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Vasculitis is a group of rare systemic autoimmune diseases that may be classified according to the
size of the vessels involved (1). The prognosis of these diseases has been dramatically improved by
immunosuppression although toxicity of such therapies is not negligible and the response to
treatment may vary exposing subgroups of patients to the risk of relapsing and refractory disease
(2). Of note, the therapeutic arrays are rapidly expanding and new treatment protocols combining
different target therapies are being proposed urging the identification of clinical characteristics as
well as biomarkers able to identify subgroups of patients more likely to benefit from specific
approaches (3). Furthermore, the deepening of the understanding of the mechanisms of action of
the drugs employed poses also the rationale for patients’ monitoring that may in some cases guide
re-treatment. For example, in the field of antineutrophil cytoplasmic antibodies (ANCA) associated
vasculitis (AAV), the kinetics of CD20+ B-cells repopulation or increase of the ANCA titer in
patients treated with the chimeric monoclonal anti-CD20 antibody rituximab, may be associated to
an increased relapse risk (4). Moreover, these biomarkers have been explored as potentially able to
guide patients’ re-treatment (5). In this perspective, the research is also proposing biomarkers able
to identify subgroups of patients less likely to respond to a specific therapy as well as posing the
rationale for combining different biological drugs (6).

The aim of this special issue is to describe the state of the art of precision medicine in vasculitis. This
collection contains 14 articles including eight original research publications and six reviews. The nice
balance between original manuscripts and literature reviews supports the idea of this topic as an
evolving concept.

Two reviews approached the broad topic of how genetic association and pharmacogenetics
studies as well as studies of single-gene high-penetrance mutations, epigenetics factors,
metabolomics and proteomics are contributing to the precision medicine in this field. These
approaches are providing the rationale for advanced diseases classification, patients stratification
while improving the understanding of the pathogenesis as well as identifying new therapeutic
targets (Acosta-Herrera et al.; Demirkaya et al.).
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Of note, the vast majority of the remaining manuscripts of
this issue focused on small vessels vasculitis: six original papers
and three reviews.

In the three reviews of the literature, key opinion leaders
described the state of the art in the field of precision medicine in
AAV. Wallace et al. focused on the role of ANCA specificity in
defining a personalized approach to patients’ management
further supporting the superiority for an ANCA-based
classification of AAV compared to a classification based on
clinical characteristics (Wallace and Stone). Shochet et al.
focused on the role of animal models of AAV in the field of
translational research addressing the intriguing issue of
difficulties in the generation of animal models for PR3-ANCA
AAV, leaving uncertainties on the pathogenetic role of PR3-
ANCA compared to the well-established pathogenetic role of
MPO-ANCA. Segelmark et al. reviewed the rationale and the
data supporting the potential role of IdeS and EndoS, two
enzymes produced by Streptococcus pyogenes capable of
degrading IgG, and their potential as innovative therapeutic
strategies in antibody mediated diseases such as small
vessels vasculitis.

Original articles on AAV published in this issue focused on
insights into disease pathogenesis, potential biomarkers,
improvement in phenotypic characterization, and identification
of potential therapeutic targets. Sun et al. demonstrated that
thrombin could enhance MPO-ANCA induced activation of
glomerular endothelial cells and that the protein sphingosine-
1-phospahte (S1P) may act as link of the hyper-activation of the
coagulation and inflammation system. This paper therefore
provides a further rationale to the well-known tight link
between inflammation and thrombosis as well as new potential
therapeutic targets.

Two works focused on potential new biomarkers. Mhaonaigh
et al. showed that low-density granulocytes may be associated to
active vasculitis (UiMhaonaigh et al.), while VanDaalen et al. focused
on the study of podocytes in patients with kidney involvement of
AAV. In this report, of interest, proteinuria ten weeks after diagnosis
correlated with podocytes foot process width; moreover, this
characteristic was associated to different histological features at light
microscopy. This study would be in support for a thorough
assessment of podocytes at the moment of kidney biopsy providing
important prognostic information further supporting the central role
of kidney biopsies in patients with AAV (van Daalen et al.).

In everyday clinical practice, relying on clear and validated
phenotypic classification of patients is key in order to have
prognostic information especially in the field of rare diseases.
Marques et al. described a big multicenter French cohort of
patients with anti-glomerular basement membrane (anti-GBM)
disease identifying several factors associated to poor prognosis in
terms of overall survival as well as risk of end-stage kidney
disease contributing significantly to the improvement of patients
stratification (Marques et al.).

Eventually, the aim of focusing on precision medicine is
improving patients’ management, which also includes the
identification of new potential therapeutic targets: two of the
articles on AAV focused on this aspect. Pang et al., via the study
Frontiers in Immunology | www.frontiersin.org 26
of recombinant PR3 antigens and their interaction with the
monoclonal antibody moANCA518, hypothesizes that the
interaction between PR3 and PR3-ANCA may represent a
potential target of interest (Pang et al.). On the other hand,
Werner et al. showed that the negative co-stimulator B- and T-
lymphocyte attenuator (BTLA) was diminished on double negative
T-cells in remission samples of AAV patients and correlated with
disease activity and relapse rate. The same study showed that T-cell
inhibition via BTLA during T-cell receptor-mediated stimulation
led to suppression of T-cell proliferation, inhibition of interleukin
(IL)-17 and interferon (IFN)-gamma, suggesting that this may also
represent a therapeutic target.

Behçet syndrome (BS) is a systemic vasculitis frequently
posing diagnostic challenges and for which classification
uncertainties do exist; a review by Bettiol et al. report the
phenotypic rationale for sub-classifying BS in three subgroups
(mucocutaneous and articular; extra-parenchymal neurological
and peripheral vascular phenotype; the parenchymal
neurological and ocular phenotype), further supporting the
clinical observation that this condition may indeed be a
complex spectrum of diseases ranging from mild phenotypes
to life/organ threatening forms. Of note, the same article
recommends a different therapeutic management for these
phenotypes with a huge impact on patients’ management.

In an original manuscript on BS, Emmi et al. focused on
circulating hematopoietic progenitor cells (CPC), identifying a
reduction of this stem cells in cases compared to healthy
controls; moreover, the data would support the hypothesis that
oxidative stress may contribute to CPC apoptosis suggesting a
possible role for these mechanisms in counteracting the vascular
repair actions of these cells (19).

Typically, BS is characterized by ocular involvement (i.e
posterior uveitis/panuveitis). Bonacini et al. profiled cytokines
in aqueous humor of patients with non-infectious uveitis
secondary to BS, Vogt Koyanagi Harada disease and healthy
controls. The authors found a different intra-ocular cytokine
profile in patients with auto-inflammatory uveitis. At the same
time, the profile of cytokines identified as potential therapeutic
targets are already part of the therapeutic armamentarium and
their impact should be better clarified in future.

In conclusion, this special issue collects reports highlighting
current state of the art in the field of precision medicine in
vasculitides as well as original manuscripts identifying new
biological as well as phenotypic markers that may contribute to
further progress in this field. We believe that the reader will
benefit from a broad overview that will contribute deeply to the
general the understanding on this topic.
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Endothelial Cells Activation Through
SphK1-S1P-S1PR3 Signaling
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Background: Activation of coagulation system plays an important role in

antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) pathogenesis.

Thrombin, generated during coagulation could disrupt endothelial barrier integrity

through protease-activated receptor 1 (PAR1). Our previous study found that

sphingosine-1-phosphate (S1P) contributed to myeloperoxidase (MPO)-ANCA-positive

IgG-induced glomerular endothelial cell (GEnC) activation through a S1P receptor

(S1PR)-dependent route. In recent years, S1P signaling was reported to be involved

in thrombin effects on endothelial cells. This current study investigated whether

the interaction between thrombin-PAR and S1P-S1PR signaling contributed to

MPO-ANCA-positive IgG-induced GEnC dysfunction.

Methods: The effect of thrombin on GEnC activation was analyzed from three aspects.

First, morphological alteration of GEnCs was observed. Second, permeability assay was

performed to determine GEnC monolayer activation quantitatively. Third, endothelin-1

(ET-1) levels were measured. Expression levels of sphingosine kinases (SphKs) and

S1PRs were detected. In addition, antagonists of PAR1 and S1PR3 were employed to

determine their roles. Eventually, PAR1 and tissue factor (TF) expression levels as well as

TF procoagulant activity were analyzed.

Results: Thrombin induced further damage of tight junction, increase in endothelial

monolayer permeability as well as upregulation of ET-1 levels in GEnCs stimulated with

MPO-ANCA-positive IgG. Blocking PAR1 downregulated ET-1 levels in the supernatants

of GEnCs treated by thrombin plusMPO-ANCA-positive IgG. Expression levels of SphK1,

S1PR3 increased significantly in GEnCs treated with thrombin plus MPO-ANCA-positive

IgG. S1P upregulated PAR1 and TF expression, and enhanced procoagulant activity of

TF in MPO-ANCA-positive IgG-stimulated GEnCs.

Conclusion: Thrombin synergized with SphK1-S1P-S1PR3 signaling pathway to

enhance MPO-ANCA-positive IgG-mediated GEnC activation.

Keywords: ANCA, vasculitis, thrombin, sphingosine-1-phosphate, endothelium
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INTRODUCTION

Anti-neutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV) consists of eosinophilic
granulomatosis with polyangiitis (EGPA), granulomatosis
with polyangiitis (GPA) and microscopic polyangiitis (MPA)
(1). AAV is characterized by necrotizing inflammation of the
small blood vessels, which involves glomerular endothelial cell
(GEnC) injury in particular. The serological hallmarks for AAV
are ANCAs against either proteinase 3 (PR3) or myeloperoxidase
(MPO) (2, 3). The majority of Chinese AAV patients are MPO-
ANCA-positive, as reported in our previous studies (4, 5). In
addition, cumulating evidences suggest that MPO-ANCAs cause
GEnC activation and injury directly in AAV (6, 7).

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid
metabolite and produced by phosphorylation of sphingosine
by sphingosine kinases (SphKs). S1P is the ligand for five G-
protein-coupled receptors (GPCRs) named S1PR1-5 (8). S1P and
S1PRs participate in the pathogenesis of a variety of vascular
inflammatory conditions including ischemia-reperfusion injury,
atherosclerosis and sepsis (9–11). In recent years, clinical trials
that targeted S1PRs for autoimmune diseases have attracted
wide interest. Of note, FTY720 (Fingolimod, Gilenya, Novartis),
a functional antagonist of S1PR1, 3, 4, and 5, has already
been approved and used in treating multiple sclerosis (12–14).
Moreover, cumulating evidences supported a vital role of FTY720
in endothelial barrier enhancement both in vivo and in vitro
(15–17). In our previous studies, we found that the circulating
levels of S1P and the renal expression of S1PRs correlated with
renal involvement and disease activity of AAV. In addition, it
was found that S1P enhancedMPO-ANCA-positive IgG-induced
GEnC activation through S1PR2-5 and RhoA signaling pathway
(18–20). All these studies indicated a pathogenic role of S1P
in AAV.

Although the pathogenesis of AAV is not yet fully clear,
the interaction among ANCA, neutrophils and complement
activation is of vital importance in the development of this
disease [reviewed by Chen et al. (21)]. In recent years, more
and more evidence has suggested that activation of coagulation
system may also play an important role. Patients with AAV
are in a hypercoagulable state, with an increased risk of
developing venous thromboembolic events (22, 23). Moreover,
the interaction between coagulation and complement system
also contributes to the pathogenesis of glomerular capillary tuft
infarction and to the increased frequency of thromboembolic
events in AAV. Some serine proteases from the coagulation
cascade, in particular plasmin and thrombin, can directly activate
C3 and C5, independent of the traditional C3/C5 convertase (24,
25). C5a-primed neutrophils produce tissue-factor-expressing
microparticles and neutrophil extracellular traps (NETs) after
stimulation with ANCAs, which subsequently activate the
coagulation system (26). Platelets are activated via thrombin-
PARs pathway and can activate the alternative complement
pathway in AAV (27).

The coagulation system is initiated in two distinct
mechanisms: the contact pathway and the tissue factor
(TF) pathway. Both pathways result in the generation of

thrombin, the best-characterized activator of protease-activated
receptors (PARs) (28). PARs are a family of G protein-coupled
receptors including 4 members named PAR1-4. PAR1 is the
major effector of thrombin signaling in most cell types including
endothelial cells. Thrombin activates PAR1 by catalyzing the
cleavage of the Arg41-Ser42 peptide bond on the N-terminal
extracellular domain of the receptor (29). It was reported that
thrombin-activated PAR1 could induce disruption of endothelial
barrier integrity (30).

Thrombin effects in endothelial cells involve S1P signaling.
According to Tauseef et al. SphK1-S1P-S1PR1 signaling could
counteract the detrimental effect of thrombin-PAR1 signaling
on endothelial barrier function. On the one hand, thrombin-
activated-PAR1 interrupts endothelial barrier integrity via Rho
signaling pathway; on the other hand, thrombin also induces
expression of SphK1 and increases S1P generation, which in turn
transactivates S1PR1 leading to the activation of Rac1 signaling
pathway. This effect improves endothelial integrity to counteract
and limit thrombin-induced endothelial damage and vascular
leakage (31). However, some other studies revealed a synergistic
effect of S1P on thrombin-induced endothelial dysfunction,
including enhanced NF-κB binding activity and TF expression in
endothelial cells (32, 33). Given the potential effect of thrombin-
PAR and SphK-S1P-S1PR signaling on regulating endothelial
barrier function, our current study aimed to investigate whether
the interaction between thrombin-PAR and SphK-S1P-S1PR
signaling participated in MPO-ANCA-positive IgG-induced
GEnC dysfunction.

MATERIALS AND METHODS

Cell Culture
Primary human glomerular endothelial cells (GEnC; ScienCell,
San Diego, CA, USA) were cultured in endothelial cell basal
medium (ECM) (ScienCell San Diego, CA, USA) supplemented
with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin
and 1% endothelial cell growth factor. Cultures were grown
in an atmosphere of 5% CO2 at 37◦C. After starving in ECM
with additional 0.5% FBS for 8 h, GEnC in selected wells were
washed with phosphate buffered saline (PBS) and then stimulated
with thrombin (Sigma, Darmstadt, Germany), MPO-ANCA-
positive IgG, normal IgG or 2 µmol/L S1P (Sigma, Darmstadt,
Germany), which was comparable to the levels of circulating S1P
in AAV patients at active stage, as demonstrated by our previous
study (18).

Preparation of Immunoglobulin (Ig)Gs
Preparation of IgGs was performed according to the methods
described previously (34). MPO-ANCA-positive IgGs and
normal IgGs and were prepared from plasma exchange liquid
of eight patients with active MPO-ANCA-positive primary small
vessel vasculitis and plasma of six healthy donors, respectively.
Then we further screened the prepared IgGs for the presence
of anti-endothelial cell antibody (AECA) through an ELISA
method described previously (35), and AECA-positive IgGs were
excluded in our following experiments. Eventually, normal IgGs
from plasma of five healthy donors and MPO-ANCA-positive
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IgGs from plasma exchange liquid of five AAV patients were
included, respectively. Our research was in compliance with the
Declaration of Helsinki and approved by the clinical research
ethics committee of the Peking University First Hospital.

Measurements of GEnC Activation and
Injury
Immunofluorescence Staining of Zonula Occludens-1

(ZO-1) and Vascular Endothelial (VE)-Cadherin
As important markers for endothelial barrier function, the
distribution of the tight junction scaffolding protein ZO-1 and
adherens junction protein VE-cadherin were observed (36). After
relevant treatment, GEnCs were washed in PBS and fixed with 4%
formaldehyde for 30min. Next, the GEnCs were permeabilized
with 0.5% Triton X-100, washed and blocked with 5% BSA for 1 h
at room temperature. After incubation with primary antibodies
(ZO-1, dilution 1/100, Life, Carlsbad, CA, USA; VE-cadherin,
dilution 1/200, Abcam, Cambridge, MA, USA) at 4◦C overnight
and a thorough wash in PBS, the GEnCs were incubated
with fluorescein isothiocyanate (FITC)-conjugated secondary
antibodies (for the detection of ZO-1, dilution 1/200, Jackson
ImmunoResearch,West Grove, PA, USA; for the detection of VE-
cadherin, dilution 1/500, Abcam, Cambridge, MA, USA) at 37◦C
for 1 h. Eventually, the specimens were stainedwith 10µg/ml 4’,6-
diamidino-2-phenylindole (DAPI) and mounted with Mowiol.
The immunofluorescence staining was photographed by a
fluorescence microscope (Nikon Eclipse 90i, Nikon Instruments
Inc., Tokyo, Japan). At least 10 visual fields per slide of GEnCs
at ×400 were observed blindly. Image J software (National
Institutes of Health, Bethesda,MD,USA) was used to evaluate the
immunofluorescence staining of ZO-1 and VE-cadherin. Positive
signals were quantified as signal intensity.

Permeability Assay
The permeability of GEnC monolayers was determined using
Costar Transwell plate with 0.5-µm porous filters and FITC-
labeled BSA (Sigma-Aldrich, Darmstadt, Hessen, Germany), as
described previously (37). GEnCs were grown on the upper
chamber of Costar Transwell until confluent. The tracer protein
FITC-albumin was added to the upper chamber after relevant
stimulation. After incubation at 37◦C for 30min, samples
from both the upper and lower chambers were collected for
fluorometric analysis. Fluorescent intensity (FI) was measured
using a microplate fluorescence reader (TristarTM LB941,
Berthold, Germany) with filter settings of 485 nm (excitation)
and 538 nm (emission). Eventually, these fluorescence readings
were used for calculation of the permeability coefficient, which
is indicative of vascular barrier disruption. The permeability
coefficient was calculated according to the following formula:

Permeability coefficient = FI (lower chamber) × 100% / (FI
(upper chamber)+ FI (lower chamber)).

Evaluation of Endothelium Activation by Endothelin-1

(ET-1) Quantification
As a biomarker of endothelial cell activation and injury (38), ET-
1 levels in GEnC supernatants were measured using commercial
ELISA kits (R&D, Minneapolis, MN, USA).

TABLE 1 | Sequences of PCR primers used.

Gene Forward primer 5’-3’ Reverse primer 5’-3’

SphK1 AAACCCCTGTGTAGCCTCCC AGCAGGTTCATGGGT GACAG

SphK2 GCACAGCAACAGTGAGCA-3’ GAGCCTGAG TGAGTG GGA

S1PR1 CACTCTGACCAACAAGGAGATG GATGATGGGTCGCTTGAATTTG

S1PR2 AAGTTCCACTCGGCAATGTA AGCCAGAGAGCAAGGTATTG

S1PR3 TCTCCGAAGGTCAAGGAAGA TCAGTTGCAGAAGATCCCATTC

S1PR4 CTGAAGACGGTGCTGATGAT CAGAGGTTGGAGCCAAAGA

S1PR5 GGTCATCGTCCTGCATTACA CTAGATTCTCTAGCACGATGA

AGG

PAR1 CAGGCACTACAAATACTGTGG TGTAGACTTGATTGACGGGTT

TF GCCAGGAGAAAGGGGAAT CAGTGCAATATAGCATTTGCA

GTAGC

β-actin GGACCTGACTGACTACCTCAT CGTAGCACAGCTTCTCCTTAAT

GAPDH GAGTCAACGGATTTGGTCGT GACAAGCTTCCCGTTCTCAG

Measurement of SphKs, S1PRs, PARs,
and TF
SphK1 and 2, S1PR1-5, PAR1, and TF expression levels
were determined by quantitative real-time polymerase chain
reaction (qRT-PCR). GEnCs were washed in Dulbecco’s
phosphate-buffered saline (D-PBS) and total RNA was extracted
using a commercial RNA purification kit (Thermo scientific,
Waltham, MA, USA). Concentration and purity of RNA
samples were determined by reading absorbance at 260 and
280 nm with a spectrophotometer (Nanodrop, Thermo fisher
scientific, Wilmington, DE, USA). After cDNA synthesis
using GoScriptTMReverse Transcriptase (Promega, Madison,
WI, USA), mRNA levels were determined by quantitative
polymerase chain reaction (q-PCR) on an Applied Biosystems
system (ViiA7) using Power SYBR R© Green PCR Master Mix
(Applied Biosystems, Austin, TX, USA). Amplifications were
pre-incubation at 95◦C for 10min, followed by 40 cycles of 94◦C
for 30 s, 60◦C for 30 s and 72◦C for 30 s. Values were expressed as
2−11CT. β-actin and GAPDHwere used as endogenous controls.
Primers used are listed in Table 1.

Detection of SphK1 by Western Blot
Samples were incubated for 10min at 95◦C in loading buffer.
Samples were then subjected to electrophoresis on 10% SDS-
polyacrylamide gels and transferred to nitrocellulosemembranes.
The membranes were incubated with primary antibodies (for
the detection of SphK1, dilution 1/1000, Abcam, Cambridge,
MA, USA; for the detection of β-actin, dilution 1/1000, Santa
Cruz, Dallas, TX, USA) followed by horseradish peroxidase-
conjugated secondary antibodies (each diluted 1:2000; both from
Proteintech, Chicago, IL, USA). Proteins were visualized on
autoradiographic film using an ECL Plus Western blot detection
system (GE Healthcare).

Inhibition of PAR1 and S1PR3
RWJ 56110 (RWJ; Tocris, Louis, MO, USA) is a selective PAR1
antagonist (39). TY52156 (TY; Tocris, Louis, MO, USA) is a
specific antagonist for S1PR3 (40). In thrombin-induced ET-1
expression assay, GEnCs were incubated with RWJ and TY for
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FIGURE 1 | Thrombin could enhance MPO-ANCA-positive IgG-mediated GEnC activation. (A) Thrombin could induce alterations in cellular morphology of GEnCs in

the presence of MPO-ANCA-positive IgG. (B) Quantitive assessment of ZO-1 in GEnCs upon stimulation by thrombin and MPO-ANCA-positive IgG. (C) Quantitive

assessment of VE-cadherin in GEnCs upon stimulation by thrombin and MPO-ANCA-positive IgG. Bars represent mean ± SD of repeated measurements of five

independent experiments or donors. *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 2 | (A) Thrombin could induce increased endothelial permeability of GEnC monolayers in the presence of MPO-ANCA-positive IgG. (B) Thrombin could

upregulate ET-1 levels in the supernatant of GEnCs in the presence of MPO-ANCA-positive IgG. (C) PAR1 mediated the thrombin-induced ET-1 upregulation in

GEnCs in the presence of MPO-ANCA-positive IgG. Bars represent mean ± SD of repeated measurements of five independent experiments or donors. *P < 0.05,

**P < 0.01, ***P < 0.001.

different doses and time points. Eventually, 1µM RWJ at 15min
and 1µM TY at 15min were selected for the experiments due to
the highest inhibition rates.

TF Procoagulant Activity Assay
To analyze TF procoagulant activity, a Cell Tissue Factor Assay
Kit (Genmed Scientifics Inc, Wilmington, DE, USA) was used
following manufacturer’s instructions. GEnCs were lysed and
50 µg proteins and ∼2 × 106 cells of each sample were used.
Samples were incubated with prothrombin complex (including
Factor II, VII, IX, X) and CaCl2. Reaction was terminated

by adding EDTA buffer. Eventually, we added a chromogenic
substrate (Spectrozyme factor Xa) and measured the absorbance
at 405 nm.

Statistical Analysis
SPSS version 13.0 (SPSS Inc., Chicago, IL, USA) was used to
perform data analysis. Normality of the data was evaluated by
kurtosis and skewness (both the absolute values were <3). Data
was generally presented as mean ± standard deviation (SD) and
compared by ANOVA followed by Bonferroni correction for
multiple testing. P< 0.05 were considered statistically significant.
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RESULTS

Thrombin Amplifies MPO-ANCA-Positive
IgG-Mediated GEnC Dysfunction via PAR1
Thrombin Induces GEnC Morphological Alteration of

GEnC Monolayers
Immunofluorescence staining of ZO-1 and VE-cadherin were
performed to observe the structure of the tight junction and
adherens junction in GEnCs, respectively. We found that
compared with untreated cells, the application of thrombin or
MPO-ANCA-positive IgG alone could disrupt tight junction and

adherens junction structures (33.71 ± 5.65 vs. 61.14 ± 10.83,
P < 0.001; 38.60 ± 4.05 vs. 61.14 ± 10.83, P < 0.001; 32.04
± 3.63 vs. 55.39 ± 8.11, P < 0.001; 29.44 ± 2.41 vs. 55.39 ±

8.11, P < 0.001, respectively). Moreover, combined application

of thrombin and MPO-ANCA-positive IgG induced further
damage of tight junction and adherens junction compared with
all the above-mentioned cell groups (18.43 ± 4.46 vs. 61.14 ±

10.83, P < 0.001; 18.43 ± 4.46 vs. 33.71 ± 5.65, P < 0.05;
18.43 ± 4.46 vs. 38.60 ± 4.05, P < 0.01; 15.98 ± 5.57 vs.
55.39 ± 8.11, P < 0.001; 15.98 ± 5.57 vs. 32.04 ± 3.63, P <

0.01; 15.98 ± 5.57 vs. 29.44 ± 2.41, P < 0.01, respectively)
(Figure 1). These data revealed that thrombin synergized with
MPO-ANCA-positive IgG to exert damage effects on endothelial
barrier integrity.

Thrombin Induces Increased Endothelial Permeability

in GEnC Monolayers
We used a transwell system and a FITC-labeled BSA to
investigate the effect of S1P on monolayer permeability in
GEnCs. The results revealed that compared with untreated
cells, monolayer permeability increased in GEnCs stimulated
with thrombin or MPO-ANCA positive IgG alone (4.33 ±

0.27% vs. 3.86 ± 0.03%, P < 0.01; 4.21 ± 0.21% vs. 3.86 ±

0.03%, P < 0.05, respectively). Furthermore, compared with the
above cells, monolayer permeability still increased significantly
in GEnCs stimulated by thrombin plus MPO-ANCA-positive
IgG (4.83 ± 0.15% vs. 3.86 ± 0.03%, P < 0.001; 4.83 ±

0.15% vs. 4.33 ± 0.27%, P < 0.01; 4.83 ± 0.15% vs. 4.21 ±

0.21%, P< 0.001, respectively) (Figure 2A). These data suggested
that thrombin enhanced MPO-ANCA-positive IgG-mediated
increasing of GEnC permeability.

FIGURE 3 | SphK1–S1P-S1PR3 signaling was involved in thrombin -induced MPO-ANCA-positive IgG-mediated GEnC activation. (A) SphK1 and S1PR3 expression

levels were elevated in MPO-ANCA-positive IgG-treated GEnCs upon thrombin stimulation. (B) S1PR3 mediated the thrombin-induced ET-1 upregulation in

MPO-ANCA-positive IgG-treated GEnCs. (C) FTY720 significantly downregulated ET-1 levels in the supernatants of GEnCs stimulated by thrombin and

MPO-ANCA-positive IgG. Bars represent mean ± SD of repeated measurements of five independent experiments or donors. *P < 0.05, **P < 0.01, ***P < 0.001.
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Thrombin Increases ET-1 Levels in GEnC

Supernatants
As a biomarker of endothelial cell activation and injury, ET-
1 levels in the supernatants of GEnCs were measured. It was
found that compared with unstimulated cells, cells stimulated by
thrombin or MPO-ANCA-positive IgG alone, the levels of ET-
1 increased significantly in GEnCs treated with thrombin and
MPO-ANCA-positive IgG (542.82 ± 71.58 pg/ml vs. 173.10 ±

33.48 pg/ml, P < 0.001; 542.82 ± 71.58 pg/ml vs. 387.33 ± 47.89
pg/ml, P < 0.001; 542.82± 71.58 pg/ml vs. 340.47± 32.77 pg/ml,
P < 0.001, respectively) (Figure 2B). Collectively, these data
illustrated that thrombin synergized with MPO-ANCA-positive
IgG to upregulate the levels of ET-1 in the GEnC supernatants.

PAR1 Mediates the Thrombin-Induced Endothelial

Dysfunction
GEnCs were pre-incubated with PAR1 antagonist RWJ for
15min before stimulation with thrombin and MPO-ANCA-
positive IgG, and the ET-1 levels in the supernatants were
measured. We found that the ET-1 levels reduced from 545.39
± 15.06 pg/ml in the supernatants of GEnCs stimulated
by thrombin and MPO-ANCA-positive IgG to 319.86 ±

19.07 pg/ml, upon pre-incubation with PAR1 antagonist RWJ
(compared with that without the antagonist, P < 0.001, with
the inhibition rate of 41.35 ± 3.50%) (Figure 2C). These data
revealed that PAR1 mediated ET-1 upregulation in thrombin and
MPO-ANCA-positive IgG-treated GEnCs.

Thrombin Amplifies MPO-ANCA-Positive
IgG-Mediated GEnC Dysfunction Through
SphK-S1P-S1PR Signaling Crosstalk
SphK1 and S1PR3 Expression Levels Are Elevated in

MPO-ANCA-Positive IgG-Treated GEnCs Upon

Thrombin Stimulation
SphK1,2 and S1PR1-5 expression levels in GEnCs were measured
by qRT-PCR. It was found that compared with GEnCs stimulated

FIGURE 4 | PAR1 expression levels were elevated in MPO-ANCA-positive

IgG-treated GEnCs upon stimulation by S1P. Bars represent mean ± SD of

repeated measurements of five independent experiments or donors.

**P < 0.01, ***P < 0.001.

by MPO-ANCA-positive IgG alone, the expression levels of
SphK1 and S1PR3 in GEnCs treated with thrombin plus MPO-
ANCA-positive IgG increased significantly (4.12 ± 0.88 vs.
2.30 ± 0.73, P < 0.01; 1.63 ± 0.45 vs. 1.06 ± 0.28, P <

0.05, respectively), whereas S1PR1 expression level decreased
significantly in GEnCs treated with thrombin plus MPO-ANCA-
positive IgG (0.65 ± 0.19 vs. 0.99 ± 0.13, P < 0.05) (Figure 3A).
The protein expression levels of SphK1 were also detected with
Western blot. Consistent with the results of PCR, the expression
levels of SphK1 in GEnCs stimulated with thrombin plus
MPO-ANCA-positive IgG were higher than those in the other
groups (Figure S1).

S1PR3 Mediates the Thrombin-Induced Endothelial

Dysfunction
GEnCs were pre-incubated with S1PR3 antagonist TY for 15min
before stimulation with thrombin andMPO-ANCA-positive IgG,
and the ET-1 levels in the supernatants were measured.We found
that pre-incubation of GEnCs with TY significantly decreased
ET-1 level in the supernatants of GEnCs stimulated by thrombin
and MPO-ANCA-positive IgG (545.39 ± 15.06 pg/ml vs. 217.52
± 18.99 pg/ml, P < 0.001, with the inhibition rate of 60.12 ±

3.48%) (Figure 3B). These data revealed that S1PR3 activation
was involved in thrombin-induced ET-1 upregulation in GEnCs
in the presence of MPO-ANCA-positive IgG.

We also pre-incubated GEnCs with FTY720 before stimulated
with thrombin and MPO-ANCA-positive IgG, and the ET-1
levels in the supernatants were measured. We found that the ET-
1 levels reduced from 552.69 ± 20.46 pg/ml in the supernatants
of GEnCs stimulated by thrombin and MPO-ANCA-positive
IgG to 241.53 ± 21.22pg/ml, upon pre-incubation with FTY720
(compared with those without FTY720, P < 0.001, with the
inhibition rate of 43.70± 3.84%) (Figure 3C).

PAR1 Expression Levels Are Elevated in GEnCs Upon

Stimulation by S1P
GEnCs were stimulated with MPO-ANCA-positive IgG plus 2
µmol/L S1P, which was comparable to the levels of circulating
S1P in AAV patients at active stage, as demonstrated by our
previous study (12), and PAR1 expression levels in GEnCs were
measured by qRT-PCR. It was found that compared with GEnCs
stimulated by MPO-ANCA-positive IgG alone, the expression
levels of PAR1 in GEnCs treated with S1P plus MPO-ANCA-
positive IgG increased significantly (1.50 ± 0.27 vs. 1.01 ± 0.06,
P < 0.01) (Figure 4).

S1P Enhances the Expression and Activity
of TF in GEnCs in the Presence of
MPO-ANCA-Positive IgG
TF expression levels were detected using qRT-PCR, and it was
found that compared with untreated cells, cells stimulated by
S1P or MPO-ANCA-positive IgG alone, the TF levels increased
significantly in GEnCs stimulated by S1P and MPO-ANCA-
positive IgG (3.03 ± 0.66 vs. 1.00, P < 0.001; 3.03 ± 0.66
vs. 2.08 ± 0.39, P < 0.05; 3.03 ± 0.66 vs. 2.00 ± 0.68, P <

0.05, respectively) (Figure 5A). TF procoagulant activity was
also measured using a commercial kit. The results demonstrated
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FIGURE 5 | S1P enhanced the expression and activity of TF in GEnCs in the presence of MPO-ANCA-positive IgG. (A) S1P enhanced the expression levels of TF in

GEnCs in the presence of MPO-ANCA-positive IgG. (B) S1P enhanced the procoagulant activity of TF in GEnCs in the presence of MPO-ANCA-positive IgG. Bars

represent mean ± SD of repeated measurements of five independent experiments or donors. *P < 0.05, ***P < 0.001.

FIGURE 6 | Proposed working model for the role of SphK1-S1P-S1PR3 in thrombin-induced GEnC activation in the presence of MPO-ANCA-positive IgG. Thrombin

could enhance MPO-ANCA-positive IgG-induced GEnC activation and injury via PAR1. At the same time, thrombin might activate SphK1-S1P-S1PR3 axis in GEnCs

in the presence of MPO-ANCA-positive IgG. Furthermore, S1P of pathophysiological concentration in active AAV patients might induce PAR1 expression as well as

enhance both expression level and activity of tissue factor in MPO-ANCA-positive IgG-treated endothelial cells, which might further activate the coagulation system,

thus forming a vicious loop. S1P, sphingosine-1-phosphate; S1PR, sphingosine-1-phosphate receptor; Sph, sphingosine; SphK, sphingosine kinases; PAR,

protease-activated receptor; ET-1, endothelin-1; ZO-1, zonula occludens-1.

that compared with untreated cells, cells stimulated by S1P or
MPO-ANCA-positive IgG alone, the activity of TF increased
significantly in GEnCs stimulated by S1P and MPO-ANCA-
positive IgG (3.20 ± 0.95 vs. 1.00, P < 0.001; 3.20 ± 0.95
vs. 2.16 ± 0.38, P < 0.05; 3.20 ± 0.95 vs. 2.15 ± 0.45,
P < 0.05, respectively) (Figure 5B). Collectively, these data
illustrated that S1P, with pathophysiological concentration of
active AAV patients, synergized with MPO-ANCA-positive
IgG to promote both the expression and activity of TF
in GEnCs.

DISCUSSION

In our current study, we demonstrated that thrombin could

enhance MPO-ANCA-positive IgG-induced GEnC activation
via PAR1, and thrombin could activate SphK1-S1P-S1PR3 axis

in GEnCs in the presence of MPO-ANCA-positive IgG. At
the same time, S1P, at pathophysiological concentration in
active AAV patients, could induce PAR1 expression as well
as enhance both expression level and procoagulant activity of
TF in MPO-ANCA-positive IgG-treated GEnCs, which may
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further activate the coagulation system, thus forming a vicious
loop (Figure 6).

Anti-MPO antibody could cause activation of GEnCs by
recognizing moesin even though MPO is not expressed in
endothelial cells (41). Moesin, whose full name is membrane-
organizing extension spike protein, shares certain similar
sequences with those on the N-terminal region of theMPO heavy
chain (7). Binding of anti-MPO antibody to moesin was able to
increase permeability and to up-regulate adhesion molecules of
human GEnCs (42). Recently, it was reported that thrombin was
able to induce phosphorylation of moesin within seconds (43).
Likewise, S1P could also cause acute and potentmoesin activation
(44, 45). Therefore, we speculate that moesin recognized by
MPO-ANCA could be further activated by thrombin or S1P,
which might cause enhanced GEnC activation in vitro. However,
anti-PR3 antibody might induce endothelial cells dysfunction
through different mechanisms. According to the study by Le
Roux S et al., anti-PR3 antibodies could induce a potent inhibitor
of vascular endothelial growth factor named soluble Flt1 to
release from monocytes rather than endothelial cells, therefore
leading to an anti-angiogenic state that hinders endothelial repair
in AAV (46).

In our current study, we found that thrombin could activate
SphK1-S1P-S1PR3 axis, thrombin induced upregulation of
SphK1 expression levels in GEnCs in the presence of MPO-
ANCA-positive IgG (confirmed by both Western blot and
PCR), therefore promoting the generation of S1P. However,
the exact involvement of PAR1 during this process remains
to be determined. According to the study by Parker et al.
thrombin could cause activation of the small GTPase RhoA
in vivo (47). This is of particular interest, because small
GTPases are confirmed to play critical roles in mediating
signaling responses of the S1PR (48), and our previous work
also demonstrated that RhoA activated by S1PR2-5 dominated
the S1P-induced MPO-ANCA-positive IgG-mediated GEnC
activation (20). Activation of RhoA signaling induces endothelial
barrier disruption by remodeling cytoskeleton and enhancing
the formation of contractile stress fibers which are connected
to junctions and generate pulling forces within neighboring
cells, thus destabilizing cell contact and forming “discontinuous”
adherens junctions and tight junctions (49). All these evidences
not only suggest a mutual interaction of S1PR-initiated signaling
and regulation of S1P synthesis, but also provide clues to the
synergistic effect of thrombin and SphK-S1P-S1PR3 signaling on
endothelial barrier dysfunction.

Under homeostatic conditions, high levels of S1P in
circulation (∼1µM) are a result of its release from endothelial
cells and red blood cells, while platelets may only release
large amounts of S1P upon platelet activation when endothelial
cells are damaged. Thromboxane plays a crucial role in S1P
release from human platelets. The coagulation factors thrombin
and FXa interact with local S1P availability and its cellular
effects at multiple levels (8). A recent study by Campos et al.
demonstrated that in rodent models of stroke, the functional
S1P receptor antagonist fingolimod could enhance blood-brain
barrier integrity and reduce infarct size, indicating S1P as a
potential link between coagulation and inflammation system
(50). Our previous studies illustrated that the renal expression

of S1PRs correlated with both inflammatory and coagulation
parameters among AAV patients, and S1P contributed to MPO-
ANCA-positive IgG induced GEnC activation through S1PR2-5
and RhoA signaling pathway (18–20). In our current study, we
found that thrombin-PAR could interact with SphK-S1P-S1PR
signaling pathway to induce GEnC dysfunction in the presence
of MPO-ANCA-positive IgG, and S1P could enhance both
expression level and activity of TF in MPO-ANCA-positive IgG-
treated GEnCs, thus further activating the coagulation system.
Therefore, we speculate that in AAV, S1P might act as a mutual
link between inflammation and coagulation system. Blockade
of this Sphk1-S1P-S1PR3 signaling pathway may be critical
for attenuating the pathological processes associated with over-
activation of both coagulation system and inflammation system
in AAV.

CONCLUSIONS

In conclusion, thrombin is able to enhanceMPO-ANCA-positive
IgG-mediated GEnC activation via Sphk1-S1P-S1PR3 signaling
pathway. These findings are helpful to figure out the linking
role of S1P between coagulation and inflammation in AAV, thus
provide potential clues for intervention strategies.
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Alexandre Karras 3, Augusto Vaglio 4, Janak de Zoysa 5, Jan A. Bruijn 1 and

Ingeborg M. Bajema 1

1Department of Pathology, Leiden University Medical Center, Leiden, Netherlands, 2 School of Immunity and Infection,

College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom, 3Nephrology Department,

HEGP Hospital, Assistance Publique Hôpitaux de Paris, Paris, France, 4Nephrology Unit, Meyer Children’s Hospital and
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Proteinuria has been identified as prognosticator of renal outcome in patients with

ANCA-associated glomerulonephritis, but whether proteinuria is related to podocyte

abnormalities in these patients is largely unknown. We here investigate podocyte

foot process width and number of podocytes positive for the podocyte marker

WT-1 in diagnostic renal biopsies of 25 Caucasian patients with ANCA-associated

glomerulonephritis in relation to proteinuria. Control tissue was used from

pre-transplantation donor kidney biopsies. Proteinuria at 10 weeks follow-up correlated

significantly with foot process width (P = 0.04). Biopsies with foot process width

≥600 nm belonged more often to the crescentic or mixed class, whereas biopsies with

a foot process width <600 nm were most often categorized as focal class (P = 0.03).

