary. Mathematical modeling and 
computational simulations bring to the table sophisticated tools 
for analyzing experimental data as well as for systematic, quanti-
tative, and multi-scale in silico experimentation. Taken together, 
such an interdisciplinary approach promises to shed light on the 
underlying rules of the intra-, inter-, and extracellular mechanisms 
behind complex tumor dynamics, with the ultimate aim to predict 
patient-specific treatment outcomes.

The papers in this Special Topic span a broad spectrum of can-
cer cell-related subjects from intracellular modifications in indi-
vidual cells to complex interactions between tumor cells and tumor 
microenvironments to emerging behaviors of cell populations on 
the organ and whole body scale. Quantitative modeling has been 
applied to virtually every type of tumor. This collection includes 
papers on brain, ovarian, and colon cancers, as well as on melano-
mas, leukemias, sarcomas, and head and neck tumors. The models 
also addressed various stages of tumor development including its 
initiation, growth, invasion of the surrounding stroma, tumor cell 
migration, and intravascular transport, as well as metastatic colo-
nization. Various types of anticancer treatments have been dis-
cussed in this Special Topic, including chemotherapy, radiotherapy, 
immunotherapy, and differentiation therapy. From a mathematical 
point of view, the models range from deterministic to stochastic, 
from continuous population dynamics to agent-based individual 
cell models, from fluid dynamics to Monte Carlo simulations and 
energy minimization models.

We divided the papers in this Special Topic into five categories. 
In the first, the subcellular mechanisms and their impact on a single 
cell and population-level heterogeneity are considered. Dynamics 
on the subcellular scale include intracellular gene modulations or 
extracellular diffusion of soluble factors. Leenders and Tuszynski 
(1) discuss both stochastic and deterministic models of p53 protein 
regulation that play a crucial role in cellular stress and DNA damage 
response. Kimmel and Corey (2) show that large variations in the 
timing of transitions from neutropenia to acute myeloid leukemia 
can be explained by stochasticity in cell driver mutations. Howk 
et al. (3) use a single cell model of two-hit mutations of normal 
cells into endometrial cancer cells to predict the frequency of cancer 
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The next group of articles focuses on interactions between the 
tumor and its microenvironment. Szabó and Merks (14) discuss 
avascular and vascular tumor growth and evolution using the 
Cellular Potts model. Orlando et al. (15) examine tumor cell evo-
lution at the tumor core and its invasive edge, focusing on the effects 
of colonization tradeoffs on tumor invasion dynamics. Steinkamp 
et al. (16) integrate in vivo xenograft mouse models and mathemati-
cal models to study tumor attachment, invasion, and vasculariza-
tion in the ovary, showing that local factors and mesothelial lining 
features strongly influence invasion.

The final group of studies focuses on the use of quantitative 
models to improve treatment modalities. Patient-specific math-
ematical neuro-oncology approaches are reviewed by Baldock 
et  al. (17). Kim (18) presents a mathematical model based on 
microRNAs that balance cell proliferation and migration in dif-
ferent microenvironmental conditions in glioblastoma, suggest-
ing a post-surgery injection of chemoattractants and glucose to 
counteract the diffusive spread of residual cells. Hawkins-Daarud 
et al. (19) discuss a model of fluid accumulation in gliomas during 
anti-angiogenic therapy and discuss the implications of the envi-
ronmental response to tumor growth on medical imaging. Rejniak 
et al. (20) present an integrative study examining penetration and 
efficacy of therapeutic agents in relation to tumor tissue archi-
tecture. DePillis et al. (21) use a model of dendritic cell therapy 
on melanoma, showing how dosage and schedule modifications 
enhance immunotherapy efficacy.

The images featured on page 2 of this e-book showcase compu-
tational models discussed in detail in this Special Topic. Clockwise 
from top left: a schematic of miR-451 activity in the model of Kim 
(18); a 2-D slice through the ovarian tumor simulated using the 
Potts model of Steinkamp et al. (16); a 3-D simulation of malignant 
glioma cells from Baldock et al. (17); cancer stem cell-driven tumor 
growth from Enderling et al. (12).
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The protein p53 is a key regulator of cellular response to a wide variety of stressors. In
cancer cells inhibitory regulators of p53 such as MDM2 and MDMX proteins are often
overexpressed. We apply in silico techniques to better understand the role and interac-
tions of these proteins in a cell cycle process. Furthermore we investigate the role of
stochasticity in determining system behavior. We have found that stochasticity is able to
affect system behavior profoundly. We also derive a general result for the way in which ini-
tially synchronized oscillating stochastic systems will fall out of synchronization with each
other.

Keywords: p53, cell cycle, cancer, stochastic modeling, deterministic modeling, desynchronization

INTRODUCTION
Among the vast number of mechanisms utilized by cancer cells to
sustain cell division, the inactivation of the essential tumor sup-
pressor and transcription factor p53 is one of the most frequent
and effective strategies. Therefore, restoring the activity of the
p53-signaling pathway is currently one of the most promising ther-
apeutic strategies for fighting this disease (Levine and Oren, 2009).

In normal cells, p53 plays a central role in the regulation of the
cell cycle, apoptosis, DNA repair, and senescence (Teodoro et al.,
2007); p53 responds to cellular stress, such as hypoxia or DNA
damage, by accumulating in the nucleus, regulating the expression
of target genes, and activating/inactivating various pathways in
order to maintain the normal function of the cell (Maltzman and
Czyzyk, 1984; Kastan et al., 1991; Graeber et al., 1994). Indeed,
it appears that whenever the integrity of a cell’s genetic code is
threatened, p53 is there to protect it. This conclusion has led p53
to be called the guardian of the genome (Lane, 1992).

However, the p53-signaling pathway is inoperative in almost
all types of human cancer; factors that inactivate p53 specifically
include genetic mutations or deletions (Feki and Irminger-Finger,
2004), defective post-translational modifications, and interactions
with its main endogenous inhibitors, MDM2 (Momand et al.,
1998) and MDMX (Shvarts et al., 1996). Excitingly, a number
of these tumors have been shown to have a less invasive phenotype
upon restoration of p53 activity (Olivier et al., 2002; Ventura et al.,
2007; Suad et al., 2009; Mandinova and Lee, 2011).

With the cost of drug development on the scale of hundreds
of millions to billions of dollars per new drug entity – and ris-
ing – there is strong need to look for any possible acceleration and
improvement to the efficiency and accuracy of the development
process (Paul et al., 2010). Thanks to the increasing comput-
ing power available to researchers, it is now becoming affordable
and practical to attempt to use in silico models to improve the

development process. One way to do this is to improve the ability of
researchers to select appropriate proteins, or interactions between
proteins, as targets for drug development by better understanding
their function in protein interaction networks.

The purpose of this study is to gain new insights into the func-
tioning of p53, a central protein in cell cycle regulation. A simple
model of p53 oscillations in response to ionizing radiation is pre-
sented. Additionally, the behavior of stochastic and deterministic
representations of the same model system is compared.

CELL CYCLE
The protein p53 is a regulator of the cell cycle and cell fate. Under
normal conditions, a cell will normally progress through several
stages. In the G1 phase (first gap phase) the cell grows in size to
prepare for DNA synthesis. After G1, the cell moves into S phase
(synthesis phase), during which new DNA is synthesized. Cells that
are not replicating can also leave G1 and enter the G0 phase, a state
in which they do not grow, and can remain quiescent indefinitely.
Next comes the G2 phase (second gap phase), where cells grow
further and complete their final preparations for mitosis. Mitosis
then occurs and the cycle can begin anew (Lodish et al., 2008). A
damaged cell may need to halt its cycle or even self-destruct in a
process called apoptosis. Apoptosis is necessary for normal devel-
opment and homeostasis of multicellular organisms, and is also a
desirable outcome for cancer cells during cancer chemotherapy.

In order to ensure that the process of cell division is carefully
regulated, the cell has a number of checkpoints. These checkpoints
are conditions that a cell must meet in order to progress in the
cell cycle. For example, one checkpoint in G1 ensures that a cell
has grown sufficiently in size to move into S phase and replicate
its DNA. Another checkpoint that occurs in G1 is mediated by
the protein p53: when DNA is damaged, p53 halts the cell cycle
until the damage is repaired; this prevents the cell from trying
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to duplicate the damaged DNA. When p53 is inactivated, this
checkpoint no longer functions. A cell attempting to duplicate
damaged DNA is likely to accumulate mutations (Alberts et al.,
1994). Figure 1 diagrams the relevance of p53 to the cell cycle.

p53
The protein p53 responds to many stressors including ultravio-
let light (Maltzman and Czyzyk, 1984), ionizing radiation (Kastan
et al., 1991), hypoxia, heat (Graeber et al., 1994), improper cell
adhesion (Nigro et al., 1997), ribonucleotide depletion (Linke
et al., 1996), and infection by influenza (Turpin et al., 2005). Some
viral proteins are known to interact with p53, for example hepatitis
B virus HBx protein (Truant et al., 1995) and the large T antigen
of simian virus 40 (Dobbelstein and Roth, 1998). The protein p53
has been demonstrated to induce cell cycle arrest, senescence, and
apoptosis, with the specific outcome dependent on the extent and
type of stress, and the genetic background of the cell (Vousden
and Lu, 2002). The expression of p53 is tightly regulated by the
cell (Sugrue et al., 1997; Lodish et al., 2008). In order to help it exe-
cute its various functions p53 is post-translationally modified at
many sites to determine its response (Meek and Anderson, 2009;
Dai and Gu, 2010). The protein p53 transcriptionally regulates
numerous genes, with a pattern that varies depending on the type
of stress and the cell type (Zhao et al., 2000). In addition to its tran-
scriptional activity, p53 plays a transcription-independent role in
apoptosis by binding to several anti-apoptotic proteins (Mihara
et al., 2003).

The protein p53 is known to be mutated in approximately 50%
of human tumors (Soussi and Wiman, 2007; Brown et al., 2009;
Freed-Pastor and Prives, 2012). In addition, in tumors with wild
type p53 it is common for p53 expression to be misregulated. For
example, proteins that have a part in downregulating p53, such
as MDM2 and MDMX, are commonly overexpressed in human
tumors (Momand et al., 1998; Danovi et al., 2004). Furthermore, it
has been demonstrated that restoration of p53 function can cause
tumors to regress in vivo (Ventura et al., 2007). The importance of
p53-signaling in cancer progression, and its therapeutic implica-
tions, have been investigated in previous mathematical models
(Gammack et al., 2001; Perfahl et al., 2011), which highlights
further our study.

Note that simply removing the limitations on a cell imposed
by p53 is not enough for it to become cancerous; for a cell to
become cancerous it must accumulate multiple hallmarks includ-
ing: self-sufficiency in growth signals, insensitivity to anti-growth
signals, limitless replicative potential, sustained angiogenesis, and
the ability to migrate to other tissues (Hanahan and Weinberg,
2011). When such traits accumulate in a cell lacking functional
p53, the probability of a cell becoming cancerous rises (Alberts
et al., 1994).

MDM2
The protein MDM2 is a key player in the regulation of p53 (Bond
et al., 2005) and it has been found that MDM2 is commonly ampli-
fied in human cancers (Momand et al., 1998). MDM2 has been
shown to be an E3 ubiquitin ligase for p53 (Honda et al., 1997).
This means that MDM2 can mark p53 for degradation by the
proteasome. As such, amplification of MDM2 leads to reduced

FIGURE 1 | Diagram of p53 and the cell cycle, showing possible
outcomes of stress and p53 activation.

FIGURE 2 | Relationships between MDMX, MDM2, and p53. MDM2
inhibits p53 and is promoted by it. MDM2 inhibits itself and this effect is
reduced by MDMX. MDMX inhibits p53 directly, and is itself inhibited by
MDM2.

p53 levels (Haupt et al., 1997; Kubbutat et al., 1997). MDM2
production is also induced by p53, forming a feedback loop (Barak
et al., 1993). Figure 2 illustrates the interactions of MDM2 with
p53. Additionally, MDM2 helps to regulate itself by autoubiquiti-
nation, meaning it marks itself for degradation by the proteasome
(Fang et al., 2000). MDM2 possesses a nuclear localization signal,
which is a structure on the protein that induces the cell to import
the protein into the cell nucleus (Chen et al., 1995). MDM2 also
has a cryptic nucleolar localization signal, which flags the protein
for localization to the nucleolus, but only when MDM2 binding
to another molecule changes the conformation of the signaling
region (Lohrum et al., 2000).

In 2004 several small molecule inhibitors for the p53-MDM2
interaction were discovered (Vassilev et al., 2004). One of these
inhibitors, Nutlin-3, was in Phase I clinical trials for retinoblas-
toma (Secchiero et al., 2011). Nutlins may also have some p53-
independent effects, and these may be related to MDM2. It has
been shown in some cell lines that MDM2 is upregulated by
hypoxia independently of p53 (Gillespie, 2007). Furthermore, it
has been shown that Nutlin-3 can radio-sensitize hypoxic cells
that are p53 null, although it has a greater effect on cells with
wild type p53 (Supiot et al., 2008). Additionally, Nutlin-3 has
been shown to bind to several anti-apoptotic proteins other than
MDM2, further complicating any analysis of its effects (Ha et al.,
2011). MDM2 inhibitors bind to the protean competitively and
occlude the binding site with p53 (Barakat et al., 2010). To the
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best of our knowledge Nutlins do not alter the autoubiquitination
properties of MDM2.

MDMX
Another important regulator of p53 is MDMX, a homolog of
MDM2 (Shvarts et al., 1996; Finch et al., 2002). MDMX is com-
monly overexpressed in tumors, and its upregulation has been
shown to promote tumor formation (Danovi et al., 2004). Unlike
MDM2, however, MDMX expression is not induced by DNA dam-
age (Shvarts et al., 1996). MDMX binds to both MDM2 (Sharp
et al., 1999) and p53 (Shvarts et al., 1996). MDMX binding
to MDM2 inhibits MDM2 autoubiquitination (Okamoto et al.,
2009). Furthermore, MDM2 ubiquitinates MDMX (De Graaf
et al., 2003). The interaction of MDMX and p53 has been shown
to inhibit p53 activity (Marine et al., 2007). Figure 2 schemati-
cally depicts the relationships between p53, MDM2, and MDMX.
MDMX possesses a cryptic nuclear localization signal (LeBron
et al., 2006), so it can only reach the nucleus while bound to other
proteins. MDMX is normally located primarily in the cytoplasm
(Gu et al., 2002).

Small molecule inhibitors of MDMX have only recently been
discovered (Reed et al., 2010). Although initial results show some
efficacy against cancers with upregulated MDMX in cell culture
(Wang et al., 2011), more work will need to be done to show
whether or not they will be active in vivo, as well as whether or not
it is the MDMX interaction or some off-target interaction that is
causing the effect.

UPSTREAM REGULATORS
There are many feedback loops known to affect p53, and the
behavior of the p53 system is mediated by a number of upstream
regulators (Harris and Levine, 2005). For example, the protein
ATM is activated in response to ionizing radiation (Bakkenist and
Kastan, 2003). Active ATM phosphorylates p53 (Banin et al., 1998),
MDM2 (Maya et al., 2001), and Chk2 (Matsuoka et al., 2000). A
related protein, ATR, phosphorylates p53 in response to single
strand breaks in DNA (Tibbetts et al., 1999). Chk2 along with
Chk1 also phosphorylate p53 (Shieh et al., 2000). These phospho-
rylations disrupt the ability of MDM2 to affect p53 (Zhang et al.,
1998; Chehab et al., 2000; Maya et al., 2001).

OTHER FEEDBACKS
Aside from the MDM2 loop, there are other feedbacks affecting
p53, although many of these involve also MDM2. The ARF protein
is known to bind to MDM2 and promote its degradation (Zhang
et al., 1998). ARF causes both MDM2 and MDMX to be localized
to the nucleolus (Weber et al., 1999; Jackson et al., 2001). ARF is
negatively regulated by p53 in a complex manner, thus forming a
feedback loop (Stott et al., 1998; Lowe and Sherr, 2003). MDM2
activity becomes enhanced by a feedback in which p53 upregulates
cyclin G, which then forms a complex with PP2A phosphatase.
This complex then dephosphorylates MDM2, removing the inhi-
bition caused by the phosphorylation effect (Harris and Levine,
2005). The Wip1 protein is induced by p53 and is able to mod-
ify ATM and Chk2, deactivating these proteins, and thus resulting
in a stronger interaction between p53 and MDM2 (Fiscella et al.,
1997; Fujimoto et al., 2006; Shreeram et al., 2006). Pirh2 has a

more direct feedback with p53. Like MDM2, Pirh2 and COP1
both ubiquitinate p53 and are upregulated by p53 (Leng et al.,
2003; Dornan et al., 2004).

PROTEIN LEVEL OSCILLATIONS?
Lahav et al. (2004), Geva-Zatorsky et al. (2006), and Geva-Zatorsky
et al. (2010) all directly observed sustained oscillations of p53 and
MDM2 levels in the nuclei of individual cells. It is worth noting,
however, that these single cell studies used MCF-7 cells. MCF-7
cells were initially used to study p53 because they exhibit wild type
p53 (Lahav et al., 2004). Unfortunately, the MCF-7 cell line has a
mutation in an MDM2 intron causing upregulation of MDM2 (Hu
et al., 2007), lacks ARF (Stott et al., 1998), and possesses amplified
MDMX (Danovi et al., 2004). Because of this, any assumption that
any wild type cell would behave similarly to an MCF-7 cell with
respect to p53 regulation is questionable at best. Unfortunately,
there are no similar single cell studies of non-tumorigenic cell
lines at the time of writing this paper. Also of note is the finding
by Batchelor et al. (2011) that MCF-7 cells respond differently to
damage induced by ultraviolet light than they do to double-strand
breaks induced by gamma radiation or radiomimetic drugs. Geva-
Zatorsky et al. (2006) also pointed out that undamped oscillations
of p53 levels may appear damped in studies of cell populations
due to the individual cells falling out of sync with each other.
Damped oscillations have been observed in populations of non-
tumorigenic cell lines, for example in entire mice (Hamstra et al.,
2006).

PREVIOUS MODELING WORK
A number of models of p53 response to DNA damage have been
proposed in the past. These models are based on a variety of
approaches and serve a number of functions. Some basic models
use built-in time delays on p53 induction of MDM2 transcrip-
tion, such as some of the models developed by Geva-Zatorsky
et al. (2006). In contrast, the model presented by Lev Bar-Or et al.
(2000) used coupled differential equations to create time delay
effects. There are advantages and disadvantages to each of these
approaches. In a real cell, proteins are not produced instantly
in response to a promoter. Both transcription and translation
processes take time, and transport of the mRNA and the protein to
the cytoplasm does not happen instantaneously. An explicit time
delay deals with this problem directly, but may be more difficult
to analyze than coupled equations. It also adds to the complex-
ity of any computer algorithm made for stochastic simulations.
A set of coupled equations, on the other hand, will start to show
effects of induced protein production in the protein levels instan-
taneously, but the effect will be very small until some time has
passed. In a stochastic system the protein levels are quantized and
instead of instantaneous effects there is simply a small but non-
zero possibility of instantaneous effects. In both the stochastic and
deterministic cases adding more steps in the form of more cou-
pled equations makes the system both more realistic and more
computationally intensive. Another factor to consider is that p53
induces the transcription of MDM2 mRNA, and that mRNA is
active for a time. Because of this, the actual rate of MDM2 pro-
duction is dependent on a weighted average of past p53 levels
rather than p53 levels at some specific time in the past. Using a
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single delayed p53 term to describe MDM2 production is therefore
problematic. One way around this problem is to use a delay term
for the production of the MDM2 mRNA rather than the MDM2
protein, as was done by Cai and Yuan (2009). Ma et al. (2005)
investigated the number of p53 pulses that occur in response
to DNA double-strand brakes using a model made from three
linked modules, simulating DNA repair, ATM activation, and the
p53-MDM2 feedback loop. Linking together multiple systems like
this, in particular linking to systems that can be easily perturbed
experimentally, may be a good way to develop models that are
straight-forward to test. Batchelor et al. (2008) proposed a model
based on abstracted signal and inhibitor systems interacting with
MDM2 as well as active and inactive p53. This model was cre-
ated to investigate the possible effects of ATM, CHK2, and WIP1
on p53 behavior. They included an equation for an input signal
that converted p53 from an inactive form to an active form, and a
p53 induced inhibitor that reduced the effects of the signal. There
have also been past efforts to look at stochastic models of the p53
regulatory system. Cai and Yuan (2009) modeled p53-MDM2 and
MDMX interactions and analyzed some of the effects of intrin-
sic noise. Their model has MDM2 mRNA being produced with
a time delay. It also includes ubiquitinated states of proteins and
a deubiquitination term, rather than just assuming all ubiquiti-
nated proteins are degraded. Puszynski et al. (2008) developed a
complex stochastic model of p53 behavior aimed at showing how

stochastic effects lead to variability of cell fate in a bistable model.
Their model includes a cytoplasmic compartment and a nuclear
compartment, although p53 is not included in their cytoplasmic
compartment. In addition to the negative feedback of MDM2 and
p53 they include a positive feedback involving a series of events
that lead to MDM2 being sequestered in the cytoplasm where it
can no longer degrade p53.

Table 1 summarizes the key differences between the models.
Ultimately, the differences in the models have as much, if not more,
to do with differences in what the researchers were trying to inves-
tigate, rather than with differing assumptions about p53 behavior.

MATERIALS AND METHODS
THE MODEL
Since it has been observed that stochastic effects can cause a pop-
ulation of cells that undergo undamped oscillations to appear as
if they were undergoing damped oscillations (Lahav et al., 2004;
Geva-Zatorsky et al., 2006), it is interesting to compare a stochas-
tic model of cell behavior to a deterministic one. By using both
stochastic and deterministic versions of the same model it will be
possible to look at the process of desynchronization between cells,
which causes oscillations to appear damped, and to search for any
other effects by which stochasticity could influence the system. As
we shall see later, further investigation revealed several unexpected
ways in which stochasticity influenced the system.

Table 1 | Key features of various models of p53 behavior.

Model Stochasticity MDMX Compartments Time delayed

equations

Stress

signal

Other notes

Geva-Zatorsky

et al. (2006)

These models do not have

saturable MDM2 production

Model 1 Limited noise No No No No Linear Model

Model 2 Limited noise No No No No

Model 3 Limited noise No No Yes No Linear Model

Model 4 Limited noise No No No No

Model 5 Limited noise No No No No Linear Model

Model 6 Limited noise No No Yes Yes

Lev Bar-Or

et al. (2000)

None No No No Yes Stress is abstract and gets

repaired

Ma et al.

(2005)

In the stress and repair

modules only

No No Yes Yes Complex stress and repair

modules

Batchelor et al.

(2008)

No No No Yes Yes p53 promotes an inhibitor of

the stress signal

Cai and Yuan

(2009)

Yes Yes No Yes No Includes phosphorylated

proteins

Puszynski

et al. (2008)

Yes No Yes, but not for p53 No Yes Includes many other proteins

Our model Stochastic and non-stochastic

versions were implemented

No Only for MDM2 No No Details in Section “Materials

and Methods”
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In this model p53 induces the transcription of MDM2 mRNA in
the nucleus; there are three steps between induced transcription
of MDM2 by p53 and the arrival of MDM2 proteins in the cell
nucleus. Induced transcription is assumed to be proportional to
[p53]/(K 1.8

D + [p53]1.8), as was seen in the binding properties
found by Weinberg et al. (2005). MDM2 mRNA is also produced
at a basal rate. After being produced in the nucleus, the MDM2
mRNA proceeds to the cytoplasm, where it is translated and even-
tually decays. Even though mRNA from MDM2’s different pro-
moter regions are translated at different rates, they are treated as
one species. Because the two types of mRNA are assumed to decay
at the same rate, this amounts to absorbing the difference in trans-
lation rates into the mRNA production rates. Cytoplasmic MDM2
moves to the nucleus at a constant rate, and all other behaviors that
cytoplasmic MDM2 could exhibit are ignored in this model. ARF
was given constant production and degradation rates. Once in the
nucleus, MDM2 can become bound to ARF, which removes both
proteins from the system. Additionally, MDM2 autoubiquitinates,
which is a process that also removes it from the system. Figure 3
provides a schematic diagram of this system.

Using the principle of mass-action and the saturable tran-
scription kinetics mentioned above, the system’s behavior can
be mathematically described in terms of a system of differential
equations. In addition to all the chemical reactions in Figure 3
the system of differential equations includes the production and
degradation of p53, basal transcription of MDM2 mRNA, decay
of cytoplasmic RNA, decay of ARF, and production of ARF. The
equations are as follows:

d [p53]

dt
= kp − k1 [p53] [MDM2nuclear]− dp [p53]

d [RNAnuclear]

dt
= km+k2

[p53]1.8

k1.8
D + [p53]1.8 −k0 [RNAnuclear]

d
[
RNAcytoplasmic

]
dt

= k0 [RNAnuclear]− drc
[
RNAcytoplasmic

]
d
[
MDM2cytoplasmic

]
dt

= kT
[
RNAcytoplasmic

]
− ki

[
MDM2cytoplasmic

]
d [MDM2nuclear]

dt
= ki

[
MDM2cytoplasmic

]
− dmn

[
MDM22

cytoplasmic

]
− k3 [MDM2nuclear] [ARF]

d [ARF]

dt
= ka− da [ARF] − k3 [MDM2nuclear] [ARF]

with kp being the production rate of p53, k1 being the rate
at which MDM2 ubiquitinates p53, and dp being the rate of
MDM2-independent p53 degradation. Here, km is the rate of p53-
independent MDM2 mRNA production, k2 is the maximum rate
of p53-dependent MDM2 mRNA production, K D is the dissocia-
tion constant for p53 on the MDM2 promoter region, and k0 is the
rate of MDM2 mRNA transport to the nucleus. In the equations
above, drc is the decay rate of MDM2 mRNA in the cytoplasm,
kT is the translation rate for MDM2 mRNA, and k i is the rate of

FIGURE 3 | A schematic of the model of p53 including MDM2
sequestration by ARF. The blue boxes denote molecular species in the
cytoplasm. The yellow boxes indicate molecular species in the nucleus.
Arrows denote movement between compartments, barred lines indicate
degradation, and circles indicate inducing production.

nuclear localization for MDM2. MDM2 autoubiquitination hap-
pens at the rate dmn and MDM2 binds to ARF at the rate k3.
Lastly, ARF is produced at the rate ka and degraded at the rate da.
The binding properties of p53 and the MDM2 promoter have been
investigated experimentally by Weinberg et al. (2005), who showed
that the appropriate Hill coefficient for the Hill function is 1.8.

A list of the values used for these parameters can be found in
Table 2. The initial conditions were chosen by letting the system
run until it settled into a stable limit cycle and then by using
the values for the time when nuclear MDM2 levels were at a
maximum.

Experimental observations of the p53-MDM2 feedback loop
have found periods of oscillations between 4 and 7 h (Geva-
Zatorsky et al., 2006, 2010). Due to scarcity of experimentally
verified data, most of parameters in the model were chosen by
hand in order to produce oscillations with a similar period. Some
of the parameters were constrained by experimental data. K D was
found to be 12.3 nM by Weinberg et al. (2005). Some exper-
imental results suggested that the half-life for MDM2 mRNA
should be in the range of 1–2 h (Hsing et al., 2000; Mendrysa
et al., 2001), so this constrained our choice of the decay rate.
The MDM2 translation rate, kT, was assumed to be one protein
per mRNA molecule per minute, approximately the value esti-
mated by Cai and Yuan (2009). The transport rate for MDM2
mRNA was constrained to be in the range of 5–40 min, based
on Mor et al. (2010). The half-life of the ARF protein, da, was
chosen to be 6 h based on Kuo et al. (2004). Complex for-
mation rates were assumed to be 6× 10−4/nM s, a reasonable
rate for protein–protein interactions (Northrup and Erickson,
1992). It was further assumed that the p53-MDM2 interaction
would always result in p53 degradation. MDM2-independent p53
turnover was assumed to give a half-life of 10 h for the p53 pro-
tein; this is essentially negligible in this model, but this term was
included in the model so that a bifurcation value could be cal-
culated for it. Cytoplasmic volume was assumed to be 1000 µm3

with a nuclear volume of 100 µm3. The values for p53 production,
ARF production, basal MDM2 mRNA production, p53 induced
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Table 2 | Parameters used in the model.

Parameter Description Value Value (alternate expression)

kp p53 Production 0.5 proteins/s 8.30×10−3/nM s

k1 MDM2 dependent p53 degradation 9.963×10−6/s 6×10−4/nM s

dp p53 Decay 1.925×10−5/s 10 h half-life

km p53-Independent MDM2 production 1.5×10−3 RNA/s 1 RNA per 666 s

k2 p53-Dependent MDM2 production 1.5×10−2/s Maximum of 1 RNA per 66 s

K D Dissociation constant 740 proteins 12.3 nM

k0 RNA transport from nucleus to cytoplasm 8.0×10−4/s 14.4 min for half the proteins to move

d rc MDM2 mRNA decay in cytoplasm 1.444×10−4/s 1 h 20 min half-life

kT Transcription rate 1.66×10−2 proteins/s One protein per RNA per min

k i Protein transport from cytoplasm to nucleus 9.0×10−4/s 12.4 min for half the proteins to move

dmn MDM2 autoubiquitination 1.66×10−7/s 2.76×10−9/nM s

ka ARF production 0.5 proteins/s 8.30×10−3/nM s

da ARF decay 3.209×10−5/s 6 h half-life

k3 MDM2-ARF complex formation rate 9.963×10−6/s 6×10−4/nM s

FIGURE 4 | p53 and MDM2 oscillating in the deterministic model. p53 is in black, MDM2 is in red.

MDM2 mRNA production, MDM2 nuclear import, and MDM2
autoubiquitination were unknown. These unknown parameters
were chosen manually in order to produce oscillations similar to
the ones observed in experiments on single cells. Although only
one set of parameters was produced for this model, the choice
is certainly not unique given the somewhat loose selection crite-
ria. The model produces oscillations with a period of 6.4 h as can

be seen in Figure 4. Bifurcation points for the model are listed
in Table 3. The bifurcation points were found numerically using
Matlab (MathWorks, Inc.).

STOCHASTIC SIMULATION ALGORITHM
The Gillespie algorithm is one of the most commonly used
methods of stochastic simulation (Gillespie, 1977). The Gillespie
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Table 3 | Bifurcation points in the deterministic model.

Parameter Bifurcation value Oscillatory behavior

kp 0.215/s Undamped: 0.215≤ kp ≤1.462

kp 1.462/s Damped: kp ≤0.215∪ kp ≥1.462

k1 2.903×10−6/s Undamped: 2.903×10−6
≤ k1 ≤

1.834×10−5

k1 1.834×10−5/s Damped: k1 ≤2.903×10−6
∪ k1 ≥

1.834×10−5

dp 4.237×10−4/s Undamped: dp ≤4.237×10−4

km 2.788×10−3/s Undamped: km ≤2.788×10−3

k2 7.501×10−3/s Undamped: 7.501×10−3
≤ k2 ≤0.118

k2 0.118/s Damped: k2 ≤7.501×10−3
∪ k2 ≥0.118

K D 253.083 Undamped: 253.083≤K D ≤1723.058

K D 1723.058 Damped: K D ≤253.083∪K D ≥1723.058

k0 7.010×10−6/s Undamped: 7.010×10−6
≤ k0 ≤

6.160×10−3

k0 6.160×10−3/s Damped: k0 ≤7.010×10−6
∪ k0 ≥

6.160×10−3

d rc 8.714×10−5/s Undamped: 8.714×10−5
≤d rc ≤

2.704×10−4

d rc 2.704×10−4/s Damped: d rc ≤8.714×10−5
∪d rc ≥

2.704×10−4

kT 8.760×10−3/s Undamped: 8.760×10−3
≤ kT ≤

2.936×10−2

kT 2.936×10−2/s Damped: kT ≤8.760×10−3
∪ kT ≥

2.936×10−2

k i 6.845×10−6/s Undamped: 6.845×10−6
≤ k i ≤

1.559×10−2

k i 1.559×10−2/s Damped: k i ≤6.845×10−6
∪ k i ≥

1.559×10−2

dmn 1.251×10−6/s Undamped: dmn ≤1.251×10−6

ka 0.324/s Undamped: 0.324≤ ka ≤0.963

ka 0.963/s Damped: ka ≤0.324∪ ka ≥0.963

da 2.088×10−3/s Undamped: da ≤2.088×10−3

k3 5.866×10−6/s Undamped: k3 ≥5.866×10−6

algorithm has the advantage of being exact, unfortunately, it is also
computationally expensive. In order to conduct our investigation
we chose to instead use an approximate simulation, because the
Gillespie algorithm is too slow for the required complexity and
number of simulation runs.

The algorithm we created was based on the concepts of a finite
difference integrator. In a finite difference integrator a system of
differential equations is evaluated by first calculating each of the

derivatives at a point in time, then multiplying them by the time
step size, and finally updating each of the variables by the corre-
sponding amount. In our algorithm, rather than being evaluated
as a single set of derivatives each chemical reaction is evaluated
separately. When the simulation evaluates a chemical reaction, the
first step is to use the law of mass-action and the average of the
current chemical concentrations, and their concentrations after
the last time the reaction was evaluated, to find an expectation
value for the number of times the reaction will occur during this
time step. Next, the expectation value for the number of times
the reaction will occur is set as the expectation value for a Pois-
son random number generator and the result is the number of
times the reaction will actually occur during that time step. This
gives the algorithm a strong resemblance to the well known tau
leap method (Gillespie, 2007), in which Poisson random num-
bers are used in combination with the Gillespie algorithm to
improve efficacy. In order to improve efficiency while preserv-
ing accuracy in our algorithm, an adaptive time step is used. The
program evaluates each reaction 0.5N times per simulated second,
with N chosen such that the expectation value for a particular
evaluation of a reaction is lower than a preset threshold mul-
tiplied by the quantity of the chemical molecules involved. In
this way parts of the system that are changing rapidly are eval-
uated with a low enough time step to prevent numerical errors,
without needing to waste additional computations on the slower
reactions.

Figure 5 shows some examples of individual simulation runs
for this model. The stochastic nature of the simulation leads to
a number of interesting differences arising from the desynchro-
nization of the individual model runs as well as from applying a
distribution of p53 values into the non-linear function for MDM2
production.

RESULTS
DESYNCHRONIZATION IN GENERAL
In order to understand how the individual stochastic realizations
of our model fall out of synch with each other let us first consider
how stochastic systems may fall out of synchronization in general.
An experiment averaging protein levels across many cells is analo-
gous to looking at the average of many runs of a stochastic system.
As such, it is interesting to consider how aggregate average behav-
ior differs from the behavior of individual model runs. A given
run of the stochastic model will not necessarily just be equal to the
deterministic model plus noise. At any given step the stochastic
model’s variables depend on the values of the variables at the pre-
vious time step. For a periodic model this will result not only in
noise moving variables up and down but also in random stepping
forwards and backwards of the model’s phase. Consequently, an
ensemble of model runs will fall out of synchronization over time.
Imagine for simplicity a stochastic model based on a deterministic
model with a variable given by A sin(ωt + ϕ). In the stochastic
model random chance continuously moves each run in the ensem-
ble toward or away from the next peak. Considering the central
limit theorem applied over a large number of runs, one would then
expect the distribution of timing of the peak in individual runs to
approach a normal distribution. If all the runs are initialized from
the same starting point, then the amplitude of the mean will not
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FIGURE 5 | Examples of time courses in the stochastic model. p53 is in black and MDM2 is in red.

be A sin(ωt + ϕ) but rather it will be

A

∫
∞

−∞

1

σ
√

2π
e
−

1t ′2

2σ2 sin
(
ωt + ϕ+ ωt ′

)
dt ′

because the timing of each run will be shifted with a Gaussian
weighting given to the shift. Since the width of the distribution

will increase proportionally to the square root of time, the stan-
dard deviation σ can be expanded as α

√
t , where α is a parameter

related to the rate of desynchronization. This integral then works
out to be

Ae−
ω2α2t

2 sin (ωt + ϕ)
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FIGURE 6 | Comparison of stochastic and deterministic models.
(A) Shows the comparison for MDM2 with MDM2 from the
deterministic model in red and from the mean of 5,000 runs of the

stochastic model in blue. (B) Shows the comparison for p53 with the
deterministic model in black and from the mean of 5,000 runs of the
stochastic model in green.

FIGURE 7 | (A) Comparison of p53 levels in the deterministic model in black to a curve fitted to it from the function f (t) = a0 + a1 sin (ωt + ϕ1)+

a2 sin (2ωt + ϕ2) in red. (B) Comparison of p53 levels in the stochastic model in black to a curve fitted to it from the function f (t) = a0 + e−
α2 t
2 a1 sin (ωt + ϕ1)+

e−
4α2 t

2 a2 sin (2ωt + ϕ2) in red.

Consider a 2π periodic function that is integrable on the inter-
val from −π to π. This function could be expressed as a Fourier
series such that

f (t ) =
a0

2
+

∞∑
n=1

[an cos (nt )+ bn sin (nt )]

or equivalently

f (t ) =
a0

2
+

∞∑
n=1

[
an sin

(
nt +

π

2

)
+ bn sin (nt )

]

Applying the result above we find that the function will be
changed by desynchronization to become

f ′ (t ) =
a0

2
+

∞∑
n=1

[
an sin

(
nt +

π

2

)
+ bn sin (nt )

]
e−

n2α2t
2

Since the decay is proportional to the square of the frequency,
any function will rapidly take on the appearance of a single
decaying sine-function curve as time progresses.
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DESYNCHRONIZATION IN THE STOCHASTIC MODEL
The damping caused by desynchronization in the stochastic model
can be seen in Figure 6. The deterministic and stochastic systems
can be compared by fitting a curve to the time series for p53.
Specifically:

f (t ) = a0 + a1 sin (ωt + ϕ1)+ a2 sin (2ωt + ϕ2)

for the deterministic model, and

f (t ) = a0 + e−
α2t

2 a1 sin (ωt + ϕ1)+ e−
4α2t

2 a2 sin (2ωt + ϕ2)

for the stochastic model. Table 4 lists the parameter estimates for
the deterministic model as well as 95% confidence intervals for the
stochastic model. Figure 7 shows graphs of the functions and their
best fits. The best fit was determined by using least squares regres-
sion on the mean p53 values from 5,000 instances of the stochastic

Table 4 | Comparisons of the parameters found when fitting the

deterministic model’s p53 levels to the function f (t ) = a0 +

a1 sin (ωt + ϕ1)+ a2 sin (2ωt + ϕ2) and the stochastic model’s p53

levels to the function f (t ) = a0 + e−
α2 t

2 a1 sin (ωt + ϕ1)+

e−
4α2 t

2 a2 sin (2ωt + ϕ2).

Parameters

fitted to

deterministic

model

Parameters

fitted to

stochastic

model

Lower bound

for stochastic

parameters

Upper bound

for stochastic

parameters

α N/A 21.8/s1/2 21.2/s1/2 22.5/s1/2

ω 2.73×10−4/s 2.63×10−4/s 2.62×10−4/s 2.64×10−4/s

A0 332 346 345 347

A1 −348 −396 −406 −388

f 1 1.21 1.40 1.38 1.43

A2 105 136 −136 144

f 2 0.633 −1.16 −36.6 13.6

FIGURE 8 | Comparison of nuclear MDM2 levels in the stochastic
model in black to a curve fitted to it from the function
f (t ) = a0 + e−

α2 t
2 a1 sin (ωt + ϕ1)+ e−

4α2 t
2 a2 sin (2ωt + ϕ2) in red.

model. The upper and lower bounds were found by using boot-
strapping on the 5,000 instances that were used to compute the
best fit. The 95% confidence intervals for the amplitude and phase
of the second sine curve ended up being very large due to the curve
fitting function jumping between local minima. To ensure that the
algorithm was being run at a high enough numerical precision,
an additional 5,000 instances were generated with the acceptable
error parameter in the code selected to equal 10 times the value
used in this analysis. The resulting new confidence intervals were
compared to the ones from the higher accuracy runs. In all cases
significant overlap of the intervals was found, suggesting that the
acceptable error was set low enough in the high accuracy runs to
result in only negligible deviations from an exact solution.

The differences between the stochastic model’s behavior and the
deterministic model’s behavior are statistically significant. Most
striking is that the frequency of the oscillations was changed by
stochastic effects. The same analysis has been done on nuclear

Table 5 | Comparisons of the parameters found when fitting the

deterministic model’s nuclear MDM2 levels to the function f (t ) = a0 +

a1 sin (ωt + ϕ1)+ a2 sin (2ωt + ϕ2) and the stochastic model’s nuclear

MDM2 levels to the function f (t ) = a0 + e−
α2 t

2 a1 sin (ωt + ϕ1)+

e−
4α2 t

2 a2 sin (2ωt + ϕ2).

Parameters

fitted to

deterministic

model

Parameters

fitted to

stochastic

model

Lower bound

for stochastic

parameters

Upper bound

for stochastic

parameters

α N/A 20.7/s1/2 20.2/s1/2 21.3/s1/2

ω 2.73×10−4/s 2.63×10−4/s 2.62×10−4/s 2.63×10−4/s

A0 302 345 343 346

A1 −314 −372 −379 −365

f 1 −1.72 −1.49 −1.51 −1.47

A2 −71 −78.5 −82.8 −74.6

f 2 −1.73 −0.80 −0.87 −0.73

FIGURE 9 | A comparison of the function [p53]1.8

k1.8
d +[p53]1.8 between the

function applied to mean p53 values in black and the mean of the
function when applied to the distribution of p53 values in red.
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MDM2 levels, which can be seen in Figure 8 and Table 5. The
discrepancy between the fitted curve for MDM2 levels and the
levels from the simulation hints at another difference between sto-
chastic and deterministic systems, which will be discussed below.
It is also worth noting that this stochastic model only consid-
ers the differences between cells due to noise in a few chemical
reactions. In a real cell there would be many more factors con-
tributing to desynchronization. Even simply adding mRNA for the
p53 and ARF included in this model raises the desynchronization
parameter a from 21.8 to 23.5 s−1/2 (a mean of 30 mRNA mol-
ecules was used for this simulation). Additionally, differences in

cell volume would increase desynchronization by altering protein
concentrations between cells.

CHANGES DUE TO NON-LINEAR EFFECTS
The mean of a stochastic ensemble for the stochastic model devi-
ates from the deterministic model not just from desynchronization
but also due to non-linear effects. For a non-linear function
applied to a distribution of inputs, the mean of the function
will not necessarily be equal to the function of the mean. In
other words, as is well known in statistics, the following is usu-
ally true: <f(x)> 6= f(<x>), unless f is a linear function of x.

FIGURE 10 | Comparison of stochastic and deterministic models when
p53 production is near the lower bifurcation point. (A) Shows the
comparison for MDM2 with MDM2 from the deterministic model in red and

from the mean of 5,000 runs of the stochastic model in blue. (B) Shows the
comparison for p53 with the deterministic model in black and from the mean
of 5,000 runs of the stochastic model in green.

FIGURE 11 | Comparison of stochastic and deterministic models when
p53 production is near the upper bifurcation point. (A) Shows the
comparison for MDM2 with MDM2 from the deterministic model in red and

from the mean of 5,000 runs of the stochastic model in blue. (B) Shows the
comparison for p53 with the deterministic model in black and from the mean
of 5,000 runs of the stochastic model in green.
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FIGURE 12 | Comparison of stochastic and deterministic models when
the p53 production value is past the upper bifurcation point. (A) Shows
the comparison for MDM2 with MDM2 from the deterministic model in red

and from the mean of 5,000 runs of the stochastic model in blue. (B) Shows
the comparison for p53 with the deterministic model in black and from the
mean of 5,000 runs of the stochastic model in green.

Production of MDM2 mRNA in this model is clearly non-linear

because it is proportional to f (p53) =
[p53]

1.8

k1.8
d +[p53]

1.8 . Figure 9

compares the function of the mean to the mean of the func-
tion for this case. Mean MDM2 values in the stochastic model
are determined by <f(p53)> (the red curve in Figure 9) which
has a different amplitude then f(<p53>) (the black curve in
Figure 9). This discrepancy causes the behavior of the system to
change relative to the deterministic case, which only has mean
p53 values. This is also the most likely source of the discrep-
ancy between the fitted curve in Figure 8 and the actual levels
of MDM2. With production that behaves differently, the initial
conditions in the simulation would not have represented a point
on the limit cycle for MDM2 levels. As a consequence, the system
would have been moving toward the limit cycle at the same time
as it was desynchronizing. The simple fitted curve cannot possi-
bly account for this, which is why it did not fit well. p53 levels
would also have been affected by this but this does not seem to
have been a large enough effect to be readily noticeable on the
graph.

Although the effect on the amplitude of the oscillations with
the original parameters was relatively small, amounting to approx-
imately 5%, the non-linear effects can be larger in other situations.
Consider the case when the p53 production rate is set near to the
lower bifurcation point, as shown in Figure 10. In this case the
mean level of MDM2 from the stochastic model ends up being
higher than the maximum amplitude of the oscillations in the
deterministic model. A similar phenomenon occurs when p53
production is near the upper bifurcation point as is shown in
Figure 11.

EXCURSIONS FROM THE MEAN
Stochastic effects continue to play an interesting role in the sys-
tem’s behavior even as we move past the upper bifurcation point,

FIGURE 13 | Comparison of the function [p53]1.8

k1.8
d +[p53]1.8 between the

function applied to mean p53 values in black and the mean of the
function when applied to the distribution of p53 values in red.

so that the deterministic model exhibits damped oscillations. For
Figures 12–14, p53 production was set to 1.6, putting the system
into the realm of damped oscillations. In Figure 12 we can see
that as the oscillations decay, the MDM2 levels settle in at a value
significantly higher in the stochastic model than the determinis-
tic one. From Figure 13 we can see that the non-linear effects of
variable p53 levels are still altering behavior, but something more
is occurring this time. In Figure 12B we see that mean p53 levels
are settling in at a level higher in the stochastic model than in
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the deterministic one. This seems strange in light of the higher
MDM2 levels but Figure 14 shows the reason. The stochastic
nature of the system is sufficient to cause significant excursions
from the mean even though the oscillations should be decaying.
Some of the oscillations that occur later on are even larger than
the initial pulse. Similar behavior has been observed in other sto-
chastic models such as the one presented in McKane and Newman
(2005), but has not been previously observed in a model of the
p53 system.

DISCUSSION
The stochastic work we present in this paper differs from previ-
ous modeling efforts in that its goal is primarily to compare the
behavior of stochastic and deterministic realizations of the same
model. This requires only a simple model; therefore much of the
complexity of the p53 system can be ignored. Since the model
presented in this work is not aimed at addressing DNA repair, or
dealing with the problem of variable damage being done, it does
not include such systems. The model presented here also differs

FIGURE 14 | Examples of individual stochastic realizations when p53 production is past the upper bifurcation point. p53 is in black MDM2 is in red.
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from the previous models in a few other ways. Unlike in other
models, MDM2 autoubiquitination was assumed to happen at a
rate proportional to the square of MDM2 concentration. Given
that MDM2 forms heterodimers with MDMX (Sharp et al., 1999),
that MDMX inhibits MDM2 autoubiquitination (Okamoto et al.,
2009), and that MDM2 ubiquitinates MDMX (De Graaf et al.,
2003), it seems likely that one MDM2 molecule is ubiquitinating
a second MDM2 molecule.

The work on the deterministic and stochastic models presented
here demonstrates that the effects of stochasticity on the behavior
of genetic regulatory networks cannot be dismissed without care-
ful consideration. In our system stochastic effects altered every
aspect of system behavior. In addition to desynchronization lead-
ing to the appearance of decaying oscillations, the amount of
MDM2 in the system increased and the period of the oscilla-
tions changed. The changes in MDM2 levels became more obvious
when p53 production was near bifurcation points. When the sys-
tem was put into a state with decaying oscillations, the quantity
of MDM2 still remained above that in the deterministic model,
showing that stochasticity still alters behavior as the system is near
a steady state. Furthermore, stochastic systems will not necessar-
ily undergo damped oscillations even when assigned parameters
that would cause damped oscillations in a deterministic system.
Instead, they may show sporadic oscillation-like excursions from
the mean behavior. It would seem then that even for cells in a
steady state, the distribution of protein levels across a popula-
tion and over time could wreak havoc with attempts to model cell
behavior. This has implications for researchers wishing to model
cell-level processes, as systematic errors could occur in determin-
istic models with no obvious way to compensate for them. As
computers and algorithms improve, it may be the case that simply
moving to stochastic modeling of cell populations will become the
most practical solution.

The demonstration that stochasticity can be relevant is very
general, but it was also shown that the magnitude of the effects
could vary significantly between systems. The effect on mean pro-
tein levels could be around 5%, as in the original parameter set,
or around 50%, as in some of the parameter sets with differing
p53 levels. The obvious way to experimentally test the relevance

of stochasticity on any given system is by comparing data from
cell populations to data from individual cells. Such experimental
comparisons were, after all, the inspiration for investigating sto-
chasticity in this system in the first place. The difference between
a stochastic model and a deterministic one with different parame-
ters are not likely to be obvious from population data, even if the
effects of stochasticity are expected to be large. Testing the details of
stochastic models will require investigating the behavior of indi-
vidual cells. Of course, stochasticity is not the only factor that
could drive individual cells to different behaviors. Factors such as
differences in cell size, different cell cycle stages, and non-uniform
distributions of components in cell culture medium could all alter
behavior on the scale of single cells. Untangling these effects is
potentially a fruitful area for future research.

A valuable way of expanding the utility of our model would
be to link it to other models of related processes. The DNA
repair and damage detection modules in Ma et al. (2005) would
be a good example of this. Once one system is sufficiently well
understood, it would be possible to begin analyzing how alter-
ing it changes connected systems, or conversely, how changing
connected systems alters it. This could allow one to study down-
stream drug effects. For that kind of work it would likely be
best to start as far upstream as possible, in order to facilitate
the experimental control of inputs. For example, for the p53 sys-
tem it would make sense to start with a model that quantifies the
damage ionizing radiation causes to DNA and other cellular sys-
tems, because the level of radiation a cell is exposed to can be
controlled in the lab. Then, once that is modeled accurately, one
could study the DNA damage detection systems,and finally the p53
response. Repeating this process for other forms of damage, like
for example ultraviolet light, could bring insight into the system’s
behavior.
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Angiogenesis, the formation of new blood vessels from existing vasculature, is important
in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial
growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies
aimed at inhibiting tumor angiogenesis. Systems biology approaches, including compu-
tational modeling, are useful for understanding this complex biological process and can
aid in the development of novel and effective therapeutics that target the VEGF family
of proteins and receptors. We have developed a computational model of VEGF transport
and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tis-
sue, blood, and tumor. The model simulates human tumor xenografts and includes human
(VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorpo-
rates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and
VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble
factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport
via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance.
We have fit the model to available in vivo experimental data on the plasma concentration
of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to esti-
mate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial
cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are signifi-
cantly lower (0.007–0.023 molecules/cell/s, depending on the tumor microenvironment)
than most reported in vitro measurements (0.03–2.65 molecules/cell/s). The optimized
model is used to investigate the interstitial and plasma VEGF concentrations and the effect
of theVEGF-neutralizing agent,VEGFTrap (aflibercept).This work complements experimen-
tal studies performed in mice and provides a framework with which to examine the effects
of anti-VEGF agents, aiding in the optimization of such anti-angiogenic therapeutics as
well as analysis of clinical data.The model predictions also have implications for biomarker
discovery with anti-angiogenic therapies.

Keywords: systems biology, mathematical model, computational model, angiogenesis, tumor xenograft model,
anti-angiogenic therapy, cancer

INTRODUCTION
Angiogenesis is the formation of new blood capillaries from pre-
existing vessels, and is a process involved in physiological function,
such as exercise and wound healing, as well as disease conditions,
including cancer, peripheral and coronary artery diseases, pre-
eclampsia, and age-related macular degeneration (AMD). The
vascular endothelial growth factor (VEGF) family is a key pro-
moter of angiogenesis and vascular development. The VEGF fam-
ily includes five ligands: VEGF-A,VEGF-B,VEGF-C,VEGF-D, and
placental growth factor (PlGF). One of the most widely studied
members is VEGF-A, commonly referred to as VEGF. Alternative
splicing of VEGF produces different isoforms, including VEGF121,
VEGF165, VEGF189, and VEGF206 in humans. Expressed rodent
isoforms are one amino acid shorter than human isoforms; there-
fore, the subscripted number is one less. Additionally, there are
VEGFxxxb isoforms, which have been shown to be endogenous
anti-angiogenic species (1, 2). VEGF promotes angiogenesis by

binding to and activating its receptors VEGFR1 and VEGFR2,
and co-receptors called neuropilins (NRPs). Signal transduction
through the receptors promotes many cellular processes, includ-
ing cell proliferation, migration, and survival (3). VEGFR1 and
VEGFR2 are expressed on endothelial cells (ECs), cancer cells, and
other cell types, including bone marrow-derived cells and neu-
rons [see (4) for review]. NRPs are expressed on various cell types,
including ECs, tumor cells, and muscle fibers (4).

Angiogenesis has been targeted to treat diseases character-
ized by reduced vascularization (“pro-angiogenic therapy”) (5, 6)
or to inhibit the formation of new blood vessels in conditions
leading to hypervascularization (“anti-angiogenic therapy”) (7,
8). Of particular importance is anti-angiogenic therapy targeting
tumor vascularization. Bevacizumab (9) is a recombinant mon-
oclonal antibody that neutralizes VEGF and is approved by the
Food and Drug Administration to treat colorectal cancer, glioblas-
toma, kidney cancer, and non-small cell lung cancer. Aflibercept
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(Regeneron) is a soluble decoy receptor approved to treat metasta-
tic colorectal cancer and wet AMD. The drug is also in clinical trials
to evaluate its anti-angiogenic effect on various forms of cancers
(10). Aflibercept binds to VEGF more tightly than bevacizumab
(11) and forms a 1:1 complex with VEGF and PlGF (12). In addi-
tion to therapies that target the VEGF ligand, several tyrosine
kinase inhibitors (TKIs) have been developed to target phosphory-
lation of VEGF receptors, as well as other pro-angiogenic receptors
including platelet-derived growth factor (PDGF) receptors and
fibroblast growth factor (FGF) receptors (13, 14).

Systems biology approaches, including quantitative experimen-
tal methods and mathematical modeling, have been applied to
study angiogenesis (15–17). Computational models complement
experimental studies and can aid in the development and opti-
mization of effective therapeutics (18). Despite extensive basic
science and translational research to develop anti-angiogenic ther-
apies, little is known about the drugs’ mechanism of action, how
and why tumors become resistant to the treatment, or the patient
population that can benefit most from these drugs. Identifying bio-
markers that can be used to predict the patients whose tumors will
respond favorably to anti-angiogenic treatment is of great inter-
est (19–21). Computational approaches can shed light upon these
issues by providing a framework to generate and test hypotheses
related to VEGF kinetics and transport in the body (14, 22).

We have previously developed an experiment-based compart-
ment model of VEGF distribution in non-tumor-bearing mice,
which estimates the distribution of VEGF in the body (23). Addi-
tionally, the model was used to fit kinetic parameters and to
predict the rate at which VEGF is secreted by muscle fibers,
which is difficult to measure experimentally in vivo. In this work,
we present an expanded model that includes a tumor compart-
ment and incorporates several new features: EC secretion of
VEGF, soluble factors that influence VEGF levels, and a dynamic
tumor volume. These new elements lead to a more physiolog-
ical model and incorporate experimental observations relevant
to VEGF kinetics and transport in the whole body, which can
be compared to experimental data. Thus, this work represents a
significant expansion to our previous models (23–26). We first
re-calibrate the two-compartment model (no tumor is present)
using in vivo experimental data and estimate the rates at which
VEGF is secreted by muscle fibers and ECs, as well as the clearance
rates of unbound and complexed VEGF Trap, and the bind-
ing affinity of VEGF trap. We then fit the three-compartment
model to available in vivo experimental data in order to esti-
mate the rate of VEGF secretion by muscle fibers, ECs, and tumor
cells. We demonstrate how the model can be applied to inves-
tigate the effect of neutralizing VEGF using VEGF Trap. These
results contribute to our understanding of the efficacy of VEGF
Trap in specific tumor types. We also estimate the concentra-
tions of VEGF in different compartments, which can be validated
experimentally.

RESULTS
RE-CALIBRATION OF TWO-COMPARTMENT MODEL CAPTURES
DYNAMICS OF BOUND AND COMPLEXED VEGF TRAP
The previous two-compartment model simulating non-tumor-
bearing mice (23) did not include EC secretion of VEGF or soluble

factors. Therefore, we first refit the expanded two-compartment
model that includes these additional features in order to match
in vivo experimental data (12). The fitting optimized the val-
ues of five parameters: VEGF secretion rate of muscle fibers
(qmuscle

VEGF ), VEGF secretion rate of ECs (qEC
VEGF), clearance rate of

VEGF Trap (cA), clearance rate of the VEGF/VEGF Trap complex
(cVA), and dissociation constant of VEGF and VEGF Trap (K d).
As described in the methods, although the experimental protocol
used by Rudge and coworkers utilizes subcutaneous administra-
tion of VEGF Trap, we simulate intravenous administration and
assume 100% of the reported dose is administered. The fitting
procedure allows us to estimate the values of the free parameters
using in vivo experimental data.

The optimized parameter values are shown in Table 1, and
all raw data from the optimization is given in File 1 in Supple-
mentary Material. The optimized value of K d is comparable to
the reported in vitro measurement of 0.6 pM (11), providing con-
fidence in the fitting procedure. The optimization predicts the
muscle fibers secrete very little VEGF (0.002 molecules/cell/s), and
the standard deviation of the optimized values is high. This sug-
gests that the model is not sensitive to the value of (qmuscle

VEGF ).
To investigate this possibility, we varied muscle secretion from
0 to 0.02 molecules/cell/s and used the model to estimate the
concentrations of unbound VEGF Trap and the mouse VEGF
(mVEGF)/VEGF Trap complex. This sensitivity study revealed
that increasing (qmuscle

VEGF ) up to one order of magnitude does
not significantly change the fit, as shown in Figure 1. These
results indicate that there may not be sufficient data to deter-
mine VEGF secretion from muscle fibers. Specifically, it is dif-
ficult to separate the contribution of VEGF from muscle fibers,
compared to ECs. This result is not specific to the data used
here, but more generally that plasma measurements cannot be
used to determine endogenous VEGF production from multiple
sources.

SENSITIVITY ANALYSIS REVEALS MODEL PARAMETERS THAT
INFLUENCE VEGF CONCENTRATIONS
In the three-compartment model, the values of several parame-
ters are based on characterization of the human VEGF (hVEGF)
system due to a lack of quantitative experimental measurements
in mice. We previously investigated sensitivity to individual para-
meters, including vascular permeability, lymphatic drainage, and
properties of the anti-VEGF agent (25). In that work, parameters

Table 1 | Estimated model parameters from optimization of

two-compartment model.

Parameter Units Optimal

value

Standard

deviation

Normal secretion Molecules/cell/s 0.002 0.003

EC secretion Molecules/cell/s 0.057 0.004

Tumor secretion Molecules/cell/s N/A N/A

Clearance of free VEGF Trap s−1 1.3×10−5 2×10−7

Clearance of bound VEGF

Trap

s−1 2.5×10−6 2×10−7

K d of VEGF Trap pM 0.29 0.011
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FIGURE 1 | Effect of varying muscle secretion in two-compartment
model. The estimated plasma levels of free VEGF Trap (dashed lines) and
mouse VEGF bound to VEGF Trap (solid lines) after a single intravenous
injection of VEGF Trap at (A), 0.5 mg/kg; (B), 2.5 mg/kg; (C), 10 mg/kg; and (D),

25 mg/kg. The rate of VEGF secretion by muscle fibers is varied from 0 to
0.02 molecules/cell/s. Model results are compared to experimental
measurements for free VEGF Trap (black circles) and mVEGF bound to VEGF
Trap (white squares).

were varied one by one. Here, we perform a modular sensitiv-
ity analysis, where we investigate how variability in three sets of
parameters (model inputs) influence mouse and hVEGF concen-
trations and sVEGFR1 levels in normal tissue, blood, and tumor
(model outputs). Specifically, we investigated the effect of VEGF
receptor expression, transport parameters, and kinetic parameters
using the extended Fourier Amplitude Sensitivity Test (eFAST),
as described in the Section “Materials and Methods.” Two indices
provide an estimate of the sensitivity of the model output to model
parameters. The first FAST index quantifies the variance of a model
output with respect to the variance of each input. The total FAST
index quantifies the variance of a model output with respect to
the variances of each input and covariances between all combi-
nations of inputs. If total FAST indices are larger than the first
FAST indices, it means that the parameter is more important in
combination with other parameters rather than individually.

The FAST indices for each set of model inputs are shown in
Figure 2. When investigating the effect of tumor cell receptor
expression,VEGF and sVEGFR1 concentrations are sensitive to the
density of NRP co-receptors. Additionally, the level of VEGFR1 is
an important determinant of hVEGF concentration in the tumor.
In the transport module, the rate of lymphatic flow from normal

or tumor tissue in concert with other transport parameters is esti-
mated to influence hVEGF levels in plasma and normal tissue. Sol-
uble VEGFR1 concentrations, as well as mVEGF levels in plasma
and normal tissue, are particularly sensitive to the permeability of
the normal tissue to VEGF and VEGF/sVEGFR1 complexes. Indi-
vidual parameters investigated in the kinetic module are predicted
to influence VEGF and sVEGFR1 concentrations, rather than in
combination with other kinetic parameters. VEGF and sVEGFR1
levels are particularly sensitive to VEGF164 and VEGF165 binding
to NRP co-receptors and VEGF binding to VEGFR1. These results
aid in our understanding of how uncertainty in the values of par-
ticular parameters influence the model output. Additionally, the
sensitivity analysis provides quantitative data to support obtaining
additional experimental measurements of specific parameters that
significantly influence model outputs.

THE RATE OF VEGF SECRETION BY HUMAN TUMOR CELLS IS
DEPENDENT ON THE TUMOR MICROENVIRONMENT
Tumor cells are a source of VEGF; however, there is a lack of in vivo
data for VEGF secretion rates. Therefore, we have used in vivo
experimental data on the plasma concentration of free VEGF Trap
and VEGF Trap bound to mouse and hVEGF to determine VEGF
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FIGURE 2 | Sensitivity indices of model parameters. The extended Fourier
Amplitude Sensitivity Test (eFAST) was used to estimate the variance in the
model output with respect with variance in individual model inputs (first FAST

indices) and covariances in combinations of model inputs (total FAST indices).
A modular approach was used to investigate the sensitivity to (A), tumor
receptor expression; (B), transport parameters; and (C), kinetic parameters.
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secretion rates in mice bearing human tumor xenografts. Here,
we use the clearance rates of unbound and complexed VEGF
Trap predicted in the two-compartment model and experimentally
determined VEGF binding affinity. However, the VEGF secretion
rates (qmuscle

VEGF , qEC
VEGF, and tumorVEGF secretion, qtumor

VEGF ) were opti-
mized to fit experimental data. We optimize the VEGF secretion
rates since there is large variability in the predicted rate of muscle
secretion obtained using the two-compartment model.

The VEGF secretion rates were predicted using the optimiza-
tion algorithm, assuming the tumors follow either the average
(baseline) or fast tumor growth profiles. We use data from Rudge
et al. (12), where tumors were allowed to grow to ∼100 mm3,
and then the tumor-bearing mice were injected with VEGF Trap
(“anti-VEGF”) twice weekly for 2 weeks. Various dosages of VEGF
Trap were used, and the concentrations of free VEGF Trap and
the mVEGF/VEGF Trap complex and hVEGF/VEGF Trap com-
plex in the blood were measured. These measurements can be
directly compared to model estimates where the anti-VEGF agent
is administered intravenously. The optimized model provides a
good fit to the experimental data, as shown in Figure 3. The
average and standard deviation of the predicted VEGF secre-
tion rates from the optimization runs are in Figure 4 and
Table 2, and File 1 in Supplementary Material contains the
raw data.

CIRCULATING LEVELS OF VEGF TRAP AND HUMAN VEGF/VEGF TRAP
COMPLEX AND MAXIMUM CONCENTRATION OF TOTAL VEGF TRAP
VARY WITH DOSE
To our knowledge, the dynamic levels of free and complexed VEGF
Trap in tumor-bearing mice have not been reported. These data are
useful in elucidating the mechanism of action of VEGF Trap and
to determine if the dosage is sufficient to neutralize VEGF secreted
by the tumor. Therefore, we used the optimized model for A673
rhabdomyosarcoma human xenograft to predict the concentra-
tion profiles for free VEGF Trap and VEGF Trap bound to hVEGF
(Figure 5). The level of VEGF Trap bound to hVEGF is more than
an order of magnitude lower than the concentration of mVEGF
complexed with VEGF Trap. This result is consistent with the find-
ing that normal production of VEGF eclipses the production from
tumors, as described by Rudge and co-authors (12). Addition-
ally, the level of free VEGF Trap remains well above the level of
the hVEGF/VEGF trap complex for up to 14 days. This indicates
effective dosing, as the VEGF-neutralizing agent is able to neu-
tralize all VEGF secreted by the tumor. The HT1080 fibrosarcoma
tumor response is similar (data not shown).

VEGF TRAP IS PREDICTED TO DEPLETE UNBOUND VEGF IN THE BODY
The optimized model of a tumor-bearing mouse provides a
framework with which to study the concentration of unbound
VEGF before and after administration of VEGF Trap. As expected,
endogenous levels of unbound VEGF are highest in the normal
tissue and plasma, and the concentration of hVEGF is highest
in the tumor, based on the source of mouse and hVEGF. Before
any injection, mVEGF concentration is estimated to range from
0.17 to 1.47 pM in mice with A673 tumors, based on 1 SD above
and below the average predicted VEGF secretion rates (Table 3).
Unbound hVEGF in the tumor is estimated to be∼0.5 pM. We also

FIGURE 3 | Predicted systemic VEGFTrap levels. The model predicts the
plasma levels of free VEGF Trap (black lines), mouse VEGF bound to VEGF
Trap (blue lines), and human VEGF bound to VEGF Trap (red lines). VEGF Trap
was administered twice per week for 2 weeks at doses of 0.5, 1, 2.5, 10,
and 25 mg/kg. The simulated results are shown for the optimized model
where the secretion rates of VEGF by myocytes, EC, and tumor cells were
fit to experimental data (circles). We use the mean (solid lines) and 1 SD
(dashed lines) of the fitted secretion rates. (A) A673 tumor; and (B), HT1080
tumor. Results for fast-growing tumor are in Figure A1 in Appendix.

present freeVEGF concentration during twice-weekly injections of
VEGF Trap at 2.5 mg/kg (Figures 6A,B). The model estimates that
free VEGF in the body is first depleted before increasing slightly
before the next injection. Thus, the model can be used to under-
stand the effect of anti-VEGF agents on systemic and tissue levels
of VEGF.

In addition to using the model to estimate the concentration
of unbound VEGF, we have also determined the percentage of free
VEGF in the form of VEGF164 or VEGF165. The isoform secretion
ratio for VEGF164:VEGF120 in muscle is 92:8 and 90:10 in EC, and
the secretion ratio for VEGF165:VEGF121 in tumor cells is 50:50,
as described in the Section “Materials and Methods.” These ratios
determine the fraction of VEGF164 or VEGF165 in the compart-
ments; and, the fractions at which the isoforms are present change
with time and drug dose. Here, we consider a dosage of 2.5 mg/kg.
After the first anti-VEGF injection, the percentage of free mVEGF
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in the form of VEGF164 is ∼90% in all compartments (Figure 6C,
left). The percentage of hVEGF in the form of VEGF165 in tumor
is slightly lower than the percentage of VEGF165 in normal tissue
and plasma (44–49%, as compared to 55%; Figure 6D). These
types of model predictions can aid in biomarker identification, as
the concentration of specific VEGF isoforms may predict tumors
that will respond to anti-VEGF treatment or other anti-angiogenic
therapies.

We also apply the model to investigate the total levels of cir-
culating VEGF in plasma. The soluble factors sVEGFR1 and α-2-
macroglobulin (α2M) bind to VEGF and contribute to circulating
levels of VEGF. Thus, total circulating VEGF is comprised of free
VEGF, VEGF bound to sVEGFR1, and α2M-bound VEGF (both
the native and active forms). VEGF bound to the VEGF Trap drug
is also included. We again allow the tumors to reach a volume of
100 mm3 before simulating twice-weekly injections of VEGF Trap
at varying doses. Before the first injection, the relative amounts of
free, sVEGFR1-bound, and α2M-bound circulating VEGF are 80,
4, and 16%, respectively. One day after the first injection of VEGF
Trap, the composition of the circulating VEGF changes, depending
on the drug dose (data not shown). If we consider a drug dose of
2.5 mg/kg, the relative amounts of free, sVEGFR1-bound, α2M-
bound, and VEGF Trap-bound VEGF are 0.6, 0.03, 5, and 94%,
respectively. Thus, the VEGF Trap displaces the soluble factors
bound to VEGF.

FIGURE 4 | Optimized VEGF secretion rates. The model parameters were
optimized to fit experimental data, and the values of normal, EC, and tumor
VEGF secretion rates were determined. The mean optimal secretion rates
and standard deviation of 20 optimization runs are shown. Results for
fast-growing tumors are in Figure A2 in Appendix.

DISCUSSION
We have developed a compartment model of VEGF distribution
in tumor-bearing mouse. The model incorporates tumor-specific
properties, including the rate of tumor growth and VEGF secre-
tion. We have used in vivo experimental data for the levels of free
and bound VEGF Trap in mice bearing human tumor xenografts
in order to predict the endogenous rate of VEGF secretion by
myocytes and ECs and compared them to the predicted secretion
rates in normal mice. We also predicted the rate at which cells from
different human tumor xenografts secrete VEGF. To our knowl-
edge, VEGF secretion rates can only be obtained from in vitro
experiments and cannot be directly measured in vivo; however,
VEGF concentrations that depend on the secretion rates can be
measured experimentally, although such interstitial measurements
are presently not available. Therefore, this work provides new
insight into VEGF levels in a pre-clinical in vivo model of cancer. In
addition, using the optimized model for tumor-bearing mice, we
have estimated the concentration of VEGF in the mouse following
administration of VEGF Trap, as well as the distribution of VEGF
in mice and circulating levels of VEGF Trap and the VEGF/VEGF
Trap complex. These results show that the concentration of free
VEGF in the tumor depends on the tumor-specific properties such
as the rate of tumor growth and the amount of VEGF secreted
by tumor cells. Lastly, we used the predicted level of VEGF Trap
and hVEGF/VEGF Trap complex to compare various dosages. The
model predicted that all hVEGF originating from the tumor is
neutralized at higher doses of the drug. This demonstrates an
important application of the model: to incorporate tumor-specific
properties and investigate the efficacy of different drug doses.

We used the two-compartment model to estimate VEGF secre-
tion rates, clearance of free and bound VEGF Trap, and the binding
affinity of VEGF Trap for normal mice. The value of binding affin-
ity of VEGF Trap estimated by the model is comparable to the
experimentally measured value (11). Additionally, the estimated
EC secretion is comparable to the experimentally determined value
of 0.028 molecules/cell/s (27). However, the predicted rate at which
muscle cells secrete VEGF is very low, and varying this parameter
over one order of magnitude does not significantly change the fit.
In contrast, EC secretion can be specified and changing this para-
meter drastically influences the fit to experimental data (results not
shown). These results may indicate that the rate of VEGF secre-
tion from muscle and ECs cannot be simultaneously estimated
using the available experimental data. That is, measurements of
free and bound VEGF Trap in plasma do not allow us to distin-
guish how muscle and ECs contribute to VEGF levels. Additional
experimental measurements such as interstitial levels of VEGF in

Table 2 | Estimated VEGF secretion rates from optimization of three-compartment model.

Tumor Baseline tumor growth profile* Fast growth profile

Normal EC Tumor Normal EC Tumor

A673 0.011±0.007 0.009±0.008 0.009±5×10−5 0.009±0.006 0.009±0.008 0.007±4×10−5

HT1080 0.007±0.006 0.008±0.008 0.023±3×10−4 0.007±0.006 0.008±0.008 0.017±3×10−5

*Secretion rate is given in molecules/cell/s. We report the mean±SD of the 20 optimization runs.
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FIGURE 5 | Predicted concentration profiles of systemic VEGFTrap.
The optimized model was applied to predict the time course of free VEGF
Trap (black), mouse VEGF bound to VEGF Trap (blue), and human VEGF
bound to VEGF Trap (red) in the mouse plasma after a single intravenous

injection of VEGF Trap at (A), 0.5 mg/kg; (B), 2.5 mg/kg; (C), 10 mg/kg; and
(D), 25 mg/kg in the A673 rhabdomyosarcoma human tumor xenograft. We
use the mean (solid lines) and standard deviation (dashed lines) of the
fitted secretion rates.

Table 3 | Estimated concentrations of free VEGF before VEGFTrap injection.

Tumor Range of free VEGF (pM)*

Mouse Human

Normal Plasma Tumor Normal Plasma Tumor

A673 0.17–1.47 0.04–0.61 0.002–0.02 5.03×10−5–5.30×10−5 1.18×10−3–1.20×10−3 0.49–0.50

HT1080 0.07–1.27 0.02–0.54 0.001–0.02 1.26×10−4–1.34×10−4 2.95×10−3–3.05×10−3 1.23–1.26

*Calculated using (mean±SD).

skeletal muscle are needed in order to predict VEGF secretion by
muscle fibers with confidence. Currently, interstitial VEGF con-
centrations are only available in human tissue (28–33); however,
similar studies in mice are of great interest.

We found that fitted parameters from normal mice were not
sufficient to match the levels of unbound and complexed VEGF
Trap in the model of tumor-bearing mice. We first attempted to

use the fitted parameters from the two-compartment model in the
model of tumor-bearing mice and use in vivo experimental data to
fit the rate of VEGF secretion from tumor cells. However, the model
overestimated the amount of VEGF Trap complexed with mVEGF
(results not shown). We are able to more closely fit the experi-
mental data for the tumor-bearing mice by optimizing the three-
compartment model independent of the optimized model for
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FIGURE 6 | Predicted concentration profiles of unbound VEGF. The
optimized model was applied to predict the time course of free VEGF
and the fraction of free VEGF in the form of VEGF164 or VEGF165 in
normal tissue (blue), plasma (red), and tumor (black) twice-weekly

injection of VEGF Trap at 2.5 mg/kg. (A) Free mVEGF; (B), free hVEGF;
(C), percentage of VEGF164; and (D), percentage of VEGF165 in the A673
rhabdomyosarcoma human tumor xenograft. We use the mean of the
fitted secretion rates.

normal mice. This indicates that endogenous VEGF secretion may
be different in normal and tumor-bearing mice (Tables 1 vs 2).
Experimental studies are needed to validate these results; however,
evidence shows that VEGF secretion is reduced following admin-
istration of VEGF Trap (34) or other anti-angiogenic therapies
(35–37).

The three-compartment model predicted that the in vivo
tumor VEGF secretion rates needed to fit experimental data are
lower than data obtained from in vitro measurements. In vitro
experimental measurements of the VEGF secretion rate vary
widely: 0.03–2.65 molecules/cell/s (38–41). We predicted that
human tumors secrete VEGF at rates range ranging from 0.007
to 0.023 molecules/cell/s. Interestingly, there is little variabil-
ity in the predicted tumor secretion rate, as indicated by the
small standard deviation (∼10−5 molecules/cell/s). Having exper-
imental measurements of the plasma concentration of VEGF
Trap bound to hVEGF (i.e., VEGF originating from the tumor)
enables us to predict the rate at which the tumor secretes VEGF

in vivo. In this way, xenograft models are preferable to syn-
geneic tumor models, in which VEGF derived from tumor and
other tissues are indistinguishable. Similarly, plasma measure-
ments in human patients would not be sufficient to specify tumor
VEGF. Thus, xenograft models provide unique insight into the
effects of anti-angiogenic therapies and are relevant to human
studies.

Tumor VEGF secretion is predicted to depend on the tumor
microenvironment. HT1080 tumors are predicted to secrete ∼2-
fold more VEGF than A673 tumors. Additionally, average- and
fast-growing tumors are predicted to secrete different amounts of
VEGF, where VEGF secretion in fast-growing tumors is slightly
lower than that of tumors that grow at an average rate. To our
knowledge, experimental data for VEGF secretion rates is limited
to in vitro measurements. Therefore, the ability to use the model
to determine the VEGF secretion from in vivo data and track and
quantify normal and tumor VEGF are important features of the
model.
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Using the optimized model, it is possible to estimate VEGF
concentrations in the mouse before and after VEGF Trap admin-
istration. In the model, we allowed the tumor to grow for 2 weeks
before the VEGF Trap injection. Just before the injection, the
estimated plasma VEGF levels are within the range of exper-
imental measurements in mouse of 0.3–1.4 pM (42, 43). The
model indicates that plasma VEGF depends on properties of
the tumor, such as volume, a result that is validated by exper-
imental evidence (44). Using the model, free VEGF in muscle
interstitium is predicted to range from 0.2 to 1.5 pM. To our
knowledge, interstitialVEGF in normal tissues has only been quan-
tified in human samples. Interstitial muscle VEGF in humans
ranges from 0.3 to 3 pM (28–33, 45). It is not clear how this
concentration range varies across species. However, since the
range of plasma VEGF measurements is similar between mice
and humans, where human plasma VEGF is measured to be 0.4–
3 pM (46), it is possible that interstitial VEGF is also comparable
in mice and humans. Thus, our model results and predictions
provide a framework to compare VEGF distribution in differ-
ent species and can be experimentally validated. Additionally,
we are able to predict the concentration of specific VEGF iso-
forms (i.e., the percentage of free VEGF in the form of VEGF164

or VEGF165, as compared to the shorter isoforms VEGF120 or
VEGF121). These results may be useful in identifying predictive
biomarkers for anti-VEGF treatment, where the level of VEGF121

is being evaluated as a biomarker (47, 48). We also applied the
model to estimate the relative contribution of sVEGFR1-bound
and α2M-bound VEGF to total circulating VEGF. The soluble fac-
tors compete with anti-VEGF agents; therefore, it is of interest to
investigate the effect of sVEGFR1 on the response to anti-VEGF
treatment. In this way, the model complements studies evaluat-
ing sVEGFR1 as a potential biomarker to predict resistance to
anti-VEGF treatment (49).

We can also compare the estimated levels of plasma VEGF gen-
erated by the model following administration of VEGF Trap with
experimental studies. In vivo studies of mice with breast tumor
xenografts indicate the plasma VEGF is reduced following VEGF
Trap treatment, particularly at the higher doses (34). Addition-
ally, Hoff and coworkers report that VEGF Trap is able to bind all
free VEGF 11 days after treatment in an experimental model of
rat glioma (50). These studies support the computational model
predictions. However, we are not aware of animal studies that
provide the time course of VEGF and VEGF/VEGF Trap concen-
tration, which is an important contribution of the model and
can complement pre-clinical studies that investigate the efficacy
of VEGF Trap.

We show that interstitial tumor VEGF levels depend on specific
properties of the tumor. To our knowledge, there are no experi-
mental measurements for interstitial tumor VEGF concentrations.
However, a sampling of available experimental measurements of
total VEGF in tumor tissue (free and bound VEGF, both intracel-
lular and extracellular) reveals a wide range of values, depending
on tumor type and size. File 1 in Supplementary Material shows a
compilation of measurements of tumor VEGF for various tumor
types. Experimental studies to measure free VEGF in tumor tissue
in mouse models would provide much needed quantitative data
to test and validate the model predictions presented here.

MODEL LIMITATIONS
We consider the model presented here to be a minimal model
that accurately reproduces experimental data, both qualitatively
and quantitatively. The model includes several assumptions, which
may be addressed as quantitative data become available. For exam-
ple, we assume the normal tissue is skeletal muscle, although other
tissues and organs secrete and contain VEGF (51), but are not
as well-characterized as muscle. We include two major VEGF
isoforms (VEGF120/VEGF121 and VEGF164/VEGF165); however,
other isoforms such as VEGF188/VEGF189 (52) and VEGFxxxb

(53, 54) also influence angiogenesis and may impact anti-VEGF
therapies. Recent studies also show that other VEGF ligands and
receptors contribute to angiogenesis (55–57),and the model can be
expanded in the future to include these molecular species. Addi-
tionally, although platelets contain large amounts of VEGF and
contribute to angiogenesis (58), we have not included them in
the model as the rate and conditions under which they secrete or
unload VEGF are unknown. We assume that as the tumor grows,
the relative proportions of interstitial space, vascular volume, and
tumor cells remain constant. However, experimental studies indi-
cate that these proportions should change as the tumor grows (59).
Finally, we have not included the effects of anti-VEGF treatment
on tumor volume or vascular permeability. Pre-clinical studies
show tumor growth inhibition and even regression of the tumor
following anti-angiogenic therapy that targets VEGF. We have per-
formed preliminary studies where the tumor volume is constant
after 1 week of anti-VEGF treatment since experimental studies
indicate that tumor growth is halted during 2 weeks of twice-
weekly VEGF Trap injections (34). We found that the predicted
tumor secretion rate is slightly larger when accounting for tumor
growth stagnation. This is because the tumor is smaller and con-
sists of fewer cells. Therefore, the amount of VEGF that must be
secreted on a per cell basis in order to obtain a certain level of VEGF
or VEGF/VEGF Trap complex is higher. Tumor permeability may
decrease with anti-angiogenic therapy, as the tumor normalizes
neovasculature and it begins to resemble normal vessels; how-
ever, we have not included that effect in the current model. In
a human model of VEGF transport and kinetics, we considered
“low” and “high” vascular permeability between the tumor and
blood (22). Interestingly, the model predicts that tumor VEGF can
increase above the pre-treatment level depending on properties of
the tumor microenvironment, even when tumor permeability is
high. Future computational studies may investigate the effect of
anti-VEGF treatment on tumor volume and vascular permeability
in greater detail.

CONCLUSION
The compartment model presented here provides a framework
to investigate the action of VEGF-targeting agents for particular
types of tumors. The physiologically based and experimentally val-
idated model, based on currently available animal data, predicted
the dynamic concentrations of molecular species and other biolog-
ical parameters that are difficult to quantify experimentally. Thus,
the model complements pre-clinical experiments, can aid in the
development of agents that target VEGF and inhibit angiogenesis,
and may be useful in evaluating biomarkers of anti-angiogenic
therapies. The model can be extended to human patients; this is
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particularly important since in 2012 aflibercept has been approved
to treat metastatic colorectal cancer in humans (60).

MATERIALS AND METHODS
COMPUTATIONAL MODEL
We have expanded the two-compartment model of VEGF dis-
tribution in the mouse (23) to include tumor tissue (“tumor
compartment”). The model is illustrated in Figure 7. Geometric
and kinetic parameters for the normal and blood compartments
have been fully detailed in (23). By simulating a human tumor
xenograft (tissue that grows from human cancer cells that have
been injected into the mouse), we also incorporate hVEGF iso-
forms and cross-species reactions between ligands and receptors.
Specifically, we include VEGF121 and VEGF165, which are secreted
by tumor cells. The human isoforms can bind to human receptors
present on tumor cells, as well as mouse receptors on endothelial
surfaces in the body (normal and tumor EC) and muscle fibers in
the normal compartment. Additionally, the mouse isoforms bind
to mouse receptors on muscle fibers and ECs and human recep-
tors on tumor cells. The model can also be adapted to simulate
mouse syngeneic tumors, where the tumor cells secrete VEGF120

and VEGF164; in this case, only mVEGF is present in the model. In
this work, however, we have focused on human tumors. The mol-
ecular interactions between VEGF and its receptors are illustrated
in Figure 8.

In addition to introducing the tumor compartment, we include
VEGF interactions with two soluble factors: soluble VEGFR1
(sVEGFR1) and α2M and introduce VEGF secretion by ECs. Sol-
uble VEGFR1 is secreted by ECs and transported throughout
the body, enabling it to interact with VEGF in all compart-
ments. The soluble factor α2M is present in two forms: native
and active (α2Mfast) (61). Both forms are present at high con-
centrations (nanomolar to micromolar levels) (62), and due to

their size (720 kDa MW), we assume that both forms are con-
fined to the blood compartment. The model predicts the levels
of free VEGF in the tissue interstitium and in plasma. These
soluble factors interfere with assays that measure VEGF concentra-
tion, making it difficult to distinguish between VEGF that is truly
free versus VEGF that is bound to trapping molecules (63). Both
sVEGFR1 and α2M can sequester VEGF and reduce the levels of
free VEGF. Therefore, it is important to include these factors in
the model.

We have also included VEGF secretion by ECs, as experimen-
tal studies demonstrate that EC are a source of VEGF (64, 65).
The luminal and abluminal endothelial surfaces secrete VEGF,
and luminal secretion is predicted to be a major determinant of
plasma VEGF. Due to EC secretion of VEGF, the compartments are
relatively autonomous, since the concentration of VEGF in each
compartment is determined primarily by the secretion rate in that
compartment, as well as the microenvironmental variables of the
compartment; however, transport between compartments is also
important.

The model is described by 258 non-linear ordinary differential
equations (ODEs), including 53 for the normal compartments,
126 for the blood, and 79 for the tumor compartment. In addi-
tion to the ODEs that describe how the species’ concentrations
vary with time, we include an equation for the tumor volume,
such that the model simulatesVEGF distribution in tumor-bearing
mice, immediately following inoculation of tumor cells. The initial
tumor volume is 10−6 cm3. A sampling of experimental data for
the volume of xenografts generated from MCF-7 and MDA-MB-
231 breast cancer cells (66–74) reveals various growth profiles. We
fit the data to exponential curves, accounting for a range of tumor
growth profiles (Figure 9). The growth curves fit experimental
data well, within the time scales used in the model (i.e., <6 weeks).
In cases where the model is run for longer times, different growth

FIGURE 7 |Three-compartment model ofVEGF. The model is comprised
of three-compartments: normal tissue, blood, and tumor. VEGF120 and
VEGF164 are secreted by myocytes in the normal tissue and by EC in all
compartments. Tumor cells secrete the human isoforms VEGF121 and
VEGF165. VEGF receptors (VEGFR1 and VEGFR2) and co-receptors (NRPs)
are localized on parenchymal and endothelial cells. Soluble VEGFR1 and

glycosaminoglycan (GAG) chains are present in the interstitial space.
Alpha-2-macroglobulin (α2M) is present in the blood. Molecular species
are transported between compartments via microvascular permeability
(k p) and lymphatic drainage (k L). All isoforms of unbound VEGF in the
tissue compartments are subject to proteolytic degradation (k deg) and are
removed from the blood via plasma clearance (cV).
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FIGURE 8 | Molecular interactions. The interactions of VEGF120 and VEGF164 are illustrated. VEGF121 is involved in the same binding reactions as VEGF120.
Similarly, the interactions for VEGF165 are the same as VEGF164. Differences in the interactions of VEGF120/121, as compared to VEGF164/165 are due to differential
exon splicing.

FIGURE 9 |Tumor growth profiles. We investigate the growth profiles of two categories of tumors: average- (blue) and fast-growing (green) tumors, based on
available experimental data. The data are fit to exponential curves, and the growth equations are given in the File 2 in Supplementary Material.

curves should be used in order to capture the full range of tumor
growth dynamics for the desired time scale. The complete set of
equations, chemical reactions, and glossary of terms are given in
File 2 in Supplementary Material.

SIMULATION OF ADMINISTRATION OF VEGF TRAP
Experimental studies utilize a subcutaneous injection of VEGF
Trap (“anti-VEGF”); however, the authors of the experimental
study state that the bioavailability of the drug is the same whether
injected subcutaneously or intravenously (12). The current model
does not include a subcutaneous compartment; therefore, we sim-
ulate an intravenous injection, which inherently assumes that all of

the drug appears in the blood. Injection lasts for 1 min (the dura-
tion does not affect the results, within limits) and is performed
once the tumor reaches a particular volume, according to experi-
mental methods described by Rudge et al. (12). Various doses of
VEGF Trap are used, as reported by Rudge and coworkers (12)
(0.5, 1, 2.5, 10, and 25 mg/kg).

SENSITIVITY ANALYSIS
In order to understand the impact of various parameters, we per-
form variance-based global sensitivity analyses using the eFAST
(75). The eFAST method estimates the sensitivity of model out-
puts (i.e.,VEGF concentration) with respect to variations in model
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parameters. The three-compartment model is run multiple times
with different parameter sets, where all parameters are varied from
their baseline values. Variance for a parameter i is:

Di = 2
∞∑

p=1

(
A2

pj + B2
pj

)
where Aj and Bj are the Fourier coefficients of the cosine series
and sine series, respectively, for the frequency, j, associated with
the parameter i and include harmonics, p, of the base frequency.
The total variance in the output is:

Dtotal = 2
∞∑

j=1

(
A2

j + B2
j

)

The variances are used to estimate two indices that provide a
measure the sensitivity: first-order FAST indices, Si, and the total
FAST indices, STi . The first-order indices measure the local sensi-
tivity and do not account for interactions with other parameters:

Si =
Di

Dtotal

The Total FAST indices measure of global sensitivity and
take into account second- and higher-order interactions between
parameters. STi are calculated by excluding the effects of the
complementary set of other parameters:

STi = 1−
Dci

Dtotal

The eFAST method has been applied to systems biology models
(76), and our laboratory has previous used the method to inves-
tigate the sensitivity of VEGFR2 signaling (77). In this work, we
apply eFAST to investigate the sensitivity of steady state VEGF
concentrations with respect to kinetic parameters, transport para-
meters, and receptor expression levels. We use Simlab 2.2 from
Econometrics and Applied Statistics Unit EAS at the Joint Research
Centre of the European Commission to implement eFAST.

NUMERICAL IMPLEMENTATION
The model equations were implemented in MATLAB using the
SimBiology toolbox and were solved with the Sundials solver. The
model is available in SBML format at: http://www.jhu.edu/apopel/
software.html

PARAMETERS
Geometry
The geometric parameters for the tumor compartment are sum-
marized in Table A1 in Appendix. The tumor cells are assumed to
have the same volume as the MCF-7 breast tumor cells, which
have a mean diameter of 12 µm (78). A sphere of this diam-
eter would have a volume and surface area of 905 µm3 and
452 µm2, respectively. However, since tumor cells are not spher-
ical, we assume a dodecahedral cell of the same volume, which
has a surface area of 497 µm3. The average luminal diameter of

capillaries in growing MCF-7 xenografts is 13.94 µm (79), and
imaging of tumor vasculature supports this value (80). We assume
an EC thickness of 0.5 µm, which would yield a cylindrical cross-
sectional area of 175 µm2 and an outer perimeter of 46.9 µm.
However, microvessels are not cylindrical. Therefore, to find the
true perimeter, we used a relationship between total perimeter
and total cross-sectional area in breast cancer capillaries, where the
increase in perimeter is 23% (81, 82), yielding a capillary perimeter
of 57.7 µm.

The extracellular fluid volume fraction in the breast tumor
xenografts has been shown to range from 33 to 76% (78). Another
measurement reports the extracellular fluid volume in MCF-7
tumors to be 40% (83). We assume a value of 45%, which is divided
into interstitial space and intravascular space. We set the volume
fraction of intravascular space to be 10%, which is within the
range of available experimental data (84–86). Given the capillary
dimensions described above and an intravascular volume of 10%,
the capillary density is calculated to be 655 capillaries/mm2. Based
on a cell thickness of 0.5 µm, the volume occupied by the ECs of
the microvessels is 1.5%. Cancer cells occupy the remaining tissue
volume of 53.5%. The volume fractions of microvessels and tumor
cells are then used to calculate the total surface area of all vessels
and tumor cells per unit volume of tissue: 378 cm2 EC surface/cm3

tissue and 2939 cm2 tumor cell surface/cm3 tissue.
The interstitial space is composed of extracellular matrix

(ECM), and basement membranes associated with the microves-
sels (endothelial basement membrane, EBM) and tumor cells
(parenchymal basement membrane, PBM). The thickness of the
basement membranes is assumed to be 50 and 30 nm, for the EBM
and PBM, respectively, yielding volume fractions of 0.0081 and
0.0015 cm3/cm3 tissue. The remaining volume of the interstitial
space is the ECM volume (34.04%).

Each region of the interstitial space can be represented as a
porous medium that contains a solid fraction composed primarily
of collagen that is unavailable to VEGF, and a fluid fraction that is
accessible to VEGF. The size of the pores further limits the volume
available for VEGF to diffuse. Therefore, the available volume in
the ECM and basement membranes is calculated as the product
of the volume, fluid fraction, and partition coefficient. The fluid
fraction is the non-collagen fraction and is calculated by using the
total collagen content in interstitial space. Given limited data for
this measurement, we used 5%, the same value as in our previous
models (24, 25, 87). The ratio of basement membrane collagen to
total body collagen is assumed to be 0.3, which yields 0.0482 for the
ratio of ECM collagen to total body collagen. The fluid fractions
are then 0.7 for the basement membranes and 0.9318 for the ECM.
The partition coefficient is the ratio of available fluid volume to
interstitial fluid volume. We take 0.9 for the partition coefficient for
the EBM (88), and the same value is used for the ECM and PBM,
as it is difficult to distinguish basement membranes and the ECM
(89). The available fluid volume for the ECM, EBM, and PBM are
therefore 0.2916, 9.720× 10−4, and 5.082× 10−3 cm3/cm3 tissue,
respectively.

Concentrations
Receptor densities and ECM binding site densities are listed in
Table A2 in Appendix. VEGFR1, VEGFR2, and NRP1 on the
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luminal and abluminal surfaces of diseased EC surfaces and on
tumor cells are based on quantitative flow cytometry measure-
ments in ECs isolated from tumor tissue, as described in (25). We
assume NRP2 surface concentration on tumor cells at the same
level as NRP1.

Kinetics
To our knowledge, there are no data for the kinetics of mVEGF
isoforms binding to glycosaminoglycan (GAG) chains or mouse
receptors or cross-reactions between human and mouse isoforms
and receptors. Therefore, we assume the kinetic rates for VEGF
binding to and dissociation from receptors, co-receptors, and GAG
chains in the ECM and basement membranes are the same as in
our previous papers, based on experimental data (23–25, 87) and
are given in Table A3 in Appendix. We use experimental data from
Papadopoulos (11) for the on and off rates of VEGF binding to
VEGF Trap.

Transport
Transport parameters for VEGF, anti-VEGF, and the VEGF/anti-
VEGF complex are listed in Table A4 in Appendix. Parameters
that govern transport between the normal and blood compart-
ments are the same as in our previous model (23). Here, we explain
specific transport parameters required for the addition of soluble
factors sVEGFR1 and α2M and the tumor compartment. As in the
previous model, myocytes are a source of VEGF and secrete the
VEGF isoforms VEGF120 and VEGF164 at a ratio of 8:92 (90, 91).
Additionally, tumor cells secrete VEGF into the tumor interstitium
at a ratio of 50:50 for VEGF121:VEGF165, based on experimental
quantification of mRNA isoform expression levels (92–96). Here,
we also consider VEGF secretion by EC. We set the secretion ratio
of VEGF120:VEGF164 by EC to be 10:90, similar to the isoform
ratio in muscle tissue, since to our knowledge, this ratio has not
been determined experimentally. Additionally, we assume normal
and tumor EC secrete the same amount of VEGF; tumor EC are
a small fraction of the total EC in the body, thus this assumption
should not affect VEGF distribution. The rates of VEGF secretion
by muscle fibers, EC, and tumor cells are determined by para-
meter optimization, fitting to experimental data from Rudge and
coworkers (12).

This expanded model includes soluble factors sVEGFR1 and
α2M. ECs are a source of sVEGFR1, and the rates of secre-
tion by normal EC was set to 6× 10−3 molecules/cell/s. Similar
to VEGF secretion, we assume that sVEGFR1 secretion rate is
the same for tumor EC. At steady state, the model estimated
the distribution of sVEGFR1 in the body to be 0.4, 2.1, and
0.04 pM in the normal, blood, and tumor compartments, respec-
tively. The level of sVEGFR1 in the plasma is within the range
of experimental measurements, which range from 1 to 10 pM
(97, 98). The clearance of α2M was set at 2.62× 10−3 min−1,
based on experimental measurements of the half-life, t 1/2 (99),
using ln(2)/t 1/2. The synthesis of α2M was then estimated from
mass balance at steady state, where the concentrations of native
and active α2M are 1.4 µM (62) and 14 nM, respectively. We
assume that the concentration of active α2M is 100-fold lower
than that of the native form, based on experimental data for
humans (100–102).

Molecular species are removed from the system via two
mechanisms: plasma clearance and proteolytic degradation. The
values of these parameters are in Table A4 in Appendix.
For the normal endothelium, the permeability to sVEGFR1
and VEGF/sVEGFR1 is calculated using an empirical relation
between the Stokes–Einstein radius, aE, and molecular weight
[aE= 0.483× (MW)0.386], the corresponding theoretical macro-
molecular permeability-surface area product, PS (103), and the
capillary surface area, S. Taking microvascular permeability as
PS/S, and the calculated value is on the order of 10−8 cm/s, between
the normal and blood compartments. Since tumor vasculature is
more permeable than normal microvessels (104), we assume that
the microvascular permeability between the tumor and blood is
an order of magnitude higher than permeability between normal
and blood for both VEGF and the anti-VEGF or complex. There-
fore, the permeability to VEGF is 4× 10−7 and 3× 10−7 cm/s for
the anti-VEGF and VEGF/anti-VEGF complex. The permeability
to sVEGFR1 and VEGF bound to sVEGFR1 is 1.5× 10−7 cm/s.

Parameter estimation
The estimation of the VEGF secretion by muscle fibers, ECs,
and tumor cells was achieved using the “lsqnonlin” function in
MATLAB, as previously described (23). This algorithm solves the
non-linear least squares problem using the trust-region-reflective
optimization algorithm (105, 106), minimizing the weighted sum
of the squared residuals (WSSR):

min WSSR(θ) = min
n∑

i=1

[
Wi
(
Cexperimental, i − Csimulation, i(θ)

)]2

where Cexperimental, i is the ith experimentally measured plasma
concentration data point, C simulation, i(θ) is the ith simulated
plasma concentration at the corresponding time point, Wi is the
weight taken to be 1/Cexperimental, i , and n is the total number of
experimental measurements. The minimization is subject to the
upper and lower bounds of the free parameters, θ.

The two-compartment model was used to determine the rate
of VEGF secretion by muscle fibers and ECs (“normal” and “EC”
secretion, respectively), clearance of free and bound VEGF Trap,
dissociation constant of VEGF and VEGF Trap. These five free
parameters were fit to experimental data for the concentration
profiles of VEGF/VEGF Trap complex and unbound VEGF Trap
in mice at different doses of VEGF Trap (12), with a total of 58 data
points. The initial value of the secretion rates was generated within
the lower and upper bounds of 1.5× 10−6 and 2 molecules/cell/s,
respectively. The lower bound corresponds to 10 pg/ml and was
set based on the limit of detection of standard ELISA kits used to
measure (63). The half-life of VEGF Trap in mouse serum has been
reported as 72 h (107), which corresponds to a clearance rate of
1.6× 10−4 min−1, assuming clearance rate is equal to ln(2)/half-
life. The upper and lower bounds of the clearance rates were one
order of magnitude above and below this value, respectively. The
upper and lower bounds for the dissociation constant were set to
0.25 and 5 pM, based on experimental data (11, 12). The base-
line value of permeability of the normal tissue to VEGF Trap is
3× 10−8 cm/s, as described above, and the bounds were one order
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of magnitude above and below this value. The optimal parame-
ter values are reported as the mean and standard deviation of the
20 runs.

We used the three-compartment model to determine the rate
at which VEGF is secreted by tumor cells (“tumor secretion”) and
permeability of diseased tissue to free and complexed VEGF Trap.
Tumor secretion was optimized to fit experimental data for the sys-
temic VEGF Trap levels (free and complexed) reported by Rudge
et al. (12). Experimental data for two human tumor xenografts
(A673 rhabdomyosarcoma and HT1080 fibrosarcoma) were used
separately; the total number of data points was 11 for A673
tumors and 10 for HT1080 tumors. Twenty runs were performed
for each tumor, which either followed the average (baseline) or
fast growth profile. This yields two conditions for each tumor
type. The optimal secretion rates are reported as the mean and

standard deviation of the 20 runs and should be interpreted as
a range of values, where the values are dependent on the tumor
microenvironment, tumor type, and growth profile.
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APPENDIX

Table A1 | Geometric parameters.

