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Editorial on the Research Topic

Advancing Our Understanding of Structure and Function in the Brain: Developing Novel
Approaches for Network Inference and Emergent Phenomena

Complex systems are ubiquitous in nature and are the subject of intense research in the last decades
[1]. A complex system is composed of a large number of non-trivially interacting components whose
collective behavior cannot be determined from the behavior of the components [2]. Many real-world
systems can be modeled as complex, such as stock markets, the Internet and the brain [3].

In the brain, a massive number of microscopic components (neurons or cortical areas) interact in
nonlinear ways, where important information resides in the relationships among them and not
necessarily within their individual dynamics. Hence, studying the dynamics of these components
without knowing how they are interconnected does not allow for the understanding of the behavior
of the brain as a whole. Furthermore, connectivity is often unknown and difficult to infer due to large
system-sizes and multiple time and spatial scales. This poses significant challenges and open
questions.

The work in this Research Topic advances our understanding on complex systems at large and on
the inner workings of the brain. The reader will find novel analytical and computational results on
these fields as well as the mathematical-models pertaining to complex systems and network
neuroscience.

In the first paper by Lassa Ortiz et al., the open problem of the nervous system representation of a
motor program is addressed. In birdsong production, it has been proposed that some special
temporal instances are preferentially represented in the cortex. The authors computed these
temporal instances for two species and reported which of them is better suited to test the
proposed coding and alternative models, against data.

The mechanisms underlying effective propagation of high intensity information over a
background of irregular firing and response latency in cognitive processes remain unclear. To
address this open problem, the author in He proposes a synchronous spiking cortical column
propagation integration circuit (SSCCPI). Using numerical simulations, it was demonstrated that
SSCCPI circuits provide a possible mechanism of effective signal propagation in cortical networks.
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Interactions between different temporal scales of the
information flow in complex networks were studied in
Sotero et al. and were found to be stronger in scale-free than
in Erdős-Rényi networks. It was also found that phase-
amplitude coupling decreased in subjects with Alzheimer’s
disease compared to healthy controls. These results suggest a
link between cognitive impairment and multi-scale
information flow in the brain.

Imagined activities can be a cognitive basis for creative
thinking. However, it is still unknown how they are related to
the architecture of the brain. The authors in Baravalle et al. used
an information theoretical approach accounting for the time
causality of the signal and the closeness centrality of different
nodes. They discovered the pertinence of the alpha band while
performing and distinguishing specific imaginary or visuomotor
assignments.

Excitatory neurons in the visual cortex are significant in
understanding brain functions. However, some neuron types
and their morphological properties have not been fully
deciphered. The authors in Zhang et al. applied the brain-wide
positioning system to image the entire brain of two Thy1-eYFP
H-line male mice. Their results demonstrate a paradigm for
resolving the visual cortex through single-neuron-level
quantification and show potential to be extended to reveal the
connectome of other sensory and motor systems.

Excessively high neural synchronization has been associated
with epileptic seizures, one of the most common brain diseases
worldwide. In Protachevicz et al., the authors studied neural
synchronization in a random network where the dynamics on the
nodes are given by adaptive exponential integrate-and-fire
neurons with excitatory and inhibitory synapses. Their results
demonstrate that external electrical stimulation not only can
trigger synchronous behavior, but more importantly, can be
used to reduce abnormal synchronization and thus, control
epileptic seizures.

Time-keeping in the medial premotor cortex is governed by
four kinds of ramp cell populations. In Wei et al., a spiking
neuron model is presented and used to construct a complete
circuit for temporal processing. The authors showed that it can
reflect many of the physiological neural circuits in the brain and
explain some of the phenomena in the temporal-perception
process.

Connectivity and biophysical processes determine the
functionality of neural networks. The authors in Kim et al.
developed a real-time framework, called Neural Interactome,
to visualize simultaneously and interact with the structure and
dynamics of neural networks. They examined scenarios studied
experimentally, such as touch response circuits and explored new
scenarios that did not undergo elaborate experimental studies.

Recurrent neural networks can produce sustained state-to-
state transitions without any driving inputs, where their
dynamical properties are determined by neural connection
strengths. In Krauss et al., the authors used multi-dimensional
scaling to study similarity relations among topologically distinct
motifs. Strikingly, they reported that the key parameter that
controls motif dynamics is the ratio of excitatory to inhibitory
connections.

Finally, a new computational framework that implements
asynchronous neural dynamics was used in Bronzon to
address the duality between synchronous vs asynchronous
processes and their relation to conscious vs unconscious
behaviors. The new framework proposes a tool to study the
emergence of brain structures that might be associated with
higher level cognitive capabilities.
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Recurrent neural networks can produce ongoing state-to-state transitions without any

driving inputs, and the dynamical properties of these transitions are determined by the

neuronal connection strengths. Due to non-linearity, it is not clear how strongly the

system dynamics is affected by discrete local changes in the connection structure,

such as the removal, addition, or sign-switching of individual connections. Moreover,

there are no suitable metrics to quantify structural and dynamical differences between

two given networks with arbitrarily indexed neurons. In this work, we present such

permutation-invariant metrics and apply them to motifs of three binary neurons with

discrete ternary connection strengths, an important class of building blocks in biological

networks. Using multidimensional scaling, we then study the similarity relations between

all 3,411 topologically distinct motifs with regard to structure and dynamics, revealing a

strong clustering and various symmetries. As expected, the structural and dynamical

distance between pairs of motifs show a significant positive correlation. Strikingly,

however, the key parameter controlling motif dynamics turns out to be the ratio of

excitatory to inhibitory connections.

Keywords: three-node network motifs, neural networks, Boltzmann neurons, structure, dynamics

INTRODUCTION

Recently, a number of projects seek to map the human connectome, aiming to connect its structure
to function and behavior (Markram, 2012; Van Essen et al., 2013; Glasser et al., 2016). However,
even if the connectome would be known completely, it remains an unresolved problem how
to translate this detailed structural data into meaningful information processing functions and
algorithms (Jonas and Kording, 2017). For instance, the connectome of C. elegans has been known
for decades, and involves only 302 neurons. Nevertheless, even this relatively small system is not
yet understood in terms of its dynamics, let alone at a functional level (Hobert, 2003; Gray et al.,
2005).

Moreover, the problem is complicated by the fact that very similar dynamics of a neural network
at a macroscopic level might be realized by very different structures at the microscopic level
(Newman, 2003). Therefore, an important step toward extracting function from structure is a tool
to quantitatively compare different structures and dynamics.

In a neural network, all relevant structural information is encoded in a weight matrix, containing
the mutual connection strength of all neurons (Hertz et al., 1991; LeCun et al., 2015; Schmidhuber,
2015; Goodfellow et al., 2016). Quantifying the similarity of two weight matrices by standard
measures, such as the sum of squared differences between corresponding matrix elements, is

6
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however not sufficient because of possible permutations
of the neuron indices. Similarly, the dynamical properties
of a neural network are encoded in a matrix of transition
probabilities between all possible network states. As mentioned
before, comparing the sum of squared differences between
corresponding matrix elements fails in case of neuron
permutations.

To solve this problem, we develop permutation-invariant
metrics for the structural distance dstr(A,B) and for the
dynamical distance ddyn(A,B) of two given networks A and B. By
construction, these distance-measures yield dstr(A,B) = 0 and
ddyn(A,B) = 0 whenever B is topologically identical to A, even
though the corresponding weight and transition matrices of A
and Bmay differ due to inconsistent neuron indices.

We apply these distance metrics to so-called motifs, a class
of small recurrent networks which have been shown to be
fundamental building blocks of various complex networks (Milo
et al., 2002), such as gene regulatory networks (Shen-Orr et al.,
2002; Alon, 2007), the world wide web (Milo et al., 2002), and the
human brain (Song et al., 2005).

We exhaustively compute the structural and dynamical
distances between all possible pairs of the 3,411 different
classes of three-neuron motifs with ternary connection strengths,
resulting in two distance matrices with 3,411 × 3,411 entries
each. Based on these matrices, we use classical multidimensional
scaling (Kruskal, 1964a,b; Cox and Cox, 2000; Borg et al.,
2017; Krauss et al., 2018) to visualize the structural and
dynamical similarity relations between different motifs on a
two-dimensional plane.

Remarkably, it turns out that the distribution of motifs, both
in structural and dynamical “space,” is not uniform, but strongly
clustered and highly symmetrical. Moreover, the position of a
motif within structural and dynamical space correlates with the
ratio of excitatory and inhibitory connections (balance) in the
motif ’s connection matrix.

METHODS

Three-Neuron Motifs
Our study is based on Boltzmann neurons (Hinton and
Sejnowski, 1983) without bias. The total input zi(t) of neuron i
at time t is calculated as:

zi(t) =
N

∑

j=1

wij yj(t − 1) (1)

where yj(t − 1) is the binary state of neuron j at time t − 1 and
wij is the corresponding weight from neuron j to neuron i. The
probability pi(t) of neuron i to be in state yi(t) = 1 is given by:

pi(t) = σ (zi(t)), (2)

where σ (x) is the logistic function

σ (x) =
1

1 + e−x
. (3)

We investigate the set of all possible network motifs that can
be built from 3 Boltzmann neurons with ternary connections
wij ∈ {−1, 0,+1}, where self connections wii are permitted
(Figure 1A). In principle there are 39 = 19, 683 possible ternary
3×3 weightmatrices. However, due to permutation of the neuron
indices, not every matrix corresponds to a unique motif class.

We have exhaustively listed all possible ternary weight
matrices in a set. We then partitioned this set into equivalence
classes, defining two matrices as equivalent if they can be made
element-wise identical by a suitable permutation of neuron
indices. By this way, we found that there are exactly 3,411 distinct
motif classes. For later convenience we label all motif classes with
unique indices, which are derived from the corresponding weight
matrices.

State Transition Matrices of Motifs
Since every neuron can be in one of two binary states, a 3-
node motif can be in 23 = 8 possible motif states. Given the
momentary motif state and the weight matrix, the probabilities
for all eight successive motif states can be computed, thus
defining the 8 × 8 state transition matrix of a Markov process
(Figure 1B). All information theoretical properties of 3-neuron
motifs, such as entropy or mutual information of successive
states, are determined by the state transitionmatrix.We therefore
calculate the transition matrices for each of the 3,411 motif
classes.

Motif Classes
A motif class A is defined as the set {A(m)

:m = 1 . . . 6} of
weight matrices, which are all related to each other by index

permutations, such as ai,j → a
(m)
i,j = aπm(i),πm(j), where πm is

the m-th permutation (Figure 2).

FIGURE 1 | Motifs of three coupled Boltzmann neurons. Each motif is

characterized by a 3× 3 weight matrix W (A), defining the connection strength

between the neurons. There are 23 = 8 possible states Y = 0 . . .7 for each

motif. The transition probabilities between these states are summarized in a

8× 8 state transition matrix (B).
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Unique Labels of Motif Classes

The nine entries of the weight matrix W =





a b c
d e f
g h i



 of

one motif class are treated as a vector w = (abcdefghi). The
components of this vector are then treated as the digits of a
number in the ternary system:

a·38+b·37+c·36+d ·35+e·34+f ·33+g ·32+h·31+i·30. (4)

It can be simplified to

name =

8
∑

i=0

w[i] · 38−i. (5)

Here, w[0] equals the first entry of the vector w and the value
of the sum is the name of the motif. Due to the possible entries
w[i] ∈ {−1, 0, 1} the motif names range between “−9,841” and
“9,841,” starting with the motif with just “−1” as entries and
finishing in the motif with just “1” as entries. Of course not every
number in this range is assigned a motif class as there are in
total only 3411 motif classes. This version of the formula is used
because the motif class with just zeros as entries gets the name “0”
and the names are approximately symmetrical around that motif
class. Furthermore, in order to make the system more balanced,
each motif class is represented by the weight matrix with the
smallest absolute value of name among all of its permutations
(Figure 2).

Structural Distance Between Motif Classes
The dynamical distance is calculated as follows (Figure 3): Given
are two motif classes A,B. For each class we derive all six
permuted weight matrices A(m) and B(n). For each of the 36

FIGURE 2 | Unique labeling of motif classes. Possible entries in the 3× 3

weight matrix of a motif are −1 (blue), 0 (white), and +1 (red). Shown are all

possible permutations of topologically equivalent motifs for two arbitrary

chosen cases (A,B). Each motif class is assigned a unique label (green

numbers), as described in the Methods section.

pairs of weight matrices A(m) and B(n), we compute a generalized

Hamming distance ĥ, defined as the number of different ternary
matrix elements:

ĥ(A(m),B(n)) =
∑

i,j

(1− δ
a
(m)
i,j ,b(n)i,j

), (6)

where δx,y is the Kronecker symbol. The structural distance dstr
between motif classes matrices A,B is defined as the smallest of
the above 36 Hamming distances

dstr(A,B) = minm,n

(

ĥ(A(m),B(n))
)

(7)

Dynamical Distance Between Motif
Classes
The dynamical distance is calculated as follows (Figure 4): For
each motif classes A, we compute general features F(A), which
can be scalars, vectors or matrices. In the case of matrix-like
features F and G (e.g., state transition probability matrices), the
Euclidean distance is defined as

d(F,G) =
√

∑

i,j

(fi,j − gi,j)2 (8)

To compute the dynamical distance ddyn(A,B) between two
motif classes A and B, we derive all 36 pairs of features

FIGURE 3 | Structural distance between motif classes. Rows and columns

show the six possible permutations of two given motif classes. For each of the

36 combinations, the generalized Hamming distance ĥ (green numbers) is

computed. Black and white matrices indicate the Hamming distances

between corresponding matrix elements. As described in the Methods

section, the structural distance is defined as the minimum of all 36 generalized

Hamming distances (green numbers with yellow background).
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(e.g., the state transition matrix) from permuted weight

matrices
(

F(A(m)), F(B(n))
)

and calculate the Euclidean distance

d
(

F(A(m)), F(B(n))
)

of each pair. The dynamical distance ddyn

between motif classes A,B is defined as the smallest of the 36
Euclidean distances

ddyn(A,B) = minm,n

(

d( F(A(m)), F(B(n)) )
)

(9)

Multidimensional Scaling
We compute the pair-wise structural and dynamical distances
between all 3,411 motif classes. In order to visualize their
similarity relations, we use classical multidimensional scaling
(Kruskal, 1964a,b; Cox and Cox, 2000; Borg et al., 2017; Krauss
et al., 2018). This method assigns to each motif class a point
on the two-dimensional plane, so that the mutual geometric
distances between the points reflect the structural or dynamical
distances between the motif classes. In contrast to alternative
visualization methods such as t-SNE (Maaten and Hinton, 2008)
where the results depend crucially on the choice of parameters
(Wattenberg et al., 2016), classical multidimensional scaling has
no adjustable parameters and therefore produces more robust
and reproducible results.

FIGURE 4 | Dynamical distance between motif classes. As in Figure 3, rows

and columns contain the six possible permutations of two given motif classes

(structure). For each permutation the corresponding state transition matrix is

calculated (gray shaded matrices). Subsequently, for each of the 36

combinations, the Euclidean distance between each pair of state transition

matrices is calculated (green numbers). As described in the Methods section,

the dynamical distance is defined as the minimum of all 36 Euclidean

distances (green number with yellow background). Note that green numbers

do not correspond to actual distances, but are for illustration purposes only.

RESULTS

By an exhaustive listing of all possible weight matrices and a
subsequent numerical sorting into equivalence classes, we could
show that there exist 3,411 structurally distinct three-neuron
motif classes with ternary connection strengths. We computed
the structural and dynamical distances between all possible pairs
of these motif classes, resulting in two 3,411 × 3,411 distance
matrices.

In a first step, we tested the intuitive expectation that the
dynamical distance ddyn between motifs should grow, at least as a
general trend, with their structural distance dstr . For this purpose,
we produced a scatter plot of ddyn versus dstr , including all 3, 411

2

pairs of motif classes (Figure 5). We found that for each given
structural distance (except for dstr = 0), the distribution of
possible dynamical distances is very large. Nevertheless, there is
a clear positive correlation of r = 0.59 (p < 0.001) between
structure and dynamics, thus confirming the expectation.

In a next step, we investigated the similarity relations between
motif classes, as they are contained in the two 3,411 × 3,411
matrices of structural and dynamical distances. For this purpose,
we have used classical multidimensional scaling (MDS) (Kruskal,
1964a,b; Cox and Cox, 2000; Borg et al., 2017; Krauss et al., 2018)
to arrange all motif classes as points on a two-dimensional plane,
so that the mutual geometric distances between the points reflect
the corresponding structural or dynamical distances.

This two-dimensional representation reveals that the
distribution of motif classes in both structural and dynamical
“space” is not uniform, but instead is strongly clustered
(Figure 6). The structural distribution (Figures 6a,c) also reveals

FIGURE 5 | Scatterplot of all pairwise dynamical and structural distances.

Each point (dstr ,ddyn) represents the relation between structural distance dstr
and dynamical distance ddyn of a certain motif. Dynamical and structural

distances are significantly correlated (r = 0.59, p < 0.001), but also show a

large variance.
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a six-fold rotation symmetry, which might be due to the six
possible permutations of 3-neuron motifs.

As a final step, we investigated how motifs are affected by
the statistical properties of the weight matrix. In particular,
we considered the statistical parameters “density,” defined
as the fraction of non-zero connections among all possible
connections, as well as “balance,” the ratio between excitatory
and inhibitory connections.We computed the values of these two
statistical parameters for all motif classes and color-coded them
correspondingly in the two-dimensional MDS representations
(Figure 6).

We find that the density parameter is not at all related to
the position of a motif class in the structural or dynamical
plane (Figures 6c,d). By contrast, there is a clear linear
ordering of motif classes with respect to the balance parameter
(Figures 6a,b), both in the structural and in the dynamical
plane. Indeed, altering the ratio between excitatory and inhibitory
connections has a much more pronounced effect on the motif
dynamics than changing the structural distance itself.

DISCUSSION

The relation of structure and function is a long-standing topic
in biology (Bullock and Horridge, 1965; Estes and Cohen, 1989;
Blackburn, 1991; Harris, 1996; Missale et al., 1998; Mitchell et al.,
2011). On the one hand, the micro-structure of a biological
system determines the set of possible functions that this system

FIGURE 6 | Multidimensional scaling of motif distribution in structural

(a,c) and dynamical (b,d) space. Plots are color coded according to balance

(a,b) and density (c,d) parameters. The structural distribution reveals a six-fold

rotation symmetry due to the six possible permutations of 3-neuron motifs. In

addition, motifs are ordered linearly according to the balance parameter, in

both structural (a) and dynamical (b) space. By contrast, motifs are not

ordered with respect to the density parameter (c,d). Note that absolute

coordinates of points have no particular meaning other than scaling relative

distances between any pair of points.

can serve. On the other hand, human observers may not be able
to deduce the function of a system from its structure alone: even
if we know all neural connection strengths in some sub-network
of the animal brain, as well as all its input and output signals,
the specific purpose of this sub-network within the whole of the
organism may remain elusive (Hobert, 2003; Gray et al., 2005;
Jonas and Kording, 2017). Indeed, “function” is not a property
of the isolated subsystem alone, but can only be defined in the
context of its embedding global system. For this reason, we focus
in this work not on the function of neural systems, but on
their dynamics—a property that is completely determined by the
network structure and, if present, the system’s input signals.

An additional advantage of this approach is that dynamics,
just as structure, can be conveniently expressed in the form of
matrices. Based on these matrices, we have developed suitable
metrics that measure the distance of two neural networks
in structural or dynamical space respectively. Using this tool,
we can investigate how sensitive network dynamics reacts to
small changes in network structure. Robustness with respect
to structural changes is crucial in biological brains, as the
synaptic weights cannot be adjusted with extremely high accuracy
(Pinneo, 1966; Faisal et al., 2008; Rolls and Deco, 2010).

For the case of isolated three-neuron networks, we have found
that the question of robustness has no definitive answer on the
microscopic level of individual neuron connection strength: a
small topological change in the connection matrix (i.e., adding
or removing a connection, or inverting its sign), can have,
both, small and large dynamical consequences. By contrast, a
much clearer correlation is found between certain statistical
(macroscopic) properties of a network’s weight matrix and its
dynamics. In particular, the ratio of excitatory to inhibitory
connections (balance) affects network dynamics very strongly,
while the ratio of non-zero connections (density) is much less
important. This is in line with recent micro-anatomical studies
of the hippocampus and the neocortex, where it was found that
the balance is conserved (Megías et al., 2001; Gal et al., 2017).

This result suggests that a recurrent neural network can
gain or lose a large random fraction of neural connections
without drastically changing its dynamical state, provided the
balance remains unchanged. We speculate that, in the brain, this
surprising robustness may help to keep the cortex functional in
periods of increasing density during development and contribute
to the phenomenon of graceful degradation (Rolls and Treves,
1990).

In this work we abstracted from biological detail in that
we included all possible three-neuron motifs with ternary
connection strengths. By contrast, in the human brain the
vast majority of neurons is either purely excitatory or purely
inhibitory. However, there are prominent exceptions to this rule,
such as the dopaminergic transmission within the basal ganglia
(Kandel et al., 2000).

Future work will need to investigate whether our results
extend to larger neural networks, to networks with continuous
rather than ternary connection strengths between the neurons,
and to networks based on alternative neuron models, such as
non-probabilistic threshold units. It might also be interesting to
consider networks built from mixed neuron types. Finally, we

Frontiers in Computational Neuroscience | www.frontiersin.org 5 February 2019 | Volume 13 | Article 510

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Krauss et al. Structure and Dynamics in Motifs

note that our choice of probabilistic Boltzmann neurons together
with zero bias leads to a firing probability of 0.5 without any
input, which is not biologically realistic. Neurons with a low
spontaneous firing rate might lead to other interesting dynamics
and might therefore also be investigated in future work.
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A new computational framework implementing asynchronous neural dynamics is used

to address the duality between synchronous vs. asynchronous processes, and their

possible relation to conscious vs. unconscious behaviors. Extending previous results

on modeling the first three levels of animal awareness, this formalism is used here to

produce the execution traces of parallel threads that implement these models. Running

simulations demonstrate how sensory stimuli associated with a population of excitatory

neurons inhibit in turn other neural assemblies i.e., a kind of neuronal asynchronous

wiring/unwiring process that is reflected in the progressive trimming of execution traces.

Whereas, reactive behaviors relying on configural learning produce vanishing traces, the

learning of a rule and its later application produce persistent traces revealing potential

synchronous roots of animal awareness. In contrast, to previous formalisms that use

analytical and/or statistical methods to search for patterns existing in a brain, this new

framework proposes a tool for studying the emergence of brain structures that might be

associated with higher level cognitive capabilities.

Keywords: symbolic modeling, neural dynamics, asynchronous process, synchronous process, emergence of

awareness

INTRODUCTION

A recurring debate about the functioning of the brain concerns the characteristics and the roles
played both at the neurological and cognitive levels by synchronous vs. asynchronous processes,
their relation to conscious vs. unconscious behaviors, and a possible fundamental duality in neural
dynamics. While the synchronous activation of brain processes is widely used for describing the
functioning of the cortex (Singer, 1993), diverging views apply to the specialized tasks supported
by these synchronized processes. Experimental results have revealed in particular the existence
of transient long-range phase synchronization leading to the hypothesis that synchronization vs.
desynchronization is a candidate mechanism for controlling visual attention (Gross et al., 2004).
Other studies related to the integration of attributes in a visual scene suggest that there is no central
neural clock involved in this mechanism, thus making the brain a massively asynchronous organ
(Zeki, 2015). In support of this diversity, results from a large scale simulation (Markram et al., 2015)
report “a spectrum of network states with a sharp transition from synchronous to asynchronous
activity.” While no definite link between neural activity and conscious behavior (which would
constitute neural correlates of consciousness) have been identified yet, it is common to postulate
the existence of a dynamical stream of consciousnessmediated by a global workspace (Baars, 1988)
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defined as a distributed brain state connected to various brain
areas, thus making perceptual information available to different
tasks. In one of these theories (Dehaene and Naccache, 2001)
pertaining to the particular case of conscious perception (referred
to also as access consciousness), sensory stimuli are associated with
a population of excitatory neurons that in turn inhibits other
neural assemblies, thus preventing the conscious processing of
other stimuli.

More generally, an emergent picture of the brain shows
opposing spiking patterns in populations of neurons engaged
in a competition (Zagha et al., 2015). The demonstration
of temporal competition in eligibility traces for long term
potentiation and depreciation (LTP/LTD) designates these traces
as plausible synaptic substrate for reward-based learning (He
et al., 2015). Together, these findings enforce a fundamental
principle in circuit neuroscience according to which inhibition
in neuronal networks allows in turn for disinhibition and stands
as a key mechanism for circuit plasticity, learning, and memory
retrieval (Letzkus et al., 2015). Ideally, brain simulations should
trace cognition down to these neurological. The usual way to
simulate a brain today however still basically follows one of
two bottom up approaches using either finite-state automata
or differential equations. The first approach, which relies
on weighted connections between neural cells to implement
threshold logic without regard to the actual internal functioning
of these cells, has led to the development of artificial neural
networks (Hopfield, 1982; Hinton et al., 2006). These networks
represent the most powerful tools available today in the field
of machine learning and have been used to model circuits that
reproduce human capabilities in pattern recognition. Their
biological plausibility however is a subject of controversy, and
their relevance to the study of the brain is thus questionable. The
second approach simulates the electrical processes surrounding
neurons, and thus details the functioning of the ground level
constituents of real brains. So far these neural networks simulators
(Hines and Carnevale, 1997; Markram et al., 2015) have not been
applied to drive significant cognitive processes, but seem rather
to expect and rely for that on the spontaneous emergence of
higher level functions.

The “what” and “how” of computational cognitive neuroscience
(Ashby and Helie, 2011) i.e., where computer and cognitive
sciences meet in order to propose biologically plausible models
supporting cognitive tasks, are traditionally described using the
historical “tri-level” hypothesis (Marr, 1982) that distinguishes
computational, algorithmic, and implementation levels. A fourth
behavioral learning dimension in brain and cognition studies
has been advocated (van der Velde and de Kamps, 2015) for
by arguing that cognitive processes are executed in connection
structures that link sensory circuits (i.e., perception) with motor
(i.e., action). Bottom-up analytical tools such as differential
equations, artificial neural networks as well as methods related
to dynamical systems theory (Wright and Bourke, 2013), and
more recently top-down approaches using abstract mathematical
tools such Bayesian inference rules (Ma and Pouget, 2008), are
well-suited for describing computations in Marr’s sense, but
“fail to identify algorithms and underlying circuits” (Frégnac
and Bathellier, 2015), a task that calls for a “middle-out”

approach that can identify plausible structures linking biology
and cognition.

An assessment of the present situation in this field can be
found in the special issue (Stern, 2017) of the Science journal
entitled “Neuroscience: In search for new concepts,” which
contains insightful reviews questioning present approaches,
proposing conceptual challenges and asking neuroscientists
to think about new ways to investigate them. Firstly, in order
to identify the mechanisms which support the human brain,
both Yarstev (2017) and Frégnac (2017) call for a comparative
approach refining similar functions in specific behavior of
relevant species where dynamic entities of simulated brains
grow and interact with their environment. Next, as argued by
Frégnac, “big data is not knowledge” i.e., the roadmap from data
to knowledge should be mapped out across successive levels of
integration distinguishing micro-scale and meso-scale functions.
The causal link between sub-cellular/cellular mechanisms
and behavior should be achieved through successive levels of
analysis, as exemplified by Marr’s tri-level hypothesis, which
means that mappings need to be expressed in algorithmic terms
and not just in a correlative way. In order to take into account
intermediate levels of circuit integration, canonical operations
should be defined as invariant computations. Furthermore,
simulations elaborated from static atlases, or connectomes, are
not sufficient to model brain functions where neurons participate
in multiple functional sub-networks. Toward this end, Frégnac
eventually suggests that a formalism based on virtual free
“quasi-particles” may simplify the analytical treatment. Finally,
Buzsaki and Llinas (2017) note that the neuronal mechanisms
associated with navigation and memory are similar, meaning
they process messages regardless of their origin. Toward this
goal, a new approach (Bonzon, 2017) to modeling neural
dynamics that enforces the tri-level framework based on synaptic
plasticity illustrated in Frégnac (2017) has been proposed.
In order to handle messages, synaptic plasticity is abstracted
through asynchronous communication protocols and used to
link perception and action. This formalism is used here to
address the duality between synchronous vs. asynchronous
processes, and their possible relation to conscious vs.
unconscious behaviors.

MATERIALS AND METHODS

A New Approach to Modeling Abstract
Brain Functionalities
A new approach to modeling neural dynamics (Bonzon,
2017) that enforces the tri-level framework based on synaptic
plasticity illustrated in Frégnac (2017) has been proposed.
In order to handle messages, synaptic plasticity is abstracted
through asynchronous communication protocols and used to
link perception and action. This has been illustrated (Bonzon,
2017) though the simulation of simple animal behaviors. In this
formalism, brain processes are first abstracted through virtual
microcircuits representing canonical invariant computations as
called for above. Sets of microcircuits are then assembled into
mesoscale virtual circuits linking perceptions and actions. Virtual
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circuits giving rise to streams can be compiled into virtual code
implications to be eventually used just in time to deduce virtual
code instructions that are finally interpreted by a virtual machine
(see the Supplementary Information section).

While the usual approach to simulating neural dynamics starts
with current flows represented by differential equations, we opted
for a conceptual abstraction of synaptic plasticity represented
by communicating processes between concurrent threads,
which correspond either to a single or to a group of neurons
possibly interleaved at a higher level. Contrary to traditional
neuron models in which incoming signals are summed in some
integrated value, thread inputs can be processed individually,
thus allowing for threads to maintain parallel asynchronous
communications. Threads can be grouped into disjoint sets, or
fibers, to model neural assemblies (Huyck and Passmore, 2013),
and discrete weights (e.g., integer numbers) can be attached to
pairs of threads that communicate within the same fiber. A fiber
containing at least one active thread constitutes a stream. On this
basis, a short term cache memory (STM) as well as a long term
associative memory (LTM) relying on LTP/LTD were defined.
This eventually led to the modeling (Bonzon, 2017) of animal
behaviors exhibiting, among others, rule learning capabilities
(Zentall et al., 1981; Katz et al., 2008) demonstrating primitive
forms of animal consciousness according a typology (Pepperberg
and Lynn, 2000) proposed in the context of comparative zoology.

Basic Concepts
To introduce the basic concepts of this formalism, let us consider
a simple case of synaptic transmission between any two threads P
and Q (NB throughout this text, identifiers starting with a capital
letter stand for variable parameters). This can be represented by
the circuit fragment (or wiring diagram) contained in the simple
stream given in Figure 1, where the symbol ->=>- represents
a synapse.

This circuit fragment can be represented by two symbolic
expressions involving a pair of send/receive processes as shown
in Figure 2.

In Figure 2, the thread P e.g., a sensor thread sense(s), will
fire in reaction to the capture of an external stimulus s, with the
send process corresponding to the signal, or spike train, carried
by a pre-synaptic neuron’s axon. In the threadQ [e.g., an effector
thread motor(X), where the variable X becomes instantiated as
the result of the stimulus], the receive process represents the
possible reception of this signal by a post-synaptic neuron. The
compilation of these expressions will give rise to virtual code
implications implementing the communication protocol given
in Figure 3.

This protocol corresponds to an asynchronous blocking
communication subject to a threshold. It involves a predefined
weight between the sender P and the receiver Q that can be
either incremented or decremented. On one side, thread P
fires thread Q if necessary and sends it a signal. On the other
side, thread Q waits for the reception of a signal from thread P
and proceeds only if the weight between P and Q stands above
a given threshold. The overall process amounts to opening a
temporary pathway between P andQ and allows for passing data
by instantiating variable parameters (see example below).

A Simple Model of Classical Conditioning
As an example, let us consider a simple model of classical
conditioning in which a conditioned stimulus cs elicits a
weak reflex, and a unconditioned stimulus us produces a
massive reflex. After a few pairings of cs and us, where
cs slightly precedes us, a stimulus cs alone triggers an
enhanced reflex. This is represented by the virtual circuit given
in Figure 4.

In Figure 4, the threads sense(us) and sense(cs) correspond
to sensory neurons, and motor(X) to a motor neuron, where
X is a variable that will be instantiated into us or cs. Finally,
the thread ltp (for long term potentiation) acts as a facilitatory
interneuron reinforcing the pathway (i.e., augmenting its weight)
between sense(cs) andmotor(cs). The protocols depicted by the
symbols ->=>- and /|\ represent, respectively, a synapse and
the modulation of a synapse, the sign ∗ indicates the conjunction
of converging signals, and the sign + either the splitting of a
diverging signal, as used in the lower branch, or, a choice between
converging signals, as used in the right branch instantiating
the thread motor(X). Classical conditioning then follows
from hebbian learning i.e., “neurons that fire together wire
together.” Though it is admitted today that classical conditioning
in aplysia is mediated by multiple neuronal mechanisms
including a post-synaptic retroaction on a presynaptic site,
the important issue is that the learning of a new behavior
requires a conjoint activity of multiple neurons that leads to
implement the thread ltp as a detector of coincidence, as done in
Figure 5.

The generic microcircuit abstracting the mechanism of long
term potentiation (ltp) is given in Figure 5. In order to detect the
coincidence of P and Q, thread P fires an ltp thread that in turn
calls on process join to wait for a signal from threadQ. In parallel,
thread Q calls on processmerge to post a signal for ltp and then
executes a send(R) command to establish a link with thread R.
After its synchronization with thread Q, thread ltp increments
the weight between Q and R.

A Model of a Simple Case of Operant
Conditioning
As another example, let us consider a simple form of
operant conditioning in which an organism, as a result
of a perception, generates either an excite or an inhibit
internal stimulus and associates this feedback with either
an accept or reject action. This gives rise to two competing
neural populations, as represented in the circuit given in
Figure 6 in which inputs are represented by a vector I of
external perceptions.

At the beginning of the simulation, the pathways from
sense(I) to learn[accept(I)] is open, while the pathways to
both accept(I) and reject(I) are closed. After a few trials, the
pigeon will have learned to close learn[accept(I)] through an
ltd process and to open either accept(I) or reject(I)through
an ltp process. This procedure matches a fundamental
principle in circuit neuroscience according to which
inhibition in neuronal networks during baseline conditions
allows in turn for disinhibition, which then stands as a key
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FIGURE 1 | Circuit fragment implementing a synaptic transmission.

FIGURE 2 | Thread patterns for a synaptic transmission.

FIGURE 3 | Communication protocol for an asynchronous communication.

FIGURE 4 | A mesoscale virtual circuit implementing classical conditioning.

mechanism for circuit plasticity, learning, and memory retrieval
(Letzkus et al., 2015).

Communication Protocols
As illustrated and briefly discussed above, virtual circuits rely on
communication protocols that are pictured in thread diagrams
by iconic symbols representing themselves microcircuits. These
protocols are defined by pairs of procedures:

- send/receive, denoted by the symbols ->=>- or -<=<-,
represents a synaptic transmission

- join/merge, denoted by /|\ or \|/, implements long term
potentiation/depression (ltp/ltd)

- push/pull, denoted by -<A>-, models a short term cache
memory (stm)

- store/retrieve, denoted by -{P}-, models an associative
memory (ltm) based on long term storage and retrieval
(lts/ltr)

The microcircuits implementing these protocols are detailed in
Bonzon (2017).

Virtual Machine Definition
The virtual machine (Bonzon, 2017), which was originally
designed to execute a “sense-act” cycle of embodied cognition, is
extended here to implement a “sense-act-reflect” cycle that allows
for tracing down the sequences of synchronized events associating
a thread and a stimulus (see Figure 7 for the functional definition
of this machine, and the online Supplementary Information for
its complete operational specifications).

Let us just mention some characteristics of this machine
that clearly distinguish it from traditional computers of
the von Neumann type. First, it does not involve stored
program acting on stored data. Consequently, this machine
doesn’t have an instruction register holding the current
instruction being executed after its retrieval from an addressable
memory. The ist predicate (standing for “is true”) implements
contextual deduction (Bonzon, 1997). A register clock (T), which
corresponds to a program counter in traditional machines, is
associated with each thread and hold its local time T. These
registers are used in turn to deduce an instruction. Whenever
an instruction succeeds, its thread clock is advanced and the
next instruction is deduced, and whenever it fails, it is executed
again until it eventually succeeds. Altogether, this amounts to
descending into a thread instruction tree, with its local clock time
corresponding to the currently reached depth. In other words, as
postulated for instance by Zeki (2015), there is no central clock,
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FIGURE 5 | Micro-circuit and communication protocol for ltp.

FIGURE 6 | A virtual circuit implementing simple operant conditioning.

thus “making of the brain a massively asynchronous organ.”
The execution of virtual instructions leads to a wiring/unwiring
process that produces model configurations that are akin to
plastic brain states. By interpreting code deduced configurations
that are akin to brain states, the overall architecture of this
system could thus turn out to be close to that of a brain.

The core of a simulation platform implementing the
formalism described above is defined by a logic program of about
300 lines. This platform can be run on any PC equipped with
a Prolog compiler, which thus allows for an easy reproduction
of results.

RESULTS

Simulating Simple Animal Behaviors
In order to explore a possible duality between synchronous
vs. asynchronous processes and conscious vs. unconscious
behaviors, we used our extended formalism to perform a series
of simulation of simple animal behaviors exhibiting in turn the

first three level of animal consciousness according to Pepperberg
and Lynn’s typology (Pepperberg and Lynn, 2000). While this
taxonomy is not the definite source on the subject, their proposal
does comply with the requirements listed in our Introduction
i.e.,

• they follow a comparative approach refining similar functions
in the behavior of relevant species

• they include an evolutive learning dimension
• they can be implemented by canonical operations defined

as invariant computations that constitute particular cases of
operant conditioning linked to plausible neural processes.

Briefly, the first level of animal awareness corresponds to the
ability to follow a simple rule involving the perception of a
specific item or event and then either its acceptation or its
rejection (e.g., a case of matching/oddity to sample). Whereas,
this first level does not allow for an immediate transfer to a
similar task, an organism with the second level is aware enough
of a rule to transfer it across situations and thus to adopt for
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FIGURE 7 | High level definition of a virtual machine run.

example a win/stay lose/shift rule (or strategy) relying on a short-
term memory. In order to make a categorical judgment (e.g., to
sort items by recalling their properties), the third level of animal
awareness provides an organism with the additional capacity to
integrate two different sets of stored information. This implies in
turn some kind of associative long term memory.

A Simulation of the First Level of Animal Awareness
Our first simulation refers to an experiment (Wright, 1997) that
was designed in order to discriminate between two possible
strategies for solving a non-matching-to sample (NMTS) task
(Katz et al., 2008). In this experiment, a subject (e.g., a pigeon) is
presented with a sample that can be of one of two colors (e.g., red
or green), and then confronted with a pair of buttons (e.g., one
left and one right button) of two different colors, one of them
matching the color of the sample. In order to get a reward, the
subject must choose the button that doesn’t have the same color
as the sample. A first strategy, called configural learning, is to learn
the correct choice associated with each combination of colors
(or external stimuli). The resulting unconscious reactive behavior
then relies on memorized links between perception and action.
This strategy is implemented in the circuit given in Figure 8 that
constitutes an extension of Figure 6 including an internal fetch
stimulus that triggers a random choice between the two buttons.

The execution trace of a running simulation is
given in Figure 9. In this example, the same vector
i.e., [sensor(left([green]),right([red]),sample([red]))] was
repeatedly presented as input. The prefixes 1:, 2:, 3:, etc.,
represent the stream’s sequence numbers I akin to a global time
series and the arguments (3), (4), (3), (3), etc., are threads local
times. These traces contain first a transient part (Figures 9A–C)
corresponding to the learning process. This process is
implemented via successive internal fetch and excite/inhibit
stimuli that give rise in turn to the increment/decrement
of synaptic weights. This demonstrates how internal stimuli
associated with a population of excitatory neurons inhibit in turn
other neural assemblies i.e., a kind of neuronal wiring/unwiring
process that is reflected in the progressive trimming of the
execution trace. The second part (Figures 9D,E), void of any
internal stimulus, then reflects an unconscious reactive behavior
associating a sensor and an effector.

Another strategy, called relational learning, is to compare in
turn each button with the sample, learn to match colors, and then
choose the button that doesn’t match the sample. In other words,
subjects do not learn to choose a color, but to match colors and
then avoid the matching color i.e., to choose the non-match. This
behavior corresponds to the first level of animal consciousness
defined as the ability to learn and apply a simple rule associating
the perception of a specific concept or event and then either
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FIGURE 8 | Circuit for configural learning.

its acceptation or its rejection (Pepperberg and Lynn, 2000).
This strategy is implemented in the circuit given in Figure 10,
where two additional layers implement learning to match and
eventually choosing to avoid the match.

The same configuration i.e.,

[sensor(left([green]),right([red]),sample([red])),
sensor(left([green]),sample([red])),
sensor(right([red]),sample([red]))]

was repeatedly presented as input. The execution trace, which
reflects the learning of a rule followed by its repeated application,
contains a transient part (Figures 11A–D) made of successive
internal stimuli followed by a persistent part (Figures 11E,F)
presenting the recurrent pattern of a single internal stimulus i.e.,
inhibit, which signals the application of the rue commanding to
“avoid matching the color.”

Simulating the Second and Third Level of Animal

Awareness
Similar results have been obtained with simulations that were
performed for experiments (Savage-Rumbaugh et al., 1980;
Cole et al., 1982) characterizing, respectively, the second and
third levels of animal consciousness. A subject with the second
level is aware enough of a rule to transfer it across situations
and thus to adopt for example a win/stay lose/shift rule. This
implies a capacity to remember one’s last choice, and has been
implemented using a short term cache memory (STM) that
allow for the modeling of a synchronized recall thread. The third
level of animal awareness refers to the additional capacity to
make a categorical judgment (e.g., to sort items) and has been
implemented using an associative long term memory (LTM) that

similarly allows for the recall of facts or events (see Bonzon, 2017
for details).

Summary of Results
The results of the simulations presented above can be
summarized as follows:

- as illustrated in Figure 9, unconscious reactive behaviors
relying on configural learning produce transient traces that
reflect the asynchronous processing of internal stimuli

- as illustrated in Figure 11, behaviors relying on a rule produce
traces containing a transient part that reflect the asynchronous
processing of internal stimuli, followed by a persistent part that
present a recurrent synchronous pattern corresponding to the
rule conscious application.

From these results, we postulate as a principle:

- persistent recurrent patterns in execution traces reveal

potential synchronous roots of consciousness.

Let us recall from Figure 7 that our formalism relies on a
fiber structure, where asynchronous threads having each their
own local time are grouped into streams, which represent
disjoints sets of simultaneously active threads, each stream being
associated with a sequence number akin to a global time. The
synchronization defined on this basis then simply associates the
instruction being executed at thread time T with its supporting
stream at sequence number I. Each recurrent pattern thus
actually reflects the synchronization of an internal stimulus with
its supporting stream e.g., in Figures 11E,F, the synchronization
of stimulus

inhibit(match(left([green]),sample([red])))
in thread
try(match(left([green]),sample([red])))
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FIGURE 9 | Execution trace. (A–C) Transient part. (D,E) Void part.

at its local time (3) with its supporting stream at global time 1:
These recurring patterns constitute an example of emergent
brain structures that might be associated with higher level
cognitive capabilities. Following advances in the study of glial
cells (Tadi et al., 2015; Dallérac and Rouach, 2016; Papouin
et al., 2017), the possible relation of these synchronizations with
consciousness could be found in the interaction between neurons
and astrocytes. According to the “astrocentric hypothesis”
(Robertson, 2013), conscious perception arises through a process
of global synchrony in which information patterns carried by
neuronal spike trains are transferred to astrocytic waves (Pereira
and Furlan, 2009; Pereira et al., 2017). It is suggested that the
persistent traces revealed in our simulation are at the roots of
this transfer process.

DISCUSSION

This discussion will extend in three directions i.e., the
hypothetical formal properties of the proposed formalism,
its relevance to the study of consciousness, and its comparison
with previous similar work.

Hypothetical Formal Properties
The assessment of a system’s formal properties should include
both its validation and a theoretical account of its computational
power. A throughout development of these two points is out
of the scope of this paper. We shall therefore restrict ourselves
to situate the proposed formalism within these contexts. Its
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FIGURE 10 | Circuit for rule learning.

various components are further presented below in the online
Supplementary Information.

Validation
The validation of a system aims at providing a mathematical
proof that its implementation satisfies its requirements i.e., that
“what it actually does” is “what it was designed to do.” To try and
answer the first question, let us consider the functional signature
that can associated with the function representing the run of
a model. The concept of a virtual machine that we use allows
for emulating the execution of a program given in a symbolic
language S on a system having its own logical language L. On
the cognitive side, virtual circuits, which somehow correspond
to cognitive software written in language S, are compiled into
virtual code implications of language L. On its neural side, these
implications are used in turn to deduce just in time instructions
that get interpreted by the virtual machine i.e., this virtual
machine actually performs contextual deductions (Bonzon,
1997). In addition, languages I and O define, respectively,
input/output sentences captured by sensors and delivered to
effectors. Running a model on a virtual machine then defines the
function:

run : I × S× (S → L)×L → L× O

According to classical results in computer science, symbolic
expressions that have been compiled and then interpreted
by a virtual machine get their operational semantics from
the transitions they induced on the state of this machine.
In other words, what the system actually does is to update
the virtual machine state. As there is no specified final
state, whichever state the machine is in at any given time
is acceptable and represents the simulated subject’s current
state of mind.

As for the second question (i.e., “what was this machine
designed for”), the goal of the present work was to study the
emergence of brain structures that might be associated with
higher level cognitive capabilities i.e., with processes that are still
unknown. In this perspective, the whole idea of validation and/or
model checking, which eventually should to lead to ask “how to
specify a given task,” may look premature.

Computational Power
Following the pioneering work of Siegelmann and Sontag
(Siegelmann and Sontag, 1995), the computational equivalence
between rational recurrent neural networks and Turing machines
has become the starting point for the study of devices with super
Turing computational power. Various extensions incorporating
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FIGURE 11 | Execution trace. (A–D) Transient part. (E,F) Persistent part.
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concepts such as rational vs. analog machine and interactive
vs. evolutive machines have recently culminated in a new
equivalence stating that “basic neural models combining the
two crucial features of evolvability and interactivity are actually
capable of super-Turing computational capabilities, irrespective
of whether their synaptic weights are modeled by rational or
real numbers” (Cabessa, 2012; Cabessa and Villa, 2013). In
other words, taking into account both evolving and interactive
capabilities in a neural net model provides an “alternative
and equivalent way to the incorporation of the power of
the continuum toward the achievement of super-Turing
computational capabilities.” Intuitively, our own model, which
incorporates both a mechanism of communication based on
concurrent threads and an implementation of synaptic plasticity
based on Hebbian learning, satisfies the conditions required to
belong to the class of super Turing computational devices. The
proof of this statement will eventually require a substantial effort
toward mapping our formalism into the primitive operations
that are allowed in such proofs.

Relevance With the Study of
Consciousness
Very generally, unconscious and conscious behavior have been
described, respectively, as lacking conscious attention and as
enjoying an introspective reporting capability (Shanahan, 2010).
Various studies have focused on the search for the signature of
the neural activity that differentiates between the two, but their
overall results appear inconsistent (Dehaene and Changeux,
2011). Some of these results however are compatible with
our postulate as stated in section Summary of Results. As an
example, experiments related to a delayed matching to sample
task (Dehaene et al., 2003) have suggested that the neural
signature of unconscious vs. conscious perception could be a
local coordination vs. a global synchronization of neural activity.
Further results (Dehaene et al., 2006; Melloni et al., 2007) about
the same task have concluded that transient synchronization is
the critical event that triggers an access to consciousness. Our
postulate is also consistent with the proposal (Lamme, 2003)
of recurrent interactions, first locally within the visual system,
and then globally into parieto-frontal regions, as well as with
the hypothesis (Zeki, 2003) of an asynchronous construction
of visual perception in distributed sites before binding into a
“macro-consciousness.” By referring to synchronized events
associating a stimulus with a sensory stream, it is also compatible
with another approach (Morsella et al., 2015) concluding
that the origin of consciousness could be found at the level
of processing that is shared with “representations of the
immediate external environment.” Hypothetically, as noted
in section Summary of Results, persistent traces revealed in
our simulations could be at the root of the transfer process
from neural spike trains to astrocytic waves (Pereira and
Furlan, 2009). Our concept of a virtual machine offering an
interface between two domains (see section Bottom Up Design
of Virtual Circuits of the Supplementary Information)
could constitute the adequate tool for modeling such
a transfer.

Related Work
Previous work related to the modeling of brain and cognition
using symbolic methods, and more generally to global
brain simulations and the emergence of consciousness, are
now reviewed.

In an extension of his early work on classical conditioning
(Klopf, 1988), Klopf Johnson et al. (2001) did propose a
computational model of learned avoidance that relies on an
internal clock controlling both classically and instrumentally
conditioned components, thus allowing for an explicit
“proprioceptive feedback” i.e., a kind of primitive consciousness.
This proposal opposed the then dominant paradigm requiring
an evaluative feedback from the environment. This opposition
did rest on the argument that “animals do not receive error
signals during learning,” thus pointing out to the biological
implausibility of error-correction back propagation i.e., an
argument that, notwithstanding the proven effectiveness of this
technique as a tool for functional approximation, is still valid
today for brain research.