The mean number of podocytes based upon expression of WT-1 was significantly lower

in patients compared to controls (15 vs. 34 podocytes per glomerulus; P < 0.0001). The

significant decrease in expression of the podocyte WT-1 marker in ANCA-associated

glomerulonephritis is considered indicative of actual podocyte loss or at least, of a

loss of functionality. Furthermore, our study indicates that podocyte foot process width

at baseline could be indicative for proteinuria at short term follow up. For prognostic

purposes, we therefore suggest to include a description of the foot process width in the

diagnostic report of a biopsy with ANCA-associated glomerulonephritis.

Keywords: podocyte, proteinuria, ANCA, vasculitis, renal biopsy

INTRODUCTION

In the patient care and research of anti-neutrophil cytoplasmic antibody (ANCA-) associated
glomerulonephritis (AAGN), proteinuria is a subject matter which so far received relatively little
attention. Studies on AAGN have mainly focused on renal function deterioration in combination
with findings in the urine sediment. However, there are some data indicating that the degree of
proteinuria at diagnosis is associated with renal outcome in patients with AAGN (1–3). Also,
preliminary data combined from three European Vasculitis Society (EUVAS) clinical trials show
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that the level of proteinuria during follow-up is a prognostic
marker of chronic kidney disease progression (4). At disease
presentation, the majority of patients with AAGN have
proteinuria, the amount of which is quite variable (5).

In general, the presence of proteinuria in kidney diseases
is associated with changes in podocyte morphology (6, 7).
Podocytes are highly specialized epithelial cells that, together
with the glomerular basement membrane (GBM) and glomerular
endothelial cells, constitute the filtration barrier of the glomerular
capillary wall. The notion that podocytes react to injury by
effacement is generally accepted, but exactly how this reactive
change relates to the level of proteinuria, remains a matter
of debate (8). Two recent studies investigating foot process
effacement in different human glomerulopathies suggested that
the amount of foot process effacement is related to the type of
glomerulopathy rather than to the amount of proteinuria; for
example, patients with IgA nephropathy and minimal change
nephrotic syndrome had similar proteinuria levels at diagnosis,
but foot processes were significantly more effaced in minimal
change nephrotic syndrome (9, 10).

To study podocyte morphology, images at high magnification
with electron microscopy (EM) of the podocytes are required.
In most centers, EM is not routinely performed in AAGN,
because the characteristic findings by light microscopy (LM)
and the pauci-immune pattern by immunofluorescence are
usually diagnostic. A number of studies investigated EM samples
from patients with AAGN (11–15), but only one described
the podocyte morphology in detail (16). This was a recent
study from China showing that foot process width (FPW) was
significantly higher and that podocyte density was significantly
lower in an Asian group of patients with AAGN compared to
healthy controls. In the current study, we investigate the podocyte
morphology and number in renal biopsies of a Caucasian
population of patients with AAGN. We analyzed whether and
how these parameters were related to proteinuria at baseline and
during follow-up.

METHODS

Study Population
Patients with histopathologically proven AAGN were retrieved
from the Pathology database at Leiden University Medical
Center, the Netherlands. Patients had to fulfill the criteria for
ANCA-associated vasculitis as specified in the 2012 Revised
International Chapel Hill Consensus Conference Nomenclature
of Vasculitides (17). Only patients with available samples
for EM could be included. Samples were either retrieved
from tissue obtained by renal biopsy that had previously
been stored in glutaraldehyde, or from the paraffin blocks
in case of which the quality for EM had to be sufficient
for the evaluation of podocyte morphology. Control human
renal tissue was used from five pre-transplantation donor
kidney biopsies, which showed no abnormalities by LM
and from which it was known that the donors were non-
proteinuric at time of donation. This study was conducted in
accordance with the ethical principles stated in the Declaration
of Helsinki.

Clinical Data
Medical records were used to retrieve data on sex, age,
diagnosis (granulomatosis with polyangiitis or microscopic
polyangiitis), serology (proteinase 3-[PR3-] or myeloperoxidase-
[MPO-]ANCA), and laboratory results (serum creatinine and
proteinuria). The estimated glomerular filtration rate (eGFR)
at time of biopsy and during follow-up was calculated using
the Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) equation (18). Proteinuria was expressed as total protein
excretion in 24-h urine. In case this value was missing,
proteinuria by dipstick measurement (scale from negative to
+ + +) was used. All patients were classified as having either
moderately or severely increased proteinuria according to the
Kidney Disease: Improving Global Outcomes (KDIGO) clinical
guidelines: moderately increased proteinuria was defined as a
protein excretion rate of 0.15–0.50 g/day, or as trace or + on
protein dipstick test; severely increased proteinuria was defined
as total protein excretion over 0.50 g/day, or as + or more on
protein dipstick (19). Proteinuria levels were assessed at least
twice during follow-up: at 10 weeks and 1 year, which were
regular moments of outpatient visits for all patients.

Histopathological Parameters
Renal biopsies were re-evaluated and classified as either focal,
crescentic, mixed, or sclerotic class, following the Berden
classification (20). Moreover, inflammatory infiltrate (<10%, 10–
25%, 26–50%, or >50% of unscarred parenchyma), interstitial
infiltrate and tubular atrophy (IFTA [0%, <25%, 26–50%, or
>50% of cortical area]), and tubulitis (no mononuclear cells in
tubules, foci with 1–4 cells/tubular cross section, foci with 5–10
cells/tubular cross section, or foci with >10 cells/tubular cross
section) were determined for each case, according to the Banff
classification for allograft pathology (21).

Measurement of Foot Process Effacement
Renal specimens were fixed in 1.5% GA/1.0% PF fixative or
formalin, post-fixed in osmium tetroxide, and embedded in epon
(LADDResearch Industries Inc., USA). EM sections were stained
with uranyl acetate and lead citrate. For each patient and control,
15 pictures were taken with a JEM-1011 electron microscope
(JEOL USA, Inc.) at 10.000-fold magnification. As a measure of
foot process effacement, FPW was calculated using the formula

π

4
∗

6GBM length

6foot processes
,

where
∑

foot processes is the total number of foot processes,∑
GBM length is the total length of GBM, and π

4 is a correction
factor for random variation in the angle of section relative to
the long axis of the podocyte (9). The total length of GBM in
each picture was measured by ImageJ 1.46r software (National
Institutes of Health, rsb.info.nih.gov/ij). The number of foot
processes was manually counted.

Measurement of Podocyte Number
We used immunohistochemistry to identify and count podocytes
based on staining for WT-1, a podocyte-specific transcription
factor (22). Paraffin sections (4-µm thickness) were stained with
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rabbit anti-human WT-1 (sc-192, Santa Cruz Biotechnology,
Dallas, TX, USA), followed by goat anti-rabbit EnVision-HRP
conjugate (Dako, Glostrup, Denmark) with diaminobenzidine
as the chromogen. The sections were counterstained with
hematoxylin. The number of WT-1 positive nuclei per
glomerular tuft (referred to as number of podocytes) was
counted in three glomeruli unaffected by light microscopic
lesions per patient. In the control group, six glomeruli per
biopsy were analyzed. The number of podocytes was expressed
as number of WT-1 positive nuclei per glomerulus. In the same
glomeruli, all nuclei and the surface area of the glomerular tuft
were quantified. The software used to count podocytes and
nuclei and to measure glomerular surface areas was IMS viewer
(Philips Digital Pathology Solution).

Statistical Analysis
Means were compared between groups by using the student’s
t-test or one-way analysis of variance. Categorical data were
compared by using the chi-square test or Fisher’s exact test.
FPWwas correlated to demographic and clinical parameters with
Pearson correlation coefficients. All analyses were performed
with SPSS statistical software, version 23 (IBM Corp., Armonk,
NY, USA). P < 0.05 were considered significant.

RESULTS

Patient Characteristics
A total of 25 patients were included in this study. The mean ±

SD age at biopsy was 55.4 ± 13.5 years, which was similar to
the mean age in the control group (47.2 ± 17.3; P = 0.24). The
24-hour proteinuria at baseline (proteinuria0) was available in 23
patients; themean was 1.6± 1.9 g/day (Table 1). The two patients
whose 24-h proteinuria0 was unavailable had a positive dipstick
(+ and ++ respectively). The mean eGFR at baseline (eGFR0)
was 42.3 ± 28.6 ml/min/1.73 m2. The level of proteinuria0 and
eGFR0 did not correlate (r= 0.07; P= 0.75), similar to the level of
proteinuria0 and eGFR at 1 year (eGFR1year) (r = 0.17; P= 0.48).
Treatment regimens were as follows: all patients were treated
with prednisone; 24 patients received cyclophosphamide, which
was switched to maintenance therapy with azathioprine in 17
patients. Six patients received angiotensin converting enzyme—
inhibitor (ACE-I) therapy before or after the diagnosis of AAGN;
their level of proteinuria0 was non-significantly higher than the
level in patients who did not receive ACE-I therapy (2.3 ±

2.9 vs. 1.3 ± 1.5 g/day; P = 0.45). After 10 weeks of follow-
up, the level of proteinuria (proteinuria10weeks) was similar in
patients receiving ACE-I therapy and patients not receiving ACE-
I therapy (1.6 ± 0.9 vs. 1.4 ± 1.6; P = 0.76). The levels of
proteinuria at 1-year follow-up (proteinuria1year) were lower in
patients treated with ACE-I compared to patients who did not
receive this treatment (0.9± 0.8 vs. 0.6± 0.9; P = 0.58).

Glomerular and
Tubulointerstitial Parameters
Thirteen biopsies were scored as focal, five as crescentic, six
as mixed, and one could not be classified due to insufficient
number of glomeruli (i.e.,<7). Patients with a biopsy categorized

TABLE 1 | Characteristics of the study cohort and according to FPW.

All patients

(n = 25)

Patients

with FPW

<600nm

(n = 11)a

Patients

with FPW

≥600nm

(n = 10)a

P-valueb

Male 15 (60) 6 (55) 6 (60) 1.00

Age, yr 55.4 ± 13.5 51.3 ± 14.4 60.4 ± 13.1 0.15

Diagnosis 0.39

GPA 16 (64) 8 (73) 5 (50)

MPA 9 (36) 3 (27) 5 (50)

ANCA serotype 0.43

PR3-ANCA 13 (52) 7 (64) 4 (40)

MPO-ANCA 9 (36) 4 (36) 4 (40)

Double positive 2 (8) 0 (0) 1 (10)

Negative 1 (4) 0 (0) 1 (10)

Histopathological class 0.03

Focal 13 (54) 9 (82) 3 (33)

Crescentic/mixed 11 (46) 2 (18) 6 (67)

Podocytes/glomerulus 15.0 ± 6.5 15.8 ± 6.6 13.4 ± 6.4 0.49

eGFR0, mL/min/1.73 m2 42.3 ± 28.6 49.4 ± 33.9 38.1 ± 21.4 0.38

eGFR1year, mL/min/1.73 m2 59.1 ± 23.4 68.4 ± 19.1 57.3 ± 22.5 0.31

Proteinuria0, g/day 1.6 ± 1.9 0.9 ± 0.5 2.4 ± 2.7 0.14

Proteinuria10weeks, g/day 1.4 ± 1.4 1.0 ± 1.1 2.0 ± 2.0 0.21

Proteinuria1year, g/day 0.7 ± 0.9 0.7 ± 1.0 1.0 ± 0.9 0.58

ESRDc 3 (12.0) 0 (0.0) 1 (12.5) 0.44

Values are reported as number (%) or mean ± SD.
aFPW could not be measured in four patients, because of insufficient EM material.
b Indicating differences between patients with FPW<600 nm and ≥600 nm.
cMissing data for two patients due to limited follow-up. eGFR, estimated glomerular

filtration rate; ESRD, end-stage renal disease; FPW, foot process width; GPA,

granulomatosis with polyangiitis; MPA, microscopic polyangiitis; PR3-ANCA, proteinase

3 ANCA; MPO-ANCA, myeloperoxidase ANCA.

as focal class had the lowest level of proteinuria0 (0.9 ±

0.5 g/day), followed by mixed class (1.2 ± 1.1 g/day), and
crescentic class (3.4 ± 3.1 g/day; P = 0.02). Proteinuria10weeks
did not differ between classes (P = 0.39), similar to the level of
proteinuria1year (P = 0.35). Inflammatory infiltrate, IFTA, and
tubulitis were not associated to the level of proteinuria at baseline
or during follow-up.

Foot Process Width
Figure 1 shows examples of EM pictures from the patient and
control group. EM material turned out to be insufficient in
four patients. The mean FPW in renal biopsies of 21 patients
with AAGN was 603 ± 66 nm. In the control group (biopsies
from five living donors), mean FPW was 571 ± 35 nm, which
is in accordance with the normal range of FPW as reported
in previous studies (7, 9, 10, 16). The mean FPW in patients
was not significantly different from the FPW in controls (P =

0.31), but the three patients presenting with nephrotic range
proteinuria (i.e., >3 g/day) did have a higher FPW compared
to controls (657 ± 35 nm; P = 0.02). Because the highest FPW
in the normal control group was 602 nm, characteristics were
compared between patients with FPW <600 and ≥600 nm.
Biopsies from patients with a FPW <600 nm were most often
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FIGURE 1 | Examples of EM pictures used to calculate FPW (magnification

10.000-fold). (A) EM picture of a patient with AAGN showing foot process

effacement (part of the effacement is pointed by arrows). (B) EM picture of a

control with normal foot processes.

categorized as focal class, whereas biopsies with FPW ≥600 nm
belonged more often to the crescentic or mixed class (P =

0.03; Table 1). Tubulointerstitial parameters were not different
between the two groups of FPW. The mean level of proteinuria0
was not significantly higher in patients with FPW ≥600 nm
compared to patients with FPW <600 nm (2.4 ± 2.7 vs. 0.9
± 0.5 g/day; P = 0.14; Table 1). Figure 2 shows proteinuria
levels during follow-up of individual patients according to FPW
subgroups. Proteinuria10weeks correlated significantly with FPW
(r= 0.50; P= 0.04). At 1-year follow-up, the correlation between
proteinuria and the FPW at biopsy was lost (r = 0.22; P =

0.40). A correlation of borderline significance was found between
FPW and age at biopsy (r = 0.43; P = 0.05). No significant
correlation was observed between FPW and eGFR at baseline and
during follow-up.

Number of Podocytes
Material for immunohistochemistry was available in 19 patients,
of which four were excluded due to the absence of at least
3 glomeruli without light microscopic lesions. The remaining
15 patients had a mean of 15 ± 7 podocytes per glomerulus.
The mean number of podocytes was 34 ± 4 per glomerulus

FIGURE 2 | Course of patients’ individual 24-h proteinuria levels during

follow-up. (A) Proteinuria levels during 10 weeks of follow-up. (B) Proteinuria

levels during 400 days of follow-up.

in the control group, which was significantly higher compared
to the patients with AAGN (Figure 3; P < 0.0001). The mean
surface area of the glomerular tuft was not significantly different
in patients vs. controls (0.019 ± 0.006 mm2 and 0.025 ±

0.012 mm2 respectively; P = 0.12); also the total number of
nuclei per glomerulus was not significantly different between
patients and controls (84 ± 24 and 98 ± 12 respectively; P
= 0.30). The percentage nuclei positive for WT-1 of the total
number of nuclei was significantly lower in patients compared to
controls (19.4 ± 9.0% vs. 34.3 ± 1.1%; P < 0.001). The number
of podocytes per glomerulus in patients with AAGN did not
correlate with FPW (r = −0.190; P = 0.52) or any of the clinical
parameters. No significant differences were observed between
patients with less and more than the median of 18 podocytes per
glomerulus (Table 2).

DISCUSSION

Previous studies have underlined the importance of proteinuria
as a prognostic marker in patients with AAGN (1–4). Since
proteinuria has been associated with podocyte abnormalities,
we here investigated the structural changes in podocytes in
Caucasian patients presenting with AAGN. Although the FPW
in patients was not statistically different from the mean FPW
in healthy controls, we did identify an interesting association
with clinical data as FPW correlated with the level of proteinuria
10 weeks after diagnosis. During these 10 weeks, the level
of proteinuria increased in particular in patients whose FPW
≥600 nm (Figure 2B). Therefore, studying podocytemorphology
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FIGURE 3 | Podocytes positive for WT-1. (A) WT-1 staining in a glomerulus of a patient with AAGN. (B) WT-1 staining in a glomerulus of a control. Asterisks (*) indicate

a podocyte positive for WT-1. (C) Number of podocytes per glomerulus in controls and in patients (P < 0.0001). (D) Number of nuclei per glomerulus in controls and

in patients.

in patients with AAGN may be indicative of whether or not
patients will have an increase of proteinuria at short-term follow-
up. At 1 year, the correlation between FPW and proteinuria was
lost. The anti-inflammatory effect of immunosuppressive therapy
may reduce the altered permeability of the glomerular capillary
wall, thereby reducing the leak of proteins (23).Moreover, in vitro
experiments have demonstrated a direct effect of corticosteroids
on podocytes, enhancing their survival and promoting their
repair (24, 25). Therefore, in addition to reducing inflammation,
it could be hypothesized that corticosteroids cause podocytes
to regain their normal morphology, leading to the observed
decrease in level of proteinuria during 1-year follow-up in our
patients with AAGN (Figure 2A). Only by performing EM on
repeat protocolized biopsies, which were unavailable in the
current study, more insights in this process could be obtained.

The exact relationship between foot process effacement and
level of proteinuria is a topic of debate; some studies on
glomerular diseases found a correlation between the degree of
foot process effacement and amount of proteinuria (6, 7), whereas
others did not (9, 10). In our study, FPW did not correlate with
the amount of proteinuria at baseline, but we observed severely
increased levels of proteinuria at baseline in all patients with
a FPW ≥600 nm. Moreover, the three patients presenting with

nephrotic range proteinuria had a FPW of 627, 648, and 696 nm;
all higher than the highest reported value of 602 nm in controls.
These data suggest that foot process effacement and proteinuria
are related in patients with AAGN; however, a firm association
could not be established.

In contrast to our results, the study by Zou et al. reported
a mean FPW of 1269 nm in patients with AAGN, which was
significantly higher than themean FPWof 586 nm theymeasured
in controls (16). In their study, the FPW was higher in patients
with elevated serum creatinine (>133 µmol/L). However, they
did not find a correlation between FPW and proteinuria at
baseline, and did not report on proteinuria during follow-up.
Values for FPW in normal controls were similar in the study
by Zou et al. and our study, but the mean FPW in our patients
with AAGN was much lower than in the Zou study. FPW in our
study did correlate to proteinuria levels at 10 weeks. The different
results in the study by Zou et al. and ours could have arisen from
some differences in study cohorts: 96% of patients from the Zou
study were positive for ANCA directed against MPO-ANCA, vs.
36% in our study; and the mean level of proteinuria was higher
in their study (2.6 vs. 1.6 g/day in our study). In particular the
difference between MPO-ANCA and PR3-ANCA distribution in
our study and the study by Zou et al. underlines the differences
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TABLE 2 | Characteristics according to number of podocytes.

Patients with

<18 podocytes/

glomerulus

(n = 9)a

Patients with

≥18 podocytes/

glomerulus

(n = 6)a

P-value

Male 5 (55.6) 4 (66.7) 1.00

Age, yr 54.2 ± 19.4 58.0 ± 8.4 0.62

Diagnosis 1.00

GPA 5 (55.6) 4 (66.7)

MPA 4 (44.4) 2 (33.3)

ANCA serotype 0.61

PR3-ANCA 4 (44.4) 4 (66.7)

MPO-ANCA 5 (55.6) 2 (33.3)

Histopathological class 0.59

Focal 3 (37.5) 4 (66.7)

Crescentic/mixed 5 (62.5) 2 (33.3)

eGFR0, mL/min/1.73m2 34.4 ± 18.7 48.6 ± 14.8 0.14

eGFR1year, mL/min/1.73m2 56.3 ± 18.9 59.6 ± 7.2 0.75

Proteinuria0, g/day 2.4 ± 2.7 1.6 ± 1.7 0.59

Proteinuria10weeks, g/day 1.7 ± 1.9 0.9 ± 0.9 0.46

Proteinuria1year, g/day 0.9 ± 0.9 0.3 ± 0.1 0.21

ESRDb 0 (0.0) 1 (16.7) 0.46

Values are reported as number (%) or mean ± SD.
aMaterial for immunohistochemistry was available in 19 patients, of which four were

excluded due to the absence of glomeruli without light microscopic lesions.
bMissing data for two patients due to limited follow-up. eGFR, estimated glomerular

filtration rate; ESRD, end-stage renal disease; GPA, granulomatosis with polyangiitis;

MPA, microscopic polyangiitis; PR3-ANCA, proteinase 3 ANCA; MPO-ANCA,

myeloperoxidase ANCA.

between Asian and Caucasian patients with AAGN (26, 27).
Whether FPW in AAGN varies between populations should be
the focus of future studies.

In the current study, we found that biopsies containing a
relatively high amount of lesions characteristic for AAGN (i.e.,
crescentic or mixed class) more often had a FPW ≥600 nm than
biopsies with a small number of lesions (i.e., focal class). This is in
line with the findings by Zou et al., showing a correlation between
FPW and percentage of crescents (16). It has been suggested that
podocytes have an active role in crescent formation; in the early
stages before crescent formation, they form bridges between the
tuft and Bowman’s capsule (28). In a later stage, they constitute
a component of the crescent, and during the transformation
to crescentic cells, they lose podocyte-specific antigens, such as
WT-1 (29, 30). In line with this hypothesis, it is telling that we
found a 50% decrease in podocytes positive for WT-1 compared
to healthy controls, probably reflecting either loss of podocytes
or changes in functionality of the podocyte. Our finding of
similar numbers of nuclei in glomeruli of patients and controls is
suggestive for the latter explanation, and given the diminishment
of proteinuria during follow-up this change may be reversible.

The current study has limitations, of which sample size
is the major issue. However, EM material of patients with
AAGN is scarce, and data on proteinuria are often not
routinely documented. We acknowledge that larger studies are
required to study podocyte morphology in AAGN into more

detail, especially in different populations. Our study included
both PR3- and MPO-positive patients, however, perhaps due
to limited power, differences in podocyte morphology were
not found between different serological phenotypes. Another
limitation is that we could not investigate changes in podocyte
morphology during follow-up, since repeated biopsy sampling
is not part of the standard protocol in AAGN. Moreover, data
on factors influencing proteinuria, such as blood pressure, were
not available.

In conclusion, we here firstly describe the details of podocyte
morphology in Caucasian patients with AAGN. In renal biopsies
with AAGN a significant decrease of the podocyte WT-1 marker
was found that could be indicative of actual podocyte loss or at
least, of a loss of functionality. Patients had variable amounts
of FPW, and in particular biopsies with a crescentic or mixed
class had the highest FPW. These findings together merit further
studies into the morphology and functionality of the podocyte in
AAGN. In the meantime, our study indicates that podocyte FPW
at baseline could be indicative for proteinuria at short term follow
up. Therefore, it would be valuable for prognostic purposes to
include a description of the FPW in the diagnostic report of a
biopsy with AAGN.
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David Saadoun 1,2,3,4,5*‡

1 Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, UPMC Univ Paris 06, UMR 7211,

Paris, France, 2 INSERM, UMR_S 959, Paris, France, 3CNRS, FRE3632, Paris, France, 4 AP-HP, Groupe Hospitalier
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We report the overall and renal outcome in a French nationwide multicenter cohort of

119 patients with anti-glomerular basement membrane (anti-GBM) disease. Sixty-four

patients (54%) had an exclusive renal involvement, 7 (6%) an isolated alveolar

hemorrhage and 48 (40%) a combined renal and pulmonary involvement. Initial

renal replacement therapy (RRT) was required in 78% of patients; 82% received

plasmapheresis, 82% cyclophosphamide, and 9% rituximab. ANCA positive (28%)

patients were older (70 vs. 47 years, p < 0.0001), less frequently smokers (26 vs.

54%, p = 0.03), and had less pulmonary involvement than ANCA- patients. The 5

years overall survival was 92%. Risk factors of death (n = 11, 9.2%) were age at onset

[HR 4.10 per decade (1.89–8.88) p = 0.003], hypertension [HR 19.9 (2.52–157 0.2)

p = 0.005], dyslipidemia [HR 11.1 (2.72–45) p = 0.0008], and need for mechanical

ventilation [HR 5.20 (1.02–26.4) p = 0.047]. The use of plasmapheresis was associated

with better survival [HR 0.29 (0.08–0.98) p = 0.046]. At 3 months, 55 (46%) patients

had end-stage renal disease (ESRD) vs. 37 (31%) ESRD-free and 27 (23%) unevaluable

with follow-up < 3 months. ESRD patients were older, more frequently female and had
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a higher serum creatinine level at presentation than those without ESRD. ESRD-free

survival was evaluated in patients alive without ESRD at 3 months (n = 37) using a

landmark approach. In conclusion, this large French nationwide study identifies prognosis

factors of renal and overall survival in anti-GBM patients.

Keywords: anti-glomerular basement membrane disease, Goodpasture’s disease, glomerulonephritis, vasculitis,

outcome, mortality

INTRODUCTION

Anti-glomerular basement membrane (anti-GBM) disease is
a rare small vessel vasculitis that affects the capillary beds of
the kidneys and lungs (1). It is an organ-specific autoimmune
disease mediated by circulating autoantibodies directed
against the non-collagenous domain of the α3 chain of
type IV collagen [α3(IV)NC1] (2–5). Clinical presentation,
related to the involvement of both glomerular and alveolar
membranes, includes rapidly progressive glomerulonephritis
and pulmonary hemorrhage. A majority of patients with
anti-GBM have both pulmonary and renal involvement, but
20–40% and <10% of patients have kidney or pulmonary
involvement only, respectively. Twenty-one to 47% of
patients also have antineutrophil cytoplasmic antibodies
(ANCA) (6–10). They mostly display anti-myeloperoxidase
(MPO) specificity (11, 12) and could be older than
those with anti-GBM positivity alone (13), with a male
preponderance (9).

The standard treatment for anti-GBM relies on plasma
exchanges to rapidly remove pathogenic autoantibodies,
combined with glucocorticoids and cyclophosphamide
(CYC) (14). CYC is most often administered orally but
some protocols include intravenous administration. Despite
the lack of randomized controlled studies given the rarity
and severity of the disease, the use of combination therapy
has been the gold standard since the 1970s. According
to the severity of the clinical course, some patients will
require prolonged treatment with immunosuppressive
drugs for as long as 6–12 months. Moreover, the addition
of anti-CD20 rituximab monoclonal antibody therapy
(375 mg/m2/week for 4 weeks) has been proposed for
patients with severe and/or refractory anti-GBM disease
(15). Similarly, the use of mycophenolate mofetil and
cyclosporine has been reported in individual cases or small
series (16–18).

Given the small number of large and homogeneous cohorts,
few data are available on prognostic factors for renal and
overall long-term evolution. A large Chinese study of 221
patients confirmed that the combination of plasmapheresis and
corticosteroids correlated with overall and renal survival (19). A
British study from 2015 showed that short-term renal survival
was determined by the severity of initial renal impairment
(oliguria and percentage of histological crescents); and that age,
ANCA positivity, oliguria, and the presence of comorbidities
were predictive of overall survival (OS) (13). In a recent study
from the French Society of Hemapheresis, renal survival was only
predicted by the severity of the renal presentation (20).

The present study was undertaken to report the outcome
of anti-GBM. We compared anti-GBM patients according to
ANCA status, and analyzed prognostic factors of overall and
renal survival in a French nationwide cohort of 119 patients with
anti-GBM disease.

METHODS

Patients
We retrospectively reviewed the data of patients with anti-GBM
disease diagnosed in 16 French centers between 1981 and 2017.
Diagnosis of anti-GBM was based on the presence of circulating
anti-GBM antibodies detected by ELISA or immunofluorescence
and/or linear IgG fluorescence along the GBM on renal biopsy,
which is the gold-standard for diagnosis of anti-GBM disease
(21). A diagnosis of pulmonary hemorrhage was retained in
patients with overt hemoptysis and/or pulmonary interstitial
opacities on chest computed tomography (CT) and/or proven
alveolar hemorrhage on bronchoalveolar lavage. Relapses were
defined as pulmonary (i.e., recurrence of hemoptysis) and/or
renal worsening (i.e., increase in serum creatinine level and
proteinuria) more than 3 months after diagnosis elevation
of anti-GBM autoantibodies and/or compatible renal biopsy.
Before 3 months, we considered that it was a worsening of
the disease. Included patients did not belong to the cohort-
based study from the French Society of Hemapheresis (20). The
study was approved by the ethical committee of Pitié-Salpêtrière
University Hospital.

Data Collection
Demographic data, medical history, clinical, biological,
radiological, and histological data at presentation were collected.
Intensive care stays, number of plasma exchanges as well as
number and dose of different treatments regimen, were also
reported. End-stage renal disease (ESRD) was defined as the
persistence of renal failure with anuria or estimated glomerular
filtration rate <15 ml/min/1.73 m2 after 3 months of evolution.
Finally, overall and renal survival data up to 60 months of
follow-up, adverse events, kidney or pulmonary transplants and
relapses were also collected.

Statistical Analyses
For description according to ANCA status and to renal status at
M3, quantitative variables were compared with theWilcoxon test
or Kruskal-Wallis test when appropriate. Qualitative variables
were compared with the Fisher test or the χ

2 test when
appropriate. Overall survival (OS) was defined as the time from
the date of diagnosis to the date of death or last follow-up. Renal
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TABLE 1 | Characteristics of 119 anti-GBM patients at presentation.

Clinical features

Age (years, median [IQR]) 54 [29; 72]

Female (%) 59 (50)

Ethnic group*

Caucasian (%) 94 (83)

Other (%) 19 (17)

Toxics

Tobacco (%)* 50 (46)

Cannabis (%)* 6 (6)

Other (%) 12 (10)

Comorbidities

Hypertension (%)* 40 (34)

Diabetes (%)* 9 (8)

Dyslipidemia (%)* 14 (12)

Time between onset and diagnosis (months, median [IQR]) 0.4 [0.1; 0.9]

Symptom leading to the medical consultation*

Fatigue (%) 38 (33)

Fever (%) 10 (9)

Dyspnea (%) 11 (10)

Cough (%) 7 (6)

Hemoptysis (%) 15 (13)

Microscopic hematuria (%) 9 (8)

Biological anomaly (%) 25 (22)

Biological features

ANCA positivity (%)* 30 (28)

Hemoglobin level (g/dl, median [IQR])* 9 [8; 10]

CRP (mg/L, median [IQR])* 93 [38; 164]

Renal involvement

Acute renal failure (%)* 101 (91)

Serum creatinine (mg/dl, median [IQR])* 7.2 [4.2; 11.4]

Proteinuria (> 0.5 g/dl, %)* 72 (91)

Microscopic hematuria (%)* 81 (98)

Leukocyturia (%)* 42 (93)

Serum albumin (g/l, median [IQR])* 27 [22; 31]

Renal biopsy (%)* 101 (86)

Extracapillary proliferation (%)* 69 (68)

Capsular rupture (%)* 32 (76)

Interstitial fibrosis (%)* 38 (64)

Hyaline thrombi (%)* 11 (15)

Immunofluorescence positivity (%)* 91 (99)

Pulmonary involvement

Dyspnea (%)* 42 (38)

Cough (%)* 39 (35)

Overt hemoptysis (%)* 31 (27)

Pulmonary interstitial opacities on chest CT (n, %)* 40 (57)

Alveolar hemorrhage on bronchoalveolar lavage (n, %)* 23 (92)

PaO2 (mmHg, median [IQR])* 77 [60; 86]

Therapeutic regimens

Admission to intensive care (%)* 36 (31)

Mechanical ventilation (%) 8 (22)

Initial hemodialysis (%)* 91 (78)

Plasmapheresis (%)* 97 (82)

(Continued)

TABLE 1 | Continued

Corticosteroid pulses (%)* 81 (70)

Oral corticosteroids (%)* 115 (97)

Cyclophosphamide (%)* 97 (82)

Intravenous (%)* 67 (73)

Oral (%)* 25 (27)

Cumulative dose (mg, median [IQR])* 4,000 [1,100;

6,112]

Rituximab (%)* 11 (9)

Other immunosuppressive agent (%)* 4 (3)

*Presence of missing values.

IQR, interquartile range; ANCA, antineutrophil cytoplasm antibodies; CRP, C reactive

protein; CT, computed tomography.

survival (RS) was examined both in the global population at
M3 (3 months after the initial hospitalization), as a categorical
endpoint, and in patients without ESRD alive at M3, as a
time-to-event endpoint (ESRD-free survival) using a landmark
approach (22). ESRD-free survival was defined as the time
from M3 (confirmation if ESRD- profile) to the date of first
ESRD diagnosis, death or last follow-up, whichever occurred
first. Time-to-event outcomes were estimated using the Kaplan-
Meier method. Univariate analyses of factors associated with
survival outcomes were performed in Cox regression models,
or using the LogRank test when appropriate. The proportional
hazards assumption and loglinearity assumption for quantitative
variables were assessed.

Tests were two-sided and a significance level smaller than
0.05 was considered to indicate a significant association.
Analyzes were carried out with the statistical software R,
version 3.4.1 (https://cran.r-project.org/).

RESULTS

Characteristics of Anti-GBM Patients
The main clinical, laboratory, pathological, and immunological
features are summarized in Table 1. We included 119 patients
with a male to female ratio of 1 (60:59). The median
age at the time of diagnostic was 54 years (range: 5–86)
following a bimodal distribution with a first peak during the
third decade and a second one around the age of 60. Fifty
patients (42%) patients were smokers. Twelve patients (10%)
reported a toxic exposure in the weeks preceding the onset
of symptoms such as cannabis, ecstasy, pesticides, or cleaner
household product. Twelve patients (10%) had a personal history
of autoimmune or inflammatory disease including systemic
scleroderma or Hashimoto thyroiditis; or vasculitis such as
Takayasu arteritis.

The main symptoms at presentation were fatigue,
fever, dyspnea, hemoptysis, and microscopic hematuria.
One hundred and one (91%) had acute kidney injury
at diagnostic with a median serum creatinine level of
7.2 mg/dl. Microscopic hematuria was found in 98% of
patients, leukocyturia in 93%, and median proteinuria
was 1.76 g/l. Fifty-four patients had alveolar hemorrhage
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TABLE 2 | Comparison of anti-GBM patients according to ANCA status.

ANCA – (n = 77) ANCA + (n = 30) P-value

Clinical features

Age (years, median [IQR]) 47 [26; 62] 70 [57; 78] < 0.0001

Female (%) 35 (45) 17 (57) 0.39

Toxics

Tobacco (%)* 40 (54) 6 (26) 0.03

Cannabis (%)* 5 (7) 0 (0) 0.33

Other (%) 9 (12) 3 (10) 1

Comorbidities

Hypertension (%)* 22 (29) 13 (46) 0.10

Diabetes (%)* 8 (10) 1 (3) 0.44

Dyslipidemia (%)* 7 (9) 7 (24) 0.055

Renal involvement

Acute renal failure (%)* 64 (86) 30 (100) 0.059

Serum creatinine (mg/dl, median [IQR])* 7.3 [4.2; 10.4] 7.0 [3.8; 11.8] 0.74

Proteinuria (> 0.5 g/d, %)* 48 (89) 19 (100) 0.33

Microscopic hematuria (%)* 56 (98) 21 (100) 1

Leukocyturia (%)* 25 (89) 15 (100) 0.54

Serum albumin (g/l, median [IQR])* 26 [22; 31] 29 [25; 33] 0.40

Renal biopsy (%) 65 (84) 26 (87) 1

Extracapillary proliferation (%)* 48 (94) 14 (93) 1

Capsular rupture (%)* 23 (85) 9 (64) 0.23

Interstitial fibrosis (%)* 24 (60) 11 (69) 0.76

Hyaline thrombi (%)* 7 (15) 3 (15) 1

Immunofluorescence positivity (%)* 60 (100) 23 (96) 0.29

Pulmonary involvement

Dyspnea (%)* 29 (39) 10 (34) 0.82

Cough (%)* 28 (37) 9 (31) 0.65

Overt hemoptysis (%)* 24 (32) 4 (14) 0.085

Pulmonary interstitial opacities on chest CT (n, %)* 27 (55) 12 (63) 0.60

Alveolar hemorrhage on bronchoalveolar lavage (n, %)* 15 (88) 7 (100) 1

PaO2 (mmHg, median [IQR])* 77 [60; 82] 81 [75; 93] 0.41

Therapeutic regimens

Admission to intensive care (%)* 25 (32) 8 (28) 0.81

Mechanical ventilation (%) 5 (20) 3 (38) 0.37

Initial hemodialysis (%)* 57 (74) 24 (83) 0.45

Plasmapheresis (%) 64 (83) 25 (83) 1

Corticosteroid pulses (%) 56 (73) 19 (63) 0.36

Oral corticosteroids (%) 76 (99) 29 (97) 0.48

Cyclophosphamide (%) 63 (82) 25 (83) 1

Rituximab (%) 6 (8) 5 (17) 0.29

Other immunosuppressive agent (%) 3 (4) 1 (3) 1

*Presence of missing values. Significant P-values are represented in bold. IQR, interquartile range; ANCA, antineutrophil cytoplasm antibodies; CRP, C reactive protein; CT, computer scan.

confirmed by chest CT in 40 patients and bronchoalveolar
lavage in 23 patients. Forty-eight individuals (40%)
had combined kidney and lung involvement whereas
64 (54%) and 7 (6%) had isolated renal or pulmonary
involvement, respectively.

Diagnosis of anti-GBM disease was assessed by the presence
of anti-GBM antibodies (n= 103, 93%) and/or by renal histology
revealing linear glomerular basement IgG deposits (n= 91, 99%)
when tested.

One third of patients was admitted in an intensive care
unit, 8 of them required mechanical ventilation, and 3 needed
a vasopressor support. Initial renal replacement therapy was
required in 91 patients (78%). Ninety-seven patients (82%)
received plasma exchanges. The non-use of plasma exchange
was most often decided in cases of advanced renal damage
with scarring. Among the 115 patients who received tapering
doses of oral prednisone, 81 also received 1 to 3 intravenous
pulses of methylprednisolone (70%). A total of 97 (82%)

Frontiers in Immunology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 166528

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Marques et al. Prognostic Factors in Anti-GBM Disease

FIGURE 1 | Overall survival estimates (Kaplan-Meier estimator) in n = 119 included patients (A) and according to the initial use of plasma exchanges (B).

individuals received CYC, intravenously in two-thirds of cases.
Rituximab therapy was initiated within 3 months following
the diagnosis in 11 (9%) patients. Four patients received other
immunosuppressive agents (azathioprine, n = 3, mycophenolate
mofetil, n= 1).

Comparison of Anti-GBM Patients
According to ANCA Status
Of the 107 patients tested, 30 were positive for ANCA (ANCA+,
28%), with anti-MPO specificity in the majority of cases (27/30).
ANCA positive (ANCA+) patients were significantly older
(median age 70 vs. 47 years-old, p < 0.0001), were less likely
smokers (26 vs. 54%, p = 0.03), and cannabis users (0 vs. 7%)
compare to ANCA negative (ANCA-) patients (Table 2). All of
ANCA+ patients had acute renal failure at diagnosis. Conversely,
only 4 (14%) of ANCA+ presented hemoptysis compared to 24
(32%) of ANCA- patients.

Both groups had comparable rates of hospitalization in
intensive care unit, with a higher rate of mechanical ventilation,
vasopressor support, and hemodialysis in the ANCA+
group, although not statistically significant. Therapeutic
regimens included plasma exchanges, corticosteroids, and
cyclophosphamide in comparable rates. However, rituximab
treatment was initiated in 17% of ANCA+ vs. only 8% of
ANCA-, although this difference was not statistically significant.