Value Units Reference

CANCER CELLS

Tumor cell external diameter 12 µm Paran et al. (78)

Volume of one cell 905 µm3 Calculated (see manuscript)

Surface area of one cell 497 µm2 Calculated (see manuscript)

MICROVESSELS

Average luminal diameter 13.9 µm Schaefer et al. (79)

Endothelial cell thickness 0.5 µm Based on normal microvessels (108)

Average external diameter 14.9 µm Calculated (see manuscript)

Cross-sectional area of one vessel 175.3 µm2 Calculated (see manuscript)

Perimeter of one vessel 57.7 µm Calculated (see manuscript)

Capillary density 655 Capillaries/mm2 Calculated (see manuscript)

VOLUME FRACTIONS

Interstitial space 35.0% cm2/cm3 tissue Based on (78, 83)

Cancer cells 53.5% cm2/cm3 tissue Calculated (see manuscript)

Microvessels of which intravascular space 11.5% cm2/cm3 tissue Calculated (see manuscript)

10.0% cm2/cm3 tissue Based on (84–86)

SURFACE AREAS

Tumor cells 2939 cm2/cm3 tissue Calculated (see manuscript)

Microvessels 378 cm2/cm3 tissue Calculated (see manuscript)

BASEMENT MEMBRANES (BM)

Thickness of tumor cell BM 30 nm Based on (109)

Basement membrane volume (tumor cells) of which available to VEGF 0.00807 cm3/cm3 Calculated (see manuscript)

0.00508 cm3/cm3 tissue Calculated (see manuscript)

Thickness of microvessel BM 50 nm Based on (109)

Basement membrane volume (microvessels) of which available to VEGF 0.00154 cm3/cm3 tissue Calculated (see manuscript)

0.000972 cm3/cm3 tissue Calculated (see manuscript)

Extracellular matrix volume of which available to VEGF 0.3375 cm3/cm3 tissue Calculated (see manuscript)

0.2892 cm3/cm3 tissue Calculated (see manuscript)

Table A2 | Concentrations in tumor compartment.

Value Units

VEGFR1

Luminal EC 3750 Dimers/EC

Abluminal EC 3750 Dimers/EC

Tumor 1100 Dimers/TC

VEGFR2

Luminal EC 300 Dimers/EC

Abluminal EC 300 Dimers/EC

Tumor 550 Dimers/TC

NRP1

Luminal EC 39,748 Dimers/EC

Abluminal EC 39,748 Dimers/EC

Tumor 39,500 Dimers/TC

NRP2

Tumor 39,500 Dimers/TC

ECM binding density 0.75 µM

EBM binding density 13 µM

PBM binding density 13 µM

EC, endothelial cell; TC, tumor cell.
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Table A3 | Kinetic parameters.

Value Unit Reference

VEGF BINDINGTO VEGFR1

kon 3×107 M−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koff 10−3 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

K d 33 pM Mac Gabhann and Popel (87), Stefanini et al. (24)

VEGF BINDINGTO VEGFR2

kon 107 M−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koff 10−3 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

K d 100 pM Mac Gabhann and Popel (87), Stefanini et al. (24)

VEGF BINDINGTO NRP1

kon 3.2×106 M−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koff 10−3 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

K d 312.5 pM Mac Gabhann and Popel (87), Stefanini et al. (24)

VEGF BINDINGTO GAGs

kon 4.20×105 M−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koff 10−2 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

K d 24 pM Mac Gabhann and Popel (87), Stefanini et al. (24)

COUPLING OF NRP1 AND VEGFR1

kc 1014 (mol/cm2)−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koff 10−2 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

COUPLING OF NRP1 AND VEGFR2

kcV165R2, N1 3.1×1013 (mol/cm2)−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koffV165R2, N1 10−3 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

kcV165N1, R2 1014 (mol/cm2)−1 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

koffV165N1, R2 10−3 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

VEGFR INTERNALIZATION

k int 2.8×10−4 s−1 Mac Gabhann and Popel (87), Stefanini et al. (24)

VEGF121 BINDINGTO ANTI-VEGF

kon 3.75×108 M−1 s−1 Calculated

koff 1.35×10−5 s−1 Papadopoulos et al. (11)

K d 0.36 pM Papadopoulos et al. (11)

VEGF165 BINDINGTO ANTI-VEGF

kon 4.10×107 M−1 s−1 Calculated

koff 2.01×10−5 s−1 Papadopoulos et al. (11)

K d 0.49 pM Papadopoulos et al. (11)

VEGF120 BINDINGTO ANTI-VEGF

kon 2.15×107 M−1 s−1 Calculated

koff 1.23×10−5 s−1 Papadopoulos et al. (11)

K d 0.572 pM Papadopoulos et al. (11)

VEGF164 BINDINGTO ANTI-VEGF

kon 2.80×107 M−1 s−1 Calculated

koff 1.64×10−5 s−1 Papadopoulos et al. (11)

K d 0.586 pM Papadopoulos et al. (11)

VEGF BINDINGTO α2M

kon 25 M−1 s−1 Calculated

koff 10−4 s−1 Assumed

K d 4.0 µM Bhattacharjee et al. (110)

VEGF BINDINGTO α2MFAST

kon 2.4×102 M−1 s−1 Calculated

koff 10−4 s−1 Assumed

K d 0.42 µM Bhattacharjee et al. (110)

(Continued)
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Table A3 | Continued

Value Unit Reference

sVEGFR1 BINDINGTO VEGF

kon 3×107 M−1 s−1 Assumed, based on VEGF binding to VEGFR1

koff 10−3 s−1 Assumed

K d 33 pM Assumed

sVEGFR1 BINDINGTO NRP1

kon 5.6×106 M−1 s−1 Calculated

koff 10−2 s−1 Assumed, based on VEGFR1 coupling to NRP1

K d 1.8 nM Fuh et al. (111)

sVEGFR1 BINDINGTO GAGs

kon 4.20×105 M−1 s−1 Assumed, based on VEGF165 binding to GAG

koff 10−2 s−1 Assumed

K d 24 pM Assumed

Table A4 |Transport parameters.

Value Unit Reference

PERMEABILITY BETWEEN NORMAL AND BLOOD

VEGF 4.0×10−8 cm/s Stefanini et al. (24)

Anti-VEGF and VEGF/anti-VEGF complex 3.0×10−8 cm/s Stefanini et al. (24)

Soluble VEGFR1 1.5×10−8 cm/s Calculated, see text

Soluble VEGFR1/VEGF complex 1.5×10−8 cm/s Calculated, see text

PERMEABILITY BETWEENTUMOR AND BLOOD

VEGF 4.0×10−7 cm/s Assumed, see text

Anti-VEGF and VEGF/anti-VEGF complex 3.0×10−7 cm/s Assumed, see text

Soluble VEGFR1 1.5×10−7 cm/s Assumed, see text

Soluble VEGFR1/VEGF complex 1.5×10−7 cm/s Assumed, see text

CLEARANCE

VEGF 2.3×10−1 min−1 Folkman (112)

Anti-VEGF 8.9×10−4 min−1 Yen et al. (23)

VEGF/anti-VEGF complex 2.8×10−4 min−1 Yen et al. (23)

Soluble VEGFR1 3.0×10−4 min−1 Wu et al. (113)

Soluble VEGFR1/VEGF complex 3.0×10−4 min−1 Wu et al. (113)

Alpha-2-macroglobulin (α2M) 2.6×10−3 min−1 Hudson et al. (99)

α2M/VEGF complex 2.6×10−3 min−1 Assumed, based on α2M

α2M/VEGF/anti-VEGF complex 2.6×10−3 min−1 Assumed, based on α2M

Activated alpha-2-macroglobulin (α2Mfast) 2.4×10−1 min−1 Imber and Pizzo (114)

α2M/VEGF complex 2.6×10−3 min−1 Assumed, based on α2Mfast

DEGRADATION

Soluble VEGFR1 1.2×10−2 min−1 Assumed based on VEGF

Soluble VEGFR1/VEGF complex 1.2×10−2 min−1 Assumed based on VEGF

SYNTHESIS

Alpha-2-macroglobulin 1.8×1010 Molecules/cm3 tissue/s Calculated, see text

Activated alpha-2-macroglobulin 1.6×1010 Molecules/cm3 tissue/s Calculated, see text
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FIGURE A1 | Predicted systemic VEGFTrap levels for fast-growing
tumors. The model predicts the plasma levels of free VEGF Trap (black
lines), mouse VEGF bound to VEGF Trap (blue lines), and human VEGF
bound to VEGF Trap (red lines) for fast-growing tumors. VEGF Trap was
administered twice per week for 2 weeks at doses of 0.5, 1, 2.5, 10, and 25
mg/kg. The simulated results are shown for the optimized model where the
secretion rates of VEGF by myocytes, EC, and tumor cells were fit to
experimental data (circles). We use the mean (solid lines) and 1 SD (dashed
lines) of the fitted secretion rates. (A) A673 tumor; and (B) HT1080 tumor.

FIGURE A2 | Optimized VEGF secretion rates. The model parameters
were optimized to fit experimental data, and the values of normal, EC, and
tumor VEGF secretion rates were determined. The mean optimal secretion
rates and standard deviation of 20 optimization runs for fast-growing
tumors are shown.
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Vascular endothelial growth factor (VEGF) is the most studied family of soluble, secreted
mediators of endothelial cell migration, survival, and proliferation. VEGF exerts its function
by binding to specific tyrosine kinase receptors on the cell surface and transducing the
effect through downstream signaling. In order to study the influence of VEGF binding on
endothelial cell motion, we develop a hybrid model of VEGF-induced angiogenesis, based
on the theory of reinforced random walks.The model includes the chemotactic response of
endothelial cells to angiogenic factors bound to cell-surface receptors, rather than approxi-
mating this as a function of extracellular chemical concentrations.This allows us to capture
biologically observed phenomena such as activation and polarization of endothelial cells
in response to VEGF gradients across their lengths, as opposed to extracellular gradients
throughout the tissue.We also propose a novel and more biologically reasonable functional
form for the chemotactic sensitivity of endothelial cells, which is also governed by activated
cell-surface receptors. This model is able to predict the threshold level of VEGF required
to activate a cell to move in a directed fashion as well as an optimal VEGF concentration
for motion. Model validation is achieved by comparison of simulation results directly with
experimental data.

Keywords: mathematical model, angiogenesis,VEGF binding dynamics, endothelial cell migration, hybrid modeling

1. INTRODUCTION
Motility – random, directed, and collective – is a fundamental
property of cells. Coordinated cellular motion leads to all physio-
logical tissue patterns, a consequence of integration across multi-
ple temporal and spatial scales. However, when this integration is
aberrant, the properties that emerge lead to a critical bifurcation
point in cancer progression: angiogenesis. Angiogenesis, the for-
mation of new blood vessels from pre-existing ones, provides the
necessary blood supply for the growth and nourishment of solid
tumors beyond a few millimeters in diameter (Hanahan and Wein-
berg, 2000; Augustin et al., 2009). Tumor angiogenesis is associated
with an extremely complex, yet well-ordered series of events at the
center of which is the enhanced replicative potential and motil-
ity of endothelial cells (ECs) that line the inner surface of blood
vessels (Folkman, 1985; Hanahan and Weinberg, 2000).

The multistep process associated with successful angiogenesis
can be summarized as EC degradation of the adjacent basement
membrane, migration (sprouting), proliferation, alignment, tube
formation, branching that increases near the tumor leading to a
brush-border, anastomosis (fusion of vessels), synthesis of new
basement membrane, recruitment of parenchymal cells, network
remodeling, and a return to quiescence (Folkman, 1985; Yan-
copoulos et al., 2000; Conway et al., 2001; Augustin et al., 2009).
Precise coordination and integration of molecular, cellular, and tis-
sue level interactions is required for angiogenesis to be successful
from initiation to stabilization of a functional vascular plexus.

Under conditions of hypoxia, tumor cells induce angiogenesis
by releasing a wide variety of polypeptide angiogenic factors that

stimulate EC activation, survival, proliferation, migration, and
maturation. Members of the vascular endothelial growth factor
(VEGF) family have been identified as the predominant amongst
these angiogenic factors that regulate EC phenotype (Yancopou-
los et al., 2000; Jain, 2002; Ferrara, 2004; Hicklin and Ellis, 2005).
VEGF has been implicated across a range of human cancer and
preclinical studies have shown that VEGF stimulates survival of
existing vessels, promotes new vessel growth, and contributes to
vascular abnormalities such as tortuousness and hyperperme-
ability. The angiogenic effects of the VEGF pathway are primar-
ily initiated through the interaction of VEGFA and its natural,
endothelial cell specific receptor, VEGFR2, which is up-regulated
during angiogenesis (Neufeld et al., 1999; McMahon, 2000; Con-
way et al., 2001). Dimerization and activation of VEGFR2 results
in mitogenic, chemotactic, and prosurvival signals (Nor et al.,
1999; Ferrara et al., 2003; Ferrara, 2004), which help to determine
endothelial cell phenotype.

The various steps of the angiogenic cascade require endothelial
cells to take on spatio-temporally varying phenotypes; that is, at
any given time and at any specific spatial location within a devel-
oping sprout, ECs can have a proliferative, migratory, or quiescent
phenotype. For example, tip cells are highly migratory and lead the
extending sprout through the extracellular matrix (ECM), whereas
stalk cells, which form the vessel lumen and recruit support cells,
can be either proliferative or quiescent. It has been shown that
endothelial cells compete for the tip cell position through relative
levels of VEGF-receptors (Jakobsson et al., 2010). While much is
known about the sequential morphogenetic processes required for
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angiogenesis and the growth factors that drive it, far less is known
about how cellular and molecular mechanisms are coordinated to
control cell motility decisions and phenotype choices. In order to
advance the understanding and manipulating of the processes that
occur during angiogenesis, it is critical to understand how indi-
vidual cells interpret the biochemical signals that come from their
unique microenvironment.

For decades, mathematical models have been employed to help
address some of the pressing questions associated with tumor
angiogenesis. As discussed in detail in Jackson and Zheng (2010),
Zheng et al. (2013), existing models of tumor-induced angio-
genesis can be characterized as continuous approaches (Balding
and McElwain, 1985; Byrne and Chaplain, 1995, 1996; Anderson
and Chaplain, 1998a,b; Holmes and Sleeman, 2000; Levine et al.,
2001; Arakelyan et al., 2002; Sleeman and Wallis, 2002; Manous-
saki, 2003; Plank and Sleeman, 2003, 2004; Plank et al., 2004;
Levine and Nilsen-Hamilton, 2006; Schugart et al., 2008; Billy
et al., 2009; Xue et al., 2009; Travasso et al., 2011), wherein cells
are assumed to have a continuous distribution; discrete or hybrid
models (Stokes and Lauffenburger, 1991; Anderson and Chap-
lain, 1998b; Tong and Yuan, 2001; Plank and Sleeman, 2003, 2004;
Sun et al., 2005; Bartha and Rieger, 2006; Gevertz and Torquato,
2006; Frieboes et al., 2007; Milde et al., 2008; Capasso and Morale,
2009; Owen et al., 2009; Perfahl et al., 2011), wherein cells are
modeled as individual agents and diffusible chemicals are mod-
eled as a continuum; and cell-based formulations (Peirce et al.,
2004; Bauer et al., 2007; Bentley et al., 2009; Qutub and Popel,
2009; Wcislo et al., 2009; Jackson and Zheng, 2010; Liu et al.,
2011) wherein explicit incorporation of different properties of
individual cells allows collective behavior of cell clusters to be
predicted from the behavior and interactions of individual cells.
Reviews of these models that appeared in or before 2009 can be
found in Mantzaris et al. (2004), Peirce (2008), Qutub et al. (2009).
However, these models suffer from the following limitations. Con-
tinuum descriptions of biological motion such as chemotaxis are
derived by averaging quantities such as cellular and vascular den-
sities, and therefore apply to the macroscopic behavior of a large
number of cells. However, the initial stages of new capillary devel-
opment requires only a small number of cells in a highly discrete
arrangement, which is better described by treating cells as indi-
vidual agents. Further, even when a hybrid or cell-based approach
has been adopted, endothelial cell movement, and/or microvessel
formation speed and direction is typically assumed to depend on
extracellular chemokine concentrations, whereas it is known that
cells integrate the chemical signal via receptors on their surfaces in
order to make behavioral decisions (Nor et al., 1999; Ferrara et al.,
2003; Ferrara, 2004).

In order to study the influence of VEGF binding on EC motion,
we develop here a hybrid model of VEGF-induced angiogenesis
that is based on the theory of reinforced random walks. We will
include in our model, the chemotactic response of endothelial
cells to angiogenic factors bound to cell-surface receptors, rather
than approximating this as a function of extracellular chemical
concentrations. This will allow us to capture biologically observed
phenomena such as the activation and polarization of endothelial
cells in response to VEGF gradients across their lengths. We will
also propose a novel and more biologically reasonable functional

form for the chemotactic sensitivity of cells, which is also governed
by activated cell-surface receptors.

In the sections that follow, we will first develop a model to
describe the motion of a single EC that has a tip cell phenotype.
The motion of an EC across a 1 mm2 domain will be simulated,and
average time taken by the cell to reach the tumor (VEGF source)
computed as a function of source strength. We will then extend
this model to study the early stages of blood vessel formation
and sprout extension. In particular, we will capture the follow-
ing growth pattern of developing sprouts, typically observed in
experiments. Sprouts arising from parent vessels are observed to
grow parallel to each other initially (Paweletz and Knierim, 1989),
with anastomoses between tip cells and stalk cells, or between
two tip cells observed to occur a certain distance into the stroma.
As the developing vessels near the source of chemoattractants,
new sprouts emerge in a process called sprout branching, which
increases with proximity to the source. This has been described
as a “brush-border” effect (Muthukkaruppan et al., 1982; Sholley
et al., 1984). We will also investigate the effect on vascular develop-
ment of the source strength of VEGF. Model validation will follow
from a qualitative comparison of simulations with experimental
data on neovascularization of the rat cornea taken from Sholley
et al. (1984).

2. MATERIALS AND METHODS
2.1. MODEL DEVELOPMENT: SINGLE CELL MOTION UNDER THE

INFLUENCE OF VEGF
A vital characteristic of all cells is their ability to sense their envi-
ronment and respond to it, such as motion toward or away from an
external, chemical stimulus. The response of endothelial cells to a
chemokine like VEGF involves the following two major steps that
a mathematical description of this process needs to account for: (i)
detection of the signal (via gradient of bound VEGF to cell-surface
receptors) and (ii) transduction of the external signal into an inter-
nal signal that controls the pattern of movement (Mantzaris et al.,
2004). The theory of reinforced random walks, where a master
equation governing cell movement is derived directly from the
governing biology, as opposed to discretizing a continuous equa-
tion of macroscopic motion, provides a natural framework for
modeling the movement of individual endothelial cells that initi-
ate vascular sprout development. We remark that for simplicity, the
effects of the extracellular matrix on EC motion are not explicitly
considered at this time so that the cell is assumed to migrate on a
homogeneous and isotropic medium. Further, on the time-scale of
interest, cell proliferation, and death are assumed to be negligible.

We begin our model development by first simulating a single
EC moving under the influence of VEGF. The EC is interpreted as
a (biased) random walker that adapts its motility decisions under
the influence of activated VEGF-receptors on its surface. We con-
sider a 2-dimensional spatial domain,with a tumor located at x = 1
serving as the source of VEGF, and a parent vessel located at x = 0
providing individual ECs to begin sprout development, as shown
in Figure 1A. The tumor secretes VEGF under the condition of
hypoxia, which diffuses toward the parent vessel. VEGF is taken up
by cells lining the parent vessel, transforming them into sprout tip
cells. These migrate up its chemical gradient, pulling behind them
the developing capillaries. The principal dynamics that we wish to
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FIGURE 1 | (A) Geometry of the model domain. A source of VEGF (e.g., a
tumor) is situated at x =1. VEGF diffuses toward a parent vessel located at
x =0, and is taken up by endothelial cells lining it. The activated cells
migrate up gradients of VEGF, elongating behind them capillaries. (B–D)
Motion of a cell on a 2-d lattice in response to VEGF stimulus. The cell

begins at position (n, m) in (B). VEGF molecules are shown in red. The
number of activated VEGF-receptors is greatest on the cell surface at
lattice site (n+1/ 2, m), and the probability of motion in this direction is the
greatest. Consequently, the cell is likely to move from site (n, m) to (n+ 2,
m), as shown in (C,D).

capture with the model are the binding and uptake of VEGF by the
sprout tip cells, the subsequent activation of cell-surface receptors,
and the chemotactic response of the cells to this stimulation. To our
knowledge, this level of molecular detail has not been implemented
previously in a model of tumor-induced angiogenesis.

The cell is located initially at spatial position x = 0, y = 0.5, and
will move in response to a local, cellular gradient of VEGF, which
has its source at x = 1. A schematic of this process is shown in
Figures 1B–D. Following Plank et al. (Plank and Sleeman, 2003;
Plank et al., 2003, 2004), we base our spatial discretization on
purely biological considerations. As per the approach developed
in Plank and Sleeman (2003), Plank et al. (2003), Plank et al.
(2004), Othmer and Stevens (1997), the following master equa-
tion is used to describe a biased random walk (in two dimensions)
of the endothelial cell, moving under the influence of VEGF in its
local environment:

∂pn,m

∂t
= T̂ H+

n−1,m (W ) pn−1,m + T̂ H−
n+1,m (W ) pn+1,m

+ T̂ V+
n,m−1 (W ) pn,m−1 + T̂ V−

n,m+1 (W ) pn,m+1

−

(
T̂ H+

n,m (W )+ T̂ H−
n,m (W )+ T̂ V+

n,m (W )

+T̂ V−
n,m (W )

)
pn,m .

(1)

Here, pn,m(t ) describes the probability that a cell is at site (n,

m), at time t. T̂ H±
n,m (·) , and T̂ V±

n,m (·) are the transition probabil-
ities per unit time for a one step horizontal jump to (n± 1, m),
or a one step vertical jump to (n, m± 1) respectively. The vector
W gives the concentration of the chemoattractant C, at the lattice
sites. In order for the master equation to translate to the standard
diffusion-chemotaxis equation for cell movement in the contin-
uum limit, it is assumed that the dependence of transition rates at
lattice site (n, m) is localized to chemoattractant concentration at
sites (n± 1/ 2, m) and (n, m± 1/ 2). This is reasonable, since we
may think of a cell present at lattice site (n, m), with its bound-
aries extending to half the lattice length. The cell can therefore
sense the chemical concentrations at these half-lattice sites, and
make a decision where to move, as illustrated in Figures 1B–D.
Under these assumptions,W = (. . .,C−n−1/2,m ,C−n,m ,C−n+1/2,m ,
C−n+1,m , . . .).

The mean waiting time at the (n, m)th site is given

by 1/
(
T̂ H+

n,m (W )+ T̂ H−
n,m (W )+ T̂ V+

n,m (W )+ T̂ V−
n,m (W )

)
. We

make the assumption that the decision of where to move in
space is independent of the decision when to move in time.
Mathematically, this is equivalent to setting

T̂ H+
n,m (W ) + T̂ H−

n,m (W )+ T̂ V+
n,m (W )+ T̂ V−

n,m (W ) = k. (2)
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That is to say, the cell makes a decision to move (or to stay
still) after a constant amount of time, k. One way to satisfy these
assumptions is the following choice of transition probabilities, as
made by Othmer and Stevens (1997)):

T H±
n,m =

1

k

τ
(
Cn±1/2,m

)
τ
(
Cn+1/2,m

)
+ τ

(
Cn−1/2,m

)
+τ

(
Cn,m+1/2

)
+ τ

(
Cn,m−1/2

) ,

T V±
n,m =

1

k

τ
(
Cn,m±1/2

)
τ
(
Cn+1/2,m

)
+ τ

(
Cn−1/2,m

)
+τ

(
Cn,m+1/2

)
+ τ

(
Cn,m−1/2

) ,

(3)

for some function τ (C) of the chemoattractant. The choice of the
functional form for τ (C) is based on the particular form of the
chemotactic sensitivity desired, and is explained in the following
section. A grid of mesh size h is chosen, thereby fixing x = nh.
Passing to the continuum limit h→ 0 and 1/4k→∞ such that
h2/4k=Dp, where Dp is the diffusion coefficient of ECs, Othmer
and Stevens (1997) show that the master equation (1) translates to
the familiar diffusion-chemotaxis equation (4), for cell motion.

∂p

∂t
= Dp1p −∇ ·

(
pχ (C) ∇C

)
, (4)

where the chemotactic sensitivity χ(C)=Dp(ln τ (C))’. To get a
completely discretized model of the motion of the cell, the time
derivative of p in equation (1) is approximated by a simple forward
difference scheme, with k as the time step, given by

k =
h2

4Dp
. (5)

A diagrammatic representation of the motion of the cell is
shown in Figure 1. The cell starts out at time t at the lattice site
(n, m) (Figure 1B). Endothelial cells are large enough to detect
gradients of chemoattractants across their length, which is typi-
cally 20µm (Vadapalli et al., 2000). In contrast to existing models
of cellular chemotaxis, in which cells typically respond to free,
extracellular chemokine concentrations, or their gradients in the
surrounding tissue, the model developed here will capture the
response of ECs to VEGF that is bound to cell-surface receptors.
VEGF-VEGFR2 binding is known to be the signal that initi-
ates endothelial motility, therefore incorporating this molecular
response is important for a realistic description of cell motion.

The cell detects bio-available VEGF by taking it up at the half-
lattice sites (Figure 1B). The model will thus make the crucial
distinction between VEGF that is free to bind to the cell, versus
VEGF that might be sequestered in the underlying extracellular
matrix, unavailable to the cell. Based on the numbers of activated
receptors at its four sides, the cell becomes polarized and attains a
bias in a particular direction. It correspondingly elongates in this
direction (Figure 1C). Finally, the rear of the cell detaches from
the underlying matrix and contracts, and the cell has now moved
to the site (n+ 1, m) (Figure 1D). We remark that it has been
observed experimentally that ECs may respond to chemoattrac-
tant concentration differences of as small as 2% across their length,

frequently at concentrations at which molecular fluctuations are
significant (Mantzaris et al., 2004). In our model, fluctuations of
the order of 100 molecules of VEGF per cell are significant enough
to alter its polarization, and hence its direction of motion.

2.2. A NOVEL CHEMOTACTIC SENSITIVITY FUNCTION
An important difference that sets this model apart from those
preceding it, is the choice of the chemotactic sensitivity function
χ(C). Various choices have been proposed thus far in the modeling
literature for χ(C), for a review of the most commonly used func-
tional forms (see Ford and Lauffenburger, 1991). The simplest
choice is to assume that the chemotactic sensitivity is constant,
χ(C)=χ0 (Keller and Segel, 1971a,b). However, this implies that
the chemotactic sensitivity is unchanging in the presence of the
chemoattractant, and does not account for the desensitization of
cells which has been experimentally observed to occur in regions
of high chemokine concentrations (Kuppuswamy and Pike, 1989;
Wang et al., 2000; Kurt et al., 2001). To overcome this, Lapidus and
Schiller (1976), and later Murray (2003) used the functional form
χ(C)=χ0/(K +C)2, also known as the receptor-kinetic law. This
has the advantage that it is able to account for the desensitization of
receptors when c is large. Yet another popular phenomenological
choice isχ(C)=χ0/(K +C), where K is the dissociation constant
of the chemokine binding to the receptors (Balding and McElwain,
1985; Anderson and Chaplain, 1998b; Plank et al., 2003).

Although the choices mentioned above have been widely used
in the angiogenesis literature, there are a few biological issues that
these choices do not address. Firstly, they indicate that when no
chemokine is present at a site, the chemotactic sensitivity is the
greatest, and that the sensitivity decreases as chemokine concen-
trations increase. However, there is experimental evidence which
points toward the existence of a minimum threshold level of chem-
ical stimulus required for the cell-surface receptors to become
activated, and for the cell to start moving in a directed fashion
(Favier et al., 2006; Liu et al., 2006). This threshold has been incor-
porated in the cell-based model of tumor angiogenesis by Bauer
et al. (2007). Secondly, the above functions do not account for the
fact that the amount of chemokine required to desensitize cells
depends on the concentration of cells present at the lattice site.
For instance, while 10 fg of VEGF is enough to desensitize a single
EC, it is not enough for 10 cells. Finally, for an external chem-
ical signal to elicit a chemotactic response from a cell, it needs
to be detected by the cell, and transduced into an internal signal
controlling cell motion. Neutrophils have been shown to sense
chemical gradients of 1% across their lengths, under optimal con-
ditions (Wang et al., 2004; Levine et al., 2006), while this number
can be as low as 0.1% for axons (Wang et al., 2004). In general,
eukaryotic cells are reported to be able to polarize and migrate in
a directed fashion in alignment with chemical gradients of about
2% across their lengths (Franz et al., 2002). It is therefore biolog-
ically more reasonable to assume that the chemotactic response
of cells is dependent on the gradients of activated receptor com-
plexes formed on the cell surface when the chemokine binds to its
receptors, rather than gradients of free chemokine concentration
throughout the tissue.

To address these concerns, we propose that the chemotactic
sensitivity function should in fact be a function of the activated
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receptor concentration, A. In this case, equation (4) for the motion
of a cell in 2 dimensions transforms to the following:

∂p

∂t
= Dp1p −∇ ·

(
χ (A) p∇A

)
. (6)

Correspondingly, the transition probabilities in equation (1)
will now be functions of concentration of activated receptor
complexes on the cell surface a and not extracellular VEGF. That is,

T H±
n,m =

1

k

τ(An±1/2,m)

τ (An+1/2,m)+ τ(An−1/2,m)

+τ(An,m+1/2)+ τ(An,m−1/2)

,

T V±
n,m =

1

k

τ(An,m±1/2)

τ (An+1/2,m)+ τ(An−1/2,m)

+τ(An,m+1/2)+ τ(An,m−1/2)

.

(7)

We have to add equations for the binding of chemokine to their
cell-surface receptors, which will need to be solved wherever a cell
is present (see Section 2.3). Biologically, the chemotactic sensitiv-
ity χ(A)5A can be interpreted by breaking it down as follows: a
velocity χ(A) imparted to the cell due to the presence of bound
chemokine on its surface, and a gradient 5A which governs the
direction of motion. This gradient simply means that the cell is
able to sense the amount of chemokine bound to its various faces,
and is correspondingly able to align itself for motion in this direc-
tion. Therefore, a is in fact taken to be the amount of activated
receptors per cell face. We choose a velocity function that satisfies
the requirements that there can be no chemotaxis in the absence
of a signal, and that the cell gets desensitized in the presence of
excess signal. One such functional form is:

χ (A) = χ0 Ae−A/K . (8)

The maximum of this function occurs at A=K, while its max-
imum value is given by χ0Ke−1. In order for this choice to be
consistent with the discrete formulation, the function τ (A), from
equation (3) must be taken as follows;

τ (A) = exp

[
χ0 K

Dp

(
K − (K + A) e−A/K )] . (9)

The parameters χ0 and K are unknown in our model for-
mulation, and would ideally be determined from experimental
observations. K specifies the fractional occupancy of the receptors
on the cell surface at which its chemotactic response is the greatest,
while χ0 determines the maximum value of this response. Here,
values of these parameters are chosen to produce biologically real-
istic simulation results. Figure 2B plots the chemotactic sensitivity
equations (8) as a function of the fraction of activated receptors on
a cell face, for a particular choice of K and χ0. We can see that at
zero fractional activation, the cell remains inactive. The sensitivity
peaks at 5% fractional activation of receptors, and decays there-
after. Also shown for comparison are the receptor-kinetic law, and
constant chemotactic sensitivity.

2.3. VEGF-VEGFR2 BINDING DYNAMICS
We now describe the equations governing the rates of change of
the concentrations of free VEGF (C), free VEGFR2 (R), VEGF-
VERFR2 monomers (M ), and activated VEGF-VEGFR2 dimer
complexes (A). Beginning with free VEGF, we assume that the
processes of diffusion and natural decay dominate the dynamics,
which are represented by the reaction-diffusion equation:

∂C

∂t
= Dc1C − αc C − f

(
p
)

C . (10)

Here, Dc is the diffusion coefficient of VEGF, and αc is its rate
of decay in tissue. The uptake of VEGF by the migrating EC has
also been accounted for via the term f(p)C, which is derived in
the following discussion. As in Anderson and Chaplain (1998b), a
line source of tumor cells is assumed at x = 1 that produces VEGF
at a constant rate, so that C(1, y, t )=C0. At each of the remain-
ing domain boundaries x = 0 and y = 0, 1, a no-flux condition is
imposed on free VEGF. Figure 2A shows the distribution of VEGF,
expressed in non-dimensional terms, as determined by equation
(10) across the domain.

At each half-lattice site surrounding a site occupied by an EC,
free extracellular VEGF (C) binds to free cell-surface receptors,
VEGFR2 (R), to form activated dimerized receptor complexes (A).
Following Jain et al. (2008), we assume ligand-induced dimeriza-
tion to be the dominant mechanism by which VEGF activates
VEGFR2, as represented by the following chemical reactions:

C + R
kf 1


kr1

M

M + R
kf 2


kr2

A

A
kp
→ 2R

the rates of forward reactions are indicated above the reaction
arrows, while those of reverse reactions are indicated below the
reaction arrow.

This reaction diagram can be converted to the following system
of differential equations using principles of mass balance:

dC

dt
= −2η1 kf 1 C R + η2 kr1 M , (11)

dR

dt
= −2kf 1 C R + η3 kr1 M − kf 2 M R + 2η4 kr2 A + 2η4 kp A,

(12)

dM

dt
= 2η5 kf 1 C R + kr1 M − η5 kf 2 M R + 2η6 kr2 A, (13)

dA

dt
= η7 kf 2 M R − 2kr2 A − kp A. (14)

The multiplicative factor 2 in some of the equations accounts
for the possibility that there may be two ways for that product
to form. The constants ηi represent the ratios of weights of dif-
ferent molecules and have been introduced to express chemical
concentrations in units of pg/mm3. The values of these constants
are given in Table 1 and have been estimated from Ferrara et al.
(2003), Stewart et al. (2003).
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FIGURE 2 | (A) Typical profile of unbound VEGF, the source of which is
located at x =1. (B) Various choices for the chemotactic sensitivity of an
endothelial cell to VEGF bound to its surface receptors, as a function of the
fraction of activated VEGFR2 per cell face. (C–F) Average migration times
(in hours) for a single cell to travel across a 1 mm×1 mm domain as a
function of increasing the maximum free VEGF concentration at a lattice
site, for various choices of the chemotactic sensitivity function. Cells are

assumed to respond to activated VEGFR2 on their surfaces, with
chemotactic sensitivity taken as: (C) as proposed in equation (8); (D) cells
are assumed to respond to free VEGF with chemotactic sensitivity as
defined in equation (8) with activated receptor concentration A replaced by
free VEGF concentration C ; (E) receptor-kinetic law, for which
τ (A)=eχ0A/ (KDp(K+A)), χ 0 =0.4416 (pg/mm3) mm2/h, K =2 pg/mm3; and (F)
constant, χ 0 =0.0046 mm2/(pg/mm3)/h.

Since EC migration and sprout elongation occurs on a time-
scale of several hours to days, and the biochemical reactions
equations (11–14) occur on a time-scale of several scones to min-
utes, we assume that the VEGF-receptor complex concentrations
M and A are at quasi steady state. This is equivalent to setting
the left hand sides of equations (13) and (14) to zero, and solving
for M and A. Further, by conservation of total receptor number,
we have R+ η3M + 2η4A=RfN, where Rf is the total number of
receptors per EC face and N is the number of ECs (N = 1 in the
case of single cell migration, and N = the total number of tip cells
in the case of capillary formation). We therefore deduce that at
quasi steady state,

A =

−2αδ − γ + θ β

+

√
(2αδ + γ − θ β)2 + 4αβ(η4 + δ)(θ − α)

2β(η4 + δ)
, (15)

where,

α =
kr1 Rf

2kf 1 C + kr1
, β =

η4
(
kp − 2kr1

)
2kf 1 C + kr1

,

γ =
2kr2 + kp

η5η7 kf 2
δ = η4 + β, θ = Rf N . (16)

In all that follows, equation (15) will be used to estimate the
concentration of activated VEGF-VEGFR2 dimers in the domain.
Adding equations (12) and (14) and substituting in equation (11)
gives the following equation for the uptake of VEGF by ECs:

dC

dt
= −η0 kp A. (17)

Therefore, in equation (10) the cellular uptake function
f(p)C =−η0kpAI (p), where I (p) is an indicator function that has

Frontiers in Oncology | Molecular and Cellular Oncology May 2013 | Volume 3 | Article 102 | 50

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Jain and Jackson Modeling cell migration and angiogenesis

Table 1 | Parameter values relating to the molecular weights of VEGF

and VEGFR2.

Parameter Value Units

η0 0.1101 pg VEGF per pg VEGFR2-VEGF-VEGFR2

η1 0.2250 pg VEGF per pg VEGFR2

η2 0.1837 pg VEGF per pg VEGFR2-VEGF

η3 0.8163 pg VEGFR2 per pg VEGFR2-VEGF

η4 0.4494 pg VEGFR2 per pg VEGFR2-VEGF-VEGFR2

η5 1.2250 pg VEGFR2-VEGF per pg VEGFR2

η6 0.5506 pg VEGFR2-VEGF per pg VEGFR2-VEGF-VEGFR2

η7 2.2250 pg VEGFR2-VEGF-VEGFR2 per pg VEGFR2

a value of 1 at half-lattice sites where EC boundaries are present
and is zero otherwise. Observing that η0kp�αC (see parame-
ter values in Table 2), we make a final simplifying assumption that
due to the constant production and rapid diffusion of extracellular
VEGF, cellular uptake will not significantly effect its concentration,
that is, f(p)C is neglected. Thus, the equation governing free VEGF
dynamics is taken to be

∂C

∂t
= Dc1C − αc C . (18)

2.3.1. Summary of model equations
The principle variables in our model are: p(n, m, t ), the proba-
bility that a cell occupies lattice site (n, m) at time t ; C(x, y, t ),
the concentration of free VEGF at position (x, y) and at time t
in pg per lattice site volume, where each lattice site has a height
of 1 mm and a base equal to the surface area of a cell; R(i, j, t ),
the concentration of free VEGFR2 at half-lattice sites (i, j) and at
time t in pg per lattice site volume; M (i, j, t ), the concentration of
VEGF-VEGFR2 monomers at half-lattice sites (i, j) and at time t
in pg per lattice site volume; and A(i, j, t ), the concentration of free
activated VEGFR2-VEGF-VEGFR2 dimers at half-lattice sites (i, j)
and at time t in pg per lattice site volume. We remark that R, M,
and A can only take positive values at neighboring half-lattice sites
where a cell is present, and are 0 otherwise. Equations (1), (7), and
(9) that describe the biased random walk of a cell under the influ-
ence of activated VEGF-receptors have already been discussed. The
following conditions are imposed on the transition probabilities
for cell motion as described by equation (1) to ensure that no cell
exits the domain:

T H−
1,m (·) = T H+

Ns+1,m (·) = T V−
n,1 (·) = T V+

n,Ns+1 (·) = 0. (19)

Here, Ns= 1/h, h being the lattice size so that 1≤ n, m≤Ns+ 1.

2.4. PARAMETER ESTIMATION
A list of parameter values and sources is given in Table 2. The ran-
dom motility coefficient of endothelial cells has been estimated
to lie within the range 7.2× 10−4–7.2× 10−3 mm2/h (Ander-
son and Chaplain, 1998b). Consequently, intermediate value of
1.44× 10−4 mm2/h is assumed. The rates kr1 and kf1 are chosen to
ensure that the equilibrium disassociation constant kD= kr1/kf1

has a value of 30.375 pg/mm3 (Wang et al., 2002). VEGF bind-
ing is known to induce receptor aggregation; therefore, as in Jain
et al. (2008) we assume that the rate of formation of a dimerized
VEGF-VEGFR2 complex is greater than the rate of formation of
a monomer VEGF-VEGFR2 (that is, kf2 ( kf1). Further, because
the dimerized complex A is the signaling form of VEGFR2, it is
reasonable to assume that A is more stable than the monomer
complex M, that is, kr2= kr1. The size h of the lattice on which
the cell moves is taken to be 20µm, since typical microvascular
endothelial cell volume is about 400µm (Vadapalli et al., 2000),
while its thickness is about 1µm (Levine et al., 2002). Finally, the
parameters χ0 and K relating to chemotactic sensitivity are cho-
sen to reproduce cell motion and capillary formation profiles that
are biologically realistic.

2.5. METHOD OF SIMULATION
The time interval over which the movement of the cell is simu-
lated, is divided into subintervals of length k, given by the mean
waiting time of the cell at any lattice site. The cell moves on a lattice
of step-size h. Activated VEGFR2 concentrations are calculated at
half-lattice sites, neighboring a site where the cell is currently sit-
uated. The method of simulation of cell movement is based on
that described in Plank et al. (2003). Briefly, at each time step, the
movement of the cell is simulated according to the master equa-
tion (1), with the probabilities of moving up, down, left, and right
calculated according to equation (3). Equation (9) quantifies the
dependence of the transition probabilities on the levels of acti-
vated VEGFR2 on each cell face as given by equation (15). The full
interval [0, 1] is divided into five subintervals, each of length pro-
portional to the probabilities of moving or staying still. A random
number q lying within this interval is generated, and depending on
the sub-interval in which it lies, the cell either executes a motion
in the corresponding direction or stays stationary. Thus, the cell
moves left if q ∈ [0,T H−

n,m ), moves right if q ∈ [,T H−
n,m + T H+

n,m ),
and so on.

The results of the single cell motion model are discussed in
Section 3.1.

2.6. ADAPTATION OF SINGLE CELL MOTION MODEL TO SIMULATE
CAPILLARY FORMATION

To simulate capillary formation in response to a VEGF stimulus
from a tumor source, we modify the single cell motion model
described above as follows. As mentioned earlier, we motivate our
model of capillary formation by the experiments of Sholley et al.
(1984) wherein inflammatory neovascularization of the rat cornea
was induced by cauterization using silver nitrate and levels of EC
proliferation and degree of vascular profusion measured periodi-
cally. From these experiments, the average rate of sprout extension
into the cornea is estimated to be 0.26 mm/day or 0.78 mm in
3 days. In our model, we do not account for vessel maturation; a
process that typically occurs after 3 days of vessel formation. Con-
sequently, we simulate vessel growth for lengths ≤0.78 mm. With
this constraint, a parent vessel, from which sprout tips will migrate
toward the tumor, is assumed at x = 0.22 mm. As in the single cell
model, a line of tumor cells is assumed at x = 1, providing a con-
stant source of VEGF. For ease of computations, the domain size
is reduced to 0.5 mm in the y-direction, and initially 4 sprouts are
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Table 2 | List of parameter values for single cell motion.

Parameter Value Units Reference

Dp 1.44×10−4 mm2/h See text

Dc 3.60×10−1 mm2/h Mac Gabhann and Popel (2005)

αc 0.65 Per hour Serini et al. (2003)

kf1 1.69 Per (pg VEGF/mm3)/h Wang et al. (2002)

kr1 0.02 Per hour Wang et al. (2002)

kf2 kf1×100 Per (pg VEGF-VEGFR2/mm3)/h See text

kr2 kr1/ 100 Per hour See text

kp 0.6667 Per hour Wang et al. (2002)

Rf 0.02 pg receptors per cell face Stewart et al. (2003), Mac Gabhann and Popel (2004)

h 0.02 mm Vadapalli et al. (2000), Levine et al. (2002)

k 0.07 Hours See equation (5)

χ0 0.05 mm2 per hour per (pg/mm3)−1 See text

K 2.00 pg/mm3 See text

assumed to have formed along the parent vessel at y = 0.1, 0.2, 0.3,
and 0.4 mm.

It is known that specialized ECs situated at the tips of the
sprouts, called tip cells, are activated by, and respond to VEGF,
by chemotactic migration (Hangai et al., 2002; Gerhardt et al.,
2003). We therefore keep track of these leading cells in our simu-
lations. As a tip cells moves, it pulls behind it a developing vessel.
Hence, receptors on its tail are made unavailable for binding VEGF
at any given time. This eliminates the possibility for the tip cell to
back-track. By keeping track of all the lattice sites a tip cell visits,
we know the location of the newly formed vessel behind it.

The processes of branch formation and anastomoses forma-
tion of loops by capillary sprouts are also included explicitly in
our model. At each time step, as the tip cells migrate under the
influence of VEGF, probabilities of motion to adjacent lattice sites
are calculated. Anastomoses between the tip cell and a sprout may
occur if a sprout is present at a site which the tip cell wants to move
to. We assume that the probability of tip cell loss as a result of such
an event is 1%. Likewise, as in Anderson and Chaplain (1998b), it
is assumed that if another tip cell is encountered at a site, only one
of these cells continues to grow (with a probability 99%), while
the rest of the time, a loop is created with the loss of both cells.

Sholley et al. (1984) have demonstrated that sprout extension
cannot occur in the absence of mitosis. While we do not explicitly
model cell division, the dependence of capillary extension on it is
accounted for in the processes of capillary elongation and branch
formation as follows. The proliferation of cells is known to be
regulated by total concentration of activated cell-surface receptors
(Gerhardt et al., 2003). Thus, in our model, the tip cell integrates
the totalVEGF bound to it and sprout extension via tip cell motion,
and branch formation is only possible if there are enough acti-
vated VEGFR2 on its surface. The effect of proliferation on tip cell
motion is simulated by introducing a scaling factor of Pm(At) that
multiplies the movement probabilities of each cell, where At is the
total concentration of activated VEGFR2 on the cell. Pm is assumed
to be a positive, increasing, and saturating function of At, with a
saturating value of 1. Thus, for small values of At, the probability of
capillary extension will be ∼ 0 due to an insufficient proliferation

stimulus. Here, we take Pm(At)= 1/ (1+µme−At ) which is plotted
as a function of the fraction of total activated VEGFR2 per tip cell
in Figure 5D.

We further assume that the generation of new sprouts occurs
only from existing sprout tips. This is in keeping with the fact
that there is a region of proliferating cells just behind the tip cell
(Sholley et al., 1984), which could give rise to new branches. As
in the case for Pm, the branching probability Pb is also taken to
be an increasing and saturating function of At. This will result in
the creation of the brush-border effect. Similar rules for branching
have been applied previously by Anderson and Chaplain (1998b).
Here, we take Pb(At)= 1/ (µb1+ e−µb2(At −A0)) which is plotted
as a function of the fraction of total activated VEGFR2 per tip cell
in Figure 5D.

2.6.1. Parameter estimation for capillary formation model
A list of parameter values that are different or new in the capillary
formation model is given in Table 3. For consistency with the sin-
gle cell model, we keep the time step-size k unchanged at 0.07 h.
Further, the diffusion rate of a tip cell, say Dt, has been estimated
to be much smaller than the diffusion rate Dp of an individual EC
(Anderson and Chaplain, 1998b; Levine et al., 2001). Therefore, the
lattice size h for the capillary model needs to be altered accordingly.
Equation (5) is used to estimate h =

√
4kDt ≈ 0.001mm. Finally,

the parameters µm, µb1, µb2, and A0 relating to the movement
probability and branching probability are chosen to reproduce
capillary formation profiles that are biologically realistic.

2.6.2. Simulation methodology for capillary formation model
The simulation methodology is similar to that of single cell motion
described in section 2.5, with the additional computation of
accounting for branching and anastomoses for each tip cell, and at
each time step. Briefly, in addition to generating a random number
q, which is used to determine the direction of tip cell motion, two
further random numbers are generated (qa and qb) by uniformly
sampling the interval [0, 1]. We use qa to determine whether or
not anastomoses occurs, and qb is used to determine whether a
new branch forms, in accordance with the rules described above.
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Table 3 | List of parameter values for capillary formation.

Parameter Value Units Reference

Dt 3.60×

10−6

mm2/h (Levine

et al., 2001)

h 0.001 mm See text

k 0.07 Hours See text

µm 300 Dimensionless See text

µb1 30 Dimensionless See text

µb2 0.25 per pg VEGFR2-VEGF-VEGFR2/mm3 See text

A0 40 pg VEGFR2-VEGF-VEGFR2/mm3 See text

The results of the capillary formation simulation are discussed
in Section 3.2.

3. RESULTS
3.1. SINGLE CELL MOTION
Simulations of the system governing a single endothelial cell
migrating up a gradient of VEGF, as described by equations (1),
(7), (9), and (15), were run in two dimensions, with unbound
VEGF profile described by equation (18). The average time in
hours it takes for the cell to travel across the domain is plotted
in Figures 2C–F, as a function of C0, the maximum free VEGF
concentration at a lattice site, for various possible choices of the
chemotactic sensitivity function χ(·). Standard deviations and
average times are computed over 500 runs of the model.

Figures 2C,E,F depict the cases when χ(·) is assumed to be a
function of activated VEGFR2 on the cell surface. When χ(·) is as
defined in equation (8), the model captures the existence of a min-
imum level of VEGF stimulus required for directed cell motion,
as well as desensitization of VEGFR2 at high VEGF concentra-
tions (see Figure 2C). As C0 increases from 0.002 pg/mm3, the
average EC migration time is observed to first decrease and then
increase, attaining a minimum of 8.23 h at C0= 0.015 pg/mm3.
A typical cellular trajectory is plotted in Figure 3C for this opti-
mal value of C0, and the corresponding movement probabilities
at any lattice site are plotted in Figure 3D. Note that since the
VEGF profile is invariant along the y-direction, the movement
probabilities are also invariant along this axis – they only vary as
x varies. The probabilities show a large bias toward stepping to
the right, while steps to the left are very unlikely to occur. This is
because: (i) the chemokine gradient across the cell length has an
average value of 1.32%, over the entire domain, which lies within
the reported value of 1–2% at which eukaryotic cells become polar-
ized; and (ii) the fraction of activated receptors on any cell face is
sufficiently large, with an average value of 9%, over the entire
domain.

As C0 is decreased below 0.015, the average migration
time is predicted to increase exponentially. For instance, when
C0= 0.002 pg/mm3, the average migration time is predicted to
be 37.46 h, and the cell exhibits a high degree of randomness in
its motion, as evident from a typical cellular trajectory shown in
Figure 3A. The corresponding movement probabilities at any lat-
tice site plotted in Figure 3B show that a definite bias is apparent
for motion to the right only close to x = 1. This is because the
fraction of activated VEGFR2 on any cell face is very low, with a

maximum of < 2%, even though the chemokine gradient across
the cell length has an average value of 1.46%. Thus, the model is
able to account for the fact that if chemokine concentrations are
too low, cell-surface receptors do not achieve a sufficient degree of
activation.

As C0 is increased beyond its optimal value of 0.015–
0.08 pg/mm3, the model replicates the desensitization effect which
has been observed to occur when receptors are over-exposed to
chemokines. It now takes the cell an average of 35.77 h to migrate
across the domain. From Figure 3E, we observe that typical cell tra-
jectories exhibit a large degree of random motion. Now, activated
receptor gradients across the cell have an average value of only
1%. Further, the fraction of activated receptors that vary between
18 and 34% across the domain so that the negative exponential in
equation (8) dominates resulting in a very slight bias of movement
to the right (see Figure 3F).

For comparison, we also consider the cases where
χ(A)=χ0/(K +A)2 or the receptor-kinetic law and when
χ(A)= constant=χ0. As can be seen from Figure 2E, while the
receptor-kinetic law captures the desensitization of VEGFR2 at
high concentrations of VEGF, the cell still displays a high degree
of directed motion for very low values of C0. For instance, when
C0= 0.002 pg/mm3 the average migration time is as low as 16.08 h
as compared to 37.46 h in the earlier case. In contrast, the exis-
tence of a minimum activation threshold for VEGF is predicted
by assuming χ(A)=χ0, as evident from Figure 2F. However, this
model is unable to capture receptor desensitization at high val-
ues of C0, and in fact, the average migration time is predicted to
decrease monotonically with C0.

Finally, for illustration purposes, we also consider the case when
χ(·) has the same qualitative properties as in equation (8), but the
cell now responds to free VEGF rather than activated VEGFR2,
that is, χ(C)=χ0Ce

−C/K (see Figure 2D). While the graph is
qualitatively similar to Figure 2C, the fastest migration of the EC
across the domain is occurs at C0= 7.5 pg/mm3. This is biologi-
cally implausible since for such high receptor activation levels, the
fraction of activated VEGFR2 on any cell face > 0.97 throughout
the domain, and the cell should be completely desensitized to the
chemical gradient around it.

3.1.1. Effect of receptor expression level on cell migration
An important parameter in our simulations of EC migration is
RT, the expression level of VEGFR2 per cell. This is known to
be highly variable across cell lines, and it is even possible to find
different values for RT for the same cell line. We therefore con-
duct a sensitivity analysis on the migration times of an EC across
the domain as RT is varied, the results of which are graphed in
Figure 4. For the baseline simulations discussed earlier, a value of
RT= 230,000 receptors per cell or 0.08 pg/cell (Stewart et al., 2003;
Mac Gabhann and Popel, 2004) was used (see Figures 2 and 3). We
now simulate the effect on cell migration of increasing RT from
a minimum of 46,000 to a maximum of 1,115,000 receptors per
cell for various values of C0, the maximum free VEGF concen-
tration at a lattice site. For each of the cases when RT= 115,000
(Figure 4B), RT= 230,000 (Figure 2C), RT= 460,000 (Figure 4C),
and RT= 1,150,000 (Figure 4D), the average migration time of
the EC is predicted to first decrease and then increase, as C0
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FIGURE 3 | (A,C,E) Typical trajectories of a cell migrating across a
2-dimensional domain under the influence of VEGF. Here, A represents the
concentration of activated VEGFR2 per cell face and Amax represents the
maximum value A can take so that A/Amax is the fraction of activated VEGFR2

per cell face expressed here as a percentage, and <Agrad> represents the
gradient of A across a cell length, averaged over the entire domain. (B,D,F)
Corresponding movement probabilities for various values of maximum VEGF
concentration.

is increases. Thus, for a large range of values of RT, the model
captures the existence of an activation threshold of VEGFR2, and
their desensitization when exposed to high VEGF concentrations.
However, when RT is very low (46,000/cell, Figure 4A), receptor
desensitization is not predicted. This is possibly due to a high value
of the parameter K, which is held fixed in all our simulations. As
can be seen from equation (8), K determines the concentration of
activated VEGFR2 per cell face at which the chemotactic sensitivity
χ(A) is maximum.

Next, as can be seen from a plot of fastest migration times
versus receptor expression in Figure 4E, the EC migrates more
rapidly across the domain as RT increases. The fastest migration
time is predicted to be 8.25 h, for RT≥ 460,000/cell. Interestingly,
the maximum free VEGF concentration at which EC migration
is fastest decreases with increasing RT (Figure 4F). Thus recep-
tor over-expression is predicted to lower the activation threshold

for ECs, possibly because gradients of activated VEGFR2 become
more pronounced across the cell.

3.2. CAPILLARY FORMATION
Simulations of the system governing capillary network formation
under the influence of VEGF, described in section 2.6, were run in
two dimensions. Averages and standard deviations of all observed
quantities were calculated from 100 runs of the model.

The first case considered is when the sprout tips move across
the domain in the least amount of time. This occurs when the
maximum concentration of unbound VEGF C0= 0.015 pg/mm3,
as deduced from the single cell simulations. The results from a typ-
ical simulation are shown in Figure 5A. We begin with 4 initially
formed sprout tips at x = 0.22 mm. As the tip cells migrate across
the domain, they lay down behind them capillary sprouts. As the
vascular network penetrates deeper into the stroma, branching is
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FIGURE 4 | (A–D) Average migration times (in hours) for a single cell to
travel across a 1 mm×1 mm domain as a function of increasing the
maximum free VEGF concentration at a lattice site, for different values of
RT, the total number of VEGFR2 per cell. Baseline simulations correspond
to RT =230,000/cell, and are shown in Figure 2C. (E) Minimum migration

time for a single cell to cross the domain as a function of increasing RT,
solid triangle corresponds to baseline simulations. (F) The maximum free
VEGF concentration at a lattice site (C0) at which cell migration is fastest,
as a function of increasing RT, solid triangle corresponds to baseline
simulations.

observed to occur leading to the brush-border effect. The model
predicts that it takes on average 1170± 27 steps or 3.38± 0.08 days
for the vasculature to reach the tumor source at x = 1 mm. Our
model is validated by the experiments in Sholley et al. (1984) where
the vascular sprouts traveled the same distance in 3 days. Further
validation follows by observing that the vascular networks gener-
ated by our model are qualitatively similar to those observed by
Sholley et al. (1984).

Next, the effects of low (0.005 pg/mm3) and high
(0.030 pg/mm3) maximum VEGF concentrations on vascular for-
mation are investigated. As remarked earlier, we do not model
vessel maturation, which is typically observed after ∼3 days of
vessel formation. Model simulations are run for a maximum of
1170 time steps and the average degree of vascular penetration
into the stroma, along with the fraction of sprouts that remain

viable (that is, have at least one active tip cell) at the end of this
time is computed. When C0= 0.005 pg/mm3, the average lengths
of sprouts formed is predicted to be 0.2± 0.1 mm, with only 40%
of the initial sprouts still viable after 1170 time steps. Sprouts
that remain viable after 1170 time steps extend a greater distance
(0.4± 0.03 mm) into the stroma. However, these display virtually
no branching, with the average number of branches per sprout
only 1.1± 0.4. Figure 5B shows the results of a typical simulation.
As can be seen, there has been no branching and all but the first
sprout have anastomosed with themselves to form closed loops.
This is due to an insufficient bias to move forwards, coupled with
a low value of the scaling factor Pm (see section 2.6).

Finally, when C0= 0.030 pg/mm3, the average lengths of
sprouts formed after 1170 time steps is predicted to be
0.6± 0.1 mm. As can be seen from a typical simulation shown
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FIGURE 5 | (A–C) Typical vascular networks formed by 4 initial sprouts located
along x = 0.22 at positions y =0.1, 0.2, 0.3, 0.4; x being plotted along the
abscissa and y along the ordinate – migrating across a 2-dimensional domain
under the influence of VEGF for various values of C0, the maximum VEGF
concentration per lattice site. (A) Optimal VEGF concentration,
C0 =0.015 pg/lattice volume. The bias of movement is overwhelmingly in the
forward direction. Branching and anastomoses are observed to occur as the
vasculature penetrates deeper into the stroma. The resulting networks are
qualitatively similar to those observed experimentally in Sholley et al. (1984).
(B) C0 =0.005 pg/lattice volume. The amount of VEGF is too low to induce

proliferation or polarization of the tip cell, leading to a poorly developed and
stunted vasculature that does not reach the VEGF source within the time
frame of simulations (3 days). (C) C0 =0.030 pg/lattice volume. Due to a high
VEGF concentration, over-stimulation of endothelial cells occurs, and
extensive branching, anastomoses and lateral movement of the tip cell is
observed. Due to excessive lateral movement, the vasculature that does not
reach the VEGF source within the time frame of simulations (3 days). (D)
Assumed branching probability Pb of the migrating tip cell (black curve), and
assumed extension probability Pm of the capillary (blue curve), expressed as
functions of total fraction of activated VEGFR2 per cell.

in Figure 5C, extensive branching and anastomoses are observed.
Given the density of vessel branches, it is reasonable to expect that
several of these may fuse into one another resulting in thicker and
more dilated vessels, which is a morphology consistent with vas-
cular hyperplasia, as seen in Lee et al. (2005). The higher VEGF
concentration implies that the vessels have a weaker bias for for-
ward motion, and lateral movement of vessels as well as movement
against the gradient of VEGF are observed to occur. These phe-
nomenon have been observed in vivo, and have been numerically
simulated previously (Anderson and Chaplain, 1998b; Plank and
Sleeman, 2004; Sun et al., 2005; Zheng et al., 2013).

4. CONCLUSION
We have developed a hybrid model of cellular chemotaxis and
capillary formation under the influence of VEGF. The migrat-
ing cell, whether by itself or as the tip cell “pulling” behind it
a developing sprout, was treated as an agent. Its movement was
simulated stochastically with movement probabilities based on
the theory of biased random walks. On the other hand, due to
its fast diffusion coefficient, VEGF dynamics were governed by a
continuum reaction-diffusion equation. Using this approach, we
first simulated the motion of a single cell on a two-dimensional
grid, following the gradient of VEGF laid down by a constant
source. Next, our model was adapted to simulate the formation
of new vessels from pre-formed sprouts along a parent vessel,
also under the influence of a constant source of VEGF, such

as a tumor. Events such as branching and anastomoses, which
are observed to occur in vivo, were incorporated explicitly in
the model. The rate of vessel formation closely matched that
observed experimentally (Sholley et al., 1984) under an optimal
VEGF concentration. Additionally, as the forming vessels neared
the VEGF source, a brush-border effect due to increased branch-
ing was predicted, thus proving both quantitative and qualitative
validation of our approach. Using this framework, we also tested
the effects of excessive as well as low levels of VEGF signaling
on vascular development. Insufficient chemotactic and mitotic
cues from VEGF resulted in stunted and solitary vessels, while an
over-stimulation induced a high degree of branching and lateral
movement.

An important difference that sets our model apart from similar
hybrid models of chemotaxis is the inclusion of a molecular level
detail of interaction between VEGF and its cell-surface receptor
VEGFR2, the activation of which polarizes the cell and induces
directed motion. This has been observed experimentally as well –
endothelial cells respond to gradients of chemokines across their
lengths, rather than to free chemokine concentrations. These gra-
dients have been shown to be between 1 and 2%, which was seen
in the numerical simulations as well, thus validating our model.
Crucially, a chemotaxis sensitivity function was proposed that
incorporated biological detail hitherto ignored by commonly used
sensitivity functions currently. The model could thus capture real-
istic dynamics, such as the requirement of a minimum activation
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level of cell-surface receptors and receptor desensitization in high
concentrations of VEGF.

Angiogenesis, both physiological and pathological, is a highly
complex process, and understanding its mechanisms can lead to
significant breakthroughs in the treatment of diseases such as
cancer that depend on it. To this end, it is vital that modeling
efforts keep up with current advances in experimentation. Our
model provides such a framework, in which it is easy to build
in biochemical and biomechanical forces guiding vessel forma-
tion. In fact, a number of highly detailed and complex hybrid
models of vascular tumor growth have recently been proposed
(Frieboes et al., 2007; Owen et al., 2009; Perfahl et al., 2011)
and a significant strength of our model is that it can easily be
incorporated into these. The inclusion of greater biological detail
would only increase confidence in the predictive power of such
models.

In addition, a number of refinements of the model proposed
here are under active consideration. For instance, EC response
to cell-surface bound VEGF has already been explicitly included.
However, for the ease of computation, certain simplifying assump-
tions were made. Most notably, activated VEGFR2 were assumed
to be in quasi steady state. Further, only the tip cell was tracked,
while VEGF uptake by stalk cells was ignored. Cell death was
also omitted, while the processes of cell proliferation, branching,
and anastomoses were included phenomenologically. We plan to

extend this model by relaxing some of these assumptions. Lattice-
based models of angiogenesis face the criticism that the capillary
networks generated by them are artificial to a certain extent, as
they are forced to follow the lattice used to discretize the model.
A first step would therefore be to develop a lattice-free version of
our model of capillary formation, in which the ECs move without
geometric constraints. Such models have been applied to capillary
formation previously (Plank and Sleeman, 2004; Frieboes et al.,
2007).

Other model refinements include incorporation of the relation
between extra cellular matrix or ECM and vascular morphology.
ECs require the ECM to gain traction in order to move. To facil-
itate their migration, ECs also secrete proteolytic enzymes such
as matrix metalloproteinases (MMPs), that degrade collagen and
elastin and clear a path for the ECs to follow. As ECs interact with
the matrix, they also cause the release of matrix bound angiogenic
factors such as VEGF, which are then available to induce further
pro-angiogenic activity (Mantzaris et al., 2004). Further, pericytes,
macrophages, and angiopoietins are also important determinants
of developing vascular morphology and maturation (Levine et al.,
2000; Plank and Sleeman, 2003), and need to be considered explic-
itly. The framework presented here is highly flexible, and would
allow for the inclusion of the above processes, grounding it further
in biology, and enhancing its usefulness as a tool to understanding
the process of angiogenesis.
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Random mutations and epigenetic alterations provide a rich substrate for microevolutionary
phenomena to occur in proliferating epithelial tissues. Genetic diversity resulting from ran-
dom mutations in normal cells is critically important for understanding the genetic basis of
oncogenesis. However, evaluation of the cell-specific role of individual (epi-)genetic alter-
ations in living tissues is extremely difficult from a direct experimental perspective. For this
purpose, we have developed a single cell model to describe the fate of every cell in the
uterine epithelium and to simulate occurrence of the first cancer cell. Computational simula-
tions have shown that a baseline mutation rate of two mutations per cell division is sufficient
to explain sporadic endometrial cancer as a rare evolutionary consequence with an inci-
dence similar to that reported in SEER data. Simulation of the entire oncogenic process
has allowed us to analyze the features of the tumor-initiating cells and their clonal expan-
sion. Analysis of the malignant features of individual cancer cells, such as de-differentiation
status, proliferation potential, and immortalization status, permits a mathematical character-
ization of malignancy at the single cell level and a comparison of intra-tumor heterogeneity
between individual tumors. We found, under the conditions specified, that cancer stem
cells account for approximately 7% of the total cancer cell population.Therefore, our math-
ematical modeling describes the genetic diversity and evolution in a normal cell population
at the early stages of oncogenesis and characterizes intra-tumor heterogeneity.This model
has explored the role of accumulation of a large number of genetic alterations in oncoge-
nesis as an alternative to traditional biological approaches emphasizing the driving role of
a small number of genetic mutations. A quantitative description of the contribution of a
large set of genetic alterations will allow the investigation of the impact of environmental
factors on the growth advantage of and selection pressure on individual cancer cells for
tumor progression.

Keywords: evolution, oncogenesis, genetic mutation, endometrial cancer, fitness, phylogenetic analysis, tumor
heterogeneity, mathematical modeling

INTRODUCTION
An evolutionary model has been established to describe the entire
process of tumor development in colorectal cancer with detailed
molecular mechanisms for the stepwise oncogenic progression
driven by sequential accumulation of several genetic mutations
(Fearon and Vogelstein, 1990; Jones et al., 2008a). However, in our
view, this model can be expanded to understand evolution among a
population of normal cells in the uterine epithelium with inclusion
of random mutations. Several studies have estimated the mutation
rates in normal cells to be around 10−7 per cell per generation (for
a specific gene) through measurement of the frequency of muta-
tions in the gene in proliferating cells (Elmore et al., 1983; Araten
et al., 2005). The more accurate estimates are done in a living tis-
sue and a rate of ≈5–10× 10−10 mutations per base pair per cell
per generation is reported (Jones et al., 2008a). This rate can be
approximately translated into about two to three mutations per
cell per division. This reported mutation rate of two to three ran-
dom mutations per cell per generation would produce billions of

mutations in the proliferating uterine epithelial tissue and may be
sufficient to explain the large number of genetic mutations uncov-
ered in human tumors (Gallo et al., 2012; Kuhn et al., 2012; Liang
et al., 2012). Interestingly, these studies have not found a significant
difference in the mutation rate between normal and transformed
cells (Elmore et al., 1983; Araten et al., 2005; Jones et al., 2008a),
indicating that the genetic diversity universally reported in cancer
cell populations may be present in normal cell populations as well,
serving as fertile ground for evolution at the earliest stage of onco-
genesis. Therefore, genetic mutations in normal cells can provide
significant genetic diversity for subsequent selection, allowing for
a unique, albeit extremely rare, consequence: a cell may escape the
typical fate of normal cells and become immortalized.

However, the process of evolution in a normal cell popula-
tion is rarely a popular cancer research subject. Normal cells in
a tissue are often not considered to harbor any dysfunctional
mutations nor are they considered to demonstrate any pheno-
type commonly seen in cancer. Furthermore, any suggestion that
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minor random mutations are sufficient for oncogenesis in some
cancers may be seen as a contradiction to the genetic theory that
certain notable genetic mutations and oncogenic pathways are the
driving forces for tumor development. These seeming contradic-
tions can be reconciled by considering that a significantly larger
number of pathways than was commonly believed are present
in well-developed tumors (Jones et al., 2008b), meaning that the
genetic slot machine for transformation of an individual cell has
many reels. Phenotypically normal cells, with no apparent growth
advantage, may quietly harbor multiple accumulated alterations in
multiple pathways before transformation by a single major muta-
tion or by minor mutations in remaining key pathways. While
the chance of complete transformation of an individual cell may
be negligible, genetic diversity represents the non-negligible col-
lective chances of many individual cells, each with a particular
set of mutations after a number of generations with a steady
mutation rate.

The appearance of the first cancer cell, the tumor-initiating
cancer cell (TICC) which propagates to form the entire cancer cell
population in a tumor, seems to be an extremely rare occurrence.
For instance, endometrial cancer incidence is about 6 per 100,000
women at reproductive age according to the SEER database (2008,
female, all races,<50 years) and the peak cell number in the uterine
epithelium is several billion with monthly turnover, which gives
an approximate probability of the occurrence of the TICC of less
than 5× 10−15 per normal cell per year. This manuscript, utilizing
mathematical modeling and numerical simulation, tests whether
the baseline mutation rate in a normal cell population, such as the
uterine epithelium, is sufficient for the rare occurrence of a TICC.
Simulation of the longitudinal and prospective process of tumor
initiation and development, including following the evolution of
individual normal cell lines in the uterine epithelium, has allowed
us to describe the clonal progression of a TICC into a clinically
detectable tumor.

MATERIALS AND METHODS
The goal of this manuscript is to explore whether the baseline
mutation rate in a normal endometrial cell population is suffi-
cient to explain endometrial cancer incidence. We will also explore
whether description of the fate of every single cell in our model can
demonstrate in sufficient detail the development of heterogeneity
within the mass, and the corresponding properties of the ancestor
cells of endometrial tumors. This is analyzed through numerical
simulations of a recently published model for the proliferation of
uterine epithelial cells (Dai et al., 2011).

OUTLINE OF CELL PROPAGATION
The mathematical model under consideration views the prolifer-
ation of epithelial cells in terms of a continuous-time bifurcating
process. The simulation begins with an initial progenitor cell. The
time required for the cell to either divide or die is governed by
a set of equations describing various properties of the cell (Eqs
1–7, individual variables are described in Tables 1 and 2). In
the event of division, the daughter cells inherit their properties
from the parent cell, with the quantitative values of the proper-
ties subject to stochastic variation. We then follow the fates of
each daughter cell, which follow Eqs 1–7 independently. The cells

are simultaneously viewed as traversing a differentiation pathway,
with each cell existing along a spectrum from progenitor cell to
a fully differentiated descendant clone typically seen in the uter-
ine epithelium (Dai et al., 2011). Therefore the cell’s properties are
also influenced due to this “biological progression.” The size of the
uterine epithelium is determined by the total number of descen-
dant cells existing at time t. The fate of each individual constituent
cell is calculated through Monte Carlo simulation.

Cell cycle status value:

c (t ) =

∫ t

tn

α (s) ds, where tn denote the cell’s birth time (1)

Programmed proliferation potential:

αp (t ) =
1

7

(
10− g (t )

)
g (t ) (2)

Programmed differentiation coefficient:

kp (t ) = 3.78
[

1− e−0.4·g (t )
]
+ 0.03g (t ) (3)

Generation number: g (t ) = 1+ floor

(∫ t

0
|α (s)| ds

)
(4)

Resistance potential: r (t ) = k (t )
(
αp (t )− α (t )

)
(5)

Differentiation coefficient: k (t ) = kp (t )+
n∑

i=1

mi (6)

Proliferation potential rate of change:
dα

dt
= r (t )+ β (t ) (7)

The cell cycle status c(t ) of a cell, governed by the cell’s
growth rate (proliferation potential) α(t ), denotes the progres-
sion toward apoptosis (death) or division (bifurcation) in the
branching process. When a cell is born at a time tn, this value
is 0. If c(t∗)= 1 for some t∗> tn, the cell undergoes division
into two daughter cells, while if c(t∗)=−1 for some t∗> tn, the
cell undergoes apoptosis. This measurement of cell cycle status is

related to P (t ) = 2
∫ t

tn
α(s)ds , the solution of the differential equa-

tion for doubling of a population, dP/dt = ln(2)α(t )P. However,
we utilize the measurement c(t ) since, in the above mathematical
system, we are considering the fate of a single cell instead of a
population.

Equations 2–4 describe a hypothetical trajectory (fate) of a sin-
gle cell which is genetically determined and automatically proceeds
along cellular time, g, free of any perturbing influence, such as
genetic alterations and environmental factors. Equations 2 and
3 describe the parallel process of a cell’s proliferation [αp(t )]
and differentiation [kp(t )]. Equation 4 represents cellular time
(g, generation), which is determined by factors related to cell divi-
sion such as telomere length, and depends on physical time (t, in
months, and related to patient age). Equations 5–7 incorporate
the hypothetical trajectory, perturbations from it, and resistance
to these perturbations as part of homeostasis. Additional explana-
tion of the rationale of these equations were provided previously
(Dai et al., 2011).

OUTLINE OF CELL PROPERTIES
Each cell’s status is described by four quantities: proliferation
potential (α), differentiation coefficient (k), resistance potential
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Table 1 |Terms for hypothetical cellular growth of a single cell.

Term Definition Unit Description

c(t ) Measurement of the status of

cell cycle of a cell with a

numerical value between

−1 and +1

Cycle The status of a cell cycle is provided with a numerical value in order to describe the

quantitative progression of cell proliferation. A cell cycle exists between two endpoints:

death and birth (of two daughter cells). In either case, the cell ceases to exist. A cell divides

if c(t )=1, dies if c(t )=−1, for some t > tn, where tn is the time that the cell was born

N (t ) Size of a tissue or a mass at

time t

Cell The total number of cells in a tissue or a mass at time t with summation of the value of all

individual cells. A clone is comprised of all descendant cells from a progenitor cell borne

from asymmetrical division of a tissue stem cell

t Physical time, as it relates to

patient age and menstrual cycle

Month It is the physical time and can be assigned with a unit of day, month, or year. We assume

that 1 year=12 months and 1 month=30 days for convenience

αp(t ) (Programed) proliferation

potential (Eq. 2)

Cycles/month Programed rate of a cell’s multiplication according to the cell’s progression in clonal

development (progression of generations) and expressed as the number of cell cycles per

unit time

kp(t ) (Programed) differentiation

coefficient (Eq. 3)

1/month Measurement of a cell’s differentiation status, commonly with a range from 0 to K max (a

tissue specific constant)

g(t ) Generation number (Eq. 4) Cycle Measurement of lineage progression in a clone and cellular senescence. A daughter cell

assumes a new generation value of g +1 with g as the parent generation number. It has

the same unit as the cell cycle. It represents how a cell perceives senescence, and is

determined by its cellular mechanism, for instance by telomere length. Although g(t ) and

division (d ) synchronize most of time, there is a possibility that they may differ. For

instance, active telomerase may maintain telomere length after many divisions

These terms are for cells living under conditions free of any genetic insults and environmental influences, a hypothetical scenario used as a frame of reference to

study the effect of genetic and environmental factors on cell growth.

Table 2 |Terms for the growth of a single cell.

Term Definition Unit Description

mi Mutational

coefficient (Eq. 6)

1/month Quantifies the effect of each genetic alteration on a cell’s ability to maintain differentiation

status, k (t )

α(t ) Proliferation

potential (Eq. 7)

Cycles/month A measurement of the number of completed cell cycle per unit time. A cell’s proliferation

potential is the function of resistance potential (r ) and environmental stimulation (β) over time

(t ) in Eq. 7, indicating the pace of cell cycling under influence. Therefore, cell death induced by

anti-growth signals can be simulated by a negative α induced by a negative β over time

k (t ) Differentiation

coefficient (Eq. 6)

1/month Measurement of a cell’s differentiation status under influence as the sum of programmed

differentiation coefficient and mutational effect

r (t ) Resistance

potential (Eq. 6)

Cycles/month2 Measurement of a cell’s inherent ability to adhere to the development program by restoring

α(t ) to αp(t ) which will lead to the control of cell number and progression of differentiation

β(t ) Environmental

coefficient (Eq. 7)

Cycles/month2 All environmental factors affecting cell multiplication. Hormonal stimulation on cell

proliferation is an example

These terms are for experimental measurement of (clonal) cellular growth under our experimental observations with genetic insults and under environmental

influences.

(r), and generation number (g ). A cell lineage begins with the
birth of an initial progenitor cell at time t = 0. Its physical position
within the lineage is given by the number of divisions the cell is
removed from the initial progenitor cell (d). An alternate mea-
surement of progression is used to measure a cell’s biological

progression along the differentiation pathway (g ). This parameter
may be viewed as a measurement of how a cell perceives the
passage of time, which may not necessarily sync with the num-
ber of divisions its lineage has undergone. Progression of a cell’s
g value is accompanied by the gain of additional mutations and
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a corresponding alteration in αp and kp, which denote behaviors
inherent to position along the differentiation pathway (Table 1).

An individual cell’s proliferation potential is denoted by α(t ),
and is distinguished from its programed rate that is inherent
to its position along the differentiation pathway [αp(t )]. The
cell has a draw toward this inherent rate which is reflected by
dα/dt ∝ αp(t )− α(t ), but may be influenced by other environ-
mental effects (such as hormones). The strength of this restorative
force is defined by the cell’s differentiation coefficient (k). Cells
early in the lineage have a limited ability, due to their similar-
ity with the initial progenitor cell, to maintain homeostasis with
respect to properties inherent to the differentiation pathway. Con-
versely, this ability is increased, consistent with their similarity to
the fully differentiated cell type, for cells late in the lineage. This
idealized restorative strength is denoted kp and is inherent to a cell’s
position along the pathway. Mutations alter this ability, resulting
in the cell’s k-value. The cell’s resistance potential (r) defines its
ability to resist deviations from normal proliferative behavior, and
cells early in the pathway have a weak resistance to alterations in
proliferative behavior, while those later in the pathway will have a
strong resistance, provided there are few strong mutations affect-
ing the cell. A more thorough description of these terms has been
provided previously (Dai et al., 2011).

ENVIRONMENTAL AND MUTATIONAL EFFECTS
Simulations are performed with β ∼N (5, 0.52) to represent rela-
tively low hormone level with constant mean (µ= 5) and SD= 0.5

to indicate a slight variation of hormone levels among individual
cells, consistent with a typical postmenopausal hormone level. A
fixed and typical mean β value allows us to focus on the role of
genetic diversity (accumulation of mi in an individual cell) among
the population. The importance of overexposure of estrogen, and
other environmental factors in endometrial oncogenesis will be
reported in separate manuscripts. We also assume two mutations
per cell division in accordance with the hypothesis under con-
sideration. As a consequence of evolution in epithelial cells due
to immortalization and de-differentiation, a clinically detectable
tumor is defined as a mass of at least 106 cells derived from an
initial progenitor cell. In this early exploration of the model, the
initial progenitor cells within the uterine epithelium are assumed
identical and independently follow the seven equations.

RESULTS
CELLULAR PROLIFERATION AND DIFFERENTIATION IN THE UTERINE
EPITHELIUM
We first examine the clonal expansion from a progenitor cell in
order to understand the life cycle of epithelial cells in the uter-
ine epithelium. Simulations are initiated with an initial progenitor
cell born through asymmetric division or differentiation of a tis-
sue stem cell. The clone is allowed to proliferate until it dies out.
The size curve of each clone over time for a single progenitor
cell is fairly consistent, however, as can be seen from 1,000 ran-
domly selected trajectories generated through simulation of the
fate of 106 progenitor cells (Figure 1). We find that the peak size
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FIGURE 1 | Graphic illustration of trajectories for the number of living cells within a clone and its lifespan (days) over time. One-thousand trajectories,
each as the result of clonal expansion from a single progenitor cell, are shown.
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of each clone ranges from 1,024 to 1,277 cells, with a median
value of 1,033.5 cells and a standard deviation of 16.2. This can be
interpreted both as the typical fate of a clone spawned from each
progenitor cell and is the common physiological scenario. Thus,
for any cell and any clone, their lifespan is limited and they follow
a predictable course and fate. One feature of tissue homeostasis,
interpreted as the maintenance of a relatively stable cell number,
is largely accomplished by the balance between two mechanisms,
the constant commitment of tissue stem cells to produce new cells
and the limited lifespan (number of generations) of individual
cells to allow cell death. Thus, a significant extension of a cell’s
lifespan and a substantial expansion of its descendant size beyond
the typical physiological range will disrupt tissue homeostasis and
serve as an early step of oncogenesis. Analysis of simulations on
106 progenitor cells has shown that the lifespan of the clones was
found to have a wider range, varying between 205 and 901 days,
with a median of 576 days and a standard deviation of 67.5, a
significant extension from the observation in Figure 1. Immortal-
ization will be expected if the simulation involves a significantly
larger population.

Indeed, a further analysis of the fates of 305,505,000 prog-
enitor cells resulted in the detection of 8 tumors, translated

into an endometrial cancer incidence of 94 tumors per 100,000
menopausal women, similar to the epidemiological data of 78
per 100,000 women based on the 2008 SEER database for all
races of age ≥50. This also yielded an empirical probability
of 2.61862× 10−8 [95% confidence interval (1.13053× 10−8,
5.15998× 10−8)] that a progenitor cell will spawn a primary
tumor under the experimental conditions. Our simulation has
shown the progression from common physiological tissue regen-
eration (in 103 randomly selected progenitor cells) to partial
immortalization (in 106 progenitor cells) and the occurrence of
neoplasm (in 3× 108 progenitor cells), demonstrating oncogen-
esis as a seemingly rare stochastic event which occurs only in a
sufficiently large number of simulations under specific environ-
mental (hormone) conditions. More importantly, this experiment
indicates that a random mutation rate of two per cell division may
be sufficient for sporadic endometrial cancer.

PHYLOGENETIC TREE ANALYSIS
A unique ID is assigned to each cell born during the lifespan of
the clone. The cell passes information about its lineage to each
daughter cell after division by assigning the daughter cell the ID
10x + i, where x is the ID of the parent and i is either 1 or 2,

A

B

FIGURE 2 | Phylogenetic tree for illustration of lineage relationship
during the earliest stage of oncogenesis. The number indicates the size
of descendants in the tumor from the cells (nodes). (A) The lineage map

formed within the first five divisions; (B) a subset of the phylogenetic tree,
centered on the most recent common ancestor (MRCA) of the tumor of
generation 16.
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unique to each daughter. Figure 2 shows how a tumor arises from
a clone. Figure 2A shows the number of descendants from each
cell in the first five generations starting from a progenitor, which
eventually give rise to the most recent common ancestor (MRCA)
of a tumor, where division 1 denotes the birth of the progeni-
tor cell through an asymmetric division of a stem cell. Note that
there is one dominant branch with more than 106 descendants,
whereas other branch points have few descendants (the node with
78 descendant cells in the tumor), which coexist with the tumor
and survive longer than a typical normal cell because of slow pro-
gression in the completion of senescence (and cell death) due to
a low α value. Cell feature analysis shows that they have a high
k-value (still differentiated) and are not immortalized since their
generation number is less than 12 [see Cells within the tumor that
are not descendant from MRCA(0.995) in Appendix]. Figure 2B
shows the MRCA of the tumor at generation 16 with subsequent
divisions demonstrating different lineages with varying descen-
dant sizes. Thus, there is remarkable clonal heterogeneity in that
the number of descendant cells varies substantially in different
branches.

THE PHENOTYPIC HETEROGENEITY OF THE TUMOR-INITIATING
CANCER CELLS
The heterogeneity of a tumor during its clonal development was
analyzed by considering distributional information aggregated
from 74 tumors generated through this mathematical model. The
heterogeneous features in individual cells are described based on
three criteria: the immortalization status by generation number g,
proliferation status by proliferation potential α, and differentiation
status by differentiation coefficient k. The median time required
to form masses of size 106 cells was found to be approximately
270 days.

We utilized a phylogenetic analysis of each tumor in order to
examine the development of endometrial cancer. The MRCA of
x × 100% of the mass of 106 cells will be denoted by MRCA(x).
We first considered the number of divisions between the MRCA(x)
and the initial progenitor cell. The lifespan typical for a normal cell
clone is commonly estimated to be between 10 and 12 divisions,
where cells would reach the fully differentiated cell type and enter
senescence. Some cells, as our analysis shows, remain in the process
of their senescence for some time before their death. Data for
MRCA(x) from the 74 tumors is presented in Table 3. MRCA(1)
is found to be 1 division for each mass, however MRCA(0.999)
and MRCA(0.995) jump to a median of 16.7 and 17.2 divisions,
respectively, which indicates the immortalization (Table 3A).

The phenotype of MRCA(x) can be further defined by the
values for its proliferation potential (α) and its differentiation
coefficient (k) in addition to the generation number in Table 3A.
Data for these values are provided in Tables 3B,C, respectively.
The evolution of low k-values is the underlying mechanism of
uncontrolled tumor growth due to loss of differentiation, as this
parameter defines the differentiation status of a cell. As this value
decreases, the cell becomes more susceptible to any external stim-
ulation such as hormones. The MRCA for all cancer cells in a
tumor must be a cancer cell if, as we assume based on consen-
sus in the literature, cancer is monoclonal in origin (Weinberg,
2007; Hanahan and Weinberg, 2011). We define, based on the

Table 3 | (A) d For MRCA(x ); (B) α for MRCA(x ); and (C) k for MRCA(x ).

MRCA(x ) Median SD Min Max

(A)

1 1 0 1 1

0.999 16.70 2.36 9 22

0.995 17.20 2.09 11 22

0.99 17.30 2.05 11 22

0.95 18.18 2.34 13 23

0.90 18.72 1.99 14 23

0.80 19.04 2.18 14 24

0.70 19.62 2.35 14 25

0.60 20.22 2.41 14 27

0.50 21.18 2.43 15 28

(B)

1 2.95 0.004 2.80 3.09

0.999 3.43 1.25 1.13 5.95

0.995 3.66 1.41 1.13 6.26

0.99 3.73 1.41 1.13 6.26

0.95 4.23 1.22 1.66 7.39

0.90 4.49 1.39 1.66 7.39

0.80 4.65 1.49 1.66 7.39

0.70 6.02 1.97 1.66 7.95

0.60 6.66 1.72 2.24 7.95

0.50 6.53 1.44 4.24 9.12

(C)

1 1.90 0.015 1.65 2.24

0.999 0.23 0.05 0 1.43

0.995 0.18 0.03 0 0.90

0.99 0.17 0.03 0 0.90

0.95 0.11 0.02 0 0.76

0.90 0.08 0.01 0 0.30

0.80 0.07 0.01 0 0.30

0.70 0.07 0.01 0 0.30

0.60 0.05 0.005 0 0.30

0.50 0.03 0.002 0 0.27

analysis of the formation of 74 tumors, a TICC as a cell with the
median properties of MRCA(0.995). Although there is substan-
tial heterogeneity in the phenotypes among MRCA(0.995)s, these
cells are immortalized with generation number g between 11 and
22, proliferative with α between 1.1 and 6.3, and most impor-
tant of all, de-differentiated with k between 0 and 0.9. We define
a typical TICC as a cancer cell with the following median fea-
tures: k = 0.18, α= 3.66, g = 17. Consequently, we define a typical
tumor-initiating cancer stem cell (TICSC) as a TICC with com-
pletely undifferentiated status: k = 0, α= 3.66, g = 17. Using the
features of a typical TICC, simulation of the fate of 10,300 TICCs
showed a 71.7% probability that they will spawn a tumor, while
the corresponding TICSC had roughly a 94% probability.

DISTRIBUTIONAL ANALYSIS OF THE HETEROGENEITY OF A TUMOR
FORMED BY A TICC
The primary tumor formed from a TICC is a heterogeneous mass
of cells. Continuous proliferation of cancer cells have resulted
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in the accumulation of an increasing number of genetic muta-
tions and produced a cancer cell population with an enormous
genetic diversity, which will drive further tumor evolution and
progression. This genotypic and phenotypic variability increases
the difficulty for a therapeutic intervention, such as targeted ther-
apies aiming at a specific genetic alteration, to kill all cancer cells.
A distributional analysis of a single tumor formed from a TICC
was performed in order to analyze the spectrum of phenotypes
and overall properties of the tumor. Table 4 describes the division
number d of each cell within the clinically detectable mass, that is,
the number of divisions that have passed between the cell and the
initial progenitor cell. Note that most cells possess at least d = 30,
with a median value of d = 44, indicating that almost all cancer
cells in a tumor are immortalized.

The intra-tumor heterogeneity is also illustrated by the distri-
bution of k-values within the mass. A terminally differentiated
cell will typically have a k ≈ 4.0, indicating a strong capability to
maintain homeostasis. However, Table 5 shows that the median
k-value within the mass is only 0.3, with no values above 1.7, illus-
trating the de-differentiation (malignant transformation) that the
cells have undergone. Interestingly, there are approximately 7% of
cancer cells with k = 0, indicating that they are completely undif-
ferentiated, and are the cancer stem cell portion in the tumor (see
Evolution of low k-values in the mass in Appendix). Finally, we
consider the heterogeneity in cell proliferation through analysis
of the distribution of proliferation potential among cancer cells
within the mass in Table 6. We observe that 98% of cells are
proliferative [α(t ) > 0], with a median value of α= 10.3.

ANALYSIS OF THE MEDIAN PROPERTIES OF TUMORS FORMED BY
TICCs AND TICSCs
We extend the above analysis to 500 tumors generated from TICCs.
The median properties of each tumor are recorded, and the dis-
tribution of these values is then analyzed. Table 7A lists statis-
tical information for the median properties of the 500 tumors
produced by TICCs, with corresponding histograms presented in
the Figures A3(A)–(C) in Appendix. Based on this information,
we define a median cancer cell (MCC) in a clinically detectable
tumor as a cell with the properties: k = 0.295, α= 10.3, g = 45.

The tumors appear to be very similar with respect to median pro-
liferation potentials and division numbers, both of which have
statistical properties similar to normal distributions. However, the
distribution of median k-values deserves more attention. Whereas
most tumors had median k-values similar to the single TICC
tumor examined above (median and mean of k around 0.3), some
of the median values are significantly lower, approaching k = 0.
These tumors are poorly differentiated and particularly aggressive,
with the capability to undergo rapid proliferation when receiving
environmental stimulation conducive to growth. For the pur-
pose of controlled comparison, we define a median cancer stem
cell (MCSC) in a clinically detectable tumor as a MCC with a
completely undifferentiated feature: k = 0, α= 10.3, g = 45.

A similar analysis was performed on 500 tumors spawned from
TICSCs, with distributions for the median properties presented in
Table 7B and illustrated as histograms in the Figures A4(A)–(C)
in Appendix.

COMPARISON OF THE MEDIAN PROPERTIES OF TUMORS AMONG
THOSE FORMED BY A TICC VS. TICSC
The types of distributions derived from the median properties
from the 500 tumors are unknown. However, the non-parametric
two-sample Kolmogorov–Smirnov test (Hollander and Wolfe,
1999) can be utilized to examine whether the empirical distri-
butions of a specific property are statistically equivalent among
primary tumors formed from either a TICC or TICSC.

The distributions of median values of k,α, and d among tumors
formed by TICCs were tested against the corresponding distribu-
tions among tumors formed from TICSCs. In each case, we find
that the null hypothesis can be rejected to at least a 99% confidence
(α: p= 0.00428, k: p= 1.3× 10−157, d : p= 9.5× 10−17). We con-
clude that a qualitative difference exists between tumors formed
from a cancer cell as compared to those formed from a cancer stem
cell. However, it should be noted that the median of the median
properties appear to be similar for the primary tumors regardless
of whether they were spawned from a TICC or TICSC.

DISCUSSION
Carcinogenesis as an evolutionary consequence can be viewed as
the result of environmental selection among billions of genetically

Table 4 | d -Value cdf for cancer cells in a clinically detectable tumor.

d0 28 30 32 34 36 38 40

Pr(d ≤d0) 1.34E−5 8.81E−5 6.28E−4 2.89E−3 1.18E−2 4.11E−2 0.126

d0 41 42 43 44 45 46 47

Pr(d ≤d0) 0.207 0.328 0.489 0.673 0.818 0.927 0.993

Table 5 | k -Value cdf for cancer cells in a clinically detectable tumor.

k0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pr(k ≤ k0) 0.0695 0.210 0.351 0.500 0.641 0.762 0.857 0.922 0.962

k0 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Pr(k ≤ k0) 0.984 0.994 0.998 0.9994 0.99986 0.99996 0.999991 0.999999 1
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Table 6 | α-Value cdf for cancer cells in a clinically detectable tumor.

α0 −7.5 −5 −2.5 0 2

Pr(α≤ α0) 8.33E−5 1.50E−3 6.25E−3 1.91E−2 4.26E−2

α0 4 5 6 7 8

Pr(α≤ α0) 8.72E−2 0.120 0.163 0.216 0.280

α0 9 10 11 12 13

Pr(α≤ α0) 0.359 0.451 0.556 0.669 0.784

α0 14 15 16 17 18

Pr(α≤ α0) 0.883 0.954 0.989 0.9992 1

Table 7 | Properties of the distributions of median values of cancer

cells among 500 tumors derived from (A)TICC and (B)TICSC.

Property Median Mean SD Skewness Kurtosis

(A)

k 0.295 0.271 0.0672 −2.34 6.87

α 10.3 10.326 0.236 7.10E−4 3.15

d 45 44.978 1.90 0.484 2.96

(B)

k 0.31 0.297 0.0469 −4.13 18.72

α 10.4 10.36 0.207 0.0835 3.42

d 43 43.92 1.79 1.63 7.39

diverse cells in a tissue. Theoretical approaches have the unique
strength of modeling the behavior of individual cells in a tissue and
to construct the landscape of a dynamic and diverse cell population
in order to identify and define a much smaller spectrum of cancer
cells. This prospective strategy is necessary and should be comple-
mentary to the common biological approach to characterize the
decisive role of a single or a few genetic alterations.

We have developed a mathematical model to simulate evolution
in an epithelial tissue with an individual cell as the basic member
and the entire tissue as the population. This model is unique in
that it assigns quantitative value (due to varying mi) to genetic
features in each individual cell and a quantitative value (α) of
growth advantage translated from combined effect of genetic fea-

tures

(
n∑

i=1
mi

)
and environmental factors (β) in a single cell at a

given time. Hormone level (β), the dominant environmental factor
in uterine epithelium, is fixed at a level typical for the majority of
menopausal women. The influence of these environmental factors
will be further explored in a future manuscript.

Our simulations have shown that a rate of two random muta-
tions per cell division has the potential to provide sufficient genetic
diversity for enabling evolution among the simulated uterine
epithelial cells. The rare event of immortalization and malignant
transformation is observed when the simulation has been per-
formed for a sufficiently large number of progenitor cells with
the resultant cancer incidence comparable to the level found in
epidemiological data. Our model of normal cells in the uterine
epithelium gives phylogenetic context to the clonal progression
of a TICC into a clinically detectable tumor and, more generally,
simulates the longitudinal and prospective process of tumor devel-
opment, including evolution in a normal cell population, the birth

of the TICC and formation of a tumor. Cancer cells and can-
cer stem cells are defined based on their major features which
distinguish them from normal (non-cancer) cells such as the
status of de-differentiation (k-value), uncontrolled proliferation
(α value), and immortalization (g value). Since all these three
criteria are quantitatively expressed, a meaningful definition of
cancer cells and cancer stem cells at the single cell level and of
a tumor at the clinical level can be derived by their probability
to form a tumor and a metastatic lesion in defined environmen-
tal conditions. The empirical and pathological terms of benign
tumor, precancerous lesion, well-differentiated tumor (good out-
come), and poorly differentiated cancer can be quantitatively and
progressively described by the probability for tumor progression
and development of metastatic diseases under a specific genetic
and environmental set of conditions. Furthermore, interaction
of genetic factors (mi) and environmental factors (β) can be
quantitatively studied along a timeline to determine their com-
bined effect (probability) on tumor development. Additionally,
our model is built upon the description of single cells, and can
thus be used to describe intra-tumor heterogeneity based upon
features of individual cells. Description of cell-specific features is
important to understand the heterogeneous nature of a tumor
and to identify the cells with the greatest potential for metasta-
sis. While the difference in heterogeneity between tumors can be
described statistically as we did in Section “Comparison of the
Median Properties of Tumors Among Those Formed by a TICC
vs. TICSC,” documentation of the features of individual cells,
such as immortalization, proliferation, and de-differentiation,
also allows investigation of the malignant potential of individ-
ual cells, for instance, to investigate the difference in metasta-
tic potential between a cancer stem cell and a non-stem cancer
cell.

This manuscript is primarily focused on the understanding
of genetic diversity in evolution. The important role of environ-
mental factors in the selection of cells with fitness has not been
presented, and remains a relevant subject for this model. Addi-
tionally, our model remains a single cell model which should be
further developed to include terms to address cell–cell interac-
tions and the role of tissue structure. For instance, angiogenesis
and the molecular mechanisms underlying migration of cancer
cells from the primary tumor are extremely important factors
to determine cancer cell migration dynamics and the efficacy of
metastasis.

Taken together, our model has provided a novel approach
to demonstrate genetic diversity and evolutionary dynamics in
a normal cell population at the earliest stage of oncogenesis.
Cell-specific description of genotypes and phenotypes has also
provided a potentially powerful tool to quantitatively analyze and
understand the evolutionary process in tumor development.
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APPENDIX
RESULTS
Cells within the tumor that are not descendant from MRCA(0.995)
There are a few cells remaining in the developed tumor that are
descendant from early branch points during the development of
the mass (Figure A1(A) in manuscript). All other cells are from
the main branch forming the tumor, with the branch point spawn-
ing the tumor found to be MRCA(0.995). Among the 74 tumors
under analysis, the number of cells not emanating from the main
branch was found to range from 38 to 728, with a median value of
244.824. These cells have undergone between 11 and 12 divisions,
with a median of 11.0196 (Figure A1(A)). Their k-values are quite
high (Figure A1(B)), and values range from 2.64 to 4.45, with a
median of 3.37. These cells are following the inherent physiological
lifespan, and are near the point of senescence. They are undergo-
ing or preparing to undergo apoptosis. This is evidenced by their
proliferation potentials (Figure A1(C)) which ranges from −3.37
to 0.164 with a median value of −0.44. These “remnant” cells are

still following the normal status of development and will soon
die out.

Evolution of low k-values in the mass
The evolution of low k-values within the mass as it develops is
illustrated by quantile plots in Figure A2, where the quantiles
are determined based on the proportion of the tumor with these
low k-values at the time the mass reaches 106 cells. After these
low k-values appear, they quickly (over a period of approximately
1 month) form subpopulations comprising roughly 25% of the
mass. This evolution is likely occurring within the dominant sub-
population that is driving the formation of the tumor. We find
that roughly 7% of the mass will comprise cells with k = 0, cells
that have lost all draw toward behavior inherent to the path-
way and thus have stem cell-like behavior, with approximately
13% having k < 0.033 and 18% having k < 0.067. Moreover, the
dynamic nature of the composition of the tumor during its early
development is illustrated in Figure A2.
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Table A1 | Data for the max sizes of masses that eventually die out.

Experiment Median Mean SD Skewness Kurtosis

A 5 16496.5 83716.5 6.78706 52.5286

B 5 13981.3 75298.7 7.90778 75.1809

C 5865 123907 220817 2.04835 6.35482

Table A2 | Proportion of masses with max sizes surpassing thresholds.