Using classical results on Hopfield networks and attractors
(Hopfield, 1982), Balkenius and his co-workers (Balkenius
et al., 2018) did implement a memory model for robots.
In this model, a prototypal form of consciousness arises
from sensory information filled in a memory that in turns
produces memory transitions over time, thus creating an
inner world that is used both to interpret external input
and to support “thoughts disconnected from the present
situation.” A far reaching but questionable conclusion
of this study is that “an inner world is a sine qua non
for consciousness.”

The work by Deco et al. (2008) falls in the category
of “whole (or global) brain” simulations. Their theoretical
account follows an overall statistical strategy. Degrees of
freedom are successively reduced to resolve an otherwise
intractable computational problem. Populations of spiking
neurons get first reduced to distribution functions describing
their probabilistic evolution, giving then rise to neural fields
defined by differential operators involving both temporal and
spatial terms. It finally proposes a measure for partitioning
the brain into functionally relevant regions, this so-called
“dynamical workspace of binding nodes” being supposedly
responsible for binding information into conscious perceptions
and memories. As in our own proposal, this formalism uses
a multilevel architecture, which in this case distinguishes
between the single neuron level, the mesoscopic describing
how neural elements interact to yield emergent behavior,
and the macroscopic level of dynamical large-scale neural
systems such as cortical regions, the thalamus, etc. Each level
of this description relates to neuroscience data, from single-
unit recordings, through local field potentials to functional
magnetic resonance imaging (fMRI). In conclusion, this
formalism uses analytical and statistical tools to search for
existing patterns in a functioning brain. In contrast, our own
framework, which is constrained solely by a symbolic model
of synaptic plasticity, proposes a tool for shaping the brain
by linking perception to behavior trough a mechanism of
hebbian learning.
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Besold and Kühnberger (2015) envision a system that
operates on different levels corresponding to the layers in a
system’s architecture in order to update network structures
via the artificial equivalent of synaptic dynamics. Our
formalism relying on a virtual machine can be considered
as an attempt to implement this architecture via a conceptual
abstraction of synaptic plasticity. Our formalism also bears
some similarities with a new model of neural networks,
namely fibring neural networks (Garcez and Gabbay,
2004) that, similarly to threads, allow for the activation
of groups of neurons and thus represent different levels
of abstraction.

With a few notable exceptions (e.g., Smith, 1992; Ruksénasz
et al., 2009; Su et al., 2014), system validation is an issue that is
seldom addressed in computational cognitive neuroscience. In
order to obtain symbolic descriptions of neuronal behavior that
allow for model checking, Su et al. have applied concurrency
theory in a framework extending classical automata theory
with communicating capabilities. A network of communicating
automata is then mapped into a labeled transition system

whose inference rules (for both internal transitions and
automata synchronizations) define the semantics of the overall
model. Su et al. further show that, in accordance with our
own approach, asynchronous processing is not only a more
biologically plausible way to model neural systems than do
conventional artificial neural networks with synchronous
updates, but also offers new perspectives for the cognitive
modeling of higher level cognitive capabilities through emergent
synchronous processes.
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Connectivity and biophysical processes determine the functionality of neuronal networks.

We, therefore, developed a real-time framework, called Neural Interactome1,2, to

simultaneously visualize and interact with the structure and dynamics of such networks.

Neural Interactome is a cross-platform framework, which combines graph visualization

with the simulation of neural dynamics, or experimentally recorded multi neural time

series, to allow application of stimuli to neurons to examine network responses. In

addition, Neural Interactome supports structural changes, such as disconnection of

neurons from the network (ablation feature). Neural dynamics can be explored on a single

neuron level (using a zoom feature), back in time (using a review feature), and recorded

(using presets feature). The development of the Neural Interactome was guided by

generic concepts to be applicable to neuronal networks with different neural connectivity

and dynamics. We implement the framework using a model of the nervous system

of Caenorhabditis elegans (C. elegans) nematode, a model organism with resolved

connectome and neural dynamics. We show that Neural Interactome assists in studying

neural response patterns associated with locomotion and other stimuli. In particular,

we demonstrate how stimulation and ablation help in identifying neurons that shape

particular dynamics. We examine scenarios that were experimentally studied, such as

touch response circuit, and explore new scenarios that did not undergo elaborate

experimental studies.

Keywords: C. elegans, brain simulation, connectome, neural dynamics, network visualization

INTRODUCTION

Modeling neuronal systems involves incorporating two modeling layers. The first fundamental
layer is of neuronal connectivity (connectome). The layer on top of it is of biophysical processes
of neural responses and interactions. In the recent years there has been significant progress in
resolving and modeling both layers. Connectomes of several organisms and systems, such as the
nematode Caenorhabditis elegans (C. elegans), the Drosophila medulla, the mouse retina, mouse
primary visual cortex, and others have been fully or partially mapped on various scales: frommacro
to single neuron level (White et al., 1986; Open Connectome Project, 2010; Van Den Heuvel and
Pol, 2010; Bock et al., 2011; Briggman et al., 2011; Haspel and O’Donovan, 2011; Varshney et al.,
2011). Also, decades of research in describing and modeling biophysical processes have provided
both experimental and computational foundations for modeling single neuron dynamics as well

1Web interface available at http://neuralcode.amath.washington.edu/neuralinteractome
2Source code available at https://github.com/shlizee/C-elegans-Neural-Interactome
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as synaptic and electric processes between neurons (Koch
and Segev, 1988; Wicks et al., 1996; Letinic et al., 2002;
Koch, 2004; Söhl et al., 2005; Briggman et al., 2006; Skinner,
2012; Druckmann et al., 2014; Kunert et al., 2014). Due to
these advances, models incorporating both layers have become
more detailed and realizable for several neuronal systems.
These models are called Dynomes as they correspond to
dynamical system acting on top of the static connectome
(Kopell et al., 2014).

Being closer to the realistic neuronal system, dynome studies
have more potential to reveal neural pathways and functionalities
of the network (Bargmann and Marder, 2013; Sporns and
Bullmore, 2014; Liu et al., 2018). However, they also introduce
challenges in finding appropriate methods for efficient studies of
network capabilities (Mucha et al., 2010). Brute force approaches
will typically produce formidable amounts of data, where
extraction or characterization of relevant neural patterns can be
cumbersome and time consuming. For that reason, collaborative
initiatives such as Brian introduced generic simulation engines
for neural dynamics and the OpenWorm project (incorporating
Geppetto engine) suggested to apply generic neural models to
C. elegans (Goodman and Brette, 2008, 2009; Raikov and De
Schutter, 2012; Szigeti et al., 2014; Chen and De Schutter, 2017;
Cantarelli et al., 2018; Sarma et al., 2018). Such frameworks are
advantageous and allow flexibility to simulate various dynamics
on top of generic connectomics.

Here, we have taken a complementary approach. We focus
on efficient simulation of the established connectome of C.
elegans somatic nervous system in conjunction with established
biophysical dynamics. We have accompanied the simulation
with interpretable visualization of dynamics-connectomics. The
visualization is designed in such a way that it incorporates
real-time interactive capabilities to investigate architecture and
observe neural activity at the same time. Such a framework
allows for a new way of investigating and simulating neuronal
systems and as far as we know has not been introduced for
any dynamic network, in particular nervous systems models.
In such a framework, the necessary components are (i) ability
to apply or modify stimuli to the network in real-time as in
experiments; (ii) being able to observe the neural dynamics
on various time and population scales, and (iii) allow for
network structural changes. Furthermore, the framework is
expected to perform seamless integration for such functions
and include review capabilities for exploration of the system
and dynamics in depth. In this work, we thereby develop
the Neural Interactome, which is a generalized visualization
framework incorporating such capabilities. The framework
employs a graph visualization layout to represent the static
connectome. On top of the layout, it incorporates dynamic visual
components to represent real-time neural responses according
to user interactions. These components are implemented via
synchronization between the backend neural integrator of the
dynome and the graph layout of the interactive interface. The
backend neural integrator is connected to neurons stimuli
panel, and permits setting external stimuli and changing
the structure of the graph on demand. The framework also

includes real-time plotting of neural activity as well as review,
preset and save modes that allow for further exploration of
simulated dynamics.

In this paper, we focus on applying the framework to the
nervous system of C. elegans nematode, which consists of 302
neurons with three types (sensory, inter, motor). Such a system
is thus relatively small to be fully reconstructed and analyzed.
Indeed, the near-complete connectome of the nervous system has
been resolved using serial section electron microscopy (White
et al., 1986; Chen et al., 2006; Varshney et al., 2011). The
connectome data includes enumeration of neural connections for
the complete somatic nervous system (279 neurons) of synaptic
type, where GABAergic neurons make inhibitory synapses, and
glutamergic and cholinergic neurons form excitatory synapses.
The connectome also enumerates gap junctions (electrical
connections) for each pair of neurons. The connectome data is
robust, since C. elegans neurons are recognizable and consistent
throughout individual worms (White et al., 1986). Furthermore,
C. elegans synaptic and gap connections are common across
animals with more than 75% reproducibility (White et al., 1986;
Durbin, 1987; Hall and Russell, 1991; Bargmann, 1993). In
addition to the anatomical structure of the nervous system,
biophysical in-situ recordings of membrane voltage response
to input current injected into each individual neuron in the
network have been performed (Wicks et al., 1996; Goodman et al.,
2012). These revealed that C. elegans neurons are of non-spiking
type with graded potential membrane voltage profile (Goodman
et al., 1998). Following these studies, a set of mathematical
models describing neural membrane voltage and interaction
between the neurons were developed (Goodman et al., 1998;
Kunert et al., 2014).

The availability of near-complete connectome data along
with experimental quantification of responses and interactions
provided a computational basis for reconstructing both static
and dynamic layers of C. elegans neuronal network. Combination
of these two layers was recently developed (Kunert et al.,
2014). When applied with prescribed input stimuli, C. elegans
dynome was capable of producing various forms of characteristic
dynamics such as static, oscillatory, non-oscillatory and transient
voltage patterns (Kunert-Graf et al., 2017). These dynamics
indicated that C. elegans dynome is a valuable model for the
worm’s nervous system, and patterns observed are suggested
to be consistent with the experimentally observed ones. In
particular, stimulation of sensory PLM neurons with constant
current resulted in a two-mode dominant oscillatory behavior
in forward locomotion motor neurons (Kunert et al., 2014).
The model is expected to include a variety of other additional
patterns, however, their full validation is formidable to perform,
as it requires many simulations with various stimuli amplitudes
and combinations. For instance, in the context of touch response,
it would be valuable to examine stimulation of ALM and
AVM sensory neurons, which in experiments was identified
as associated with anterior touch response and expressed as
backward crawling (Chalfie et al., 1985; Driscoll and Kaplan,
1997). Furthermore, transitions from one type of dynamics
to another (e.g., from oscillatory to non-oscillatory) are also
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expected to exist when input stimuli shift from one value to
another. It is thereby introduction of a framework that facilitates
these studies can assist in such goal.

DESIGN AND IMPLEMENTATION

Wefirst describe themain components of theNeural Interactome
framework, and then continue to demonstrate its application to
the nervous system of C. elegans worm for stimulation scenarios.

INTERACTIVE INTERFACE FOR
NEURONAL NETWORK

The frontend of Neural Interactome is an interactive interface
consisting of (i) neural stimulation/ablation interface,
(ii) visualization of dynamics, (iii) control of simulation
timescale, and (iv) review system.

Neural Stimulation and Ablation
Neural stimuli are controlled by stimulation panel located on
the left side of the screen. The panel enslists and categorizes all
neurons in the network into three group types (sensory, inter,
motor). Each group type is given a characteristic color (sensory:
blue, inter: green, motor: red). Each individual neuron on the
panel is a clickable button with a scrollable bar, which allows
setting amplitudes of constant stimulus, i.e., inject current to
the neuron (of nA nano-ampere unit). The amplitude of the
stimulus can be adjusted prior to running a simulation (as initial
condition), or at any time during the simulation. When stimulus
is being adjusted during the simulation, it effectively imitates
“clamping” of neurons in the network. In addition, to allow
for testing various structural configurations for the network,
the panel is designed to support neural ablation of neurons. By
clicking on a neuron while holding the shift key, the neuron
is grayed-out in the interface. Such operation disconnects the
neuron from all of its respective connections (both receiving
and outgoing) in both synaptic and gap type and thus effectively
removes it from the network. The ablation can also be undone
(reinsertion) by repeating the operation of shift key + clicking
on the ablated neuron. Similar to neural stimulation, both
ablation and reinsertion can be performed prior and during
network simulation.

Dynome Visualization
Connectivity Representation
Visualization of the dynome is on the right side of the interactive
interface, with the connectome of the network represented as
a graph (Figure 1). The nodes of the graph represent neurons,
whereas the edges represent connections (either gap or synaptic)
between each pair of neurons. The top panel of Figure 2 shows C.
elegans’ synaptic connectome (left) as well as its gap connectome
(right), where each node represents an individual neuron and
colored according to its group type. Initially, prior to displaying
the dynome dynamics, the radii of the nodes are set according
to in/out synaptic degree of the respective neuron (i.e., the
amount of synaptic connections of a neuron). Such visualization
emphasizes neurons with higher degree (hub neurons) by

displaying them with larger radius and de-emphasizes neurons
with lower degree with smaller radius. The width of the edge
between a pair of neurons is set according to maximum synaptic
weight, such that for a pair of neurons A and B, widthedge(A,B) =
max(nSyn(A→B), nSyn(B→A)), where nSyn(A→B) is the number of
synapses from neuron A to B.

In addition, we use force-directed graph algorithm to arrange
the nodes and edges in optimal positions (Bostock et al., 2011).
The algorithm visualizes graphs by assigning forces to nodes
and edges based on their relative positions and routings. For
edges, spring-like attractive forces based on Hooke’s law are
used to attract pairs of endpoints toward each other. For the
nodes, repulsive forces, e.g., Coulomb’s law forces, are used
to separate all pairs of nodes. Once forces are assigned, the
algorithm minimizes the total energy potential of the system
(i.e., equilibrium states for the system of forces) and displays
optimal nodes and edges configuration. In this representation,
the edges tend to have uniform lengths (due to spring forces)
and the nodes not connected by an edge tend to be drawn further
apart (due to repulsive forces) (Kobourov, 2012). We found such
graph visualization more advantageous for neuronal networks
than the anatomy based visualization method as it: (i) keeps
approximately equal lengths for all neuron’s connections thus
avoiding “clumps” of neurons in one region, and (ii) arranges the
nodes such that neurons that make connections with a particular
neuron are found within its proximity. We also found that due
to these properties, the configuration depicts the network in an
intuitive way, by grouping the same type of neurons together
(e.g., many of themotor neurons are clustered together on the left
of the graph) and places the neurons with high synaptic degrees
in themiddle. To keep the same frame of reference, force-directed
representation is pre-computed before the simulation such that
the positions of the nodes remain constant at all times.

Neural Activity Visualization
Neural activity is represented as an additional layer on top of
the static connectivity graph. We find that optimal approach
to visualize the two layers is to alter graph components
(nodes and edges) according to neural activity. This creates
a “breathing graph” which represents network activity and
structure in real-time. In particular, we propose dynamic
change to radii and colors of the nodes to depict neural
activity. Changes are typically noticeable when the visualized
variable representing the activity is continuous and scaled. In
addition, it is beneficial that the visualized variable will have
a continuous and interpretable meaning. Notable candidates
for such variables are SR calcium activation dynamics or
instantaneous firing rates (peri stimulus time histograms PSTH)
(Palm et al., 1988; Schatzmann, 1989; Egelman and Montague,
1999). SR calcium activation is a scalable continuous process
representing transformation of membrane voltage dynamics
(spiking, bursts separated by near-silent interburst periods,
and graded voltage potentials) to an activation variable. It
serves as a vital biophysical signal associated with activation
of muscle activity (McMillen and Holmes, 2006). In addition,
several recording techniques quantifying neural dynamics are
capable to measure and monitor SR calcium activity and
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FIGURE 1 | Interactive interface for Neural Interactome. Left panel enlists all the neurons classified by type (sensory, inter and motor). Each neuron is a clickable

button with a scroll option. Scrolling adjusts the magnitude of constant stimulus; shift + click ablates the neuron from the network. Right: Force-directed graph

displays each neuron’s membrane voltage (node color denotes the sign; radius denotes the magnitude) and connections between neurons (edges between each pair

of nodes). At the bottom of the graph, time bar keeps track of visualized time point (dark gray), and of computed time by the backend neural integration (light gray).

can be directly compared with the visualization. The PSTH
variable is computed from spiking dynamics and represents
a spike count over a sliding window in time (Dayan and
Abbott, 2001). Such a measure is applied to both measurements
of spiking membrane voltage or a computational model
that produces spike trains. PSTH is a continuous and
scaled measure widely used for identification, classification
and recognition of response patterns associated with stimuli
(Riffell et al., 2014; Shlizerman et al., 2014).

To visualize these activity variables we propose to alter the
radius and the color of the nodes. When the variable is a signed
number (as in SR calcium activation) we use the radius to
represent variable’s amplitude and assign a color map to represent
its sign. When the variable is unsigned, as in the case of PSTH,
only one node component (either color or radius) is needed
to represent its amplitude, and the other component can be
utilized for visualization of additional information such as spike
times. For example, when the radius is used to depict the PSTH
amplitude, color flickering can be used to display the occurrence
of spikes.

For C. elegans network we transform membrane voltage to
SR calcium like activation variable to represent neural dynamics.
In particular, membrane voltages, computed by backend neural
integrator, described further in “Backend Neural Integration”, are

translated to the following metric of radius size according to:

|Ri| =
Rmax |Vi|

2

ρ + |Vi|
2 (1)

sign (Ri) = sign(Vi)

where Rmax is the maximum radii of the nodes and ρ is the
slope factor. The sign of Ri is determined by the sign of the
voltage Vi. Such scaling of membrane voltages allows discerning
active neurons at each given time without having to visualize the
raw voltages. While in C. elegans membrane voltages are graded
potentials, similar scaling accommodates other diverse types of
neural activity, e.g., bursts, oscillations, etc (Rahmati et al., 2016).

Observing the colors and radii scaling over time allows to
visually capture the unique patterns of dynamics on a population
level, specifically oscillations, sudden bursts, settling down of
dynamics. For example, when a population of neurons exhibit
oscillations, colors will distinguish representatives of particular
groups that are active and dynamically change their tones to
display the fluctuation between positive and negative voltages.
Indeed, for C. elegans network we show how we can identify
oscillatory sub circuits of motor neurons, which fluctuate from
negative to positive values over the period of 2 sec, upon
stimulation of PLM touch sensitive sensory neurons. To further
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aid the investigation, the interface displays a plot of neuron’s
membrane voltage over time when the user hovers over a node.

Simulation Timescale
We implement the simulation timescale to be typically slower
than the actual time in order to: (i) balance computations
performed by the backend, and (ii) allow users to capture the
details of the dynamics, as visualization in actual timescale
tends to happen quickly. We also design the timescales of the
stimulations to be dynamic, such that during stimuli transition or
neural ablation, running time temporarily slows down to capture
the dynamics that occur during the transition.

On the bottom of the interface we locate the time bar, which
serves as the interface to interact with the timescales of the
visualization (Figure 1). It consists of two bars; the dark gray
bar shows the current time in visualization, while the light
gray bar shows the computed time by the backend. We have
developed the time bar to be similar to a streaming bar, which
is widely implemented in popular video-hosting websites such as
YouTube, and provides the interface to our review system, as we
describe next.

Review System
The review system allows for isolating various time and
population scales for further analysis (Figures 2D). Using the
time bar, we add the ability to navigate back to any previously
computed time by clicking on a desired time point within the
time bar (analogous to navigating back and forth while playing
a video). In such a case the network along with the dark gray bar
are set to the state at the selected time point. Time navigation
can be done either during simulation or when simulation is
paused. In the former, the simulation will continue onward from
the selected time point while for the latter, it will display the
paused dynamics at that time point. In addition, we assign left
and right arrow keys on the keyboard to control visualization
speed (Fast FWD and Fast BWD). When activated during
simulation or paused, the left and right arrow keys increase
visualization speed while browsing through the dynamics in
both directions.

An additional component of the review system is the dynamic
zoom-in/out feature, which focuses into sub circuits within the
network at any time during the simulation. It is implemented by

FIGURE 2 | Visualization and main functionalities of Neural Interactome. (A) Force-directed graph visualization of C. elegans worm’s synaptic (chemical, left) and gap

(electrical, right) connectomes. Each node represents individual neuron colored according to its group type and edges represent connections (either synaptic or gap).

(B) Schematics of Neural Interactome real-time stimulation and integration component; when user stimulates a neuron with the interface, the backend integrator

computes membrane voltages in response to the stimuli, which are then visualized on the graph in respect to their signs and magnitudes. (C) Neural ablation is

performed by clicking on the neuron, while holding the shift key. Ablation disconnects all the connections of the neuron (both gap and synaptic). (D) The review system

implements a clickable time bar to allow navigation to any previously computed time point in the simulated dynamics. This is further enhanced with dynamics

zoom-in/zoom-out feature designed for in-depth analysis of connectivity structure and local dynamics of sub-circuits.
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uniformly scaling the lengths of the edges and keeping the nodes
radii the same. Effectively, such amethod is optimal for observing
a small group of neurons, as it increases the spacing between
nodes and displays local sub circuit connectivity structure and
dynamics (Figure 2D). Hovering with a mouse over a neuron
will also highlight the connections it makes to neighbor neurons,
and will display their labels categorized in different group
type colors.

In addition, features such as “presets” and “save dynamics” are
implemented as part of the review system. Presets allow users
to save configurations of neurons stimuli panel whereas save
dynamics stores the voltage time series data for all neurons during
a single session as a file. Presets can be used to save stimuli
configuration, ablation configuration, or both, whereas save
dynamics can be used to perform detailed analysis/comparison
with the experiments against the simulated dynamics. To
create a preset, one can enter the name of the preset above
the neurons stimuli panel while the panel is configured to
desired setup (Figure 1) and click SAVE button. Upon exiting
or resetting the interface, save dynamics will automatically
save the time series data in npy file format (compatible with
Python NumPy library) in “saved_dynamics” folder within the
software directory.

BACKEND NEURAL INTEGRATION

Backend neural integration computes neural activity for the
whole network for a time interval [t, t + 1t] and transmits
these values to the interactive interface for visualization. In
C. elegans, the integrator is solving a system of non-linear
ordinary differential equations with 558 dimensions (279 for
neurons voltage and 279 for synaptic variables) that model the
biophysical processes and interactions between neurons. Such
high dimensional ODE system is not computationally trivial,
thus we implement an efficient vectorized adaptive solution.
Specifically, the following equations are being integrated (see
Kunert et al., 2014 for more details):

C
dVi

dt
= −Gc

(Vi − Ecell) − I
Gap
i
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Ṽ
)

− I
Syn
i

(

Ṽ
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= ar8(Vi; β, Vth) (1− si) − adsi (5)

8(Vi; β, Vth) =
1

1+ exp(−β (Vi − Vth))
(6)

Where C is the cell membrane capacitance, Gc is the cell
membrane conductance, Ecell is the leakage potential, and

I
Gap
i (Ṽ), I

Syn
i

(

Ṽ
)

, and IExti each correspond to input current
contributed by gap junctions, synapses, and external input
stimuli. G

g
ij and Gs

ij each correspond to total conductivity of

gap junctions between i and j and maximum total conductivity
of synapses to i from j, where Gs

ij is modulated by synaptic
activity variable si. The synaptic activity variable is governed
by Equation (5), where ar and ad correspond to the synaptic
activity rise and decay time, and 8 is the sigmoid function
with width β. The equations are based on in-situ recordings
of membrane voltage indicating that neuron responses are
graded potentials and hence better fit to describe the voltage
dynamics than standard multi-compartmental spiking neural
activity models.

While C. elegans neural activity is expressed through graded
membrane potential, for other systems, especially systems in
which neural activity is expressed through fast spiking, factors
such as synaptic transmission delays due to finite propagation
speeds and time lapses could appear and impact the network
dynamics (Guo et al., 2012, 2016). Mathematically, such delays
can be incorporated by introducing autaptic inhibition term
Iaut(t) of form:

I
syn
i (t) =

∑

j

gautij sij(t)
(

Esyn − Vi
)

(7)

Where gautij is the autaptic coupling strength from neuron j
to neuron i and the corresponding synaptic variable sij(t) is
described by identical first-order model as Equation. 5 with
sigmoid function term 8d now including the transmission delay
τd as follows:

8d =
Tmax

1+ exp[−βd(Vj (t− τd) − Vth)]
(8)

Where Tmax is the maximal concentration of transmitter in
the synaptic cleft, Vj is the pre-synaptic voltage. Since the
computation of network activity is independent from the
frontend visualization, the platform allows direct incorporation
of such higher order effects.

Synchronization of Integration and
Visualization
To support real-time interaction, we implement a
synchronization procedure through a communication system
between the interface and the backend. Specifically, we use
an object ODE integrator which supports event handling and
adaptive time-stepping. This functionality allows us to establish
a robust protocol between the interface and the backend to
support interactive changes to the simulation parameters in
real-time between solution points. The protocol monitors the
following quantities: tcomputed: Computed time in the backend
neural integration, tvisualization: Visualized time in the interactive
interface, 1t: Data stack, i.e., time interval to be computed,
tbuffer : Buffer size between tcomputed and tvisualization, τ : Internal
refractory period for checking tcomputed − tvisualization.

The system is implemented to keep tcomputed − tvisualization ∼=

tbuffer at all times such that backend neural integration is always
responsive to real-time user interactions, but also accommodates
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computation of new solutions before the visualization fully
catches up with the computation.

Based on these principles the communication protocol is
as follows:

(i) The interface sends a command to the backend to compute
solutions for the time interval of [tcomputed, tcomputed + 1t] given
the condition:

tcomputed − tvisualization ≤ tbuffer. (9)

(ii) Once the command has been sent, the interface waits for a
new block of solution of size 1t from the backend.

(iii) Once the block is received, the interface resumes to poll
whether condition (9) is satisfied. Polling is performed as follows:
If the condition is met, the system applies (i). If not, the system
goes through a refractory period of τ and then checks again for
condition (9).

In Figure 3 we include a diagram depicting how the
synchronization method allows for stimulation of neurons at
any given time and simultaneous inspection of network response
to such actions. When the user stimulates a specific neuron
(e.g., PLMR in Figure 3) or performs a neural ablation the
interface sends a command to backend neural integration to
modify necessary parameters. This is followed by an additional
command from the interface to compute the solution for interval
[tstimulus, tstimulus + 1t]. The backend, upon receiving the first
command, modifies the input stimuli parameters for stimulation
or connectivity matrices for ablation. It then executes the second
command by computing the voltage values for all neurons for
a given time interval. The computed voltage values are then
transmitted to the interface for visualization. This cycle of
command and data transmission is repeated indefinitely until the
simulation is stopped.

Stimuli Transition
In addition to integration of the dynamical equations, the
backend ensures that any modification of stimuli amplitude
during stimulation is executed in a realistic manner (i.e.,
no sudden jumps or drops in the stimulus). Ensuring such
continuity produces more realistic shift of stimuli from one value
to the other. Explicitly, we determine the magnitude of stimulus
during the transition through a combination of two hyperbolic
tangent functions:

Stransit (τ ) = Sold
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)
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2
+

1

2
tanh

(

t− (tswitch + toffset

r
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(10)

Where tswitch is the time when the input current was modified,
and r, toffset are the constant coefficients that determine the width
and initial point of the transition, respectively. Such construction
makes sure that every transition takes place in a continuous
manner and supports variable transition speeds of r.

Neural Ablation
In addition, the backend implements neural ablation by
instantaneous modification of connectivity matrices (both gap
and synaptic). This step is followed by recalculation of the
quantities in the network associated with the modified structure
(e.g., the equilibrium states of the network Vth; see Materials
and Methods section for more detail). Effectively, when the
user ablates a neuron in the interface, an array that keeps track
of active neurons (1-present, 0-ablated) is being updated. The
modified array is then sent to the backend, where for each ablated
neuron, say neuron i, all elements of the connectivity matrices in

FIGURE 3 | Synchronization between interactive interface and backend neural integration. The backend computes membrane voltage values for future time interval

requested by the interface, and transmits them to the graph for visualization. User driven change in the interactive interface, i.e., stimulation or neural ablation, invokes

a process that passes the information to the backend where relevant parameters of integration are modified.
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row and column i (corresponding to in/out connections) are set
to zero.

Reinsertion of neurons after they were ablated implements
the ablation operations in reverse order. Particularly, when the
user reinserts the neuron, the interactive interface modifies
the active neurons array, such that the corresponding neuron’s
entry is changed from 0 to 1. The modified array is
then transmitted to the backend, where it will restore the
corresponding row and column of the connectivity matrices to
default values.

RESULTS

We proceed to demonstrate how application of Neural
Interactome to C. elegans nervous system can assist in the study
of neural dynamics. In particular, we target two sub circuits (i)
a circuit associated with a touch response, which stimulation is
known to be associated with forward and backward locomotion
(ii) explore neural dynamic patterns induced by the excitation of
sub group of sensory neurons, which recently were discovered to
be associated with nictation behavior.

Posterior Touch Response Stimulation
Scenario
PLM sensory neurons (PLML/PLMR) in C. elegans nervous
system are known as posterior mechanoreceptors. When
stimulated by tail touch, PLM neurons excite motor neurons
associated with forward crawling motion (Chalfie et al., 1985).
AVB interneurons (AVBL/AVBR) are also known as driver cells
for forward movement of the worm. We stimulate PLM sensory
neurons and AVB interneurons with constant stimuli to examine
neural patterns associated with forward crawling motion as a
result of posterior touch response. We adjust the magnitudes
of the input currents by scrolling stimuli bars in the interface.
Specifically, we set 1.4 nA for PLM neurons, and 2.3 nA for AVB
interneurons, which result in profound oscillations.

As expected from experimental results and prior work,
we observe oscillations in some populations of neurons. We
therefore study their periodic cycle. In the top panel of Figure 4A,
we show two snapshots of network dynamics taken at discrete
percentages into the periodic cycle. We observe that the network
graph responds with strong oscillation in about ∼40% of the
neurons with mostly motor neurons (marked in red) being
specifically active.

We identify more detailed properties of the dynamics by
inspecting the dynamic graph in review mode (Figure 4B). The
interface allows us to identify most responsive neurons and
classify them into different types. In motor neurons, most active
neurons (by maximum voltage amplitude above the threshold)
appear to be Ventricular and Dorsal type B (VB, DB) neurons
alongside with Ventricular and Dorsal type D (VD, DD) and
AS motorneurons (AS01 – AS10). These neurons have identical
oscillatory period of ∼2 s, however, their dynamics are out of
phase to each other.

Most responsive interneurons turn out to be AVB, LUA,
DVA, PVR, and PVC (Figure 4A). Indeed AVB, DVA, and PVC

were experimentally shown to act as modulators for forward
locomotion (Chalfie et al., 1985; Wicks et al., 1996; Driscoll
and Kaplan, 1997). Notably, Neural Interactome also identifies
relatively strong responses in LUA and PVR neurons.While these
neurons have structural connections to PLM (LUA neurons are
suggested to connect between PLM touch receptors, and PVR
have gap junctions to PLM), their direct relation to forward
locomotion was not affirmed (e.g., laser ablation of LUA did
not lead to abnormalities of movement). Our analysis, however,
suggests that these neurons are actively participating in the
oscillations. These findings suggest that Neural Interactome
can help find candidates of neurons correlated to particular
dynamics, even for known sub circuits.

Anterior Touch Response Stimulation
Scenario
ALM neurons sense touch to the anterior body region (i.e.,
frontal body) and induce motor neurons dynamics associated
with backward locomotion (Chalfie et al., 1985). Aiding this
process are the AVA, AVD, and AVE interneurons which act as
modulators for the motion.We therefore stimulate these neurons
with input currents that lead to profound dynamics, in particular:
ALM= 5.8 nA, AVA= 2.0 nA, and AVD/AVE= 1.0 nA.

The snapshots of network dynamics while stimulating these
neurons are shown in the middle panel of Figure 4A and labeled
as Backward Scenario. Notably, comparing forward vs. backward
neural responses, the dynamics for backward responses involve
much larger number of neurons (∼90%) than that of forward
responses. We find the most responsive motor neurons to be
Ventricular Dorsal type A (VA, DA), Ventricular Dorsal type D
(VD, DD) and AS (AS01-AS10). The oscillation behavior for each
of these groups is of different phase, but their periods appear to
be uniform around ∼3.5 s. The results are consistent with the
experimental observations which reported the A-type and D-type
motor neurons coordinating the backward motion (Chalfie et al.,
1985; Chalfie and White, 1988).

Zooming into particular populations of motor neurons we
observe that individual motor neurons exhibit more complex
and irregular patterns than those of the forward stimulation.
Unlike the oscillations observed in forward stimulation which
are characterized by predominantly smooth sinusoidal form, here
motor neurons appear to have oscillatory patterns with various
waveforms: some motor neurons repeat steep fluctuations
between negative and positive voltage while some exhibit
triangular type oscillations above their thresholds.

We also observe more activity within the interneurons. Most
prominent ones appear to be AVA, AVDR, AVE, PVR, DVA,
ADA, and SABV. Some of these neurons are indeed identified
in the literature, AVA, AVD, AVE are characterized to act as
modulators for backward motion and DVA is characterized
to maintain activity (Chalfie et al., 1985; Wicks et al., 1996;
Driscoll and Kaplan, 1997; Gray et al., 2005). However, we
also find high activity in neurons such as PVR, ADA, and
SABV. While PVR makes gap junction with ALM, its role in
backward locomotion has not been yet clarified. For both ADA
and SABV, their functionality has not been fully specified yet.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 832

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. Neural Interactome

FIGURE 4 | (A) Snapshots of neuronal responses corresponding to locomotion forward, backward, and nictation scenarios visualized by Neural Interactome. Forward

scenario shows the snapshots of neural dynamics in response to PLM and AVB neurons stimulation. Each snapshot is taken at 30% and 60% into the average period

of motor neurons oscillatory dynamics. On the right panel, the most responsive interneurons are highlighted. Backward scenario displays the snapshots of neural

dynamics as a result of stimulation of ALM/AVA/AVD/AVE neurons. Nictation scenario displays the snapshots of dynamics upon stimulation of IL2 neurons.

(B) Identification of unique oscillatory dynamics during forward scenario using the review mode. Visualization of motor-neurons sub circuit using the review system

zoom-in function (left). Snapshots of Ventricular B motor neurons (VB01 ∼ VB05) during forward scenario sampled five times with equal interval during 2 s periodic

cycle (right).

As in the posterior touch response scenario, the discovery of
these additional neurons participating in dynamics provides new
insights regarding the neurosensory integration of anterior touch
response behavior.

IL2 Neurons Stimulation Scenario
It has been recently shown that IL2 neurons regulate the nictation
behavior in which a worm stands on its tail and waves its
head. Such behavior is known to be observed within the dauer
larva (i.e., developmental stage nematode worms) to transport
itself via hosts such as flies or birds (Lee et al., 2012). For
non-dauers, targeted activation of IL2 neurons does not induce
nictation possibly because IL2 neurons undergo a significant
structural change at the dauer stage. In this scenario, we stimulate

IL2 neurons through Neural Interactome to investigate motor
neuron dynamics possibly linked to such behavior or its remnant.

We present snapshots of network dynamics induced by IL2
(IL2DL/IL2DR, IL2L/IL2R, IL2VL/IL2VR) neurons stimulation
in the bottom panel of Figure 4A. Notably, the network activates
neurons located mostly on right side of the graph. This is a
different pattern than forward and backward patterns. Most
responsive motor neurons for such stimulation are RMG,
RMH, and RMED along with moderate responses within SMD
and RMEL/RMER motor neurons. The oscillatory periods
for these neurons are uniform around ∼5.7 s with different
phases. Particularly, RMHL and RMHR neurons each produce
oscillations nearly anti-phase to each other. For RMG neurons,
the oscillation wave of RMGL always preceded that of RMGR,
suggesting phase displacement between oscillations of these two
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neurons. Oscillations among four SMDmotor neurons (SMDDL,
SMDDR, SMDVL, and SMDVR) as well as of three RME
motor neurons (RMEL, RMER, RMED) were observed to be
approximately in phase.

In the literature, these motor neurons are known to be
involved with control of head muscles. RMG and RMH motor
neurons innervate lateral four rows of head muscles while RME
neurons innervate all eight rows of head muscles (White et al.,
1986). SMD motor neurons are also known to innervate head
muscles involved with search behaviors such as omega-shaped
turns under absence of food in the environment (Gray et al.,
2005). Remarkably, Neural Interactome shows no response
among the motor neurons associated with forward/backward
locomotion (such as Ventricular Dorsal A, B and D) and only
shows response of neurons modulating head muscles. Such
results suggest that the activation of IL2 neurons leads to periodic
head movements with absence of locomotory behavior in the
rest of the body. While this does not necessarily imply that such
motor neurons pattern is linked to nictation, these observations
provide particular hypotheses and insights about the relatively
unknown sub circuit for further empirical studies.

SCENARIOS: ABLATION

To validate Neural Interactome’s application to investigation
of network structural changes, we perform two ablations in
conjunction with previously performed scenarios. In particular,
we remove AVB and AVA interneurons from the network and
repeat the posterior touch response scenario to observe their
effects on the dynamics.

AVB Ablation
According to the literature, the removal of AVB neurons
impedes forward locomotion (Chalfie et al., 1985). Indeed, we
are able to confirm these experimental findings using Neural
Interactome. Scenario C in Figure 5 shows the three snapshots
of full periodic cycle upon repeating the posterior touch
response scenario with AVB neurons ablated. We observe that
neural patterns involve far less neurons than that of a healthy
network (Figure 5, Scenario A). In particular, examination of full
network snapshots as well as of local groups of motor neurons
shows considerably weaker responses in comparison to the
healthy structure.

FIGURE 5 | Neural dynamics during forward scenario for different structures of the network (non-ablated and ablated neurons). (A) Three snapshots of dynamics with

healthy network (i.e., no ablation). (B) Snapshots of dynamics when AVA inter neurons are ablated. (C) Snapshots of dynamics when AVB inter neurons are ablated.

All snapshots are taken at 25%, 50%, and 75% into each dynamics’ oscillation period.
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The visualization does capture weak oscillations within a small
group of motor neurons; particularly in Ventricular Dorsal B
(VB, DB). Oscillation amplitudes are far less than the healthy
dynamics, however, they remain to be relatively in phase and
maintain an oscillatory period of ∼1.9 s. We are unable to find
any oscillatory activity within Ventricular Dorsal type D (VD,
DD) neurons, which were out of phase with the activity of B
type (VB, DB) neurons in the healthy case. Acknowledging that
the two oscillatory phases property is necessary for the worm
to perform forward crawling motion (Stephens et al., 2008),
such observation confirms the experimental findings that the
ablation of AVB neurons hinders the worm’s ability to perform
forward motion.

AVA Ablation
Unlike the removal of AVB interneurons, experiments showed
that the removal of AVA interneurons does not impact forward
motion (Chalfie et al., 1985). Scenario B in Figure 5 shows
snapshots of posterior touch response scenario with AVA
neurons ablated. It is interesting to observe that the dynamics
have slightly longer oscillatory period of about ∼2.6 s. However,
aside from that, the visualization shows that almost identical
sets of neurons are active as in the healthy scenario (compare
with Figure 4, Scenario A). We are also able to confirm, using
the review mode, that the dynamics continue to exhibit strong
oscillations in (VB, DB) & (VD, DD) motor neurons, with (VD,
DD) neurons being out of phase to (VB, DB) neurons. Thus, our
results for AVA ablation are consistent with experimental data in
the literature.

Taken together our results show that Neural Interactome
assists in confirming empirical results reported in the literature,
and provides further insights regarding structure and activity
associated with examined responses.

DISCUSSION

In this paper, we present a new visual interactive method, which
we call Neural Interactome for studying the dynamics and the
structure of a neuronal system (dynome). While it is important
to simulate the full dynome to study network functionalities,
multiple simulations of the dynome are formidable due to
complexity in number of neurons and variations of stimuli.
Neural Interactome approaches the problem through interactive
real-time interface to the dynome and therefore significantly
simplifies these studies. In particular, we show the simplicity
of stimulating and ablating various groups of neurons in the
framework.

To elucidate the overall structure and functionalities of the
framework, we first define key components: (i) The interactive
interface and (ii) the backend neural integration. Next, we apply
it to C. elegans nematode, which connectome is resolved and
the computational model describing both biophysical processes
and interactions between neurons has been developed. We
show that the framework provides novel possibilities to explore
the worm’s network structure and its unique neural patterns
subject to stimuli. In particular, we demonstrate the Neural
Interactome’s capabilities using stimulations associated with the

touch response: stimulation of PLM/AVB neurons for posterior
touch, ALM/AVA/AVD/AVE neurons for anterior touch, and
stimulation associated with nictation behavior: stimulation
of IL2 sensory neurons. In all three scenarios, we observe
clear visual characteristics of the induced neural patterns. For
example, using the review features, we are able to identify most
responsive neurons and additional properties of dynamics such
as oscillation period and phase on individual and population
level. By comparing such observations with behavioral and neural
descriptions in the literature, we demonstrate that our results
are consistent with the empirical observations of C. elegans
locomotion and that they suggest additional novel insights.

In addition, we demonstrate the effectiveness and usability
of the neural ablation feature in Neural Interactome by ablating
hub interneurons (AVA or AVB). AVB ablation leads to network
visualization with diminished activity in motor neurons as well
as absence of characteristic out of phase oscillatory property
required for such motion. The ablation of AVA interneurons,
however, shows almost identical set of participating neurons as
of the healthy network. We therefore believe that the framework
has a potential to reveal other functionalities through multiple
ablation scenarios, and provide further insights describing the
role of the ablated neurons (Carrillo et al., 2013). In experiments,
preparation and execution of ablation consumes significant time
and usually requires special equipment, e.g., optogenetics. On
the contrary, Neural Interactome can produce initial analyses for
numerous ablation scenarios within seconds and consequently
can be utilized as a pre-experiment tool to map scenarios for
empirical exploration.

We designed the Neural Interactome to permit updates to
both connectivity and dynamic models within the framework
as they are further being refined in the future. Connectivity
updates will merely require a change in the connectivity matrices.
Replacement of a current model with more detailed one or
different models (e.g., H-H type model) would merely require
the replacement of the model itself, while the synchronization
method between the neural neural integration and the interface
will ensure that the computed values will be visualized properly.
With such flexibility we expect that the framework will be
similarly applicable to other neuronal systems: ranging from
actual biological networks (such as that of Drosophilla medulla,
the mouse retina, the mouse primary visual cortex) to artificial
dynamic neural networks (e.g., Recurrent Neural Networks) and
genetic networks (Alter, 2007). We also plan to keep adding
more features to the framework to provide additional interaction
possibilities with more detailed properties of the network, such as
modification of individual synaptic or gap connections between a
pair of neurons and more visualization options, such as plotting
the comparison between multiple neuronal voltage dynamics.
In addition to the functional features, we plan to incorporate
more advanced computation methods such as parallel (GPU)
computation for larger and more complex networks. The current
simulation scheme is based on sequential time-stepping and
supports event handling from user interactions. For network
with moderate dimensionality such as C. elegans network, the
overhead from incorporation of parallel computing for a single
time step (i.e., GPU) and synchronization of the solution exceeds

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 835

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. Neural Interactome

the time of solving it sequentially with CPU. However, for very
large networks the single step computation efficiency could be of
greater importance.

Beyond the simulation of C. elegans nervous system, we also
plan to connect the model to musculature/body movement as
they are critical components for model validation and for the
study of interaction between neural dynamics and behavior.
Development of such a model and connection of it with the C.
elegans neural interactome could help in understanding how the
neuronal network translates neural activity into behavior.

Neural Interactome can be either downloaded from Github
repository or accessed online via a web interface with following
addresses:

Github: https://github.com/shlizee/C-elegans-Neural-
Interactome

Web Interface: http://neuralcode.amath.washington.edu/
neuralinteractome

MATERIALS AND METHODS

In this section, we describe the materials and the methods used
for the development of Neural Interactome and its application
to C. elegans nervous system. The source code of the software
is available at Github repository (https://github.com/shlizee/C-
elegans-Neural-Interactome).

Development Environment and Tools
We used two different programming languages for the
development of Neural Interactome. We used Python to
develop the backend neural integration, and Javascript to
develop the frontend interactive interface. For establishing
communication protocols between the interface and backend,
we used flask-socketIO on Python side and Socket.IO on
javascript side. Both flask-socketIO and Socket.IO are libraries
that allow real-time bi-directional communication between
the client (frontend) and the server (backend) through
WebSocket protocols. In the context of Neural Interactome,
they were used to establish robust command and data
transactions between the interactive interface and backend
neural integration.

Several third party libraries were used for each language
as well. For Python, NumPy was used for mathematical
computations and manipulations of matrices. Several functions
from SciPy were used to construct the ordinary differential
equation solver and solve the system of linear equations for
computation of neural quantities such as Vthreshold values.

In Javascript, D3.js (Data-driven documents) platform was
used to construct force-directed graph representation of neuronal
network. For the main webpage development framework, we
used AngularJS as it provides optimal functionalities for building
dynamic, single page web apps (SPAs).

Threshold Potential (Vthreshold)
Computation
Threshold potential for each neuron is computed by imposing
dVi
dt = 0 (Equation 2 for C. elegans) and solving for Vi. This is

equivalent to Solving the following system of linear equations

Ax = b (11)

A = M1 +M2 +M3; b = −b1 − b3 − Iext, (12)

where the solution x is N × 1 vector with each entry being the
threshold potential Vthreshold for the ith neuron.

M1 is a matrix of sizeN×N whereN is the number of neurons
(279 for C. elegans) with its diagonal terms populated with −Gc

(cell membrane capacitance).
M2 is a diagonal matrix where diagonal term in ith row

corresponds to−
∑

j G
g
ij i.e., the sum of total conductivity of gap

junctions for the ith neuron.
M3 is a diagonal matrix where its ith diagonal term

corresponds to −
∑

j seqG
s
ij, where seq =

ar
ar+2ad

and Gs
ij is

maximum total conductivity of synapses to i from j. Note that seq
is obtained by imposing dsi

dt = 0 and synaptic activation 8 = 1/2
in Equation 5.

b1 = Gc∗Ec where Ec is a 1D vector of size N × 1 in which all
of its elements are Ec (leakage potential).

b3 = Gs · (s∗eqEj) where Ej is a 1D vector of size N × 1
that enlists the directionality of each neuron (0 if excitatory or
−48mV if inhibitory).

Iext is the input stimuli vector where its ith element determines
the input current amplitude for the ith neuron.

Parameters
Dynome Visualization
We used Rmax = 15 as the maximum radius of the nodes in
Equation 1.

ODEs Integration Parameters
The following values were used for relative/absolute tolerance
and minimum integration step size. Note that the step size is
determined adaptively by the solver to guarantee the prescribed
tolerances.

Relative tolerance: 10e-9
Absolute tolerance: 10e-10
Minimum step size: 10e-9s (1 ns).

Visualization Timescale
The following values were used for the temporal resolution of
simulation and dynamic timescales for visualization. Note that
these parameters are for visualization only and are not associated
with the integration step in backend integrator.

Temporal resolution: 10 ms
Visualization rate (normal): 100 ms/s
Visualization rate (during transition or ablation): 40 ms/s.

Parameters for Neural Integration
The values of parameters for each connection described in
Equation 2–6 are not precisely determined. However, we assume
reasonable values reported in the literature (Wicks et al., 1996;
Varshney et al., 2011). We assume each individual gap and
synaptic junction has approximate conductance of g = 100 pS
(Varshney et al., 2011), cell membrane conductance Gc = 10
pS, and membrane capacitance C = 1.5 pF (Varshney et al.,
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FIGURE 6 | Determining the optimal 1t (data stack size) for synchronization

and computational efficiency. Two evaluation metrics are collected for different

choices of stack size. t_computed − t_vis measures the synchronization

between the leading integration time point in backend and leading visualization

time point in frontend (lower is better). Stutter counts represents the

computational efficiency by counting the number of stutters (i.e., when

visualization pauses with t_computed = t_vis; lower is better). Both metrics are

measured with identical sessions of 10 s simulation. Final evaluation metric

(Lag) is obtained by multiplying these two metrics (lower is better). The results

show that 1t = 50 ms achieves the minimum lag, and supports the best

balance between synchronization and computational efficiency.

2011). We take leakage potential Ecell = −35 mV while reversal
potential Ej = 0mV for excitatory synapses and −48 mV for
inhibitory synapses (Wicks et al., 1996). For the synaptic activity
variable, we take ar =

1
1.5 , ad = 5

1.5 and width of the sigmoid
β = 0.125mV−1 (Wicks et al., 1996). Also for the initial condition
of the membrane voltages V and synaptic activity variable s,
we sample the normal distribution of µ = 0 and σ = 0.94
with size 279 ∗ 2 (for both V and s) and multiply by 10−4. To
validate the simulation and the choice of parameters we tested
for robustness by perturbing (±20%) individual connection
strengths and each neuron’s parameters, showing that dynamic
functionality persists.

Parameters for Synchronization
The optimal values for 1t, tbuffer, and internal refractory
period τ in Equation 9 depend on computing power of the

system. We found the parameters 1t = 50 ms, tbuffer =

100 ms and τ = 50 ms (in actual time) to be of reasonable
default values which achieve both computational efficiency and
synchronization between the interface and backend (Figure 6).
Note that 1t and tbuffer are in simulation timescale while τ is
measured in computer’s internal timer.