Overall Survival
The OS was 95% (95% CI: 90–99) at 1 year and 92% (95% CI:
86–98) at 3 and 5 years (Figure 1A). Median survival was not
reached during a median follow-up of 24 months (6–54). Eleven
patients died during this follow-up. Among those, the median
time from presentation until death was 13 months (1.5–60), 4
patients died during the first 6 months, and 5 during the first
year. The serum creatinine levels at presentation were >500
µmol/L for 9 of them. They all required hemodialysis within
the first month and 5 had isolated renal involvement. Causes of
death were infections in 2 patients, acute congestive heart failure
in 1 patient, discontinuation of hemodialysis after cessation of
treatment in 1 patient, neoplastic complications in 3 patients (1
pulmonary cancer at 104 months, 2 urothelial bladder cancers at

15 and 168 months, respectively) and bedridden condition in 1
patient. In the other cases, the cause of death was not specified.

OS prognostic factors are summarized in Table 3. In
univariate analyses, older age at presentation [HR for 10
years: 4.10 (1.89–8.88) p = 0.0003], history of hypertension
[HR 19.9 (2.52–157.2) p = 0.005], or dyslipidemia [HR 11.1
(2.72–45) p = 0.0008], and initial mechanical ventilation
[HR 5.20 (1.02–26.4) p = 0.047] were associated to death.
Conversely, plasma exchanges use was associated with a better
survival [HR 0.29 (0.08–0.98) p = 0.046] (Figure 1B). Gender,
alveolar hemorrhage, ANCA status or the use of an alternative
immunosuppressor was not associated to death.

Renal Survival
We examined the baseline characteristics according to renal
status, as diagnosed after 3 months of follow-up: ESRD+ (n= 55,
46%), ESRD- patients (n= 37, 31%), or not evaluable [follow-up
shorter than 3 months, lost-to-follow-up (LFUP), n = 27, 23%;
Figure 2A]. The ESRD+ and ESRD- group data are summarized
in Table 4. The complete table including the LFUP group data
is available in Supplementary Material. ESRD+ patients were
older than ESRD- patients (57 vs. 37 years, p = 0.003). The
biological parameters were similar including the positivity of the
ANCAs. Serum creatinine level at presentation was significantly
higher in ESRD+ patients than in ESRD- [9.1 (6.3; 14.3) vs. 4.0
mg/dl (1.4; 5.9), p < 0.0001]. The histological parameters seemed
also associated with short-term renal impairment, although
not statistically significant at the pre-defined threshold, with
greater observed proportions of extracapillary proliferation (73
vs. 60%), capsular rupture (89 vs. 55%), interstitial fibrosis
(69 vs. 56%), and hyaline thrombi (19 vs. 10%). Conversely,
the initial pulmonary involvement seemed more frequent in
ESRD- patients with more cough (58 vs. 23%, p = 0.004) and
alveolar hemorrhage (71 vs. 36%) than in ESRD+. Concerning
initial treatments, ESRD+ had required more frequently renal
replacement therapy at the onset (96 vs. 44% in ESRD-, p <

0.0001), and tended to receive less CYC (76 vs. 94%, p = 0.060)
than ESRD-.

The majority of patients presented with severe renal failure at
diagnosis. However, of the 50 patients with a serum creatinine
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TABLE 3 | Overall survival prognostic factors.

HR [95% CI] P-value

Clinical features

Age (HR for 10 years) 4.10 [1.89; 8.88] 0.0003

Male 1.02 [0.31; 3.34] 0.98

Toxics

Tobacco 0.59 [0.17; 2.01] 0.40

Cannabis 0.50*

Other 1.37 [0.17; 11.0] 0.77

Comorbidities

Hypertension 19.9 [2.52; 157.2] 0.005

Diabetes 0.51*

Dyslipidemia 11.1 [2.71; 45.0] 0.0008

Time between onset and diagnosis (HR for 1 month) 0.010 [0.000; 1.69] 0.078

Biological features

ANCA positivity 3.01 [0.78; 11.7] 0.11

Hemoglobin level 0.87 [0.32; 2.36] 0.79

CRP (HR for 10 mg/l) 0.79 [0.46; 1.37] 0.41

Renal involvement

Serum creatinine (HR for 1 mg/dl) 0.97 [0.86; 1.09] 0.57

Proteinuria (> 0.5 g/dl) 0.41*

Microscopic hematuria 0.67*

Serum albumin 1.22 [0.79; 1.89] 0.38

Renal biopsy

Extracapillary proliferation 1.91 [0.23; 16.0] 0.55

Immunofluorescence positivity 0.88*

Pulmonary involvement

Dyspnea 0.73 [0.19; 2.86] 0.66

Cough 0.52 [0.11; 2.45] 0.41

Alveolar hemorrhage 1.13 [0.34; 3.72] 0.84

Therapeutic regimens

Admission to intensive care 1.67 [0.42; 6.56] 0.46

Mechanical ventilation 5.20 [1.02; 6.56] 0.047

Initial hemodialysis 0.092*

Plasmapheresis 0.29 [0.08; 0.98] 0.046

Corticosteroid pulses 0.73 [0.21; 2.50] 0.42

Cyclophosphamide 0.58 [0.15; 2.20] 0.42

Rituximab 0.33*

Other immunosuppressive agent 0.50*

*P-values from Log Rank tests, due to limited number of events across groups defined

by the candidate variables. Significant P-values (<0.05) are represented in bold. HR,

hazard ratio; CI, confidence interval; ANCA, antineutrophil cytoplasm antibodies; CRP,

C reactive protein.

level of <6.8 mg/dl (i.e., 600 µmol/L) at diagnosis, 26 were
nevertheless dialyzed immediately because of a rapid degradation
of their renal function. The description of the cohort according
to the creatinine level (< or ≥ 6.8 mg/dl) and the Kaplan-
Meier curves for overall survival by group are available in
Supplementary Material.

Ninety-one (78%) patients required dialysis at presentation.
Of these, 53 progressed to chronic end stage renal failure
(ESDR+), 15 have recovered renal function (ESRD-), and 23
have been lost to follow-up (LFUP) at M3. ESRD- patients at

M3 had a lower serum creatinine at presentation [6.1 mg/dl
(6.1;12.1) vs. 9.8 (6.5;14.6), p = 0.006], were less likely to have
hypertension at diagnosis (29 vs. 46%, p = 0.024), had more
often pulmonary involvement (hemoptysis 47 vs. 18%, p= 0.019;
alveolar hemorrhage 73 vs. 37%, p = 0.022) and have more
often required the use of mechanical ventilation (100 vs. 13%,
p= 0.001) than ESRD+ patients (Supplementary Material).

ESRD-free survival in patients without ESRD alive at M3
(n = 37) is represented in Figure 2B. Starting from M3, the
median follow-up was 44 months (9–81). During the follow-up,
10 of the 37 M3-ESRD- patients eventually developed ESRD,
following the adverse course of renal function or relapse of the
disease; two of them died. In the M3-ESRD-population, ESRD-
free survival prognostic factors are presented in Table 5. The
main predictors of poor renal outcome were: the presence of
hyaline thrombi on renal biopsy [HR 17 (95% confidence interval
(CI) 1.06; 271.6) p = 0.045]; and cannabis use [HR 7.64 (1.80;
32.5) p= 0.006].

At the end of the follow-up, among all patients who reached
ESRD (n = 62, 67%), 29 patients were still in hemodialysis
and 33 had received kidney transplant. Five patients (4%) had
a relapse during the follow-up with a median of 12 months
following diagnosis. Among them, two were renal relapses, one
pulmonary relapse, and one affecting both organs. All pulmonary
relapses involved patients with isolated lung involvement.
Relapsing patients received therapeutic regimen including 4/5
(80%) plasma exchanges, 5/5 (100%) corticosteroids, 4/5 (80%)
CYC, and none received rituximab. No relapse was observed
after transplantation.

DISCUSSION

Anti-GBM disease is a rare disease with an estimated incidence
between 0.5 and 1.6 case permillion per year (23) but it represents
1 to 5% of all types of glomerulonephritis and ∼20% of rapidly
progressive glomerulonephritis (24–26). The severity of disease
imposes an early diagnosis to initiate rapidly plasmapheresis
and immunosuppressive treatments. There are still unmet needs
to identify prognostic factors prior to complications to target
patients needing more aggressive therapy.

In this large French nationwide multicenter cohort, we first
analyzed anti-GBM patients according to ANCA status. ANCA
positivity was found in 28% of patients. Double-positive patients
were older, less frequently smokers, and had less pulmonary
involvement. Consistently with previous series (7, 10, 27), we
reported a high frequency of ANCA positive anti-GBM disease
patients. Olson et al. (28) suggest that ANCA-induced glomerular
inflammation may be a trigger for the development of an
anti-GBM response, perhaps by modifying or exposing usually
sequestered disease epitopes in GBM, since it has been shown
that ANCA may be detected before the onset of anti-GBM
disease. Our ANCA positive patients experienced severe renal
involvement since all of them presented acute renal failure at
onset compared to 86% of their ANCA negative counterpart. In
contrast, lung involvement was less frequent. In a large European
cohort, McAdoo et al showed that double-positive patients
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FIGURE 2 | Renal outcome: prevalence of patients with ESRD at M3 (%, 95% confidence interval) (A) and ESRD-free survival (Kaplan-Meier estimates) from M3, in

patients alive and without ESRD at M3 (n = 37) (B).

had severe kidney and lung disease at presentation, requiring
aggressive immunosuppressive therapy, and plasma exchange
(10). During long-term follow-up, they relapsed at a frequency
comparable to a parallel cohort of patients with ANCA-associated
vasculitis (AAV), suggesting they warrant more careful long-term
follow-up and maintenance immunosuppression, unlike patients
with single-positive anti-GBM disease.

The presence of hyaline thrombi on renal biopsy and cannabis
use were significantly associated with ESRD in patients without
initial ESRD. In our study, ESRD at 3 months was observed in
46% of cases. ESRD positive patients were older, more frequently
men, and had higher serum creatinine level at presentation
than those without ESRD. These results are consistent with
those of previous studies showing that the occurrence of
oliguria or anuria, elevated serum creatinine at presentation
and the percentage of crescents were shown to be risk factors
for ESRD (19, 29).

This large cohort allowed us to identify four prognostic
factors of overall survival. We identified age at onset,
existence of cardiovascular risk factors, aggressiveness of
initial management with mechanical ventilation, and the
absence of plasmapheresis as significantly associated with
death in anti-GBM patients. Mortality in anti-GBM used to be
extremely high, up to 95% in older series (30) and was mainly
related to pulmonary hemorrhage, or to end-stage renal failure.
New protocols including plasmapheresis, glucocorticoids, and
cyclophosphamide (CYC) had dramatically improved patient’s
outcomes. In our study, the 1 and 5-year survival reached 95
and 92%, respectively. This rate was higher than OS observed
in recent other series. Proskey et al. reported 88% survival rate
in an English study over 20 years (14). Huart et al reported
86.9% 1-year survival rate (20). This improvement of survival
rate could be explained by the relatively low rate of infectious
complications (23%), and severe infections accounted only for 2
out of 11 deaths. In contrast, 3 deaths were attributable to cancers
(at 15, 108, and 162 months after presentation, respectively), and

2 others occurred after renal transplantation. This underlines
the need to take into account the toxicity of immunosuppressive
treatments (mainly CYC) used in the acute phase of the disease,
and anti-rejection treatments after transplantation. In this
respect, induction therapy with rituximab, may reduce the risk
of developing secondary cancer.

Surprisingly, pulmonary involvement was not a factor of
poor prognosis. Our study confirms the results of other series
on the importance of plasma exchanges positively associated
with overall survival. Huart et al. showed that a cut-off of
8 plasmapheresis sessions was associated with positive and
negative predictive survival rates of 95 and 47%, respectively
(20). Given the physiopathological importance of the clearance
of autoantibodies in the disease, the number of plasma exchanges
could be monitored according to the course of circulating anti-
GBM levels. On 111 patients tested, 8 (7%) were antibody-
negative anti-GBM disease. Seven of them had acute renal failure
and half had alveolar hemorrhage at presentation. These results
differ somewhat from those of a recent study reporting 19 cases
of negative antibody patients with better renal function at biopsy
and less lung involvement than in classic anti-GBM patients (31).

We acknowledge some limitations in our study. Our analysis
was performed in a retrospective manner. We were unable to
collect complete longitudinal data on patients who were seen
only on an intermittent consultation basis. A few initial patients
(27/119, 23%) were lost-to follow-up soon after diagnosis,
before M3, most often due to a change of medical center
for dialysis or pre-transplant assessment. However, to prevent
selection biases, these patients, categorized at unevaluable
at M3 for renal function, were included in the descriptive
analysis and evaluating prognostic factors of ESRD status at
M3 (Supplementary Material). Furthermore, given that ESRD
diagnosis requires a 3-month follow-up time window by
definition, we used a landmark approach to examine prognostic
factors of ERD-free survival from M3. The sample was therefore
restricted to ESRD-free patients alive at M3 (n = 37) and limited
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TABLE 4 | Comparison of anti-GBM patients according to ESRD status at M3

(ESRD status was categorized in 3 groups: ESRD–, ESRD+, Not evaluable [FUP

< 3 months]).

Variables ESRD–

(n = 37)

ESRD+

(n = 55)

P-value†

Clinical features

Age (years) 37 [25; 56] 57 [38; 74] 0.003

Female (%) 15 (41) 31 (56) 0.35

Toxics

Tobacco (%)* 20 (57) 22 (43) 0.22

Cannabis (%)* 3 (9) 1 (2) 0.34

Other (%) 5 (14) 2 (4) 0.057

Comorbidities

Hypertension (%)* 11 (31) 19 (35) 0.88

Diabetes (%)* 3 (8) 2 (4) 0.15

Dyslipidemia (%)* 4 (11) 6 (11) 0.87

Time between onset and diagnosis

(months, median [IQR])*

0.5 [0.1; 1.0] 0.3 [0.1; 0.8] 0.32

Biological features*

ANCA positivity (%) 8 (24) 14 (29) 0.70

Hemoglobin level (g/dl)* 9 [8; 10] 9 [8; 10] 0.70

CRP (mg/L)* 84 [28; 142] 128 [86; 239] 0.044

Renal involvement

Serum creatinine (mg/dl)* 4.0 [1.4; 5.9] 9.1 [6.4; 14.3] < 0.0001

Proteinuria (> 0.5 g/dl, %)* 25 (86) 27 (96) 0.43

Microscopic hematuria (%)* 31 (97) 28 (100) 0.74

Leukocyturia (%)* 16 (89) 12 (100) 0.77

Serum albumin (g/l)* 30 [22; 33] 26 [23; 31] 0.25

Renal biopsy (%)* 30 (83) 50 (93)

Extracapillary proliferation (%)* 18 (60) 37 (74) 0.41

Capsular rupture (%)* 6 (55) 16 (89) 0.12

Interstitial fibrosis (%)* 6 (56) 20 (69) 0.64

Hyaline thrombi (%)* 2 (10) 7 (19) 0.69

Immunofluorescence positivity (%)* 29 (97) 46 (100) 0.50

Pulmonary involvement

Dyspnea (%)* 16 (50) 16 (30) 0.20

Cough (%)* 19 (58) 12 (23) 0.004

Alveolar hemorrhage (%)* 25 (71) 19 (36) 0.002

Therapeutic regimens

Admission to intensive care (%)* 8 (24) 15 (27) 0.11

Mechanical ventilation (%) 5 (62) 2 (13) 0.015

Initial hemodialysis (%)* 15 (44) 53 (96) < 0.0001

Plasmapheresis (%)* 32 (89) 44 (80) 0.45

Corticosteroid pulses (%)* 25 (69) 36 (68) 0.84

Cyclophosphamide (%)* 34 (94) 42 (76) 0.06

Rituximab (%)* 6 (17) 3 (5) 0.23

Other immunosuppressive agent (%)* 2 (6) 2 (4) 0.69

*Presence of missing values.
†
P-values for Fisher’s exact tests or Kruskal-Wallis tests

comparing discrete and continuous variables, respectively, across ESRD+, ESRD–,

and LFUP (lost-to-follow-up before 3 months) groups. Significant P-values (<0.05) are

represented in bold. ANCA, antineutrophil cytoplasm antibodies; CRP, C reactive protein.

in size; nonetheless, the landmark approach is an adequate
approach to prevent immortal time bias (22). The quantification
of diuresis and the evolution of urinary sediment would have

TABLE 5 | ESRD-free survival prognostic factors, in ESRD-free patients alive at

M3 (n = 37).

HR [95% CI] P-value

Clinical features

Age (HR for 10 years) 1.02 [0.67; 15.7] 0.14

Male 3.24 [0.67; 1.45] 0.91

Toxics

Tobacco 1.00 [0.27; 3.74] 1

Cannabis 7.64 [1.80; 32.5] 0.006

Other 0.9 [0.11; 7.32] 0.92

Comorbidities

Hypertension 0.66 [0.14; 3.17] 0.60

Diabetes 0.29*

Dyslipidemia 1.20 [0.15; 9.59] 0.87

Time between onset and diagnosis (HR for 1 month) 0.76 [0.42; 1.40] 0.38

Biological features

ANCA positivity 1.15 [0.23; 5.74] 0.86

Hemoglobin level 1.34 [0.68; 2.64] 0.40

CRP (HR for 10 mg/L) 1.01 [0.83; 1.23] 0.92

Renal involvement

Serum creatinine (HR for 1 mg/dl) 1.01 [0.80; 1.27] 0.95

Proteinuria (> 0.5 g/dl) 0.35*

Microscopic hematuria 0.49*

Leukocyturia 0.35*

Serum albumin 0.91 [0.77; 1.09] 0.31

Renal biopsy

Extracapillary proliferation 0.76 [0.18; 3.22] 0.71

Capsular rupture 0.82 [0.05; 13.2] 0.89

Interstitial fibrosis 3.11 [0.34; 28.7] 0.32

Hyaline thrombi 17 [1.06; 271.6] 0.045

Immunofluorescence positivity 0.73*

Pulmonary involvement

Dyspnea 1.26 [0.31; 5.08] 0.75

Cough 2.99 [0.60; 14.9] 0.18

Alveolar hemorrhage 3.81 [0.47; 30.5] 0.21

Therapeutic regimens

Admission to intensive care 1.43 [0.29; 7.16] 0.66

Mechanical ventilation 2.73 [0.55; 13.6] 0.22

Initial hemodialysis 1.72 [0.46; 6.44] 0.42

Plasmapheresis 0.30 [0.06; 1.48] 0.14

Corticosteroid pulses 1.62 [0.34; 7.84] 0.55

Cyclophosphamide 0.45*

Rituximab 0.18*

Other immunosuppressive agent 1.57 [0.20; 12.6] 0.67

*P-values from Log Rank tests, due to limited number of events across groups defined

by the candidate variables. Significant P-values (<0.05) are represented in bold. HR,

hazard ratio; CI, confidence interval; ANCA, antineutrophil cytoplasm antibodies; CRP,

C reactive protein.

let us evaluate anuria and proteinuria as potential pejorative
prognostic factors of renal evolution. Our study also comes up
against the lack of proofreading of anatomopathological features
of renal biopsies. The presence of hyaline thrombi remains a
non-specific element, especially in acute glomerulonephritis. We
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could not specify either their location or their number. Similarly,
the presence of acute tubular necrosis lesions and/or vasculitis
has not been reported. In a recent study classifying 123 anti-
GBM kidney biopsy samples according to ANCA-associated GN,
histopathological class, and kidney survival were associated. Low
percentage of normal glomeruli and large extent of interstitial
infiltrate were associated with poor renal survival (32). Anti-
GBM antibodies levels could only very rarely be collected during
follow-up. Thus, their rate after plasma exchange was available
for only 47% of patients, limiting the interpretation of the impact
of treatments on the clearance of autoantibodies. Although we
provide univariate analyses of EFS and of OS, due to the limited
number of events, we were unable to perform robust multivariate
analyzes for these outcomes (33). Prospective enrollment and
data collection from the time of diagnosis would have been ideal
but are difficult to achieve with such rare diseases.

In conclusion, this French nationwide study shows that older
age at diagnosis, female gender, a high serum creatinine level
at presentation, and extracapillary proliferation predicted renal

survival in patients with anti-GBM disease. We identified age at
onset, existence of cardiovascular risk factors, aggressiveness of
initial management with mechanical ventilation and the absence
of plasmapheresis as significantly associated with death in anti-
GBM patients.
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Vasculitides are a heterogeneous group of low frequent disorders, mainly characterized

by the inflammation of blood vessels that narrows or occlude the lumen and limits the

blood flow, leading eventually to significant tissue and organ damage. These disorders are

classified depending on the size of the affected blood vessels in large, medium, and small

vessel vasculitis. Currently, it is known that these syndromes show a complex etiology in

which both environmental and genetic factors play a major role in their development.

So far, these conditions are not curable and the therapeutic approaches are mainly

symptomatic. Moreover, a percentage of the patients do not adequately respond to

standard treatments. Over the last years, numerous genetic studies have been carried out

to identify susceptibility loci and biological pathways involved in vasculitis pathogenesis

as well as potential genetic predictors of treatment response. The ultimate goal of these

studies is to identify new therapeutic targets and to improve the use of existing drugs to

achieve more effective treatments. This review will focus on the main advances made in

the field of genetics and pharmacogenetics of vasculitis and their potential application

for ameliorating long-term outcomes in patient management and in the development of

precision medicine.

Keywords: systemic vasculitis, polymorphism, genome-wide association studies, immunochip, precision

medicine

INTRODUCTION

Systemic vasculitides represent a heterogeneous group of chronic diseases characterized by the
inflammation of the blood vessels. These disorders are classified according to the diameter of the
affected vessels in large, medium and small vessel vasculitis, and may affect one or several organs
and tissues of the body, resulting in different clinical presentations. In the past years, considerable
therapeutic advances have beenmade in the treatment of vasculitis; however, the lack of appropriate
therapeutic response and the appearance of side effects remain a major concern (1).

Although the specific mechanisms underlying vasculitis are not fully understood, it is currently
known that these conditions show a complex etiology in which both genetic and environmental
factors appear to contribute to their pathogenesis (2). In recent years, our knowledge of the genetic
landscape of vasculitis has experienced a significant increase, mainly due to the development of
large-scale genetic scans, including genome-wide association studies (GWASs) and Immunochip
studies, focused on analyzing single-nucleotide polymorphisms (SNPs) in cases and controls
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(Figure 1). In addition to the human leukocyte antigen (HLA)
region, which represents the strongest association in vasculitis,
multiple loci located outside the HLA have been shown to play a
role in the genetic predisposition to these disorders (Table 1).

Identification of genes and molecular pathways deregulated in
vasculitis is crucial to better understand disease pathogenesis and
for the development of more effective therapeutic approaches.
In this sense, Nelson et al. (27) demonstrated that a drug with
genetic support has twice the possibilities of going from phase
I to approval in the different phases of drug development,
than those drugs without genetic support. The authors found
that genes associated with a broad spectrum of human diseases
were significantly enriched in target genes for drugs approved
in the United States or the European Union, highlighting the
importance of the provided genetic knowledge in different drug
mechanisms. In addition, genetic studies not only have the
potential to identify molecular targets for new therapies, but they
also allow us to determine the best way to administer current
treatments. In this regard, several pharmacogenetic studies based
on candidate genes have identified a number of genetic variants
influencing treatment response in different vasculitides (Table 2).

This review aims to provide an update of the main findings
obtained from genetic and pharmacogenetic studies as well as
their potential application to precision medicine in vasculitis.

CONTRIBUTION OF GENETICS TO NEW
THERAPEUTIC APPROACHES IN
VASCULITIS

Takayasu Arteritis
Takayasu arteritis (TAK) is a chronic vasculitis characterized
by granulomatous inflammation of large vessels, predominantly
the aortic arch and its branches, which results in non-specific
constitutional symptoms, such as fever and weight loss, and
serious complications, including arterial stenosis, occlusion and
aneurysm. This disease affects mainly young females with a
higher incidence in Asia and Latin America (46).

Genetic studies have shown that the HLA region represents
the main genetic risk factor in TAK. Specifically, an association
at the genome-wide significance level between the classical
allele HLA-B∗52:01 and this vasculitis has been reported in
TAK patients from Japanese, Turkish and European-American
origin (3, 47), and confirmed in Greek, Mexican Mestizo, India,
Thai, and Korean populations (48–52). Moreover, independent
associations within the HLA class II region, specifically with the
DRB1∗07 classical allele and DRB1/DQB1 polymorphisms, have
also been reported (3, 53, 54); however, additional studies in
well-powered populations are required to confirm these findings.

Outside the HLA region, five loci have been consistently
associated with TAK through three large-scale genetic analyses
(3–5), IL6 (interleukin 6), encoding a cytokine that plays a
crucial role in the immune response by regulating the balance
between Th17 cells and regulatory T cells (Treg) (55); LILRB3
(leukocyte immunoglobulin like receptor B3), which encodes a
protein that binds to HLA class I molecules to inhibit immune
cell stimulation (56); IL12B, encoding the p40 subunit of IL-12

and IL-23, two cytokines with a key role in the inflammatory
responses mediated by Th1 and Th17 cells, respectively (57);
FCGR2A (Fc fragment of IgG receptor IIa) that encodes an
immunoglobulin Fcg receptor (FcgR), which has a relevant role
in humoral immunity by participating in modulation of antibody
production by B cells, phagocytosis, and clearing of immune
complexes (58); and an intergenic locus on chromosome 21q22
near PSMG1 (proteasome assembly chaperone 1).

Interestingly, some genes associated with TAK are being
explored as therapeutic targets for this vasculitis. On one hand,
tocilizumab, a humanized monoclonal antibody against IL-6
receptor (IL-6R), has shown clinical efficacy in TAK patients in
several case series studies (59). This efficiency was confirmed in
a prospective clinical trial evaluating tocilizumab in refractory
TAK, although the primary end-point was not met, probably due
to the low number of individuals included in this study (60). A
phase III clinical trial evaluating this biological agent as a first-line
therapy in TAK patients is currently underway (NCT02101333).

On the other hand, administration of ustekinumab, a
monoclonal antibody to the p40 subunit common to IL-12
and IL-23, to patients with active TAK achieved decrease of
inflammatory markers but did not improve vascular lesions in a
pilot clinical trial (61). In a more recent study, this drug was used
to treat a patient with refractory TAK and psoriasis (for which
this drug is approved), two diseases that share the genetic risk
locus IL12B, with satisfactory results (62). Ustekinumab allowed
a significant reduction in glucocorticoid dose and full reduction
of vessel wall thickness, thus demonstrating the usefulness
of drug repositioning based on the existence of a common
genetic component.

Moreover, several evidences, including the association
observed between FCGR2A and TAK, indicate that, in addition
to T lymphocytes, B cells are also involved in the pathogenesis of
this vasculitis. In this regard, depletion of B cells using rituximab,
a chimeric anti-CD20 monoclonal antibody, has been shown
to be effective in a case series study, achieving clinical and
laboratory remission (63). Nevertheless, a randomized control
trial is needed in order to confirm the efficacy of rituximab in
patients with TAK.

Giant Cell Arteritis
Giant cell arteritis (GCA) is a vasculitis characterized by chronic
inflammation of medium- and large-sized blood vessels, mainly
the aorta and external carotid arteries and their branches.
A severe complication of this disorder is the occlusion of
the ophthalmic artery, which leads to acute and irreversible
blindness. GCA represents the most frequent vasculitis in elderly
individuals from Western countries affecting predominantly
women and people over 50 years of age (64).

In the last years, a high number of candidate gene association
studies have been performed in GCA, most of them focused on
analyzing genes encoding inflammatory cytokines (65). These
studies identified the HLA class II region, specifically the classical
allele DRB1∗04, as the main genetic risk factor in GCA. However,
both the low sample size and the lack of replication cohorts of
these studies have been limiting factors in the identification of
robust genetic associations outside the HLA region. Nevertheless,
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FIGURE 1 | Timeline representing key events in vasculitis genetic research. HLA, human histocompatibility complex; BD, Behçet’s disease; GCA, giant cell arteritis;

AAV, ANCA-associated vasculitis; KD, Kawasaki’s disease; TAK, Takayasu arteritis; GPA, granulomatosis with polyangiitis; GWAS, genome-wide association study.

some of the non-HLA loci associated with this vasculitis
using candidate-gene approaches were replicated in different
populations (66–71) and, therefore, they represent potential
genetic risk factors in GCA, including IL33, which encodes
a member of the IL-1 family involved in pro-inflammatory
cytokines production, angiogenesis and vascular permeability
(72, 73); IL17A, encoding a pro-inflammatory cytokine with
a relevant role in the differentiation of Th17 lymphocytes
(74); VEGF (vascular endothelial growth factor), encoding a
proangiogenic mediator (75); and NLRP1 (NLR family pyrin
domain containing 1), encoding a protein implicated in the
formation of the inflammasome, which activates caspases 1 and
5 leading to the activation of pro-inflammatory cytokines such as
IL-1β and IL-18 (76).

More recently, the emergence of massive genotyping
platforms and the formation of a large consortium focused on
the study of the genetic basis of GCA have allowed a significant
progress in the identification of this genetic component.
Until now, two large-scale genetic studies, a GWAS and an
Immunochip, have been performed in GCA (6, 8). Both of them
have confirmed the classical allele HLA-DRB1∗04 as the most
consistent association with this vasculitis. In addition, several
non-HLA loci have been also found to play a role in the GCA
genetic predisposition, including PTPN22 (protein tyrosine
phosphatase non-receptor type 22), PLG (plasminogen), and
P4HA2 (prolyl 4-hydroxylase subunit alpha 2).

The association between PTPN22 and GCA was initially
identified in a candidate-gene association study (7) and
subsequently confirmed by using the Immunochip strategy (6).
This gene encodes LYP, a tyrosine phosphatase involved in several
immune signaling pathways, such as the T cell receptor (TCR)
pathway and the humoral activity of B cells. The strongest signal
within this locus corresponds to a functional variant (rs2476601),

previously associated with multiple immune-mediated disorders,
that results in a non-synonymous arginine to tryptophan amino
acid change (R620W). It has been described that carrying
the rs2476601 risk allele results in enhanced B lymphocyte
autoreactivity, deregulated TCR signaling, and reduced capacity
for TLR-induced type 1 interferon (IFN) production (77). On
the other hand, PLG, encoding plasminogen, is involved in
different processes relevant for GCA, such as angiogenesis,
lymphocyte recruitment, and production of inflammatory
mediators, including tumor necrosis factor alpha (TNF-α) and
IL-6 (78), and P4HA2, encoding an isoform of the alpha subunit
of the collagen prolyl 4-hydroxylase, is an important hypoxia
response gene whose expression is induced by hypoxia-inducible
factor-1 (HIF-1), which also induces the expression of other genes
involved in GCA such as IL6,MMP9 (matrix metallopeptidase 9),
and VEGF (79).

These genetic findings, together with other lines of evidence,
have contributed to the identification of several molecular
pathways implicated in the GCA pathogenesis. Currently, it
is known that both Th1 and Th17 cells are relevant player
in GCA with two main cytokine clusters contributing to the
local inflammation, the IL-6/IL-17 and the IL-12/IFN-γ axes
(74). Interestingly, whereas the inflammatory activity of the IL-
6/IL-17 cytokine cluster seems to be affected by glucocorticoid
treatment, the IL-12/IFN-γ cytokine cluster is resistant to this
therapy. This, together with the adverse events associated with
long-term glucocorticoids use, has led to the search for new
therapeutical agents.

Considering the major role of IL-6 in the pathogenesis of
GCA, the potential use of tocilizumab in the treatment of
this vasculitis has been explored. IL-6 inhibition has shown
clinical efficacy in several randomized controlled trials (80,
81), thus representing a promising therapeutic strategy for
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TABLE 1 | Non-HLA loci associated with vasculitis at genome-wide significance level.

Type of vasculitis Susceptibility locus Chromosomic region Population Approach References

TAK FCGR2A 1q23.3 Turkish, European-American Immunochip (3)

IL12B 5q33.3 Turkish, European-American, Japanese GWAS (3, 4)

IL6 7p15.3 Turkish, European-American GWAS (5)

LILR3B 19q13.42 Turkish, European-American GWAS (5)

PSMG1 21q22.2 Turkish, European-American GWAS (5)

GCA PTPN22 1p13.2 European Candidate-gene, Immunochip (6, 7)

PLG 6q26 European GWAS (8)

P4HA2 5q31.1 European GWAS (8)

AAV SERPINA1 14q32.13 European Candidate-gene, GWAS (9–11)

PRTN3 19p13.3 European Candidate-gene, GWAS (9, 10, 12)

PTPN22 1p13.2 European Candidate-gene, GWAS (10, 13–15)

SEMA6A 5q23.1 European GWAS (13)

BD IL10 1q32.1 Japanese, Turkish GWAS (16, 17)

IL23R/IL12RB2 1p31.3 Japanese, Turkish, European GWAS, Immunochip (16–18)

CCR1/CCR3 3p21.31 Turkish GWAS follow-up (19)

STAT4 2q32.2-q32.3 Turkish GWAS follow-up (19)

ERAP1 5q15 Turkish GWAS follow-up (19)

KLRC4 12p13.2 Turkish GWAS follow-up (19)

GIMAP4 7q36.1 Korean GWAS (20)

IL12A 3q25.33 European, Middle East and Turkish GWAS, Immunochip (18, 21)

JRKL/CNTN5 11q22.1 European Immunochip (18)

KD ITPKC 19q13.2 European, Asian GWAS (22)

FCGR2A 1q23.3 European, Asian GWAS (22)

CASP3 4q35.1 European, Japanese Candidate-gene (23)

BLK 8p23.1 Han Chinese, Japanese, Korean GWAS (24–26)

CD40 20q13.12 Han Chinese, Japanese GWAS (25, 26)

TAK, Takayasu arteritis; GCA, giant cell arteritis; AAV, Anti-neutrophil cytoplasmic antibody-associated vasculitis; BD, Behçet’s disease; KD, Kawasaki’s disease; GWAS, genome-wide

association study.

this type of vasculitis. Indeed, tocilizumab has been recently
approved to treat GCA by the United States Food and Drug
Administration (FDA). Furthermore, other biological agents,
such as ustekinumab and abatacept, a fusion protein comprising
the Fc region of IgG1 and the extracellular domain of cytotoxic
T lymphocyte antigen 4 (CTLA4) that inhibits the co-stimulatory
signal required for T cell activation, have also shown encouraging
but more moderate results (82, 83). Better powered studies are
required in order to evaluate the efficacy of these drugs in GCA.

Finally, the potential therapeutic application of two
monoclonal antibodies, anakinra and secukinumab, targeted
against IL-1β receptor and IL-17A (one of the genes associated
with GCA), respectively, is currently under investigation
(NCT02902731 and NCT03765788). Both cytokines are crucial
for the differentiation of Th17 cells and, therefore, their
inhibition could be a therapeutic option in patients with GCA.

ANCA-Associated Vasculitis
Anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV) is a group of disorders characterized by

necrosing inflammation of small vessels, including arterioles,
capillaries and venules, that comprises three separate conditions,
granulomatosis with polyangiitis (GPA), microscopic
polyangiitis (MPA), and eosinophilic granulomatosis with
polyangiitis (EGPA). AAV frequently affects small vessels in
the respiratory tract and kidneys and is characterized by the
presence of antibodies directed against two proteins, proteinase
3 (PR3) and myeloperoxidase (MPO), located on the membrane
of monocytes and neutrophils (84).

Both candidate gene association studies and GWASs
published in last years have identified several loci associated with
these forms of vasculitis (2). Specifically, three GWASs on AAV
have been performed so far (9, 10, 13), one in European patients
with GPA and MPA and two in North American patients of
European descent (one including patients with GPA and the
other one including patients with GPA and MPA). Interestingly,
these studies have shown that the genetic background of AAV
depends on auto-antibody specificity rather than clinically
defined disorders. In this regard, different HLA genes have
been associated with the different ANCA subgroups; whereas
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TABLE 2 | Genes associated with treatment response in vasculitis.

Vasculitis Locus Region Treatment Population Approach References

KD ITPKC 19q13.2 IVIG Japanese, Taiwanese Candidate-gene (28, 29)

CASP3 4q35.1 IVIG Japanese, Taiwanese Candidate-gene (28, 29)

FCGR2C 1q23.3 IVIG European, Asian, African-American, Hispanic Candidate-gene (30)

FCGR3B 1q23.3 IVIG European, Asian, African-American, Hispanic Candidate-gene (30, 31)

FCGR2B 1q23.3 IVIG European, Asian, African-American, Hispanic Candidate-gene (32)

CCL17 16q21 IVIG Taiwanese Candidate-gene (33)

CCR5 3p21.31 IVIG Japanese Candidate-gene (34)

CCL3L1 17q21.1 IVIG Japanese Candidate-gene (34)

IL1B 2q14.1 IVIG Taiwanese Candidate-gene (35)

IFNG 12q15 IVIG Taiwanese Candidate-gene (36)

HMGB1 13q12.3 IVIG Korean Candidate-gene (37)

BCL2L11 2q13 IVIG Korean GWAS (38)

STX1B 16p11.2 IVIG European Immunochip (39)

BAZ1A/C14orf19 14q13.1-q13.2 IVIG European Immunochip (39)

SAMD9L 7q21.2 IVIG Korean GWAS (40)

AAV HLA-DRB1*0405 6p21.32 Remission induction therapy China Candidate-gene (41)

FCGR2A 1q23.3 Rituximab or cyclophosphamide – Candidate-gene (42)

TNFSF13B 13q33.3 Rituximab European Candidate-gene (43)

BD ABCB1 7q21.12 Colchicine Turkish Candidate-gene (44)

MTHFR 1p36.22 Colchicine Turkish Candidate-gene (45)

KD, Kawasaki’s disease; AAV, Anti-neutrophil cytoplasmic antibody-associated vasculitis; BD, Behçet’s disease; IVIG, intravenous immunoglobulin; GWAS, genome-wide

association study.

polymorphisms within the DPB1 and DPA1 genes appeared to
be associated with PR3-ANCA-positive patients, DQB1 showed
a specific effect in the MPO-ANCA subgroup (10).

Additionally, four non-HLA genetic loci, SERPINA1 (serpin
family A member 1), PRTN3 (proteinase 3), PTPN22, and
SEMA6A (semaphorin 6A) have been associated with AAV at
genome-wide significance level (9, 10, 13), the first two showing
a specific association with the subgroup of patients positive
for PR3-ANCA.

SERPINA1 encodes α1-antitrypsin (α1AT), an inhibitor of the
serine proteases, including proteinase 3. The association between
this gene and AAV was initially described in a candidate gene
study (11), in which a functional genetic variant known to cause
a deficient production of α1-AT appeared to be associated with
GPA, and subsequently confirmed by GWAS (9, 10). It has
been proposed that, since PR3 is a target of α1AT, a decreased
production of this inhibitor could result in higher levels of
circulating PR3, leading to the synthesis of anti-PR3 ANCA (11).

Regarding PRTN3, the role of this gene in AAV was described
in a candidate gene association study, in which a genetic
variant affecting a putative transcription factor-binding site was
associated with GPA (12). Subsequently, two of the GWASs
performed in AAV have confirmed this association (9, 10).
Interestingly, the most recent GWAS reported that the lead SNP
at this gene (rs62132293), which is in almost complete linkage
disequilibrium (LD) with that described in the original study, acts
as an expression-quantitative trait locus (eQTL) that results in an
increased expression of PRTN3 in neutrophils (10).

The protein encoded by SEMA6A has been characterized
as a critical regulator of angiogenesis by modulating VEGF
signaling (85). Nevertheless, it should be considered that,
although polymorphisms within this locus showed genome-wide
significance (13), this association was not subsequently validated
in a replication study performed in a well-powered cohort of
European AAV patients (including GPA, MPA, and EGPA cases)
(86) or in the subsequent GWAS carried out by the same group
(10). Therefore, further genetic association studies are needed to
confirm the role of SEMA6A in AAV.