Experiment 10 K 50 K 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K 900 K

A 0.092 0.053 0.042 0.024 0.02 0.015 0.013 0.008 0.005 0.001 0

B 0.08 0.05 0.038 0.023 0.014 0.01 0.009 0.005 0.003 0.002 0.002

C 0.47 0.35 0.287 0.211 0.157 0.122 0.094 0.069 0.042 0.025 0.01
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FIGURE A1 | (A) Histograms for the median values of division number, d, of
cells that are not descendant from the main branch. Values are recorded
from 74 primary tumors. The properties in these histograms are similar to
those of “normal” cells, ones that are following the differentiation pathway.
(B) Histograms for the median values of differentiation coefficient, k, of
cells that are not descendant from the main branch. Values are recorded
from 74 primary tumors. The properties in these histograms are similar to
those of “normal” cells, ones that are following the differentiation pathway.
(C) Histograms for the median values of proliferation potential, α, of cells
that are not descendant from the main branch. Values are recorded from 74
primary tumors. The properties in these histograms are similar to those of
“normal” cells, ones that are following the differentiation pathway.
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FIGURE A2 | Quantile plots for the evolution of low k -values during the formation of primary tumors. Proportion of the mass with [(A)-left] k =0,
[(B)-middle] k ≤0.033, and [(C)-right] k ≤0.067.
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FIGURE A3 | (A) Histograms for the median values of differentiation
coefficient k from 500 tumors spawned from TICCs. (B) Histograms for the
median values of proliferation potential α from 500 tumors spawned from
TICCs. (C) Histograms for the median values of division number d from 500
tumors spawned from TICCs.
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FIGURE A4 | (A) Histograms for the median values of differentiation
coefficient k from 500 tumors spawned from TICSCs. (B) Histograms for
the median values of proliferation potential α from 500 tumors spawned
from TICSCs. (C) Histograms for the median values of division number d
from 500 tumors spawned from TICSCs.
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We present a stochastic model of driver mutations in the transition from severe congenital
neutropenia to myelodysplastic syndrome to acute myeloid leukemia (AML). The model
has the form of a multitype branching process. We derive equations for the distributions
of the times to consecutive driver mutations and set up simulations involving a range of
hypotheses regarding acceleration of the mutation rates in successive mutant clones. Our
model reproduces the clinical distribution of times at diagnosis of secondary AML. Sur-
prisingly, within the framework of our assumptions, stochasticity of the mutation process
is incapable of explaining the spread of times at diagnosis of AML in this case; it is nec-
essary to additionally assume a wide spread of proliferative parameters among disease
cases. This finding is unexpected but generally consistent with the wide heterogeneity of
characteristics of human cancers.

Keywords: severe congenital neutropenia, myelodysplastic syndrome, acute myeloid leukemia, branching process,
driver mutations, clonal evolution

INTRODUCTION
Granulocytes are essential for host defense and survival. Their
importance is apparent in severe congenital neutropenia (SCN).
Life-threatening infections in children with SCN can be avoided
through the use of recombinant granulocyte colony-stimulating
factor (GCSF). However, SCN often transforms into secondary
myelodysplastic syndrome (sMDS) and then into secondary acute
myeloid leukemia (sAML). A great unresolved clinical question is
whether chronic, pharmacological doses of GCSF contribute to
this transformation (Glaubach and Corey, 2012). A number of
epidemiological clinical trials have demonstrated a strong associ-
ation between exposure to GCSF and sMDS/sAML (Dong et al.,
1995; Donadieu et al., 2005; Rosenberg et al., 2006; Germeshausen
et al., 2007; Carlsson et al., 2012). Mutations in the distal domain
of the GCSF Receptor (GCSFR) have been isolated from patients
with SCN who developed sMDS/sAML or patients with de novo
MDS (Beekman and Touw, 2010). Most recently, clonal evolution
over approximately 20 years was documented in a patient with
SCN who developed sMDS/sAML (Beekman et al., 2012). Clonal
evolution of a sick hematopoietic progenitor cell in SCN involves
perturbations in proximal and distal signaling networks triggered
by a mutant GCSFR. Transition from SCN→ sMDS→ sAML
involves chance mechanisms such as mutations, drift and tran-
scription, and receptor noise, which require that stochastic models
are needed (Whichard et al., 2010).

In the present paper we use stochastic modeling to under-
stand the wide range of times at which the transition to sAML
occurs. We develop a model in the form of a multitype branch-
ing process, which allows one tying population genetics and

population dynamics aspects of the transition from SCN to sMDS
to sAML, and validating it against existing evidence. Branching
processes have been used widely to model mutation, selection, and
drift processes in populations of variable size, to which the classical
Wright–Fisher model does not apply (Cyran and Kimmel, 2010).
We adopted approach similar to that developed in Nowak’s group
(Bozic et al., 2010), modified to bring out stochastic time intervals
between successive driver mutations.

The model we developed allows predicting the time at tran-
sition to sAML given the probability of each successive driver
mutation, the number of mutations needed, and the proliferative
potential of each successive mutated clone of hemopoietic stem
cells. We can then compare these times to observed distribution
of times at transition. As documented in the paper, the outcome
is intriguing: stochasticity inherent in the mutation process is
insufficient to explain the wide distribution of times at transition
(ranging from 1 to 38; Table 1). Additional factors are required,
one of which may be a wide interpatient spread of proliferative
potential of the mutant clones.

POPULATION GENETICS AND POPULATION DYNAMICS MODEL OF THE
SCN → sMDS → sAML TRANSITION
Missense, nonsense, and frameshift mutations, and dysregulated
alternative splicing in GCSFR have been isolated in patients with
MDS/AML. In the study of Beekman et al. (2012), nonsense and
missense mutations in GCSFR arose during the course of the
disease. In the model we envision, population genetics, and pop-
ulation dynamics of proliferating bone marrow cells are closely
intertwined.
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Table 1 | Summary of life histories of patients transitioning from

severe congenital neutropenia (SCN) to secondary myelodysplastic

syndrome (sMDS) to secondary acute myeloid leukemia (sAML)

(Walter et al., 2012).

Phase of

disease

Age at diagnosis

(years)

Number of co-existing

mutations

SCN 0–0.5 1*

MDS 1–12 1–3± chromosomal loss or gain**

AML 2–38 1–9± chromosomal loss or gain***

*ELANE, HAX1, G6PC, WAS, CSF3R.

**GCSF3R, ZC3H18, LLGL2; RAS±monosomy 7.

***RUNX1, ASXL1, p300, CEBA, CSF3R, MGA,SUZ12, LAMB,FBXO18,

CCDC15,±monosomy 7, trisomy 21.

POPULATION GENETICS PERSPECTIVE
Proliferating healthy cells in the bone marrow mutate at ran-
dom times, possibly influenced by super-pharmacological doses of
GCSF. A summary of possible mutations and their consequences
for proliferation dynamics of granulocyte precursors is depicted
in Figure 1. GCSF signaling occurs through its cognate receptor,
GCSFR. It involves both proximal signaling networks consisting
of signaling molecules such as Lyn, Jak, STAT, Akt, and ERK, and
distal gene regulatory networks consisting of transcription factors.
Together, these signaling networks promote proliferation, survival,
and differentiation. In patients with SCN,the earliest known muta-
tion to contribute to transformation to secondary MDS or AML is
a nonsense mutation in the GCSFR gene. This mutation leads to
a truncated receptor, GCSR delta 715 (Glaubach and Corey, 2012,
and reference therein).

It follows from a simple calculus of mutation events that as
long as the cell population size is kept in check, the rate at
which new mutant clones appear in the population is rather low.
When the population expands, new mutant clones arise faster (see
further on).

In our model we take the view that carcinogenesis is driven
by a succession of small-scale (e.g., point) mutations in specific
loci. Other viewpoints (epigenetic effects, karyotypic alterations,
intercellular interactions, etc.) have been suggested. In treatment-
related MDS some drugs (e.g., many alkylating agents) induce
t-MDS primarily via large scale alterations that lead to karyotypic
instability (Bhatia, 2011).

POPULATION DYNAMICS PERSPECTIVE
Limited mutation load at the SCN phase causes neutropenia and
fluctuations of cell population size. With time, accumulation of
driver mutations causes expansion of mutant clones, which how-
ever are not yet expanding at a dramatic rate. At some point in
time, mutations accumulate sufficiently to cause a major change
in the proliferation law and the now malignant cell population
starts rapidly expanding.

Our model is based on the following hypotheses (Figure 2):

1. At the time of diagnosis of SCN, GCSF therapy is initiated,
which induces an initial series of X driver mutations, occurring
at random times.

2. The X -th mutation causes transition to the MDS, during which
further Y mutations occur.

3. After X +Y mutations, the AML stage begins, during which
the subsequent mutant clone grow at increasing rate, which in
turn shortens times at which still new mutations appear.

In the model, the increasing proliferation rate of successive
mutant clones causes acceleration of growth of the malignant bone
marrow stem cell population, which shortens the time interval to
appearance of new clones, which in turns increases proliferation
rate, and so forth; this results in a positive feedback. As we will
see, the stochastic nature of the process (the times to appearance
of each next mutant are random) causes a spread of the timing
of the subsequence mutations, particularly the first X mutations
during the SCN phase. This may result in the transition to MDS
not manifesting itself for a very long time in a fraction of cases.

ROLE OF STOCHASTIC DYNAMICS IN THE MODEL
We explain some other intuitions underlying the model. For a
new subclone, stochastic theory is used to estimate extinction
probability, with extinction after more than a few cell genera-
tions being negligible in view of the growth advantage of the new
clone. However the time at which the next mutation occurs in
a cell clone is also stochastic and it is as a rule more dispersed
for the slower-growing clones. Therefore the time to reaching the
threshold number of bone marrow stem cells (which in our model
defines the time at sAML diagnosis), is a random variable. One of
the questions we ask is if dispersion of this time matches the wide
distribution of the times at diagnosis (Rosenberg et al., 2010).

MATERIALS AND METHODS
MATHEMATICS OF THE MODEL
The population-genetic effect of population size-dependent accu-
mulation of mutations occurs as a natural consequence of the pro-
liferation law in the form of a multitype Galton–Watson branching
process:

1. Consecutively arising surviving mutant clones are numbered
with the index k, ranging from 1 to K ; time interval between
the appearance of the k-th and k + 1-st surviving mutant clones
is denoted by τk. k-th mutant cells have accumulated k driver
mutations (assuming the clone in SCN bone marrow at diag-
nosis has a single cell with one driver mutation, which seems a
defendable idealization).

2. All clones expand as Galton–Watson branching processes (see
further on). Cell life length is constant and equal to T, and at
that time the cell either produces two progeny with probability
bk (cell type k) or dies (or becomes quiescent or differentiated,
which does not make a difference for disease dynamics) with
probability 1− bk.

3. A cell of type k can mutate upon its birth (for definiteness) to
type k + 1 with probability u.

These three rules allow one derive the probability distributions
of time intervals τk, probabilities of survival of each clone, and
expected growth laws of each clone. Mathematical details fol-
low from the theory of Galton–Watson branching process; see
for example the monograph by Kimmel and Axelrod (2002).
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FIGURE 1 | Dynamic stochastic model of impaired differentiation in
granulocyte precursors. GCSF signaling occurs through its cognate
receptor, GCSFR. It involves both proximal signaling networks consisting
of signaling molecules such as Lyn, Jak, STAT, Akt, and ERK, and distal
gene regulatory networks consisting of transcription factors. Together,

these signaling networks promote proliferation, survival, and
differentiation. In patients with severe congenital neutropenia, the earliest
known mutation to contribute to transformation to secondary MDS or
AML is a nonsense mutation in the GCSFR gene. This mutation leads to a
truncated receptor, GCSFR delta 715.

We assume that cell division is effective with probability b, i.e.,
the probability generating function (pgf) of the number of prog-
eny cells per parent cell has the form f(s)= bs2

+ (1− b). The
extinction probability q is the smaller solution of the equation
q= f(q), which is less than 1 if the process is supercritical. In
our case,

q = bq2
+ (1− b)⇒ q =

(
b−1
− 1

)
; b ∈ (0.5, 1]. (1)

Similarly, the expected number of progeny of a cell is equal to
f ′(1−)= 2b, hence the expected number of cells at time t is equal
to N (t )= (2b)(t /T ), which yields the value of λ

exp (λt ) = (2b)(t/T )
⇒ λ = ln (2b) /T . (2)

We will use “continuous” time t for notational convenience.
However, we consider generations of cells dividing at discrete times
ti= iT, where T is the average cell cycle time. As it is known, the
expected (mean) growth law in the Galton–Watson process has
the form

E [# cells, at time t , in a clone started at time t0]
def
=

[N (t ) = exp (λ (t − t0))] , as t →∞. (3)

To determine the distribution of time to a mutation creat-
ing a new non-extinct clone, we consider a newborn cell. In this
cell, mutation may occur with probability u, and if the extinc-
tion probability of the mutant clone is q′, then the probability
that the cell does not produce a new mutant clone is equal

to 1− u(1− q′). Until time ti= iT, approximately
i∑

j=0
N
(
tj
)
=

N (t0)
(
exp (λT )i+1

− 1
) (

exp (λT )− 1
)−1

new cells are born,
and assuming independence, we obtain

Pr [no mutant initiating nonextinct clone appears until

time ti = iT ]

= Pr [τ =: time to nearest nonextinct

mutant clone > ti = iT ] =
(
1− u

(
1− q′

)) i∑
j=0

N(tj)

=
(
1− u

(
1− q′

))N (t0)
exp (λT )i+1

−1
exp(λT )−1 = ad(exp(ct )−1).

(4)

where, for the k-th mutant population

a =
(
1−

(
1− qk+1

)
uk
)
=
(
1− uk

(
2bk+1 − 1

)
/bk+1

)
,

c = λk = ln (2bk) /T ,

d =
(
exp (λk T )− 1

)−1
= (2bk − 1)−1.

Since the distribution tail of random variable τk has the form

Pr [τk > τ] = ad(exp(ct )−1) = exp
(
− ln

(
a−1) d

(
exp (cτ)− 1

))
.

it can be algorithmically generated using the inverse tail method

τk = c−1 ln (ln r/ (d ln a)+ 1) , (5)
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FIGURE 2 | Proliferating healthy cells in the bone marrow mutate at
random times, possibly influenced by super-pharmacological doses
of GCSF. As long as the cell population size is kept in check, genetic drift,
and selection remove many of the mutants, whereas some mutants

persist. When the population expands, new mutant clones become more
easily established. At some point, a qualitative change in the proliferation
rate occurs and the now malignant cell population starts rapidly
expanding.

where r is a pseudo-random number uniformly distributed from
0 to 1. In this framework, a sample path of the number of cells
in the k-th mutant clone (which contains cells with k mutations
accumulated) is equal to

Nk (t ) =

{
0 t ≤

∑k−1
j=1 τj

exp
(
λk

(
t −

∑k−1
j=1 τj

))
otherwise

(6)

The derivations presented are quite similar to those of Bozic
et al. (2010), except that in that paper, expected times E(τk)
to the next mutation have been used. Here, we are interested
in exposing stochastic variability in the time course of the
SNC→ sMDS→ sAML transition. Another refinement would be
to use distributions of cell counts instead of expected values Nk(t ).
This would result in serious computational problems, arguably
without much impact on the results.

MODELING THE SNC → sMDS → sAML TRANSITION
Equations 1 and 2 allow generating realizations of times to suc-
cessive driver mutations under different values of mutation rates
and proliferative characteristics of the mutant clones. We make the
following assumptions:

1. Transition to sMDS requires one or two somatic driver muta-
tions, whereas the transition to sAML requires at least three
somatic driver mutations (cf. Table 1).

2. Diagnosis of sAML requires presence of 104 leukemic HSC. For
details of computations leading to this estimate, see further on.

3. Successive mutant clones have increasing proliferative poten-
tial. We assume a power law for the coefficients bi, which seems
to lead to fits that do not contradict data:

bi = min
(
0.5+ A

(
ε+ (i − 1)κ

)
, 1
)

, (7)

where coefficients A, ε, and κ are considered further on.
4. As it will be seen, it is necessary to assume that the coefficients A

be generated from a probability distribution instead of assum-
ing a constant value. We assume the distribution function FA(a)
selected so that the times of at diagnosis of sAML fit available
statistics (for details see further on).

ESTIMATE OF THE NUMBER OF LEUKEMIC CELLS
We carried out computations based on two literature sources and
then used rounding to the nearest order of magnitude to obtain
a working threshold number of the leukemic initiating cells (LIC)
(Bonnet and Dick, 1997). In both cases we assume that the vol-
ume of human bone marrow is equal to V = 1700 ml and that
LIC cells constitute a fraction ψ= 10−6 of leukemic bone mar-
row mono-nucleated cells (BMMNC). We also assume that in
sAML, fraction ρ= 0.8 of BMNNC is constituted by leukemic
cells.
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Estimate 1
Dedeepiya et al. (2012) provide an estimate of the number
of BNNMC per 1 ml B= 3.67× 106. This results in an esti-
mate of the number L of LIC cells in the entire bone marrow
L= ρ×ψ×V ×B= 4991 cells.

Estimate 2
Bender et al. (1994) provide estimates of B in the range from
3.02× 106 to 4.71× 106. This results in L= 4107÷ 5535 cells.
These estimates are remarkably consistent. Rounding to the near-
est order of magnitude results in a working estimate of L= 104

cells.

TIME AT DIAGNOSIS OF sAML AND DISTRIBUTION OF PARAMETER A
Under given values of parameters κ and ε as well as mutation rates
uk, the time at diagnosis of sAML, defined as the time T from
initiation of GCSF treatment such that∑

k

Nk (T ) = L

depends on parameter A according to an approximate power law

T = f (A) = exp (α) Aβ,

where β < 0. This dependence, which was obtained via simulation
studies (not shown), allows finding the distribution of A that leads
to a clinically observed distribution of the time of sAML diagnosis
according to the following expression for distribution tails

F̄A (a) = 1− F̄T
(

f (a)
)

,

where F̄T (t ) = Pr [T > t ] is the tail of the distribution of time
T. This in turn allows generating pseudo-random realizations of
A according to the expression

A = f −1 (F̄−1
T (R)

)
=
(
exp (−α) F̄−1

T (R)
)1/β

, (8)

where R is a pseudo-random number from the uniform distribu-
tion on the (0, 1) interval.

We need to approximate the tail of the distribution of the time
at diagnosis of sAML. A recent source is the paper by Rosen-
berg et al. (2010). These authors reported results of a prospective
study of 374 SCN patients, and included estimates of hazard rates
and cumulative probability of sMDS/sAML as a function of time
after GCSF treatment. Hazard rate grows for the first 5 years and
then plateaus. To simplify computations we adopted a piecewise
constant estimate of the hazard rate hT(t )

hT (t ) =

{
0.01 t ∈ [0, 3)

0.02 t ∈ [3,∞)

with time in years. Comparing with Figure 1A in Rosenberg et al.
(2010) we see that hT(t ) remains within the confidence band
computed based on the prospective study. Using the expression

F̄T (t ) = exp

(
−

∫ t

0
hT (τ) dτ

)
and inverting the tail function F̄T (t ) we complete the derivation
of expression Eq. 8 (elementary details not shown).

OVERVIEW OF PARAMETER ESTIMATION
The form of expression Eq. 8 and plausible estimates of parameters
κ and ε as well as of mutation rates uk, are difficult to be uniquely
determined with the data available at the present time. We used
the following heuristic procedure:

1. Driver mutation rates increase from the reference value by a
factor of 5, starting mutation 3, so that u1,2= u but u3,4,5= 5u.
The increase is needed for the later mutations to occur in quick
succession, so that mutation 3 occurs before

∑
k

Nk (T ) > L,

with L= 104 being a relatively low value.
2. Reference driver mutation rate had to be set equal to 0.00034,

10 times higher than the value estimated by Bozic et al. (2010).
This is required for enough mutations to accumulate before the
threshold time T.

3. Proliferation rate increases as power κ of the mutation number,
value κ= 2 provides sufficient acceleration to explain relative
rapidity of the AML stage. The offset parameter ε= 0.02 keeps
proliferation rate before mutation 1 sufficiently low.

4. Once estimates of parameters uk, κ, and ε are obtained, esti-
mates of the power law parameters α and β are determined by
a simulation study, and the generator of random parameter A
is obtained via expression Eq. 8.

RESULTS
SIMULATED COURSE OF DISEASE
Figure 3 depicts the impact of successive driver mutations on
the natural course of the SCN→ sMDS→ sAML transition.
Figure 3A depicts counts Ni(t ) of cells in successive mutant
clones as a function of time, under model as in Eq. 7 with
A= 0.005, ε= 0.02, and κ= 2. Straight lines with increasing slopes
are counts of cells in successive mutant clones. We observe that
the time intervals separating the origins of successive clones are
decreasing with each mutation event. Thick dashed line repre-
sents the total mutant cell count. It is also interesting to observe
that clones with increasing numbers of mutations dominate tran-
siently, until they are replaced by other clones with higher pro-
liferative capacity (selective value). Figure 3B depicts relative
proportions ni(t )=Ni(t )/ΣjNj(t ) of cells belonging to successive
mutant clones.

TIME AT sAML DIAGNOSIS
It is somewhat surprising that under any combination of coeffi-
cients A and k, the range of simulated times at sAML diagnosis is
rather narrow. Figure 4B depicts ranked simulated times at sAML
diagnosis under model as in Eq. 7 with A= 0.005, ε= 0.02, and
κ= 2. Spread of these values is narrow, with interquartile range
between 15 and 21. Systematic simulation experiments demon-
strate that this is the case for a wide range of A and κ parameter
values. This outcome is in contrast to the wide spread of times
at diagnosis summarized in Table 1 and that based on Rosenberg
et al. (2010).

Simulation-estimation experiment outlined in the Methods
demonstrates that distribution of simulated times (counting form
initiation of CGSF treatment) at sAML (Rosenberg et al., 2010)
is reproduced by our model. Figure 4A cumulative distribution
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FIGURE 3 | Summary of successive driver mutations in the natural
course of the SCN → sMDS → sAML transition. (A) Counts Ni(t ) of cells
in successive mutant clones, under model as in Eq. 7 with A=0.02, ε=0.2,
and k =2. Straight lines with increasing slopes: counts of cells in
successive mutant clones. Thick dashed line: Total mutant cell count. (B)
Relative proportions ni(t )=Ni(t )/ΣjNj(t ) of cells belonging to successive
mutant clones. Further details as in the Section “Mathematics of the
Model.”

FIGURE 4 | Cumulative distributions of the model-generated times at
diagnosis of sAML. (A) Simulations under model as in Eq. 7 with A
generated using Eq. 8, ε=0.2, and k =2. (B) Simulations under model as in
Eq. 8 with A=0.02, ε= 0.2, and k =2.

of the times at sAML diagnosis under model as in Eq. 7 with
κ= 2, ε= 0.02, and A generated from the distribution in Eq. 8
with α=− 0.655 and β=−0.912.

CONCLUSION
The process of development and replacement of leukemic clones
is influenced by the processes of genetic drift and selection (Wal-
ter et al., 2012). These forces are usually analyzed by geneticists
in the framework of the Wright–Fisher or coalescent model (see
Discussion and references in Cyran and Kimmel, 2010). However,
in the case of expanding cell clones, the more appropriate popula-
tion process seems to be one of the types of branching processes;
in our case, the Galton–Watson process (Kimmel and Axelrod,
2002). In the particular version of the multitype Galton–Watson
process that we use, genetic drift’s mechanism is the loss of vari-
ants through extinction and selection is embodied in the principle
that each next surviving clone is proliferating faster (has greater
fitness).

A characteristic feature of human cancers is very wide het-
erogeneity with respect to extent of involvement, genotype and
rate of progression, and spread (Michor et al., 2004; Hanahan
and Weinberg, 2011). This is in contrast to induced animal
tumors, which are relatively uniform. Secondary AML, result-
ing from a transition from SCN via myelodysplastic syndrome,
is not an exception, with onset varying from 1 to 38 years of age
and with wide variability of mutational background (Table 1).
It is interesting, and we consider it a major result, that such
spread of the age of onset is not due solely to stochastic nature
of mutation-driven transitions, but it requires a large variabil-
ity in proliferative potential from one disease case to another.
Also, this distribution of coefficient A, which parameterizes
the proliferative potential, is right-skewed, with slowly evolving
(low-A) clones prevailing. This provides a testable hypothesis
about distribution of proliferating rates in leukemic stem cell
clones.

The model presented in this paper addresses certain aspects
of the SNC→ sMDS→ sAML transition. Among other, although
we might derive an expression relating the number of driver
(selective) mutations to the corresponding count of accumulated
passenger (neutral) mutations (similarly as it was done in Bozic
et al. (2010), we do not have at our disposal sequencing data to
validate such an expression. Also, we do not attempt here to fit the
distribution of the age at diagnosis of the sMDS, since we are miss-
ing data on individual life histories, which would involve somatic
mutation as well as sequencing data.

From the mathematical point of view, the current model is also
somewhat simplified. It considers each new mutation to provide
more selective advantage to the arising clone. This is in appar-
ent disagreement with the recent observation of Beekman et al.
(2012), of mutations which appear at the sMDS stage and disap-
pear at the sAML stage. The linear structure of mutation confers
desirable simplicity to modeling but is not necessarily realistic.
In the framework of multitype branching processes and special
processes such as Griffiths and Pakes branching infinite allele
model (Griffiths and Pakes, 1988; Kimmel and Mathaes, 2010),
more complicated scenarios can be gaged.
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Malignant transformation, though primarily driven by genetic mutations in cells, is also
accompanied by specific changes in cellular and extra-cellular mechanical properties such
as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with
their surroundings via physical contacts and the application of forces.These forces can lead
to changes in the mechanical regulation of cell fate based on the mechanical properties
of the cells and their surrounding environment. A comprehensive understanding of cancer
progression requires the study of how specific changes in mechanical properties influences
collective cell behavior during tumor growth and metastasis. Here we review some key
results from computational models describing the effect of changes in cellular and extra-
cellular mechanical properties and identify mechanistic pathways for cancer progression
that can be targeted for the prediction, treatment, and prevention of cancer.

Keywords: cancer modeling, mechanical forces, cell-material interactions, cell–cell interaction, review

INTRODUCTION
Cancer is a disease rooted in the dis-regulation of cellular signal-
ing pathways that control cell proliferation and apoptosis. This
is generally caused by mutations in genes that express key pro-
teins involved in these biochemical reactions. However, cancer is
also accompanied by specific changes in the mechanical prop-
erties of cells and their surrounding extra-cellular environment
(Figure 1). For example, cancerous cells are less stiff compared to
their healthy counter parts (Suresh, 2007). This decrease in cell
stiffness with malignant transformation has been observed in a
variety of cancers such as breast cancer, lung cancer, renal cancer,
prostate cancer, oral cancer, skin cancer, and so on (Guck et al.,
2005; Cross et al., 2007; Suresh, 2007; Remmerbach et al., 2009;
Fuhrmann et al., 2011; Jonas et al., 2011; Plodinec et al., 2012). Fur-
thermore, the decrease in cell stiffness seems to be greater in cells
with higher malignancy and metastatic potential (Swaminathan
et al., 2011). Cancerous cells also have increased acto-myosin cor-
tex contractility as compared to corresponding healthy cells (Jonas
et al., 2011; Kraning-Rush et al., 2012). This has been observed in
response to the stretching of cells by external stimuli. Apart from
the cortex stiffness and contractility, cancerous cells also undergo
changes in their ability to physically bind to their neighbors and
the surrounding extra-cellular elements at different stages of can-
cer progression (Paredes et al., 2005; Ribeiro et al., 2010a,b). This is
caused by the up or down regulation of specific adhesion proteins
on the cell surface and affect the growth rate, shape, and invasive-
ness of tumors. Accompanying the changes in cellular mechanical
properties are also some very specific changes in the mechanical
properties of the extra-cellular environment. Tumors with high
invasive potentials have a stiff extra-cellular environment (Erler
and Weaver, 2009; Levental et al., 2009). The tumor extra-cellular
environment consists primarily of fibrous tissue made up of col-
lagen fibers. With malignant transformation of cells, an increase

in the cross-linking of these fibers and a consequent stiffening of
the extra-cellular matrix (ECM) environment has been observed
(Erler et al., 2006). Once again this observation is common for a
variety of cancers. Also, with the advent of metastasis and the inva-
sion of the extra-cellular environment by cells of a growing tumor,
the fibers in the ECM undergo extensive remodeling in terms of
degradation, re-polymerization, and alignment (Alini and Losa,
1991; Vijayagopal et al., 1998; Zhang et al., 2003; Yang et al., 2004;
Paszek et al., 2005; Vader et al., 2009). This realignment of ECM
fibers and strain-induced stretching can alter the ECM mechanical
properties as shown by Stein et al. (2011).

There is an increasing interest in the mechanics of cancer pro-
gression with an aim to identify mechanistic pathways that can
be targeted for the prediction, treatment, and even prevention of
cancer. With this in mind it is important to understand the effect
of these peculiar changes in cellular and extra-cellular mechanical
properties on tumor growth and metastatic potential. The poten-
tial influence of mechanical property changes on cell behavior
during cancer progression has been discussed in recent commen-
taries and insight articles (Peyton et al., 2007; Kumar and Weaver,
2009; Fritsch et al., 2010). The underlying idea is that mechanical
forces acting on cells can regulate signaling pathways responsi-
ble for cell death, division, differentiation, and migration (Assoian
and Klein, 2008; Chen, 2008; Mammoto and Ingber, 2009; Nelson
and Gleghorn, 2012; West-Foyle and Robinson, 2012). Changes
in cellular and extra-cellular mechanical properties during malig-
nant transformation potentially alter the forces acting on cells and
thus influence morphogenetic evolution, proliferation, and inva-
sion of cancer cells (Huang and Ingber, 2005; Lopez et al., 2008). It
would be desirable to quantify this effect of mechanical properties
on collective cell behavior in in vivo and in vitro multi-cellular
systems. However, the presence of various other biological factors
influencing cell behavior, as well as the complex interplay between
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FIGURE 1 | Schematic of cancer progression in a tissue, and the interplay between the mechanical and biological factors that drive these processes of
cell proliferation, invasion of surrounding tissue and metastasis via individual or collective cell migration.

the biological and mechanical factors makes it extremely difficult
to isolate the effects of mechanical interactions. Computational
modeling is an extremely useful tool in such conditions, where
the effect of individual parameters can be studied and there is
unlimited control on the parameter space.

Computational models can be developed to observe specific
effects at various length scales ranging from the molecular to the
macroscopic level, and these observations can then be integrated to
obtain a complete picture of a specific process. Models have indeed
been used extensively in understanding various aspects of cancer
progression. Different models focusing on different aspects of can-
cer, such as effect of genetic heterogeneity, phenotypic evolution,
biochemical interactions between cells and their surroundings,
chemical and nutrient gradients, external forces, and mechani-
cal interaction between cells, their neighbors, and the ECM can
be found in literature. These models vary from being contin-
uum based models of two evolving spatial domains representing
the tumor mass and its environment to being discrete models
where individual cells interacting with each other and the sur-
roundings describe the system being simulated. A recent trend
is to adopt a hybrid approach to incorporate the advantages of
both continuum and discrete models into one, with a continuum
description for the main tumor mass, and a discrete individual cell
approach for tumor-environment interactions. The various mod-
eling approaches have been reviewed in these references (Galle
et al., 2006; Sanga et al., 2007; Byrne and Drasdo, 2009; Stolarska
et al., 2009; Rejniak and McCawley, 2010; Deisboeck et al., 2011;
Frieboes et al., 2011; Kam et al., 2012) and many others. Here we
discuss some of these models, and a few other recent ones that
examine the role of mechanics in tumor growth and invasion.

The goal of this review is to summarize the effects that changes
in mechanical properties of cells and their surroundings have
on tumor growth and metastasis as understood from computa-
tional models. There are a lot of models that incorporate some

form of mechanical interaction between its elements, and many of
them are progressions or off-shoots of previous models focusing
more on the biochemical aspects of cancer progression. Hence,
we shall focus only on key results regarding the influence of
mechanical interactions rather than delve into the details of the
model development process. With this information, we hope
to display the importance of mechanistic models in identifying
novel pathways of cancer progression, and direct the reader to
more detailed sources on models interesting to them. Table 1
lists the specific changes in cellular and extra-cellular mechanical
properties discussed here, experiments describing these changes
and the corresponding observations on tumor cell behavior, as
well as models that describe potential mechanisms connecting
the two.

CHANGES IN EXTRA-CELLULAR MECHANICAL PROPERTIES
The extra-cellular environment of a carcinoma consists of sur-
rounding healthy cells, a dense layer of fibrous basal membrane,
and the surrounding stroma mainly comprised of fibrous matrix,
adipocytes, and fibroblasts (Hogg et al., 1983). A growing tumor
needs to push against this extra-cellular environment as it grows.
Thus, intuitively, the stiffer the extra-cellular environment is, the
less it deforms against the pressure applied by the growing tumor,
restricting tumor size. This phenomenon was demonstrated exper-
imentally by Helmlinger et al. (1997) and more recently by Cheng
et al. (2009). Computationally this has been reproduced with vary-
ing levels of agreement by a variety of models (Chen et al., 2001;
Ambrosi and Mollica, 2004; Drasdo and Hohme, 2005; Gevertz
et al., 2008; Basan et al., 2009; Torquato, 2011; Montel et al., 2012;
Ciarletta et al., 2013; Kim and Othmer, 2013) irrespective of model
type (continuum, discrete, hybrid) and mechanism (growth retar-
dation by formation of a necrotic core due to lack of nutrients, or
by contact inhibition from increased packing density of growing
cells, or both).
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Table 1 | Some specific changes in cellular and extra-cellular mechanical properties, observations from experiments and computational models.

Experimental observations Model predictions

Extra-cellular mechanical properties

Matrix stiffening (effect of increased density, cross-linking)

(Paszek et al., 2005; Levental et al., 2009)

Increased cell proliferation driven by heterogeneity in ECM mechanical properties,

protrusions along high density gradients (Macklin and Lowengrub, 2007; Rubenstein and

Kaufman, 2008; Anderson et al., 2009; Macklin et al., 2009)

Matrix re-organization (effect of degradation and

realignment) (Wolf et al., 2007; Friedl and Wolf, 2008)

Cell Proliferation driven by matrix degradation through the expression of MMPs and along

realigned matrix fibers (Franks et al., 2005; Painter, 2009; Giverso et al., 2010; D’Antonio

et al., 2013)

Cellular mechanical properties

Increase in cell compliance or deformability (Cross et al.,

2007; Fritsch et al., 2010; Jonas et al., 2011)

Tumorigenesis and increased malignancy, (Katira et al., 2012). Increased migration through

porous ECM (Zaman, 2006; Zaman et al., 2007; Scianna and Preziosi, 2013)

Changes in cell adhesivity (Paredes et al., 2005; Ribeiro

et al., 2010b)

Changes in tumor morphology, growth rates, and metastatic potential (Byrne and

Chaplain, 1996; Armstrong et al., 2006; Ramis-Conde et al., 2008b; Frieboes et al., 2010;

Rejniak et al., 2010; Katira et al., 2012)

Increase in cell contractility (Jonas et al., 2011; Kraning-Rush

et al., 2012)

Increased migration rates and rigidity sensing (Moreo et al., 2008; Brodland and Veldhuis,

2012)

However, it is now known that the extra-cellular environment
surrounding a tumor stiffens as the cells transform from normal to
malignant to metastatic, and this transformation promotes can-
cer progression rather than arrests it (Paszek et al., 2005; Erler
and Weaver, 2009; Klein et al., 2009; Levental et al., 2009; Ulrich
et al., 2009). The models described above in their base form do
not support this possibility. To explain the growth and metas-
tasis of tumors against a dense, stiff, low porosity extra-cellular
environment, models incorporating cell-ECM interactions are
required. The continuum model described by Macklin and Lowen-
grub (2007) suggests that the aggressiveness of tumors growing in
denser, stiffer environments that restrict cell mobility arises from
increased shape instabilities during tumor growth and the for-
mation of invasive finger-like morphologies. On the other hand,
Franks et al. (2005) have suggested that tumor growth in a harsh
environment like the one described above can lead to cell mor-
phogenesis and progression toward a more malignant phenotype
expressing high level of matrix degrading proteins (MMPs). These
MMPs can then degrade the stiff, cross-linked ECM, weakening it.
The growing tumor can then push against these weaker sections to
grow as shown by D’Antonio et al. (2013). Chaplain et al. (2006)
also incorporate a more active role of cell-ECM interactions in
altering cell proliferation and migration rates to explain the growth
of solid tumors against stiff extra-cellular environments. Their
model focuses solely on mechanistic factors influencing tumor
growth and incorporates the increase in ECM fiber density (Chris-
tensen, 1992; Kauppila et al., 1998; Brown et al., 1999) as well as
changes in ECM degradation rates observed with malignant trans-
formation (Clark et al., 2007; Alexander et al., 2008; Rizki et al.,
2008). Increased ECM density facilitates cell proliferation as well as
cell migration up to a certain extent (Zaman et al., 2006; Alexander
et al., 2008). Increased MMP activity and corresponding degrada-
tion of the ECM also promotes cell migration through a dense
ECM up to a certain extent (Erler and Weaver, 2009; Harjanto
and Zaman, 2010). The effect of ECM density and cross-linking

on cell invasiveness via the formation of invadopodia has been
computationally modeled by Enderling et al. (2008). The effect
of ECM degradation via the action of MMPs and resulting cell
invasion has been modeled by Giverso et al. (2010). Based on the
balance between the ECM fiber deposition and MMP degrada-
tion rates, as well as the spatial distribution of these factors in
the tissue, various regimes of tumor growth, arrest, and invasion
are possible. The heterogeneity arising in the tissue environment
in terms of ECM density and stiffness because of these interac-
tions can give rise to different morphologies for a growing tumor
(Anderson et al., 2006; Frieboes et al., 2007; Gerlee and Anderson,
2008; Macklin and Lowengrub, 2008; Macklin et al., 2009; Trucu
et al., 2013). Another model useful for studying the effect of ECM
structure is described by Rubenstein and Kaufman (2008) where
cell fate decisions are influenced by the neighboring elements and
the overall interaction energy of the multi-cellular system. This
allows for cell–cell as well as cell-ECM interactions to influence
cell behavior and different collective phenomena can be observed
based on the interaction rules. The model shows similar results
as the described above, with increased cell proliferation near the
densest ECM regions. Apart from cell proliferation and increased
motility, changes in ECM structure can also impart directionality
to the cells emanating from a growing tumor as shown com-
putationally by Painter (2009). This is made possible through a
mechanism know as contact guidance (Dunn and Heath, 1976;
Guido and Tranquillo, 1993) where cells migrate along the length
of ECM fibers. Thus, formation of aligned ECM fiber bundles can
influence directed cell motility into the surrounding tissue.

CHANGES IN CELLULAR MECHANICAL PROPERTIES
Cells undergo very specific changes in their mechanical proper-
ties along with malignant transformation, just as the extra-cellular
environment does. One particular change is the decrease in the
stiffness of cells, or in other words, an increase in the compli-
ance or deformability of cells. This has been observed for many
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different cancers. Furthermore, increased deformability of cells
corresponds to higher malignancy and metastatic potential. This
change in the mechanical property of cells complements that of
the extra-cellular environment, which gets stiffer with increased
malignancy. Using computational modeling Katira et al. (2012)
have shown that decrease in cell stiffness can have a similar effect on
cell proliferation rates as increase in the stiffness of the surround-
ings do (Klein et al., 2009). The model by Katira et al. incorporates
the mechanical regulation of cell fate driven by changes in cell
shape, and suggests that for cell clusters larger than a threshold
size, the decrease in cell stiffness can drive uncontrolled growth
and evasion of apoptosis in cells. While there are a number of other
factors that influence cell proliferation, this seems to be a mech-
anistic pathway that aids tumor growth. The effect of changes in
cell stiffness has also been studied by Drasdo and Hoehme (2012),
where they look at the mechanical interactions between cells and
a granular surrounding medium. Apart from tumor growth, the
decrease in stiffness of cells has been shown to influence their
ability to navigate tight turns during cell migration (Park et al.,
2005; Lautenschlager et al., 2009). While the effect of this on
cell migration during metastasis through the ECM is unknown,
a potential increase in mobility can be predicted based on the
models described in (Zaman et al., 2007; Scianna and Preziosi,
2013).

Apart from the lowering of cell stiffness, cells undergo changes
in their binding ability with other cancer cells, normal cells, and the
extra-cellular environment. These changes vary with cell pheno-
type and can be different at different stages of cancer progression.
Also, their effects on tumor growth can vary based on the size and
morphology of the tumor and the tumor-environment. For exam-
ple studies have shown increased malignancy but non-invasiveness
in tumors with increased P-cadherin binding between the cells
(Van Marck et al., 2005). On the other hand studies have shown
tumor growth arrest with increased E-cadherin binding. Other
results have also shown increase in malignancy with decreased E-
cadherin mediated adhesion (Bryan et al., 2008), while in still other
cases the initiation of metastasis is driven by hypoxia induced loss
of binding (Behrens et al., 1989; Finger and Giaccia, 2010). The
effect of changes in cell adhesion has been studied in a lot of
different modeling works (Drasdo and Hohme, 2005; Armstrong
et al., 2006; Anderson et al., 2009; Bearer et al., 2009; Frieboes
et al., 2010; Katira et al., 2012). One of the early models describing
the effect of cell–cell adhesion on tumor growth is by Byrne and
Chaplain (1996). The model balances the internal pressure of a
growing tumor to the surface tension which is a function of the
cell–cell adhesion. Thus changes in adhesion energies can drive

instabilities in the contour profile of the growing tumor and result
in finger-like extensions, representing metastasis. A model specif-
ically suited for analyzing the effect of multiple changes occurring
in the expression of cell-surface proteins that regulate cell–cell
and cell-ECM interactions is the IBCell model described by Rej-
niak et al. (2010). The model describes cell behavior in terms of
growth, phenotypic evolution, and apoptosis as a function of all
the interactions it has with its neighbors and the different levels of
surface proteins it is expressing at the time. This enables the predic-
tion of a variety of different phenomena arising during malignant
transformation and tumor growth. In principal this model is sim-
ilar to the Rubenstein model mentioned previously, however the
focused application described has been on the effect of changes
in expressed cell-surface receptors and mechanical interactions
between cells. Ramis-Conde et al. (2008a,b) describe a slightly
different model focusing on the cadherin-catenin biochemical
pathway and its effect on mechanical interaction between cells.
The detachment of the cadherin bonds triggers the wnt -signaling
pathway,and the model is able to predict epithelial to mesenchymal
transition and cell migration toward a particular signal source.

FUTURE DIRECTIONS
There are a number of models that describe the mechanics of can-
cer and the effect of specific changes in cellular and extra-cellular
properties. However, it is necessary to combine these models focus-
ing on different aspects of cell–cell and cell-ECM mechanical
interactions into a unified theory of cancer progression. This com-
prehensive understanding of all the mechanical aspects is required
in order to predict clinically observed tumor growth and metas-
tasis, and decouple the mechanics from the biology. The idea
that a select few changes in cellular and extra-cellular mechani-
cal properties can promote the growth of a malignant phenotype
of cancer is intriguing. As depicted in Figure 1, there is a strong
interplay between biological and mechanical factors involved in
cancer progression, with each one influencing the other. This
opens up the possibility of mechanical regulation and manipu-
lation of cell behavior to alter cancer outcome. Researchers can
develop tools to predict and treat cancer that are focused on recti-
fying the few mechanical property changes (for examples refer to
Lekka et al., 2001; Cross et al., 2011) as compared to vast number
of heterogeneous genetic and epigenetic factors associated with
cancer progression (Swanton et al., 2011; Visvader, 2011).
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It has become evident that mechanical forces play a key role in cancer metastasis, a com-
plex series of steps that is responsible for the majority of cancer-related deaths. One
such force is fluid shear stress, exerted on circulating tumor cells by blood flow in the
vascular microenvironment, and also on tumor cells exposed to slow interstitial flows in
the tumor microenvironment. Computational and experimental models have the potential
to elucidate metastatic behavior of cells exposed to such forces. Here, we review the
fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvi-
ronments, and discuss recent computational and experimental models that have revealed
mechanotransduction phenomena that may play a role in the metastatic process.

Keywords: cancer metastasis, circulating tumor cells, mechanotransduction, shear stress, blood, interstitial flow

INTRODUCTION
To initiate the metastatic spread of cancer through the blood-
stream, tumor cells must transit through microenvironments of
dramatically varying physical forces. Cancer cells must be able to
migrate through the stroma, intravasate through the endothelium
into blood or lymphatic vessels, flow within the vessels and sub-
sequently extravasate through the endothelium, and migrate and
colonize in tissue at a secondary site (Chambers et al., 2002; Steeg,
2006; Chaffer and Weinberg, 2011). In soft tissues, cancer cells are
exposed to mechanical forces due to fluid shear stress, hydrosta-
tic pressure, and tension and compression forces (Butcher et al.,
2009; DuFort et al., 2011). During intravasation and extravasa-
tion, cells undergo dramatic elastic deformations to transmigrate
through endothelial cell–cell junctions (Tseng et al., 2004; Wirtz
et al., 2011). Once in the circulation, tumor cells must be able to
withstand immunological stress, blood cell collisions, and hemo-
dynamic shear forces, while also utilizing flow to adhere to the
endothelial wall and subsequently extravasate to form a secondary
tumor (Hughes and King, 2011). Across all of these steps, a deeper
understanding is needed of how biophysical forces contribute
to biochemical changes in cancer cells, which can reveal novel
strategies in the treatment of metastasis.

Fluid shear stress is one of the prominent forces that cells
are exposed to, and its effects on blood cells, endothelial cells,
smooth muscle cells (SMCs), and others have been extensively
studied (Moazzam et al., 1997; Civelek et al., 2002; Li et al.,
2005). However, much less is known about fluid shear stress
effects on tumor cells. Cancer cells experience two main types
of fluid shear stress: stresses generated by blood flow in the vas-
cular microenvironment, and those generated by interstitial flows
in the tumor microenvironment (Michor et al., 2011; Swartz and
Lund, 2012). Stresses generated by interstitial and blood flows
could contribute to the metastatic process by enhancing tumor

cell invasion and circulating tumor cell (CTC) adhesion to blood
vessels, respectively. However, it is difficult to predict tumor cell
behavior to such forces; it is difficult to experimentally measure
such flows in the tumor microenvironment (Shieh and Swartz,
2011), and there is a general lack of data on force-dependent
CTC receptor–ligand interactions with the endothelium (Cheung
et al., 2011). Sophisticated experimental techniques coupled with
computational modeling are needed to predict cell behavior upon
exposure to varying complex physical forces.

In this review, we provide examples of both experimental and
computational methods to model and predict how cancer cells
respond to fluid shear forces. We begin by describing the fluid shear
forces that cancer cells are exposed to in both the tumor and vascu-
lar microenvironments, generated mainly by blood and interstitial
flows. An overview is provided on computational modeling to
estimate the forces exerted on cells in blood and tissues, along
with simulations to predict cell behavior under such flows. We
then describe recent cancer cell mechanotransduction phenom-
ena upon exposure to fluid shear stress, such as altering cancer cell
resistance to fluid shear stress, sensitivity to apoptosis-inducing
ligands, and invasive and migratory potential. We conclude with
current computational models that aim to integrate fluid shear
forces with chemical signaling, such as the effect of the glycocalyx
on transmitting physical forces and inducing mechanotransduc-
tion in cancer cells, as well as the integration of signal transduction
networks into adhesive dynamics (AD) simulations to predict cell
adhesion in the microvasculature.

FLUID SHEAR STRESS EXPOSURE IN THE TUMOR
MICROENVIRONMENT
Cancer cells in the tumor microenvironment are exposed to mul-
tiple physical forces including fluid shear stress, hydrostatic pres-
sure, tension, and compression, which have been treated in detail
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previously (Butcher et al., 2009;Wirtz et al., 2011; Swartz and Lund,
2012). Here, cancer cell exposure to physical forces generated by
interstitial flows will be discussed briefly.

Interstitial flow is the slow movement of fluid around cells and
through the pores of the extracellular matrix (ECM) that com-
prise the interstitium (Figure 1A). One of the main functions of
interstitial flow is lymphatic drainage, which returns plasma from
leaky capillaries back to the bloodstream. Drainage occurs due
to Starling’s forces, which are osmotic and hydrostatic pressure
gradients between blood vessels, interstitium, and the lymphatics
(Schmid-Schonbein, 1990). The composition of interstitial fluid
can vary depending on the location in the body, but in soft tissues
is generally similar to the blood plasma that leaks from capillar-
ies, and contains approximately 40% of the protein concentration
of plasma (Swartz and Fleury, 2007). The velocities of interstitial
flows are believed to range from 0.1 to 1.0 µm s−1 in normal tis-
sues (Chary and Jain, 1989; Dafni et al., 2002). Cell surface shear
stresses are believed to be on the order of 0.1 dyn cm−2 (Pedersen
et al., 2007; Tarbell and Shi, 2012).

Interstitial flows can be elevated significantly in the tumor
microenvironment, and play a crucial role in tumor progression.
Chary and Jain (1989) utilized fluorescence recovery after photo-
bleaching (FRAP) to measure interstitial fluid velocities of bovine
serum albumin in normal and neoplastic tissues. Harrell et al. uti-
lized live imaging of tumor-bearing mice to measure downstream
lymph flow via injection of fluorescent nanoparticles. Measure-
ments were performed in both normal and neoplastic tissues;
all tumor-bearing mice in the study showed increases in lymph
flow, compared to control mice without tumors (Harrell et al.,
2007).

Elevated interstitial flows in the tumor microenvironment are
likely due to increased tumor interstitial fluid pressure (IFP).
Boucher and Jain (1992) implanted colon adenocarcinoma cells
into mice, tracked the development of the tumor vasculature using
intravital microscopy, and measured IFP using micropipettes and
a servo-null system. IFP measurements increased significantly as
the vasculature developed, demonstrating that tumor interstitial

FIGURE 1 | Cancer cell exposure to the tumor and vascular
microenvironments. (A) Tumor cell exposed to interstitial flow in a
collagen matrix (Swartz and Fleury, 2007). (B) Circulating tumor cell (CTC)
exposed to fluid shear forces in a blood vessel.

hypertension is associated with tumor angiogenesis (Boucher et al.,
1996). IFP is elevated in a uniform manner throughout tumors,
and drops significantly at the tumor periphery (Boucher et al.,
1990). Thus, IFP gradients facilitate fluid flow outward from
tumors, presenting a mass transport barrier for the delivery of
chemotherapeutics (Netti et al., 1995; Lunt et al., 2008).

Increased IFP also effects tumor biology, as it applies increased
physical force to the ECM and alters interstitial flows that
the tumor and surrounding cells are exposed to. Nearby lym-
phatic vessels respond to elevated interstitial flow by upregulating
chemokine CCL21 expression, along with cell adhesion molecules
E-selectin and ICAM-1 (Miteva et al., 2010). Secretion of CCL21
directs tumor cells toward lymphatic vessels (Shields et al., 2006),
while ICAM-1 and E-selectin upregulation enhances cell transmi-
gration into lymphatic vessels (Johnson et al., 2006; Miteva et al.,
2010). Lymph nodes can also be affected, as increased intersti-
tial flows aid in lymph node architecture remodeling to colonize
tumor cells, as well as protect the tumor from an immune response
(Shieh and Swartz, 2011).

Fibroblasts, which deposit, turn over, and remodel ECM to
maintain connective tissue homeostasis, can aid in tumor pro-
gression due to elevated interstitial flows. Elevated interstitial
flows can upregulate transforming growth factor beta-1 (TGF-
β1) expression (Ng et al., 2005; Ng and Swartz, 2006; Wipff et al.,
2007; Ahamed et al., 2008), which can induce a tumor-associated
fibroblast phenotype characterized by enhanced contractility and
increased secretion of cytokines, angiogenic growth factors, and
matrix metalloproteinase (MMPs) (Hinz et al., 2002; De Wever
et al., 2004a,b; Orimo and Weinberg, 2006). Recently, Shieh et al.
(2011) demonstrated that interstitial flows can enhance tumor cell
invasion when cocultured with dermal fibroblasts in a 3D colla-
gen matrix. Fibroblast invasion was enhanced due to increased
expression of TGF-β (Chaffer and Weinberg, 2011) and MMPs,
while it appeared that tumor cell invasion was enhanced due to
fibroblast-dependent remodeling of the ECM (Shieh et al., 2011).

FLUID SHEAR STRESS EXPOSURE IN VASCULAR
MICROENVIRONMENT
To enter the vascular microenvironment, cancer cells penetrate
surrounding tissue and enter nearby blood and lymphatic vessels
in a process called intravasation. The underlying mechanisms that
govern intravasation are not well understood; it is still in question
whether intravasation is an active or passive process (Bockhorn
et al., 2007), and whether tumor cells enter the circulation via
endothelial cell-cell junctions or directly through endothelial cells
themselves (Khuon et al., 2010). Regardless of their mechanism of
entry, cancer cells are exposed to a new set of conditions once in
the vascular microenvironment, including immunological stress,
collisions with blood cells, and hemodynamic shear forces, all of
which can affect their survival and proliferation.

Cancer cells are primarily exposed to erythrocytes, leukocytes,
and platelets upon entering the bloodstream,as studies have shown
that the concentration of cancer cells in the blood of patients is on
the order of one in a million leukocytes (Maheswaran and Haber,
2010), or one in a billion blood cells (Yu et al., 2011). Exposure
to such cells can lead to immunological stresses and blood cell
collisions that can affect cancer cell viability (Wirtz et al., 2011),
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although there is evidence that the association of platelets with
cancer cells in the bloodstream can promote tumor metastasis
(McCarty et al., 2000; Gay and Felding-Habermann, 2011).

Cancer cells are also exposed to hemodynamic shear forces
in the bloodstream (Figure 1B), which range from 0.5 to
4.0 dyn cm−2 in the venous circulation and 4.0–30.0 dyn cm−2 in
arterial circulation (Turitto, 1982). Shear rates can range from
approximately 160 s−1 in veins to 900 s−1 in arteries. Such shear
stresses and rates can affect cancer cell viability and thus the
chances of metastasis. For example, B16 melanoma cell expo-
sure to fluid shear stress in a cone-and-plate viscometer at shear
rates greater than 300 s−1 induced a significant loss of cell viability
(Brooks, 1984).

In contrast, fluid shear stress is an essential component of
cancer metastasis, as it is critical for cancer cell adhesion to the
endothelial cell wall and subsequent extravasation into tissues. A
variety of cancer cell lines are known to express sialylated carbo-
hydrate ligands, which adhesively interact with selectin proteins
on the inflamed microvasculature (Gout et al., 2008; Köhler et al.,
2010; Läubli and Borsig, 2010). Thus, cancer cells are believed to
undergo an adhesion cascade similar to leukocytes, which consists
of a sequence of steps involving tethering, rolling, and firm adhe-
sion to the endothelium (Chambers et al., 1995; Coussens and
Werb, 2002). Multiple studies have documented that a variety of
tumor cell lines bind to E-selectin proteins under physiological
shear stresses of the post-capillary venules (Giavazzi et al., 1993;
Barthel et al., 2009).

Much less is known about fluid shear stresses that cancer
cells could be exposed to in lymphatic vessels. Lymphatic vessels
have been stained with fluorescein isothiocyanate (FITC)-labeled
macromolecules to measure lymphatic flow in single lymphatic
capillaries of humans in vivo using intravital capillary microscopy
(Fischer et al., 1996). The recorded median linear velocity in lym-
phatic capillaries was 9.7 µm s−1, and shear stresses in lymph node
sinuses have been estimated to be 10-fold lower than hematoge-
nous shear stresses (Resto et al., 2008). Despite the dramatic
decrease in shear stress levels, parallel plate flow chamber stud-
ies have shown that human head and neck squamous carcinoma
cells can bind to lymphocyte L-selectin at lymphatic shear stress
levels of 0.07–0.08 dyn cm−2 (Resto et al., 2008).

COMPUTATIONAL METHODS TO MODEL CELL EXPOSURE TO
INTERSTITIAL FLOWS
Interstitial flow mechanics were initially described by French
hydraulics engineer Henry Darcy, who studied the flow of water
through sand beds as a means of providing filtered drinking water
to his city. During his studies, he developed the formula known as
Darcy’s law:

ū =
−K∇P

µ
,

where K is the permeability of the medium, ∇P is the pressure
gradient vector, µ is the viscosity of the fluid, and ū is the aver-
aged velocity through the bulk. Darcy’s law works well when the
average velocity or mass flow rate needs to be determined, but
is first order with respect to velocity. To account for interstitial

flows between boundaries, Brinkman developed a second order
term, taking into account no-slip boundary conditions adjacent
to bounding walls (Figure 2A; Brinkman, 1949). The Brinkman
equation is described as:

∇P = −
µ

K
ū + µ∇2ū.

Permeability measurements have been performed for a variety
of tissues in vitro, in vivo, and ex vivo, including muscle (Rasheid
Zakaria et al., 1997), dermis (Bert and Reed, 1995), cartilage (Lev-
ick, 1987), tumors (Netti et al., 2000; McGuire et al., 2006), and
fibrin and collagen gels (Diamond, 1999; Ng and Swartz, 2003),
making the Darcy and Brinkman equations useful for both exper-
imental measurements of interstitial flows and computational
models of cells exposed to such flows.

Initial models of interstitial flows exerted on cells were devel-
oped for tissues including smooth muscle, cartilage, and bone
(Kwan et al., 1984; Grodzinsky et al., 2000; Hellmich and Ulm,
2005). For example, Wang and Tarbell (1995) modeled the tunica
media of an artery as a periodic array of cylindrical, imperme-
able SMCs embedded in a matrix consisting of collagen and

FIGURE 2 | Computational models of cells exposed to blood and
interstitial flows. (A) Computational models utilizing the Brinkman
equation to estimate interstitial flow-generated shear stresses on the cell
surface (Tarbell and Shi, 2012). u∞: velocity far from cell surface.
(B) Adhesive dynamics (AD) simulations to predict selectin-mediated
adhesion to the endothelium (Bhatia et al., 2003). u, velocity; R, cell radius;
sLex, sialyl-Lewis-x; ICAM-1, intercellular adhesion molecule-1.
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proteoglycans, and used Brinkman’s theory to model interstitial
flow across the tissue. The model was able to estimate the effective
hydraulic permeability of the tissue and shear stresses exerted on
SMCs, which were estimated to be on the order of 1.0 dyn cm−2

despite exposure to low interstitial flows (Wang and Tarbell,
1995). In an early model describing the mechanics of interstitial-
lymphatic transport, Swartz et al. developed a theoretical and
experimental model demonstrating how interstitial flow is depen-
dent on hydraulic conductivity, elasticity, and lymphatic conduc-
tance. They then utilized this model to examine fluid balance in
normal and chronically swollen (edematous conditions) mouse
tails, in which they found that remodeling of the matrix damp-
ened and eventually stagnated fluid movement in the case of edema
(Swartz et al., 1999).

COMPUTATIONAL METHODS TO MODEL CELL BEHAVIOR IN
THE CIRCULATION
A variety of computational methods have been developed to
model cell behavior in the vascular microenvironment, includ-
ing adhesive dynamics (AD), which has been utilized to simulate
cell adhesion to the endothelial cell surface under flow (Ham-
mer and Lauffenburger, 1987; Hammer and Apte, 1992). The
motivation of such simulations is to predict how adhesiveness
quantitatively depends on factors such as shear rate and viscosity,
which can reveal adhesion phenomena that might not necessar-
ily follow intuition. AD is a mechanically rigorous cell adhesion
simulation that models individual molecular bonds as compli-
ant springs. In the simulation, the cell can be modeled as a rigid
spherical particle covered with a random distribution of adhesion
molecules (Figure 2B). The endothelial cell wall can be modeled
as a surface covered with counter-receptor molecules of random
distribution. Bonds randomly form between adhesion molecules
of the cell and counter-receptors on the wall; these bonds can
then break contingent on the appropriate kinetics, which depend
on the instantaneous force loading on the spring endpoints. The
rates of bond formation and rupture can be calculated using the
Bell model for kinetics of single biomolecular bond failure (Bell,
1978; Bell et al., 1984):

kr = k0
r exp

(
r0F

kbT

)
where kr is the rate of dissociation, k0

r is the unstressed off-rate,
F is the force on the bond, r0 is the reactive compliance, T is
the temperature, and kb is the Boltzmann constant. The rate of
bond formation follows from the Boltzmann distribution of affin-
ity, while also incorporating the effects of relative motion between
the cell and surface (King et al., 2005). To solve the algorithm,
unbound receptors in the defined contact area are first tested for
formation against the probability:

Pf = 1− exp
(
−kf ∆t

)
where Pf is the probability of bond formation, and t is time. Next,
bound receptors are tested for breakage against the probability:

Pr = 1− exp (−kr∆t )

where Pr is the probability of bond rupture. External forces and
torques on the cell are then summed, and a mobility calculation
determines the motion of the cell. Cell and bond positions are
updated based on the kinematics of cell motion. Torques exerted
by fluid flow and hydrodynamic forces cause the adherent cell to
slowly roll forward on a reactive surface. The motion of fluid is
governed by the Stokes equation:

µ∇2u = ∇P , ∇ · u = 0,

where u is the velocity, µ is the viscosity of the fluid, and P is
the pressure. No-slip boundary conditions are applied at the cell
surface and the planar wall.

While AD has not yet been used to model cancer cell adhe-
sion, many simulations have been performed using leukocytes,
which can be a close parallel to a CTC that has undergone the
epithelial-mesenchymal transition (EMT). Chang et al. (2000) uti-
lized AD to develop a state diagram for leukocyte adhesion under
flow. In the diagram, observed adhesive behaviors (rolling, firm
adhesion, or no adhesion) were plotted at given dissociation rates
and bond interaction lengths, which spanned several orders of
magnitude. Caputo and Hammer (2005) incorporated deformable
microvilli with clustered adhesion molecules onto the surface of
the simulated leukocyte, and found that the deformability of the
microvilli can affect the cell’s ability to roll on a surface. King and
Hammer (2001a,b) modeled the effect of cell–cell hydrodynamic
interactions on the dynamics of leukocyte adhesion using Multi-
particle AD (MAD), which revealed a mechanism for secondary
hydrodynamic recruitment of leukocytes to the blood vessel wall,
independent of leukocyte–leukocyte contact interactions.

Critical parameters of AD simulations are the kinetics of
selectin–carbohydrate bonds, as force-dependent dissociation
rates dictate the rolling adhesion of leukocytes. Numerous studies
have investigated the kinetics for leukocyte selectin ligands using
experimental techniques such as flow chamber tethering experi-
ments, atomic force microscopy, and dynamic force spectroscopy
(Smith et al., 1999). However, such kinetics for newly identified
selectin ligands expressed by metastatic tumor cells, which appear
distinct from those found on the surface of leukocytes (Thomas
et al., 2008; Shirure et al., 2012), have not yet been well charac-
terized. Future experimental studies measuring bond dissociation
kinetics for selectins and CTC selectin ligands will enable the devel-
opment of more predictive computational models of cancer cell
adhesion to microvasculature.

CURRENT EXPERIMENTAL MODELS OF CANCER CELL
MECHANOTRANSDUCTION
FLUID SHEAR STRESS ALTERS CANCER CELL RESPONSE TO
APOPTOSIS-INDUCING LIGANDS
The targeting and treatment of CTCs within the circulation is cur-
rently being investigated as an approach to prevent their metastatic
spread. For example, microfluidic devices coated with E-selectin
conjugated liposomal doxorubicin have been shown to capture
cancer cells from flow, deliver doxorubicin into the cell, and induce
cell death (Mitchell et al., 2012a,b). Similarly, microfluidic devices
immobilized with E-selectin and tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) have been shown to
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capture and kill cancer cells (Rana et al., 2009) while exerting
minimal toxic effects on human leukocytes (Rana et al., 2012).
However, little is known about how fluid shear stress exposure can
affect cancer cell response to drug treatments.

Our recent study examined how colorectal adenocarcinoma
COLO 205 and prostate adenocarcinoma PC-3 cancer cell expo-
sure to physiologically relevant fluid shear stresses in a cone-
and-plate viscometer altered their response to TRAIL (Figure 3;
Mitchell and King, 2013). Experiments were devised in such a way
that fluid shear stress alone had negligible effects on cancer cell
death. Cancer cells were treated with both TRAIL, which can bind
to death receptors DR4 and DR5 on the cancer cell surface to initi-
ate apoptosis (Ashkenazi, 2002), and doxorubicin, which induces
cell death via inhibition of topoisomerase II and DNA intercalation
(Young et al., 1981; Osheroff et al., 1994). Interestingly, treatment
of both COLO 205 and PC-3 cancer cell lines with TRAIL followed
by exposure to 2.0 dyn cm−2 of fluid shear stress significantly
increased the number of apoptotic cells, compared to TRAIL-
treated cancer cells exposed to static conditions. The sensitization
effect was both fluid shear stress dose- and time-dependent, as
the number of apoptotic cells increased over a range of shear
stress magnitudes (0.05–2.0 dyn cm−2) and shear stress exposure
times (1–120 min). However, such sensitization was not evident
in doxorubicin treatment, as the percentage of apoptotic cells
remained nearly identical in doxorubicin-treated samples exposed
to either fluid shear stress or static conditions. The results indi-
cated that such sensitization could be receptor-mediated apoptosis
specific.

It is possible that death receptors on the cancer cell surface can
sense and respond to fluid shear forces. The idea of circulating

cells expressing mechanosensitive receptors has recently been
investigated in leukocytes (Makino et al., 2006; Mitchell and
King, 2012), where it is believed that G-protein coupled recep-
tors can sense fluid shear stress and alter neutrophil adhesion to
the microvasculature. However, little is known about the effects
of fluid shear stress on CTC surface receptors. Insight into the
mechanistic basis of such processes could reveal new strategies for
treating cancer cells in the circulation, and reducing the likelihood
of metastasis.

CANCER CELL RESISTANCE TO FLUID SHEAR STRESS
Recently, a microfluidic protocol was developed to assess can-
cer cell resistance to fluid shear stress (Barnes et al., 2012). In
the protocol, dilute cancer cell suspensions were drawn up into a
syringe, which was then loaded into an automatic syringe pump
(Figure 4A). Cancer cell suspensions were exposed to brief, mil-
lisecond pulses of high fluid shear stress as they were expelled
from the syringe pump, and subsequently analyzed for cell via-
bility using bioluminescent imaging. The maximum fluid shear
stress that cancer cells were briefly exposed to in this experi-
ment reached 6400 dyn cm−2. Note that CTCs are momentarily
exposed to shear stresses as high as 3000 dyn cm−2 at vessel bifur-
cations, in the heart, and near the walls of large blood vessels
(Strony et al., 1993; Malek et al., 1999). While cancer cell viability
decreased after repeated millisecond pulse exposures to high fluid
shear stress, the study revealed that cancer cells of epithelial origin
were surprisingly resistant to fluid shear stress, in comparison to
non-transformed epithelial cells. Resistance to fluid shear stress
was dependent on several oncogenes, as myc- and ras-transformed
cell lines showed an increase in fluid shear stress resistance. The

FIGURE 3 | Fluid shear stress sensitizes cancer cells to the
apoptosis-inducing ligandTRAIL. Colorectal adenocarcinoma COLO
205 cells exposed to non-shear conditions (A) and fluid shear stress
(B), respectively. COLO 205 cells treated with TRAIL and then
exposed to non-shear conditions (C) and fluid shear stress (D). Lower
left-hand and right-hand quadrants of each flow cytometry figure
represent viable cells and cells in early stages of apoptosis,
respectively. Upper left-hand and right-hand quadrants represent cells

undergoing necrosis and late stage apoptosis, respectively.
Percentage of viable (E) and apoptotic (F) COLO 205 cells after
treatment with TRAIL followed by exposure to non-shear or shear
conditions (n=3). Percentage of viable (G) and apoptotic (H) PC-3
cells treated under the same conditions (n=3). PE, phycoerythrin;
FITC, fluorescein isothiocyanate. Error bars represent 95%
confidence intervals. *P < 0.05. **P < 0.01. NS, non-significant.
Figure reprinted with permission from Mitchell and King (2012).
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FIGURE 4 | Experimental techniques to study cancer cell
mechanotransduction. (A) Microfluidic protocol to deliver millisecond
pulses of fluid shear stress to tumor cells (Barnes et al., 2012). Tumor cell
resistance to fluid shear stress determined using bioluminescent imaging
(BLI). (B) Darcy flow apparatus for the application of fluid shear stress in 3D
to tumor cells embedded in collagen (Qazi et al., 2011). Shear
stress-exposed cells are then placed in a modified Boyden chamber to
measure their migratory and invasive potential in the presence of TGF-α.

resistance response required extracellular calcium and actin poly-
merization, as the absence of calcium or treatment with EGTA,
cytochalasin D, or ROCK inhibitor Y27632 all reduced cancer cell
viability upon fluid shear stress exposure. In particular, extracellu-
lar calcium is important for cellular repair mechanisms based on
an extracellular calcium-dependent membrane resealing process
(Terasaki et al., 1997).

FLUID SHEAR STRESS REGULATES CANCER CELL INVASIVE POTENTIAL
Prior work has shown that the chemokine gradients generated by
interstitial flows can enhance tumor cell migration (Shields et al.,
2007), however it is not well understood whether fluid shear stress
can regulate intrinsic properties of cancer cells, thus altering their
invasive potential. Recent work by Qazi et al. (2011) detailed a
Darcy flow apparatus for the application of fluid shear stress to a
3D collagen gel embedded with glioma cells, coupled with a mod-
ified Boyden chamber invasion assay. In the apparatus, a double
reservoir system applied hydrostatic pressure, which drove media
throughout the 3D collagen gel and exerted shear stress on the
glioma cells (Figure 4B). Cancer cells were exposed to fluid shear
stresses ranging from 0.1 to 0.6 dyn cm−2. The media filtrate from
the gel was collected in a separate reservoir, and the media collected
was used to calculate flow rates, velocities, and shear stresses. Col-
lagen gels were removed at the end of the flow period, and placed
within modified Boyden chambers containing TGF-α to initiate
invasion assays.

Fluid shear stress significantly reduced U87 and CNS-1 glioma
cell migration by as much as 92% and 58% respectively, when
compared to controls. Migration suppression was not due to
flow-induced chemokine gradients, however, as cells were exposed
to fluid shear stress followed by exposure to TGF-α in static

Boyden chambers. Invasion was dependent on matrix metallo-
proteinases (MMPs), as MMP-1 and MMP-2 gene expression
was significantly downregulated in cancer cells upon exposure
to 0.55 dyn cm−2 fluid shear stress. Previous studies have shown
that fluid shear stress can affect MMP expression and activity
in non-tumor cell types such as fibroblasts, chondrocytes, and
SMCs (Yokota et al., 2003; Garanich et al., 2007; Shi and Tar-
bell, 2011), however this was one of first studies revealing that
fluid shear stress-induced mechanotransduction is involved in
interstitial flow-induced cancer cell motility.

INTERSTITIAL FLOW INDUCES TUMOR CELL FOCAL ADHESION KINASE
ACTIVATION
A recent study investigated two competing mechanisms which
can alter tumor cell migration upon exposure to interstitial flow:
an autologous chemotaxis-based mechanism which distributes
autocrine chemokine via convection to create a chemokine gra-
dient, and a mechanism whereby interstitial flow activates focal
adhesion kinase (FAK) and modulates forces critical for tumor cell
migration (Fincham and Frame, 1998; Sieg et al., 1998). Polacheck
et al. (2011) developed a microfluidic cell culture system to inves-
tigate the effects of interstitial flow on the directional bias and
dynamics of tumor cell migration in a 3D matrix. Utilizing two
channels separated by a region in which tumor cells were sus-
pended in a 3D collagen gel, a pressure gradient was applied across
the gel to generate consistent interstitial flow velocities ranging
from 0.3 to 3.0 µm s−1, representative of a range of values mea-
sured in vivo (Dafni et al., 2002; Heldin et al., 2004). Confocal
reflective microscopy was used to track cell migration under flow,
and it was found that interstitial flow and cell seeding density can
both influence the direction of tumor cell migration.

Upon exposure to interstitial flow at low seeding densities,
MDA-MB-321 metastatic breast cancer cells migrated in the down-
stream direction, or “with the flow.” However, cancer cells exposed
to interstitial flow at high seeding densities migrated upstream,
or “against the flow.” Treatment with CCR7 blocking antibodies,
to block the binding of secreted ligand CCL21 needed to initi-
ate autologous chemotaxis, caused cells to shift their migration
directionality and migrated upstream upon exposure to flow. Cells
that migrated in the opposite direction of flow displayed increased
phosphorylation at Tyr-397 in FAK, which plays a role in Src kinase
activation and focal adhesion formation (Li et al., 1997; Jalali et al.,
1998). Upon blockage of Src kinase activity, upstream tumor cell
migration decreased and displayed random cell migration.

CURRENT ADVANCES IN MODELING
MECHANOTRANSDUCTION PHENOMENA
MODELING GLYCOCALYX EFFECTS ON INTERSTITIAL FLUID SHEAR
STRESS TRANSMISSION TO CANCER CELLS
The glycocalyx is a layer of proteoglycans and glycoproteins that
covers eukaryotic cells, which can serve as a mechanosensor of
fluid shear stress in endothelial cells and SMCs (Yao et al., 2007;
Shi et al., 2011). Tumor cells also possess a glycocalyx (Kräh-
ling et al., 2009), however its effects as a mechansensor have not
been previously investigated. It has been hypothesized that fluid
shear stress generated by interstitial flows is too weak to induce
mechanotransduction.
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Tarbell and Shi (2012) recently developed a computational
model to estimate the interstitial flow-generated fluid and solid
stresses on the surface of a glycocalyx-covered cell embedded
in ECM (Figure 5A). Previously estimated parameters such as
the Darcy permeability of the ECM, tumor cell glycocalyx thick-
ness, and interstitial fluid flow velocity were incorporated into
the model to calculate the fluid and solid stresses on the cell sur-
face. Brinkman equations were used to describe interstitial fluid
flow through pores of both the ECM and glycocalyx. A previ-
ously described model (Secomb et al., 2001) was used to calculate
mechanical equilibrium of forces in the direction of flow to cal-
culate the solid stresses transmitted via the glycocalyx. While fluid
stresses exerted on the tumor cell surface were estimated to be quite
low (less than 0.1 dyn cm−2), the solid stresses transmitted to the
cell via the glycocalyx were predicted to be over 5.0 dyn cm−2, a
magnitude which is known to activate endothelial cells (Malek
et al., 1999). Future models could incorporate mechanical effects
along with chemical signaling pathways to better predict cancer
cell mechanotransduction in tissues.

INTEGRATING SIGNAL TRANSDUCTION NETWORKS INTO ADHESIVE
DYNAMICS SIMULATIONS
Recently, signal transduction models were incorporated into AD
simulations to couple signaling pathways with cell adhesion. In
the model, leukocytes were assigned a random spatial distribution
of integrin lymphocyte function-associated antigen-1 (LFA-1), in

addition to selectin ligands such as PSGL-1. The reactive surfaces
were covered with selectin molecules and intracellular adhesion
molecule-1 (ICAM-1), which binds to active LFA-1 and mediates
firm arrest. Krasik et al. (2006) integrated the mitogen-activated
protein kinase (MAPK) signal transduction pathway as a modu-
lar Hill function within the AD framework to model neutrophil
arrest with deterministic activation. Selectin ligation triggered the
MAPK cascade in this model, which can cause inactive LFA-1 to
become activated, enabling binding to ICAM-1 and subsequent
neutrophil arrest. This model has since incorporated a stochas-
tic signal transduction model, utilizing a Monte Carlo simulation
within the microvilli of model neutrophils (Krasik et al., 2008).

Caputo et al. generated an AD simulation with an integrated
signal transduction network that incorporates selectin, integrin,
and chemokine interactions between the neutrophil and the sub-
strate. A random distribution of the G-protein coupled receptor
CXCR1 and chemokine interleukin-8 (IL-8) were displayed on the
leukocyte and the reactive surfaces, respectively (Figure 5B,C).
CXCR1 can interact with IL-8, which initiates a signaling cascade
leading to LFA-1 activation on the cell (Caputo and Hammer,
2009). Beste et al. (2012) developed a model of T-lymphocyte
arrest by combining AD with a kinetic model for chemokine-
triggered inside-out integrin activation. The model incorporated
signaling data measured in experiments to simulate the time scale
for T-lymphocyte arrest, and provided a predictive simulation for
understanding chemokine control of T-lymphocyte recruitment.

FIGURE 5 | Advances in computational modeling reveal
mechanotransduction phenomena. (A) Interstitial flow models
incorporating the force-transducing cell glycocalyx to determine
interstitial flow contributions to fluid shear stress-dependent
mechanotransduction (Tarbell and Shi, 2012). u∞, velocity far from cell
surface; K m, matrix Darcy permeability; K g, glycocalyx Darcy

permeability; H, glycocalyx layer thickness; ug∞, velocity profile in
glycocalyx; τw, surface fluid stress; τwg, surface solid stress.
(B,C) Incorporation of cell signaling networks to predict flow-mediated
cell adhesion in the presence of chemoattractants (Caputo and Hammer,
2009). IL-8, interleukin-8; PSGL-1, P-selectin glycoprotein ligand-1; LFA-1,
lymphocyte function-associated antigen-1.

www.frontiersin.org March 2013 | Volume 3 | Article 44 | 94

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Mitchell and King Cancer cells and shear stress

The integration of signal transduction networks into AD sim-
ulations could prove particularly useful for the study of cancer
metastasis, as molecular defects could be implemented within the
signaling cascade to predict its effects on CTC adhesion to the
endothelium.

COMPUTATIONAL MODELS OF INTEGRIN–LIGAND INTERACTIONS AT
THE CELL-ECM INTERFACE
A model based on the AD simulation was developed to both chem-
ically and mechanically model integrin dynamics at the cell-ECM
interface (Paszek et al., 2009). Paszek et al. developed the model to
determine whether the cell glycocalyx and the chemical and phys-
ical parameters of the ECM can control the formation of integrin
clusters, which act as mechanical anchors and can regulate cell sur-
vival, motility, differentiation, and morphogenesis (Hynes, 2002;
Miranti and Brugge, 2002; Berrier and Yamada, 2007). Integrin–
ligand bonds were modeled as individual Hookean springs, and
the Bell model was utilized to calculate kinetic rates of bond for-
mation and rupture, which are distance-dependent (Bell, 1978;
Bell et al., 1984). In addition, the model included a lattice spring
model (LSM) of the cell–ECM interface, consisting of a lattice of
interconnecting nodes and springs to calculate the stress–strain
behavior of the interface (Ostoja-Starzewski et al., 1996). Model
parameters including the glycocalyx, membrane, and bond spring
constants, on- and off-rates, and receptor and ligand density were
estimated based on experimental measurements.

Integrin clustering began as a fast process, as simulations
showed that new integrin bond formation events were more likely
to occur near existing integrin bonds where the separation dis-
tance between integrins and ligands was reduced. However, bond
rearrangements due to bond breakage and reformation were found
to slow down the integrin clustering process over time. Glycocalyx
thickness also affected integrin clusters, with larger, denser clus-
ters forming with increased glycocalyx thickness. The interplay
between integrin–ligand affinity and cell–ECM repulsion due to
the glycocalyx also affected clustering; high affinity interactions
coupled with thinner glycocalyx resulted in bound integrin recep-
tors with minimal clustering. A thicker glycocalyx relative to inte-
grin bond length, along with an adequate receptor–ligand affinity,
resulted in both integrin binding and clustering. Integrin cluster-
ing increased due to increases in the ratio of glycocalyx stiffness
to membrane stiffness, as it increased the minimal matrix ligand
density. Integrin clustering was shown to be sensitive to ECM stiff-
ness; compliant substrates could not promote cooperative binding,

while integrin clustering increased with increasing substrate stiff-
ness above 2000 Pa. While the computational model only incorpo-
rates basic biology, a combination of the mechanical model with
molecular interactions revealed cell adhesion behavior observed
in experiments (Cluzel et al., 2005; Paszek et al., 2009). Future
models should focus on the incorporation of applied fluid shear
forces, along with integrin–cytoskeleton interactions, to predict
how adhesions on the cancer cell surface can sense and respond to
the tumor microenvironment.

CONCLUSION
Fluid shear stresses generated by blood and interstitial flows alter
cancer cell behavior in the vascular and tumor microenviron-
ments, respectively, and contribute to the progression of cancer
metastasis. Interstitial flow-generated forces elevate tumor IFP,and
create challenges to chemotherapeutic delivery to the tumor inte-
rior. Such forces also induce phenotypic changes of cells in the sur-
rounding microenvironment, which enhance tumor cell migration
and invasion. Shear flows in the circulation affect tumor cell viabil-
ity while also playing a role in CTC adhesion to the endothelium, a
crucial step for subsequent tumor cell extravasation and metasta-
sis. Recent experimental studies have revealed that fluid shear stress
can modulate intrinsic characteristics of cells, in addition to the
extrinsic roles of fluid flow that have been previously documented.
Cancer cell mechanotransduction observed in recent experiments,
including tumor cell resistance to shear stress, regulation of migra-
tion and invasion, and sensitivity to chemotherapeutics, have
potentially wide ranging implications for metastasis. Recent com-
putational models have incorporated mechanical fluid forces with
chemical signaling networks, along with mechanotransducing
components on the cancer cell surface, such as the glycocalyx.
Future approaches utilizing computational models of fluid shear
stress effects on intrinsic tumor cell signaling networks, coupled
with in vitro and in vivo experimental validation, may better pre-
dict cell behavior in such dynamic microenvironments, and poten-
tially provide novel approaches for the prevention of metastasis.
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One of the hallmarks of cancer growth and metastatic spread is the process of local invasion
of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secre-
tion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then
proceed to degrade the host tissue allowing the cancer cells to disseminate throughout
the microenvironment by active migration and interaction with components of the extra-
cellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of
cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically
our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g.,
MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays
in cancer invasion.The implications of MMP-2 activation by MMP-14 and the tissue inhibitor
of metalloproteinases-2 are considered alongside the effect the architecture of the matrix
may have when applied to a model of cancer invasion. Elements of the ECM architecture
investigated include pore size of the matrix, since in some highly dense collagen structures
such as breast tissue, the cancer cells are unable to physically fit through a porous region,
and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-
bound MMPs to forge a path through which degradation by other MMPs and movement
of cancer cells becomes possible.

Keywords: cancer invasion, mathematical model, metalloproteinases, membrane-bound MMPs, extracellular
matrix

INTRODUCTION
For metastasis to occur, cancer cells must exhibit invasion through
a variety of structured media such as the highly dense collagen
constitution of some peritumoral stroma (Hanahan and Wein-
berg, 2000, 2011). This can occur by the secretion of enzymes that
are capable of degrading components of the ECM or by the adop-
tion of an amoeboid phenotype that allows cancer cells to travel
through the medium in a protease-independent manner (Friedl
and Wolf, 2003; Sahai, 2005).

Mathematical modeling of solid-tumor growth dates back to
the works of Thomlinson and Gray (1955) and Burton (1966),
where oxygen was modeled as a nutrient diffusing from the outer
edge (boundary) of a tumor inwards to investigate its role in necro-
sis. Mathematical modeling has continued to develop to investigate
a number of topics in cancer progression and invasion, includ-
ing models taking into account: oxygen/nutrient driven dynamics,
the immune response, the acidity of the environment, force-
based pressure, the microenvironment in general, and protease-
dependent invasion using the techniques of partial differential
equations for densities of cells, individual-based models includ-
ing cellular automaton models and multi-scale models as outlined
in the review papers of Araujo and McElwain (2004), Rejniak and
McCawley (2010), and Lowengrub et al. (2010) and the references
therein.

In this paper, we focus on a continuum, deterministic approach
to protease-dependent invasion where matrix degrading enzymes
cleave collagen fibrils and other ECM components rather than

protease-independent invasion where mechanical forces physically
displace matrix fibrils and cancer cells adopt an amoeboid-like
shape (epithelial-mesenchymal transition). The microenviron-
ment of the tumor plays a significant role in cancer progres-
sion with matrix metalloproteinases acting as regulators, allowing
obstacles to be overcome (Rowe and Weiss, 2009; Kessenbrock
et al., 2010).

Matrix metalloproteinases (MMPs) are one mechanism by
which cancer cells have the ability to invade. These proteolytic
enzymes are a family of 23 enzymes in humans which have the
capacity to degrade virtually all components of the surrounding
tissue (Kleiner and Stetler-Stevenson, 1999). This in turn facili-
tates cancer growth and spread by virtue of the available space left
in the absence of the degraded ECM as well as by other proteins
that are released by the degraded tissue encouraging the cancer
growth (Werb, 1997; López-Otín and Overall, 2002). Haptotaxis is
a process of directed cell migration whereby cells move in response
to gradients of adhesion sites naturally present in the ECM.

MMPs are zinc-dependent endopeptidases whose main func-
tion is in the regular turnover of the ECM (Nagase and Woessner,
1999). This process is exploited in cancer growth and invasion
where various MMPs are over expressed. The expression of MMPs
faces control at the level of transcription but can also face inhibi-
tion when moving from the proMMP state to an active MMP as
well as inhibition when it exists in its active state.

The family of MMPs can exhibit both pro- and anti-invasive
characteristics (Nöel et al., 2012) but in this paper we focus on the
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pro-invasive MMPs of MMP-2, MMP-9, and MT1-MMP. MMP-
2 and MMP-9 are secreted in their inactive zymogen forms of
proMMP-2 and proMMP-9 whereas the fully active MT1-MMP is
expressed on the cell surface after being activated internally. The
activation process by which the various MMPs develop into their
fully active form differs between them. This interplay between the
enzymes is emphasized by the coexpression of proMMP-2, MT1-
MMP, MMP-2, and TIMP2 in a variety of tissues (Kinoh et al.,
1996). While MT1-MMP was initially thought to have activity
limited to activating MMP-2, it has since been found to also have
a direct role in tissue degradation (d’Ortho et al., 1997).

The main constituent of the stroma is the structural, cross-
linked type I collagen. MT1-MMP exhibits strong type I col-
lagenolytic capabilities and weak gelatinolytic capabilities. Con-
versely, MMP-2 exhibits weak type I collagenolytic capabilities and
strong gelatinolytic capabilities (Tam et al., 2004) where it is unable
to degrade cross-linked collagen type I and type IV but is able to
degrade the uncross-linked variants (Zhang et al., 2013). MMP-2
can, however, critically degrade type IV collagen, the main compo-
nent of the basement membrane and an extracellular barrier. As
MT1-MMP is bound to cancer cells, its region of proteolytic activ-
ity is more restricted than that of the freely diffusive proteolytic
enzyme MMP-2. This means that tissue degradation in advance
of the cancer cells is the result of the soluble MMPs. While MT1-
MMP activity is restricted in range, it has an advantage in its
capability of overcoming environments of higher collagen density
such as exists in some peritumoral stroma. Sabeh et al. (2009)
have shown that when cancer cells are faced with structural bar-
riers created in reconstituted gels by covalently cross-linked fibrils
of type I collagen, or that exist in the stromal environment of the
mammary gland, invasion is dependent on MT1-MMP-mediated
proteolysis.

Other mathematical models that have examined the activation
of MMP-2 by MT1-MMP include Karagiannis and Popel (2004),
Donzé et al. (2011), and Hoshino et al. (2012). Karagiannis and
Popel (2004) developed a set of non-spatial ordinary differential
equations of this activation system and examined the interplay
between the activation system of MMP-2 and ectodomain shed-
ding of MT1-MMP. They found that in the absence of TIMP2,
ectodomain shedding of MT1-MMP dominated dynamics but that
introducing TIMP2 would encourage MMP-2 activation and pro-
tect MT1-MMP from shedding. They later developed their model
to examine proteolysis during the migration of a tip endothelial
cell as is relevant in angiogenesis (Karagiannis and Popel, 2006).
Donzé et al. (2011) performed global robustness and sensitivity of
the model and explored the possibility of oscillatory dynamics in
the system. Hoshino et al. (2012) developed their extensive model
of all possible interactions of enzymes using A-Cell (Ichikawa,
2001). They provide experimental validation alongside their com-
putational model used to investigate the significance of turnover
of MT1-MMP for proteolysis at invadopodia. In this paper, we
apply a reduced form of the activation system of MMP-2 to our
model of cancer cell invasion where tissue degradation is mediated
by either MT1-MMP or MMP-2.

The architecture of the ECM plays a pivotal role when consider-
ing cancer cell invasion. Li et al. (2008) and Sabeh et al. (2009) have
made attempts to create in vitro environments that better represent

those found in vivo by embedding multicellular spheroids of HT-
1080 fibrosarcoma cells within gels of cross-linked native type
I collagen. Both studies found that MT1-MMP silencing blocks
virtually all collagenolytic and invasive activity. In this paper, we
provide an approach that considers what effect the architecture of
the ECM, such as pore size of tissue and proportion of ECM made
up of cross-linked collagen, may have when applied to a model
of cancer invasion. We are able to consider a heterogeneous ECM
and incorporate haptotaxis as occurring only in response to ECM
gradients created by the release of enzymes such as MMPs.

In this paper therefore, we develop a mathematical model of
cancer invasion which consider the role of matrix metallopro-
teinases (MMPs). Specifically our model will focus on two distinct
types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2), and
membrane-bound MMPs (e.g., MT1-MMP), and the roles each of
these plays in cancer invasion. Our model will also consider the
influence of the structure of the matrix on cancer cell invasion and
to achieve this (using a continuum PDE model) we will introduce
the concept of a “matrix suitability modifier.”

MATERIALS AND METHODS
In this section, we present our mathematical model which
describes the interplay between MMPs in cancer invasion, specif-
ically MT1-MMP activation of MMP-2, the balance between
TIMP2 inhibition of both MT1-MMP and MMP-2, and the dual
role of TIMP2 as inhibitor of species and activator of MMP-2.
The full process of MMP-2 activation is shown in Figure 1. The
species/complexes in a blue box are produced while those in the
black box are simply formed. Whether a species/complex is free
to move, without considering lateral diffusion on a cell and the
relative movement of a cell, is also indicated.

Our invasion model is based on a simplified form of MMP-2
activation as outlined in Figure 2, and involves considering stages
2, 3, and 4 of Figure 1 as a single process. This retains the key
details of whether a complex is stationary or not in relation to cell
movement and is a significant factor considering the relative speed
of binding of the freely diffusive TIMP2 to a complex bound to
the cell. However, we feel that this simplification of the process is
appropriate in capturing the dynamics of the two functional forms
by which invasion is facilitated. A basic model is presented in the
Supplementary Material to clarify the difference between these
two functional forms of invasion mediated by the highly localized
tissue degradation by MT1-MMP and the more extensive tissue
degradation by the diffusible MMP-2.

In our model we denote by c(x, t ) the cancer cell density, v(x, t )
the ECM density, ms(x, t ) the MMP-2 concentration, and by mt(x,
t ) the MT1-MMP concentration. In addition, we let T (x, t ) denote
the TIMP2 concentration, f(x, t ) the concentration of the complex
of MT1-MMP:TIMP2 (with an assumed proMMP-2 attached)
and s(x, t ) the “matrix suitability modifier.” The matrix suitability
modifier acts as an environmental factor by reducing the level of
a cell population that can physically move through the matrix –
as an extension of the volume-filling principles – by taking into
account the pore size of the collagen substrate along with reducing
the amount of matrix that is considered available to be degraded.
In this model, we consider a matrix environment with a neutral
effect on these processes to have a matrix suitability modifier value
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FIGURE 1 | Schematic diagram of MMP-2 activation.

FIGURE 2 | Simplified schematic diagram of MMP-2 activation.

of 1, which results in the standard dynamics expected from such
a model. A matrix environment containing difficult regions of
ECM for cancer cells to invade will be represented by a matrix
suitability modifier with a value 0≤ s< 1, with values toward zero
describing an environment that is more difficult for cancer cells
to navigate through, as well as a reduction in ECM that is avail-
able to be degraded. We also impose the condition that s+ v ≥ 1,
otherwise instead of limiting movement and tissue degradation,
movement would be encouraged in the opposite direction and
the ECM degradation term would cause the density of ECM to
increase.

As both MT1-MMP and the intermediate complex are bound
to cancer cells, they experience movement in the same direction
as the cancer cells and with a magnitude determined by the
concentration of enzymes at that location. We consider both

MMP-2 and MT1-MMP to undergo natural decay. We include
collagen-induced MT1-MMP expression in our model through a
function αmtc(1+ v) (Zigrino et al., 2001). This may take into
account observations showing that collagen-dense mouse mam-
mary tissues result in cancer cells with a more invasive phenotype
Provenzano et al. (2008). We also include volume-filling of the
form (1− c − v) to represent the competition for space between
the cancer cells and ECM. This is applied both to the haptotactic
response of cancer cells to ECM gradients and to the growth rates
for both the cancer cell and ECM populations. Finally, we have an
ECM remodeling rate of µv(1− c − v) (cf. Gerisch and Chaplain
(2008)). The full model is therefore given as:

∂c

∂t
=∇ (Dc∇c − χc (s − 1+ v) (1− c − v)∇v)

+ µc c (1− c − v) , (1)

∂v

∂t
= − δ (s − 1+ v) (ms +mt )+ µv (1− c − v) , (2)

∂ms

∂t
=∇

(
Dms∇ms

)
− φ31T ms + φ32mt f − βms ms , (3)

∂mt

∂t
=mt∇ (Dc∇c − χc (s − 1+ v) (1− c − v)∇v)− φ41T mt

+ φ42 − βmt mt + αmt c (1+ v) , (4)

∂T

∂t
=∇ (DT∇T )− φ51T ms − φ52T mt + φ53f + αT c , (5)

∂f

∂t
= f ∇ (Dc∇c − χc (s − 1+ v) (1− c − v)∇v)+ φ61T mt

− φ62f mt − φ63f , (6)

∂s

∂t
= δsmt (1− s) . (7)

In all computational simulations, we apply zero-flux bound-
ary conditions to equations (1), (3–6). The initial conditions
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imposed depend on the precise invasion scenario we are con-
sidering. In our the first invasion scenario (cf. Figure 3) we
have a cluster of cancer cells in the center of a homoge-
neous ECM with a small amount of activated enzymes already

released, i.e., c (0) = e

(
−(x2

+y2)
0.02

)
, v(0)=1− c(0)v(0) = 1− c(0),

ms(0) = ms(0) = T (0) = f(0) = c(0)ms(0) = mt (0) = T (0) =
f (0) = c(0). The initial condition for the matrix suitabil-
ity modifier s is best seen in Figure 3C. The initial condi-
tions used for c, v, s in the second invasion scenario are best
seen from the plots in Figures 7A–C, and also in this case
ms(0)=mt(0)=T (0)= f(0)= c(0).

PARAMETER ESTIMATION
We non-dimensionalize the model using the reference variables
τ = 104 s and L= 0.1 cm. While the reference enzyme concentra-
tion can be difficult to obtain, we take it be 1 nM with concentra-
tions throughout the considered timeframe to be within the range
0–25 nM. Tutton et al. (2003) find pre-operative MMP-2 levels
in plasma of colorectal cancer patients of 568.9 ng/ml= 7.89 nM
while Butler et al. (1998) and English et al. (2001) performed
experiments with enzyme concentrations of order 100 nM. The
parametersβms,βmt,αmt, andαT were therefore chosen so that the
concentrations of active MT1-MMP and MMP-2 are in the range
0–25 nM. The baseline parameter set presented in Table 1 is used
for all computational simulations of the model unless otherwise
specified.

RESULTS
In this section we present the computational simulation results of
our invasion model equations (1–7) in a 2-dimensional domain

(all parameter values are from the baseline set). The first scenario
we consider is one in which the tissue is considered to have neutral
effects on invasion in the top half of the domain by having a matrix
suitability modifier s= 1, with the lower half of the domain having
moderate characteristics limiting invasion by having the matrix
suitability modifier of s = 1

2 , as shown in Figure 3C. The value of

s = 1
2 may represent a region that contains a tissue where (i) half

the constituent parts of the ECM are cross-linked collagen, (ii) half
the considered ECM has a pore size below a thresholdα that blocks
invasion, (iii) more than half the considered ECM has a pore size
in the range α–β that slows invasion, or (iv) some combination
of the factors presented in (i–iii) that has the equivalent effect. As
can be seen from the plots in Figure 3 we observe an asymmetric
invasion by the cancer cells, with a reduced invasion in the lower
half of the domain (cf. Figure 3D) and also a reduced degradation
of ECM in the lower half of the domain (cf. Figure 3E).

Figures 4 and 5 show the corresponding evolution of the vari-
ous enzyme concentrations using the baseline parameter set. The
plots in Figures 4F and 5F show that any free TIMP2 that is pro-
duced or released from a complex is quickly bound to either free
MT1-MMP or MMP-2. The plots in Figures 4D and 5D show that
while MMP-2 can freely diffuse throughout the environment, its
profile is affected by the source term coming from the asymmet-
ric cancer cell invasion dynamics. The plots in Figures 4E and 5E
show how the degradative effect of MT1-MMP is limited by its
dependence on transport by the cancer cells. This is demonstrated
by a reduced invasive profile in the bottom half of each plot.

In Figure 6 we examine an invasive scenario where the effects of
the suitability of the matrix play little or no role. This is achieved by
increasing the parameter δs to a value of 10 (all other parameters

FIGURE 3 | Plots showing the simulation results obtained in a
two-dimensional domain where asymmetric invasion of the ECM is
achieved by the cancer cells. We use the matrix suitability modifier s to
represent a medium with neutral abilities in the upper half of the region
(s= 1; red) and with a reduced, moderate, suitability for invasion in the

lower half (s=0.5; green). Plots (A–C) show the initial values of the cancer
cell and ECM densities as well as the initial layout of the matrix suitability
modifier with (D–F) showing their resultant profiles at t =40
(corresponding to ∼4.6 days). Simulations are performed using the
baseline parameter set.
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Table 1 | Baseline parameter set for the model.

Non-dimensional

form

Original Unit Reference

Dc 3.5×10-4 Anderson et al. (2000)

χ 5×10-3 Anderson et al. (2000)

µc 0.3 Anderson et al. (2000)

δ 1 Anderson et al. (2000)

µv 0.2 Anderson et al. (2000)

Dms 1.29×102 1.29×108 cm2s−1 Collier et al. (2011)

φ31 5 5×105 M−1s−1 Estimated

φ32 0.195 1.95×104 M−1s−1 Estimated

βms 0.1 D 1×10-5 s−1 Estimated

αmt 5 5×10-4 s−1 Estimated

φ41 27.4 2.74×106 M−1s−1 Toth et al. (2000)

φ42 2 2×10-4 s−1 Toth et al. (2000)

βmt 0.1 1×10-5 s−1 Estimated

DT 1.29×102 1.29×108 cm2s−1 Collier et al. (2011)

αT 4 4×10-4 s−1 Estimated

φ51 5 5×105 M−1s−1 Estimated

φ52 27.4 2.74×106 M−1s−1 Toth et al. (2000)

φ53 2 2×10-4 s−1 Toth et al. (2000)

φ61 27.4 2.74×106 M−1s−1 Toth et al. (2000)

φ62 0.195 1.95×104 M−1s−1 Estimated

φ63 2 2×10-4 s−1 Toth et al. (2000)

δs 0.025 Estimated

kept at baseline values and using the same initial conditions as in
Figures 3 and 4). This scenario represents a region of tissue that is
difficult to invade and degrade by MMP-2 alone in the lower half
of the domain, but one that is rapidly remodeled when in range
of MT1-MMP to a condition that is considered to have a neutral
effect on invasion. Under these conditions, it can be seen from
the plot in Figure 6D that the cancer cells invade in a symmetric
manner (unlike the scenario in Figure 3D). However, we can also
see from the plot in Figure 6E that there is a reduced degradation
of ECM due to MMP-2 in the lower half of the domain compared
with the upper half. This shows the significance of the rate that
MT1-MMP is able to remodel the ECM in the spatial layout of
the tumor. The corresponding plots of the concentrations MMP-
2, MT1-MMP, the intermediary complex f, and TIMP2 at t = 20
and t = 40 are given in Figures S2 and S3 of the Supplementary
Material.

In Figure 7, we present the computational simulation results
of cancer cell invasion in a more heterogeneous environment such
as would be expected in certain in vitro experiments (and also
in vivo). For this scenario, we used the baseline parameter set,
except for the parameter δs which is reduced by a factor of ten to
a value of 0.0025. The plots in Figures 7D–F show that the cancer
cells take a longer time to invade the less suitable regions of ECM
resulting in a heterogeneous invasion pattern. In Figure 7F, we
can see that there are regions of higher cancer cell density (small
red zones) in advance of regions of lower cancer cell density (small
green zones) but without having broken off from the main mass
entirely. The corresponding plots of the concentrations of MMP-2
and MT1-MMP at t = 10, 50, 100 are given in Figure S4 of the
Supplementary Material. The effect of varying the parameter δs

can be seen by comparing the results in Figure 7 with Figure S5

FIGURE 4 | Plots showing the simulation results obtained in a
two-dimensional domain where asymmetric invasion of the ECM is
achieved by the cancer cells. The concentrations of MMP-2, MT1-MMP,
the intermediary complex f, and TIMP2 at t =20 (corresponding to
∼2.3 days) are shown in plots (A–C,F) respectively. Plots (D,E) show the

MMP-2 and MT1-MMP concentrations at t =20 with appropriate
thresholds near the invasive front of the cancer cell invasion. The white
contour line shows the cancer cell density at level 0.01 chosen to
represent the maximum extent of invasion. Simulations are performed
using the baseline parameter set.
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FIGURE 5 | Plots showing the simulation results obtained in a
two-dimensional domain where asymmetric invasion of the ECM is
achieved by the cancer cells. The concentrations of MMP-2, MT1-MMP,
the intermediary complex f, and TIMP2 at t =40 (corresponding to
∼4.6 days) are shown in plots (A–C,F) respectively. Plots (D,E) show the

MMP-2 and MT1-MMP concentrations at t =40 with appropriate
thresholds near the invasive front of the cancer cell invasion. The white
contour line shows the cancer cell density at level 0.01 chosen to
represent the maximum extent of invasion. Simulations are performed
using the baseline parameter set.