Parameters for Stimuli Transition
We use toffset = 150 ms, and r = 0.025 in Equation 10. We
found these values to be the optimal choice since the transition
curve does not induce abrupt shift in dynome dynamics, and the
visualization rate remains to be fast enough. Given the value of
r, the time it takes for complete transition from one stimulus
amplitude to the other is approximately 2toffset . Thus, for our
choice of parameters for C. elegans simulations, the transitional
period is around 300ms.

Computation of Input Current Unit
From Equation 2–4 and physiological parameters specified
above, the unit of input current is pS ∗mV = 10−15A = fA
(femto-ampere). However, in our implementation, we divided
both sides of Equation 2 by conductance constant 100 pS. This
gives 1arb (arbitrary unit of input)= 10−13A = 0.1 pA, implying
1000 arb= 100 pA= 0.1 nA. We verified these units with the I-V
curves measured in Goodman et al. (1998).
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Excessively high, neural synchronization has been associated with epileptic seizures,

one of the most common brain diseases worldwide. A better understanding of neural

synchronization mechanisms can thus help control or even treat epilepsy. In this paper,

we study neural synchronization in a random network where nodes are neurons with

excitatory and inhibitory synapses, and neural activity for each node is provided by

the adaptive exponential integrate-and-fire model. In this framework, we verify that

the decrease in the influence of inhibition can generate synchronization originating

from a pattern of desynchronized spikes. The transition from desynchronous spikes to

synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a

hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes

exist. We verify that, for parameters in the bistability regime, a square current pulse

can trigger excessively high (abnormal) synchronization, a process that can reproduce

features of epileptic seizures. Then, we show that it is possible to suppress such

abnormal synchronization by applying a small-amplitude external current on> 10% of the

neurons in the network. Our results demonstrate that external electrical stimulation not

only can trigger synchronous behavior, but more importantly, it can be used as ameans to

reduce abnormal synchronization and thus, control or treat effectively epileptic seizures.

Keywords: bistable regime, network, adaptive exponential integrate-and-fire neural model, neural dynamics,

synchronization, epilepsy

1. INTRODUCTION

Epilepsy is a brain disease that causes seizures and sometimes loss of consciousness (Chen et al.,
2014, 2015). Epileptic seizures are associated with excessively high synchronous activities (Li et al.,
2007; Jiruska et al., 2013; Wu et al., 2015) of neocortex regions or other neural populations (Fisher
et al., 2005; Sierra-Paredes and Sierra-Marcuño, 2007; Engel et al., 2013; Geier and Lehnertz, 2017;
Falco-Walter et al., 2018). Electroencephalography has been used to identify and classify seizures
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(Noachtar and Rémi, 2009), as well as to understand epileptic
seizures (Scharfman and Buckmaster, 2014). Abnormal activities
have a short period of time, lasting from a few seconds to minutes
(Trinka et al., 2015), and they can occur in small or larger
regions in the brain (McCandless, 2012; Kramer and Cash, 2012).
Two suggested mechanisms responsible for the generation of
partial epilepsy are the decrease of inhibition and increase of
excitation (McCandless, 2012). In experiments and simulations,
the reduction of excitatory and the increase of inhibitory
influence have been effective in suppressing and preventing
synchronized behaviors (Traub et al., 1993; Schindler et al., 2008).
Traub and Wong (1982) showed that synchronized bursts that
appear in epileptic seizures depend on neural dynamics.

Single seizures can not kill neurons, however recurrent ones
can do so and thus, can lead to chronic epilepsy (Dingledine
et al., 2014). Evidence that supports this further is provided by
abnormal anatomical alterations, such as mossy fiber sprouting
(Danzer, 2017), dendritic reconfigurations (Wong, 2005, 2008),
and neurogenesis (Jessberger and Parent, 2015; Cho et al., 2015).
In fact, such alterations change the balance between inhibition
and excitation (Holt and Netoff, 2013; Silva et al., 2003). Wang
et al. (2017) demonstrated that a small alteration in the network
topology can induce a bistable state with an abrupt transition to
synchronization. Some in vitro seizures generated epileptiform
activities when inhibitory synapses were blocked or excitatory
synapses were enhanced (Traub et al., 1994; White, 2002).
Several studies showed that epileptiform activities are related
not only with unbalanced neural networks, but also with highly
synchronous regimes (Uhlhaas and Singer, 2006; Andres-Mach
and Adamu, 2017).

Different routes to epileptic seizures were reported by
Silva et al. (2003). The authors considered epilepsy as a
dynamical disease and presented a theoretical framework where
epileptic seizures occur in neural networks that exhibit bistable
dynamics. In the bistable state, transitions can happen between
desynchronous and synchronous behaviors. Suffczynski et al.
(2004) modeled the dynamics of epileptic phenomena by means
of a bistable network.

Many works reported that periodic electrical pulse stimulation
facilitates synchronization, while random stimulation promotes
desynchronization in networks (Cota et al., 2009). Electrical
stimulation can be applied in different brain areas, for instance
in the hippocampus, thalamus, and cerebellum (McCandless,
2012). The mechanism for electrical stimulation to cease seizures
is still not completely understood, however, signal parameters
such as frequency, duration, and amplitude can be changed to
improve the efficiency of the treatment of epilepsy (McCandless,
2012). The electrical stimulation has been used as an efficient
treatment for epilepsy in the hippocampus (Velasco et al., 2007).
In Antonopoulos (2016), the author studied external electrical
perturbations and their responses in the brain dynamic network
of the Caenorhabditis elegans soil worm. It was shown that
when one perturbs specific communities, keeping the others
unperturbed, the external stimulations propagate to some but not
all of them. It was also found that there are perturbations that
do not trigger any response at all and that this depends on the
initially perturbed community.

Neural network models have been used to mimic phenomena
related to neural activities in the brain. Guo et al. (2016a) built
a network model where the postsynaptic neuron receives input
from excitatory presynaptic neurons. They incorporated autaptic
coupling (Guo et al., 2016b) in a biophysical model. Delayed
models have been considered in biological systems (Khajanchi
et al., 2018), for instance, Sun et al. (2018) analyzed the influence
of time delay in neuronal networks. They showed that intra-
and inter-time delays can induce fast regular firings in clustered
networks. In this work, we build a random network with neural
dynamics to study synchronization induced in a bistable state
which is related to epileptic seizures. In particular, we consider
a network composed of adaptive exponential integrate-and-fire
(AEIF) neurons coupled by means of inhibitory and excitatory
synapses. The AEIF model mimics phenomenological behaviors
of neurons (Clopath et al., 2006) and is appropriate to study
even large networks (Naud et al., 2008). Borges et al. (2017)
verified that depending on the excitatory synaptic strength and
connection probability, a random network of coupled AEIF
neurons can exhibit transitions between desynchronized spikes
and synchronized bursts (Protachevicz et al., 2018). In the
network considered here, we observe the existence of bistability
when it is unbalanced, namely that the decrease of synaptic
inhibition induces a bistable state. We analyse the effects of the
application of external square current pulses (SCP) by perturbing
the neural dynamics on the network using parameters that lead
to a bistable state, such as the excitatory and inhibitory synaptic
conductances. We find that, depending on the duration and
amplitude of the external current, SCP can either trigger or
suppress synchronization in the bistability region, an idea that
can be used further to treat epilepsy by suppressing excessive
synchronization in affected brain regions.

2. METHODS

2.1. Neural Network Model
We build a random network of N = 1, 000 adaptive exponential
integrate-and-fire neurons (Brette and Gerstner, 2005) with
probability p for the formation of connections among them equal
to 0.1. The network consists of 80% excitatory and 20% inhibitory
neurons (Noback et al., 2005). The dynamics of each neuron
i, i = 1, . . . ,N in the network is given by the set of equations

Cm
dVi

dt
= −gL(Vi − EL)+ gL1T exp

(

Vi − VT

1T

)

+ Ii − wi +

N
∑

j=1

(V
j
REV − Vi)Mijgj + Ŵi,

τw
dwi

dt
= ai(Vi − EL)− wi, (1)

τs
dgi

dt
= −gi.

The membrane potential Vi and adaptation current wi represent
the state of each neuron i. The capacitance membrane Cm is
set to Cm = 200 pF, the leak conductance to gL = 12 nS,
the resting potential to EL = −70 mV, the slope factor to
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1T = 2.0 mV and the spike threshold to VT = −50 mV.
The adaptation current depends on the adaptation time constant
τw = 300 ms and the level of subthreshold adaptation ai that is
randomly distributed in the interval [0.19, 0.21] nS. We consider
the injection of current Ii to each neuron i in terms of the
relative rheobase current ri = Ii/Irheobase (Naud et al., 2008).
The rheobase is the minimum amplitude of the applied current
to generate a single or successive firings. The application of
this constant current allows neurons to change their potentials
from resting potentials to spikes. The value of the rheobase
depends on the neuron parameters. The external current arriving
at neuron i is represented by Ŵi. We consider the external current
according to a SCP with amplitude AI and time duration TI .
The random connections in the network are described by the
binary adjacency matrix Mij with entries either equal to 1 when
there is a connection from i to j or 0 in the absence of such
a connection. gi is the synaptic conductance, τs the synaptic
time constant, and VREV the synaptic reversal potential. We
consider τs = 2.728 ms, VREV = 0mV for excitatory synapses,
and VREV = −80 mV for inhibitory synapses. The synaptic
conductance decays exponential with a synaptic time constant τs.
When the membrane potential of neuron i is above the threshold
Vi > Vthres (Naud et al., 2008), the state variable is updated by
the rule

Vi → Vr = −58mV,

wi → wi + 70pA, (2)

gi → gi + gs,

where gs assumes the value of gexc when neuron i is excitatory
(i ≤ 0.8N) and ginh when neuron i is inhibitory (i > 0.8N). In
this work, we study the parameter space (gexc, ginh) and consider
a relative inhibitory synaptic conductance g = ginh/gexc. We
consider parameter values in which the individual uncoupled
neurons perform spike activities. The initial values ofV andw are
randomly distributed in the interval [−70,−50] mV and [0, 70]
pA, respectively. The initial gi value is equal to 0.

2.2. Synchronization
The synchronous behavior in the network can be identified by
means of the complex phase order parameter (Kuramoto, 1984)

R(t) exp(i8(t)) ≡
1

N

N
∑

j=1

exp(iψj(t)), (3)

where R(t) and 8(t) are the amplitude and angle of a centroid
phase vector over time, respectively. The phase of neuron j is
obtained by means of

ψj(t) = 2πm+ 2π
t − tj,m

tj,m+1 − tj,m
, (4)

where tj,m corresponds to the time of the m−th spike of neuron
j (tj,m < t < tj,m+1) (Rosenblum et al., 1996, 1997). We
consider that the spike occurs for Vj > Vthres. R(t) is equal
to 0 for fully desynchronized and 1 for fully synchronized
patterns, respectively.

We calculate the time-average order parameter R (Batista
et al., 2017) given by

R =
1

tfin − tini

∫ tfin

tini

R(t)dt, (5)

where tfin − tini is the time window. We consider tfin = 200s
and tini = 180s.

2.3. Synaptic Input
Wemonitor the instantaneous synaptic conductances arriving at
each neuron i through

IISCi (t) =
N

∑

j=1

(V
j
REV − Vi)Mijgj. (6)

The instantaneous synaptic input changes over time due to
the excitatory and inhibitory inputs received by neuron i. The
average instantaneous synaptic conductances is given by

Isyn(t) =
1

N

N
∑

i=1

IISCi (t). (7)

2.4. Coefficient of Variation
The m−th inter-spike interval ISImi is defined as the difference
between two consecutive spikes of neuron i,

ISImi = tm+1
i − tmi > 0, (8)

where tmi is the time of them−th spike of neuron i.
Using the mean value of ISIi, ISIi, and its standard deviation,

σISIi , we calculate the coefficient of variation (CV)

CVi =
σISIi

ISIi
. (9)

The average of CV (CV) is then obtained through

CV =
1

N

N
∑

i= 1

CVi. (10)

Finally, we use CV to identify spike (when CV < 0.5) and
burst fire patterns (when CV ≥ 0.5) (Borges et al., 2017;
Protachevicz et al., 2018).

2.5. Instantaneous and Mean Firing-Rate
The instantaneous firing-rate in intervals of tstep = 1ms
is given by

F(t) =
1

N

N
∑

i= 1

(∫ t+tstep

t
δ(t′ − ti)dt

′

)

, (11)

where ti is the firing time of neuron i in the time interval (t ≤

ti ≤ t + 1) ms. This measure allows to obtain the instantaneous
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FIGURE 1 | Parameter space (g, r) for the (A) time-average order parameter (R), (B) the mean coefficient of variation (CV), and (C) the mean firing-rate (F ). Raster plot

that displays the spiking activity over time and membrane potential are shown for (D) desynchronized spikes for r = 2.0 and g = 5.5 (cyan triangle), (E) synchronized

spikes for r = 1.5 and g = 4 (magenta square), and (F) synchronized bursts for r = 2.0 and g = 2.5 (green circle). Here, we consider gexc = 0.4nS. In (G), we

illustrate a network composed of excitatory (red) and inhibitory (blue) neurons, where some inhibitory neurons are removed (black dashed circle). (H) Shows the

time-average order parameter for g vs. the percentage of inhibitory neurons removed from the network. The green dashed line corresponds to g = 2.9. The values of

CV and instantaneous firing-rate are shown in (I,J), respectively.

population activity in the network. The mean firing-rate can then
be calculated by means of

F =
1

ISI
, (12)

where ISI is the average ISI obtained over all N neurons in the
network, that is ISI = 1

N

∑N
i=1 ISIi.

3. RESULTS

3.1. Inhibitory Effect on Synchronous
Behavior
The balance between excitation and inhibition generates an
asynchronous activity in the network (Lundqvist et al., 2010;
Ostojic, 2014). However, for the unbalanced network we observe
synchronized spikes and bursts. Figures 1A–C show the time-
average order parameter (R), the mean coefficient of variation
(CV) and the mean firing-rate (F), respectively, for the parameter
space (g, r), where g is the ratio between inhibitory (ginh)
and excitatory (gexc) synaptic conductances, and r the relative
rheobase current. For gexc = 0.4nS and g > 6, we observe that
R < 0.5 and that CV < 0.5, corresponding to desynchronized
spikes. In Figure 1D, we see the raster plot and membrane
potential for 2 neurons in the network with a desynchronized
spike-pattern for g = 5.5 and r = 2 (blue triangle). For g = 4 and

r = 1.5 (magenta square), the dynamics exhibits synchronized
spikes (Figure 1E), as a result of setting R > 0.9 and CV < 0.5.
Figure 1F shows synchronized bursts of activity for g = 2.5 and
r = 2 (green circle), where R > 0.9 and CV ≥ 0.5. Within
this framework, we have verified the existence of transitions
from desynchronized spikes to synchronized bursting activities
without significant changes in the mean firing-rate.

The appearance of synchronous behavior cannot only be
related to the decrease of the inhibitory synaptic strength, but
also to a loss of inhibitory neurons. In particular, we show this
in Figure 1G which illustrates a network composed of excitatory
(red) and inhibitory (blue) neurons, where some inhibitory
neurons were removed (dashed circles). In Figure 1H, we see
that the synchronous behavior depends on g and the percentage
of removed inhibitory neurons. Figure 1I shows the transition
from spiking dynamics (CV < 0.5) to bursting dynamics (CV ≥

0.5), and Figure 1J shows the instantaneous firing-rate F(t). For
g = 2.9 and gexc = 0.4nS (green dashed line), the transition to
synchronized bursts occurs when 10% of inhibitory neurons are
removed from the network, and as a consequence F(t) reaches the
maximum value of 0.2.

Concluding, alterations in the inhibitory synaptic strength or
in the number of inhibitory neurons can induce transition to
synchronous patterns. Wang et al. (2017) presented results where
synchronization transition occurs as a result of small changes in
the topology of the network, whereas here, we study transitions
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FIGURE 2 | (A) The parameter space (g,gexc) for r = 2, where R is encoded in color. The black region corresponds to desynchronized activity, whereas colored

regions indicate R > 0.6 and the white region represents the bistable regime. (B) The bistable region indicated in the parameter space of (A) by means of a green

dashed line. (C,D) Show the raster plots and Isyn for desynchronized spikes (blue circle) and synchronized bursts (red square), respectively. We identify bistability by

checking when Rbackward − Rforward > 0.4 and consider two trials for each set of parameter values. (E) The synchronization probability as a function of gexc.

(F) R× gexc for σnoise equal to 25 pA and 250 pA.

caused due to changes in the inhibitory synaptic strength and the
emergence of a bistable regime.

3.2. Bistable Regime
Next, we analyse synchronization in the parameter space (g, gexc).
In particular, Figure 2A shows R with values depicted in the
color bar. The black region corresponds to desynchronized spike
activity, while the remaining colored regions are associated with
burst activities. The white region represents the bistable regime,
where desynchronized spikes or synchronized bursts are possible
depending on the initial conditions. In the bistable regime,
decreasing gexc (backward direction), R is higher than increasing
gexc (forward direction), as shown in Figure 2B for g = 3, r = 2,
and gexc = [0.35, 0.45] nS (green dashed line in Figure 2A).
We identify bistability (white region) in the parameter space
when the condition Rbackward − Rforward > 0.4 is fulfilled. The
raster plot and instantaneous synaptic input for desynchronized
spikes (blue circle) and synchronized bursts (red square) are
shown in Figures 2C,D, respectively. When the dynamics on
the random network is characterized by desynchronized spikes,
the instantaneous synaptic inputs exhibit Isyn(t) ≈ 50pA. For
synchronized bursts, Isyn(t) ≈ 0 when a large number of neurons
in the network are silent (i.e., not firing), and Isyn(t) > 200 pA
during synchronous firing activities. In Figure 2E, we compute
the probability of occurrence of excessively high synchronicity
within the bistable regime. We observe a small synchronization
probability value in the bistable region. This result has a
biological importance due to the fact that the seizure state is
a relatively small probability event compared with the normal
state. DaQing et al. (2017) showed that noise can regulate seizure
dynamics in partial epilepsy. Figure 2F displays R × gexc for

FIGURE 3 | Phase space (w1,V1) (A,C) and time evolution of w1 (B,D) for

spikes (blue) and burst activity (red). The gray regions correspond to

dV1/dt < 0 and the black line represents dV1/dt = 0 (V-nullcline).

Gaussian noise with mean 0 and standard deviation σnoise equal
to 25 pA and 250 pA. We verify that the bistable region decreases
when the noise level increases.

In the bistable regime, we investigate the evolution of a
trajectory for a finite time interval in the phase space (wi,Vi)
and the time evolution of wi shown in Figure 3 for i = 1,
where the gray regions correspond to dVi/dt < 0. The boundary
between the gray and white regions (black line) is given by
dVi/dt = 0, the Vi-nullcline (Naud et al., 2008). During spiking
activity, the trajectory (see Figure 3A) and time evolution of
wi (see Figure 3B) do not cross the Vi-nullcline. For bursting
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activities (see Figures 3C,D), we observe that wi lies in the
region enclosed by theVi-nullcline. The emergence of the bistable
behavior is related to changes in the Vi-nullcline caused by the
variation of Isyn.

3.3. External Square Current Pulse
Here, following a similar idea as in Antonopoulos (2016), we
investigate the effect of the application of SCP on the bistable
regime. We apply SCP considering different values of AI , TI , and
number of removed inhibitory neurons. The SCP is immediately
switched off after TI and the analysis of the effect on the
dynamical behavior is started.

FIGURE 4 | (A) The parameter space (TI,AI ) in the bistable regime, where the

color bar indicates the time the system shows synchronized burst behavior

after the application of SCP. Instantaneous firing-rate for values for (B) white

circle (AI = 25pA, TI = 0.2s) and (C) green square (AI = 150pA, TI = 0.2s).

Note that in this figure gexc = 0.4nS, g = 3 and r = 2.

Initially, we apply SCP to all neurons in the network with
parameter values in the bistable regime with desynchronous
behavior (white region in Figure 2A). Figure 4A displays the
time (in color scale) that the neurons show a synchronized
pattern after the application of SCP. In the black region, we
see that SCP does not change the dynamical behavior, namely
the neurons remain in a regime of desynchronized behavior.
The yellow region depicts the values of TI and AI of the
SCP that induce a change in the behavior of the neurons
from desynchronized spikes to synchronized bursts. Picking up
one point close to the border of the black and blue regions
(white circle), we see that the instantaneous firing-rate (F(t)) of
Equation 11 (see Figure 4B, blue line) exhibits low-amplitude
oscillations corresponding to desynchronized spikes. For TI

and AI values in the yellow region, F(t) (see Figure 4C, red
line) exhibits a high-amplitude oscillation after the application
of SCP, corresponding to synchronized bursts. For sufficiently
large amplitudes, the change in the behavior induced by SCP
does not depend on time. Importantly, perturbations with small
amplitudes applied for short times is a sufficient condition
for the induction of synchronous burst activity in the bistable
regime. Therefore, our results suggest that even small excitatory
stimuli in a random neural network arriving from other parts
might be sufficient for the initiation of excessively high neural
synchronization, related to the onset of epileptic seizures. Thus,
further work on other neural networks that resemble brain
activity might provide more insights on epileptogenesis.

Similarly, we apply SCP when the neurons in the network
show synchronized bursts of firing activity in the bistable regime.
Here, we aim to suppressing the synchronous behavior by means
of applying SCP. We consider SCP with positive and negative
amplitudes applied to 10% of the neurons in the randomnetwork.
Figure 5A shows how long the bursts remain synchronized after
SCP is switched off (color bar). We verified that both negative
and positive amplitudes exhibit regions where the synchronous
behaviors are suppressed, namely there is a transition from
synchronized bursts to desynchronized spikes. In addition, for
TI > 0.4 s and considering the absolute value of the amplitudes,
the transition occurs for positive values with smaller amplitudes
than for negative values. In Figure 5B, we show the dependence

FIGURE 5 | (A) The parameter space (TI,AI ), where the color bar indicates the time the system shows synchronized burst behavior after the application of SCP.

(B) Number of perturbed neurons as a function of AI. Note that in this figure we consider gexc = 0.4nS, g = 3 and r = 2.
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of the percentage of the perturbed neurons by the stimulus
on the time the neurons remain in the bursting synchronous
regime. The black region represents parameters for which the
dynamics on the network does not remain synchronous, and
therefore, synchronization is suppressed. In this figure, TI = 1s.
These results allow us to conclude that desynchronous behavior
is achieved for AI > 15pA and for at least 10% of the
perturbed neurons.

4. DISCUSSION AND CONCLUSION

In this paper, we studied the influence of inhibitory synapses on
the appearance of synchronized and desynchronized fire patterns
in a random network with adaptive exponential integrate-and-
fire neural dynamics. When the inhibitory influence is reduced
by either decreasing the inhibitory synaptic strength or the
number of inhibitory neurons, the dynamics on the network
is more likely to exhibit synchronous behavior. The occurrence
of synchronization results from the lack of balance between
excitatory and inhibitory synaptic influences.

We found parameter values that shift to a bistable regime
where the neurons can either exhibit desynchronous spiking
or synchronized bursting behavior. In the bistability region, a
desynchronous (synchronous) behavior becomes synchronous
(desynchronous) by varying forward (backward) gexc. The onset
of synchronization is thus associated with a hysteresis-loop.

We showed that, in the bistable regime, synchronized bursts
can be induced by means of applying square current pulses.
Our study also showed that outside the bistable regime, square
current pulses do not induce synchronization. Furthermore, in
the bistable regime, when neurons are synchronized, square
current pulses can be used to suppress it. Positive amplitudes of
square current pulses are more effective in ceasing synchronized
bursts than negative ones. In addition, we showed that when
one applies square current pulses to >10% of the neurons in the
network, it is enough to desynchronize the dynamics. Our work
shows that a decrease of inhibition contributes to the appearance
of excessively high synchronization, reminiscent of the onset

of epileptic seizures in the brain, thus confirming previous
experimental results and theoretical models. Both decreasing the
number of inhibitory neurons and the inhibitory strength, induce
excessively high synchronization, related to epilepsy.

Finally, within this framework, we hypothesize that low
amplitude stimuli coming from some brain regions might be
capable of inducing an epileptic seizuremanifested by high neural
(abnormal) synchronization in other brain regions. Therefore,
the work in this paper supports the common approach of
the induction of square current pulses to control or treat
epileptic seizures, since we have shown that such external
perturbations not only can induce, but more importantly
can suppress synchronous behavior in random networks with
neural dynamics.
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Time is a continuous, homogeneous, one-way, and independent signal that cannot be

modified by human will. The mechanism of how the brain processes temporal information

remains elusive. According to previous work, time-keeping in medial premotor cortex

(MPC) is governed by four kinds of ramp cell populations (Merchant et al., 2011). We

believe that these cell populations participate in temporal information processing in

MPC. Hence, in this the present study, we present a model that uses spiking neuron,

including these cell populations, to construct a complete circuit for temporal processing.

By combining the time-adaptive drift-diffusion model (TDDM) with the transmission of

impulse information between neurons, this new model is able to successfully reproduce

the result of synchronization-continuation tapping task (SCT). We also discovered that

the neurons that we used exhibited some of the firing properties of time-related neurons

detected by electrophysiological experiments in other studies. Therefore, we believe that

our model reflects many of the physiological of neural circuits in the biological brain and

can explain some of the phenomena in the temporal-perception process.

Keywords: time-related neuron, time-processing circuit, spiking-neuron, synaptic learning, ramp activity, SCT

INTRODUCTION

When we use visual cues to observe the environment, we need to grasp both the time interval
and the sequence of various events. When we wish to understand speech, we need to distinguish
between the arrival times of the audio signals. We need to accurately control the order of execution
of motor commands to skeletal muscle to perform activities such as speaking and playing the
piano. When we solve problems, we also need to plan the chronological order of all sub-goals.
These frequent daily tasks indicate that the capacity for temporal information processing, like other
cognitive abilities such as working memory, must be one of the basic functions of the brain. Clearly,
humans can perceive a broad spectrum of time scales. At present, the neurocognitive community
usually divides the temporal-processing range of the brain into four categories: microsecond-
scale processing, millisecond-scale processing, second-to-minutes-scale processing, and circadian-
rhythm processing (Merchant and Lafuente, 2014). In our work, we focus on millisecond-scale
processing. The processing of millisecond-scale timing information is the most common, and it is
usually accompanied by various types of sensing and motor control. Most research on millisecond-
scale processing concernsmotion control and auditory time perception. Temporal processing in the
hundreds of milliseconds is quite sophisticated. And its neural underpinnings are largely unknown
yet. In a study on motion control, researchers discovered that neurons in the motor cortex convey
information via spike timing far more often than via spike rate (Tang et al., 2014). In addition,
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they found that the amount of information conveyed at the
millisecond timescale greatly exceeds the information available
from spike counts. The findings of this important study have
guided our time-perception model.

There are many tasks used to study perceptual and motor
timing. Perceptual timing is considered as a subjective judgement
of perceived timing and is not defined by movement. However,
motor timing is a kind of temporal process where the temporal
decision is intrinsically tied with movement. Hence, perceptual
and motor tasks represent two different kinds of tasks used to
study temporary-processing mechanisms in our brain. Classic
motor and perceptual timing tasks have been summarized
previously (Merchant and Lafuente, 2014). The task applied in
our work, called the synchronization-continuation tapping task
(SCT), is a kind of motor timing task.

In the current paper, we present a complex network in order
to simulate the synchronization-continuation experiment with
as much biological feasibility as possible. Here, we designed our
model from the perspective of structure just like the work we used
to do (Wei et al., 2017; Hui and Dawei, 2018). We considered not
only complex topologies, but also synaptic plasticity in order to
determine the time interval. And via the considered structure,
we were able to simulate the SCT experiment and obtain the
spiking neuron with a firing rate similar to that observed in
electrophysiological experiments.

Synchronization-Continuation Tapping
Task
In this study, the model we employed was based on experiments
on the millisecond scale. A recent study found that the activity of
cells in the medial prefrontal cortex (MPC) of macaques could
characterize the time course of SCT experiments (Merchant
et al., 2014). In an SCT experiment, the subject first responds
synchronously with a visual or auditory metronome and then
continues to produce the same interval without the metronome
(Figure 1). In addition, they tested the neurophysiological
properties of two macaque MPCs in the SCT experiment and
found that the timing function of the MPC is determined
by different cell populations. These researchers proposed four
different types of neurons, which they labeled as swing cells,
relative-timing cells, absolute-timing cells, and time-accumulator
cells. During the SCT experiment, these neuronal types were
discovered to display different forms of ramp activity, which
encodes the elapsed time since the last motion or the remaining
time until the next tap. This experiment showed that the MPC
has a mechanism for the time-correlated analysis of rhythmic,
time-series, and repetitive signals. This was a sub-second task. It
remains to be elucidated what kind of neural circuit can acquire
the time interval during the synchronization phase and repeat the
action at this time frequency in the continuous phase.

There are several neurophysiological underpinnings of beat-
based timing during SCT investigations (Merchant and Bartolo,
2018). In addition to the ramp activity in SCT mentioned above
(Merchant et al., 2011), another study found that MPC neuronal
populations dynamically represent the duration and serial order
during the SCT (Crowe et al., 2014). It has also been found

FIGURE 1 | Schematic overview of intervals in the synchronization-

continuation tapping task (SCT), showing periodic stimuli (gray line), and push

button responses (black line). Each trial began when the monkey held a lever.

that there is tuning for interval and/or serial order as an orderly
change in the power of transient modulations in β- and γ- bands
across putaminal LFPs during the execution of the SCT (Bartolo
et al., 2014). Recent research shows that the neural population
trajectories during SCT in SMA/preSMA can act as a neural clock
(Gámez et al., 2019). However, the neural code linked to the
temporal production of this neural clock during SCT remains
unknown. Moreover, elucidating the neural underpinnings of
motor timing is critical to understanding how sensorimotor
systems can predict the regular pulse and then respond with
temporal precision.

The two goals of the current paper are as follows: (1)
to establish a network circuit model of spiking neuron to
simulate pyramidal cells and interneurons in order to achieve
the time interval learning of the synchronous phase and the
spontaneous follow-up function of the continuous phase in the
SCT experiment; and (2) to simulate the SCT experiment in
macaques by implementing the ramp activity of the four different
neuron types proposed previously by Merchant et al. (2011).

Ramp Activity
One of the most important tasks of the brain is to anticipate
upcoming events in order to prepare for behavior, anticipate
reactions, and plan. The phenomenon of ramping firing
rates prior to behavioral responses is commonly observed in
behavioral neuroscience, and—in many cases—is anticipatory
in nature.

Ramp activity, which can be defined as delayed activity that
steadily increases between two subsequent stimuli, has been
associated with the anticipation of various events, such as motor
responses (Constantinidis and Steinmetz, 1996), the end of the
delay interval (Romo et al., 1999; Reutimann et al., 2001), or the
identity of the sample or match stimulus in delayed matching-
to-sample (DMS) tasks [retrospective vs. prospective coding
(Rainer et al., 1999; Mongillo et al., 2003)]. The increasing
delayed activity can also be associated with reward expectation,
such as that found in the prefrontal cortex (Watanabe, 1996),
striatum (Kawagoe et al., 1998; Hassani et al., 2001), thalamus
(for review, see Schultz, 2000; Komura et al., 2001), and motor
cortex (Merchant et al., 2004). Some experiments have addressed

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 4149

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Wei and Du A Temporal Signal-Processing Circuit

the question of how a change in the duration of the delay
period is reflected in the time-varying delay activity (Kojima and
Goldman-Rakic, 1982; Komura et al., 2001; Brody et al., 2003).
In these experiments the build-up of activity is stretched in time,
rather than shifted. The stretching causes the slope of the activity
profile to decrease with the length of the delay period. This is
in agreement with the scaling property of interval timing found
in psychophysical studies on humans (Rakitin et al., 1998) and
has recently confirmed by in vivo experiments in monkeys (Leon
and Shadlen, 2003). When the duration of a time interval is
estimated, the error distribution scales linearly with the length
of the interval.

Prediction requires animals to extract and exploit the
temporal structure of their world, or the temporal relationship
between environmental events or their own behavior and
associated effects. Prediction is seen as a symbol of expectation
in time-perception tasks. Ramp activity, sometimes referred to
as climbing activity, is considered to be prospective. Recordings
from different areas in the cortices of monkeys suggest the
existence of neurons representing time by ramp (climbing)
activity, which is triggered by an initial event and peaks at the
expected time of a second event, such as a visual stimulus and a
reward. The activity of this neuron is often a good indicator of
the duration of the two events. In studies provided by Leon and
Shadlen (2003), we see that different slopes of climbing activity
can be used to calibrate different time intervals. This not only
reveals that the slope of neuronal climbing activity can be used to
characterize time, also that different time intervals can be learned
by determining the slope of the climbing activity.

Structure of This Paper
The remainder of this paper details our research as follows:
related works are presented in section Related Work. Section
A Spiking-Neuron Circuit For Temporal Signal-Processing
describes our spiking-neuron circuit for temporal signal-
processing and the synaptic learning algorithm we used. In
this section, we also introduce the structure of our neural
circuit in detail. In section Computational Simulation Results,
we compare the simulation results of our computational model
with biological results found in SCT experiments from previous
studies and explain some electrophysiological phenomena.
Finally, we present conclusions and discuss our research in
section Conclusion and Discussion.

RELATED WORK

There are many computational models for time-dependent
signal processing, including pacemaker accumulator models
(Treisman, 1963), state dependent network models (Buonomano
and Maass, 2009), long short-term memory models(LSTM)
(Rivest et al., 2010), time-adaptive drift–diffusion models
(TDDM) (Rivest and Bengio, 2011), and recurrent synaptic
networks (Mendoza et al., 2018).

The pacemaker accumulator model is a traditional timemodel
proposed many years ago (Treisman, 1963), the concept of which
was derived from mechanical clocks. This model assumes that
there is a pacemaker or an oscillator in our brain that sends pulses

consistently at a certain frequency, and these are received and
recorded by an accumulator. Within this framework, the pulse
count provides a linear metric of time, and temporal judgments
rely on comparing the current pulse count with that of a reference
time. This process becomes the foundation for characterizing
time in this model. The pacemaker accumulator model has
proven to be effective in providing a framework for many
psychophysical data related to time processing (Church, 1984;
Meck, 2005). The downside of this model, however, is that it lacks
biological feasibility. Mounting evidence indicates that clock
models are not entirely consistent with the experimental data (for
reviews see Mauk and Buonomano, 2004; Buhusi et al., 2005).

The state-dependent network model recently proposed by
Buonomano et al. differs from these above models. This model
is able to tell and encode time as a result of dynamic change
in the state of spiking neural networks. It is based on the
assumption that there is an interaction between each sensory
event and the current state of the network, forming a network
state pattern that naturally encodes each event in the context
of recent stimuli—similar to the interaction between different
ripples generated by each raindrop falling in a pond instantly
or previously. State-dependent models have the powerful ability
to characterize time since they are inherently high dimensional.
However, the deficiency of this model is that it encodes time via
the firing rate of each neuron in the model, which is contrary
to the result of Buonomano’s motor-control experiment, in which
the spiking time conveyed more information than the spiking
rate [millisecond-scale motor encoding in a cortical vocal area].

In addition, LSTM and temporary difference learning (TD)
algorithms have been used to propose a small neural network
based on artificial neurons that can encode a specific time into a
ramp-like activity (Rivest et al., 2010). Although they introduced
many biological concepts into their model, the basis of the model
is the artificial neuron which is far from the bioneuron compared
to the spiking neuron.

TDDM was independently proposed by Rivest and Bengio
(2011) and Simen et al. (2011) which utilizes a simple and
more abstract neural model based on a drift-diffusion process of
climbing neural activity. The drift-diffusion model is often used
in decision-making under noisy stimuli. This work extends it by
developing a learning rule so that their model can be used to learn
time intervals rapidly. Additionally, Weber’s law for time can be
explained in this study.

There is another excellent model. Recently, a kind of model
called a recurrent synaptic network has been proposed (Mendoza
et al., 2018). It simulates a cortical ensemble and makes use of
paired-pulse facilitation and slow inhibitory synaptic currents to
not only produce interval selective responses but also to follow
the biases and scalar properties (Pérez and Merchant, 2018).

In addition to the millisecond-range time-processing model
mentioned above, there are several time-processing models
in seconds to minutes range such as striatal beat frequency
model (SBF), which is proposed by Matell and Meck (2004).
SBF suggests that in the thalamo-cortico-striatal loops, the
coincidence detection of neuronal oscillations in the cortex is
the neural basis for the characterization of time information.
Cortical neurons will act as oscillators and the striatum located
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in the basal ganglia can detect the oscillation pattern of cortical
neurons. At the beginning of time interval processing, the release
of dopamine in the brain prompts timing and synchronizes
cortical oscillations, and resets the state level of striatum spinous
neurons. The cortical oscillators oscillate a fixed frequency
throughout the criterion interval. At the end of time interval
processing, dopamine is released again, which changes the
synaptic connections of spinous neurons, and forms the neural
representation of time interval.

A SPIKING-NEURON CIRCUIT FOR
TEMPORAL SIGNAL-PROCESSING

Neuron Model
In this paper, a simple spiking neuron model known as the
Izhikevich neuron model was used to simplify the Hodgkin–
Huxley (HH) model into a 2-D system with sufficient biological
plausibility and high computational efficiency (Izhikevich, 2003).
The form of the ordinary differential equation is shown in
Equation 1 where V represents the membrane potential of the
neuron, u represents a membrane recovery variable, and a, b, c,
and d are dimensionless parameters. We have the following:

dV

dt
= 0.04V2 + 5V + 140− u+ I (1)

du

dt
= a(bV− u)

If V ≥ 30, then

{

V ← c
u ← u+ d

In this study, typical values of the parameters for an excitatory
neuron were: a = 0.02, b = 0.2, c = −65, and d = 8. Typical
values of the parameters for an inhibitory neuron were: a = 0.1,
b = 0.2, c = −65, and d = 2. The firing mode of the excitatory
and inhibitory neurons we utilized in our model are shown
in Figure 2.

In order to adequately describe the relationship between the
firing rate of neurons and the time interval, we also introduce
another kind of neuron model, as shown in the following
equation (the equation from Gavornik et al., 2009).

γm
dVi

dt
= −Vi + Iext,i +

N
∑

j=1

LijVj (2)

In the equation, the firing rate of the single neuron j is
approximated by an activity variable V, γm is an intrinsic
neuronal time constant, Iext,iis the external feed-forward input to
neuron i and Lij is the weight connecting the presynaptic cell j to
the postsynaptic cell i.

Time-Adaptive Drift-Diffusion Models
(TDDM)
In order to realize time adaptation, we referred to time-adaptive
drift-diffusionmodels (TDDM). This model is also used to reflect
the ability to learn the timing of events, but it is a simpler
and more abstract neural model. TDDM takes advantage of the

drift-diffusion model, commonly used in decision simulations,
to encode specific time intervals by accumulating evidence of
elapsed time with the drift rate (Rivest and Bengio, 2011). In
TDDM, the memory of the time interval to be learned is stored
in the drift rate, so that it can control the signal’s slope as time
elapses. This signal changes over time in a form very similar to the
ramp activity observed in the MPC of macaques. Therefore, we
believe that TDDM can be used to simulate the ramp activity of
some neurons in theMPC, which can be used as ourmodel’s main
learning interval mechanism for synaptic learning algorithms.

In the TDDM implementation process, the semaphore φ (t) is
0 at the beginning of the stimulus, and continuously accumulates
as time passes. The overall process is similar to an accumulator,
which integrates continuously over time with a drift rate w and
noise ε(t). The main function of the model is expressed in the
following form, which is similar to the drift-diffusion model:

φ (t) = φ(t− 1)+ w△ t+ ǫ(t) (3)

Where 1t is the time step and ε(t) is the Gaussian noise
with a mean value of 0 and variance σ

2 [N(0, σ
2]. It is also

stipulated that when the amount of information reaches its peak,
a certain reward will be given, leading to the renewal of the
drift rate. By constantly updating w through the experiments,
our information volume can reach one near the target interval.
Obviously, the learning process of this model involves two
situations (as shown below).

As mentioned previously, ramp activity is considered to
be prospective and can be used to express expectations of
upcoming events. Here we use reward to represent the upcoming
event, while the moment the semaphore φ(t) reaches one is
called expected.

In the first cases (shown in Figure 3A), reward occurs earlier
than expected, and the drift rate w toward the observed interval
can be corrected at once using Equations (4) and (6) to increase
the slope of the accumulator when reward occurs. We have
the following:

△ w (n) = w(n)
(1− ϕ (t))

ϕ(t)
(4)

In the second case (shown in Figure 3B) is that in which
expectation occurs earlier than the reward, and the drift rate w
toward the observed interval can be corrected using Equations
(5) and (6) to reduce the slope of the accumulator since φ reaches
one. The rate change for that trial1w(n) is accumulated until the
next reward occurs.

△w (n, t) = △w (n, t−1)−(w (n)+△w (n, t− 1))2 △ t (5)

w (n+ 1) = w (n)+ α △ w(n) (6)

where n denotes the number of training experiments, and α is the
learning rate.

In the original paper (Rivest and Bengio, 2011), the above
model was considered relatively simple and abstract. In order
to apply it to our spiking neural network, we assume that the
semaphore φ in the TDDM was the activity variable (Vi) of the
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FIGURE 2 | Two types of spiking patterns: (A) regular spiking for excitatory neurons; (B) fast spiking for inhibitory neurons.

FIGURE 3 | Schematic overview of one tapping interval in the synchronization-continuation tapping task (SCT), showing periodic stimuli (vertical dashed lines), and

preparation signal for push button responses (vertical solid lines).The inclined dash line represents the desired trajectory; The inclined solid line represents actual

trajectory (The figure is modified from Rivest and Bengio, 2011).

spiking neuron in Equation (2), thus establishing Equation (2)
and (3), which is as follows:

γm (w△ t + ε (t)) = −Vi + Iext,i +

N
∑

j=1

LijVj (7)

According to the above equation, the relationship between the
drift rate and the weight of neural connections can be established.
Therefore, the weights of the spiking neuron can be updated via
the drift-rate-updating method described above in Equation (4)
and (6).

In summary, the TDDM is a fast-learning model, and
due to its drift feature, we can apply it to simulate ramp
activity. The modified TDDM algorithm, like any other synaptic
plasticity algorithm, can be explained as being affected by
various neurotransmitters in the process of neuronal firing, thus
dynamically adjusting synaptic weights.

There exists some other models to simulate ramp activity.
Simen’s work (Simen et al., 2011) has proposed that a specific
form of diffusion model arises from simple assumptions about
neural integration to achieve ramp activity. In this study, the
model incorporates a rapid duration-learning procedure and
accounts for a variety of physiological and behavioral finding by
the diffusion model. The ideas of this research are similar to ours.

However, there are substantial differences in the details between
our work and their work. The form of the individual neuron
model for our work is the ordinary differential equation, but for
theirs is non-homogeneous Poisson spike generator. In addition,
their diffusion model of interval timing is established at a high
level, while ours is located in the connection between neurons.

Neural-Circuit Model
Our neural circuit model was designed based on previous
study (Merchant et al., 2011). In that study, electrophysiological
SCT experiments were performed, in which five types of time-
related cells were discovered in the MPCs of rhesus macaques,
including motor cells, swing cells, relative-timing cells, absolute-
timing cells, and time-accumulator cells. An obvious feature of
these cells is ramp activity. It can be seen from the discharge
rate diagram of the various neuronal types presented in the
right column of Figure 10 that all neurons—with exception of
motor cells—will change their type of activity when changing
the target interval. It can be observed that these cell types
are all involved in the task of temporary processing. The
conclusions from the Merchant et al. paper can be summarized
as follows:

Relative-timing cells display monotonically rising ramp
activity characteristics after time measurement begins. When
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FIGURE 4 | Structure of absolute-timing groups. The pyramidal neurons in different groups can last for different interval durations.

FIGURE 5 | The microcircuit for swing cells which represent time interval.

they reach the threshold value, they will cause motor control, and
then rapidly decline.

• Relative-timing cells interact with absolute-timing cells and
their activity becomes locked at some point, resulting in a
balanced loop mechanism for executing motor sequences with
tight time structures.
• Neuronal activity of an absolute-timing cell exhibits an

increase in its up-down profile of activation across different
intervals. And they found that the duration of the up-down
cycle of activity in absolute timing cells is associated with
subjective time.
• The discharge diagram of a time-accumulator cell is similar to

that of absolute-timing cells which represents the passage of
time since the previous movement. And in time-accumulator
cells, there is an additional increase in peak magnitude as a
function of elapsed time. Thus, their slopes are similar across
different target time intervals.

• As the target interval increases, the discharge period of swing
cells increases. In addition the firing rates of swing cells
always decrease and then increase within a target interval. We
consider that the effect of swing cells may be to represent the
interval length.

According to the above points, we assume that the entire neural
circuit in the brain has the following time-processing procedure.
First, absolute-timing cells are activated by the synchronization
signal, and then the pulse-signal is simultaneously issued by the
absolute-timing groups of various time scales. Next, due to the
impetus of the absolute-timing cells, ramp activity of the relative-
timing, and time-accumulator cells begins. In the meantime, in
order to learn and reproduce the time interval, some synaptic
plasticity (like the TDDM) is required in the connections between
the absolute-timing and relative-timing cells. Finally, swing cells
can represent the interval length through the learned interval
from the relative-timing cells.

As shown in Figure 4, each absolute-timing group receives
external stimuli simultaneously, with the differences among
groups consisting of the weights of the excitatory and inhibitory
connections between pyramidal neurons and interneurons. By
setting various weights for different absolute-timing groups the
firing rate of pyramidal neurons in each group can exhibit
discharge curves similar to those found in a previous study
(Merchant et al., 2011). In our design, the absolute-timing groups
spanned different interval durations, which were not affected by
the target interval.

Figure 5 shows the microcircuit we designed for swing cells
based on the summary above. In Merchant’s paper, there is little
information about swing cells, leaving us to infer that the effect of
swing cells may be to explicitly represent the interval duration
on the basis of the discharge curve measured from them in
the electrophysiological experiments. From the right column of
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FIGURE 6 | Architecture of the neural circuit in this study. In the figure, triangles represent pyramidal cells and circles are interneurons. These neurons, with the

exception of relative-timing cells, were all simulated using the Izhikevich neuron model.

Figure 10D, a period can be represented by the decrease and
increase of the firing rate. That is, the high firing rate represents
the start and the end of the duration. Similarly, the microcircuit
is composed of a pyramidal neuron and an interneuron which
is called swing cell. In the discharge diagram of swing cells, the
firing rates decrease after the tap with lower and lower slopes and
then increase when excitability becomes stronger than inhibition.
Thus, the microcircuit receives two inputs, one (the blue line)
from resetting cells and the other (the orange line) from time-
accumulator cells. After tapping, resetting cells are activated to
inhibit swing cells. At the same time, time-accumulator cells are
also activated to excite the pyramidal neurons. As time passes,
the inhibitory effect becomes weaker and the excitatory effect
becomes stronger.

The architecture of our model is presented in Figure 6. The
gray lines represent the input of external light or sound stimuli
as synchronous signals to the input cells which lasted for only
100ms. The red lines are the output connections from input
cells. The input cells simultaneously activate absolute-timing
cells that characterize different time intervals, and each absolute-
timing group forms a microcircuit with interneurons (Figure 4),
so that the slope of the ramp activity in each absolute-timing
group is different. Since the motor cells perform a tap each
time the input cells receive a synchronous stimulus during the
synchronization phase of the SCT, there are connections between
the input cells and the motor cells, as represented by the red
lines. The green lines show that each group of absolute-timing

cells simultaneously transmits spikes to the relative-timing cells,
such that their firing rate continues to rise. As summarized
above, there are also connections between absolute-timing cells
and time-accumulator cells due to the ramp activity of time-
accumulator cells which is similar to that of relative-timing
cells. In order to make their slopes the same and their peaks
rise as the target interval increases, the synaptic connections
between the absolute-timing and time-accumulator cells must be
different from those between the absolute-timing and relative-
timing cells. The orange line shows the accident preventing
operation cell we set up in order to prevent the motor cells
from being activated prematurely by the connection represented
by the purple line. Since the firing rate of swing cells has a
down-up form, we constructed a microcircuit with the pyramidal
neurons. When tapped, they receive the inhibitory stimulus of
the resetting cells, and the discharge rate decreases. As time
passes, the enhancement of the excitatory stimulation of the
pyramidal cells in the microcell circuit leads to an increase
in the firing rate of the swing cells, and the slope becomes
less steep as it approaches the target interval. The pyramidal
cells in the microcircuit receive the stimuli from the time-
accumulator cells. The pink line shows that there is a threshold
for the relative-timing cells. When the ramp activity reaches
this threshold, we hypothesize that it is the achievement of the
expectation time that causes the relative-timing cell to activate
the motor cell, causing a tapping action. The light blue lines
show that during the continuous phase of the SCT, since the
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FIGURE 7 | Discharge-rate curves of all neuronal types for the 500ms experiment in an SCT time interval with our model. In the absolute-timing cell diagram, there

are five firing rate curves of the pyramidal neurons in five absolute-timing groups. Due to the stimulus signal, the peak firing rate of the relative-timing cell in the

synchronous phase that is lower than that in the continuous phase. The discharge rate of the swing cell represents a cyclical change from down to up. The motor cell

was activated either after the external synchronization signals appeared or the firing rate of the relative cells reached the threshold.