Finally, PTPN22 has been consistently associated with both
GPA and MPA by candidate gene and genome-wide studies
(10, 13–15). The highest signal within the PTPN22 locus lies
on the R620W functional variant, the same one associated with
GCA, thus pointing to a pleiotropic effect of this polymorphism
in both vasculitis.

On the other hand, polymorphisms within the CTLA4 locus,
encoding a protein which transmits an inhibitory signal to T cells
by blocking the interaction between CD28 on the T cell and CD80
or CD86 on the antigen-presenting cell, have been implicated in
AAV by candidate gene analyses in different populations (87–92)
and have shown suggestive association in GWASs (9, 13), thus
supporting the idea that this locus represents a genetic risk factor
for AAV.

Regarding EGPA, no GWAS has been published in this disease
so far and the few associations reported to date have been
identified using a candidate-gene strategy. In this regard, an early
candidate-gene study reported an association between EGPA
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and the HLA-DRB4 gene (93), which highlights the existence
of different HLA associations for the different AAV subgroups.
In addition, polymorphisms within several non-HLA genes,
including FCGR3B and IL10, have also been associated with this
vasculitis (94, 95). On the other hand, a role of eotaxin-3 in
the EGPA pathogenesis was proposed. Interestingly, serum levels
of this molecule were found to be increased in active patients
and correlated with eosinophil counts, total immunoglobulin E
(IgE) levels and acute-phase parameters (96, 97). However, a
genetic study failed to identify an association between the gene
encoding this molecule, CCL26, and EGPA, maybe due to a lack
of statistical power (97). Therefore, the role of this gene as a
susceptibility factor for EGPA remains to be clarified.

Although we are still far from fully understanding the
pathogenic mechanisms implicated in AAV, genetic studies are
contributing to their elucidation. Insights into these pathogenic
pathways have opened new strategies for biological treatment.
In this line, the central role that ANCA-mediated neutrophil
activation plays in these disorders has led to the therapeutic use
of B cell depleting drugs for AAV. Rituximab has proved to be
highly effective for both remission induction and maintenance
treatment (98), representing one of the major breakthroughs
of the last decade in the treatment of these vasculitides.
Additionally, the therapeutic potential of other B cell-targeting
agents, such as belimumab, is being evaluated (NCT01663623).
Belimumab is a humanized monoclonal antibody against BAFF,
a potent B cell activator, which represents an interesting target
for AAV treatment, since it has been reported to increase the
production of PR3-ANCA in GPA patients (99).

On the other hand, B cells require T cell help to differentiate
into antigen-specific Ig-producing plasma cells. Therefore,
blockade of the co-stimulation signal required for full T cell
activation using abatacept (CTLA4-Ig) is also an interesting
treatment option that has shown clinical efficacy in an open-label
clinical trial (100).

Behçet’s Disease
Behçet’s disease (BD) is an inflammatory disorder that may
affect arteries and veins of all sizes. It is characterized by
heterogeneous clinical manifestations, including oral and genital
ulcers, which are the hallmark lesions of this vasculitis, as well
as vascular, gastrointestinal, articular, and central nervous system
manifestations. This condition shows a male preponderance and
is more frequent in the Middle East and Asia (101).

BD is the vasculitis that has benefited most from the genome-
wide era, with five large-scale genetic studies performed on
this disorder so far, four GWASs and an Immunochip (16–
18, 20, 21). This has lead to the discovery of a significant
number of consistent genetic risk loci, including the HLA region
that, as in other vasculitis, is the main susceptibility locus
for BD. Specifically, an association between the classical allele
HLA-B∗51 and this disorder has been consistently identified in
different ethnic groups during the last years (102). Moreover,
dense genotyping and imputation of this region have evidenced
additional independent signals. In this regard, a study published
in 2013 reported that the association between HLA-B∗51 and
BD was explained by a SNP located between the HLA-B and

MICA genes (103). They also identified three independent signals
within the HLA region, located within PSORS1C1 (psoriasis
susceptibility 1 candidate 1), upstream HLA-F-AS1 (HLA-F
antisense RNA 1), and within HLA-Cw∗16:02. In addition, a
subsequent Immunochip study also described two signals, HLA-
B∗57 and HLA-A∗03, that showed an independent effect to that
conferred by HLA-B∗51 (18).

Several loci outside the HLA region have also shown
robust associations with this vasculitis. The first GWASs
on BD, performed in Japanese and Turkish populations
and simultaneously published in 2010, evidenced the role
of IL10 and IL23R/IL12RB2 as genetic risk factors in BD
(16, 17). The association with the IL23R/IL12RB2 locus was
subsequently confirmed in an Immunochip study performed
in BD patients from Spain (18). IL10 encodes a cytokine that
has an anti-inflammatory role by suppressing the expression
of pro-inflammatory cytokines, such as IL-6, IL-12, and IL-
1, but also promotes B cell responses by enhancing B cell
survival, proliferation, and antibody production (104). The
IL23R/IL12RB2 locus contains two genes with a crucial role in
the inflammatory response. IL23R encodes a subunit of the IL-23
receptor, whereas IL12RB2 encodes an IL-12 receptor chain. As
previously indicated, IL-12 and IL-23 participate in the immune
responses mediated by Th1 and Th17 cells, respectively (57).

In addition, a follow-up study, in which data from the Turkish
GWAS were imputed, identified four new loci contributing to the
BD susceptibility, CCR1/CCR3 (C-C motif chemokine receptor
1/3), STAT4 (signal transducer and activator of transcription
4), KLRC4 (killer cell lectin like receptor C4), and ERAP1
(endoplasmic reticulum aminopeptidase 1) (19). All these loci
play relevant roles in the immune response. The CCR1 and
CCR3 genes form a chemokine receptor gene cluster, which
also includes CCR2, CCRL2, CCR5, and CCXCR1, on the
chromosomal region 3p21. These genes encode proteins critical
for the recruitment of effector immune cells to the site of
inflammation (105). The protein encoded by STAT4 is a member
of the STAT family of transcription factors that mediates
responses to IL-12, IL-23, and type 1 IFNs, and regulates the
differentiation of Th1 and Th17 lymphocytes (106). The signal
detected at the KLRC4 region is located within a haplotype
block that contains five natural killer (NK) cell receptor genes
(KLRK1, KLRC1, KLRC2, KLRC3, and KLRC4), some of which
act as co-stimulators for CD4+ and CD8+ T cells (107). Finally,
ERAP1 encodes an amino peptidase that is crucial for antigen
presentation through HLA class I molecules. Interestingly,
ERAP1 variants conferred risk for BD in HLA-B∗51 positive
individuals preferentially, thus suggesting the existence of an
interaction between both proteins (19).

In 2013, a third GWAS performed on BD patients from
Korea reported GIMAP4 (guanosine-5

′
-triphosphatase (GTPase)

IMAP family member 4) as a new susceptibility locus (20).
This gene encodes a protein belonging to the GTP-binding
superfamily and to the immuno-associated nucleotide (IAN)
subfamily of nucleotide-binding proteins that seems to play a
role in regulating T cell apoptosis (108). Functional studies
performed by the authors revealed that the minor allele of the
most associated SNP within this region correlated with lower
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protein activity, and that CD4+ T cells from BD patients have
a diminished GIMAP4 expression (20).

A genome-wide association between IL12A, encoding the p35
subunit of IL-12, and BD has also been described in a GWAS
performed on an admixed cohort including Western Europeans,
Middle Eastern and Turkish cases with BD (21). This association
was confirmed in a subsequent Immunochip study, in which the
JRKL/CNTN5 (jerky like/contactin 5) locus was also identified
as a new genetic risk factor for BD (18). The protein encoded
by JRKL has an unknown function, whereas CNTN5 encodes a
member of the immunoglobulin superfamily that mediates cell
surface interactions during nervous system development (109).

BD treatment has undergone a significant evolution over
the years, thanks to the increased knowledge of the pathogenic
mechanisms involved in this disease. Genetic findings have
evidenced the prominent role of immune responses mediated
by Th1 and Th17 cells in BD, with multiple pro-inflammatory
molecules contributing to its pathological landscape. This has led
to the study of new biological therapies, most of them targeted
against cytokines.

In this line, inhibition of IL-1 and IL-6 has shown the
most interesting results in both small case series and clinical
trials. Specifically, three IL-1 blockers have shown clinical
efficacy in BD patients, the IL-1 receptor antagonist anakinra,
as well as canakinumab and gevokizumab, targeting the IL-
1 molecule directly, which have proved to be effective for
all BD manifestations, especially for the most severe ocular
involvement (110). In relation to IL-6 inhibition, tocilizumab
has proved to be highly effective in treating BD patients
with neurological involvement as well as in controlling uveitis,
although less promising results were found regarding the
treatment of mucocutaneous manifestations (110). Ustekinumab
and secukinumab have also shown clinical efficacy in case
series studies (111, 112). In addition, the clinical utility of
Ustekinumab is currently being evaluated in a phase 2 clinical
trial (NCT02648581).

Although there are more clear evidences of T cell involvement
in BD, several studies have suggested a possible pathogenic role of
B lymphocytes. Indeed, depletion of B cells using rituximab has
also emerged as a promising therapy in BD patients (110).

Kawasaki’s Disease
Kawasaki’s disease (KD) is a systemic vasculitis that affects small
and medium size vessels. It mainly affects children younger than
5 years of age, especially of Asian origin. The most serious
complication of KD is the development of coronary artery lesions
(CALs), representing the main cause of acquired heart disease
among children in Japan, Europe and the USA (113).

Although seven GWASs and an Immunochip have been
published in both European and Asian KD cohorts in recent
years (22, 24–26, 39, 114–116), only a few consistent genetic
associations have been described so far, probably due to the lack
of statistical power of most of these studies.

As in other vasculitis, the HLA locus seems to be involved
in the KD genetic predisposition. However, contradictory results
have been found regarding the specific HLA alleles associated
with this disease. Whereas early candidate gene studies identified

associations with HLA-Bw54 (previously known as Bw22) in
Japanese population (117, 118) and with HLA-Bw51 and HLA-
B44 in European patients (119–121), a genetic variant located
within the HLA class II region (between HLA-DQB2 and HLA-
DOB)was identified as the strongest signal in a GWAS performed
on KD cases from Japan (26). This association within the HLA
class II region was then replicated in an European-American
case-parent trio study using the Immunochip platform (39). In
addition, a more recent GWAS identified several SNPs within the
HLA class I region associated with KD in Korean population, but
failed to replicate this association in an independent case/control
set from Japan (24). The small sample sizes of these studies and
the varying LD patterns observed across different populations are
likely explanations of these heterogeneous findings.

Regarding genetic risk factors outside theHLA locus, genome-
wide associations within the ITPKC and the FCGR2A loci were
identified in a GWAS performed in European KD patients
and replicated in independent cohorts of Asian and European
descent (22). The KD-associated SNP within FCGR2A is a
functional variant encoding a H131R substitution. It has been
reported that the presence of arginine instead of histidine at
this amino acid position reduces the affinity of the receptor
for the IgG2 isotype (122). ITPKC (inositol-trisphosphate 3-
kinase C), encoding one of the three isoenzymes of ITPK that
phosphorylate inositol 1,4,5-trisphosphate (IP3), was initially
implicated in KD by linkage analysis using sib-pairs (123). This
same study showed for the first time that ITPKC acts as a negative
regulator of T cell activation through the Ca2+/nuclear factor
of activated T cells (NFAT) signaling pathway. Interestingly, a
subsequent study showed that the genetic variant associated with
KD has functional consequences, influencing the ITPKC protein
levels, which regulates the production of IL-1β and IL-18 (124).
Moreover, using a positional candidate gene study for the 4q35
region, previously linked to KD, Onouchi et al. identified several
genome-wide associations within the CASP3 (caspase 3) gene,
which encodes a caspase with a crucial role in apoptosis (23).
Similarly to the function identified for ITPKC, this study also
reported that one of the associated SNPs, located within the
5
′
untranslated region of the gene, had functional implications,

affecting binding of NFATc2 to the DNA sequence surrounding
this polymorphism.

In 2012, two subsequent GWASs, published simultaneously,
identified two new susceptibility loci for KD, BLK (BLK proto-
oncogene, Src family tyrosine kinase) andCD40 (CD40molecule)
(25, 26). BLK encodes a non-receptor tyrosine-kinase of the
src family of proto-oncogenes with a crucial role in B cell
receptor signaling, thus participating in B-cell activation and
antibody secretion (125). The CD40 gene is a member of the
TNF-receptor superfamily that encodes a receptor expressed
on antigen-presenting cells involved in inflammation through
selection of autoreactive T cells and activation of B and T
cells (126).

Additionally, large-scale genetic studies have reported
suggestive signals in different loci, including CAMK2D
(calcium/calmodulin-dependent protein kinase II delta),
CSMD1 (CUB and Sushi multiple domains 1), LNX1 (ligand
of numb-protein X1), NAALADL2 (N-acetylated alpha-linked
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acidic dipeptidase-like 2), TCP1 (t-complex 1), PELI1 (pellino E3
ubiquitin protein ligase 1), DAB1 (Dab reelin signal transducer
homolog 1), COPB2 (coatomer protein complex beta-2 subunit),
ERAP1, NMNAT2 (nicotinamide nucleotide adenylyltransferase
2), FUT1 [fucosyltransferase 1 (H blood group)], RASIP1 (Ras
interacting protein 1), and BRD7P2 (bromodomain containing
7 pseudogene 2) (24, 39, 114–116). However, these associations
did not reach genome-wide significance level nor were replicated
in later studies and, therefore, they cannot be considered as
established susceptibility loci.

As shown by genetic studies, both T and B cells participate in
the pathogenic mechanisms implicated in KD. The involvement
of the FCGR2A gene evidences the relevant role of IgG receptors
in the pathogenesis of this vasculitis, providing a biological basis
for the use of intravenous immunoglobulin (IVIG), the standard
treatment for KD patients. However, approximately up to 20%
of patients do not fully respond to this therapy, presenting
an increased risk for the development of coronary aneurysms
(127). Therefore, several therapeutic options are being tested for
treatment of refractory cases.

Considering the role of TNF-α in the pathogenesis of KD,
the clinical efficacy of TNF-α inhibitors, such as infliximab
and etanercept, has been evaluated. Although treatment with
infliximab has shown clinical efficacy in different studies,
including reduction of fever duration, markers of inflammation
and immunoglobulin reaction rates, its role on the prevention of
CALs is still to be determined (128). A phase III trial comparing
the efficacy of a second dose of IVIG with infliximab treatment
is currently recruiting participants (NCT03065244). In addition,
a phase II clinical trial to determine the safety and efficacy of
etanercept in reducing the incidence of persistent or recurrent
fever in KD patients is currently ongoing (NCT00841789).

On the other hand, studies in mice have demonstrated that
both IL-1α and IL-1β are involved in the development of CALs
in KD (129, 130). Interestingly, PELI1, encoding a protein that
acts an intermediate component in the signaling cascade initiated
by the IL-1 receptor (131), showed a suggestive association with
CALs development in a KD GWAS (115). Thus, genetic findings
also support the role of this pathway as a potential drug target
in this vasculitis. Considering this, the potential clinical efficacy
of blocking IL-1β receptor using anakinra is currently being
explored. Three case reports have reported the beneficial clinical
use of this biological agent (128). Moreover, two phase II clinical
trials exploring the efficacy of anakinra are currently underway
(NCT02179853 and NCT02390596).

Polyarteritis Nodosa
Polyarteritis nodosa (PAN) is a systemic, necrotizing medium-
sized vessel vasculitis, mainly affecting adults between the ages of
40–60 years, although it can also appear in children. The clinical
features of PAN depend on the affected organs and include
systemic symptoms and involvement of the gastrointestinal, renal
and peripheral nervous systems.

In 2014, two independent studies identified loss-of-function
mutations in the CECR1 (cat eye syndrome chromosome region
candidate 1) gene, which encodes the extracellular adenosine
deaminase 2 (ADA2), using whole-exome sequencing (132, 133).

Interestingly, in many cases, both the clinical manifestations and
the histological findings of the deficiency of ADA2 (DADA2)
were consistent with the diagnosis of PAN, which suggests
that DADA2 contributes to the clinical phenotype of this
vasculitis. The ADA2 protein is mainly expressed by myeloid
cells and plays a role in the proliferation and differentiation of
macrophages. In this regard, its deficiency has been linked to an
imbalance in monocytes differentiation toward proinflammatory
M1 macrophages (133, 134).

Clinical management of patients with DADA2 is challenging.
None of the commonly used immunosuppressive drugs have
resulted particularly effective. Anti-TNF agents have shown
promise in the management of the inflammatory syndrome and
vasculitis; however, this therapy is not able to completely control
the disease manifestations in all treated patients. Considering
that bone marrow–derived monocytes and macrophages are
the main source of secreted ADA2, it was hypothesized that
hematopoietic stem cell transplantation (HSCT) could be an
effective treatment for this condition. In this regard, two studies
have reported that HSCT was able to normalize the plasmatic
levels of ADA2 and to control the disease manifestations (135–
137), thus suggesting that this therapy could represent a definitive
treatment of DADA2. In addition, enzyme-replacement therapies
have also been considered as a potential treatment for these
conditions. However, the results obtained using this strategy have
not been entirely satisfactory (138).

GENETICS DETERMINANTS OF
TREATMENT RESPONSE IN VASCULITIS

The genetic basis of treatment response has only been evaluated
in three types of vasculitis so far, KD, AAV, and BD, mainly
by means of candidate-gene association studies. This has led
to the identification of several potential genetic predictors of
treatment efficacy.

Most of the pharmacogenetic studies performed in vasculitis
have analyzed genetic variants involved in the resistance to IVIG
therapy in KD. As it was already mentioned, this treatment is
highly effective, but around 10–20% of patients are resistant and
have a higher risk for CALs. Therefore, it is essential to elucidate
the causes of this resistance in order to predict the responsiveness
of patients during the early stages of the disease.

Polymorphisms previously associated with KD have been
evaluated in relation to the IVIG response. A study published
in 2013 showed that the risk alleles of the ITPKC and CASP3
susceptibility variants (rs28493229 and rs72689236, respectively)
were overrepresented in IVIG resistant patients with respect to
responding patients (28). These associations were replicated in a
subsequent study (29), thus supporting the role of these genes
in the response to IVIG treatment. Interestingly, a functional
study demonstrated that the poor response observed in patients
homozygous for the risk allele of the ITPKC locus correlated with
increased cellular production of IL-1β and IL-18 (124).

On the other hand, additional studies have evaluated the
implication of candidate genes in the clinical efficacy of IVIG
based on their functional role. Given that the anti-inflammatory
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activity of IVIG is partly mediated through FcgR (139), the role
of several genes encoding these proteins have been explored.
In this regard, polymorphisms within FCGR2B, FCGR2C, and
FCGR3B have been involved in the response to this drug
in different studies performed by the same group (30–32).
In addition, genetic variants located within genes encoding
chemokine receptors and their ligands, including CCR5 (C-C
motif chemokine receptor 5), CCL3L1 (C-C motif chemokine
ligand 3 like 1), and CCL17 (C-C motif chemokine ligand 17),
as well as genes encoding pro-inflammatory cytokines, such
as IL1B and IFNG, have also been implicated in the IVIG
treatment resistance (33–36). Moreover, an association between
a polymorphism of the HMGB1 (high mobility group box 1)
locus, involved in inflammation and cell differentiation, and the
clinical efficacy of this treatment has been recently reported
(37). However, all these associations need to be confirmed in
independent studies.

The genetic basis of IVIG response in KD has also been
explored through comprehensive large-scale genetic analyses
(38–40). Both GWAS and Immunochip data have been used
to identify genetic variants associated with IVIG resistance by
stratifying KD patients according to treatment response. A
polymorphism within the BCL2L11 (BCL2 like 11) gene showed
a specific association at the genome-wide significance level with
the subgroup of responder patients in an IVIG response-stratified
genome-wide association study (38). The protein encoded by
this gene, known as Bim, is an important regulator of the
negative selection of B lymphocytes in the bone marrow and of
T lymphocytes both in the thymus and the periphery (140). In
addition, a very recent GWAS performed in Korean KD patients
identified the SAMD9L (sterile alpha-motif domain-containing
9-like) gene as a susceptibility factor for IVIG resistance (40).
This gene encodes a cytoplasmic protein involved in multiple
cellular processes, such as cell proliferation and innate immune
responses to viral infections (141). Several suggestive signals that
could be involved in the response to IVIG therapy were identified
using the Immunochip platform, including an intronic SNP of
the STX1B (syntaxin 1B) gene and a genetic variant located in
the intergenic region of BAZ1A (bromodomain adjacent to zinc
finger domain 1A) and C14orf19 (39).

A study published in 2017 developed a genetic model to
predict IVIG resistance in KD patients (142). In this study, the
additive effect of 11 SNPs associated with IVIG response (p < 1
× 10−05) was used to calculate a GWAS-based weighted genetic
risk score (wGRS). A significant association between wGRS and
the response was found, suggesting that this scoring system can
significantly increase the sensitivity and specificity of prediction
of IVIG responsiveness.

Regarding AAV, the advances achieved in its therapeutic
management in recent years have allowed these forms of
vasculitis to go from presenting high mortality to becoming
chronic diseases. Currently, the standard treatment for AAV
consists of glucocorticoids together with cyclophosphamide or
rituximab. However, despite the success of this therapy, a high
percentage of patients do not reach complete remission.

Only three pharmacogenetic studies have evaluated the role
of genetic variants as predictors of treatment response in

AAV so far. One of them, performed in 152 AAV patients
from China, was focused on analyzing the possible implication
of the HLA locus in the response to remission induction
therapy after 6 months (41). Among the 56 HLA-DRB1, HLA-
DPB1, HLA-DQB1, and HLA-DQA1 alleles analyzed, HLA-
DRB1∗0405 appeared to be associated with the clinical efficacy
of this treatment; specifically, the proportion of patients showing
treatment failure was higher in the subgroup of patients carrying
this allele (41.7%) than in the subgroup of patients negative for
HLA-DRB1∗0405 (12.9%).

On the other hand, the main mechanism through which
rituximab achieves B cell depletion is antibody-dependent cell
mediated cytotoxicity (ADCC), which is mediated through
FcgR. Regarding cyclophosphamide, it requires activation by
the hepatic cytochrome P450 (CYP) enzymes. Considering
this, a more recent study has explored the role of several
polymorphisms, located within three genes encoding FcgR
(FCGR2A, FCGR2B, FCGR3A) and two genes encoding different
CYP isoforms (CYP2B6 and CYP2C19), in the response to the
treatment with rituximab and cyclophosphamide, respectively
(42).When both subgroups of patients (96 treated with rituximab
and 93 with cyclophosphamide) were individually analyzed,
the authors did not find any potential predictor of treatment
response among the genetic variants selected. However, when
AAV patients were considered as a global cohort, the FCGR2A
519AA genotype was found to predict complete response
independently of the induction treatment used.

In addition, a study published in 2017 evaluated the role
of several candidate genes in the rituximab response in two
independent cohorts of patients with AAV, including MPA
and GPA (43). Only one (rs3759467) of the 18 analyzed
SNPs showed a consistent association with treatment efficacy.
Interestingly, this association was specific for the subgroup of
patients PR3-ANCA positive. The associated SNP is located
in the 5′ regulatory region of the TNFSF13B gene, encoding
the B-cell activating factor BAFF, which has been reported to
increase the production of PR3-ANCA in GPA patients (99), as
previously mentioned.

Finally, pharmacogenetic studies performed in BD were
focused on analyzing genetic factors implicated in the response to
colchicine. This drug is the most frequently and widely used for
oral and genital ulcers, papulopustular lesions, and arthralgias;
however, some patients do not respond to this therapy.

Until now, two genes have been associated with colchicine
response in BD. A study published in 2012 identified an
association between two SNPs, C3435T and G2677T/A, of the
ABCB1 (ATP binding cassette subfamily B member 1) gene and
the efficacy of this treatment in a candidate-gene study including
a cohort of 68 responder and 37 non-responder patients
(44). ABCB1, also known as MDR1 (multidrug resistance), is
implicated in drug metabolism by encoding an ATP-dependent
drug efflux pump for different xenobiotic compounds, including
colchicine (143).

A second pharmacogenetic study, in which 165 responder
and 215 non-responder patients were analyzed, reported a
role of the MTHFR (methylenetetrahydrofolate reductase) locus
in the response to colchicine treatment (45). This gene
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encodes an enzyme that catalyzes the conversion of 5,10-
methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-
substrate for homocysteine remethylation to methionine. In this
case, the polymorphism associated with the response, C677T,
causes an amino acid substitution from alanine to valine leading
to reduced activity and increased thermolability of the enzyme,
which in turn results in increased levels of homocysteine (144).
It has been described the existence of hyperhomocysteinemia
in BD patients, which correlates with thrombosis and ocular
involvement (145).

SHARED GENETIC COMPONENT IN
VASCULITIS

Nowadays, it is widely accepted that autoimmune disorders in
general and vasculitides in particular share susceptibility genes
and molecular pathways influencing their development (146,
147). Indeed, a large number of susceptibility loci described
here are common to different vasculitides. The combination of
different diseases as a single phenotype in large-scale studies,
such as GWAS and Immunochip, has proven to be very useful
in the evaluation of this shared genetic component and in the
identification of potential drug targets that could be repurposed
in related conditions (148–151).

To date, two studies have been conducted combining different
forms of vasculitides. In the first one, Carmona et al. (152)
combined data from large-vessel vasculitis, namely GCA and
TAK, and found a significant genetic correlation within the
IL12B locus. Considering this, ustekinumab, which has been
successfully used to treat refractory TAK, could be of potential
clinical use in GCA. Similarly, Ortiz-Fernandez et al. (153)
combined data of different vasculitides (GCA, TAK, AAV, IgA
vasculitis, and BD) and identified a common signal within the
lysine demethylase 4C (KDM4C) gene, which encodes a histone
demethylase involved in epigenetic mechanisms and that could
be of potential use in the treatment of these conditions.

PRECISION MEDICINE IN VASCULITIS:
FROM GENETIC FINDINGS TO CLINICAL
APPLICATION

The goal of precision medicine is to maximize treatment
efficacy by developing more targeted drugs directed against
biological pathways with a pathogenic role in the disease, as
well as by optimizing the use of existing drugs, through the
a priori selection of those patients who will benefit from a
certain treatment.

As described in this review, it is now clear that genetic
studies offer great potential for understanding the molecular
mechanisms involved in vasculitis. Thus, insight into disease
pathogenesis is progressively leading to new ways for targeted
biologic treatment. Moreover, based on the moderate effects
provided by the thousands of genome-wide SNPs identified
by GWAS, nowadays it is possible to predict each individual
susceptibility by means of the polygenic risk score (PRS) analysis,
which have been recently performed in other diseases with

remarkable results (154). Currently, PRSs are being calculated
for different phenotypes separately and, as a potential next
step, parallel calculation and disease comparisons of PRS could
reflect shared and opposite mechanisms in different vasculitides.
However, although these diseases have benefited from the
genome-wide era, genetic studies conducted to date still lack
enough statistical power to detect variants with moderate effects
and, consequently, only a few consistent genetic risk loci have
been identified so far. Therefore, further genetic studies in
larger cohorts are crucial to obtain information on the missing
heritability of these disorders.

Moreover, in recent years, the translation of
GWAS/Immunochip findings into biological insights has
been challenging, mainly due to the difficulty of identifying
causal variants, as well as by the fact that many of the disease-
associated SNPs are located in non-coding regions of the
genome. Therefore, substantial effort is needed to move from
association signals to understanding the functional implication
of the genes. In this sense, integration of genomic data with
other–omic information, such as epigenomic and transcriptomic
data, has become a useful approach to unravel the mechanisms
underlying complex diseases. Thus, a better understanding of the
interaction between these factors will allow us to obtain a clearer
picture of the molecular network involved in the pathogenesis of
vasculitis, so that we may turn basic biological knowledge into
targets for new therapeutic approaches.

On the other hand, it is likely that a better use of existing
drugs will improve the clinical management of vasculitis. In this
regard, prediction of those patients that will respond to a specific
drug based on their molecular profiles results essential. Although
several genetic variants have been described as potential predictor
of drug efficacy, mainly in KD but also in AAV and BD, at present,
no validated biological biomarker exists to predict treatment
response in vasculitis. Again, large-scale genetic studies including
well-powered cohorts will be essential to identify genetic profiles
that help to classify vasculitis patients and to guide the selection
of the most appropriate therapeutic intervention.

It is, therefore, expected that genetic findings in vasculitis
continue to open new ways for targeted biologic therapies
and improve the use of existing drugs, which will lead to
a more personalized application of treatment in the future.
However, multiple issues must be overcome before precision
medicine can be effectively implemented, which will necessarily
require great collaborative efforts among vasculitis expertise
research groups.
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In primary systemic small vessel vasculitis autoantibodies are common and seem to

play an important role in the pathogenesis. Autoantibodies in vasculitis are preferentially

directed against components of the immune system or directly against components

of the vessel wall. Plasmapheresis is often applied in emergency situationists when

the function of vital organs is jeopardized, the level of clinical evidence to apply such

therapy, however, varies between low and non-existing. Plasmapheresis is a blunt and

unspecific instrument that requires several sessions to achieve a substantial reduction

of autoantibody levels. IdeS and EndoS are two relatively recently discovered enzymes

produced by S. pyogenes, that have a remarkable capacity to degrade and disarm

IgG. They have shown positive results in several in vivo models of autoimmunity, and

treatment with IdeS has successfully been used to inactivate HLA alloantibodies in

patients undergoing renal transplantation. Both IdeS and EndoS have the potential

to become precision tools to replace plasmapheresis in the treatment of vasculitic

emergencies and a clinical trial of IdeS in anti-GBM vasculitis is now ongoing.

Keywords: vasculitis, ANCA, Streptococcus pygenes, anti-GBM antibody disease, autoantibodies

AUTOANTIBODIES ARE COMMON

The association of autoantibodies and inflammatory diseases was established more than 60 years
ago (1); and now there are several hundred described specificities associated with different diseases.
They are utilized for diagnostic purposes to differentiate between diseases and sometimes also as
markers of disease activity; and they may participate in the pathogenesis (2). Elevated levels of
disease associated autoantibodies can sometimes be found long before onset of symptoms and any
diagnosis can be established (3). Autoantibodies can also be found in healthy humans (2, 4) and in
mice raised under germfree conditions (5). Such natural autoantibodies are probably instrumental
in removing cellular debris and seems to be protective of both arteriosclerosis and autoimmune
disease. Most of these natural autoantibodies are thought to be of IgM class with limited avidity and
specificity. However, it has been shown that healthy humans also have low levels of IgG antibodies
(4) with highly restricted epitope specificity (6).

Autoantibodies in Vasculitis
Vasculitides are broadly divided into primary and secondary forms, where primary vasculitides
are diseases where inflamed blood vessel is the defining and most prominent feature. Primary
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TABLE 1 | Autoantibodies in small vessel vasculitis.

Disease Main autoantibody Autoantigen

Microscopic polyangiitis (MPA) MPO-ANCA Myeloperoxidase

Granulomatous polyangiitis

(GPA, formerly Wegener’s

granulomatosis)

PR3-ANCA Proteinase 3

Eosinophilic granulomatous

polyangiitis (EGPA, formerly

Churg-Strauss Syndrome)

MPO-ANCA Myeloperoxidase

Anti-GBM disease (formerly

Goodpasture’s disease)

Anti-GBM α3 chain of Type IV

collagen

IgA-vasculitis (formerly

Henoch-Schönlein purpura)

IgG/IgA anti-IgA Degalactoslylated IgA

Cryoglobulinemic vasculitis IgM anti-IgG Polyclonal

immunoglobulin G

Hypocomplementemic urticarial

vasculitis

Anti-C1q Complement factor C1q

vasculitides are further divided based on vessel size into large
vessel, medium-sized vessel and small vessel vasculitis (7).
Autoantibodies are common in all diseases in the small vessel
group but are rare or at least not yet discovered in large and
medium-sized vessel vasculitis (8, 9) (Table 1). Autoantibodies
are also common in secondary forms of small vessel vasculitis,
such as in systemic lupus erythematosus (1) and drug induced
vasculits (10, 11), but in secondary vasculitis treatment should be
aimed at underlying condition.

Autoantibodies Take Part in the
Pathogenesis
The role of the autoantibodies in the pathogenesis, and the
implicated pathogenic mechanisms, varies between the different
diseases. In anti-GBM disease the binding of autoantibodies
along the capillary wall of the glomeruli and alveoli start
the complement cascade through the classical pathway and
attract neutrophils through the C5a fragment (12, 13). Transfer
experiments of eluted human antibodies injected into primates
show that anti-GBM alone can mediate the disease (14),
but there are also reports of anti-GBM models driven by T
cells in agammaglobulinemic animals (15). Several in vitro
studies indicate a role for anti-neutrophil cytoplasm antibodies
(ANCA) in the pathogenesis of small vessel vasculitides such
as microscopic polyangiitis (MPA) and granulomatosis with
polyangiitis (GPA) (16, 17). There are many ANCA specificities
in different autoimmune diseases but only myeloperoxidase
(MPO) and proteinase 3 (PR3) that are expressed on the
surface of primed neutrophils are major ANCA-antigens in
vasculitis (8). The most compelling evidence for a role of
ANCA in the pathogenesis comes from animal models of
MPO-ANCA, where antibodies alone or antibody producing
cells can transfer the disease (18). However, there are also
data that do not support a direct role for ANCA in the
pathogenesis; all purified IgG preparations from patients do
not active neutrophils in a consistent manner (19, 20).
IgA vasculitis (21) and cryoglobulinemic vasculitis (22) are

immune complex mediated diseases, where polyclonal or
monoclonal autoantibodies react with other immunoglobulins
to form complexes. In urticarial vasculitis there are often
autoantibodies directed to the complement factor C1q, which
also lead to immune complex formation (23). Immune complexes
activate complement primarily through the classical pathway
which results in neutrophil influx and vessel wall damage
(23). Physiochemical properties such as size and temperature
determine where and when they will deposit, in urticarial
vasculitis the direct targeting of the complement system also
affect symptoms and signs.

IdeS AND EndoS

Streptococcus pyogenes, one of the most significant bacterial
pathogens in humans, has evolved multiple mechanisms
to avoid antibody attack and complement activation. IdeS,
Immunoglobulin G degrading enzyme of Streptococcus pyogenes,
is a secreted cysteine proteinase which cleaves all four human
IgG subclasses with a unique degree of specificity; apart from
IgG no other substrate has been identified (24). Before cleavage
can occur in the hinge region of the heavy chain to generate
two Fc and one F (ab1)2 fragment the enzyme has to bind to
the Fc region, and the remarkable specificity lies in this initial
protein-protein interaction (25). S. pyogenes infects only humans,
and from an evolutionary point of view it is noteworthy that the
cleavage of IgG in other species is more restricted; in mice for
instance subclasses 2a/c and 3 are sensitive, but not 1 and 2b (26).

Human IgG contains one N-linked glycan attached to
Asn237 on the heavy chain (27). It is of great importance for
effector functions such as complement activation and neutrophil
recruitment. There are several bacterial enzymes that modifies
N-linked glycans, but the first IgG specific glycan hydrolase to
be described was EndoS which is also produced Streptococcus
pyogenes (28). EndoS cleaves most of the carbohydrate moiety
from IgG but leaves anN-acetylglucosamine with an alpha-linked
fucose on protein backbone. EndoS treatment in vitro leads to
reduced complement activation and phagocytosis of bacteria.

IdeS and EndoS in Experimental Models
The species specificity hampers to use of IdeS in many
rodent models. Not surprising is that pretreatment in vitro
of pathogenic autoantibodies with IdeS can abolish disease in
passive transfer models, such as immune thrombocytopenic
purpura, neuromyelitis optica, and collagen induced arthritis (26,
29). What is more encouraging is that is that mice in vivo can be
rescued from a lethal dose of rabbit anti-mouse thrombocytes and
that arthritis induced by mouse IgG2a antibodies can be reduced
in severity by IdeS in vivo (26). EndoS is easier to employ in
experimental rodent models and have been shown to be effective
to prevent or to treat disease in multiple settings, also in strains
that spontaneously develop systemic inflammation (30).

The effect of IdeS and EndoS has also been investigated in
experimental models of vasculitis. A mouse/rabbit model had
been developed to mimic essential steps in the pathogenesis
of anti-GBM disease. Here we took advantage of IgG species
differences. Mice are first given a bolus dose of rabbit anti-mouse
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IgG; since rabbit IgG cannot activate mouse complement
(31) this has no consequences. A week later, when there
is no longer any circulating rabbit IgG, the animals are
challenged with mouse-anti rabbit IgG. This leads to a dose-
dependent renal injury mediated by complement induced
neutrophil recruitment. When IdeS was given between the
two IgG injections, it completely inhibited the development
of proteinuria. Histological examinations confirmed that Fc
fragments but not F (ab’)2 fragment had been removed from the
GBM. This was accompanied by a reduction in the deposition of
complement and influx of neutrophils in the glomeruli. EndoS
was also employed in this model, even though the setup is not
ideal for testing EndoS a positive effect was seen.

EndoS has also been used in a model of ANCA associated
vasculitis (32). Pre-treatment of human MPO-ANCA containing
IgG with EndoS prevented neutrophil respiratory burst. When
mouse anti-MPO was exposed to EndoS before injection into
mice, the antibodies did not induce disease. In addition, when
EndoS was given to the mice after challenge with anti-MPO IgG
antibodies this attenuated the disease (32).

IdeS in Humans
In a phase I trial, IdeS was given in different doses to healthy
human volunteers (33). Doses as low as 0.12 mg/kg body weight
led to a complete cleavage of not only plasma IgG but the entire
extracellular IgG pool in all subjects without any obvious side
effects. Intact IgG started to reappear after a few days and reached
pre-treatment levels within a month. Varying titer of anti-IdeS
antibodies were detected in the healthy volunteers; these levels
rose after IdeS infusion, peaked after 2 weeks and was back to
pre-treatment levels after 6 months.

IdeS is being developed as a pharmaceutical agent by
Hansa-Biopharma; the non-proprietary name for the compound
is Imlifidase. It has been tested in clinical trials to enable
transplantation in patients with multiple HLA alloantibodies
(34). A single dose given prior to transplantation enabled
transplantations in 24 out 25 such sensitized patients who if they
ultimately receive a kidney at all, may have to wait for years for
a matching kidney (35). In many of the patients HLA antibodies
rebounded, but 6 months after transplantation all 24 patients had
functioning grafts.

IdeS like all other therapies can have side effects, total
depletion of IgG take away an important protection against
microorganisms. This is done also by plasma exchange but not as
effective, on the other hand IdeS treated patients still have intact
levels of IgA and IgM. Most individuals have measurable levels of
anti-IdeS this introduces the risk of immune-complex formation
and the development serum sickness. Furthermore, there is a
theoretical risk of formation of neo-eptiopes by IdeS cleavage
which can trigger autoantibody formation to IgG bound to
different surfaces. Vigilance is always needed when introducing
new pharma.

The Potential Role IdeS and EndoS in
Treatment of Human Vasculitis
The rapid depletion of autoantibodies that can be achieved by
IdeS is potentially beneficial in acute settings where vasculits
threatens the function of vital organs. Today plasma exchange or

immunadsorption therapy is used to lower levels of pathogenic
IgG antibodies in such settings (36). With plasma exchange only
about one third of the total body IgG is removed in each session.
That means that it takes several days to reduce the levels with
one order of magnitude, and many times a greater reduction
is needed. Immunadsorption is more effective, but so far there
are no randomized trials showing that this therapy leads to an
improved clinical outcome in any condition, as compared to
standard plasma exchange. The question is whether depleting
autoantibodies with IdeS or disarming them with EndoS would
make a clinical meaningful difference.