FIGURE 6 | Plots showing the simulation results obtained in a
two-dimensional domain where the suitability modifier s represents a
medium with neutral abilities in the upper half of the region (s = 1; red)
and a reduced, moderate, suitability for invasion in the lower half
(s = 0.5; green). We consider a scenario where the suitability modifier is
rapidly brought back to a neutral state by performing simulations using the

baseline parameter set with the exception of δs =10. Plots (A–C) show the
initial values of the cancer cell and ECM densities as well as the initial layout
of the matrix suitability modifier with plots (D–F) showing their resultant
profiles at t =40 (corresponding to ∼4.6 days). As can be seen, in this case
there is an almost symmetric invasion pattern. This shows the influence of the
parameter δs on invasion.

in the Supplementary Material, where we have used the default
parameter set but we do not observe any regions of high cancer
cell density in advance of regions of lower cancer cell density.

DISCUSSION
In this paper we have presented a mathematical model for can-
cer invasion of tissue, focusing on the roles of soluble and
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FIGURE 7 | Plots showing the simulation results obtained in a
two-dimensional domain with a spatially complex matrix suitability
modifier s to more accurately depict the observations of certain in vivo
experiments. Plots (A–C) show the initial values of the cancer cell and ECM
densities as well as the initial structure of the matrix suitability modifier. Plots
(D–F) show the resultant profiles of cancer cell density at t =10, 50, and 100
(corresponding to ∼1.15, 5.75, and 11.5 days, respectively). The white contour

line shows the cancer cell density at level 0.01 chosen to represent the
maximum extent of invasion. Plots (G–I) show the resultant profiles of ECM
density at t =10, 50, and 100. The simulations were performed using the
baseline parameter set with the exception of the parameter δs =0.0025. The
plots show a highly heterogeneous invasion pattern at the invasive front, once
again highlighting the role of the matrix suitability modifier s and the
parameter δs.

bound MMPs. Additionally we introduced the concept of “matrix
suitability,”governed by the variable s in our model. By considering
the suitability of the matrix as a factor affecting ECM degradation
and the movement of enzymes and cancer cells, we were able to
generate heterogeneity in the ECM caused solely by matrix degra-
dation. This meant we were able to focus on the effects of these
gradients explicitly caused by matrix degradation rather than ECM
density gradients due to intrinsic tissue heterogeneity. The com-
putational simulation results showed that the matrix suitability
modifier and its regulation played an important role in determin-
ing the precise pattern of invasion. As has been observed in the
experimental data of Sabeh et al. (2009) and Li et al. (2008), we
have shown that the architecture of the tissue can negatively impact
invasion under circumstances of pore size being below an optimal
level or in environments of cross-linked collagen type I and IV,
with both of these conditions requiring tissue remodeling specifi-
cally by MT1-MMP. In addition to this, invasion is reduced where
TIMP2 is overly produced. To investigate the matrix suitability

modifier from a biological perspective, experiments would need to
be carried out to obtain the initial layout of the suitability modifier
as well as the parameter δs. The first step in doing this would be
to find out the effects of different tissue pore size on cancer cell
migration to establish what range of pore sizes would be consid-
ered a neutral modifier, what range of pore sizes allow migration
at reduced levels, and what range of pore sizes completely block
migration. This could be done by using the approaches of Nys-
tröm et al. (2005) and Martins et al. (2009) where they performed
in vitro experiments using a collagen:matrigel assay to investigate
the invasiveness of cancer cells to establish a quantitative “inva-
sive index” in organotypic cultures. Once there is quantitative
data for these effects, obtaining data on the structure of the tis-
sue through effective imaging techniques such as those described
in Wolf et al. (2009) would allow one to generate realistic ini-
tial conditions of the matrix suitability modifier. An estimate of
the parameter δs could then be obtained by validating the model
against experiments similar to those found in Sabeh et al. (2009) or
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Li et al. (2008), who performed in vitro experiments using a cross-
linked native type I collagen assay to investigate the importance of
MT1-MMP in cancer invasion.

Future work in developing the model will involve a parameter
sensitivity analysis for the system. However, one observation that
we have already noticed is that by increasing the production of
TIMP2 to 10 times its original value (i.e., αT= 40) greatly reduces
matrix degradation over the time interval considered and the can-
cer cell population increases by only 56% from its initial value
(see Figure S7 in the Supplementary Material). This is due to an
abundance of TIMP2 molecules binding to MT1-MMP molecules
before free MT1-MMP are able to take part in activating MMP-2,
as described in stage 2 of Figure 2. These observations are in line
with the observed biological results of Strongin et al. (1995), Sabeh
et al. (2009). We also note that for low levels of TIMP2 production,
activation of MMP-2 is reduced while the concentration of active
MT1-MMP is increased and the total level of ECM degradation is
reduced.

We will also consider a more detailed activation system for
MMP-2. While we reduced the full activation system of MMP-
2 (shown in Figure 1) to the simpler system used in the model
(shown in Figure 2), it is not clear if the activation system
of Figure 1 captures the full range of dynamics involved in
this process. Another component of the activation system which
could be considered is an intermediate form of MMP-2 occur-
ring between the proMMP-2 and fully active MMP-2. In our
model, there is no intermediate form of MMP-2, since we assume
proMMP-2 is in abundance and always present in the MT1-
MMP:TIMP2 complex. To consider any complementary effects

of further activation systems of MMP-2 on cancer cell invasion,
they must first be established. Lafleur et al. (2003) have proposed
that proMMP-2 binds to a different cell receptor than is mod-
eled in our current model of the MT1-MMP:TIMP2 complex.
The proMMP-2 is the processed into an intermediate form of
MMP-2 before binding to the MT1-MMP:TIMP2 complex and
auto-catalyzing into active MMP-2. Investigations into further
activation systems by focusing on each stage of Figure 1 may
be helped by the work of Nishida et al. (2008) who showed
that an artificial receptor for proMMP-2 was able to take the
place of the MT1-MMP:TIMP2 complex in binding proMMP-
2 to the cell surface without inhibiting active MT1-MMP or
MMP-2. In order to gain the full benefit of such modeling
efforts (at the cell and receptor scale), we will also require to
adapt the current model to take into account novel multi-scale
modeling approaches, some of which have already been formu-
lated specifically to investigate cancer invasion [cf. Trucu et al.
(2013)].
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Solid tumors, whether in vitro or in vivo, are not an undifferentiated mass of cells. They
include necrotic regions, regions of cells that are in a quiescent state (either slowly growing
or not growing at all), and regions where cells proliferate rapidly. The decision of a cell to
become quiescent or proliferating is thought to depend on both nutrient and oxygen avail-
ability and on the presence of tumor necrosis factor, a substance produced by necrotic cells
that somehow inhibits the further growth of the tumor. Several different models have been
suggested for the basic growth rate of in vitro tumor spheroids, and several different mech-
anisms are possible by which tumor necrosis factor might halt growth.The models predict
the trajectory of growth for a virtual tumor, including proportions of the various compo-
nents during its time evolution. In this paper we look at a range of hypotheses about basic
rates tumor growth and the role of tumor necrotic factor, and determine what possible
tumor growth patterns follow from each of twenty-five reasonable models. Proliferating,
quiescent and necrotic cells are included, along with tumor necrosis factor as a potential
inhibitor of growth in the proliferating pool and two way exchange between the quiescent
and proliferating pools. We show that a range of observed qualitative properties of in vitro
tumor spheroids at equilibrium are exhibited by one particular simple mathematical model,
and discuss implications of this model for tumor growth.

Keywords: tumor spheroid, mathematical oncology, mathematical biology, tumor models, necrosis, quiescence,
tumor simulation

1. INTRODUCTION
Tumor spheroids cultured in vitro play an important role in can-
cer research. Various authors have pointed out that spheroids are a
better representation of many types of in vivo tumors than mono-
layer culture, and less expensive than in vivo studies, as described
by Santini et al. (2000) and Hirschhaeuser et al. (2010).

Spheroid growth is observed to cease spontaneously, with a
characteristic long term anatomy and a variety of terminal vol-
umes for any given cell line. At the earliest stage the spheroid may
be an undifferentiated mass of proliferating tumor cells. At an
intermediate stage the proliferating cells form a shell around the
outside of the spheroid and the inner core will consist of live cells
that are not actively dividing, which we will refer to as “quies-
cent.” These have been observed in tumor spheroids via imaging
techniques (Sherar et al., 1987) and through isolation and stain-
ing (Preisler et al., 1977; Bauer et al., 1982). At later stages the
inner core of the spheroid will be necrotic tissue, surrounded by
a shell of quiescent cells, and an outermost layer of live, prolif-
erating cells (Folkman and Hochberg, 1973; Sherar et al., 1987).
Proliferating cells are the target of most cancer therapies. The
quiescent cell population has been implicated as a population
resistant to some of these therapies, playing an important role
in tumor regrowth (Potmesil and Goldfeder, 1980; Kallman et al.,
1982).

Numerous models for tumor spheroids, quiescence, and necro-
sis, are in the literature, and these exhibit the observed phenomena
to greater or lesser degree. Models range from extremely complex

to simple with an enormous range in between. Simple models only
attempt to match total tumor size (Marusic et al., 1994; Demi-
denko, 2006). These find a reasonably good match with logistic
and Gompertz equations, which postulate a known bound on
spheroid size.

The necrotic core is a feature of all but the simplest models.
Tumor necrosis factor has been implicated as the cause of the even-
tual cessation of growth in spheroids (Freyer, 1988). Greenspan
(1972) is possibly the earliest such model, employing numerous
simplifying assumptions to arrive at differential equations that can
be solved explicitly. Menchon and Condat (2008, 2009) come to the
conclusion, based on mathematical models, that some inhibitory
factor is necessary for growth cessation in spheroids. This has
been a general observation for mathematical models that do not
include an a priori known bound for the size of the spheroid in
the governing equations, as is the case for logistic or Gompertz
models.

Some models take diffusion of nutrients into account, produc-
ing the characteristic distribution of proliferating, quiescent and
necrotic cells, relying on a variation of the diffusion equation and
parameters for a variety of nutrients (Venkatasubramanian et al.,
2006). An early example is by Gyllenberg and Webb (1990), whose
model includes both quiescence and necrosis to arrive at a growth
trajectory that resembles the observed Gompertz curve, but which
drives the proliferating cell population to zero. To this scenario,
some authors add cellular motion (Stein et al., 2007), a consid-
eration of the forces that determine the shape of the tumor mass
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(Frieboes et al., 2006), and mechanisms for the onset of necrosis
(Menchon and Condat, 2008). Others achieve the similar struc-
ture through a combination of models at different level of structure
(Jiang et al., 2005).

A series of models by Adam (1986, 1987a,b) dating back to
the 1980s uses one dimensional diffusion with nutrient source
and a time independent source of unspecified mitotic inhibitor
responding to a switch. The continuously growing necrotic core
observed in experiment suggests that the production of mitotic
inhibitor is neither time independent nor switched discontinu-
ously. Adam notes in his third paper that the necrotic core would
have to be taken into account in future models, such as those
presented in this paper, in order to match the observations in
Folkman et al. (Folkman and Hochberg, 1973; Adam, 1987b). The
more sophisticated treatment in Maggelakis and Adam (1990)
yields the observed Gompertz curve but does this paper does
not give information about the composition of the tumor at
equilibrium. A similar series of models by McElwain and coau-
thors (McElwain and Ponzo, 1977; McElwain, 1978; McElwain
and Morris, 1978) consider the diffusion process in a spheroid
in detail.

The advantage of complex models is that they produce a range
of outcomes, some of which are similar to observed growth pat-
terns. The disadvantage is that they require knowledge of many
specific parameters, some of which are hard to obtain. The mod-
els we consider in this paper are similar to the one developed
by Landry et al. (1982), which over a limited time agreed with
data from Folkman and Hochberg (1973) but did not include
a quiescent component and did not have the bounded growth
characteristic of tumor spheroids. They are also similar to one
proposed by Piantadosi (1985), which includes all three compo-
nents and places a bound on the reproducing subpopulation.
These are some of the older, simpler models in the literature.
They do not attempt to explain shape, only quantities of var-
ious cell types. They were developed before an understanding
of the potential role of tumor necrosis factor, and deserved
to be revisited with that role in mind. None of these exam-
ples includes the return of quiescent cells to the proliferating
pool.

The goal of this paper is to find the simplest possible system
of ordinary differential equations that produces the qualitative
results observed in Folkman and Hochberg (1973), Sherar et al.
(1987), and Freyer (1988), starting from the assumption that
proliferating, quiescent and necrotic layers exist. As part of this
search, we will rule out a large collection of simple models that,
although conceptually reasonable, do not produce results consis-
tent with these three papers. Simple, as interpreted here, means a
system of ordinary differential equations that has approximately
as many parameters as there are measured quantities. In these
equations, diffusion is assumed to be uniform in the proliferating
compartment and sufficient to produce growth. The movement
of nutrient is not modeled, except as a variation between com-
partments. The image of a spheroid at equilibrium from the
Folkman and Hochberg paper shows a very thin shell of pro-
liferating cells, hardly enough to make the effects of diffusion
prominent. Similarly, tumor necrosis factor inhibiting growth

of proliferating cells is assumed to reach those cells uniformly.
Although clearly a simplification in some respects, such models
are desirable as they allow an approximate fit to measured data
with the correct range of qualitative behaviors, without requir-
ing knowledge of quantities that are not easily measured and
with few enough parameters that the range of possible answers
is small.

These papers describe four quantities at moments in time: the
tumor size in Folkman and Hochberg (1973) and Freyer (1988),
and the amounts of proliferating, quiescent and necrotic cells in
Sherar et al. (1987). The basic qualitative results are summarized
in the following list.

1. Spheroids, no matter what the initial conditions may be,
eventually develop three layers of proliferating, quiescent and
necrotic cells (Sherar et al., 1987).

2. Growth of spheroids eventually stops. (Folkman and Hochberg,
1973).

3. When the growth stops, there remains a thin layer of actively
proliferating cells at the boundary (Folkman and Hochberg,
1973).

4. The final size of the spheroids is correlated with thickness of
the proliferating shell (Freyer, 1988).

5. The final size of the spheroids is correlated with the size at
which necrosis begins (Freyer, 1988).

6. The more spheroids in a flask, the smaller the average size when
growth ends (Folkman and Hochberg, 1973).

1.1. DEVELOPMENT OF MODELS
The models developed for this study track the dynamics of a three
part tumor spheroid growing in vitro. The quantities tracked are

1. Proliferating cells, which after time form a concentric shell at
the exterior of the spheroid, as observed in numerous imag-
ing studies, including those of Freyer (1988), Folkman and
Hochberg (1973), and Sherar et al. (1987). These are exposed to
the nutrient solution. They may become quiescent or they may
die and be shed from the spheroid. In early stage spheroids the
proliferating cells may constitute the entire spheroid and grow
at an intrinsic rate. A fraction of proliferating cells may also be
shed into the surrounding medium.

2. Quiescent cells, which form a secondary, and usually thicker,
shell inside the outer layer of proliferating cells. These arise as
proliferating cells pass to a quiescent state. They may return to
a proliferating state or experience cell death due to necrosis.

3. Necrotic cells, which form the core of the spheroid. These can
be absent in small spheroids or constitute the majority of the
spheroid mass in older cultures. They arise as quiescent cells die.
Necrotic cells may also undergo dissolution and be removed
from the system entirely.

4. Total spheroid size.

The basic system of three non-linear ordinary differential equa-
tions coming from items 1 to 3 above is shown in full generality
below, with explanations of the individual terms following. Note
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that 25 variations result from our considerations, each labeled with
a number from 1 to 5 and a letter from A to E.

dP

dt
= G(P)− bP ,QP + cQ,P Q − F (P , Q, N )− dP (1)

dQ

dt
= bP ,QP − cQ,P Q − eQ,N Q +H (P , Q, N ) (2)

dN

dt
= eQ,N Q −mN (3)

1.1.1. Growth of proliferating cells, G(P)
Growth of tumor spheroids is observed to cease. Thus there is
some limiting factor on the growth of P. However, there is debate
about the nature of this factor. A limit can be imposed directly by
using logistic or Gompertzian growth for P, both of which have
similar qualitative properties. However the access of proliferating
cells to nutrient is likely to be dependent on the surface area of
the spheroid, with any limitation to growth due to other factors
such as tumor necrosis. Models 3, 4, and 5 below have different
versions of this hypothesis. Yet another alternative is to assume
simple exponential growth of P. We look at five variations of the
function G(P). All models include a death rate of proliferating
cells, dP, that are assumed to be shed into surrounding medium
and lost from the model.

1. Model 1 uses a logistic term to limit the growth of P :
G(P)= aP(1− P) We could have used a Gompertzian model
with similar qualitative results.

2. Model 2 assumes exponential growth: G(P)= aP, as in Pianta-
dosi (1985).

3. Model 3 assumes that growth is proportional to the surface area
of the spheroid: G(P)= a(P +Q+N )2/ 3.

4. Model 4 assumes that growth is jointly proportional to both
surface area and volume of P: G(P)= aP(P +Q+N )2/ 3.

5. Model 5 uses the surface area of the spheroid as the limiting
factor in a logistic growth term: G(P)= aP(1− P(P +Q+
N )−2/ 3).

1.1.2. Transition from proliferating to quiescent, bP,QP, cQ,PQ and
quiescent to necrotic, eQ,NQ

Tumor spheroids exhibit a layer of quiescent cells (Sherar et al.,
1987) which are thought to arise as proliferating cells lose access
to nutrients. Similarly, quiescent cells die after sufficient lack of
nutrient. In addition, it is known that quiescent cells may become
proliferating cells again (Potmesil and Goldfeder, 1980), and so
a return loop is included in the model, with a proportion of Q
returning to the proliferating pool. These terms remain the same
across all the models studied here. In in vivo tumors, the loca-
tion of quiescent cells (and also necrotic cells) would depend
on the geometry of this access, including the location of blood
vessels, and the growth of these classes of cells is difficult to mea-
sure. For simplicity we use linear terms to describe this transition.
There are two justifications for this. First, if we assume that pas-
sage to the quiescent state is a result of the limits of diffusion of
nutrients, then as P approaches a limiting thickness the amount
of proliferating cells transitioning to quiescent is proportional
to the surface of the inside of the proliferating shell. Near the

limiting thickness surface area is approximately proportional to
volume of P. Second, whatever rule governs the transition from
P to Q may be expressed as a Taylor series in P whose lead-
ing term must be the linear one. For both of these reasons, a
good first approximation to this process is linear dependence on
P given by bP,QP. Similar arguments may be made for the other
terms, cQ,PQ and eQ,NQ. Thus we assume that constant propor-
tion of P becomes Q, and a constant proportion of Q dies to
become N.

1.1.3. The effect of tumor necrosis factor, F(P, Q, N) and H(P, Q, N)
Extract of necrotic tumors is known to reduce the growth of
tumor spheroids (Freyer, 1988), but the mechanism is unclear.
It is possible that as quiescent cells become necrotic they release
a substance that slows growth of proliferating cells. It is possible
that the necrotic cells themselves continue to release such a sub-
stance. Finally, it is possible that some substance increases the rate
at which proliferating cells become quiescent, and perhaps this is
enough to stop growth. We have looked at all of these hypotheses,
and summarized them in five cases.

(A) Model A assumes that the proliferation of P is slowed when
proliferating cells come in contact with substances released
as quiescent cells die. F is thus proportional to both P and
the rate of necrosis, cQ, so that F(P, Q, N )= fQP. This term
can be interpreted as slower growth or as death and shed-
ding of P cells; mathematically it makes no difference. The
interesting feature of this model is that the growth reduc-
ing effect of necrosis is determined by the size of Q and
thus is bounded in models where Q approaches equilib-
rium. In this model no extra rate of quiescence is assumed, so
H (P, Q, N )= 0.

(B) Model B only assumes that the passage of cells from prolifer-
ating to quiescent is increased in proportion to the number
of proliferating cells. In this model, F(P, Q, N )= 0 and H (P,
Q, N )= hP, so there is effectively no tumor necrosis factor
that depends on Q or N.

(C) Model C includes features of both Model A and Model B, so
F(P, Q, N )= fQP and H (P, Q, N )= hP.

(D) Model D assumes that the proliferation of P is slowed when
proliferating cells come in contact with substances released
by all cells in the necrotic pool. F is thus proportional to both
P and N, so that F(P, Q, N )= fNP. This term can be inter-
preted as slower growth or as death and shedding of P cells;
mathematically it makes no difference. However, in models
where P and Q do not go to zero, N can get arbitrarily large,
unlike in models A and C. This model includes increased
passage of proliferating cells to the quiescent pool, so
H (P, Q, N )= hP.

(E) Model E assumes only that the proliferation of P is slowed
when proliferating cells come in contact with substances
released by all cells in the necrotic pool, so F(P, Q, N )= fNP
and H (P, Q, N )= 0.

1.1.4. Dissolution of necrotic cells, mN
A cell that is dead long enough may dissolve and its contents be
removed from the system. Indeed, this may be the very source of
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substances that retard growth. For our initial numerical experi-
ments, m was taken to be zero. In the results section we discuss the
various growth patterns that result from these experiments, a few
of which have good properties of the P and Q compartments, but
which have constantly increasing values for N. This is reasonable
because the system is live and dynamic, so there is always some
death taking place. Taking m to be any positive constant allows
N to reach equilibrium in these cases. Unless otherwise stated,
however, we take m= 0.

1.1.5. Constants
Default constants for all runs are a= 0.01, bP,Q= 0.01,
cQ,P= 0.005, d = 0.002, eQ,N= 0.002, f= 0.01, h= 0.001, m= 0.
These constants always give tumors that grow, at least initially.
Clearly, for each of these models we could choose sufficiently slow
growth (or fast death) so that the tumor size decreases, but this
is the less interesting case. Note that the constants were chosen
for the purposes of comparing models and do not represent any
particular cell line or data set. The constants chosen for these runs
may all be scaled to a different time frame. A more realistic growth
parameter, a, would be about 70 times larger than the one we chose
here if the time unit is 1 day. Scaling all constants together results in
faster growth but keeps equilibrium values the same. Data on how
the volumes or cell counts of the P, Q, and N pools change over
time for a particular type of spheroid is not available, so it is not
possible to infer the constants in the model with any certainty. The
results in this paper concern qualitative observations that depend
on equilibrium values only, and therefore do not depend strongly
on the exact constants chosen, as long as the system arrives at
equilibrium.

2. MATERIALS AND METHODS
All twenty-five models were run with default settings using Mat-
lab ODE 45 solver to compare qualitative outcomes. Subsequent
comparisons and graphs for all figures in this paper were run on
BGDEM software developed by Brian Reed. Adobe Photoshop was
used to format all graphs for publication.

The twenty-five models under consideration fall into three
broad groups when m= 0:

1. Models where P and Q approach a non-zero equilibrium: 1A,
1B, 1C, 2A, 2C, 3A, 3C, 3D, 3E, 5A, 5C. These models exhibit
the basic qualitative behaviors of P and Q described in the
literature.

2. Models in which P and Q approach zero: 1D, 1E, 2D, 2E, 4A,
4B, 4C, 4D, 4E, 5D, 5E. In these models total tumor growth
stops as this occurs, as the growth of N stops. Introducing a
small value for m does not change this behavior. It is possible
that other behaviors would appear if m were large enough, but
those behaviors would then depend on a parameter for which
there is, as yet, no estimate.

3. Models in which P and Q grow without bound: 2B, 3B, 5B.

These results are summarized in Table 1, where ∗ denotes a
non-zero equilibrium, 0 denotes cases where P and Q approach
zero, and u denotes unbounded growth.

A typical run from each of the first two categories is shown in
Figure 1.

Table 1 | Summary of model behaviors for all cases.

1 2 3 4 5

A * * * 0 *

B * u u 0 u

C * * * 0 *

D 0 0 * 0 0

E 0 0 * 0 0

* denotes a non-zero equilibrium, 0 denotes cases where P and Q approach zero,

and u denotes unsounded growth.

FIGURE 1 | Proliferating pools from models 3E and 1E compared.
a=0.01, bP,Q =0.01, cQ,P =0.005, d =0.002, eQ,N =0.002, f =0.01, h=0,
P 0 =0.01, Q0 =0, N0 =0.

2.1. SOME COMMENTS ON THE EQUATIONS
The equation for Q′ is a simple linear relationship between P and
Q. Thus, if P reaches an equilibrium, so will Q in corresponding
proportion, for all twenty-five models. Similarly, for all models N ′

is positive if m= 0, and will continue to increase as long as Q (and
therefore P) is positive. Models for which P and Q go to non-zero
equilibrium will thus still have N increasing. However this is a
problem that can be easily solved by taking m to be any positive
number, forcing N to an equilibrium. For models in which tumor
growth depends on N (Models D and E), this has the effect of cre-
ating a non-zero equilibrium in cases that would otherwise have P
and Q going to zero.

Model 3E, which we examine further in this paper, has non-zero
equilibrium points given by the following equations.

Q =
b

c + e
P (4)

N =
e

m
Q (5)

0 = wX 4
− vX − u (6)

Here X = P1/ 3,u= a(1+α+β)2/ 3,v = (−b+ cβ − d),w = fα,
α = eb

m(c+e) , β =
b

(c+e) . The derivative of the right hand side
of equation (6) has at most one real root, thus equation (6) has
at most two real roots. By DesCartes’ rule of signs (for positive
parameters w, v, u) equation (6) has at most one real root. Thus,
the non-zero equilibrium, if it exists, is unique.
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3. RESULTS
3.1. MODEL B
These are the models in which necrotic factor plays no role. Of
these, only 1B, which has logistic growth, reaches a non-zero equi-
librium for P and Q, and that equilibrium is independent of initial
conditions. The same would hold if we replace the logistic term
with a Gompertz equation. The criticism of this model is concep-
tual. If there is a limit to growth, what is causing it? The limits of
diffusion explain uniform spheroids of proliferating cells, but not
actual spheroids, which grow to have a necrotic core that does not
require nutrient. The thin shell of proliferating cells is within the
range of diffusion, and should therefore not be limited in growth.
As the spheroid grows, the surface with its thin layer of proliferat-
ing cells resembles a plate culture, which is known to grow in an
unlimited fashion.

In model 4B, P and Q go to zero. This gives a spheroid of lim-
ited size, but it is dead. Models 2B, 3B, and 5B display unlimited
growth.

3.2. MODELS A AND C
Models 1A, 1C, 2A, 2C, 3A, 3C, 5A, and 5C all show P and Q going
to a non-zero equilibrium. This equilibrium may be calculated
directly from the equations and does not depend on N, which
continues to grow in these models. Thus, adding extra necrotic
factor to these models (by increasing the initial quantity of N, for
example) will have no effect on the eventual size of the proliferating
and quiescent pools. It would be difficult to duplicate the results
in Freyer (1988), which display a dependence of spheroid size on
various factors related to the quantity N, using these models.

3.3. MODELS 3D AND 3E
These models represent the best fit with qualitative observations.
The growth term reflects the assumption that diffusion is the dri-
ving supplier of nutrients. The only difference between these two
models is the rate at which proliferating cells become quiescent.
In both of these, P and Q stabilize as N continues to grow, but
the equilibrium values of P and Q cannot be deduced from the
equations, which depend on N. By adjusting the value of m to be
positive, we can arrange for N to arrive at any equilibrium value
(depending on the equilibrium value of Q).

The hypothesis of growth that is dependent on surface area
(Model 3) gives the best representation of experimental data
among the various models tested. Model 3E will always include
a non-trivial equilibrium for quiescent cells, as observed in Sherar
et al. (1987). Furthermore, this model only arrives at equilibrium
in the presence of a tumor necrotic factor that depends on the
actual quantity of necrosis that has occurred (Models D and E).
Finally, the extra feature of faster passage of proliferating cells to
quiescent does not play an important role here, with the caveat that
only a very simple form of this extra feature was tested. Figure 2
shows a typical run of Model 3E.

3.4. A CLOSER LOOK AT EXPERIMENTAL RESULTS
We notice the following phenomena in Model 3E, which mirror
the results of Folkman and Hochberg (1973):

1. Figure 2 shows a typical run of Model 3E, displaying the pro-
liferating pool and the total spheroid size. In early stages of

FIGURE 2 | A typical run of Model 3E. a=0.01, bP,Q =0.01, cQ,P =0.005,
d =0.002, eQ,N =0.002, f =0.01, h=0, m=0.0001, P 0 =0.01, Q0 =0,
N0 =0.

growth, the proliferating pool is a large fraction of the spheroid,
while at equilibrium the proportion of the tumor accounted for
by proliferating cells is much smaller. This phenomenon was
observed by Folkman and Hochberg (1973), with proliferating
cells being as much as 60% of the spheroid volume in early
stages and dropping to 14% at equilibrium.

2. The data displayed in that same paper show a distinctive early
overshoot of both the total volume and the proliferating pool,
followed by a slight drop as the spheroid approaches equilib-
rium. That overshoot is also present in Figure 2 of this paper,
Model 3E.

3. Figure 3 shows a late stage version of the 3E spheroid, in which
the growth rate of proliferating cells is reduced drastically. Note
that the growth term for this model is proportional to surface
area, whereas the removal of P is linear. The two processes
are not symmetric. The spheroid volume is seen to drop in
a linear fashion. This was observed in vitro by Folkman and
Hochberg when dormant spheroids were exposed continuously
to a substance that prevented mitosis.

We now turn to the experiments done by Freyer (1988), in
which a variety of cell lines were cultured as spheroids in flasks.
Several features of this experiment are particularly important from
the modeling standpoint. First, cell lines were cultured separately.
Second, flasks were renewed with added nutrient and by remov-
ing excess spheroids to ensure a steady supply of nutrient to each
spheroid. Third, multiple spheroids of varying sizes were in each
flask. Freyer observes that the only parameter of the spheroids that
he measured which was positively correlated with saturation size
was the thickness of the viable cell rim. From the point of view of
our models, this is the statement that the equilibrium values of P
and total spheroid size at equilibrium were positively correlated.
We show one scenario that results in the correlation observed by
Freyer.

Freyer proposes that the variation in final size could be the
result of variation in parameters associated to cell growth or decay.
We can model this as a variation in the growth parameter a.
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FIGURE 3 | Approximate terminal values at t = 10,000 for the run
shown in Figure 2 are starting values in this run of Model 3E. Only total
spheroid size is plotted. The growth rate of P was drastically decreased.
a=0.0001, bP,Q = 0.01, cQ,P =0.005, d = 0.002, eQ,N =0.002, f =0.01, h=0,
m=0.0001, P 0 =0.426, Q0 =0.681, N0 =10.4.

In Figures 4A,B we compare three runs of revised model 3E at
a= 0.04, 0.02, 0.01 respectively. The figure shows that the equi-
librium values of both the spheroid size and the size of the pro-
liferating pool are positively correlated. Further, one can compare
the equilibrium values of the proliferating pool with the equilib-
rium values of the spheroid size raised to the 2/3 power, which
correlates with surface area of the tumor. This ratio increases with
tumor size in the example shown, indicating a thicker rim of pro-
liferating cells in larger tumors, as observed in experiment. For
the runs pictured, the ratios are 0.11, 0.096, and 0.067 respectively
from the largest to the smallest spheroid. We can also deduce this
result from equation (6) for the equilibrium values. The parameter
a scales the constant u in that equation, lowering the graph of the
quartic and raising the value of the positive root. However, Freyer
also reports that the basic growth rates of the cell lines (either in
spheroids or monoculture) did not correlate with final spheroid
size. However, there could be an interplay of parameters at work
to mask such a correlation. Altering other parameters may give a
similar result. The model offered here at least shows the possibility
of a positive correlation between final size and thickness of the
proliferating cell layer.

A second observation of Freyer is that spheroid equilibrium size
is correlated with the size of the spheroid at the onset of necrosis.
His paper shows data in which the spheroid size at the onset of
necrosis is estimated from data and the eventual spheroid size is
inferred by fitting data to a Gompertz curve. This observation is
thus more of an expectation based on models than an actual pair
of measurements. Nonetheless, we ask whether Model 3E in this
paper can support this expectation. In continuous models such
as this one, there is an instantaneous start of necrosis, although
the quantity may be quite small. If one spheroid exhibits the start
of necrosis at a larger size than another, it could be due to dif-
ferent rates of transition from the quiescent to the necrotic pool,
described by parameter e in our model. The moment at which
necrosis becomes visible in the spheroid would be earlier for the
model with the higher value of e. In Figure 5, we see the growth of
two versions of Model 3E with different values of the parameter e.

FIGURE 4 |Three runs of Model 3E with different growth factors as
labeled. (A) Shows the total spheroid size and (B) shows the proliferating
pool. As in Figure 2, bP,Q =0.01, cQ,P =0.005, d =0.002, eQ,N =0.002,
f =0.01, h=0, m=0.0001, P 0 =0.01, Q0 =0, N0 =0.

This difference does indeed produce spheroids of different sizes.
The spheroid that has the higher rate of necrosis is the smaller one,
consistent with Freyer’s observations.

The possibility that tumor necrosis factor affects not only the
spheroid producing it, but also others in the same flask, also helps
explain the observation (Folkman and Hochberg, 1973) that the
average size of spheroids in a flask was inversely proportional
to the number of spheroids in the flask. In Figure 6 we see the
comparison of two systems: one represents a system with two iden-
tical spheroids. However, the necrosis factor used was the sum of
the necrosis of both spheroids. That is, both spheroids suffer the
effect of all of the toxin in the combined system. These two grow
identically and reach a terminal size of approximately 27 units at
t = 20,000. A third spheroid is grown in isolation, with the same
initial conditions. It gets much larger, reaching about 45 units at
t = 20,000. Thus neighboring spheroids limit each others’ growth,
creating the result observed by Folkman and Hochberg (1973).

4. DISCUSSION
We have shown that a simple model with compartments repre-
senting proliferating, quiescent and necrotic cells, can explain a
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FIGURE 5 |Two runs are shown with different rates of necrosis:
eQ,N = 0.002 (top) and eQ,N = 0.004 (bottom). a=0.01, bP,Q =0.005,
cQ,P =0.005, d =0.0002, f =0.001, h= 0, m=0.0001, P 0 =0.01, Q0 =0.01,
N0 =0.

FIGURE 6 | Here we see two graphs of total tumor size. The larger, A, is
a single spheroid in isolation. The smaller, B, is two graphs superimposed of
identical spheroids grown together as in Figure 5, where the necrosis
factor of both spheroids affects each system. a=0.01, bP,Q =0.005,
cQ,P =0.005, d =0.0002, eQ,N =0.002, f =0.001, h=0, m=0.0001,
P 0 =0.01, Q0 =0.01, N0 =0.

variety of observations on the growth and development of tumor
spheroids in vitro. The successful model includes a growth term
proportional to surface area, and a death term for proliferating
cells that depends on the amount of tumor necrosis present. It
also includes linear transitions between the proliferating and qui-
escent pools, and between the quiescent and necrotic pools. It
includes a linear term for dissolution of necrotic cells as well. With
these few ingredients we have a system that produces spheroids
that eventually develop three layers of proliferating, quiescent and
necrotic cells. Growth of these spheroids eventually stops. When
the growth stops, there remains a thin layer of actively proliferating
cells at the boundary. Under some assumptions about what might
create spheroids of different sizes, we see that the final size of the
spheroids is correlated with thickness of the proliferating shell.

FIGURE 7 | Here we see two graphs of total tumor size in 7A and size
of the proliferating pool, 7B. The larger spheroid in 7A has the lower
removal rate of N, set at m=0.0001. The smaller spheroid has m=0.0002.
Note the reversal of size of the proliferating component of the spheroid.
a=0.01, bP,Q =0.005, cQ,P =0.005, d =0.0002, eQ,N =0.002, f =0.0001,
h=0, P 0 =0.01, Q0 =0.01, N0 =0.

Under the assumption of differing rates of necrosis we see spher-
oids of different terminal sizes, corresponding to a later appearance
of visible necrosis. Under the hypothesis that multiple spheroids
in the same flask share tumor necrosis factor with each other,
we have a model in which the more spheroids are in a flask, the
smaller the average size when growth ends. In short, the model we
have selected fits a variety of qualitative observations about tumor
spheroid growth.

Although more complex than the Gompertz model, the model
presented here is not so complex that it becomes computationally
unfeasible to match it to the development of a given tumor spher-
oid. It would be useful to modelers to have some data sets that
track P, Q, and N over time for several cell lines. A model such as
the one presented here will only be of practical use if it is tuned to
a specific type of cell. The potential then exists for building more
realistic models of in vivo tumors that are based on parameters
solidly gained from the simpler in vitro spheroid.

Tumor spheroids are supposed to be a reasonable proxy for
tumors in vivo before the onset of angiogenesis. However, exist-
ing models of angiogenesis do not take tumor necrosis factor
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into account, even though it affects the growth of the prolifer-
ating cells. Using a model such as the one developed here as the
basis for a more complex one that includes angiogenesis has the
potential to illuminate one function of circulation currently left
out of these models: the ability of blood flow to remove toxins.
Figure 7 elucidates this observation. Here we see two spheroid
models that are identical except for one small change: N, along
with the toxin it represents, is being removed from one of them
at a steady rate of 0.0001N in one of them and 0.0002N in the
other. The spheroid with the greater clearance rate of necrosis has
a smaller total size, but it has a greater quantity of proliferating
tissue. This observation adds to the complexity of angiogenesis.

One purpose of this study is eventually to develop a simple
model incorporating both necrosis and angiogenesis. With data
on the time development of both plate and spheroid cultures of a
given cell type one, could easily find best fit parameters for model
3E as well as a few of the others. A model that is a good approxi-
mation of spheroid behavior may be extended by coupling it with
a simple model of angiogenesis, as in Hahnfeldt et al. (1999),
Komorova and Mironov (2005), or with a version of a more com-
plex model as in Stamper et al. (2007) that has been reduced via a
sensitivity analysis (as in Wallace and Winsor, 2012) to a simpler
situation. One would do this be extending the spheroid model in
two ways. First, the growth term would be replaced by an expres-
sion approximating contact area between proliferating cells and
nutrient supply. Second, the clearance of necrosis factor would

become a function of contact between necrotic tissue and blood
supply. Numerous papers have explored the nature of the contact
regions between tumor and nutrient through the development
of the geometry of both tumor and vasculature (as in Sansone
et al., 2001), competition among cell types (as in Scalerandi et al.,
2001), and other features. A simple model, however, might approx-
imate the situation through mutual dependence of blood supply,
volumes of the three quantities discussed here, and a fixed or
evolving fractal dimension of contact. A model with few para-
meters may then be fitted to data sets for various cell lines to
give a crude characterization of growth properties for cell types
that goes beyond the basic growth rate determined from plate
culture.

Hirschhaeuser et al. (2010) survey the uses of in vitro spheroids
to study the interaction of tumors with their microenvironment,
including various therapies. They point out the potential role
of spheroids in selecting the most promising interventions at an
early, and less expensive, stage of research. Mathematical models of
spheroids that extend the simple model presented in this paper to
include therapies or other interactions would be useful for select-
ing optimal delivery protocols to be tested in vivo as therapeutic
interventions. Models in silico allow quick exploration of the result
of variations in timing and dosage of therapies. Studies of cancer
therapies in vivo could be doubly informed by in vitro spheroid
studies that suggest which therapies work and why, combined with
in silico models suggesting best strategies for delivery.
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Physical oncology is a growing force in cancer research, and it is enhanced by integrative
computational oncology: the fusion of novel experiments with mathematical and com-
putational modeling. Computational models must be assessed with accurate numerical
methods on correctly scaled tissues to avoid numerical artifacts that can cloud analy-
sis. Simulation-driven analyses can only be validated by careful experiments. In this
perspectives piece, we evaluate a current, widespread model of matrix metalloproteinase-
driven tissue degradation during cancer invasion to illustrate that integrative computational
oncology may not realize its fullest potential if either of these critical steps is neglected.
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INTRODUCTION
Physical oncology – the study of the physical biology of cancer,
the development of new physical measurement platforms, and the
use of mathematical and computational modeling to understand
complex cancer systems – has emerged as an important force in
cancer research (1). Key to this approach is integrative compu-
tational oncology: multidisciplinary teams of biologists, oncolo-
gists, physicists, engineers, and mathematicians working together
to generate novel platforms, where modeling informs experi-
ments, and experiments drive modeling. Mathematical modeling
can describe and simplify complex systems, facilitating analy-
sis. Accurate simulations assist the analysis of these systems,
yielding observations that drive biological hypotheses. Exper-
imental biology is necessary for validating and refining these
hypotheses and advancing our understanding of cancer. This
special issue discusses successful examples of applying integra-
tive modeling to cancer-related questions. However, neglecting
any of these key ingredients can be detrimental and may blind
teams to subtle modeling flaws, potentially resulting in misleading
model assessment, incorrect biological conclusions, or unverifiable
predictions.

In this perspectives piece, we will look at a widely used mathe-
matical model of tissue degradation by matrix metalloproteinases
(MMPs) in order to illustrate (1) the need for evaluation of
mathematical models by proper numerical techniques, applied
to biologically relevant space and time scales, and (2) that even
with proper numerical analysis, only experiments can truly val-
idate mathematical model predictions and help choose among
plausible explanations of model findings.

MMP-MEDIATED TISSUE DEGRADATION
Progression from in situ carcinoma – where growth is constrained
to a local site by a fully intact basement membrane (BM) – to inva-
sive carcinoma requires disruption of the BM and penetration into
the surrounding stroma. Once in the stroma, invading cancer cells
often degrade and remodel the extracellular matrix (ECM) and
later break through BM to enter blood vessels – a key step in metas-
tasis. A quantitative understanding of proteolytic degradation of
tissue is necessary in predicting (and disrupting!) cancer invasion
and metastasis. It is currently unclear whether tissue degradation
is primarily due to MMPs secreted by cancer cells or by stromal
cells in response to tumor signaling. Quantitative modeling could
help narrow down the possibilities to the most plausible models
of stromal invasion, which can then be experimentally tested and
validated.

Extracellular matrix is a 3-D cross-linked network of pro-
teins and polysaccharides that provides structural support to
cells; BM is a specialized form of ECM, although thinner (50–
100 nm) and more dense (2, 3). ECM (including BM) can be
degraded by MMPs secreted by tumor, stromal, and immune
cells (4–6). MMPs are secreted in an inactive form that must
be cleaved into an active form, and are further regulated by
inhibitors of metalloproteinases. MMPs may be soluble and diffuse
through tissue (e.g., MMP9), or membrane-bound (e.g., MT-
MMP1) (6).

The most widely used tissue degradation models focus on solu-
ble MMPs using reaction-diffusion equations [e.g., (7–9)], neglect
inhibitors and promoters, and assume the MMP is immediately
active. If E is the ECM density (or volume fraction) and M is the
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MMP concentration (both dimensionless), then

∂M

∂t
= ∇ · (D∇M )+ s (X, t )− rM EM − dM M (1)

∂E

∂t
= −rE EM . (2)

D is the diffusion constant, s is the source (tumor or other cells), rM

and rE are reaction rates,and dM is the MMP decay rate. These stan-
dard reaction-diffusion equations are typically solved with finite
differences on a Cartesian mesh [e.g., (7–9)]. The most clinically
oriented BM degradation model we know of simulated BM as
denser ECM on the same ECM computational mesh (10).

FUNCTIONAL FORMS AND PARAMETER VALUES
For this discussion, we assume D=D0 (1− E) for a constant D0.
We set D0= 8× 10−9 cm2/s (11), rM= rE= 1/200 s−1 (11), and
dM= 5× 10−5 s−1(12). This gives an (ECM-dependent) reaction-
diffusion length scale L of

√
D0(1− E)/(rM E + dM ) ∼10 µm

(“∼”denotes “on the order of”) for 0≤ E≤ 0.90. This matches our
biophysical expectations: MMPs are relatively large macromole-
cules diffusing through a tortuous ECM structure, so the length
scale should be significantly smaller than for oxygen (typically
∼100 µm). We initially set the E= 0.85.

MODEL EVALUATION REQUIRES GOOD NUMERICAL TECHNIQUES
Accurate numerical solution (and hence proper evaluation) of
the model and its ∼10 µm length scale requires an ∼1 µm mesh
size. To date, most published work has used small diffusion con-
stants on relatively large 10–20 µm meshes [e.g., (7, 8)]. We solve
Eqs 1 and 2 on a 1 µm mesh with standard centered finite dif-
ferences, using the ghost fluid method to implement boundary
conditions wherever the computational stencil intersects the BM
(zero flux, or Neumann condition) or a cell boundary (constant,
or Dirichlet condition for secreting cells; Neumann condition for
non-secreting cells) (13–15). We describe the BM position as in
D’Antonio et al. (16). Tumor cell sizes are set to the values in
Macklin et al. (17).

CURRENT MODELS PREDICT RAPID “TUNNELING” THROUGH ECM
We simulated MMP secretion by stromal cells, as one might expect
in response to tumor-secreted pro-inflammatory signals. To sim-
plify the analysis, we set M = 1 on the stromal cells and positioned
them at a fixed 10 µm from the BM (Figure 1: top left).

In the simulations, MMPs etch out a “hole” in the ECM whose
edge expands outward at ∼1 µm per minute. See Figure 1 for the
ECM distribution at 15, 25, and 40 min. This is consistent with
an order of magnitude estimate using a Fisher–Kolmogorov-type
traveling wave front speed:

ν = 2L (E) rM (E) ∼ 2
√

D0 (1− E) ErM

gives speeds of 0–3.75 µm/min ∼ 1 µm/min for 0≤ E≤ 0.90,
where L(E) is as above and rM(E)= rM E.

A 1 µm/min expansion rate of the degraded region is compara-
ble to experimentally measured motile tumor cell velocities [e.g.,
58.56± 1.62 µm/h for neuN cells in (7)]. The predicted expansion

speed is quantitatively consistent with localized ECM degradation
“keeping pace”with motile cells as they“tunnel”through the ECM.
The simple ECM-MMP model (with sufficient numerical resolu-
tion) can produce biologically reasonable results on small time
and spatial scales.

However, if extrapolated over long times, this model predicts
that a 10 cm diameter of tissue could be degraded in about a
month! This outpaces typical tumor expansion rates by over an
order of magnitude: brain tumors (among the fastest growing
tumors) typically expand at 80–100 µm/day (18), requiring at least
500 days to infiltrate a 10 cm tissue. The simple MMP model would
therefore predict an ever-widening gap between the advancing
tumor front and the edge of the degraded tissue, contradicting typ-
ical observations that MMP activity is localized near the boundary
of an advancing tumor.

This widely used model, once simulated accurately, does not
adequately describe MMP-mediated tissue degradation around
growing tumors. Neglected factors (e.g., activators and inhibitors)
may be needed to confine proteolytic activity near tumor bound-
aries; similar approaches have been used to model urokinase-type
plasminogen activators in tissue degradation (19). Alternatively,
non-diffusing membrane-bound MMPs may be more relevant.
New imaging technologies that dynamically capture ECM degra-
dation could help select among possible alternative models (20,
21). Recent integrative experimental-computational work showed
the critical role of MT-MMP activity during cancer cell invasion,
finding that MT1-MMP turnover could be a potent anti-invasion
therapeutic target (22). Ultimately, only carefully planned and
executed experiments can help choose between these and other
possible explanations.

ASSESSING DEGRADATION OF THE BASEMENT MEMBRANE
A 100 nm BM cannot be properly resolved on a 1 µm mesh. Solv-
ing (1)-(2) by finite differences (with correct physical dimensions)
requires a prohibitive 10 nm computational mesh. Some have
investigated this problem by solving on non-physiological base-
ment membranes [e.g., one cellular automaton mesh point, or
10 µm thick (10)], making it difficult to evaluate the models.

Let us instead analyze a simplified problem to estimate the
time scale to degrade a BM. Consider a small piece of BM of cross-
sectional area A, volume fraction F, and thickness T (t ). The total
amount of matrix E(t ) in the BM section is AF T (t ). If BM is
degraded as in (2), then dE/dt =−rE M (t ) E(t ). If M is constant,
then the time t B required to degrade the BM to some threshold
breaking amount EB is given by

tB = −1n
(
E (0)

/
EB
) /

rBM .

If rE= 1/200 s−1 and M = 1, then a 100 nm section of BM is
reduced to 10 nm thick [EB/E(0)= 0.1] in under 8 min, and to
1 nm thick (EB/E(0)= 0.01) in about 15 min.

This suggests several possibilities. (1) The cell “decision” of
when to secrete MMPs is the limiting factor to penetrating the
BM, rather than the proteolytic process itself. (2) Additional, non-
modeled promoters/inhibitors are rate limiting. Only follow-up
experiments can help determine the most plausible explanation,
but rapid penetration of the BM by “willing” cells seems consis-
tent with Boyden transwell migration assays (23) and known rapid
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FIGURE 1 |Top left: initial configuration of epithelium (white lumen and tumor
cells), a 100 nm basement membrane, stroma (orange), and stromal cells (red)
that secrete MMPs. Remaining plots: ECM volume fraction [ranging from

blue (0%) to red (85%)] at 15, 25, and 40 min using a widespread ECM-MMP
model with a biophysically reasonable reaction-diffusion length scale
(∼10 µm) and degradation rate (∼0.1–1 min−1).

(∼minutes) transmigration of leukocytes through endothelial and
epithelial layers and associated membranes (24, 25).

CLOSING THOUGHTS
Accurate models are needed to simplify, analyze, and assess com-
plex phenomena observed in cancer biology. In order to truly
assess a model’s underlying assumptions, evaluate its predic-
tive value, and study its potential clinical utility, one must use
proper numerical methods, reasonable geometries, and experi-
mental validation. As illustrated by the tissue degradation model
above, neglecting any of these key factors can lead to inac-
curate dynamics, and may potentially cause a team to prema-
turely accept biological hypotheses. Dynamic feedback between
experimental and computational biology systems is necessary to

drive and improve model development and refinement while
ensuring that any resulting integrative platform is clinically
relevant.
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Normal human tissue is organized into cell lineages, in which the highly differentiated
mature cells that perform tissue functions are the end product of an orderly tissue-specific
sequence of divisions that start with stem cells or progenitor cells. Tissue homeostasis
and effective regeneration after injuries requires tight regulation of these cell lineages and
feedback loops play a fundamental role in this regard. In particular, signals secreted from
differentiated cells that inhibit stem cell division and stem cell self-renewal are important
in establishing control. In this article we study in detail the cell dynamics that arise from
this control mechanism. These dynamics are fundamental to our understanding of cancer,
given that tumor initiation requires an escape from tissue regulation. Knowledge on the
processes of cellular control can provide insights into the pathways that lead to deregulation
and consequently cancer development.

Keywords: tissue regeneration, cell linage control, tissue stability, mathematical models, cancer

INTRODUCTION
There is growing evidence that a subset of cancer cells possesses
characteristics typically associated with stem cells (Reya et al.,
2001; Wang et al., 2010). These so called cancer stem cells share
with normal stem cells the capability to give rise to all cell types
of a given lineage (Bonnet and Dick, 1997; Passegué et al., 2003).
Like normal stem cells, they also have a large proliferative poten-
tial being the only cancer cells capable of repopulating a tumor
and initiating metastasis (Al-Hajj et al., 2003; Clevers, 2011). In
light of these findings it is crucial to understand how stem cells are
regulated as part of a cell lineage in normal tissue.

In normal tissues, cell lineages are highly regulated to promote
the rapid regeneration after an injury and to maintain tissue home-
ostasis under normal conditions. In particular when it comes to
the regulation of stem cells two types of feedbacks have been pro-
posed: long-range and short-range (Arino and Kimmel, 1986).
The long-range feedbacks should respond to the loss of mature
cells during an injury, while the short-range feedbacks would act
in an autocrine fashion in stem cells (Andersen and Mackey, 2001;
Bernard et al., 2003). In this article we focus on long-range feed-
back acting through signals emitted by differentiated cells that
inhibit stem cell division and self-replication. This type of regula-
tion has been biologically observed in numerous tissues including
muscle, liver, bone, and the nervous and hematopoietic systems
(McPherron et al., 1997; Daluiski et al., 2001; Yamasaki et al.,
2003; Elgjo and Reichelt, 2004; Tzeng et al., 2011), and has lead to
the development of a significant number of mathematical models
(see e.g., Ganguly and Puri, 2006; Lander et al., 2009; Marciniak-
Czochra et al., 2009; Chou et al., 2010; Bocharov et al., 2011; Zhang
et al., 2012).

Tumor initiation requires an escape from the control mecha-
nisms just described and indeed, there is significant experimental
evidence to support this assertion (Lim et al., 2000; Massagué,

2000; Woodford-Richens et al., 2001; Piccirillo et al., 2006; Lee
et al., 2008). This underscores the importance of tissue regula-
tion for cancer biology. In the next sections we will analyze the
cell dynamics resulting from this regulatory mechanism, first in
the context of general feedback functions and then using Hill
equations in spatial and non-spatial settings.

Our work adds to a growing body of modeling literature that
studies cell lineage dynamics and regulation. Conceptual issues
for the study of stem cells are identified in Loeffler and Roeder
(2002). Discrete and continuous models relevant to carcinogene-
sis, and particularly colon cancer, include (Tomlinson and Bodmer,
1995; Yatabe et al., 2001; Agur et al., 2002; Hardy and Stark, 2002;
d’Onofrio and Tomlinson,2007; Johnston et al., 2007; Boman et al.,
2008). There are also numerous stem cell models in the context
of the hematopoietic system (see e.g., Colijn and Mackey, 2005;
Michor et al., 2005; Adimy et al., 2006; Glauche et al., 2007; Ashke-
nazi et al., 2008). In this paper we combine elements of stochastic
and deterministic modeling and consider both mass action and
spatial systems. The models identify parameters important for
tissue stability and growth and offer a useful tool to study both
healthy and cancerous hierarchical populations.

The stability and dynamics of multistage cell lineage models is
an active topic of research. In Nakata et al. (2012), the authors sys-
tematically analyze the stability of a two and three compartment
model where the regulation of proliferation rates is modeled using
Hill functions equation (9). A similar model where feedback reg-
ulation acts instead on the probability of self-renewal is studied in
Lo et al. (2009); here the stability analysis is performed first using a
general feedback function for a two compartment model, and then
using the feedback function equation (9) for a three compartment
model. In Stiehl and Marciniak-Czochra (2011) the authors char-
acterize the structure of stationary solutions of a n-compartment
model with feedback on the self-renewal probability of cells. The
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characterization is performed for a general form of the regulation
function and for the special case that uses the functional form in
equation (9).

In this article we study the cell dynamics of a two compartment
model, which includes feedback regulation in both the division
rate and the self-renewal probability of cells. According to the
model feedback on the self-renewal probability of stem cells is by
itself sufficient to establish control. However if feedback on the
division rate is not present, the recovery after an injury may lead
to significant damped oscillations in the path back to equilibrium,
which can result in the stochastic extinction of the cell population.
Moreover, this oscillatory behavior is more pronounced when the
stem cell load represents only a small fraction of the entire cell
population. If this is the case, oscillations may still be avoided, but
it comes at the price of slowing down the speed at which the sys-
tem is able to recover after an injury. Spatial interactions and the
addition of feedback inhibition on the cell division rate reduce the
amplitude of oscillations and contributes to the robustness of the
system. Feedback inhibition on the division rate also increases the
speed of tissue regeneration promoting altogether faster and more
stable recoveries from perturbed states.

RESULTS
CELLULAR CONTROL
We consider a model that takes into account two cell populations:
stem cells, S, which have unlimited reproductive potential, and
differentiated cells D, that eventually die out (this includes all cell
populations with limited reproductive potential, such as transit
cells). Stem cells divide at a rate v ; this results in either two daugh-
ter stem cells with probability p or two differentiated cells with
probability 1− p. Differentiated cells die at rate d. The system
is controlled through two negative feedback loops. Differentiated
cells secrete factors that: (1) inhibit stem cell division, and (2) sup-
press self-renewal in stem cells (Figure 1). Hence, the self-renewal
probability and division rate (p(D) and v(D)) are strictly decreas-
ing functions of the number of differentiated cells D. The ordinary
differential equation (ode) model is given by:

Ṡ =
(
2p (D)− 1

)
υ (D) S

Ḋ = 2
(
1− p (D)

)
v (D) S − dD

(1)

FIGURE 1 | Model of tissue regulation with feedback loops.
S represents the stem cell population and D the differentiated cell
population. Stem cells divide at a rate v ; this results in either two daughter
stem cells with probability p; or two differentiated cells with probability
1−p. Differentiated cells die at rate d. The rate of cell division and the
probability of self-renewal are decreasing functions of the number of
differentiated cells [equation (1)].

In addition to the symmetric stem cell divisions explicitly mod-
eled in equation (1) asymmetric division in stem cells is also
well documented (Clevers, 2005; Simons and Clevers, 2011). The
extent to which these types of divisions occur in different tis-
sues has important biological consequences and is the subject
of considerable research efforts (Wu et al., 2007; Neumüller and
Knoblich, 2009). However with regards to model (1), it is shown in
Rodriguez-Brenes et al. (2011) (Supplementary Information) that
the explicit introduction of asymmetric stem cell divisions leads
to an equivalent mathematical formulation and does not alter any
of the results.

From the expression for Ṡ, we note that p(0)> 0.5 is a nec-
essary condition to avoid the system from always going to the
trivial steady solution (S, D)= (0, 0). Also only feedback on the
self-renewal probability p – unlike the feedback on v – is able to
change the signs of Ṡ or Ḋ, which suggests that by itself feedback
inhibition on p is sufficient to maintain control. We are interested
in finding out how this negative regulation affects the cell popula-
tion at homeostasis and during recovery after an injury. We begin
by looking at the steady states Ŝ and D̂ and D̂ which are defined
by the following equations:

p
(

D̂
)
= 1/2 & Ŝ = d/v

(
D̂
)

D̂ (2)

Hence, we find that the equilibrium number of differentiated
cells D̂ depends only on the self-renewal probability p(D). The
equilibrium fraction of stem cells Ŝ/(Ŝ + D̂) depends only on the
ratio d/v(D̂). In order to understand better the recovery of the sys-
tem after a perturbation we look at the eigenvalues of the Jacobian
matrix evaluated at (Ŝ, D̂):

J =

 0 2dp′
(

D̂
)

D̂

v
(

D̂
)
−d

(
2p′

(
D̂
)

D̂ + 1
) (3)

Let us write b = (2p′(D̂)D̂ + 1) and v̂ = v(D̂). Then the
eigenvalues are given by:

λ1, λ2 =
−db ±

√
d2b2 + 4d (b − 1) v̂

2
(4)

The model described by equation (1) is an autonomous sys-
tem of ordinary differential equations; therefore in a vicinity of
the steady state point (Ŝ, D̂) the behavior of the system can be
inferred by looking at the eigenvalues of the Jacobian. If we want
the equilibrium values to be asymptotically stable, then the real
part of the eigenvalues must be negative, which occurs if and only
if b> 0. Conversely if b< 0, the equilibrium is unstable. If b= 0
(purely imaginary eigenvalues), the behavior of the system can
not be inferred from equation (1) for general functions v(D) and
p(D). In this case a Hopf bifurcation might be possible. However
the bifurcation analysis would depend on the specific choice of the
regulation functions.

The sign of the discriminant in equation (4) gives us further
information into how the trajectories approach the steady state
value. If the discriminant is negative then oscillations are expected
as the cell population approaches equilibrium. Let us see how this
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observation relates to the equilibrium fraction of stem cells in the
population. As we noted earlier this fraction is entirely determined
by the ratio ε ≡ d/v̂ . If we want to avoid oscillations then divid-
ing the discriminant by dv̂ we find that the following inequality
must hold:

εb2
+ 4b − 4 ≥ 0 (5)

Since b = 1 + 2p′(D̂)D̂ we have b< 1 and if a stable steady
exists we then have 0< b< 1. Hence the inequality in equation (5)
implies that:

b ≥
−2+ 2

√
1+ ε

ε
(6)

Stem cells typically represent a small fraction of the entire cell
population which in terms of the ratio ε equals ε/(1+ ε). As ε
approaches zero we find:

lim
ε→0

−2+ 2
√

1+ ε

ε
= 1 (7)

Given the inequality found in equation (6) and the fact that
b< 1 we find that as the equilibrium fraction of stem cells
approaches zero, b approaches one. For the eigenvalues we then
have:

lim
b→1−

−db ±
√

d2b2 + 4d(b − 1)v̂

2
= −d , 0 (8)

However, if the absolute value of one of the eigenvalues is very
small, then the overall dynamics of the system is characterized
by rapid approach to a slow manifold, followed by a very slow
approach toward equilibrium. Hence, we find a trade-off between
requiring a small equilibrium fraction of stem cells while avoiding
oscillations and the speed at which the system is able to recover
from a perturbation.

The study of oscillations is an important part of feedback
regulation. Damped oscillations have been observed in healthy
hematopoiesis (Marciniak-Czochra and Stiehl, 2012). Amongst
pathologies periodic oscillations are a characteristic feature of
cyclical neutropenia (Bernard et al., 2003). Oscillatory behavior
has also been identified in chronic and acute myeloid leukemia
(Andersen and Mackey, 2001; Colijn and Mackey, 2005; Adimy
et al., 2006). Moreover it was shown in Nakata et al. (2012) that
in a three compartment model with feedback on the cell division
rate, the destabilization of the positive equilibrium can lead to
oscillations with a constant amplitude.

Going back to the requirements (b> 0) that guarantee the exis-
tence of a stable non-trivial steady state we note that they are
independent of feedback inhibition on the division rate. Moreover
for a fixed equilibrium division rate v̂ the steady state population
sizes are independent on the actual function v(D). The role of feed-
back on the division rate in the system lies instead in increasing
the speed at which the system recovers from a perturbation and
reducing the amplitude of oscillations if they happen to occur.
This result is consistent with numerical simulations performed in

Marciniak-Czochra et al. (2009), where it was observed that for
short-time dynamics the coexistence of both regulatory mech-
anisms improves the efficiency of hematopoietic regeneration.
Intuitively, oscillations occur when the number of differentiated
cells is at equilibrium but the number of stem cell is not. If for
example S > Ŝ and D = D̂, then while the number of stem cells
decreases toward its equilibrium value, the number of differenti-
ated cells would grow. However, if there is feedback on the division
rate, the difference between the rate of differentiated cell produc-
tion and depletion 2(1− p(D))v(D)S− dD would be smaller than
in the absence of feedback (2(1−p(D))v̂S−dD) and thus the max-
imum number of differentiated cells reached before the growth is
reversed will not be as high. In the next sections we will present
some numerical examples.

FEEDBACK INHIBITION USING HILL EQUATIONS
In this section we use Hill functions to model feedback inhibition
equation (9):

p (D) = p0/
(
1+ g Dm) , v (D) = v0/

(
1+ hDn) (9)

Hill functions are widely used to describe ligand-receptor inter-
actions (Alon, 2007), which makes them natural choices to model
the actions of secreted feedback factors. Moreover they have been
previously used to model the specific phenomena of cellular
control for cell lineages in various tissues (Lander et al., 2009;
Marciniak-Czochra et al., 2009; Chou et al., 2010; Bocharov et al.,
2011; Zhang et al., 2012).

From expression equation (9) first note that the maximum
self-renewal probability p0 must satisfy 0.5< p0≤ 1. The value of
b (defined in the previous section) in this case equals 1/(2p0).
Hence the condition b> 0, which is necessary and sufficient to
guarantee the existence of a stable steady state, is always satisfied.

Let us look now at the issue of oscillations near the steady state
in relation to the equilibrium fraction of stem cells. In this case
the discriminant of the eigenvalues equals:

1 =

(
d

2p0

)2

−4v0d

(
1−

1

2p0

)
(10)

If we once again call ε ≡ d/v̂ , then the condition1≥ 0 can be
rewritten as:

ε > 8p0
(
2p0 − 1

)
(11)

If we require for example that the equilibrium fraction of stem
cells is less than 10%, then (< 0.111. Substituting this value into
the previous equation we find that −0.0134< p0< 0.5134 and
given that p0> 0.5 we have:

0.5 < p0 < 0.5134 (12)

Hence, in a vicinity of the steady state, non-oscillatory trajecto-
ries that result in less than 10% of stem cells at homeostasis require
that p0 lies within the small interval [0.5, 0.5134] (see Figure 2B).
These findings suggest that the maximum self-renewal probability
is very close to 0.5.
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FIGURE 2 | (A,B) Cell population with one feedback loop. (A) The
trajectories oscillate toward steady state values (dotted line).
Parameters, p0=0.6, d=0.1, g=0.001, S(0)=1, D(0)=0. (B) If there is
only one feedback loop the maximum self-renewal probability must be
very close to 0.5 to ensure that the trajectories approach the steady
states monotonically. In this subfigure d and g are the same as in (A) but
p0 =0.513. (C,D) cell population with two feedback loops. (C) The steady
state number of differentiated cells depends only p0 and g and is

independent of feedback on the division rates. The steady state number
of stem cells increases when the number of feedback loops increase
from one to two. The addition of feedback in the division rate dampens or
altogether eliminates the oscillations. (D) Fitting fixed steady state
values of stem cells and differentiated cells values with different levels of
feedback inhibition in the division rate. The stronger the feedback signal
in the division rate the smoother the transition the equilibrium transition
to equilibrium.

Interestingly a small value of p0 may have advantageous effects
in the protection against cancer. Indeed the absence of feedback
on differentiation leads to uncontrolled cell growth (Rodriguez-
Brenes et al., 2011). Thus, having a small maximum self-renewal
probability would result in a slower tumor growth rate in the
event that feedback inhibition is lost. However, as we mentioned
earlier this comes at the cost of reducing the speed of regenera-
tion. In Figures 2A,B we track the trajectory of a cell population
that has feedback on stem cell differentiation only (i.e., constant
v(D)). In Figure 2B the fraction of stem cells is less than 10% and

the maximum self-renewal probability is kept small (p0= 0.513).
Note how the system is able to recover from a severe perturbation
(D(0)= 0) without presenting oscillations.

In Figures 2C,D we show results with feedback inhibition in
both the self-renewal probability and the division rate of stem cells.
As we discussed in the previous section, the addition of feedback
on the division rate provides for smoother recoveries after a per-
turbation. Let us call β(D)= 1+ hDm, then v(D)= v0/β(D) and
β(D) controls the strength of the inhibition signal. Clearly we can
get a specific target division rate at equilibrium v̂ with different
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combinations of the pair (v0, β(D)); the larger the magnitude of
these quantities, the stronger the feedback in the division rate will
be. In Figure 2D we plot different trajectories for the same tar-
get number of cells with different combinations of the pair (β,
v0). Adding feedback inhibition on the division rate significantly
dampens the magnitude of the oscillations and increases the speed
at which the trajectories reach the steady states. The stronger the
feedback signal the stronger the effect. Thus, even if feedback on
the division rate is unnecessary to establish control, it promotes a
faster and more stable recoveries in the system.

ROBUSTNESS
One of the negative consequences of oscillations may be the loss of
the stem cell population which would result in the eventual extinc-
tion of the tissue. In this section we explore sufficient conditions
that guarantee the survival of a population that starts at a critical
level. In the ode model when a stable equilibrium exists it is easy to
prove that zero is a repellent fix point. Hence the zero state cannot
be reached from positive initial conditions. In practice this means
that the stem cell population cannot hit zero as a result of a pertur-
bation. Therefore to study extinction in the deterministic system
we decide that extinction occurs when the number of stem cells
falls below one (in the next section we present a stochastic formu-
lation where complete extinction occurs). More precisely, we want
to answer the following question: given a set value D̂ and the initial
critical conditions S(0)= 1 and D(0)= 0, can we find a parameter
region that guarantees the survival of the population? From the
eigenvalue analysis we found that in a vicinity of the steady state,
the magnitude of the oscillations is determined by the discrimi-
nant in equation (10) and everything being equal, a greater value
of p0 produces stronger oscillations. With this idea in mind we
assume that given a choice of parameters v0, d, β that guarantee
survival for a large upper bound self-renewal probability p0= 0.9
and g = (2p0− 1)/D̂, then the same set of parameters guarantees
survival for any other pair p0, g, that satisfies (2p0 − 1)/g = D̂
and p0< 0.9. Furthermore, the addition of the feedback on the
replication rate increases the value of Ŝ and appears to dampen
oscillations. Hence, we assume that any set of parameters that
guarantee survival of the population with only one feedback loop
should also guarantee survival when the two feedback loops are
in place.

The previous considerations reduce our search to pairs (d, v0)
that guarantee survival, given the initial conditions (p0 = 0.9, g =
0.8/D̂, β = 1). Finally we note that the amplitude of the oscilla-
tions depends on the ratio d/v0 and not on the actual magnitude
of d and v0 so we only need to test different values for this ratio.
Since this ratio is closely related to the percentage of stem cells by
the equality Ŝ = d/v0D̂, then the results can be presented in terms
of the steady state percentage of stem cells (Figure 3D).

The analysis performed here indicates that in the ode model
there are ample parameter regimes that guarantee the survival
of the population while maintaining a small stem cell load. In
general the greater D̂ is the smaller the equilibrium fraction
of stem cells may be to guarantee survival. Moreover in this
analysis the system was required to rebound from very extreme
initial conditions (S(0)= 1). In practice most injuries that are
able to heal would rarely include populations that are reduced

to a single cell. Furthermore, as we found earlier the addition
of feedback in the division rate and the reduction of the maxi-
mum self-renewal probability p0 further increase the stability of
the system.

STOCHASTIC MODEL
We are also interested in studying the effects of stochastic fluctua-
tions in the model. With this aim in we implement the following
algorithm using Gillespie’s Method (Gillespie, 1977).

Algorithm:
Assume that at time t, the system is described by the pair
(S(t ), D(t )), and r1, r2, and r3 are random numbers uniformly
distributed in [0, 1].

1. Set p(t )= p0/(1+ gD) and v(t )= v0/(1+ hD).
2. Compute a= v(t )S(t )+ dD(t ).
3. Set the new time t ′= t− 1/a · log(r1).
4. If a · r2< dD(t ), the next event is cell death of a differentiated

cell, hence make D(t ′)=D(t )− 1.
5. If a · r2> dD(t ), the next event is stem cell division. If r3< p(t )

the cell divides into two stem cells, hence make S(t ′)= S(t )+ 1.
If r3> p(t ) the cell divided into two differentiated cells, hence
make S(t ′)= S(t )− 1 and D(t ′)=D(t )+ 2.

In Figures 3A,B we plot two stochastic simulations with only
one feedback loop together with the corresponding ode formu-
lations. Note that in Figure 3B the simulation ends with the
extinction of the cell population, even though the ode model
does not go extinct. In general the extinction of the cell popu-
lation is a more likely event when the steady state number of stem
cells is small, given that random deviations from the mean can
bring the number of stem cells to zero. The addition of a sec-
ond feedback loop (Figure 3C) increases the stability and reduces
the variance in the number of cells. A realization of the algo-
rithm is a random walk that represents the distribution of the
master equation, and which captures the stochastic fluctuations
typically observed in systems with a small number of agents.
As the number of cells increases, the fluctuations in the number
of cells decrease and the thus the stochastic realizations increas-
ingly resemble the corresponding trajectories produced by the ode
(Gillespie, 1977).

There are two more things worthy of being noted. First the
occurrence of random fluctuations makes the stochastic model
even more sensitive to oscillations. Second in a stochastic setting
an injury that severely depletes the number of cells is not guaran-
teed to be able to rebound and there may be a significant chance
of extinction. These observations suggest that the control mecha-
nism considered so far is not well suited for systems that rely on
a critically small number of stem cells, such as the colon lining
which may rely on as little as four stem cells per crypt (Marshman
et al., 2002). Instead it is better suited to deal with systems with a
large number of cells such as blood (Shizuru et al., 2005). More-
over the use of mass action equations assumes a well mixed system,
which is a reasonable assumption for non-solid tissues. In the next
section we will discuss the effects of adding spatial interactions to
the model.
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FIGURE 3 | (A,B) Cell population with one feedback loop. The stochastic
simulation is shown in red for differentiated cells and green for stem
cells. The ode is shown in blue for differentiated cells and black for stem
cells. Parameters in (A) p0 =0.6, d=0.1, g=0.0001, h=0, S(0)=10,
D(0)=0. Parameters in (B) p0=0.52, d=0.2, g=0.0001, h=0,
S(0)=40, D(0)= 0. (C) Cell population with two feedback loops.
Feedback in the division rate dampens oscillations. Parameters are the
same as in (A) with the exception h=0.001. (D) Sufficient conditions for

the survival of the population in the ode model. Let us call the curve in
the graph y(Ď). Then for any set of parameters that satisfy (2p0

− 1)/g =
Ď, p0

∈ (0.5, 0.9) and the steady state fraction of stem cells f = y(Ď), the
initial conditions S(0)=1, D(0)=0 guarantee the survival of the
population. For example, for all Ď = 103 if p0 50.9 and the steady state
fraction of stem cells f = 0.064 survival is guaranteed for any level of
feedback on the division rate. (These conditions are sufficient but not
necessary.)

SPATIAL MODEL
The spatial effects
In this section we consider cell dynamics in three dimensions.
We assume that cells are restricted to a three-dimensional rec-
tangular lattice of nI× nJ× nK points. A lattice point can host
at most one cell at any time. The position of each cell can be
determined by its coordinates in the lattice (i, j, k), i= 1, . . ., nI,
j= 1, . . ., nJ, and k= 1, . . ., nK. Following the rules of the pre-
vious sections, stem cells divide either into two stem cells or two
differentiated cells. For a cell to divide, there must be a free lattice

point adjacent to it. If the cell divides, then one offspring remains
in the position occupied by the parent cell and the other occu-
pies a position adjacent to the cell. There are cases in which a
cell that is able to divide has more than one free adjacent lat-
tice point that may be occupied by one of its two offspring. In
this case we choose the site randomly, with each adjacent free
lattice point having the same probability of hosting one of the
two daughter cells. The events are chosen using the stochastic
simulation algorithm (described above) modified to take into
account the spatial rules. A graphical representation of the spatial
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arrangement of the three-dimensional cell population is given in
Figure 4A.

We found that adding space to the system results in smoother
transitions from perturbed to equilibrium configurations. Com-
pared to the non-spatial system, if oscillations are observed, the
amplitudes are significantly reduced, which in turn results in much
fewer instances that end with the stochastic extinction of the cell
population. This behavior is exemplified by Figures 4B,C. Here we
picked parameter regime (p0= 0.7, v0= 0.2, g = 2× 10−5, β = 1,
d= 0.0025) that produces oscillations in the non-spatial model.
The initial conditions are (S(0), D(0)) = 0.1(Ŝ, D̂), where (Ŝ, D̂)

are the steady state values from the ode model. With this initial
conditions the number of stem cells in the ode model falls below
one, which in practice means that the population goes extinct.
Furthermore we performed 100 independent simulations using
the stochastic non-spatial model and every one of them resulted
in the extinction of the cell population. In contrast not one of 30
simulations using the spatial model resulted in extinction.

In the non-spatial model the steady state fraction of stem cells is:

Ŝ

Ŝ + D̂
=

dβ
/

v0

dβ
/

v0 + 1
(13)

FIGURE 4 | (A) Example of the spatial arrangement of the cell population
in three dimensions. Differentiated cells are shown in blue and stem
cells in red. (B) Cell count of differentiated cells vs. time. The blue line
was computed using the ode model, the red line is the expected cell
count in the spatial model. (C) Cell count of stem cells. Results form the

ode (black) and expected cell count in spatial-dimensional model (green).
The expected number of cells is in the spatial model is shown in blue. (D)
Expected fraction of stem cells that are free in the three-dimensional
model. Parameters in all figures are: p0=0.7, v 0 =0.2, g =2×105, β =1,
and d=0.0025.
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In the spatial model this quantity gives the steady state percent-
age of free stem cells – cells that have free space in an adjacent
position in the grid and are thus able to divide. This means that
for a given set of parameters, the equilibrium number of stem
cells in the spatial model is greater than the equilibrium number
in the non-spatial model. For example in Figure 4C the steady
state fraction of stem cells in the ode model was approximately
0.0123 (as predicted by the formulas). In the three-dimensional
model the expected steady state fraction of cells was approximately
0.0165, an increase of about 32% from the deterministic model’s
prediction.

The mechanism by which the spatial model is able to achieve
a greater stability can be inferred by looking at Figures 4C,D. At
the start of the simulation the number of differentiated cells is
only 10% of the steady state value. Therefore the probability of
differentiation is small and stem cells have a high probability of
dividing into two stem cells. Once the number of differentiated
cells is above D̂, differentiation becomes the more likely event
and in the ode model one sees a steep reduction in the number
of stem cells that leads to extinction. In the spatial model how-
ever, the rapid growth phase of stem cells means the fraction of
free cells is reduced as most stem cells are trapped by other stem
cells. Only these free stem cells are able to divide, slowing down
the speed at which stem cells are depleted. It is important to note
that the spatial effects in this model act locally by reducing the
space available for cell division, their strength thus depends on
the degree of the graph. As the graph degree increases the spatial
effects become weaker until eventually the mass action dynamics
are fully recovered.

In a spatial setting the stem cell niche concept (Morrison et al.,
1997; Simons and Clevers, 2011) might also play a role in promot-
ing stability. If the amount of space in the niche were limited, this
would place a cap in the maximum number of stem cells, which
could in turn decrease the overshooting of the stem cell number
observed during oscillations. Exactly how the explicit modeling
of these microenvironments might affect the performance of the
regulatory mechanisms investigated here should be the subject of
future research.

DISCUSSION
In this article we studied the cell dynamics that arise from feed-
back inhibition in the self-renewal probability of stem cells and
their division rate. We found that by itself feedback on the proba-
bility of self-renewal is sufficient to establish control and uniquely
determines the equilibrium number of differentiated cells. The
equilibrium fraction of stem cells on the other hand depends solely
on the ratio of the death rate and the rate of stem cell division.

In the process of recovering after an injury this control mech-
anism may produce oscillations in the number of cells, a behavior
that may be dangerous and of no obvious biological value. Near
equilibrium oscillations are more likely to occur when the steady
state fraction of stem cells is small. If this is the case, avoiding
oscillations is still always possible, but it comes at the price of
reducing the speed at which the cell populations recover from a
perturbation. If feedback inhibition follows a Hill equation, avoid-
ing oscillations while maintaining a small stem cell load requires
that the maximum self-renewal probability be only slightly larger

than one-half. Feedback inhibition on the stem cell division rate
does not affect the steady state values of either stem cells or differ-
entiated cells, but it reduces the amplitude of oscillations if they
happen to occur. Furthermore it can increase the speed of recov-
ery after an injury, altogether promoting faster and more stable
recoveries of the cell population.

On occasions, extreme oscillations may result in the extinction
of the entire population. However, we find that there are ample
parameter regimes in which this doesn’t occur, even while the sys-
tem is recovering from severe initial conditions. We found that the
larger the equilibrium number of differentiated cells, the smaller
the equilibrium fraction of stem cells may be while still avoiding
extinction. Due to fluctuations, in a stochastic setting the danger
of extinction through oscillations is greater. This suggests that the
mass action model is only well suited as a quantitative tool for
tissues where the steady state number of stem cells is not critically
small.

We also explored how spatial interactions affect the cell dynam-
ics in a stochastic setting. We found that spatial effects greatly
reduce oscillations and the chances of random extinction, provid-
ing smoother transitions from a perturbed state to equilibrium.
This increase in stability is achieved by reducing the number of
stem cells that are capable of division at a given time. When
recovering from an injury the rapid expansion of the stem cell
population traps some of the stem cells, making them incapable
of cell division. Hence, when the steady state number of differen-
tiated cells is reached, a significant fraction of stem cells cannot
divide. This reduces any possible further increase in the number
of differentiated cells causing the magnitude of any oscillation to
decrease as well.

The models of hierarchical cell populations studied here are rel-
evant to both healthy and cancerous tissues. In Rodriguez-Brenes
et al. (2011) we showed how cancer could develop from healthy
hierarchical tissues by a unique sequence of phenotypic transi-
tions, which gradually lead to a complete escape from regulation
in stem-cell-driven tumors. Moreover, we compared the resulting
tumor growth patterns with existing tumor growth data and saw
that in many instances, the regulatory mechanisms of healthy tis-
sues continue to operate to a degree in tumors. This underlines the
importance to cancer biology of studying the principles of tissue
regulation. Another example of the relation between tissue reg-
ulation and the process of carcinogenesis is found in Stiehl and
Marciniak-Czochra (2012).

One important result for the cancerous transformation found
in Rodriguez-Brenes et al. (2011) is that the negative feedback
loops controlling the differentiation decisions must be the first to
be inactivated. The breakage of the division control loops must
happen at a later stage of carcinogenesis. Here we reevaluate
this finding from a different perspective. In order to achieve the
deregulation of divisions and rapid growth, cancerous cells must
first acquire a mutation deactivating the differentiation control.
Otherwise, the tissue may become unstable and enter stochas-
tic fluctuations preventing steady growth. Therefore, a one-step
transformation from healthy tissue to a tissue with no division
control mechanism is highly unlikely. This can be viewed asa
protection mechanism that organs put in the way of cancerous
transformations, making the transition to cancer more difficult
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and statistically delaying the onset of cancer (for related ideas, see
also (Komarova and Cheng, 2006)).

The optimization task for healthy hierarchical tissues is to pro-
vide stable maintenance and a quick and reliable recovery from
injuries. Over time, tissues have evolved (at least partially) to
reach these objectives. In contrast, therapeutic approaches often
pursue the opposite tasks: the destabilization of cancerous tissue,

increasing the chance of stochastic extinction (say, after a course
of chemotherapy or surgery) and the slowing down of tumor
growth. Our models show what parameters (and to what degree)
are responsible for stability and growth. Understanding how vari-
ous parameters contribute to cell population growth and stability
can lead to novel ideas for cancer treatments, where one could
target factors leading to growth retardation or destabilization.
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In recent years cancer stem cells (CSCs) have been hypothesized to comprise only a minor
subpopulation in solid tumors that drives tumor initiation, progression, and metastasis;
the so-called “cancer stem cell hypothesis.” While a seemingly trivial statement about
numbers, much is put at stake. If true, the conclusions of many studies of cancer cell pop-
ulations could be challenged, as the bulk assay methods upon which they depend have,
by, and large, taken for granted the notion that a “typical” cell of the population possesses
the attributes of a cell capable of perpetuating the cancer, i.e., a CSC. In support of the
CSC hypothesis, populations enriched for so-called “tumor-initiating” cells have demon-
strated a corresponding increase in tumorigenicity as measured by dilution assay, although
estimates have varied widely as to what the fractional contribution of tumor-initiating cells
is in any given population. Some have taken this variability to suggest the CSC fraction
may be nearly 100% after all, countering the CSC hypothesis, and that there are simply
assay-dependent error rates in our ability to “reconfirm” CSC status at the cell level. To
explore this controversy more quantitatively, we developed a simple cellular automaton
model of CSC-driven tumor growth dynamics. Assuming CSC and non-stem cancer cells
(CC) subpopulations coexist to some degree, we evaluated the impact of an environmen-
tally dependent CSC symmetric division probability and a CC proliferation capacity on tumor
progression and morphology. Our model predicts, as expected, that the frequency of CSC
divisions that are symmetric highly influences the frequency of CSCs in the population, but
goes on to predict the two frequencies can be widely divergent, and that spatial constraints
will tend to increase the CSC fraction over time. Further, tumor progression times show a
marked dependence on both the frequency of CSC divisions that are symmetric and on the
proliferation capacities of CC.Together, these findings can explain, within the CSC hypoth-
esis, the widely varying measures of stem cell fractions observed. In particular, although
the CSC fraction is influenced by the (environmentally modifiable) CSC symmetric division
probability, with the former converging to unity as the latter nears 100%, the CSC fraction
becomes quite small even for symmetric division probabilities modestly lower than 100%.
In the latter case, the tumor exhibits a clustered morphology and the CSC fraction steadily
increases with time; more so on both counts when the death rate of CCs is higher. Such
variations in CSC fraction and morphology are not only consistent with the CSC hypothe-
sis, but lend support to it as one expected byproduct of the dynamical interactions that are
predicted to take place among a relatively small CSC population, its CC counterpart, and
the host compartment over time.

Keywords: mathematical model, cellular automaton, cancer stem cell, symmetric division, invasion, morphology

INTRODUCTION
Normal tissues undergo constant turnover, with cells dying due to
age, injury, or shedding, and being replaced by new healthy cells.
Homeostasis is accomplished by a potent subpopulation of stem
cells. In recent years, a potent subpopulation of stemlike cells has
also been proposed to exist as a minority population in cancers.
First in leukemia and later in solid tumors, distinct cell populations
were isolated that were either capable or not capable of initiating
and sustaining, and re-initiating tumor growth (Furth and Kahn,
1937; Al-Hajj et al., 2003; Singh et al., 2003; Visvader and Linde-
man, 2008; Vlashi et al., 2009). The picture to emerge – that of

a potent cancer stem cell (CSC) that initiates and progresses the
tumor, with the bulk of the growing tumor being composed of
replication-limited cancer cells (CCs) – stands in marked contrast
to the long-established paradigm that cancer cells typically are
long-lived, escape cell death, and have limitless replicative poten-
tial (Hanahan and Weinberg, 2000, 2011), and argues against one
recent study (Quintana et al., 2008), which has been interpreted
to suggest we may simply be “under-assaying” the preponderant
stem cell population (Baker, 2008). Summing up this alternative
paradigm is the CSC hypothesis, perhaps better described as a
cancer “non-stem cell” hypothesis, which posits that in fact only a
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few cells in the tumor population exhibit the immortal, stemlike
trait. Confusion sometimes accompanying the CSC terminology
regards the cell of origin of the disease. While the term “CSC”
clearly suggests these cells possess stemlike qualities, this should
not be taken to suggest they originate from normal stem cells.
Indeed, the literature is split on the matter of origin (Haeno et al.,
2009; Rahman et al., 2009; Shibata and Shen, 2013), with debates
occurring occasionally even within the same tumor type, as in the
case in glioblastoma (Stiles and Rowitch, 2008; Hambardzumyan
et al., 2011).

Populations enriched for stemness can be isolated using dif-
ferent surface markers. The number of cells from such enriched
populations that is necessary to form tumors gives an indication
of the fraction of cells that are CSCs in the primary tumor. We cal-
culated these ratios from data reported in the literature (Visvader
and Lindeman, 2008) (Table 1), and found these tend to support
numerous other reports that CSCs are indeed a rare population
within a tumor (Reya et al., 2001; Pardal et al., 2003). In addition
to identification of CSCs through surface proteins in vitro and
in vivo mouse xenograft transplantation assays, novel approaches
emerge that trace tumor hierarchy and help estimate CSC kinetics
and frequency in spontaneous tumors or orthotropic models. One
approach to monitor the division kinetics of stem and progenitor
cells in normal epithelial tissues, skin papilloma, and invasive squa-
mous cell carcinoma during unperturbed growth emerged from
clonal analysis using genetic lineage tracing in mice (Driessens
et al., 2012). Gao et al. (2013) used an integrated experimen-
tal and cellular Potts model approach to simulate glioblastoma
population growth and response to irradiation, which identified
the (a)symmetric division kinetics of glioblastoma stem cells nec-
essary to reproduce the observed ratio of 2–3% of such cells.

Table 1 | Cancer stem cells in solid tumors.

Tumor type Cells expressing

CSC marker (%)

Minimal number of

cells expressing

marker for

tumor formation

Calculated

cancer stem

cell ratio

Breast 11–35 200 1.1×10−3

ND 2000

3–10 500

Brain 19–29 100 3.3×10−4

6–21 100

Colon 1.8–25 200 5.4×10−4

0.7–6 3000

0.03–38 200

Head and neck 0.1–42 5000 4.2×10−5

Pancreas 0.2–0.8 100 3.5×10−5

1–3 500

Lung 0.32–22 10,000 1.1×10−4

Liver 0.03–6 5000 6×10−6

Adapted from Visvader and Lindeman (2008).

Another integrated approach of single-molecule genomic data,
spatial agent-based modeling, and statistical inference was recently
introduced to derive tumor ancestral trees in patient-specific
colorectal cancer samples that lead to the observation of a CSC
fraction of 0.5–4% (Sottoriva et al., 2013).

One mechanism responsible for establishing the CSC fraction
within a tumor is the relative frequency with which CSCs either
create another CSC (by symmetric division) or a non-CSCs (by
asymmetric division) (Caussinus and Hirth, 2007; Dingli et al.,
2007b). Mechanisms known to directly affect the symmetric divi-
sion probability, in turn, include availability of certain host growth
factors such as EGF, and growth-factor-rich niches, which can skew
division modes in favor of symmetric production of CSC up to
85% (Lathia et al., 2011). Another mechanism responsible for the
observed CSC fraction in tumors is factor-independent, and may
be traced to the aggregate population-level action of cell prolif-
eration, migration, and apoptosis; a process we have previously
described as “self-metastatic” growth (Norton, 2005; Enderling
et al., 2009b). Underlying this notion, each CSC can only form
a cluster of limited size (Prehn, 1991), until such time as it can
opportunistically migrate out of its current cluster to seed a new
cluster nearby.

To show how these influences comprising the CSC hypothesis
can give rise to realistic tumor growth dynamics and morpholo-
gies, we used an agent-based cellular automaton model of tumor
population dynamics that considers the kinetics and interactions
of CSC and CCs. Consistent with observation, we show that host-
dependent variations in (a)symmetric CSC division ratios can
yield tumors with substantially different CSC pool sizes and over-
all tumor morphologies. Furthermore, we show, by virtue of the
properties of CSCs and their progeny, that the CSC fraction in a
tumor grows over time, regardless of how quickly the tumor as a
whole grows. As will be argued, these findings can explain the large
variation in CSC fractions within and among tumors reported
throughout the literature (Reya et al., 2001; Visvader and Linde-
man, 2008), and offer a new paradigm for cancer development
within the CSC hypothesis.

MATERIALS AND METHODS
We use an agent-based cellular automaton model to describe the
behavior of individual tumor cells dependent on intrinsic mech-
anisms of proliferation, migration, and cell death. By tracking
the fate of multiple cells over time we simulated the emergence
of interacting tumor cell populations that compete for the same
environment (see Deutsch and Dormann, 2005 for an overview
of similar approaches). Such theoretical frameworks are increas-
ingly utilized to investigate different aspects of the CSC hypothesis
(Deasy et al., 2003; Dingli and Michor, 2006; Ganguly and Puri,
2006; Ashkenazi et al., 2007; Bankhead et al., 2007; Dingli et al.,
2007b; Michor, 2008; Piotrowska et al., 2008; Galle et al., 2009;
Glauche et al., 2009; Johnston et al., 2010; Sottoriva et al., 2010).
Ganguly and Puri (2006) developed a compartment model of
normal stem cells, early and late progenitors, and mature cells
in the neural lineage as well as their abnormal counterparts.
Through numerical simulation of physiologic homeostasis in their
deterministic ordinary differential equation model, the authors
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explored the impact of mutations in the stem cell and early
progenitor populations. As stem cells have a larger proliferation
potential, they found that mutations in stem cells lead to a larger
tumor population growth rate. Considering normal and abnor-
mal stem and differentiated cell populations of the hematopoietic
system, Dingli and Michor (2006) showed in a simple ordinary
differential equation model that successful therapy must eradicate
the CSCs. Therapy that targets mature CCs or partially induces
differentiation of stem cells is unable to provide tumor control.
Recent mathematical investigations into the fraction of CSCs in
solid tumors either assumed a fixed proportion of these cells and
explored the cell kinetic parameters in a hierarchical ordinary
differential equation model that lead to proportional stability in
the cancer lineage (Molina-Peña and Álvarez, 2012), or simulate
the exponential phase of tumor growth and observe a constant
minor proportion of CSCs in an ordinary differential equation
model (Johnston et al., 2010) or in a cellular automaton approach
(Morton et al., 2011). Recently, Hillen et al. (2013) used reaction-
birth processes and developed a mean-field integro-differential
equation system to describe spatio-temporal tumor growth under
the CSC hypothesis. Analyzing the simplified ordinary differen-
tial equation system of their model, the authors were able to
show that tumor growth accelerates with increased cell death and
that the tumor population monotonically evolves to a pure CSC
state. Using a partial differential equation approach to simulate the
spatio-temporal dynamics of cell lineage in solid tumors, Youssef-
pour et al. (2012) were able to observe complex pattering with
CSCs being predominantly located in individual clusters at the
outer rim of the total population in response to a variety of cel-
lular feedback mechanisms and oxygen tension. Similar to our
agent-based model investigations into CSC-driven solid tumor
growth (Enderling et al., 2009a,b), Sottoriva et al. (2010) recently
developed a hybrid cellular automaton model to study tumor mor-
phology and phenotypical heterogeneity in the classical cancer
model where all cells can be considered CSCs, and in the CSC
model with populations heterogeneous for proliferation poten-
tial. In addition to increasing invasiveness with decreased CSC
fraction, the model revealed a constant CSC fraction during expo-
nential growth phases. While Sottoriva and co-workers assumed
intratumoral proliferation through pushing adjacent cells toward
the tumor periphery, we set out to explore tumor growth dynamics
and morphology evolution when proliferation is restricted to the
tumor outer rim as a result of competition for space in the tumor
interior (Brú et al., 2003; Drasdo and Höhme, 2005; Galle et al.,
2009). We will explore global cancer features in an agent-based
model as a function of environmentally modulated CSC symmet-
ric division rates as well as the proliferative potential of the CC
population, and discuss evolution of the tumor population and
CSC fraction during local tissue invasion.

A detailed description of the agent-based model assumptions
and biological motivation can be found elsewhere (Enderling et al.,
2009a,b; Enderling and Hahnfeldt, 2011). To summarize, at time
t = 0, we initiate a single cell in the center of our computational
lattice (domain) of 10 mm× 10 mm, subdivided into 1000× 1000
equal-sized lattice points of (10 µm)2 that can hold at the most
one cell at any time. By simulating (a)symmetric cell proliferation,
migration, and cell death kinetics at discrete time intervals ∆t, a

population of cancer cells emerges, which we track until it reaches
100,000 cells. In this procedure, we assume CCs are able to prolif-
erate a certain number of times, ρmax, before inevitable cell death
and ultimate removal from the simulation. For CSCs, we assume
ρmax=∞. CSCs divide symmetrically with fixed probability ps,
and asymmetrically with probability 1− ps. Cells need to mature
through the cell cycle before division can occur, which takes a
cell-type-dependent time τ. With available adjacent space, a cell
can migrate with rate µ. Otherwise, the cell is forced into qui-
escence until space becomes available. With probability α, CCs
undergo spontaneous cell death and vacate the space they occupy.
CSCs are assumed to be immortal (α= 0). A flowchart of the
simulation process and decisions at the cell level is shown in
Figure 1.

RESULTS
SYMMETRIC STEM CELL DIVISION PROBABILITY PS AND TUMOR
GROWTH
Tumor growth is simulated and analyzed for various stem cell
division probabilities ps= (0.1, 0.25, 0.5, 0.75, 0.99) and various
progeny proliferation capacities ρmax= (10, 15, 20), which are in
line with reported progeny division potentials for different tissues
(Bernard et al., 2003; Ashkenazi et al., 2007). As previously shown,
tumors in which CCs have high values of ρmax grow significantly
slower than tumors with CCs with limited proliferation capac-
ity (low ρmax) (Enderling et al., 2009a). With proliferation being
dependent on available space, tumor growth is restricted to cells on
the outer rim of cell clusters, which is frequently observed in vitro
and in vivo (Brú et al., 2003; Drasdo and Höhme, 2005; Galle et al.,
2009). CSCs become “trapped” in the tumor core and are forced
into quiescence until space becomes available again – either after
adjacent CCs have migrated away or died. These kinetics have
been shown to be inversely dependent on CC proliferation capac-
ity and death rate (Enderling and Hahnfeldt, 2011; Morton et al.,
2011).

We now relate the effect of symmetric CSC division prob-
ability ps on tumor growth. A high symmetric CSC division
probability (ps= 0.99; i.e., 99%) is found to yield tumors with
a very large CSC population (93%). Tumors of 100,000 cells
are formed within 49 days regardless of the CC proliferation
capacity. Lower symmetric stem cell division probabilities of
ps= 75% and ps= 50% result in both a smaller stem cell com-
partment (15.5 and 5.4%, respectively) and more progeny CCs
that act to encapsulate and slow the expansion of the available
CSCs, prolonging tumor growth to 56 and 72 days, respectively,
for ρmax= 10, and 56(63) and 226(586) days for ρmax= 15(20)
(Figure 2). CSC fractions are reduced further to 1.8 and 0.5% for
ps= 25% and 10%, respectively. In the latter case, tumor growth
takes as long as 3351(1451 and 282) days for ρmax= 20(15 and 10),
respectively.

The intrinsic and/or extrinsic mechanisms that regulate
(a)symmetric CSC division are not yet understood, but modeling
predicts that if the symmetric division probability is even mod-
estly less than 100% – which it must be given the observed cell
fate heterogeneity within a tumor – the CSC compartment rapidly
becomes a minor subpopulation within tumors (Figure 2) and
remains that way at least for a long while.
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FIGURE 1 | Flowchart of the simulation process and decisions on the cell level. CSC, Cancer stem cell; CC, non-stem cancer cell; ρ, proliferation capacity.

SYMMETRIC STEM CELL DIVISION PROBABILITY PS AND TUMOR
MORPHOLOGY
Within the CSC hypothesis tumor growth follows an interesting
pattern. CSCs can only form tumor clusters of limited size before
self-inhibition (Prehn, 1991). Tumor growth and progression is
achieved by shedding of CSCs from the tumor clusters and seeding
of new clusters nearby – a process termed self-metastatic growth
(Norton, 2005; Enderling et al., 2009b, 2010). Figure 3 shows the
spatio-temporal evolution of tumor morphology for various sym-
metric stem cell division probabilities and thus various stem cell
pool sizes within the tumors. As expected, and in line with the lit-
erature, homogeneous tumor populations consisting of only stem
cells (or a sufficiently large stem cell compartment) grow in a radi-
ally symmetric manner (Drasdo and Höhme, 2005; Enderling and
Hahnfeldt, 2011). Small symmetric stem cell division probabilities,
by contrast, result in CSCs being scattered throughout the tumors
through self-metastatic progression. As this continues, the tumor
clusters become bigger and intermingle, giving rise to clusters of
stem cells, likened to stem cell niches in normal tissues (Figure 3).

Tumor morphology is often used as a measure of tumor inva-
siveness. A compact, circular morphology is associated with less
invasiveness than an irregular, fingering morphology (Anderson,
2005; Anderson et al., 2006). To assess this, we measured tumor
compactness, or “circularity,” i.e., tumor density as a function
of radial distance from the tumor’s center of mass, for various
symmetric division probabilities ps (Figure 4). It is observed that
tumor morphology can be described by three distinct regions: (i)
a non-linear (saturated) region without significant changes over
time in the bulk tumor core close to the center of mass, (ii) a deter-
ministic region dominated by cell proliferation and diffusion, and
(iii) a highly fluctuating outer rim zone distant from the center
of mass with a low cell density that is dominated by random cell
migration (Hatzikirou et al., 2010). Tumors comprised primar-
ily of CSCs form a very dense, saturated tumor without a largely
fluctuating outer rim, as the effect of random migration at the
tumor boundary is nullified by continuous stem cell proliferation.
A smaller dense core and a larger deterministic and highly fluctu-
ating self-metastatic region characterize tumors with lower stem
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FIGURE 2 |Tumor development time and stem cell fractions depend
on progeny proliferation capacity ρmax and stem cell symmetric
division probability ps. The time until the tumor reaches 100,000 cells
(lines) decreases with increasing ps. For small ps (ps = 10%, 25%), the
stem cell fraction (columns) increases with increasing progeny

proliferation capacity ρ, but for larger ps the trend reverses. For ps =50%
there is a U -shape dependence on ρmax. For ps ≤75%, the stem cell
fraction is substantially less than the symmetric division probability ps. For
ps =50%, the average stem cell fraction in a 100,000-cell tumor is less
than 5% for each ρmax.