FIGURE 8 | Firing rate diagram (after smoothing) of relative-timing cells during several training sessions. Here the interval length is 400ms. The green-dashed lines

represent the occurrence of external synchronization signals and the red-dashed lines indicate the desired tapping time points in the continuous phase.

external synchronous stimulus no longer exists, the motor cells
need to act as synchronous signals via their connections with
the absolute-timing cells. Meanwhile, in order to restart the

period, the resetting cell—which is connected with the relative-
timing, time-accumulator, and swing cells (represented by the
blue lines)—should be activated by the motor cell.
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The relationship between our model and the TDDM can be
easily observed from the connection between the relative-timing
and absolute-timing cells. As concluded above, for different
target time intervals, the discharge rates of relative-timing cells
will peak at different slopes. The process of increasing the
firing rate corresponds to the process of accumulating evidence
of time passing in the TDDM. Using the TDDM, we can
achieve a kind of synaptic plasticity learning to fit the duration
between the start and end of the ramp activity to the target
interval time. Here, we have made some improvements to the
TDDM. Compared with the original TDDM, the firing rate
of the relative-timing cells can be regarded as the semaphore
φ(t). Therefore, the peak of φ(t) is no longer one but is now
the threshold of the firing rate. The initial weights between
absolute-timing cells and relative-timing cells are set to the
appropriate values. When the firing rate of relative-timing
cells reaches the threshold earlier than the next synchronous
signals, the weights will be tuned using TDDM until the
next synchronous signals appear. Similarly, when the firing
rate comes to the threshold later than the next synchronous
signals, the weights will be immediately corrected using TDDM.
Thus, our model can transform the collection of evidence of
time passing into the accumulation of the firing rate by the
synaptic weight.

COMPUTATIONAL SIMULATION RESULTS

With the SCT experiments, we realized the learning of the time
interval via the neural circuit we designed and we reproduced
the discharge patterns of various neuronal groups described
previously (Merchant et al., 2011).

In our experiments, we examined three time intervals— 400,
500, and 600 ms—and set the threshold of the relative-timing

cells to 20Hz. We considered an SCT experiment to be a training
process in which there was a synchronous and a continuous
phase. There were four taps during the synchronization phase
and we made adjustments to the synaptic weights in the
circuit three times (applying the TDDM algorithm). The
continuous phase was based on all of the previous weight
adjustments, and the tapping of the time interval to be learned
was reproduced when there was no external synchronization-
signal stimulus.

One SCT experiment was one training process, and the
discharge rate curve of each neuronal type in one experiment
is shown in Figure 7. It can be seen that the relative-
timing cells did not reach the threshold at the target
time when a tap was performed in the synchronization
phase, and the synaptic-weight adjustment was carried out
three times in order to make the discharge rate closer
to the threshold of 20Hz. Obviously, the implementation
of our synaptic-learning algorithm was beneficial to our
time-learning model. After several training processes, the
synaptic weights will stabilize within a certain range. The
duration from a firing rate of 0 to the firing-rate peak
of the relative-timing cell was our target duration. It is
reasonable that there was a delay between the activation
time of the motor cell and the time at which either the
external stimulus appeared or the firing rate of relative cells
reached threshold.

In our circuit, the relative-timing cell is considered to be
the key to indicating the desired interval. The periodicity
exhibited by each of the other neuronal groups is driven
by the relative-timing cells. The discharge diagram of the
relative-timing cells during several training sessions is
shown in Figure 8. As the number of training sessions
increase, the peak of the relative timing cells gets closer

FIGURE 9 | Line graph of four taps times in the continuous phase of the 400ms experiment.
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FIGURE 10 | Comparison of the firing rates of all of the neurons in our model with results from electrophysiological measurements (Merchant et al., 2011). The left

column is the discharge curve (smoothed) of the neurons in our model. The right column shows the discharge curves for all types of neurons from electrophysiological

experiments. (A–D) respectively, illustrate the results for absolute-timing cells, time-accumulator cells, relative-timing cells, and swing cells (The right column of the

figure is modified from Merchant et al., 2011).

to the desired tap moment (red-dashed line). Figure 9

is a plot of the times the model learned. In the figure,
the points of the continuous phase of each training
session have been fitted with a straight line. It can be
observed that our model’s ability to learn the interval
duration improved.

As mentioned above, four types of cells related to time
processing have been described previously (Merchant et al.,
2011). These four types of neurons also exist in the neural circuits
we designed. We compared them with the electrophysiological
measurements of the firing patterns of neurons as shown in
Figure 10. It is obvious that the neurons in our neural circuits
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Algorithm 1: The flow of our models which interprets the architecture shown in

Figure 6.

1: Initialize: S← the parameters of all spiking neurons;

W← the weights of each other neuron in our neural circuit;

T← An array which contains the time when the external stimulus begins

to appear;

r← drift rate;

t← time(ms)

Iexternal ← the current of external stimulus;

Vthreshold ← the firing rate threshold of relative-timing cells for TDDM

Vrelative ← the firing rate of relative-timing cells

2: while t>0 do

3: if t in synchronous phase then

4: if t in T then

5: Iexternal stimulates the input cells for only 100 ms(gray line)

6: if t!=0 AND t in T then

7: if Vrelative < Vthreshold then

8: Implement the Equations 4 and 6 to modify r.

9: else

10: Implement the equation 6 to modify r.

11: end if

12: And then according to equation 7 update w in the connections

between absolute-timing cells and relative-timing cells.

13: end if

14: else

15: if Vrelative > Vthreshold then

16: Implement the equation 5 to obtain 1r:

17: end if

18: end if

19: end if

20: According to the architecture in Figure 6, compute all the neurons.

21: Compute the state of the input cells using equation 1.

22: Compute the state of absolute-timing cells using equation 1.

23: Compute the state of the time-accumulator cells using equation 1.

24: Compute the state of the relative-timing cells using equation 2.

25: Compute the state of the motor cells using equation 1.

26: Compute the state of the other cells using equation 1.

27: end while

exhibit periodicity and produce discharge curves similar to those
observed in physiological experiments. In the left column of
Figure 10A, the curves represent the firing rate of five absolute-
timing groups which increase with different climbing rates
for each color and span different time intervals. Similar to
the right column of Figure 10B, the time-accumulator cells
we designed increased with rising at the same climbing rates
as their electrophysiological counterparts, although the peaks
differed for different time intervals. In order to be consistent
with the discharge rate diagram of relative-timing cells in the
reference, the figure in the left column of Figure 10C was
plotted in the same form. It can be seen that our relative-timing
cells exhibited the same features as those in the discharge rate
diagram. Figure 10D shows the firing rates of the swing cells
in our model and those of the electrophysiological experiment.

FIGURE 11 | The relationship between temporal variability and the produced

duration in our model.

Although there are some differences in the curves of the two
graphs of Figure 10D, our swing cells retained the characteristics
of the bio-cell discharge rate. One period of the neurons we
designed in the left column of Figure 10D can represent the
target-time interval; the amplitude of the curve increases as the
target interval duration increases. We believe that the reason
for the difference between the curves of our experimental
results and those of electrophysiological experiments has to
do with the fact that our results were somewhat smoothed
and also that the time-window selection used to calculate the
discharge rate of neurons in our model differed from that used
in the electrophysiological experiments. Therefore, we consider
that the differences observed in the curves of Figure 10D

are acceptable.
Finally, we tested our model to check whether it satisfies

an additional biological property called the scalar property
(Gibbon et al., 1997), which tells us that the uncertainty is
proportional to the interval being estimated. This property has
been interpreted to indicate that the variability of an underlying
temporal distribution should exhibit a constant coefficient of
variation (σ/µ). Figure 11 shows that repeated the experiment
eight times and recorded the mean of the learned duration in the
400ms experiment, 500ms experiment, and 600ms experiment
receptively. According to the figure, the scalar property was
followed by our model, which further confirms the biological
interpretability of our work.

CONCLUSION AND DISCUSSION

In this study, in order to explore a possible time-processing
mechanism in the human brain, we examined the time
processing behind the electrophysiological phenomena
observed in the SCT experiment (Merchant et al., 2011),
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FIGURE 12 | The distribution hypothesis of our neuron-circuit model. We hypothesize that the input cells used as the cue cells should reside in the superficial layers

which receive the stimuli from the outside environment. Additionally, the motor cells used as the output cell are suitable for layer V, where the cells transmit out signals

for movement. Finally, layer III is always used to integrate the information, so the four kinds of ramp cells should reside in layer III.

and we presented a new neural circuit based on specific
neural-connection structures utilizing a TDDM algorithm
as the synaptic learning mechanism. This neural circuit was
successful in determining time intervals in SCT experiments
and in expressing the time intervals learned, indicating that
our proposed method is reasonable and effective. Although
computational simulation results— which are often more
idealized— tend to differ from those of electrophysiological
experiments, our simulation experiments and physiological
test results were completely consistent with those of
electrophysiological experiments. This suggests that the
circuit we designed is similar to the endogenous circuit of the
macaque brain in terms of achieving this particular timing and
periodicity operation.

In neurobiology, the cerebral cortex can be divided into
different regions according to different functions. The
hierarchical structure of each brain region is essentially
the same, and it is composed of six layers of neurons:
molecular layer, external granular layer, external pyramidal
layer, internal granular layer, internal pyramidal layer,
and multiform layer (Le Be’, 2007).These six layers of
neurons are arranged vertically in each brain region.
According to previous literature (Merchant et al., 2014),
it is known that MPC is more active in SCT experiments.
Additionally, there are many time-related cells in the
MPC. We believe that the neurons in the neural circuit we
designed may also be distributed in the six layers of the
MPC (Figure 12).

The most significant difference between our model and
previous simulations is that our model is more biologically

interpretable. Compared with the LSTM model (Rivest et al.,
2010), the drift diffusion model during the SCT (Merchant
and Averbeck, 2017), and time-adaptive drift–diffusion model
(Rivest and Bengio, 2011), spiking neuron which models
the real biological neurons are used in our model. And
Recreating the discharge rate curves observed and scalar
property in electrophysiology is another advantage of our model
compared with pacemaker accumulator models (Treisman,
1963) and state dependent network models (Buonomano and
Maass, 2009). The downside of our model is that it can
only learn very precise interval durations. In our model,
we make use of TDDM algorithm, which is considered
to be a fast and accurate time-learning mechanism for
determining interval durations. Although humans can learn
target time, there must exist some biases between the time
learned and target time. Hence, the high accuracy which
is the advantage of TDDM algorithm cannot be interpreted
biologically. A certain degree of biases are necessarily presented
in human experiments. We believe our model can become more
biologically plausible by adjusting the parameters of TDDM
algorithm such as ε(t).

Knudsen et al. (2014) found the same four types of
ramping cells in the primary motor cortex in a single
interval reproduction task in rats. Their work provided us
more information to improve our model in the future. In
addition, we will improve our learning-mechanism algorithm
to satisfy additional biological properties and be flexible in
more temporal-processing experiments. And now this work
is based on the property called ramp activity, but future
studies will explore other properties as well. We believe
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that as more and more time-related biological properties are
adopted, our model will become closer to endogenous biological
processing mechanisms.
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We studied the interactions between different temporal scales of the information

flow in complex networks and found them to be stronger in scale-free (SF) than

in Erdos-Renyi (ER) networks, especially for the case of phase-amplitude coupling

(PAC)—the phenomenon where the phase of an oscillatory mode modulates the

amplitude of another oscillation. We found that SF networks facilitate PAC between

slow and fast frequency components of the information flow, whereas ER networks

enable PAC between slow-frequency components. Nodes contributing the most to the

generation of PAC in SF networks were non-hubs that connected with high probability to

hubs. Additionally, brain networks from healthy controls (HC) and Alzheimer’s disease

(AD) patients presented a weaker PAC between slow and fast frequencies than SF,

but higher than ER. We found that PAC decreased in AD compared to HC and was

more strongly correlated to the scores of two different cognitive tests than what the

strength of functional connectivity was, suggesting a link between cognitive impairment

and multi-scale information flow in the brain.

Keywords: complex networks, scale-free networks, random networks, brain networks, random walks,

cross-frequency interactions, Alzheimer’s disease, information flow

INTRODUCTION

The study of information flow and transport in complex biological and social networks by means
of random walks has attracted increasing interest in recent years [1–4]. Random walks [5] are the
processes by which randomly-moving objects wander away from their starting location. In the past
decades, there has been considerable progress in characterizing first passage times, or the amount of
time it takes a random walker to reach a target [6–9]. However, previous works have neglected the
study of the temporal dynamics of the information flow in the network, which depends on how the
walkers move and not just on their arrival time. Thus, we lack knowledge about how the different
temporal scales in the information flow arise from the topological structure of the network, whether
they interact, and how they do it. This paper aims to address such knowledge gap.

We hypothesize that random walk processes in complex networks have associated multiple
temporal scales, depending on the network structure. Furthermore, these temporal scales
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may interact. To study these scales, and their interaction, we
use the empirical mode decomposition (EMD) [10], an adaptive
and data-driven method that decomposes non-linear and non-
stationary signals, like the movement of the random walkers,
into fundamental modes of oscillations called intrinsic mode
functions (IMFs), without the need for a predefined model as
is the case for Fourier and wavelet transforms. Since IMFs are
associated with different oscillatory modes, their interactions
correspond to the phenomenon known as cross-frequency
coupling (CFC) [11]. Three types of CFC aremost widely studied:
phase-amplitude coupling (PAC), the phenomenon where the
instantaneous phase of a low frequency oscillation modulates the
instantaneous amplitude of a higher frequency oscillation [12];
amplitude-amplitude coupling (AAC), which measures the co-
modulation of the instantaneous amplitudes of two oscillations
[13]; and phase-phase coupling (PPC), which corresponds to the
synchronization between two instantaneous phases [14].

In this paper, we study cross-frequency interactions between
the IMFs extracted from random walk processes occurring in
different networks. First, we perform an exploratory analysis
over simulated Erdos-Renyi (ER) [15] and scale-free (SF)
[16] networks, models that incorporate properties measured
in real networks. Later, we focus on real brain networks.
These are estimated from resting-state functional magnetic
resonance imaging (rs-fMRI) and diffusion weighted magnetic
resonance imaging (DWMRI) data recorded from patients with
Alzheimer’s disease (AD) and healthy controls (HC). Our analysis
reveals differences between health and disease in terms of the
information flow over the networks.

MATERIALS AND METHODS

Ethics Statement
Data used in this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI study was conducted according
to Good Clinical Practice guidelines, the Declaration of Helsinki
Principles, US 21CFR Part 50-Protection of Human Subjects, and
Part 56-Institutional Review Boards, and pursuant to state and
federal HIPAA regulations (adni.loni.usc.edu). Study subjects
and/or authorized representatives gave written informed consent
at the time of enrollment for sample collection and completed
questionnaires approved by each participating sites Institutional
Review Board.

The authors obtained approval from the ADNI Data Sharing
and Publications Committee for data use and publication, see
documents: http://adni.loni.usc.edu/wpcontent/uploads/how_
to_apply/ADNI_Data_Use_Agreement.pdf and http://adni.loni.
usc.edu/wpcontent/uploads/how_to_apply/ADNI_Manuscript_
Citations.pdf.

Data Description and Processing
Construction of Simulated Networks

Two types of simulated complex networks are considered here,
ER and SF networks. An ER network is a random graph where
each possible edge has the same probability p of existing [15]. The
degree of a node i

(

ki
)

is defined as the number of connections

it has to other nodes. The degree distribution P
(

k
)

of an ER
network is a binomial distribution, which decays exponentially
for large degrees k, allowing only very small degree fluctuations
[17]. On the other hand, SF networks are constructed with
the Barabasi and Albert’s (BA) model [16], or “rich-gets-richer”
scheme, which assumes that new nodes in a network are not
connected at random but with high probability to those which
already possess a large number of connections (also known as
hubs). In the BA model, P

(

k
)

decays as a power law, which
yields scale-invariance, and allows for large degree fluctuations.
We generate ER and SF networks by means of theMATLAB (The
MathWorks Inc., Natick, MA, USA) toolbox CONTEST [18].

Construction of Brain Networks

Brain structural T1-weighted 3D images were acquired for
all subjects in the ADNI dataset. For a detailed description
of acquisition details, see http://adni.loni.usc.edu/methods/
documents/mriprotocols/. All images underwent non-
uniformity correction using the N3 algorithm [19]. Next,
they were segmented into gray matter, white matter, and
cerebrospinal fluid (CSF) probabilistic maps, using SPM12
(www.fil.ion.ucl.ac.uk/spm). Gray matter segmentations were
standardized to MNI space [20] using the DARTEL tool [21].
Each map was modulated to preserve the total amount of
signal/tissue. Mean gray matter density and determinant of the
Jacobian (DJ) [21] values were calculated for 78 regions covering
all the brain’s gray matter [22].

DWMRI data was acquired for 51 HC subjects from ADNI
using a 3T GE scanner. For each diffusion scan, 46 separate
images were acquired, including 5 b0 images (no diffusion
sensitization) and 41 diffusion-weighted images (b = 1,000
s/mm2). Other acquisition parameters were: 256 × 256 matrix,
voxel size: 2.7 × 2.7 × 2.7 mm3, TR = 9,000 ms, 52 contiguous
axial slices, and scan time, 9 min. ADNI aligned all raw
volumes to the average b0 image, corrected head motion and
eddy current distortion. Probabilistic axonal connectivity values
between each brain voxel and the surface of each considered
gray matter region were estimated using a fully automated fiber
tractography algorithm [23] and the intravoxel fiber distributions
(ODFs) of the 51 HC subjects. ODF reconstructions were based
on Spherical Deconvolution [24]. A maximum of 500 mm
trace length and a curvature threshold of ±90◦ were imposed
as tracking parameters. Based on the resulting voxel-region
connectivity maps, the individual region-region anatomical
connection density matrices [23, 25] were calculated. For any
subject and pair of regions i and j, the ACDi,j measure (0 ≤

ACDi,j ≤ 1, ACDi,j = ACDj,i) reflects the fraction of the region’s
surface involved in the axonal connection with respect to the
total surface of both regions. A network backbone, containing
the dominant connections in the average network, was computed
[26]. For this, a maximum spanning tree, which connects all
nodes of the network such that the sum of its weights is
maximal, was extracted; then, additional edges were added in
order of their weight until the average node degree was 4
[26]. The anatomical backbone was then transformed into a
matrix of zeros (no connection existing between two nodes)
and ones (a link exists). A limitation of using the backbone
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matrix is its symmetrical configuration, which is a consequence
of the inherent symmetrical properties of DWMRI techniques
(distinction between afferent and efferent fiber projections it is
not possible yet). Nevertheless, a previous work [27] reported that
around 85% of the total possible connections between 73 primate
brain areas are reciprocals.

Additionally, rs-fMRI images were obtained from 31 AD
patients and 44 HCs from a different ADNI subset (this was
forced by the fact that subjects with DWMRI data in ADNI
lacked fMRI data) using an echo-planar imaging sequence on a
3T Philips scanner. Acquisition parameters were: 140 time points,
repetition time (TR) = 3,000ms, echo time (TE) = 30ms, flip
angle = 80◦, number of slices = 48, slice thickness = 3.3mm,
spatial resolution = 3 × 3 × 3 mm3 and in plane matrix = 64 ×
64. Preprocessing steps included: (1) motion correction, (2) slice
timing correction, (3) spatial normalization to MNI space using
the registration parameters obtained for the structural T1 image
with the nearest acquisition date, and (4) signal filtering to keep
only low frequency fluctuations (0.01–0.08Hz) [28].

Average time series were extracted for each subject from
the 78 anatomical regions of interest. Then, we estimated the
functional connectivity (FC) by computing the absolute value of
the Pearson’s correlation between all possible pairs of time series,
creating a 78 × 78 FC matrix. Each FC matrix was multiplied by
the anatomical backbone, resulting in a new matrix we denote
as W. Thus, the random walkers flow in the structural network,
but their movement is influenced by the brain’s activity. This
guarantees that the dynamics of the information flow will change
if instead of the resting-state we study a different condition such
as stimulation or anesthesia [29, 30].

Constructing the Time Series of the
Random Walks
We start by considering an unweighted network consisting of N
nodes. We place a large number K (K ≫ N) of random walkers
onto this network. At each time step, the walkers move randomly
between the nodes that are directly linked to each other.We allow
the walkers to perform T time steps. As a walker visits a node, we
record the fraction of walkers present at it. Thus, after T time
steps, we obtain K time series reflecting different realizations of
the flow of information in the network.

In the case of weighted networks, the transition probability pij
from brain area i to brain area j is given by pij =

wij
∑N

j=1 wij
, where

wij is the weight of the connection from area i to area j [31].
Since both the FC and the anatomical backbone are symmetric
matrices, we have: wij = wji, and pij = pji. Note that it is
possible to construct a transition probability where walkers move
preferentially to positively correlated nodes. However, in our
case we are interested in brain networks. To our knowledge,
there is not physiological reason to assume positive connections
should be preferred over negative connections, since there can
be a strong information flow between anticorrelated brain areas.
Thus, in this paper, the probability of a random walker moving
from one node to another node depends on the strength of the
connection (i.e., its absolute value) and not on its sign.

Empirical Mode Decomposition
EMD is a non-linear method that decomposes a signal into
its fundamental modes of oscillations, called intrinsic mode
functions or IMFs. An IMF satisfies two criteria: (1) the number
of zero-crossings and extrema are either equal or differ by one,
and (2) the mean of its upper and lower envelopes is zero. Thus,
to be successfully decomposed into IMFs, a signal must have
at least one maximum and one minimum. The sifting process
of decomposing a signal x (t) into its IMFs is described by the
following algorithm [10]:

1 All extrema are identified, and upper, xu (t), and lower,
xl (t), envelopes are constructed by means of cubic
spline interpolation.

2 The average of the two envelopes is subtracted from the data:
d (t) = x (t) − (xu (t) + xl (t)) /2.

3 The process for d (t) is repeated until the resulting signal
satisfies the criteria of an IMF. This first IMF is denoted as
IMF1 (t). The residue r1 (t) = x (t) − IMF1 (t) is treated as
the new data.

4 Repeat steps 1 to 3 on the residual rj (t) to obtain all the IMFs
of the signal:

rj (t) = x (t) − IMF1 (t) − IMF2 (t) − . . . − IMFj (t) .

The procedure ends when rj (t) is a constant, a monotonic slope,
or a function with only one extreme. As a result of the EMD
method, the signal x (t) is decomposed intoM IMFs:

x (t) =
∑M

j=1
IMFj (t) + r (t) (1)

where r (t) is the final residue.
A major limitation of the classical EMD method is the

common presence of mode mixing, which is when one IMF
consists of signals of widely disparate scales, or when a signal
of a similar scale resides in different IMFs [32]. To address
this issue, the ensemble empirical mode decomposition (EEMD)
considers that the true IMF components are the mean of an
ensemble of trials, each consisting of the signal plus a white noise
of finite amplitude [32]. A more recent method, ICEEMDAN
(Improved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise) was built on this idea [33]. In this paper,
we use the ICEEMDAN method with standard parameter values
[33], which reduces the number of ensembles needed and
increases the accuracy rate while avoiding spurious modes.

After computing the IMFs, the Hilbert transform can be
applied to each IMF. Thus, equation (1) can be rewritten as:

x (t) = Real{
∑M

j=1
aj(t)e

iϕj(t))} + r (t) , (2)

where ϕj(t) and aj(t) are the instantaneous phases and amplitudes
of IMF j.
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Computation of Cross-Frequency Coupling
Measures
PAC is the phenomenon where the instantaneous phase of a low
frequency oscillation modulates the instantaneous amplitude of
a higher frequency oscillation [12, 34]. To compute PAC, we
used the modification to the mean-vector length modulation
index [35]:

PAC =

∣

∣

∣

∣

1

N

∑N

n=1
aF (n)

(

eiϕS(n) ϕ

)

∣

∣

∣

∣

, ϕ =
1

N

∑N

n=1
eiϕS(n) (3)

where N is the total number of time points, aF is the amplitude
of the modulated signal (i.e., the fast frequency component), ϕS

is the phase of the modulating signal (i.e., the slow frequency
component), and ϕ is a factor introduced to remove phase
clustering bias.

PPC, which corresponds to the synchronization between two
instantaneous phases [14], was calculated by using the n:m phase-
locking value (PLV) [36]:

PPC =

∣

∣

∣

∣

1

T

∑T

t=1
ei(nφF(t)−mϕS(t))

∣

∣

∣

∣

(4)

where ϕS and ϕF are the instantaneous phases of the slow
and fast frequency components, respectively, and m and n are
integers. We tested all possible combinations of n and m for
n = 1, 2, . . . , 30, m = 1, 2, . . . , 30, with m > n, and selected
the one producing the highest PPC value.

AAC, the co-modulation of the instantaneous amplitudes aS
and aF of two signals, was estimated by means of their the
correlation [13]:

AAC = corr(aS (n) , aF (n)) (5)

A significance value can be attached to any of the above measures
through a surrogate data approach where we offset ϕS and
aS by a random time lag. We can thus compute 1,000 surrogate
PAC, PPC, and AAC values. From the surrogate dataset, we
first computed the mean µ and standard deviation σ , and then
computed a Z-score as:

ZPAC =
PAC − uPAC

σPAC
,ZPPC =

PPC − uPPC

σPPC
,

ZAAC =
AAC − uAAC

σAAC
(6)

The normal distribution of the surrogated data was tested with
the Jarque-Bera test, and the p-value that corresponded to the
standard Gaussian variate was also computed. P-values were
corrected by means of a multiple comparison analysis based on
the false discovery rate (FDR) [37].

RESULTS

Information Flow in Simulated ER and SF
Networks
Figures 1A,C show an example of connectivity (adjacency)
matrices for ER and SF networks, respectively. Both networks
have the same number of edgesm, and nodes, corresponding to a
sparsity, e, value of e = 1 − m

N2 = 0.9. A number of 104 random
walkers were placed onto these networks and diffused for 5,000
time steps. One realization of the information flow is shown in
Figures 1B,D for ER and SF networks, respectively. We then
applied a recent version of the EMD method [33] to these two
time series (see Materials and Methods). Figure 1E shows the
first 7 IMFs and residue (R) for the ER and SF networks. The
first IMF (IMF1) corresponds to the fastest oscillatory mode and
the last IMF to the slowest one. Note that IMF7 is the sum of
all the slow IMFs up to IMF7. As seen in Figure 1E, the EMD
method produces amplitude and frequency modulated signals.
By applying the Hilbert transform to each IMF, instantaneous
amplitudes, phases, and frequencies can be obtained and a
time-frequency representation of the original signal (known
as the Hilbert spectrum) can be constructed [10]. Since each
time instant in Figure 1E corresponds to a different node in
the network, the time-frequency representation of the Hilbert
spectrum can be transformed into a node-frequency matrix.
Figures 1F,G show the modified Hilbert spectrum for the ER
(Figure 1A) and SF (Figure 1C) networks, respectively. The color
scale represents the energy of the spectrum. Our results show
that ER networks have more energy in the low frequencies and
present a narrow range of node degrees. On the other hand, SF
networks present a wide distribution of node degree values where
nodes with low degrees are more associated to low frequency
oscillations, whereas high degree nodes relate to high frequencies.
These results indicate that random walkers strongly link low and
high frequency dynamics when they diffuse in SF networks.

To characterize the interaction between frequencies, we
computed three types of CFC interactions, PACkl, AACkl, and
PPCkl, between all possible combinations of the 7 IMFs (k =

1, 2, . . . , 7, l = 1, 2, . . . , 7, k > l, thus obtaining a 7 × 7 upper
triangular matrix for each measure) for 3 different values of
sparsity (e = [0.9, 0.8, 0.7]) of ER and SF networks (Figure 2).
Figure 2 shows the average over K = 104 realizations of
PACkl (Figure 2A), AACkl (Figure 2B), and PPCkl (Figure 2C)
for ER and SF networks. Supplementary Figure 1 shows the
corresponding Z-scores. In the case of PAC, Z-score values
obtained for SF networks were higher than the corresponding
values obtained in ER networks. Strong PAC values in SF
networks involved the phase of IMF7 (the slowest IMF) and the
amplitudes of IMF6 to IMF1. On the other hand, the highest
AAC and PPC values in SF networks involved IMFs with close
frequencies such as IMF1 and IMF2. In the case of ER networks,
the strongest values were obtained for interactions between
slow IMFs for PAC (phase of IMF7 and amplitude of IMF5 in
Figure 2A), AAC (amplitudes of IMF7 and IMF6 in Figure 2B)
and between fast IMFs for PPC (phases of IMF2 and IMF1 in
Figure 2C). When we decreased the level of sparsity (i.e., the
network became more connected), the results for SF networks
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FIGURE 1 | Different temporal modes of information flow in complex networks. Panels (A,C) are examples of ER and SF connectivity matrices, respectively, with

N = 500 and e = 0.9. Panels (B,D) show one realization of the information flow in the network for 5000 time steps, for ER and SF networks, respectively. The total

number of walkers present in each network was 104. Panel (E) shows the empirical mode decomposition (EMD) of the time series in panels (B,D), producing different

intrinsic mode functions (IMF), and a residue (R). This appears in red (blue) for the ER (SF) networks. Panels (F,G) show the spectrum of the random walk process

organized by the node degree for ER and SF networks, respectively.

turned similar to the ones in ER networks. In conclusion, PAC
interactions in SF networks were the strongest CFC found (as
reflected by the Z-scores) and, when compared to results from
ER networks, the main difference was the existence of strong PAC
between slow and fast oscillatory components of the information
flow in the network.

To verify our results were not an artifact of the application of
the EMD method, we defined seven non-overlapping frequency
bands (0.001–0.009, 0.010–0.020, 0.021–0.040, 0.041–0.060,
0.061–0.100, 0.101–0.250, and 0.251–0.490 cycles/sample)
based on the seven IMFs and computed the CFC measures.
Supplementary Figure 2 shows similar CFC patterns to the ones
obtained for the Z-scores in Supplementary Figure 1, suggesting
our results are not dependent on the EMD method but a
consequence of the network architecture instead. Differences
between the two figures are associated to the fact that consecutive
IMFs have a small overlap in frequency by design [10].

We also studied the influence of specific nodes in the
SF networks in the generation of PAC, AAC, and PPC. The
contribution of each node i was computed by removing the
node from the network and running the random walker analysis
on the new network. The obtained PAC, AAC, and PPC
were denoted as PACr

i , AACr
i , and PPCr

i , respectively. The
contribution of a node to the corresponding CFC measure is
the change in the CFC value as a result of removing the node
from the network: 1PACi =

∣

∣PACr
i /PAC − 1

∣

∣, 1AACi =
∣

∣AACr
i /AAC − 1

∣

∣, and1PPCi =
∣

∣PPCr
i /PPC − 1

∣

∣. Additionally,
we computed several local topological properties for all nodes

in the network using the Brain Connectivity Toolbox [38],
namely: the degree

(

k
)

; the efficiency (e), which quantifies a
network’s resistance to failure on a small scale; the clustering
coefficient (cc), which measures the degree to which nodes
in a graph tend to cluster together; assortativity (a), which
indicates if a node tends to link to other nodes with the
same or similar degree; betweenness centrality

(

bc
)

, which is
the fraction of shortest paths in the network that contain a
given node (a node with higher betweenness centrality has
more control over the network because more information will
pass through it); eigenvector centrality (ec), which is another
measure of centrality where relative scores are assigned to all
nodes based on the concept that connections to high-scoring
nodes contribute more to the score of the node in question than
equal connections to low-scoring nodes; subgraph centrality (sc),
which is a weighted sum of closed walks of different lengths in
the network starting and ending at the node; and the product
of the three centrality measures

(

ec× sc× bc
)

. Figures 3A–C
show the Pearson correlation between the eight topological
measures and 1PAC, 1AAC, and 1PPC, respectively. Different
frequency combinations presented different correlation values.
The strongest correlations involving 1PAC were found for the
topological measure composed by the product of the three
centrality measures

(

ec× sc× bc
)

, between the phase of IMF3
and the amplitude of IMF1. The amplitude of IMF1 was also
involved in strong correlations with the phases of IMF4, IMF5,
and IMF6. Of the three CFC measures, 1AAC was most strongly
correlated to topology (Figure 3B), specifically with centrality
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FIGURE 2 | Cross-frequency interactions between the fundamental modes of information flow in ER and SF networks. All simulated networks had N = 500 nodes,

and 104 random walkers were placed over them, each performing 5, 000 time steps. Three different values of network sparsity were considered: e = [0.9, 0.8, 0.7].

(A) phase-amplitude coupling (PAC), (B) amplitude-amplitude coupling (AAC), (C) phase-phase coupling (PPC).
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FIGURE 3 | Correlation between changes in CFC and eight topological measures: degree (k), efficiency (e), clustering coefficient (cc), assortativity (a), eigenvector

centrality (ec), subgraph centrality (sc), betweenness centrality (bc), product of three centrality measures (ec× sc× bc). Non-significant (p < 0.05) correlation

values after correction by false-discovery rate are displayed in white (A) PAC, (B) AAC, (C) PPC.
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measures, followed by1PAC.1PPC was weakly correlated to the
topology of the network.

Next, by using the degrees kwe classified nodes in the network
into hubs if their degree was at least one standard deviation
above the network mean [39], and into non-hubs otherwise. We
then computed the average 1PAC of all frequency combinations
involving the amplitudes of fast frequencies (IMF1 and IMF2)
and the phases of slow frequencies (IMF5, IMF6, and IMF7).
Note that the correlations between 1PAC corresponding to these
frequency combinations and the product ec× sc×bc are between
0.24 and 0.47 (Figure 3A), which suggests that other mechanisms
are needed to explain these 1PAC values.

Figure 4A plots 1PAC vs. node degree for all nodes in the
SF network. Interestingly, hubs, the most connected nodes in the
network, are not necessarily involved in the largest 1PAC values.
Non-hubs were classified into three groups by equally dividing
the 1PAC range (0− 0.6): bottom (0− 0.2), middle (0.2− 0.4),
and top (0.4− 0.6). The histogram in Figure 4B shows the
probability that nodes in the four groups (hubs and three non-
hubs groups) have of connecting to nodes of certain degrees.
We see that top non-hubs connect to high degree nodes (hubs
in Figure 4A) with higher probability than middle and bottom
non-hubs. On the other hand, hubs connect with high probability

to low degree nodes. Since PAC is defined as the coupling from
a low to a high frequency, its highest contributor will be the
nodes associated more with low frequencies (i.e., nodes with low
degrees, see Figure 1G) and that also connect to nodes that are
more associated to high frequencies (i.e., nodes with high degrees,
see Figure 1G); that is, the top non-hubs. Accordingly, hubs,
which are more connected to low frequency nodes contribute
less to PAC, except for only one hub which presented the largest
1PACi of all nodes in the network (Figures 1A,C,E). This hub
(node with degree 270 in Figure 4) is known as a super-hub for
having degree significantly higher than other hubs in the network
[40]. Since the classification into top, middle, and bottom non-
hubs based on 1PAC values is somewhat arbitrary, we explored
the results of changing the 1PAC range of these three groups.
Figures 4C,D show the results when the groups were defined
by the bands: bottom (0− 0.1), middle (0.1− 0.5), and top
(0.5− 0.6). In this case, the number of nodes in the top and
bottom groups were reduced and the probability that top non-
hubs connected to high degree nodes increased.

In the calculations leading to Figure 4E we increased the
number of nodes in the top and bottom groups as compared
to Figure 4A by selecting the ranges: bottom (0− 0.35), middle
(0.35− 0.45), and top (0.45− 0.6). In this case, the probability

FIGURE 4 | The influence of non-hubs vs. hubs on 1PAC. Average 1PAC for each node degree for three different grouping of non-hubs: (A) bottom (0− 0.2),

middle (0.2− 0.4), and top (0.4− 0.6), (C) bottom (0− 0.1), middle (0.1− 0.5), and top (0.5− 0.6), and (E) bottom (0− 0.25), middle (0.25− 0.35), and top

(0.35− 0.6). Panels (B,D,F) present the probability of the four different groups of nodes of connecting to nodes of certain degrees, corresponding to the node

distribution presented in panels (A,C,E), respectively.

Frontiers in Physics | www.frontiersin.org 8 July 2019 | Volume 7 | Article 10769

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sotero et al. Information Flow in Brain Networks

for the top non-hubs decreased and the results for the top and
middle groups were more similar (see Figure 4F).

Information Flow in Brain Networks
Estimated From Healthy and Alzheimer’s
Disease Subject’s Data
The information flow, as given by the movement of the random
walkers, was also investigated in real brain networks. For this,
freely available (http://adni.loni.usc.edu) images from ADNI
were utilized and brain connectivity matrices for HC and
AD subjects were computed. Figure 5A shows the connectivity
matrix W for a representative HC subject. For each of the 44
HC subjects, we placed 104 random walkers on top of its W and
recorded a sequence of 5, 000 time steps.

Each time series was decomposed into 8 IMFs. We
then focused on PAC since it was the strongest CFC type
obtained for both ER and SF networks in our simulations
(Supplementary Figure 1). Figure 5B shows the PAC between
all possible combinations of the 8 IMFs, averaged over 104

realizations and over the 44 HC subjects, denoted as PACHC.
The strongest PAC values were obtained for interactions
between slow IMFs (the phase of IMF8 and the amplitudes
of IMF5, IMF6, and IMF7). Additionally, for each subject,
we generated 500 ER and 500 SF networks of the same size
and number of edges as their W matrices, computed PAC

for these matrices and averaged the results, obtaining PACER

(Figure 5C), and PACSF (Figure 5D), respectively. We then
computed the following measures: PACHC

PACER
− 1 (Figure 5E),

PACHC
PACSF

− 1 (Figure 5F). A similar analysis as in Figure 5,
was performed to data from AD subjects and is shown in
Figure 6.

Results for HC (Figure 5) and AD (Figure 6) show that
interactions between phases of slow frequencies (IMF 5–8) and
amplitudes of high frequencies (IMF1) are stronger in real brain
networks than in simulated ER networks but weaker than in SF
networks. This result is not surprising since we know that the
degree distribution of brain anatomical networks do not follow
a pure power law, as in SF networks, and is better described by an
exponentially truncated power law [23].

We also compared HC and AD results (Figure 7). Figure 7A
shows the difference between the average connectivity matrix
of HC and AD subjects. The comparison between PAC in HC
(Figure 5B) and AD (Figure 6B) shows that PAC between fast
frequencies (IMF1) and slower modes (IMFs 3–8) weaken during
AD as compared to HCs (see Figure 7B).

The contribution of each area to the generation of the PAC
phenomenon (1PAC) was computed following the procedure
described in the previous section. Figures 8A,B shows the
average 1PAC across subjects for the areas with the strongest
influence on PAC, for the HC and AD groups, respectively. In

FIGURE 5 | PAC in HC. (A) Connectivity matrix. (B) PAC averaged over 44 HC subjects. (C) Average PAC generated from 500 equivalent ER networks. (D) Average

PAC generated from 500 equivalent SF networks. (E) Comparison of PAC from HC and PAC generated from equivalent ER networks. (F) Comparison of PAC from HC

and PAC generated from equivalent SF networks.
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FIGURE 6 | PAC in AD. (A) Connectivity matrix. (B) PAC averaged over 31 AD subjects. (C) Average PAC generated from 500 equivalent ER networks. (D) Average

PAC generated from 500 equivalent SF networks. (E) Comparison of PAC from AD and PAC generated from equivalent ER networks. (F) Comparison of PAC from AD

and PAC generated from equivalent SF networks.

FIGURE 7 | Comparing PAC in HC and AD subjects. (A) Difference between the average connectivity matrix of HC and AD subjects. (B) Comparison between PAC in

HC and AD. Non-significant differences (p < 0.05) after correcting by false-discovery rate are displayed in white.

both groups the two areas with the strongest influence were the
right superior frontal followed by the right medial orbitofrontal.
We also computed the measure 1− PACAD

PACHC
to determine the areas

that changed more between HC and AD. Figure 8C shows the
areas for which the influence on PAC was stronger in HC than in
AD, whereas Figure 8D displays the opposite case. We obtained
that the influence of the right precentral and right superior

parietal areas decreased in AD as compared to HC, whereas the
influence of the right amygdala increased.

We also extracted all possible shortest paths [38] in the
HC and AD brain networks, and computed the average 1PAC
of the areas involved in those paths. We found that the
1PAC pathway right superior frontal-right medial orbitofrontal-
left superior frontal presented the strongest1PAC in bothHC and
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FIGURE 8 | Influence of brain areas on PAC: areas that when removed from the network change PAC the most in HC (A), AD (B). Areas for which the change was

larger in HC (AD) than in AD (HC) appear in panels (C,D). “L” and “R” denote left and right hemispheres, respectively.

AD groups (red path in Figure 9). On the other hand, the 1PAC
pathway that increased the most during AD was left insula-
left pars opercularis-left superior temporal (green in Figure 9),
whereas the PAC route that decreased the most in AD was right
precentral-right paracentral-right precuneus (cyan in Figure 9).
This clearly demonstrates an interhemispheric difference in PAC
generation during AD.

Here, we also looked at how the scores of two customarily-
used cognitive tests are related to the flow of information in AD
networks as reflected by PAC. The individual clinical diagnoses
assigned by the ADNI experts and used to define the HC and AD
groups were based on multiple clinical evaluations [41]. The first
test was the Clinical Dementia Rating Sum of Boxes (CDRSB),
which provides a global rating of dementia severity through
interviews on different aspects [41, 42]. An algorithm conduces
to a score in each of the domain boxes, which are later summed.
The final score ranges from 0 to 18, with a 0-value meaning
“Normal.” CDRSB is a gold standard for the assessment of
functional impairment [41]. The second test was the Functional
Activities Questionnaire (FAQ), where an informant is asked
to rate the subject’s ability to perform 10 different activities of
daily living [43]. The total score ranges from 0 (independent) to
30 (dependent).

For each brain area the linear fit between 1PAC and CDRSB,
and 1PAC and FAQ was computed. Figure 10 shows the linear

fits in the left y-axis (colored in blue) corresponding to the
regions with the strongest correlations. For the case of CDRSB,
the brain areas were left middle temporal (r = 0.61, p = 0.0005),
left inferior temporal (r = 0.53, p = 0.004), and right middle
temporal (r = 0.40, p = 0.032), whereas for the case of FAQ,
the left middle temporal (r = 0.55, p = 0.002), left inferior
temporal (r = 0.47, p = 0.011) were obtained again, with the
appearance of the left pars orbitalis (r = 0.36, p = 0.056) among
the top-three now.

We also performed a linear fit for the two cognitive test and the
strength of each area (defined as the sum of all the connections
associated with area i, si =

∑N
j=1 wij). The results are displayed

in the right axis (colored in red) of every panel in Figure 10.
We obtained the best fits for the same areas that resulted from
using 1PAC. The above-mentioned result is expected since PAC
is obtained as a result of the movement of the random walkers on
top of the matrices W. However, the correlation values obtained
were smaller and statistically significant only in two out of the six
cases: the CDRSB test with the strength of left middle temporal
(r = 0.42, p = 0.0028) and left inferior temporal (r =

0.49, p = 0.008) areas. The correlation between CDRSB and
the right middle temporal area (r = 0.23, p = 0.237) was
not significant, and neither were the correlations between the
three areas and the FAQ test: left middle temporal (r = 0.31,
p = 0.109), left inferior temporal (r = 0.34, p = 0.077), left
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FIGURE 9 | Main PAC paths in HC and AD. Three main paths were found: (1)

right superior frontal-right medial or bitofrontal-left superior frontal

corresponding to the strongest PAC in HC, remaining also the strongest in AD

(colored in red), (2) left insula-left pars opercularis-left superior temporal, the

path that decreased the most in AD compared to HC (colored in cyan), and (3)

right precentral-right paracentral-right precuneus, which increased the most in

AD compared to HC (colored in green). “L” and “R” denote left and right

hemispheres, respectively.

pars orbitalis (r = −0.16, p = 0.411). These results suggest
the existence of a relationship between cognitive impairment,
functional decline and behavioral symptoms that characterize
AD and the perturbations to the information flow in brain
networks, as characterized by cross-frequency interactions and
not by broadband interactions (functional connectivity).

DISCUSSION

In summary, we employed random walkers to sample the
spatial structure of complex networks and converted their
movement into time series. To estimate the different temporal
scales, these time series were further decomposed into intrinsic
mode functions, or IMFs by means of the EMD technique
[10]. Expressed in IMFs, the temporal scales have well-behaved
Hilbert transforms [10], from which the instantaneous phases
and amplitudes can be calculated. Another advantage of using
EMD is that it is an adaptive and data-driven method that
does not require prior knowledge on the number of temporal
modes embedded into the time series. The interaction between
IMFs, or CFS, was analyzed, obtaining that cross-frequency
interactions were stronger in SF than in ER networks, especially
for the case of PAC. SF networks presented strong PAC between
slow and high frequency components of the information flow,

whereas ER networks presented the strongest PAC between
slow-frequency components. Since EMD acts essentially as a
dyadic filter bank [44], some overlapping between consecutive
IMFs is expected, which can result in strong CFC. This
phenomenon can be seen in Supplementary Figure 1 for the
cases of PAC (interaction between the phase of IMF7 and the
amplitude of IMF6), AAC (interaction between the amplitudes
of IMF2 and IMF1), and PPC (interaction between the phases
of IMF2 and IMF1). When filtering the data using non-
overlapping bands (Supplementary Figure 2) the strength of
these couplings decreased, but the CFC patterns, specifically the
strong PAC connection between slow phases (IMFs 5–7) and fast
frequencies (IMF1), was preserved, supporting the use of EMD
in our analysis.

The temporal architectures of complex networks, and
specifically of the human brain, have been topics of increasing
interest in the past decade [45]. Dynamic functional connectivity
studies have demonstrated that brain networks are not stationary
but fluctuate over time [46, 47]. To study these dynamic
networks, multi-layer network models are commonly employed
[48–50]. These models treat the network at each time point as
a layer [51]. Alternatively, each layer in the multi-layer network
can be linked to a different frequency component [52]. Themulti-
layer network framework have been used to study the cross-
frequency interactions in functional networks estimated from
magnetoencephalographic (MEG) data [49]. However, these
studies did not establish a link between the multiplex network
and the information flow in the brain. This has been done
recently for general multilayer networks bymeans of the so-called
directed information measure [53], although cross-frequency
interactions were not analyzed [54].

Given a complex network, it is of interest to determine
which nodes contribute the most to CFC. We studied in more
detail the generation of PAC between low (IMFs 5–7) and high
(IMF1) frequencies and found that hubs, the most connected
nodes in the network were not involved in the strongest
PAC [with the exception of one super-hub [40]]. The most
significant influence on PAC was exerted by a group of non-hubs,
which connected with high probability to high degree nodes
(Figure 4). This facilitated the generation of PAC [information
flow from low to high frequencies [11]] since low and high degree
nodes were generally associated with low and high frequencies,
respectively. Our results are in agreement with recent work [55]
studying the dynamic patterns of information flow in complex
networks by means of a perturbative method. Interestingly, the
authors found that the information flow preferred non-hubs and
avoided centralized pathways. However, their study only reflected
the broadband flow phenomena, i.e., unspecific and ignoring
frequency interactions, unlike this work.

We applied our methodology to brain networks from HC
subjects and AD patients and found that PAC activity between
slow frequencies and IMF1 decreased during AD. The IMFs
obtained from simulated ER and SF networks correspond
to different oscillatory modes, with normalized frequencies
(Figures 1F,G). In the case of brain networks, it is tempting to
analyze the frequencies in Hz, in order to compare the frequency
range of the different IMFs to the known frequency bands
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FIGURE 10 | Relationship between two cognitive tests– CDRSB and FAQ– and PAC (in blue) and values of the node strength (in red) for selected areas of the AD

networks. Solid and dashed lines represent the linear fit and confidence intervals, respectively.

registered in the human brain. For this, we need to know the
conduction delays for signals coming from different brain areas.
Delays can range from a few milliseconds to several hundreds of
milliseconds depending on the regions involved and the species
considered [56–58]. Unfortunately, for the human brain, there
is lack of information about conduction delays between all the
combinations of areas, which makes the conversion to frequency
units unfeasible at this time.

When analyzing the influence of specific brain areas, we found
the right superior frontal and the right medial frontal to be the
areas that contributed more to PAC in both HC and AD subjects.
These areas belong to the default mode network (DMN), a
collection of brain structures which intertwined activity increases
in the absence of a task and has been associated with memory
consolidation. The right superior frontal and the right medial
frontal are also involved in the strongest PAC-based information
flow pathway found in AD and HC: right superior frontal-right
medial orbitofrontal-left superior frontal. The DMN is of interest
to AD research given the amyloid deposits found in its regions
[59, 60]. We also found that the influence of the right amygdala
on PAC increased during AD (Figure 6D); the amygdala is
known to be severely affected in AD [61].

Our results also demonstrated a marked interhemispheric
difference in the generation of PAC, with areas within the
left hemisphere being more correlated to the cognitive scores
(Figure 8). Furthermore, the PAC pathway that decreased the
most during AD consisted of left hemisphere areas only (left

insula-left pars opercularis-left superior temporal), whereas the
PAC pathway that increased the most in AD was formed
by areas from the right hemisphere (right precentral-right
paracentral-right precuneus). A tentative explanation is that the
brain must enhance traffic over this specific pathway we have
obtained to maintain at least a minimal information flow on
the right hemisphere in AD. The interhemispheric functional
disconnection suggested by our results has been previously
reported in mild cognitive impairment and AD subjects [62–64],
and has been associated with white matter degeneration [64].