Most patients with anti-GBM disease have rapidly progressive
glomerulonephritis (13). The standard therapy today is the
combination of cyclophosphamide to stop autoantibody
production, plasma exchange to remove autoantibodies and
steroids to dampen inflammation (37, 38). This therapy is
effective if started early, but most patients are diagnosed late.
More than 2/3 are diagnosed when glomerular filtration rate is
below 15 ml/min and in such cases <10% achieve renal survival.
Anti-GBM disease is in most cases a monophasic disease, where
autoantibodies are only produced during a few months. This
period is substantially shortened by immunosuppression (39).
We treated three patients on compassionate basis with refractory
anti-GBM disease after an individual permit from the Swedish
Medicinal Agency (40). All there were dialysis dependent
and had high levels of circulating anti-GBM despite intense
plasma-exchange. In all three cases anti-GBM levels dropped
to levels within the normal range. Using Fc-gamma specific
antisera we could show that IdeS had cleaved IgG bound to
the kidney. None of three, however, regained kidney function
enough to stop dialysis. We are now conducting an investigator
driven clinical trial (EdraCT2016-004082-39) where 0.25 mg/kg
of imlifidase (IdeS) is given as a single injection early in the
course. Anti-GBM disease is rare, and considering inclusion and
exclusion criteria, we need a very large catchment area to include
the goal of 15 patients. So far 15 tertiary referral hospitals in
major European cities participate in the study and 11 out 15
patients have been included.

In ANCA associated vasculitis plasma exchange is often used
when complicated by rapidly progressive glomerulonephritis
with severe renal failure or alveolar hemorrhage with respiratory
distress (41). However, the use of plasma exchange in ANCA
vasculitis is controversial. The MEPEX study published in 2003,
show positive effect on 1-year renal survival (42). The more
recently conducted PEXIVAS trial, that is so far only available as
congress abstracts, did not show any benefit of plasma exchange,
neither in cases with rapidly progressive glomerulonephritis
nor in cases with alveolar hemorrhage. The reason for the
negative results could be that plasma exchange is not effective
enough to lower autoantibody levels in acute settings. In
such cases treatment with IdeS or EndoS would be attractive
treatment options. On the other hand, it also possible that the
autoantibodies only play a minor role in the pathogenesis and
that their removal does not lead to any meaningful clinical effect.

IgA vasculitis, urticarial vasculitis and cryoglobulinemic
vasculitis are all considered to be immune complex mediated
diseases. Plasma exchange is being used in all three diseases, but
the evidence level is low (36, 43, 44). The potential effect of IdeS
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and EndoS is only speculative and might not even be beneficial.
IgA vasculitis is the most common form of primary systemic
vasculitis in children. The yearly incidence is reported to be as
high as 176 per million children (45). Most cases are, however,
mild and heal without any treatment. The disease is much less
common in adults, but on the other hand also more severe. The
high rate of spontaneous recovery makes clinical trials difficult.
IgA is not effective when it comes to complement activation; the
presence of IgG in the complexes may therefore be instrumental
for the development of vasculitis.

In cryoglobulinemic vasculitis IgG is the target of the
autoantibodies. Removing them could also alleviate the
inflammation. However, the short duration of the effect would
only provide transient benefit, and severe vasculitic crises are
rare in cryoglobulinemic vasculitis. The same is true for urticarial
vasculitis. The role of the autoantibodies against complement
component C1q is uncertain, and it must be kept in mind that F
(ab’)2 fragments can continue to form immune complexes also
after losing their Fc tail.

CONCLUSION

IgG class autoantibodies are common in primary small vessel
vasculitis and they seem to participate in the pathogenesis. Today

plasma exchange is often employed to reduce levels, but this

treatment is unselective and rather ineffective. IdeS and EndoS
are novel precision tools the rapidly either cleaves or disarms
the IgG molecules. Whether this would lead to meaningful
clinical responses remains to be determined in each individual
disease. Anti-GBM disease, where the pathogenesis seems to
be most straight forward, is first in line and a clinical trial is
already ongoing.
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Mutants of a catalytically inactive variant of Proteinase 3 (PR3)—iPR3-Val103 possessing a

Ser195Ala mutation relative to wild-type PR3-Val103—offer insights into how autoantigen

PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis

with polyangiitis (GPA) and whether such interactions can be interrupted. Here we

report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody

(moANCA518) from aGPA patient on an epitope remote from themutation sites, whereas

the corresponding epitope of iPR3-Val103 was latent to moANCA518. Simulated B-factor

analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased

main-chain flexibility of the latent epitope caused by remote mutations, suggesting

rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions

as new GPA treatments.

Keywords: autoimmunity, autoantigen, antigenicity, antineutrophil cytoplasmic antibody, Proteinase 3, B-factor

INTRODUCTION

Proteinase 3 (PR3) is a neutrophil serine protease targeted by antineutrophil cytoplasmic antibodies
(ANCAs) in the autoimmune disease granulomatosis with polyangiitis (GPA) (1–5). To investigate
how PR3 interacts with the ANCAs during inflammation and whether these interactions can be
intervened by therapeutics, we developed a human PR3 mutant (iPR3-Val103) with a Val103—the
major polymorphic variant at the Val/Ile polymorphic site of wild-type human PR3 [Val/Ile in
GPA patients: 64.7/35.3 (6)]—and a Ser195Ala mutation that alters the charge relay network of
Asp102, His57, and Ser195 and thereby disables catalytic functioning in PR3 (7–10). This mutant
recognized as many ANCA serum samples from patients with GPA as the wild-type human PR3-
Val103 in both immunofluorescence assay and enzyme-linked immunosorbent assay (ELISA), while
the Ser195Ala mutation is close to Epitope 5 of PR3 and remote from Epitopes 1, 3, and 4 as shown
in Figure 1 (8, 11). We also developed a number of variants of iPR3-Val103 in the course of our
investigation (11).

One such variant, iHm5-Val103 (formerly referred to as Hm5), has Ala146, Trp218, and Leu223
from human PR3 replaced by Thr146, Arg218, and Gln223 from mouse PR3. Our initial intent
of this chimeric triple mutant was to demonstrate reduced binding of ANCAs to Epitope 5 (and
possibly Epitope 1 but not Epitopes 3 and 4) of the mutant because Trp218 and Leu223 reside in
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Epitope 5 and Ala146 is in Epitope 1 as shown in Figure 1

(11). However, as described below, we serendipitously found
that a monoclonal ANCA (moANCA518) from a patient with
GPA bound to Epitope 3 of iHm5-Val103 but not iPR3-Val103,
although Epitope 3 is distal to the three mutations that reside in
Epitopes 1 and 5 (Figure 1). This finding indicates that Epitope
3, a mutation-free epitope of iHm5-Val103, is latent in iPR3-
Val103 but active in iHm5-Val103 for ANCA binding. It also
indicates that the latent epitope of PR3 can be activated by
remote mutations.

In this context, we raised a mechanistic question: How can
a latent antibody binding site in iPR3-Val103 be activated by
topologically distal mutations in iHm5-Val103? The experimental
and computational results described below offer insights into this
mechanistic question and open a new perspective on a possible
cause and novel therapy of GPA.

MATERIALS AND METHODS

Materials
Reagents were obtained from Sigma (St. Louis, MO) unless
specified otherwise. The human embryonic kidney cell line 293
(HEK293) used for the expression of recombinant PR3 mutants
was obtained from ATCC (Rockville, MD).

iPR3-Val103 and iHm5-Val103: The cDNA constructs coding
for iPR3-Val103 and iHm5-Val103 and their expression inHEK293
cells were described in detail elsewhere (11, 12). Both mutants
carry a carboxy-terminal cmyc-peptide extension and a poly-
His peptide extension for purification using nickel columns from
GE Healthcare (Chicago, IL) and for anchoring in ELISAs as
previously described and specified below (11–15).

moANCA518: DNA barcode-enabled sequencing of the
antibody repertoire was performed on plasmablasts derived
from a PR3-targeting ANCA (PR3-ANCA) positive patient
as described elsewhere for rheumatoid arthritis and Sjögren
syndrome (16–18). Phylograms of the antibody repertoires
revealed clonal families of affinity matured antibodies with
shared heavy and light chain VJ usage. Twenty-five antibodies
were selected for recombinant expression (18) and tested
for reactivity with recombinant ANCA antigens [including
myeloperoxidase (15), human neutrophil elastase (19–21), iPR3-
Val103, and iHm5-Val103] using the ELISA. As described in
Results, one antibody bound iHm5-Val103 but not iPR3-Val103

and is termed moANCA518, whereas none of the other 24
antibodies bound either of the two PR3 antigens or other
ANCA antigens.

Epitope-specific anti-PR3 moAbs: PR3G-2 (22) was a gift
from C.G.M. Kallenberg of the University of Groningen. WGM2
(11, 23) was purchased from Hycult Biotech Inc (Wayne, PA).
MCPR3-3 was made as previously described (8, 11).

Enzyme-Linked Immunosorbent Assays
ELISAs used for detection of PR3-ANCAwere described in detail
elsewhere (12, 13, 15). In brief, either purified PR3 mutants or
culture media supernatants from PR3 mutant-expressing HEK
293 cell clones diluted in the IRMA buffer (0.05mM Tris-
HCl, 0.1M NaCl, pH 7.4, and 0.1% bovine serum albumin)

FIGURE 1 | Front and back views of PR3 depicting its four known epitopes,

each comprising multiple surface loops with high Cα B-factors derived from

simulations. L1A, Loop 1A of residues 36–38C; L1B, Loop 1B of residues

145–151; L1C, Loop 1C of residues 75–79; L3A, Loop 3A of residues

110–117; L3B, Loop 3B of residues 124–133; L3C, Loop 3C of residues

202–204; L4A, Loop 4A of residues 59–63C; L4B, Loop 4B of residues

92–99; L5A, Loop 5A of residues 165–178; L5B, Loop 5B of residues

186–187; L5C, Loop 5C of residues 192–194; and L5D, Loop 5D of residues

219–224; wherein the residue numbering here is identical to that of the PR3

crystal structure (PDB ID: 1FUJ).

were incubated in Pierce R© nickel-coated plates from Thermo
Fisher Scientific (Waltham, CA) for 1 h at room temperature;
control wells were incubated with the IRMA buffer only. The
plates were washed three times with Tris-buffered saline (TBS;
20mM Tris-HCl, 500mM NaCl, pH 7.5, and 0.05% Tween
20) in between steps. The ANCA-containing serum samples
were diluted 1:20 in TBS with 0.5% bovine serum albumin and
incubated in the plates with or without the PR3 mutants for
1 h at room temperature. The PR3·ANCA complexation was
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detected after incubation for 1 h at room temperature with
alkaline phosphatase-conjugated goat anti-human IgG (1:10,000
dilution). P-Nitrophenyl phosphate was used as substrate at a
concentration of 1 mg/mL. The net UV absorbance was obtained
by spectrophotometry at 405 nm after 30min of exposure.
Similarly, when epitope-specific anti-PR3 moAbs were used to
immobilize iHm5-Val103 on Maxisorp R© plates from Invitrogen
(Carlsbad, CA), complexation of moANCA518 with the antigen
was detected after incubation of HRP-conjugated anti-human
IgG antibody (1:250 dilution) for 1 h at room temperature;
3,3′,5,5′-tetramethylbenzidine (Thermo Fisher Scientific R©) was
used as substrate, and the net UV absorbance was obtained by
spectrophotometry at 450 nm after 15min of exposure.

Western Blots
Non-reductive, purified PR3 mutant proteins were loaded (1
µg/lane) onto 12% Tris-HCl gels from BioRad (Hercules,
CA). The SDS gel electrophoresis was performed at 180V for
35min. The proteins were transferred from gels to nitrocellulose
membranes, which were subsequently washed with TBS, blocked
for 45min at room temperature with TBS with 0.2% non-fat
dry milk. The membranes were then washed twice with TBS
with 0.1% Tween 20. Monoclonal antibodies (0.5–1.0µg/mL)
were incubated on the membranes overnight at 4◦C. The
membranes were then washed twice with TBS with 0.1% Tween
20 and incubated with goat anti-human or anti-mouse IgG HRP
conjugates, diluted to 1:20,000, for 20min at room temperature.
The membranes were washed again and developed with the
Pierce ECL Western Blotting Substrate kit from Thermo Fisher
Scientific (Waltham, MA).

Statistical Analysis
SPSS R© Statistics for MacOS, version 25 from IBM (Armonk, NY,
USA) was used to calculate the means and standard errors of 3–
5 repeat experiments and to compare the means between groups
with the two-tailed paired t-test.

Initial Conformations of PR3 Variants
The initial conformation of PR3-Ile103 (residues 16–239;
truncated for atomic charge neutrality) was taken from the
crystal structure of PR3 (24). The initial conformations of
the corresponding PR3-Val103 and iPR3-Val103 (residues 16–
239) were taken from the initial PR3-Ile103 conformation
with mutations of Ile103Val alone and Ile103Val together with
Ser195Ala, respectively. The initial conformation of iHm5-
Val103 (residues 16–238; truncated for atomic charge neutrality)
was taken from the initial PR3-Ile103 conformation with
mutations of Ala146Thr, Trp218Arg, Leu223Gln, Ile103Val, and
Ser195Ala. The crystallographically determined water molecules
with residue identifiers of 246–249, 257–259, 261–263, 268, 270,
274–276, 279, 280, 291, 292, 296, 298, 307, 309, and 317 were
included in all four initial conformations. The AMBER residue
names of ASP, GLU, ARG, LYS, HID, and CYX were used for
all Asp, Glu, Arg, Lys, His, and Cys residues, respectively. All
initial conformations were refined via energy minimization using
the SANDER module of AMBER 11 (University of California,
San Francisco) and forcefield FF12MClm (25) with a dielectric

constant of 1.0, a cutoff of 30.0 Å for non-bonded interactions,
and 200 cycles of steepest descent minimization followed by 100
cycles of conjugate gradient minimization.

Molecular Dynamics Simulations
Each of the four energy-minimized conformations described
above was solvated with 5578 (for iHm5-Val103) or 5536 (for all
other variants) TIP3P (26) water molecules (using “solvatebox
PR3 TIP3BOX 8.2”) and then energy-minimized for 100 cycles
of steepest descent minimization followed by 900 cycles of
conjugate gradient minimization using SANDER of AMBER 11
to remove close van der Waals contacts. The initial solvation
box size was 58.268×68.409×65.657 Å3 (for iHm5-Val103) or
67.337×66.050×58.335 Å3 (for all other variants). The resulting
system was heated from 5 to 340K at a rate of 10 K/ps under
constant temperature and constant volume, then equilibrated
for 106 timesteps under a constant temperature of 340K and
a constant pressure of 1 atm using the isotropic molecule-
based scaling. Finally, 20 distinct, independent, unrestricted,
unbiased, isobaric–isothermal, 316-ns molecular dynamics (MD)
simulations of the equilibrated system with forcefield FF12MClm
(25) were performed using PMEMD of AMBER 11 with a
periodic boundary condition at 340K and 1 atm. The 20 unique
seed numbers for initial velocities of the 20 simulations were
taken from Pang (27). All simulations used (i) a dielectric
constant of 1.0, (ii) the Berendsen coupling algorithm (28),
(iii) the particle mesh Ewald method to calculate electrostatic
interactions of two atoms at a separation of >8 Å (29), (iv) 1t
= 1.00 fs of the standard-mass time (25), (v) the SHAKE-bond-
length constraint applied to all bonds involving hydrogen, (vi) a
protocol to save the image closest to the middle of the “primary
box” to the restart and trajectory files, (vii) a formatted restart
file, (viii) the revised alkali and halide ion parameters (30), (ix)
a cutoff of 8.0 Å for non-bonded interactions, (x) a uniform
10-fold reduction in the atomic masses of the entire simulation
system (both solute and solvent), and (xi) default values of all
other inputs of the PMEMDmodule. The forcefield parameters of
FF12MClm are available in the Supporting Information of Pang
(31). All simulations were performed on a cluster of 100 12-core
Apple Mac Pros with Intel Westmere (2.40/2.93 GHz).

Alpha Carbon B-Factor Calculation
In a two-step procedure using PTRAJ of AmberTools 1.5, the
B-factors of alpha carbon (Cα) atoms in PR3 were calculated
from all conformations saved at every 103 timesteps during
20 simulations of the protein using the simulation conditions
described above except that (i) the atomic masses of the entire
simulation system (both solute and solvent) were uniformly
increased by 100-fold relative to the standard atomic masses,
(ii) the simulation temperature was lowered to 300K, and
(iii) the simulation time was reduced to 500 ps. The first
step was to align all saved conformations onto the first saved
conformation to obtain an average conformation using the root
mean square fit of all Cα atoms. The second step was to
perform root mean square fitting of all Cα atoms in all saved
conformations onto the corresponding atoms of the average
conformation. The Cα B-factors were then calculated using
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FIGURE 2 | Selective binding of moANCA518 to Epitope 3 of iHm5-Val103. (A)

Dilution curves show dose-dependent binding of moANCA518 to iHm5-Val103

but not iPR3-Val103 in the ELISA using an antigen whose C-terminal poly-His

tag was anchored at the plate. The culture media supernatants from PR3

mutant expressing 293 cells were used in the ELISA. (B) Epitope-specific

anti-PR3 moAbs PR3G-2, MCPR3-3, and WGM2 (2, 4, and 4µg/mL,

respectively), which were coated to the plate and used to capture iHm5-Val103

in the ELISA, show Epitope 3 of iHm5-Val103 as a major target site by the

primary antibody moANCA518 (1.0µg/mL). The purified PR3 mutants were

used in the ELISA.

the “atomicfluct” command in PTRAJ. For each protein, the
calculated B-factor of any atom in Table S2 was the mean of
all B-factors of the atom derived from 20 simulations of the
protein. The standard error (SE) of a B-factor was calculated
according to Equation 2 of Pang (32). The SE of the average
Cα B-factor of each PR3 variant was calculated according to
the standard method for propagation of errors of precision
(33). The 95% confidence interval (95% CI) of the average
Cα B-factor was obtained according to the formula mean
± 1.96 × SE because the sample size of each PR3 variant
exceeded 100.

Conformational Cluster Analysis and Root
Mean Square Deviation Calculation
The conformational cluster analyses were performed using
CPPTRAJ of AmberTools 16 with the average-linkage algorithm

(34), epsilon of 3.0 Å, and root mean square coordinate
deviation on all Cα atoms of the proteins. Cα root mean square
deviations (CαRMSDs) were manually calculated using ProFit
V2.6 (http://www.bioinf.org.uk/software/profit/). The first unit
of the crystal structure of the PR3 tetramer and the time-
averaged conformation (without energy minimization) of the
most populated cluster were used for the CαRMSD calculations.

RESULTS

In characterizing moAbs identified and cloned from B cells in
patients with GPA, we found that one of these, moANCA518,
bound to iHm5-Val103 but not iPR3-Val103 (Figure 2A)
according to the ELISA using iHm5-Val103 and iPR3-Val103

both of which contain a C-terminal poly-His tag for anchoring
the antigens without perturbing the folded conformations of
the antigens and without blocking the epitopes of the antigens
(12). Further, the binding of moANCA518 to iHm5-Val103 was
dose dependent (Figure 2A) and confirmed by the Western
blot under non-reducing conditions (Figure S1) as well as by
ELISAs using untagged PR3 variants (data not shown). This
serendipitous finding prompted us to investigate how the triple
chimeric mutations in iHm5-Val103 changed the conformation of
iPR3-Val103 and consequently the antigenicity to moANCA518.

Accordingly, we developed computer models of PR3-Val103,
iPR3-Val103, and iHm5-Val103 to understand how mutations of
these variants affect the ANCA-binding capabilities of the four
reported epitopes of PR3 (11). These models were derived from
MD simulations using our published forcefield and simulation
protocol (25), which reportedly folded fast-folding proteins
in isobaric–isothermal MD simulations to achieve agreements
between simulated and experimental folding times within factors
of 0.69–1.75 (35) and are hence suitable for predicting in vivo
conformations of PR3 and its variants. The initial conformations
of the three variants used in these simulations were derived
from the PR3-Ile103 crystal structure (24) because experimentally
determined structures of these variants have been unavailable to
date. Although small differences in the time-averagedmain-chain
conformations of two surface loops (Loops 3 and 5) between
iHm5-Val103 and PR3-Val103 (or between iHm5-Val103 and iPR3-
Val103) were observed (Figure 3), the overall conformations
of the three variants resembled one another according to
the Cα root mean square deviations of ≤1.63 Å (Table S1).
Given these conformational properties, we could not determine
how mutations of these variants affect the ANCA-binding
capabilities of the PR3 epitopes, primarily because these surface
loops are highly flexible and lack the time dimension (due to
time-averaging) that is required for immunological function
analysis (36).

To take the time dimension into account, we turned our
attention to the dynamic properties of the PR3 variants. It is
well-known that a folded protein is fluid-like with fluctuations
in atomic position on the picosecond timescale and that the
dynamics of these atomic displacements are dominated by
collisions with neighboring atoms involving reorientation of
side chains or localized portions of the backbone (37). Two
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FIGURE 3 | Superimposed time-averaged conformations of three PR3 variants in cross-eye stereo view. The time-averaged conformations were obtained via cluster

analyses (without energy minimization) from the most populated cluster in the three sets of molecular dynamics simulations. The L3A in iHm5-Val103 is slightly

structured relative to that in two other variants, indicating that L3A in iHm5-Val103 is less mobile than that in the others. The L3B in iHm5-Val103 is slightly contracted

(due to time-averaging) relative to that in two other variants, indicating that L3B is more mobile than that in the others. See Figure 4 legend for definition of L3A, L3B,

L3C, and L5D.

seminal studies have also shown that the crystallographically
determined high B-factors of a protein fragment are linked to the
antigenicity of the fragment (38, 39). This link indicates that the
crystallographically determined B-factor—defined as 8π2<u2> to
reflect the displacement u of the atom from its mean position,
thermal motions, local mobility, or the uncertainty of the atomic
mean position (40–48)—can be used to aid the identification and
characterization of epitopes.

However, the crystallographically determined B-factor of an
atom reflects not only the thermal motion or local mobility of
the atom but also conformational and static lattice disorders
of the atom, and even the refinement error in determining
the mean position of the atom (43, 45, 47, 49). Therefore,
using crystallographically determined B-factors to investigate
epitopes requires the comparison of B-factors of different crystal

structures of the same protein, which are in different space groups
and obtained with different refinement procedures at different
resolutions, in order to identify the B-factors that reflect the local
mobility of the protein (49).

This requirement can be avoided by using simulated B-
factors derived from MD simulations on a picosecond timescale
because simulated B-factors are devoid of refinement errors and
conformational and static lattice disorders. In addition, local
motions, such as those of backbone N–H bonds, occur on the
order of tens or hundreds of picoseconds (50).

In this context, we calculated the Cα B-factors of PR3-Val103,
iPR3-Val103, and iHm5-Val103 from MD simulations on a 50-
ps timescale using our published forcefield (25) and method
(51). The mean Cα B-factors of PR3-Val103, iPR3-Val103, and
iHm5-Val103 were 6.84 Å2 (95% CI: 6.75–6.94 Å2), 6.91 Å2
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FIGURE 4 | Simulated Cα B-factors of PR3-Val103, iPR3-Val103, and iHm5-Val103. (A) B-factor comparison of PR3-Val103 with iPR3-Val103. (B) B-factor comparison of

iHm5-Val103 with iPR3-Val103. The simulated mean Cα B-factors of PR3-Val103, iPR3-Val103, and iHm5-Val103 are 6.84 Å2 (95%CI: 6.75–6.94 Å2; labeled as

avg-PR3-Val103), 6.91 Å2 (95%CI: 6.82–7.00 Å2; labeled as avg-iPR3-Va103), and 7.13 Å2 (95%CI: 7.03–7.24 Å2; labeled as avg-iHm5-Val103), respectively, wherein

95%CI is the abbreviation of 95% confidence interval. The simulated Cα B-factors were plotted using the human PR3 sequence (NCBI P24158.3) numbering because

the PR3 crystal structure numbering is discontinuous. Therefore, the following loop residues are defined using the PR3 crystal structure numbering followed by the

NCBI P24158.3 numbering in parenthesis. L1A, Loop 1A of residues 36–38C(48–52); L1B, Loop 1B of residues 145–151(161–166); L1C, Loop 1C of residues

75–79(92–96); L3A, Loop 3A of residues 110–117(126–133); L3B, Loop 3B of residues 124–133(140–149); L3C, Loop 3C of residues 202–204(210–212); L4A, Loop

4A of residues 59–63C(73–80); L4B, Loop 4B of residues 92–99(108–115); L5A, Loop 5A of residues 165–178(180–184); L5B, Loop 5B of residues

186–187(192–195); L5C, Loop 5C of residues 192–194(200–202); L5D, Loop 5D of residues 219–224(223–229).

(95% CI: 6.82–7.00 Å2), and 7.13 Å2 (95% CI: 7.03–7.24 Å2),
respectively. Given these findings, we concluded that any surface
loop is highly mobile and hence potentially antigenic if the mean
Cα B-factor of the loop was >9.00 Å2. This conservative cutoff
of 9.00 Å2 was based on the mean Cα B-factors of all PR3
variants used in this study (6.84, 6.91, and 7.13 Å2). According
to this criterion, PR3-Val103 has 10 potentially antigenic surface
loops, and iPR3-Val103 and iHm5-Val103 have 11 each (Figure 4).
Consistent with the two seminal reports (38, 39), all of these
potentially antigenic loops identified a priori by using simulated
B-factors fall within all four known epitopes of PR3 (11),
demonstrating a clear association between a loop with a high
mean simulated Cα B-factor and the experimentally determined
antigenicity of the loop.

Further, we found that the Ser195Ala mutation caused no
significant reduction in the mean Cα B-factor of any of the 10
potentially antigenic surface loops in PR3-Val103 (Figure 4A).
This finding implies that the Ser195Ala mutation does not impair
the ANCA-binding capability of any of the four epitopes of iPR3-
Val103, and it explains our reported observation that iPR3-Val103

recognizes asmany ANCA serum samples as PR3-Val103 does (8).
We also found the mean Cα B-factors of Loop 3B in iPR3-

Val103 (possessing Ala146, Trp218, and Leu223) and iHm5-
Val103 (possessing Thr146, Arg218, and Gln223) to be 6.9
Å2 (95% CI: 6.8–7.0 Å2) and 12.8 Å2 (95% CI: 12.3–13.2
Å2), respectively (Figure 4B). According to the afore-described
antigenicity criterion of 9.00 Å2, these means suggest that the
three chimeric mutations make Loop 3B (a mutation-free loop)

Frontiers in Immunology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 246760

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pang et al. New Latent Epitope Activation Mechanism

more mobile in iHm5-Val103, despite large separations between
Epitope 3 of PR3 and the chimeric mutation sites (∼32, ∼32,
and ∼31 Å from the Cα atom of Gln122 in Epitope 3 to the
Cα atoms of Ala146, Trp218, and Leu223, respectively, at the
chimeric mutation sites). The higher mobility of Loop 3B in
iHm5-Val103 relative to that in iPR3-Val103 is also evident from
the slight contraction (due to time-averaging) of Loop 3B in
iHm5-Val103 shown in Figure 3. Therefore, Epitope 3 of iHm5-
Val103 could bind ANCAs, whereas the ANCA-binding capability
of Epitope 3 of iPR3-Val103 would be rather limited.

We subsequently repeated the afore-described ELISAs in the
presence of epitope-specific moAbs that target either Epitope 1
or 3 of PR3. Consistently, we found that PR3G-2 that targets
Epitope 1 of PR3 (22) did not affect the binding of moANCA518
to iHm5-Val103, whereas MCPR3-3 and WGM2, both of which
recognize Epitope 3 of PR3 (11), reduced and abolished the
moANCA518 binding (p < 0.01; Figure 2B), respectively. We
also confirmed the binding of moANCA518 primarily to Epitope
3 of iHm5-Val103 using Fabs from epitope-specific moAbs that
target Epitope 2 or 5 of PR3 (8, 11, 52) (data not shown).

DISCUSSION

In view of the data above, we suggest a new mechanism for latent
epitope activation of PR3: Remote mutations can increase the
local mobility (i.e., main-chain flexibility) of a latent epitope of
PR3, which facilitates the conformational adaptation required for
antibody binding and thereby activate the latent epitope. This
type of exquisite epitope activation—achieved either in vitro by
remote mutations as we demonstrated or in vivo conceivably
by remote polymorphisms or by remote protein·ligand binding
including allosteric binding with an autoantibody—may be a
fundamental feature of GPA. There is evidence that increased
mobility of Epitope 3 occurs in vivo as more than 50% of
serum samples from patients with GPA preferentially bind iHm5-
Val103 (53). It is worth noting that the remote mutations do
not significantly change the main-chain conformation of iHm5-
Val103 as shown in Figure 3, although these mutations were
introduced with the intent for inducing conformational changes
to reduce binding of ANCAs to the mutant. Therefore, the latent
epitope activation described here conceptually differs from the
exposure of cryptic epitopes caused by citrullination (viz., post-
translational conversion of arginine to citrulline) (54). The latent
epitope activation is due to the significant increase of main-
chain flexibility of Loop 3B shown in Figure 4B caused by the
mutations, whereas the cryptic epitope exposure is reportedly due
to conformational changes triggered by multiple citrullinations
(54). It is also worth noting that identifying PR3 mutations
in patients with GPA that can increase the Epitope 3 mobility
is difficult because other factors such as remote protein·ligand
interactions may also increase the latent epitope mobility in vivo,
namely, it is challenging to identify the cause of the latent epitope
activation in vivo.

Nevertheless, knowing the increased mobility of Epitope 3
of iHm5-Val103 responsible for its binding to moANCA518
alone may have implications for the development of novel,

effective treatments of GPA that aim to disrupt the pathogenic
autoantibody·autoantigen interactions in GPA by reducing the
mobility of epitopes targeted by PR3-ANCAs. For example, the
present finding may explain in principle why a monoclonal
antibody strategy (that targets native PR3 and prevents binding
of pathogenic PR3-ANCAs to PR3 that is not in itself pathogenic)
is of advantage for disrupting the autoantibody·autoantigen
interactions over the molecular decoy strategy (that targets
pathogenic autoantibodies). For the latter, large numbers of
decoys are required to block a stock of distinct, pathogenic
PR3-ANCAs. The DNA recombination and affinity maturation
mechanisms, which create diversity and potency in specificity
of antibodies, can potentially lead to resistance against the
decoys. For the former, only one or a few small-molecule
or protein (e.g., monoclonal antibody) binders are required
to rigidify B-cell epitopes of PR3 and consequently make the
autoantigen inaccessible to a repertoire of distinct, pathogenic
PR3-ANCAs, thus obviating mechanisms that could potentially
lead to resistance against such binders.
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Low Density Granulocytes (LDGs), which appear in the peripheral blood mononuclear

cell layer of density-separated blood, are seen in cancer, sepsis, autoimmunity, and

pregnancy. Their significance in ANCA vasculitis (AAV) is little understood. As these

cells bear the autoantigens associated with this condition and have been found to

undergo spontaneous NETosis in other diseases, we hypothesized that they were

key drivers of vascular inflammation. We found that LDGs comprise a 3-fold higher

fraction of total granulocytes in active vs. remission AAV and disease controls. They

are heterogeneous, split between cells displaying mature (75%), and immature (25%)

phenotypes. Surprisingly, LDGs (unlike normal density granulocytes) are hyporesponsive

to anti-myeloperoxidase antibody stimulation, despite expressing myeloperoxidase on

their surface. They are characterized by reduced CD16, CD88, and CD10 expression,

higher LOX-1 expression and immature nuclear morphology. Reduced CD16 expression

is like that observed in the LDG population in umbilical cord blood and in granulocytes

of humanized mice treated with G-CSF. LDGs in AAV are thus a mixed population

of mature and immature neutrophils. Their poor response to anti-MPO stimulation

suggests that, rather than being a primary driver of AAV pathogenesis, LDGs display

characteristics consistent with generic emergency granulopoiesis responders in the

context of acute inflammation.

Keywords: ANCA associated vasculitis, low density granulocytes, anti-MPO, reactive oxygen species, neutrophil

heterogeneity

INTRODUCTION

Neutrophils have conventionally been considered a uniform, short-lived, and functionally-
restricted population of immune cells (1). Recent evidence suggests that they feature a plasticity
that allows them to respond and adapt to different disease situations (2, 3). Anti-neutrophil
cytoplasm autoantibody (ANCA) vasculitis (AAV) is a systemic autoimmune disease in which
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neutrophils play a pivotal role (4). It is characterized
by autoantibodies directed against neutrophil proteins
myeloperoxidase (MPO) and proteinase-3 (PR3) and is
associated clinically with rapidly progressive glomerulonephritis
and inflammatory necrosis of small blood vessels in lungs, skin,
and other organs (5–7). Neutrophils obtained from patients
with active AAV aberrantly transcribe the autoantigens MPO
and PR3, a feature that correlates with subsequent clinical
outcome (8).

Low density granulocytes (LDGs) are distinct from normal
density granulocytes (NDGs) with a density below 1.07 g/ml and
sediment in the PBMC layer after density gradient fractionation
of whole blood (3, 9, 10). LDGs are expanded in animal models
of viral-infection (11) and arthritis (12) and in humans with
cancer (13), sepsis (14), HIV (9, 15) and various autoimmune
conditions, including systemic lupus erythematosus (SLE) (3),
rheumatoid arthritis (RA) (16), and psoriasis (17). There is
lack of clarity in the phenotypical and functional characteristics
of LDGs, and in the relationship of LDGs to myeloid-derived
suppressor cells (MDSCs) (Table 1). Most studies in autoimmune
diseases suggest that LDGs are pro-inflammatory, relatively long-
lived and undergo NETosis more readily than NDGs (3, 23).
Therefore, it has been postulated that these cells are a key
pathogenic force of autoimmunity (25).

Traditional flow cytometric markers to identify neutrophil
populations within highly granulated populations include
CD66b, CD15, CD11b, and CD16. However, the expression of
these surface receptors can be altered upon neutrophil activation
and following density centrifugation (26, 27). Despite recent
work to consolidate phenotypic description of these cells, many
different ways of identifying LDGs are present in the literature
(28). Potentially useful distinguishing markers include CD10,
which distinguishes mature from immature neutrophils, and
lectin-type oxidized LDL receptor 1 (LOX-1) (20, 24).

To investigate the role of LDGs in AAV, we combined
traditional and imaging flow cytometric analysis with functional
assays. We found that, in active AAV, the LDG population
is expanded and comprised of a heterogeneous population of
neutrophils, with differential expression of CD16 and CD10. A
substantial fraction of LDGs are immature neutrophils, likely
released in response to emergency granulopoiesis. We found
that, unlike NDGs, LDGs are hyporesponsive to stimulation with
monoclonal antibodies directed against MPO, suggesting that
they may not have an important pathogenic role in AAV.

MATERIALS AND METHODS

Patients
We recruited AAV patients with acute disease (n = 13),
those in remission (n = 6), age matched healthy controls
(HC, n = 5) and disease controls (DC, a mix of renal
impairment and non-AAV systemic inflammation, n = 11,
Chronic kidney disease n = 3, Coronary artery disease n
= 1, Stroke n = 1, Colorectal carcinoma n = 1, IgA
vasculitis n = 1, rheumatoid arthritis n = 4) (Table 2). All
patients with AAV fulfilled the revised Chapel Hill Consensus
Conference classification (29). Active AAV was defined by a

Birmingham vasculitis activity score (BVAS)≥2 and remission by
BVAS = 0. Disease/healthy controls and patients with AAV were
recruited from the Rare Kidney Disease Registry and Biobank
(www.tcd.ie/medicine/thkc/research/rare.php). Umbilical cord
blood (UCB) was obtained from mothers undergoing vaginal
deliveries with healthy term pregnancy; the babies had normal
Apgar scores. The study was approved by institutional ethics
committees of Tallaght, St Vincent’s, St James and Beaumont
Hospitals, and all recruits provided written informed consent.

Density Centrifugation
Venous blood samples were collected in lithium-heparin
vacutainers (Becton Dickinson, New Jersey, USA). PBMC/LDGs
and NDGs were isolated by a modified Percoll (GE healthcare,
Uppsala, Sweden) gradient centrifugation procedure (3, 9, 24)
and stained immediately for surface markers as listed in
Supplementary Table 1. Arm to stain time was <4 h in all
cases. Briefly, an equal volume of 2% Dextran (Sigma-Aldrich,
Missouri, USA) was added to 6–12ml blood and inverted 20
times. Erythrocytes were left to sediment by gravity for 30min;
the supernatant was then spun at 200 g with no brake. The
pellet was re-suspended in 3ml 55% Percoll, slowly layered
over 4.5ml 65% Percoll and spun with no brake for 30min at
1,500 g (Supplementary Figure 1). The PBMC/LDG and NDG
layers were carefully removed to fresh tubes, cells were washed
with PBS and the resulting cell pellets incubated with 10ml
of RBC lysis buffer (155mM NH4Cl, 0.1mM EDTA, 12mM
NaHCO3 pH 7.4) for 5min. After washing, the cells were re-
suspended in 1ml of FACS buffer (2% fetal calf serum in PBS).
Viability was determined using Trypan blue (Gibco) and in all
cases was >90%.

Phenotypic Analysis by Traditional Flow
Cytometry
The appropriate antibodies (Supplementary Table 1) were
added and incubated in the dark at room temperature for 20min.
Cells were washed with PBS before being resuspended in 500
µl FACS buffer (if run immediately) or 2% paraformaldehyde
(PFA) (Santa Cruz, Texas, USA) if being stored overnight at 4◦C.
Fluorescence minus one (FMO) controls were prepared for each
fluorophore and used to define positive staining. Compensation
was performed with OneComp beads (eBioscience, California,
USA) stained with appropriate antibodies. A minimum of 10,000
events were collected for each sample. Cells were acquired on
a FACS Canto II flow cytometer (BD, San Jose, USA) and the
data were analyzed using Kaluza software (Beckman Coulter,
USA). To assess the fraction and absolute cell count of LDGs
in the different patient and control groups, LDGs were defined
as SSChi and CD15+ after gating on singlets (Figure 1B). We
defined the LDG fraction in three ways: (1) as a fraction of
PBMCs, (2) the absolute LDG count per mL of blood, and (3)
as a fraction of total granulocyte count (LDG + NDG). The
latter allowed us to distinguish whether LDGs were expanded
preferentially in AAV, or simply increased in proportion to total
neutrophil expansion, as acute AAV is known to be associated
with peripheral neutrophil leucocytosis. To further delineate
the phenotypic characteristics of LDGs in comparison to paired
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TABLE 1 | LDG population characteristics in various disease conditions.

Disease

area

Specific

condition

Population Surface marker expression Arginase Nuclear Morphology ROS Reference

Infection HIV LDGs CD15+,CD11b+,CD13+,CD33+,

CD16Int/lo,CD66b+CD63+
Decreased Mature (9)

TB LDGs CD15+,CD14low CD16+,

CD33+, CD66b+ and CD62Llow,

Mature Increased in

LDGs

(18)

Sepsis Interphase

neutrophils

CD16int, CD11b+, CD15+,

CD33−/low, CD54−/low,

CD62L−/low, CD66b+ and

CD14−/low HLA-DR−/low

Increased Heterogeneous mixed

banded and

segmented

ND (14)

Malignancy Cancer LDGs CD66b+, CD33+, CD16var,

CD11bVar, CD125− HLA-DR−

Immature (19)

Cancer G-MDSC CD11b+, CD14−,CD15+,

CD66b+, LOX-1var
Increased expression in

Lox-1+
Lox-1+ mature, Lox-1−

immature

LOX-1+

increased

(20)

Hepatocellular

carcinoma

G-MDSC CD11b+,CD14−,HLA-

DR−/low,CD15+,

LOX-1+

Increased on CD15+

Lox-1+

ND Increased (21)

Renal cell

carcinoma

MDSC CD66b+,CD11b+,VEGFR1+,

CD62l low,CD16low
Decreased Heterogeneous, 90%

segmented

ND (22)

Autoimmunity Rheumatoid

arthritis

LDGs CD10+,CD14+,CD15+

CD16int/low
ND ND Lower than

NDGs

(16)

Psoriasis LDGs CD10+CD14low ND ND (17)

SLE LDGs CD10+,CD11clo,CD14lo,

CD15hi,CD16hi, CD31+,

CD114+, CD116−

ND* Heterogeneous,

Mature, less

segmented

ND (3, 23)

Other G-CSF

treated

donors

LDNs CD66b+,CD11bvar,CD10var,

CD16var
Increased mRNA,

decreased activity

Heterogeneous mixed

banded and

segmented

Not involved

in T Cell

suppression

(24)

Pregnancy LDGs CD15+,

CD66b+,CD63+,CD33+,

CD16int/low

Increased on cord vs

maternal

ND ND (10)

*HIV, Human Immunodeficiency Virus; TB, Tuberculosis; LDG, Low Density Granulocytes; G-MDSC, Granulocytic Myeloid Derived Suppressor Cells; LDN, Low Density Neutrophils;

SLE, Systemic Lupus Erythematosus; NDG, Normal Density Granulocytes; ND, Not determined; LOX-1, Lectin-type Oxidized LDL receptor-1; var, variable; G-CSF, Granulocyte Colony

Stimulating factor.