FIGURE 3 | Representative tumor morphologies for symmetric division probabilities ps = 10, 25, 50, 75, and 99% (rows), and for ρmax = 10, 15, and 20
(panels left to right). All tumors grown to 100,000 cells.

cell fractions. Of note, in tumors with larger progeny prolifera-
tion capacities [ρmax= (15, 20)] there is a non-linear, U -shaped
dependence of tumor compactness on stem cell fraction. Smaller
and larger symmetric stem cell division probabilities ps yield a
more compact tumor morphology, whereas a symmetric division
probability of ps= 50% features the most invasive morphology

with the smallest dense core and the most widespread proliferative
and motile regions.

STEM CELL FRACTION AS A FUNCTION OF TIME
Beyond the dependence of tumor growth dynamics on cell kinetic
parameters, environmental constraints may also modulate tumor
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FIGURE 4 | Dependence of tumor morphology on stem cell
symmetric division probability and proliferation capacity
ρmax = 10 (A), 15 (B), 20 (C). Plotted against radial distance from the
center of mass of the tumor is tumor “circularity” (the percent

occupancy of lattice points by tumor cells at the given radial distance),
a measure of the tumor’s irregularity/invasiveness. For ρmax = (15, 20),
the dependence of circularity on ps is U -shaped. All tumors grown to
100,000 cells.

progression and architecture. Tumors growing in vivo compete
with the environment not only for oxygen and nutrients (which
are not very limiting in the early phases of tumor growth), but
also for space to grow and proliferate. Different host tissues, such as
epithelial membranes or dense muscle structures (Figure 5) retard
tumor progression. Single cells will eventually be able to infiltrate
the tissue and thus form a path for local invasion. We introduce
a “host tissue” in our computational domain by discretizing a
hematoxylin-eosin (H&E)-stained tissue sample of a murine Lewis
lung carcinoma – mouse muscle tissue interface. For the purpose of
our study,we did not model anatomically precise cell structures but
limited the tissue structure to average local cell densities (Figure 5).
We introduce a single CSC in the top right corner of the domain
and simulate tumor growth with either ps= 100%, representing a
pure CSC tumor, or ps= 10%. Tumors consisting solely of stem
cells quickly populate the empty space representative of tissue with
low density, and with a reduced growth rate into the dense mus-
cle structure and less dense tissue areas beyond. Heterogeneous
tumor populations (ps= 10%) populate the less dense tissue via
formation of self-metastases, as previously described (Enderling
et al., 2009b), and the denser structures with a further reduced
growth rate. Snapshots of the spatial distribution of 13,000 tumor
cells for both tumors (ps= 100 and 10%) reveal no difference in
morphology (Figure 5). The circular and self-metastatic tumor
morphologies evident in the respective tumors without host con-
straints (c.f., Figure 3) are no longer present. Instead, in vivo
tumor morphology is dictated by host tissue architecture. What
is seen, however, is a significant difference in tumor growth and
growth rate history. While stem cell tumors fill the available space
and form a mass of 13,000 cells within about 100 days, the het-
erogeneous tumor takes 20 times longer (72 months) to reach a
comparable size and morphology (Figure 5). In the presented sam-
ple simulation, the empty space to the right of the muscle tissue is
populated by the heterogeneous tumor within 12 months, but the
invasion of the muscle structure takes significantly longer (another
60 months), during which time the overall CSC fraction goes from

60/9500 (0.6%) to 2050/13,000 (15.8%). Simulation snapshots
at different time points clarify the heterogeneous tumor growth
dynamics and stem cell fraction evolution (Figure 5). When the
tumor population reaches the dense muscle structure, single cells
try to invade the narrow gaps between muscle cells. As more than
99% of the tumor is comprised of CCs at the time invasion com-
mences, the infiltrating and invading cells can only form small
clusters of cells that eventually die out, blocking invasion routes,
and inhibiting tumor invasion. Only the eventual opportunistic
infiltration of a CSC results in successful metastatic seeding of
these interstices within the muscle architecture. Figure 5 shows
how these spaces fill with microscopic cancer nodules that over
time disappear again, awaiting the chance entry of a stem cell.
The necessity of rare CSCs, which are predominantly migration-
and proliferation-inhibited by their own progeny as well as by
host tissue, to infiltrate and invade host tissue structures can, at
least in part, explain the frequently observed poor efficiency of
metastization (Luzzi et al., 1998; Wyckoff et al., 2000; Dingli et al.,
2007a). As remarked, the overall CSC frequency increases over
time as dying CCs get opportunistically replaced by CSCs. Such
a time-dependent tumor stem cell fraction offers one plausible
explanation for the wide spread of stem cell fractions reported in
the literature even for tumors of the same tissue of origin (Quin-
tana et al., 2008; Visvader and Lindeman, 2008) (c.f., Table 1).
These results are amplified when the CC death rate is higher. With
competition for space being a pivotal tumor-inhibiting factor, the
introduction of a 10-fold higher spontaneous death rate α in CCs
results in accelerated tumor growth and host tissue invasion, along
with a more rapid increase in CSC number and percentage within
the tumor (Figure 6).

DISCUSSION
The existence of a minor subpopulation of CSCs within a
tumor that drives tumor initiation, growth, and progression is
an attractive hypothesis to explain primary tumor dynamics and
transplantation experiments. The existence of a minor fraction
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FIGURE 5 | Representative simulations of tumor growth from a single
cancer stem cell and invasion of adjacent muscle and fat tissue. (A)
H&E staining of an LLC tumor – host tissue interface. (B) Close-up of the
marked region in (A) of the tumor outside and invading the muscle/fat
tissue. Scale bar=500 µm. (C) Initial condition for the computer model.
Domain is initialized using an image mask of the muscle tissue identified in
(B). A single cancer stem cell is placed in the top right corner (arrow). (D,E)
In vivo tumor morphology is dictated by host tissue architecture regardless
of intrinsic tumor kinetics. (D) Cancer cells (purple) in a pure stem cell
tumor (ps =100%) have proliferated within the space and invaded the
muscle. The simulation snapshot correlates to the time point marked by * in
(F). (E) Same as Case (D) but for the heterogeneous tumor (ps =10%). The
simulation snapshot correlates to the time point marked by ** in (F). (F)
Number of tumor cells over time for symmetric stem cell division
probabilities ps =100% (red line) and ps =10% (blue plot). The simulation is
run until both tumors reach a comparable size of 15,000 cells. The tumor
composed purely of stem cells reaches this size after 100 days, whereas

the heterogeneous tumor (ps =10%) takes more than 72 months. In the
latter case, the area outside the muscle is completely occupied after
12 months, harboring 60 cancer stem cells (dashed blue plot). By time
72 months, the number of cancer stem cells outside the muscle has
increased to 2050. Shown are the averages and standard deviations of 10
independent simulations (G) Representative simulation snapshots of
different time points of tumor growth and invasion in a tumor with
ps =10%. The time points are marked in (F) with black vertical lines. The
space adjacent to the muscle is quickly occupied, whereas the invasion of
the muscle architecture takes a long time. Stem cells must invade to seed
new cells in the less dense tissue within and beyond the muscles, but their
invasion is inhibited by their non-stem offspring with limited proliferation
capacity. Non-stem microtumors cannot be sustained and disappear over
time (blue circles). Microtumors seeded by a stem cell manifest and
become very stemmy (green circles). The stem cell pool in the tumor
adjacent to the muscle increases steadily over time as non-stem daughter
cells die off over time (α=1%).
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FIGURE 6 | Spontaneous cell death yields a higher stem cell fraction
within the tumor and promotes tumor progression. (A) Comparison
of tumor growth curves for tumors with spontaneous cell death rates
α=1% (blue plot) and α= 10% (green plot). Other parameters ps =10%
and ρmax =10. The dashed plots show the number of cancer stem in the
tumor population adjacent to the muscle for both tumors. Shown are the

averages and standard deviations of 10 independent simulations. (B)
Snapshots of different time points of tumor growth and invasion in a
tumor with α=10%. The time points are marked in (A) with black vertical
lines. The stem cell pool in the tumor adjacent to the muscle increases
rapidly over time as non-stem daughter cells die off quickly compared to
α=1% in Figure 5G.

of CSCs in leukemia has long been appreciated (Furth and Kahn,
1937), but over the last 10 years or so, CSC-like populations have
also been reported in solid tumors of, for example, the breast,
brain, prostate, and colon (Al-Hajj et al., 2003; Singh et al., 2003;
Cammareri et al., 2008; Hurt et al., 2008). The reported frequencies
with which these cells occur in a tumor varies by many orders of
magnitude; dependent, for example, on the chosen experimental
setup and purification methods (Quintana et al., 2008; Visvader
and Lindeman, 2008). Furthermore, the size of the CSC pool can
be modulated by availability of certain host growth factors like EGF
(Lathia et al., 2011), Sonic hedgehog (Takezaki et al., 2011), Wnt
(Vermeulen et al., 2010), or Notch (Wang et al., 2009), supporting
the idea of a CSC niche (He et al., 2009; Borovski et al., 2011).
Here we present a cellular automaton model of tumor growth
and invasion of heterogeneous cancer populations comprised of
CSCs and their progeny. Simulations of the model reveal multiple
indications on the fraction of CSCs in solid tumors: (i) intrinsic
stem cell symmetric division probabilities results in tumors with
different stem cell ratios and morphologies, (ii) CSCs are intrinsi-
cally a minor subpopulation within a tumor, and (iii) the stem cell
ratio within a tumor is variable over time with intratumoral and

environmental competition for limited resources – space in the
case of muscle invasion – selecting for and thus enriching in CSC
fraction. In fact, competition such as for space and the resulting
selection for CSCs has recently been shown to yield a pure CSC
population over time (Hillen et al., 2013).

The frequency of symmetric division events in CSCs has previ-
ously been identified as a pivotal determinant of stem cell propor-
tion experimentally (Cicalese et al., 2009) as well as in a variety of
theoretical approaches including differential equations (Johnston
et al., 2010), agent-based approaches (Enderling et al., 2009a), and
hybrid models (Sottoriva et al., 2010).

CC proliferation capacity and the space- and time-dependent
evolution of the CSC fraction in solid tumors offers a novel aug-
mentation to the ongoing discussion about the frequencies at
which CSCs are observed (Pardal et al., 2003; Quintana et al.,
2008; Visvader and Lindeman, 2008). Furthermore, the CSC
fraction, as determined by host environmental factors that con-
trol the symmetric division probability, determines whether the
tumor exhibits an invasive or compact morphology, although the
relationship is non-monotonic. Intrinsic tumor growth can be
described as conglomerates of self-metastases (Enderling et al.,
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2009b, 2010), but over time a solid tumor core forms with more or
less invasive boundary clustering. While lower and higher stem
cell fractions yield more compact morphologies, intermediate
fractions result in the most invasive tumor morphologies. These
results augment findings of a monotonic increase of invasiveness
with decreased stem cell fraction (Sottoriva et al., 2010). When
additional host spatial constraints are imposed on the growing
tumor, intrinsic morphological features disappear. Conceivably,
the indistinguishable pathological morphologies that result could,
in a clinical setting based on empirical observations, lead to the
recommendation of comparable treatment protocols. However,
due to their different CSC fractions, morphologically compara-
ble tumors could in fact demonstrate response patterns rang-
ing from complete regression [for low CSC content (Enderling
et al., 2009c)] to resistance and accelerated re-growth (Gao et al.,
2013).

Herein we limited our study to early avascular tumor growth
where the total population is sufficiently small such that oxy-
gen diffusion and tension can be neglected and global tumor
growth dynamics be derived from different intrinsic CC kinetics.
Simulations of larger tumor volumes will require physiological
extension of the model to include nutrient delivery (Anderson

and Chaplain, 1998; Ribba et al., 2004; Frieboes et al., 2007;
Macklin et al., 2009) and vascular carrying capacities (Folkman,
1971; Folkman and Hochberg, 1973; Hahnfeldt et al., 1999). Fur-
thermore, a translation from the cellular level model to a tissue-
level continuous description might be more feasible to augment
our understanding of the dynamics of larger populations (Hillen
et al., 2013). For computational convenience we also limited
this study to two spatial dimensions, but emphasize that exten-
sion to three spatial dimensions is algorithmically straightforward
(Enderling et al., 2009b), with no qualitative change to be expected
in the results here reported.

However, one transcendent feature expected to survive model
simplifications is the possibility of widely varying stem cell com-
positions, highly dependent on host structural and biochemical
context. This finding needs to be taken into account in both the
clinical and research arenas, where heretofore, the threat has been
presumed to come from the tumor bulk as a whole, not from a
limited subpopulation within it.
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Cancer stem cells (CSC) are considered to be a major driver of cancer progression and suc-
cessful therapies must control CSCs. However, CSC are often less sensitive to treatment
and they might survive radiation and/or chemotherapies. In this paper we combine radia-
tion treatment with differentiation therapy. During differentiation therapy, a differentiation
promoting agent is supplied (e.g.,TGF-beta) such that CSCs differentiate and become more
radiosensitive.Then radiation can be used to control them. We consider three types of can-
cer: head and neck cancer, brain cancers (primary tumors and metastatic brain cancers),
and breast cancer; and we use mathematical modeling to show that combination therapy
of the above type can have a large beneficial effect for the patient; increasing treatment
success and reducing side effects.
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1. INTRODUCTION
Cancer stem cells (CSC) have been identified in many cancer types
as the driving force behind cancer growth and progression (Dick,
2003; Singh et al., 2003; Sell, 2004; Todaro et al., 2007; Maitland
and Colling, 2008. Dingli and Michor (2006) attested as title of
their 2006 paper that “Successful therapy must eradicate cancer
stem cells.” This is hard to do, since CSC can be found at any
location in the tumor (Youssefpour et al., 2012) and they are
difficult to identify in vivo (Kummermehr, 2001). Furthermore,
cancer stem cells are less sensitive to radiation or other cell killing
agents (Kim and Tannock, 2005; Pajonk et al., 2010). One method
to sensitize cancer stem cells is to use differentiation promot-
ing growth factors that force CSCs to differentiate and become
more sensitive to radiation. Possible differentiation promoters,
which are discussed in the literature, are members of the TGF-
β superfamily (Transforming growth factor – β; see Lander et al.,
2009; Watabe and Miyazono, 2009; Meulmeester and Ten Dijke,
2011). TGF-β is known to increase stem cell differentiation, but it
also affects other characteristics of growing tumors such as inva-
sion and immune evasion. Here we focus on the differentiation
stimulating properties of TGF-β. Other examples of differentia-
tion therapy agents include ATRA-therapy (all-trans-retinoic acid)
for acute promyelocytic leukemia (Sell, 2004) and a combination
of INF-β (inferon-beta) and MEZ (mezerein) for treatment of
melanoma (Leszczyniecka et al., 2001). Many more agents are cur-
rently investigated for their differentiation promoting activities
(Leszczyniecka et al., 2001).

The mathematical modeling of cancer progression and treat-
ment has a long history and individual treatments as well as
combination therapies have been studied. A comprehensive review
is given in Swierniak et al. (2009).

Our modeling and analysis of differentiation therapy and the
combination with radiation therapy was motivated through a

detailed computational model of Youssefpour et al. (2012). The
model of Youssefpour et al. (2012) consist of a coupled system
of partial differential equations for CSC, transient amplifying cells
(TAC), differentiated cancer cells (DC), growth factors and growth
inhibiting factors, and differentiation promoters. In addition, the
model is spatially explicit and physical properties related to pres-
sure and force balances are included. This model was developed
over a series of publications (see Wise et al., 2008 and references
therein).

Youssefpour et al. (2012) combine the detailed cancer model
with differentiation therapy and with radiation therapy. They
find that an appropriate combination of differentiation therapy
and radiation therapy can control the cancer in situations where
each individual treatment would fail. Their treatment terms are
generic terms for differentiation and radiation treatments and
they have not been modeled for a specific cancer type. The goal
of this paper is to challenge Youssefpour’s findings for the spe-
cific cases of head and neck cancer, brain cancers, and breast cancer.
We adapt the model of Youssefpour et al. (2012) to be able to
include realistic growth and death rates, realistic differentiation
therapies, realistic radiation therapy schedules, and appropriate
tissue dependent radio-sensitivities. We sacrifice, however, the spa-
tial structure of the model and we study the well mixed, spatially
homogeneous situation. We argue that if the effect of combina-
tion therapy can be clearly demonstrated on a simpler model,
then this mechanism will be part of a more complicated model
as well. We find that for average parameters of brain cancers
and for breast cancer we can confirm the finding of Youssef-
pour et al. (2012) in that, combination therapy can control a
tumor, where each individual method would fail. For head and
neck cancer, we find that differentiation therapy can drastically
reduce the amount of radiation that is needed to control the
tumor.
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2. MATERIALS AND METHODS
We use mathematical modeling and numerical simulations to pre-
dict the outcome of these therapies. Our mathematical model is
based on a model for cancer stem cells that was derived in Hillen
et al. (2013). It describes the interplay of cancer stem cells U (t )
and non-stem cancer cells V (t ). To describe radiation therapy we
use the well-established linear quadratic model (see Fowler, 1989)
with realistic standard treatments (five treatments per week, week-
ends off) and with tissue specific radiosensitivity parametersα and
β (see Fowler, 1989). The parameterization of differentiation ther-
apy is more difficult, since differentiation promoters are hard to
quantify. Here we use the model and parameters of Youssefpour
et al. (2012).

2.1. THE MATHEMATICAL MODEL
We begin with the spatially homogeneous, cancer stem cell model
developed by Hillen et al. (2013). By spatial homogeneity, we mean
that cell density, cell growth, and the distribution of chemicals are
homogeneous throughout the tumor region.

U̇ (t ) = δmU k(P(t ))U (t ) (1)

V̇ (t ) = (1− δ)mU k(P(t ))U (t )

+mV k(P(t ))V (t )− aV V (t ) (2)

where U (t ) is the volume fraction of cancer stem cells (CSCs) with
respect to the total domain of interest, which contains both tumor
and host cells. Similarly, V (t ) is the volume fraction of non-stem
tumor cells (TCs) with respect to the total domain of interest. The
total volume fraction of the tumor is represented by P(t ), that
is, P(t )=U (t )+V (t ). The parameter δ is the probability that a
CSC will give rise to another CSC, when it divides. Thus, 1− δ
is the probability that a CSC will give rise to one CSC and one
TC, when it divides. It is assumed that the parent CSC remains
(Sell, 2004). The growth rates of the CSCs and TCs are given by
mU and mV, respectively. The apoptosis rate of the TCs is repre-
sented by aV; we assume that CSCs do not undergo apoptosis since
they have unlimited replicative potential. Cell growth and differ-
entiation are tempered by k(P(t )), which is essentially a volume
constraint. Hillen et al. (2013) assume that k(P) is monotonically
decreasing in P and piecewise differentiable, and they set k(P)> 0
for P ∈ [0,P∗) and k(P)= 0 for all P ≥ P∗, for some P∗> 0. For the
purposes of this paper, we adopt the version of k(P) used by Hillen
et al. (2013) and assume normalization of P∗= 1 limiting P to a
maximum volume fraction of one, and k(0)= 1. For simulations
we use:

k (P) = max
{

1− P4, 0
}

(3)

To match the notation used by Youssefpour et al. (2012) we
set δ= 2p− 1. It follows that 1− δ= 2(1− p). In this case, p is
the probability that a CSC gives rise to two CSCs, rather than
two TCs, when it divides. That is, p is the probability that a CSC
renews itself, and 1− p is the probability that a CSC differentiates.
While this model of CSC division ignores asymmetric division, it
is equivalent to the model in equations (1) and (2), as shown in

the Appendix of Hillen et al. (2013). The resulting model is given
in equations (4) and (5).

U̇ (t ) = (2p − 1)mU k(P(t ))U (t ) (4)

V̇ (t ) = 2(1− p)mU k(P(t ))U (t )

+mV k(P(t ))V (t )− aV V (t ) (5)

2.2. BEHAVIOR OF THE UNTREATED TUMOR MODEL
As noted in Hillen et al. (2013), if there are no CSCs, the TC
population is governed by the equation

V̇ (t ) = mV k(V (t ))V (t )− aV V (t )

and since k is assumed to be decreasing, the TC population is fated
to die out if mVk(0)< aV. Further, if we assume that k is strictly
decreasing, then the TC population dies out if

mV k (0) ≤ aV (6)

since either V = 0 and the TCs are already extinct, or V > 0 and
so k(V)< k(0) and mVk(V)< aV for all V > 0.

The steady states of the model defined in (1, 2) are discussed in
detail in Hillen et al. (2013), where it is assumed that the growth
rates mU and mV are both one and that the TC apoptosis rate aV is
greater than zero. Here, we give the main results, which also apply
to the model as stated in (1, 2) or equivalently in (4, 5). We note
that in the untreated tumor, we assume δ ∈ (0, 1), that is p ∈ (0.5,
1), such that (2p− 1)> 0. The steady states of the system are

X0 = (0, 0) , XV = (0, V0) , XU = (1, 0) ,

with k (V0) =
aV

mv
.

The origin, X 0, has eigenvalues λ1= (2p− 1)mUk(0)> 0
and λ2=mVk(0)− aV. Thus, X 0 is an unstable steady state.
The TC only steady state, XV, occurs where V 0 solves
mVk(V 0)= aV and has eigenvalues λ1= (2p− 1)mUk(V 0)> 0
andλ2=mVk ′(V 0)V 0. Thus, XV is also unstable. The linearization
for the pure CSC steady state, XU, has negative trace, mUk ′(1)− aV,
and positive determinant,−aV(2p− 1)mUk ′(1), thus both eigen-
values are negative, and XU is a stable steady state. Hillen et al.
(2013) have shown that XU is globally asymptotically stable in
the biologically relevant region where U ∈ [0, 1], V ≥ 0, and
U +V ≤ 1.

Hillen et al. (2013) derive the slow manifold of the system
defined by (1, 2), where they take mU=mV= 1. The slow manifold
is a subset of the phase space ((U, V)-plane) which describes the
long time dynamics of the system. As shown in Hillen et al. (2013),
solutions very quickly converge to the slow manifold, and then they
slowly follow this manifold getting closer to the attractor at (1, 0).
This same slow manifold applies to the system defined by equa-
tions (4) and (5). We simply restore mU and mV and set δ= 2p− 1,
as described above, giving the slow manifold (see Figure 1A):

M := {(U , V ) : (aV −mV k(P))V = mU k(P)U , P = U + V }

The main result of Hillen et al. (2013) is the existence of the
Tumor Growth Paradox. They show that a tumor with larger death
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A B C

FIGURE 1 | (A) Slow manifold from equation (10) in the (U, V ) phase plane. (B) rate of symmetric division p(t ) [equation (7)] as a function of the sensitivity ψ .
The values of pmax and pmin are set to 0.505 and 0.2. The differentiation promoter, CF, is fixed at one. (C) Schematic of the radial diffusion problem for the
differentiation promoter CF.

rate aV grows quicker on the slow manifold. As a consequence,
tumors with larger death rate outgrow tumors with lower death
rate. The reason is that increased TC death can liberate CSC which
were surrounded by TC, and it can allow CSC to replicate and
produce more CSCs. As a result, the tumor becomes bigger. See
Hillen et al. (2013) for the detailed argumentation using geometric
singular perturbation analysis of the system.

2.3. MODELING OF DIFFERENTIATION THERAPY
Following Youssefpour et al. (2012), we model differentiation ther-
apy through a simple relationship between the average level of the
differentiation promoter, which we denote CF, and the probabil-
ity of CSC self-renewal, p. Unlike the model of Youssefpour et al.
(2012) our model does not include a self-renewal promoter; thus,
we use the relationship set forth by Youssefpour et al. (2012) but
we omit the self-renewal promoting factor:

p (t ) = pmin +
(
pmax − pmin

) ( 1

1+ ψCF (t )

)
(7)

where pmax is the maximum probability of self-renewal, and pmin

is the minimum probability of self-renewal. The value of pmax is
attained if no differentiation promoter CF is present, while pmin is
attained for CF→∞. Youssefpour et al. (2012) choose pmax= 1
and pmin= 0.2 in their therapy simulations. Unlike Youssefpour
and coworkers, we do not model the production of differentiation
promoters by tumor cells. Thus, CF solely represents the level of
differentiation promoter prescribed during differentiation ther-
apy. To address this lack of endogenous differentiation promoters,
we choose pmax= 0.505, which is equivalent to setting δ= 0.01,
as was done by Hillen et al. (2013). Following Youssefpour et al.
(2012) we choose pmin= 0.2. The parameter ψ models the sensi-
tivity of the CSCs to the differentiation promoter. The dependence
of p(t ) on the sensitivity ψ is shown in Figure 1B. Other possible
effects of differentiation therapy, such as effects on growth rates,
are ignored, as they are by Youssefpour et al. (2012).

To model the average level of differentiation promoter within
the spatially homogeneous tumor as a function of time, CF(t ),

we assume that the tumor resides in a spherical region of tissue
and that the differentiation promoter enters this area through the
boundary. The ODE system [equations (4) and (5)] gives the mean
tumor behavior in this spherical tissue region. Growth promoter
that enters the region from the boundary will diffuse very quickly
and attain a steady state distribution over this region. To compute
this value of CF(t ) we solve the problem of diffusion over a sphere
of radius R and average the solution over the volume of the sphere.
A schematic is given in Figure 1C. We use a lower case letter to
describe the radial symmetric solution cF(r, t ) of the following
boundary value problem

∂cF

∂t
= ω

(
∂

∂r

(
∂cF

∂r

)
+

2

r

∂cF

∂r

)
cF (R, t ) = CF0 (t ) .

Here ω is the effective diffusivity of the differentiation pro-
moter. We setω= 10−7 cm2/s throughout our simulations. Before
differentiation therapy begins, CF0(t ) is zero. When differentia-
tion therapy begins, the boundary condition on the sphere is set
to CF0(t )= 1 and the promoter diffuses into the sphere. When
differentiation therapy ends, the boundary condition is simply set
to zero and the promoter diffuses out of the sphere. We then set

CF (t ) =
3

R3

∫ R

0
cF (r , t ) r2dr .

2.4. MODELING OF RADIATION THERAPY
To model external beam fractionated radiotherapy, we apply the
broadly used linear quadratic (LQ) model. The surviving fraction
of cells, S(d), after a single fraction of d grays (Gy) of radiation, is
given by

S (d) = exp
(
−αd − βd2) (8)

where α may be interpreted as lethal damage due to a single track
of radiation, and β may be interpreted as lethal damage due to

www.frontiersin.org March 2013 | Volume 3 | Article 52 | 143

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Bachman and Hillen Optimization of combination therapies

the misrepair of DNA damage produced by two separate tracks of
radiation (Sachs et al., 2001). As a simple approximation of the
radiation resistance of CSCs, we assume that they are better able
to repair DNA double strand breaks such that the quadratic inter-
action term β is zero for CSC. We further assume that there is no
interaction between DNA damage produced by separate fractions
of radiation, owing to the relatively large time between fractions,
typically 1 day, when compared to typical DNA repair times on the
order of 1 h (O’Rourke et al., 2009).

Rather than incorporate an appropriate form of the LQ model
into the system of ODEs [equations (4) and (5)], we simply apply
equation (8) to the CSC volume fraction, U, and to the TC volume
fraction, V, at scheduled times during the simulation, using α and
β values appropriate for each cell type. For example, if a fraction is
scheduled to be delivered at the beginning of the two-hundredth
day of the simulation, the simulation is stopped at this time, the
LQ model is applied to U and V, using their respective parame-
ter values, and the simulation is continued at 200 days plus the
fraction duration, using the surviving fractions given by equation
(8) as the new initial conditions. We assume fraction durations of
10 min throughout our simulations.

2.5. TUMOR CONTROL PROBABILITY
We use tumor control probability (TCP) to model the probability
that the cells remaining after treatment will die out. To reflect the
fact that we must eliminate all CSCs for treatment success (Dingli
and Michor, 2006), and the fact that TCs are doomed to die out
in the absence of CSCs, we calculate TCP based on the number of
CSCs remaining after treatment, using the Poisson TCP formula
(see Gong et al., 2013 for Poisson TCP and other TCP models).

TCP = exp (−NU ) ≈ exp

(
−U

4

3
πR3ρ

)
(9)

where NU stands for the number of CSCs; R is the radius of the
spherical region of interest in cm, as described in the section on
differentiation therapy; and ρ is the density of cells in the region
of interest, which we assume to be 109 cells per cm3, a typical cell
density for tumors (for example, see Joiner et al., 2009) The closer
TCP is to one, the greater the probability that all CSCs die out and
the tumor is controlled.

2.6. NUMERICAL SIMULATIONS
For all numerical simulations of the tumor model [equations (4)
and (5)] we assume the mitosis rates of the CSCs and TCs are equal.
That is, mU=mV. Further, following Youssefpour et al. (2012),
we assume the apoptosis and mitosis rates of the TCs are equal:
aV=mV. These assumptions imply that the TC populations dies
out if k(0)≤ 1, which is equation (6) for this case. When combined
with our earlier assumptions regarding k(P) and with our chosen
form for k(P) [equation (3)], we see that in our model TCs are
always doomed to die out in the absence of CSCs. Our assumptions
regarding the mitosis rates and TC apoptosis rate also simplify the
form of the slow manifold to

M := {(U , V ) : (1− k (P))V = k (P)U , P = U + V } (10)

for all simulations.

Whenever we apply radiation therapy, we assume no difference
in the ability of CSCs and TCs to withstand lethal single track
damage. Thus, we use the same α value for both cell types. As
mentioned previously, we set β = 0 for CSCs to simulate perfect
repair of two-track non-lethal damage.

All numerical simulations are carried out in Maple™, using the
dsolve ODE solver employing the rfk45 numerical method. For
every simulation, the initial conditions are (U 0, V 0)= (0.1, 0.1),
and therapy begins on the two-hundredth day. These settings allow
the tumor system to hit the slow manifold, M, before treatment
begins, in each of our simulations.

To prevent negative volume fractions during numerical simu-
lation, we introduce a simple cutoff function

G (x) =

{
1, x > λ

0, x ≤ λ
(11)

where λ is chosen to allow the TCP to approach one before the
cutoff is imposed. The system we use for numerical simulation,
incorporating the cutoff function is

U̇ (t ) = (2p − 1)mk(P(t ))U (t )G(U (t ))

V̇ (t ) = 2
(
1− p

)
mk(P(t ))U (t )G(U (t ))

+mk(P(t ))V (t )G(V (t ))−mV (t )G(V (t ))

where m=mU=mV= aV.
As a measure of treatment success, we calculate the TCP [equa-

tion (9)] using the value of U obtained at the end of treatment,
which is defined as the latter of: (a) the completion of the final
radiation fraction, and (b) the point in time when p(t ) reaches
0.5, after differentiation therapy has ended. This second point (b),
accounts for the effect of lingering differentiation promoter, after
the promoter is no longer being applied.

3. RESULTS
We summarize the chosen parameter values in Table 1 and we give
relevant references and explanations in the following subsections.

3.1. HEAD AND NECK CANCER TUMOR SIMULATIONS
To simulate ahead and neck tumor, we choose the following para-
meter values for the LQ model: anα/β ratio of 10 Gy and anα value
of 0.35 Gy−1 (Fowler, 2010). We set the mitosis rates of the TCs
and CSCs to ln 2/ 3 day−1, using a cell doubling time of 3 days as
per Fowler (2010). We note that this is an estimate of cell doubling
time for cells undergoing cytotoxic treatment, which tend to have
shorter doubling times than untreated cells (Fowler, 2010). For the
radius of the domain of interest, R, we choose 1.5 cm. All simula-
tions of radiation therapy use fraction sizes of 2.53 Gy, delivered
once per day, on weekdays only. We used one of the optimized
head and neck radiation schedules recommended by Fowler as a
constraint on radiotherapy, which is 25 fractions of 2.53 Gy each,
for a total of 63.25 Gy delivered over 32 days (Fowler, 2010). This
schedule is optimized to satisfy a late tissue constraint of 70 Gy
EQD3/2 and an acute mucosal constraint of 51 Gy EQD10/2 while
delivering the maximum possible BED to the tumor, given the
chosen fraction size and weekday only schedule (Fowler, 2010).
We indicate the position of this schedule in Figure 2 using a black
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Table 1 | Summary of model parameters for the three cancers studied here.

Cancer α/β [Gy] α [Gy−1] β [Gy−2] m [day−1] R [cm] d [Gy] Max D [Gy]

Head and neck 10 0.35 0.035 ln 2/3 1.5 2.53 63.25

Brain cancer 12 0.3 0.025 ln 2/3.9 1.9 3.8 57.5

Breast 2.88 0.08 0.0027 ln 2/ 8.2 0.25 2.26 65.54

All radiation treatment schedules are standard treatments, with one fraction each week day and weekends off. Further references and explanations are given in the

text below.

FIGURE 2 | (Head and neck)TCP for various regimens of
differentiation therapy (DT), radiation therapy (RT), and combination
therapy, as applied to a simulated head and neck cancer tumor. The
RT protocol and tumor parameters are described inTable 1. (A)

Simulations with CSC sensitivity to DT, ψ =0.5. Thus, the probability of
CSC self-renewal, p>0.40. (B) Simulations with ψ =2. Thus, p>0.30.
(C) Simulations with ψ =5. Thus, p>0.25. (D) Simulations with ψ =50.
Thus, p>0.205.
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plane at 63.25 Gy, which we take as our constraint on radiation
therapy.

The only parameter not yet specified is the sensitivityψ toward
the differentiation promoter and we have no experimental data
available. In Figure 2, we show four simulations of the tumor
control probability for four different sensitivities ψ = 0.5, 2, 5,
50 which covers a wide range of possible values. The x-axis
denotes the duration of the differentiation treatment and the y-
axis denotes the total radiation dose. The black plane indicates the
maximum tolerable radiation dose in this particular treatment.
The colored plane is the tumor control probability (TCP). We see
in all four Figures that the TCP is 0 near the origin and it rises
sharply to values close to one as both treatment modalities are
increased. In Figure 2B for example, we see that radiation alone
reaches a TCP of about 60% for the maximum dose. In combina-
tion with differentiation therapy of 50 days, we observe treatment
success already at total dose of 40 Gray. This effect is more pro-
nounced for higher sensitivity parameter ψ . Notice that the curve
for 0 DT days is the same in all four figures.

A good quantitative measurement for efficiency of a treatment
is the TCP= 50% value. To illustrate how the treatment regimens
change for a fixed TCP, we list a few treatment regimens that result
in a 50% TCP in Table 2. We see that for large enough sensitivityψ ,
the total radiation dose can be drastically reduced if differentiation
therapy is applied.

3.2. BRAIN CANCER SIMULATIONS
To simulate a brain cancer, we use an average α/β ratio of 12 Gy
andα value of 0.3 Gy−1, as estimated by Yuan et al. (2008) for brain
cancers (primary tumors as well as brain metastatic cancers). This
gives a β value of 0.025 Gy−2. For the radius of the domain of
interest, R, we use 1.9 cm, which is roughly the radius of a sphere
of volume 28.8 cm3, the volume of a brain metastatic cancer aris-
ing from non-small-cell lung cancer, reported in the same paper
(Yuan et al., 2008). For the CSC and TC growth rates, we use

Table 2 | A selection of head and neck cancer tumor treatment

parameters resulting inTCP≈0.5.

DT sensitivity, ψ DT duration (days) Total radiation (Gy) TCP

N/A 0 63.25 0.581

0.5 9 60.72 0.498

29 58.19 0.506

2 18 53.13 0.492

35 48.07 0.490

5 20 45.54 0.508

39 37.95 0.486

50 4 35.42 0.498

36 15.18 0.505

These are selected from simulations using the model parameters inTable 1 where

differentiation therapy is varied in increments of a single day, from 0 to 60 days,

and radiation therapy in increments of a single fraction, from 0 to 75.9 Gy total

radiation.TheTCP without differentiation therapy is given as a point of reference.

ln 2/ 3.9 day−1, where 3.9 is an estimate of the mean potential
doubling time of brain metastatic cancer originating from vari-
ous primary cancers, as measured by flow cytometry (Struikmans
et al., 1997). All simulations involving radiation use a fraction size
of 3.8 Gy, delivered once per day on weekdays only. This fraction
size is listed by Yuan et al. (2008) as part of a hypofractionated
stereotactic radiotherapy regimen involving 15 fractions, and it
approaches the radiation tolerance for normal brain tissue. We
take the total dose of 57.5 Gy listed by Yuan et al. (2008) as our
constraint on radiation therapy, which appears as a black plane in
Figure 3.

The results as documented in Figure 3 are very similar to those
for the head and neck cancer. One difference is that without any
differentiation therapy, the cancer cannot be controlled by radi-
ation alone. At least not within the given parameter values. In
Table 3 we list some TCP 50% values for this case.

3.3. BREAST CANCER TUMOR SIMULATIONS
To simulate the treatment of a small breast tumor, perhaps remain-
ing after the resection of a large tumor, we choose R= 0.25 cm. The
CSC and TC growth rates are set to ln 2/ 8.2 day−1, where 8.2 is the
median potential doubling time of human breast tumors measured
by Rew et al. (1992) using flow cytometry. Plausible parameter
values for the LQ model [equation (8)] are taken from Qi et al.
(2011): α/β = 2.88 Gy and α= 0.08 Gy−1. We use a fraction size
of 2.26 Gy, delivered once per day on weekdays only. Our radia-
tion constraint, indicated by a black plane in Figure 4, is 65.54 Gy,
which corresponds to 29 fractions, the maximum number of frac-
tions that satisfy the late tissue constraint of 70 Gy EQD3/2 and
the acute mucosal constraint of 51 Gy EQD10/2 given in Fowler
(2010).

Since the breast tumor in this example is late responding (low
α/β-ratio), it is very difficult to control the cancer with radia-
tion alone. The maximum tolerable dose of 65.54 Gy is reached
much earlier than the TCP shows any growth. Using radiation in
combination with differentiation therapy gives some hope that the
cancer can be eradicated. Provided, however, that the CSC cells are
sensitive enough to the differentiation promoter. In Table 4 we list
a few TCP 50% values.

4. DISCUSSION
Current treatment modalities of cancer include surgery, radia-
tion, chemotherapy, immuno-therapies, hormone therapies, and
differentiation therapies. All of these methods have distinct advan-
tages and limitations and clinicians often combine various meth-
ods to obtain the best results. In fact, in most cases a surgical
removal or a radiation treatment is followed by chemotherapy.
However, if chemotherapy is based on a single cytotoxic agent
then the sensitive part of the tumor is killed but the resistant
cell population persists; leading to chemo-resistance (Swierniak
et al., 2009). The sensitivity to ionizing radiation can also vary in
a tumor, where quiescent cells, or stem cells are less radiosen-
sitive than cells that are actively proliferating (Kim and Tan-
nock, 2005; Pajonk et al., 2010). Differentiation therapy describes
the attempt to force stem cells into differentiation to increase
their sensitivity to treatment agents (Leszczyniecka et al., 2001;
Sell, 2004). This idea is conceptually intriguing and it is our
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FIGURE 3 | (Brain cancer)TCP for various regimens of differentiation
therapy (DT), radiation therapy (RT), and combination therapy, as
applied to a simulated brain cancer with average parameter values.
The RT protocol and tumor parameters are described inTable 1.

(A) Simulations with CSC sensitivity to DT, ψ =0.5. Thus, the probability of
CSC self-renewal, p>0.40. (B) Simulations with ψ =2. Thus, p>0.30.
(C) Simulations with ψ =5. Thus, p>0.25. (D) Simulations with ψ =50.
Thus, p>0.205.

attempt in this paper to quantify the possible benefit for three
specific cases: head and neck cancer, brain cancers, and breast
cancer.

Our results are based on a mathematical model for the dynam-
ics of cancer stem cells (CSC) and non-stem cancer cells (TC).
The model is derived from previous models of Youssefpour et al.
(2012) and Hillen et al. (2013) and it includes control through
differentiation therapy and radiation treatment. The benefit of a
given treatment is computed using the (Poissonian) tumor control
probability (TCP).

We found very good references to most of the model parame-
ters such as growth rates, doubling times, tumor volumes, and
radiation sensitivities (see Table 1). However, we were not able to
find good measurements for the sensitivity parameter ψ . Differ-
entiation therapy alone has been used successfully in several cases.
For example, about 70% of acute promyelocytic leukemia can be
controlled by ATRA-therapy (all-trans-retinoic acid, Sell, 2004).
Melanoma can be treated with the differentiation promoter cock-
tail of inferon-β and mezerein (Leszczyniecka et al., 2001); and
Lander et al. (2009) and Youssefpour et al. (2012) suggest the use of
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the differentiation promoter TGF-β. However, to our knowledge,
the effect of these promoters has never been quantified. Hence we
reside to explore a wide range of possible sensitivities ψ .

In each case we found a clear advantage of combination therapy,
where differentiation therapy drastically reduces the total radi-
ation dose. We are able to confirm the findings of Youssefpour
et al. (2012) for the cases of head and neck cancer, brain cancers,

Table 3 | A selection of brain cancer treatment parameters resulting in

TCP≈0.5.

DT sensitivity, ψ DT duration (days) Total radiation (Gy) TCP

N/A 0 76.0* 0.602

0.5 17 72.2* 0.501

50 68.4* 0.504

2 19 64.6* 0.504

46 57.0 0.502

5 17 57.0 0.518

35 49.4 0.500

50 3 41.8 0.500

47 11.4 0.503

These are selected from simulations using the model parameters inTable 1 where

differentiation therapy is varied in increments of a single day, from 0 to 60 days,

and radiation therapy in increments of a single fraction, from 0 to 76 Gy total radi-

ation. The TCP without differentiation therapy is given as a point of reference.

*Violates radiation constraint of 57.5 Gy.

and breast cancer data. For future studies it is important to get
estimates for the sensitivity ψ and we hope that research groups
around the world might be able to identify this in the future.

It should be noted that the above model is over-simplistic to
fully model a growing tumor. For the brain-tumor, for example,
the spatial extent of the tumor is a dominating problem for treat-
ment. The knowledge of an optimal combination therapy schedule
is only useful if the overall treatment volume is known. It is the
focus of ongoing research to identify a suitable treatment volume
(see Konukoglu et al., 2010; Painter and Hillen, 2013). In addition,
the immune response will be an important player in each of the
tumors mentioned above. As discussed by Hanahan and Weinberg
(2011), the immune system can be both, tumor promoting and

Table 4 | A selection of breast cancer tumor treatment parameters

resulting inTCP ≈ 0.5.

DT sensitivity, ψ DT duration (days) Total radiation (Gy) TCP

5 238 76.84* 0.499

247 72.32* 0.505

50 204 74.58* 0.503

222 63.28 0.500

These are selected from simulations using the model parameters inTable 1 where

differentiation therapy is varied in increments of a single day, from 180 to 250 days,

and radiation therapy in increments of a single fraction, from 0 to 76.84 Gy total

radiation. We use a minimum of 180 days of differentiation therapy, as the TCP

remains near 0 until this level of DT is applied (see Figure 4).

*Violates radiation constraint of 65.54 Gy.

FIGURE 4 | (Breast)TCP for various regimens of differentiation therapy
(DT), radiation therapy (RT), and combination therapy, as applied to a
simulated breast cancer tumor. The RT protocol and tumor parameters are
described in the corresponding result section. (A) Simulations with CSC

sensitivity to DT, ψ =5. Thus, the probability of CSC self-renewal, p>0.25.
(B) Simulations with ψ =50. Thus, p>0.205. We do not include graphs for
simulations with ψ =0.5 or ψ =2, as they result in TCP≈0 for all treatment
regimens tested.
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tumor inhibiting and the complex interactions are not fully under-
stood. When we face all these additional difficulties, it appears as
an advantage to have a simple sub-model, such as (4, 5), which
clearly and consistently shows the benefit of combination therapy
for a wide range of parameters and a selection of different tumors.
This suggests that a combination of differentiation therapy and
radiation therapy should be considered as a serious alternative.
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Despite a growing wealth of available molecular data, the growth of tumors, invasion of
tumors into healthy tissue, and response of tumors to therapies are still poorly understood.
Although genetic mutations are in general the first step in the development of a cancer,
for the mutated cell to persist in a tissue, it must compete against the other, healthy
or diseased cells, for example by becoming more motile, adhesive, or multiplying faster.
Thus, the cellular phenotype determines the success of a cancer cell in competition with
its neighbors, irrespective of the genetic mutations or physiological alterations that gave
rise to the altered phenotype. What phenotypes can make a cell “successful” in an envi-
ronment of healthy and cancerous cells, and how? A widely used tool for getting more
insight into that question is cell-based modeling. Cell-based models constitute a class
of computational, agent-based models that mimic biophysical and molecular interactions
between cells. One of the most widely used cell-based modeling formalisms is the cellular
Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM
has become a popular and accessible method for modeling mechanisms of multicellular
processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for bio-
physical cellular properties, including cell proliferation, cell motility, and cell adhesion, which
play a key role in cancer. Multiscale models are constructed by extending the agents with
intracellular processes including metabolism, growth, and signaling. Here we review the
use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We
argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained
and computationally efficient representation of cell and tissue biophysics, make the CPM
the method of choice for modeling cellular processes in tumor development.

Keywords: cellular Potts model, cell-based modeling, tumor growth model, evolutionary tumor model, tumor
metastasis model, multiscale modeling, tumor invasion model

1. INTRODUCTION
The development of a tumor is initiated as the genomes of indi-
vidual cells in an organism become destabilized. Such genetic
instability usually kills cells, but in rare cases it modifies the prop-
erties of the cell in a way that allows it to proliferate and form a
tumor. These biological capabilities are known as the “hallmarks
of cancer” (Hanahan and Weinberg, 2000, 2011), which include:
(1) self-sufficiency in proliferative signaling, (2) evasion of growth
suppressors, (3) the ability to resist apoptotic signals from the
environment, (4) limitless replicative potential, (5) secretion of
pro-angiogenic signals, (6) invasion and metastasis, (7) repro-
graming metabolism (e.g., the Warburg effect), (8) evasion of the
immune system, and (9) recruitment of healthy cells to create
a “tumor microenvironment.” Experimental and computational
studies of cancer typically focus on the molecular peculiarities
of tumor tissues relative to healthy tissues. The main reasons for
this genetic focus are that (a) genetic changes of the cells are main
cause for acquisition of tumor cell capabilities, (b) molecular infor-
mation is readily accessible using high-throughput techniques,

including next generation sequencing, and (c) the molecular level
is the main target for pharmacological agents (Uren et al., 2008;
Shah et al., 2009; Pleasance et al., 2010; Pugh et al., 2012). Such
tumor sequencing studies help identify the key genes involved
in cancers, and sequencing information is helpful in classifying
tumors (Thomas et al., 2007).

The molecular data used in these studies is typically averaged
over the whole-tumor mass, so regional differences within the
tumor or between metastases get lost. Nevertheless, genetic het-
erogeneity of tumors is an inevitable consequence of the genetic
instability of tumor cells (Marusyk et al., 2012), and further
intratumor heterogeneity may arise from epigenetic differences
between cells, driven by transcriptional noise or signaling from the
microenvironment. To test for heterogeneity, Yachida et al. (2010)
sequenced samples of different regions of a pancreatic tumor and
of its metastases. They indeed found genetic differences between
the metastases, which they could trace back to corresponding
regional differences within the primary tumor. Gerlinger et al.
(2012) report similar regional differences within renal carcinomas.
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Thus, these studies have identified significant degrees of intra-
tumor heterogeneity that whole-tumor sequencing studies will
underestimate. These findings underline the importance of spatial
structure within tumors and thus will have direct implication for
understanding tumor development.

A better understanding of the causes and consequences of
tumor heterogeneity is key to developing improved treatment
strategies. In a heterogenous tumor, a single pharmaceutical agent
may target cells differently. As a result, treatments may select for
resistant variants, potentially leading to a tumor relapse (Marusyk
et al., 2012). Intratumor competition of tumor cells for resources
including nutrients, oxygen, or growth space may set off a process
of somatic evolution responsible for tumor progression (Ander-
son et al., 2006). Like in any evolutionary process, the success
of a tumor cell clone during such intratumor competition will
depend only indirectly on the cell’s genome, via the cellular phe-
notype and the cell’s environment, which consists of the other
tumor cells, the extracellular matrix, and the healthy tissue. What
matters for the cell’s survival and reproduction in the tumor, is
its ability to respond to biophysical and molecular cues in the
microenvironment, and face challenges in the microenvironment
more efficiently than its competitors. Such cues and challenges
include mechanical stiffness of the surrounding tissue, physical
pressure due to growth, nutrient or growth factor gradients and
availability, or accessibility to the immune system. Thus, to under-
stand the effects of intratumor heterogeneity, apart from genetic
studies, biophysical studies of cell behavior are crucial. The key
to understanding cancer is not to collect more data, hoping that
“the (data) would somehow arrange themselves in a compelling
and true solution” (Dobzhansky paraphrased in Gatenby, 2012);
we need to find “cancer’s first principles” instead, and “use data to
support or refute a postulated theoretical framework” (Gatenby,
2012).

In this paper we review attempts to develop such theoretical
frameworks for collective cell behavior during tumor develop-
ment. Mathematical descriptions of tumor growth and develop-
ment range from continuum-level descriptions of gene-regulatory
networks or tumor cell populations, to detailed, spatial models of
individual and collective cell behavior. The scale of the biologi-
cal phenomenon of interest, and the scale at which we can collect
data or control the behavior of the system motivates the level of
description of choice. Space-free models focus, e.g., on the dynam-
ics of the gene or metabolic regulatory networks of individual
cells (Vazquez et al., 2010; Frezza et al., 2011), or they describe the
relative growth of tumor cells and healthy cells using population-
dynamics approaches (Gatenby and Vincent, 2003; Stamper et al.,
2007; Basanta et al., 2012).

Here we focus on cell-based models (Merks and Glazier, 2005),
a class of modeling formalisms that predicts collective cell behav-
ior from coarse-grained, phenomenological descriptions of the
behavior of the cells. The input to a cell-based model is a dynam-
ical description of the active behavior and biophysics of cells and
of the properties of extracellular materials, a description that often
simplifies the underlying genetic networks to the minimal level of
complexity required for explaining the cell’s responses to extra-
cellular signals. The output of a cell-based model is the collective
cell behavior that emerges non-intuitively from the interactions

between the cells in the model. In this way, cell-based models
help unravel how tissue-level phenomena, e.g., tumor growth,
metastasis, tumor evolution, follow from the – ultimately genet-
ically regulated – behavior of single cells. A range of cell-based
modeling techniques is available. The least detailed cell-based
models describe the position and volume of individual cells. Such
single-particle approaches include cellular automata (CA, see for
example: Alarcón et al., 2003; Anderson et al., 2006; Hatzikirou
et al., 2008; Enderling et al., 2009; Sottoriva et al., 2010; Owen
et al., 2011), which represent cells as points on a lattice. Off-lattice
single-particle approaches describe cells as points or spheroids in
continuous space; applications in tumor growth include the stud-
ies of Drasdo et al. (1995), Drasdo and Höhme (2003), Gevertz
and Torquato (2006), Kim et al. (2007), Van Leeuwen et al. (2009),
Macklin et al. (2012), or Kim and Othmer (2013). Single-particle
cell-based models are well suited for describing the emergence
of spatial and clonal structure in growing tumors, but they are
less suitable to answer more detailed, biomechanical questions on
how the tissue changes due to cancer cell growth. Such morpho-
logical changes can result from local cell rearrangements through
cell shape change or intercalation (Keller and Davidson, 2004).
For answering such questions, we need to describe the individual
cells in more detail and include their shape, elasticity, polarity, etc.
Multi-particle cell-based models make this possible by using a col-
lection of particles to represent the cell. Off-lattice, multi-particle
methods either describe cells by their boundaries (Brodland et al.,
2007; Farhadifar et al., 2007; Rejniak, 2007; Merks et al., 2011) or
as collections of connected particles (Newman, 2005; Sandersius
et al., 2011b). For broad reviews of single-particle and multi-
particle cell-based models of tumor development, see, e.g., Rejniak
and Anderson (2011) and Hatzikirou et al. (2005). Here we will
review computational models of tumor growth based on a multi-
particle, lattice-based cell-based model: the cellular Potts model
(Graner and Glazier, 1992; Glazier and Graner, 1993).

2. A MULTI-PARTICLE, CELL-BASED METHOD ON THE
LATTICE: THE CELLULAR POTTS MODEL

In the cellular Potts model (CPM), cells are represented as spatially
extended objects with explicit cell shapes. This makes it possi-
ble to define the cell neighborhood more precisely. The model
describes amoeboid cell motion, cellular rearrangements, and
pressure inside the tissue. The CPM was introduced by Graner
and Glazier (Graner and Glazier, 1992; Glazier and Graner, 1993)
for modeling cell sorting according to the differential adhesion
hypothesis of Steinberg (1970), and was applied thereafter to var-
ious phenomena in vertebrate biological development, including
convergent extension (Zajac et al., 2003), blood vessel network
formation (Merks et al., 2006, 2008; Szabo et al., 2008), vascular
sprouting (Bauer et al., 2007; Szabó and Czirók, 2010), ureteric bud
branching in kidney development (Hirashima et al., 2009), and
somitogenesis (Hester et al., 2011). Its proven utility in describing
normal embryonic development, makes the CPM a natural choice
for modeling pathological developmental mechanisms in cancer.

The CPM is defined on a regular, square or hexagonal lattice,
with a spin σ(Ex) ∈ Z+,0 defined on each lattice site Ex . Biological
cells are represented as domains on the lattice with identical spin
σ(Ex), where σ∈N can be seen as a cell identification number, and
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σ= 0 typically identifies a medium or the extracellular matrix.
Each cell and the medium is additionally marked with a label
τ(σ)∈Z+, 0 to identify a biological cell type. The CPM describes
amoeboid cell movement with a Metropolis algorithm, which iter-
atively attempts to copy the spin value σ(Ex) of a randomly selected
site Ex into a randomly chosen adjacent lattice site Ex ′.
The spin-copy attempt is accepted with probability 1 if it would
decrease the value of a globally defined Hamiltonian, H, or with
Boltzmann probability if it would increase the value of H :

p
(
σ (Ex)→ Ex ′

)
=

{
1 , if ∆H

(
σ (Ex)→ Ex ′

)
< 0

exp
[
∆H

(
σ (Ex)→ Ex ′

)
/µ (σ)

]
, if ∆H

(
σ (Ex)→ Ex ′

)
≥ 0

(1)

where ∆H (σ(Ex)→ Ex ′) is the change in the Hamiltonian due to the
attempted copy, and µ(σ) parameterizes the intrinsic cell motility.
The Hamiltonian approach acts to represent the balance of effec-
tive (both physical and phenomenological) forces acting on the
cells, with the spatial gradient of the Hamiltonian proportional to
the force acting on that location, E∇H (Ex) ∝ EF(Ex).

In the originally proposed model the Hamiltonian function
consists of a volume constraint term responsible for maintaining
an approximately constant cell volume and a surface energy term
responsible for cell-cell adhesion properties:

H = Hv + Ha =

=
∑
σ

λv
(
Vσ − V T

σ

)2
+

∑
(Ex ,Ex ′)

J
(
τ (σ (Ex)) , τ

(
σ
(
Ex ′
)))

(
1− δ (σ (Ex)) ,

(
σ
(
Ex ′
)))

.
(2)

Here,V σ is the volume and V T
σ is the target volume of the cell σ.

σ(Ex) denotes the cell number of the cell occupying position Ex and
τ(σ(Ex)) is its cell type. J (τ(σ(Ex)), τ(σ(Ex ′))) is the adhesion coeffi-
cient between cell types τ(σ(Ex)) and τ(σ(Ex ′)), and δ(σ(Ex), σ(Ex ′))
is Kronecker’s delta function with a value 1 if σ(Ex) = σ(Ex ′) and
0 otherwise. The first summation runs over all cells and penal-
izes the deviation of the cell’s volume from a prescribed target
volume with a coefficient λv. The second term sums the adhe-
sion energies (J ) of all adjacent lattice site pairs (Ex , Ex ′), with the
Kronecker delta selecting lattice pairs at cell boundaries, where
σ(Ex) 6= σ(Ex ′). As J (τ(σ(Ex)), τ(σ(Ex ′))) is typically positive, cells
tend to minimize their surface area with other cells or the medium,
making the adhesion term equivalent to surface tension (Glazier
and Graner, 1993). The Monte Carlo Step (MCS) is the usual time
measure in the model. One MCS is defined as N elementary steps,
or copy-attempts, where N is the number of lattice sites in the grid.
This choice ensures that on average all sites are updated in every
MCS, decoupling the system size and the number of copy-attempts
needed to update the whole configuration.

The basic CPM has been extended with numerous cell behav-
iors relevant for tumor biology. To represent growth factors (Jiang
et al., 2005), extracellular materials (Turner and Sherratt, 2002),
nutrients (Jiang et al., 2005; Shirinifard et al., 2009), or other
diffusing chemicals, the CPM often interacts with systems of
partial-differential equations, which are typically solved numer-
ically on a grid matching with that of the CPM. To model the cell’s

response to the chemical fields, most studies assume that cells are
more likely to extend (or retract) pseudopods along concentration
gradients (Turner and Sherratt, 2002; Bauer et al., 2007; Ruben-
stein and Kaufman, 2008; Tripodi et al., 2010). To this end, an
additional energy bias is incorporated in the Hamiltonian at the
time of copying (Savill and Hogeweg, 1997):

∆Hχ

(
σ (Ex)→ Ex ′

)
= ∆H

(
σ (Ex)→ Ex ′

)
− χ

(
c (Ex)− c

(
Ex ′
))

,
(3)

for the copying step σ(Ex) → Ex ′, where c(Ex) represents the con-
centration at position Ex , and χ is a scalar parameter setting the
relative strength of the chemotactic motion in the Hamiltonian
(equation (2)).

Cell growth and division are implemented in the model either
by increasing the target volume V T

σ (Stott et al., 1999; Shirinifard
et al., 2009), or keeping it fixed while dividing the cell into two
smaller daughter cells (Turner and Sherratt, 2002; Rubenstein and
Kaufman, 2008). Cell division can be triggered when certain con-
ditions are met, such as the cell reaches a certain size (Jiang et al.,
2005), or volume-to-surface ratio (Stott et al., 1999), or can depend
on the time since last division (Sottoriva et al., 2011), and so on.
Further extensions make it possible to model, e.g., the effect of cell
shape (Merks et al., 2006; Starruß et al., 2007; Palm and Merks,
2013), anisotropic differential adhesion (Zajac et al., 2003), persis-
tent cell motion (Szabó et al., 2010; Kabla, 2012). These behaviors
can be made specific for the cell types τ(σ) included in the model,
e.g., tumor, stromal, necrotic tumor cell, and cancer stem cells.
The extracellular matrix can also be modeled in varying levels of
detail. We will discuss these extensions in more detail as they occur
in the tumor models reviewed below.

3. AVASCULAR TUMOR GROWTH
The outgrowth of primary, avascular tumors originating from
a small, proliferative population of cells is a first step toward
tumor development, and it forms a basis for more elaborate mod-
els of tumor development. Models of avascular tumors aim to
reproduce the growth characteristics and spatial organization of
avascular tumors from first principles, including cellular division
rates, and local accessibility of nutrients. Laird (1964) showed that
many avascular tumor growth curves are well characterized by
Gompertz growth curves (Gompertz, 1825): an initial exponential
growth phase, followed by a deceleration of the growth rate and a
final, steady-state size of the tumor due to exhaustion of growth
resources. The number of cells in the tumor, N (t ), at time t is
given by the formula:

N (t ) = N0exp

[
A

α

(
1− e−αt )] . (4)

Here N 0 is the initial number of cells in the tumor, α character-
izes the deceleration of the growth rate, and A/α sets the maximum
size of the tumor. Because of the limited supply of nutrients from
the surrounding stroma via diffusion,avascular tumors in vitro fol-
low Gompertz-like, saturated growth curves, while the diffusion
depth of the nutrient stratifies the aggregate into a necrotic core,
a quiescent layer, and a proliferative rim (Folkman and Hochberg,
1973).
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3.1. MODELING GOMPERTZ GROWTH FROM FIRST PRINCIPLES
One of the first simulations that reproduced Gompertz growth
from first principles using the CPM was reported by Stott et al.
(1999). Their three-dimensional model represents stromal cells,
proliferating tumor cells, quiescent tumor cells, and necrotic cells
(Figure 1A). The model is based on the experimental observa-
tion that the volume of proliferating cells in an in vitro tumor
is constant throughout growth (McElwain and Pettet, 1993). The
thickness of this outer proliferative layer is denoted by Dq, and
the first necrotic cells appear at approximately 4Dq distance from
the outer surface of the aggregate (McElwain and Pettet, 1993).
This property is used to reconstruct the nutrient levels within the
aggregate: cells are assumed to change their “type” (proliferative,
quiescent, necrotic) depending on nutrient availability. The level
of nutrients at depth Dq, is a constant Nq. Nutrient levels at other
positions are assumed proportional to R− d, where R is the tumor
radius and d is the distance from the tumor surface. The nutri-
ent level determines the growth rate of proliferative cells in the
model, as

G =


0 , if 0 ≤ N ≤ Nq ,

1
2

(
1− N

Nq

)2
, if Nq ≤ N ≤ 3Nq ,

2 , otherwise.

(5)

Cell growth and cell necrosis are implemented by increasing
or decreasing the target volumes, dVT/dt=G, of the cells over
time. Necrotic cells further from the interface decrease their target
volume faster. Proliferating cells grow and divide when reaching
a certain volume-to-surface ratio. Simulations of the model cor-
rectly reproduce the growth of avascular tumors: an exponential
growth phase is followed by a linear phase, after which the tumor
reaches a steady size. The final size of the aggregate is maintained
by the balance of cell proliferation at the tumor edge, and the decay
of necrotic cells at the center. In this state cells are gradually shifted
from the outer rim toward the necrotic core. The model also repro-
duces the stratified, spatial organization of avascular tumors, with
a proliferative rim, a quiescent layer, and a necrotic core. How-
ever, this is not unexpected, since the nutrient, that determines the
cell types, is an explicit function of the distance from the tumor–
stroma interface. This is a good approximation, if the nutrient
diffuses uniformly from the stroma into the tumor.

A more complete model of tumor spheroids was presented by
Jiang et al. (2005). They simulate the diffusion of nutrients, waste,
growth factors, and inhibitory factors. They use a simplified, intra-
cellular model of the cell cycle based on a Boolean network in
each cell to determine if a cell is proliferative or quiescent. The
secreted growth factors and inhibitory factors are assumed to regu-
late the progression through the cell cycle by altering the activation
state of proteins within the Boolean network. A set of partial-
differential equations describes the secretion, diffusion and uptake
of the nutrients, waste products, growth factors, and inhibitory
factors, as:

∂ci (Ex , t )

∂t
= Di∇

2ci (Ex , t )+ Si (τ (σ (Ex)))− ∈ici (Ex , t ) , (6)

FIGURE 1 |Tumor growth models. (A) Cross section of the 3D avascular
tumor model of Stott et al. (1999). Black cells in the middle of the tumor are
necrotic, surrounded by quiescent cells (light gray). The outer layer of the
tumor consists of proliferating cells (dark gray). The tumor is embedded in
stroma, represented by stromal (white) cells. Image reproduced from Stott
et al. (1999) with permission. (B) Cross section of the 3D avascular tumor
model of Jiang et al. (2005), with a numerical simulation of nutrient and
waste diffusion, cell cycle regulation, and cell metabolism. The figure
shows the three layers of avascular tumors. The stroma is modeled as a
continuum, depicted in blue. Image reproduced from Jiang et al. (2005)
with permission. (C) Avascular tumors with a homogeneous population of
tumor cells and mixed cancer stem cells and transient amplifying cancer
cells (Sottoriva et al., 2011). Homogeneous tumors produce spherical
aggregates, whereas a heterogeneous population gives rise to a rugged
surface, enhancing metastasis. The lower images show the distribution of a
couple of clones that illustrates the growth dynamics within the
aggregates. Image reproduced from Sottoriva et al. (2011) with permission.

with ci denoting the concentration of glucose, oxygen, metabolic
waste, growth factors, or inhibitory factors. Di is an effective
diffusion coefficient, Si(τ(σ(Ex))) is the source, and ∈i is the decay
rate of the substances. As a boundary condition, the authors
assume constant concentrations in the medium surrounding the
tumor (Si(medium)= consti). Consumption and production at
position Ex depends on the cell type τ(σ(Ex)) occupying that posi-
tion. Proliferative and quiescent cells produce waste, and consume
nutrients and growth factors, while necrotic cells do not consume
any substance. Necrotic and quiescent cells produce inhibitory fac-
tors. Cells metabolize nutrients through anaerobic glycolysis and
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respiration, producing lactate as waste. They assumed that meta-
bolic activity determines cell survival: cells turn necrotic if glucose
concentrations drop below 0.06 mM, or at oxygen concentrations
below 0.02 mM, or at lactate concentrations above 8 mM. Cell
shedding is introduced in the model by allowing mitotic cells to
detach from the aggregate at a constant rate at the tumor sur-
face. These cells are then taken out from the simulation. With
these assumptions, the proliferative rim, the quiescent layer, and
necrotic core emerge in the model (Figure 1B).

Jiang et al. (2005) compare their simulation to the growth of
in vitro aggregates of mouse mammary tumor cells cultured in sus-
pension. They fitted a Gompertz model to both the experimental
and simulated tumor growth curves, which yielded estimates for
the initial cell doubling time (related to parameters α and A in
equation (4)). The resulting estimate of the equilibrium number
of tumor cells in the spheroids, N 0exp(A/α), differed at most by a
factor of 2 between model and experiments.

The model of Jiang et al. (2005) also predicted the appearance of
the spheroids’ stratification. The combined width of the prolifer-
ative rim and the quiescent layer remains constant during growth,
whereas the radius of the necrotic core increases linearly in time,
which the simulation accurately reproduce. Based on these results
the authors propose that the size of the necrotic core is governed by
the accumulation of wastes and depletion of nutrients, and is inde-
pendent of the cell cycle. Interestingly, the inclusion of a simplified
model of the cell cycle accurately reproduced cell phase distribu-
tions in tumor spheroids, and the growth arrest characteristic of
avascular tumors. Since the authors reproduced growth dynamics
without any mechanically restricting extracellular microenviron-
ment, they conclude that such biophysical constraints are not
necessarily crucial for the growth arrest of the observed tumor
aggregates.

3.2. ANISOTROPIC TUMOR GROWTH: THE CANCER STEM CELL
HYPOTHESIS

A higher level of heterogeneity within tumors was suggested by
the cancer stem cell hypothesis (Reya et al., 2001). The hypothe-
sis assumes that only a small fraction of tumor cells, the cancer
stem cells (CSC), are capable of unlimited reproduction, while the
main tumor mass consists of cells with only limited replication
potential. It is still not clear where the CSCs originate from: they
could be transformed stem cells, or cancerous cells that acquire
self-renewal properties (Visvader and Lindeman, 2008). In this
view, tumors are inherently heterogeneous with respect to prolif-
eration potential. The hypothesis is still debated, but supportive
evidence is accumulating: Visvader and Lindeman (2008) list sev-
eral experimental attempts to isolate CSCs from solid tumors, by
propagating and passaging cells. These studies aimed at identifying
cell-surface markers for CSC properties, with candidates including
CD44, CD133, and ESA.

Sottoriva et al. (2011) explored the effect of CSCs on tumor
development using the CPM. Two cell types are represented in
their model: CSCs, that are allowed to divide indefinitely, and dif-
ferentiated cells, that divide only a limited number of times. CSCs
divide either symmetrically to give rise to two CSCs, or asym-
metrically to produce a CSC and a differentiated cell. Cells are
killed at random with a constant rate. Confirming their previous

result from a cellular automata model (Sottoriva et al., 2010), Sot-
toriva et al. (2011) show that the presence (or absence) of CSCs
affect tumor morphology in their CPM. Tumors in which all cells
have infinite reproductive potential grow into a spherical shape.
In comparison, tumors in which only CSCs can reproduce indefi-
nitely, tend to assume a more irregular shape (Figure 1C): in these
populations the whole tumor is made up of a collection of small,
spherical tumors, each originating from one CSC. In this view, the
tumor is an aggregate of self-metastases (Enderling et al., 2009).
The authors argue that the emergent irregular surface of the whole
aggregate is reminiscent of invasive tumor growth.

To explore if and how the presence of a CSC population within
a tumor aggregate affects the emergence of treatment resistance,
Sottoriva et al. (2011) implemented a simple model of evolution-
ary dynamics: the division rate of model cells is set by an abstract,
arbitrary fitness function, which is proposed to depend on an
inheritable and mutating methylation pattern on the DNA of the
individual cells. Tumor therapy is implemented by killing a per-
centage of cells at a specific time, that results in new growth space
around the survivors, lowering the selection pressure within the
aggregate, and leading to a second expansion. They observe that
with CSCs, tumors are able to develop a larger variety of methyla-
tion patterns after regrowth. During regrowth the total number of
mutations in tumors with CSCs is higher than in tumors without
CSCs: in the former case a small number of CSCs will recreate the
whole population through a large number of divisions per CSC,
leading to accumulation of mutations. In tumors without CSCs
all cells contribute to repopulation equally, with fewer divisions
per cell, and therefore lower chance of mutation accumulations.
Accumulated mutations can help tumor cells to escape local fit-
ness maxima, leading to a faster evolution, and possibly giving
rise to more resistant cells. These simulations indicate how seem-
ingly effective treatments may induce a more resistant or invasive
phenotype. Gao et al. (2013) show experimental evidence that
in vitro glioblastoma cultures indeed increase their growth rate
and the fraction of CSCs in the populations after irradiation with
less than lethal dose. To quantitatively explore the reason behind
growth acceleration, they present a CPM similar to the model
of Sottoriva et al. (2011). They calibrate the probability of sym-
metric CSC divisions using CSC ratios in in vitro and in vivo
glioblastoma populations. The resistance of CSCs to radio therapy
is incorporated in the model, and calibrated using dose dependent
survival measurements after acute irradiation. When comparing
acute and fractionated irradiation response, the authors found that
the relative increase in CSCs after fractionated treatment cannot
be explained solely by radioresistance of CSCs. These model simu-
lations suggest that repeated exposure to radiation might increase
the symmetric division rate of CSCs, and/or increase the division
rate of CSCs. These effects remain to be tested experimentally.

3.3. TRANSITION BETWEEN HOMEOSTASIS AND UNCONTROLLED
GROWTH

A key issue in cancer, not considered by the above models, is tissue
homeostasis (Anderson et al., 2011). In fact, explaining dynamical
homeostasis of a tissue in which cells are continuously renewed
in a balanced way, may be a far more challenging problem than
modeling uncontrolled growth. Initiation of tumor growth then
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amounts to the loss of tissue homeostasis. Although not specially
targeted at modeling cancer, an abstract model by Tripodi et al.
(2010) makes a first step in this direction. They argue that meta-
bolic exchange is one of the main regulators of tissue renewal and
robustness of developmental patterns. They implemented a grow-
ing heterogeneous population of cells that are interdependent on
one another for metabolic purposes. To do so, they extended the
CPM with a set of rules regulating the cell’s ability to secrete and
consume diffusing nutrients from their environment, and move
toward (or away from) nutrients and other chemicals. The nutri-
ents that the cells consume are metabolized to an internal energy
used for maintenance, division, or chemotactic movement. The
relative rates of these budget terms are determined by a set of
parameters, and are the same for all cells within one simulation.
Different cell types in the model produce different nutrients that
can be used by one other cell type, creating a cross-feeding sys-
tem. Cells can also change types during the simulation. Two main
budget parameters control the behavior of the population: the
rate of maintenance, and the rate of nutrient consumption. A
system with high consumption and low maintenance rates gen-
erates a proliferative population similar to cancer, whereas lower
consumption and higher maintenance rate yields a population in
dynamic homeostasis. Whether the uncontrolled growth of the
high consumption, low maintenance metabolic phenotype pre-
dicted by the model of Tripodi relates to the reprograming of
cellular energy metabolism in cancer as seen in the Warburg effect
(Levine and Puzio-Kuter, 2010), will be an interesting topic of
future theoretical and experimental research.

4. VASCULAR TUMOR GROWTH
To enable their sustained growth, tumors must attract new blood
vessels and remodel the vasculature in a process called angiogen-
esis. The blood vessels provide nutrients and oxygen to the tumor
and remove waste from the vicinity of tumors. Several authors
have looked at the interaction between growing tumors and the
vasculature. In this section we will review a cellular Potts model
studying the growth dynamics of vascular tumors. Models focus-
ing on the mechanisms of angiogenesis (for example: Manoussaki
et al., 1996; Gamba et al., 2003; Merks et al., 2006, 2008; Szabo
et al., 2007, 2008; Bauer et al., 2009; Daub and Merks, 2013; Palm
and Merks, 2013) are reviewed elsewhere (for example, Chaplain
et al., 2006; Jiang et al., 2012; Peirce et al., 2012; Bentley et al.,
2013).

Shirinifard et al. (2009) studied the interaction of tumor growth
and the vasculature. The blood vessels, modeled as a network of
elastically connected endothelial cells, provide oxygen to the tumor
at a constant rate. Oxygen is considered as the only nutrient that
restricts tumor growth, assuming that other nutrients are either
depleted at the same locations as the oxygen, or are not limiting.
Tumor cells in the model are considered either normal, hypoxic or
necrotic, depending on their metabolic state, determined by oxy-
gen levels in their microenvironment. The growth rate of normal
and hypoxic tumor cells thus depends on the oxygen levels:

dV T

dt
=

GmO(ER)

Gk + O(ER)
. (7)

Here VT is the cell’s target volume, O(ER) represents the oxy-
gen levels at the cell’s center of mass (ER) and parameters Gm and
Gk define the dynamics of growth. Once the cells reach doubling
volume, they divide. Hypoxic cells secrete VEGF-A, which attracts
endothelial cells through chemotaxis, and induces their growth.
Necrotic cells decrease their volume at a constant rate until they
completely disappear.

The authors identified distinct phases of tumor growth with
tumors capable and incapable of inducing blood vessel growth. In
both cases, tumors grow exponentially in the initial regime until
the development of hypoxic areas (Figure 2A). After that, the
growth rates of angiogenic tumors and non-angiogenic tumors
start to diverge. In non-angiogenic tumors, necrotic cells appear
shortly after hypoxic cells, creating the three layers typical of avas-
cular tumors. Cells protrude from the spherical tumor towards the
vessels due to oxygen inhomogeneities, resulting in vessel rupture
and more access to oxygen. The tumor continues to grow slowly
along the existing vasculature, producing a cylindrical aggregate
(Figure 2B). In angiogenic tumors, hypoxic cells secrete VEGF-A,
and activate angiogenesis. Neovascular cells form a peri-tumor
network, but do not penetrate the tumor itself. The spherical
angiogenic tumor gradually assumes a cylindrical shape, similar to
the avascular tumor. Due to the intense neovascularization at the
tumor surface, however, cells have sufficient oxygen supply, so they
do not follow the preexisting vasculature. This allows the tumor
to grow from cylindrical shape into a broader sheet, a paddle-like
structure (Figure 2C).

One intriguing behavior arising from the model is the effect of
random cell motility within the tumor. Increased motility results
in more mixing, therefore it allows more cells to access higher
oxygen concentrations at the tumor surface. As oxygen concen-
tration is linked to cell growth, variations in cell size will be
smaller with increased motility. However, since the inhomogeneity
in cell growth drives the transition from spherical to cylindrical
shape, increased cell motility results in a less invasive tumor. This
contra-intuitive mechanism is a good example of how computer
simulations can help in elucidating mechanisms of cancer. The
model neglects blood flow, interstitial pressure, the extracellular
matrix, nutrients, and a large part of cell signaling. Despite these
simplifications, Shirinifard et al. (2009) claim that the initial avas-
cular tumor growth stages in the model are reminiscent to the first
and second stages of gliomas.

5. TUMOR–STROMA INTERACTIONS
We will next review models investigating another general struc-
ture in the stroma besides the vasculature: the extracellular matrix
(ECM). This heterogeneous spatial network provides mechanical
scaffold for the tissues. In order to grow out of the aggregate and
invade the host, tumor cells have to be able to migrate through
the ECM. For this reason, cells develop the ability to remodel
the surrounding ECM (Friedl and Wolf, 2008). ECM representa-
tion in models vary. Some authors model the ECM surrounding
the tumor as a homogeneous substance, assuming that the size
of ECM components is significantly smaller than the cell size.
Others argue that structures within the matrix, such as collagen
fibers, reach and typically exceed the size of the cells, therefore they
represent the ECM as a heterogeneous substance. Studies in the
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FIGURE 2 | Vascular tumor growth of Shirinifard et al. (2009).
(A) Number of normal proliferative tumor cells in the non-angiogenic (red
curve) and angiogenic (black curve) model, showing different stages of
development. Black arrows: (1) the exponential growth phase of the
spherical tumor; (2) no growth; (3) the linear-spherical phase; (4) slow
growth; (5) the linear-cylindrical phase; (6) the linear-sheet phase. Red

Arrows: (1) the exponential growth phase of the spherical tumor; (2) slow
growth; (3) cylindrical growth phase. (B) Cylindrical shaped
non-angiogenic tumor. Tumor cells are shown in green, the vasculature is
red. (C) Paddle-shaped angiogenic tumor. Neovascular endothelial cells
are shown in purple. Images reproduced from Shirinifard et al. (2009)
with permission.

following sections consider the interface between the tumor and
the stroma.

5.1. INVASIVENESS AND HAPTOTAXIS
Cells have been described to move toward higher concentrations
of ECM, a property termed haptotaxis. This behavior might nat-
urally play a role in tumor invasion, therefore it has been in the
focus of more computational studies.

Turner and Sherratt (2002) reproduce invasion in streams, also
known as “fingering,” eventually resulting in an advancing front
that separates from the main tumor mass (Figure 3A). In this
model the system is filled with ECM initially, and it is assumed to
be exponentially degraded in the vicinity of cells. Cells divide with
a division probability increasing with time and with increasing
cell-ECM contact. This assumption is based on the observation
that cells divide more often if they have more contact with the
ECM (Huang and Ingber, 1999).

In this model, the tumor front invades deeper into the ECM
if the cells have higher haptotactic sensitivity, or if they secrete
proteolytic enzymes at a higher rate. Interestingly, increasing
both the haptotactic sensitivity and the secretion rate of the
proteolytic enzymes simultaneously leads to more effective inva-
sion than invasion driven by either of these mechanisms alone.
Counterintuitively, the model suggests that an increase in cell
proliferation results in a slower invasion. The reason for this
behavior is found in the mechanism of invasion: cells at the inva-
sion front detach from the main tumor body. As the haptotactic
effect is highest at the very edge of the front, the back of the
front and the main tumor mass is exposed to a smaller hap-
totactic gradient. Due to cell-cell adhesion, these cells pull the
invading front back and thus slow the invasion. Cell prolifera-
tion creates an increasing tumor mass and keeps the cells at the
front connected for a longer time. In a follow-up paper, Turner
et al. (2004) extended their model to explore possible effects
of tamoxifen treatment on tumor invasion. This more detailed
model explicitly describes the secretion and diffusion of prote-
olytic enzymes and TGF-β. Tamoxifen increases TGF-β secretion

in tumors, resulting in reduced cell proliferation rates and higher
apoptosis rates. Based on experimental observations (Koli and
Arteaga, 1996; Nakata et al., 2002), increase in TGF-β expres-
sion increases haptotaxis index of cells in the model. Turner and
co-workers find that TGF-β treatment can increase invasiveness:
although high levels of TGF-β decrease the tumor cell population,
the interface morphology becomes more irregular, reminiscent of
more invasive tumors. By inducing apoptosis inside the tumor,
TGF-β dilutes the aggregate, making it easier for cells to sepa-
rate from the main tumor and invade the ECM. This behavior
is further enhanced by the increase in haptotactic response due
to TGF-β.

The model framework of Turner and colleagues has been
extended by Scianna and Preziosi (2012), to include intracellu-
lar regulation of cell motility, based on extracellular growth factor
concentrations. In accord with the findings of Turner and Sher-
ratt (2002), Scianna and Preziosi (2012) point out that therapies
aiming at increasing cell-cell adhesion between tumor cells, or
loosening adhesions between tumor cells and the ECM, lead to a
more compact tumor aggregate, that is easier to remove surgically.
Inhibiting the matrix degrading ability of tumor cells, or inhibit-
ing their ability to haptotax also resulted in less disperse invasion
fronts in the model of Scianna and Preziosi (2012). These results
were obtained by simulating invasion of a homogeneous envi-
ronment. Giverso et al. (2010) showed that these hold in a more
realistic environment as well. They simulated in vitro ovarian can-
cer transmigration essays, where single tumor cells or a group of
tumor cells invade a connected layer of mesothelial cells. They
show that depending on the cohesion of the tumor cells, invasion
occurs at multiple or single loci. In both their in vitro experiments
and model simulations, Giverso and colleagues show that indi-
vidual cells can penetrate, or intercalate, the monolayer without
damaging it. A group of tumor cells, however, disrupts the mono-
layer as they invade. Using their model, they demonstrate that the
mode of invasion – group or individual – depends on the relative
adhesion between tumor cells and tumor cells and the mesothelial
cells.
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FIGURE 3 |Tumor invasion with homogeneous and heterogeneous ECM.
(A) Invasion front of tumor penetrating the stroma via “viscous fingers”. Image
reproduced from Turner and Sherratt (2002) with permission. (B) Avascular
tumor model of Rubenstein and Kaufman (2008), exploring invasion along

ECM fibers. Image reproduced from Rubenstein and Kaufman (2008) with
permission. (C) Invasion front of persistently moving cancer cells penetrate in
“fingers” along ECM fibers describe penetration dynamics even without cell
division. Image produced based on the model of Szabó et al. (2012).

5.2. INVASIVENESS AND NUTRIENT SUPPLY
In the previous section we described studies of tumor invasion
due to cell-ECM interactions. Popławski et al. (2009) show how
invasion fronts can be affected by nutrient availability. They show
that tumor starvation (low nutrient flux) promotes tumor inva-
sion, and cell–stroma adhesion (surface tension) defines the width
of invading clusters of cells. Following Turner and co-workers,
Popławski et al. (2009) assumed that tumor cells secrete matrix
degrading enzymes. In their model matrix digestion releases a
nutrient or growth factor required for cell growth. Cell growth
is an increasing function of available substrate, and cells divide
when reaching doubling size. Cell death is not considered in
the model. Tumor metabolism efficiency is implicitly included
in the model by controlling substrate uptake and cell growth rate
independently.

The authors find that if nutrient supply is abundant, e.g., if the
substrate consumption is relatively low, the tumor assumes a dense
and spherical morphology. In this case cell-matrix surface tension
(or cell-cell adhesion strength) does not affect tumor morphology.
If the nutrient becomes more limiting, the tumor assumes a lobed,
branched shape, and becomes sensitive to the cell-matrix surface
tension parameter: lower surface tension allows for more rugged
tumor surface. As the substrate cannot reach deep areas inside the
tumor, growth slows down closer to the tumor center, resulting in
deep groves, in a mechanism related to the classic diffusion-limited
aggregation model (Witten and Sander, 1981). This effect is coun-
teracted by the surface tension which smoothens regions of high
positive curvature. Therefore the substrate penetration length (set
by substrate consumption) and the capillary length (set by sur-
face tension) together define the surface morphology. The results
of Popławski et al. (2009) suggest that depriving nutrients from
tumors might increase their invasive potential. Thus they sug-
gest that anti-angiogenic tumor therapies, which aim to reduce
the nutrient supply of tumors, might actually induce invasive,
metastatic tumor phenotypes.

5.3. HETEROGENEOUS EXTRACELLULAR MATRIX AND CELL
MIGRATION

Although the scale of the extracellular matrix building blocks are
negligible when compared with the size of the cell, the matrix
can still contain structures comparable to or even larger than a

cell. These not only include inhomogeneities in matrix density,
but also anisotropic structures such as collagen filaments. Ruben-
stein and Kaufman (2008) explore avascular tumor growth using a
model including both a homogeneous and a filamentous extracel-
lular matrix component, representing diffusible matrix proteins
and collagen fibers (Figure 3B). Based on the angiogenesis model
of Bauer et al. (2007), the ECM is represented as a special frozen
cell type that is not allowed to move. Cells are allowed to occupy
ECM sites, but when they leave the site, the ECM is restored. Cells
strongly adhere to filamentous ECM, and also require this contact
for cell division.

Cells in the model of Rubenstein and Kaufman (2008) consume
a non-diffusing nutrient and produce waste, producing stratified
avascular tumor growth. Cell division is controlled by explicit con-
tact with the ECM: if a cell has reached a target surface area and is
in contact with a collagen fiber or matrix, it divides. This results in
a proliferating rim around the tumor. Due to a large difference in
cell-cell and cell-matrix adhesion, cells are shed at the rim, even in
the absence of collagen fibers (similar to the model of Jiang et al.,
2005). Cells elongate and invade along fibers in the vicinity of the
tumor surface, producing a growth similar to a Gompertz growth.
Due to the depletion of nutrients and constant proliferation at the
edge, however, the tumor diameter does not stabilize, as expected
in a Gompertzian growth. In their two-dimensional in vitro exper-
iments Rubenstein and Kaufman observed that tumor cells spread
fastest at intermediate collagen concentrations, an effect that their
computational model reproduces. Their simulations suggest that
this behavior is only valid for shorter collagen fibers, where the
density of collagen has to be high in order to form long, con-
tiguous fibers. As collagen density increases and the network is
interconnected, cells invade along the fibers. At sufficiently high
densities cells overpopulate the immediate neighborhood of the
tumor, thus preventing it from faster expansion. One can view this
behavior as cells getting stuck at the border of the tumor. Another
interesting insight is that fiber anisotropy might direct the inva-
sion when the connected fiber length is significantly larger than
the cell size. When cells are allowed to change the structure of
the fibrous matrix by degrading it, invasion distance decreases
and cells become more rounded. When cells deposit collagen
matrix, their invasion becomes slower, much like in the case of
high collagen density simulations. Allowing full remodeling of the
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ECM, however, results in more invasive tumors than with only
degradation or only deposition.

The proposed invasion mechanism is driven by haptotaxis and
proliferation at the invading front. Although this model quali-
tatively reproduces growth curves comparable with experimental
observations, it does not account for invasion without cell pro-
liferation. Szabó et al. (2012) show experimentally, that tumor
cell lines are able to invade collagen gels in vitro even if their
proliferation was inhibited. The authors reproduce the fingered
invasion morphology and invasion speeds using a model similar
to Rubenstein and Kaufman (2008). The model does not account
for cell proliferation, nutrients, or waste, but cells are moving in
a persistent manner (see below) in a fibrous, aligned matrix envi-
ronment (Figure 3C). The model results suggest that persistent
cell motion may also play a role in invasion, besides proliferation
and haptotaxis.

In order to efficiently invade the microenvironment, cells might
acquire the ability to move persistently. Motion persistence can
result from gradients of nutrients, ECM, growth factors, or pres-
sure, but persistent cell motion might also be intrinsic to cells, as
described by in vitro studies of Stokes et al. (1991) and Selmeczi
et al. (2005). In a cellular Potts model focusing on persistent
cell motility, Kabla (2012) explores the necessary conditions for
inducing a stream of cells in a heterogeneous cell population.
Kabla represents both tumor tissue and the stroma as a densely
packed epithelium, with tumor cells having a higher motility
and persistence than healthy cells. Persistent motion is mod-
eled using an internal direction of movement in cells (EP i), that
biases the probability of cell extensions and retractions through
the Hamiltonian, as:

∆H
(
σ (Ex)→ Ex ′

)
= ∆H0

(
σ (Ex)→ Ex ′

)
+ λP

∑
i∈{σ(Ex),σ(Ex ′)}

EP i∣∣EP i
∣∣ ∆ Er

|∆ Er |
.

(8)

Here ∆ Er represents the vector pointing from site Ex to site Ex ′.
The direction of cell motion, EP i , is the average cell displacement
of the cell in the previous k timesteps and λP sets the relative
strength of the polarity bias in the Hamiltonian (equation (2)). A
similar implementation of persistent motion has been experimen-
tally validated earlier by Szabó et al. (2010), where the direction of
cell motion is evolving in time as:

∆ EP i = −
1

k
EP i +∆ ERi , (9)

where ∆ ERi is the displacement of the cell centroid in the whole
timestep (MCS). In Kabla’s model, tumor cells invade the healthy
tissue in streams collectively, with motility and persistence values
that would not allow individual cells to metastasize. In contrast
to angiogenesis, where the presence of a small, specialized tip cell
population is essential for sprouting, Kabla shows that tip cells are
not essential in tumor invasion.

Scianna et al. (2013) further studied the invasion of porous
ECM in 2D and 3D configurations. They sub-divided each cell
into a nucleus and a cytosol region, which enables them to describe
the invasion of dense matrices more realistically and to reproduce

experimentally measured cell migration behaviors. Movement of
the simulated cells is maximal in intermediate pore sizes, when
the cells are still able to move through them. They show that an
increased average alignment of the ECM fibers directs cell motion
into a more linear pattern, which results in an increased migration
persistence. Furthermore, they show that cell migration is only
affected by matrix degrading enzyme production in high density
matrices.

6. DISCUSSION
In this review we presented an overview on tumor models using
the cellular Potts model. The models resolve cell shape, which
allows us to model behavior at the cell level, and give a fair repre-
sentation of the cellular microenvironment. The reviewed models
demonstrate how the CPM can be applied to model tumor growth,
the spatial structure of tumors, the effect of tumor heterogene-
ity on tumor development, the implications of angiogenesis, and
how the invasion of tumor cells depends on nutrient availability
or the extracellular matrix. Furthermore, the models described
above explain cell shedding at the tumor edge, tumor surface
morphology, or the counterintuitive effect of tumor treatment on
heterogeneous tumors. To better understand the properties of the
CPM, it is useful to compare it with other, similar models. Such a
comparison is given by Andasari and colleagues, who studied how
cell-cell adhesion and metastasis is influenced by cell signaling in
epithelial tumors. They directly compared their results obtained
using a CPM (Andasari and Chaplain, 2012) with results from a
cell-center model (Andasari et al., 2011). While in the cell-center
model the malignant cells leave the epithelium in a wave, spreading
radially outwards from an initial cell, in the CPM this radial pat-
tern becomes more stochastic and irregular. This example shows
how the intrinsic stochasticity of the CPM affects the system on
the multicellular scale.

Despite its advantages, the CPM also has its disadvantages. The
dynamics of the model represents a constraint to the simulated
cells: the maximum speed of cells in the model is limited to the
size of the lattice neighborhood per MCS. A related mechanical
constraint is the limited speed of compression waves: if one side
of a floating 3D aggregate is pushed, the aggregate will deform
instead of translating as a whole unit. This is a result of the over-
damped nature of the model, and might present complications
when modeling in vitro tumor invasion from an aggregate (for
a more detailed discussion, see Szabó et al., 2012). Furthermore,
model dynamics is non-local due to the volume constraint term,
which complicates mean-field analyses (Voss-Böhme, 2012) and
computational parallelization (Chen et al., 2007) of the model.
Some of these disadvantages, e.g., grid effects, are resolved by
other multi-particle cell-based models. Probably the closest model
framework to the CPM is the subcellular element model (ScEM),
introduced by Newman (2005). Cells in the ScEM are represented
by elements (analogous to a lattice site in the CPM) that interact
with other elements in the same cell and other cells. Instead of
copying, the elements of the ScEM are allowed to move in contin-
uous space. Similar to the CPM, the interaction between elements
determines the dynamics of the cell, making it a flexible system.
The ScEM is a promising framework with studies focusing on phe-
nomena from single cell rheology (Sandersius and Newman, 2008)
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to multicellular epithelial tissue behavior (Newman, 2008; Sander-
sius et al., 2011a) and invasion (Sandersius et al., 2011b). Another
example of a well developed, off-lattice model is the immersed
boundary framework (IBCell), introduced by Rejniak (2007). The
model has been applied to tumor modeling (Anderson et al., 2009),
together with two other cellular automata-like approaches (the
hybrid discrete continuum model, and evolutionary hybrid cel-
lular automata model), to show the counterintuitive connection
between nutrient availability and tumor surface fingering, sim-
ilar to Popławski et al. (2009). The model represents cells with
boundary points that are connected elastically (similar to models
for plant cells, see for example: Merks et al., 2011). The advantage
of the model compared with the CPM is its ability to explicitly
represent the physical connections between cells, which makes it
a strong model for 2D simulations. Extending the IBCell to 3D,
however, is not straight-forward and would require high technical
skills.

Although these off-lattice models solve some of the problems
inherent to a lattice-based approach, an advantage of the CPM
is its direct extensibility to three-dimensions, and the availability
of community-driven open source implementations, e.g., Com-
puCell3D1 and Tissue Simulation Toolkit2. The packages provide
a straight-forward set of tools for constructing cell-based models
without the need to spend significant time on model development.
CompuCell3D is easily extended with new cell behaviors, subcel-
lular compartments, and extracellular materials. The framework
can be configured to include diffusing substances (such as growth
factors, or nutrients). More recent extensions make it possible to
include extracellular matrix materials in the CPM. The level of

1http://www.compucell3D.org
2http://sourceforge.net/projects/tst/

detail at which the ECM is described depends on the particular
problem that the model addresses, ranging from the ECM as an
extracellular, homogeneous field, to a fibrous matrix represented
with a special CPM “cell.” Cell behavior, such as chemotaxis, cell
elongation, cell proliferation and growth, or persistent motility
can all be readily implemented as modules in the framework. In
its original application the smallest scales of a CPM model were the
pseudopods and the single cells. More recently the CPM has been
extended with additional subcellular structures, including intra-
cellular compartments, epithelial junctions, and focal adhesions,
many of which are now made available as modules for Compu-
Cell3D (Swat et al., 2012). These subcellular extensions have been
applied to modeling cell organelles (Scianna et al., 2013), and
mechanically connected tissues, such as epithelia (for example,
Shirinifard et al., 2012). Another useful extension is the possibility
to run ODE models of regulatory networks inside each of the cells
of a CPM. To this end, CompuCell3D has recently been integrated
with the SBML-compliant regulatory network modeling tool Sys-
tems Biology Workbench (SBW), see, e.g., Hester et al., 2011. This
development opens the door to multiscale models of tumor devel-
opment, in which existing, SBML-compliant models of signaling,
genetic regulation, and metabolism of tumor cells can be studied
in a more detailed, realistic multicellular context.
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Ovarian cancer relapse is often characterized by metastatic spread throughout the peri-
toneal cavity with tumors attached to multiple organs. In this study, interaction of ovarian
cancer cells with the peritoneal tumor microenvironment was evaluated in a xenograft
model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian cancer cells.
Intra-vital microscopy of mixed GFP-red fluorescent protein (RFP) cell populations injected
into the peritoneum demonstrated that cancer cells aggregate and attach as mixed
spheroids, emphasizing the importance of homotypic adhesion in tumor formation. Elec-
tron microscopy provided high resolution structural information about local attachment
sites. Experimental measurements from the mouse model were used to build a three-
dimensional cellular Potts ovarian tumor model (OvTM) that examines ovarian cancer cell
attachment, chemotaxis, growth, and vascularization. OvTM simulations provide insight
into the relative influence of cancer cell–cell adhesion, oxygen availability, and local archi-
tecture on tumor growth and morphology. Notably, tumors on the mesentery, omentum, or
spleen readily invade the “open” architecture, while tumors attached to the gut encounter
barriers that restrict invasion and instead rapidly expand into the peritoneal space. Simula-
tions suggest that rapid neovascularization of SKOV3.ip1 tumors is triggered by constitutive
release of angiogenic factors in the absence of hypoxia.This research highlights the impor-
tance of cellular adhesion and tumor microenvironment in the seeding of secondary ovarian
tumors on diverse organs within the peritoneal cavity. Results of the OvTM simulations
indicate that invasion is strongly influenced by features underlying the mesothelial lining at
different sites, but is also affected by local production of chemotactic factors.The integrated
in vivo mouse model and computer simulations provide a unique platform for evaluating
targeted therapies for ovarian cancer relapse.

Keywords: ovarian cancer, tumor modeling, tumor microenvironment, metastasis, cellular Potts model, cell
adhesion, angiogenesis, chemotaxis

INTRODUCTION
Ovarian cancer is often detected at a late stage of disease after
the cancer has locally disseminated to the peritoneum. Visible
tumors are surgically removed and residual microscopic disease
is targeted with chemotherapy. However, 90% of patients who
originally respond to treatment will relapse with chemotherapy-
resistant disease (McGuire et al., 1996). Relapse is thought to
occur because residual cancer cells aggregate in the peritoneal fluid
and form microscopic tumor spheroids that are more resistant
to chemotherapy (Shield et al., 2009). These spheroids can then
adhere to the surface of organs in the peritoneum and seed new
tumors, encouraged by chemokines and growth factors within the
peritoneal fluid (Milliken et al., 2002; Bast et al., 2009).

A common feature of the peritoneal environment is the
mesothelial lining that cancer cells must sequentially bind to (Stro-
bel and Cannistra, 1999; Casey et al., 2001; Kenny et al., 2008) and
penetrate (Burleson et al., 2006; Iwanicki et al., 2011) in order to
adhere to underlying tissues. Recent in vitro studies suggest that
this penetration step can occur within a few hours after spheroid
attachment (Iwanicki et al., 2011). Nevertheless, unique features
associated with different organs clearly influence progression in
this disease. For example, ovarian cancer cells preferentially col-
onize the omentum, a fatty tissue that has pockets of resident
immune cells referred to as “milky spots” and easily accessible
blood vessels (Gerber et al., 2006; Khan et al., 2010; Nieman et al.,
2011). Cancer cells also colonize other organs in the peritoneum,
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with distinct growth rates and morphology depending on the
site. It is reasonable to expect that these heterogeneous tumor
populations will respond differently to treatment, motivating fur-
ther investigation into the features of the microenvironment that
govern these differences.

To establish a mouse model of ovarian cancer relapse,
SKOV3.ip1 cells expressing fluorescent proteins [GFP, red flu-
orescent protein (RFP)] were injected into the peritoneum of
nude mice and the resulting tumors growing on the omentum,
intestine, mesentery, and spleen were imaged. Excised tumors
were processed for both transmission and light microscopy, pro-
viding detailed information about the cellular environment and
vascularization patterns.

The distinct features in tumor morphology at different sites
led us to consider the potential contributions of local chemotactic
factors, oxygenation and adhesion through mathematical mod-
eling. In recent years, mathematical models have moved beyond
the generic models of tumor growth and development (e.g., Jiang
et al., 2005; Shirinifard et al., 2009; Morton et al., 2011; Giverso
and Preziosi, 2012) and are now able to realistically model cancers,
e.g., breast cancer (Chauviere et al., 2010; Macklin et al., 2012) and
colon cancer (Dunn et al., 2012). Few have addressed the unique
features of ovarian cancer. Arakelyan et al. (2005) modeled ovar-
ian tumor growth response to the dynamics of vascular density
and vessel size (Arakelyan et al., 2005). Giverso et al. (2010) devel-
oped a two-dimensional model of early ovarian tumor spheroid
invasion through the mesothelium and underlying extracellular
matrix (ECM) (Giverso et al., 2010).

In the present work, our focus is on understanding the dis-
tinct features of tumor morphology at different sites in ovarian
cancer relapse in three dimensions. The cellular Potts model
framework was chosen because of its previous successes in study-
ing similar problems in tumor growth and angiogenesis (Jiang
et al., 2005; Shirinifard et al., 2009). Our cell-based and geomet-
rically realistic ovarian tumor model (OvTM), takes into account
characteristics of the peritoneal microenvironment and provides
insight into the earliest steps in spheroid attachment, invasion, and
vascularization within the peritoneum. In particular, homotypic
and heterotypic adhesion observed between SKOV3.ip1 xenograft
cancer cells and the niche tissue structure are the starting point of
OvTM. We applied the model to explore the roles of cell adhesion,
cell migration and proliferation as influenced by the microenvi-
ronment at two sites and were able to reproduce experimental
observations. The ultimate goal of our model is a realistic repre-
sentation of spheroid growth, whose dimensions and morphology
qualitatively resemble the tumors disseminated in different tissue
niches in the peritoneal cavity in our mouse xenografts. Such a
model can be further developed to include short-term drug deliv-
ery after debulking surgery, allowing the evaluation of local drug
responsiveness.