One important challenge for the AD research field is the
development of efficient biomarkers. Neuroimaging biomarkers
in AD are based on brain signals such asMRI, fMRI, and Positron
Emission Tomography (PET). For instance, there is a consistently
reported decrease in resting-state functional connectivity in AD
patients compared to HCs in the DMN [65]. However, when
we correlated the strength of functional connections with the
reported scores of two different cognitive tests usually employed
to diagnose AD, only two areas (both from the DMN), the left
middle temporal and left inferior temporal presented significant
correlations (0.42 and 0.49, respectively, with p < 0.05) with one
of the tests, the CDRSB. On the other hand, these two same areas
presented significant and stronger correlations between PAC and
both tests, the CDRSB (r = 0.61, r = 0.53) and FAQ (r =

0.55, r = 0.47). Additionally, the right middle temporal PAC
presented a significant correlation (r = 0.40) with the CDRSB
scores. These findings suggest that our PAC-based analysis could
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be more sensitive to network changes induced by AD, when
compared to the traditional utilization of functional connectivity
values. Thus, there exists a potentially elevated clinical value
of PAC as a useful biomarker for the disease. These results
support the feasibility of translating network properties into
functional predictions.

A limitation of our brain networks analysis was the use of
the backbone obtained from HC subjects for the AD patients.
By using the same backbone matrix, we assumed that the
propagation of information at the large-scale via white matter
fiber connections is approximately the same for both HC and
AD. This assumption is supported by past studies that found that
misfolded proteins deposition and structural atrophy patterns
in neurodegeneration match with the structural and functional
connectome patterns obtained for young healthy subjects [3, 66,
67]. Furthermore, a recent study [68] found that despite changes
in the integrity of specific fiber tracts, white matter organization
in AD is preserved, suggesting AD does not appear to alter the
ability of the anatomical network to mediate pathology spread in
AD. However, this is in contrast to prior reports of significant
changes in network topology in AD vs. HC [69, 70]. These
discrepancies have been attributed to dissimilar methodologies in
the network construction such as edge thresholding, binarization,
and inclusion of subcortical regions to network graphs [68].
In this paper, we have considered differences between the two
groups in terms of the functional matrices only and acknowledge
that some bias given by the anatomical backbone may exist.

DATA AVAILABILITY

All MRI and fMRI data used in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). For researchers who meet the criteria
for access to the data; access to the ADNI data is available through
an online application, which can be submitted at the following
link: http://adni.loni.usc.edu/data-samples/access-data/.

ETHICS STATEMENT

Data used in this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI study was conducted according
to Good Clinical Practice guidelines, the Declaration of Helsinki
Principles, US 21CFR Part 50-Protection of Human Subjects, and
Part 56-Institutional Review Boards, and pursuant to state and
federal HIPAA regulations (adni.loni.usc.edu). Study subjects
and/or authorized representatives gave written informed consent
at the time of enrollment for sample collection and completed

questionnaires approved by each participating sites Institutional
Review Board.

AUTHOR CONTRIBUTIONS

RS conceived the project. RS, LS-R, MD, YI-M, and JS-B assisted
with analysis and interpretation of data, and with writing and
editing of the manuscript.

FUNDING

This work was partially supported by grant RGPIN-2015-05966
from the Natural Sciences and Engineering Research Council
of Canada. Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904)
and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National Institute
on Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the
following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug
Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun;
F. Hoffmann-La Roche Ltd. and its affiliated company
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Development, LLC.;
Johnson & Johnson Pharmaceutical Research & Development
LLC.; Lumosity; Lundbeck; Merck and Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal
Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites
in Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.
org). The grantee organization is the Northern California
Institute for Research and Education, and the study is
coordinated by the Alzheimer’s Disease Cooperative Study
at the University of California, San Diego. ADNI data are
disseminated by the Laboratory for Neuro Imaging at the
University of Southern California.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2019.00107/full#supplementary-material

REFERENCES

1. Gallos LK, Song C, Havlin S, Makse HA. Scaling theory of transport in
complex biological networks. Proc Natl Acad Sci USA. (2007) 104:7746–51.
doi: 10.1073/pnas.0700250104

2. Gfeller D, De Los Rios P, Caflisch A, Rao F. Complex network analysis
of free-energy landscapes. Proc Natl Acad Sci USA. (2007) 104:1817–22.
doi: 10.1073/pnas.0608099104

3. Raj A, Kuceyeski A, Weiner M. A network diffusion model of
disease progression in dementia. Neuron. (2012) 73:1204–15.
doi: 10.1016/j.neuron.2011.12.040

4. Simonsen I, Astrup Eriksen K, Maslov S, Sneppen K. Diffusion on complex
networks: a way to probe their large-scale topological structures. Physica A.

(2004) 336:163–73. doi: 10.1016/j.physa.2004.01.021
5. Pearson K. The problem of the random walk. Nature. (1905) 72:294.

doi: 10.1038/072294b0

Frontiers in Physics | www.frontiersin.org 14 July 2019 | Volume 7 | Article 10775

http://adni.loni.usc.edu
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu
http://adni.loni.usc.edu
www.fnih.org
www.fnih.org
https://www.frontiersin.org/articles/10.3389/fphy.2019.00107/full#supplementary-material
https://doi.org/10.1073/pnas.0700250104
https://doi.org/10.1073/pnas.0608099104
https://doi.org/10.1016/j.neuron.2011.12.040
https://doi.org/10.1016/j.physa.2004.01.021
https://doi.org/10.1038/072294b0
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sotero et al. Information Flow in Brain Networks

6. Bonaventura M, Nicosia V, Latora V. Characteristic times of biased
random walks on complex networks. Phys Rev E. (2014) 89:012803.
doi: 10.1103/PhysRevE.89.012803

7. Noh JD, Rieger H. Random walks on complex networks. Phys Rev Lett. (2004)
92:118701. doi: 10.1103/PhysRevLett.92.118701

8. Noskowicz SH, Goldhirsch I. First-passage-time distribution in a random
walk. Phys Rev A. (1990) 42:2047–64. doi: 10.1103/PhysRevA.42.2047

9. Tejedor V, Bénichou O, Voituriez R. Global mean first-passage times
of random walks on complex networks. Phys Rev E. (2009) 80:065104.
doi: 10.1103/PhysRevE.80.065104

10. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The
empirical mode decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci. (1998)
454:903–95. doi: 10.1098/rspa.1998.0193

11. Sotero RC. Topology, cross-frequency, and same-frequency band interactions
shape the generation of phase-amplitude coupling in a neural mass
model of a cortical column. PLoS Comput Biol. (2016) 12:e1005180.
doi: 10.1371/journal.pcbi.1005180

12. Sotero RC. Modeling the generation of phase-amplitude coupling in cortical
circuits: from detailed networks to neural mass models. Biomed Res Int. (2015)
2015:1–12. doi: 10.1155/2015/915606

13. Bruns A, Eckhorn R. Task-related coupling from high- to low-frequency
signals among visual cortical areas in human subdural recordings. Int J

Psychophysiol. (2004) 51:97–116. doi: 10.1016/j.ijpsycho.2003.07.001
14. Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony

in brain signals.HumBrainMapp. (1999) 8:194–208. doi: 10.1002/(SICI)1097-
0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C

15. Erdös P, Rényi A. On random graphs, I. Debrecen: Publicationes
Mathematicae, 6 (1959).

16. Barabasi A-L, Albert R. Emergence of scaling in random networks. Science.
(1999) 286:509–12. doi: 10.1126/science.286.5439.509

17. Barrat A, Barthelemy M, Vespignani A. Dynamical Processes on

Complex Networks. Cambridge: Cambridge University Press. (2008).
doi: 10.1017/CBO9780511791383

18. Taylor A, Higham DJ. CONTEST. ACM Trans Math Softw. (2009) 35:1–17.
doi: 10.1145/1462173.1462175

19. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging.

(1998) 17:87–97. doi: 10.1109/42.668698
20. Evans AC, KamberM, Collins DL,MacDonald D. AnMRI-based probabilistic

atlas of neuroanatomy. In: Shorvon SD, Fish DR, Andermann F, Bydder GM,
Stefan H, editors. Magnetic Resonance Scanning and Epilepsy. Boston, MA:
Springer US (1994). p. 263–74. doi: 10.1007/978-1-4615-2546-2_48

21. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage.

(2007) 38:95–113. doi: 10.1016/j.neuroimage.2007.07.007
22. Klein A, Tourville J. 101 labeled brain images and a consistent human cortical

labeling protocol. Front Neurosci. (2012) 6:171. doi: 10.3389/fnins.2012.
00171

23. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y,
Melie-Garcia L. Studying the human brain anatomical network via
diffusion-weighted MRI and Graph Theory. Neuroimage. (2008) 40:1064–76.
doi: 10.1016/j.neuroimage.2007.10.060

24. Tournier J-D, Yeh C-H, Calamante F, Cho K-H, Connelly A, Lin C-
P. Resolving crossing fibres using constrained spherical deconvolution:
validation using diffusion-weighted imaging phantom data. Neuroimage.

(2008) 42:617–25. doi: 10.1016/j.neuroimage.2008.05.002
25. Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC.

Realistically coupled neural mass models can generate EEG Rhythms. Neural
Comput. (2007) 19:478–512. doi: 10.1162/neco.2007.19.2.478

26. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et
al. Mapping the structural core of human cerebral cortex. PLoS Biol. (2008)
6:e159. doi: 10.1371/journal.pbio.0060159

27. Young MP. The organization of neural systems in the primate cerebral cortex.
Proc R Soc London Ser B Biol Sci. (1993) 252:13–8. doi: 10.1098/rspb.1993.0040

28. Yan C, Zang Y. DPARSF: a MATLAB toolbox for “pipeline” data
analysis of resting-state fMRI. Front Syst Neurosci. (2010) 4:13.
doi: 10.3389/fnsys.2010.00013

29. Cao J, Wang X, Liu H, Alexandrakis G. Directional changes in information
flow between human brain cortical regions after application of anodal
transcranial direct current stimulation (tDCS) over Broca’s area. Biomed Opt

Express. (2018) 9:5296–317. doi: 10.1364/BOE.9.005296
30. Yanagawa T, Chao ZC, Hasegawa N, Fujii N. Large-scale information flow in

conscious and unconscious states: an ECoG study in monkeys. PLoS ONE.

(2013) 8:e80845. doi: 10.1371/journal.pone.0080845
31. Zhang Z, Shan T, Chen G. Random walks on weighted networks. Phys Rev E.

(2013) 87:012112. doi: 10.1103/PhysRevE.87.012112
32. Wu Z, Huang NE. Ensemble empirical mode decomposition: a noise-

assisted data analysis method. Adv Adapt Data Anal. (2009) 01:1–41.
doi: 10.1142/S1793536909000047

33. Colominas MA, Schlotthauer G, Torres ME. Improved complete ensemble
EMD: a suitable tool for biomedical signal processing. Biomed Signal Process

Control. (2014) 14:19–29. doi: 10.1016/j.bspc.2014.06.009
34. Sotero RC, Bortel A, Naaman S, Mocanu VM, Kropf P, Villeneuve M, et al.

Laminar distribution of phase-amplitude coupling of spontaneous current
sources and sinks. Front Neurosci. (2015) 9:454. doi: 10.3389/fnins.2015.00454

35. van Driel J, Cox R, Cohen MX. Phase-clustering bias in phase–amplitude
cross-frequency coupling and its removal. J Neurosci Methods. (2015) 254:60–
72. doi: 10.1016/j.jneumeth.2015.07.014

36. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J,
et al. Detection of n : m phase locking from noisy data: application
to magnetoencephalography. Phys Rev Lett. (1998) 81:3291–4.
doi: 10.1103/PhysRevLett.81.3291

37. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 57:289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x

38. Rubinov M, Sporns O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage. (2010) 52:1059–69.
doi: 10.1016/j.neuroimage.2009.10.003

39. SpornsO,Honey CJ, Kötter R. Identification and classification of hubs in brain
networks. PLoS ONE. (2007) 2:e1049. doi: 10.1371/journal.pone.0001049

40. Hao D, Ren C, Li C. Revisiting the variation of clustering coefficient of
biological networks suggests new modular structure. BMC Syst Biol. (2012)
6:34. doi: 10.1186/1752-0509-6-34

41. Defina PA, Moser RS, Glenn M, Lichtenstein JD, Fellus J. Alzheimer’s disease
clinical and research update for health care practitioners. J Aging Res. (2013)
2013:207178. doi: 10.1155/2013/207178

42. Doody RS, Pavlik V, Massman P, Rountree S, Darby E, Chan W. Predicting
progression of Alzheimer’s disease. Alzheimers Res Ther. (2010) 2:2.
doi: 10.1186/alzrt25

43. Juva K, Mäkelä M, Erkinjuntti T, Sulkava R, Ylikoski R, Valvanne J, et
al. Functional assessment scales in detecting dementia. Age Ageing. (1997)
26:393–400. doi: 10.1093/ageing/26.5.393

44. Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter
bank. IEEE Signal Process Lett. (2004) 11:112–4. doi: 10.1109/LSP.2003.821662

45. Betzel RF, Bassett DS.Multi-scale brain networks.Neuroimage. (2017) 160:73–
83. doi: 10.1016/j.neuroimage.2016.11.006

46. Kundu S, Ming J, Pierce J, McDowell J, Guo Y. Estimating dynamic brain
functional networks using multi-subject fMRI data. Neuroimage. (2018)
183:635–49. doi: 10.1016/j.neuroimage.2018.07.045

47. Li X, Zang Y-F, Zhang H. Exploring dynamic brain functional networks using
continuous “state-related” functional MRI. Biomed Res Int. (2015) 2015:1–8.
doi: 10.1155/2015/824710

48. Battiston F, Nicosia V, Chavez M, Latora V. Multilayer motif analysis of brain
networks. Chaos. (2017) 27:047404. doi: 10.1063/1.4979282

49. BrookesMJ, Tewarie PK, Hunt BAE, Robson SE, Gascoyne LE, Liddle EB, et al.
A multi-layer network approach to MEG connectivity analysis. Neuroimage.

(2016) 132:425–38. doi: 10.1016/j.neuroimage.2016.02.045
50. Tewarie P, Hillebrand A, van Dijk BW, Stam CJ, O’Neill GC, Van Mieghem

P, et al. Integrating cross-frequency and within band functional networks
in resting-state MEG: a multi-layer network approach. Neuroimage. (2016)
142:324–36. doi: 10.1016/j.neuroimage.2016.07.057

51. De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA,
et al. Mathematical formulation of multilayer networks. Phys Rev X. (2013)
3:041022. doi: 10.1103/PhysRevX.3.041022

Frontiers in Physics | www.frontiersin.org 15 July 2019 | Volume 7 | Article 10776

https://doi.org/10.1103/PhysRevE.89.012803
https://doi.org/10.1103/PhysRevLett.92.118701
https://doi.org/10.1103/PhysRevA.42.2047
https://doi.org/10.1103/PhysRevE.80.065104
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1371/journal.pcbi.1005180
https://doi.org/10.1155/2015/915606
https://doi.org/10.1016/j.ijpsycho.2003.07.001
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1017/CBO9780511791383
https://doi.org/10.1145/1462173.1462175
https://doi.org/10.1109/42.668698
https://doi.org/10.1007/978-1-4615-2546-2_48
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1016/j.neuroimage.2007.10.060
https://doi.org/10.1016/j.neuroimage.2008.05.002
https://doi.org/10.1162/neco.2007.19.2.478
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1098/rspb.1993.0040
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1364/BOE.9.005296
https://doi.org/10.1371/journal.pone.0080845
https://doi.org/10.1103/PhysRevE.87.012112
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1016/j.bspc.2014.06.009
https://doi.org/10.3389/fnins.2015.00454
https://doi.org/10.1016/j.jneumeth.2015.07.014
https://doi.org/10.1103/PhysRevLett.81.3291
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.1186/1752-0509-6-34
https://doi.org/10.1155/2013/207178
https://doi.org/10.1186/alzrt25
https://doi.org/10.1093/ageing/26.5.393
https://doi.org/10.1109/LSP.2003.821662
https://doi.org/10.1016/j.neuroimage.2016.11.006
https://doi.org/10.1016/j.neuroimage.2018.07.045
https://doi.org/10.1155/2015/824710
https://doi.org/10.1063/1.4979282
https://doi.org/10.1016/j.neuroimage.2016.02.045
https://doi.org/10.1016/j.neuroimage.2016.07.057
https://doi.org/10.1103/PhysRevX.3.041022
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sotero et al. Information Flow in Brain Networks

52. De Domenico M, Sasai S, Arenas A. Mapping multiplex hubs in
human functional brain networks. Front Neurosci. (2016) 10:326.
doi: 10.3389/fnins.2016.00326

53. Kontoyiannis I, Skoularidou M. Estimating the directed information
and testing for causality. IEEE Trans Inf Theory. (2016) 62:6053–67.
doi: 10.1109/TIT.2016.2604842

54. Guler B, Yener A, Swami A. Learning causal information flow structures
in multi-layer networks. In: 2016 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). Washington, DC: IEEE (2016). p. 1340–4.
doi: 10.1109/GlobalSIP.2016.7906059

55. Harush U, Barzel B. Dynamic patterns of information flow in complex
networks. Nat Commun. (2017) 8:2181. doi: 10.1038/s41467-017-01916-3

56. Aboitiz F, López J, Montiel J. Long distance communication in the
human brain: timing constraints for inter-hemispheric synchrony
and the origin of brain lateralization. Biol Res. (2003) 36:89–99.
doi: 10.4067/S0716-97602003000100007

57. Budd JML, Kisvárday ZF. Communication and wiring in the cortical
connectome. Front Neuroanat. (2012) 6:42. doi: 10.3389/fnana.2012.00042

58. Stoelzel CR, Bereshpolova Y, Alonso J-M, Swadlow HA. Axonal conduction
delays, brain state, and corticogeniculate communication. J Neurosci. (2017)
37:6342–58. doi: 10.1523/JNEUROSCI.0444-17.2017

59. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S,
et al. Amyloid plaques disrupt resting state default mode network
connectivity in cognitively normal elderly. Biol Psychiatry. (2010) 67:584–7.
doi: 10.1016/j.biopsych.2009.08.024

60. Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki
M, et al. Amyloid deposition is associated with impaired default network
function in older persons without dementia. Neuron. (2009) 63:178–88.
doi: 10.1016/j.neuron.2009.07.003

61. Poulin SP, Dautoff R, Morris JC, Feldman Barrett L, Dickerson BC.
Amygdala atrophy is prominent in early Alzheimer’s disease and relates
to symptom severity on behalf of the Alzheimer’s Disease Neuroimaging
Initiative. Psychiatry Res. (2011) 194:7–13. doi: 10.1016/j.pscychresns.2011.
06.014

62. Korolev I, Bozoki A, Majumdar S, Berger K, Zhu D. Alzheimer’s
disease reduces inter-hemispheric hippocampal functional connectivity.
Alzheimers Dementia. (2011) 7:S739. doi: 10.1016/j.jalz.2011.
05.2125

63. Qiu Y, Liu S, Hilal S, Loke YM, Ikram MK, Xu X, et al. Inter-hemispheric
functional dysconnectivity mediates the association of corpus callosum

degeneration with memory impairment in AD and amnestic MCI. Sci Rep.
(2016) 6:32573. doi: 10.1038/srep32573

64. Wang Z, Wang J, Zhang H, Mchugh R, Sun X, Li K, et al. Interhemispheric
functional and structural disconnection in Alzheimer’s disease: a combined
resting-state fMRI and DTI study. PLoS ONE. (2015) 10:e0126310.
doi: 10.1371/journal.pone.0126310

65. Dennis EL, Thompson PM. Functional brain connectivity using fMRI
in aging and Alzheimer’s disease. Neuropsychol Rev. (2014) 24:49–62.
doi: 10.1007/s11065-014-9249-6

66. Iturria-Medina Y, Sotero RC, Toussaint PJ, Evans AC, Alzheimer’s Disease
Neuroimaging I. Epidemic spreading model to characterize misfolded
proteins propagation in aging and associated neurodegenerative disorders.
PLoS Comput Biol. (2014) 10:e1003956. doi: 10.1371/journal.pcbi.1003956

67. Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher KM-H, et
al. Network structure of brain atrophy in de novo Parkinson’s disease. ELife.
(2015) 4:1–20. doi: 10.7554/eLife.08440

68. Powell F, Tosun D, Sadeghi R, Weiner M, Raj A. Preserved structural network
organization mediates pathology spread in Alzheimer’s disease spectrum
despite loss of white matter tract integrity. J Alzheimers Dis. (2018) 65:747–64.
doi: 10.3233/JAD-170798

69. Daianu M, Jahanshad N, Nir TM, Toga AW, Jack CR, Weiner MW, et al.
Breakdown of brain connectivity between normal aging and Alzheimer’s
disease: a structural k -core network analysis. Brain Connect. (2013) 3:407–22.
doi: 10.1089/brain.2012.0137

70. Prescott JW, Guidon A, Doraiswamy PM, Roy Choudhury K, Liu C, Petrella
JR, et al. The Alzheimer structural connectome: changes in cortical network
topology with increased amyloid plaque burden. Radiology. (2014) 273:175–
84. doi: 10.1148/radiol.14132593

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Sotero, Sanchez-Rodriguez, Dousty, Iturria-Medina and Sanchez-

Bornot. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 16 July 2019 | Volume 7 | Article 10777

https://doi.org/10.3389/fnins.2016.00326
https://doi.org/10.1109/TIT.2016.2604842
https://doi.org/10.1109/GlobalSIP.2016.7906059
https://doi.org/10.1038/s41467-017-01916-3
https://doi.org/10.4067/S0716-97602003000100007
https://doi.org/10.3389/fnana.2012.00042
https://doi.org/10.1523/JNEUROSCI.0444-17.2017
https://doi.org/10.1016/j.biopsych.2009.08.024
https://doi.org/10.1016/j.neuron.2009.07.003
https://doi.org/10.1016/j.pscychresns.2011.06.014
https://doi.org/10.1016/j.jalz.2011.05.2125
https://doi.org/10.1038/srep32573
https://doi.org/10.1371/journal.pone.0126310
https://doi.org/10.1007/s11065-014-9249-6
https://doi.org/10.1371/journal.pcbi.1003956
https://doi.org/10.7554/eLife.08440
https://doi.org/10.3233/JAD-170798
https://doi.org/10.1089/brain.2012.0137
https://doi.org/10.1148/radiol.14132593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 20 August 2019

doi: 10.3389/fphy.2019.00115

Frontiers in Physics | www.frontiersin.org 1 August 2019 | Volume 7 | Article 115

Edited by:

Chris G. Antonopoulos,

University of Essex, United Kingdom

Reviewed by:

Emanuela Formaggio,

University of Padova, Italy

Kelly Cristiane Iarosz,

University of São Paulo, Brazil

*Correspondence:

Osvaldo A. Rosso

oarosso@gmail.com

Specialty section:

This article was submitted to

Biophysics,

a section of the journal

Frontiers in Physics

Received: 12 March 2019

Accepted: 31 July 2019

Published: 20 August 2019

Citation:

Baravalle R, Guisande N, Granado M,

Rosso OA and Montani F (2019)

Characterization of

Visuomotor/Imaginary Movements in

EEG: An Information Theory and

Complex Network Approach.

Front. Phys. 7:115.

doi: 10.3389/fphy.2019.00115

Characterization of
Visuomotor/Imaginary Movements in
EEG: An Information Theory and
Complex Network Approach
Roman Baravalle 1, Natalí Guisande 1, Mauro Granado 1, Osvaldo A. Rosso 2,3* and

Fernando Montani 1

1 Instituto de Física La Plata (IFLP), CONICET CCT-La Plata & Universidad Nacional de La Plata (UNLP), La Plata, Argentina,
2Departamento de Informática en Salud, CONICET, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina, 3 Instituto de

Física, Universidade Federal de Alagoas, Maceió, Brazil

Imagined activities could actually be a cognitive basis for creative thinking. However, it is

still unknown how they might be related with the architecture of the brain. A recent study

has proved the relevance of the imagined activity when investigating neuronal diseases by

comparing variations in the neuronal activity of patients with brain diseases and healthy

subjects. One important aspect of the scientific methodologies focused on neuronal

diseases is therefore to provide a trustable methodology that could allow us to distinguish

between realized and imagined activities in the brain. The electroencephalogram is the

result of synchronized action of the cerebrum, and our end is portraying the network

dynamics through the neuronal responses when the subjects perform visuomotor and

specific imaginary assignments. We use a subtle information theoretical approach

accounting for the time causality of the signal and the closeness centrality of the different

nodes. More specifically we perform estimations of the probability distribution of the

data associated to each node using the Bandt and Pompe approach to account for

the causality of the electroencephalographic signals. We calculate the Jensen-Shannon

distance across different nodes, and then we quantify how fast the information flowwould

be through a given node to other nodes computing the closeness centrality. We perform a

statistical analysis to compare the closeness centrality considering the different rhythmic

oscillation bands for each node taking into account imagined and visuomotor tasks. Our

discoveries stress the pertinence of the alpha band while performing and distinguishing

the specific imaginary or visuomotor assignments.

Keywords: neuronal dynamics, EEG, alpha oscillations, visuomotor tasks, imagined tasks

1. INTRODUCTION

One of the principal assumptions in neuroscience is that the brain computes, and this is accepted by
most scientists in the area. That is, the cerebrum takes approaching tangible information, encodes
it into a few biophysical factors consisting of membrane voltage or neuronal activation costs, after
which a wide variety of dynamic operations are played to extract applicable features of the input.
The result is that some of these computations can be stored for later access and ultimately, to control
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the behavior of the animal in the most convenient way. In
addition, the brain processes sensory information in multiple
stages in neural circuits. The information is transmitted through
trains of action potential or less frequently by local field
potentials (LFPs). More specifically for the action potentials, the
information can also be transmitted through the counting of
spikes, the temporal precision of them, the structure of the time
series, the synchronization between groups of neurons, or some
combination of these [1–11]. Thus, the brain does not have a
single code but multiple which depend on multiple complex
dynamic variables.

In particular, the scalp electroencephalogram (EEG),
recorded by means of a given electrode, can be taken into
consideration as a spatiotemporally smoothed version of the
LFP that is incorporated over an area of 10 cm2 or greater.
Electroencephalography can accurately detect brain activity at
a time resolution of a single millisecond [12]. This technique
provides continuous recording of the brain’s electrical processes
which allows us to relate changes in signal with a particular
cognitive task. It is conceivable to extract from the EEG the
functional connectivity network. However, the elucidation
of the inter-connectivity from sensor level recordings is not
straightforward [13]. In this manner some endeavors to use
convenient techniques on the time series dynamics recreated
from scalp EEG signals can be found in the literature [14–17].
Network theory is usually based on graph theory, probability
theory, statistical mechanics, and dynamical systems [14–28].

The brain is a large-scale complex network and discovering
interdependencies between at least two EEG electrodes can be
described utilizing a few methodologies [29]. Let us remark
that the network analysis of EEG data can help us to gain
a deeper understanding of the brain functions as finding the
correct functional connectivity of the brain through EEG signal
can be used as a biomarker to diagnose mental disorders
[17, 30, 31]. Investigating the dynamics of the EEG signals
complex network means to estimate the degree of correlation
across the different temporal patterns for the different electrodes
or nodes. Fluctuations of electrical activity registered by EEG
show correlated neuronal activity [32]. The extent of oscillatory
coupling between two EEG signals can be used as a measure of
strength to reflect network activity of the brain. The human brain
can be understood as a large-scale complex network [15, 33, 34],
the topological properties of EEG-derived networks describe
working memory phases [35], and variations in the path length
connectivity across nodes can be linked with mental diseases
[17, 31].

Methods of EEG analysis are based on the investigation of
dynamic changes of electrical activity in time, frequency, and
space. A straight methodology for assessing the associations
is finding how comparable the signals’ waveforms are of each
frequency when a time-lag is used to one of them. This
is evaluated through cross-correlation [30, 36, 37]. However,
non-linear components of coupling can control the neuronal
activity. In this way non-linear affinity measures ought to be
considered to determine the brain complex network. Bandt and
Pompe (BP) proposed a novel methodology that comprises in
changing the signal, by means of a symbolic methodology, into

a sequence of patterns and then making inference over them
[38–40]. In view of the evaluation of the ordinal structures
present in the time series and their neighborhood impact on the
related probability density function they include the signals’ own
temporal causality through a methodology of simple application
and direct estimation [38–42]. Thus, the BP approach permits us
to find important causative data associated with the hidden non-
linear variables that regulate the system. Statistical complexity
measures are useful to quantify stochastic systems and to detect
whether a system is not deterministic or random. The perfect
order and the maximum randomness can be depicted all around
effectively on the grounds that they do not have any structure
and in the two cases the statistical complexity is zero. In
any case, between these two limits there is a wide scope of
ordinal structures of important stochastic nature. The complexity
measure has been effectively utilized in perception and portrayal
of various dynamical regimes [38–43]. The non-linear elements
of the cerebrum are of dissipative nature, and subject to non-
equilibrium conditions that describe the developing properties of
the neurons and portray the conduct of the neuronal capacities.
The Jensen-Shannon divergence, which evaluates the contrast
between (at least two) probability distribution functions (PDFs),
is particularly valuable to compare the symbol-composition of
different sequences. Statistical complexity enables us to measure
basic features about the dynamic of the PDF related to the
EEG recorded activity [38–43]. This measure originally obtained
from Information Theory enables us to evaluate the non-linear
dynamics of the electro-cortical responses [38–43]. The statistical
complexity is the result of two entropies, the Shannon entropy
and Jensen–Shannon divergence, however it is a non-trivial
mathematical relation of the entropy since it relies upon two
probability functions, i.e., the one relating to the condition of the
system and the uniform PDF taken as reference state. Essentially,
in the present work we estimate the normalized Jensen-Shannon
distance between two probabilities, however one comparing to
the condition of the electrical activity in one electrode and the
state PDF taken from another electrode as reference [44]. The
aim of this study is to perform a discrimination of imagined [45]
and non-imagined tasks through the application of the Jensen–
Shannon divergence of the BP probabilities across different
electrodes sites in combination with estimation of the closeness
centrality of nodes. We conduct a statistical analysis to examine
the closeness centrality for the different rhythmic oscillation
bands and nodes, considering imagined and visuomotor tasks.
Our current approach allows us to discriminate imagined and
non-imagined tasks characterizing the most important nodes
within a graph for the different rhythmic oscillation bands using
a functional network based on the BP formalism and the Jensen–
Shannon divergence.

2. METHODOLOGY

2.1. Time Series Analysis and Ordinal
Patterns
Consider X ≡ {xt}

M
t=1 a time signal of length M, and at first,

we expect that there are not equivalent abundance esteems in
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the time signal, that is the probability P(xt1 = xt2 ) = 0 ∀ t1 6=

t2. Bandt and Pompe presented in their foundational paper
an effective technique for the assessment of PDF related to a
time signal utilizing a symbolization system [38]. For a point
by point portrayal of the methodology we allude the reader
to [46]. The significant symbolic descriptions are (i) made by
ranking the magnitudes of the signal and (ii) characterized
by reordering the symbols in upward order; this is similar
to a state space reconstruction with embedding dimension D
and time lag τ . Further subtleties portraying the focal points
that make the BP system more helpful than regular techniques
dependent on range dividing (i.e., PDF amplitude histograms)
can be discovered in Olivares et al. [47, 48], Rosso et al. [49,
50], Rosso and Masoller [39, 40], Saco et al. [51], and Keller
and Sinn [52]. The BP approach can be used for any kind of
signals, and the main condition for the appropriateness of this
procedure is a stationary hypothesis (that is, for k ≤ D, the
likelihood for xt < xt+k ought not be conditional on t [38]).
To utilize the Bandt and Pompe [38] procedure for assessing
the PDF, P, related with the signal, one starts considering
parcellings of the appropriate D-dimensional space that will
“uncover” pertinent subtleties of the ordinal structure of a signal
X (t) = {xt; t = 1, · · · ,M} with D > 1 (D ∈ N) and τ

(τ ∈ N). Consider the “ordinal pattern” of order (length) D
produced by (s) 7→

(

xs−(D−1)τ , xs−(D−2)τ , · · · , xs−τ , xs
)

,
that gives to each time s the D-dimensional vector of
magnitudes in instants s, s − τ , · · · , s − (D − 1)τ . Notice
that when the D−value is greater, more data about the past
are incorporated into our vectors. We designate “ordinal
pattern” identified with the time (s) to the configuration
π = (r0, r1, · · · , rD−1) of [0, 1, · · · ,D − 1] characterized by
xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . Vitally,
to get a one of a kind outcome we take ri < ri−1 if xs−ri = xs−ri−1 .
This can be warranted if the xt comes from a continuous PDF,
so similar magnitudes are unlikely. In this manner, for all the
D! conceivable configurations π of order D, their related relative
frequencies can be determined by the occasions this specific
arrangement is found in the signal divided by the full number
of configurations:

p(πi) =
♯{s|s ≤ M − (D− 1)τ ; (s) is of kind πi}

M − (D− 1)τ
. (1)

We allude the image ♯ to “number.” That is, an ordinal PDF
P = {p(πi), i = 1, · · · ,D!} is obtained from the signal.
In this way it is conceivable to measure the variety of the
permutations of length D got from a scalar signal by estimating
the Shannon Entropy and MPR statistical complexity. The
embeddingmeasurementD decides the quantity of possible states
D!. The signal of length M that one needs so as to work with
truthful estimators is M ≫ D! [49]. We wish to underline that
Bandt and Pompe recommended working with 4 ≤ D ≤ 6
and explicitly considered a delay τ = 1 in their foundational
paper [38]. Be that as it may, another estimation of τ can likewise
generate extra knowledge [47, 48, 53–57].

3. THE JENSEN SHANNON DIVERGENCE

Entropy gives us an amount of incertitude and is the most
representative case of the information quantifiers. For a PDF f (x)
with x ∈ 1 ⊂ R and

∫

1
f (x) dx = 1, we characterize the Shannon

Entropy S [58] as

S[f ] = −

∫

1

f log2(f ) dx . (2)

In the discrete case, let be X (t) ≡ {xt; t = 1, · · · ,M}, a
time series with M samples and the related PDF, given by P ≡

{pj; j = 1, · · · ,N} with
∑N

j=1 pj = 1 and N the quantity
of conceivable states of the examined physical system. Then,
Shannon’s logarithmic data measure [58] is characterized by

S[P] = −

N
∑

j=1

pj log2(pj). (3)

This quantity is equivalent to zero when we can anticipate with
sureness which of the conceivable outcomes j, whose probabilities
are given by P0 = {pj∗ = 1 and pj = 0, ∀j∗ 6= j}, it will
truly occur. So, in this condition we have maximum information
about the hidden procedure. In contrast, this information is
negligible for a uniform PDF Pe = {pj = 1/N, ∀j = 1, · · · ,N}.
Regarding the interpretation, the entropy of P(X) indicates the
base number of bits expected to encode the estimations of an
arbitrary variable X with probability density function P(X). The
Shannon entropy S is a quantity of “global character" that is not
extremely susceptible to high changes in the PDF that happens in
a short zone. Nonetheless, it is essential to bring up that ordinal
structures present in a signal are not evaluated by haphazardness
or randomness measures.

Let us now consider a time series measured by a given
electrode that can be represented by a symbolization alphabet
to which we assign a probability distribution Q = {qj, j =

1, · · · ,N}, and another electrode measures a different time series
represented also by different symbols that were drawn from a
different probability distribution, P ≡ {pj; j = 1, · · · ,N}. The
“cross-entropy" between Q and P is the Kullback-Leibler (KL)
distance that is a very useful way to measure the difference
between two probability distributions. The KL distance is

KL[P||Q] = −

N
∑

j=1

pj log2

(

qj

pj

)

. (4)

This can be rewritten as

KL[P||Q] = S[P,Q]− S[P]. (5)

Thus the KL divergence represents the number of extra bits
necessary to code a source whose symbols were drawn from the
distribution P, given that the coder was designed for a source
whose symbols were drawn from Q. Despite KL usually being
referred as a distance measure between probability distributions,

Frontiers in Physics | www.frontiersin.org 3 August 2019 | Volume 7 | Article 11580

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Baravalle et al. Characterization of Visuomotor/Imaginary Movements in EEG

Kullback–Leibler divergence is not a true metric as it does not
have the property of symmetry.

On the other hand, Jensen–Shannon divergence enables us to
quantify the similitude between two distributions and has been
utilized in statistics and probability theory. The Jensen–Shannon
divergence is defined as

JS(P||Q) = S[(P + Q)/2]− S[P]/2− S[Q]/2. (6)

It is based on the Kullback–Leibler divergence, with some
remarkable and important differences: it is symmetric and always
provides finite values.

The Jensen–Shannon divergence, which evaluates the
distinction between PDFs, is very helpful to analyze the
symbolic configuration between various symbolic messages
[59]. As non-linear measures ought to be considered to
decipher the brain complex network, a straightforward way
to investigate this inter-connectivity is using BP formalism
in combination with JS disparity (or distance). Let us now
consider a time series measured by a given electrode in a
brain area that can be represented by a BP symbolization
alphabet with probability distribution Q and another electrode

sited in another brain area and with different time series
represented by probability distribution, P. If we estimate
JS(P||Q) a smaller JS implies greater interconnectivity between
electrodes, and greater values of JS implies a lower inter-
connectivity across them. Thus, the Jensen–Shannon measure
in combination with the BP approach can provide us a novel
quantification of the network inter-connectivity across EEG
electrodes [44].

4. EEG DATASET

Our point in this section is to portray the interconnectivity
of the EEG frequency bands when the subjects play out a
visuomotor or imagined assignment. We have considered for the
present investigation the EEG visuomotor Movement/Imagery
Dataset recorded utilizing BCI2000 instrumentation accessible
through Physionet [12, 41–43, 45, 60, 61]. Figure 1 shows the
experimental setup that comprises an arrangement of various
utilized electrodes.

The experimental setup of the BCI2000 framework [12, 45]
incorporates a set of 64 electrodes used to register the electrical

FIGURE 1 | Electrode arrangement as per the international 10–20 system (as in [12, 41–43, 45, 61–63]). The numbers below each electrode name indicate the order

in which they appear in the recordings.
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responses of the cerebrum through the EEG signals while the
subjects perform diverse assignments of visuomotor or imaginary
kinds [12, 41–43, 45, 61–63]. Each subject performed one of each
of the four after assignments:

TABLE 1 | Frequency bands analyzed.

Band Frequency interval (Hz)

Delta [1, 4)

Theta [4, 8)

Alpha 1 [8, 10)

Alpha 2 [10, 13)

Beta 1 [13, 18)

Beta 2 [18, 31)

Gamma 1 [31, 41)

Gamma 2 [41, 50)

1. An objective shows up on either the left or the right
half of the screen. The subject opens and shuts the
matching hand until the objective vanishes. At that point the
subject unwinds.

2. An objective shows up on either the left or the right half of
the screen. The subject envisions opening and shutting the
matching hand until the objective vanishes. At that point the
subject unwinds.

3. An objective shows up on either the upper or the lower half of
the screen. The subject opens and closes either the two hands
(if the objective is on the upper half) or the two feet (if the
objective is on the base) until the objective vanishes. At that
point the subject unwinds.

4. An objective shows up on either the upper or the lower
half of the screen. The subject envisions opening and
closing either the two hands (if the objective is on
the upper half) or the two feet (if the objective is on

FIGURE 2 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands delta and theta. (C,D) Are the same as (A,B) but considering the imagined task. We consider

D = 6 and τ = 1. Delta oscillation band corresponds to [1, 4)Hz and theta oscillation band to [4, 8)Hz.
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the base) until the objective vanishes. At that point the
subject unwinds.

Eye blink artifacts were produced by quick motions of the
eyelid along the cornea, for example, amid an eye squint. In
any case, muscular artifacts were cautiously checked toward
the start of each recording and confirmed all through the
experiment [12, 45, 61–63]. Significantly, in our present
investigation the muscular and technical artifacts were discarded
following the methodology exhibited in Schalk et al. [12]
and Schalk and Mellinger [45]. That is, a Common Average
Reference (CAR) is carried out before artifact rejection
as demonstrated in Schalk et al. [12] and Schalk and
Mellinger [45].

Various oscillatory rhythms have been connected to various
parts of perception that are very significant to see how actions are
prepared in the human brain [12]. The EEG records the electrical
activity of the brain that by a sensory incitement, or a visuomotor
output, exhibits distinctive rhythms such as delta (∈ [1, 4) Hz),
theta (∈ [4, 8) Hz), alpha (∈ [8, 13) Hz), beta (∈ [13, 31) Hz), and
gamma (≥31 Hz).

For a detailed description of the study, the design of the
experiment, group of subjects, the condition of the experiment
used and the EEG equipment used for the measurements, we
refer the reader to [12, 43, 45, 61–63]. The classic scenario where
the subjects are performing the motor action using an event-
related desynchronization (ERD) analysis is carefully described
for the different oscillation bands by Kim et al. [64].

FIGURE 3 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands alpha 1 and alpha 2. (C,D) Are the same as (A,B) but considering the imagined task. We

consider D = 6 and τ = 1. Alpha 1 oscillation band corresponds to [8, 10)Hz and alpha 2 oscillation band to [10, 13)Hz.
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For each subject and for each task we obtain the network,
using the BP symbolization technique for each electrode and
obtaining a weighted graph, with each weight given by the JS
divergence, normalized by taking the maximum value between
realized and imagined tasks. For completeness, we show an ERP
signal of the current data in the Supplemental Material, and
for further details we refer the reader to [43]). Specifically, we
utilize the Kaiser filtering window created in Belitski et al. [65] to
filter the raw signals for the diverse oscillation bands. The EEG

are sampled at 160Hz. But due to the high frequency artifacts
that obscured the EEG, and to expel variances at DC level and
increment the signal to noise ratio, the records where passed first
through a filter between 1 and 50 Hz utilizing a filter created in
Belitski et al. [65].

After this filtering, each EEG signal was decomposed, using
the Kaiser filtering window created in Belitski et al. [65], in the
frequency bands given in Table 1. For further insights regarding
the filtering we allude the reader to [41].

FIGURE 4 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands beta 1 and beta 2. (C,D) Are the same as (A,B) but considering the imagined task. We

consider D = 6 and τ = 1. Beta 1 oscillation band corresponds to [13, 18)Hz and beta 2 oscillation band to [18, 31)Hz.
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Networks are usually built considering different thresholds,
and then graphs are constructed. This framework allows
us to analyze the functional connectome of the brain. We
describe the diverse network rhythmic activity of the brain
as indicated by unmistakable visuomotor and imagery tasks
using an information theory approach. The main idea of the
current analysis is to gain a better understanding of situations in
which a given oscillation band recruits specific brain networks
for a given oscillation supporting a distinction between the
forms identified with attention and development of imaginary
movements. We estimate the degree of network interconnectivity
as the normalized Jensen-Shannon distance JS between two
probabilities: one corresponding to the state of the system in one
electrode and the state distribution taken of another electrode
as reference state, that is to say by estimating the normalized
Jensen–Shannon distance between the BP probabilities across
different electrodes sites as in Equation (6). We have normalized
the Jensen–Shannon distance by taking the maximum value
between realized and imagined tasks. Due to the length of time
series we consider D = 6 and τ = 1 for all BP estimations as in

(Bandt and Pompe [38], Rosso and Masoller [39, 40], Baravalle
et al. [41, 42]). So as to perform examinations inside the BP
formalism, we have to meet the condition (M ≫ D!); in this case
we have 20,000 points for each case.

4.1. Centrality
Graph theory is the investigation of systems of interacting
elements, which are structures used to pose pairwise and/or
multiple relations between them [66]. A graph in this setting is
comprised of nodes which are associated by edges. The centrality
of a node in a system C is a measure of the basic importance
of the node. While thinking about a graph, closeness centrality
of a given node is a measure of centrality in a system and is
evaluated as the quantity of nodes less one, N − 1, partitioned
by the summation of the length of the shortest path between the
node of interest and every single other node in the diagram.

That is

C(i) =
N − 1

∑

j d(i, j)
, (7)

FIGURE 5 | Network interconnectivity. (A,B) Show the network averaged values of the interconnectivity considering 109 subjects when performing the visuomotor

task for the 64-channel EEG considering the different oscillation bands alpha 1 and alpha 2. (C,D) Are the same as (A,B) but considering the imagined task. We

consider D = 6 and τ = 1. Gamma 1 oscillation band corresponds to [31, 41)Hz and gamma 2 oscillation band to [41, 50)Hz.
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where d(j, i) is the separation between vertices i and j. Closeness
centrality measures how short the shortest paths are from node
i to all nodes, and we have 62 nodes in total because we
exclude the two reference electrodes T9 and T10. We choose the
closeness centrality because it is a helpful measure to estimate
level of efficiency and convenience that gauges how quick the
transmission of data would be through a given node all the
available nodes [17, 67–72].

4.2. Statistical Analysis
As we mentioned previously, our objective is to focus on a better
understanding of situations in which a given oscillation band
recruits specific brain networks for a given oscillation supporting
a distinction between the forms identified with attention and
development of imaginary movements. In order to compare
the closeness centrality for the different tasks, statistical tests
are performed for each node. In consequence, we establish the

following statistical analysis protocol for the obtained results
of closeness centrality: (a) we first perform a t-test between
imagined and realized tasks for each of the considered bands,
and (b) in order to obtain a more accurate statistical test we also
perform a false discovery rate (FDR) correction. We choose the
Benjamini–Hochberg methodology at a specified FDR of 5% as
in Benjamini and Hochberg [73] and Nielsen et al. [74].

5. RESULTS

In the following we show the analysis performed for the
visuomotor task 1 and its corresponding imagined task 2. Our
outcomes are equivalent for the visuomotor/imagery tasks 3 and
4. Figures 2A,B, 3A,B display the mean of the interconnectivity
for the 109 subjects when playing out the visuomotor assignment
for the 64-channel EEG considering the diverse rhythms

FIGURE 6 | (A,B) Show the node interconnectivity when considering the executed visuomotor task and taking the theta and alpha 1 band for the electrode Oz (or

node) in the visual cortex. (C,D) Show the node interconnectivity when considering the imagined task. We consider D = 6 and τ = 1.
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delta, theta, alpha 1 and alpha 2. Figures 2C,D, 3C,D are
equivalent to Figures 2A,B, 3A,B but performing the imagined
task. Figures 4A,B, 5A,B depict the network averaged values
of the interconnectivity for performing the visuomotor task
when considering the beta 1, beta 2, gamma 1 and gamma
2 bands, respectively. Figures 4C,D, 5C,D are the same as
in Figures 4A,B, 5A,B but performing the imagined task.
Small differences can be appreciated between the network of
the realized and imagined tasks. Furthermore, Figures 6A,B

show the node interconnectivity when considering the executed
visuomotor task in view of the theta and alpha 1 bands for
the electrode Oz (or node) in the visual cortex. Figures 6C,D
show the node interconnectivity when considering the imagined
task taking into account the same node in the visual cortex.
Figures 6A–D depict also the averaged values considering 109
subjects. We can appreciate from the previous figures that there
are differences in the network interconnectivity for the different
conditions, however the current results are not quantifying how
different the networks are. That is to say we can not infer from the
previous figures which are the most relevant network structures.
For completeness in the Supplementary Materialwe also include
the analysis for all the other bands that are not being depicted
in Figure 6.

In order to quantify the structural relevance of each node
for the realized and imagined tasks, we investigate the closeness
centrality of different nodes. Figures 7A,B show the closeness
centrality C, as in Equation (7), taking into account the average
over 109 subjects for the 62-channel EEG considering the
realized task when considering delta and theta, respectively.
Figures 7C,D, are the same as in Figures 7A,B but performing
the imagined task. Let us emphasize that Figures 8A, 9A depict

the closeness centrality C [as in Equation (7)] considering
the alpha 1 and alpha 2 bands, respectively, taking into
account the average over 109 subjects for the 62-channels
EEG considering the realized task. Figures 8B, 9B are the
same as in Figures 8A, 9A but executing the imagined
task. Figures 10A,B, 11A,B depict the closeness centrality
C when realizing the visuomotor task considering the beta
1, beta 2, gamma 1 and gamma 2 bands, respectively.
Figures 10C,D, 11C,D are the same as in Figures 10A,B, 11A,B
but performing the imagined task. The electrodesT9 andT10 have
been excluded from the current analysis of the nodes centrality as
they are reference electrodes [43].

In the case of the delta band, TP7 showed the highest closeness
centrality for imagined and realized tasks. While in the theta
band FP1, FPz , and FP2 depicted the highest centrality, both for
both tasks. When considering the beta 1, the highest centrality
is given by AF8, T8, O2, and Oz for the realized task. In the case
of the imagined task, beta 1 has the highest centrality for AF7,
AF8, F6, T8, and Oz . Beta 2 depicted the highest centrality in
AF8 for the realized task and AF7, AF8 for the imagined task.
Alpha 1 displays higher centrality for FP1, FPz , FP2, F7, F6, FC2,
FC4, C4, and P2 for the realized task. When considering the
imagined task alpha 1 showed the highest centrality for the nodes
FP1, FP2, AF8, AF3, F3, F2, FT7, FC3, FC4, P2, P7, T8, PO4, Oz ,
and O2. In contrast the highest centrality of the alpha 2 band
is given by the nodes FPz , FP2, T8, O1, and Oz for the realized
task. The highest centrality of the imagined task is given by FPz ,
O1, and PO4 for alpha 2. Gamma 1 and gamma 2 presented the
highest centrality in Oz , O2, and Tz for the realized and imagined
tasks. Overall, it is important to point out that delta, theta, beta
and gamma bands show lower closeness centrality and therefore

FIGURE 7 | Closeness centrality. (A,B) Show the nodes’ closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the different oscillation bands delta and theta. (C,D) Are the same as (A,B) but considering the imagined task. We consider D = 6 and τ = 1. Delta

oscillation band corresponds to [1, 4)Hz and theta oscillation band to [4, 8)Hz.
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FIGURE 8 | Closeness centrality. (A) Shows the node closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the oscillation band alpha 1. (B) Is the same as (A) but considering the imagined task. We consider D = 6 and τ = 1. Alpha 1 oscillation band

corresponds to [8, 10)Hz.

depict a lower efficiency of the information of the data that could
be transmitted through a given node to all the available nodes.