NDGs using markers listed in Supplementary Table 1, we
defined the cells as SSChiCD15+CD14− (30). Having observed
differential CD16 expression we defined a CD16− population
(based on FMO) and CD16+ and CD16int populations.

Phenotypic Analysis by Imaging Flow
Cytometry
After isolation from whole blood, LDGs and NDGs were
immediately stained with combinations of monoclonal
antibodies as detailed in Supplementary Table 1. DAPI
0.2µg/ml (Sigma-Aldrich, Missouri, USA) was used for nuclear
staining. One million cells were stained and re-suspended in
50 µl FACS buffer (2% fetal calf serum in PBS) before analysis.
Images were acquired on an ImageStream X MkII imaging flow
cytometer (Amnis Corporation, Seattle, WA) using INSPIRE
data acquisition software (Amnis). Compensation and data
analysis were performed using IDEAS 5.0 software (Amnis).

ROS Production
ROS production was measured using the dihydrorhodamine123
(DHR123) assay as described previously (31). Briefly, 2 × 106

cells/ml from PBMCs and NDGs were suspended in separate
15ml falcon tubes in HBH buffer (0.01% HEPES in Hank’s
buffered salt solution (HBSS). The cell suspension was incubated
with 20µg/ml DHR123 (Molecular Probes, D-632) and 5µg/ml
Cytochalasin B (Sigma) for 15min at 37◦C in the dark. Cells
were then stimulated with 5µg/ml anti-MPO mAb (Clone
B3147M, Meridian Life sciences, Tennessee, USA) or isotype
control IgG (IgG1, Origene technologies, Hanford, Germany)
for 1 h at 37◦C in the dark. 0.5µg/ml Phorbol 12-myristate 13-
acetate (PMA, Sigma) treated cells served as positive control.
The reaction was stopped by adding 2ml of cold HBSS (Gibco)
containing 1% BSA and, after washing, the cells were stained
for flow cytometric analysis as described above. Intracellular
ROS production was determined by quantifying the fraction of
Rhodamine123 positive cells.

G-CSF Treatment of Humanized Mice
To assess the impact of granulocyte colony stimulating factor
(G-CSF) on human CD16 granulocyte expression, we generated
humanized mice as described previously (32). Briefly, NOD.Cg-
PrkdcscidIl2rgtm1WjltTg (PGK1-KITLG∗220)441Daw/SzJ
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TABLE 2 | Baseline characteristics of the study subjects, by disease classification.

Characteristics HC DC AAV-Active AAV-Remission

n 5 11 13 6

Age, median (range), years 70 (66–72) 53 (43–87) 73 (40–85) 57 (41–70)

Male/Female 3/2 5/6 6/7 4/2

ANCA status, n (%) Anti-MPO 0 0 9 (69) 3 (50)

Anti-PR3 0 0 4 (31) 3 (50)

Diagnosis, n (median disease duration

at sampling, month)

GPA 0 0 4 (0) 3 (143)

MPA 0 0 9 (0) 3 (35.2)

BVAS, median (range) N/A N/A 16 (3–25) 0

CRP (mg/dL), median (IQR) N/A 9 (3–26) 24 (4–60) 6 (1.8–14)

Creatinine (µmol/L), mean (SEM) N/A 187 (63) 253 (69) 153 (52)

eGFR (mL/min), mean (SEM) N/A 57.1 (8.3) 17.0 (7.9) 36.0 (6.9)

Immunosuppression treatment, n (%) Treatment naïve 5 (100) 5 (45) 5 (38) 0

CYC 0-6 months 0 1 (9) 1 (8) 4 (67)

6-12 months 0 0 0 0

>12 months 0 1 (9) 0 2 (33)

Aza Current 0 0 1 (8) 2 (33)

MMF Current 0 0 0 2 (33)

MTX Current 0 0 0 1 (17)

Anti-TNF Current 0 4 (36) 0 0

Corticosteroids Current 0 2 (18) 8 (62) 6 (100)

Corticosteroids Median duration (days, range) 1.5 (1–25)

Corticosteroids Median cum dose (mg, range) 500 (60–1,780)

*AAV, Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; BVAS, Birmingham Vasculitis Activity Score; CRP, C-reactive protein; eGFR, Estimated glomerular filtration

rate; GPA, Granulomatosis with polyangiitis; MPA, Microscopic polyangiitis; CYC, duration since cyclophosphamide exposure; Aza, Azathioprine; MMF, mycophenolate mofetil;

MTX, Methotrexate.

(hu-mSCF) mice were obtained from Jax (Bar Harbor, Maine,
USA) and engrafted by injecting 1 × 105 purified human cord
blood derived CD34+ stem cells (Lonza, Slough, Berkshire, UK)
into the lateral tail veins of 10–14 week-old mice ∼24 h post
irradiation (2.4Gy). Following confirmation of engraftment,
mice were injected subcutaneously with 50 µg pegylated
filgrastim (Neulasta R©, Amgen, Cambridge, UK), with repeat
peripheral cell granulocyte phenotype assessed by flow cytometry
4 days later. Cells were stained with appropriate antibodies
(Supplementary Table 2) after blocking with 2.5µg/ml human
BD Fc Block (clone: Fc1.3070) and 1µg/ml mouse BD Fc Block
(clone: 2.4G2). Flow cytometric analysis was performed on
a CyAn ADP Analyzer (Beckman Coulter, California, USA)
using Summit software (Beckman Coulter). Data were analyzed
using Kaluza software. Human granulocytes were identified
as hCD45+CD66b+.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism
6.0 software (GraphPad Software, San Diego, CA, USA). The
LDG fraction and absolute LDG cell count were compared
between groups using the Kruskal Wallis test, with comparison
between individual groups using Dunn’s multiple comparison
test. The fraction of CD16+ cells between LDGs and NDGs
was assessed with a Wilcoxon ranked sum test, with sub-group
analysis performed using ANOVA with correction for multiple

comparisons using Tukey’s test. The change in CD16 expression
on granulocytes in humanized mice and the variation in DHR
response to stimulation were assessed with 2-way ANOVA and
Sidak’s multiple comparison tests. Differences between LDG
CD16 subsets, and ROS production in CD10+ and CD10−

neutrophils were tested using Friedman’s paired test, with post
hoc comparison of groups using Dunn’s test. The number of
neutrophil lobes in CD16+ and CD16int/− cells was compared
using the Chi square test and the correlation between CD16 and
CD10 expression using Spearman correlation.

RESULTS

Low Density Granulocytes Are Expanded in
Patients With Acute AAV
To determine whether LDGs were elevated in acute AAV,
PBMC were isolated from peripheral blood of AAV patients
and healthy controls (HC) by density gradient centrifugation.
LDGs were initially identified as a population of high side scatter
cells in acute AAV that was not present in HC (Figure 1A).
These cells were further defined by their expression of CD15
(Figure 1B). We found that the LDG fraction (17.4%, IQR 11.2–
40.7) and the absolute number of LDG /ml of blood (1.9 ×

105/ mL, IQR 1.0–3.5 × 105) were significantly increased in
acute AAV (Figures 1C,D). For comparison, blood containing
a high fraction of immature neutrophils, umbilical cord blood
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FIGURE 1 | Low density granulocytes (LDGs) are elevated in patients with Acute AAV. PBMC were isolated from peripheral blood of patients with AAV by density

gradient centrifugation. Representative flow cytometry dot plots are shown from healthy control PBMC and acute AAV patient PBMC. (A) LDGs were classified as live

SSChiCD15+ singlets (data shown from a representative patient with acute AAV). (B) LDGs were quantified as the percentage of PBMC in the peripheral blood of 13

acute AAV patients, 6 remission (rem), 11 disease controls (DC), and 5 age matched healthy controls (HC). Each symbol represents an individual donor. The values

from 6 samples of umbilical cord blood (UCB) are shown for comparison (C). The absolute numbers of LDGs/mL of blood (D) and percentage of total granulocytes (E)

were also quantified. Median with interquartile range. Kruskal-Wallis test, with post hoc analysis with Dunn’s multiple comparison. *p < 0.05, **p < 0.01, and

***p < 0.001.

(UCB), contained a median LDG fraction of 17.0% (IQR 11.8–
25.4, Figure 1D). The LDG fraction represents the low-density
tail of the neutrophil density distribution. As acute AAV is
characterized by neutrophil leucocytosis, we assessed whether
the observed LDG expansion was merely in proportion to
the overall granulocyte expansion. Median LDG fraction of
total granulocytes in acute AAV (3.5%, IQR 2.6–13.8) was
significantly higher than in DC (Figure 1E), indicating that
although total granulocyte (LDG and NDG) numbers are
increased in acute AAV, there is preferential expansion of the
LDG fraction.

CD16 Expression Defines Subpopulations
of LDGs in AAV
CD16 (Fcγ receptor III) is a low affinity receptor for IgG,
expressed on neutrophils in a glycosylphosphatidyl inositol (GPI)
linked form. It appears late during neutrophilic maturation.

It is faintly expressed on metamyelocytes while banded and

segmented stages of neutrophilic development show the highest
expression (33–35). Therefore, to investigate the sub-populations
within the LDG fraction CD16 expression was quantified
by flow cytometric analysis. LDGs and NDGs (classified as
SSChiCD15+CD14− singlets in the low density (PBMC) and
high-density layer, respectively) were categorized as CD16+,
CD16int (clearly separated from CD16+ cells) and CD16−

(defined by FMO). Representative CD16 plots from LDGs
(Figure 2A) and NDGs (Figure 2B) illustrate the difference
in CD16 expression. In the NDG fraction in adult patients
and healthy controls, 95.2% (IQR 91.0–97.2) of neutrophils
were CD16+ which fell to 65.2% (IQR 52.1–75.7) in the LDG
fraction (Figure 2C). In comparison, only 5.4% (IQR 3.2–15.9)
of LDGs from UCB were CD16+ (Figure 2D). Consequently,
there was a significant increase in CD16int/− cells in the
LDG fraction (34.2%, IQR 23.8–48.4) from adult patients and
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FIGURE 2 | CD16 expression defines subpopulations of LDGs. Mixed leukocyte populations were separated by density centrifugation; LDGs and NDGs were

classified as SSChiCD15+CD14− singlets in the low density (PBMC) and high-density layers, respectively. LDGs and NDGs were categorized as CD16+, CD16int and

CD16− (FMO, fluorescence minus one), with a representative LDG sample illustrated in (A). A representative NDG sample is shown in (B). Most NDGs were CD16+,

whereas approximately one third of LDGs were CD16int/− (C) Wilcoxon ranked sum test. For comparison, virtually all LDGs in UCB were CD16int/− (D). The

percentage (E) and absolute number (F) of CD16int/− cells in the LDG fraction was compared across disease phenotypes. ANOVA with post hoc Tukey’s multiple

comparison test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Administration of G-CSF to mice (n = 5) with a humanized immune system caused dramatic

reduction in peripheral blood CD16+ neutrophils, with an associated increase in CD16int/− neutrophils. 2-way ANOVA and Sidak’s multiple comparison test **p <

0.01, ***p < 0.001 (G).

healthy controls compared to NDG fraction (4.9%, IQR 3.0–
7.8). We hypothesized that this LDG expansion of the CD16int/−

population was a non-specific feature of acute illness. We found
that these cells made up a greater fraction of LDGs in DC
(40.2%, IQR 28.9–56.2) and patients with acute AAV (42.5%,
IQR 24.6–52.1) than HC (18.3%, IQR 11.5–24.0, Figure 2E) and
absolute CD16int/− cell count was markedly expanded in acute
AAV (Figure 2F). This non-specific expansion of the CD16int/−

LDG fraction in AAV suggested that these cells may be arising
as a result of acute granulopoiesis leading to an increase in the
number of circulating immature neutrophils (36). To test this
hypothesis, we administered G-CSF to mice with a humanized
immune system; this caused a dramatic reduction of peripheral
blood CD16+ neutrophils from 62.8 ± 4.7 to 12.0 ± 2.8%, with
an associated increase in CD16int/− neutrophils (Figure 2G).

LDG Surface Immune Markers Vary
According to CD16 Expression
LDGs are characterized by a population of cells with high
side scatter and variably low surface expression of Fc receptor
CD16. To examine the phenotype of these cells in the context

TABLE 3 | Percentage expression of phenotypic markers on LDG and NDG.

Marker LDG (Median, IQR) NDG (Median, IQR) p-value

CD66b 98.7% (97.199.5) 99.8% (99.0–99.9) 0.001

CD88 71.2% (64.8–82.2) 95% (88.6–97.6) 0.003

HLA-DR 2.2% (1.1–3.4) 0.3% (0.17–1.6) <0.0001

MPO 6.6% (3.2–11.1) 5.5% (3.9–10.8) 0.0674

PR3 14.4% (10.3–19.6) 7% (3.6–11.3) 0.0002

CD177 55.4% (45.5–70.7) 70.8% (52.4–83.1) <0.0001

PR3+CD177+ 10.4% (3.7–14.5) 3.7% (1.6–8.05) 0.0091

PR3+CD177− 5.4% (1.7–7.6) 1.7% (0.7–5.2) 0.008

CD10 75.8% (54.8–89.2) 86.7% (81.5–96.6) 0.01

of AAV, we went on to define surface expression of the
relevant immune markers on LDGs in detail (Table 3) and then
stratified populations according to CD16 expression, withmarker
expression onNDGs shown alongside for comparison (Figure 3).
We observed a small but statistically significant reduction in
expression of the classical granulocyte marker CD66b in both
CD16int and CD16− cells, although a high proportion of CD16int
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FIGURE 3 | LDG Surface immune markers vary according to CD16 expression. Surface expression of CD66b (A), CD88 (C5Ar) (B), HLA-DR (C), MPO (D), PR3 (E),

CD177 (F), PR3 CD177 co-expression (G), PR3 independent of CD177 (H), and CD10 (I) on CD16+, CD16intand CD16− LDG subsets are represented. Equivalent

surface expression on NDG is represented beyond the dotted line for visual comparison. Data are from Age-matched healthy control (△n = 5), Disease control (2 n =

5), Remission AAV (◦ n = 6), and Acute AAV (⋄ n = 4) and presented as median with IQR. Differences between LDG subsets were analyzed using Friedman’s paired

test, with post hoc comparison of groups using Dunn’s test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

and CD16− LDGs (98%) were CD66b positive (Figure 3A). The
alternative pathway of complement activation has recently been
identified as a key pathogenic force in AAV (37). Expression
of the C5a receptor (CD88), was markedly reduced on CD16−

cells compared to CD16+ (13.8%, IQR 10.6–22.5, vs. 92.3%,
87.4–96.5, respectively), with an intermediate phenotype in
CD16int cells (Figure 3B). Although thought to be restricted
to professional antigen-presenting cells HLA-DR is present on

LDGs (Figure 3C) with CD16int LDGs (3.85% IQR 1.6–6.0)
showing highest expression, compared to 0.3% (IQR 0.1–1.6) in
NDGs. Attention was then focused on the autoantigens MPO
and PR3 as they are presumed to be directly involved in cellular
activation by ANCA.MPO expression was similar between LDGs
and NDGs, with the highest observed in the CD16int population
(7.7% IQR 4.3–17.3) (Figure 3D). However, when the source of
cells was stratified by disease, we observed that MPO surface
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expression on the CD16− LDGs fraction was virtually absent in
patients with AAV (1.4% IQR 0.9–4.2, Supplementary Figure 2).
Expression of the autoantigen PR3 on LDGs was largely similar
to NDGs, although again, a relative reduction of PR3 expression
was observed in CD16- cells (Figure 3E). To explore this further,
we examined expression of CD177, which is required for surface
presentation of PR3 on neutrophils (38). Interestingly, CD177
was markedly reduced on CD16− LDGs (9.8% IQR 2.5–19.8),
compared to CD16+ LDGs (69.8%, IQR 57.3–79.9), which
appeared similar to NDGs (Figure 3F). Accordingly, PR3/CD177
surface co-expressionwas virtually absent onCD16− LDGs (0.5%
IQR 0.0–1.7, Figure 3G), whereas any PR3 that was expressed
on the surface of CD16− cells appeared to be independent
of CD177 (Figure 3H). Taken together, these findings indicate

that the CD16− LDG population is phenotypically distinct from
other LDGs and NDGs. To address the hypothesis that these
cells were immature neutrophils, we examined expression of
CD10, a marker of granulocyte maturity only expressed at the
segmented stage of neutrophil development. We found that
CD10 expression (Figure 3I) mirrored that of CD16 and CD88.
CD16+ LDGs (98.1% IQR 76.4–99.7) had the highest expression
(similar to NDGs), while CD16− LDGs (18.0% IQR 0–25.2) had
the lowest.

Nuclear Morphology Defines the Maturity
of LDG Subsets
About one third of the LDG population was CD16 and
CD10 negative, suggesting that these cells are immature

FIGURE 4 | Nuclear Morphology defines the maturity of LDG subsets. Gating strategy for identification of LDG subsets by imaging flow cytometry: after gating on

SSChiCD15+CD14− singlets, LDG subsets were defined as CD16+ and CD16int/−. (A) Representative images of LDG subsets shown. Images obtained at 60x

magnification on ImageStream X MkII using DAPI nuclear stain (blue), CD15 (green), and CD10 (red). Merged images show the multilobed CD16+ population and the

circular/kidney-shaped nuclei of the CD16int/− population and the CD10 staining of the CD16+ subpopulations. (B) LDG subsets can be defined by their nuclear lobe

count, a marker of granulocyte maturity. CD16+ LDGs have predominantly multilobed nuclei while CD16int/− have mostly single lobed nuclei. Chi square test (C).

****p < 0.0001.
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neutrophils possibly representing myeloblasts, promyelocytes,
or metamyelocytes. Therefore, we used imaging flow cytometry
to further characterize the LDG subsets simultaneously by
both surface marker expression and nuclear morphology
(Figure 4). Merged images clearly show that the CD15+CD16+

cells are multilobed while the CD15+CD16int/− cells have
circular or kidney-shaped nuclei (Figures 4A,B), with the
latter combining an immature nuclear shape with absence of
CD10 staining, compared to the CD15+CD16+ population,
which is strongly positive for CD10. To further validate
these findings, we quantified the number of nuclear lobes
in all cells in the CD15+CD16+ and CD15+CD16int/−

populations using automated analysis of an imaging
cytometry dataset. CD16+ LDGs had a median of 2 lobes
whereas the CD16int/− LDGs had a median of 1 lobe
(Figure 4C).

Imaging Flow Cytometry Allows Definitive
Phenotyping of PBMC Cell Populations
Having established that LDGs are heterogeneous based on
nuclear morphology and CD16/CD10 expression, we then

sought to link nuclear morphology to additional surface
markers to more accurately define LDGs in the context
of the PBMC population and to confirm that the CD16−

population are not eosinophils, which are also CD15+CD16−.
We found that CD15+CD16+CD10+ cells with multi-lobed
nuclei had low expression of the putative myeloid-derived
suppressor cell marker LOX-1 (Figure 5A). Conversely, the
corresponding CD16int/− LDG population with round or bean-
shaped nuclei had high LOX-1 expression. Eosinophils, with
classical hinged nuclei, were clearly identified as siglec-8 positive
and, like monocytes, were distinct from CD15+CD16− LDGs
(Figure 5A). CD10 and CD16 expression was highly correlated
on both LDGs and NDGs (Figure 5B), suggesting that the
observed low CD16 expression was due to neutrophil immaturity
rather than down-regulation or shedding of this Fc receptor
due to neutrophil activation or apoptosis (39, 40). The bimodal
surface expression of CD16 was mirrored by CD10, whereas
LOX-1 expression was unimodal (Supplementary Figure 3).
LOX-1 was highly expressed on LDGs when compared to NDGs
(Figure 5C); this marker may thus be useful for whole blood
identification of the LDG population.

FIGURE 5 | Imaging flow cytometry allows definitive phenotyping of PBMC cell populations. Representative images are shown of various cell populations from a

patient with active AAV, with each row illustrating the separate channels, alongside merged images (A). Rows 1–4 show CD15+CD16+ granulocytes, rows 5–8

CD16int/− granulocytes, row 9 eosinophil and row 10 monocyte. CD10 expression correlates closely with CD16 expression in both LDGs and NDGs. Spearman

correlation (B). Differential CD10, CD16 and LOX-1 expression between LDG and NDG was then assessed by analyzing the fold change in MFI between the two

populations. T test *p < 0.05, **p < 0.01, ***p < 0.001 (C).
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FIGURE 6 | LDG stimulated with anti-MPO display decreased ROS production compared to NDG. LDG and NDG samples were stimulated with isotype control,

anti-MPO antibodies, and with PMA, after loading with DHR123. ROS production was quantified as the % of Rhodamine123+ cells. Representative dot plots are

shown demonstrating the % rhodamine123+ LDGs from a patient with active AAV following exposure to isotype control, PMA and anti-MPO (A). ROS production by

LDGs and NDGs from Acute AAV patients (B), healthy controls (C), and umbilical cord blood (D), treated with DHR123 alone (unstim), or with DHR123 plus PMA,

anti-MPO, or isotype control is shown. As ROS production was reduced in LDGs following anti-MPO stimulation, we tested whether this effect was restricted to the

CD10− subset (E), Friedman test with Dunn’s multiple comparison test, n = 5. Differences between LDG and NDG response to stimulus were analyzed using 2-way

ANOVA with Sidak’s multiple comparison test, n = 3 healthy control; n = 5 Acute AAV, n = 2 Cord blood *p < 0.05, **p < 0.01, ****p < 0.0001.

LDGs Stimulated With Anti-MPO
Antibodies Are Hypo-Responsive
Compared to NDGs
The production of reactive oxygen species (ROS) by neutrophils
in response to anti-MPO and anti-PR3 antibodies is a
well-defined functional readout of relevance to AAV (41).
Dihydro-rhodamine123 is a non-fluorescent molecule which
gets converted to a fluorescent molecule, rhodamine123 in the
presence of ROS. As expected, NDGs produced high levels
of ROS, as determined by conversion of di-hydro rhodamine
to rhodamine, when stimulated with anti-MPO antibodies.
However, unexpectedly, LDGs responded relatively poorly
to this stimulus, despite having a good response to PMA
(Figures 6A,B). We confirmed that LDGs from different clinical
settings were relatively hypo-responsive to anti-MPO antibodies
using healthy control and umbilical cord blood (Figures 6C,D).
To test whether this response correlated with neutrophil
maturity, we stratified ROS production in the LDG fraction by
CD10 expression. CD10− cells were completely unresponsive
to anti-MPO antibodies, while CD10+ cells displayed an
intermediate response (Figure 6E). When autoantigen surface

availability was separated by CD16 expression and disease status,
CD16− cells from patients with AAV lacked surface MPO
(Supplementary Figure 2). However, this was not observed in
control cells, so cannot fully explain the lack of response in
CD10− cells.

DISCUSSION

Low density granulocytes that appear in the PBMC layer of
peripheral leukocytes are recognized in diseases ranging from
cancer to sepsis and autoimmunity. However, no definitive
surface or functional markers for LDGs have been defined
so the literature pertaining to these cells is inconsistent. We
have studied LDGs in the severe autoimmune condition AAV,
identifying a clear expansion in active AAV. These LDGs
were phenotypically characterized by two broad cell types:
CD16+/CD10+ LDGs that shared many characteristics of
NDGs, and CD16int/−/CD10− that displayed features consistent
with immature neutrophils. Although other LDG work in
autoimmune disease settings has classified LDGs as pro-
inflammatory, mainly attributing to their ability to undergo
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NETosis rapidly, their response to autoantibodies hasn’t been
examined. Using a disease-specific ROS production assay we have
shown that LDGs are unresponsive to anti-MPO stimulation,
thus suggesting that LDGs unlike NDGs do not contribute to
vascular damage via ROS production. Our findings suggest that
the LDGs in AAV are heterogeneous, comprise a significant
fraction of immature granulocytes and are unresponsive to
autoantibody stimulation despite expressing MPO.

Recently, due to a surge in studies suggesting neutrophil
plasticity, the concept of neutrophils as terminally differentiated
innate immune cells has been brought into question and key
immunomodulatory roles have been ascribed to them. Several
gene expression profiling studies in AAV identified granulocyte
signatures in PBMC fractions isolated by density gradient (42,
43). The neutrophil related gene expression in AAV overlapped
with LDG gene expression identified in lupus and was associated
with disease activity and response to treatment (44). Additionally,
granulocyte transcripts detected in the blood of patients with
AAV were preferentially observed in the PBMC layer, with
changes in this expression correlating with subsequent relapse
risk (8). It is possible that expansion of the LDG population
during emergency granulopoiesis in the setting of acute disease
accounts for this granulocyte signal, with transcriptionally active
myelocytes and metamyelocytes exiting the bone marrow in
response to G-CSF, which is known to be elevated in active AAV
(45). Interestingly, in the autoimmune disease systemic lupus
erythematosus, the principal upregulated genes in LDGs include
serine proteases, bactericidal proteins, and other peptides present
in azurophilic granules and involved in neutrophil regulation
of inflammatory responses (23). These findings also suggest an
immature LDG phenotype in this condition, as transcription of
neutrophil serine proteases is greatest at the promyelocytic stage
of neutrophil differentiation and is down regulated as neutrophils
mature (46). Interestingly, a recent study utilized large scale
bioinformatics approach that combined gene expression data
and clinical measurements in SLE, found a core signature of 10
granulopoeisis-related genes in LDGs (47).

The accumulation of relatively immature and pathologically
activated granulocytic MDSCs with potent immunosuppressive
activity is well-recognized in cancer and linked to poor clinical
outcome (20, 48). These have also been identified in the blood
of patients with sepsis (14), cancer (26, 49), HIV (15), graft vs.
host disease (50), and in pregnant women (51). Interestingly,
the expression of CD10 correlates with T-cell suppression, with
CD10− LDGs causing T cell activation (24). An obvious question
that arises is how the LDG population observed in studies
in autoimmune disease relates to these granulocytic MDSCs.
Attempts to answer this question have been hampered by a lack of
consensus on immunophenotypic definition of these low-density
cell populations (Table 1). Reliance upon density centrifugation
to identify LDGs introduces a difficult to control variable and
speaks to an urgent requirement for whole blood staining
mechanisms that would allow for a concerted comparison of
these cells across various diseases.

Table 1 compares in detail the characteristics of LDGs in
various pathological conditions. LDGs from SLE patients have
a pro-inflammatory phenotype. They secrete increased levels
of type 1 interferon, TNF α and IFN-γ but show impaired

phagocytic potential (3). A recent study found that SLE LDGs
display an activated phenotype, exert proinflammatory effects
on T cells and do not exhibit MDSC function (52). On the
other hand, tumor associated neutrophils (TANs) are divided
into two subgroups with anti-tumor (N1) or pro-tumor (N2)
activity (53). A recent study shows that cancer-cell-derived G-
CSF is necessary, but not sufficient, to mobilize immature low-
density neutrophils (LDNs) that promote liver metastasis. In
contrast, mature high-density neutrophils (HDNs) inhibit the
formation of liver metastases (54). Interestingly, in multiple
sclerosis (MS) the use of G-CSF to promote the recruitment and
activation of neutrophils can exacerbate symptoms (55). Further
work is necessary to determine the role of neutrophil subsets in
different pathological settings, which is inhibited by the lack of
standardization of nomenclature and classification of LDGs in
these different fields.

Our observation of a lack of response of LDGs to anti-
MPO stimulation casts doubt on their role as an active driver
of vascular inflammation. It is conceivable that these cells
are released through the action of G-CSF in the context of
acute inflammation as part of a counter-regulatory homeostatic
mechanism that helps to bring the immune system back to a
resting state. However, given the presence of the autoantigens
MPO and PR3 in this cell fraction and in immature neutrophils
(56), it may also be reasonable to attribute to them a role in
driving autoimmunity to these proteins. Indeed, G-CSF has been
found to prime neutrophils to respond to ANCA stimulation
and pre-treatment of a mouse model of MPO-AAV with G-CSF
greatly exacerbates disease (45). Thus, the question as to whether
LDGs arise after the onset of acute vasculitis, in response to
systemic inflammation signals, or whether they act as drivers or
initiators of endothelial injury, remains unanswered. Our data
support the concept that they follow rather than initiate acute
vasculitis, but this could only be addressed using in-vivo models
or detailed study of relapsing patients.
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Supplementary Figure 1 | Schematic Diagram depicting the difference between

Standard, modified Percoll, and lymphoprep isolations. LDGs co-localize with

PBMC layer at a density of <1.077 g/ml during density gradient preparations.

Schematic representation of PBMC/LDG, neutrophil and RBC isolation from whole

blood using three density (55, 65, and 85%) standard Percoll method (A).

PBMC/LDG and neutrophil isolation using two density (55 and 65%) modified

Percoll density gradient separation (B) and PBMC/LDG and neutrophil isolation

using 2 density Lymphoprep density gradient separation.

Supplementary Figure 2 | CD16- LDG from patients with active AAV lack

surface expression of the autoantigen MPO. Surface expression of MPO on CD16

subsets of LDG were analyzed for healthy control (n = 5) (A), disease control (n =

5) (B) and AAV patients (n = 10) (C). MPO surface expression was increased on

CD16+ LDG in AAV patients, compared to healthy and disease control. Although,

no differences were observed in MPO expression within CD16 subsets in healthy

and disease controls, CD16− LDG from AAV patients had very low MPO

expression compared to CD16+ and CD16int, groups were compared using

repeated-measures one-way ANOVA, ∗p < 0.05.

Supplementary Figure 3 | CD16 and CD10, but not LOX-1, have a bimodal

distribution in LDG. Histogram overlays of CD15+SSChiCD14− singlets in LDG

(dark gray) and NDG (light gray) preparations are displayed from a representative

acute AAV patient sample showing surface expression of CD16 (A), CD10 (B),

and LOX-1 (C).

Supplementary Table 1 | Panel of antibodies used in flow cytometry

experiments.

Supplementary Table 2 | Panel of antibodies used in G-CSF treated mice flow

cytometric experiments.
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Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small- to

medium-vessel necrotizing vasculitis responsible for excess morbidity and mortality (1).

The AAVs, which include granulomatosis with polyangiitis (GPA), microscopic polyangiitis

(MPA), and eosinophilic granulomatosis with polyangiitis (EGPA), are among the most

difficult types of vasculitis to treat. Although clinicopathologic disease definitions have

been used traditionally to categorize patients into one of these three diagnoses, more

recently ANCA specificity for either proteinase 3 (PR3) or myeloperoxidase (MPO) has

been advocated for the purpose of disease classification (2). This is because differences

in genetics, pathogenesis, risk factors, treatment responses, and outcomes align more

closely with PR3- or MPO-ANCA type than with the clinocopathologic diagnosis.

Moreover, classifying patients as GPA or MPA can be challenging because biopsies

are not obtained routinely in most cases and existing classification systems can provide

discrepant classification for the same patient (3). In this review, we address the recent

literature supporting the use of ANCA specificity to study and personalize the care of AAV

patients (Table 1). We focus particularly on patients with GPA or MPA.

Keywords: ANCA–associated vasculitis, vasculilis, personalized medicine, genetics, pathogenesis

GENETIC DIFFERENCES BETWEEN PR3- AND MPO-ANCA+

PATIENTS

An estimated 20% of AAV risk is due to genetic factors (4). Several genome-wide association
studies (GWAS) have identified functional genetic variants leading to altered gene expression or
protein function that are thought to be relevant to AAV pathogenesis, presumably explaining the
association between these variants and AAV risk (4–6). Across these studies, AAV risk has been
most strongly associated with gene variants in the MHC class II region, but non-MHC associations
have also been identified. The preponderance of evidence suggests that ANCA type distinguishes
two groups characterized by unique genetics better than clinical phenotype (4–6).

A recent study confirmed previous reports that PR3-ANCA+ but not MPO-ANCA+
disease is associated with gene variants in HLA-DPA1 and DPB1. A tri-allelic HLA-
DPB1 haplotype explained much of the genetic risk in patients with AAV. In contrast,
MPO-ANCA+ disease is associated with HLA-DQA2 and DQB1 variants (4, 5).
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TABLE 1 | Distinguishing features between PR3-ANCA+ and MPO-ANCA+ AAV.

Feature PR3-ANCA (associated

with C-ANCA pattern)

MPO-ANCA (associated

with P-ANCA pattern)

Age at Diagnosis • 45–55 years • 60–65 years

Racial/Geographic

Differences

• ↑ Northern Europe and

Americas

• ↑ Asia and Southern

Europe

Genetic Differences • HLA-DPA1 and DPB1

• SERPINA1

• PRTN3

• HLA-DQA2 and DQB1

Pathogenesis • Normally expressed on

PMN cell surface

• Granulomatous

inflammation common

• ↑ IL-6, IL-15, IL-18,

IL-18 binding protein,

sIL-2 receptor a, gCSF,

and mCSF

• Not normally expressed

on PMN cell surface

• Fibrotic manifestations

observed (e.g., ILD)

• ↑ sIL-6 receptor,

sTNF-receptor type II,

neutrophil

gelatinase–associated

lipocalin, and soluble

intercellular

adhesion molecule

Risk Factors • ± S. aureus • Drugs (e.g., hydralazine,

levamisole,

propylthiouracil)

Clinical Phenotype • >> GPA (∼90%) • >>> MPA (∼100%)

Organ Involvement • Ear, nose, and sinus

disease

• Upper airway

involvement

• Pulmonary

nodules/cavitary lesions

• Pulmonary fibrosis

• Bronchiectasis

• Renal disease (↑

severity and chronicity)

Response to RTX

or CYC

• RTX > CYC for

remission induction

• RTX = CYC for

remission induction

Outcomes • ↑ Relapse and treatment

failure

• Rising titer may predict

flare if RTX-treated

• ↑ Non-fatal CVD events

• ↑ Death to CVD

Non-MHC variants such as those in the SERPINA1 and PRTN3
genes have been associated with PR3-ANCA+ but not MPO-
ANCA+ disease, but variants in PTPN22 are observed in both
MPO- and PR3-ANCA+ disease (4, 5). Functional studies
have expanded upon previous GWAS studies and confirmed
the potential pathogenic link between genetic variants and
AAV (6).

Given the associations between genetic variants and ANCA
specificity, genetic testing may play a future role in identifying
patients at risk for AAV. In fact, the presence of several of
these variants (e.g., MHC and non-MHC) in the same individual
increases the odds that the individual will develop AAV (4).
However, additional studies are necessary to understand how
genetic testing might be used in the clinical setting. Moreover,
our knowledge of genetic associations in AAV stems from
studies of patients of European descent and may be difficult
to extrapolate to patients with other ancestry. One previous
case-control study found that genetic variants at DRB1 might
predispose African American patients to PR3-ANCA+ AAV
(7), but additional studies in patients of non-European descent
are needed.

PATHOGENESIS OF PR3- AND
MPO-ANCA+ AAV

The pathogenesis of AAV is complex and the precise cause
or causes remain unknown, but MPO- and PR3-ANCA
are generally considered to have substantial roles in the
pathophysiology of most patients’ disease (8). Direct proof of a
relationship between the presence of these antibodies and the
initiation of disease in humans, however, remains lacking, despite
the fact that compelling animal models for AAV exist. This is
particularly true for MPO-ANCA, as discussed below (9).

MPO- and PR3-ANCA+ AAV appear to share many features
of pathogenesis, yet certain differences have also been observed.
Myeloperoxidase and proteinase 3, the targets of MPO- and
PR3-ANCA, respectively, are both found in neutrophil granules
and monocyte lysosomes. PR3 is normally expressed on the
neutrophil cell surface, more so in PR3-ANCA+ patients
than healthy controls. In contrast, MPO is not spontaneously
expressed on neutrophil cell surfaces but surfaceMPO expression
is detectable after neutrophil activation (10).

In AAV, the binding of MPO- or PR3-ANCA to neutrophils
induces activation and degranulation as well as adhesion and
transmigration of neutrophils across the vascular endothelium,
culminating in endothelial cell damage. The role of monocytes
in AAV is less well understood. The pathogenic importance
of MPO-ANCA is supported by the ability of these antibodies
to induce a vasculitis syndrome resembling AAV when MPO-
ANCA are transferred into experimental mouse models (9). The
development of a similar animal model for PR3-ANCA+ AAV
has been elusive to date, in part due to differences in PR3
expression in mice and humans.

Several additional observations support the importance of
PR3- and MPO-ANCA in the pathogenesis of AAV. These
include: (1) the great majority of patients with AAV are
MPO- or PR3-ANCA+ (2, 11) there are consistent differences
in clinical features of AAV according to ANCA type (see
below); (3) B-cell targeted therapies and/or plasma exchange
are efficacious in both PR3- and MPO-ANCA+ AAV (4, 12,
13) there is some correlation between ANCA titer and disease
activity (see below); (5) transplacental transfer of MPO-ANCA
is reported to have caused AAV in a newborn (6, 14); PR3-
ANCA+ antibodies are known to appear in patients’ blood years
before clinical presentation (15); and (7) genetic variants in
proteinase 3, the antigenic target of PR3-ANCA, are associated
with PR3-ANCA+ AAV (see above). However, the presence of
MPO- or PR3-ANCA positivity does not always correlate with
disease activity, suggesting that multiple factors are necessary
to induce vasculitic and granulomatous features of AAV. Such
factors include genes, infections, medications, environmental
exposures, the epitope specificity of ANCA, and almost certainly
others (8).

Neutrophil extracellular traps (NETs) are increasingly
recognized as important for the pathogenesis of autoimmune
conditions, including both MPO- and PR3-ANCA+ AAV
(16, 17). In normal individuals, NETs are immunogenic and have
a role in trapping and killing invading extracellular microbes.
Notably, NETs can activate certain immune cells, including
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autoreactive B cells (16, 17), and cause end-organ damage.
Spontaneous NET formation is observed more often in AAV
patients than in healthy controls, likely because of stimulation of
neutrophils by ANCA (16), and correlates with disease activity
(17). Upon stimulation, NETs containing PR3 and MPO (16) are
released in both the circulation as well as in damaged tissues.

Complement has traditionally not been thought to play a
role in the pathogenesis of these “pauci-immune” vasculitides.
Neither immunoglobulins nor complement components are
observed prominently in the biopsy specimens from patients
with AAV. The lack of immunoglobulin and complement in the
renal lesions of AAV, for example, contrasts strikingly with the
glomerular lesions observed in systemic lupus erythematosus, for
example. However, mounting evidence suggests that activation
of the alternative pathway is important to the pathogenesis of
MPO-ANCA+ and, more recently, PR3-ANCA+ AAV (18, 19).
A recent study by Wu et al. suggested that the classical or lectin
complement pathways are activated in PR3-ANCA+ but not
MPO-ANCA+ AAV (18). Moreover, avacopan, a C5a receptor
inhibitor, was found in early phase trials to have efficacy in AAV
and have a potential role as a glucocorticoid-sparing drug in
remission induction (20). The results of an ongoing phase 3
randomized controlled trial evaluating its efficacy for remission
induction will be an important proof-of-concept advance in our
understanding of the role of complement activation in AAV (21).