MATERIALS AND METHODS
CELL CULTURE AND CELL LINES
SKOV3.ip.1 parental cells and GFP-stable transfectants were kind
gifts of Laurie Hudson and Angela Wandinger-Ness (UNM).
This aggressive line was passaged through a nude mouse (Yu
et al., 1993). Cells were maintained in RPMI-1640 medium
supplemented with 5% heat-inactivated FBS, 1% l-glutamine,

1% sodium pyruvate, and 0.5% penicillin/streptomycin (Invitro-
gen, Grand Island, NY, USA). SKOV3.ip1-GFP cells were treated
with 250 µg/ml hygromycin to maintain GFP expression. To cre-
ate RFP-expressing SKOV3.ip1 cells, parental cells were trans-
fected with the pTagRFP-N vector (Axxora, San Diego, CA, USA)
using Lipofectamine LTX reagent (Invitrogen). Stably fluorescent
cells were selected with geneticin sulfate (Invitrogen) for 1 week.
Transfectants were sorted for high fluorescence using a Beckman
Coulter Legacy MoFlo cell sorter (UNM Flow Cytometry Core
Facility).

INTRAPERITONEAL MOUSE MODEL OF OVARIAN CANCER RELAPSE
All mouse procedures were approved by the University of New
Mexico Animal Care and Use Committee, in accordance with NIH
guidelines for the Care and Use of Experimental Animals.

Nu/nu nude mice (NCI) or nude mice ubiquitously express-
ing RFP (Anticancer Inc., San Diego, CA, USA) (Yang et al., 2009)
were engrafted by intraperitoneal injection with 100 µl of a single
cell suspension containing five million SKOV3.ip1 cells express-
ing GFP. Tumor adhesion and invasion was assessed at 4 days and
2 weeks post-injection. For low magnification assessment of total
tumor burden, eight nude mice were imaged using a Pan-A-See-Ya
Panoramic Imaging System (Lightools, Inc., Encinitas, CA, USA)
2 or 3 weeks post-injection of SKOV3.ip GFP cells. For improved
resolution images (up to 16×, single cell resolution), mice were
imaged on the OV100 Olympus whole mouse imaging system
(Olympus Corp., Tokyo, Japan) at AntiCancer, Inc., San Diego,
CA, USA, as previously reported (Yamauchi et al., 2006).

Where described, sections of intestine and attached mesentery
with tumors were excised (Fu and Hoffman, 1993) and fixed in
zinc fixative for 30 min (Howdieshell et al., 2011). Samples were
mounted on glass slides with ProLong Gold mounting media
(Invitrogen). GFP fluorescence and brightfield images were col-
lected on a Nikon TE2000 Microscope (UNM Microscopy Core
Facility) using an Axiocam digital color camera and SlideBook
Image Acquisition software.

CO-INJECTION EXPERIMENTS
SKOV3.ip1-GFP cells and SKOV3.ip1-RFP cells (2.5× 106 each
population) were harvested from culture by trypsinization and
mixed together as a single cell suspension immediately before
injecting a total of five million cells into the peritoneum of three
nude mice. For consecutive injections, 2.5 million SKOV3.ip1-GFP
cells were injected IP into three nude mice followed by injection
of 2.5 million SKOV3.ip1-RFP cells a week later. The mice were
sacrificed at the end of week 2 and tumors were imaged on the
OV100.

HISTOLOGY AND IMMUNOFLUORESCENCE
Mouse tumors were fixed in formalin or zinc fixative, embed-
ded in paraffin, sectioned and hematoxylin/eosin (H&E) stained
by TriCore (Albuquerque, NM, USA) or processed for immuno-
fluorescence using anti-CD31 antibodies (BD Biosciences, San
Jose, CA, USA). Images were acquired on a Zeiss AxioSkop or
LSM500 confocal microscopes. The area of mesenteric tumors
was determined by analysis of images from H&E-stained sections
using ImageJ (Schneider et al., 2012). The cross-sectional tumor
area corresponding to the hypoxic threshold was calculated to be
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<104,000 µm2 based on the diameter of the spheroid in Figure 7B
(364 µm).

TRANSMISSION ELECTRON MICROSCOPY
Tissue was collected and fixed in 2% glutaraldehyde, post-fixed
with osmium tetroxide, dehydrated in ascending alcohols, and
embedded in Epon. Ultra-thin sections were stained and imaged
on a Hitachi H600 transmission electron microscope (TEM). To
identify SKOV3.ip1 cells present in tissue samples, their character-
istic nuclear ultrastructure was determined from high magnifica-
tion TEM images taken of SKOV3.ip1-GFP cells grown as 5,000
cell spheroids in a U -bottom Lipidure-coated 96-well plate (NOF
America, Irvine, CA, USA) for 48 h.

THE OVARIAN TUMOR MODEL
We based our model on the following set of major assumptions
that are inspired by the biology and empirical data.

1. The three-dimensional (3-D) tissues we model consist of ovar-
ian tumor (SKOV3.ip1), mesothelial, adipocyte, endothelial,
and smooth muscle cells, as well as ECM fibers and peritoneal
fluid.

2. Adhesion strengths between various cell types are prescribed
and remain constant, e.g., adhesion between SKOV3.ip1 cells is
stronger than between SKOV3.ip1 and mesothelial cells.

3. The chemical environment consists of oxygen, tumor-secreted
VEGF, adipocyte-secreted IL-8 (Nieman et al., 2011), and
another unidentified growth factor (Growth Factor 2) secreted
by blood vessels.

4. Both IL-8 and Growth Factor 2 are chemoattractants for
tumor cells. VEGF is a chemoattractant for endothelial cells.
Chemotaxis speed is proportional to the chemical gradient.

5. Cells consume oxygen supplied by the peritoneal fluid and
blood vessels. When oxygen levels are below a threshold value
(20 mm Hg), tumor cells become hypoxic and stop growing.
They resume proliferation if oxygen rises above the threshold
level.

6. Cells are required to approximately double in volume
before dividing and their division times have a Gaussian
distribution.

7. Ovarian tumor model does not represent the flow of peri-
toneal fluid (or ascites). Because the diffusion process for all
chemicals considered in our study is much faster than the
cellular processes under consideration, chemicals are well-
mixed. Therefore, it is reasonable to omit convective delivery
of chemicals in this model.

8. Cells can become immobilized if we impose shape constraints.
Addition of a surface area constraint as well as a high volume
constraint can make cells insensitive to changes in adhesion
and to low chemotaxis constants. Adhesion parameter sensi-
tivity analysis was therefore conducted without a surface area
constraint on the cells. This constraint was added after adhe-
sion optimization to produce cells that were more spheroidal,
as they are seen in vivo.

The 3-D ovarian tumor growth and invasion model, OvTM,
is based on the cellular Potts model framework using Compu-
Cell3D (Cickovski et al., 2007; Swat et al., 2009). Ovarian cancer

cells growing in the peritoneum were simulated using parameters
obtained from the mouse model and from published data. Para-
meters for the SKOV3.ip1 cells, endothelial cells, oxygen, growth
factors, and measurements of mouse peritoneal tissue are shown
in Table 1.

In the OvTM, five cell types are considered: ovarian tumor
(SKOV3.ip1), mesothelial, adipocyte, endothelial, and smooth
muscle. ECM fibers and peritoneal fluid are represented as special
types. This cell-based model describes cell growth, division, death,
and chemotactic migration within a 3-D tissue environment that
mimics the specific organ site.

Cells are domains on a 3-D lattice. Each cell has an ID number,
S, on each lattice site i of the cell domain, and an associated cell
type τ. Cell–cell and cell–environment interactions are specified
by an “effective energy”:

H =
∑

i,j

Jτ (Si) , τ
(
Sj
) [

1− δ
(
Si , Sj

)]
+

∑
S

λ
[
V (S)− V t (S)

]2
+

∑
i

µCi . (1)

The parameter J describes the cell-type-dependent adhesion.
Adhesion coefficients (J ) for the cell types in each model are listed
in Tables 2 and 3. The Kronecker delta function δ ensures no
energy is within cells where ID numbers are the same, limiting
adhesion to cell boundaries. A cell’s volume V is elastically con-
strained to Vt, the target cell volume; Vt is constant for the tissue
cells, but is set to increase linearly for proliferating cells. µ is the
chemical potential describing the strength of chemotaxis, and C is
the chemical concentration at the cell. This term applies to cancer
and endothelial cells when their respective chemoattractant signals
are above threshold activation values.

A modified Metropolis algorithm was used to simulate cell
dynamics. A cell boundary lattice site is selected at random; the
cell number, S, is copied to an unlike neighbor site S′ (selected
at random). This copying corresponds to the cell S protruding a
unit volume into the neighboring cell S′. The difference between
the effective energies before and after the protrusion event, E,
determines if this copying event will be accepted. If the energy
decreases, the protrusion is accepted; if it increases, the protru-
sion is accepted with a Boltzmann probability, exp(−E/T ). The
effective temperature, T, describes the amplitude of cytoskeletal
fluctuation (Mombach et al., 1995). By such microscopic mem-
brane protrusion and retraction, the cells perform biased random
walks, and rearrange themselves, within the constraints of their
volumes and chemical guidance.

Chemical dynamics
Chemical dynamics are evaluated through continuous diffusion
equations and are considered well-mixed in the peritoneal fluid.
Chemicals acting as chemoattractants to SKOV3.ip are: adipocyte-
secreted IL-8 (Nieman et al., 2011), and an unidentified growth
factor secreted from the vessel (Growth Factor 2). The chemoat-
tractant for endothelial cells during angiogenesis isVEGF. A system
of partial differential equations describes the chemical dynamics,
including diffusion through tissues, growth factor decay, glucose
and oxygen consumption, and cell-uptake of signal molecules.
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Table 1 | OvTM parameters.

Value Units Source

CHEMICAL FIELDS

O2 concentration (blood and peritoneal fluid) 98.5 mm Hg Shirasawa et al. (2003), Kizaka-Kondoh et al. (2009)

O2 diffusion (DO2 ) 84,000 µm2/min MacDougall and McCabe (1967)

VEGF diffusion (DV) 600 µm2/min Serini et al. (2003), Bauer et al. (2009)

VEGF decay (γV) 0.01083 /min Serini et al. (2003), Bauer et al. (2009)

VEGF secretion: normoxic tumor cell (αV) 3.82×10−7 pg/min/cell Huang et al. (2000)

Chemotactic Factor 2 diffusion (DC2 ) 700 µm2/min e Serini et al. (2003), Bauer et al. (2009)

Chemotactic Factor 2 decay (κC2 ) 0.01083 /min e Serini et al. (2003), Bauer et al. (2009)

Chemotactic Factor 2 secretion (αC2 ) 1.8×10−4 pg/min/cell e Serini et al. (2003), Bauer et al. (2009)

IL-8 diffusion (DC1 ) 15000 µm2/min Li Jeon et al. (2002)

IL-8 decay (equal to VEGF) (ρC1 ) 0.01083 /min e as in Jain et al. (2008)

IL-8 secretion by visceral adipocyte (αC1 ) 2.2×10−4 pg/min/cell Bruun et al. (2004)

IL-8 background concentration (peritoneal fluid) 1.732 pg/ml Barcz et al. (2002)

METABOLIC PARAMETERS

O2 consumption: proliferating cancer cell (ε) 4.93 fmoles/min/cell Freyer and Sutherland (1985), Casciari et al. (1992)

O2 threshold for hypoxia and VEGF production 19 mm Hg Höckel and Vaupel (2001), Evans et al. (2006),

Shirinifard et al. (2009)

VEGF activation threshold for angiogenesis 0.0001 pg/cell volume e

VEGF deactivation threshold for angiogenesis 0.00002 pg/cell volume e

RATE PARAMETERS

SKOV3.ip1 invasion speed 10 µm/h e from Iwanicki et al. (2011)

Rate of ECM degradation 0.55 µm2/min Bauer et al. (2009)

SKOV3.ip1 cell cycle duration 25.5±1 h m

Vascular endothelial cell cycle duration 24±1 h Ausprunk and Folkman (1977), Levine et al. (2001),

Bagley et al. (2003)

Cell volume after division 96±17 % e from m

MORPHOMETRIC PARAMETERS

Cancer cell radius 3.50 µm m

Average adipocyte cell radius 10.1 µm m

ECM (extracellular matrix) thickness 2 µm m

ECM collagen fiber radius 1 µm m

ECM collagen fiber length 20 µm e

Vascular endothelial cell diameter (initial size) 10 µm Bauer et al. (2009)

Height of mesothelial cell on mesentery 0.44–2.5 µm m, Khanna and Krediet (2009)

Average distance between adipocytes in the mesentery 0.2 µm m

Values were obtained from direct measurement (indicated by “m”) of tissues and tumors or from previously published work. Where experimental values were not

available, values were estimated for the model (indicated by “e”).
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Table 2 | Combined tension and adhesion matrix for OvTM

simulations of spheroid invasion, growth and angiogenesis.

PF VM PTC SE VW A ECM SM

PF 0 10 10 10 10 10 10 10

VM 10 0 20 20 10 20 0 10

PTC 10 20 0 0 0 3 3 0

SE 9.5 19.5 −0.5 1 0 13 5.5 2.5

VW 10 10 0 0 0 13 0 0

A 3.5 13.5 −3.5 6.5 6.5 13 1 0

ECM 9.5 −0.5 2.5 0.5 −0.5 0.5 1 0

SM 10 10 0 2.5 0 0 0 0

White boxes show adhesion coefficients between cell types (Jij) and green boxes

show adhesion coefficients between cells of the same type (Jii). Gray boxes

show the surface tension values between cell types. Surface tension is defined

as STij = Jij−(Jii + Jjj)/2 (Glazier and Graner, 1993). Negative STij signifies attraction,

and positive STij signifies repulsion. Surface tension= 0 for all STii, but homotypic

adhesion Jii can still be strong. Maximum adhesion is 0. Mesenteric invasion

models contain PF, peritoneal fluid; VM, visceral mesothelium; PTC, proliferating

tumor cells; VW, vessel wall endothelial cells, A, adipocytes; ECM, extracellular

matrix (ECM). Included in the spheroid growth model are: PTC, proliferating can-

cer cell; PF, peritoneal fluid,VM, visceral mesothelium,VW, vessel wall endothelial

cells; ECM, extracellular matrix; SM, smooth muscle. Models with angiogenesis

further include VW, vessel wall endothelial cells; SE, sprouting endothelial cells.

∂C1

∂t
= DC1∇

2C1 − ρC1 C1 + αC1δ
[
τ (S) , adipocyte

]
, (2)

∂C2

∂t
= DC2∇

2C2 − κC2 C2 + αC2δ [τ (S) , vessel] , (3)

∂V

∂t
= DV∇

2V − γV V + αV δ [τ (S) , tumor] , (4)

where C1 is IL-8,C2 is Growth Factor 2,and V isVEGF. These equa-
tions describe diffusion through tissue, decay, and production by
source cells.

Oxygen is delivered by the vessel (see Figure 7) and diffuses
from the peritoneal fluid. Its level is kept constant within the peri-
toneum. Diffusion of O2 through tissue and its consumption by
the cells is described as:

δO2

δt
= DO2∇

2O2− ∈ δ [τ (S) , tumor] (5)

Depending on the availability of oxygen in their surrounding
environment, cancer cells have the potential to be proliferating,
quiescent or necrotic. Although the capability for cancer cells to
become hypoxic or necrotic was integrated into the model, the
spheroids we simulated were too small in diameter to develop
internal hypoxia under normal physiological conditions,and never
became hypoxic or necrotic.

The secretion rates for IL-8, VEGF, and Chemotactic Factor
2 were taken from quantitative experiments (or estimated for
Chemotactic Factor 2). Oxygen was kept constant at the simu-
lation boundaries with the value corresponding to the steady-state
oxygen level in the mouse peritoneal fluid (∼98.5 mmHg). Back-
ground IL-8 was also kept constant at the z boundaries, defined

as normal to the mesothelium surface, with the value correspond-
ing to its steady-state concentration in the peritoneal fluid. IL-8
concentration at the x and y boundaries was constant at lev-
els diffusing from the adipocytes. Boundary values of VEGF and
Chemotactic Factor 2 were set to steady-state at 0, as background
values were unknown and the cells generated small, concentrated
fields that reached approximately 0 at the distance of the simu-
lation boundaries. For the diffusion rates of these four chemi-
cals (D > 15 µm2/min), CompuCell3D cannot generate boundary
conditions for tissues or cell types, as the necessary solver requires
extra solutions per time step that make running models intractably
slow (e.g., ∼525,000 extra solutions per time step are required
in the case of oxygen, resulting in ∼24 h simulation time/1 min
experimental time simulated). All parameters are listed in Table 1.

The chemotaxis constant for SKOV3.ip1 cell response to IL-
8 was increased until the cells were moving through the IL-8
gradient in mesenteric fat tissue at a rate we derived from the
ovarian cancer spheroid experiments by Iwanicki et al. (2011).
Chemotaxis by tumor cells to Chemotactic Factor 2 coming
from the vessel was tuned to have the same order of magni-
tude of response as to IL-8 (order of magnitude (IL-8 concen-
tration× chemotaxis constant)= order of magnitude (Chemo-
tactic Factor 2 concentration× chemotaxis constant), where the
chemotaxis constant= 1× 1013.

Cell reproduction
In OvTM, the cellular level model and the chemical environment
model are integrated through the choice of a common time-scale.
In the cellular Potts model, each Monte Carlo Step (MCS) cor-
responds to as many cellular protrusion events as the number of
lattice sites in the simulation domain. We define one MCS to cor-
respond to 1 min of real time. The chemical equations (Eqs 2, 3,
and 4) are solved at the time step of 1 min, when the cell lattice
configuration and states are assumed constant. The cells update
their states according to their local chemical concentrations. The
cell lattice is then updated for one MCS assuming chemicals stay
constant. Such iterative feedback and update links the discrete cel-
lular Potts model and the continuous chemical equations together.
Each cell has its own division time and age clock. Division time
for cells is set on a Gaussian distribution; SKOV3.ip1 cells divide
between 24.5 and 26.5 h and endothelial cells divide between 23
and 25 h. A cell divides when two conditions are satisfied: (a) the
cell’s age is greater than or equal to its division time, and (b) the
cell’s volume is greater than or equal to its target volume, which
increases linearly with the cell’s age. When the cell (S) divides, it is
halved into two daughter cells, S and S′.

Tissue microenvironments
The three OvTM model scenarios each represent several cubic
millimeters of peritoneal space, about one third of which is tissue.
(The invasion model is 7.6 mm3 and contains 2.6 mm3 of tissue.)
The rest of the volume is filled with peritoneal fluid present in the
mammalian peritoneal cavity. Cell shapes and sizes were deter-
mined by cell morphometry studies of normal mice, nude mice,
and SKOV3.ip1 xenografts. Thickness of the adipose layer sur-
rounding vessels of the mesentery was taken from the literature.
Tissue rigidity in smooth muscle and adipocytes was estimated
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Table 3 | Exploration of adhesion parameters in spheroids attached to the surface of the small intestine.

Parameters tested Results Spheroid images

2-D (tumor center) 3-D

Low homotypic adhesion and low heterotypic

adhesion to non-tumor cells

By 24 h, tumor cells show reduced volume

and the spheroid is no longer cohesive

Cell type 1 Cell type 2 Adhesion 1⇔2

PTC PTC 20

PTC other 20

other=PF, ECM, VM, and SM

Low homotypic adhesion and high heterotypic

adhesion

By 24 h, the spheroid has fragmented while

the mesothelium has aggregated

Cell type 1 Cell type 2 Adhesion 1⇔2

PTC PTC 20

PTC other Tested 0, 1, 3, and 5

High homotypic adhesion and high heterotypic

adhesion

By 12 h, the spheroid has begun to

disintegrate and the mesothelium has

aggregated at the base of the spheroid
Cell type 1 Cell type 2 Adhesion 1⇔2

PTC PTC 0

PTC other 0

High homotypic adhesion and low heterotypic

adhesion

No surface area constraint

At 24 h, a coherent spheroid with a similar

appearance to the SKOV3.ip1 in vivo tumors

can be seen. The mesothelium remains

intact. However, cells are abnormally

convoluted
Cell type 1 Cell type 2 Adhesion 1⇔2

PTC PTC 0

PTC other Tested 10 and 20

High homotypic adhesion and low heterotypic

adhesion

Additional surface area constraint

This model most closely approximates the

shape of SKOV3.ip1 spheroids and cells

in vivo as shown at 12 h

Cell type 1 Cell type 2 Adhesion 1⇔2

PTC PTC 0

PTC other SeeTable 2

Abbreviations are the same as inTable 2.

based on cell junctions and spacing from EM images of mouse
tissues. The depth of penetration of SKOV3.ip1 cells on both tis-
sue types was based upon xenograft tumors in our microscopic
images.

The tissue microenvironments we considered were the outer
surface of the intestine (Figures 2 and 7) and the mesentery
(Figure 5). A layer of mesothelium covers both surfaces. Both
environments are initialized with a tumor spheroid of seven cells
contacting the center of the contiguous mesothelial surface in the
peritoneal cavity.

On the intestine, smooth muscle lies beneath the mesothelium,
separated from it by a thin layer of ECM. Ovarian cancer cells can
push aside the mesothelium and degrade ECM (Kenny et al., 2008;
Sodek et al., 2008), but strong adhesion between the muscle cells

prevents further invasion. Scattered blood vessels lie just below
the mesothelium. In our model, initiation of angiogenesis was
triggered by a threshold VEGF level. When the local VEGF con-
centration exceeds a threshold, endothelial cells lining the blood
vessels begin to proliferate and migrate, organizing into vascular
sprouts.

Tumors on the omentum or mesentery can invade through the
mesothelium and migrate through the loose matrix and adipocyte
fields below. On the mesentery, ovarian cancer cells adhering to
the mesothelium push past the mesothelial cells as chemotactic
gradients originating from adipocytes and vasculature stimulate
migration into the tissue.

Both models are initialized with a tumor spheroid of seven cells
contacting the center of the contiguous mesothelial surface in the
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peritoneal cavity. We assume ECM degradation rate by SKOV3.ip1
tip cells at the invading front is the same as the degradation rate
by endothelial cells at the sprout tip (Bauer et al., 2009).

The process of angiogenesis is driven by endothelial cell chemo-
taxis toward VEGF, and by differential adhesive interactions
between endothelial sprout cells and cancer cells. This simple
model suggests that, to produce vasculature morphology simi-
lar to that in very small xenograft tumors, latent endothelial cells
must become proliferating endothelial cells and initiate angio-
genic behavior as soon as the spheroid comes within diffusion
distance for low concentrations of VEGF of the vessel. Given VEGF
production of 3.82× 10−7 pg/min/SKOV3.ip1 cell, the threshold
for the switch from latent to sprouting endothelial cells is set at
2.08× 10−8 pg/cell volume, which initiates angiogenesis when the
spheroid is about 5 µm from the vessel.

Exploration of adhesion parameters
To reproduce the morphology of in vivo SKOV3.ip1 xenografts
on the intestine, we tested four combinations of homotypic and
heterotypic adhesion parameters (Table 3). Only when tumors
were parameterized to have high homotypic adhesion between
cancer cells along with low heterotypic adhesion between cancer
cells and components of the microenvironment (peritoneal fluid,
ECM, visceral mesothelium, and smooth muscle cells) did can-
cer cells form rounded spheroids similar to those seen in vivo. A
surface area constraint was also imposed on the cancer cells to
maintain cell integrity. We ran at least five replica simulations for
each parameter set, and observed no qualitative differences, within
small variations, in our results.

RESULTS
SKOV3.ip1 OVARIAN CANCER CELLS ADHERE TO THE SURFACE OF
NUMEROUS ORGANS IN THE PERITONEUM AND FORM LARGE TUMORS
BY 2 WEEKS POST-INJECTION
To recapitulate the essential steps in ovarian cancer relapse
from minimal residual disease in the peritoneum, five million
SKOV3.ip1 human ovarian cancer cells expressing GFP were
injected into the peritoneum of nude mice as a single cell suspen-
sion. Mice were euthanized after 2 weeks and mounted on the stage
of an OV100 fluorescence imaging system. As shown in Figure 1A,
macroscopic tumors developed on numerous organs in the peri-
toneum during this period. The main sites of attachment were the
omentum (Figures 1A,B), the surface of the stomach (Figure 1C)
and small intestine, the mesentery (Figure 1D) and the spleen
(Figure 1E). Tumors also developed on the liver in half of the
mice examined. The largest tumors grew from the omentum and
expanded into the peritoneum, reaching volumes up to 200 mm3

by 2 weeks. Even within this short time frame, the tumors are well
vascularized with vessels penetrating and wrapping around the
outside of the largest tumors. Many smaller tumors can be found
attached to the mesentery, often visible to the naked eye, ranging
in size from 0.4 µm3 to 1 mm3.

STRONG HOMOTYPIC INTERACTIONS DRIVE SKOV3.ip AGGREGATION
It has been hypothesized that ovarian cancer cells aggregate and
form spheroids when suspended in peritoneal fluid and that these
spheroids then attach to the peritoneal surface and form large

tumors (Shield et al., 2009). To test this hypothesis and to assess the
clonality of the tumors at distinct sites, a mixture of SKOV3.ip1-
GFP and SKOV3.ip1-RFP cells were co-injected into nude mice as
a single cell suspension. The resulting tumors were imaged 2 weeks
later. Tumors on the omentum developed as well-mixed chimeras,
with both green and red fluorescence throughout (Figures 2A,B).
In higher magnification images, small areas with predominantly
red fluorescence can be distinguished from areas with predomi-
nantly green fluorescence, but there are no large sections of tumor
expressing a single fluorescent protein (Figure 2C). The major-
ity of the observed mesenteric tumors (92± 2% of 51 observed
tumors) also have mixed green and red fluorescence, indicating
that even these small tumors originated from a mixed spheroid
(Figures 2D,E). The few small tumors consisting solely of GFP-
positive or RFP-positive cells may represent rare instances where a
single cell, or a small group of singly fluorescent cells, was able to
adhere and grow (Figure 2E, arrow).

These data provided the first essential parameters for initial-
ization of our OvTM mathematical model, since adhesion is a
predominant feature of the cellular Potts framework (Graner and
Glazier, 1992). Simulations were initiated with an adherent spher-
oid on the surface of the intestine. The spheroid subsequently
pushes through the mesothelium. This process has been observed
in vitro, where tumor spheroids cause retraction of the mesothe-
lium using a myosin-mediated process (Iwanicki et al., 2011).

The in silico experiments using OvTM showed that only by
assigning high homotypic adhesion strength to the cancer cells
could the model reproduce spheroid cohesiveness and growth
(Figure 2F). For details on how the adhesion parameters were
optimized, see Section “Materials and Methods” (Table 3). Simu-
lations in which cancer cells adhered more strongly to other cancer
cells than to any other cell type, produced the most rounded tumor
morphology that closely resembled the xenograft tumors. Adding
a cellular surface area constraint maintained the integrity of the
cells themselves. Since the model indicated that tumor cell homo-
typic adhesion is an essential feature governing dissemination and
growth, this concept was further tested experimentally by sequen-
tially introducing fluorescent cancer cells into the peritoneum
(Figure 3). In this experiment, tumors were first established by
injection of 2.5 million SKOV3.ip1-GFP cells. After a period of
1 week to permit engraftment of the green-fluorescent cells, an
equal number of SKOV3.ip1-RFP cells were injected. Follow-
ing another week, the relative distribution and burden of both
green and red fluorescent tumor cells were evaluated. As expected,
SKOV3.ip1-GFP tumors formed on the omentum, mesentery, and
spleen. Notably, the majority of red fluorescent cells adhered
to and enveloped the pre-existing GFP-positive tumors as can
be seen on the omental tumors (Figure 3A) and on the spleen
(Figure 3B), rather than forming tumors independently. Although
some exclusively RFP-positive tumors were present on the mesen-
tery (Figure 3C, arrows), 70% of the 24 RFP-positive tumors
examined were also GFP-positive.

TUMOR CELLS MIGRATE THROUGH THE OPEN ARCHITECTURE OF THE
MESENTERY IN RESPONSE TO CHEMOTACTIC SIGNALS
Our next goal was to identify specific features of the microenvi-
ronment that underlie differences in ovarian tumor morphology
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FIGURE 1 | SKOV3.ip1-GFP cells colonize the surface of many
organs in the mouse peritoneum. (A) Image of SKOV3.ip1 tumors
growing from the omentum (large central tumor, arrowhead), the
intestine, attached mesentery (white arrows), and the liver (yellow
arrow) of an RFP nude mouse. Tumors on the spleen are not visible in
this image. (B) The largest tumors are attached to the omentum located

on the larger curvature of the stomach and are well vascularized. (C)
Tumors attached to the stomach are spherical and non-invasive. (D) On
the mesentery, small tumors are located adjacent to major blood
vessels (arrow). (E) Small tumors growing on the spleen have a flatter,
sponge-like morphology with less well defined borders between the
tumor (green) and the normal tissue.

by examining the structure of external tissue layers facing the peri-
toneum. Both normal and tumor-associated tissues were extracted
and prepared for TEM imaging. The micrograph in Figure 4A
illustrates the open architecture of the normal mesentery, with
loosely packed fat cells below the mesothelium. The mesothelial
layer is remarkably thin in some areas, ranging from 0.4 to 2.5 µm
in thickness. A second image (Figure 4B) shows a cross-section of
mesentery excised from mice engrafted with SKOV3.ip1 human
ovarian cancer cells. Labels mark the locations of probable tumor

cells, identified by the characteristic ultrastructure of their nuclei.
The tumor cells are interior to the mesothelium and adjacent to a
small blood vessel.

To understand how tumors are established in the mesentery,
SKOV3.ip1-GFP cells were injected into the peritoneum and 4 days
later segments of the mesentery were removed for whole mount
imaging. As shown in Figures 4C,D, images from this early time
point provide a window into the initial steps in the engraftment
process. Small groups of fluorescent cancer cells were seen within
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FIGURE 2 | Co-injected SKOV3.ip1-GFP and RFP cells yield chimeric
tumors. Equal numbers of SKOV3.ip1-GFP and SKOV3.ip1-RFP cells
were injected as a single-cell suspension into the peritoneum of nude
mice. (A–C) Large tumors on the omentum are both GFP-positive
(GFP-filter) (A) and RFP-positive (RFP-filter) (B). White boxes: magnified
region shown in (C). (C) A 5X magnified composite image of the tumor
from (A,B) showing a mixture of GFP- and RFP-positive cells. (D,E)
Chimeric tumors on the mesentery have patches of green and red

fluorescence. A clonal tumor that is only GFP-positive can be seen (E),
(arrow). (F) Endpoint of a mathematical simulation initialized with a
mixed GFP/RFP spheroid of 56 cells attached to the mesothelial surface
of the intestine. A 180×180×180 µm lattice (5.832 mm3) is partitioned
into layers of smooth muscle (brown), extracellular matrix fibers (teal),
mesothelium (dark blue), and vessel (red) creating a 0.84 mm3 tissue
layer. Above the tissue is peritoneal fluid. The 3-D image shows a
chimeric tumor (orange and green cells) after 7 days of growth.

the mesenteric adipose layer (Figure 4C) or beneath the adipose
layer immediately adjacent to vessels (Figure 4D).

We next used OvTM to evaluate the conditions necessary for
cancer cells to migrate to mesenteric vessels within this short
time period. The cellular Potts model is particularly well suited
for this type of modeling, since it specifically represents cell–cell
interactions and cell movement, which is governed by local con-
tacts and chemotactic gradients. The 3-D stochastic model was
populated with heterogeneous cell types (cancer cells, adipocytes,
endothelial cells, and mesothelium) and geometric features (shape,
location, organization, and thickness of tissue layers) based on
TEM images. Extracellular factors, such as chemokines and oxy-
gen, are described by diffusion equations with sources and sinks.
In each case, cancer cells push through the mesothelial layer and
degrade the underlying ECM, as shown experimentally (Sodek
et al., 2008). Simulations can then demonstrate the extent of tumor
invasion in response to different chemotactic environments.

Figure 5 shows results from three scenarios that were consid-
ered in these simulations. Movies for representative simulations
are provided in Supplementary Data (Movies S1–S3 in Supple-
mentary Material). For each case, a spheroid of seven cancer cells
was initially positioned on a 3-D geometrical model of the mesen-
tery. Mesothelial cells form the boundary with the peritoneum;
adipocytes are dispersed within the interior, and a single vessel
transverses the tissue.

In the first scenario, there is no local production of chemotac-
tic factors imposed. The spheroid is positioned such that it is in
contact with the ECM. In the absence of chemotactic factors, the

spheroid dissolves the ECM and presses into the adipose tissue after
2 days (Figure 5A). This progression is too slow to explain cancer
cell localization near mesenteric blood vessels in the mouse model.

SKOV3.ip1 cells have been shown to home toward chemokine-
producing adipocytes and upregulate the IL-8 receptor (CXCR1)
when co-cultured with adipocytes (Nieman et al., 2011). There-
fore, in the second scenario, simulation parameters were modified
such that all adipocytes within the mesentery secrete IL-8 at a rate
of 2.2× 10−4 pg/min/cell (Bruun et al., 2004), which diffuses at
1.5× 104 µm2/min (Li Jeon et al., 2002). Cancer cells are then
allowed to chemotax up the resulting IL-8 gradient. In our model,
spheroid invasion of the ultra-thin mesothelium is rapid, occur-
ring at a rate of 10 µm/h based upon the in vitro experiments of
Iwanicki et al. (2011). The pseudo-colored image in Figure 5B
shows the predicted distribution of IL-8 in the mesenteric tissue at
steady state, illustrating the initial conditions experienced by the
tumor spheroid. Simulated IL-8 concentrations within the peri-
toneum agree with those measured experimentally (Barcz et al.,
2002). When IL-8 chemotaxis is included in the simulation, the
spheroid moves past the mesentery barrier and pushes between
adipocytes to settle near the center of the adipose layer where
the IL-8 concentration is greatest (Figure 5D). This occurs within
500 min after initialization. In this case, rapid chemotaxis occurs,
but the cancer cells do not localize near the vessel.

In the final case, both adipose and endothelial cells are assumed
to produce chemotactic factors that attract cancer cells. We intro-
duce a new chemotactic factor (Chemotactic Factor 2) that orig-
inates from the mesenteric vessel. Steady-state values represented
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FIGURE 3 | SKOV3.ip1-GFP and RFP cells injected sequentially
emphasize the importance of tumor cell-cell adhesion. About 2.5 million
SKOV3.ip1-GFP cells were injected into nude mice and allowed to grow for
1 week before injection of an equal number of SKOV3.ip1-RFP cells. Tumors
were imaged 1 week later. (A) SKOV3.ip1-RFP cells preferentially adhere to

and coat existing GFP-positive tumors on the omentum. (B) Similar to the
omentum, SKOV3.ip1-RFP cells preferentially adhere to existing GFP-positive
tumors on the spleen. (C) On the mesentery, RFP-positive cells form new
tumors (white arrows) as well as adhering to existing tumors. Int, small
intestine (autofluorescent).

in the pseudo-colored profile in Figure 5C show that a signifi-
cant gradient can be established by endothelial cell secretion of
Chemotactic Factor 2 at a rate of 1.8× 10−4 pg/min/cell, which
is comparable to that of IL-8 secretion from the adipocytes, and
assuming diffusion and decay rates similar to VEGF. When cells
are arranged in this geometry, the presence of both chemotac-
tic gradients causes spheroids to penetrate the mesothelial layer,
move by chemotaxis through the loose adipose layer toward the
vessel, and halt at the tightly adherent barrier of the vessel wall
(Figure 5E). Together with the experimental data, these results
support the conclusion that both adipocytes and endothelial cells
are likely sources of chemokines that attract ovarian tumor cells.

SMALL SKOV3.ip1 TUMORS ATTACHED TO SURFACES OF THE
STOMACH OR SMALL INTESTINE ARE NON-INVASIVE AND INITIATE
ANGIOGENESIS
We next focused on explanations for the distinct morphology of
tumors attached to the stomach or small intestine, which do not
invade the tissue and instead grow outward into the peritoneal
cavity (Figure 6A). We again sought insight from high resolution
TEM images. As shown Figure 6C (mesentery) and Figure 6D
(stomach), the outer mesothelial layer remains relatively thin over
these organs (typically 0.5 µ thick). The next layer is distinguished
by dense collagen deposits. Prominent smooth muscle layers can

be seen in both the small intestine and stomach, where the muscle
cells are closely opposed and connected by gap junctions (Friend
and Gilula, 1972) (arrows, Figure 6B).

The morphology of a tumor attached to the outer rim of the
lower intestine is seen at a lower magnification in Figure 6E,
which shows a representative section from a formalin-fixed, paraf-
fin block stained with H&E (hematoxylin and eosin). The smooth
muscle of the small intestine remains intact at the tumor/tissue
interface. Thus, tumors attached to the exterior of the gut are
presented with a discrete barrier and adapt by growth into the
available and flexible space between organs. The intestine has a
capillary bed that provides oxygen to the mesothelium and con-
tributes to the oxygenated peritoneal environment (Figure 6F).
Because of the lack of a smooth muscle barrier, these vessels may
provide a more accessible endothelial source for neoangiogenesis
critical to tumor success.

Microscopic evaluations provide support for this hypothe-
sis (Figures 6B,E). Fluorescence imaging shows the remarkable
extent of tumor vascularization, even in young GFP-positive
tumors attached to the intestinal wall at 2 weeks post-engraftment
(Figure 6B). A red arrowhead in Figure 6E points to a vessel visible
within the tumor cross-section. This evidence led us to conduct
simulations to explain the rapid onset of neovascularization in the
absence of invasion.
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FIGURE 4 | Four days post-injection, tumor cells have invaded the
mesentery and migrated through adipose tissue to approach mesenteric
blood vessels. (A) Transmission electron micrograph of the edge of the
mesentery from a nude mouse. The mesentery architecture is open with
loosely connected adipose cells below the mesothelium. Adipocytes are
identified by their large lipid droplets. (B) Transmission electron micrograph of

mesentery excised 4 days post-injection of SKOV3.ip1 cells. Arrows mark the
locations of probable cancer cells. The cancer cells lie close to a blood vessel.
(C) Cancer cells invading mesenteric adipose tissue adjacent to a vessel. On
the right, GFP fluorescence of the cancer cells; middle, brightfield; left,
composite image. (D) Cancer cells closely opposed to a mesenteric vessel.
Panels are arranged as in (C).

SKOV3.ip1 TUMOR SPHEROIDS ARE INITIALLY WELL OXYGENATED AND
LIKELY INDUCE NEOVASCULARIZATION VIA CONSTITUTIVE SECRETION
OF ANGIOGENIC FACTORS
For the in silico model of angiogenesis, micron-scale geometric
parameters for the tissue surface architecture were again deter-
mined from TEM images. For the gut, adhesion between smooth
muscle cells is set sufficiently high as to prevent spheroid pen-
etration below the mesothelial and collagen layers. Under these
constraints, simulations of tumor adhesion and growth result in
the formation of spherical tumors that are consistent with the
morphology of engrafted tumors on mouse intestine (compare
Figures 6A and 7C). Since these simulations incorporate pub-
lished values for oxygen content in the peritoneal fluid and oxygen
diffusion rate (MacDougall and McCabe, 1967; Kizaka-Kondoh
et al., 2009), it is possible to calculate the distribution of oxy-
gen in all locations during tumor growth. By coarse-graining the

model (1 voxel= 1 cell), we were able to determine the oxy-
gen concentration gradients for large spheroids suspended in
the peritoneal fluid. In spheroids of varying sizes, oxygen con-
centration decreased within the core. However, spheroids up to
336 µm in diameter (58,000 cells) approach the hypoxic thresh-
old of 19 mm Hg of O2 (Höckel and Vaupel, 2001), but are
not yet hypoxic at their core (Figure 7A). Continued growth to
364 µm in diameter (74,000 cells) results in a hypoxic core with
an oxygen concentration of 0.5 mm Hg (Figure 7B), leading to
the prediction that the hypoxic threshold is reached when the
spheroid is between these two sizes. Tumor sizes in mouse sam-
ples were compared based on the cross-sectional area of tumors
in H&E-stained sections. Mesenteric tumor vascularization with
respect to tumor area is shown as scatter dot plots in Figure 7E.
Of the 76 tumors measured, all tumors above the predicted
hypoxic threshold (red) were vascularized. However, 57% of small
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FIGURE 5 | 3-D simulations of cancer cell attachment and
migration to the mesenteric vessel. (A) The initial configuration of the
simulation has a seven-cell spheroid attached to the surface of the
mesentery. To model this environment, a 170×170× 263 µm lattice
(7.6 mm3) is partitioned into five layers of adipocytes (light blue)
sandwiched between single layers of mesothelium (dark blue) and
ECM (teal) creating a 2.6 mm3 tissue layer surrounded by peritoneal
fluid. A blood vessel on the right is represented by a solid rod (red). In
the absence of chemotactic signals, the spheroid penetrates only the
thin mesothelial layer at 1–2 min of simulation. (B,C) Steady-state

distributions of chemotactic factors tested in these simulations. The
color scale represents variation in factor concentrations in ng/ml. (B)
The IL-8 gradient created by secretion of IL-8 from adipocytes. (C) A
chemotactic gradient based on secretion of a hypothetical chemotactic
factor (Chemotactic Factor 2) from mesenteric vessels. (D) Sequences
in the simulation where a chemotactic gradient based on IL-8 is
originating from the adipocytes. The spheroid migrates toward the
center of the adipose layer. (E) Sequences of a simulation where
chemotactic signals originate from both the adipocytes and the vessel.
The spheroid migrates through the adipose layer toward the vessel.

tumors with an area of <104,000 µm2 (below the predicted
hypoxic threshold) were also vascularized. These results suggest
that angiogenesis is not solely hypoxia-driven in the SKOV3.ip1
model.

In the next series of simulations, we examined how angio-
genesis might originate from these spheroids in the absence of
hypoxic signaling. There is experimental evidence that SKOV3.ip1
cells constitutively express VEGF in vivo and in vitro even when
maintained in well-oxygenated tissue culture conditions (Yoneda
et al., 1998). Secretion of VEGF by the cancer cells was therefore
incorporated into these simulations. Small spheroids attached to
the gut penetrate the mesothelial layer, permitting VEGF secreted
from cancer cells to initiate chemotactic gradients and attract
endothelial cells that line blood vessels in the sub-mesothelial layer.
The process of angiogenesis is driven by endothelial cell chemo-
taxis toward VEGF, and adhesive interactions between endothelial
sprout cells and cancer cells. To produce vasculature visually sim-
ilar to that in very small xenograft tumors, latent endothelial

cells must begin to proliferate and migrate as soon as the spher-
oid comes close enough to the vessel to allow diffusion of low
concentrations of VEGF. Given spheroid VEGF production of
3.82× 10−7 pg/min/SKOV3.ip1 cell, the threshold for the switch
from latent to sprouting endothelial cells was set at 2.08× 10−8,
to initiate angiogenesis when the spheroid is ∼5 µm from the
vessel.

Angiogenesis in the OvTM model follows validated methods
that treat VEGF as diffusible molecules whose gradient, together
with the biophysical environment, drives endothelial migration
and proliferation, and eventually morphogenesis of vessel sprouts
(Bauer et al., 2007; Shirinifard et al., 2009). Parameters and model
assumptions are described in the Materials and Methods. Sim-
ulation results show that constitutive production of VEGF from
even a small spheroid of SKOV3.ip1 cells should be capable of
initiating vascular outgrowths that penetrate the spheroid within
12 h of attachment (Figure 7D; Movie S4 in Supplementary Mate-
rial). Results of the computational model are consistent with our
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FIGURE 6 |Tumors that adhere to the walls of the small intestine are
spherical and non-invasive. (A) An SKOV3.ip1-GFP tumor adhering to
the wall of the small intestine 2 weeks post-injection in an RFP nude
mouse. Shown is a composite GFP/RFP image. Small vessels are visible
on the surface of the tumor. (B) Higher magnification image of the
vascular tree infiltrating a green-fluorescent tumor on the intestine. (C)
Transmission electron micrograph of the small intestine wall. Tissue was
collected from a nude mouse 4 days post-injection with SKOV3.ip1-GFP

cells. The wall of the small intestine consists of a thin layer of
mesothelium overlaying bundles of smooth muscle fibers. (D) TEM
image of stomach ultrastructure, illustrating the distinct cellular layers.
(E) An H&E-stained section of a tumor attached to the small intestine.
There is a clear delineation between the intestine and the tumor. The
tumor is vascularized (red arrowhead). (F). An H&E-stained section of the
surface of a mouse intestine. Arrow points to vessels at the
intestine-mesentery junction.

experimental observations that even very small tumors, com-
prised of less than 20,000 SKOV3.ip1 cells, are fully vascularized
(Figure 7F). They are also consistent with 3-D images of tumor
slices stained for confocal fluorescence imaging that show exten-
sive tumor vascularization 3 weeks post-injection (Figure 7G). In
this final image, an anti-CD31 antibody (red) marks endothelial
cells, Hoechst (blue) stains the cell nuclei and an anti-GFP anti-
body (green) labels the GFP-positive cancer cells. A rotating 3-D
view of this tumor section is found in Movie S5 in Supplementary
Material.

DISCUSSION
In this work, we combine a murine xenograft model with a com-
putational model, OvTM, to evaluate critical factors governing
the dissemination and growth patterns of ovarian cancer in the
peritoneum. These models best represent ovarian cancer relapse
after debulking surgery, where disease progression initiates from
microscopic residual disease in the peritoneal chamber.

In cellular Potts models, the variety of constraints placed on
cells must be properly balanced to produce biologically reason-
able cellular and tissue structure and movement. We quantitatively

www.frontiersin.org May 2013 | Volume 3 | Article 97 |174

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Steinkamp et al. Peritoneal ovarian cancer microenvironment

F

10 µm
C D

G

E

100 µm

A

0.0

25

75

50

100

mm Hg

58,000 cells

B

74,000 cells

600000

500000

400000

300000

200000

100000

0

Mesenteric Tumors

Tumor Vascularization

Vascularized Not Vascularized

T
u

m
o

r 
A

re
a
 (
µ

m
2
)

120000

100000

80000

60000

40000

20000

0

T
u

m
o

r 
A

re
a
 (
µ

m
2
)

Tumor Vascularization

Vascularized Not Vascularized

Tumors below the hypoxic threshold

10 µm

FIGURE 7 | Continued

Frontiers in Oncology | Molecular and Cellular Oncology May 2013 | Volume 3 | Article 97 |175

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Steinkamp et al. Peritoneal ovarian cancer microenvironment

FIGURE 7 | Vascularization of tumors is rapid and can be attributed to
constitutive release of angiogenic factors by SKOV3.ip1 cells. (A,B)
Representations of the steady-state oxygen gradients from coarse-grained
simulations of spheroids suspended in peritoneal fluid. The color scale
indicates the range of oxygen concentrations in mm Hg. Black circles mark
the perimeter of the spheroids. (A) The oxygen gradient through the middle
of a spheroid 336 µm in diameter (58,000 cells). At this size, all cells are well
oxygenated with an oxygen partial pressure above the hypoxic threshold of
19 mm Hg (indicated on the color scale as a blue arrow). The lowest oxygen
concentration at the core of the spheroid is 21.6 mm Hg. (B) The oxygen
gradient through the middle of a spheroid 364 µm in diameter (74,000 cells).
By the time a spheroid has reached this size, the core is hypoxic (0.5 mm
Hg). (C,D) OvTM simulations of angiogenesis in a tumor attached to the
intestinal wall, assuming constitutive release of VEGF from cancer cells.
(C) 3-D image of the simulation after 7.8 days when the tumor has grown to
6,400 cells. (D) 2-D slice through the middle of the tumor in (D) to show

vessel tree morphology. (E) Scatter dot plots of mesenteric tumor
vascularization with respect to cross-sectional tumor area as determined
from H&E-stained sections of mouse intestine and mesentery collected
3 weeks post-injection. Areas of all mesenteric tumors measured are plotted
on the left. Tumors with areas above the predicted hypoxic threshold are in
red. All non-vascularized tumors fall below the hypoxic threshold. The right
plot shows the area and vascularization status of small tumors that fall
below the hypoxic threshold. A majority of these small tumors (57%) are
also vascularized. Lines indicate the median value. (F) Cross-sectional view
of a small mesenteric tumor after H&E staining. Red blood cells (red) can be
seen populating vessels within the tumor (blue). (G) Confocal image of
ovarian tumor removed from the surface of the gut and labeled with
anti-CD31 antibody (endothelial cell marker, red fluorescence) to distinguish
tumor vasculature. An anti-GFP antibody with an FITC-labeled secondary
antibody marks GFP-expressing cancer cells; Hoechst (blue fluorescence)
labels the nuclei of all cells in the field of view.

modeled oxygenation in a simple spheroid to estimate at what
diameter the tumor center would become hypoxic, for compari-
son with diameters of vascularized tumors observed in the mouse
xenografts. Cancer cell homotypic and heterotypic adhesions on
smooth muscle were then tuned to regenerate the spheroidal mor-
phology of SKOV3.ip1 xenograft tumors on the small intestine
or stomach (Figure 6A). To simulate the depth to which spher-
oids penetrate in soft tissue due to a chemotactic motive force, the
underlying tissue structure was adjusted to represent a fatty section
of the mesentery. In the simulations, tumors remain on the surface
of smooth muscle, a tissue with many underlying tight junctions
(Figures 6C,D), and invade soft tissues with space between cells,
such as the mesentery (Figure 4A).

Finally, we simulated VEGF-driven angiogenic morphogenesis
borrowing from previous methods using cellular Potts models for
tumor-driven angiogenesis (Bauer et al., 2007, 2009; Shirinifard
et al., 2009), in which endothelial cell chemotaxis toward soluble
VEGF leads to angiogenic sprouting and branching. These models
treated VEGF as a diffusible molecule whose gradient, together
with the biophysical environment, drives endothelial migration
and proliferation, and eventually morphogenesis of vessel sprouts.
We did not include other angiogenesis dynamics from Bauer et al.
(2009), which considered endothelial cell interactions with the
ECM to further drive sprouting morphogenesis, nor does our
model assess tumor growth as in Shirinifard et al. (2009), which
modeled tumor growth in response to a growing network of sur-
rounding vessels providing nutrients. Instead, angiogenesis was
modeled as a simple morphogenetic process driven by chemotaxis
and differential adhesion that penetrates a 3-D tumor. The sprout-
ing vessel’s base cell (or cells) has a semi-permanent elastic bond
to the existing vessel, describing the labile adhesion interactions
between them. Otherwise, differential adhesions between tumor
and endothelial cells facilitate endothelial sprouting up the VEGF
gradient.

The basic OvTM model and parameter set remain the same for
all three groups of simulations (spheroids on muscle, spheroids
invading mesenteric fat, and angiogenic sprouts in spheroids on
muscle), except for the following: Between the cases of spheroid
growth in different niches, the tissue surface is comprised of dif-
ferent cell types with their associated parameters. In angiogenesis
simulations, the volume constraint for cancer cells was increased to

help prevent cell fragmentation during migration. Constraints on
endothelial cells in the angiogenesis model (proliferating endothe-
lial, non-proliferating endothelial, and permanent vessel) include
elastic labile adhesion bonds between each type of vascular cell and
its neighbors. The CC3D simulation code will be available upon
request to the authors.

We show that, for the aggressive SKOV3.ip1 cell line, homotypic
adhesion between cancer cells is a defining feature that favors the
aggregation of cancer cells into small spheroids. The spheroid mor-
phology may promote adhesion-mediated cell survival signals and
allow cancer cells to evade anoikis, a cell death program usually
triggered by loss of cell adhesion to the ECM (Kim et al., 2012).
We speculate that these strong homotypic interactions may help
to explain the typical clinical presentation where ovarian cancer
is largely confined to the peritoneum and often accompanied by
ascites. It is notable that others have shown spheroids are less sus-
ceptible to chemotherapeutic agents and may therefore contribute
to relapse (Shield et al., 2009).

While some treatment regimens have focused on reducing
metastatic spread through limiting cancer cell adhesion to the
mesothelium (Sawada et al., 2012), we were interested in whether
interactions between cancer cells might also be an important
target. Using serial injections of green-fluorescent and red-
fluorescent cells, we demonstrated that newly introduced cancer
cells preferentially adhere to existing tumors. Strong cell-cell adhe-
sion between cancer cells that stabilizes tumor clusters in the
simulations could explain this observation. However, autocrine
factors may also contribute to cancer cell homing, similar to the
release of IL-6 and IL-8 from breast tumors that draws circu-
lating tumor cells back to the primary tumor site (Kim et al.,
2009). Although the mechanism is not well understood, thera-
pies targeting ovarian cancer cell-cell homotypic adhesion may
be worth consideration. In addition to limiting tumor mass, such
drugs might be administered in combination with conventional
chemotherapy to improve drug penetration.

Distinct niches within the peritoneal microenvironment also
help to restrict cancer cells to the peritoneum and limit metastatic
spread to other anatomical sites. Based upon the animal and math-
ematical models, colonization and growth is favored in loosely
organized tissues. There are similarities between the open archi-
tectures of the mesentery and omentum, two organs that are
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colonized by SKOV3.ip1 cells and share rich beds of adipose tissue
known to secrete cytokines and growth factors attractive to cancer
cells (Collins et al., 2009; Klopp et al., 2012). The adipocyte-rich
omentum has a slightly thicker mesothelial layer than the mesen-
tery, but has stomata or openings in the mesothelium above the
milky spots that expose the underlying layers (Cui et al., 2002). The
open architecture of these organs offers few barriers to cancer cells
that undergo chemotaxis in response to local chemokine produc-
tion. In contrast, even the aggressive SKOV3.ip1 cancer cell line
is largely blocked by physical barriers such as the smooth muscle
layers in the GI tract.

Our work is consistent with recent studies by Nieman et al.
(2011), who showed that SKOV3.ip1 cells adhere to the omentum
as early as 20 min post-injection and migrate in response to IL-8
and other chemotactic agents produced by adipocytes. In addition,
we provide new evidence suggesting that SKVO3.ip1 cells migrate
through the mesothelium and adipose tissue toward mesenteric
vessels. Chemotaxis of cancer cells toward existing vessels has
been observed in rodent models injected subcutaneously with
mammary carcinoma cells (Li et al., 2000). Based on results from
OvTM simulations, we propose that a chemotactic factor originat-
ing from the vessel may mediate this process. Although the identity
of the factor is unknown, it is possible that vessels also produce
an IL-8 gradient that attracts cancer cells, since activated vascular
smooth muscle cells are capable of producing IL-8 (Wang et al.,
1991). Growth factors secreted by perivascular tumor-associated
macrophages, such as the epidermal growth factor (EGF), could
also promote local survival and proliferation of tumors that take
up residence near vessels (Lewis and Pollard, 2006).

Interestingly, rodent models that showed tumor migration to
blood vessels also exhibited early angiogenesis in tumors consisting
of fewer than 300 cells (Li et al., 2000). The constitutive expres-
sion of angiogenic factors by SKOV3.ip1 cells may be the single

most important feature contributing to the aggressive growth of
this cancer cell line after engraftment. In preliminary data not
shown, microarray studies showed that VEGF mRNA levels differ
less than twofold in cultured SKOV3.ip1 cells versus in vivo. In
OvTM simulations, this modest level of constitutive production is
sufficient for even minute tumor spheroids to recruit endothelial
cells from nearby vessels (Figure 7). This result is in contrast to
the classical solid tumor situation, where angiogenesis is initiated
only after the interior tumor cells become hypoxic and upregulate
VEGF production (Shweiki et al., 1992; Pugh and Ratcliffe, 2003).
In patients, however, it is important to note that the balance of con-
stitutive and induced production of angiogenic factors by cancer
cells may vary widely. Therefore, assessment of angiogenic factor
transcriptional profiles or direct measurement of angiogenic fac-
tor levels in serum/cystic fluid may be critical to identify patients
at risk for relapse, a concept that has also been proposed by others
(Harlozinska et al., 2004; Li et al., 2004).
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We apply competition colonization tradeoff models to tumor growth and invasion dynamics
to explore the hypothesis that varying selection forces will result in predictable phenotypic
differences in cells at the tumor invasive front compared to those in the core. Spatially,
ecologically, and evolutionarily explicit partial differential equation models of tumor growth
confirm that spatial invasion produces selection pressure for motile phenotypes.The effects
of the invasive phenotype on normal adjacent tissue determine the patterns of growth and
phenotype distribution. If tumor cells do not destroy their environment, colonizer and com-
petitive phenotypes coexist with the former localized at the invasion front and the latter,
to the tumor interior. If tumors cells do destroy their environment, then cell motility is
strongly selected resulting in accelerated invasion speed with time. Our results suggest
that the widely observed genetic heterogeneity within cancers may not be the stochastic
effect of random mutations. Rather, it may be the consequence of predictable variations
in environmental selection forces and corresponding phenotypic adaptations.

Keywords: tumor invasion, spatial ecology, competition colonization tradeoff, partial differential equation model,
spatial selection

INTRODUCTION
Competition-colonization tradeoffs underlie an important mech-
anism of coexistence in ecological communities with spatial vari-
ation of competitor abundances (Tilman, 1994). In these commu-
nities, some species excel at colonizing unoccupied space whereas
others excel at competing within already occupied space. But,
no species simultaneously excels at both. Ecologists have demon-
strated competition colonization tradeoffs in a number of commu-
nities (e.g., birds: Rodríguez et al., 2007, ants: Stanton et al., 2002,
plants: Turnbull et al., 2004). They can be important in structuring
ecological communities (e.g., Turnbull et al., 1999; Cadotte et al.,
2006).

Competition colonization tradeoffs may also play an important
role in the ecological and evolutionary dynamics of population
invasions and range expansions. Researchers have noted that selec-
tive pressures at an invasion front could be markedly different
than selective pressures at the core of an invasion (e.g., Phillips,
2009; Burton et al., 2010). Evolutionary ecologists have shown
that phenotypic change by natural selection occurs during species
invasions and is critical for understanding invasion dynamics (e.g.,
Simmons and Thomas, 2004; Broennimann et al., 2007; Barrett
et al., 2008).

A well-known example of eco-evolutionary dynamics is the
invasion and spread of the cane toad (Bufo marinus) across north-
ern Australia. Detailed examination of the spreading population
demonstrates two divergent phenotypes based on selection for
colonization along the invasion front (Phillips et al., 2006). The
colonizing phenotype has longer legs, moves more often, and is
found near the front of the invasion. Phillips (2009) has shown

that the phenotype at the invasion front tend to be r-selected, in
that they reproduce sooner than toads in the core. Evidence sug-
gests that a tradeoff for increased dispersal may be manifest in
increased spinal stress and arthritis (Brown et al., 2007).

We highlight the notion that tumor invasion parallels the
process of population invasion into novel habitats and subsequent
range expansion. Accordingly, concepts and modeling from ecol-
ogy and evolution can be applied to understand the ecological
and evolutionary dynamics of tumors. While the modern para-
digm of cancer biology sees cancer as arising because of cell level
selection pressures, oncologists have largely neglected the role of
ecology in determining these selection pressures and subsequent
evolution (Gatenby, 2012). Integrating these viewpoints has the
potential to further our understanding of the growth and invasion
of tumors.

There is clear evidence of evolutionary processes within clinical
cancers resulting in multiple genetically distinct clones (Yachida
et al., 2010; Gerlinger et al., 2012). However, this is typically attrib-
uted to random mutations that result in an overall proliferative
advantage rather than local adaptations to specific environmental
selection forces. Selection in tumors could be markedly differ-
ent at the tumor host interface than within the host. Moreover,
there is evidence that suggests the presence of both coloniza-
tion and competition phenotypes among cancer cells within a
tumor. For example, invadopodia are actin rich invasive cell mem-
brane protrusions that degrade the extracellular matrix (Weaver,
2006). Invadopodia have been observed in a wide range of cancers
and appear to confer invasion potential. In contrast, the pheno-
types of many cancer cells appear to promote the development
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of a local tumor infrastructure. For example, vascular endothe-
lial growth factor (VEGF) is a protein secreted by many tumor
cells and promotes tumor vascularity and blood flow by induc-
ing growth and movement of endothelial cells (Carmeliet and
Jain, 2000; Goodsell, 2003). The former phenotype may arise
due to selection pressures at the invasion front, and the latter
may arise due to selection pressures within the interior of the
tumor.

In this article we use partial differential equation (PDE) models
that are spatially, ecologically, and evolutionarily explicit to explore
the effects of competition colonization tradeoffs on the evolution
of tumors. PDE models of population growth in space have a his-
tory in both the fields of ecology (e.g., Holmes et al., 1994) and
tumor biology (e.g., Chaplain et al., 2006; Eikenberry et al., 2009).
Our approach is novel in that we explicitly model a phenotypic
distribution of the cancer cells (also, see Benichou et al., 2012;
Bouin et al., 2012). In our model, cancer cells are distributed in
physical space and phenotype space. As such our model may better
reflect the ecological and evolutionary dynamics of tumor invasion
by incorporating population dynamics and heritable phenotypic
changes.

We use our models to investigate four important questions rel-
evant to the eco-evolutionary dynamics of range expansions and
tumor biology.

When does cell motility evolve? Models of range expansion
show that motility can evolve, and this has been demonstrated in
general population models and tumor specific models (e.g., Ger-
lee and Anderson, 2009; Aktipis et al., 2012). We use our models
to reaffirm these results and to explore when and if cell motility
evolves.

Does the type of movement matter? Previous work with spa-
tial PDE models has demonstrated that spatial heterogeneity with
temporal homogeneity selects against diffusive movement, but
can select for directed adaptive movement (Dockery et al., 1998;
Cantrell et al., 2006). However, there has not been an analysis com-
paring different movement types in models of range expansion.
We use our models to compare the effects of different types of
movement rules on the overall eco-evolutionary dynamics.

Does the evolution of cell motility result in phenotypic dif-
ferentiation in space? The cane toads are clearly an example of
phenotypic divergence in space. However, recent theoretical work
by Shine et al. (2011) has shown that selection is not necessary for
phenotypic divergence in a spatial context. Rather spatial assort-
ment of phenotypes can simply be a consequence of the fact that
faster moving phenotypes tend to move to the invasion front,
and the slower moving phenotypes tend to stay in the core, and
this facilitates assortive mating. Theoreticians have demonstrated
the effect of spatial sorting in PDE models of range expansion
(Benichou et al., 2012; Bouin et al., 2012). We use our models
to ask if selection for motility results in phenotypic divergence
in space. More specifically, we investigate whether a competition
colonization tradeoff is required for this type of landscape scale
coexistence.

Does invasion speed accelerate? The speed of the cane toad
invasion has accelerated, by as much as five times in a half century
(Phillips et al., 2006, 2007). Researchers attribute this accelera-
tion to the evolution of a more specialized colonizer phenotype.

Individual toads have been shown to move longer distances per
unit time in recent times as compared to historic records. The-
ory also predicts accelerated invasion speed with the evolution of
dispersal (Travis and Dytham, 2002). Thus, we explore with our
models whether the evolution of motility results in accelerated
invasion speed.

MODEL DESCRIPTION
We develop two spatially and evolutionarily explicit PDE mod-
els to explore tumor invasion with a competition colonization
tradeoff. The models contrast two extreme perspectives on tumor
dynamics. In the first model, cancer cells invade the surrounding
microenvironment and subsequently reach a carrying capacity. In
the second model, cancer cells invade the surrounding microenvi-
ronment and subsequently destroy the environment, resulting in
local extinction of the cancer cells. In both models, cancer cells are
characterized by their phenotype and location in physical space.
Thus, we include a phenotypic dimension (w), which describes a
phenotypic distribution (Cohen, 2009) of cancer cells. To model
a competition colonization tradeoff, we assume that increased w
corresponds to increases in a cell’s ability to move in physical space
and decreases its ability to compete for resources. Numerical solu-
tions to the models describe the time evolution of the phenotypic
distribution of cells in space. Mutation and differential success of
phenotypes results in ecological and evolutionary dynamics. Cell
movement produces spatial ecological dynamics.

MODEL 1 – A HABITAT–CONTINUUM TUMOR MODEL
With the first model, we consider an ecological situation where
cancer cells invade the surrounding environment and engineer the
environment, such that it is a suitable habitat. This model is a phe-
nomenological representation of angiogenesis and other types of
environmental engineering by the cancer cells. We model a logis-
tically growing population of cancer cells (c) in one-dimensional
space (x), with phenotype (w). We consider two different versions
of the model; one for the evolution of random movement and one
for the evolution of directed movement. The corresponding PDEs
are given by

∂c (x , w , t )

∂t
= λc

(
K (w)− Tc

K (w)

)
+ µ (w)

(
∂2c

)
∂x2

−
∂

∂x

(
χc

∂F

∂x

)
+M (w) . (1)

∂c (x , w , t )

∂t
= λc

(
K (w)− Tc

K (w)

)
+ µ

∂2c

∂x2

−
∂

∂x

(
χ (w) c

∂F

∂x

)
+M (w) . (2)

The first term in the equations describes standard logistic pop-
ulation growth, with an intrinsic growth rate λ, and carrying
capacity K (w). Tc represents the total cell density at a spatial
position x. Tc is calculated by integrating over the phenotypic

dimension, giving Tc =
∫ 1

0 c (x , w) dw .
The second and third terms are derived by Fick’s first and sec-

ond laws of flux. The second term describes random movement
in space, as characterized by a Laplacian operator scaled by the
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cell motility coefficient µ. The third term describes directed cell
movement in space via the spatial fitness gradient (∂F /∂x) and
proportional to the tactic sensitivity coefficient χ. The tactic sen-
sitivity coefficient scales the tendency of cells to move in response
to a chemical gradient. Here, the fitness function is defined as the
per capita growth rate of cells in the absence of cell movement or
mutation:

F = λ

(
K (w)− Tc

K (w)

)
.

Since the fitness term is density dependent, the cells“adaptively”
move to areas with lower cell densities. The fourth and final term
in the model describes mutation or movement in phenotype space
(see below for description).

The competition colonization tradeoff enters the model
through the carrying capacity K (w) and the cell movement para-
meters. To explore the effect of the evolution of different cell
movement rules on invasion dynamics, we model the evolution
of cell movement in two different ways (Eqs 1 and 2). The phe-
notypic variable w either increases the cell motility coefficient µ,
µ= ρ1w Eq. (1), or increases the tactic sensitivity coefficient χ,
χ= ρ1w Eq. (2). Throughout, we refer to the former as random
cell movement and the latter as directed cell movement. In both
cases, increasing w necessarily decreases cell competitiveness by
decreasing the carrying capacity of a specific phenotype,

K (w) = κ exp (−ρ2w) .

Following Cohen (2009), we use a discrete function (Eq. 3) to
describe mutation with regard to a continuous phenotypic trait
(w). The B function describes the per capita birth rate of a par-
ticular phenotype, with ε describing the mutational step size. As
in Cohen (2009) we assume for simplicity that each phenotype
has a constant per capita birth rate λ, such that the negative part
of the per capita logistic growth equation represents death rates.
This simplification then leads to Eq. 4. We use second order Taylor
series approximations of the terms in Eq. 3 to convert the discrete
equation into a continuous approximation. Equation 4 shows the
second order Taylor series approximation to Eq. 3. We use Eq. 5 as
the mutation term in the model.

M ′ (w) =
1

2
η[B (w + ε) c (w + ε)

+ B (w − ε) c (w − ε)− 2B (w) c (w)] (3)

M ′ (w) =
1

2
ηλ [c (w + ε)+ c (w − ε)− 2c (w)] (4)

M (w) =
1

2
ηλε2 ∂2c

∂w2
(5)

MODEL 2 – A HABITAT-DESTRUCTION TUMOR MODEL
Our second model considers an ecological scenario where cancer
cells invade and subsequently destroy the microenvironment. This
model represents tumors with a significant necrotic core. We use a
modified version of the haptotaxis model introduced by Anderson

(2005). The system of PDEs is given by

∂c
(
x , y , w , t

)
∂t

= νZ
(
p
)

c − D (w) c + µ∆x ,y c

−∇x ,y
(
χ (w) c∇x ,y m

)
+M (w) (6)

∂c
(
x , y , w , t

)
∂t

= νZ
(
p
)

c − D (w) c + µ∆x ,y c

−∇x ,y
(
χ (w , m) c∇x ,y p

)
+M (w) (7)

∂m
(
x , y , t

)
∂t

= −αmTc (8)

∂p
(
x , y , t

)
∂t

= γm − σp − Z
(
p
)

Tc + ω∆x ,y p (9)

This model includes, cancer cell density (c), extracellular matrix
density (m), and oxygen concentration (p) as state variables. The
model assumes that cancer cells use extracellular matrix macro-
molecules for movement, and in the process, degrade these mole-
cules. Furthermore, the matrix molecules produce oxygen, which
the cancer cells depend on for reproduction. Thus, as cancers
cells invade the surrounding environment they leave a wake of
habitat-destruction by degrading the extracellular matrix and their
oxygen supply. We assume that oxygen uptake by the cancer cells
is described by a saturating function Z (p)=ψp/(θ+ p), where
ψ is the maximum uptake rate and θ is the half saturation con-
centration of oxygen. ν Is the conversion efficiency of consumed
oxygen to new cancer cells. δ Is the per capita death rate of cancer
cells. As in the previous model, µ and χ represent the cell motil-
ity coefficient and the tactic sensitivity coefficient respectively.
M represents mutation, which we modify slightly from before
(see below). Equation 6 shows that the matrix macromolecules
decline from an initial abundance. In Anderson’s original model,
the degradation of the matrix was mediated through a matrix
degradation protein that the cancer cells produced. For simplic-
ity, here we consider that the cancer cells directly degrade the
matrix molecules. Empirically, this mechanism may be captured
by invadopodia for instance. α Describes the per capita rate at
which cancer cells contact and degrade matrix molecules. Finally,
the rate of change of oxygen concentration is linearly dependent
on matrix molecules, where γ is the per molecule production of
oxygen (Eq. 9), and σ is the per capita degradation rate of oxygen.
Oxygen also declines through consumption. ω Is the diffusion
coefficient for oxygen.

To explore the effects of the evolution of different cell move-
ment rules on invasion dynamics, we model two different versions
of the tradeoff. Since the cells use the matrix molecules for move-
ment, we assume that the cell motility coefficient is small and
that the main mechanism of cell movement is through hap-
totaxis or chemotaxis. In both versions, the cost of increased
tactic sensitivity is mediated through increased per capita death
rate of cancer cells. Thus, D= δ+ ρ2w. Where δ is the mini-
mum per capita death rate, and ρ2 scales the effect of increased
cell motility on cell death rate. In the haptotaxis version of the
model Eq. (6), we assume that directed cell movement is in
the direction of increasing matrix molecules, with a speed pro-
portional to the haptotactic coefficient, which is a function of
the cells phenotype. χ= ρ1w. In the chemotactic version of the
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model Eq. (7), directed cell movement is in the direction of
increasing oxygen concentration. The chemotactic sensitivity coef-
ficient is a function of the density of matrix macromolecules
and cell phenotype. χ=mρ1w. This models a situation where
cells move toward areas with higher oxygen concentrations, but
depend on matrix macromolecules for movement. As with the
first model, this second version considers adaptive movement
of cells.

The mutation term in this model is slightly different than the
last model, since we have a specific function that describes the
birth rate of each phenotype. The birth rate, B(w) is given by the
first terms of Eqs 6 and 7, B(w)= νZ (w)c(w), substituting this
into Eq. 3 above, and performing the Taylor series approxima-
tion as described above, gives M (w)= (1/2)ηε2∂2B/∂w2 for the
mutation term in the model.

In the first model, we consider a spatial line of 10 mm. In the
second model, we consider a spatial area of 10 mm× 10 mm. We
used Neumann (no flux) boundary conditions for both the spatial
and the phenotypic boundaries.

NUMERICAL ANALYSIS
We analyzed both models through numerical simulations, for
which we used the method of lines approach (Schiesser and Grif-
fiths, 2009). We used upwind spatial finite differences for the tactic
terms. Anderson’s (2005) original model is particularly difficult to
solve numerically. We confirmed the validity of our scheme, by
solving Anderson’s original model and comparing our results to
those of Walker and Webb (2007) and Chertock and Kurganov
(2008). We found our results to be in good agreement with those
of others.

For the first model, we used two different initial conditions. For
an initial condition of mostly the competitor phenotype, we used

c (x , w , 0) = 5 max
{

0,
(
0.3− (x − 5)2)}

∗ exp (−100 ∗ w) .

For an initial condition with mostly colonizers, we used:

c (x , w , 0) = 5 max
{

0,
(
0.3− (x − 5)2)}

∗exp (−100 ∗ (1− w)) .

Both initial conditions represent a small population of cancer
cells in the center of the spatial domain.

We used the following parameters for first model:
λ= 0.5, κ= 1e–5, η= 1e−3, ρ2= 1. ρ1= 1e−2 and µ= 1e−5

for the evolution of chemotactic sensitivity. χ= 1e−4 and
ρ1= 1e−3 for the evolution of cell motility.

For the second model, we used the following initial conditions
for both versions of the model:

c
(
x , y , w , 0

)
= 500 max

{
0,
(

0.3− (x − 5)2
+
(
y − 5

)2
)}

× exp (−100 ∗ w) .

m
(
x , y , 0

)
= 0.05 cos

((
πx2) /20

)
∗ sin

((
πy2) /20

)
+ 0.1.

p(x, y, 0)= 5m(x, y, 0). These initial conditions are similar to
those of Walker and Webb (2007). They represent a small popula-
tion of cancer cells in the center of the domain and a heterogeneous
spatial distribution of ECM and oxygen.

We used the following parameters for the second model:
µ= 1e−5, α= 1e−2, σ= 0.1, γ= 30, ω= 5e−2, η= 1e−3,

δ= 0.2, ρ1= 0.1, ρ2= 5e−2, θ= 0.5, ν= 10, ψ= 0.1.
To investigate selection for cell motility we compare three

evolutionary situations with both models: (1) there is no cost
to increased cell motility (no tradeoff, ρ2= 0), (2) there is a
cost, but no benefit – variation in the phenotypic variable (w)
does not correspond to increased cell motility (i.e., ρ1= 0), and
(3) there is a cost to increased cell motility (tradeoff, ρ1 > 0,
ρ2 > 0). The strongest selection for cell motility should occur
when there is no cost. On the contrary, in the situation, where
the phenotypic variable (w) does not correspond to increased
cell motility, there is a cost, but no benefit. This situation is
considered because mutation and selection create a phenotypic
distribution. Thus, even if cell motility is selected against (i.e.,
w = 0 is optimum) there will still be an increase in the mean
value of cell motility due to mutation. So this serves as a null
case for comparison. When there is both a cost and a potential
benefit, then the trait should increase in the population beyond
when there is just a cost, but below the value when there is
no cost.

RESULTS
MODEL 1 – COMPETITION COLONIZATION TRADEOFFS IN A
HABITAT–CONTINUUM TUMOR MODEL
We first investigate natural selection for cell motility. We do this by
comparing the three evolutionary situations discussed above. The
strongest selection pressure for cell motility should occur when
there is no cost to increased cell motility. When there is only a cost
and no benefit to the trait, then there should be selection against
the trait. In this case, the fittest phenotype is the most competitive,
and the distribution will simply reflect a mutational spread around
this most fit phenotype. When there is a tradeoff, and motility is
selected for, the mean trait value should intuitively lie somewhere
between these extremes. Figure 1 shows the dynamics of the mean
evolutionary trait for the three scenarios. After around 30 days,
sufficient phenotypic variation has accumulated and the popu-
lation size has achieved a size that manifests a positive selection
for motility. After close to 100 days, most of the space has been
colonized, and there is selection against motility and in favor of
competition instead.

Figure 2 shows the dynamics of the total cancer cell density in
time and space. There are no major differences in the dynamics
produced by the two different movement rules. However, there are
large differences between the phenotypic initial conditions. When
the majority of the population is initially composed of strong
competitors, the population increases rapidly, and then begins
to spread laterally. When the initial composition of the popula-
tion is mostly motile cells, the population first spreads rapidly in
space and then grows up to carrying capacity. The dynamics of
our model are characterized by traveling waves of cancer cells in
physical space (e.g., Murray, 2003).

Selection for motility should be occurring at the margins of the
tumor, and thus this can potentially create phenotypic divergence
in space. Figure 3 shows snapshots of the distribution of cancer
cells in physical space and in phenotype space. There is a clear pat-
tern of phenotypic divergence in space, with the evolution of both
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FIGURE 1 | Selection for motility when the phenotypic variable
affects random versus directed movement. The “neutral trait” has
only a cost, but does not actually correspond to variation in motility.
Therefore, it simply shows the mutation selection balance when the trait
has no benefit and thus there is no selection for the trait (ρ1 =0). At the
other extreme, the “no tradeoff” scenario corresponds to a situation
where there is no cost to increased cell motility (ρ2 =0). Finally,

“tradeoff” is a situation where increased motility comes at a cost of
decreased competitiveness (ρ1 > 0 and ρ2 > 0). Note that the y variable in
the plots is k 1w, which represents the cell motility coefficient or the tactic
coefficient. When there is no benefit to increasing the phenotypic
variable w (ρ1 =0), we set ρ1 =0.1 to plot the variable for comparison
(solid lines); although the variable does not actually correspond to
variation in cell motility it does reflect changes in w.

random and directed movement and with both initial conditions.
This pattern still exists without a tradeoff (k1= 0). However, in
the absence of a tradeoff the phenotypic differentiation in space
is not as well defined. This is because motile phenotypes are not
selected against in the core of the tumor.

Finally, we were interested in how the evolution of cell motil-
ity would affect invasion speed. To this end, Figure 4 shows
contours of cancer cell densities in space and time. The inva-
sion speed is calculated as the slopes of the contour lines. The
figure shows that in general, the evolution of cell motility pro-
duces linear invasion speeds over time. There are only slight
non-linearities. As we have shown, mean cell motility is increas-
ing over time due to natural selection. Invasion speed should
increase with the cell motility and with the chemotactic coef-
ficients. This is shown by the fact that the invasion speed is
much quicker if the cell population is initially composed of highly
motile cells (Figures 4A,C). However, the phenotypic distribu-
tions tend to obscure the effect of increasing cell motility on
invasion speed. This occurs because once an area is crowded
with cells; there is selection to invade adjacent un-crowded areas.
As cells invade the adjacent areas, the fittest phenotype is the
best competitor. Because of this, a wide range of phenotypes
can coexist in space. Figure 5 shows the normalized phenotypic
distributions at 100 days. The distributions are wide and skewed
toward the competitors. So even though mean motility increases
over time, the variance obscures this signal for the population
as a whole. Even when there is no tradeoff, and thus stronger
selection for motility, invasion speeds remain relatively constant
over time.

MODEL 2 – COMPETITION COLONIZATION TRADEOFFS IN A
HABITAT-DESTRUCTION TUMOR MODEL
The second model is fundamentally different from the first in
that there is no permanent niche for competitors in this model.
Instead, the environment is consumed and destroyed as the cancer
cells advance and spread. Therefore, selection for motility should
be strong, since it is the only niche for the cells. Figure 6 shows that
there is selection for motility. The lines in the plot correspond to
the same three evolutionary scenarios we considered with model
1. Given the parameters we chose, there is strong selection for
motility. In this model, the cells do not reach a carrying capacity,
and so there is not a strong reversal of selection once the space is
filled.

As in the habitat–continuum model, the two different move-
ment rules produce very similar tumor invasion dynamics.
Figure 7 shows snapshots in time of the tumor cell densities in
two dimensional physical space. As the dynamics proceed, there
is an expanding wavefront of cancer cells in physical space. Even-
tually, the cancer cells destroy the ECM and their oxygen supply.
Thus, the model reaches an equilibrium with zero cancer cells,
ECM, or oxygen.

In this model there is no clear spatial coexistence of pheno-
types. Due to the ephemeral nature of oxygen following invasion
into a new area, phenotypes that move less frequently or slower
are less fit.

Figure 8 shows the contours of total cancer cell densities in time
and space. In this plot, we fix the x dimension to the center of the
domain. The thin distribution of cancer cell densities at any time
show how the cancer cells spread into an area and subsequently
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FIGURE 2 |The dynamics of the total cancer cell density in space
and time. The total cancer cell density (T c) at a particular spatial
location is integrated over the phenotypic dimension. (A) Random cell
movement with an initially competitive phenotype distribution.

(B) Random cell movement with an initially motile phenotypic
distribution. (C) Directed cell movement with an initially competitive
phenotypic distribution. (D) Directed cell movement with an initially
motile phenotypic distribution.

decline as the matrix molecules are degraded. The contours clearly
show that there is an acceleration of invasion speed. This happens
because there is stronger and more consistent selection for motil-
ity. Because of this, there are bigger fitness differences maintained
between the phenotypes, and phenotypic variation is reduced.
Figure 9 shows the phenotypic distributions for the evolution of
the two different movement types at t = 100 days. In this case, the
phenotypic variance is much reduced compared to the results of
the habitat–continuum model.

DISCUSSION
Competition colonization tradeoffs are commonly observed in
ecological communities. Furthermore, during biological invasions
the populations in the leading edge adapt to different selection

forces compared to those in the geographic core (e.g., Phillips
et al., 2006). We address the influence of competition colo-
nization tradeoffs on tumor invasion dynamics, since tumors
dynamics in many ways parallel species invasions and range
expansions into new habitats. We used two different models.
The habitat–continuum tumor model sees the tumor has hav-
ing a continuum from interior to edge habitats. Due to angio-
genesis and other “ecological engineering,” regions of the tumor
interior remain suitable habitat for the cancer cells. The habitat-
destruction tumor model sees the cancer cells as “consuming” the
environment. This creates a tumor with a necrotic interior and an
expanding edge.

Both of our models clearly predict that evolution of cell motil-
ity. Furthermore, this evolution is mainly due to natural selection,
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FIGURE 3 |The distributions of cells in physical space and phenotypic
space at t = 100 days. (A) Random cell movement with an initially
competitive phenotype distribution. (B) Random cell movement with an

initially motile phenotypic distribution. (C) Directed cell movement with an
initially competitive phenotypic distribution. (D) Directed cell movement with
an initially motile phenotypic distribution.

since the motile phenotypes increased in abundance relative to
other phenotypes in the population. Many other researchers have
shown that motility is selected for during population invasion into
new habitats. For example, Aktipis et al. (2012) recently showed
that cell motility evolves in response to local environmental degra-
dation, and may be a co-adaptation or consequence of altered cell
metabolism.

We also found that in general the evolution of different types of
cell movement has almost no effect on the global dynamics of the
invasion. The more adaptive movement will likely be evolutionar-
ily favored, but we predict that this will have very little impact on
the overall invasion dynamics. However, if evolution affects hap-
totaxis or chemotaxis, and the underlying spatial distribution of
the molecules, which direct movement are sufficiently different,
then it is plausible that the evolution of different movement rules

may produce drastically different invasion dynamics. In the tumor
specific model we considered, oxygen is produced by the matrix
macromolecules and as a consequence their spatial distributions
are similar and thus haptotaxis and chemotaxis produce similar
results.

We did find important differences between the habitat–
continuum and the habitat-destruction models in terms of tumor
invasion dynamics and phenotypic evolution. In the habitat–
continuum tumor model, we found that the invasion speed was
relatively linear over time. This occurred because there is relatively
weak and ephemeral selection for cell movement at a particular
location, which allows for the coexistence of many phenotypes
and hence large diversity. The resulting variance in the pheno-
typic distribution obscures the signal of increasing cell movement.
Our habitat-destruction tumor model on the other hand does
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FIGURE 4 | Contour plots of the total cancer cell density in time and
space. (A) Random cell movement with an initially competitive phenotype
distribution. (B) Random cell movement with an initially motile phenotypic

distribution. (C) Directed cell movement with an initially competitive
phenotypic distribution. (D) Directed cell movement with an initially motile
phenotypic distribution.

FIGURE 5 | Normalized phenotypic distributions for directed and random movement at t = 100 days. These distributions are integrated over space to
include the entire spatial domain.
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FIGURE 6 | Selection for motility when chemotactic versus
haptotactic movement evolves. The “neutral trait” has only a cost, but
does not actually correspond to variation in motility. Therefore, it simply
shows the mutation selection balance when the trait has no benefit and
thus there is no selection for the trait (ρ1 =0). At the other extreme, the
“no tradeoff” scenario corresponds to a situation where there is no cost
to increased cell motility (ρ2 =0). Finally, “tradeoff” is a situation where

increased motility comes at a cost of decreased competitiveness (ρ1 > 0
and ρ2 > 0). Note that the y variable in the plots is k 1w, which represents
the cell motility coefficient or the tactic coefficient. When there is no
benefit to increasing the phenotypic variable w (ρ1 =0), we set ρ1 =0.1
to plot the variable for comparison (solid lines); although the variable
does not actually correspond to variation in cell motility it does reflect
changes in w.

FIGURE 7 | Snapshots of the total normalized cancer cell density in two-dimensional physical space. The left and right panels show t =50 and
t =75 days, respectively. The top and bottom panels show the evolution of chemotaxis and haptotaxis, respectively.

include strong selection for cell movement, which reduces phe-
notypic diversity and results in a strong directed increase in cell
movement and invasion speed with time. Since, the environment
is destroyed as cancer cells grow in a particular spatial location
there is constant selection to invade the frontier, and this selec-
tion drives an accelerated invasion speed. Hence, we predict that
in tumors with a narrow band of living cells and a large necrotic
core invasion speed will accelerate with time.

As empirical research into tumor dynamics progresses, it will
be important to determine, whether models with evolving cell
motility provide better predictions of tumor growth than models
without evolutionary changes. Data on tumor growth has been
of low resolution and only very simple models have been fit to
this data. For example, it appears that the best dynamic model we
currently have to explain tumor dynamics is the power law model
(Hart et al., 1998). Higher resolution data, for example data that
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FIGURE 8 | Contour plots showing total cancer cell densities in space and time. Blue corresponds to lower cell densities and red corresponds to higher cell
densities. The x dimension is fixed at 5 mm. The left and right panels show the evolution of chemotaxis and haptotaxis, respectively.

FIGURE 9 | Normalized phenotypic distributions for the evolution of chemotaxis and haptotaxis at t = 50 and t = 75 days. The evolution of chemotaxis
and haptotaxis are shown in the top and bottom panels, respectively.

resolves cell densities in space, and more sophisticated predictive
models will ultimately progress our understanding of the mech-
anisms that produce patterns of tumor growth and invasion (see
McDaniel et al., 2012).

In our habitat-destruction model, the wake of habitat-
destruction precludes a permanent niche for a competitive
phenotype. As a result, there is no spatial coexistence of pheno-
types. However, the habitat–continuum tumor model generates
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the coexistence of the colonizer and competitor phenotypes. Fur-
thermore, there is clear phenotypic differentiation in space. Part of
this differentiation may be due to spatial sorting. Benichou et al.
(2012) demonstrated the effect of spatial sorting in a very similar
model. However, there is selection for movement in our model,
and this creates an even stronger pattern of spatial differentia-
tion. Furthermore, given the competition colonization tradeoff,
the phenotypes are even more strictly localized in space than
they otherwise would be. We predict that in tumors characterized
by smaller regions of necrosis and successful angiogenesis, there
will be two distinct phenotypic populations – motile and inva-
sive cells at the tumor margin and angiogenic cells in the tumor
interior.

While distinct genetic populations have been observed in
tumors, there has been no attempt to determine a specific spa-
tial distribution. We predict that spatial mapping of both clinical
and experimental tumors should show invasive cellular features
such as invadopodia to be most common in the tumor rim while
cells expressing VEGF should be more common in tumor regions

deep to the edge. Interestingly, Grillon et al. (2011) recently exam-
ined spatial distribution of a few cell membrane proteins in C6
glioblastoma tumors growing in a rat brain. They found Na+/H+

exchanger (NHE-1) and lactate-H+ cotransporter (MCT1) were
upregulated at the tumor edge, while MCT4 and carbonic anhy-
drase (CAIX) were not upregulated at the tumor edge. A future
research challenge in characterizing cancer cell phenotypes will
be to differentiate phenotypic plasticity (changes that can occur
within an individual cell) from heritable phenotypic changes
(inter-generational changes).

In conclusion, we propose that understanding the role of
ecology and evolutionary adaptations in tumors is necessary to
fully understand tumor biology. The genetic evolution occurring
within tumors is well documented, but the governing dynamics
for that evolution should be strongly influenced by environmental
selection forces. It is plausible that the competition coloniza-
tion tradeoff that commonly influences spatial distributions of
species and phenotypes in nature also influences intratumoral
evolution.
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Gliomas are notoriously aggressive, malignant brain tumors that have variable response
to treatment. These patients often have poor prognosis, informed primarily by histopathol-
ogy. Mathematical neuro-oncology (MNO) is a young and burgeoning field that leverages
mathematical models to predict and quantify response to therapies. These mathematical
models can form the basis of modern “precision medicine” approaches to tailor therapy
in a patient-specific manner. Patient-specific models (PSMs) can be used to overcome
imaging limitations, improve prognostic predictions, stratify patients, and assess treatment
response in silico.The information gleaned from such models can aid in the construction and
efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research
in the war on cancer. This review focuses on the growing translation of PSM to clinical
neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific
MNO.

Keywords: glioma, mathematical modeling, patient-specific, clinical modeling, personalized medicine,
individualized health care

THE CLINICAL CHALLENGE OF PATIENT-SPECIFIC
PROGNOSIS AND TREATMENT RESPONSE
Gliomas are heterogeneous primary brain tumors that exhibit
widely varying phenotypes even within the same histological grade
(Louis et al., 2007). These tumors are characterized by proliferating
and invading adjacent normal brain tissue, resulting in a signifi-
cant clinical challenge and generally high morbidity and mortality.
Despite advances in medical imaging technologies, surgery, radia-
tion therapy, and chemotherapies over the last several decades, the
standard of care for newly diagnosed malignant gliomas does not
reflect individual differences (Stupp et al., 2007; Nishikawa, 2010).
Prognosis for glioma patients has hardly changed in over 50 years
of cancer research. The incorporation of patient-specific measures
of prognosis and treatment response allows tailor therapies for
each patient.

INVISIBLE, INHERENT, INVASION
The most significant characteristic of gliomas of all grades is their
diffuse invasion into the normal-appearing brain as seen in gross
pathology and histological specimens. To reduce the morbidity
of extensive biopsies, primary clinical assessment and staging of

Abbreviations: D, net rate of diffusion; FTB, fatal tumor burden; MM, mathematical
modeling; MNO, mathematical neuro-oncology; MRI, magnetic resonance imag-
ing; PSM, patient-specific modeling; ρ, net rate of proliferation; UVC, untreated
virtual control.

gliomas relies on non-invasive radiographic imaging such as mag-
netic resonance imaging (MRI) and computed tomography (CT).
However, neither of these imaging techniques quantifies the full
extent of tumor invasion due to the inherent limits of detection, as
illustrated in Figure 1. Furthermore, post-treatment surveillance
for recurrence and progression is based on these same imaging
technologies (Swanson, 1999; Harpold et al., 2007; Szeto et al.,
2009b; Pallud et al., 2010). The inability to completely quantify
the glioma cell population (invisibility) and diffuse extension into
normal-appearing brain (invasion) along with wide heterogeneity
between and within patients makes a personalized approach to
treatment and measuring response difficult but necessary.

WHY USE MATHEMATICAL MODELING?
Currently, prognosis in glioma patients is based upon retrospec-
tive analyses of groups of patients with similar histopathological
characteristics (Louis et al., 2007). This approach is unsatisfy-
ing because of the heterogeneity of disease phenotypes within
each larger histological category as well as the lack of insight into
treatment modalities that may most benefit an individual patient.
Mathematical models are used to bridge this gap and have been
used to illustrate individual differences in the dynamics of glioma
growth and response to therapy in a research setting, with the
potential for clinical translation on the horizon. To optimize indi-
vidual treatment protocols, physicians and scientists require tools
to evaluate the relative benefit obtained for each patient. The subset
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FIGURE 1 | (A) Concentrations of tumor cells contributing to a gradient of
diffusely invading glioma cells extending well beyond the threshold of
detection. The PI model characterizes the net rates of growth and invasion
of the glioma cells contributing to this overall profile, a sum of individual cell
behaviors. Swanson et al. have demonstrated that D and ρ can be
calculated on a patient-specific basis and can vary widely, even for patients
within the same histological grade (Harpold et al., 2007; Swanson et al.,
2008a; Szeto et al., 2009b; Wang et al., 2009; Rockne et al., 2010). (B) A
simulation of the reaction-diffusion mathematical model on an anatomically
accurate brain phantom (Cocosco et al., 2004) with differential motility in
gray and white matter as proposed by Swanson (1999). The MRI-detectable
edge of the lesion is superimposed as a dark gray contour emphasizing the
extent of invasion well beyond the threshold of detection. From Wang et al.
(2009) with permission from Cancer Research.

of patients with the most aggressive tumors (and inherently worst
prognosis) stand to benefit the most from the shift from one-size-
fits-all treatment to a patient-specific approach, and models allow
for the prospective identification of these patients.

Mathematical models already have a significant impact on clin-
ical practice, as they are widely integrated into medical imaging
technologies (e.g., Carson et al., 1998). Furthermore, mathemati-
cal models are found throughout the biological sciences, with one
of the most common applications being population models for a
single species (e.g., Murray, 2002). Yet it can be quite a leap for
both the basic scientist and clinician to embrace the idea that a
relatively simple mathematical model might shed light on such a
complex disease process as malignant glioma. Some believe that
gliomas are so biologically complex and heterogeneous that no
model could provide insight into the inherent nature of disease.
On the contrary, as clinical oncology strives to provide personal-
ized management of cancer, mathematical models are playing a
pivotal role in providing insight into disease growth, treatment
response, and ultimately building the framework for precision
medicine (Council, 2011).

PATIENT-SPECIFIC MATHEMATICAL NEURO-ONCOLOGY
The term Mathematical Oncology was coined in 2003 to reflect
the burgeoning synergy between mathematical modeling tech-
niques, cancer research, and clinical oncology (Gatenby and Maini,
2003). The term has been subsequently refined to Integrated
Mathematical Oncology to emphasize the feedback that emerges
through the integration of mathematics and oncology (Anderson
and Quaranta, 2008). This review focuses on the patient-specific
applications of Mathematical Neuro-Oncology (MNO) to provide
predictive insight onto glioma prognosis and treatment response
in individual patients. Although the field of neuro-oncology is

broad and encompasses many distinct neoplasms, to date, much
of the literature has been devoted to the presentation of models
and methodologies for estimating glioma growth from medical
imaging and other clinical data.

In this paper, the focus is on models that will truly enable “pre-
cision medicine.” Thus the discussion below will revolve around
only models the authors believe are patient-specific in nature and
have in some way been subjected to validation tests. Specifically
we have reviewed reaction-diffusion models such as those champi-
oned by Swanson, which take a macroscopic perspective of gliomas
as a continuum of tumor cell concentration.

INDIVIDUAL TUMOR GROWTH KINETICS: A PREDICTABLE
PATTERN
Gliomas of all histologic grades exhibit a constant velocity of the
mean tumor radius if left untreated, resulting in predictable pat-
tern of linear radial growth (Swanson and Alvord, 2002; Mandon-
net et al., 2003, 2008; Pallud et al., 2006). Mandonnet et al. (2003)
demonstrated this in 27 untreated low-grade gliomas (LGG) fol-
lowed with serial routine MRI for up to 15 years. Despite the
anatomic heterogeneity in tumor growth, the average radius of
each glioma increased linearly with time, with rates ranging from
1 to 4 mm/year. Furthermore, the velocity of linear radial expan-
sion was shown to predict time to malignant progression (Hlaihel
et al., 2010) and is a significant predictor of survival (Pallud et al.,
2006; Swanson et al., 2008a).

Constant linear radial growth is also seen in a rare example of an
untreated high grade glioma known as glioblastoma multiforme
(GBM). In this case a 75-year-old female presented to the emer-
gency department with a complex partial seizure (CPS), prompt-
ing imaging that revealed a large tumor. She refused medical advice
to undergo a biopsy to establish a diagnosis and subsequent treat-
ment but allowed multiple imaging observations (Swanson and
Alvord, 2002). The patient was found to have a GBM on autopsy,
and the serial imaging revealed a consistent linear radial growth
pattern.

THE PROLIFERATION-INVASION MODEL OF GLIOMA GROWTH
In the early 1990s, the research groups of Murray and Alvord devel-
oped a mathematical model to describe the diffuse infiltration
and proliferation of glioma cells in the complex anatomy of the
human brain (Figure 2). This model can be described in words
as the rate of change of tumor cell density in time is equal to the
net migration of tumor cells plus the net proliferation of tumor
cells. Mathematically, the model is a partial differential equa-
tion with two parameters: net rates of migration (D, mm2/year)
and proliferation (ρ, year−1), both of which can be calculated
on a patient-specific basis using routine clinical imaging prior to
treatment.

rate of change of tumor

cell density over time︷︸︸︷
∂c

∂t
=

net migration of tumor

cells︷ ︸︸ ︷
∇ · (D (x)∇c) +

net proliferation

of tumor cells︷ ︸︸ ︷
ρc
(

1−
c

K

)
This “proliferation-invasion” model (PI model) of glioma

growth and infiltration is similar to Fisher’s equation which yields
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FIGURE 2 |Three dimensional simulation of diffuse tumor invasion and
proliferation predicted by the PI model which accounts for differential
motility of tumor cells in gray and white matter. Malignant glioma cells
can migrate up to 100-fold faster in white matter than in gray, characterizing
the extent of invisible subclinical disease.

the same predictable pattern of linear radial growth observed in
low and high grade gliomas (Fisher, 1937). The velocity of growth
predicted by this equation relates the velocity of radial growth to
the square root of the product of net dispersal (D) and prolifera-
tion (ρ) parameters, v =

√
4Dρ. This relationship combined with

an “invisibility index” (D/ρ) relating rates of invasion and pro-
liferation provides two equations and two unknown parameters,
tuning the PI model to patient-specific growth. The PI model can
further incorporate differential motility of glioma cells through
gray and white matter of the brain, providing predictions of dif-
fuse tumor invasion through the regions of the brain that are
specific to the patient’s tumor (Figure 2). This simple model has
served as a foundation for patient-specific MNO and provided
numerous insights into clinical behaviors such as survival out-
come (Pallud et al., 2006; Swanson et al., 2008b; Wang et al., 2009;
Rockne et al., 2010), hypoxia development (Szeto et al., 2009b),
response to surgical resection (Swanson et al., 2008b), chemo- and
radiation therapies (Rockne et al., 2010), biological aggressiveness
(Szeto et al., 2009a; Ellingson et al., 2010b), and to date is the sin-
gle most applied patient-specific clinical scale model for glioma
growth and response to therapy. Extensions to this model include
consideration of anisotropic growth in white matter tracts (Jbabdi
et al., 2005). Mass effect and mechanical constraints of anatomical
structures such as the skull, have been included to refine spatial
agreement with patient scans (Clatz et al., 2005). Giatili and Sta-
matakos (2012) add adiabatic Neumann boundary conditions to
more realistically model the boundary imposed by the skull. These
efforts show room for further model development, but have yet to
be applied to a patient population as large as that modeled by the
PI model.

Advanced imaging techniques such as diffusion weighted MRI
(DWI), MRI Spectroscopy, and Diffusion Tensor (DT) MRI have
been used to suggest techniques for estimating patient-specific
parameters D and ρ (Ellingson et al., 2010a; Konukoglu et al.,
2010). Based on the assumption that the apparent diffusion coef-
ficient (ADC), which measures magnitude of diffusion of water,
is negatively proportional to tumor cell density, Ellingson et al.
proposes that D and ρ of the PI model, modified such that prolifer-
ation is exponential and not saturated in a saturated environment
can be estimated on a patient-specific basis using three ADC
imaging time points. Ellingson et al. applied this methodology
and found a stratification of D and ρ with histologic grading which

compares well with the previous estimates for high grade gliomas
but differs significantly from the estimates for low-grade prolifer-
ation and invasion kinetics (Harpold et al., 2007). This difference
may be explainable by the fact that the correlations between ADC
and overall tissue cell density utilized by the Ellingson approach
incorporates both normal and malignant cell densities while the PI
model is only tracking the glioma cell density. Further exploiting
opportunities provided by diffusion MRI, Konukoglu et al. (2010)
uses DT-MRI to inform model predictions of separate diffusion
rates in gray and white matter.