We find no significant differences between the realized and
imagined tasks for most of the different bands, with the exception
of the alpha 1 and alpha 2 bands that depict an unequal closeness
centrality in several nodes of the network when comparing
both tasks (see Figures 8A,B, 9A,B). After performing the FDR
correction we find no significant differences between realized and
imagined tasks when considering the delta, theta, beta 1, beta 2,
gamma 1 and gamma 2 bands. In the case of the alpha 1 band (see
Figures 8A,B), as mentioned we first performed a t-test between
imagined and realized tasks obtaining 26 sites with significant
differences. After performing a FDR correction we find 17
nodes/sites that present significant differences between imagined
and non-imagined tasks. The electrodes that accomplished both
tests were FPz , AF8, F7, F8, F3, F2, F6, FT7, AFz , FC3, C5, C2, T8,
PO7, PO8, C1, and Oz . In the case of alpha 2 (see Figures 9A,B)
there were eight sites that showed significant differences when
performing the t-test, and six electrodes presented significant
differences when applying a FDR correction between tasks. The
electrodes that accomplished both tests were T8, TP7, P7, Oz ,

Iz , and PO4. Finally, for completeness, Figures 12A–C depict
the results of the closeness centrality derived from statistical
comparison between realized and imagined tasks for all the
significant nodes within alpha 1. Figure 12D shows all the
significant nodes within the alpha 2 band. Let us emphasize
that the estimation of the network closeness centrality played
an ultimate role, as when we implemented other network
measures they did not produce any quantifiable difference
between realized and imagined tasks for the different analyzed
bands. Here, a systematic method in which nodes are weighted
by closeness centrality was proposed. We demonstrate how the
combination of the estimation of the Jensen–Shannon divergence
of the BP probabilities across different nodes encompassed with
calculations of the nodes closeness centrality has significance to
distinguish imagined from realized motor tasks. We found a
higher degree of closeness centrality in the case of the imagined
task when compared with the realized ones, looking upon the
alpha band. Thus these results shows that imagined processes are
linked to changes in the alpha levels of centrality of the different
nodes in the brain. Overall we emphasize that the alpha 1 band
shows a higher level of closeness centrality than the other bands,
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FIGURE 9 | Closeness centrality. (A) Shows the node closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the oscillation band alpha 2. (B) Is the same as (A) but considering the imagined task. We consider D = 6 and τ = 1. Alpha 2 oscillation band

corresponds to [10,13)Hz.

therefore it depicts a quicker level information flow from a given
node to other nodes.

6. CONCLUSION AND DISCUSSIONS

Attention is a mechanism required for focusing on what
is critical at each moment of time, while suppressing any
unessential information. This mechanism is also required to
perform mental imagery, activating the synchronized network
of multiple areas of the brain [45]. This synchronized activity
of many neurons communicating with one another generates
brain waves [45]. Brain waves are rhythmic oscillation patterns
that can be registered as macroscopic oscillations utilizing EEG
sensors on the scalp. The descriptions are quite broad: delta
rhythmic are related to sleep states; theta might be entrance to
further understanding learning and memory; alpha is usually
related to attention, lucid thinking and integration; beta is
present during the state of alert and problem solving; and
gamma rhythms modulate perception and consciousness [45].
Moreover, brain oscillation rhythms can provide hints about
the network functionality during imagined and realized tasks.
In our current study we have considered the causality of the

EEG signals using the BP approach, and through a statistical
analysis that combined the Jensen–Shannon distance with the
estimation of the closeness centrality we estimate the level
efficiency on data transmission for a given node to all the available
nodes taking into account the different rhythmic oscillation
bands. Our current results emphasize the relevance of the
alpha 1 band when detecting nodes that spread information
with different efficiency through the graph for realized and
imagined tasks.

We propose an effective technique that enables us to
determine quantitatively the amount of the node closeness
centrality inside the diverse rhythms considering the causality
of the EEG signals. So as to do it thus, we exactly evaluate
the distinctive highlights of oscillatory patterns considering keen
estimates representing the causal structure of the signal utilizing
the BP procedure. More specifically, we estimate the network
interconnectivity by estimating the normalized Jensen–Shannon
distance between the BP probabilities across different nodes,
quantifying the non-linear dynamics of the EEG signals. We
choose thereafter to compute the closeness centrality because
it is a helpful measure to estimate the level of efficiency and
convenience that gauges how quick the transmission of data
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FIGURE 10 | Closeness centrality. (A,B) Show the nodes’ closeness centrality considering 109 subjects when performing the visuomotor task for the 62-channels

EEG considering the different oscillation bands beta 1 and beta 2. (C,D) Are the same as (A,B) but considering the imagined task. We consider D = 6 and τ = 1.

Beta 1 oscillation band corresponds to [13, 18)Hz and beta 2 oscillation band to [18, 31)Hz.

FIGURE 11 | Closeness centrality. (A,B) Show the nodes’ centrality considering 109 subjects when performing the visuomotor task for the 62-channels EEG

considering the different oscillation bands gamma 1 and gamma 2. (C,D) Are the same as (A,B) but considering the imagined task. We consider D = 6 and τ = 1.

Gamma 1 oscillation band corresponds to [31, 41)Hz and gamma 2 oscillation band to [41, 50)Hz.

would be through a given node all the available nodes [67–
72]. Our methodology enables us to characterize the “closeness
centrality properties" of various nodes inside the EEG rhythms,
considering the causality of the signal and gathering the rising
dynamical properties of the diverse oscillation patterns of

the brain while performing distinctive visuomotor or imagery
tasks. That is to say in the current paper, we analyze EEG
network organization through the closeness centrality to study
how to discriminate imagined and non-imagined tasks for
the different rhythmic oscillations, showing that the alpha 1
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FIGURE 12 | Statistical comparison and closeness centrality. (A–C) Depict the closeness centrality for the realized and imagined tasks considering the significant

nodes for the alpha 1 band. (D) Is the same as (A–C) but considering the alpha 2 band. In all cases: dark gray bars, realized task; light gray bars, imagined task.

bands allow us to discriminate between both assignments. Thus,
we determine that the current approach combining the BP
estimation with the Jensen-Shannon distance and the closeness
centrality is a viable option for classification of hand realized and
imagined signals.

It has been found that alpha frequency oscillations posses
an important role in inhibitory control actions managing
access of data of a cognition procedure and working memory
[75–77]. Our findings show that several nodes within the
gamma 1 band have an overall higher amount of closeness
centrality during the imagined task in comparison to realized
tasks. These higher amounts of centrality are located within
the pre-motor, motor, and visual cortex areas. Thus, we can
conclude that the imagined cognitive processes coincide with
higher alpha 1 levels of closeness centrality of the different
nodes. Our discoveries underscore the significance of the
alpha band while taking part in cognitive tasks. That is in
concurrence with strong proof that EEG alpha power is
especially susceptible to different imagination-related requests,
and that is happening due to creativity interventions [78].
We suggest that increased levels of centrality of several
nodes for alpha 1 levels during the imaginative tasks
might be important neurocognitive processes related to

the internal attention required to perform mental imagery
tasks.

As far as we can tell, there is still no ideal way to deal
with the construction of a brain computer interphase (BCI)
based on motor imagined tasks (MI-BCI, [79]). Specifically,
features extraction and determination of relevant patterns
and biomarkers for developing a successful MI-BCI are still
under debate. Thus, it is extremely useful to investigate
new methodologies that can offer a better understanding of
how motor imagined patterns and connectivity differs from
the non-imagined/realized activities. Recently, new research
has investigated the possibility of taking measures that were
originally developed in graph theory for data classification as
they could provide important information about the connectivity
[80]. In particular, a recent study has shown that graph metrics
can be used for EEG-BCIs based on hand motor imagery
graphs, as they are a feasible option for classification of hand
motor imagined signals [81]. A recent study showed that the
activity of the globulous pallidus is significantly reduced during
imagined locomotion in patients with Parkinson disease when
compared to healthy subjects [82]. Importantly the authors
showed, using fMRI measures, that Parkinson disease patients
displayed larger beta weights in the visuomotor zone amid
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envisioned turning contrasted with forward or in reverse
while controls did not, and that overground marching speed
is associated with beta weights amid imagined marching in
a few locomotor areas in patients with Parkinson disease
and not in controls [82]. The early detection and diagnosis
based on extracting features of the neuronal networks EEG
topology thought imagined tasks can be of ultimate help for
understanding brain functions and neuronal diseases. When one
performs a network analysis, markers of closeness centrality
allow us to find the most relevant vertices within a graph.
Applications means identifying the most important structure
of the neuronal network, therefore the main relevance of
the nodes’ centrality is identifying the different networks
that might be related with neural diseases. The detection of
those differences between realized and imagined features is
a relevant highlight of the EEG topology that can be of
assistance for inferring the brain functions. Moreover, we
plan future related work to perform estimations of wavelet
phase coherence to obtain the connectivity matrices for the
different oscillations bands and to estimate the betweenness
centrality across them to identify possible nodes that might
mediate communication with the other nodes for the different
imagined/realized tasks as performed in Makarov et al. [83]. We
suggest that the current tool that combines a subtle information
theoretical approach, representing the causality of the signal
together with a quantification of the levels of centrality for

the different nodes, can be very useful for early detection of
neuronal diseases.
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The mechanisms underlying an effective propagation of high intensity information over

a background of irregular firing and response latency in cognitive processes remain

unclear. Here we propose a SSCCPI circuit to address this issue. We hypothesize

that when a high-intensity thalamic input triggers synchronous spike events (SSEs),

dense spikes are scattered to many receiving neurons within a cortical column in

layer IV, many sparse spike trains are propagated in parallel along minicolumns at a

substantially high speed and finally integrated into an output spike train toward or in

layer Va. We derive the sufficient conditions for an effective (fast, reliable, and precise)

SSCCPI circuit: (i) SSEs are asynchronous (near synchronous); (ii) cortical columns

prevent both repeatedly triggering SSEs and incorrectly synaptic connections between

adjacent columns; and (iii) the propagator in interneurons is temporally complete fidelity

and reliable. We encode the membrane potential responses to stimuli using the non-

linear autoregressive integrated process derived by applying Newton’s second law

to stochastic resilience systems. We introduce a multithreshold decoder to correct

encoding errors. Evidence supporting an effective SSCCPI circuit includes that for the

condition, (i) time delay enhances SSEs, suggesting that response latency induces

SSEs in high-intensity stimuli; irregular firing causes asynchronous SSEs; asynchronous

SSEs relate to healthy neurons; and rigorous SSEs relate to brain disorders. For

the condition (ii) neurons within a given minicolumn are stereotypically interconnected

in the vertical dimension, which prevents repeated triggering SSEs and ensures

signal parallel propagation; columnar segregation avoids incorrect synaptic connections

between adjacent columns; and signal propagation across layers overwhelmingly

prefers columnar direction. For the condition (iii), accumulating experimental evidence

supports temporal transfer precision with millisecond fidelity and reliability in interneurons;

homeostasis supports a stable fixed-point encoder by regulating changes to synaptic

size, synaptic strength, and ion channel function in the membrane; together all-or-none

modulation, active backpropagation, additive effects of graded potentials, and response

variability functionally support the multithreshold decoder; our simulations demonstrate

that the encoder-decoder is temporally complete fidelity and reliable in special intervals

contained within the stable fixed-point range. Hence, the SSCCPI circuit provides a

possible mechanism of effective signal propagation in cortical networks.

Keywords: nonlinear dynamics, time series modeling, homeostatic encoder, multithreshold decoder, all-or-none

modulation, backpropagation, synchronous spiking events, cortical minicolumns
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1. INTRODUCTION

Cortical mechanisms of information propagation in cognitive
processes have not been clarified. Neurons convey this
information by sending a sequence of action potentials (a
spike train) in the brain, but whether this information is
embedded in the spike train by rate or temporal coding is a
long-debated topic. Although the input–output function of
neurons is classically described as the ratios of mean firing rates
(Shadlen and Newsome, 1998), the efficiency of rate coding
remains controversial (Gautrais and Thorpe, 1998; van Rossum
et al., 2002). Accumulating experimental evidence supports
temporal precision with millisecond fidelity and reliability (e.g.,
Gollisch and Meister, 2008). But temporal coding is challenged
by neuronal response latency and irregular firing.

Latencies in axonal conduction and synaptic transmission
(Uzuntarla et al., 2012) lower transfer speed due to wait times.
Both highly variable reliable neurotransmitter releases and the
intrinsic fast activation kinetics of interneuronal K+ currents
can induce highly irregular firing during ongoing, spontaneous
activity, and when driven at high firing rates (Stiefel et al., 2013).
The irregular firing of cortical neurons may reduce the reliability
of spike transmission. That is, temporally effective transfer is
seemingly impossible. However, Diesmann et al. (1999) show
that precisely synchronized action potentials with millisecond
fidelity can propagate within a model of cortical network activity
that recapitulates many of the features of biological systems;
and Wei and Du (2019) demonstrate that time intervals and
periodicity operation can be determined by using an algorithm
for simulating a synaptic learning mechanism in a neural circuit
model derived from neural-connection structures.

Spiking propagation synchronously through layers is
essentially a feed-forward network of neurons (Abeles,
1982a, 1991). Network topology in the feed-forward network
determines the propagation of synchronous activity (Guo
et al., 2017), suggesting that an optimal network topology
relates to synchronous spike events (SSEs) in feed-forward
networks. SSEs propagating between groups of neurons in a
temporally precise manner through a six-layered, column-
arranged neocortex is a hallmark feature of cortical population
coding in human and other primate brains. The columnar
organization hypothesis is the most widely adopted explanation
of cortical information processing. These results suggest that
the optimal network topology integrates the functions of SSEs
and cortical columns in spiking propagation through the cortex
in a feed-forward manner. SSEs occur in various conditions
in numerous areas of the cerebral cortex (Abeles, 1982a; Gray
et al., 1989). Highly irregular firing is thought only possible
from fast, strong dendritic non-linearity or strong SSEs among
synaptically connected cells due to inconsistency with the
temporal integration of random EPSPs (Softky and Koch,
1993). The temporal sequences of SSEs have been postulated
as a working mechanism of activity propagation in the cortex
(Abeles and Gerstein, 1988; Diesmann et al., 1999; Ikegaya
et al., 2004; Torre et al., 2016a). Neurons within a minicolumn
share the same tuning for any given receptive field attribute
(Horton and Adams, 2005), while adjacent minicolumns may

have different fields (Jones, 2000). Thus, minicolumns may well
constitute a fundamental computational unit of the neocortex
(Buxhoeveden and Casanova, 2002). Increasing evidence shows
that the power of cortical processing is produced by populations
of neurons forming dynamic neuronal ensembles (Castejon
and Nuñez, 2016). On the other hand, there is an interaction
between microscopic and population dynamics (Panzeri et al.,
2015). SSEs in temporal encoding depend on single-neuron
features (Grewe et al., 2017). Single neuron properties and firing
statistics are consistent with physiological data (van Rossum
et al., 2002) and the mechanisms of dynamic information storage
in cells (Potter et al., 2017).

This study aims to reveal cortical mechanisms that support
effective signal propagation over a background of irregular
firing and response latencies occurring in cognitive processes.
First, we propose the hypothesis of a cortical population circuit
from an entry point of rapid transfer of high-intensity signals,
incorporating the interneuron encoder-decoder into the cortical
population circuit composites a cellular-network model. Then,
we derive the conditions for an effective (fast, reliable, and
precise) circuit. Finally, we provide evidence from simulations
and observations in support of these conditions and hypothesis.

A desirable candidate for action potential encoding should
satisfy the following requirements. The neuronal encoder as basic
signal processing should be reproducible and reflect the major
properties of neurons and circuits in information processing,
including inherent non-linearity (Softky and Koch, 1993),
ionic homeostasis (Davis and Bezprozvanny, 2001), activity-
dependent synaptic dynamics (Fuhrmann et al., 2002), response
latency (Uzuntarla et al., 2012), noise (Stiefel et al., 2013), and
discreteness (Abbott et al., 2016). Additionally, a spike train
is thought to be caused by synaptic stimuli as the bifurcation
parameter that triggers a fast transition between quiescent and
burst modes by a fixed point and limit cycle (Izhikevich, 2000).

We adopt the non-linear autoregressive integrated (NLARI)
process derived by applying Newton’s second law to stochastic
resilience systems (He, 2007, 2013) in action potential encoding
because the model satisfies the above requirements. Moreover,
the NALRI’s parameter estimation and testing are easy (He,
2014). The dynamics of the cortex have not been thoroughly
addressed, although a bifurcation in cortical activity from
damped stochastic activity (or a stable fixed point) to high
amplitude non-linear oscillations is thought to arise from activity
on a limit cycle or chaotic attractor in pathological states such
as the onset of a seizure (Deco et al., 2008). The NLARI process
can reproduce complete dynamic evolution from a stable to an
unstable fixed point and from period cycles to chaos (He, 2018),
which prevents missing the possible dynamic mechanisms of
neuronal encoding over a wide range of health and disease states.

2. RESULTS

2.1. SSCCPI Circuit
We proposed the Synchronous Spiking Cortical Column
Propagation Integration (SSCCPI) circuit for transfer
mechanism in cortical networks (Figure 1). First, we outlined the
organization and flowchart of cortical information processing.
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FIGURE 1 | Synchronous Spiking Cortical Column Propagation Integration (SSCCPI) Scheme. (A) A cortical organization schematic showing a six-layered,

column-arranged neocortex. (B) A flowchart showing cortical information processing along the layer IV, →II/III, →Va, and →Vb/VI pathway. (C) Schematic illustration

of the role of a SSCCPI scheme in response to rapid transfer of high-intensity signals under response latency: a stimulus input from a sensory neuron (N) is delivered

by SSEs to neurons (N1–N3) within a cortical column, propagated in parallel to neurons (N1′–N3′), and integrated at a target neuron (N′) for a single-neuron transfer

with temporal-complete fidelity.

Figure 1A illustrates an organization schematic of a cortical
column through six layers. Neurons in the neocortex are
organized vertically into numerous columns with columnar
segregation and horizontally in supragranular layers II/III,
granular layer IV, and infragranular layers V/VI. Figure 1B

illustrates a cortical information processing flowchart. When the
activation of sensory receptors scattered throughout peripheral
body parts generates a nerve impulse, this sensory input is
conveyed via the ascending sensory pathways of the spinal
cord and brainstem to the thalamus. The thalamic nuclei relay
sensory information to a specific region of the neocortex where
it can be processed. Sensory information is thought to be
propagated through the cortical column along the layer IV,
→II/III, and →V/VI pathway (Buonomano and Merzenich,
1998). Layers II/III interpret sensory signals, decide on the
appropriate response, and provide the basis of high-level neural
activity in the brain. Layer V projects the main outputs to
subcortical structures. Layer VI sends feedback connections
to its inputs from the thalamus. Notably, layer V is classically

subdivided into sublayers Va and Vb based on the following
characteristics (Zilles and Wree, 1995): layers Va and Vb differ
dramatically in the morphology of pyramidal cells and their
correlation with intrinsic and extrinsic physiological parameters;
layer Va pyramidal neurons receive most of their excitatory and
inhibitory inputs from intracolumnar sources, especially from
layer Va itself, but also from layer IV, and the two layers are the
main origin for transcolumnar excitatory inputs. Thus, layer Va
may predominantly integrate information intralaminarly as well
as from layer IV (Schubert et al., 2006). Hence, we postulated that
layer Va integrates thalamic and intracortical inputs from the
entire cortical column, while layer Vb projects the main outputs
to subcortical structures (see Harris and Mrsic-Flogel, 2013).

A key entry point to addressing our issues was based on the
idea that the computational properties of groups of neurons
should be an emergent property of the group. Rapid task-related
performance or attention to complex sounds induces rapid and
adaptive reshaping of retrieve field properties of neurons in
accordance with specific behavioral demands and salient sensory
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cues (Fritz et al., 2003, 2005, 2007; Soto et al., 2006). The rapid
and adaptive reshaping of retrieve field properties of neurons
could be known as SSEs.

When faced with a behavioral task, sensory neurons need
to rapidly elicit high-intensity signals from peripheral nerves to
the neocortex, and communication between different areas of
the brain substantially increases. A significant increase in the
stimulus intensity leads to a high firing rate and high synaptic
level. The high firing rate shortens time intervals between
consecutive spikes in the spike train, while the high synaptic level
lengthens neural response latencies. The shortened spreads of
time intervals are far less than the lengthened response latencies,
while a spike train is a series of data points indexed in time
order. Thus, many spikes in the spike train travel to different
neurons from the previous neurons between the last stimulus
onset and the beginning of the response. In this manner, many
neurons participate in the propagation of the spike train, which is
the SSE. SSEs exhibit entire or partial non-overlap-spike delivery
(asynchronous SSEs). As the presynaptic discharge rate rises,
synaptic depression causes the amplitude of a single postsynaptic
current to become inversely proportional to the firing rate.
When the presynaptic firing rate exceeds the limiting frequency,
the time-averaged postsynaptic current also nearly reaches its
saturation value; thus, synaptic connections no longer convey
information about the presynaptic discharge rate (Gerstner et al.,
1997). That is, once the increased stimulus intensity exceeds the
ability of individual neurons to process information, spikes in
the spike train have to be delivered synchronously into many
neurons. Then, SSEs with entire overlap-spike delivery (rigorous
SSEs) occur. The same spike is received in parallel by massive
individual neurons. Notably, irregular synaptic inputs makes SSE
delivery at least partially non-overlapping. Thus, these individual
neurons usually have lower synaptic input levels, which shortens
their response latencies. The transfer of a spike train with low
density has a shorter latency than that of a spike train with high
density; thus, SSEs were effective in enhancing transfer speed
by avoiding the lengthened response latency caused by high-
intensity signals. Consequently, we assumed that SSEs were a
consequence of cortical population responses to rapid transfer of
high-intensity signals with neural response latency.

The question then arises as to whichmechanism would ensure
information fidelity during disassembly signal propagation such
that the integration spike train of decomposed spike trains
can return to the original spike train. Asynchronous SSEs
perform the conversion of a spike train with high density
into many spike trains with low density such that intervals
between spikes usually become greater than response latency.
Accordingly, there is no reason to repeatedly activate SSEs in
response to high-intensity signals. After one SSE delivery, those
spike trains with low density should be propagated through
layers II/III first and then integrated into an output spike train
as a convergent input from simultaneously spiking neurons
onto a target neuron in layer Va as previously suggested by
Diesmann et al. (1999). If the output spike train returns to the
thalamic input, the disassembly propagation of high-intensity
signals is successful. There are two prerequisites for returning
to the initial input. A prerequisite is that SSE delivery is

not repeatedly activated; otherwise, these separately propagated
spikes disperse and eventually die out. A further prerequisite is
that disassembled spikes do not bump into other neurons with
different receptive fields during parallel propagation; otherwise,
incorrect synaptic connections result in information loss and
distortion. Cortical columns (Mountcastle et al., 1955) in
the vertical dimension and columnar segregation could meet
these two prerequisites. Neurons within a given minicolumn
were stereotypically interconnected in the vertical dimension,
which prevented repeated activation of SSEs and ensured
parallel propagation of spike trains, while columnar segregation
could prevent incorrect synaptic connections between adjacent
columns. When the stimulus intensity exceeds the ability of
individual minicolumns to process information, the stimulus
spikes have to be delivered synchronously into multiple
minicolumns within a given macrocolumn.

We summarized that rapid transfer of high-intensity signals
could be achieved by the following components: SSEs delivering a
high-intensity thalamic stimulus input to many neurons within a
cortical column as many spike trains with low density in layer IV,
parallel propagation of these spike trains with low density along
minicolumns through layers II/III, and integrating these spike
trains into an output toward or in layer Va. Parallel propagation
of many sparse spike trains through SSE delivery enhances the
transfer speed of high-intensity signals, while vertical columns
with segregation ensure parallel-propagation fidelity. A circuit
with these three components is called the SSCCPI Circuit.
Figure 1C is a simplified SSCCPI circuit. Formally, we have the
following definition:

Definition 1. The Synchronous Spiking Cortical Column
Propagation Integration (SSCCPI) circuit is a neural circuit
by which SSEs deliver dense spikes of a thalamic high-
intensity stimulus input into many receiving neurons within
a cortical column in layer IV first. Then, many sparse spike
trains are propagated in parallel by a propagator along cortical
minicolumns through layers II/III and finally integrated into an
output spike train toward or in layer Va.

2.2. Effective SSCCPI Conditions
2.2.1. Coding Strategy
Determining whether the rate or temporal coding is more
suitable for the SSCCPI circuit in different overlapping degrees
of SSE delivery is important. Without loss of generality, we
focused on entire overlap deliveries and entire non-overlap
deliveries in single-neuron signal transfer with complete fidelity.
Figure 2 showed the performance comparison between these two
coding strategies.

In rate coding, when neurons within a cortical column
received and propagated the same input spike train (SSEs
with entire spike-overlap delivery), the output firing rate after
integration could significantly increase up to h-fold greater than
the input firing rate if the output spike timing was entirely
non-overlapping where h was the number of the receiving
neurons, although the firing rate before, and after propagation
remained unchanged (Figure 2A). When neurons within a
cortical column received completely different input spike trains
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FIGURE 2 | Temporal and rate coding in SSCCPI transfer precision. Consider single-neuron transfer with complete fidelity. (A) Entire spike-overlap delivery of SSEs to

N1–N3 and entire timing-non-overlap outputs in N1′–N3′ in rate coding. (B) Entire spike-non-overlap delivery of SSEs to N1–N3 and entire timing-overlap outputs in

N1′–N3′ in rate coding. (C) Entire spike-overlap delivery of SSEs to N1–N3 and temporal-precise outputs in N1′–N3′ in temporal coding. (D) Entire spike-nonoverlap

delivery of SSEs to N1–N3 and temporal-precise outputs in N1′–N3′ in temporal coding.

(SSEs with entire spike-non-overlap delivery), the output firing
rate could significantly decrease if the output spike timing was
entirely overlapping (Figure 2B). Thus, the rate coding could not
exactly reflect SSCCPI transfer precision. In contrast, in temporal
coding, the output spike train could return to the initial input
spike train, regardless of SSEs with entire spike-overlap delivery
(Figure 2C) or entire spike-non-overlap delivery (Figure 2D).
Therefore, the SSCCPI circuit should utilize temporal coding
because temporal coding makes it possible to maintain SSCCPI
transfer precision with complete fidelity (Figures 2C,D). In
temporal coding, SSEs were effective in enhancing transfer speed
for partial or entire spike-non-overlap delivery but ineffective for
entire spike-overlap delivery.

2.2.2. Factors Influencing Precision
The symbol error rate is an indicator of signal propagation
efficiency in data communications. To distinguish neuronal
communications from the data communications, we introduced
the propagation success rate to assess the propagation precision
of nerve signals. Consider an all-or-none modulation as the
conversion rule of a raw input in layer IV and a final output

of neurons in layer Va in the firing of neurons. The all-or-none
modulation is a principle that the strength of a response of a
neuron to a stimulus is not dependent upon the strength of
the stimulus whereby the neuron gives a complete response if
the stimulus exceeds the threshold potential; otherwise, there is
no response. For these reasons, we introduced the propagation
success rate as follows:

Definition 2. (i) The propagation success rate of a spike train with
n points in single neurons throughm relays is defined by:

r (m, n) =

[

1−
(vm − v0)

⊺
(vm − v0)

n

]

× 100% (1)

with

v0,t =

{

1
0

∣

∣

∣

∣

if εt ≥ c3
if εt < c3

, vm,t =

{

1
0

∣

∣

∣

∣

if Ym,t ≥ c3
if Ym,t < c3

(2)

where εt is a raw input stimulus, v0,t is the initial received input,
vm,t is the final output of a target neuron at time t, and vi =
(

vi,1, · · · , vi,n
)

⊺
for i = 0,m.
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FIGURE 3 | Influences of the number of receiving neurons and single-neuron

transfer precision on SSCCPI transfer precision. SSCCPI transfer precision

decays exponentially with an increasing number of receiving neurons from 1 to

1,000 in SSE delivery and significantly with a decreasing single-neuron transfer

precision from 99.99 to 89.00%.

(ii) The signal transfer has complete fidelity or success if
r (m, n) is ∼100% or vm,t = v0,t for almost t and the signal
transfer is a complete distortion or failure if r (m, n) is ∼0% or
vm,t 6= v0,t for almost t.

The propagation success rate in the SSCCPI circuit can be
given by rh (m, n) where h is the number of receiving neurons
in a cortical minicolumn. It is normal for each neuron to have
1, 000 connections. Figure 3 shows that the SSCCPI propagation
success rate decreases distinctly exponentially with an increasing
receiving neuron number when the propagation success rate
in single neurons is lower than 99.92%. For example, the
SSCCPI propagation success rates in 1,000 receiving neurons are
90.48, 74.08, and 44.92% when the single-neuron propagation
success rates are 99.99, 99.97, and 99.92%, respectively. Consider
minicolumns with 80–120 neurons. The SSCCPI propagation
success rate in 80 receiving neurons is almost zero for the
single-neuron propagation success rate 89.00%. These results
imply that the faster SSCCPI transfer requires the higher
interneuron transfer precision; while a rapid SSCCPI transfer
certainly results from complete fidelity transfer of temporal
information in interneurons. This result shows that parallel
communication requires far higher transfer precision per line
than serial communication in critical networks.

Furthermore, Figure 4 demonstrated that the SSCCPI
propagation precision could vary with the overlapping degree
of SSE delivery plus transfer mistake types in single neurons (or
interneurons). When a spike that results in an action potential
passes through a neuron, transfer mistakes in single neurons
result from a shift in spike timing, the rise of a spike, and the
loss of a spike. We considered the SSCCPI circuit with m relays
and h receiving neurons and ps, pi, and pd as the probabilities
for the occurrence of a shift in spike timing, the rise of a spike,
and the loss of a spike, respectively. Without loss of generality,
let ps = pi = pd = p (p = 5%, h = 3, and m = 5 for Figure 4).

For the entire spike-overlap delivery of SSEs, the largest output
firing rate can be up to h-fold (Figure 4A) or h + 1-fold greater
than the input firing rate with probability hmp (Figure 4C)
because of the transfer mistakes in a shift in spike timing or the
rise of a spike, and the output firing rate can become less than

the input firing rate with probability
(

mp
)h

(Figure 4E) because
of the transfer mistake in the loss of a spike. For the entire
spike-non-overlap delivery of SSEs, the output firing rate can
remain unchanged (Figure 4B) or become greater (Figure 4D)
or less than the input firing rate with probability mp (Figure 4F)
because of the transfer mistake in a shift in spike timing, the rise
of a spike or the loss of a spike. The number of the receiving
neurons is usually relatively large. Thus, substantially increased
output firing rate could result only from rigorous SSEs plus the
interneuron transfer mistake in a shift in spike timing or the
rise of a spike, while any change in the output spike train was
unlikely to result from asynchronous SSEs plus any interneuron
transfer mistakes.

2.2.3. Factors Influencing Speed
To explore what affects the SSCCPI’ propagation speed, we gave
the following

Definition 3. The speed of signal propagation in neural networks
means the speed of travel of a given nerve signal (a spike train as
a unit signal) from one place to another in the brain.

The propagation time of signals in neural networks is related
to both distances of space and signal intensity. The processing
time of an impulse contains time spent on impulse axonal
propagation and synaptic transmission. Usually, the processing
time of an impulse remains unchanged for an individual neuron.
Hence, the propagation time varies primarily with distances of
space when signal intensity is not sufficient to trigger a SSE
delivery. When high signal intensity triggers a SSE delivery, the
propagation time relates not only to distances of space, but
also depends crucially on the spike density of those spike trains
segregated by SSE delivery. Consider that neurons are able to
autochthonously select the shortest pathway in sending the signal
to target neurons, that is, the space potential to improving the
transfer speed is less. Thus, a great potential for improving the
propagation speed relies crucially on shortening the waiting time
to process the signal.

Let us consider the case: (i) the processing time for a spike
per neuron is 1 ms (usually, the absolute refractory period takes
about 1–2 ms), (ii) a thalamic spike train has p spikes and 1/p
ms equal interval, and (iii) the least interspike interval in these
spike trains is q/p ms (equivalent to the least interspike interval
is enlarged q times) for 1 ≤ q ≤ p − 1. The number of spikes
in each spike train is not greater than p/q. The waiting time of
a spike is not >1 − q/p (ms). Thus, the sum of the waiting time
of these spike trains is not >

(

p/q
)

×
(

1− q/p
)

= p/q − 1 (ms).
Therefore, the waiting time can be shortened about q times by a
SSE delivery. Figure 5 shows the cases

(

p, q
)

is given by (6, 1) (A),
(6, 2) (B), and (6, 5) (C). Their waiting times are 5, 4/3, and 1/6
(ms), which are not >p/q− 1 (ms).

The above results showed that the waiting time of signal
processing depends primarily on the degree of overlap of spike
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FIGURE 4 | Influence of the overlap degree of SSE delivery and single-neuron transfer mistakes on SSCCPI transfer precision. For the entire spike-overlap delivery of

SSEs, the largest output firing rate can be up to h-fold greater than the input firing rate with probability hmps (A), h+ 1-fold greater than the input firing rate with

probability hmpi (C), and is less than the input firing rate with probability
(

mpd
)h

(E). For the entire spike-non-overlap delivery of SSEs, the largest output firing rate

can be the same as the input firing rate with probability mps (B), be up to 2-fold greater than the input firing rate with probability mpi (D), and less than the input firing

rate with probability mpd (F) for m relays, h receiving neuron number, and ps, pi , pd probabilities of the occurrence of a shift in spike timing, the rise of a spike, and the

loss of a spike in single neurons.
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FIGURE 5 | The effects of overlapping degree of spike trains on the propagation speed in a SSE delivery. The waiting time takes 5 ms for an entire spike-overlapping

case (A), 4/3 ms for a partial spike-overlapping case (B), and 1/6 ms for a non spike-overlapping case (C). This shows that a lower spike-overlap of a SSE delivery

has the shorter waiting time, namely the faster transfer speed.

trains segregated by a thalamic spike train. Thus, the propagation
speed could be significantly improved by SSE delivery; a great
potential for improving the propagation speed could be realized
by increasing the degree of spike-non-overlap of spike trains
in interneurons.

2.2.4. Factors Influencing Reliability
Whether the SSCCPI transfer precision remains reliable over a
background of irregular synaptic inputs warrants investigation.

Hence, it is necessary to define the reliability of signal transfer.
Definition 4. A cortical circuit has a reliable transfer function if
the transfer precision of temporal information in the neocortex
is not influenced by the input irregularity.

Under the normal states of SSE delivery and cortical columns
for a given overlapping degree, the SSCCPI propagation precision
depends on whether its single-neuron (or interneuron) transfer
has complete fidelity in a temporally precise manner according
to the results in the above section. In other words, if the complete
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fidelity of a single-neuron (or interneuron) transfer is reliable,
then the SSCCPI transfer precision is reliable. Accordingly,
SSCCPI transfer reliability is reducible to the reliability of the
single-neuron transfer.

2.2.5. Neuronal Encoder
The NLARI process with κ1 = 1 can be specified by:

Xt = θ0+(1+ θ1)Xt−1−θ1Xt −2 + θ2
−

(

Xt−κ2 − µt−κ2

)

exp
(

(Xt− κ2 − µt−κ2 )
2
)+εt

(3)
where, θ0 = ω, θ1 = 1 − α, θ2 = β , Xt −j lags Xt by j steps for
j = 1, · · · , κ2; µt = E (Xt | X0,X−1) = X0 + (ω/α) t if εt =

ǫt−E (ǫt) is Gaussian noise. ǫt is external disturbance with mean
ω = E (ǫt) and variance σ

2 = var (ǫt) at time t. α is the resistance
coefficient, β is the restoration coefficient, γ = β/ (4− 2α) is the
stability coefficient, and κ1 and κ2 are time lags in resistance and
restoration (He, 2007, 2013). In the absence of a restoring force
(β = 0), Equation (1) is a non-stationary unit root process far
from equilibrium (He, 2007). In a lack of background disturbance
(σ = 0), Equation (1) is the deterministic system with a fixed
point and a two-period cycle (−1)t

√

ln γ for non-null initial
values in κ1 = κ2 = 1 (He, 2013). The fixed point is exponentially
asymptotically stable if γ ∈ (0, 1), while the periodic cycle is
exponentially asymptotically stable if γ ∈

(

1,
√
e
)

. Equation (1)
represents unstable period cycles if γ ∈ (1, 3.07) and chaos if
γ ∈ (3.07,+∞) (He, 2018). The fixed point may describe the
dynamic mechanism of ionic homeostasis, while together the
fixed point and periodic cycle may produce transitions between
resting and spiking states.

A dynamic system can be described by the NLARI process
if the system sustains an external force, which may cause a
deviation from equilibrium (mean), resistance that prevents fast
changes, and a restoration force that returns the perturbed system
to its mean by a pair of opposite components (He, 2018). For this
reason, we focused on exploring whether themembrane potential
in response to synaptic stimulus sustains the above-mentioned
three forces.

The membrane potential in response to synaptic stimulus
is primarily achieved through the difference in membrane
permeability to K+ ions and Na+ ions. At rest, all Na+ channels
and most K+ channels are closed, and the Na+–K+ transporter
pumps K+ ions into the neuron and Na+ ions out, creating a net
electrochemical force driving Na+ into the neuron. A synaptic
stimulus causes someNa+ channels of a neuron to open, allowing
Na+ ions to enter the neuron. The net electrochemical force
driving Na+ into the neuron causes the membrane to depolarize.
If the threshold of excitation is reached, all the Na+ channels
open. At the peak action potential, Na+ channels close while
K+ channels open, allowing K+ ions to leave the neuron. The
membrane starts to repolarize through a net electrochemical
force driving K+ out of the neuron and becomes hyperpolarized
when more K+ ions are on the outside than Na+ ions are
on the inside. During a refractory period, the Na+–K+ pump
moves Na+ ions to the outside and K+ ions to the inside using
energy from the hydrolysis of ATP against the net electrochemical
gradients of both ions. The Na+ and K+ distributions are

restored to the resting state, and a net electrochemical force
driving Na+ into the neuron brings the membrane back to the
resting state.

In summary, excitatory and inhibitory synaptic input (ǫt)
with mean ω and variance σ

2 drives the membrane potential
(Xt) away from the resting potential (Vrest = µt), which may
cause depolarization. A net electrochemical force driving Na+

ion influx or K+ ion efflux causes depolarization or repolarization
of the neuron, while the Na+–K+ pump derives Na+ out and
K+ into the neuron to return to the ionic distribution across
the membrane at rest. Thus, the net electrochemical force and
the Na+–K+ pump provide a restoration force that maintains
homeostasis by returning the perturbed membrane potential to
the resting potential. Finally, the plasma membrane provides
high resistance that impedes the movement of charges across it,
which hinders rapid changes in its potential. Thus, the neuronal
response sustains the three required forces. The action potential
occurs only at nodes of Ranvier with unmyelinated axons such
that the nerve signal appears to jump from node to node
and at the trigger zone if an excitatory local potential arrives
and remains strong enough to open channels and generate an
action potential. Ionic homeostasis is maintained through the
regulation of the levels of voltage-gated channels, densities of
neurotransmitter receptors, and synapse numbers and strength
(Davis and Bezprozvanny, 2001; Dubyak, 2004). Hence, the
NLARI process can be used to encode cellular and axonal
propagation. Synaptic latency is ∼1 ms. We may wish to
consider latencies in the membrane resistance and restoration
κ1 = κ2 = 1. Let Yt = Xt − µt . Due to µt = X0 − (ω/α) t for
Gaussian noise (He, 2018), Yt = Xt −Vrest = Xt −X0 − (ω/α) t.
Then, Equation (3) can be rewritten as:

Yt = (2− α)Yt −1 − (1− α)Yt −2 + β
−Yt −1

exp
(

Y2
t −1

) + εt (4)

which describes the membrane potential variability driven by
background synaptic input ǫt = εt + ω with mean ω and
variance σ

2. α is the membrane electrical resistance coefficient
that reflects the electrical resistivity of the opposing flows across
the membrane for a given electrical potential, depending on
the number, and permeability of channels to Na+, K+, Ca2+,
and Cl−. β is the membrane potential restoration coefficient
that reflects the strength of restoring force to return the resting
potential, depending on the magnitude of a net electrochemical
force driving Na+ and K+ ion influx/efflux across the membrane
and synaptic plasticity of strengthening/weakening between
neighboring synapses in response to increases and decreases in
their activity, and reduced ATP availability lowers the membrane
potential restoration coefficient because ATP shortage disrupts
K+/Na+ homeostasis resulting in a chronic depolarization (Le
Masson et al., 2014). γ is the membrane stability coefficient,
and κ1 and κ2 are response delays in the membrane electrical
resistance and membrane potential restoration. If γ ∈

(0, 1), Equation (4) represents a homeostatic encoder with a
stable fixed point.

To assess the influence of synaptic stimuli on the membrane
potential pattern, we considered the wave indicators developed
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FIGURE 6 | Slope and amplitude of fluctuations and the waveform indicators. (A) Small amplitude fluctuations with a gentle downward slope in the first half and

almost zero slope in the second half, corresponding to the slope indicator η1 = −1.11× 10−5 and the amplitude indicator η2 = 0.0325 for the whole interval,

η1 = −3.24× 10−5 and η2 = 0.0316 for the first half, and η1 = 1.14× 10−5 and η2 = 0.0228 for the second half. (B) Large amplitude fluctuations with a steep

upward slope in the first half and a gentle downward slope in the second half, corresponding to η1 = 1.61× 10−5 and η2 = 0.0651 for the whole interval,

η1 = 14× 10−5 and η2 = 0.0470 for the first half, and η1 = −0.0246× 10−5 and η2 = 0.0530 for the second half. These results show that a positive/negative slope

indicator reflects an upward/downward slope, while a large/small absolute slope indicator describes a steep/gentle slope; a large/small amplitude indicator reflects a

high/low amplitude. Here these wave indicator values were the estimates based on observational data.

by He (2018). For Gaussian noise, the ratio η1 = ω/α represents
the slope of the mean line provided by E (Xt | X0,X−1) = X0 +

(ω/α) t. Thus, the ratio can be viewed as a slope indicator.
Moreover, the ratio η2 = σ/β is strongly positively correlated
with the standard deviation of the data generated by Equation
(4) (for details see He, 2018), while the standard derivation of

disturbances is a measure of how far the signal fluctuates from
the mean. For this reason, the σ/β ratio can be viewed as a
wave amplitude indicator. From Figure 6, we see the capability
of the wave indicators to measure the slope and amplitude
of fluctuations: the slope and amplitude indicator values in
Figure 6B are 1.45 times and 2 times the slope and amplitude
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indicator values in Figure 6A, which is consistent with large
and small amplitude fluctuations with steep and gentle slopes
(Figures 6A,B), respectively. Sometimes the wave indicators have
better performance in the subdivided observation intervals. For
example, consider the whole interval subdivided into the two
intervals. For the first half, the slope and amplitude indicator
values in Figure 6B are 4.32 times and 1.49 times the slope and
amplitude indicator values in Figure 6A. The measured results in
the subdivided intervals are closer to actual fluctuation patterns
than the whole interval. For these reasons, we introduced the
membrane potential waveform indicators below:

Definition 5. The membrane potential slope indicator is given by:

η1 =
ω

α
(5)

and the membrane potential amplitude indicator is given by:

η2 =
σ

β
(6)

where, α is the membrane electrical resistance coefficient, β is
the membrane potential restoration coefficient, ω is the mean
of synaptic stimulus input, and σ is the standard derivation of
synaptic stimulus input.

According to the definition of the membrane potential
waveform indicators, the relative strength of the membrane
electrical resistance and membrane potential restoring force
to synaptic input determines the scale of membrane potential
fluctuations in slope and amplitude. The standard deviation is
a measure of how far the signal fluctuates from the mean, but
one cannot extract more information than “a wave amplitude
indicator” from it. Furthermore, the waveform indicators are the
membrane potential fractal indicators (He, 2018).

2.2.6. Propagator With Encoder
Consider a propagator for a simple reflex circuit. A reflex circuit
can be as simple as a single synapse located between sensory and
motor neurons. The SSCCPI circuit is a feed-forward network
of neurons with multiple layers. Thus, each neuron in the
receiving layer is excited by neurons in the previous layer. In
this case, the response of the last neuron to a received stimulus
could be regarded as the incoming stimulus into the connected
neuron. By incorporating the incoming stimulus into (Equation
4), we obtained a propagator with an encoder in nomodulation.
Considering all-or-none modulation as the regulation of the
incoming stimulus, we could obtain a propagator with an
encoder in all-or-none modulation. Formally, we introduced
the propagators:

Definition 6. Consider a spike train with n points as the
combination of spikes and silences through m relays. The
propagator with an encoder is given by:

Yi,t = (2− α)Yi,t−1 − (1− α)Yi,t −2 + β
−Yi,t−1

exp
(

Y2
i,t −1

) + Yi −1, t

(7)
where, Yi,t represents the response of the ith interneuron to the
tth stimulus Yi −1,t at time t for nomodulation and Yi −1,t = c1

if Yi −1,t ≥ c1 and Yi −1,t = v
(1)
t with v

(1)
t ∼ i.i.d.N

(

0, σ 2
1

)

if
Yi −1,t < c1 for i ≥ 2 for all-or-nonemodulation; c1 is a threshold
value; and initial values Y0,t = εt , Yi,−1 = Yi,0 = 0, and εt

represents the initial received stimulus at time t for i = 1, · · · ,m
and t = 1, · · · , n.

Note that for all-or-none modulation, Yi −1,t = 0 if Yi −1,t <

c1, but we let Yi −1,t = v
(1)
t in order to represent intrinsic noise

and extrinsic or synaptic noise with a small variance.

2.2.7. Propagator With Encoder–Decoder
A complex reflex circuit possesses the integration center in the
cerebrum, spinal cord, or brainstem where conscious thoughts
are initiated. Ascending sensory neurons and descending
upper motor neurons (relay interneurons) function as sensory
and motor connections and assist in the integration and
interpretation of data. The responses of a group of neurons
to a stimulus have errors. Whether the accumulated response
errors after many relays induce signal loss warrants investigation.
Thus, we examined the encoding errors when the propagator
with an encoder in Equation (7) for nomodulation and all-
or-none modulation (see Definition 6) were operated for m
times. As the iteration number increased, the initial stimulus
of real spike trains (Figure 7A) became significantly enlarged
for nomodulation (Figure 7B) and was attenuated for all-
or-none modulation (Figure 7C). The simulation result that
nerve impulses are significantly enlarged in the firing of a
neuron (Figure 7B) reflects the phenomenon that the opening
of voltage-gated channels in the course of an action potential
produces typically significantly larger currents than the initial
stimulating current. Fortunately, all-or-none modulation as a
neural regulation of ultra response to stimulus avoids the
significant enlargement of impulses (Figure 7C). Although
all-or-none modulation prevents an over response, it fails
to avoid an under response (Figure 7C). Interestingly, no
evidence that all-or-none modulation fails to avoid an under
response suggests the existence of a hidden mechanism by
which the under response is modulated by supplementing
the attenuated currents. In fact, currents produced by the
opening of voltage-gated channels are typically larger than
the current of the original stimulus, while a voltage stimulus
decays exponentially relative to the distance from the synapse
and with neurotransmitter binding time. The two opposite
tendencies suggest the existence of a back-propagating action
potential under the homeostatic regulation to avoid the under
response. Based on these reasons, we developed the following
decoder for correcting errors caused by the encoder in
Equation (7).

Definition 7. The multithreshold decoder to correct response
errors is given by:

εi,t =















c1
Yi −1,t

c2

v
(1)
t

∣

∣

∣

∣

∣

∣

∣

∣

if Yi −1,t ≥ c1
if c2 ≤ Yi −1,t < c1
if c3 ≤ Yi −1,t < c2
if Yi −1,t < c3

(8)
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FIGURE 7 | The amplitude of the output spike train driven by real stimuli (A) is significantly increased in nomodulation (B) and decreased in all-or-none modulation

(C) by repeatedly running the homeostatic encoder. These results indicate that all-or-none modulation prevents an over response but fails to avoid an under response,

which can result in information loss when the encoder is executed repeatedly.
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which is the incoming stimulus entering the next neuron in the
following encoder:

Yi,t = (2− α)Yi,t−1 − (1− α)Yi,t−2 + β
−Yi,t−1

exp
(

Y2
i,t−1

) + εi,t (9)

where c1, c2, and c1 are threshold values; the initial values Yi,−1 =

Yi,0 = 0, ε1,t = c1 if εt ≥ c1 and ε1,t = v
(1)
t if εt < c1, the

initial stimulus variability εt = ε̃t −
1
t

∑t
i=1 ε̃i (

1
t

∑t
i=1 ε̃i ≈ ωt),

ε̃t are the synaptic stimulus, and v(1)
t represent intrinsic noise and

extrinsic or synaptic noise with small variance for i = 1, · · · ,m
and t = 1, 2, · · · , n. The encoder–decoder in Equations (8) and
(9) describes a propagator of n signals throughm relays.