Cytokine profiles may highlight potential differences in
pathogenesis between MPO- and PR3-ANCA+ patients. Berti
et al. recently compared differences in serum cytokine profiles
associated with inflammation, proliferation, vascular injury,
and tissue damage and repair among AAV patients grouped
according to ANCA type or clinical diagnosis (22). Differences
according to phenotype (e.g., PR3- vs. MPO-ANCA+ and GPA
vs. MPA) were observed regardless of whether ANCA type or
clinicopathologic condition was used to group patients, but the
differences were more striking when PR3- and MPO-ANCA
patients were compared to one another.

In the study by Berti et al., nine biomarkers were higher
among the PR3-ANCA+ subset (22). These included interleukin
(IL)-6, granulocyte–macrophage colony-stimulating factor, IL-
15, IL-18, CXCL8/IL-8, CCL17/thymus and activation–regulated
chemokine, IL-18 binding protein, soluble IL-2 receptor a, and
nerve growth factor b. Four cytokines were higher in the
MPO-ANCA+ subset, including soluble IL-6 receptor, soluble
tumor necrosis factor receptor type II, neutrophil gelatinase–
associated lipocalin, and soluble intercellular adhesion molecule.
In multivariate-adjusted analyses, no cytokine levels remained
significantly associated with either GPA or MPA, but several
associations between cytokines and ANCA-type persisted.
Additional studies are necessary to further validate these
observations, particularly in larger MPO-ANCA+ cohorts.

In conclusion, the current pathogenic model of AAV suggest
that MPO- and PR3-ANCA+ vasculitis share many similar
pathogenic features. However, recent studies suggest that there
may also be differences in complement activation and cytokine
profiles according to ANCA type. Additional studies are
necessary to clarify how pathogenesis may differ according to
ANCA type. Differences in pathogenesis between PR3- and

MPO-ANCA+ patients may identify novel treatments guided by
ANCA specificity.

AAV RISK FACTORS

Several potential risk factors have been associated with the
development of AAV, including environmental, drug, and
infectious exposures.

Silica
Silica exposure, typically related to occupational history, has been
associated with AAV in several studies. Indeed, a recent meta-
analysis found that silica exposure was associated with a 2.6-
fold higher odds (OR 2.6, 95% CI: 1.5–4.4) of AAV (23). This
observation was true for MPA and GPA patients, suggesting that
similar risk exists for both MPO- and PR3-ANCA+ subjects. In
another study, MPO-ANCA+ disease was more common than
PR3-ANCA+ disease (24) among cases with high silica exposure,
but additional studies of this question would be useful.

Staphylococcus aureus
There is a long-standing interest in understanding potential
associations between microbes, particularly chronic nasal
carriage of Staphylococcus aureus, and the risk of AAV and flare.
These suspected associations date back to early observations
of infectious symptoms and secondary sinonasal infections in
GPA patients with sinonasal disease (25). Subsequently, a small
clinical trial in GPA, the majority of whom were presumably
PR3-ANCA+, found that trimethoprim/sulfamethoxazole was
associated with a 70% (HR 0.3, 95% CI: 0.1–0.8) reduction in
risk of flare compared to placebo. These findings have been
interpreted as support of the hypothesized role of S. aureus or
other microbes as risk factors for AAV relapse (26). However, it
has been noted that the effects of trimethoprim/sulfamethoxazole
on disease activity might be mediated through mechanisms other
than reducing S. aureus carriage, given that changes in S.
aureus carriage on antibiotics did not necessarily relate to
subsequent flare.

More recently, in a sub-study of two randomized clinical
trials, GPA patients with chronic nasal S. aureus carriage were
observed to have a higher risk of relapse than GPA patients
without chronic S. aureus carriage (27). Again, these findings
suggest an association between chronic S. aureus carriage and
relapse risk, but the authors propose that that an underlying
genetic confounder might be responsible for this observation. In
GPA, and therefore likely PR3-ANCA+ AAV, we can therefore
only surmise that chronic nasal carriage of S. aureus may be
associated with the risk of flare, but further studies are needed
to account for potential confounders of this observed association.
There is no strong evidence base to suggest that S. aureus or other
infections, however, are risk factors for GPA or AAV generally.

Medication-Induced AAV
A number of drug exposures, including prescribed medications
and illicit substances, have been associated with AAV, though
well-designed studies assessing the association between these
exposures and risk of AAV are lacking. Case series and anecdotal
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experience strongly suggest potential associations between drug
exposures, particularly hydralazine (28), propylthiouracil (28,
29), and levamisole (typically when in adulterated cocaine) (30).
The link between these medications and AAV appears to be far
stronger for MPO-ANCA+ AAV than for PR3-ANCA+ AAV.
Extremely high titers of MPO are often reported in these cases.
In one single-center study, 13 of 30 (43%) patients with the
highest MPO-ANCA titers in a large hospital’s ANCA lab had
been exposed to hydralazine or propylthiouracil (28).

Levamisole-contaminated cocaine has also been associated
with AAV. This drug-induced syndrome is manifested often by
large-joint arthralgias and cutaneous lesions, purpuric earlobe
lesions, and frequently MPO-ANCA positivity but often dual
positivity (50% were PR3- and MPO-ANCA+ in one study)
(30). The presence of both MPO- and PR3-ANCA positivity is
not seen in all cases of drug-induced AAV, but dual-positivity
should raise suspicion for a drug culprit. It is important to note
that the presence of ANCA positivity in the setting of drug
exposure can occur without clinical features of vasculitis and
is not diagnostic of AAV. The MPO-ANCA in propylthiouracil
therapy, for instance, may have features that distinguish it from
the pathogenic MPO-ANCA seen in classic AAV (29).

In summary, several risk factors for AAV have been
proposed and these may differ according to ANCA type
(e.g., S. aureus in PR3-ANCA+, drugs in MPO-ANCA+).
However, environmental exposures, particularly to silica, appear
to be a common risk factor in both PR3- and MPO-ANCA+
AAV. Additional well-designed studies are needed to better
characterize environmental, infectious, and other exposure-
related risk factors in AAV, particularly according to ANCA type.

ANCA TESTING FOR THE DIAGNOSIS AND
MONITORING OF AAV

The initial discovery of ANCA among patients with clinical
syndromes that would be characterized as GPA or MPA was
a major milestone in the diagnosis and management of these
conditions (31). Following the discovery of ANCA and spreading
availability of testing, the diagnosis of GPA or MPA was
increasingly made with confidence in the proper clinical setting,
often without a biopsy.

The classic approach to ANCA testing is a two-step process
(32). First, indirect immunofluorescence (IIF) is performed
to detect a cytoplasmic or peri-nuclear ANCA pattern.
Second, immunoassays of samples positive for ANCA by
IIF are performed to confirm the IIF results and to detect
ANCA specificity (e.g., PR3-ANCA or MPO-ANCA). However,
accumulating evidence suggests that the test performance
(e.g., receiver operating characteristic curves) of contemporary
immunoassays is quite strong and less susceptible to inter-reader
variability and other potential sources of imprecision than IIF
(33). For instance, in a study by Damoiseaux et al., the area under
the curve (AUC) of immunoassays for PR3- or MPO-ANCA was
between 94 and 96%, whereas the AUC for IIF was between 84
and 92% (33). A two-step process for ANCA testing has not
been found to improve test performance (33, 34). Therefore, a

one-step process using only immunoassay testing for PR3- or
MPO-ANCA without IIF is sufficient for diagnosing AAV. In
addition to test performance, it is also important to consider
the test results appropriately. Though PR3- and MPO-ANCA
test results are often interpreted as positive or negative, the test
performance may vary according to titer such that increasing
titers may more accurately classify patients according to the
correct diagnosis (34).

The role of serial ANCA testing in the management, as
opposed to diagnosis, of AAV patients remains poorly defined
and controversial. In a post-hoc analysis of the Wegener
Granulomatosis Etanercept Trial (WGET) trial in which
patients with GPA were randomized to conventional therapy
(cyclophosphamide or methotrexate) or conventional therapy
plus etanercept (35), PR3-ANCA titers correlated with disease
activity and both PR3- and MPO-ANCA titers decreased during
remission induction (36). Notably, the vast majority (∼73%) of
patients in WGET were PR3-ANCA+ (35). A meta-analysis that
includes post-hoc analyses ofWGET as well as other studies found
that a rise in ANCA levels in patients in remission was associated
with a positive likelihood ratio of 2.8 (95% CI: 1.7–4.9) of a
future relapse; the absence of a rise in ANCA was associated
a negative likelihood ratio of 0.5 (95% CI: 0.3–0.9) of having a
future relapse (37). Becoming ANCA negative, and even staying
ANCA negative during follow-up, has not been observed to be a
reliable indicator that a patient will achieve ormaintain remission
(36, 37).

The utility of repeat testing may differ according to ANCA
type, especially with contemporary treatment strategies. Findings
from the Rituximab in ANCA-Associated Vasculitis (RAVE) trial
provided additional insights into the potential value of serial
ANCA testing. In the RAVE trial, MPO- and PR3-ANCA+
patients were randomized to remission induction with either
rituximab (RTX) or cyclophosphamide followed by azathioprine
(CYC/AZA) (12). Approximately 67% of patients were PR3-
ANCA+ in RAVE. Similar to observations from WGET, RAVE
patients who became ANCA negative were not more likely to
achieve clinical remission at 6 months (12). However, differences
in the likelihood of becoming ANCA negative were observed
according to ANCA type and treatment. In particular, PR3-
ANCA+ patients treated with RTX were more likely than those
treated with CYC/AZA to become ANCA negative. There was
no difference in the rate of becoming ANCA negative among
MPO-ANCA+ patients treated with RTX or CYC/AZA (12).

Among PR3-ANCA+ patients treated with RTX in RAVE,
a post-hoc analysis found that a rise (defined as a doubling) in
the PR3-ANCA titer was associated with a higher risk of severe
relapse within 1 year, especially in those with a history of renal
involvement or alveolar hemorrhage (38). This was not observed
among PR3-ANCA+ patients treated with CYC/AZA in RAVE
and was not observed in a post-hoc analysis ofWGETwhere most
patients were PR3-ANCA+ and received CYC for severe disease
(36). Thus, the potential utility of serial PR3-ANCA testing may
be specific to patients treated with rituximab, as opposed to
other therapies.

In summary, the significance of an isolated increase in an
ANCA titer without an associated change in symptoms or
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findings otherwise suggestive of a disease flare is of unclear
significance. Certainly not all patients who experience an increase
in their ANCA titers will go on to have a disease flare and, if
they do, the timing of a flare could be many months to even
more than a year following the ANCA titer rise. Therefore,
one must weigh the risks and benefits of treatment decisions
guided by only ANCA titers (36). The ANCA type and treatment
exposure may influence the predictive ability of changes in titers
so the utility of serial ANCA measurements may evolve over
time as our treatment regimens change. It is important to note
that most studies to date evaluating the predictive value of
changes in ANCA titers have been limited because of frequency
of titer measurements, variations in outcome definition, and the
inclusion of mostly PR3-ANCA+ patients.

CLINICAL FEATURES

Demographics
MPO-ANCA+ patients are more likely to be female and,
on average, 10 years older than PR3-ANCA+ patients at
presentation (39). There are also differences in the distribution of
ANCA type according to race and geography such that Japanese,
Chinese, and Southern European AAV patients are more likely to
be MPO- rather than PR3-ANCA+ when compared with non-
Japanese, non-Chinese, and Northern European AAV patients
(40). In a population-based study comparing AAV incidence and
features in defined geographic regions of the UK and Japan, more
than 80% of cases in Japan were MPO-ANCA+. In contrast,
more than 66% of cases in the UK were PR3-ANCA+ (40).

Clinical Phenotype
With regard to clinical phenotype, those who are PR3-ANCA+
more often have a presentation consistent with GPA whereas
those who are MPO-ANCA+ tend to have features of MPA.
However, ∼10% of patients with GPA are MPO-ANCA+; PR3-
ANCA+MPA seems to be a rarer phenomenon (41, 42).

In contrast to MPO-ANCA+ patients, those who are PR3-
ANCA+ are more likely to have involvement of ears, nose,
sinuses, and throat (3, 39, 43). Whereas both MPO- and PR3-
ANCA+ patients can have lung involvement, those who are
MPO-ANCA+ more often present with features of interstitial
lung disease (e.g., fibrosing lung disease) rather than cavitary
lesions and/or nodules characteristic of PR3-ANCA+ disease
(44, 45). Evolving literature suggests that MPO-ANCA+ patients
are at higher risk for bronchiectasis, which is often present
prior to AAV presentation. In two recent cohort studies, MPO-
ANCA+ subjects were found to have bronchiectasis more often
than PR3-ANCA+ subjects (44, 46). In one, only MPO-ANCA+
subjects had bronchiectasis (46). In the other, MPO-ANCA+
subjects were twice as likely to have bronchiectasis (31% vs.
15%) and the bronchiectasis was more severe among the MPO-
ANCA+ subjects (44). The high proportion of MPO-ANCA+
patients with bronchiectasis raises the question of whether it
might predispose to MPO-ANCA+ AAV, be more likely to
complicate MPO-ANCA+ AAV, or go undetected for some time
before AAV comes to medical attention.

In addition to differences in respiratory tract involvement,
MPO-ANCA+ patients more often have renal involvement
than PR3-ANCA+ patients. Moreover, among MPO- and
PR3-ANCA+ patients with renal involvement, those who are
MPO-ANCA+ often present with more severe renal disease,
characterized by a lower glomerular filtration rate, greater
need for renal replacement therapy (31% vs. 20%), and more
chronic appearing lesions on renal biopsy (47). However, ANCA
type does not consistently predict the risk of end-stage renal
disease (3).

Features Among Patients With Discordant
ANCA Types and Clinical Phenotypes
Though ANCA type is increasingly recognized as a clinically-
meaningful and standardized approach to characterizing AAV
patients, the combination of ANCA type with clinical phenotype
(e.g., GPA or MPA) may identify additional subtypes with unique
features (Table 2). Several studies have suggested that there may
be differences between MPO-ANCA+ GPA patients compared
with those who are PR3-ANCA+ or those who are MPO-
ANCA+ and have presentations consistent with MPA (45).

In one single-center cohort study by Schirmer et al., MPO-
ANCA+ GPA patients were found to have limited disease more
often, to have higher rates of subglottic stenosis, and to have lower
rates of renal involvement compared with PR3-ANCA+ GPA
patients (45). In a nephrology clinic-based cohort study by Chang
et al., Chinese patients with MPO-ANCA+ GPA were found to
have less severe renal disease than PR3-ANCA+ GPA patients
and a lower risk of progressive renal failure (42). In contrast,
disease manifestations did not differ between MPO-ANCA+
and PR3-ANCA+ GPA patients who had been enrolled in two
large clinical trials (41) and studied in a post-hoc analysis by
Miloslavsky et al. These conflicting results with regard to disease
manifestations may be related to differences in study design
(clinical trial vs. single center cohort study) (48), classification of
GPA andMPA, and enrollment criteria. They may also reflect the
limitations of attempting to address these questions in studies of
small sample sizes.

Discordant associations between ANCA type and clinical
phenotype may also have implications for relapse rates. In the
study by Miloslavsky et al., MPO-ANCA+ GPA patients flared
more often than MPO-ANCA+ MPA patients (41). Due to
statistical limitations, this question could not be addressed in the

TABLE 2 | Potential differences between PR3-ANCA+ GPA and MPO-ANCA+

GPA.

Feature PR3-ANCA+ GPA MPO-ANCA+ GPA

Manifestations • Renal disease more common • Limited disease more

common

• Subglottic stenosis

more common

Flares • Higher flare rate • Lower flare rate

Frontiers in Immunology | www.frontiersin.org 5 December 2019 | Volume 10 | Article 285582

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wallace and Stone Personalized Medicine in ANCA-Associated Vasculitis

study by Schirmer et al. (45). In the study by Chang et al., MPO-
ANCA+ GPA patients had a lower flare rate than PR3-ANCA+
GPA (42).

In summary, reliable interpretations of the results of these
small studies that often provide disparate results is difficult.
Nevertheless, it is important to note that MPO-ANCA+ GPA
patients may have a unique natural history, especially when
compared with PR3-ANCA+ GPA patients.

RESPONSE TO TREATMENT ACCORDING
TO ANCA TYPE

The Rituximab in ANCA-Associated Vasculitis (RAVE) trial
randomized patients with severe PR3- or MPO-ANCA+ AAV
to either rituximab (RTX) or cyclophosphamide/azathioprine
(CYC/AZA) for induction therapy. RTX was found to be non-
inferior to CYC/AZA for remission induction. In a post-hoc
analysis of the RAVE trial, however, PR3-ANCA+ patients
treated with RTX had a 2-fold higher odds (OR 2.1, 95%
CI: 1.0–4.3) of achieving remission at 6 months than those
treated with CYC/AZA (39). This was also true among those
PR3-ANCA+ patients who were randomized in the setting of
relapsing disease. There was no difference between the efficacy
of RTX or CYC/AZA amongMPO-ANCA+ patients with regard
to achieving remission.

There may also be a difference in the efficacy of
mycophenolate mofetil for remission induction in MPO-
ANCA+ AAV compared with PR3-ANCA+ AAV patients
without life-threatening disease (49). In the recent open-label,
non-inferiority MYCYC trial, patients were randomized to
mycophenolate mofetil or cyclophosphamide for remission
induction. Both arms received azathioprine for maintenance
therapy after remission induction. Remission rates at 6
months were similar in the mycophenolate mofetil and
cyclophosphamide groups (67% vs. 61%) such that the two were
found to be non-inferior to one another. Following remission,
more patients in the mycophenolate mofetil group relapsed
when compared with those in the cyclophosphamide group
(33% vs. 19%). This difference, however, was strongly driven
by relapses in PR3-ANCA+ patients, 48% of whom relapsed
following mycophenolate mofetil compared with 24% following
cyclophosphamide. Therefore, it may be that mycophenolate
mofetil is a reasonable option for remission induction in patients
who are MPO-ANCA+ but may not be ideal for patients who
are PR3-ANCA+.

PR3-ANCA+ patients have been found in multiple studies
to relapse more often than MPO-ANCA+ patients following
remission induction (3, 45, 50). For instance, in one large
United States community-based cohort, PR3-ANCA+ patients
have been consistently found to have a nearly 2-fold higher risk of
relapse than MPO-ANCA+ patients (3, 51). Though this cohort
is largely composed of patients with renal involvement, similar
observations regarding differences in the risk of relapse between
PR3-ANCA+ andMPO-ANCA+ patients have beenmade in the
RAVE trial (12); a cohort composed of patients from several large
European clinical trials (52); as well as a recently described large

multi-center Spanish cohort (53). All of those studies included
patients with both renal and non-renal manifestations.

Patients with PR3-ANCA+ disease may also be more likely
to have treatment-refractory disease. The term “treatment-
refractory” is often challenging to define and differing definitions
have been used across studies. In the RAVE trial, however, the
term “early treatment failure” was used to describe patients whose
disease was not responding to therapy at the 1 month time point.
Eleven of the 12 early treatment failures in the RAVE trial were
PR3-ANCA+ (54). Patients with PR3-ANCA+ disease in the
RAVE trial also had a 29% chance of failing the primary outcome
at 6 months because of the recurrence of active disease (54).

These observations suggest that different treatment
approaches may be indicated for patients depending on
ANCA type. PR3-ANCA+ patients, in contrast to MPO-
ANCA+ patients, may benefit from rituximab rather than
cyclophosphamide for remission induction and may also benefit
from continued immunosuppression following remission given
their increased risk of relapse. It may be reasonable, for example,
to consider an extra one-gram infusion of rituximab at 4 months
of treatment in the interest of inducing a solid disease remission.
Flare rates, however, vary significantly depending on the regimen
used to maintain remission.

In the recent MAINRITSAN trials comparing different
contemporary maintenance strategies, those using rituximab at
fixed doses had relatively low flare rates (3% at 22 months and
10% at 28 months) (55, 56) compared with the approximate
32% rate of relapse at 18 months without maintenance therapy
(50) and 29% relapse rate at 28 months with azathioprine as
maintenance (55). The vast majority of patients enrolled in
these trials were PR3-ANCA+ so it is difficult to assess how
flare rates may vary between PR3- and MPO-ANCA+ patients
using contemporary maintenance strategies. One single-center
experience using continuous B cell depletion with rituximab in
MPO- and PR3-ANCA+ AAV patients reported a relapse rate of
20% but the duration of follow-up in this study is not reported
(43), nor is relapse rate according to ANCA type. Additional
studies are necessary to determine flare rates according to
ANCA type using contemporary maintenance strategies and
to understand the optimal long-term management of AAV
according to ANCA type.

LONG-TERM OUTCOMES ACCORDING TO
ANCA TYPE

As short-termAAV outcomes are optimized, increasing attention
has shifted toward improving long-term outcomes. Particular
focus has been paid to reducing the incidence of end-stage renal
disease (ESRD) and death in AAV.

Over the last two decades, renal survival in AAV has
improved, such that fewer patients are developing ESRD (57). As
mentioned, MPO-ANCA+ patients with biopsy-proven disease
typically have more chronic, as opposed to active, renal lesions
at the time of diagnosis (47, 58–60) when compared to PR3-
ANCA+ patients. However, in a large cohort study by Rhee
et al., there was no difference in renal survival when MPO-
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TABLE 3 | Future direction of research regarding ANCA type in AAV.

Topic Research Question

Genetics and

Pathogenesis

• Can unique genetic risk factors be used to identify

patients at risk of MPO- or PR3-ANCA+ AAV before

the onset of clinical symptoms or findings?

Risk Factors • Are there modifiable risk factors for AAV that differ

according to ANCA type?

• How do certain drugs induce an MPO-ANCA+ AAV?

Organ

Involvement

• Why might fibrotic lung disease and bronchiectasis be

more common in MPO-ANCA+ AAV?

• Why is renal disease more severe at presentation in

MPO-ANCA+ AAV?

• Why does PR3-ANCA+ AAV tend to affect the upper

airway more often?

Remission

Induction

• Should remission induction treatment decisions be

influenced by ANCA type?

• Should clinical trials be powered to detect significant

differences in treatment arms stratified by ANCA type?

Remission

Maintenance

• Should maintenance strategies (continuous vs. tailored

immunosuppression) be driven by ANCA type?

• Does monitoring PR3- or MPO-ANCA+ titer predict

flares depending on treatment strategy used?

Long-Term

Outcomes

• Are MPO-ANCA+ patients at higher risk for chronic

lung disease like pulmonary fibrosis or chronic

respiratory symptoms?

• Should cardiovascular disease risk be managed

differently in patients who are MPO-ANCA+?

and PR3-ANCA+ patients were compared both in unadjusted
and adjusted analyses (aHR 0.92, 95% CI: 0.6–1.5) (57). In that
study, the most important predictor of long-term renal survival
was renal function at presentation. Similar observations have
been made in other studies of ESRD outcomes associated with
AAV (61).

Overall, mortality among patients with AAV is approximately
3-fold higher than that of the general population (62)
but the gap in survival has improved over the last two
decades (63, 64). Both PR3- and MPO-ANCA+ AAV patients
are at similarly increased risk of death compared to the
general population (47, 65). In other words, PR3- and MPO-
ANCA+ AAV patients have a similar risk of death after
accounting for differences in age- and sex- distributions between
the subgroups (3). However, a recent study suggested that
there may be differences in cause-specific death according
to ANCA type. While more studies are needed, MPO-
ANCA+ patients may be at higher risk for death due to
cardiovascular disease even after accounting for differences in
renal involvement, age, and sex (65). This observation is also
consistent with the results of a prior study which found that
MPO-ANCA+ patients may be at higher risk of non-fatal CVD
events (66).

Collectively, these findings suggest that to further improve
long-term survival in AAV, PR3-, and MPO-ANCA+ patients
may benefit from different targeted interventions. Additional

studies are necessary to determine whether the management of
CVD risk should differ according to ANCA type.

ANCA-NEGATIVE AAV

While ANCA type is increasingly used to classify patients with
AAV, it is important to note that a portion of patients with
AAV are ANCA negative because the diagnosis of AAV remains
based on clinicopathologic features rather than a positive ANCA
test. This is especially true in patients with limited AAV and/or
non-renal AAV (67). Rates of ANCA negativity in AAV are
difficult to estimate because ANCA positivity is often used in
AAV diagnostic algorithms. However, ∼20% of patients with
AAV are thought to be ANCA negative; rates may be as high as
40% in those with limited AAV in historic studies (33, 67, 68).
It is important to note that there are an increasing number
of methods that can be used to detect PR3- or MPO-ANCA
positivity and that the diagnostic test performance characteristics
of these methods can vary (33). Therefore, in the setting of high
diagnostic suspicion but negative ANCA testing, it may be useful
to test for ANCA positivity using an alternative method for
ANCA detection (68). There is limited data on the comparison
of patients with ANCA negative AAV vs. PR3-ANCA+ AAV vs.
MPO-ANCA+ AAV (41). Moreover, many contemporary AAV
trials exclude patients who have no history ANCA positivity.
Studies of ANCA negative AAV are an important avenue of
future investigation.

CONCLUSIONS

ANCA testing is a useful test to establish a diagnosis of AAV
in the appropriate clinical setting. ANCA testing also provides
important insights into differences in genetic risk, pathogenesis,
and response to treatment between PR3- and MPO-ANCA
positive patients. A growing body of evidence supports the
hypothesis that PR3- and MPO-ANCA+ AAV might represent
distinct diseases rather than a single spectrum of disease. A
number of research questions can be addressed to further
advance our understanding of the potential use of ANCA type
for guiding AAV care (Table 3). The available evidence suggests
that AAV treatment might be optimized using a personalized
approach guided by a patient’s ANCA type.
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Behçet’s syndrome (BS) is a multisystemic vasculitis, characterized by different

clinical involvements, including mucocutaneous, ocular, vascular, neurological, and

gastrointestinal manifestations. Based on this heterogeneity, BS can be hardly

considered as a single clinical entity. Growing evidence supports that, within BS, different

phenotypes, characterized by clusters of co-existing involvements, can be distinguished.

Namely, three major BS phenotypes have been reported: (a) the mucocutaneous and

articular phenotype, (b) the extra-parenchymal neurological and peripheral vascular

phenotype, and (c) the parenchymal neurological and ocular phenotype. To date,

guidelines for the management of BS have been focused on the pharmacological

treatment of each specific BS manifestation. However, tailoring the treatments on

patient’s specific phenotype, rather than on single disease manifestation, could represent

a valid strategy for a personalized therapeutic approach to BS. In the present literature

review, we summarize current evidence on the pharmacological treatments for the

first-, second-, and third-line treatment of the major BS phenotypes.

Keywords: Behçet’s syndrome, phenotypes, cluster analysis, anti-TNF-α, DMARDs

INTRODUCTION

Behçet’s syndrome (BS) is a multisystemic vasculitis (1, 2), characterized by a broad
spectrum of clinical involvements, including mucocutaneous, ocular, vascular, neurological, and
gastrointestinal manifestations (1, 3). The different clinical manifestations may present alone, or
co-exist in the same patient (4, 5). Cluster analyses and multivariate techniques have been applied
to identify common clusters of BS manifestations, and, to date, three main disease phenotypes
have been described: (a) the mucocutaneous and articular phenotype, (b) the extra-parenchymal
neurological and peripheral vascular phenotype, and (c) the parenchymal neurological and ocular
phenotype (Table 1).

While extensive and updated literature reviews and recommendations exist for the treatment
of the single BS involvements (6, 54), to date, poor attention has been given to the
management of the different clusters of BS manifestations. The present review aims to
provide clinicians evidence-based data to guide the choice of the most appropriate first-,
second-, and third-line therapeutic approaches of the major BS phenotypes. Namely, first-
line treatments should be considered as first options for naïve patients, based on current
EULAR recommendations and on the extensive literature evidence on their efficacy (55).
In patients intolerant or resistant to first-line drugs (or with severe BS forms), second or
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TABLE 1 | Major clusters of Behçet’s manifestations and therapeutic options for the different disease phenotypes.

Phenotypes Evidence for

the phenotype

Type of study; Cluster of

manifestations

Treatment Major evidence for the treatment

Mucocutaneous and

articular phenotype

Diri et al. (6) Analysis of variance; Papulopustular

lesions and arthritis

Colchicine (+/– steroids) Clinical trials: (7–9)

Tunc et al. (10) Factor analysis; Genital ulcers, and

erythema nodosum

Azathioprine Clinical trial: (11)

Hatemi et al. (12) Analysis of variance; Enthesopathy, acne

and arthritis

IFN α Clinical trial: (13)

Observational study: (14)

Karaca et al. (15) Factor analysis; Genital ulcers, and

erythema nodosum with or without oral

ulcers; papulopustular skin lesions and

joint involvement with or without oral

ulcers

Anti TNF-α Clinical trial (for etanercept): (16).

Observational studies and case series (for

adalumumab and infliximab): (17, 18)

Yazici et al. (4). Anti Interleukin-1 Clinical trial: (19)

Case series: (20)

Kurosawa et al.

(21)

Correspondence analysis; Onset age:

30–39 years, skin lesions, arthritis

Secukinumab Case series: (22)

Extra-parenchymal

neurological and

peripheral vascular

involvement phenotype

Tunc et al. (23) Chi-square test; Cerebral venous sinus

thrombosis and peripheral major vessel

disease

Anticoagulant +

immunosuppressant

+/– steroids

Retrospective studies and case series (for

anticoagulation): (24–26)

Saadoun et al.

(27)

Chi-square test; central nervous system

involvement and extraneurologic

vascular lesions

Retrospective studies (for

immunosuppressants in general): (28–30)

(for anti TNF-α): (31, 32)

Tascilar et al. (33) Correspondence analysis; Cerebral

venous sinus thrombosis and pulmonary

artery involvement

Shi et al. (24) Chi-square test; extra cranial vascular

involvement and cerebral venous sinus

thrombosis.

Parenchymal central

nervous system and

ocular phenotype

Bitik et al. (34) Chi-square test; posterior uveitis and

parenchymal neurological involvement

Steroid pulses Clinical trial (for ocular involvement): (35)

Kurosawa et al.

(21)

Correspondence analysis; male, eye

disease, HLA-B51 (+), neurologic

involvement

Azathioprine Clinical trial: (11, 36)

Observational evidence (for azathioprine

alone or in combination): (37, 38)

Anti TNF-α Interventional study (for infliximab): (39, 40)

Observational studies (for infliximab):

(41, 42)

Clinical trials (for adalimumab): (43, 44)

Observational studies (for adalimumab):

(41, 45, 46)

Cyclophosphamide Observational study: (47–49)

Tocilizumab Observational study: (50)

Case report/series: (51–53)

further lines of treatment should be considered, based
on the availability of literature evidence to guide
their use.

Abbreviations: ADA, adalimumab; ANA, anakinra; AZA, azathioprine; BS,

Behçet’s syndrome; CANA, canakinumab; CNS, central nervous system; CSA,

cyclosporine; CVST, cerebral venous sinus thrombosis; CYC, cyclophosphamide;

DMARDs, disease modifying anti-rheumatic drugs; DVT, deep vein thrombosis;

ETN, etanercept; HLA, human leukocyte antigen; IFN, interferon; IFX, infliximab;

IL, interleukin; MHC, major histocompatibility complex; RCT, randomized

controlled trial; SpA, spondyloarthritides; SVT, superficial venous thrombosis;

TAL, thrombosis of atypical locations; TCZ, tocilizumab.

MUCOCUTANEOUS AND ARTICULAR
PHENOTYPE

Evidence on the Phenotype
Skin-mucosa ulcerations are the most common, and usually the
earliest, manifestations of BS, and recurrent oral and genital
lesions are the hallmark of this syndrome (1). While one third of
the BS population presents with only recurrent mucocutaneous
symptoms (56, 57), a not negligible proportion of patients
presents both mucocutaneous and articular involvements. The
association between acne and arthritis has been demonstrated in
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past decades (6), but it is suggested that also enthesitis was part
of this clinical association (4, 21).

Indeed, BS shares with seronegative spondyloarthritides (SpA)
common pathogenetic mechanisms and genetic susceptibility,
including the interleukin (IL)-23 and IL-17 pathways (1).
Moreover, the involvement of major histocompatibility complex
(MHC) class I alleles both in BS and in SpA [human leukocyte
antigen (HLA)-B∗51 and HLA-B∗27, respectively] led to the
unifying concept of “MHC-I-opathies” (58).

First- and Second-Line Treatments
In patients newly diagnosed with BS and presenting this
“mucocutaneous and articular phenotype,” first-line treatment
should be based on colchicine (Figure 1A). Colchicine has long
been used in BS, with first evidence on its beneficial results
for the treatment of erythema nodosum and arthralgia dating
back to 1980 (7). Later on, two randomized controlled trials
(RCTs) showed that colchicine led to a significant improvement
of oral and genital ulcers, erythema nodosum, and articular
symptoms (8, 9). The 2018 EULAR recommendations support
the use of colchicine as first-line systemic treatment, especially
when the dominant lesions are erythema nodosum or genital
ulcers (55).

In patients intolerant or resistant to colchicine, azathioprine
(AZA) can represent an effective second-line treatment.
Efficacy of AZA for oral and genital ulcers and for arthritis
was documented in a 2-year RCT of AZA (2.5mg per
kilogram of body weight per day) (11). In addition, AZA
was superior to placebo in preventing new eye disease
involvement (11). Based on this evidence, AZA can be
considered as a first-line treatment in patient carrying also mild
ocular involvement.

Third Line Treatments
In patients inadequately controlled with, or intolerant to, the
aforementioned synthetic immunosuppressive regimen, the use
of biologic strategies, namely, with anti-TNF-α, or interferon
(IFN) α should be considered. Among anti-TNF-α agents, only
etanercept (ETN) 25mg twice a week for 4 weeks has been
studied in a trial on 40 BS patients with mucocutaneous disease
and/or arthritis, showing a significant decrease of oral ulcers,
nodular, and papulopustular lesions (16). However, data on the
efficacy of ETN on arthritis were not conclusive, and the effects
of this drug on genital ulcers were comparable with those in the
placebo group. Conversely, the use of adalimumab (ADA) and
infliximab (IFX) is supported by different observational studies
and case series (17). Among them, a multicenter study on 124 BS
patients showed that the clinical response to the treatment with
either ADA or IFX was 88% for mucocutaneous involvement and
77.8% for articular involvement (18).

The efficacy of IFN α in the “mucocutaneous and articular
phenotype” was reported in a retrospective observational study
on 18 BS patients, treated for 12 weeks (14). Later on, in
an RCT, IFN α was shown to control oral and genital ulcers,
papulopustular lesions, erythema nodosum-like manifestations,
and articular symptoms, while improving the severity and the
frequency of ocular attacks (13). Of note, the safety profile of this

drug deserves some attention, since adverse events including flu-
like syndrome, leukopenia, transient elevation of liver enzymes,
as well as psychiatric disorders have been reported (13). Bone
marrow suppression may be even more pronounced when used
together with AZA (37).

Fourth-Line Treatments
In patients resistant, refractory, or intolerant to anti-TNF-
α agents or IFN α, evidence supports the use of other
biologic treatments for this phenotype. Specifically, some
evidence (although not consistent) supports the use of IL-1
inhibitors anakinra (ANA) or canakinumab (CANA) (19, 20,
59). Specifically, in an adaptive, two-phase pilot open label
study conducted on six BS patients with active mucocutaneous
manifestations and with concomitant arthritis, ANA at an
optimal dose of 200mg daily provided partial control of resistant
mucocutaneous and articular involvements (19).

In a recent case series of five BS patients with active
and refractory mucocutaneous and articular manifestations,
the anti-IL17 agent secukinumab (either 150mg and 300
mg/month) was associated with a consistent improvement of
both mucocutaneous and articular involvements (22).

Regarding other promising treatments, growing evidence
supports the use of ustekinumab (60–62) and apremilast (63,
64) for the control of mucocutaneous involvements. Of note,
following a phase 2, placebo-controlled trial and a phase 3,
multicenter, placebo-controlled study on 207 patients with active
BS (64, 65), apremilast is the only drug currently approved by
the Food and Drug Administration (FDA) for the treatment
of mucocutaneous manifestations in BS. However, as no clear
evidence exists on the efficacy of apremilast for the control
of articular BS involvement, the role of this drug for the
management of the mucocutaneous and articular BS phenotype
is yet unclear.

On the other hand, the use of the anti-IL6R tocilizumab
(TCZ) should be avoided in patients presenting this phenotype,
considering that TCZ-induced exacerbation of mucosal ulcers
has been reported (66, 67).

EXTRA-PARENCHYMAL NEUROLOGICAL
AND PERIPHERAL VASCULAR
PHENOTYPE

Evidence on the Phenotype
Superficial venous thrombosis (SVT) and deep vein thrombosis
(DVT) are the most frequent vascular manifestations of BS,
affecting altogether up to 40% of patients (31, 68–70). DVT
mainly involves the inferior, but also the superior limbs,
while venous thrombosis of atypical locations (TAL) have been
described (31, 69–71). At the cerebral level, non-parenchymal
vascular central nervous system (CNS) involvements include
cerebral venous sinus thrombosis (CVST), arterial occlusion,
and/or aneurysms (72). CVST represents 10–30% of all
neurological BS manifestations (73). The concomitant presence
of both cerebral arterial manifestations and CVST is extremely
rare (74). In an analysis of 88 patients with CNS disease, a
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FIGURE 1 | Therapeutic approach to the (A) mucocutaneous and articular phenotype, (B) extra-parenchymal neurological and peripheral vascular phenotype, and

(C) parenchymal central nervous system and ocular phenotype of Behçet’s syndrome.

significant association was found between peripheral vascular

disease and extra-parenchymal CNS involvement (i.e., dural
sinus thrombi), while a poor association was found between
parenchymal neurological and peripheral vascular involvements
(23). In a retrospective study involving 21 BS patients with
CVST, the presence of extra cranial thrombosis was documented
in 52% of patients (24). In a cohort study on 820 patients,
CVST was reported in 64 cases. Among them, the presence of
concomitant extra-neurological vascular lesions was significantly
more frequent than in patients without CVST (27).

The concomitant presence of central and peripheral
vascular involvements is probably sustained by common

thrombogenic mechanisms. Namely, inflammation-induced
thrombosis has been described in BS, with neutrophils playing
a critical role in promoting oxidative stress, inflammation,
and consequent endothelial dysfunctions (31, 75, 76). In this
context, immunosuppression represents a key strategy for the
therapeutic management of central and peripheral vascular
involvements (31, 71).

CVST and Peripheral Venous Involvements
First-Line Treatments

High-dose glucocorticoids are the mainstay treatment for rapid
induction of remission in CVST (60). There is no consensus
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on the use of additional anticoagulants or immunosuppressants,
since recurrence is infrequent with this manifestation. In a recent
literature review (31), we reported that anticoagulation has a
predominant role in the management of BS-related CVST (24,
25, 31, 77), while it is yet unclear if the use of concomitant
immunosuppressants influences the risk of sequalae or relapses
(24). A recent case series of 7 patients with BS-associated
CVST suggested that anticoagulant therapy might be safely
discontinued during follow-up, in the presence of optimal BS
therapeutic management with steroids alone or in combination
with immunosuppressive drugs (26). On the other hand, the use
of immunosuppressants is pivotal in the control of DVT and
SVT (28–31), while concomitant use of anticoagulants in these
peripheral associations has been associated with controversial
benefits (31), except for preventing the occurrence of severe
post-thrombotic syndrome (78).

Thus, the first-line treatment of patients carrying the “extra-
parenchymal neurological and peripheral vascular phenotype”
should be based on immunosuppressants with the addition
of anticoagulants in selected patients (Figure 1B). Specifically,
in CVST associated with SVT and/or DVT, evidence suggests
as first-line treatment AZA, cyclophosphamide (CYC) or
cyclosporine (CSA) (31, 66).

Second- and Third-Line Treatments

In patients with refractory peripheral venous thrombosis, anti-
TNF-α, namely, ADA, or IFX, should be used, alone or in
combination with traditional disease-modifying anti-rheumatic
drugs (DMARDs) (1, 31).