“GO OR GROW” HYPOTHESIS
Experimental data suggests that tumor states of proliferative and
invasive capacity are mutually exclusive (Giese et al., 2003). The
“go or grow” hypothesis has influenced mathematical models
analyzing how the rates of switching between proliferative and
migratory phenotypes affect macroscopic tumor growth (Ger-
lee and Nelander, 2012). Hatzikirou et al. (2012) used lattice-gas
cellular automaton models to determine that the rapid recur-
rence of gliomas post-resection cannot be explained by mutation
theory alone, but tumors modeled with “go or grow” behavior
can recapitulate the observed macroscopic growth patterns. Such
models can even suggest treatment strategies, such as tumor oxy-
genation which encourages cells to revert to a proliferative and
less radio- and chemo-resistant state. As Giatili and Stamatakos
(2012) points out, discrete agent and cell based models are bet-
ter suited to answer questions of the biological constitution of
tumors over space and time. Continuum models give better insight
to spatial extent and concentration profile of the population of
tumor cells. Hatzikirou et al. (2012) showed that although the
glioma cell population is heterogeneous and composed of sig-
nificant portions of cells in both proliferative and migratory
states, the microscopic simulation scales up to a reaction-diffusion
model on the macroscopic scale practically identical to the Fisher
equation.

TURNING MATHEMATICAL PREDICTIONS INTO MATHEMATICAL
NEURO-ONCOLOGY
In a review of computational models of brain tumors Juffer et al.
(2008) bemoans a “severe limitation of current models is that they
are in fact not patient-specific at all.”However,mathematical mod-
els come in many forms and with different purposes. Some models
aim to provide qualitative understanding or intuition regarding
the phenomena of interest, while others are intended to provide
predictions for specific scenarios. The effective use of the latter type
of models depends on many factors: defining the quantity of inter-
est, choosing the appropriate model, acquiring data for calibration,
and then successfully subjecting the model to validation tests. By
definition, patient-specific biological models require calibration
for each patient. This inherently leaves room for philosophical
debate regarding sufficient validation tests for patient-specific bio-
logical models, however, a good example for predictions involving
clinical intervention is provided in Figure 3 (Neal and Kerckhoffs,
2010). One should note that this entire type of process would need
to be redone for each possible application of the model.

As might be inferred from Figure 3, the cause of the “limita-
tion” Juffer et al. (2008) raise is due to the difficulty of the entire
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FIGURE 3 | Decision process for patient-specific model validation and translation to clinically applicable analysis. Courtesy: Neal and Kerckhoffs (2010),
by permission of Oxford University Press.

process. The authors are only aware of work based on such an
outline in the context of gliomas by the Swanson group (Swanson
et al., 2002a, 2008b; Szeto et al., 2009b; Wang et al., 2009; Neal
and Kerckhoffs, 2010; Rockne et al., 2010; Baldock et al., 2012a,b;
Gu et al., 2012; Neal et al., 2012, 2013). But that is not to say that
other efforts are not informative or useful. Indeed, many papers
have been published (e.g., Zacharaki et al., 2009; Konukoglu et al.,
2010), considering the formidable technical details involved in
development and validation of a mathematical model that can be
used to inform clinical decision making.

Additionally, models may be used for qualitative understanding
of events. An example of such work is that by Bohman et al. (2010)
where they investigated ontogeny and spatio-temporal evolution
of gliomas. By looking at a set of 63 patient tumors, they deter-
mined that tumors abutting the ventricle in the sub ventricular
zone (SVZ) are larger than those that do not (Figure 4). The sim-
ulation results then pointed to an explanation in that two tumors
with identical growth rates, as defined by the continuum mathe-
matical model, could display markedly different growth patterns
due to the anatomy of the brain and ontogeny of the tumor. Thus,
it is not necessary for a mathematical model to be patient-specific
to produce clinically significant results.

PROGNOSIS OF INDIVIDUAL PATIENTS USING PRE-TREATMENT
TUMOR GROWTH KINETICS
In a study of 32 newly diagnosed glioblastoma patients, Wang
et al. (2009) used the PI model to find relationships between
the Patient-specific model (PSM) parameters for glioma cell net
dispersal (D), proliferation (ρ), and prognosis. As illustrated in
Figure 1, patient-specific estimates D and ρ combine with the
patient’s MRI to yield a map of the diffuse gradient of glioma

cells that is expected to lie beyond thresholds visible to imaging
(Figure 1). Wang et al. analyzed patient-specific tumor growth
kinetics relative to the patients’ actual survival and found that
the model parameters (specifically, ρ and ρ/D) were signifi-
cant predictors of prognosis in both univariate and multivariate
analyses even when controlling for standard clinical prognostic
parameters such as RTOG recursive partitioning analysis (RPA)
classification.

Velocity of radial expansion on MRI and net proliferation rates
were compared to RPA classification and it was found that patients
with low velocity and proliferation lived longer than the median
prognosis associated with each RPA class, and patients with high
velocity and proliferation had shorter survival. A therapeutic
response index (TRI) was also calculated for each patient. This
is defined as the ratio between the patient’s actual survival, and
the time it takes for their untreated virtual control (UVC) tumor
to reach fatal tumor burden (FTB) (Swanson, 2008; Wang et al.,
2009). Patients with high rates of proliferation and velocity were
found to have higher TRIs (Wang et al., 2009). This paper was per-
haps the first in the literature for which a patient calibrated mathe-
matical model for glioma growth generated prognostic parameters
in a patient cohort.

QUANTIFYING TUMOR AGGRESSIVENESS IN INDIVIDUAL PATIENTS
Despite the predictable pattern of linear radial growth in gliomas,
within histologic grade there may be great variability in response
to treatment and overall prognosis (Bonavia et al., 2011). The
hypothesis that more aggressive tumors are more hypoxic was
tested using PI model metrics of biological aggressiveness. Szeto
et al. (2009b) found there was a strong relationship between
hypoxia and the ratio of PI model parameters for proliferation and
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FIGURE 4 | “Example screenshots from glioma growth model
simulations with varied points of origin. Images at four time points each
for three simulated lesions provided in the sagittal, coronal, and axial planes
for lesion start points at the anterior dorsolateral subventricular zone, anterior

deep white matter, and anterior superficial white matter. Green area reflects
estimated T2-weighted image abnormality on magnetic resonance; red area
reflects estimated T1-weighted image post-gadolinium abnormality.”
Courtesy: Bohman et al. (2010).

FIGURE 5 | Scatter plot of relative hypoxia (RH, the ratio of hypoxic
volume toT2-weighted MRI volume) versus ρ/D for n = 11
glioblastoma patients. RH was determined over a variety of tissue to
blood (T/B) tracer levels, ranging from 1.1 to 1.6 in increments of 0.1. A
strong linear relationship between the variables is shown for all thresholds;
correlations were statistically significant for all T/B levels considered. From
Szeto et al. (2009b), with permission from Nature Publishing Group, Cancer
Research.

diffusion on 11 glioblastoma patients (Figure 5). Relative hypoxia
(RH) was computed as the ratio of hypoxic volume obtained from
pre-treatment 18F-Fluoromisonidazole (FMISO) PET images to
the region of hyper intensity on T2-weighted MRI. They found
that a tumor with high proliferation relative to diffusion would be
a relatively well demarcated lesion, while a low ratio would indi-
cate a very diffuse tumor with more migratory capacity compared
to the proliferation rate. A metric of tumor shape irregularity was
also calculated and found to be negatively correlated with ρ/D.

This suggests that more irregularly shaped tumors are formed
by cells with relatively high proliferation rates in highly hypoxic
environments. These metrics yield patient-specific understand-
ing and quantification of disease burden and relative biological
aggressiveness and a tool in the MNO toolbox.

GOING BEYOND THE ROUTINE: ADVANCED IMAGING IN
MATHEMATICAL MODELING
Extending the PI spatio-temporal model of glioma prolifer-
ation and invasion, Swanson’s group (Swanson et al., 2011;
Gu et al., 2012) incorporated neoangiogenesis-a defining hall-
mark of high grade glioma into the PI model. Briefly, this
Proliferation-Invasion-Hypoxia-Necrosis-Angiogenesis (PIHNA)
model includes invading normoxic glioma cells which become
hypoxic when local resources are exhausted. This results in the
local production of significant amounts of angiogenic factors
that, in turn, stimulate an angiogenic response. If the angio-
genic response is sufficiently robust, these hypoxic cells may revert
to normoxia; however, if the angiogenic response is insufficient
then necrosis may result. Patient-specific simulations of this type
allow for the generation of spatio-temporal maps of normoxic
cells, hypoxic cells, necrotic tissue, vascular volume fraction, and
angiogenic factors.

The PIHNA model predicts a patient-specific spatial map of
hypoxia, which can be compared with PET imaging with the
hypoxia tracer 18F-FMISO (Gu et al., 2012). Since there is sig-
nificant image noise introduced from PET image acquisition and
reconstruction, a combination of a pharmacokinetic model for
the FMISO tracer kinetics and an image reconstruction algorithm
for PET were applied to the patient-specific simulated hypoxic cell
distribution to generate a patient-specific in silico PET image with
striking similarity to the patient’s actual image (Figure 6).
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FIGURE 6 | Simulated FMISO-PET and actual FMISO-PET.
Hypoxia is predicted by the PIHNA model and an imaging
reconstruction algorithm produces the simulated FMISO-PET. Pixel
intensity distribution is not statistically different between the two

images, providing model-based predictions of tumor hypoxia
which is otherwise obscured by PET image acquisition and
reconstruction. Courtesy: Gu et al. (2012), by permission of Oxford
University Press.

THE UNTREATED VIRTUAL CONTROL
To date, the most effective demonstration of the clinical utility of
mathematical modeling has been in the context of UVC (Figure 7)
(Swanson, 2008; Wang et al., 2009). The concept of an UVC is
that a model that accurately describes the inherent, untreated dis-
ease behavior as a baseline for future comparisons for a specific
patient. Deviations from the predicted “control” behavior can be
assessed and used as a metric of response to therapy. Because
gliomas have a simple, predictable pattern of untreated growth,
the UVC approach is particularly simple to apply in this case.

TREATMENT RESPONSE AND OPTIMIZATION
Few treatment options exist for newly diagnosed glioma beyond
surgery and chemoradiation following the landmark study which
established standard of care for the disease (Stupp et al., 2007).
Novel therapies are often reserved for the recurrent setting and
have shown little benefit in prolonging survival. Due to the relative
rarity of the disease, powering clinical studies can be challenging.
Mathematical models quantifying response, sensitivity, and rela-
tive benefit of treatment (UVC) provide a novel and alternative
means of stratifying patients for clinical studies.

DAYS GAINED SCORE AS A TREATMENT RESPONSE METRIC
The Days Gained score provides a measure of patient-specific
treatment derived benefit in terms of treatment induced deflec-
tion in tumor growth from the UVC (Neal et al., 2013). This
novel quantification stands in stark contrast to current metrics of
response (e.g., Macdonald criteria, RANO, and RECIST) that do
not account for the relative growth kinetics of individual tumors.
One clear difference is that static imaging-based metrics allow a
poor response for a slow growing tumor to be equated with a
significant response from a fast growing tumor. Neal has shown
that the Days Gained metric indeed performs better than these
existing metrics in determining patients that will have a survival
benefit from treatment. While these classic response criteria are
actively being reconsidered in the context of gliomas (Wen et al.,

2010), the UVC PSM represents an opportunity to incorporate the
implicit heterogeneity of glioma growth kinetics across patients
into measures of treatment response.

SURGICAL RESECTION
Surgical resection is the first line response to clinical presen-
tation and radiographic diagnosis of a malignant brain tumor.
Although the survival benefit of subtotal (STR) versus gross total
(GTR) removal of imageable tumor remains controversial, Swan-
son et al. (2008b) used mathematical modeling to simulate surgical
resection using the PI model for 70 glioblastoma patients using
contrast-enhanced T1-weighted MRI volume and radial veloc-
ity of tumor growth. The model was able to predict the survival
curve for biopsy and subtotal resection groups (Figure 8A). Sim-
ulations were performed to represent 100 and 125% resections,
the observed gross total resection survival curve was found to lie
between these two virtual curves (Figure 8B). These results sug-
gest that although GTR provides a survival benefit over patients
receiving biopsies or subtotal resections, this is partially due to
the preferential selection of patients with smaller tumors for gross
total resection. This analysis, made possible with mathematical
modeling, provides valuable insight into a controversial clinical
debate.

QUANTIFYING AND PREDICTING RESPONSE TO RADIATION THERAPY
Beyond RECIST and Macdonald response criteria (Padhani and
Ollivier, 2001; Galanis et al., 2006; Therasse et al., 2006), quantify-
ing the in vivo biological effectiveness of radiotherapy in individual
patients has remained elusive (Enderling et al., 2010). Rockne et al.
(2009, 2010) incorporated the classic linear-quadratic model for
radiation effectiveness (Bauman et al., 1999; Sachs et al., 2001)
into the PI model to quantify the effectiveness of radiotherapy
in individual glioma patients. The extended model (PIRT) uses
radiation dose plans from the clinical treatment system and frac-
tionation – e.g., 1.8 Gy fractions delivered to the T2 abnormality
with a 2.5-cm margin. Nine glioblastoma patients with two MRIs
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FIGURE 7 | Comparisons between untreated virtual controls and
post-treatment MRI scans. First row: post-treatment MRI. Second row:
contours showing measured tumor on T1-Gd-enhanced scan (red) and UVC

prediction of T1-Gd area (aqua). Third row: UVC tumor cell densities overlaid
(white, high cell density; red, low cell density) on scan with T1-Gd measured
tumor outline (black).

before the initiation of radiotherapy and at least one MR after
the completion of radiation therapy were included in the study.
The authors found a strong correlation between the net prolifera-
tion rate (ρ) of the glioma cells before the initiation of treatment
and the radiation effectiveness (Figure 9). The predictive preci-
sion of this relationship was tested with a leave one out cross
validation (LOOCV) analysis which revealed an average 2.4 mm
difference between simulated and actual tumor volume post RT
which given an average GBM radius of 2 cm represents a relative
error of at most 15%. The error is substantially more resolved than
the 25% categories presented in RECIST or Macdonald criteria
(Padhani and Ollivier, 2001; Therasse et al., 2006). This approach
has provided the first in vivo quantification of radiosensitivity
in individual glioma patients as well as a predictive relationship
between pre-treatment growth kinetics and response to therapy.

In silico models of tumor growth and response to radiother-
apy allow for the investigation of factors affecting radiosensitivity
and alternative treatment strategies that may be impractical in
the clinic. Stamatakos et al. (2006) model studies the interde-
pendent effects of oxygenation on radiosensitivity, angiogene-
sis, and clonogenic cell density on tumor growth. Lower oxy-
gen enhancement ratio and lower clonogenic cell density were
among the factors found to increase radiosensitivity, agreeing with
clinical experience, although not directly compared with clini-
cal data. Both Powathil et al. (2007) and Rockne et al. (2009)
used a continuum reaction-diffusion model along with the clas-
sic linear-quadratic model for radiotherapy effect to investigate
alternative fractionation strategies on a virtual tumor with fixed
tumor growth kinetics and radio sensitivity. To date, neither model
has incorporated the toxic effects of radiation on normal tissue.
Holdsworth et al. (2012) builds upon these foundations by refining

intensity-modulated radiation therapy (IMRT) plans based on
the criteria of maximizing cytotoxicity while minimizing normal
tissue dose.

Swanson et al. (2008a) used the concept of a UVC to under-
stand relative treatment response effects on individual survival
time assuming a FTB (Concannon et al., 1960). Results of this
investigation demonstrate that patient-specific rates of invasion
and proliferation as estimated by a reaction-diffusion model can
be calculated for individual patients and related to radio-resistance
or radiosensitivity in individual patients and that the mathematical
model can be used to determine radio efficacy by relating survival
times predicted by the UVC to that observed in the patients, assum-
ing a FTB. In this population, Swanson et al. were able to identify
those patients that benefited significantly from radiotherapy by
comparing model-predicted untreated survival time with actual
(treated) survival time.

OPTIMIZING RADIATION THERAPY
In silico models of tumor growth and response to radiotherapy
allow for the investigation of alternative treatment strategies that
may be impractical in the clinic. Holdsworth et al. (2012) leveraged
the patient-specific description of tumor growth and response
in the PIRT model (Rockne et al., 2010) to generate biologically
guided treatment plans. Using an adaptive, multiobjective evo-
lutionary algorithm (MOEA), IMRT plans were optimized with
respect to a variety of clinical objectives including maximizing
normal tissue sparing and minimizing the tumor burden at vari-
ous time points. By using the PIRT model-predicted tumor burden
12 weeks post-irradiation as an optimization objective for each
week of simulated treatment, the MOEA computed radiotherapy
plans that improved treatment gain by an average of 122.5 days
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FIGURE 8 | “(A) Survival curves for actual glioblastoma patients (asterisks)
and virtual patients (squares) subjected to biopsy or subtotal resection
(BX/STR, N =38). Inset shows a close-up of the survival curves near the
median survival times of 32.4 and 36.5 weeks. (B) Survival curves on a
longer time scale following gross total resection (GTR, N = 32) in actual
patients (asterisks) defined by the absence of residual tumor on
post-operative enhanced CT. The virtual patients (matched to actual
pre-operative T1-Gd volume and D/ρ ratio derived from the T1-Gd and T2
volumes) were subjected to no resection (BX/STR, squares), to resection of
100% of the T1-Gd volumes or radii, rT1 (circles), and to resection of 125%
of the T1-Gd volumes or radii, 1.25 rT1 (diamonds). Inset shows a close-up
of the survival curves near the median survival times of 44.9, 55, 62, and
66.9 weeks.” Reprinted from Swanson et al. (2008b) with permission from
Nature Publishing Group, British Journal of Cancer.

and reduced equivalent uniform dose (EUD) to normal tissue an
average of 15.5 Gy for two example patients (Holdsworth et al.,
2012).

PREDICTING PSEUDOPROGRESSION
Pseudoprogression is a puzzling clinical phenomenon defined
by increased contrast enhancement on MRI within 100 days of
radiation therapy that spontaneously improves with no subse-
quent change in treatment (Brandsma et al., 2008). It has been
estimated that 20–47% of tumors exhibiting increased contrast
enhancement on MRI within 12 weeks following chemoradio-
therapy are not indicative of true progressive disease, but are a
result of pseudoprogression (Brandsma et al., 2008; Clarke and
Chang, 2009). This poses a significant clinical challenge as the

FIGURE 9 | (A) “Response to therapy is conventionally assessed by
determining changes in gross tumor volume (GTV) on MRI prior to and after
the administration of therapy. Post-contrast T1-weighted MRI images are
shown for two glioblastoma patients that would typically be separated into
generic groups: responder and stable disease. The radiation response
parameter α gives an additional quantification of radiation response for each
patient.” (B) “Relationship between radiation response and tumor
proliferation rate parameters α (Gy−1) and ρ (1/year), respectively, with α

calculated relative to changes in T2 GTV post therapy r =0.89, ρ�0.05,
N =9. Error bars on ρ are calculated by propagation of error in
pre-treatment GTV as assessed by inter-observer variability of ±1 mm in
equivalent spherical radius. Error bars in α are computed by taking the
maximum and minimum values of α in a leave one out cross validation
(LOOCV) technique.” Courtesy: Rockne et al. (2010), with permission from
IOP Publishing Ltd.

current standard of care for recurrent glioma disease calls for
immediate changes to chemotherapeutic regimens upon clinical
assessment of tumor progression as indicated by increased con-
trast enhancement on MRI. In addition, recurrent glioma disease
is often treated with a second surgical resection of the T1-weighted
gadolinium enhanced region (Stupp et al., 2010). Although there
is currently no understanding of the underlying biological mech-
anisms to understand and predict which patients will exhibit
pseudoprogression, the Days Gained metric has been shown to dis-
criminate pseudoprogression from true progression in individual
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patients (Neal et al., 2013). Patients with pseudoprogression were
found to have significantly higher Days Gained scores, connecting
model-based metrics of response to clinical outcomes in individual
patients.

SUMMARY
Gliomas present a unique clinical challenge. In addition to intra-
and inter-tumoral heterogeneity, these lesions are defined by
their diffuse invasion of otherwise normal-appearing brain tis-
sue peripheral to the imageable abnormality. This diffuse growth
limits the clinical utility of neuroimaging in interpreting treatment
response. Current metrics of therapeutic response rely on observ-
able changes to clinical imaging (Wen et al., 2010), ignoring the
underlying growth dynamics of the tumor. Further, the current
standard of care leaves few treatment options and may over-treat
patients with slow growing tumors. Patient-specific mathematical
modeling provides a novel means of developing UVCs for each
patient’s tumor and provides predictive insight into prognosis,
treatment response, and optimal treatment design.

The future of patient-specific modeling and application
depends on asking questions that mathematical models can realis-
tically answer with data that can be obtained from patients either
non-invasively or infrequently. PSM must be validated and incor-
porated into clinical trials to become broadly and directly applic-
able to patient care. Advantages of a patient-specific modeling
approach include:

◦ Identification of individualized tumor proliferation and inva-
sion rates or other kinetic information about an individual
patient’s tumor (Swanson et al., 2002b; Mandonnet et al., 2003;
Pallud et al., 2006; Harpold et al., 2007; Swanson, 2008; Szeto
et al., 2009a,b; Wang et al., 2009; Boone et al., 2010; Rockne
et al., 2010; Gu et al., 2012)

◦ Development of methods for quantifying and predicting
response to therapy – alone and also with respect to UVCs pro-
vided by model predictions (Swanson et al., 2008a; Wang et al.,
2009; Rockne et al., 2010)
◦ More informed treatment planning and response assessment

tools that compare each patient’s tumor growth against its own
virtual control (Swanson et al., 2002a, 2008a,b; Harpold et al.,
2007; Szeto et al., 2009b; Wang et al., 2009; Rockne et al., 2010;
Gu et al., 2012)

These advantages directly address a number of key unmet chal-
lenges in clinical neuro-oncology. In the coming years we antic-
ipate a continued expansion of peer-reviewed journals dedicated
to mathematical oncology, coordinated with increased funding for
research in the area. Recently, Cancer Research has added a spe-
cial section devoted exclusively to mathematical oncology, and the
NIH has initiated special funding programs targeted at mathemat-
ical models through the Integrative Cancer Biology Program and
Physical Sciences Oncology Center, among others. By producing
individualized virtual tumors that predict disease progression in
the absence of treatment, patient-specific modeling can contribute
to the ongoing dialog regarding the design of appropriate response
criteria (Wen et al., 2010), provide a means to perform virtual clin-
ical trials to assess the likely benefit of novel neurotherapeutics,
and move neuro-oncology toward individualized treatment plans
optimized for maximum benefit.
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Dendritic cells are a promising immunotherapy tool for boosting an individual’s antigen-
specific immune response to cancer. We develop a mathematical model using differen-
tial and delay-differential equations to describe the interactions between dendritic cells,
effector-immune cells, and tumor cells. We account for the trafficking of immune cells
between lymph, blood, and tumor compartments. Our model reflects experimental results
both for dendritic cell trafficking and for immune suppression of tumor growth in mice. In
addition, in silico experiments suggest more effective immunotherapy treatment proto-
cols can be achieved by modifying dose location and schedule. A sensitivity analysis of the
model reveals which patient-specific parameters have the greatest impact on treatment
efficacy.

Keywords: mathematical model, cancer, immunotherapy, melanoma, dendritic cell vaccine

1. INTRODUCTION
A promising immunotherapy approach to treating certain can-
cers involves the use of dendritic cells (DCs). DCs are part of
the antigen-specific (adaptive) immune response and function
as antigen-presenting cells. Immature DCs are derived in the
bone marrow and reside in peripheral tissues. Upon encountering
pathogen, DCs begin to mature, and travel to the lymphoid organs
where they stimulate differentiation and maturation of cytotoxic T
lymphocytes (CTLs). Some of these activated CTLs then travel to
the infected tissue to form part of the adaptive immune response,
while others become memory cells that are ready to mount a rapid
response in case of a rechallenge by the pathogen.

Previous studies have established the efficacy of dendritic cell
treatments for tumors in the murine system (DeMatos et al., 1998;
Fields et al., 1998; Lee et al., 2007; Yamaguchi et al., 2007; Shina-
gawa et al., 2008). In these studies, DCs have been shown both
to inhibit the growth of nascent tumors and to provide a mem-
ory response to previously encountered antigen. In the clinic,
researchers have been able to extract immature dendritic cells from
patients, culture them ex vivo, and load them with tumor antigens
to create an individual-based vaccine that can boost a patient’s
response against their own cancerous cells (Pilon-Thomas et al.,
2004; Taquet et al., 2008). The success of clinical trials of DC vac-
cines has resulted in the recent FDA approval of the first cancer
vaccine for prostate cancer (Cheever, 2011). Despite promising
clinical responses in vaccine trials, it remains difficult to predict
which patients will actually respond to these vaccines and why
(Trefzer et al., 2005; Boon et al., 2006). Mathematical models of
DC therapy can provide insight into the mechanisms driving the
kinetics of the immune response that may lead to these disparate
patient responses.

Cell trafficking is an important aspect of the DC-mediated
immune response. DCs must travel from the tumor to the periph-
eral lymph organs via the blood, and activated CTLs must travel
from the lymph organs back to the tumor. Ludewig et al. (2004)
have developed a model describing DC and CTL trafficking in

mice. The model includes activated and memory CTLs to capture
both the immediate and long-term effect of DC injections. The
DC trafficking model of Ludewig et al. was carefully calibrated
using experimental data from murine studies.

In this paper we present an extension and modification of the
model in Ludewig et al. (2004). Our extended model includes a
tumor compartment to allow for analysis of various DC treatments
and their effect on tumor growth, as well as the long-term behavior
of the system. We find relevant model parameters using the data
collected by Lee et al. (2007) describing tumor growth in response
to varying levels of DC injections. We compare model simula-
tions of various DC doses, injection sites, and dose times. We
include a comparison to a prophylactic dosing schedule presented
by Preynat-Seauve et al. (2007).

2. THE MODEL
The compartment model proposed by Ludewig et al. (2004)
includes dendritic cells, activated CTLs, and memory CTLs. Our
extended model includes tumor cells in addition to these immune
cell populations. Adding a tumor compartment requires the deter-
mination of tumor-immune system parameters such as immune
cell trafficking rates to and from the tumor, effector cell deactiva-
tion rates by tumor cells, effector cell death rates, intrinsic tumor
growth rates, and tumor cell kill rates by effector cells. We note that
this compartment model does not account for the geometry of the
system. In particular, it does not explicitly incorporate the distance
between the spleen and the tumor. However, in murine models,
the transit times between compartments are small relative to the
tumor growth time scale, so this simplification is reasonable. In
this section we describe the processes included in the mathematical
model.

2.1. MODEL DEFINITION
Our model consists of three compartments: the spleen, the blood,
and the tumor. Dendritic cells and active effector cells can move
between the blood and spleen compartments, and between the
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blood and tumor compartments. We assume that memory effector
cells can move between the spleen and the blood compartments.
The system is not conservative: all types of cells are cleared through
the blood, immune cells are created in response to the presence of
tumor, and tumor cells grow according to a logistic growth law.

The nine state variables in our model are:

• Dblood, the number of dendritic cells in the blood compartment;
• Dspleen, the number of dendritic cells in the spleen compartment;
• Ea

blood , the number of activated CTLs in the blood compartment;
• Ea

spleen , the number of activated CTLs in the spleen compart-
ment;
• Em

blood , the number of memory CTLs in the blood compartment;
• Em

spleen , the number of memory CTLs in the spleen compart-
ment;
• Ea

tumor , the number of activated CTLs in the tumor compart-
ment;
• T, the number of tumor cells;
• Dtumor, the number of dendritic cells in the tumor compart-

ment, the tumor-infiltrating DCs.

We present the system of nine differential equations in group-
ings representing the blood, spleen, and tumor compartments. The
model parameters are described in detail in Table A1 in Appendix.

2.1.1. Blood compartment
The equations describing DC and CTL flow in the blood are
given by:

d

dt
Dblood = −µBDblood + µTBDtumor + vblood (t ) (1)

d

dt
Ea

blood = µSB
(
Dspleen

)
Ea

spleen − µBBEa
blood (2)

d

dt
Em

blood = µSB
(
Dspleen

)
Em

spleen − µBBEm
blood (3)

where, as holds throughout the model, the µ parameters repre-
sent flow rates between compartments. We include the “trapping”
term from Ludewig et al. (2004) which describes the observed phe-
nomenon of activated CTLs being held back in the spleen in the
presence of DCs:

µSB
(
Dspleen

)
= µ∗SB +

1µ

1+
DSpleen

θshut

,

1µ = µNormal
SB − µ∗SB .

The function vblood(t ) allows us to model injections of DCs into
the blood. For example, two doses of 7× 105 each given on Day 0
and Day 7 could be described by the function:

vblood (t ) =

{
7×105

1/48 , t ∈ (0, 1/48) ∪ (7, 7+ 1/48) ,

0 otherwise.
(4)

2.1.2. Spleen compartment
The differential equations for the spleen compartment describe
interaction, death, and recruitment of DCs and CTL. The equa-
tions include one delay which represents the synaptic connection
time: the contact time required between DCs and effector cells in
the spleen before proliferation can begin. The other interactions
we account for in the system do not involve a required contact
time and thus are modeled without delay. The dynamics of the
populations in the spleen are described by:

d

dt
Dspleen = Max D

(
1− e

(
−µBS Dblood

Max D

))
− aDDspleen − bDE Ea

spleenDspleen (5)

d

dt
Ea

spleen = µBSE Ea
blood − µSB

(
Dspleen

)
Ea

spleen + baDspleenEm
spleen

+ aEa S

(
DConEnaive − Ea

spleen

)
− ramEa

spleen (6)

+ bp

Dspleen (t − τD) Ea
spleen (t − τD)

θD + Dspleen (t − τD)

d

dt
Em

spleen = ramEa
spleen −

(
aEm + baDspleen + µSB

(
Dspleen

))
Em

spleen

+ µBSE Em
blood . (7)

Note that the term in equation (6),

DCon =

{
0 if Dspleen (t ) = 0

1 if Dspleen (t ) > 0.

indicates that we do not allow for new CTLs in the absence of DCs.
Thus, the populations we model only exist due to the presence of
tumor and mature DCs.

The first term in equation (5) reflects our assumption that there
is a maximum rate at which mature DCs can enter the spleen.
This is in agreement with observations that DCs cannot enter the
spleen at an unlimited rate. Based on a range of values for the max-
imum rate we have set MaxD to 400 (cells per hour), reflecting the
parameter fit obtained with the data from Lee et al. (2007) and
Preynat-Seauve et al. (2007). As noted above, in equation (6) the
final term introduces a delay, τ , into the system that reflects the
synaptic connection time. Mathematically, this delay introduces
more complexity into the system, especially regarding the stability
analysis of the equilibria (see Stability Analysis below).

2.1.3. Tumor compartment
The tumor compartment contains activated effector CTLs, DCs,
and tumor cells. The interactions of these populations within the
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tumor are described by:

d

dt
Ea

tumor = µBTE (T ) Ea
blood − aEa T Ea

tumor − cEa
tumor T , (8)

d

dt
T = rT

(
1−

T

k

)
−DT . (9)

d

dt
Dtumor =

mT

q + T
− (µTB + aD)Dtumor + vtumor (t ) (10)

where

µBTE (T ) = µBB (T/ (α + T )) ,

and

D = d

(
Ea

tumor
T

)l

s +
(

Ea
tumor
T

)l
.

(11)

The function vtumor(t ) is similar to vblood(t ) in the blood com-
partment, allowing us to inject DCs intratumorally in order to
compare treatment protocols.

Note that in equation (9), tumor growth is fit to a logistic func-
tion as in previous models (de Pillis and Radunskaya, 2003; de
Pillis et al., 2005, 2007, 2009; Cappuccio et al., 2006). The behavior
of this particular model is robust to the choice of growth function,
for example a Gompertz growth law gives similar results. However,
we choose the logistic law since it provides a good fit to the exper-
imental data we are using for model calibration (See Figure 1).
Cytolysis of tumor cells by activated CTLs [equations (9) and (11)]
is a ratio-dependent kill term introduced in de Pillis and Radun-
skaya (2003). Experimental results from Diefenbach et al. (2001)
support ratio-dependent, antigen-specific killing, and the term has
been employed to success in previous models (de Pillis and Radun-
skaya, 2003; de Pillis et al., 2005, 2007, 2009). The importance of

tumor-infiltrating dendritic cells has been demonstrated in several
studies. See, for example, Preynat-Seauve et al. (2007). We allow
DCs in the tumor to increase as a saturation-limited function of
the size of the tumor population.

With this model we simulate a variety of treatment scenarios,
including those investigated in Lee et al. (2007) and Preynat-
Seauve et al. (2007). The model offers insight into how best to
harness the tumor controlling potential of DCs.

3. RESULTS
3.1. PARAMETER DETERMINATION
All unknown parameters were fit to data from Lee et al. (2007)
using a Nelder–Mead least-squares algorithm. The data in Lee
et al. (2007) were collected from C57BL/6 female mice who were
subcutaneously inoculated with 5× 105 B16F10 melanoma cells.
We take this as day 0 for the purpose of fitting unknown parame-
ters so that we may use 5× 105 tumor cells as an initial condition.
Injections of 1× 105, 7× 105, or 21× 105 DCs were given at days
6, 8, and 10, following inoculation with tumor cells. Addition-
ally, a control group was injected with PBS according to the same
schedule (Lee et al., 2007). See Figure 1.

3.2. EQUILIBRIA AND STABILITY ANALYSIS
In order to determine the long-term behavior of the system, we
find the equilibria and determine their stability.

3.2.1. Determination of the equilibria
The system has multiple equilibrium values, determined by set-
ting equations (1–10) to zero. One solution to this system is the
zero, or disease-free, equilibrium. To find the remaining non-zero
equilibria, we first write all the state variables at equilibrium as
functions of T, then search for the values of T that solve all equa-
tions simultaneously. We use asterisks to denote the value of the
variables at equilibrium. Therefore, if there exists a non-zero value
T ∗ that satisfies equation (9), we can use equation (8) to obtain

FIGURE 1 | Fits to data from Lee et al. (2007) and corresponding
residuals. The vertical bars in the graph on the left are the error bars from the
experimental data, and the solid line is the outcome of the model simulation
using the parameters that minimize the distance to the median of those data.

In the graph on the right, the thin vertical bars are the same error bars from
the data, and the solid rectangles show the “residuals,” that is, the distances
between the simulated outcomes and the data. The estimated parameter
values are given inTable A1 in Appendix.
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Ea∗
tumor =

{
s(T ∗)l (k − T ∗)

T ∗ − k (1− d/r)

}1/l

. (12)

The value for D∗tumor can also be found in terms of T ∗ using
equation (10):

D∗tumor =
mT ∗

q + T ∗
1

µTB + aD
, (13)

where we have replaced DCdeath with its assumed constant
value aD.

Given Ea∗
tumor , we can use equation (8) to determine the

equilibrium value of the active effector cells in the blood:

Ea∗
blood =

(
aEa T + cT ∗

)
(α + T ∗)

µBBT ∗
Ea∗

tumor . (14)

We use equations (13) and (1) to obtain D∗blood in terms of T ∗:

D∗blood =
µTBD∗tumor

µB
=
µTB

µB

(
1

µTB + aD

)
mT ∗

q + T ∗
.

Equation (3) gives an expression for Em∗
blood in terms of Em∗

spleen ,

Em∗
blood =

µSB
(
Dspleen

)
µBB

Em∗
spleen .

Turning to the spleen compartment, we have:

Ea∗
spleen =

µBB

µSB
(
Dspleen

)Ea∗
blood .

Using (14) and (12), this gives Ea∗
spleen in terms of T ∗. According

to equation (5), knowing D∗blood allows determination of D∗spleen .

Using equation (6) results in the following quadratic equation for
D∗spleen :

0 = −θshut
(
µ∗SB +1µ

)
Din

{
θshutµ

∗
SBaD +1µθshut aD

+θshut bDEµBBEa∗
Blood − µ

∗
SBDin

}
D∗spleen{

µ∗SBaD + bDE Ea∗
BloodµBB

} (
D∗spleen

)2
,

(15)

where

Din = Max D

{
1− exp

(
−µBSDblood

Max D

)}
.

Solving this quadratic equation yields two different, relevant
equilibrium values for D∗spleen . From equation (7) we get a value

for Em∗
spleen for each value of D∗spleen :

Em∗
spleen =

ramEa∗
spleen

aEm + baD∗spleen + µSB

(
D∗spleen

)
{1− µBSE/µBB}

.

Finally, from equation (6), the roots of the following function,
expressible in terms of one variable, T ∗, yield equilibrium values
for T ∗.

Z
(
T ∗
)
= µBSE Ea∗

blood − µSB

(
D∗spleen

)
Ea∗

spleen + baD∗spleenEm∗
spleen

+ aEa S

(
DConEnaive − Ea∗

spleen

)
− ramEa∗

spleen

+ bp

D∗spleenEa∗
spleen

θD + D∗spleen

.

(16)

From equation (12), we see that as long as the values of T ∗, and
thus the roots of (16), lie between k(1− d/r) and k, a non-zero
equilibrium state exists. Recall that d, r, and k are the parame-
ters that represent the tumor cell kill, intrinsic growth rates, and
tumor carrying capacity, respectively. The function Z (T ) is plotted
in Figure 2 for the parameter set given in Table A1 in Appendix.

3.2.2. Stability of the equilibrium points
A stability analysis of the system of delay equations (1–10) can be
carried out by analyzing the linear approximation to the system at
an equilibrium point. Since the term D(T , Ea

tumor ), given in equa-
tion (11), is not differentiable at (0, 0), the system of DEs is not
differentiable and, hence, has no linear approximation at the ori-
gin. Although we cannot use the linearization in this case, we do
have numerical simulations that indicate that the tumor free equi-
librium is initially unstable, but gains stability as the value of d,
the immune strength parameter, is increased (see Figure 9). There
is ongoing investigation of the analytical nature of the stability of
the disease-free equilibrium.

At other equilibria, the linearization is given by two matri-
ces of partial derivatives, J 0 and Jτ . To simplify the notation, we
denote the nine state variables as x1 through x9 and the delayed
state variables as zi(t )= xi(t − τ ). If the rate of change of xi is
denoted by:

dxi

dt
= Fi(x1, . . . x9, z1, . . . z9)

then the entries of the Jacobians are:

J0
(
i, j
)
=
∂Fi

∂xj
, Jτ (i, j) =

∂Fi

∂zj

The formulas for the entries of J 0 and Jτ are given in
Appendix B.

The eigenvalues of the derivative matrices at an equilibrium,
E can be determined by finding the roots of the characteristic
polynomial P(λ, τ ), where P is defined by:

P (λ, τ) = det
(
J0(E)+ e−λτ Jτ (E)− λI

)
For most systems of delay-differential equations, determining

the roots of the characteristic polynomial is a non-trivial process.
Given our equations and particular parameter set, there exist two
positive equilibrium values of T ∗ (see Figure 2). However,only one
of these values result in positive (biologically relevant) equilibrium
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FIGURE 2 | Graph of the function Z given in equation (16). The two zeros, marked by dots, correspond to equilibrium values of T. The function becomes
complex as T →109. The two curves correspond to the two roots of equation (15).

values for all other state variables (see Appendix B). For this bio-
logically relevant equilibrium, in the non-delay (or τ = 0) case,
all eigenvalues of the derivative matrix J 0 have negative real part
(see Appendix B). Because this is equivalent to the non-delay case,
we know that when τ = 0, the non-trivial equilibrium is stable.
It is possible for an equilibrium to change stability as the delay
increases from zero. In our case numerical simulations suggest
that this equilibrium maintains its stability even for large values of
the delay, τ (see Figure 3).

3.3. CALIBRATION AND VALIDATION OF DC EFFECT ON TUMOR
GROWTH

In this section we discuss the validation of the model. Start-
ing with parameter values estimated in Ludewig et al. (2004),
we then calibrate DC and CTL dynamics against the data pro-
vided by the experiments in Lee et al. (2007). In the discussion
section we present a number of numerical experiments in which
we explore the difference between intravenous and intratumoral
DC injections, as well as modifications of the dose timings with
hypothetically improved treatment schedules.

Experiments carried out in Lee et al. (2007) give tumor growth
data, both in the presence and absence of DC treatment. We fit our
intrinsic tumor growth parameters to the PBS melanoma growth
data provided by Lee et al. (2007). Since specific trafficking para-
meters to and from the tumor have not been measured, we used the
tumor growth data provided to infer the parameter values needed
for the tumor compartment DC and CTL dynamics.

In Lee et al. (2007), groups of three 6–8-week-old female
C57BL/6 mice were challenged with 5× 105 B16F10 melanoma
cells on day 1, then treated with DC injections starting on days
6, 8, and 10. In separate experiments, DC doses of size 1× 105,

7× 105, and 21× 105 were administered. Lee et al. point out that
the largest DC dose is most effective at slowing tumor growth. In
fact, according to Lee et al., the largest dose regimen of 21× 105

DCs injected three times provided up to 41% tumor growth sup-
pression as compared to the control mice. Survival time for these
mice was increased by approximately 60%. We note that, even with
the most aggressive DC treatment attempted, tumor growth was
not completely suppressed.

In Figure 4, left panel, we see the change in tumor volume over
20 days, and compare tumor growth with no DC treatment to
growth with varying levels of DC treatment. Simulated DC doses
are 1× 105, 7× 105, and 21× 105, reflecting the laboratory exper-
iments of Lee et al. (2007). After a tumor challenge of 5× 105

B16F10 melanoma cells on day 1, DC injections of the specified
doses were then given intratumorally on days 6, 8, and 10. The
simulation results fall well within the data ranges provided by Lee
et al. (2007).

4. DISCUSSION
In Section 3 we validated and calibrated the model, and analyzed
the long-term behavior of the system. We are now in a position
to explore hypothetical treatment variations. In this section, we
discuss the effects of varying treatment protocols, and possible
implications for patients. In Section 4.1, we compare intratumoral
DC injections to hypothetical intravenous DC injections. We will
see that when injecting the smallest dose of DCs, hypothetical
intravenous DC injections are more effective at suppressing tumor
growth than are DCs injected directly into the tumor. However,
intratumoral injections are more effective than intravenous injec-
tions when the highest DC dose is used. In Section 4.2, we explore
the effect of modifying dose timings. We will see that fractionated
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FIGURE 3 |This figure presents a sampling of several simulations
for various values of the delay, τ and several different initial
conditions (IC). The solid black line (topmost curve) shows a
simulation with initial value 9.82×108 with τ =16. The other curves
(from top to bottom) are the results of simulations using (τ , IC) pairs:

(2, 9.817×108), (0.5, 9.835×108), (0.1, 9.811×108), (8, 9.8×108). For
each value of τ , we simulated several initial conditions ranging
between 9.80×108 and 9.82×108 (other simulations not shown)
and, in each case, the cell populations approached the same
equilibrium value.

FIGURE 4 | Fractionated dosing comparison. Intratumoral injections. Compare original DC dosing schedule (left panel) to hypothetical fractionated dosing
schedule (right panel).

doses that are administered intravenously delay tumor growth sig-
nificantly. We will see that earlier treatment initiation also helps
suppress tumor growth, but more so with intratumoral injections.
Up to this point,we have found ways to slow tumor growth by vary-
ing dose timing and location, but have not been able to completely
eliminate a tumor. In Section 4.3, we explore the effects of prophy-
lactic DC dosing. We find that prophylactic DC dosing actually
allows us to eliminate a tumor under the right circumstances.

We will see that as long as the CTL immune response is suffi-
ciently strong, as reflected by the immune strength parameter d, a
tumor that is introduced after DCs are injected can be completely
suppressed.

4.1. INTRATUMORAL VERSUS INTRAVENOUS TREATMENT
We first compare the effect of treatment at two different injec-
tion sites. In the work of Preynat-Seauve et al. (2007) DC
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trafficking resulting from different injection sites was compared.
They observed that there is a “trapping effect” within the tumor:
DCs injected intratumorally do not reach the lymph nodes in
significant numbers, indicating that the DCs are “trapped” for a
time within the tumor. Note that this trapping is a different phe-
nomenon from the one described in Section 2.1 which referred
to activated CTLs being held back in the spleen in the presence
of DCs. Preynat-Seauve et al. observed that subcutaneous DC
injections resulted in DCs getting to the lymph nodes in greater
numbers. In our numerical experiments,we compare intratumoral
DC injections (as was done in the Lee et al. (2007) experiments)
to intravenous DC injections. We note that intravenous injec-
tions and subcutaneous injections are not equivalent, but both
approaches do avoid the trapping effect of intratumoral injections.

In Figure 5, left panel, we see the effects on melanoma growth of
hypothetical intravenous DC injections over a 20 day period. Sim-
ulated DC doses of size 1× 105, 7× 105, and 21× 105 are admin-
istered. The no-treatment tumor growth case is also included for
comparison. After a tumor challenge of 5× 105 B16F10 melanoma
cells on day 1, DC injections of the specified doses were then given
on days 6, 8, and 10.

It is interesting to note that in these simulations, all three intra-
venous dose responses appear to be nearly equally effective. There
is little difference between low-dose and high-dose intravenous
injection outcomes, while there is a significant difference between
low-dose and high-dose intratumoral injection outcomes. In addi-
tion, when we compare Figure 5, left panel, to Figure 4, left panel,
we see that all three intravenous doses control the tumor growth
about as effectively as the mid-sized 7× 105 intratumoral dose
(that is, the intravenous doses are all more effective than the low-
est tumor dose, but less effective than the highest tumor dose). The
reason for this result can be explained mathematically by the pres-
ence of the MaxD term in the model, equation (5). This term limits
the rate at which DCs can enter the spleen, which in turn limits how
saturated with DCs the spleen can get. Consequently, this limited
inflow rate works against any treatment that attempts to send DCs
into the spleen too quickly. MaxD term limits DC inflow into the
spleen, the total number of DCs in the spleen over MaxD limit. In

the case of the low-dose injections, the DCs injected intravenously
all enter the spleen, since their entry rate is not limited by MaxD,
while the low intratumoral dose suffers some DC loss from the
tumor. This can explain why the low-dose intravenous injection is
more effective than the low-dose intratumoral injection. However,
in the high-dose injection cases, the number of DCs entering the
spleen from the high-dose intravenous treatment is being limited
by the MaxD inflow ceiling. On the other hand, the high-dose
intratumorally injected DCs enter the spleen more slowly, so even
though there is still loss from the tumor, a greater total number of
DCs remain in the spleen longer than in the case of the high-dose
intravenous injection.

As discussed earlier, the model does not explicitly account for
the distance between the spleen and the tumor. If we were to extend
the model so that it could apply to human subjects, these distances
could vary significantly between individuals. One possible model
extension would incorporate the effect of transit times with a par-
tial differential equation that includes a distance L along which
cells diffuse and convect.

4.2. MODIFIED DOSING
In this section we explore the hypothetical effect of modifying
dose timings. We first investigate the effect of administering the
same total medication over a 20 day time frame, but with more
frequent injections; that is, a fractionated dosing schedule. The
original dosing schedule starts on day 6, and administers a total of
three doses spaced apart by 2 days. The hypothetical fractionated
dosing schedule we explore also starts on day 6, but administers
doses twice a day at 1/4 the original dose.

In Figure 4, we compare simulated melanoma growth in
response to DCs administered according to the original proto-
col with a hypothetical fractionated dosing schedule. Injections
are given intratumorally. The no-treatment tumor growth case is
also included for comparison. After a tumor challenge of 5× 105

B16F10 melanoma cells on day 1, the original dosing calls for
DC injections of 1× 105, 7× 105, and 21× 105 administered
every other day on days 6, 8, 10. The hypothetical fraction-
ated schedule administers doses of 0.25× 105, 1.75× 105, and

FIGURE 5 | Fractionated dosing comparison. Intravenous injections.
Compare original DC dosing schedule (left panel) to hypothetical fractionated
dosing schedule (right panel). 5× 105 B16F10 melanoma cells on day 1, the

original dosing calls for DC injections of 7×105, and 21×105 administered
every other day on days 6, 8, 10 (pictured in graphs 0.25×105, 1.75×105, and
5.25×105 twice a day on days 6, 7, 8, 9, 10, 11.
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FIGURE 6 | Early treatment initiation: start day 3. Original dosing (top row)
and fractionated dosing (bottom row) compared. 5×105 B16F10 melanoma
cells on day 1, DC injections of 7×105, and 21×105 are administered both

intratumorally and intravenously 0.25×105, 1.75×105, and 5.25×105 twice a
day on days 3, 4, 5, 6, 7, 8. Treatment is given both intratumorally (left column)
and intravenously (right column).

FIGURE 7 | Compare original to earlier treatment initiation, intravenous, non-fractionated dosing. Treatment start day 6 (left) compared to start day 3
(right).

5.25× 105 twice a day on days 6, 7, 8, 9, 10, 11. The total DC
treatment administered is the same in the original and fraction-
ated dosing scenarios. It is clear that the fractionated sched-
ule does not improve outcomes in the case of intratumoral
injections.

In Figure 5, we again compare the original DC dosing sched-
ule to a fractionated dosing schedule, but we now use intravenous
injections. As before, after a tumor challenge of 5× 105 B16F10
melanoma cells on day 1, the original treatment schedule calls for
DCs of doses 1× 105, 7× 105, and 21× 105 given every other day
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on days 6, 8, 10. The hypothetical fractionated schedule admin-
isters doses of 0.25× 105, 1.75× 105, and 5.25× 105 twice a day
on days 6, 7, 8, 9, 10, 11. The total amount of DC administered
is the same in both scenarios. The simulations highlight that
although the fractionated schedule does not improve outcomes
in the case of intratumoral injections, greater tumor control is
observed when the fractionated treatment is administered intra-
venously. Although tumor growth is slowed with the intravenously
dosed fractionated schedule, it is not completely controlled, and
the tumor still eventually grows.

We next investigate the effect of starting the DC treatment
regimen earlier than day 6. In this case, we compare fraction-
ated DC doses both intratumorally and intravenously, but with
treatment initiated on day 3 instead of day 6. The experimen-
tal outcomes are pictured in Figure 6. After a tumor challenge of
5× 105 B16F10 melanoma cells on day 1, DC injections of 1× 105,
7× 105, and 21× 105 are administered both intratumorally and
intravenously on days 3, 5, 7 (pictured in graphs in the top row
of Figure 6). The hypothetical fractionated schedule (pictured
in the second row of Figure 6) administers doses of 0.25× 105,
1.75× 105, and 5.25× 105 twice a day on days 3, 4, 5, 6, 7, 8. The

total DC treatment administered is the same in all scenarios. We
see that in both the intratumoral and intravenous dosing cases,
tumor growth is slowed when treatment starts on day 3. How-
ever, as before, fractionating the intratumoral doses does not have
much effect (bottom left panel), but does slow tumor growth even
further when administered intravenously (bottom right panel).
Interestingly, the earlier start day has less effect when administered
intravenously than it does when administered intratumorally, as
can be seen in Figure 7. Here we compare non-fractionated intra-
venous dosing starting on day 6 (left panel) and on day 3 (right
panel). Initial values and doses follow the original schedule. The
result with fractionated dosing is similar, but is not pictured. We
see that there is some improvement with the early start intravenous
dosing, but the improvement is not as large as the improvement
seen with the intratumoral doses started on day 3, as pictured in
the left column of Figure 6.

4.3. PROPHYLACTIC VACCINATION
So far, we have been investigating the responses of our system
to DC treatment after a tumor challenge. However, DC treat-
ments have also been considered to have potential as prophylactic

FIGURE 8 | Partially Ranked Correlation Coefficients (PRCC) for two outcomes: final tumor size, and final CTL levels. Parameters with negative PRCCs
relative to final tumor levels are negatively correlated with tumor growth. Increasing such parameters would be beneficial to the patient. An increase in
parameters with positive PRCCs relative to final tumor levels, or with negative PRCCs relative to final CTL levels could be harmful to the patient.
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vaccines. For example, the work of Preynat-Seauve et al. (2007)
details a variety of studies on tumor growth in mice inoculated
with DC treatments prior to a tumor challenge. Although our
model has not been constructed specifically to investigate preven-
tative vaccination, we did see some interesting results when sim-
ulating such treatment. In one of the experiments from Preynat-
Seauve et al. (2007), DC cells from tumors were cultivated and
injected into B6C3F1 mice. Vaccination was performed twice, once
weekly, with 105 tumor-infiltrating dendritic cells. The authors
state that this number corresponds to the total number of CD11c+
cells recovered from a single 1 cm-diameter tumor. Two weeks after
the last injection, mice were challenged with 2× 105 melanoma
cells (either K1735 or B16F10). According to the study, vaccinated
mice were protected for 22 days, whereas naive mice succumbed
to the tumor challenge.

Using the same parameter values we determined through fit-
ting to the data in Lee et al. (2007), a simulation of pre-vaccination

with mature DCs showed no particular benefit. In order to deter-
mine the sensitivity of the system to a change in parameters we
used the Latin Hypercube sampling method described in Blower
and Dowlatabadi (1994) to compare simulations with 50,000 ran-
domly generated parameter sets. The effect of a change in parame-
ter values on tumor size and CTL levels after 45 days was quantified
by calculating the partially ranked correlation coefficients for each
parameter that showed a monotonic relationship to the outcomes.
The results are shown in Figure 8.

The sensitivity analysis indicates that tumor levels are sensitive
to the parameters d, m, and µTB. Since d, the fractional tumor
kill rate by CTLs, has the potential to be manipulated through
treatments (c.f. Chakraborty et al., 2003), we suggest that this para-
meter might play an important role in the vaccine’s effectiveness.
In subsequent simulations, when d was increased we observed a
protective effect of prophylactic vaccination with DCs. In Figure 9
we see tumor growth both without and with DC vaccination with

FIGURE 9 | Prophylactic vaccination and the effect of varying immune
strength parameter d. Top panel, no vaccine. Bottom panel, vaccinate
with DC treatments, days 0 and 7, 1×105 DCs per dose. Tumor challenge

on day 21, with 2×105 tumor cells. Dosing follows Preynat-Seauve et al.
(2007) experiment. With d =1, tumor is controlled as a result of
vaccination.
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d = 0.35, 0.85, 1.0, and 1.25. The results for d = 1 are what interest
us. When d = 1.25, the immune system is sufficiently effective to
suppress tumor growth without treatment intervention. In con-
trast, when d = 1 or less, then without DC vaccination, the tumor
grows rapidly. However, if the tumor challenge has been preceded
by two doses of a DC vaccine, then even when d = 1, tumor growth
is suppressed. We also extended the simulations out 165 days after
the tumor challenge (not pictured). For d ≥ 1, the tumor shrank
to zero after vaccination and did not regrow. Numerically, this
indicates that the zero tumor equilibrium is stable.

5. FUTURE DIRECTIONS
In this paper, we presented a model of Dendritic Cell trafficking
and interaction with a tumor cell population. With this model,
we achieved simulation outcomes that quantitatively match pub-
lished data from studies on mice (Lee et al., 2007) that first were
challenged with tumor and subsequently treated with DC therapy.
We then used the model to test a wider variety of hypothetical

treatment scenarios. In addition, we examined the effects of
prophylactic vaccination with DCs. The simulation results from
the prophylactic vaccination scenarios that were discussed in the
previous section are preliminary, but do show qualitative agree-
ment with a different set of data from published laboratory
experiments on mice (Preynat-Seauve et al., 2007).

In future work, we will investigate how to scale this model to
reflect tumor growth and DC trafficking in humans. This will
involve a careful examination of the effect of distances between
the tumor site and the lymph organs. In addition, we will fur-
ther investigate the effects of prophylactic vaccination. Our goal is
to determine which parameters and model terms need tuning to
achieve quantitative as well as qualitative outcomes that reflect the
laboratory data.
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APPENDIX
A. PARAMETER VALUES
The parameters are described in Table A1. Refer to Ludewig et al. (2004) for justification and confidence intervals for the parameters
measured in that study.

Table A1 | Parameter values.

Parameter name Description Value Units Reference

aD Natural death rate of DCs 0.2310 1/day Ludewig et al. (2004)

aEaS Death rate of activated CTLs in spleen 0.1199 1/day Ludewig et al. (2004)

aEaT Death rate of activated CTLs in tumor compartment 0.462 1/day de Pillis et al. (2006)

aEm Natural death rate of memory CTLs 0.01 1/day Ludewig et al. (2004)

α Component of µBTE 1 Cell

ba = b̃a/Qspleen Per cell activation rate of memory CTLs by DCs 0.01 1/(cell ·day)

b̃a Activation rate of memory CTL concentration by DCs 1×10−3 ml/(cell ·day) Ludewig et al. (2004)

bDE = b̃DE /Qspleen Per cell elimination rate of DCs by activated CTLs 1.3×10−6 1/cell ·day

b̃DE Elimination rate of DCs by activated CTLs (per concentration) 1.3×10−7 ml/cell/day Ludewig et al. (2004)

bp Maximal expansion factor of activated CTL 85 1/day Ludewig et al. (2004)

c Rate at which activated CTLs are inactivated by tumor cells 9.42×10−12 1/(cell ·day) de Pillis et al. (2006)

d Maximum fractional tumor kill by CTLs 0.35 1/day Fit to Lee et al. (2007)

Enaive Number of naive CTL cells contributing to primary clonal

expansion

370 Cells Ludewig et al. (2004)

k Carrying capacity of tumor 1.0×109 Cells Fit to Lee et al. (2007)

l Immune strength scaling exponent 2
3 Unitless Ad hoc value

m Maximum recruitment rate of DCs to tumor site 2.4388×104 Cells/day Fit to Lee et al. (2007)

µB Rate of DC emigration from blood. Note: µB=µBS+

24(µBLi+µBLu+µBO), the sum of DC outflow to the spleen,

liver, lung, and other parts of the body

27.072 1/day Ludewig et al. (2004)

µBB = µ̃BB − µBL Scaled and shifted elimination (clearance and extravasation)

rate of CTL from blood

5.7 1/day

µ̃BB Total elimination rate of CTL from blood 5.8 1/day Ludewig et al. (2004)

µBL Transfer rate of DCs from the blood to the liver 0.1 1/day Ludewig et al. (2004)

µBS Transfer rate of DCs from blood to spleen 2.832 1/day Ludewig et al. (2004)

µBSE = µ̃BSE Qspleen/Qblood Scaled transfer rate of activated CTLs from blood to spleen 7.33×10−4 1/day

µ̃BSE Transfer rate of activated CTLs from blood to spleen 0.022 1/day Ludewig et al. (2004)

µBTE = µBB
T
α+T T-dependent rate at which effector cells enter the tumor

compartment from the blood

Calculated 1/day

µLB Transfer rate of DCs from the liver to the blood 0.51 1/day Ludewig et al. (2004)

µNormal
SB Normal DC transfer rate from spleen to blood 0.512 1/day Ludewig et al. (2004)

µ∗SB DC reduced transfer rate from spleen to blood 0.012 1/day Ludewig et al. (2004)

µTB Rate of transfer of DC from tumor to blood 0.0011 1/day Ad hoc value

(Continued)
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Table A1 | Continued

Parameter name Description Value Units Reference

q Value of T necessary for half-maximal DC recruitment 100 Cells Fit to Lee et al. (2007)

Qblood Murine blood volume 3 ml Ludewig et al. (2004)

Qliver Murine liver volume 0.5 ml Ludewig et al. (2004)

Qspleen Murine spleen volume 0.1 ml Ludewig et al. (2004)

r Tumor growth rate 0.3954 1/day Fit to Lee et al. (2007)

ram Reversion rate of activated CTL to memory CTL 0.01 1/day Ludewig et al. (2004)

s Value of (Ea
tumor /T )

l necessary for half-maximal activated

CTL toxicity

1.4 Unitless Fit to Lee et al. (2007)

τD Duration of preprogramed CTL divisions 0.5 Days Fit to Lee et al. (2007)

θD = θ̃DQspleen Scaled threshold in DC density in the spleen for

half-maximal proliferation rate of CTL

212 Cell

θ̃D Threshold in DC density in the spleen for half-maximal

proliferation rate of CTL

2.12×103 Cell/ml Ludewig et al. (2004)

θshut = θ̃shut Qspleen Scaled threshold in DC density in the spleen for

half-maximal transfer rate from spleen to blood

1.3 Cells Ludewig et al. (2004)

θ̃shut Threshold in DC density in the spleen for half-maximal

transfer rate from spleen to blood

13 Cells/ml Ludewig et al. (2004)
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B. STABILITY ANALYSIS: JACOBIANS
Recall that J 0 is the Jacobian for the non-delayed system, in
other words, its entries are given by J 0(i, j)= dFi/dxj, and
Jτ (i, j)= dFi/dzj is the Jacobian for the delayed system. For
computational ease, we rename the state variables as follows:

Dblood = x1, Dspleen = x2, Ea
blood = x3,

Ea
spleen = x4, Em

blood = x5, Em
spleen = x6,

Ea
tumor = x7, T = x8, Dtumor = x9.

There are only two delayed variables:

Dspleen (t − τ) = z2, Ea
spleen (t − τ) = z4.

We perform the stability analysis without any treatment, i.e.,
vblood= vtumor= 0. The non-zero elements of J 0 are calculated
to be:

J0 (1, 1) = −µB

J0 (1, 9) = µTB

J0 (2, 1) = −µBSe

(
−µBS x1
Max D

)
J0 (2, 2) = −aD − bDE x4

J0 (2, 4) = −bDE x2

J0 (3, 2) =
−1µ

θshut

x4

(1+ x2/θshut )
2

J0 (3, 3) = −µBB ,

J0 (3, 4) = µSB
(
Dspleen

)
,

J0 (4, 2) =
−1µ

θshut

x4

(1+ x2/θshut )
2 + bax6

J0 (4, 3) = µBSE

J0 (4, 4) = −µSB
(
Dspleen

)
− aEa s − ram

J0 (4, 6) = bax2

J0 (5, 2) =
−1µ

θshut

x6

(1+ x2/θshut )
2

J0 (5, 5) = −µBB , J0 (5, 6) = µSB
(
Dspleen

)
J0 (6, 2) = −

(
ba −

1µ

θshut

1

(1+ x2/θshut )
2

)
x6

J0 (6, 4) = ram

J0 (6, 5) = µBSE

J0 (6, 6) = −
(
aEm + bax2 + µSB

(
Dspleen

))
J0 (7, 3) = µBTE (T )

J0 (7, 7) = −aEa T − cx8

J0 (7, 8) =
µBBα

(α + x8)
2 x3 − cx7

J0 (8, 7) =
dsl(x7/x8)

l−1{
s + (x7/x8)

l
}2

J0 (8, 8) = r −
2rx8

k
−

dsl(x7/x8)
l{

s + (x7/x8)
l
}2 +

d(x7/x8)
l

s + (x7/x8)
l

J0 (9, 8) =
mq(

q + x8
)2

J0 (9, 9) = − (µTB + aD)

where µBTE (T ) = µBB T
α+T , and µSB

(
Dspleen

)
= µ∗SB +

1µ
1+Dspleen/θshut

.

There are only two non-zero elements of Jτ :

Jτ (5, 4) = bp
z5θD

(θD + z4)
2 , Jτ (5, 5) =

bpx4

θD + z4
.

As referenced in the text, there are two positive tumor equilib-
rium values, T ∗:

T ∗1 ≈ 9.72× 108; T ∗2 ≈ 9.81× 108.

However, the first one results in a non-biologically relevant
equilibria as it corresponds to a negative equilibrium value for x2,
x4, x5. For the non-delay case (i.e., τ = 0,) there are no Jτ elements.
Thus we consider the eigenvalues of J 0. At the positive (biologi-
cally relevant) equilibria, the eigenvalues of J 0, as computed via
MatLab to four decimal places, are

Ee = [−27.0720,−11.1021,−0.6765,−0.4719,−0.3918,

− 0.3092,−0.2321,−5.7000,−5.7000].

Each eigenvalue clearly satisfies R(λ)< 0, indicating that, in
the non-delay case, the biologically relevant equilibrium is stable.

Frontiers in Oncology | Molecular and Cellular Oncology March 2013 | Volume 3 | Article 56 | 216

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 10 May 2013

doi: 10.3389/fonc.2013.00111

The role of tumor tissue architecture in treatment
penetration and efficacy: an integrative study
Katarzyna A. Rejniak 1,2*,Veronica Estrella3,Tingan Chen4, Allison S. Cohen3, Mark C. Lloyd 4,5 and
David L. Morse2,3,6

1 Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
2 Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
3 Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
4 Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
5 Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
6 Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA

Edited by:
Heiko Enderling, Tufts University, USA

Reviewed by:
Luisa Lanfrancone, European Institute
of Oncology, Italy
Yi Jiang, Los Alamos National
Laboratory, USA

*Correspondence:
Katarzyna A. Rejniak, Integrated
Mathematical Oncology, H. Lee
Moffitt Cancer Center and Research
Institute, 12902 Magnolia Drive,
SRB-4 24000G, Tampa, FL 33612,
USA.
e-mail: kasia.rejniak@moffitt.org

Despite the great progress that has been made in understanding cancer biology and the
potential molecular targets for its treatment, the majority of drugs fail in the clinical tri-
als. This may be attributed (at least in part) to the complexity of interstitial drug transport
in the patient’s body, which is hard to test experimentally. Similarly, recent advances in
molecular imaging have led to the development of targeted biomarkers that can predict
pharmacological responses to therapeutic interventions. However, both the drug and bio-
marker molecules need to access the tumor tissue and be taken up into individual cells
in concentrations sufficient to exert the desired effect. To investigate the process of drug
penetration at the mesoscopic level we developed a computational model of interstitial
transport that incorporates the biophysical properties of the tumor tissue, including its
architecture and interstitial fluid flow, as well as the properties of the agents. This model
is based on the method of regularized Stokeslets to describe the fluid flow coupled with
discrete diffusion-advection-reaction equations to model the dynamics of the drugs. Our
results show that the tissue cellular porosity and density influence the depth of penetra-
tion in a non-linear way, with sparsely packed tissues being traveled through more slowly
than the denser tissues.We demonstrate that irregularities in the cell spatial configurations
result in the formation of interstitial corridors that are followed by agents leading to the
emergence of tissue zones with less exposure to the drugs. We describe how the model
can be integrated with in vivo experiments to test the extravasation and penetration of
the targeted biomarkers through the tumor tissue. A better understanding of tissue- or
compound-specific factors that limit the penetration through the tumors is important for
non-invasive diagnoses, chemotherapy, the monitoring of treatment responses, and the
detection of tumor recurrence.

Keywords: interstitial transport, tissue penetration, drug/biomarker efficacy, regularized Stokeslets Method,
intravital fluorescence microscopy, mouse xenograft tumor model, tumor targeted agent, fluorescence molecular
imaging

INTRODUCTION
Systemic chemotherapy is one of the main anticancer treatments
used for most kinds of tumors that are clinically diagnosed. How-
ever, with a few exceptions, such as the treatment of chronic
myeloid leukemia with imatinib, the drugs that have shown high
promise for a cure in laboratory tests did not prove to be as success-
ful in the clinical setting. In fact, only about 10% of the drugs that
enter clinical trials are approved by the FDA (Petsco, 2010), and
the majority of potentially therapeutic compounds fail in Phase II
of the clinical trials. This means that the drugs are not effective in
treating the disease, even though they were potent in cell-culture
assays and animal model systems (Petsco, 2010). One of the rea-
sons for the Phase II drug failures may be attributed to the fact
that experimental models do not recreate the process of interstitial
drug transport in the tissues in the same way that it occurs in the

patient’s body. It is beyond question that even the most effective
anticancer drug will not show high efficacy if it cannot reach all
of the tumor cells in concentrations sufficient to exert a thera-
peutic effect. Moreover, it has been suggested (Minchinton and
Tannock, 2006) that the poor penetration of the tumor tissue by
drug particles may leave untreated certain cell populations capable
of initiating tumor recurrence and/or resistance.

Recent advances in molecular imaging allow for the develop-
ment of targeted imaging agents that are specific in binding to
intracellular or extracellular targets (biomarkers). They can pre-
dict the pharmacological responses to therapeutic interventions
and are being used during the diagnoses to determine the state
of the disease and to plan (personalized) treatment. Imaging bio-
markers that allow for the prediction and monitoring of patient
responses to a given therapy are becoming an essential component
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of drug development. Moreover, they can reduce the number of
patients needed to test novel targeted therapeutic agents by iden-
tifying non-responders early-on. However, the transport of such
biomarkers through the tumor tissue faces similar issues. In order
to be a useful predictor, targeted imaging agents need to access
the tumor tissue space and then be retained by individual cells
through binding and uptake (Morse and Gillies, 2010).

Drug penetration refers to the movement of drug molecules
from the bloodstream into the various tissues of the body (Minch-
inton and Tannock, 2006). After a drug is absorbed into the
bloodstream, it rapidly circulates through the body; however,
both the spatial and temporal distributions of the drug molecules
may be different in different tissues types and the extent of the
drug/biomarker particle penetration into the tissue depends on
both the biochemical properties of the particles and biophysical
properties of the tissues. For example, drugs that dissolve in water
(water-soluble drugs) tend to stay in the bloodstream and in the
fluid that surrounds the cells (interstitial fluid). Particles have dif-
ferent sizes and molecular weights and thus their penetration into
the tumor tissue may depend on whether their transport through
the interstitial space is dominated by their random motion (dif-
fusion) or motion due to the fluid flow (advection) (Jain, 1987;
Gade et al., 2009; Schmidt and Wittrup, 2009). The interstitial
transport of drug molecules may also be affected by the tumor
cellular structure (Grantab et al., 2006) and extracellular matrix
(ECM) assembly (Netti et al., 2000). We are particularly inter-
ested in the cellular architecture of tumor tissue, which may be
highly unorganized, irregular, and heterogeneous (Figure 1), and
in the role that the size of the extracellular space between the cells
plays in interstitial transport by both diffusion and interstitial fluid
advection. We will investigate the complex interplay between these
processes of extracellular transport and drug penetration.

Most in silico models applied to drug development use bio-
statistics and bio-informatics methods to screen large numbers of
therapeutic compounds. The pharmacokinetic (PK) properties of

the drugs are then determined by fitting the actual data to a the-
oretical compartmental model, followed by rigorous “goodness-
of-fit” test statistics (Michelson et al., 2006). Although numerous
computational methods have been developed for the in silico test-
ing of various properties of drug particles (known under the
acronym ADME-T: absorption, distribution, metabolism, excre-
tion, and toxicity (Beresford et al., 2002; Boobis et al., 2002; Ekins
and Rose, 2002; Kerns and Di, 2008; Huynh et al., 2009) they
do not consider the spatial aspects of drug PKs and treat all
organs as well-mixed compartments neglecting their natural het-
erogeneities. Thus, the poor penetration of the tumor tissue as
a limiting factor for drug efficacy is not currently included in a
typical ADME-T protocol.

Mathematical PK models that include tissue transport phe-
nomena are usually defined as continuous mixture models with
the tumor tissue being represented by a homogeneous material
(Baxter and Jain, 1989; Jackson and Byrne, 2000; Zhao et al., 2007;
Sinek et al., 2009; Shipley and Chapman, 2010). These models
showed importance of the kinetics of the drug supply from the
blood system, as well as its diffusive and advective transport, on
the concentration profiles of biochemical compounds, and the sig-
nificant impact of nutrient distribution on the drug’s therapeutic
efficacy. However, they have not addressed the heterogeneity of the
tumor cells, or the transport of individual drug/biomarker parti-
cles. These aspects will be incorporated in the mechanistic model
described in this paper that is based on the fluid-structure inter-
action method of the regularized Stokeslets (Cortez, 2001). We
take into account, explicitly, the cellular structure of the tumor tis-
sue, and investigate how the tumor tissue composition influences
the interstitial transport of chemical compounds. In particular, we
analyze the relationship between the cellular porosity and/or cel-
lular density of the tissue at the depth at which the drug/biomarker
particles penetrate it. Our computational results are also compared
to the experimental data showing the differences in the penetra-
tion and uptake of targeted imaging agents in tumors that express

FIGURE 1 |Tumor tissue structure as a barrier in drug and imaging agent
efficacy. (A) Schematics of the complex dynamics of drug/imaging molecule
movement through the tissue, including extravasation, diffusive and advective
transport, and internalization. (B) Three-dimensional multiphoton emission

(MPE) microscopy image reconstruction (400× magnification) of the human
MDAMB231/GFP xenograft tumor from the dorsal-skin fold window chamber.
(C) Horizontal view of (B) showing the depth in the tissue structure. Staining:
green-tumor cells, red-vasculature.
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the cell-surface receptor of interest (positive tumors) or not (neg-
ative tumors). This study will offer an insight into the potential
mechanisms preventing the adequate delivery of anticancer drugs.

MATERIALS AND METHODS
THE MATHEMATICAL MODEL
We consider here a small (a few hundred of microns in length) two-
dimensional patch of the tumor tissue (Ω) with explicitly defined
tissue morphology composed of individual tumor cells (Γ=

∑
Γi

where i= 1, . . ., Nb, and Nb is the number of cells) embed-
ded in the ECM and surrounded by interstitial space filled with
fluid (Ω\Γ, Figure 2). The reported experimental measurements
of the interstitial fluid velocities are in the order of 0.1–2 µm/s
(Chary and Jain, 1989; Swartz and Fleury, 2007), thus the sim-
ulated time needed for drug particles to transverse the modeled
tissue is in the order of a few minutes. Therefore, we treat all
cells as stationary, i.e., we assume that during the simulation time
the cells are immobile and will not grow, divide, or die (thus the
cell shapes and positions are fixed). Moreover, since the charac-
teristic cell-tissue length scale is in the order of 10–100 µm, the
corresponding Reynolds number is small (Re = ρLV /µ= 10−7 to
10−5, where ρ is the fluid density, µ is the fluid viscosity, and
L and V are the characteristic length and velocity scales, respec-
tively). Hence, the fluid flow can be approximated by the Stokes
equations:

µ ∆u (x) = ∇p (x)− f (x) , (1)

∇ · u (x) = 0, (2)

where p is the pressure, u is the fluid velocity, and
f= fin+ fbnd+ fcell, is the force applied to the domain edges ∂Ω(fin,
fbnd), and cell boundaries ∂Γ(fcell) to create the physiologically rel-
evant interstitial fluid flow and to keep the cells immobile. These
equations are solved using the classical fluid-structure interac-
tion method of the regularized Stokeslets (Cortez, 2001). In this
method, each force f concentrated at a single point x0 is smoothed
over a small ball of radius ε using a cut-off function φε, that
is f(x)= f0φε(x− x0). The cut-off function needs to be radially
symmetric, vary smoothly from its maximal value at the center
to zero at the surface, and satisfy the condition:

∫
φε(x)dx = 0.

FIGURE 2 |Tissue scheme in the model. Schematic representation of the
computational domain containing several tumor cells (blue circles)
surrounded by the interstitial fluid (black arrows) that is supplied from the
capillary located at the left border of the domain (red arrows). Adequate
forces (f in and f bnd) are chosen to create the physiological fluid flow and to
keep the boundaries of all tumor cells immobile (f cell).

We follow (Tlupova and Cortez, 2009) and use the function

φε =
2ε4

π(‖x‖2+ε2)
3 for which the regularized Stokes equations have

the exact solution. Other examples of suitable cut-off functions
can be found in Cortez (2001) and Tlupova and Cortez (2009)
together with their detailed derivation. Since the Stokes equations
are linear, one may represent the fluid flow as a direct summation
of the contributions from finitely many discrete forces fk, which
gives the following expression for the fluid velocity u that we will
use in all our simulations (N is the number of forces):

u(x) =

N∑
k=1

{
−

1

4πµ
fk

(
ln
(
r2
+ ε2)

−
2ε2

r2 + ε2

)

+
1

4πµ

1

r2 + ε2

[
fk · (x − xk)

]
(x − xk)

}
, (3)

where rk = ‖x − xk‖ . The regularization parameter ε has been
chosen to be equal to the cell boundary point separation that is
optimal for reducing the regularization error (Cortez et al., 2005;
Tlupova and Cortez, 2009). In this model we assume that the fluid
is supplied from the capillary located at the left boundary of the
domain, and penetrates the interstitial space around the tumor
cells (Ω\Γ) as shown in Figure 2.

The individual molecules (of the drug or imaging agents under
consideration) are modeled as a collection of discrete particles
yp that enter the tissue via the transmural influx from a capil-
lary (together with the interstitial fluid), and advance through
the tissue by a combination of advective transport, with the fluid
flow calculated using the regularized Stokeslets method, and dif-
fusion modeled as Brownian motion with a diffusion coefficient D
and a randomly chosen direction of movement -. Particle move-
ment (without cellular uptake) is confined to the extracellular
space (Ω\Γ) only. The advective transport satisfies this condition
since the fluid flow is zero at all cell boundaries. For the diffusive
movement we ensure that the particles do not cross the cell mem-
brane incidentally by maintaining their old positions whenever
the randomly chosen direction of movement would push the par-
ticles into the intracellular space (Eq. 4, parameter α). The process
of particle internalization by the cells is modeled separately by
trapping the particle by the near-by cell boundary receptor if the
particle comes close to the cell boundary (Xl within a small dis-
tance δ, Eq. 4). This is a very simplified way to model drug uptake,
and results in 100% binding rate. However, molecular binding
is usually not so efficient, and depends not only on the distance
between the receptor and the ligand but also on the chemical or
electrostatic forces between the two. The numerical procedure for
updating the positions of the drug/imaging agent particles is given
in Eq. 4,

yn+1
p =


Xl , if

∥∥∥yn
p − Xl

∥∥∥ ≤ δ &Xl ∈ ∂Γ,

δ << ε

yn
p + α

(
u(yn

p )∆t +
√

2D∆t -n
)

, otherwise

,

and α =


1, yn

p , yn+1
p ∈ Ω\Γ,

0, yn
p ∈ Ω\Γ, yn+1

p ∈ Γ,

0, yn
p ∈ Γ.

(4)
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and the physical and computational parameters of the model are
listed in Table 1.

The velocity in Eq. 3 can be used in two ways. First, for the
given forces one can directly compute the induced velocity at any
point in the domain. Second, since this equation is linear, one can
use an iterative method, such as the generalized minimal resid-
ual method (gmres), to determine the forces that will result in the
desired velocities at certain points in the domain (Cortez, 2001).
Thus, our final computational algorithm can be summarized as
follows: (1) use Eq. 3 to compute the forces (i) at the capillary
which will result in the desired fluid and drug supply; (ii) on all
cell boundaries to keep the cells immobile, and (iii) on the upper
and lower edges of the computational domain to impose a zero
flow there; (2) use Eq. 3 and the forces determined in (1) to com-
pute the fluid velocities at all points representing the drug/imaging
agent molecules; (3) use Eq. 4 to compute the new locations of all
of the particles due to their advective transport at the local fluid
velocity determined in (2), and their diffusive motion within the
extracellular space. (4) Determine the cellular uptake of the parti-
cles, if the particles move close to the cell membrane receptors
and the cells are capable of binding the particles. Repeat iter-
atively steps (2–4) to advance the particles through the tumor
tissue.

INTRAVITAL IMAGING OF Dmt-Tic-Cy5 USING THE DORSAL WINDOW
CHAMBER TUMOR XENOGRAFT MODEL
A dorsal window chamber (DWC) xenograft tumor model was
used to study the PKs of the tumor cell binding and uptake of the
δ-opioid receptor (δOR) targeted fluorescent agent Dmt-Tic-Cy5
(Josan et al., 2009). HCT116/δOR colon cancer cells engineered
to express the δOR on the cell-surface, or δOR negative HCT116
parental cells were mixed with rat GFP expressing microvessels and
aseptically inoculated within the exposed epidermis of the dorsal
chamber. Following tumor cell implantation, a glass cover was
placed in the chamber to cover the xenograft tumor. Ten days after
cell implantation, mice were intravenously injected with 100 µl
of 5% 10,000 MW Cascade Blue Dextran (Invitrogen, CA, USA)
in sterile H2O to verify microvessel patency. Then, 45 nmol/kg of
the δOR specific Dmt-Tic-Cy5 probe was injected into the tail

Table 1 | Model physical and computational parameters.

Parameter Symbol Value

Domain Ω 210×80 µm

Tissue cellular porosity ψ 40–90%

Tissue cellular density ξ 2–6 Cells per column

Interstitial fluid input flow u in (1, 0) µm/s

Fluid viscosity µ 2.5×103 µg/(mm.s)

Regularization parameter ε 0.5 µm

Discretization parameter 0.5 µm

Time step ∆t 0.1 s

Diffusion coefficient D 2.5×10−8 to 10−3 mm2/s

Direction and distance of motion - 0–360˚ and [0,
√

(2D∆t )]

Uptake rate 100%

Binding distance δ 0.5ε

vein. Confocal fluorescence microscopy images were continuously
acquired for a period of time, during and after the injection of
the probe, using an Olympus FV1000 (MPE) Multiphoton Laser
Scanning Microscope (Lisa Muma Weitz Advanced Microscopy
and Cell Imaging facility at USF) with 250×magnification and an
acquisition rate of 3570 pixels/min. The presence of Dmt-Tic-Cy5
was measured by excitation with a 635 nm wavelength laser and the
emitted light was detected using a 655–755 nm emission filter. All
procedures were carried out in compliance with the Guide for the
Care and Use of Laboratory Animal Resources (1996), National
Research Council, and were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) at the University of South
Florida.

HISTOLOGICAL IMAGING OF HUMAN OVARIAN TUMOR
A sample of invasive ovarian tumor has been selected retrospec-
tively from the Moffitt Cancer Registry database. A section of the
formalin fixed and paraffin embedded (FFPE) tissue (4 µm thick)
has been stained with a hematoxylin and eosin stain (H&E). The
whole slide was scanned using the Aperio™ (Vista, CA, USA)
ScanScope XT with a 20×/0.8 NA objective lens at a rate of 3 min
per slide via Basler tri-linear-array. All procedures were carried
out in compliance with HIPAA regulations with patient consent
and were approved by the Institutional Review Committee (IRB #
Pro00003491) at the University of South Florida and the Moffitt
Cancer Center Scientific Review Committee (SRC # 16511). The
original H&E-stained histological image has been digitized using
the ImageJ software (NIH, USA) and in house Matlab routines.
The digitized version has been used for computational simula-
tions using the model described in Section “The Mathematical
Model.”

RESULTS
Experimental evidence (Gullino et al., 1965; Nugent and Jain, 1984;
Jain, 1987; Netti et al., 2000; Levitt, 2003; Grantab et al., 2006) has
shown that tissue histology, cell packing density, and the extent
of the ECM, and the amount of interstitial water can vary signifi-
cantly between cancers of various origins (breast, brain, ovary, and
lung). For example, in tumors grown in rats the interstitial intertu-
moral space can vary from around 35% in certain carcinosarcomas
and carcinomas, to around 65% in fibrocarcinomas and sarco-
mas (Jain, 1987). Our goal is to investigate how the structure and
cellular composition of tumor tissues influences the interstitial
transport of chemical compounds, such as drug or biomarker mol-
ecules. We will use a suit of idealized computational tissues with
various morphological parameters (cellular size, tissue porosity)
and different properties of drug particles (diffusion coefficient,
cellular absorption) to run computational simulations and com-
pare the depth and timing of the molecule distributions within the
tissue. This systematic exploration allows us to determine the rel-
ative importance of the physical parameters of both the tissue and
the drug required for effective interstitial transport. Finally, we will
compare our simulation outcomes with experimental results from
tumor cells grown in the DWC and treated with targeted imag-
ing agents to determine their spatial and temporal penetration
dynamics.
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PERMEATION IN IDEALIZED TISSUES OF REGULAR ARCHITECTURE
We began our study by examining idealized computational tis-
sues composed of identical regularly distributed circular cells. This
allowed us to analyze the properties of the mechanistic model
when tissue heterogeneity is ignored. Furthermore, we compared
these results with cases where the regular tissue structure is per-
turbed. Since the interstitial transport takes place in the void space
separating individual cells, the depth of tissue penetration depends
on the relative volume of all voids, which we quantify as tissue cel-
lular porosity, ψ. However, the particular pattern of the interstitial
fluid flow for the fixed porosity value relies on the actual space
between individual cells, and thus on the cell size and number
(density) within the tissue. In the case of idealized tissues with
regularly spaced circular cells we defined the tissue cellular den-
sity as the number of cells in each column, ξ. The subject of our
investigation is the permeation time and penetration depth of
the drug/biomarker particles transported by the interstitial fluid
flow through a tissue with given morphological parameters (ψ, ξ).
Figure 3 shows a collection of tissue samples with regularly distrib-
uted cells for the three porosity values of ψ= 40, 65, and 90%, and
the cellular densities of ξ= 2, . . ., 6 (the pattern of the interstitial
fluid flow in each case is shown in blue).

We examined a total of 30 cases of regular cellular patterns in
which the tissue’s cellular porosity varied between 40 and 90%,
and the tissue’s cellular density varied between two and six cells.
In each in silico tissue, all cells had identical radii determined in
such a way to reach the desired values of both the cellular poros-
ity of the tissue and its cellular density. Note that in each row in
Figure 3 the value of the tissue cellular porosity is fixed, and that
for an increasing number of cells that occupy each column (cases
ordered from left to right), the overall cellular density increases.
However, it is not immediately clear how the tissue permeability,
i.e., the extent of the interstitial fluid penetration of the tissue, is
related to the tissue cellular structure. In fact, we will show that
the less dense tissues may have lower permeation properties.

We first consider the advective transport only. In each case
under consideration we computed the interstitial fluid field
(Figure 3) that was a result of the steady fluid influx of the veloc-
ity uin

= (1, 0) µm/s (Swartz and Fleury, 2007) along a capillary
located at the left edge of the domain. Subsequently, we introduced
identical numbers of drug particles (Np= 4800) from uniformly
spaced capillary fenestration, and traced the drug particles trajec-
tories within the interstitial fluid flow during their transport. It is
not known a priori whether all of the particles will be able to trans-
verse the whole tissue patch, as there is the possibility that they may
be carried with the flow to some tissue spots where the intersti-
tial fluid velocity is very low or even zero (for example particles
located near the cell boundaries). Therefore, to be able to compare
the results across different tissue geometries we recorded the time
(that we call the permeation time) when a certain fraction of the
fastest drug particles (a quarter of all particles introduced to the
system) reaches a prescribed distance from the capillary (we chose
the distance of 120 µm, which requires the particles to travel 2/3
of the whole computational domain). The choice of both values,
the distance at which the permeation time is measured and the
fraction of particles to take into consideration are somewhat arbi-
trary, but our main goal is to compare the results between tissues
of different properties using unified criteria. We do not expect the
overall conclusions from our model simulations to be significantly
different if we choose a different fraction of particles or a differ-
ent distance from the capillary. The permeation time normalized
by the minimal value across all 30 tissue samples is presented in
Figure 4A as a surface plot. Here, the slowest permeation time
for the tissue of (ψ, ξ)= (40%, 6) is more than twofold longer
than the fastest permeation time for the tissue (ψ, ξ)= (40%, 2).
Figure 4B shows a plot of the maximal distances reached by the
drug particles at the fixed time equal to the minimal permeation
time from Figure 4A. Seven particular tissue samples are shown in
more detail (red points show final locations of drug particles at the
permeation times from Figure 4A, gray points show locations of

FIGURE 3 | Differences in the tissue’s cellular structure.
(A) Collection of tissue samples with regularly distributed cells with
various values of cellular porosity ψ (defined as a percentage of void
spaces in the tissue; here ψ=40, 65, 90%) and cellular density ξ

(determined by the number of cells in each column; here ξ=2, 3, . . ., 6).

Tumor cells are represented by circles and the interstitial fluid velocity
field initiated at the left edge of the domain is shown as blue arrows
pointing in the direction of fluid flow. (B) The interstitial space is
determined by the size (r ) of the cells and distance (d ) between the
neighboring cells.
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FIGURE 4 | Drug particle permeation times and depths for
advective flow in regularly packed tumor tissues. Surfaces showing
(A) the relative permeation time of drug particles (the time required for
a quarter of the supplied drug particles to reach 2/3 of the
computational domain length), and (B) the normalized depth of tissue
penetration at a fixed time for tissues of varying cellular porosity and

cellular density (ψ, ξ). Seven specific tissue configurations of indicated
cellular porosity and cellular density are shown in each case. The
locations of drug particles at a fixed time from (B) are shown in gray,
and their final positions at the permeation times from (A) are shown in
red. The green vertical lines indicate the fixed distance at which the
permeation time is recorded.

drug particles at the fixed time from Figure 4B). For the minimal
permeation time (lower right inset) both the red and gray particles
overlap.

As expected, for a given tissue cellular porosity the permeation
time increases with increasing tissue cellular density as a result
of the diminished space between neighboring cells (Figure 4A).
However, for the cases when the cell column occupancy is small
(ξ= 2, 3, 4) the tissues characterized by a lower cellular porosity,
and thus with a smaller separation between neighboring cells, are
traversed faster by the majority of the drug particles, and thus the
corresponding permeation times are lower. The global minimum
in permeation times occurs for the porosity ψ= 40% and cellular
density ξ= 2. For higher cellular densities (i.e., larger numbers
of cells occupying each column), the local minima in the perme-
ation times occur at the middle-rank of a given tissue porosity,
that is at ψ= 60%. This is also confirmed in Figure 4B, where
the larger traveled distances are observed in the cases of either
low cellular porosity or low cellular density (right lower corner
in Figure 4B). These results were obtained under the assumption

that the interstitial fluid influx uin from the capillary is identical
in all 30 in silico tissues considered here. As a consequence, the
fluid velocity in denser tissues is higher, since the same amount of
fluid is moving through a narrower space, and the drug molecule
permeation time is faster.

PERMEATION IN IDEALIZED TISSUES OF IRREGULAR ARCHITECTURE
Now we consider cases in which the cells are non-uniformly dis-
tributed within the tissue. We examined tissue geometries obtained
by shifting the locations of the tumor cells with respect to the reg-
ularly ordered tissues. Figure 5A shows a regularly (upper left
corner) and three irregularly packed tissues (upper right corner
and both pictures in the middle row), all with cellular porosi-
ties of ψ= 80% and cellular densities of ξ= 2 cells per column
(the irregular tissue geometries were obtained from the regular
ones by randomly shifting the cell centers around their initial
positions without cell overlap). These tissue irregularities result
in the asymmetrical flow of the interstitial fluid (fluid velocity
fields on the same grid are shown in blue in Figure 5A), and in
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FIGURE 5 | Comparison of drug particle traces and tortuosity in regular
and irregularly perturbed tissue geometries. (A) A regularly packed
tissue (upper left corner) and three cases of irregular geometries (upper
right corner and middle row), all with a cellular porosity of ψ=80% and
cellular density of ξ=2 cells, together with the resulting interstitial fluid
velocity fields and indicated distortion (dst). Bottom row: traces of drug
particles along the “corridors” with a higher interstitial fluid flow for the two
irregular geometries shown in the middle row. (B) The effective paths
of two representative drug particles (the same in each tissue) for a
pair of regularly and irregularly packed tissues: (ψ, ξ)= (40%, 2) and
(ψ, ξ)= (50%, 4). The length of each vector (blue) indicates the speed of a
particle at the given position. Insets show traces of several other drug
particles for the given tissue topology. The maximal tortuosity values (tor)
for each tissue are provided.

the formation of interstitial “corridors” characterized by higher
fluid flow. We quantify this distortion (on the scale of the whole
tissue patch) by comparing the differences in the whole velocity
fields between the irregularly and regularly packed tissues using the
L1-norm, dst= ||ureg− uirreg||1/(Nx×Ny), where Nx×Ny is the
number of grid points upon which the fluid velocity field is evalu-
ated (the distortion values for each tissue are shown in Figure 5).
These emergent fluid corridors are followed by drug particles dur-
ing their advective transport through the tumor interstitium (see
Figure 5A bottom row).

The actual microscopic paths followed by the fluid flow car-
rying the drug particles can be geometrically complex. Thus, we
use a quantitative metric of the drug particle path tortuosity in
order to illustrate the differences between the individual routes of
drug transport within the tissue. The path tortuosity τ is defined
here as a ratio of the effective path length (Le) to the shortest
straight-line distance (L) between the initial and final positions of
the moving particle, that is τ= Le/L. Note that the tortuosity of a
straight line is 1, of a circular path is infinity, and that it has been
estimated in Ramanujan et al. (2002) that the tortuosity of a well-
packed system of cells is τ=

√
2. Therefore, the determination

of the mean and maximal tortuosity of individual drug particle
paths can provide a better understanding of the void space com-
plexity inside the tumor tissue and the patterns of the interstitial
fluid flow. The average tortuosities under the advective flow taken
over all 30 different regular and 150 irregular tissues considered in
our simulations are similar (τ= 1.12± 0.05 and τ= 1.20± 0.07,
respectively). However, for every irregularly packed tissue we have
observed some drug particle paths of tortuosity above

√
2, and

the average maximal tortuosity in these tissues is τ= 1.64± 0.3.
Thus, the irregular tissue topology implies that some drug parti-
cles traverse across the tissues in a very complex way. Figure 5B
shows the representative traces of the same drug particles for two
pairs of tissues, one regularly and one irregularly packed. The case
of minimal overall permeation (ψ, ξ)= (40%, 2) is shown in the
left column, whereas the case of the highest average tissue tor-
tuosity (ψ, ξ)= (50%, 4) is presented in the right column. The
speed of each traced particle at every visited position inside the
tissue is indicated by the length of the vertical vector. These values
depend strongly on the cellular structure of the tissue, and oscillate
around the cell perimeters. However, in the case of regular tissues
these oscillations are periodic. Thus, when the particles are sup-
plied through uniformly spaced capillary fenestration, they can
cover the whole tissue width evenly. In contrast, in the irregular
tissues the drug particles may travel across the width of the tissue
by utilizing the fluid flow corridors, and even if the drug particles
initial locations along the capillary were distinct, they may end up
following the same path. Moreover, the speed of the drug particles
in these cases is very non-homogeneous (as seen in Figure 5B, left
lower image), and the tortuosities of many of the particles’ paths
are above

√
2, in contrast to the regular cases. This causes a non-

uniform exposure of the drug to the tumor cells. That is, some
tissue regions are penetrated by large numbers of drug particles,
whereas some tumor cells may not come in contact with sufficient
concentrations of the drug particles to experience their therapeu-
tic action. Such irregular interstitial flows also result in the faster
transport of some drug particles (compare the lengths of each path
shown in Figure 5B) and deeper penetration of the tissue when
compared to the cases of regular cellular packing. Our simula-
tions show that this phenomenon is more pronounced in tissues
of higher cellular density. On average, across irregular tissues of the
same cellular density and porosity, the permeation times are com-
parable to those in the regularly packed tissues (data not shown).
However, for tissues in which there are multiple paths of high
tortuosity, the permeation depth and time may be significantly
higher.
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PERMEATION UNDER A COMBINATION OF ADVECTIVE AND DIFFUSIVE
TRANSPORTS
Drug and imaging particles, like metabolites and other molecules,
are capable of random motion when suspended in a medium such
as interstitial fluid. The extent and speed of this intrinsic,diffusion-
type particle motility depend on the particle’s molecular mass
(Einstein relation). Here we consider a wide range of particle diffu-
sion coefficients that cover both the small molecules of metabolites
(such as oxygen or glucose), large nanoparticles (designed as car-
riers of therapeutic compounds), and all modalities in between
(Nugent and Jain, 1984; Pluen et al., 2001; Avgoustiniatos et al.,
2007; Schmidt and Wittrup, 2009). We tested six different val-
ues of particle diffusion coefficients in the range of 2.5× 10−8 to
10−3 mm2/s. As expected, we saw both transport phenomena: dif-
fusion driven particle dispersal (for the Péclet numbers of 0.04–4),
and advection-dominated particle relocation (for the Péclet num-
bers of 400–4000). The value of the Péclet number is a measure
of the ratio between the advective displacement of the particles
moved by the flow to the rate of the particle diffusion driven by
an appropriate gradient (Pe= L×U/D, where D is a diffusion
coefficient, and L and U are the characteristic values of length
and velocity, respectively used to determine the Reynolds num-
ber Re in The Mathematical Model section). We observed that for
small Péclet numbers (Pe= 0.04–4), the transport of particles was
clearly diffusion-dominated in all considered tissues, for all values
of tissue cellular density and porosity, and for both regularly and
irregularly spaced cells. In all cases the entire interstitium was cov-
ered by drug particles (examples shown in Figure 6, left subspace).
For the maximal Péclet number considered here (Pe = 4000), the
transport was advection-driven, and all drug particles followed
the high velocity corridors with minimal dispersion due to low
diffusive properties (examples shown in Figure 6, right column).
However for the values of the Péclet number of Pe = 40 and 400,
the transport of the drug particles had different characteristics

depending on the tissue structure. In the case of Pe = 40, only the
tissues of low cellular density (ξ= 2) showed dominant advective
transport. For the tissues with higher cellular densities the drug
particles only followed the fluid flow initially, and their diffu-
sive capacities became finally predominant (examples shown in
Figure 6). In the case of Pe = 400, only the tissues with a high cel-
lular density (ξ= 6) showed diffusive characteristics. For all other
tissues the transport was dominated by the interstitial fluid flow
(Figure 6). Moreover, the average tortuosity of the drug parti-
cle traces for advection-dominated transport (Pe = 4000, all tissue
samples) was equal to τ= 1.35 which is similar to the average
for the pure advection transport discussed above. In the cases
of a small Péclet number, the average tortuosity is an order of
magnitude larger: τ= 11.1 (with the mean value of τ= 17.9, 10.7,
4.7 for Pe = 0.04, 0.4, and 4, respectively).

COMPARISON WITH PERMEATION OF TARGETED IMAGING AGENTS
A direct comparison of our computational results with the drug
distribution in tumor tissues is difficult. The in vitro experiments
with either the 3D multicellular spheroids (Nederman et al., 1981;
Walenta et al., 2002; Bryce et al., 2009) or multilayered tissue
constructs (Kyle et al., 2004; Grantab et al., 2006; Modok et al.,
2007; Al-Abd et al., 2008) do not reproduce the in vivo conditions
faithfully (for example, the differences in interstitial pressure and
interstitial fluid flow patterns are usually not captured). The effects
of the drug actions on individual tumor cells in mouse models can
be captured ex vivo by using the immunohistochemical staining of
dead cells (Sun et al., 2012), or in vivo by using fluorescent drugs
(Ozols et al., 1979; Lankelma et al., 1999; Primeau et al., 2005).
However, intrinsically fluorescent drugs are scarce (doxorubicin,
adriamycin); therefore, we will compare the results of our simu-
lations to the penetration of fluorescent imaging agents targeted
to bind to the specific cell membrane receptors expressed by some
tumor cells.

FIGURE 6 | Classification of particle traces for a combination of advective
and diffusive transports. The model parameter space separated into
diffusion (left-top) or advection (right-bottom) dominated particle transport (the
separation shown in blue), shown for five representative tissue samples
selected out of 30 considered in this study. For the small Péclet numbers

(Pe=0.04–4) the transport is diffusion-dominated for all tissue topologies. For
the maximal considered Péclet number (Pe=4000) the transport is
convection-driven for all tissue architectures. In the case of the medium
Péclet numbers (Pe=40–400) the particle transport changes its
characteristics depending on the tissue architecture.
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Our experimental model of choice is the DWC that is surgically
implanted on a mouse dorsal-skin flap and allows for monitor-
ing the growth of xenograft tumors over time. When combined
with a targeted fluorescent imaging agent (Dmt-Tic-Cy5) we can
observe agent extravasation from the vascular system, its spread
through the interstitial space, cellular uptake by tumor cells that
express the target marker, and agent clearance from the tissue.
Two different tumors were implanted, one that expresses and a
second that does not express the targeted receptor. The tumors
were imaged at different time-points following the administra-
tion of the agent (Figure 7A), and the fluorescence intensities of
both tumor tissue types were recorded (Figure 7B). Clearly, the
tumor expressing the targeted receptor (δOR+, Figure 7A, top
row) showed the slow but steady accumulation of the fluores-
cent agent over the period of 24 h. For the tumor that did not
express the targeted receptor (δOR−, Figure 7A, bottom row) the
fluorescent agent was clearly visible in the mouse veins just after
injection (Figure 7A, bottom row, left image); however, since it
was not absorbed by the tumor cells, it cleared from the tumor
tissue in about 10 min (Figures 7A,B, bottom row middle image).
For simplicity, we called the latter case “untargeted,” since the
imaging agent was not able to bind to the target cell membrane
receptors.