The propagator in Equations (8) and (9) is also suitable for
axons because an action potential that initiates in the axon
causes back-propagating action potentials—a retrograde signal
that travels in the opposite direction (Debanne, 2004) where α

and β are the axial resistance and restoration coefficients.

2.2.8. Conditions of Effective SSCCPI Circuit
The above analysis indicated that the precision, speed, and
reliability of the SSCCPI circuit depended primarily on rate
or temporal coding, rigorous, or near synchronous SSEs, the
function of cortical columns, and the signal transfer precision in
interneurons. These results led to the following inference:

Inference 1. The SSCCPI circuit is fast, reliable, and precise (or
effective) if it satisfies the following conditions:

(i) SSE delivery is at least partial non-overlap of spike trains in
interneurons (asynchronous SSEs);

(ii) Cortical columns prevent both repeatedly triggering SSE
delivery and incorrectly synaptic connections between
adjacent columns; and

(iii) The propagator in interneurons functions as a temporal
complete fidelity and reliable information propagator.

The conditions (i) and (ii) are called the effective functions of
SSEs and cortical columns, respectively.

2.3. Evidence for Effective SSCCPI Circuit
2.3.1. SSCCPI Scheme
* The SSCCPI circuit follows the leading hypothesis that a
synchronous firing chain is connected in a feed-forward
manner where nerve impulses travel synchronously back
and forth between layers; each neuron in a layer provides
an excitatory connection to neurons in the next layer; and
each neuron in the receiving layer is excited by neurons
in the previous layer proposed by Abeles (1982a, 1991).
An effective SSCCPI circuit supports the finding that the
network topology of the feed-forward network determines the
propagation of synchronous firing chain (Guo et al., 2017; see
Han et al., 2015).

2.3.2. Temporal Coding
* Experimental evidence supports temporal coding in the cortex
(Abeles et al., 1993; Mainen and Sejnowski, 1995; de Ruyter
van Steveninck et al., 1997; Nowak et al., 1997; Riehle et al.,

1997; Frisina, 2001; Nemenman et al., 2008; Tiesinga et al.,
2008). Most interneurons in subcortical areas utilize temporal
coding in processing auditory information (Gao and Wehr,
2015), and temporal information within an acoustic signal is
directly represented in the temporal patterns of neural activity
throughout most parts of the auditory pathway leading to the
auditory cortex (Wang et al., 2008).

2.3.3. Asynchronous SSE Delivery
* High-intensity stimuli from external environment
trigger SSEs: Japanese cartoons induce seizures in
hundreds of children by intermittent photic stimulation
(da Silva and Leal, 2017).

* High-intensity stimuli from task-related actions trigger SSEs:
Elective attention and attention switching are fundamental to
almost all cognitive tasks, which causes a substantial increase
in stimulus intensity. Evidence for task-related SSEs includes
that SSEs occur across neurons in the sensorimotor cortex
(Murthy and Fetz, 1996) and the primary motor cortex of
monkeys in relation to behavior (Riehle et al., 1997; Torre
et al., 2016b); transient SSEs correlate not only with behavior
but also with a mesoscopic brain signal, corroborating its
relevance in cortical processing (Denker et al., 2011); the
frequency of synchronous firing is modulated by behavioral
performance and is specific formemorized visual stimuli (Pipa
and Munk, 2011); neurons can synchronize their spiking in
higher cortical areas when monkeys successfully solve visual
recognition tasks (Gochin et al., 1994; Anderson et al., 2006) or
process facial features (Hirabayashi and Miyashita, 2005); and
most neuron pairs in a monkey’s secondary somatosensory
cortex fire synchronously in switching attention between two
different tasks, and the degree of synchrony is affected by the
attenuation state (Steinmetz et al., 2000; Roy et al., 2007).

* Response latency induces SSEs: Time delay enhances neural
synchrony (Dhamala et al., 2004; Jirsa, 2008).

* Asynchronous SSEs are due primarily to synaptic
noise: The uncertainty involved in the exact timing
of neurotransmitter release causes synaptic noise
even if repeated stimulation with identical stimulus
evokes similar but not identical neuronal responses
(Softky and Koch, 1992; Mainen and Sejnowski, 1995).

* Asynchronous SSEs relate to healthy neurons in the same
areas of the brain fire (Fisher et al., 2005). In contrast,
rigorous SSEs relate to brain disorders for Parkinson’s disease
(Rubchinsky et al., 2012), epilepsy (Jiruska et al., 2013),
schizophrenia, autism, and Alzheimer’s disease (Uhlhaas and
Singer, 2006).

* The response latencies typically become shorter as the
stimulus intensity increases (Henry and Lucas, 2008) but are
greater at higher synaptic levels regardless of intensity (Klug
et al., 2000); the increase in response latency produced by
excess GMP is inversely proportional to the stimulus intensity
(Nicol and Miller, 1978). The observation suggests the role of
SSEs in shortening the wait times. From a commonsense point
of view, the higher the signal intensity, the greater the spike
density; thus, the waiting time to process the signal, and vice
versa. Neuronal latencies can be as small as 0.1 ms and as large
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as 44 ms and the first spike latencies range roughly from 5 to
50 ms (Izhikevich, 2006).

Together the above observations support that asynchronous SSEs
were usual while synchronous SSEs were unusual; asynchronous
SSE delivery improved the transfer speed of high-intensity
stimuli by shortening or avoiding the waiting time caused by
response latencies.

2.3.4. Parallel Propagation in Minicolumns
* Vertical columns are distributed in numerous cortical
areas (Mountcastle, 1957; Buxhoeveden and Casanova, 2002;
Opris and Casanova, 2014). Neurons within a minicolumn
receive common inputs, have common outputs, and are
interconnected (Cruz et al., 2005; Horton and Adams, 2005),
which provides the possibility of decomposing the input
spike trains and composing the output spike trains. The
vibrissae on rodent snouts are topographically represented in
the contralateral somatosensory cortex by distinct barrels in
layer IV (Woolsey and van der Loos, 1970), which supports
information flows in vertical columns starting from layer IV.

* Neurons within a given minicolumn are stereotypically
interconnected in the vertical dimension (Rakic, 2008), which
prevents repeated SSE delivery and thereby ensures signal
parallel propagation within minicolumns.

* Columnar segregation (adjacent columns are segregated)
is observed in the cat somatosensory cortex (Mountcastle
et al., 1955), macaque somatosensory cortex (Powell
and Mountcastle, 1959), and human extrastriate cortex
(Horton and Adams, 2005; Tootell and Nasr, 2017).
Columnar segregation stays functionally isolated by avoiding
indiscriminate connections with local neurons and afferent
axons there (Favorov et al., 2015), which prevents information
loss and distortion caused by the decomposed propagation.

* The nervous system overwhelmingly prefers parallel
computations over serial ones in time-critical applications;
upward and downward connections within the thickness
of the cortex are much denser than the connections that
spread from side to side (Schrader et al., 2009), suggesting
a columnar flow of information across layers as well as a
laminar flow within some layers (Hawkins et al., 2017).

* The SSCCPI’ signal parallel propagation in minicolumns
is consistent with Mountcastle’s cortical column hypothesis
(1957). The latter requires that neurons in middle layers of
the cortex, in which thalamic afferents terminate, should be
joined by narrow vertical connections to cells in layers lying
superficially and deep from them, so that all neurons in
the column are excited by incoming stimuli with only small
latency differences (Jones, 2000).

2.4. Evidence for Effective
Encoder-Decoder
2.4.1. Neural Basis of Multithreshold Decoder
* All-or-none modulation is a rule of a neuron’s stimulus-
response. Recent research shows that visual perception of
simple stimuli is associated with an all-or-none cortical evoked

response, the temporal precision of which varies as a function
of perceptual strength (Sekar et al., 2012).

* Evidence suggests that active backpropagation facilitates the
return of the attenuated stimulus to the original level by
augmenting it with its previous excessive current: (i) An action
potential that initiates in the cell body evokes a voltage spike
to the axonal ending and then back through to the dendritic
arbors; the basal, oblique, apical trunk; and tuft dendrites
(Stuart and Sakmann, 1994; Waters et al., 2003) from which
much of the original current originates. (ii) Backpropagation
typically occurs only when the cell is activated to fire an action
potential, and the extent of this backpropagation increases
with the number and frequency of action potentials and
depends on subthreshold excitatory inputs (Larkum et al.,
1999), on the preceding rate of depolarization (Azouz and
Gray, 2000, 2003) and on the preceding interspike intervals
(Henze and Buzsáki, 2001; Badel et al., 2008).

* Graded potentials are on the same scale as the magnitude
of stimuli (Purves et al., 2008) and subsequently influence
transmembrane ion flow to either increase (excitatory) or
decrease (inhibitory) the opportunity to fire. Effects of graded
potentials are observed to be additive. Stimulus responses can
be summed to increase the amplitude of graded potentials
both spatially (multiple simultaneous inputs) and temporally
(repeated inputs). Summation is the additive effect of multiple
subthreshold graded postsynaptic potentials that determines
whether the membrane potential will reach the threshold
potential to generate an action potential. Hence, additive
effects of graded potentials enable active backpropagation to
facilitate the stimulus reconstruction.

* Threshold variation has been observed in vivo (Azouz and
Gray, 1999; Henze and Buzsáki, 2001; Naundorf et al.,
2006; McCormick et al., 2007; Yu et al., 2008), which
provides evidence for multithreshold amplitude modulations.
The multiple appropriate thresholds can be viewed as the
result of evolution.

In summary, together all-or-none modulation, active
backpropagation, additive graded potentials, and multithreshold
amplitude modulations are neural evidence supporting the
decoder in Equations (8) and (9). The all-or-none modulation
and active backpropagation play the following key roles: (i) the
neural response to stimulus at any strength above the threshold
is the same; (ii) no action potential occurs if a neuron does
not reach the threshold; and (iii) previous excessive currents
compensate for the attenuated synaptic stimulus. Role (ii)
prevents an over response that may cause signal distortion
or incorrectly identify a noise as a signal. Role (iii) avoids an
under response that may cause signal loss by receiving previous
excessive current due to Role (i).

2.4.2. Stable Fixed-Point Homeostatic Encoder
According to the current viewpoint, action potential encoding is
implemented by transitions between a stable fixed point and a
stable periodic cycle. The theoretical parameter intervals of the
NLARI process are given by 0 < α < 2, 0 < β < 4, and 0 < γ <

1 for the stable fixed point and 0 < α < 2, 0 < β < 4
√
e, and
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FIGURE 8 | Performance of the encoder in nomodulation using real low-density inputs. (A) Initial stimulus: membrane potentials recorded 20 min after the

administration of paeonol. (B) First encoder output driven by the initial stimulus (A). (C) Fourth encoder output based on the initial stimulus (A). (D) Initial stimulus:

spontaneous action potentials (no paeonol). (E) First encoder output driven by the initial stimulus (D). (F) Fourth encoder output based on the initial stimulus (D).

These results showed that the encoder could exactly encode stimulus input with low density in a simple neural circuit with a few interneurons.

1 < γ <
√
e for the stable periodic cycle where γ = β/ (4− 2α)

(for aperiodic cycles and chaos see He, 2018). Thus, we focused
on identifying whether theNLARI’s parameter values in Equation
(4) lied alternately in the theoretical intervals of the stable fixed
point and periodic cycle for real data by carrying out simulations.
Independent evidence for precise spike timing in cortical neurons
comes from intracellular recordings in vitro. Thus, we adopted
intracellular recordings from the right parietal 4 (RP4) neuron
of a snail elicited by the application of paeonol as the received
stimuli entering the encoder. The recordings were made by the
method described by Chen et al. (2010).

Surprisingly, our statistical results indicated that the dynamic
mechanism of action potential encoding was a single stable fixed
point, but not transitions between a stable fixed point and a stable
periodic cycle or a single stable periodic cycle. This is because
all the confidence intervals of these parameters lied inside the
theoretical parameter intervals for a single stable fixed point
at the 99% confidence level for all the recordings. This result
could be viewed as a consequence of ionic homeostatic regulation
for maintaining the resting potential. Whether the stability
coefficient lies in (0, 1) or

(

1,
√
e
)

crucially determines whether
the encoding dynamic mechanism is the stable fixed point or

the stable periodic cycle. The stability coefficient comprises the
membrane resistance coefficient and the membrane restoration
coefficient. The permeability of ionic channels causes the
membrane resistance, preventing rapid changes in themembrane
potential. The electrochemical driving force restores the changed
membrane potential into the resting potential by drivingNa+ and
K+ ion influx/efflux across the membrane and synaptic plasticity
of strengthening/weakening between neighboring synapses in
response to increases and decreases in their activity. Homeostasis
is the most basic way the body maintains a stable internal
environment. Ionic homeostasis supports a stable fixed-point
encoder by regulating changes to synaptic size, synaptic strength,
and ion channel function in the membrane (for recent study see
Davis and Bezprozvanny, 2001).

Furthermore, we assessed the performance of the encoder as
a propagator with an encoder in Equation (7) in nomodulation
by the degree of consistency between the input and output spike
trains of the encoder. Figure 8A presents intracellular recordings
from the right parietal 4 (RP4) neuron of a snail elicited by
the application of paeonol. Figure 8D presents intracellular
recordings from the spontaneous action potentials (no paeonol)
for the same neuron. All of the first outputs (Y1,t) of the encoder
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FIGURE 9 | Performance of the encoder–decoder in all-or-none modulation using real low-density inputs. (A) Initial stimulus: membrane potentials recorded 20 min

after the administration of paeonol. (B) 3,000th output of the encoder–decoder based on the initial stimulus (A). (C) Initial stimulus: spontaneous action potentials (no

paeonol). (D) 3,000th output of the encoder–decoder based on the initial stimulus (C). These results showed that the encoder–decoder could exactly encode stimulus

input with low density in a complex cortical circuit with many interneurons.

in Figures 8B,E and the fourth outputs (Y4,t) of the encoder in
Figures 8C,F were consistent with their received stimuli. This
result showed that neuronal responses to background stimuli
resembled the stimuli and that the encoder exactly predicted
information transfer through a few relays. Additionally, we again
observed that nerve impulses were significantly enlarged in the
firing as shown in Figure 7, which reflected the phenomenon that
the opening of voltage-gated channels trends to elicit significantly
larger currents than the original stimulus.

2.4.3. Temporal Precision in Real Low Density Inputs
We proved that the encoder-decoder in Equations (8) and (9)
was a complete fidelity information propagator as an important
condition for an effective SSCCPI circuit. The propagation
success rates of the two real input spike trains through 3,000
interneurons could reach 100.00% for the lower density spike
train (the application of paeonol) and 99.85% for the higher
density spike train (no paeonol). These results satisfied the
condition that the encoder-decoder was a complete fidelity
information propagator.

Furthermore, we showed that the encoder-decoder in all-
or-none modulation gave a good performance that simulated
information transfer through 3,000 relays by repeatedly operating
the propagator for m = 3, 000 times initiated by the
two real spike trains mentioned above. The outputs (Y3,000,t)
(Figures 9C,D) for the propagator generated by Equations (8)
and (9) exhibited consistent trajectories with the initial stimulus
(εt) (Figures 9A,B).

2.4.4. Temporal Precision in Fitting High Density

Inputs
In the above simulation studies, we adopted low density stimuli
as an input spike train. Recent research indicates that the primary
auditory cortex uses a temporal representation to encode slowly
varying acoustic signals and a firing rate-based representation
to encode rapidly changing acoustic signals (Wang et al.,
2008). For this reason, we need to investigate whether the
temporal encoder–decoder in Equations (8) and (9) is still a
complete fidelity information propagator initialized by high
density stimuli. In addition, it is not clear how the decoder
in Equation (8) corrects the error of the encoder in Equation
(9). Hence, we carried the following simulation. Let a random
sound generator produce a spike train with high density spike
trains as an original signal input (Figure 10A). The fitting initial
stimulus input was received by all-or-none modulation (ε1,t)
(Figure 10B). Although the first output of the encoder (Y1,t)
somewhat deviated from the initial stimulus (Figure 10C), the
deviation was removed by the decoder. In the first output of
the decoder, the signal had already returned to its initial state
(ε2,t) (Figure 10D). The 3, 000th output of the encoder (Y3000,t)
deviated (Figure 10E), but the decoder corrected this deviation
(ε3000,t) (Figure 10F). The simulation result proved that the
encoder–decoder retained good performances at high firing rates.

2.4.5. Temporal Reliability of Encoder-Decoder
According to our analysis, the SSCCPI transfer reliability relies
on the reliability of single-neuron (or interneuron) transfer
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FIGURE 10 | Performance of the encoder–decoder in simulated high-density inputs. (A) Original signal: a realization of a sound wave simulator. (B) Initial stimulus

received by all-or-none modulation. (C) First encoder output driven by the initial stimulus. (D) First decoder output for correcting the error of the first encoder output.

(E) 3,000th encoder output based on the initial stimulus. (F) 3,000th decoder output for correcting the error of the 3,000th encoder output.

precision if SSE delivery and cortical columns function normally.
Thus, we focused on identifying whether the single-neuron
transfer precision was influenced by irregular stimuli. To address
this issue, we investigated whether there was distinct difference
between the precision of one transmission and the average
precision of numerous transmissions.

The cerebral cortex typically consists of the six-layered
neocortex. If each layer contains at least one interneuron, then
the number of interneurons through which signal is transmitted
is at least six. For this reason, we considered the number of
relays to be 6 and 3000. Each spike train comprised 200 signal
points. The original stimuli were generated by the realization of
a random sound generator by Equation (4) where the stimuli
represented a rapidly changing signal but not a constant stimulus.
We simulated the transfer of spike trains driven by one firing and
3,000 firings by repeatedly operating the propagator in Equations
(8) and (9) once and 3, 000 times. We calculated the propagation
success rates of one transmission and the average propagation
success rates of 10,000 transmissions across the stable fixed-point
range by increasing the stability coefficient value from 0 to 1
based on Equations (2) and (3).

Figure 11 presented the distribution of these propagation
success rates in the stable fixed-point range. The propagation
success rate was above 99.982% in 0.118 < γ < 0.209 and

99.974% in 0.500 < γ < 0.613 for six relays (Figure 11A),
and above 99.986% in 0.118 < γ < 0.209 and 99.982% in
0.500 < γ < 0.575 for 3,000 relays (Figure 11B). In contrast, the
propagation success rates were under 89% outside the interval
0.099 < γ < 0.797 for six relays (Figure 11A) and 82%
outside the interval 0.11 < γ < 0.77 for three-thousand relays
(Figure 11B). According to the results obtained in section 2.2.2,
the SSCCPI propagation success rate achieved above 97% for 80
and 74% for 1,000 receiving neurons inside the intervals 0.118 <

γ < 0.209 and 0.500 < γ < 0.575 where the single-neuron
propagation success rate was above 99.97%, but was almost zero
for 80 receiving neurons outside the interval 0.0997 < γ < 0.798
where the single-neuron propagation success rate was under 89%.

From Figure 11 we surprisingly discovered that there was no
distinct difference between the single-neuron transfer precision
of one firing and the average transfer precision of many firings
in the stable fixed-point range. In particular, there was almost
no difference in the complete success propagation interval.
This result suggested that the influence of firing irregularity on
the transfer precision was not distinct, especially for complete
temporal fidelity transfer. We see that an appropriately large
stability coefficient played the key role in the achievement of
high transfer precision and reliability in single neurons, while
the effects of firing irregularity and relay number were not
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FIGURE 11 | SSCCPI transfer reliability in simulated high-density inputs.

Comparison of the propagation success rate of one realization with that of the

average over 10,000 realizations by running the encoder–decoder 6 times (6

relays) (A) and 3,000 times (3,000 relays) (B) where the signal number is 200.

These results indicated that SSCCPI transfer precision remained reliable under

the irregular firing condition if relay single-neuron transfer was completely

successful in a temporally precise manner.

distinct. The ionic homeostasis regulating the stability coefficient
into an appropriate stable fixed-point range for the complete
propagation success could be regarded as a result of long
term evolution.

Our simulation results indicated that the encoder-decoder
could be a complete fidelity and reliable information propagator
of temporal information in certain specific stable fixed-point
interval. Experimental evidence supports temporal precision
with millisecond fidelity and reliability (Abeles et al., 1993;
Mainen and Sejnowski, 1995; de Ruyter van Steveninck et al.,
1997; Ikegaya et al., 2004; Gollisch andMeister, 2008; Nemenman
et al., 2008; Tiesinga et al., 2008).

3. DISCUSSION

In this study, we proposed the SSCCPI circuit in a cortical
network model for cortical mechanisms of high intensity signal
transfer over a background of irregular firing and response
latency. We hypothesized that a thalamic high-intensity stimulus
input triggered SSEs, and dense spikes were scattered to
many receiving neurons within a cortical column in layer IV.
Then, many sparse spike trains from the receiving neurons as
signals for reversible disassembly were propagated in parallel
by the propagator (encoder–decoder) in interneurons along
minicolumns through layers II/III with less latency and finally
integrated into an output spike train toward or in layer Va. The
encoder in interneuron of minicolumns was derived by modeling
the membrane potential in response to stimulus as the input and
output in a stochastic resilience system using the NLARI process.
The multithreshold decoder was introduced to correct encoding
errors. We derived the conditions for an effective (fast, reliable,
and precise) SSCCPI circuit: SSEs were asynchronous (near
synchronous or at least partial non-overlap); critical columns
had the capability to prevent both repeated SSE deliveries and
incorrect synaptic connections between adjacent columns; and
the encoder-decoder in interneurons was a temporal complete
fidelity and reliable information propagator. There is evidence
supporting the effective transfer functions of SSEs and cortical
columns. An increasing body of real evidence suggests that
the neuronal coding could be a temporal fidelity and reliable
information propagator. Our simulations demonstrated that the
encoder-decoder could be temporal complete fidelity and reliable
in certain special intervals contained within the stable fixed-point
range. Moreover, the encoder-decoder simulated the mechanism
bywhich incoming and outgoing impulses of each neuron remain
temporally equational each time by achieving the response error
correction at the next fire command. This result explained why
the influence of relay number on the signal propagation precision
was not distinct.

Our findings also include the following: (i) The transfer
speed in the SSCCPI circuit depended crucially on the degree
of non-overlap of SSE delivery: the higher the non-overlap,
the faster the transfer speed, which reflected the key role of
synaptic noise in improving the signal transfer speed. (ii) When
SSEs and cortical columns have effective transfer functions, the
SSCCPI’ reliability depended on the reliability of the single-
neuron propagator. (iii) A temporal complete fidelity propagator
was reliable and the effect of firing irregularity on the single-
neuron transfer precision was not distinct. (iv) Substantially
increased output firing rates resulted from rigorous SSEs plus
the interneuron-transfer mistake in a shift in spike timing or
the rise of a spike, while any change in the output spike train
was unlikely to result from asynchronous SSEs plus any single-
neuron transfer mistakes. (v) Asynchronous SSEs were a cortical
population response to high-intensity thalamic inputs, whereas
rigorous SSEs might be viewed as a cortical population response
to ultrahigh-intensity thalamic inputs or neural damage that
significantly reduced the limiting ability of individual neurons
to process information. (v) The dynamic mechanism of action
potential encoding was a single stable fixed point, which was

Frontiers in Computational Neuroscience | www.frontiersin.org 18 August 2019 | Volume 13 | Article 57112

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


He Network Mechanisms for Temporal Signal Propagation

attributed to ionic homeostasis, but not transitions between
a fixed point and a limit cycle. (vi) All-or-none modulation
prevented an over response but failed to correct an under
response. (vii) Backpropagation corrected an under response.
(viii) There has been a long-standing debate about the function
of SSEs (Abeles, 1982b; Shadlen and Movshon, 1999; Singer,
1999; Pipa and Munk, 2011). Cortical columns are thought
to have a structure without a function (Horton and Adams,
2005). Here we hypothesized that a high-intensity thalamic input
triggers SSEs. Moreover, we hypothesized that cortical columns
prevented repeatedly triggering SSE delivery and fast parallel
propagation within minicolumns and information loss caused by
the disassembly propagation.

The present results suggest that any neural alterations in
the SSCCPI circuit possibly cause brain disorders and thereby
may give an insight into the exact etiologies of neurocognitive
disorders. For example, according to our analysis, rigorous SSEs
plus a single-neuron transfer mistake may induce substantially
increased output firing rates as seen in an epileptic seizure; the
breakdown of columnar segregation may destroy information
during disassembly-parallel propagation through one layer to
the next, which may cause cognitive disease. Additionally, this
study introduced the membrane potential waveform indicators
to assess the influence of synaptic stimulation input on the
membrane potential. Together with the wave indicators, the
SSCCPI circuit may be applied to the signal processing pathways
in cognitive tasks. We expect that these issues will attract more
attention and intensive research.

4. METHODS

4.1. Datasets
The real spike trains were intracellular recordings from the
right parietal 4 (RP4) neuron of a snail elicited by the
application of paeonol (the dataset and programs are presented
in Supplementary Table 1). Neuronal recordings were obtained
with the method described by Chen et al. (2010).

4.2. Statistical Method
4.2.1. Estimations of the Waveform Indicators for

(Figure 6)
Let△Yt = Yt − Yt−1. Equation (4) can be rewritten as:

1Yt = θ11Yt−1 + θ2
−Yt−1

eY
2
t−1

+ εt (10)

Note that Yt = Xt −X0 − (ω/α) t in Equation (10). Consider the
regression line Xt = a + bt + ut where a = X0 and b = ω/α.

We obtained the estimates â and b̂ = ω̂/α̂ by estimating the
regression line using the ordinary least squares (OLS) method
with real data {Xt}. We got the OLS estimates θ̂2 = β̂ and σ̂ by

estimating (Equation 10) using data {Yt} where Yt = Xt − â− b̂t.
Then, the slope indicator and amplitude indicators were given by

η1 = b̂ and η2 = σ̂ /β̂ .

4.2.2. Parameter Estimations for (Figures 7–9)
The NLARI’s stable fixed point is exponentially asymptotically
stable but not globally stable (He, 2013), which implies that

a large stimulus may trigger a poor response. Decreasing the
absolute values of the data can usually prevent this problem (He,
2014). Therefore, to make good estimates, we first performed
data preprocessing by letting Yt = real data/1, 000 where Yt were
real data or simulated data generated by Equation (4). Thus, we
estimated (Equation 10) and obtained the estimates α̂ = 1 − θ̂1,
β̂ = θ̂2, and γ̂ = β̂/

(

4− 2α̂
)

.

4.2.3. Testing for the Stable Fixed-Point Encoder in

Equation (4)
For the NLARI’s stable fixed-point range, the theoretical intervals
of the parameters α, β , and γ are given by (−1, 1), (0, 4), and
(0, 1), respectively (for more detailed information see He, 2014).
The confidence intervals of these parameters for large samples
are based on the standard normal distribution. When the γ value
is significantly greater than zero, the hypothesis tests whether
real data are generated by the NLARI process in the stable fixed-
point range can be achieved by a confidence interval approach
for the standard normal distribution. Therefore, in this case, we
only need to perform a test to determine whether the confidence
intervals θ̂1± z0s

√
s11 for α, θ̂2± z0s

√
s22 for β , and γ̂ ± z0σ̂γ̂ for

γ lie in the intervals (−1, 1), (0, 4), and (0, 1), respectively, where
z0 represents a critical value at a common significance level for
the t distribution (e.g., the critical value of 1.645 is significant
with ∞ at the 0.05 level in right-hand-tail). Our results based
on the OLS estimates of Equation (10) indicated that all the
parameter estimations based on the recordings used in this study
fell significantly inside the theoretical intervals for the stable
fixed-point range.

4.3. Simulation Method
We calculated the outputs of the propagator in Equation (7)
initiated by real neuronal data for Figures 7, 8, in Equations (8)
and (9) initiated by real neuronal data for Figure 9, in Equations
(8) and (9) initiated by a random stimulator for Figure 10, and
the propagation success rate based on Equations (1) and (2)
by repeatedly running the propagator in Equations (8) and (9)
initiated by a random stimulator for Figure 11.

4.3.1. Calculations for (Figures 7–9)
The calculation results were obtained by performing the
following steps:

Step 1. Initial values: Raw data set contains 20,000 points from 1
to 40, 000ms in increments of 2 ms. The initial stimuli were given
by ε̃t = real data/1, 000 in Figures 7, 8 and εt = ε̃t −

1
t

∑t
i=1 ε̃i

in Figure 9 where the real data were recordings for paeonol at a
concentration of≥ 1.2mmol/L in Figures 7A–9A and recordings
for no paeonol in Figures 8D, 9C. Select the parameters of the
encoder γ ∈ (0.27, 0.41), α ∈ (0, 2), and β = γ (4− 2α) (e.g.,
α = 0.71, β = 0.7, γ = 0.2713) and the parameters of the
decoder c1 = 0.0015, c2 = 0.0010, c3 = 0.0008, and σ1 = 2−6.
Let n = 600 and m = 3, 10, 17, 18 in Figure 7, n = 20, 000
and m = 1, 4 in Figure 8, and n = 20, 000 and m = 3, 000 in
Figure 9.
Step 2. Encoder: Produce the outputs of the encoder Yi,t in
Equation (7) in nomodulation in Figures 7B, 8B,C,E,F, the
encoder Yi,t in Equation (7) in all-or-none modulation by ε1,t =

c1 if εt ≥ c1, ε1,t = v
(1)
t if εt < c1, and Yi −1,t = c1 if Yi −1,t ≥ c1
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and Yi −1,t = v
(1)
t if Yi −1,t < c1 for i ≥ 2 in Figure 7C.

Step 3. Encoder-Decoder: Produce the outputs of the encoder Yi,t

in Equation (9) and the decoder value εi,t were given by Equation
(8) in Figures 9B,D.
Step 4. Outputs: The final outputs of the encoder and the decoder
were given by Ŷi,t = 105 × Yi,t and ε̂i,t = 105 × εi,t where
t = 1, · · · , n and i = 1, · · · ,m.

4.3.2. Calculations for (Figures 10, 11)
The simulation results were obtained by performing the
following steps:

Step 1. Initial values: Produce the initial stimulus εt by εt = c1

if Yt ≥ c1 and εt = v
(1)
t if Yt < c1 where the original

signal Yt was generated by Equation (4) based on α = 0.71,
β = 0.70, γ = 0.97, σ = 0.0011, and Gaussian white noise
v
(1)
t ∼ i.i.d.N

(

0, σ 2
1

)

with σ1 = 2.7× 10−5 for n = 200.
Step 2. Encoder-Decoder: Produce the output of the encoder
Yi,t in Equation (9) based on α = 1 − 0.005j, γ = 0.0133j,
and β = γ (4− 2α) for j = 25 (i.e., α = 0.8750, β = 0.7481,
and γ = 0.3325) and the decoder εi,t in Equation (8) driven
by the initial stimulus εt based on c1 = 0.0015, c2 = 0.0010,
c3 = 0.0008 for n = 200 andm = 1, 100, 3, 000.
Step 3. Success Rate: Calculate the propagation
success rate r (m, n)j by Equation (1) where the initial
input v0 and the final output vm are defined by
(Equation 2).
Step 4. Average Success Rate: Repeat Steps 1 to 3 for T = 10, 000
to calculate r (m, n) = 1

T

∑T
j=1 r (m, n)j.

Step 5. Average Success Rate Distribution: Repeat Steps 1 to 4 for

γ = 0.0133k within (0, 1), α = 1 − 0.005k, β = γ (4− 2α) for
k = k+ 1 from k = 1 to k = 75.
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The excitatory neurons in the visual cortex are of great significance for us
in understanding brain functions. However, the diverse neuron types and their
morphological properties have not been fully deciphered. In this paper, we applied the
brain-wide positioning system (BPS) to image the entire brain of two Thy1-eYFP H-line
male mice at 0.2 µm × 0.2 µm × 1 µm voxel resolution. A total of 103 neurons were
reconstructed in layers 5 and 6 of the visual cortex with single-axon-level resolution.
Based on the complete topology of neurons and the inherent positioning function of the
imaging method, we classified the observed neurons into six types according to their
apical dendrites and somata location: star pyramidal cells in layer 5 (L5-sp), slender-
tufted pyramidal cells in layer 5 (L5-st), tufted pyramidal cells in layer 5 (L5-tt), spiny
stellate-like cells in layer 6 (L6-ss), star pyramidal cells in layer 6 (L6-sp), and slender-
tufted pyramidal cells in layer 6 (L6-st). By examining the axonal projection patterns
of individual neurons, they can be categorized into three modes: ipsilateral circuit
connection neurons, callosal projection neurons and corticofugal projection neurons.
Correlating the two types of classifications, we have found that there are at least two
projection modes comprised in the former defined neuron types except for L5-tt. On
the other hand, each projection mode may consist of four dendritic types defined in
this study. The axon projection mode only partially correlates with the apical dendrite
feature. This work has demonstrated a paradigm for resolving the visual cortex through
single-neuron-level quantification and has shown potential to be extended to reveal the
connectome of other defined sensory and motor systems.

Keywords: visual cortex, excitatory neuron, morphology, projection pattern, neuron type

INTRODUCTION

The visual system of mammals receives most of the sensory information. The understanding of
visual circuits requires the morphologic characterization and classification of individual neurons
(Liang et al., 2015). Recently, tremendous progress has been achieved in studying the projection
mode of the mouse visual cortex (Kim et al., 2015; Kondo and Ohki, 2016; Roth et al., 2016; Sun
et al., 2016; Atlan et al., 2017). A mouse mesoscale connectome among different brain regions
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has been constructed by combining adeno-associated virus
(AAV) tracer labeling and serial two-photon (STP) imaging (Oh
et al., 2014). With both rabies virus and AAV co-injection, it
is possible to study the input and output connection of the
visual neural network (Zhang et al., 2016). However, most studies
perform only bulk tracing of gross projection patterns for a large
number of neuronal populations (Jeong et al., 2016). The revealed
region-level connectivity fails to reflect the collateral arborization
patterns of each projection neuron (Mitra, 2014). Our previous
work has demonstrated the feasibility of performing single-
axon-level morphological analysis of projection neurons in the
mouse barrel cortex and secondary motor cortex (Guo C. et al.,
2017; Lin et al., 2018; Sun et al., 2019). Thus, it is possible to
explore the excitatory neurons of the visual cortex at single-
neuron resolution.

Advances in techniques have boosted the morphological
analysis of individual neurons (Molnar and Cheung, 2006; Ascoli
et al., 2008; Costa et al., 2010; Meyer et al., 2010; Oberlaender
et al., 2012; Huang, 2014). Molyneaux et al. (2007) reviewed
the major subtypes of projection neurons classified by axonal
hodology. Fame et al. (2011) summarized the specification and
diversity of callosal projection neurons. Oberlaender et al. (2012)
defined excitatory neuron types in the rat barrel cortex based
on morphological features. Markram et al. (2015) reconstructed
masses of neurons with the cortical part morphology and
classified them according to their location of somata and
morphology. Nevertheless, the long-range projection neurons
are not sufficiently available for linking dendritic classification
and axonal hodology (Gouwens et al., 2018; Kanari et al., 2019).
To pinpoint the excitatory neurons in the visual cortex, it is
timely to study their complete morphology, neuron types and
corresponding projection patterns.

Here, we applied the brain-wide positioning system
(BPS) (Gong et al., 2016) to obtain volumetric imaging
of the whole mouse brain dataset with a resolution of
0.2 µm × 0.2 µm × 1 µm. A total of 103 excitatory neurons
in layers 5 and 6 were reconstructed. Due to the inherent
positioning feature of the BPS system, it is possible to localize
each neuron’s soma and its neurites at the nucleus level. This
will allow us to quantify the morphology, neuron types and
projection patterns with unprecedented precision.

MATERIALS AND METHODS

Tissue Preparation
All the animal experiments followed procedures that had been
approved by the Institutional Animal Ethics Committee of
Huazhong University of Science and Technology. Animal care
and use were performed in accordance with the guidelines of the
Administration Committee of Affairs Concerning Experimental
Animals in Hubei Province of China. Two 8-week-old Thy1-
eYFP H-line transgenic male mice (Jackson Laboratory, Bar
Harbor, ME, United States) were used (Feng et al., 2000; Porrero
et al., 2010). All histological procedures had been previously
described (Gang et al., 2017; Guo W. et al., 2017). Briefly,
the mouse was anesthetized with a 1% solution of sodium

pentobarbital and subsequently intracardially perfused with 0.01
M PBS (Sigma-Aldrich Inc., St. Louis, MO, United States),
followed by 4% paraformaldehyde (Sigma-Aldrich Inc., St. Louis,
MO, United States). The whole brain was excised and post-
fixed in 4% paraformaldehyde at 4◦C for 24 h. Then, the brain
was rinsed overnight at 4◦C in 0.01 M PBS and subsequently
dehydrated in a graded ethanol series (50, 70, and 95% ethanol
at 4◦C for 1 h each). After dehydration, the brain was immersed
in a series of graded glycol methacrylate (GMA) (Ted Pella Inc.,
Redding, CA, United States) including 0.2% Sudan Black B (SBB):
70, 85, and 100% GMA for 2 h each and 100% GMA overnight
at 4◦C. The brain sample was impregnated in a prepolymerized
solution of GMA for 3 days at 4◦C and finally embedded in
a vacuum oven at 48◦C for 24 h. The 100% GMA solution
contained 67 g A solution, 29.4 g B solution, 2.8 g deionized water,
0.2 g SBB, and 0.6 g AIBN as initiator. The 70 and 85% GMA
(wt/wt) were prepared from 95% ethanol and 100% GMA.

Whole-Brain Imaging
The resin-embedded whole-brain sample that could provide a
certain hardness was sectioned and imaged automatically using
BPS. Before imaging, we immobilized the mouse whole-brain
sample in the anterior-posterior direction in a water bath on
a 3D translation stage. The water bath was filled with 0.01 M
Na2CO3 and propidium iodide (PI) solution, in which the sample
was immersed to provide a matched refractive index for the
objective lens during imaging. In addition, the PI molecules could
quickly stain nucleic acids inside the cell body to provide the
position of the cell, and the Na2CO3 solution could enhance
the fluorescence of eYFP. Sectioning was achieved using a fixed
diamond knife and a 3D translation stage for wide-field large-
volume tomography. The single sectioning thickness was set
to 2 µm, and the sectioning width was 2 mm. The imaging
was performed using a 20× water immersion objective on a
fast structured illumination microscope (1.0 NA, XLUMPLFLN
20XW, Olympus, Shinjuku, Tokyo, Japan). The imaging plane
was set below the surface of the sample block. The eYFP
and PI molecules were excited simultaneously, and the emitted
fluorescence signals were separated by a dichroic mirror and
detected by two cameras. During the imaging process, we
performed axial scanning using the piezoelectric translational
stage, which acquired two sectioning images at depths of 1 and
2 µm. Following axial scanning, the sample was moved to the
next mosaic field of view (FOV), with a 10 µm overlap between
adjacent FOVs. The mosaic imaging process was repeated until
the entire coronal section was acquired. Finally, we acquired the
dataset sections with a 1 µm thickness and performed imaging
with a voxel size of 0.2 µm× 0.2 µm× 1 µm.

Image Processing
Image preprocessing was applied to standardize the datasets.
First, the tiles at the same position of the eYFP and PI channels
were resized and shifted to obtain the perfectly matched tiles by
the parameters of the model experiment. Second, we stitched
the tiles of the same section to obtain a mosaic section based
on the accurate spatial orientation and neighboring overlap
(approximately 10 pixels). The anchor points of the tiles were
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spaced equally in two orthogonal directions. Third, transverse
illumination correction was performed separately in each section.
Fourth, axial illumination correction was performed based on the
average intensity of each section. The two illumination correction
steps were based on our previously developed algorithm (Ding
et al., 2013). Finally, we obtained the standard dataset for both
the eYFP and PI channels. Image preprocessing was implemented
with C++, parallel optimized using the Intel MPI Library and
then executed on a computing server (72 cores, 2 GHz/core)
for 6 h for each mouse brain dataset at a voxel resolution of
0.2 µm× 0.2 µm× 1 µm.

Reconstruction and Statistics
We localized the mouse’s visual cortex in the PI channel image
series from the Thy1-eYFP H-line datasets by referring to the
Allen Mouse Brain Reference Atlas1 (Figure 1). We manually
reconstructed 103 neurons through man-machine interactive
annotation in layers 5 and 6 of the visual cortex from the whole
brain fluorescence imaging dataset using the Amira software
(FEI, Mérignac Cedex, France) with a homemade TDat plugin (Li
et al., 2017). Every neuron was reconstructed and checked back-
to-back. The morphological information was saved as a ∗.swc

1http://atlas.brain-map.org/

file. Meanwhile, we parceled the layers of the cortex on the PI
channel image series based on the cytoarchitectural features. We
corrected the neurons based on the normal vector of the cortex’s
layers and located the position of the neuron’s soma and dendrites
by the location of the cortex’s layers. Based on the PI channel
image series according to the Allen Reference Atlas, we mapped
the brain regions (Figure 2A) and determined the route and
terminal location of the axon fibers. All morphology parameters
were measured using Neurolucida Explorer (MBF Bioscience,
Williston, VT, United States). For the morphological statistics
(Tables 1, 2), we performed multiple group comparisons assessed
with one-way ANOVA followed by post hoc Tukey’s test. These
analyses were performed using the SPSS software (v22, IBM,
New York, NY, United States).

RESULTS

Dendritic Classification of Neuron Types
Using the BPS system (Gong et al., 2016), we obtained two
whole brain datasets of Thy1-eYFP H-line male mice with a
voxel resolution of 0.2 µm × 0.2 µm × 1 µm (Figure 1
and Supplementary Figure 1). With the aid of PI staining,
it is feasible to parcel the brain regions and cortex layers

FIGURE 1 | Localization of the visual cortex and annotating the individual neurons inside. (A) Merged image with green channel (thickness of projection: 500 µm)
and red channel (thickness of projection: 5 µm). The white outline indicates brain regions: the visual areas (VIS), the hippocampal formation (HPF), the thalamus (TH),
the midbrain (MB) and the hypothalamus (HY). Scale bar: 500 µm. (B) Enlarged view of the region marked with the yellow rectangle in (A). The YFP-labeled
individual neurons and the propidium iodide (PI)-stained cytoarchitecture are shown. Scale bar: 100 µm. (C) The maximal projection of the sagittal plane of the green
channel dataset. (D,E) Three-dimensional enlarged view of the region marked with the yellow rectangle in (C).
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FIGURE 2 | Excitatory neurons in the visual cortex and their classification based on dendritic features. (A) The 92 neurons with their complete morphologies are
shown in the mouse brain, the six colors of neurons represent the six types defined in (B), and the different colors of the mouse brain represent the mapped brain
regions according to the Allen Reference Atlas. (B) According to the layer of the cell body and the dendrite morphology, the reconstructed neurons are separated
into six categories: star pyramidal cell in layer 5 (L5-sp), slender-tufted pyramidal cell in layer 5 (L5-st), tufted pyramidal cell in layer 5 (L5-tt), spiny stellate-like cell in
layer 6 (L6-ss), star pyramidal cell in layer 6 (L6-sp), and slender-tufted pyramidal cell in layer 6 (L6-st). (C) Scatter plots with the two parameters: the relative height
of the apical dendrites and the number of apical dendrites. The L5-sp, L5-st, L5-tt, L6-sp, and L6-st neurons show relatively clustered groups. (D) Laminar
percentage distribution of dendritic L5-sp, L5-st, L5-tt, L6-ss, L6-sp, and L6-st neurons. For each type of neuron, the solid red line is the mean result, and the black
circles to the right indicate the location of somata. (E) Laminar distribution of dendrite terminals of the 6 types of neurons.
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TABLE 1 | Morphological statistics of excitatory neurons in layer 5 of visual cortex.

L5-sp(n = 2) L5-st(n = 6) L5-tt(n = 10)

Length of apical
dendrite (µm)

1453.2 ± 7.3 1711.8 ± 288.7 3780.3 ± 259.5

Branches of apical
dendrite

34.0 ± 7.0 28.0 ± 4.2 73.5 ± 5.3

Max branch order
of apical dendrite

12.5 ± 1.5 9.2 ± 1.2 20.1 ± 1.2

Terminal tips of
apical dendrite

17.5 ± 3.5 14.5 ± 2.1 37.3 ± 2.8

Length of basal
dendrite (µm)

1428.4 ± 683.0 2468.8 ± 225.2 3271.7 ± 224.7

Branches of basal
dendrite

28.5 ± 9.5 38.7 ± 3.5 66.6 ± 4.3

Max branch order
of basal dendrite

4.0 ± 1.0 5.0 ± 0.4 5.8 ± 0.2

Terminal tips of
basal dendrite

17.0 ± 4.0 22.5 ± 1.9 37.7 ± 2.2

Axonal length (µm) 6798.6 ± 682.4 12585.7 ± 2904.0 16694.0 ± 3498.6

Axonal branches 14.0 ± 1.0 104.3 ± 19.9 68.6 ± 17.9

Max branch order
of axon

6.0 ± 1.0 20.7 ± 3.0 10.3 ± 1.8

Terminal tips of
axon

7.5 ± 0.5 52.7 ± 10.0 34.8 ± 9.0

TABLE 2 | Morphological statistics of excitatory neurons in layer 6 of visual cortex.

L6-ss(n = 6) L6-sp(n = 37) L6-st(n = 31)

Length of apical
dendrite (µm)

– 1595.4 ± 48.1 1898.9 ± 66.5

Branches of apical
dendrite

– 36.6 ± 1.3 40.0 ± 1.5

Max branch order of
apical dendrite

– 14.6 ± 0.5 16.1 ± 0.5

Terminal tips of apical
dendrite

– 18.8 ± 0.6 20.6 ± 0.8

Length of basal
dendrite (µm)

2922.1 ± 203.2 1080.4 ± 41.2 1213.7 ± 62.4

Branches of basal
dendrite

45.0 ± 3.5 25.7 ± 1.1 26.3 ± 1.4

Max branch order of
basal dendrite

7.7 ± 1.0 4.2 ± 0.1 4.0 ± 0.2

Terminal tips of basal
dendrite

25.8 ± 2.0 15.9 ± 0.6 16.4 ± 0.7

Axonal length (µm) 5964.2 ± 688.2 6720.7 ± 358.3 8021.1 ± 481.9

Axonal branches 49.7 ± 11.8 40.3 ± 6.9 47.2 ± 5.7

Max branch order of
axon

14.5 ± 3.2 10.4 ± 1.2 11.5 ± 1.0

Terminal tips of axon 25.3 ± 5.9 20.6 ± 3.5 24.2 ± 2.9

(Figures 1B, 2A). A total of 103 excitatory neurons were
randomly selected and reconstructed in layers 5 and 6 (L5 and
L6) of the visual cortex (Figure 2A and Supplementary Figure 1).
The 92 neurons confirmed in the visual cortex (Supplementary
Table 1) of the same mouse brain were analyzed and classified
with details. The 11 neurons from another mouse brain were
used to validate the classification. The inherent positioning
function of BPS allows us to precisely locate the soma and

neurite extension in the whole brain space and quantify the
reconstructed morphology.

According to the laminar position of the soma and apical
dendritic morphology (Molnar and Cheung, 2006; Oberlaender
et al., 2012; Guo C. et al., 2017), we divided the 92 neurons
into six categories: 2 star pyramidal cells in layer 5 (L5-sp),
6 slender-tufted pyramidal cells in layer 5 (L5-st), 10 tufted
pyramidal cells in layer 5 (L5-tt), 6 spiny stellate-like cells
in layer 6 (L6-ss), 37 star pyramidal cells in layer 6 (L6-
sp), and 31 slender-tufted pyramidal cells in layer 6 (L6-st)
(Figure 2B). The dendrites of the st- and tt-type reach the
first layer of the cortex, while the tt-type has tufted apical
dendrites. The dendrites of sp-type do not reach the first layer.
The ss-type has no typical apical dendritic morphology of the
pyramidal neurons (Figure 2B). Considering the significant
differences in thickness among the wide span of the visual
cortex, laminar normalization of layer thickness was performed
before quantifying the apical dendrite morphology. The total
number of branches and the height of the apical dendrites
clearly showed five groups corresponding to the five types of
neurons: L5-sp, L5-st, L5-tt, L6-sp, and L6-st (Figure 2C).
Including the basal dendrites, the length distribution of the
dendrites among the 6 different types was analyzed (Figure 2D).
The results showed that (1) L5-sp neurons have a peak
dendritic length ratio in L5 and a zero value in L1; (2)
L5-st neurons have a peak distribution in L5 and a small
ratio in L1; (3) L5-tt neurons show a bimodal distribution
of dendritic length in L5 and L1; (4) L6-ss neurons present
a wide peak in the L6 layer but without distribution in L4,
L23, or L1; (5) L6-sp neurons have an obvious distribution
from L4 to L6 but not L1; and (6) L6-st-type neurons
show a peak distribution in L6 and a small ridge in L1.
The laminar distribution of the dendrite terminals of the
six types of neurons (Figure 2E) has a similar tendency to
the corresponding length distribution. In addition, the L5-tt
neuron presented the most complex arborization and the longest
total length of neurites among all the abovementioned types
(Tables 1, 2).