The process of imaging agent molecule uptake via binding
to cell membrane receptors was incorporated into our compu-
tational model by trapping these particles that come very close
to the cell boundary points inside of the cell. The course of the
time for a simulation of the targeted agent with cellular uptake
is shown in Figure 7D. The top images show the individual par-
ticles inside of the cells (pink dots) and in the interstitial space
(red dots). The bottom images show the corresponding fluorescent
rendering that was created by dividing the whole computational
domain into small square grids and counting the particles inside.
The obtained particle concentration is presented as a heat map.
Figure 7E shows the time sequence from a simulation without cel-
lular uptake (untargeted). Both cases were run for the same tissue
structure of cellular density ξ= 5, cellular porosity ψ= 60%, and
Péclet number Pe = 40.

In order to compare the simulated and experimental results
we selected a small tissue section near the agent supply (vein) in
the untargeted case and far from the vein in the targeted case.
This is consistent with the way the experimental data was quan-
tified. Again, following the experimental procedure, we counted
all of the particles inside the selected reference window (indicated
by blue rectangles in Figures 7D,E) and normalized the obtained
counts by the maximal value from the whole time-course sep-
arately for each simulation. The quantification of the simulated
results is shown in Figure 7C. Our results show a trend similar to
the experimental data in the dynamics of both the targeted and
untargeted agents. However, this comparison has only a qualitative
value, because our computational model has not been tuned to the
experimental setup, and certain model parameters (such as agent
molecular binding or the level of intracellular agent saturation)
have not been calibrated to match those in the experiments. Both
the experimental and simulated data need to be analyzed further
in order to compare the results quantitatively.

CONCLUSION AND DISCUSSION
In this paper we investigated how the structure and distribution
of tumor cells influence the interstitial fluid flow and the delivery
of chemical compounds, such as drug or imaging particles. We
used a computational model based on the method of the regular-
ized Stokeslets of Cortez (2001) that allows for modeling both the
advective transport (with the interstitial flow due to the pressure
differences between the vascular system and the tumor tissue),
and the diffusive transport due to the Brownian motion of the
particles. While the method of regularized Stokeslets has been
used previously to model various swimming organisms (Flores
et al., 2005; Cisneros et al., 2007) and biofilm dynamics (Cogan
et al., 2005; Cogan, 2008, 2010), to our knowledge, it has not been
applied in the studies of interstitial transport through the tumor
tissues.

We focused in this paper on the interplay between both drug
advective and diffusive modes of transport and the structure of
the tissue, taking into account both the tissue cellular density and
the extent of the interstitial space between the individual cells.
The advective component of the interstitial penetration is espe-
cially important for the transport of particles characterized by
larger molecular weights, such as certain drug molecules or imag-
ing nanoparticles that usually have smaller diffusion coefficients.
This is in contrast to small molecules, such as oxygen or glu-
cose, which can move through the tissue solely by the diffusive
process.

The results presented in this paper show that tumor cell distri-
bution is characterized by tissue cellular porosity and its cellular
density influences the depth of a drug’s advective penetration
in a non-linear manner, with sparsely packed tissues showing
slower interstitial fluid flow and longer times of drug penetra-
tion when compared to more densely packed tissues. These results
were obtained under the assumption that the fluid influx from the
blood capillary is constant and the same in each case considered
here, that is for each in silico tissue geometry. For simplicity, we
directly imposed a specific fluid influx value on all our compu-
tational simulations. However, this parameter could be related
to experimentally measurable quantities, such as the pressure
differences between the capillary and the surrounding tissue or
the tumor tissue. We also showed that irregularities in tissue com-
position and cell spatial configuration result in the emergence
of tissue zones that have a lesser exposure to the drug mole-
cules. This, in turn, may result in drug concentrations insufficient
to provide therapeutic action. It has been suggested previously
(Minchinton and Tannock, 2006) that the poor penetration of
the tumor tissue by drug particles may leave some cell popu-
lations untreated and capable of initiating tumor regrowth or
recurrence.

Our simulations also showed that tissues of higher irregu-
lar architecture were characterized by faster transport of some
drug particles. Consequently, these particles were able to penetrate
deeper into the tumor tissue and exert their therapeutic effects on
a larger tissue area. Thus, we observed a certain dichotomy in our
simulations. The advection-dominated drug particle transport in
tissues of highly irregular architectures resulted in tissue regions
of permanent low drug exposure even near the vascular system,
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FIGURE 7 | Penetration of targeted and untargeted imaging agents:
comparison of simulated and experimental data. (A) Confocal
fluorescence microscopy images of target-expressing DWC tumors (top)
and non-expressing tumors (bottom) at time-points immediately following
the injection of the targeted fluorescent probe. (B) For both the targeted
and untargeted tumors, the bar graph represents the percentage of pixels
with fluorescence intensities above a threshold value higher than the low
background signal over a 25 min time-course, with 100% being equal to
largest number of pixels above the background in the time-course. (C) The

quantification of the simulated results from the section of the tissue
indicated as a blue window in (D,E). The simulated data has been
normalized as in (B) for comparison. (D) The time sequence from a
simulation with cellular uptake via receptor binding (targeted); the top
images show individual particles, and the bottom images show the
corresponding fluorescent rendering. (E) Time sequence from a simulation
without cellular uptake (untargeted). Both simulations were run for the
same tissue structure with a cellular density of ξ=5, cellular porosity of
ψ=60%, and Péclet number of Pe=40.

and tissue regions far from the vascular system that were exposed
to the drug action temporally. Thus drugs of higher diffusivity
(smaller molecular size) were able to penetrate the tissue more
uniformly, potentially bringing an effective treatment to all cells,
but only near the vasculature. On the other hand, drugs of lower
diffusivity were able to reach distant parts of the tissue. As a result,
they could have an extended beneficial effect, but only if they can
be absorbed quickly by the cells, or have a longer half-life time in
order to allow for the drug accumulation to exert its lethal effects.
These kinds of physico-chemical properties of individual mole-
cules may be beneficial for the imaging agents that are not meant
to kill the cells, thus small concentrations accumulated inside the
cells may still fluorescently mark the tumor cells located farther

from the vasculature. However, in this case, the biomarkers need to
bind to the specific membrane receptors quickly and have longer
half-life times.

The research studies initiated in this paper are novel in the
areas of computational drug design and bio-medical modeling.
We proposed to investigate an important but overlooked area in
testing anticancer drug efficacy: the effective penetration of tumor
tissues by drug particles under various extrinsic conditions. Most
research approaches addressing drug efficacy have concentrated
on the molecular and genetic mechanisms of chemical com-
pounds, whereas the role of the tumor microenvironment as a
limiting factor in drug distribution has received much less atten-
tion. Moreover, the majority of in silico methods for assessing the
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FIGURE 8 | Penetration of drug particles through a digitized ovarian
tumor tissue. (A) An original H&E-stained histological image of ovarian tumor
tissue with a centrally located vein. (B) A small patch of tissue selected from
(A) and used for digitization. (C) A digitized version of the histological image

from (B) used for computational simulations. (D) The simulated interstitial
fluid flow (blue). (E) The resulting traces of the simulated particles
representing the drug or biomarker molecules. (F) The particle trace with
maximal tortuosity of 4.0025.

ADME-T properties (absorption, distribution, metabolism, excre-
tion, and toxicity) of pharmaceutical compounds do not consider
the spatial aspects of drug pharmacokinetics and pharmacody-
namics (PK/PD), but instead, treat the blood and all organs as
well-mixed compartments neglecting their natural heterogeneity.
It is interesting to note that the question of how the architecture of
natural or fabricated obstacles influences the interstitial transport
has been addressed in other scientific areas, including groundwa-
ter hydrology (Kang et al., 2010; Xie et al., 2011; Tsimpanogiannis
and Lichtner, 2012), vortex dynamics in superconductors (Nori,
1996; Reinchardt et al., 1997; Silhanek et al., 2010), fuel conver-
sion (Machado, 2012), and biofilm dynamics (Dillon and Fauci,
2000).

We focused in this study on analyzing the permeation proper-
ties of tissues characterized by different cellular architectures, but
with identical circular cells. However, as can be seen in Figure 1,
the realistic tumor tissues are far more complex. They are com-
posed of cells that vary not only in their spatial configuration,
but also in their size, shape, and receptor expression. In such
highly irregular tissues the patterns of interstitial transport can
be even more convoluted. To illustrate this, we applied our model
to a digitized histological sample from human breast cancer tis-
sue. Figure 8 shows the original histological image of a small
patch of tumor tissue, a digitized version of this image used
for computational simulations, and the resulting fluid field and
traces of the drug/biomarker particles. The maximal tortuosity is
reported.

We also presented a qualitative comparison of the results from
our model simulations with the data from the DWC experiments.
However, in order to achieve the quantitative results, the model
needs to be parameterized to reproduce the properties of a given
tumor and the properties of a given drug or (un)targeted imag-
ing agent. Fluorescently labeled probes, together with the DWC,
form an ideal model for taking in vivo measurements at vari-
ous time-points in the same animal. While certain measurements
of these probes can be obtained in vitro (such as association
and dissociation binding constants, mass and size, saturation lev-
els, and cellular uptake), the fluorescent microscopy of DWC
tumor xenografts enables observation of probe interactions within

a living tumor microenvironment. Mathematical modeling and
analysis of these fluorescence image acquisitions allows for the
estimation of the relative probe concentration in plasma and
tumor tissue, rate of probe extravasation and penetration into
the tumor, rate of cellular binding and internalization, and rate of
vessel clearance. The tissue architecture can be determined from
the ex vivo histological images as they are shown in Figure 8,
and then used to fit the model parameters, i.e., interstitial veloc-
ity and probe effective diffusion. This can be done by performing
multiple simulations with systematically varied parameters and
then comparing the simulated results to intravital or ex vivo
images.

The model presented here constitutes the basis for further
extensions that will increase the model’s realism by including sev-
eral factors specific to either the drug/biomarker or the microen-
vironment. We plan to explicitly model drug particle size, mass,
and electrical charge. Our oversimplified model of cellular uptake
will be extended to incorporate the mechanisms of cellular efflux
and influx, as well as the more elaborate models of molecular
binding, including receptor-ligand reaction kinetics. Our future
model extensions will also include models of different structures
of the ECM, such as the extracellular fiber distribution and align-
ment. One of the important aspects of modeling anticancer drug
actions is to integrate both cellular death and growth into the
model, and to simulate much longer time regimes in order to test
the tumor eradication or recurrence. The model could also be
extended into the full three-dimensional space [the appropriate
blob functions have been proposed previously (Cortez, 2001)].
The full version of this model will provide a tool for testing drug
efficacy by independently varying the drug and tissue parameters
over a wide range of values that are often difficult to replicate in
laboratory experiments.
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Glioblastoma is the most aggressive brain cancer with the poor survival rate. A microRNA,
miR-451, and its downstream molecules, CAB39/LKB1/STRAD/AMPK, are known to play
a critical role in regulating a biochemical balance between rapid proliferation and invasion
in the presence of metabolic stress in microenvironment. We develop a novel multi-scale
mathematical model where cell migration and proliferation are controlled through a core
intracellular control system (miR-451-AMPK complex) in response to glucose availability
and physical constraints in the microenvironment.Tumor cells are modeled individually and
proliferation and migration of those cells are regulated by the intracellular dynamics and
reaction-diffusion equations of concentrations of glucose, chemoattractant, extracellular
matrix, and MMPs. The model predicts that invasion patterns and rapid growth of tumor
cells after conventional surgery depend on biophysical properties of cells, dynamics of
the core control system, and microenvironment as well as glucose injection methods. We
developed a new type of therapeutic approach: effective injection of chemoattractant to
bring invasive cells back to the surgical site after initial surgery, followed by glucose injection
at the same location.The model suggests that a good combination of chemoattractant and
glucose injection at appropriate time frames may lead to an effective therapeutic strategy
of eradicating tumor cells.

Keywords: glioblastoma, cell migration and proliferation, miR-451, AMPK, cancer invasion and therapy

1. INTRODUCTION
Glioblastoma multiforme (GBM) is the most common and aggres-
sive form of primary brain tumor with the median survival time
of approximately 1 year from the time of diagnosis (Demuth and
Berens, 2004; Stylli et al., 2005; Jacobs et al., 2011). GBMs are
characterized by rapid proliferation and aggressive invasion into
surrounding normal brain tissue, which leads to inevitable recur-
rence after surgical resection of the primary tumor (Chintala et al.,
1999). Surgery is the primary treatment method, generally fol-
lowed by inefficient radiotherapy and chemotherapy. Innovative
therapeutic approaches of targeting these invasive cells are needed
in order to improve clinical outcome (Davis and McCarthy, 2001).
Glioblastoma cells are encountered with many challenges such as
hypoxia (lack of oxygen), acidity, and limited nutrient availabil-
ity as tumor growth is proceeded. To keep up with rapid growth,
tumor cells need to adapt to these biochemical changes in the harsh
microenvironment (Godlewski et al., 2010a). In order to over-
come these challenges and sustain their rapid growth, cancerous
cells change their typical metabolism (oxidative phosphorylation
and anaerobic glycolysis) to inefficient metabolic machinery [high
levels of glucose uptake and lactate production; Warburg Effect
(Warburg, 1956; Kim and Dang, 2006)].

The Krebs, or tricarboxylic acid (TCA) cycle is a main step for
generating an energy source, ATP, in non-hypoxic normal cells.
While this effective way of metabolism is used by differentiated
cells, tumor cells favor a seemingly less effective way of metabo-
lism, aerobic glycolysis (Heiden et al., 2009) due to production of
lactic acid, and consumption of large amounts of glucose (Kim

and Dang, 2006). Adapting this aerobic glycolysis (Gatenby and
Gillies, 2004), cancer cells appear to have an advantage of not
having to rely on oxygen for energy source in hypoxic (hostile)
microenvironment (Gatenby and Gillies, 2004; Kim and Dang,
2006). Better understanding of basic mechanism of glycolysis and
intracellular dynamics may provide better clinical outcomes. For
example, inhibition of glycolysis may prevent drug resistance (Xu
et al., 2005). Cancer cells also adapt angiogenesis and migra-
tion as a way of ensuring an adequate glucose supply (Godlewski
et al., 2010a). However, appropriate intracellular responses to glu-
cose withdrawal are a crucial component of adaptation in order
to survive periods of metabolic stress and maintain viability as
a tumor grows (Jones and Thompson, 2009). The 5′-adenosine
monophosphate activated protein kinase (AMPK) pathway is the
major cellular sensor of energy availability (Hardie, 2007) and is
activated in the presence of metabolic stress as a way of promoting
glucose uptake and energy conservation (Hardie, 2007). Dysreg-
ulation of miRNAs, 22 nucleotide single-stranded non-coding
RNAs (Bartel, 2009), has been associated with oncogenic activi-
ties and tumor suppressor (Esquela-Kerscher and Slack, 2006) in
many cancer types, including glioblastoma where alterations in
miRNA expression induces tumorigenesis (Godlewski et al., 2008;
Lawler and Chiocca, 2009). For example, miR-21 promote glioma
invasion by down-regulation of inhibitors of matrix metallopro-
tease (MMP) (Gabriely et al., 2008). In a recent paper, Godlewski
et al. (2010a) found that a particular microRNA, miR-451, deter-
mines glioma cell motility and proliferation by regulating its
counterpart, AMPK signaling component (CAB39/LKB1/AMPK),
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in response to various glucose levels. While normal glucose led to
up-regulation of miR-451 expression and rapid cell proliferation,
deprived glucose induced down-regulation of miR-451 and ele-
vated cell migration. Godlewski et al. (2010a) also found mutual
antagonism between miR-451 activity and AMPK complex lev-
els, which was modeled using a mathematical model in Kim et al.
(2011a). See Figure 1.

Invasion of glioma cells leads to treatment failure due to poor
screening of invasive individual cells by the standard clinical device
and difficulty in complete elimination of the migratory cells in typ-
ical brain surgery, causing tumor recurrence (Chintala et al., 1999).
Many factors may contribute to glioma cell motility in the brain
tissue. Extra cellular matrix (ECM) may stimulate glioma invasion
in a process known as haptotaxis. Haptotactic process is suggested
to be activated by pre-existing brain components and remodeling
of the ECM via proteolysis (Chintala et al., 1999; Jaalinoja et al.,
2000; Choe et al., 2002). Glioma cell’s motility is also influenced
by various chemoattractants, which include ligands of scatter fac-
tor/hepatocyte growth factor (SF/HGF) (Lamszus et al., 1998),
the EGF family (Lund-Johansen et al., 1990), the TGF-β family
(Platten et al., 2001), SDF-1 (Zhou et al., 2002), and certain lipids
(Young and Brocklyn, 2007). We note that other authors studied
the action of HGF or scatter factor on cell migration (Tamagnone
and Comoglio, 1997; Luca et al., 1999; Stella and Comoglio, 1999;
Trusolino and Comoglio, 2002; Scianna et al., 2009). Beside these
factors, other cell types such as microglia can also provide indi-
rect stimulation of cell migration by secreting matrix components
and chemoattractants (Watters et al., 2005). Glioma cell migra-
tion may be regulated by specific substrates and structures in the
brain as well. For instance, glioma cells are also known to follow
preferred dispersion paths such as white matter tracts or the basal
lamina of blood vessels. Invasion patterns of glioma cells in three-
dimensional tumor spheroids were studied in Kim et al. (2009)

FIGURE 1 | Biological observation for regulation of miR-451-AMPK
complex (Godlewski et al., 2010a).

where the migration patterns exhibit a gradual shift from branch-
ing to dispersion and depend on three key parameters (cell–cell
adhesion strength, haptotactic parameter, and chemotactic sensi-
tivity). There are several publications based on a diffusion model
(Swanson et al., 2003; Harpold et al., 2007).

Other authors investigated the transition between migration
and proliferation using kinetic or diffusion models (Chauviere
et al., 2010; Hatzikirou et al., 2010; Pham et al., 2012). A gen-
eral review on hybrid models of tumor growth can be found in
Rejniak and Anderson (2011). In the present paper, the detailed
dynamics of a core control system (miR-451-AMPK) at each cell
site is embedded in a hybrid model and is linked to extracellu-
lar glucose molecules which diffuse to brain tissue. In the hybrid
model, tumor cells either migrate or proliferate in response to
biochemical signals such as glucose and chemoattractants. Migra-
tory cells are attracted to chemotactic source and secrete MMPs
to degrade extracellular matrix (ECM). We show how the spatial
migrating patterns of glioma cells can be controlled by the core
system in the absence and presence of chemotactic source after
initial surgery and explore how injection of glucose and chemoat-
tractants could be manipulated for better therapeutic options.
More importantly, we use the current model to test hypotheses
on chemotaxis-glucose-driven therapy, i.e., eradicating “invisible”
invasive cells after surgery. We propose that injection of chemoat-
tractants after surgery followed by glucose injection at the tumor
site would bring migratory glioma cells back to the surgical site
and make them detectable by MRI, and the follow-up surgery may
improve clinical outcomes by eradicating the remaining growing
tumor cells.

In Section 2 we introduce a multi-scale mathematical model. In
Section 3, we present the results from the hybrid model. Discussion
and future work are provided in Section 4. Parameter estimation
and non-dimensionalization of the model are given in Appendix.

2. MATERIALS AND METHODS
In this section, we introduce a multi-scale mathematical model of
regulation of cell proliferation and migration in glioblastoma. We
consider a brain tissue,�= [0, L]2, with glioblastoma tumor ini-
tially occupying a sphere�0

c = {x : |x | < R0, R0 < L}, where R0 is
the initial radius of the tumor spheroid. A schematic of the hybrid
model is shown in Figure 2. We first introduce the cell-mechanics
part of the model.

2.1. THE CELL-MECHANICS
The mechanical behavior of individual cells is based on the mod-
els developed by Dallon and Othmer (2004) and Kim et al. (2007,
2011b). The forces on a cell in the model include (i) the dynamic
drag forces from adhesive bonds with neighboring cells, (ii) the
active forces Ti exerted on the substrate or neighboring cells and
the reaction force (Mj,i), (iii) static friction force Sj,i for rigid
attachment between cells or between a cell and the substrate. (See
DO for a more detailed discussion of all forces involved.) The total
force on the ith cell is then given by

Fi =
∑

j∈N a
i

Mj ,i +
∑

j∈N a
i

Ti +
∑

j∈N d
i

µij(vj − vi)+
∑

j∈N s
i

Sj ,i (1)
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FIGURE 2 | (A) A schematic of the hybrid model for therapeutic
approaches. (Top) Simplified model of the core control system (miR-451
and AMPK complex) in response to various glucose levels at a tumor cell
site. The core system determines the cell fate, either proliferation or
migration. Chemoattractants in the brain tissue determine the migration
direction of the cell. (Bottom, Left) Model domain: some migratory
cancer cells (blue) near the tumor core site are activated to become a
proliferative one (green) via miR-451-AMPK regulation in response to
glucose injection levels (red thunder) at the center of the tumor site.

(Bottom, right) changes in the length of the a-axis of a cell (the ellipsoid)
under a given force (fa; arrow) consist of the passive change in the first
component (a Maxwell element in parallel with a non-linear spring) and
the change due to the growth (ug

a ). The growth component depends on
the levels of miR-451 and AMPK complex, and the force (fa). The
mechanical and growth elements are the same along all axes.
(B) miR-451 activity and levels of its target complex (CAB39/LKB1/AMPK)
were represented by “m” and “a,” respectively. (C) The migratory and
proliferative regions based on miR-451 activity and AMPK levels.

whereN a
i denotes the neighbors of i, including the substrate, upon

which it can exert traction,N d
i is the set of “cells” (which includes

substrate and extracellular matrix) that interact with i via a fric-
tional force, and N s

i denotes the set of cells that statically bind
to cell i. These force balance equations allow us to calculate all
forces involved and track down locations of all cells in addition to
biophysical response of the cells.

There are two different kinds of cells involved-proliferative one
and motile one. The basic mechanical scheme of cell proliferation
is modeled as in Kim et al. (2007) and the basic algorithm for

motile cells is introduced as in Dallon and Othmer (2004). The
cells are treated as oriented ellipsoids and cytoplasm is con-
sidered as an incompressible, viscoelastic solid. When growth
is off, their volume is constant under all deformations. How-
ever, growth component (ua

g ) is included in series the active
response and the passive forces. (See Figure 2A.) We use the
multiplicative form of the growth rate function for the i-th axis
given by

(u
g
i )
′
= f (σ ) P (M , A)
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where σ is the force acting on the cell and P is a function of the
miR-451 activity (M ) and AMPK levels (A). The growth func-
tion f (σ ) is defined so that cells can grow under sufficiently small
tensile and compressive forces (Kim et al., 2007, 2011b). The rela-
tionship between growth and stresses are complex and further
detailed modeling work is needed. Cell proliferation may depend
on up- or down-regulation of intracellular players that control the
cell cycle. In the present work, we assume that the core system
determines cell proliferation, i.e., a cell proliferates when miR-451
(AMPK) is up-regulated (down-regulated) at the cell site. Then,
the function P(M, A) is defined as

P (M , A) =

{
1 if M > t hM , A < t hA

0 otherwise
(2)

where thM, thA are threshold values of the miR-451 and AMPK
levels that will be introduced in Section 2.3. The active force Ti of
cell i is given by

Ti = φ (Mi)
∇C√

KC + |∇C |2
(3)

where C is the concentration of a chemoattractant. Here, the
indicator function φ(M ) is given by

φ (M ) =


rnF0 if M < t hM , A > t hA , cell without

physical constraints,

0 otherwise,

(4)

where F 0 is the basal magnitude of the active force (0≤ |Ti |≤ F 0)
and rn is a random number in [0.8, 1.2]. Therefore, the active
force is completely turned off for proliferative cells (Mi> thM,
A< thA), cells under physical constraints (a cell completely sur-
rounded by neighboring cells), or in the absence of chemotactic
signal (∇C = 0).

2.2. REACTION-DIFFUSION
We let G(x, t ), C(x, t ), ρ(x, t ), P(x, t ) be the concentrations
of glucose, a chemoattractant of glioma cells, ECM, and MMPs,
respectively, at space x and time t. Governing equations of all
variables are given by

∂G

∂t
= DG1G︸ ︷︷ ︸

Diffusion

+

NG∑
j=1

λG
inI
[t G

j ,t G
j +τ

G
d ]×�ε︸ ︷︷ ︸

Injection

+ λbη1(x , G)︸ ︷︷ ︸
Input

− λcη2(x , G)︸ ︷︷ ︸
Consumption

− µGG︸︷︷︸
Removal

in�, (5)

∂C

∂t
= DC1C︸ ︷︷ ︸

Diffusion

+

NC∑
j=1

λC
inI
[t C

j ,t C
j +τ

C
d ]×�ε︸ ︷︷ ︸

Injection

−µC C︸︷︷︸
Decay

in�, (6)

∂ρ

∂t
= − λ1Pρ︸ ︷︷ ︸

Degradation

+ λ2ρ(1−
ρ

ρ∗
)︸ ︷︷ ︸

Release/reconstruction

in�, (7)

∂P

∂t
= DP1P︸ ︷︷ ︸

Diffusion

+ λ3η3 (x , P)︸ ︷︷ ︸
Production by cells

−µP P︸︷︷︸
Decay

in�, (8)

where DG, DC, DP are the diffusion coefficients of glucose,
chemoattractant, and MMPs, respectively, λG

in (λG
in) is the glu-

cose (chemoattractant) injection rate on a subdomain �ε over
time intervals [t G

j , t G
j + τ

G
d ], j = 1, . . ., NG ([t C

j , t C
j + τ

C
d ], j = 1,

. . ., NC) with a period τG (τC) and duration τG
d (τC

d ) after the

initial surgery at t = tS (t G
1 > tS), λb is the glucose flux from

a blood flow, λc is the consumption rate of glucose by tumor
cells, λ1 is the degradation rate of ECM by MMPs, λ2 is the
release/reconstruction rate of ECM, λ3 is the secretion rate of
MMPs by tumor cells,µG is the glucose removal rate from the sys-
tem via blood flow and glucose consumption in the surrounding
tissue (Chiro et al., 1982; Rozental et al., 1991; Goldman et al., 1996;
Aronen et al., 2000; Valle-Casuso et al., 2012), µC, µP are decay
rates of chemoattractant and MMPs, respectively. Here, indicator
functions (η1, η2, η3) are given by

η1 (x , G) =

{
1 blood vessel

0 otherwise
, η2 (x , G) =

{
1 tumor

0 otherwise
,

η3 (x , P) =

{
1 invasive cells

0 otherwise.

We also assume no flux (Neumann) boundary conditions
∂G
∂ν
= 0, ∂C

∂ν
= 0, ∂P

∂ν
= 0, on ∂�. The reaction-diffusion equa-

tions (5–8) are solved on the regular grid using the alternating-
direction implicit (ADI) method and the non-linear solver
nksol for algebraic systems. A typical spatial grid size used is
hx= hy= 0.01 on a square domain [0, 1]× [0, 1]. An adaptive
time stepping method is used. Table 1 lists parameter values and
references values for the equations (5)-(8).

2.3. MATHEMATICAL MODELING OF miR-451-AMPK CONTROL
The core control model of miR-451 activity and AMPK levels
introduced in Kim et al. (2011a) was integrated into the hybrid
model. Based on biological observations, we write the phenome-
nological equations for the rate change of those key molecules (m,
a) as follows:

dm

dt
= λg g +

313
2
2

32
2 +35a2

− µ1m, (9)

da

dt
= s +

333
2
4

32
4 +36m2

− µ2a, (10)

where g is the signaling pathways from glucose to miR-451, s is
the signaling pathways to AMPK complex, 31, 33 are the auto-
catalytic enhancement parameters for miR-451, AMPK complex,
respectively, 32, 34 are the Hill-type inhibition saturation para-
meters from the counter part of miR-451 and AMPK complex,
respectively,35 is the inhibition strength of miR-451 by the AMPK
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Table 1 | Values of reference variables and parameters used in the hybrid model.

Var Description Value Refs.

DIFFUSION COEFFICIENTS

DG Glucose 6.7×10−7cm2/s Jain (1987)

DC Chemoattractant (EGF) 1.66×10−6 cm2/s Thorne et al. (2004)

DP MMPs 8.0×10−9 cm2/s Saffarian et al. (2004)

PRODUCTION/DECAY/CONSUMPTION RATES

λ2 ECM reconstruction/remodeling rate 5.6×10−3 s−1 TW

λ3 MMP production rate 5.8

λc Glucose consumption rate by tumor 0.8 pg/cell/min TW

µG Removal rate of glucose in brain tissue 0.0034 min−1 TW

µC Decay rate of chemoattractant (EGF) 8.02×10−6 s−1 Kudlow et al. (1986)

λ1 ECM degradation rate by MMPs 3.0×104 cm3 g−1 s−1 TW

µP Decay rate of MMPs 5.0×10−5 s−1 TW

REFERENCE VALUES

T Time 1 h

L Length 2.0 mm

G* Glucose concentration 4.5×10−3 g/cm3 Deisboeck et al. (2001), Sander and Deisboeck (2002), Godlewski et al. (2010a)

C* Chemoattractant (EGF) concentration 1.0×10−8 g/cm3 Boccardo et al. (2003), Sadlonova et al. (2005)

ρ* ECM concentration 1.0×10−3 g/cm3 Kaufman et al. (2005), Stein et al. (2007)

P* MMP concentration 1.0×10−7 g/cm3 Annabi et al. (2005)

complex, 36 is the inhibition strength of the AMPK complex by
miR-451,µ1,µ2 are microRNA/protein degradation rates of miR-
451 and AMPK complex, respectively. Table A1 in Appendix sum-
marizes the dimensionless parameters. By taking the thresholds
thM (=2.0) of miR-451 levels and thA (=2.0) of AMPK complex,
we shall define the migratory region Mm by Mm= {(M, A)∈R2:
M < thM, A> thA} and the proliferative region Mp by Mp= {(M,
A)∈R2: M > thM, A< thA}. See Figure 2C for a diagram for
proliferative and migratory regions.

3. RESULTS
In this Section, we present analysis of the hybrid model and pre-
dictions for therapeutic strategies for eliminating invasive glioma
cells.

3.1. DYNAMICS OF THE MODEL
In order to validate the mathematical model, we first investigated
invasion patterns of glioma cells embedded in high and low glucose
levels in the absence of blood supply of glucose (λb= 0), glucose
injection (λG

in = 0) and chemoattractants, and by assuming cells
on the surface of the spheroid are migrating toward the glucose
gradient (∇G) [i.e., by replacing ∇C

√
KC+|∇C |

with ∇G
√

KG+|∇G|
in the

active force form in the equation (3)]. Figures 3A–C show spatial
profiles of tumor spheroids in response to high (G0= 1.0), inter-
mediate (G0= 0.5), and low (G0= 0.1) glucose levels. Figure 3D
shows relative miR-451 levels in response to high (Glucose+) and
low (Glucose−) levels in simulations and experiments (U251 and
LN229 cell lines) (Godlewski et al., 2010a). General patterns
of tumor spheroids in response to high (Figure 3A) and low
(Figure 3C) glucose levels in simulations are in good agree-
ment with experimental observations in Godlewski et al. (2010a)
where high (4.5 g/l) and low (0.3 g/l) levels of glucose induced
over- and under-expression of miR-451 (see Figure 3D), leading

to proliferating (as in Figure 3A) and dispersed invasive (as in
Figure 3C) patterns of tumor cells, respectively.

We investigate invasion dynamics of a growing tumor in
response to glucose levels in the presence of blood supply.
Figures 4A–C show spatial patterns of a growing/invading tumor
in response to glucose supply (G0= 10) at time t = 0, 20, 30 h.
Initial high glucose level is decreased due to glucose consump-
tion by tumor cells at the center of the domain and nearby
tissue (Figures 4D–F). The miR-451 activity at cell sites is
decreased and AMPK levels creep up due to decreased glucose
levels (Figures 4M,N). Cells on the surface of the tumor mass
immediately respond to intracellular biochemical signals (miR-
451 and AMPK levels) and begin to migrate when miR-451 level
drops below the threshold (M < thM= 2.0) and AMPK level is
up-regulated (A> thA= 2.0) due to decreased glucose level at
the cell site (cf. Figure 2C). However, cells at the center of the
tumor mass are surrounded by neighboring cells and stay inside
the tumor due to physical constraints despite biochemical migra-
tion signals (M < thM, A> thA). Figure 4N shows time courses
of miR-451 activities and AMPK levels in response to glucose
levels in Figure 4M at two cell sites [cell id= 220 with initial
location (108.2, 99.5); cell id= 160 with initial location (100.5,
99.8)]. The miR-451 levels for both cells drop below the thresh-
old (thM) and AMPK levels are above the threshold (thA) around
t = 16 h already, generating “migratory” signal. However, the cell
(marked in “gray”; cell id= 220) in Figure 4A still stays in the
tumor mass at t = 20 h (Figure 4B) and begins to shed off at later
time (t = 26 h; arrow in Figure 4N) when free space is available.
Another cell (cell id= 160) at the center of domain remains at the
center of the tumor due to physical constraints until final time
[t = 40 h; final location (100.3, 99.7)]. When glioma cells on the
surface of the tumor mass migrate into surrounding brain tissue,
proteinases (MMPs) are secreted in the invading front and ECM is
degraded due to high levels of MMPs (proteolysis). See localized
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FIGURE 3 | (A–C) Profiles of tumor spheroid in response to high (G=1.0),
intermediate (G=0.5), and low (G=0.1) glucose levels at t =30 h. Domain
size= [50µm, 150µm]× [50µm, 150µm]= [0.25, 0.75]2 in the
dimensionless domain [0, 1]2). (D) Comparison between simulation results
and experimental data. In response to high (Glucose+, blue) and low

(Glucose−, gray) glucose levels, miR-451 expression levels are quantified.
Simulation results are in good agreement with experimental results on U251
and LN229 cell line in Godlewski et al. (2010a). *λb =0, λG

in = 0. It was
assumed that tumor cells respond to the glucose gradient for migration
in vitro as in Godlewski et al. (2010a).

MMPs at cell sites and degraded ECM profiles in Figures 4G–L,
respectively.

Figures 5A–D show cyclic tumor growth patterns at t = 0, 20,
38, 46 h in response to periodic glucose injection. When high doses
(G= 10.0) of glucose are introduced into the system at t = 0, 26 h,
fluctuating glucose values (Figure 5E) at a cell site (cell id= 220;
arrowhead in Figures 5A–D) lead to a cycle of up-regulation and
down-regulation of miR-451 (Figure 5F). Cells outside the tumor
core respond to this stimulus by either proliferating or migrating.
See Figures 5A–D. Cell phenotype changes between proliferative
and migratory cells are more clear in Figure 5G. Initial prolifer-
ative cells due to high glucose levels change their phenotype to
become migratory cells whenever glucose level lowered to induce
migratory phase [M > thM, A< thA; ∼t = 16 h (black arrow) and
t = 42 h (red arrow)]. These migratory cells change their phe-
notypes to proliferative cells (∼t = 26 h; black arrowhead) when
the high glucose level from glucose injection induces proliferative
phase (M > thM, A< thA).

3.2. SENSITIVITY OF THE MODEL TO INHIBITION PARAMETERS (α, β)
IN THE CORE SYSTEM

From now on, the activation time for invasion is defined to be time
when a cell in proliferative phase (M > thM, A< thA) changes
its phenotype to a migratory cell (M < thM, A> thA) due to a
microenvironmental change (glucose fluctuation) and begins to
migrate away from the main tumor aggregate for the first time
among all other cells. In Figure 6A we show steady state values

of miR-451 (Ms) in response to different glucose levels for vari-
ous inhibition strength (β) of AMPK complex by miR-451. See
Appendix A.2 for definition and role of β (and α below) in the
core system. As β is decreased the bifurcation curve shifts to the
right (higher glucose levels). In the control case (β = 1.0), a rela-
tively low glucose level (G= 0.4) is required for activation of cell
invasion. When this inhibition strength is weakened (β small),
a cell may begin to migrate for larger glucose levels. Figure 6B
shows activation time for invasion as a function of inhibition
strength of AMPK complex production (β). As β is decreased
from control base parameter (β = 1.0), the rate of AMPK com-
plex formation is increased and miR-451 level is decreased at
earlier time, leading to early activation time for invasion. This
might have biological implications. For example, one could totally
use or partially block inhibition pathways from miR-451 to AMPK
(decrease in β) in order to boost invasion activation under certain
circumstances.

Figures 7A,B show effect of inhibition strength (α) of miR-451
production by AMPK complex on tumor population and activa-
tion time for cell invasion. As the inhibition strengthα is increased,
miR-451 levels are decreased at earlier time (Figure 7B) and more
cells on the surface of the tumor mass migrate from the biochem-
ical signal. See Figure 7A. This would have several implications.
For example, cell migration or dispersion might be prevented by
any drug that blocks inhibitory activity of AMPK complex to miR-
451. This may generate faster growth of tumor mass since most of
cells would be in proliferative phase. Therefore, this could be used
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FIGURE 4 | (A–C) Tumor invasion pattern at time t =0, 20, 30 h in
response to glucose levels (G0 =10). Domain size= [0.25, 0.75]⊂ [0, 1]2.
(D–F) Profiles of glucose concentration on the domain [0, 1]× [0, 1].
Glucose flux from a blood vessel induces a peak value at the upper right
corner. (G–I) Profiles of ECM on the subdomain [0.25, 0.75]× [0.25,

0.75]⊂ [0, 1]2. ECM were degraded in the invasive region. (J–L) Profiles of
MMPs on the subdomain [0.25, 0.75]× [0.25, 0.75]⊂ [0, 1]2. MMPs are
localized in tumor region. (M) Glucose levels at two cell sites (cell id=220,
160). (N) Concentrations of intracellular variables, miR-451 and AMPK
complex, at the cell sites in (M).

as a temporary way of holding cell migration in order to not miss
out single migratory cells for surgery.

3.3. PREDICTIONS OF THE MODEL FOR A POSSIBLE THERAPEUTIC
APPROACH

In this section, we developed therapeutic strategies for eradi-
cating invisible migratory glioma cells in the brain after con-
ventional surgery where only visible parts of tumor mass are
removed. Here we assume that invasive cells in surrounding tis-
sue can sense and respond to the chemoattractant gradient (∇C).

Figures 8A–F show spatial profiles of the tumor cells at t = 0,
17, 25, 32, 39, 44 h, respectively. After first surgery (region inside
red doted circle in Figure 8A) at t = 0, a chemoattractant was
injected at the center of the resected area. See Figures 9D–F for
spatial profiles of chemoattractant at time t = 0, 16, 18 h. Invasive
cells begin to migrate back to the surgical site. After waiting 17 h
(t G

1 = 17), a high dose of glucose was introduced into the system
at the center of surgical site and glucose molecule diffuses through
the domain (Figures 9A–C). High glucose levels trigger the intra-
cellular switch from the migratory phase to the proliferative mode
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FIGURE 5 | (A–D) Tumor growth patterns at t = 0, 20, 38, 46 h in response to
glucose injection. Two cycles of proliferation-migration pattern are observed
after initial (t =0 h) and second (t =26 h) injections of glucose (G=10).
Domain size= [0.2, 0.8]× [0.2, 0.8]⊂ [0, 1]2. (E) Glucose level at a cell site
[cell id=220; arrowhead in (A–D)]. (F) Time course of miR-451 activity and
AMPK concentration at the cell site in (E). Dotted black line in the

middle= threshold value of miR-451 (thM). (G)Time course of cell populations:
proliferative (blue square), migratory (red diamond), and total (black circle)
cells. Some of proliferative cells become migratory ones around t =16 h (black
arrow) and t =42 h (red arrow) when miR-451 levels drop below threshold
due to lowered glucose levels. All migratory cells enter the proliferative phase
around t =26 (black arrowhead) in response to glucose injection.

FIGURE 6 | (A) Steady state values of miR-451 (Ms) as a function of
glucose level (G) for various inhibition strength of AMPK by miR-451 (β) in
core control system. (B) Effect of the inhibition rate (β) on activation time

for glioma cell invasion in the hybrid model. As β is decreased, activation
time for invasion is decreased. See Appendix A.2 for definition and role of
β in the core system.

for invasive cells near the injection site (Figure 9G). Figure 9G
shows time courses of miR-451 activity and AMPK level at two
cell sites (cell id= 36, 37). A cell (cell id= 36) close to the center
of the resection site is activated for proliferation at the earlier time
(∼t = 17). Green cells inside the blue dotted circle in Figure 8B
represent proliferative cells due to high glucose levels while red

cells outside the blue circle are still migratory cells in migratory
phase (M < thM, A> thA) from low glucose levels. While infiltra-
tive tumor cells after surgery may not be detected, regrown tumor
mass may be detected by conventional screening tools such as
MRI when tumor density is high enough. This may increase the
probability of eliminating invasive cells.
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FIGURE 7 | (A) Effect of miR-451 inhibition strength (α) on tumor
population. As α is increased, miR-451 production rate is decreased leading
to low miR-451 activity and activation of glioma cell migration. (B) Effect of
α on activation time for cell invasion. As α is increased, lowered miR-451
activity leads to early activation of cell invasion. See Appendix A.2 for
definition and role of α in the core system.

Figure 10 shows time courses of average cell speeds of migra-
tory (solid circle, red) and proliferative (blue square) cells in
Figure 8. From the beginning of the simulation, the average
cell speed of cells in migratory phase maintained the values in
the rage of 27–33µm/h until cell speeds begin to drop down
around ∼17 h due to cell aggregation at the center of domain.
Eventually all migratory cells become proliferative cells around
t = 19 h. Proliferative cells (blue square, transformed from migra-
tory cells around 9 h) show very low cell speeds due to absence
of active force since their movement is due to growth not cell
movement. Cell speeds have been reported to be in the range
of 39–45µm/h in 2D barrier-free culture condition and 15–
20µm/h in 3D glioblastoma cell culture in the absence/presence
of EGF-stimulation (Kim et al., 2008), 15–25µm/h in glioblas-
toma cells with/without α-actinin isoforms (Sen et al., 2009),
15–48µm/h for cells embedded in collagen I matrix (Kaufman
et al., 2005). So, the cell speed in our model is in good agreement
with experimental data.

To test our hypothesis in a more realistic situation, we tested
our hypothesis of attracting cancer cells back to the resection bed
in a more realistic setting in Figure 11. Here we assume that a cell
can sense the environment of the resection bed and stop moving
on the edge of the resection bed. In our simulation, generation of
active force of a migratory cell is turned off, i.e., active force Ti in
the equation (3) is set to be zero when the cell reaches periphery
of the resection bed. The simulation begins immediately after ini-
tial surgery of the large tumor mass at the center of the domain
again. Figures 11A–H show proliferation and migration patterns
of tumor cells at t = 0, 8, 16, 24, 32, 40, 48, 56 h in response to
initial injection of a chemoattractant (t = 0 h) followed by glucose
injection at t = 17 h. Figures 11I,J show time courses of miR-451
activity and AMPK level at a cell site (cell id= 22) and cell pop-
ulations [proliferative (blue circle), migratory (red dotted), and
total (green square) cells], respectively. Initially, there exist only
a phenotype of migratory cells but these cells begin to aggre-
gate on the periphery of the resection bed. However, these cells

switch their phenotype to proliferative ones via core control system
(Figure 11I) in response to glucose injection at t = 17 h. These
proliferative cells form a visible larger tumor mass which can be
ready for the second follow-up surgery. Most of these proliferative
cells enter the migratory phase (M < thM, A> thA) again around
t = 49 h due to lowered glucose levels.

3.4. THERAPEUTIC OPTIMIZATION
In Figures 12A–F, we investigate the effect of glucose injection
time on tumor growth patterns for chemoattractant-induced sec-
ond surgery under same conditions as in Figure 8. Figures 12A–D
illustrate spatial growth patterns of tumor cells at final time
(t = 44 h) when a high dose of glucose was injected at the cen-
ter of the surgical site at different initial injection time (t G

1 =

10, 12, 15, 17 h). When glucose was injected at the earlier time
(t G

1 = 10 h), more invasive cells enter the cell cycle (M > thM,
A< thA) for higher flux of glucose before they reach the surgi-
cal site. For the case of glucose injection at later time (t G

1 = 17 h),
more cells are localized at the center of the surgical site. Figure 12E
shows tumor population at final time. Cells inside the bigger size of
tumor mass are subject to slower growth (see mechanical aspects of
the hybrid model). Initial glucose injection time decreases tumor
population since more tumor cells are activated for proliferation
and tumor cells grow faster without physical constraints. This
injection time also decreases resection area for second surgery due
to localized tumor cells at the original surgical site (Figure 12F).
Therefore, choosing appropriate injection time is important for
efficacy of tumor treatment. However, any further delay of second
surgery would lead to larger size of tumor mass and one may face
another possibility of tumor invasion.

Next, we investigate the effect of chemoattractant strength
on efficacy of therapeutic strategies suggested in this paper.
Figures 13A–F show migration-proliferation patterns of tumor

cells at t = 0, 17, 56 h in the presence of low (λ
C
in = λ

C/10
in ) and

high (control) levels of a chemoattractant and glucose injection at
t = 17 h after initial surgery at t = 0 h. When the chemoattractant
level is low, cells in the far away field do not effectively respond
to the chemotactic signals (red arrows in Figure 13B) and do
not move toward the resection bed easily, which induces further
tumor growth later at the undesirable location (black arrowheads
in Figure 13C). Figures 13G,H show populations of localized cells
(cells with d < 0.25) and cells outside the localized domain (cells

with d > 0.25), respectively. Here, d =
√
(xi − 0.5)2 + (yi − 0.5)2

is the distance from cell location (xi, yi) to the center (0.5, 0.5)
of the domain. One can see that the low chemoattractant level
leads to a moderate decrease in the population of localized cells
(Figure 13G) but induces a significant increase in the popula-
tion of cells in the far away field (Figure 13H) at t = 17, 56 h.
These missed cells reduce efficacy of second surgery. These results
effectively show that enough levels of chemoattractant need to be
provided for the more efficient therapy.

4. DISCUSSION
One major challenge for treating glioblastoma is that by the
time the disease is diagnosed cancer cells have already invaded
other parts of the brain, inhibiting complete elimination of can-
cer cells. Blocking this critical invasion process or finding a
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FIGURE 8 | Strategy of eradicating migratory cells after first surgery.
(A–F) Spatial profile of a surgically removed tumor at t =0, 17, 25, 32, 39,
44 h. Detectable tumor core was surgically removed at t =0 h (red dotted
circle) and a chemoattractant was injected at the center of the removed area
immediately after surgery (t =0 h). After waiting 17 h, glucose was injected at

the center of the removed area again in order to turn the migratory switch
(M < thM, A> thA) off and make these cells grow (M > thM, A< thA). This
growing mass of tumor may be visible for secondary surgery, leading to
eradication of invisible migratory cells. Domain size= [0.25, 0.75]× [0.25,
0.75]⊂ [0, 1]2.

FIGURE 9 | (A–C) Spatial profiles of glucose at t =0, 16, 18 h. Glucose was
injected at the center of the domain around t =17 h. Glucose flux from a
blood vessel induces a peak value at the upper right corner. (D–F) Spatial

profiles of chemoattractant at t =0, 16, 18 h. Chemotactic source was located
at the center of the domain. (G) Time course of the miR-451 activity and
AMPK level at two cell sites (cell id=36, 37). *Domain size in (A–F)= [0, 1]2.
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way of eradicating invasive tumor cells would lead to better
clinical outcomes. Godlewski et al. (2010a) recently identified
a key miRNA, miR-451, and its target, AMPK complex, that

FIGURE 10 | Cell speeds of proliferative (blue square) and migratory
(solid circle, red) cells in Figure 8.

regulates a critical switch between cell migration and prolifera-
tion. Reduced miR-451 activity has been associated with cancers
(Bandres et al., 2009) including glioma (Gal et al., 2008; Godlewski
et al., 2010a). In the harsh microenvironment, glioblastoma cells
shift their metabolic machinery toward a high level of glucose
uptake, Warburg effect (Warburg, 1956; Kim and Dang, 2006;
Heiden et al., 2009), and lowered glucose levels trigger active
cell migration toward the better microenvironment. Some up-
regulated miRNAs in brain tumors are believed to play a pro-
oncogenic role via supporting growth, proliferation, migration,
and survival of cancer cells while expression of other miRNA
having anti-tumor effects is suppressed in gliomas. These miR-
NAs harbor a therapeutic significance as therapeutic agents in
anti-cancer therapy (Lawler and Chiocca, 2009; Godlewski et al.,
2010b; Chistiakov and Chekhonin, 2012). Godlewski et al. (2010a)
illustrated glucose regulation of proliferation and migration of
glioma cells: (i) low glucose⇒ down-regulation of miR-451 and
up-regulation of the AMPK complex⇒ cell migration (ii) normal
(high) glucose⇒ up-regulation of miR-451 and down-regulation
of AMPK complex⇒ proliferation.

FIGURE 11 | (A–H) Tumor migration-proliferation patterns at t =0, 8, 16,
24, 32, 40, 48, 56 h in response to injection of a chemoattractant at t =0 h
and glucose at t =17 h after initial surgery at t =0 h. Migratory cells switch
to proliferative phenotype, forming a visible larger tumor mass, in
response to glucose for second follow-up surgery. Migratory cells stop on
the periphery of the resected area from the first surgery. It was assumed
that a cell can sense the environment of the resection bed and the active
force of a migratory cell is set to be zero when the cell reaches the
periphery of the resection bed. Domain size= [0.2, 0.8]× [0.2, 0.8]⊂ [0,

1]2. (I) Time course of miR-451 activity and AMPK level at a cell site (cell
id=22). Dotted black line in the middle= threshold value of miR-451
(thM =2.0). (J) Time course of cell populations: proliferative (blue circle),
migratory (red dotted), and total (green square) cells. All migratory cells
switch to proliferative ones around t =17 h when low miR-451 levels jump
to higher value [M >5 in (I)] and the level stays above threshold
(thM =2.0) due to glucose injection. Most of these proliferative cells enter
the migratory phase (M < thM, A> thA) again around t =49 h due to
lowered glucose levels. Parameters used: tG

1 = 17 h, τG
d = 24 h.
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FIGURE 12 | Optimal strategy for glucose injection for second
surgery after attracting invasive cells via chemotaxis. (A–D) Growth
patterns at final time (t = 33 h) for various glucose injection time
(tG

1 = 10 (A), 12(B), 15 (C), 17 h(D)). Domain size= [0.2, 0.8]× [0.2,

0.8]⊂ [0, 1]2. (E) Tumor population for different tG
1 . Tumor population is

decreased as tG
1 is increased due to delay of growth signal.

(F) Resection area for second surgery for various tG
1 . Resection area is

decreased as injection time is increased.

Conventional treatment options such as radiotherapy and
chemo therapy after surgical resection of tumor mass lead to poor
clinical outcome in many cases of glioblastoma due to invisible
migratory cancer cells in the brain tissue. In the present paper we
aimed at understanding a basic mechanism of proliferation and
migration of glioma cells in response to fluctuating glucose lev-
els and developing therapeutic strategies for eradicating invasive
glioma cells after initial conventional surgery. The present paper
develops a hybrid mathematical model of glioma cell migration
and proliferation. The hybrid model considers proliferation and
migration of individual tumor cells based on cell-mechanics, con-
centrations of glucose, chemoattractant, ECM, and MMPs in a
spatio-temporal domain, and regulation of key intracellular mol-
ecules, miR-451 and AMPK complex, at each cell site. Mechanical
stress and active forces acting on tumor cells were taken into
account in the model. The spatial distribution of both prolifer-
ative and migratory cells in response to high and low glucose
levels is in good agreement with experiments (Godlewski et al.,
2010a).

We first considered the important role that the core control sys-
tem (miR-451, AMPK) plays in regulation of the migratory phase
and proliferative phase when cells on the surface of tumor mass
begin to migrate away from the main core in the harsh microenvi-
ronment where glucose levels fluctuate. We analyzed the migratory
behavior of cells in response to variations in two key parame-
ters, inhibition strength of miR-451 (α) and inhibition strength
of AMPK complex (β), that play a critical role in characterizing
the invasion of glioma cells. Active migration of a cell depends
on chemical signals from the core miR-451-AMPK system and
their physical microenvironment in response to glucose injection.
Growing tumor cells in the presence of abundant glucose switch
their mechanism for cell migration when glucose is not available
and cells are not subject to physical constraints. When glucose was
introduced into the system in a periodic fashion, tumor repeat
migration-proliferation cycle, which may lead to faster growth
(Kim et al., 2011a).

For therapeutic strategies, the model suggested that (i) Intro-
duction of chemoattractant at the surgical site may bring these
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FIGURE 13 | Effect of chemoattractant strength (λC
in) on efficacy of the

therapy. (A–F) Tumor migration-proliferation patterns for low (λ
C

in = λ
C/10
in ) and

high (control) levels of a chemoattractant at t =0, 17, 56 h. A high dose of
glucose was injected at t =17 h after initial surgery at t =0 h. When the
chemoattractant level is low, cells in the far away field do not effectively
respond to the chemoattractant (red arrows in (B)), which induces further

growth later at the undesirable location (black arrowheads in (C)). Domain
size= [0.1, 0.9]× [0.1, 0.9]⊂ [0, 1]2. (G) Populations of localized cells (cells
with d <0.25) for low (10-fold smaller) and high levels of chemoattractant.
Here, d =

√
(xi − 0.5)2 + (yi − 0.5)2 is the distance from cell location (xi, yi) to

the center (0.5, 0.5) of the domain. (H) Same as in (G) but for cells outside the
localized domain (cells with d >0.25). Parameters used: tG

1 = 17 h, τG
d = 24 h.

invasive tumor cells back to the tumor site. (ii) Glucose injection
at the center of the surgical site would lead to up-regulation of
miR-451 and down-regulation of AMPK complex, which induces
cell proliferation. (iii) Follow-up surgery may eradicate the tumor
cells that managed to survive from the first surgery. Multiple
microsurgical resections for glioblastoma have been proven to be
effective and useful (Hong et al., 2012). However, we also found
that glucose injection at the wrong time may grow the tumor even
before tumor cells gather together and this may lead to undesirable
results, faster growth of dispersed tumor mass. Detecting appro-
priate time glucose injection and second surgery might also be a
challenge. Tumor cells can be cultured from biopsies up to 4 cm
away from the bulk tumor (Silbergeld and Chicoine, 1997). When
cancer cells migrate too far from the original site, it may be dif-
ficult to attract these cells. For example, we found that too low
chemoattractant may not be able to attract all migratory cells for
second surgery (Figure 12) and these missed cells would decrease
efficacy of the therapy. Therefore, in order to attract those invasive
cells in the far away field (>4 cm away) one might need strong
chemoattractants at the resection bed. However, this new strat-
egy in this paper may be a novel way of eliminating all cancer

cells when an appropriate combination of chemoattractants and
glucose is used.

The analysis and predictions of the hybrid model in this paper
may serve as a starting point for experimentation and more
detailed modeling. We indicate several aspects and directions for
further development of in vivo and/or in vitro multi-scale models:
(i) One might use a multi-phase approach to describe the inho-
mogeneity of the microenvironment (Byrne and Preziosi, 2004;
Preziosi and Tosin, 2009; Preziosi and Vitale, 2011). See a review
(Lowengrub et al., 2010) for further discussion. (ii) It has been
suggested that some glioma cells may migrate while they grow. We
could incorporate this aspect easily in this hybrid framework. Col-
lective cell migration is also considered as a key aspect of tumor
invasion (Friedl and Alexander, 2011). Creating a microtrack of
locally digested ECM followed by generating a larger excavated
macrotrack by proteolysis was suggested as a way of collective
cell migration (Wolf et al., 2007; Friedl and Alexander, 2011; Ilina
et al., 2011). In recent study, Sampetrean et al. (2011) also illus-
trated the importance of collective migration along fiber tracts
in glioma cell invasion, suggesting the need for anti-invasion
approach. (iii) The simplified network of miR-451 and AMPK
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complex can be extended to the more detailed network in order to
take into account cell cycle and other anti-cancer molecules. (iv)
Some important players such as immune cells and cytokines in
the microenvironment should be included in the model (Cheng
and Weiner, 2003; Rejniak and McCawley, 2010; Wiranowska and
Rojiani, 2011). (v) It was observed that isoforms of myosin II are
specifically required for an adaptation needed to squeeze through
the dense network of other cells (Beadle et al., 2008). Detailed

modeling work is necessary to take into account deformation of
cell body for cell motility. We hope to address these issues in
future work.
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A. APPENDIX
A.1. PARAMETER ESTIMATION AND NON-DIMENSIONALIZATION
A.1.1. Tumor module
The characteristic distance is the maximum domain size
(L= 2 mm) of growing glioblastoma within 48 h similar to the
size of the migratory region in the experiments by Godlewski et al.
(2010a) and we use T = 1 h to get dimensionless variables and
parameters:

t̄ =
t

T
, x̄ =

x

L
, Ḡ =

G

G∗
, C̄ =

C

C∗
, ρ̄ =

ρ

ρ∗
, P̄ =

P

P∗
,

D̄G =
T

L2
DG , D̄C =

T

L2
DC ,

D̄P =
T

L2
DP , λ̄G

in =
TλG

in

G∗
, λ̄b =

Tλb

G∗
, λ̄c =

Tλc

G∗
,

λ̄C
in =

TλC
in

G∗
, λ̄1 = Tλ1P∗,

λ̄2 = Tλ2, ρ̄∗ =
ρ∗

ρ∗
, λ̄3 = Tλ3, µ̄G = TµG ,

µ̄C = TµC , µ̄P = TµP ,

(A1)

We estimate some of parameters and reference values in
the following. (i) DG: diffusion coefficients of glucose (G)
were measured to be 6.7× 10−7 cm2/s in the brain (Jain,
1987) and 1.3× 10−6 cm2/s in collagen gel (Rong et al., 2006).
We take DG= 6.7× 10−7 cm2/s as in Jain (1987). (ii) DP: in
experiments of the movement of MMP-1in the collagen fib-
ril, Saffarian et al. (2004) estimated the diffusion coefficient
of MMPs as (8.0± 1.5)× 10−9 cm2/s for inactive mutant and
(8.0± 1.5)× 10−9 cm2/s for wild-type activated MMP-1, respec-
tively. For our simulation, we take DP= 8.0× 10−9 cm2/s. (iii)
DC: the diffusion coefficient of chemoattractant was taken
from one of EGF, DC= 1.66× 10−6 cm2/s from Thorne et al.
(2004). (iv) λc (glucose consumption rate): the measured level
α= 1.6 pg/cell/min for piecewise increasing linear consumption
termα(G)n was used in a glioma invasion study (Sander and Deis-
boeck, 2002) along with a threshold value Gth

1 = 2.0×10−4 g/cm3,
taken from the work of Li (1982). We take λc= 0.8 pg/cell/min
and use a sphere with a radius r = 8–20µm for estimation of
cell volume. (v) G∗: Sander and Deisboeck (2002) used the char-
acteristic concentration of glucose 2× 10−4 g/cm3, and took the
value 6× 10−4 g/cm3 for glucose level far from the tumor (see
also Deisboeck et al., 2001). Kim et al. (2009) took 6× 10−4 g/cm3

as a reference value based on experimental observation. In
in vitro experimental study (Godlewski et al., 2010a), high
(4.5 g/l= 4.5× 10−3 g/cm3) and low (0.3 g/l= 3.0× 10−4 g/cm3)
levels of glucose induced the up- and down-regulated miR-451
expression. We take the high glucose level, G∗= 4.5× 10−3 g/cm3,
as a reference value. (vi) ρ∗: collagen is one of main ECM com-
ponents. ECM concentration was estimated to be 0.5–2.0 mg/ ml
in an experimental study of growth patterns of glioma spheroids.
Stein et al. (2007) investigated growth patterns of glioma cell lines
in experiments where U87 wild-type and its mutant, U87DEGFR,
were implanted into collagen I of concentration of 2.6 mg/ ml.
We take ρ∗= 1.0 mg/cm3 as our reference value of ECM. (vii)
P∗: in a breast cancer cell invasion study, MMP concentrations

were measured to be 1.6× 10−9 g/cm3 (Jia et al., 2004). On the
other hand, it was shown that PCK3145 can down-regulate MMP-
9 level in prostate cancer patients with up-regulated MMP-9 level
of>100µg/l (Annabi et al., 2005). We take the high levels of MMPs
(P∗= 100µg/l) as our reference value of MMPs.

Table 1 lists reference values and all parameter values above.

A.1.2. Core control system (miR-451, AMPK)
We use the following dimensionalization scheme to get the
dimensionless key control parameters (Kim et al., 2011a).

τ = µ1t , M =
m

m∗
, A =

a

a∗
, G =

g

m∗
, lg =

3g

µ1
,

S =
s

µ2a∗
, l1 =

313
2
2

µ1m∗
, l2 = 32,

l3 =
333

2
4

µ2a∗
, l4 = 34,α = 35(a

∗)2,

β = 36(m
∗)2, ε =

µ1

µ2
,

(A2)

and the dimensionless form of core control system

dM

dτ
= lg G +

l1
l2
2 + αA2

−M , (A3)

ε
dA

dτ
= S +

l3
l2
4 + βM 2

− A. (A4)

Table A1 | Parameters that are used in the intracellular miR-451-AMPK

system.

Description Value Refs.

lg Glucose signaling rate 1.0 Kim et al. (2011a)

l1 Autocatalytic production rate

of miR-451

4.0 Kim et al. (2011a)

l2 Hill-type coefficient 1.0 Kim et al. (2011a)

α Inhibition strength of miR-451

by AMPK complex

1.6 Kim et al. (2011a)

thM Threshold of AMPK for

proliferation/migration switch

2.0 Estimated

l3 Autocatalytic production rate

of AMPK

4.0 Kim et al. (2011a)

l4 Hill-type coefficient 1.0 Kim et al. (2011a)

β Inhibition strength of AMPK

complex by miR-451

1.0 Kim et al. (2011a)

S Signaling source of AMPK 0.2 Kim et al. (2011a)

∈ Scaling factor (slow

dynamics) of AMPK complex

0.02 Crute et al. (1998);

Aguda et al. (2008);

Gantier et al. (2011);

Kim et al. (2011a)

thA Threshold of AMPK for

proliferation/migration switch

2.0 Estimated
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Glioblastoma, the most aggressive form of primary brain tumor, is predominantly assessed
with gadolinium-enhancedT1-weighted (T1Gd) andT2-weighted magnetic resonance imag-
ing (MRI). Pixel intensity enhancement on the T1Gd image is understood to correspond
to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while
hyperintensity on theT2/FLAIR images corresponds with edema and infiltrated tumor cells.
None of these modalities directly show tumor cells; rather, they capture abnormalities in
the microenvironment caused by the presence of tumor cells. Thus, assessing disease
response after treatments impacting the microenvironment remains challenging through
the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treat-
ment of gliomas with spurious results ranging from no apparent response to significant
imaging improvement with the potential for extremely diffuse patterns of tumor recurrence
on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively
decreasing vessel permeability and thus reducing tumor-induced edema, drastically alter-
ing T2-weighted MRI. We extend a previously developed mathematical model of glioma
growth to explicitly incorporate edema formation allowing us to directly characterize and
potentially predict the effects of anti-angiogenics on imageable tumor growth. A compari-
son of simulated glioma growth and imaging enhancement with and without bevacizumab
supports the current understanding that anti-angiogenic treatment can serve as a surro-
gate for steroids and the clinically driven hypothesis that anti-angiogenic treatment may
not have any significant effect on the growth dynamics of the overall tumor cell popu-
lations. However, the simulations do illustrate a potentially large impact on the level of
edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR.
Additionally, by evaluating virtual tumors with varying growth kinetics, we see tumors with
lower proliferation rates will have the most reduction in swelling from such treatments.

Keywords: glioma, edema, mathematical model, anti-angiogenic therapy

INTRODUCTION
Glioblastoma Multiforme (GBM) is a highly aggressive and inva-
sive primary brain tumor. The standard treatment protocol is
to surgically remove as much of the tumor as is reasonably
safe, followed by a combination of chemotherapy with radia-
tion. Despite aggressive treatment, the prognosis remains poor
with a median survival time of 14 months (Stupp et al., 2005).
The inability to accurately determine the extent of diffuse tumor
cell infiltration of the normal brain affects the ability to assess
response to treatment through clinical imaging, confounding clin-
ical progress. Currently, clinicians rely primarily on three magnetic
resonance imaging (MRI) modalities to monitor the development
of the tumor, the T2 weighting, FLAIR, and T1 weighting with
gadolinium contrast enhancement (T1Gd) sequences illustrated
in Figure 1. However, it is known that none of these sequences
are able to show the entire extent of the malignant cells (Silbergeld
and Chicoine, 1997), since the abnormal regions highlighted in the
MR images are as dependent on the microenvironment around
the disease, particularly the vasculature, as on the tumor cells
themselves.

Increased vasculature is a primary hallmark of GBM, and while
angiogenesis is a hallmark of cancer in general, there are some
important factors that separate GBMs from other tumors. First,
the glioma cells inhabit an organ that is highly vascularized in
its native state. Second, glioma cells are diffusely invasive and are
known to co-opt the existing vasculature and migrate and grow
along the vessels (Holash et al., 1999; Leenders et al., 2002). Never-
theless, GBMs can form hypoxic regions, often leading to regions
of necrosis, and thus, downstream of this hypoxic signaling, emit
an abnormally large amount of angiogenic factors such as vas-
cular endothelial growth factor (VEGF) for the recruitment of
additional vasculature, analogous to observations in solid tumors
(Kerbel, 2000). This process results in the vasculature developing
abnormally large vessel radial sizes and, unique to the brain, results
in a breakdown of the blood brain barrier in the tumor region.

FEATURES CHARACTERIZING MR IMAGING OBSERVATION
In the case of GBM, the enhancing abnormalities on all of the
primary MR imaging modalities, T1Gd, T2, and FLAIR primarily
result from a compromised blood brain barrier. The T1Gd image
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FIGURE 1 | Illustration of primary imaging modalities. The T1Gd image
will show enhancement where the contrast agent has been able to diffuse
into the extracellular space where the blood brain barrier has been
compromised due to tumor-induced neo-angiogenesis. The T2-weighted
and FLAIR images are associated with edema or swelling; FLAIR is
different from T2 in that the signal from the cerebral spinal fluid (CSF) is
removed. In the case of GBM, the non-CSF T2/FLAIR enhancement is
primarily vasogenic edema, defined as fluid originating from blood vessels
that accumulates around cells (Marmarou, 2007). The fluid leaves the
vessels due to pressure and osmotic gradients induced by the breakdown
in the blood brain barrier.

signal is enhanced where the contrast agent has been able to leak
into the extracellular space through breakdowns in the blood brain
barrier due to tumor-induced neo-angiogenesis. The T2-weighted
and FLAIR images show edema or swelling; FLAIR is different from
T2 in that the signal from the cerebral spinal fluid (CSF) is inverted.
In the case of GBM, the non-CSF T2/FLAIR hyperintense signal
is primarily vasogenic edema, defined as fluid originating from
blood vessels that accumulates around cells (Marmarou, 2007).
The fluid leaves the vessels due to pressure and osmotic gradients
induced by the breakdown in the blood brain barrier. Thus, whilst
changes in any primary imaging modality (T1Gd or T2/FLAIR)
are often interpreted as corresponding to changes in tumor cell
density, they may be artifacts of MR imaging.

THE ROLE OF ANTI-ANGIOGENICS IN GBM
The concept of anti-angiogenic treatment for cancer has been
popular ever since the landmark paper by Folkman (1971) stat-
ing that malignant tumors were angiogenesis-dependent and has
been used with some success for other solid tumors in combina-
tion with chemotherapy (Hurwitz et al., 2004; Sandler et al., 2006).
Since a defining hallmark of GBM is increased vasculature through
endothelial cell proliferation (Louis et al., 2007), this disease seems
like an obvious candidate for vascular targeting treatment. How-
ever, the differences between the vasculature in GBMs and other
solid tumors produce different treatment effects. In GBMs, one of
the effects of anti-angiogenic treatments is to, at least transiently,
repair the blood brain barrier and allow the vessels to return to
their normal radial size, increasing their efficiency (Jain, 2005;
Batchelor et al., 2007) – referred to as vascular normalization.
Ostensibly, this improved efficiency of the vasculature is not the
desired impact, though it may help in delivery of other therapeutic
agents.

More concerning, however, is that this normalization may
directly impact the efficacy of the MR imaging. It is possi-
ble for glioma patients with enhancing lesions on T1Gd and
T2/FLAIR imaging to have decreased enhancement within a day

of anti-angiogenic treatment (Batchelor et al., 2007; Norden et al.,
2008), as illustrated by patients 1 and 2 in Figure 2, but upon
stopping treatment, the imageable lesion is even larger and more
disperse than before (Iwamoto et al., 2009). However, responses
are varied; a patient may see no deflection in growth but faster
growth after treatment, such as the third patient in Figure 2, or
see stabilized disease returning to the previous growth patterns
after treatment, as illustrated by the fourth patient in Figure 2.
These patients were consented to this study with approval by the
local institutional review board at either the University of Wash-
ington or the University of California, Los Angeles, and their
relevant demographic and therapeutic information is given in
Table 1. These conundrums have led to two hypotheses: first,
anti-angiogenic treatment has minimal cytotoxic effect but does
influence the imaging so that the tumor cannot be effectively visu-
alized, and second, that the treatment may be selecting for a more
aggressively invasive phenotype (Verhoeff et al., 2009; Keunen
et al., 2011).

Previous studies have shown the use of anti-angiogenic drugs,
specifically bevacizumab (Avastin), tends to increase progression-
free survival and reduce symptoms of recurrent GBMs, but they
have failed to consistently show a significant increase in over-
all survival and there is concern that the measured radiographic
responses do not reflect changes in tumor cell counts (Verho-
eff et al., 2009; Deming, 2012). Additionally, animal studies have
revealed that treatment with anti-angiogenic drugs may be cre-
ating an environment favorable for local invasion and metastasis
(Ebos et al., 2009; Pàez-Ribes et al., 2009). Even though there is
a lack of significant evidence for increased overall survival after
bevacizumab, and it is possible that treatment selects for a more
invasive phenotype, the increase in quality of life for some of the
patients, due to the relief from edema-related symptoms, means
anti-angiogenic therapy is an attractive and relevant treatment
option. However, the inability to determine a priori which patients
will receive more benefit than harm from anti-angiogenic therapy
ultimately keeps clinicians wary (Deming, 2012).

In this paper, we aim to illustrate how a previous mathematical
model of glioma growth can be extended to explicitly incorporate
edema formation allowing us to directly characterize and poten-
tially predict the effects of anti-angiogenics on imageable tumor
growth. The ultimate goal of this model is to help the treatment
planning process by identifying exactly those patients that would
receive the most benefit from anti-angiogenic treatment.

MATERIALS AND METHODS
THE PROLIFERATION-INVASION-HYPOXIA-NECROSIS-ANGIOGENESIS-
EDEMA MODEL
Over the last decade we have made a significant effort toward
the development of patient specific mathematical models of GBM
that are able to capture the growth kinetics of individual patients
(Swanson, 1999; Swanson et al., 2000, 2002a,b; Harpold et al., 2007;
Rockne et al., 2010). The simplest form of the model, referred
to as the Proliferation-Invasion (PI) model is based on patient
specific net rates of proliferation and invasion and has been suc-
cessful in predicting untreated growth rates for individual patients
(Harpold et al., 2007) and providing predictions of outcomes fol-
lowing surgical resections (Swanson et al., 2003), chemotherapy
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FIGURE 2 | Four patients with varying imageable responses to
anti-angiogenic treatment. Treatment period indicated with gray box
on radius plots. (A) Patient 1: A 48-year-old male with Grade III glioma
is seen to have significant reduction of enhancing lesion during
treatment but recurs almost immediately after treatment is stopped,
(B) Patient 2: a 55-year-old male with GBM initially responds to

treatment but even while being treated the enhancing region is seen
to enlarge again, (C) Patient 3: a 61-year-old male with GBM seems to
have no response to treatment and the enhancing region seems to
grow faster after treatment, and (D) Patient 4: a 66-year-old female
with GBM has imaging stabilized during treatment, but enhancing
region begins growing again once treatment is stopped.

Table 1 | Demographic and treatment information corresponding to patients in Figure 2.

Age Sex Grade Race XRT dose

(cGy)

Concurrent

TMZ

Bev given at

recurrence

Concurrent

therapies with Bev

Patient 1 48 M III Caucasian Given, but unknown dosage Y Y Irinotecan, dexamethasone

Patient 2 55 M IV Caucasian 6000 Y Y Carboplatin

Patient 3 61 M IV Unknown 6000 Y Y Irinotecan

Patient 4 66 F IV Caucasian 6120 Y Y Irinotecan

(Swanson et al., 2002a,b, 2003), and radiation (Rockne et al., 2010),
while also providing insight into glioma ontogeny (Bohman et al.,
2010).

A MATHEMATICAL MODEL OF THE ANGIOGENIC CASCADE IN
GLIOBLASTOMA
The Proliferation-Invasion-Hypoxia-Necrosis-Angiogenesis
(PIHNA) model first discussed in Swanson et al. (2011) incorpo-
rates the angiogenic cascade and characterizes malignant gliomas
with relative proportions of well-oxygenated “normoxic” tumor

cells, (c), poorly oxygenated hypoxic tumor cells, (h), necrotic cells,
(n), and vascular, or endothelial cells, (v), along with a generic pop-
ulation of angiogenic factors, (a) (Swanson et al., 2011). In words,
it assumes the level of nutrients present in the local microenviron-
ment, as inferred from the number of vasculature cells, determines
whether the present tumor cells will exhibit normoxic or hypoxic
phenotypes. That is, if there is a sufficient level of nutrients present,
the cells will remain normoxic, but if the nutrient level falls below a
given threshold, the cells will become hypoxic. If the nutrients pro-
vided by the vasculature fall below an even lower threshold value,
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the hypoxic cells will undergo necrosis, at a rate of αh (1/year)
and remain in the necrotic cell population. Normoxic tumor cells
are allowed to move (invade) and divide while, due to restricted
amounts of nutrients, the hypoxic cells are only allowed to move.
The hypoxic cells produce a large amount of angiogenic factors
which ultimately cause an increase in the number of vasculature
cells. The system is described with a mathematical model com-
posed of the following five coupled reaction-diffusion equations:

∂c

∂t
=

Net dispersal of normoxic
glioma cells︷ ︸︸ ︷

∇ · (D (x) (1− T )∇c) +

Net proliferation of normoxic
glioma cells︷ ︸︸ ︷
ρ c (1− T )

+

Conversion of hypoxic
to normoxic︷ ︸︸ ︷

γ h V −

Conversion of normoxic
to hypoxic︷ ︸︸ ︷

β c (1− V )

−

Conversion of normoxic
to necrotic︷ ︸︸ ︷

αn n c

∂h

∂t
=

Dispersal of hypoxic
glioma cells︷ ︸︸ ︷

∇ · (D (x) (1− T )∇h)−

Conversion of hypoxic
to normoxic︷ ︸︸ ︷

γ h V

+

Conversion of normoxic
to hypoxic︷ ︸︸ ︷

β c (1− V ) −

Conversion of hypoxic
to necrotic︷ ︸︸ ︷

(αhh (1− T )+ αnnh)

∂n

∂t
=

Conversion of hypoxic, normoxic, and vasculature to necrotic︷ ︸︸ ︷
αhh (1− V )+ αnn (c + h + v)

∂v

∂t
=

Dispersal of
vasculature︷ ︸︸ ︷

∇ · (Dv (x) (1− T )∇v)+

Net proliferation
of vasculature︷ ︸︸ ︷

µ
a

Km + a
v (1− T )

−

Conversion of vasculature
to necrotic︷ ︸︸ ︷

αnn v

∂a

∂t
=

Net dispersal
of angiogenic factors︷ ︸︸ ︷
∇ · (Da∇a) +

Net production of
angiogenic factors︷ ︸︸ ︷

δc c + δhh

−

Net consumption of
angiogenic factors︷ ︸︸ ︷

qµ
a

Km + a
v (1− T )− ωav −

Decay of
angiogenic factors︷︸︸︷

λa .



(1)

In these equations, D(x) is the net rate of invasion (mm2/year).
Glioma cells migrate faster along myelinated axons in the white
matter than in the dense and less structured cortical gray matter.
For this reason, we consider the net rate of invasion as piecewise
constant, with non-zero values in the gray and white matter, Dg

and Dw, respectively, with Dw > Dg, and zero in the regions of
cerebral spinal fluid. Additionally, ρ (1/year) is the net prolifera-
tion rate of the normoxic cells, γ (1/year) and β (1/year) are the
maximum conversion rates between the hypoxic and normoxic
cell populations, αn (1/year) is the rate at which cells undergo
necrosis when in contact with necrotic cells (contact necrosis), αh

(1/year) is the rate of conversion of hypoxic cells to necrotic cells
when nutrient levels fall too low, Dv (mm2/year) is the rate of
dispersal of vasculature cells, estimated from Sherratt and Murray

(1990), Levine et al. (2001) µ (1/year) is the vasculature prolifera-
tion rate, estimated from Xiu et al. (2006), T = (c + h+ n+ v)/K
(dimensionless), where K is the carrying capacity (cells/mm3),
and V = v/(v + c + h) (dimensionless) and is a surrogate for the
local vasculature efficiency. Angiogenic factors are produced by
both normoxic and hypoxic cells with rates δc (1/year) and δh

(1/year) respectively, with δh > δc and are consumed by the vas-
culature for both regular vasculature maintenance [with rate ω

(1/year)] and for vasculature proliferation [with rate q (1/year)].
Finally, the angiogenic factors are assumed to decay over time with
rate λ (1/year) and disperse with rate Dv (mm2/year). Values for
parameters related to the angiogenic factors were derived in part
from work done in Levine et al. (2001), Serini et al. (2003), Mac
Gabhann and Popel (2004). The reader is referred to (Swanson
et al., 2011) for further details.

It is known that GBM tumors are extremely genetically het-
erogeneous both within a single tumor and between different
tumors (Dunn et al., 2012). A large effort has been put forth to
identify subtypes of GBMs by their dominating genotype (Ver-
haak et al., 2010). While the model parameters do not directly
try to capture effects of single mutations, it is our belief that
the dominating genotypes characterizing subtypes of GBMs ulti-
mately result in different net rates of proliferation and invasion
which would be used in our model. For example, pro-neural
tumors are more likely to have the IDH-1 mutation and be sec-
ondary GBMs. In our model, this would manifest as a low-D,
low-ρ tumor which begins as low grade and progresses into higher
grade/malignancy.

In this model, there are different cell populations, normoxic,
hypoxic, and necrotic competing for space and each with differing
phenotypes: normoxic cells proliferating and invading, hypoxic
cells only invading, and necrotic cells which are dead and just
taking up space. Since each cell population is evolving in space
and time, there is an effective spatial heterogeneity of predicted
proliferative activity across space and time which could be analo-
gized to heterogeneous Ki67 labeling across glioma specimens.
Thus, while this model is attempting to capture the overarching
phenotype of different tumors and assumes global constants for
individual tumors, spatial heterogeneity in behavior is possible due
to regional levels of vasculature which may result in hypoxia and/or
necrosis. We also remark the aim of this model is not to predict cell-
level behaviors (ex. Ki67), rather, use information obtained from
routine imaging to quantify and explain imaging scale behavior
and evolution.

The PIHNA model only captures cellular species and angio-
genic factors. While these all have an impact on what is ulti-
mately seen on MR imaging, in and of themselves they are
not sufficient to describe enhancing regions of T2 and T1Gd
MR images. Here we extend the PIHNA model to capture the
imaging responses post anti-angiogenic treatment. To achieve
this, we add to the model one additional element: edema, (l),
to create the merged proliferation-invasion-hypoxia-necrosis-
angiogenesis-edema (PIHNA-E) model. A schematic of the six
species interactions is shown in Figure 3.

A MATHEMATICAL MODEL FOR TUMOR-INDUCED EDEMA FORMATION
Generically, edema refers to a swelling phenomenon. While there
are different types of cerebral edema, in the case of GBM, it is
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FIGURE 3 | Schematic of the PIHNA-E model. The main components of
the model are seen in the flow chart: c represents the normoxic glioma
cells, h the hypoxic gliomas cells, v the vascular endothelial cells, n the
necrotic cells, a, the angiogenic factors, and l the edematous fluid.
Depending on the level of oxygen, normoxic, and hypoxic cells will
undergo phenotypic switching. If oxygen levels fall too far and are not
compensated for by sufficient angiogenesis, the hypoxic cells will undergo
necrosis. Additionally, all cells will undergo necrosis if in contact with

necrotic cells. Both hypoxic and normoxic cells release angiogenic factors
into the extracellular space which recruit additional vasculature to increase
the levels of oxygen. The angiogenic factors are removed from the system
by interaction with vascular cells or natural decay. The local levels of
angiogenic factors are indicative of the local degree of vessel permeability.
Edematous liquid exits the vasculature where the permeability, K trans(a),
allows and enters the extracellular space where it diffuses and will be
removed at rate dl.

almost exclusively vasogenic edema which results from fluid and
protein leakage from the breakdown of the blood brain barrier
(Marmarou, 2007). Over the last few decades, there have been
quite a few attempts to model vasogenic edema (Rapoport, 1978;
Kumagai, 1986; Nagashima et al., 1990) and its associated intersti-
tial pressure and interstitial fluid velocity (Baxter and Jain, 1989,
1990). These models were primarily based on Starling’s equation
which describes fluid exchange between compartments due to
pressure and osmotic gradients. These models are very detailed
and are generally solved on shorter time scales, i.e., a few days ver-
sus months. In our efforts, while we do have interest in the specific
mechanisms, we will take a coarser grained approach allowing us
to approximate the phenomena over longer time scales relevant to
tumor growth kinetics.

To begin, we make the simplifying assumption that the edema
is only composed of fluid which has leaked into the extra-cellular
space and has not yet been reabsorbed into the system. This fluid is
assumed to leak into the extracellular space where the blood brain
barrier has been compromised. From the PIHNA model, we can
approximate these regions along with the degree of permeability
from the local levels of present angiogenic factors. Once the fluid is
in the extra-cellular space it moves via diffusion and is reabsorbed
into the system at a constant rate. This process is written in the

form of a partial differential equation as:

Change in time of fluid︷︸︸︷
∂ l

∂t
=

Fluid diffusion︷ ︸︸ ︷
∇ · (Dl∇l) +

Leakage︷ ︸︸ ︷
Ktrans (a) · (lv − l)−

Drainage︷︸︸︷
δl l .

(2)
Here l is the concentration of edematous fluid, Dl (mm2/year)

is the diffusion rate of the edematous liquid which would be anal-
ogous to an Apparent Diffusion Coefficient, ADC, value derived
from diffusion-weighted MRI (Moritani, 2009), lv (fluid/mm3)
is the normal level of fluid in the vasculature, δl (1/year) is the
reabsorption rate, and K trans (1/year) is the transmission rate
[analogous to the value K trans measured on dynamic contrast
enhanced MRI (DCE-MRI)], capturing the permeability sur-
face area product per unit volume of tissue (Tofts, 1991) and is
assumed to depend on the level of angiogenic factors, a, present.
Homogeneous Neumann boundary conditions are assumed at the
boundary of the brain to ensure no fluid leaves the brain.

The dependence of the K trans coefficient on the angiogenic
factors is assumed to take a Michaelis–Menten type I form:

Ktrans (a) = Kmax
a

a + Khalf
(3)
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to reflect that VEGF (also known as vascular permeability factor,
VPF) strongly influences vascular permeability (Bates, 2010). Here
K max (1/year) is the maximum possible value of K trans, the value
of which is calibrated to Grade IV gliomas (Patankar et al., 2005),
and K half (angiogenic factors/mm3) is the concentration of a at
which K trans reaches half of its maximum value. Thus, as the con-
centration of the angiogenic factors increases, the degree of vessel
permeability will also increase until saturated.

MODELING ANTI-ANGIOGENIC TREATMENT
The PIHNA-E model describes the evolution of the tumor and its
microenvironment in an untreated context. By understanding the
premise of how specific therapies are meant to alter the system,
one can also model the effects of various treatments. Here we are
interested in anti-angiogenic treatment and, while there are many
different types of drugs for this action, will focus on the drug
bevacizumab.

Bevacizumab is a drug specifically targeted at the molecule
vascular endothelial growth factor A (VEGF A). This particular
angiogenic factor stimulates the growth of new vessels by binding
with the vascular endothelial growth factor receptor (VEGFR2) on
endothelial cells. Bevacizumab inhibits angiogenesis by binding to
the free molecules of VEGF A and preventing them from binding to
VEGFR2. An unintended consequence of this drug,however, is that
beyond preventing the growth of new vessels, it also “normalizes”
pre-existing vasculature (Jain, 2005; Verhoeff et al., 2009). That
is, once the levels of stimulating angiogenic factors are reduced,
the vessels are able to repair their leakiness and return to a nor-
mal size – making them more efficient nutrient deliverers. In our
model, both of these phenomena can be captured by requiring
higher levels of angiogenic factor to be present to have the same
level of “action” in the contexts of both vessel proliferation and
vessel permeability. Additionally, since the treatment is making
the vessels more efficient, the level of vasculature needed for a cell
to be normoxic will decrease, which we can capture by modify-
ing the cell conversion rates from hypoxic to normoxic and from
normoxic to hypoxic. Treatment is approximated by decreasing
the parameter for conversion from normoxic to hypoxic (β) by a
factor of 10, increasing the parameter for conversion from hypoxic
and normoxic (γ) by a factor of 10, and increasing the required
levels of angiogenic factors for inducing vascular growth and ves-
sel permeability by 2 as supported by the studies in Desjardins
et al. (2007), Zhang et al. (2009). The treatment modification of
β and γ is representative of a dramatic increase in the efficiency
of the blood vessels, though exact changes are not available from
experimental data.

SIMULATIONS OF GLIOBLASTOMA GROWTH AND RESPONSE TO
ANTI-ANGIOGENIC THERAPY
For simplicity, we consider in all simulations here a two-
dimensional tumor growing on one axial slice of the brain, with
the brain geometry defined from the BrainWeb atlas (Cocosco
et al., 1997). The brain is primarily composed of three different
types of matter, CSF, gray matter, and white matter. Glioblastomas
originate in gray or white matter and due to physical barriers will
not enter into the regions of CSF. New mass will often deform
the barriers, a phenomena called mass effect, and while there
are some models that attempt to capture this (Clatz et al., 2005;

Mohamed and Davatzikos, 2005; Hogea et al., 2008), here the brain
is considered a stationary domain.

In all simulations, the domain is taken to be a slice of human
brain embedded in a grid [0, 147] mm× [0, 185] mm and the
equations are spatially discretized on a grid with resolution of
1 mm× 1 mm using first order accurate finite volumes. Time
integration is done with an operator splitter technique utilizing
backward Euler for the diffusion terms and the TR-BDF2 algo-
rithm (Leveque, 2005) for the reaction terms with a time step size
of 1 day. The simulations were initiated with a small amount of
normoxic cells distributed as

c0
(
x , y , t = 0

)
= 1000∗exp

(
−

(
100

[
(x − x0)

2
+
(
y − y0

)2
]))

where (x0, y0)= (103, 83). Vasculature is set at 3% of the cell car-
rying capacity in all gray and white matter based on estimates from
Blinkov and Glezer (1968), and all other quantities in the PIHNA-
E model are initiated to zero. Unless otherwise stated, parameter
values used in simulations for the edema equation are in Table 2,
the additional parameter values are taken as specified in Swanson
et al. (2011).

RESULTS
DECOUPLING IMAGING CHANGES FROM TUMOR RESPONSE
To highlight the real impact of anti-angiogenic treatment as
captured by our model, we chose parameter values that rep-
resent a patient with an aggressive GBM (net invasion rates
Dw= 53 mm2/year and Dg= 0.53 mm2/year and net proliferation
rate ρ= 75 1/year) and simulate tumor growth without treatment
(Figure 4) and then compare to tumor growth with treatment
(Figure 5). For comparison to what was done in previous work
(Swanson et al., 2008a, 2011; Rockne et al., 2010), we refer to the
region with total cell density summing to 80% of the cell carry-
ing capacity (K ) to correspond to what would enhance on the
T1Gd, and started treatment when the T1Gd spherically sym-
metric equivalent radius was equal to 1 cm and was terminated
100 days later. This is consistent with a typical size of an abnormal-
ity seen clinically for consideration of anti-angiogenic treatment.
Although treatment length can vary, 100 days is representative of
the length of a typical course of treatment with anti-angiogenics
in human GBM.

Snapshots of the untreated case are shown in Figure 4 with
the analogous snapshots corresponding to the same time points
of the treated tumor being shown in Figure 5. The top row in
both Figures 4 and 5 shows the density of the bulk tumor (the
summed density of all the cell populations: normoxic, hypoxic,
necrotic, and vasculature). The second row shows what the sim-
ulated FLAIR corresponding to the microenvironmental levels of
edematous extracellular fluid. These figures also contain radial
growth plots showing the equivalent spherical radii for the regions
of interest corresponding to the tumor and the edema. The line
representing the bulk tumor is calculated from the volume of tis-
sue containing abnormal cells, normoxic, hypoxic, and necrotic,
at levels greater than or equal to 16% of the carrying capacity,
i.e., a density five times lower than what can be visualized on
T1Gd (Swanson et al., 2008b). The edema radius was defined by
considering the volume containing edematous fluid above 50%
of the fluid level in the capillaries. There is no literature to guide
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Table 2 | Parameter values for the edema equation used in all simulations unless stated otherwise in the text.

Parameter Definition Value Reference

K half Michaelis–Menten half-max of response of

ECs to angiogenic factors

5.75e−7 (mmol/cc tissue) Derived from Mac Gabhann and Popel (2004)

Dl Net rate of edematous fluid diffusion 0.77e−3 (mm2/s) Chosen as average ADC value in normal brain

tissue as given in Moritani (2009)

K max Maximum K trans value in response to

angiogenic factors

36 (1/day) Taken to match the maximum K trans value observed

in Grade IV gliomas in Patankar et al. (2005)

δI Edematous fluid reabsorption rate 0.3×K max (1/day) Assumed proportional to vessel permeability

All other parameter values are taken as described in Swanson et al. (2011).

FIGURE 4 | Illustrated here is the comparison of the simulated
disease burden to what would be imageable on a FLAIR MRI
in an untreated context for one set of growth parameters
corresponding to an aggressive GBM. Below the plot shows the

spherically symmetric equivalent radial growth of the regions
containing tumor cells above a threshold and edematous fluid
above a threshold. In the untreated context, these lines are nearly
identical.
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FIGURE 5 | Comparison of the simulated disease burden to what would
be imageable on a FLAIR MRI in a treated context for the same set of
growth parameters as shown in Figure 4. Below the plot shows the
spherically symmetric equivalent radial growth of the regions containing

tumor cells above a threshold and edematous fluid above a threshold. Once
treatment has begun, we see a drop in the levels of edema. Upon termination
of the treatment, the edematous volume is seen to once again increase to
the same size of the volume of tumorous cells.

the choice of the cutoffs for fluid volume constituting T2/FL visi-
ble edema. Thus, cutoffs were chosen to roughly match clinically
observed behavior.

In the untreated case (Figure 4) the radial plot shows the size
of the region impacted by edema evolves very similarly to the size
of the region occupied by the bulk tumor throughout the entire
course of growth. In the treated case (Figure 5), the edema grows at
the same rate as the bulk tumor until the treatment begins at which
point the edema begins to decline. Edema begins to increase again
once the angiogenic factors have been able to accumulate at lev-
els which overcome the impact of the anti-angiogenic drug. Once
treatment is terminated the edema levels rise to again occupy a
region of the same size as the bulk tumor.

These simulations support the hypothesis that anti-angiogenic
treatment may not have a significant effect on the growth dynam-
ics of the overall cell populations, while having a large impact on
the level of edematous extracellular fluid and thus on what would
be imageable on T2/FLAIR MRI. This is also in agreement with
the current understanding that anti-angiogenic treatment serves
as a surrogate to steroids for reducing swelling.

EXPLORING RESPONSE ACROSS TUMOR KINETICS
The virtual control experiment illustrated in Figures 4 and 5 is only
providing insight into tumor/edema response for the case of one
set of tumor growth kinetics. However, the range of radiographic
response patterns seen clinically is broad, a few examples of which
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are shown in Figure 2. Previous work has shown patient specific
values of net proliferation and invasion range over many orders
of magnitude (Tracqui et al., 1995; Harpold et al., 2007). To inves-
tigate if the different types and extents of radiographic responses
could be explained by different underlying tumor growth kinetics,
we simulated tumor growth and the associated edema under treat-
ment for many different combinations of net proliferation rates,
ρ, and net invasion rates, Dw and Dg.

For all cases, treatment was started when the tumor reached a
simulated 1 cm T1Gd radius for a total of 100 continuous days.
Treatment was implemented in the same manner as the first
case. Illustrative results are shown in Figure 6 from simulations
with ρ= [5, 75, 125] (1/year) and Dw= [5.3, 53] (mm2/year) and
Dg=Dw/10 consistent with the observed range hypothesized in
human gliomas (Harpold et al., 2007) and since observed (Wang
et al., 2009; Rockne et al., 2010).

From these six scenarios, summarized in Figure 6, we were able
to observe a few trends. First, none of the simulations showed a sig-
nificant change in the bulk tumor growth rate after treatment had
begun. However, levels of edema were impacted and by different
degrees in each of the simulations. In general, tumors with higher
proliferative capacities (higher ρ’s), due to their higher metabolic
needs, have larger regions of hypoxia and thus produce greater
levels of angiogenic factors. Treatment of these tumors initially
reduces the level of edema, however, the tumor quickly produces
enough angiogenic factors to continue progressing under imaging.
In contrast, the slower growing tumors (low ρ) produce low levels
of angiogenic factors and treatment may result in a complete dis-
appearance of the abnormality on imaging. Additionally, higher
dispersion rates (high Dw and Dg) reduce the local metabolic needs
and the production of angiogenic factors. Thus, the imaging of
tumors with high Dw and high Dg improve for a longer time,
however, ultimately the tumor does still produce enough angio-
genic factors to be seen progressing on imaging. For all cases, once
treatment is discontinued, the edema levels quickly rise to again
reflect the underlying tumor burden.

What is particularly encouraging is that many of the different
behaviors observed for the four patients illustrated in Figure 2 can
be connected to different simulation predictions. For example, the
first patient’s behavior is analogous to the moderate proliferation
rate with a low invasion rate in that the imageable lesion initially
decreased, stabilized, but after treatment dramatically increased.
Additionally, the second patient can be compared to either the
moderate or highly proliferative rate with a high invasion rate
where the hyperintensity is seen to decrease at the beginning of
treatment, but even while treatment is continuing, start growing
again.

DISCUSSION
Anti-angiogenics remain a controversial form of treatment for
GBM due to the difficulty in assessing tumor response using MR
imaging. The resulting reduction in swelling and related symp-
toms for a subset of patients keeps it an attractive option despite
the lack of evidence of an increase in overall survival and the pos-
sibility of the treatment selecting for a more aggressive phenotype
(Ebos et al., 2009; Pàez-Ribes et al., 2009; Verhoeff et al., 2009;
Keunen et al., 2011). It is unclear how anti-angiogenic treatment

FIGURE 6 | Using the PIHNA-E model, holding all parameters constant
except for D and ρ, one can observe many different responses to
anti-angiogenic treatment in terms of the levels of edema. These
responses vary from complete disappearance of imageable edema to
stabilized lower levels to lowered levels of edema that continue to increase.
When treatment is terminated, however, edema levels are always seen rise
to once again reflect more closely the underlying disease burden.
Treatment times are indicated by the gray boxes. These simulations suggest
that the majority of imaging responses can be explained by considering
how the drug impacts the tumor microenvironment alone without cytotoxic
affects. Additionally, they represent a possible mechanism for identifying
the patients who will receive significant benefit from the treatment.

impacts the cell phenotypes present and there is not yet a deep
enough understanding or a unifying theory to provide explanation
for all the different response patterns. Thus, a priori identifica-
tion of patients who will receive a significant symptom-reduction
benefit remains difficult. As there are other side effects and con-
sequences from anti-angiogenic therapy, being able to make this
early distinction would help remove the controversial nature of
this therapy.

The model developed in this work, built on the PIHNA model
for glioma proliferation and invasion (Swanson et al., 2011; Gu
et al., 2012), is meant to illustrate a first step toward the creation
of a tool for identifying patients who will receive the greatest ben-
efit from anti-angiogenic treatment. It captures the formation of
edema caused by leaky vasculature, and is thus able to decouple
what would be seen on the T2/FLAIR MRI from the true underly-
ing disease burden. In effect, this would help the clinicians to “turn
the light back on” by being able to infer the disease burden that lies
beyond what is captured by imaging alone. While this model is not
meant to capture individual cell behavior, it does provide a map
between overall tumor growth kinetics and treatment response on
the imaging/continuum scale.

Many simplifying assumptions have been made in the cre-
ation of this model such as ignoring the possible direct impact of
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anti-angiogenic therapy on cell proliferation, the likely presence
of thrombosis (Tehrani et al., 2008), and that the hyperinten-
sity on the T2/FLAIR image is entirely a result of fluid leaking
from the vasculature. The model is clearly incomplete, and future
modifications of the model will need to consider these other
phenomena as well as other possible factors on T2/FLAIR hyper-
intensity, such as higher cell density and additional cytoplasm.
However, even in its current state, it has been able to exhibit many
of the types of response patterns observed clinically. It is par-
ticularly encouraging because the modeling effects of treatment
were held constant and only varying the net dispersal and net
proliferation rates, D and ρ, respectively, was sufficient to pro-
duce a wide range of imaging responses analogous to what is
seen clinically. That is, by modeling the treatment in the exact
same way for different values of proliferation and diffusion in
the tumor growth model, the visible levels of edema are seen
to respond in different ways. In general, the simulations predict
edema (swelling) to decrease, supporting the role of these drugs
as surrogates for steroids for reduction of symptoms, analogous
to the most current understanding (Deming, 2012). Though, the
model clearly illustrates that not all patients would receive the
same benefit.

Another interesting implication from these simulations is that
while different imaging responses to treatment were achieved for
the same treatment conditions, in all cases the bulk tumor is seen to
progress with little deflection in overall tumor growth rates. This
result could be considered evidence against the cytotoxic effects
of anti-angiogenic treatment when administered exclusively, also
in agreement with current clinical understanding (Verhoeff et al.,
2009). While this work is not directly speaking to survival out-
comes, we remark that these results highlight the potential for
the mathematical model paradigm to serve in evaluating clinical
trial outcomes by analyzing relative benefit from anti-angiogenics,

especially in the case of low-N trials. As a particular example, such
models may have the potential to be applied to patient cohorts for
exploring how differential effects of anti-angiogenics on imaging
may or may not relate to overall outcomes.

A drawback of this model is the large number of parameters
required. In this document, we assumed the primary influential
factor were the net rates of invasion and proliferation and thus
held all other parameters constant. These other parameters are
likely different patient to patient, however, as demonstrated here,
changes in the small number of parameters are sufficient to pro-
duce a wide variety of imaging responses. While future sensitivity
analysis is required, we believe the work is here is evidence that
a complicated explanation for the different imaging responses to
anti-angiogenic therapy may not be needed. Major next steps of
this work will involve developing techniques for obtaining patient
specific growth parameters from pre-treatment images which we
believe will be successful from previous accomplishments with a
simpler model capturing just the proliferation and invasion tumor
characteristics PI (Swanson, 1999, 2002; Swanson et al., 2000, 2003,
2004, 2008a; Szeto et al., 2009; Wang et al., 2009; Rockne et al.,
2010).

Also, modification of the model to capture the pressure induced
from the vasogenic edema and possible herniation would allow for
deeper understanding of the steroid-like reduction in swelling. For
each new feature eventually added validation tests will be required,
however, we believe the results presented here in and of them-
selves represent a significant step in overcoming clinical imaging
restrictions with mathematical models.
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