Even for the 11 neurons from the visual cortex of the
second mouse brain, we found all 6 dendrite-defined types with
consistent morphological features: 1 L5-sp, 2 L5-st, 1 L5-tt, 2
L6-ss, 3 L6-sp, and 2 L6-st (Supplementary Figure 1).

Axonal Classification and Projection
Patterns
Because the 92 neurons are long-range excitatory neurons, the
projection paths and terminals of their axons were analyzed.
In addition to neuronal dendrite-defined types, 92 neurons
could be classified as 7 ipsilateral circuit connection neurons,
11 callosal projection neurons and 74 corticofugal projection
neurons (CFuPNs) based on axonal extension (Molyneaux
et al., 2007; Fame et al., 2011; Greig et al., 2013). The axonal
classification and projection patterns were separated into the L5
and L6 groups and are shown in Figures 3, 4. To make the
results more rational, we excluded neurons with the ratio of
pretended termination in a fiber tract to all the terminations
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FIGURE 3 | Axonal classification and projection patterns of 18 excitatory neurons in layer 5. (A) The 18 neurons in L5 with their complete morphologies are shown in
the mouse brain. (B) The percentage of dendrite-defined types comprises the ipsilateral circuit connection neurons (ICCNs), the callosal projection neurons (CPNs)
and the corticofugal projection neurons (CFuPNs) in L5. (C) The pie charts show the regional distribution of axonal terminals for different neuronal types in L5.
(D) The pie charts show the percentage distribution of axonal length in different brain regions for the L5 neurons. For brain regions: isocortex (ISO), hippocampal
formation (HPF), striatum (STR), thalamus (TH), hypothalamus (HY), midbrain (MB), pons (P), medulla (MY), fiber tracts (FT), and pallidum (PAL).
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over 0.1 from the terminal distribution analyses (Figures 3C,D,
4C,D). Thus, 17 L5 neurons and 68 L6 neurons were pooled for
the quantification.

For the 18 neurons in layer 5 of the visual cortex, the
L5-tt type only has corticofugal projections, while the L5-
sp and L5-st types of neurons have two possible projection
modes (Figure 3B). For example, L5-st neurons match both
the typical subtypes of ipsilateral circuit connection neuron
and callosal projection neuron (Fame et al., 2011), and the
L5-sp is distributed into the callosal projection neuron and
CFuPN subtypes. Along with the difference in axon types, their
projection patterns are also significantly different (Figure 3C).
The projection terminals of L5-st are mainly concentrated
in the isocortex, presenting possible intracortical regulation.
The L5-sp and L5-tt types of neurons all have subcortical
projection targets. L5-sp mainly extends axon terminals in
thalamus, while the L5-tt type shows frequent terminals in
both thalamus and midbrain for over 30% of the distribution.
On the other hand, the percentage of axon length in different
brain regions was also calculated for all neurons (Figure 3D).
The main distributions of L5-st are in the fiber tracts and
isocortex. L5-sp has a large number of axon distributions in
the fiber tracts and thalamus, and L5-tt axons are distributed
in thalamus, midbrain, and the fiber tracts all at greater than
20%. Specifically, an L5-st neuron spreads its axon to the anterior
part of the cortex and projects to the orbital area, lateral
part (Figure 3A).

The 74 neurons in layer 6 can be divided into three categories:
6 L6-ss, 37 L6-sp and 31 L6-st. The L6-ss, L6-sp, and L6-
st types of neurons all have at least two possible projection
modes (Figure 4B). For example, L6-ss neurons match both
the typical subtypes of ipsilateral circuit connection neuron
and callosal projection neuron. The L6-st match both the
ipsilateral circuit connection neuron and CFuPN subtypes.
The L6-sp can be distributed into all the ipsilateral circuit
connection neuron, callosal projection neuron and CFuPN
subtypes. Although the axon types of excitatory neurons in
L6 are similar to those of excitatory neurons in L5, they
have differences in projection patterns (Figure 4C). The L6-
sp and L6-st types of neurons all have subcortical projection
targets and mainly extend axon terminals in thalamus for
over 80% of the distribution, and the projection terminal
of L6-ss is mainly concentrated in the isocortex, presenting
possible intracortical regulation the same as L5-st. For the
axon fiber distribution in the brain region of 74 neurons
in L6, the fiber tracts and thalamus both present a length
distribution of more than 40% in the L6-sp and L6-st types
(Figure 4D). In particular, the main distributions of L6-ss are
in the fiber tracts and the isocortex. An L6-st neuron spreads
its axon to the anterior part of the cortex and projects to both
the secondary motor area and anterior cingulate area, dorsal
part (Figure 4A).

Similarly, the 11 neurons from the second mouse brain
can be classified into 3 axonal types: 8 CFuPNs, 2 callosal
projection neurons and 1 ipsilateral circuit connection neuron.
They also present typical axon projections to different brain
regions (Supplementary Figure 1).

Axon Targets of the Corticofugal
Projection Neurons (CFuPNs)
The 74 CFuPNs consist of 1 L5-sp, 10 L5-tt, 33 L6-sp and 30
L6-st neurons. Both the CFuPNs in L5 and L6 exhibit multi-
region projections. For the 11 CFuPNs in L5, 9 neurons of
the 10 L5-tt neurons was analyzed using the collaboration and
coexistence matrices defined in our previous work (Guo C.
et al., 2017) (Figure 5). We found that thalamus, midbrain
and hypothalamus are the most popular targets of the CFuPNs
in L5. The axon terminals of individual L5-tt neuron are
found in at least two or more brain regions. All the axon
terminals of the L5-tt type in this work are distributed in seven
brain regions. Here, the axon-defined type of L5-tt should be
subcerebral projection neurons introduced in the references
(Molyneaux et al., 2007).

For the 63 CFuPNs in L6, the L6-sp type consisting of 33
neurons and the L6-st type consisting 30 neurons are quantified
using the matrices (Figure 6). We found that thalamus are the
most popular targets of the two types of neurons. Almost all
the neurons that project to other brain regions have terminal
points in thalamus at the same time. According to the features
of long-range neurons (Molyneaux et al., 2007; Harris and
Shepherd, 2015), the L6-sp and L6-st of the CFuPNs belong to
corticothalamic neurons.

Correlates Between Dendritic Types and
Axon Projection Patterns
Taking the aforementioned results together, we could form a
wiring map with cell-type specificity. For the CFuPN subtype,
we found that they had two typical projection patterns. The
L5-tt neurons have the subcerebral projection mode only, and
they spread their axons to several brain regions, for example,
striatum, thalamus, hypothalamus, midbrain, pons and medulla.
The corticofugal projection neurons of the L6-st and L6-sp have
the corticothalamic projection mode. The corticofugal projection
neurons of the L6-st and L6-sp types could distribute their axons
to striatum, thalamus, and midbrain, and most of them project to
thalamus (Figure 7A).

The ipsilateral circuit connection neuron and callosal
projection neuron located in L5 and L6 have undistinguishable
dendrite features but have different axon projection patterns.
The axons of the ipsilateral circuit connection neurons are
distributed in the ipsilateral hemisphere and do not cross the
corpus callosum. These neurons with somata located in the
5th or 6th layer of the cortex can be classified as L5-st, L6-
st, L6-sp, and L6-ss dendritic types. The axons of the callosal
projection neurons are distributed across the corpus callosum to
the contralateral hemisphere, and their fibers and terminals are
distributed in both the ipsilateral and contralateral hemisphere.
The callosal projection neurons with cell bodies located in layer
5 or 6 can be distinguished as L5-sp, L5-st, L6-sp, and L6-ss
types (Figure 7B).

Considering the classified neuron types and the corresponding
distribution of axon projections, it is easy to notice a partial
correlation between the neuron dendrite complexity and the axon
projection mode.
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FIGURE 4 | Axonal classification and projection patterns of 74 excitatory neurons in layer 6. (A) The 74 neurons in L6 with their complete morphologies are shown in
the mouse brain. (B) The percentage of dendrite-defined types comprises the ICCNs, CPNs and CFuPNs in L6. (C) The pie charts show the regional distribution of
axonal terminals for different neuronal types in L6. (D) The pie charts show the percentage distribution of axonal length in different brain regions for the three types of
L6 neurons.
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FIGURE 5 | Distribution of axon terminals for the CFuPN in L5. (A) In the panel of top row, the 11 CFuPN in L5 with their complete morphologies are shown in the
mouse brain. In the panel of bottom row, a typical neuron (#92) presents multiple axonal terminals in different brain regions. (B) The L5-tt of CFuPN: n = 9. The
collaboration matrix of L5-tt of the CFuPN quantifies the “posterior probability” of another projection region given the neuron projection to the current region. Taking
the values in the first row and second column as examples, “0.33” means 33% of the neurons projected to isocortex project to striatum. The values in the first row
and third column: “1” means the neurons projected to isocortex must project to thalamus. The coexistence matrix of L5-tt of the CFuPN measures the occurrence
frequency of two directional projection modes. Every element of the matrix represents the ratio of some neurons projecting to the two regions to all the neurons
having at least two projection regions.

DISCUSSION

Digital reconstruction of neuron morphology is non-trivial
in neuroscience (Parekh and Ascoli, 2013). Considering the
bottleneck presented by the low speed of construction, the total

number of 103 neurons from the visual cortex is relatively
large. This is a systematic work on neuroanatomy with single-
neuron resolution. Based on the BPS (Gong et al., 2016), we
could achieve not only high resolution (voxel resolution of
0.2 µm × 0.2 µm × 1 µm) but also coherent positioning
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FIGURE 6 | Distribution of axon terminals for the CFuPN in L6. (A) The 63
CFuPN in L6 with their complete morphologies are shown in the mouse brain.
In the bottom right of panel (A), two representative L6-sp (#56) and L6-st
(#81) neurons show their axonal terminals in thalamus. (B) The collaboration
and coexistence matrices of L6-sp. L6-sp in corticofugal projection neurons:
n = 33. (C) The collaboration and coexistence matrices of L6-st. L6-st in
corticofugal projection neurons: n = 30.

functions. This work demonstrates an alternative platform
for single-neuron mapping, reconstruction and quantification
(Albanese and Chung, 2016; Economon et al., 2016; Gong et al.,
2016). In this way, we could pinpoint the dendrite features and
axon projection patterns without ambiguity, and correlate the
dendritic classification and axonal hodology. This is one of a
series of works by the authors on single-neuron mapping (Gong
et al., 2016; Guo C. et al., 2017; Li et al., 2018), which focuses on
the visual cortex.

We applied simple and agreed-upon criteria to classify
excitatory neurons in the visual cortex (Molnar and Cheung,
2006; Oberlaender et al., 2012). All the identified types based
on dendritic morphologies are consistent with previous reports.
This could allow our work to be linked to previous studies. With
quantitative analysis, we noticed that the apical dendrite height
and branches show the natural clustering group (Figure 2C).
These are the basis for a clear distinction for different types.
Moreover, we have performed both dendritic and axonic-
based neuron classification. Correlating the apical dendrite-
based neuron types and the projection types, we found partial
correlations between dendrites and axon projections. It suggested
the significance of incorporating multiple and quantitative
features for cell-type classification (Zeng and Sanes, 2017).

Our results were consistent with previous work (Molyneaux
et al., 2007; Harris and Shepherd, 2015). We have found that
neurons in the visual cortex could project to several areas. The
results supported the concept of “one neuron-multiple targets”
(Han et al., 2018). The most anterior projection of axons to
the orbital area in lateral part, the secondary motor area and
anterior cingulate area in dorsal part may account for their
secondary activation following visual stimulation or visual cortex
stimulation (Lim et al., 2012). These characteristics are related to
the possible function of brains. Additionally, the corticothalamic
neurons in L6 of visual cortex may have surficial dendrites
within L1–L3. The subcerebral projection neurons in L5 of
visual cortex (Supplementary Table 1) project to the isocortex,
striatum, thalamus, midbrain, medulla, pons, and hypothalamus
(Figure 5). The connection between visual area and motor
area, anterior cingulate area have been demonstrated by both
anterograde and retrograde labeling (Zingg et al., 2014). In our
case, an individual L5 neuron in the visual area projects to
motor area, anterior cingulate area and multiple subcortical brain
regions at the same time (Figure 5A, neuron #92). The single
axon-level have presented some unique and striking findings
when compared with the previous report (Oh et al., 2014; Zingg
et al., 2014). However, there may be some artifact of projection
(e.g., axon terminals located in the fiber tracts) resulted from
the technical limitation of imaging in current work. No doubt,
better labeling and imaging technique will help to decipher the
wiring map of brain.

Due to the labeling of the Thy1 H-line of mice, neuron
somata are frequently located in layers 5 and 6. The cell type
is not as specific but this is an opportunity to study neuronal
classification in less mice. An explanation on the small number
of animals (n = 2) is due to both the nature of conserved
anatomy and the consistency of the reported neuron types.
Genetic labeling of H-line is not as sparse but can be used for
complete reconstruction according to our previous practices. The
selection of Thy1-eYFP H-line may benefit us to do comparison
with the reported studies in the mouse brain of the same
line (Kim et al., 2016; Richter et al., 2018). To compensate
the fact that the number of neurons in L5 is smaller than
the number in L6 in visual cortex of the Thy1-eYFP H-line
transgenic mice, it would be helpful to design experiments from
different lines of mice, such as Thy1-eYFP G-line, Thy1-CFP
4-line (Feng et al., 2000) and Sim1_KJ18, Efr3a_NO108, et al.
(Gerfen et al., 2013). In the future, more specific genetically
labeled neurons may be studied with the same paradigm of this
work. How to integrate the morphological, electrical and genetic
characterization of neurons will be a critical issue in neuroscience
(Gouwens et al., 2018). There is no electrophysiological recording
for the neurons in this study. It may be possible to perform
cell-type-specific recordings after morphological classification
(Economo et al., 2018). We hope that a morphological study
could guide further functional studies (Zeng and Sanes, 2017).
Additionally, the realistic reconstruction of neurons will be
helpful for the modeling and simulation of neural circuits
(Markram et al., 2015).

In summary, our high-precision imaging system with
single-axon-level reconstruction provides unique and detailed
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FIGURE 7 | Summarized projection patterns of the studied neurons in the visual cortex. (A) Two typical projection patterns of corticofugal projection neurons. The
cyan-colored neuron shows a cell body located in L5 of the cortex and the subcerebral projection mode. The same cyan-colored dendrites in the lower left corner
indicate the L5-tt type. The blue colored neuron presents soma in the L6 and the corticothalamic projection mode. The blue-colored dendrites may be classified as
L6-sp and L6-st types according to the dendritic morphology. (B) The projection patterns of the ipsilateral circuit connection neurons and the callosal projection
neurons. The ipsilateral circuit connection neurons (red) with somata located in the 5th or 6th layer of the cortex can be classified as L5-st, L6-st, L6-sp, and L6-ss
dendritic types. The callosal projection neurons (orange) with cell bodies located in layer 5 or 6 can be distinguished as L5-sp, L5-st, L6-sp, and L6-ss types.
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information for long-range projection patterns, which
may provide interesting implications for the function of
individual neurons.
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The nervous system representation of a motor program is an open problem for most

behaviors. In birdsong production, it has been proposed that some special temporal

instances, linked to significant aspects of the motor gestures used to generate the song,

are preferentially represented in the cortex. In this work, we compute these temporal

instances for two species, and report which of them is better suited to test the proposed

coding (as well as alternative models) against data.

Keywords: songbirds, motor gestures, cortical representation, sparse coding, birdsong production

INTRODUCTION

Behavior emerges from the interaction between a nervous system and a biomechanical body whose
dynamics are complex and ruled by non-linear phenomena. For this reason, it is not trivial to unveil
how the nervous system represents the motor program behind a given behavior. A particularly
complex behavior is vocal communication, which in several species requires the coordination of
manymuscles in order to generate the rich variety of acoustic signals necessary to convey amessage.
Even in phylogenetically distant species such as humans and birds, it has been recognized that
a wide variety of sounds can be achieved through the temporal coordination of simple motor
instructions, or motor gestures. In the case of human speech, those are the object of study of
articulatory phonology [1]. The coordination of very simple motor gestures controlling the tongue,
lips, and jaw [2] is capable of accounting for the acoustic features that allow a message to be shared
between humans. Recent work reports that reasonably simple somatotopic representations of these
gestures can be found in cortical regions of the human brain [3]. In the case of the sounds generated
by songbirds, it has also been reported that a variety of different acoustic signals can be generated
by changing only the phase difference between simple gestures controlling the respiration and the
configuration of the avian vocal organ [4]. Moreover, some subtle features of a sound’s timbre have
been directly associated with the dynamics exhibited by the biomechanics involved in its generation
[5], relieving the nervous system from controlling a myriad of subtle instructions in order to
produce a complex sound. This suggests that a complex and rich behavior can be decomposed into
simpler motor instructions, whose simplicity might help to understand its representation coding at
the level of the nervous system.

Songbirds are an optimal neuroethological model to study motor control. Singing behavior is
easy to record, stereotyped, and stable throughout a bird’s adult life. It emerges from a subtle
interaction between a dedicated brain circuit and a biomechanical device. The outcome of the
nervous system is a set of electrical signals that activate the muscles responsible for the time
dependent configurations of the avian vocal organ and the respiratory system. A complex song
typically consists of a sequence of sounds whose acoustic features evolve continuously in time.
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The time dependent physiological instructions necessary
for the generation of those continuous segments
are the motor gestures. The question then naturally
arises: how are these motor gestures represented in
the nervous system?

Unveiling how different parts of the nervous system code
this rich behavior has proven to be a difficult task. Fee
and collaborators proposed a model in a seminal work
published in 2004 [6]. The analysis of the neural activity
in a cortical nucleus of zebra finches (Taenopygia guttata)
[7] led the authors to claim that a sequence of projecting
neurons was activated continuously during the execution
of the song. Each projecting neuron was active during
approximately 10ms, and the set of consecutively activated
projecting neurons continuously spanned the duration of
the song.

Amador and collaborators proposed an alternative view [8].
In that work, they recorded the neural activity of singing birds
of the same species analyzed by Fee et al. The work was
originally designed to study the neural response of sleeping
birds to synthetic songs generated by a dynamical model.
Therefore, the authors had a motor template in terms of which
to interpret the temporal instances of the recorded neural
activity for each syllable (defined as a segment of continuous
sound flanked by silence). Moreover, they preferentially used
birds with long syllables of constant pitch to enable a more
accurate song synthesis. The neural recordings, in light of
the motor gestures obtained by the biomechanical model,
led to the claim that there was preferential neural activity
at significant motor instances of the song, which they called
gesture trajectory extrema (GTEs). A sound requiring complex
motor instructions would be characterized by a large number
of GTEs.

That work originated a series of replies [9–12]. A suggestive
argument for the continuous representation hypothesis was
that many neurons were measured in a large set of birds,
which led the authors to claim that the neural activity was
distributed continuously during the songs. None of those studies
reported a bias toward birds with simple songs, although the
somewhat simpler songs of juveniles were investigated in one of
them [9].

In this work, we show that the GTE distribution in zebra
finch song seems to continuously cover the duration of the song,
and therefore, these two models cannot be easily disambiguated
using this species. Another songbird species might be more
suitable for this task. For this reason, we studied the song
structure of a different songbird species, the domestic canary
(Serinus canaria), which has longer and simpler syllables
than the zebra finch. Here, we quantify these features and
relate them to the GTEs. In this way, we suggest a way to
distinguish between the two alternative models of neural coding
by studying birds that produce syllables with specific acoustic
features. One of the two models predicts a continuous neural
representation of the motor patterns, regardless of the acoustic
features of the songs. The second model predicts a sparser
neural representation for simpler syllables (i.e., syllables with
sparser GTEs).

MATERIALS AND METHODS

Zebra Finch and Canary Song Structure
We randomly selected 20 zebra finch songs and 20 canary
songs from our historical records. The birds were obtained from
commercial breeders as adults within the last 10 years, with no
familial relationship between them. They were recorded with
a directional microphone from adult male birds (zebra finches
and canaries) individually housed in a sound-isolation chamber.
Food and water were provided ad libitum, in accordance with
a protocol approved by the University of Buenos Aires (FCEN-
UBA) Institutional Animal Care and Use Committee (CICUAL).
The recordings were obtained using the software Avisoft—
RECORDER (https://www.avisoft.com/recorder.htm). All sound
files were filtered using Praat 6.0.04 software (http://www.fon.
hum.uva.nl/praat/) to eliminate environment noise (pass Hann
band from 200Hz to half the sampling rate). This is the standard
recording protocol in our laboratory.

Zebra finch song has a different structure than canary song
(see examples in Figures 1A,B, respectively). A zebra finch song
is composed of a repetition of motifs: M1, M2, M3 in Figure 1A.
A motif is a sequence of syllables sung once in a stereotyped
order, as shown in Figure 1Cwhere each different letter indicates
a syllable [13, 14]. Canary songs show a different organization. A
phrase is formed by the repetition of a given syllable, and the song
is composed of a sequence of different phrases. A representative
example is shown in Figure 1B, indicating different phrases with
different numbers: Ph1, Ph2, . . . , Ph6 [15, 16].

We compared the motifs in the songs of zebra finches to
a construction of what we called pseudo-motifs of the songs
of canaries. The pseudo-motifs have the same syllables in the
same order as in the original canary song, but each syllable is
repeated only once (Figure 1D). In other words, in the pseudo-
motifs, the original phrases in the song are shortened to one
repetition of each syllable. In this way, syllable “k” in Figure 1D

(k = 1, . . . , 6) is a representative example of the syllables that
compose the phrase Phk in Figure 1B. The silent gap between
two syllables in a pseudo-motif corresponds to the gap between
the original phrases.

Automatic Calculation of Gesture
Trajectory Extrema (GTEs)
An automatic procedure for detecting GTEs was proposed by
Boari et al. [17]. The key observation behind this procedure is
that the transitions between the song segments with qualitatively
different acoustic features are reflected as minima in the envelope
of the songs. In this work, we used a similar approach to the one
used in [17] to obtain the GTEs of the songs in two species and
study them comparatively.

The envelope of the song was obtained as follows. First,
we computed the Hilbert transform of the sound, obtaining a
time trace s (t). Then, we smoothed s (t) by integration of the
linear system:

dz

dt
= −

1

τ
z + s (t) ,
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FIGURE 1 | GTEs in zebra finch and canary songs. (A) Left top: sound of a zebra finch song. Labels M1–M3 and bars indicate a motif that is repeated three times

during the song. Left middle: spectrogram of the song. Left bottom: envelope trace calculated from the sound in the left top panel. Vertical lines indicate the

(Continued)
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FIGURE 1 | timestamps of the Gesture Trajectory Extrema (GTEs) calculated from the envelope trace: solid lines indicate onset and offset GTEs; dotted lines, minima;

dashed-and-dotted lines, absolute maximum and dashed lines indicate last maximum. Right: normalized GTE position plots of the zebra finch song. The GTE

timestamps in the song and the GTE indices are normalized. The blue line shows the best fit using ordinary least squares. The gray area corresponds to the 95%

confidence interval (see Methods). (B) Left top: sound of a canary song. Labels Ph1–Ph6 and bars indicate repetitions of one syllable, also called phrases. Left middle,

left bottom, and right panel as in (A). (C) Left top: sound of zebra finch motif M1 from (A). Letters a–j and bars indicate individual syllables. Left middle, left bottom,

and right panel as in (A). (D) Left top: sound of a canary pseudo-motif. Letters a–f and bars indicate unique instances of the syllables in each phrase showed in (C).

Left middle, left bottom, and right panel as in (A).

with τ = 1 ms. After this, we applied a Savitzky-Golay filter
[18] (window size = 513 samples, 4th order of the smoothing
polynomial). Finally, the obtained time trace was normalized
with respect to the absolute maximum of the envelope, obtaining
n(t). A five-point stencil derivation of the signal was computed
and further filtered with a Savitzky-Golay filter (same parameters
as before) to obtain d(t), representing a smoothed derivative
function of the original sound.

Additionally, we obtained a time trace without artifacts
in syllable beginnings and ends, by filtering s (t) using
a moving window average (window size = 250 samples,
that at 40 kHz correspond to 6.25ms), both in the forward
and reverse directions to avoid introducing spurious
phase delays. We normalized the resulting time trace
with respect to the absolute maximum of the envelope,
obtaining a(t).

We used a(t) to compute syllable beginnings and ends. We set
a threshold of 3% of the maximum value of a(t). A syllable onset
was defined when the signal a(t) went over the threshold, and its
offset when the signal went back under the threshold.

The intra-syllabic maxima and minima were computed
analyzing sign changes in the smoothed derivative d(t). After
calculating all the timestamps of the minima in d(t), we
considered minima to be significant if their values in n(t)
were at least 5% smaller than the maxima before and
after. The absolute maximum and the last maximum in
signal n(t) were considered significant regardless of their
relative value.

For canaries, even though syllables of the same phrase are
expected to have the same GTEs, occasionally, due to variations
in song production, syllables of the same phrase have different
GTEs. In those cases, we only considered the GTEs that were
systematic for all the uttered syllables.

Using these definitions, we extracted GTEs from the sound
which corresponded to beginnings and ends of syllables,
significant minima (indicating the instances when gesture
transitions within a syllable take place), and significant maxima
(taken as proxies of maxima of the air sac pressure). The codes
for implementing this procedure can be downloaded from http://
www.lsd.df.uba.ar.

Normalized GTE Position Plots for a Song
To visualize the distribution of GTEs in a song, we plotted the
GTE index normalized to the total number of GTEs in the song
against the GTE timestamp normalized to the song duration.
Then, the data was fitted using lm function from R (Version
3.5.3—https://www.r-project.org). Figure 1 shows examples of
sound waves of different songs, their spectrogram and sound

envelope, together with the associated GTEs (vertical lines). The
corresponding normalized GTE position plot for each song is
shown in the right panels of Figure 1.

Chi2 Parameter
The Chi² parameter defined in this work was calculated from the
normalized GTE position plots (right panels of Figures 1, 2A,B)
using the following formula

Chi =

n
∑

i=1

(Obsi − Expi)

|Expi|
.
1

n

where n is the number of data points;Obsi is the observed value of
the normalized timestamp (x-axis value) of the GTE whose index
value is i; Expi is the value of the normalized GTE timestamp (x-
axis value in the normalized GTE position plots) that the line of
best fit takes when the GTE index value is i. The Chi2 parameter
increases as the data points fall further away from the line of
best fit.

Spectrogram Metrics of Syllables
Each song was segmented using Avisoft Bioacoustics SAS Lab Pro
(Version 5.2.13—www.avisoft.com/) using automatic detection
of waveform events with a threshold and hold time such that
we obtained the same syllables as the automatic procedure
for detecting GTEs. We sought to identify one salient syllable
type that was long and simple in each species. The clearest to
categorize were tonal whistles in the case of canaries (constant
frequency, low energy in the harmonics) and harmonic stacks
(constant frequency with high energy in distinct harmonics) for
zebra finches. Two trained independent observers inspected all
syllables and labeled harmonic stacks and whistles.

SAS Lab Pro was used to automatically calculate syllable
duration, duration of a constant frequency segment within
the syllable, and mean entropy of the syllable from the song
spectrograms (shown in Figure 3). The spectrograms were
computed with FFT length 512, frame size 100%, gauss window
and a temporal overlap of 87.5% for all songs. To calculate the
constant frequency segment duration, the tolerance was set to
300Hz. For zebra finches, we found that the software sporadically
detected peak frequencies in the high energy harmonics instead
of at the fundamental frequency, and thus underestimated
the constant frequency segment durations. In order to limit
the detection of segments to low frequencies that included
the fundamental frequency of harmonics stacks, we filtered
the syllables in which the peak frequency during the whole
syllable was <3.5 kHz in SAS Lab using the lowpass Frequency
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FIGURE 2 | Normalized Gesture Trajectory Extrema (GTE) position plots for zebra finches and canaries. (A) Normalized GTE position plots for eight zebra finch motifs

selected at random. The GTE timestamps in the motif and the GTE indices are normalized. The blue line shows the best fit using ordinary least squares. The gray area

(Continued)
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FIGURE 2 | corresponds to the 95% confidence interval (see Methods). (B) Normalized GTE position plots for eight canary pseudo-motifs selected at random. Same

analysis as in (A) of the 20 analyzed (the remaining 12 plots are shown in Supplementary Figure 2). (C) Each circle shows the Chi2 value of the linear fit for one

individual. Black dots represent the mean Chi2 while error bars represent ± SD of the data. The average Chi2 is 0.0044 ± 0.0043 (mean ± SD) for canaries (n = 20)

and 0.0008 ± 0.0006 (mean ± SD) for zebra finches (n = 20). (D) Each circle shows the R2 value of the linear fit for one individual. Black dots represent the mean R2

while error bars represent ± SD of the data. The average R² is 0.93 ± 0.05 (mean ± SD, n = 20) for canaries and 0.99 ± 0.01 (mean ± SD, n = 20) for zebra finches.

In (C,D) asterisks indicate that both distributions are statistically different (Kolmogorov-Smirnov test, p < 0.01).

Domain Transformation with a cutoff at 3.5 kHz and re-ran the
calculation of this metric.

The mean entropy ranges from close to zero for tonal signals
and one for random noisy signals. We calculated the sample
density probability estimates using the default probability density
estimation in the ksdensity function from MathWorks Matlab
(Version 2018a—www.mathworks.com) with appropriate bin
size. For each metric, the bin size was determined as 10% of the
metric’s value range, and the minimum bin size of the two species
was used for both species. This strategy allowed us to use the same
bin size for each metric for both species.

Example and non-example bird syllable subgroups shown
in Supplementary Figure 3 were tested for differences in the
probability densities of each metric using the Kolmogorov-
Smirnov test (kstest2 function in Matlab). Bin sizes for each
metric were the same as those used for the complete sample
in Figure 3.

RESULTS

Motor Gesture Extrema in Birdsong
Motor gestures have previously been identified as the time
dependent parameters of a dynamical system capable of
synthesizing a realistic replica of the birdsong [4, 8, 19]. GTEs were
defined in [8] as a measure of a song’s complexity and consist
of a set of temporal instances that include syllable beginnings,
syllable endings, maxima of the parameter representing the air
sac pressure used in the vocalization, and the discontinuities
of the fundamental frequency during continuous vocalization
(see Methods). The rationale behind defining GTEs is that many
continuous acoustic features of a song occur between discrete
(impulse-like) instructions, constituting significant temporal
instances in the song. For example, the characteristic down-
sweep syllables of a zebra finch (i.e., syllables with fundamental
frequencies that decay as time evolves) are generated with a
pulse like contraction of the syringealis ventralis muscle at the
beginning of the vocalization. This pulse is passively transduced
into a smooth stretching of the oscillating labia responsible for
the sound [20]. In complex syllables that require using both
sound sources, a discontinuity of the fundamental frequency
can arise when the sound ceases to be generated by one of the
two sound sources and starts to be generated by the other sound
source. This requires the rapid alternating activation of gating
muscles (e.g., [21, 22]).

In this work, we analyzed 40 songs from adult male birds:
20 from zebra finches and 20 from canaries (see Methods). We
show an example of a zebra finch song in Figure 1A and one of
a canary song in Figure 1B. The average duration of the canary
songs was 14.65 ± 4.60 s (mean ± SD) while for zebra finches

the song duration was 2.2 ± 1.4 s (mean ± SD), and their motifs
lasted on average 0.67 ± 0.21 s (mean ± SD). An example of a
zebra finch motif is shown in Figure 1C.

The songs of canaries and zebra finches both consist of
sequences of continuous sounds called syllables, separated by
brief silences. Yet they differ in two important ways. First,
acoustic features within a syllable vary smoothly in canary song,
while there can be abrupt changes in acoustic features within
a zebra finch syllable. Second, the syntax is different. A canary
will repeat a syllable several times, before switching to sing
several copies of a different one. A canary song is built as a
sequence of repeated syllables. A zebra finch song, however,
consists of a succession of different syllables (a motif), which
is sung repeatedly. We are interested in the first difference, at
syllabic level, between zebra finch and canary song, since it
suggests that syllable generation by each species might require
a different degree of motor sophistication. For this reason, we
constructed what we called pseudo-motifs for the canary songs.
This allowed us to generate a song with structure similar to the
zebra finch motif and compare syllable complexity. Briefly, the
syllable repetitions present in canary songs were removed in the
pseudo-motifs (example shown in Figure 1D). See Methods for
a detailed description of the procedure. The average duration of
canary pseudo-motifs was 0.99 ± 0.40 s (mean ± SD), which is
comparable to zebra finch motif duration.

Using an adaptation of previously developed software [17],
we extracted GTEs automatically from the song recordings. The
left panels of Figure 1 show the resulting GTEs as vertical lines
overlaid on the sound, spectrogram, and sound envelope of
the zebra finch and canary songs. Note that in the syllables
of the canary pseudo-motif in Figure 1D, only the GTEs that
are systematic throughout the phrase remain. For example, the
reported GTEs in syllable 6 are only those present in all syllables
of Phrase 6 in Figure 1B. Our next step was to investigate the
differences in the distribution of the GTEs of both species.
In the rest of this article, we will refer to analyses performed
on canary pseudo-motifs and true zebra finch motifs, unless
stated otherwise.

GTE Distribution in Canaries Is More
Heterogeneous Than in Zebra Finches
To visualize the distribution of GTEs in a song, we created the
normalized GTE position plots (right panels in Figure 1). These
show the normalized index of each GTE against its normalized
timestamp, fitted to a linearmodel (seeMethods). The right panel
of Figure 1A shows that the zebra finch complete song closely
follows the linear fit. However, the patterning of points around
the line are repeated, because the stereotyped motif is repeated
three times in the song. In the case of the complete canary song
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FIGURE 3 | Distribution of spectrogram metrics of canary and zebra finch syllables. (A) Violin plots showing the distributions of syllable duration (left panel), duration of

constant frequency segment (middle panel) and mean entropy (right panel) for canary syllables. The gray area represents the distribution density (symmetrically plotted

on the x-axis) and its median is shown with a black square. One hundred and eighty seven canary syllables total, bin sizes are 30, 10, and 50ms for each metric

respectively. A scatter graph with the y-value of each individual syllable is overlaid on each distribution plot. Scatter points are orange if the syllable contains a constant

frequency segment duration larger than the threshold value (120ms) indicated with a dashed line in the middle panel, and gray otherwise. Syllables of a categorized

type are outlined with a black diamond (whistles in canaries and harmonic stacks in zebra finches). Note that all syllables that surpass the threshold are whistles.

Constant segment duration ranges from 3 to 96ms and 144 to 316ms. Spectrogram insets show example syllables (see text). Height of spectrograms is 10 kHz.

White bar indicates 50ms. (B) Same as in (A), for zebra finches, 119 syllables total and same bin sizes per metric. Constant segment duration range: 3–86ms.

Harmonic stacks are not isolated in any of the metrics analyzed.

(Figure 1B), there is a large deviation from the linear fit, which
makes the song seem more heterogeneous, but is exaggerated
because it considers all the repeated syllables in each phrase. The
corresponding analysis for one motif of the zebra finch song and
one syllable per phrase of the canary song (pseudo-motif) are
shown in the right panels of Figures 1C,D. To study differences

between species at the syllabic level, we compared the distribution
of GTEs in zebra finch motifs with the distribution of GTEs in
canary pseudo-motifs.

In Figures 2A,B, we show eight examples of the GTE
index distribution from each species (selected randomly, see
Methods). The plots for the remaining 12 songs are shown in
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Supplementary Figures 1, 2. We calculated the Chi² parameter
(see Methods) and the R² (coefficient of determination) from
the normalized GTE position plots. The Chi² parameter takes
larger values as data points fall further away from the line of
best fit. We calculated the mean Chi² for every bird (Figure 2C)
and obtained 0.0044 ± 0.0043 (mean ± SD) for canaries (n
= 20) and 0.0008 ± 0.0006 (mean ± SD) for zebra finches
(n = 20). A Kolmogorov-Smirnov test (KS test) showed that
the distributions are statistically different (p < 0.01). A similar
result was obtained for R2 (KS test, p < 0.01). The average
R² value for canaries was 0.93 ± 0.05 (mean ± SD) and for
zebra finches it was 0.99 ± 0.01 (mean ± SD, see Figure 2D).
All these results suggest that the GTE distribution in canary
songs is more heterogeneous than in zebra finch songs. To
further investigate the origin of this heterogeneity, we studied
the acoustical properties of syllables and further analyzed the
distribution of GTEs.

Spectrogram Metrics of Canary and Zebra
Finch Syllables
To further quantify song characteristics and compare both
species, we analyzed the distribution of three syllable metrics,
including a temporal and a spectrum-based parameter. These
metrics were syllable duration, duration of a constant frequency
segment within the syllable, and mean entropy (Figure 3). We
looked with particular attention at one salient type of syllables
in each species: whistles in canaries and harmonic stacks in
zebra finches (see Methods, black diamond outlined points
in Figure 3). Song segmentation produced 187 syllables for
canaries (from 20 pseudo-motifs) and 119 for zebra finches (from
20 motifs).

Canary syllable duration (Figure 3A, left panel) fell into
two defined groups: syllables that ranged up to 100ms (max
96ms), including very short syllables (note the amount of
points indicating syllables with duration below 10ms), and long
syllables that lasted from 121 to 320ms. Within the group of
longer syllables, whistles had durations from 153 to 320ms and
made up 74% of this group.

To investigate in further detail syllables that contained long
and simple sounds, we calculated the duration of a constant
frequency segment within the syllable (see Methods). The
distribution of this metric in canaries (Figure 3A, middle
panel) has a defined minimum at 120ms, separating two
groups. We treated this value as a threshold. All the syllables
that contain a constant frequency segment above threshold
(orange points) were whistles (black diamond outline)
and correspond to percentile 82.9. This shows that this
metric is suitable for separating long simple syllables such
as whistles. The constant frequency segment duration of
the syllables above threshold ranged from 144 to 316ms,
whereas the rest of the syllables were in the range of
3–96 ms.

Examples of simple syllable spectrograms are shown as insets
in the middle panel of Figure 3A. The supra-threshold, more
tonal syllables are characterized in the top two insets: long whistle
of a single fundamental frequency (other examples in Figure 1D,

syllables 4 and 6). Other syllables that contained a mid-range
constant frequency segment duration weremade up of an upward
or downward sweep as well as a tone and are usually shorter in
length (bottom inset example of subthreshold syllable).

In the right panel of Figure 3A, we show the distribution
of the entropy of canary syllables. The black dot indicates the
median value of 0.34. Note that the canary whistle syllables take
the lowest of the entropy values. Even though they ranged from
0.17 to 0.38, we found that the median of only the whistles was
0.19 (not shown in plot).

In the case of zebra finches, syllable duration was less
widespread (see Figure 3B, left panel). Syllables lasted from 4
to 310ms (note that the largest value is an outlier and that the
second largest is 214ms), with a median of 62ms. Harmonic
stacks are outlined with a black diamond. Their durations ranged
from 32 to 91ms, which is around the median value.

The middle panel of Figure 3B shows that constant frequency
segments do occur in zebra finches (in the tail of the distribution),
but they are shorter than those in canaries: their maximum
value was 86ms. This distribution did not present a well-defined
feature that would allow us to naturally set a threshold. Harmonic
stacks tend to have longer constant frequency segments but
do not dominate the tail. However, almost all harmonic stacks
surpassed the median value of the syllables which is 11ms.
They range from 11 to 86ms and the median of only the
harmonic stacks is 49ms (not shown in plot). Examples of
syllables from the tail of the distribution are shown in the insets
of Figure 3B, middle panel. These include canonical harmonic
stacks such as the one shown in the left inset, and syllables
not classified as harmonic stacks: in the middle inset we show
a syllable with two abrupt transitions containing two segments
with harmonic stacks and in the right inset, one which is a short
high frequency tone.

In terms of entropy, zebra finches tend to produce syllables
of higher entropy than canaries (median 0.63 and ranging from
0.23 to 0.86, see right panel of Figure 3B). This agrees with the
fact that their song is characteristically “noisier” than canary
song. Harmonic stacks do not cluster in this metric as canary
whistles do, since they have a wider entropy range and more
variation in values (from 0.23 to 0.76). All but three of the
harmonic stacks had an entropy value less than the median,
which points out that they are not typically noisy syllables nor
completely flat.

In summary, there is no equivalent long and simple syllable
for the canary whistle in the zebra finch songs we analyzed. The
syllable type we considered as a candidate were harmonic stacks,
but not only do they fall short of the length of the canary whistles,
they also do not emerge as an isolated group within this set
of metrics.

Time Differences Between Consecutive
GTEs
To further analyze the GTEs distribution, we analyzed the time
difference between consecutive GTEs (20 canary pseudo-motifs,
505 GTE time intervals and 20 zebra finch motifs, 637 GTE time
intervals). The silent gaps between syllables were not considered.
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The time difference between consecutive GTEs for each bird is
shown in Figure 4A, using red markers for canaries and blue
markers for zebra finches. In the canary distribution, all birds
have at least one large time difference. We identified the largest
time differences (belonging to the 95th percentile, larger than
173ms) in canaries (red filled markers) and found all these are
from whistle syllables (diamond markers). Note that the largest
GTE time difference in zebra finches was 76ms, while in canaries
it was 330 ms.

The distribution of time differences between consecutive
GTEs is shown in Figure 4B for canaries and in Figure 4C for
zebra finches. For both species, the mean time difference between
consecutive GTEs is marked by solid vertical lines. For canaries,
the mean was 28.0± 2.2ms (mean± SEM) and for zebra finches,
it was 15.1 ± 0.4ms (mean ± SEM). The values of the means
are significantly different (t-test, p < 0.01). The larger value
for canaries is due to the long tail in the distribution of time
differences between GTEs. The 95th percentile is indicated in
both distributions with black arrowheads (173ms for canaries
and 35ms for zebra finches). It is worth mentioning that
the median values were similar for both species: 12.2ms for
zebra finches and 12.6ms for canaries. The standard deviation
was 50.2ms (n = 505) for canaries and for zebra finches it
was 10.5ms (n = 637). The standard deviations of the time
difference distribution of the two species were significantly
different (Levene test centering with the median, p < 0.05).
These significant differences between the means and the standard
deviations of the two species indicate that the distributions of
GTE time intervals are more heterogeneous in canaries than in
zebra finches.

We hypothesized that the difference between distributions was
driven by the time differences from whistle notes in canaries. To
test this hypothesis, we discarded all intervals that belonged to
whistle syllables in canaries, i.e., we removed the values shown
as diamonds in Figure 4A from the distribution of canary time
differences. The mean of this new distribution was 14.7 ± 0.6ms
(mean± SEM, n= 472), and the standard deviation was 12.4ms
(n = 472). The histogram of the new distribution is shown in
the inset of Figure 4B. We did not modify the distribution of
zebra finch time differences, but it is plotted with the same range
in the inset of Figure 4C for comparison. In contrast with the
previous comparison, the mean and the standard deviation of
the modified canary distribution were not significantly different
to the zebra finch unmodified distribution (t-test, p > 0.5 and
Levene test centering with median, p > 0.5). This result shows
that the difference between distributions were mainly driven by
the canary whistle syllables.

DISCUSSION

The study of animal behavior requires contributions from
many disciplines. An animal’s nervous system acts upon its
environment through a biomechanical device. Therefore, neural
coding is best understood in the context of the specific
motor instructions needed to control this device. In the case
of birdsong, the control of the avian vocal organ and the

respiratory system can be described in terms of continuous
time dependent parameters called motor gestures. Complex
songs imply a succession of different motor gestures, and the
distribution of the instances known as GTEs is an indication
of the complexity of the song. In this work, we studied the
distribution of these significant temporal instances in the song of
two species.

In this work, we show that the distribution of time
differences between GTEs was significantly different between the
compared species: canaries have long intervals between GTEs
that occur mostly during their characteristic whistle syllables.
We analyzed the acoustical properties of all syllables and found
that canary whistles can be easily discriminated from other
syllables by their long segments of constant frequency. In
contrast, the distribution constant frequency segments in zebra
finch syllables reaches a smaller value and does not contain two
separate groups.

Birdsong requires the control of the respiration and of
the syringeal configuration, which both affect acoustic features
such as the song’s fundamental frequency. The acoustic
features of some simple syllables emerge from the interaction
of a biomechanical process with brief interventions of the
nervous system. As previously noted for zebra finches, it
has been recently shown that some syllables only require
impulsive activity in a syringeal muscle right before the onset
of the sound and that the passive posterior relaxation of
the labia is wholly responsible for the slow decay of the
syllable’s fundamental frequency [20]. Therefore, it is sensible
to ask whether this simplicity in the muscle control of the
biomechanical device requires simple instructions from the
nervous system.

In the field of birdsong, it is debated whether telencephalic
regions display a continuous code for the song, or a sparser
code that reflects the song’s structure. The original claim by
Amador and collaborators that projecting neurons in the cortical
nucleus HVC spike mostly at specific temporal instances (GTEs)
falls into the latter alternative [8]. In 2015, this claim was
refuted by Okubo and collaborators, since they found that
neuronal bursts in HVC spanned almost the complete duration
of the song [9]. However, their description of the ontogenesis
of the song reveals that the heterogeneity of gestures does
leave a fingerprint in the mature cortical activity. Studying
the songs of juvenile zebra finches, the authors found that
close to 50% of the recorded neurons were active only at the
beginning of the simple syllables that the juveniles uttered.
As the birds developed, they started to sing complex syllables
that were different simple proto-syllables joined together. For
those syllables, the projecting neurons in HVC kept their
relative timing with respect to the song and, therefore, the
temporal instances at which there were changes in the acoustics
remained coded in the timing of the HVC-projecting neurons.
As the birds continued to develop more complex songs,
neuronal activity covered the duration of the song almost
continuously. Given that developmental processes leave their
fingerprint as a temporal heterogeneity in the cortical coding,
our comparative study of the complexity of the motor gestures
between two species allows us to identify a more suitable species
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FIGURE 4 | Time differences between GTEs of each bird and grouped by species. (A) Time differences between GTEs for canaries (red markers) and zebra finches

(blue markers). In canaries, diamonds indicate that the time difference belongs to a whistle syllable. Note that every canary has at least one diamond. The largest time

differences of the canary distribution (in the 95th percentile, larger than 173ms) are indicated with filled markers. Every time difference included in this group was from

a whistle. (B) Histogram (5ms bins) of time differences between consecutive GTEs in canaries and (C) in zebra finches. The black arrowheads show the value of the

95th percentile of each distribution (173ms for canaries and 35ms for zebra finches). The vertical black lines show the value of the mean of each distribution: 28.0 ±

2.2ms (mean ± SEM) for canaries (n = 505) and 15.1 ± 0.4ms (mean ± SEM) for zebra finches (n = 637). Asterisks in (B,C) indicate that these means were

significantly different (t-test, p < 0.01). In canaries, the longest GTE time interval was 330ms while in finches it was 76ms. The standard deviation was 50.2ms (n =

505) in canaries and 10.5ms (n = 637) in zebra finches. These were significantly different (Levene test centering with the median, p < 0.05). (Inset B) Histogram (5ms

bins) of time differences between consecutive GTEs in canaries discarding those from whistle syllables. (Inset C) Zebra finch distribution of time differences as in (C), at

the same scale as (Inset B) for comparison. The vertical black lines in the insets show the mean of each distribution. For the new canary distribution, the value was

14.7 ± 0.6ms (mean ± SEM, n = 472). The value for zebra finches is unchanged from (C). In the new canary distribution, the standard deviation was 12.4ms and the

longest GTE time interval was 134ms. The new canary mean and standard deviation were not significantly different from those of zebra finches (t-test, p > 0.5 and

Levene test, p > 0.5).

to disambiguate between a heterogeneous, motor related, coding
and a continuous one.

Recently, a neural model of the song system capable of
reproducing the pressure and syringeal gestures of canaries
during song production, incorporated a sparse activity pattern
in HVC mounted on a continuous component [23]. Having a
model is useful because it not only integrates anatomical and

functional data, but also helps to understand plausible dynamical
mechanisms behind the observed behavior. A puzzling aspect
of observing cortical activity simultaneous with a temporally
significant instance of the song (like a GTE) is that, intuitively,
a delay between causally connected parts of the nervous system
is expected. Yet, in the mentioned study of juvenile songs
[9], neurons in HVC were found bursting simultaneously with
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the beginning of syllables. In recent work [24], a model with
continuous and sparse HVC coding describes the way in which
causally connected regions of the song system can display activity
simultaneous with the output of the nervous system, after a
brief introductory transient. This makes it possible to predict,
for example, an important increase of neural activity in the
population of projection neurons at the beginning of the whistle
syllables in canary song [23, 25]. Given the existence of large time
differences between GTEs in the whistle syllables quantified in
this work, we provide a specific and testable prediction.

We generated a visual representation of GTEs as a function of
time similar to the way in which the neural activity in the HVC
nucleus of zebra finches has been presented in the literature. We
showed that, for the case of zebra finches, it is very difficult to
distinguish between the representation that would be obtained if
the coding were continuous from one produced by sparse coding.
On the contrary, the whistle syllables of domestic canaries make
it a suitable animal model to discriminate between a continuous
and mostly uniform coding, and one where the fingerprints of
the motor gestures are present. In the spirit of neuroethology,
which studies behavior in the species that better displays it, we
compared the distribution of GTEs in zebra finches and canaries
and identified canaries as the species in which is it possible to
discriminate between alternative models of cortical coding.
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