Eventually, IFN α can be considered a therapeutic approach
in selected cases (79). In a prospective study on patients with
lower-extremity DVT, the treatment with IFN α accounted for
a good recanalization and low relapse rates (80). According to
the current EULAR recommendations, the treatment with IFN
α can be considered in selected cases (55). However, the role of
this treatment for the control of CNS vascular involvements is
still unclear.

CVST and Arterial Involvements
First-Line Treatments

First-line treatment of patients carrying the CVST and peripheral
arterial involvements should be based on immunosuppressants,
mainly CYC, in association with high-dose steroid and
(after excluding pulmonary aneurysms) with anticoagulants
in selected patients (55). According to the last EULAR
recommendations, CYC can be administered as monthly
intravenous pulses, while glucocorticoids are given as three
intravenous methylprednisolone pulses followed by oral
prednisolone (or prednisone) at the dose of 1 mg/kg/day (55)
(Figure 1B). For the maintenance treatment, CYC can be
replaced by AZA (1).

Notably, sometimes peripheral aneurysms require emergency
surgery or stenting (55). The use of prednisone alone or in
combination with AZA is recommended also in patients with
pseudoaneurysm, before endovascular treatment (81, 82), while
in the days after surgery, successful use of hydrocortisone plus
CSA has been reported (81).

Second-Line Treatments

In patients with arterial involvements refractory to conventional
DMARDs, second-line treatment with anti-TNF-α (namely IFX
or ADA) should be considered (32, 55). In an observational study
on 13 BS patients with refractory pulmonary artery involvement,
anti-TNF-α effectively controlled these involvements, although it
did not prevent their development (32).

An effective use of ADA following unsuccessful treatment
with prednisone, CYC, and conventional immunosuppression
was reported also in a patient with right ventricular thrombus
and large aneurysms of the pulmonary arteries leading to
recurrent episodes of hemoptysis (83), as well as in a case
of life threatening bilateral pulmonary artery aneurysms and
thrombotic disease (84).

PARENCHYMAL CNS AND OCULAR
PHENOTYPE

Evidence on the Phenotype
The involvement of the parenchymal CNS is a major cause of
morbidity and mortality in BS (73, 85). In a study conducted
on 200 neuro-BS out-patients, 162 had parenchymal CNS
involvement (72). In a first post-mortem study on a BS patient
with parenchymal involvement, a cell infiltration was found
around the central retinal artery within the optic nerve (86).
Eye involvement is present in around half of BS patients, with
a higher prevalence in males, and a lower prevalence among
elderly (87). Ocular involvement is one of the most disabling
complication in BS (87). In a retrospective observational study
on 295 BS patients, a significant association between posterior
uveitis and parenchymal CNS involvement was reported (34).
Furthermore, male sex, eye disease, HLA-B51 positivity, and
neurologic involvement are features identifying a specific cluster
of BS patients (21).

Of note, in a recent study on 30 BS patients with
ocular involvement without overt neurological symptoms, silent
neurologic manifestations, including neuropsychological deficits,
subcortical magnetic resonance imaging (MRI) lesions, and non-
structural headache, were found in a relevant proportion of
patients (88).

Although the pathogenetic mechanisms sustaining the
concomitant occurrence of ocular and neurological BS
involvements have never been described, the embryogenic
process and the involvement of the neural tube and neural
crest in the organogenesis of the eye might account for this
association (89).

First-Line Treatments
No RCT has determined the optimal therapeutic management of
neurological BS, nor for its association with ocular involvement
(90). The induction treatment of acute severe neuro-BS is
mainly based on high-dose corticosteroids, followed by the
gradual tapering of the oral doses over 3–6 months (90–
92) (Figure 1C). As first-line treatment for the “parenchymal
neurological and ocular phenotype,” AZA should be used (90).
Specifically, according to current EULAR recommendations,
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AZA at the dosage of 2.5 mg/kg per day is recommended as first-
line immunosuppressive agent for both ocular and parenchymal
manifestations (1, 55). In case of severe ocular and parenchymal
CNS involvements, the use of second-line options, namely, anti-
TNF-α drugs, should be considered as first-line treatment.

Second-Line Treatments
In refractory cases, the use of anti-TNF-α can be considered (54).
Indeed, consistent observational evidence supports the use of
IFX (at the dose of 5 mg/kg) in both neurological and ocular BS
involvements (1, 39, 55).

ADA at the dose of 40mg every other week represents a
valid second-line alternative (1). Effective use of ADA for non-
infectious uveitis was first reported in two RCTs on few BS
patients (43, 44, 93). Later observational evidence confirmed
the benefits of this treatment in BS-related uveitis. In four
Italian multicenter observational studies, treatment with either
ADA or IFX proved effective for the treatment of refractory
retinal vasculitis (45, 94–96). In another recent observational
study on 106 patients with uveitis, ADA was associated with
high rates of ocular control, effective steroid tapering, and good
preservation of visual acuity, also in the absence of concomitant
DMARDs treatment (46). Similarly, increasing observational
evidence supports the use of ADA or IFX in neuro-BS (41).

Third-Line Treatments
Further therapeutic options for this phenotype are CYC or TZC.
According to a 10-year longitudinal study, CYC (1 g/month
for 6 months and then every 2–3 months), in association
with AZA and prednisolone, was the best treatment for retinal
vasculitis, before opting for biologic agents (47). Nevertheless,
in a single masked trial (97), CYC was found to be inferior to
CSA in controlling ocular involvements; however, CSA cannot
be considered as a valid approach for this phenotype, as it is
contraindicated in active neuro-BS.

CYC (1 g/month for 6–12 months or 0.8 g/m2) has been
associated also with some benefits in parenchymal neuro-BS
(79, 98). In a French study on 115 patients with parenchymal
neuro-BS, the use of CYC (n = 53) resulted as effective as AZA
(n = 40) and steroids alone (n = 19) in preventing relapses
(48). Furthermore, in patients with moderate to severe disability
(i.e., with moderate to severe disability scoring 3 or more in the
modified Rankin scale for the assessment of the disability), CYC
was associated with slightly higher event-free survival rates at
1 to 10 years as compared to AZA, although without statistical
significance. In a Korean study on 22 patients with parenchymal
neuro-BS, a treatment with CYC associated with steroids was
found to be as effective as treatment with steroids alone in
preventing relapses (49).

The anti-IL6R TCZ is a promising treatment in the
“parenchymal neurological and ocular phenotype.” Results from

case reports and case series suggest its effectiveness for refractory
neuro-BS (51–53), while a recent retrospective study on 11
patients with refractory uveitis reported rapid and sustained
ocular improvement in all the patients (50). However, the use
in daily clinical practice of TZC for treating this phenotype still
needs more studies for further confirmation. As for other non-
biologic alternatives, IFN α is highly effective for ocular control
(55), and might have a potential role also for refractory neuro-
BS (99, 100). Notably, the use of CSA should be avoided in
the “parenchymal neurological and ocular phenotype” (55). In
fact, while effective in ocular manifestations, an increased risk
of CNS manifestations in patients taking this drug has been
reported (101–103).

CONCLUSIONS

Growing evidence supports that, within the definition of
BS, different clinical phenotypes can be distinguished. Thus,
therapeutic strategies could be tailored on patient’s specific
phenotype, rather than on single disease manifestations.

Based on available literature, patients carrying the
“mucocutaneous and articular” BS phenotype should start
a first-line treatment with colchicine, alone or in combination
with corticosteroids, while AZA can be considered in patients
resistant or intolerant to colchicine. The use of anti-TNF-α or
IFN α should be reserved to truly refractory or severe forms.

In patients presenting the “extra-parenchymal and peripheral
vascular phenotype,” use of immunosuppressants and additional
anticoagulants in selected patients should be recommended.
Traditional immunosuppressants (mainly AZA) should
be started as first-line treatment, while anti-TNF-α agents
represent a valid second-line treatment. IFN α may be a
promising alternative.

As for the “parenchymal neurological and ocular phenotype,”
first-line treatment with AZA is recommended after an induction
therapy with high-dose steroids. In patients with a severe
presentation, or those who are intolerant or refractory to AZA,
anti-TNF-α drugs should be used.

However, comparative studies should be performed to
evaluate whether this phenotype-based therapeutic approach is
associated with a better effectiveness as compared to the classic
organ-based approach.
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Objectives: The activation and inhibition of T-cells has been well-studied under

physiological conditions. Co-inhibition is an important mechanism to keep effector T-cells

in check. Co-inhibitors mediate peripheral self-tolerance and limit the immune response.

Dysfunctional co-inhibition is associated with loss of T-cell regulation and induction

of autoimmunity. Therefore, we investigated the co-inhibitor B- and T-Lymphocyte

attenuator (BTLA) in ANCA-associated vasculitis (AAV).

Methods: Fifty-six AAV patients and 32 healthy controls (HC) were recruited. Flow

cytometry was performed to investigate the expression of BTLA on T-cells. Double

negative T-cells were defined as CD3+CD4−CD8−. To assess the functionality of BTLA,

CFSE-labeled T-cells were stimulated in presence or absence of an agonistic anti-BTLA

antibody. In addition, impact of BTLA-mediated co-inhibition on Th17 cells was studied.

Results: AAV patients in remission had a decreased expression of BTLA on double

negative T-cells (CD3+CD4−CD8−). On all other subtypes of T-cells, expression of BTLA

was comparable to healthy controls. TCR-independent stimulation of T-cells resulted in

down-regulation of BTLA on Th cells in AAV and HC, being significantly lower in HC.

Co-inhibition via BTLA led to suppression of T-cell proliferation in AAV as well as in HC.

As a result of BTLA mediated co-inhibition, Th17 cells were suppressed to the same

extent in AAV and HC.

Conclusion: BTLA expression is altered on double negative T-cells but not on other

T-cell subsets in quiescent AAV. BTLA-induced co-inhibition has the capacity to suppress

Th17 cells and is functional in AAV. Thus, BTLA-mediated co-inhibition might be exploited

for future targeted therapies in AAV.

Keywords: ANCA vasculitis, BTLA, co-inhibition, immune checkpoint, Th17 cells

97

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02843
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02843&domain=pdf&date_stamp=2019-12-10
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:benjamin.wilde@uk-essen.de
https://doi.org/10.3389/fimmu.2019.02843
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02843/full
http://loop.frontiersin.org/people/824316/overview
http://loop.frontiersin.org/people/523288/overview
http://loop.frontiersin.org/people/803381/overview
http://loop.frontiersin.org/people/732651/overview
http://loop.frontiersin.org/people/624122/overview
http://loop.frontiersin.org/people/516611/overview


Werner et al. BTLA Inhibits Th17 Cells in AAV

INTRODUCTION

Anti-neutrophil cytoplasmatic antibody (ANCA)-associated
vasculitis (AAV) is an autoimmune disease characterized by the
presence of autoantibodies directed against myeloperoxidase
(MPO) or Proteinase-3 (PR3) expressed by neutrophils (1).
AAV mainly affects small- to medium- sized vessels. T-cells have
an important role in the pathogenesis of AAV and persistent
T-cell activation is frequently observed (2, 3). Th17 cells and
effector memory T-cells are expanded which appears to be
independent of disease activity (2, 4, 5). T-cell infiltrates are
frequently found in affected organs (6–9). Moreover, defective
function of regulatory T-cells has been demonstrated in AAV
indicating disturbed immune regulation (10, 11). T-cells are not
only restrained by regulatory cell subsets but are also controlled
by a system of co-stimulation (12). Positive co-stimulation
promotes T-cell activation whereas co-inhibition limits and
suppresses activation of T-cells (12). Co-inhibitory signals
may induce anergy or cell death of T-cells (12, 13). These
mechanisms are important to maintain immune tolerance.
Dysfunctional co-stimulation and co-inhibition promote the
break of tolerance and are associated with autoimmunity. In
human, a defective co-inhibitory PD1/PDL-1 axis is associated
with a number of autoimmune diseases such as systemic lupus
erythematosus and AAV (14, 15). In addition, targeted blockade
of this system promotes the development of AAV (16). The
B- and T-Lymphocyte Attenuator (BTLA) is an Ig superfamily
member molecule and interacts with the herpes virus entry
mediator (HVEM), a member of the TNFR family (13, 17, 18).
BTLA is a co-inhibitor which is predominantly expressed on
B-cells, T-cells and dendritic cells. BTLA ligation with HVEM
results in a reduction of T-cell proliferation (13, 17, 18). Mice
with BTLA deficiency show increased T-cell activation and
higher levels of circulating TNF-α, IFN-γ, IL-2, and IL-4 (19, 20).
However, BTLA as a co-inhibitor is scarcely studied in human
autoimmune diseases and its role in disease pathogenesis is
unclear. Therefore, it was our goal to examine the expression as
well as function of BTLA on T-cells and B-cells in AAV.

MATERIALS AND METHODS

Patients
We enrolled 56 AAV patients who visited the outpatient clinic of
the department of Nephrology at the University Hospital Essen.
Eleven patients were measured twice. Forty-eight patients were
in remission at the time of sampling, eight patients suffered from
active vasculitis. The mean Birmingham vasculitis activity score
of the active patients was 10 ± 3. None of the active patients
were treatment naïve at the time of sampling; all patients had
already received low dose steroids. One patient had received one
dose of rituximab 2 days before sampling and one treatment cycle
with plasma exchange. None of the active patients had received
cyclophosphamide recently or before sampling. Two patients
suffered from new-onset disease, the remaining six patients
had a relapse. The clinical and laboratory characteristics of the
quiescent patients at the time of sampling are given in Table 1.
As a control cohort, we enrolled 32 persons [18 men and 14

TABLE 1 | Clinical characteristics of AAV patients in remission.

Total, n 48

Age, median (IQR), years 55 (19–84)

Gender, female/male, n 24/24

PR3/MPO/neg, n 25/22/1

Disease duration, median (IQR), months 36 (2–236)

Localized/systemic disease, n 12/36

CMV anti-IgG, +/−/na, n 20/15/13

Prednisone +/−, n 42/6

Azathioprine +/−, n 19/29

Mycophenolate Mofetil +/−, n 19/29

Methotrexate +/−, n 1/47

Rituximab +/−, n 2/46

Leflunomide +/−, n 1/47

na, not available; neg, negative.

women with median age of 51 (47–54) years] who had no history
of immunological, infectious, rheumatic, or malignant disease.
TheWatts criteria were used to differentiate between GPA, EGPA
and MPA (21). EULAR-criteria were used to classify the stage
of diseases (22). All patients provided written informed consent.
The study was approved by the local institutional review board.

Flow Cytometric Analysis of T-Cells and
B-Cells
Separation of peripheral blood mononuclear cells (PBMC)
out of whole blood was performed by Ficoll-density gradient
centrifugation. PBMC were counted by BLAUBRAND R©

counting chamber. For surface staining, the following
monoclonal antibodies were used: anti-human CD19 (PB,
Beckman Coulter, Krefeld, Germany), anti-human CD3
(HORV450, BD Biosciences, Heidelberg, Germany), anti-human
CD4 (PerCP, Biolegend, Koblenz, Germany), anti-human
CD8 (APC-H7, BD Biosciences), anti-human CD45RA (APC,
Beckman Coulter), CD272 (BTLA, PE, Biolegend). Appropriate
isotype-controls and fluorescence-minus-one controls were
used. After isolation, PBMC were incubated with monoclonal
antibodies for 30min at room temperature in the dark followed
by washing steps with PBS. Double negative T-cells were defined
as CD3+CD4−CD8− (DN), naïve double negative T-cells were
defined as CD3+CD4−CD8−CD45RA+ and memory double
negative T-cells were defined as CD3+CD4−CD8−CD45RA−.
Memory T-helper-cells were defined as CD3+CD4+CD45RA−.
The analysis of the samples was carried out on a FACS Navios
flow cytometer from Beckman Coulter. Where indicated,
PBMC were stimulated by phorbol 12-myristat 13-acetat
(PMA) (50 ng/ml, Sigma Aldrich, Taufkirchen, Germany), and
Ionomycin (1µg/ml) (Sigma Aldrich) in RPMI 1640 medium
(Gibco Invitrogen, Darmstadt, Germany) supplemented with
10% heat-inactivated fetal calf serum (Greiner Bio-One,
Frickenhausen, Germany), 100 U/mL penicillin and 100µg/mL
Streptomycin (both Gibco Invitrogen). PBMC were incubated
for 4 h in a 5% CO2 atmosphere at 37◦C in culture medium.
Unstimulated samples served as controls and were incubated
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without stimulus. After incubation, surface staining was
performed and cells were analyzed on a flow cytometer (Navios,
Beckman Coulter). Kaluza Analysis Software (Version 1.5,
Beckman Coulter) was used for analysis of flow cytometric data.

Functional Studies of BTLA
B-cells were isolated by using a negative selection method based
on a magnetic bead technology (B cell isolation kit II, Miltenyi
Biotec, Bergisch Gladbach, Germany), typical purity of isolated
B-cells was above 95%. In order to quantify the proliferation
of lymphocytes, isolated PBMCs or isolated B-cells were labeled
with CFSE. CFSE was used at a concentration of 2µM (Thermo
Fisher Scientific, Dreieich, Germany). PBMC labeled with CFSE
were then stimulated with anti-CD3 (0.5 ng/ml, clone HIT3a,
Biolegend) and anti-CD28 (0.5 ng/ml, clone 28.2, Biolegend) in
the presence or absence of an agonistic anti-BTLA antibody
(50 ug/ml, clone MIH26, BioLegend) for 72 h. Isolated B-
cells were stimulated with the TLR-agonist CpG ODN 2006
(Invivogen Toulouse, France) in the presence or absence of
an agonistic anti-BTLA antibody (50 ug/ml, clone MIH26,
BioLegend) for 72 h. In conditions without anti-BTLA antibody,
an isotype control was used instead at the same concentration
(50 ug/ml, mouse IgG2a, Invitrogen). Incubation was carried
out at 37◦C in 5% CO2 atmosphere. After 72 h, PBMC were
stained with anti-CD3 (Pacific Blue, Beckman Coulter), anti-
CD4 (APC, Beckman Coulter), anti-CD8 (APC-H7, Becton
Dickinson), and 7AAD (Biolegend). B-cells were restimulated
with PMA (10 ng/ml, Sigma–Aldrich, Taufkirchen, Germany),
Ionomycin (1µg/ml, Sigma–Aldrich) in the presence of Brefeldin
A (5µg/ml, BD Biosciences) for 6 h followed by surface
staining, fixation and permeabilization (CytoFix/CytoPerm kit,
BD Biosciences, Erembodegen, Belgium). For intracellular flow
cytometric analysis the Breg staining was performed with: anti-
CD3(HorV450), anti-CD19(PB), anti-7AAD and IL-10 (APC).
After fixation and permeabilization, PBMCs were stained
intracellularly for IL-10 (APC) and CD69 (PE-CY7). Appropriate
isotype controls were used to confirm specificity of staining and
to discriminate background staining. The suppressive capacity
of BTLA was determined as the relative inhibition of cell
proliferation and was calculated as follows: (proliferated fraction
of cells without anti-BTLA [isotype]MINUS proliferated fraction
of cells with anti-BTLA) DIVIDED by proliferation of PBMCs
without anti-BTLA [isotype] MULTPLIED by 100. In addition,
cell culture supernatants were collected. All samples were stored
at −20◦C until bulk analysis. Human IL-17A and IFN-γ ELISA
immunoassays were purchased by R&D systems Europe, Ltd.
(Quantikine ELISA). The test was performed according to
the manufacturer’s instructions. IL-17A and IFN-γ levels are
expressed as pg/mL.

Statistical Analysis
All values are given as mean ± standard error of the mean. The
Mann-Whitney U test was used to detect statistically significant
differences between two unpaired groups. The Wilcoxon test was
performed to assess paired groups. P < 0.05 were considered
as significant. GraphPad Prism 6.0c (GraphPad Software, Inc.,
California) was used for statistical analysis.

RESULTS

Reduced Expression of BTLA on Double
Negative T-Cells in AAV
In quiescent AAV patients (AAV-r), the BTLA expression did
not differ from HC on peripheral T-cells (AAV-r vs. HC,
CD3+ T-cells: %BTLApos, 85.2 ± 1.7% vs. 86.6 ± 2.4%, p
= 0.19, Figure 1). the same was found for T-helper cells (Th
cells, AAV-r vs. HC, %BTLApos within CD3+CD4+ T-cells:
91.5 ± 1.2% vs. 92.2 ± 1.4%, p = 0.21), memory Th cells
(AAV-r vs. HC, %BTLApos within CD3+CD4+CD45RA− T-
cells: 90.1 ± 1.1 vs. 92.3 ± 1.6%, p = 0.2), and cytotoxic T-
cells (AAV-r vs. HC, %BTLApos within CD3+CD8+ T-cells:
84.9 ± 2.5% vs. 81.6 ± 3.7%, p = 0.54). On double negative
T-cells (DN, CD3+CD4−CD8−) the expression of BTLA was
significantly decreased in AAV (AAV-r vs. HC, %BTLApos within
CD3+CD4−CD8− T-cells: 64.9 ± 3.6% vs. 84.0 ± 2.7%, p <

0.001, Figure 1). The lower BTLA expression in AAV-r could
also be found on naïve DN T-cells (AAV-r vs. HC, %BTLApos

within CD3+CD4−CD8−CD45RA+, n = 34/27; 91 ± 1.8% vs.
94 ± 2.1%, p < 0.05), and memory DN T-cells (AAV-r vs. HC,
%BTLApos within CD3+CD4−CD8−CD45RA−, n = 34/27; 67.1
± 3.4% vs. 85.5 ± 2.9%, p < 0.05). The frequency of DN T-
cells was comparable between AAV und HC (AAV-r vs. HC,
%CD4−CD8− within CD3+ T-cells: 4.2 ± 0.4 vs. 5.1 ± 0.5%,
p > 0.05). It was further studied whether the BTLA expression
pattern was dependent on disease activity. For this purpose,
patients with active ANCA-vasculitis (AAV-a) were recruited.
Interestingly, BTLA was downregulated on T-helper-cells in
patients with active disease as compared to HC and patients
in remission (%BTLApos within CD4+ T-helper-cells, AAV-a
vs. HC: 85.9 ± 1.6% vs. 92.2 ± 1.4%, p = 0.006; AAV-a vs.
AAV-r: 85.9 ± 1.6% vs. 91.5 ± 1.2%, p = 0.001). Cytotoxic T-
cells showed reduced BTLA expression in active patients when
compared to patients in remission (%BTLApos within CD8+ T-
cells: 78.6 ± 4.8% vs. 84.9 ± 2.5%, p = 0.02). In contrast, BTLA
was upregulated on DN T-cells in active disease as compared to
quiescent disease (%BTLApos within DN T-cells, 82.2 ± 7.5% vs.
64.9± 3.6%, p= 0.03). BTLA expression seemed to be dependent
on disease activity and was differentially expressed on the specific
T-cell subsets.

Longitudinal Assessment of BTLA
Expression on T-Cells in AAV
To detect variability of BTLA expression, eleven AAV-r patients
were measured twice over a period of 1 year (Figure 2).
In AAV patients, the expression of BTLA did not change
significantly between the first and the second visit on Th cells
(AAV-r patients at the first visit vs. second visit, 93.1 ± 3.3%
vs. 95.1 ± 6.9%, p = 0.7) and on cytotoxic T-cells (AAV-r
patients at the first visit vs. second visit, CD3+CD8+ T-cells:
%BTLApos, 85.1 ± 18.6% vs. 83 ± 19.4%, p = 0.41). On
double negative T-cells, the variability of BTLA expression was
not significantly altered (AAV-r patients at the first visit vs.
second visit, CD3+CD4−CD8−: %BTLApos, 66.7 ± 16.7% vs.
72.4± 25.2%, p= 0.76).
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FIGURE 1 | BTLA expression on circulating T-cells in AAV and HC. (A) Expression of BTLA was comparable between AAV und HC on CD3+ T-cells. (B) BTLA

expression did not differ on Th cells and on (C) cytotoxic T-cells in quiescent AAV vs. HC. Patients with active disease showed diminished BTLA expression on Th cells

and cytotoxic T-cells. (D) On CD3+CD4−CD8− T-cells, BTLA was diminished in quiescent AAV as compared to HC. In active patients, BTLA expression was

enhanced as compared to patients in remission. (E) Representative flow cytometric data is depicted. The plots are gated on CD3+CD4−CD8− T-cells. Significant

differences as calculated by the Mann-Whitney U-test are indicated: *p < 0.05, **p < 0.01.

FIGURE 2 | Longitudinal assessment of BTLA expression on T-cells. The expression of BTLA on Th cells (A), cytotoxic T-cells (B), and DN T-cells (C) was comparable

at the first vs. the second visit.

BTLA Expression Is Elevated on Stimulated
T-Cells in AAV
BTLA expression decreased after stimulation on CD3+ T-cells
in AAV-r (AAV-r before stimulation vs. after stimulation, CD3+

T-cells: %BTLApos, 91.3 ± 1.3% vs. 82.3 ± 2.9%, p < 0.05,

Figure 3) and in HC (HC before stimulation vs. after stimulation,

CD3+ T-cells: %BTLApos, 88.9 ± 2.1% vs. 62.2 ± 6.1%, p <

0.05). CD3+CD8− Th cells also showed decreased expression of

BTLA after stimulation in AAV-r (AAV-r before stimulation vs.
after stimulation, CD3+CD8− T-cells: %BTLApos, 91.3 ± 1.4%
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FIGURE 3 | BTLA expression on T-cells after TCR-independent stimulation. (A,B) BTLA was decreased on CD3+CD8− T-cells after stimulation with PMA/Ionomycin.

(C,D) After stimulation, the expression of BTLA was significantly more reduced on T-cells derived from HC as compared to AAV patients. Significant differences as

calculated by the Wilcoxon-test for paired samples are indicated as ***p < 0.001. Significant differences as calculated by the Mann-Whitney U test for unpaired

samples are indicated: **p < 0.0024.

vs. 82.3 ± 3.1%, p < 0.05, Figure 3) and in HC (HC before
stimulation vs. after stimulation, CD3+CD8− T-cells: %BTLApos,
88.9 ± 2.1% vs. 62.2 ± 6.1%, p < 0.05). In direct comparison,
BTLA expression was more reduced on T-cells in HC after
stimulation. This applied to the CD3+ (AAV-r vs. HC, CD3+ T-
cells: %BTLApos, 82.3 ± 3.3% vs. 62.3 ± 6.0%, p < 0.05) and the
CD3+CD8− (AAV-r vs. HC, CD3+CD8− T-cells: %BTLApos 82.3
± 2.9% vs. 62.2± 6.1%, p< 0.05) T-cell population. Likewise, the
ratio of BTLA expression (BTLA expression on stimulated CD3+

T-cells divided by BTLA expression on unstimulated CD3+ T-
cells) was increased in AAV compared to HC (AAV-r vs. HC,
BTLA ratio on CD3+ T-cells: 0.89 ± 0.003 vs. 0.71 ± 0.06,
p < 0.05; AAV-r vs. HC, BTLA ratio on CD3+CD8− T-cells: 0.9
± 0.03 vs. 0.69 ± 0.06, p < 0.05), indicating a less pronounced
downregulation of BTLA in AAV patients.

BTLA Suppresses T-Cell Proliferation and
Th17 Cells
The function of BTLA was examined in 17 AAV-r patients and 10
HC. CFSE labeled PBMC were stimulated with anti-CD3/CD28
in the presence and absence of an agonistic anti-BTLA antibody.
Stimulation of T-cells in presence of an agonistic anti-BTLA
antibody resulted in suppression of T-cell proliferation in AAV
and HC (relative inhibition of T-cell proliferation in %, AAV vs.
HC, 32.1 ± 5.2% vs. 39.0 ± 6.3%, p = 0.33, Figure 4). Th cells
(relative inhibition of Th cell proliferation in %, AAV vs. HC,
31.4 ± 5.9% vs. 38.63 ± 6.3%, p = 0.36, Figure 4) and cytotoxic
T-cells (relative inhibition of the cytotoxic T-cell proliferation in

%, AAV vs. HC, 32.1 ± 5.1% vs. 28.5 ± 7.9%, p = 0.81) were
suppressed to the same extent in AAV and HC. Interestingly, the
proliferation of DN T-cell was also suppressed by BTLA-induced
co-inhibition (relative inhibition of the T-cell proliferation in %,
AAV-r vs. HC, 36.4 ± 7.4% vs. 58.2 ± 9.1%, p = 0.11). In both
groups, BTLA-mediated suppression inhibited IL-17A secretion
(AAV-r vs. HC, suppression of IL-17A secretion, 29.9 ± 5.0% vs.
24.1 ± 14.3%, p = 0.9, Figure 4). The levels of INF-γ secretion
were reduced by BTLA-mediated suppression in AAV and HC
(AAV-r vs. HC, suppression of INF-γ secretion, 63.2 ± 3.4% vs.
74.2± 8.1%, p= 0.17).

Role of BTLA Expression on B-Cells in HC
and Patients
The BTLA expression pattern was analyzed on B-cells in HC (n
= 16), patients in remission (AAV-r, n = 27) and patients with
active disease (AAV-a, n = 8, Figure 5). The fraction of BTLA
expressing B-cells was comparable between patients in remission,
active patients, andHC (%BTLApos within CD19+ B-cells, AAV-r
vs. AAV-a: 99.53± 0.3% vs. 96.45± 3.5%, p= 0.63; HC vs. AAV-
r: 99.95 ± 0.04% vs. 99.53 ± 0.3%, p = 0.2; HC vs. AAV-a: 99.95
± 0.04% vs. 96.45 ± 3.5%, p = 0.13, Figure 5). Furthermore, the
functional role of BTLA on B-cells was assessed (Figure 5). For
this purpose, isolated B-cells from HC were stimulated ex vivo in
presence or absence of agonistic anti-BTLA. B-cell proliferation
was assessed by CFSE dilution. Moreover, IL-10 production by
B-cells was determined to assess whether agonistic anti-BTLA
treatment hampers the function of anti-inflammatory regulatory
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FIGURE 4 | Functional assessment of BTLA. CFSE-labeled PBMC were stimulated by anti-CD3/anti-CD28 (each 0.5 ng/ml) in presence of agonistic anti-BTLA (50

ug/ml) or isotype (mouse IgG2a, 50 ug/ml). Proliferated fraction was determined by CFSE dilution. IL-17A levels were determined from cell culture supernatants. (A)

T-cell proliferation was inhibited by agonistic anti-BTLA treatment in AAV und HC. (B) Likewise, Th cell and (C) DN T-cell proliferation was suppressed. (D) Th17 cells

were inhibited by agonistic anti-BTLA treatment as indicated by reduced IL-17A secretion. Suppression was similar between AAV patients and HC. IL-17A levels were

determined from cell culture supernatants. (E) Representative flow cytometric data is shown. Plots are gated on viable CD3+ T-cells. Suppression was calculated as

follows: [proliferated fraction of T-cells/cytokine levels without anti-BTLA [isotype] MINUS proliferated fraction of T-cells/cytokine levels with anti-BTLA] DIVIDED by

proliferation of PBMC without anti-BTLA [isotype] MULTIPLIED by 100. Data is depicted as mean ± standard deviation.

FIGURE 5 | BTLA expression and function on B-cells. (A) Expression of BTLA was comparable between AAV und HC on CD19+ B-cells. (B,C) CFSE-labeled isolated

CD19+ B-cell from HC were stimulated by CpG ODN 2006 for 72 h in presence of agonistic anti-BTLA (50 ug/ml) or isotype (mouse IgG2a, 50 ug/ml). Proliferated

fraction was determined by CFSE dilution, IL-10 production was determined by intracellular flow cytometry after restimulation. Agonistic anti-BTLA treatment did not

suppress B-cell proliferation. IL-10 production by regulatory B-cells was not affected by agonistic anti-BTLA treatment. Data is depicted as mean ± standard deviation.

B-cells. Agonistic anti-BTLA treatment did not suppress B-

cell proliferation. Even sub-optimal stimulation in presence of

agonistic anti-BTLA did not result in a significant inhibition of
CpG-induced B-cell proliferation. Moreover, differentiation of

regulatory B-cells and IL-10 production were not suppressed by

activation of BTLA (Figure 5). Thus, in contrast with the findings

on T-cells, B-cell activation and regulatory B-cell differentiation

were not susceptible to agonistic anti-BTLA treatment suggesting
control by other co-inhibitory pathways.

Association of BTLA and Clinical
Parameters: BTLA Expression on DN
T-Cells Correlates With Relapse Rate
Further analyses were performed to unravel associations of BTLA
expression with clinical parameters. Interestingly, relapse rate
was associated negatively with BTLA expression on DN T-cells
(r = −0.3, p = 0.04). There was no association of relapse
rate with BTLA expression on CD4+ T-helper-cells or CD8+

cytotoxic T-helper-cells. Thus, increased BTLA expression on
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DN T-cells correlated with better disease control and outcome.
In addition, patients were stratified by history of biopsy proven
renal involvement (RI) to study whether BTLA expression differs
between these two groups. There was no difference comparing
BTLA expression between both patient groups (with RI vs.
without RI, %BTLApos within CD4+ T-cells: 91.86 ± 1.4% vs.
90.59 ± 1.9%, p = 0.2; %BTLApos within CD8+ T-cells: 86.53 ±
2.3% vs. 79.91 ± 7.3%, p = 0.5; %BTLApos within DN T-cells:
67.89± 3.9% vs. 55.86± 7.9%, p= 0.2). Likewise, renal function
at the time of measurement -determined as glomerular filtration
rate (GFR) estimated by CKD-EPI formula- did not correlate
with BTLA expression on T-cell subsets (CD4+ T-cells: r = 0–
16, p = 0.34; CD8+ T-cells: r = −0.15, p = 0.38; DN T-cells: r
= 0.14, p = 0.4). Furthermore, it was assessed if differences can
be detected between patients with MPO-ANCA as compared to
patients with PR3-ANCA. Patients were stratified by antibody-
status at time of diagnosis. There was no difference with regard
to BTLA expression on T-cell subsets (PR3 vs. MPO patients,
%BTLApos within CD4+ T-cells: 90.53 ± 1.7% vs. 93.13 ± 1.2%,
p = 0.3; %BTLApos within CD8+ T-cells: 86.53 ± 2.4% vs. 83.11
± 5.3%, p = 0.6; %BTLApos within DN T-cells: 68.25 ± 3.8% vs.
59.59± 7.0%, p= 0.33). It was further studied whether treatment
impacted BTLA expression. Thus, cumulative cyclophosphamide
(CYC) dosage and steroid dosage at time of sampling were
correlated with BTLA expression on T-cell subsets. A significant
positive correlation was found regarding BTLA expression on
DNT-cells and cumulative CYC dosage (r= 0.36, p= 0.04); there
was no association between cumulative CYC dosage and BTLA
expression on T-helper-cells or cytotoxic T-cells (CYC/%BTLA
on CD4+ T-cells: r = 0.09, p = 0.6; CYC/%BTLA on CD8+ T-
cells: r = −0.14, p = 0.42). Steroid dosage at time of sampling
was not significantly associated with BTLA expression on CD4+,
CD8+, or DN T-cells (CD4+ T-cells: r = −0.12, p = 0.5; CD8+

T-cells: r = 0.32, p= 0.06; DN T-cells: r = 0.09, p= 0.6).

DISCUSSION

The expression of the negative co-stimulator BTLA was
diminished on double negative T-cells in AAV-r and correlated
with disease activity as well as relapse rate. BTLA expression
was unaltered on Th-, cytotoxic -T-cells, and B-cells in quiescent
AAV. After stimulation with PMA and Ionomycin, BTLA
expression persisted in AAV and was downregulated in HC.
The co-inhibition of T-cells via BTLA during TCR-mediated
stimulation led to suppression of T-cell proliferation and
inhibited secretion of IL-17 as well as INFγ. Thus, the BTLA axis
seems intact and functional in AAV.

T-cell regulation is an essential feature of a healthy immune
system (23). T-cell regulation is driven by negative co-stimulation
mediated via a number of different systems such as the CTLA4-
axis, BTLA-axis and PD1-axis (24). The CTLA4- and the
PD1-axis have both been well-studied and the importance for
maintaining immune tolerance has been shown (12, 13, 15,
25). In addition, both co-stimulatory systems are blocked for
therapeutic purposes in malignant diseases to boost immune
responses. BTLA has been investigated in experimental models.

Otsuki et al. showed that BTLA ligation transmits an inhibitory
signal to T-cells and thus might play an important role in T-cell
tolerance (26). Krieg et al. noticed that the stimulation of murine
T-cells in presence of an agonistic BTLA antibody results in
decreased IL-2 production and diminished occurrence of CD25+

T-cells (27). There is evidence from animal studies that BTLA
knockout leads to autoimmune diseases (20, 28, 29).

In our study, we found that BTLA expression on Th
cells, cytotoxic T-cells and B-cells was comparable between
quiescent patients and HC when assessed under basal conditions.
Interestingly, the expression of BTLA was significantly decreased
on double negative T-cells in AAV-r. This was found on naïve
DN- and onmemory DNT-cells. BTLA expression on DNT-cells
correlated with disease activity as well as relapse rate indicating
a probable role in disease pathogenesis. Altered expression of
other co-inhibitory molecules such as CTLA4 and PD-1 on T-
cells has been reported in AAV. Wilde et al. found that the
expression of PD-1 on T-helper was increased on Th cells from
AAV patients as compared to HCs (15). Steiner et al. could show
that expression levels of CTLA-4 were significantly increased on
CD4+ and on DN T-cells in AAV (25). After stimulation by PMA
and Ionomycin, the CTLA-4 levels were increased on T-cells
derived from HC but T-cells from AAV patients had an impaired
response (25). Ye et al. also found a decreased expression of
BTLA in Behcet’s disease on Th cells and this was associated with
an abnormal Th17 and Th1 immune response (30). In a recent
publication by Sawaf et al., expression of BTLA on T-cell subsets
was comparable in patients with SLE and HC (31). However,
despite this finding, the authors showed that BTLA functionality
was significantly impaired in SLE patients.

DN T-cells are poorly studied yet, but it is known that
these cells are expanded in systemic lupus erythematosus and
that their relative proportion correlates with disease activity
(32). In patients with lupus nephritis, DN T-cell showed pro-
inflammatory features producing IL-17A and were found in renal
lesions (33). In Sjogren’s disease, DN-T-cells have been identified
as the cell population that is primarily involved in the production
of IL-17A and plays an important role in the maintenance of
inflammatory processes (34).

In contrast, in murine models of acute kidney injury,
DN were found as tissue-resident anti-inflammatory T-cell
population in acute kidney injury (35). In our study, the
relative proportion of circulating DN T-cells was comparable
between AAV and HC. The aberrant expression of BTLA
on DN T-cells in AAV could nevertheless disrupt the co-
inhibitory function and thereby contribute to systemic-
and renal inflammation. Furthermore, we found that after
stimulation of PBMC with PMA and Ionomycin, BTLA was
downregulated in HC. Downregulation was less pronounced
in AAV. Han et al. showed that BTLA was upregulated in
mice after TCR-mediated stimulation (36). Sedy et al. have
also shown in a mouse model that the expression of BTLA
was variable after stimulation via TCR (37).In contrast to
these studies, we stimulated T-cells in a TCR-independent
manner, possibly explaining the different expression pattern.
Data on human T-cells being stimulated short-term with
PMA/Iono is lacking. Less downregulation of BTLA on
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T-cells in AAV may cause an increased susceptibility to
BTLA-mediated suppression whichmy counterbalance persistent
T-cell activation.

Next, we further tested the function of the BTLA-axis.
Suprisingly, B-cell proliferation and differentiation of regulatory
B-cells were not susceptible to treatment with agonistic anti-
BTLA. There is conflicting data on the functional meaning of
BTLA expression on B-cells. HVEM, a cognate ligand of BTLA,
has been demonstrated to suppress B-cell proliferation (38).
In support of our own data, another study failed to show a
suppressive effect on B-cell proliferation when using agonistic
anti-BTLA treatment (39). In contrast, Co-inhibition of T-cells
with an agonistic anti-BTLA antibody suppressed anti-CD3/-
CD28 induced proliferation of HC and AAV patients to the same
extent. Thus, the BTLA pathway appears to be intact in AAV.
As mentioned above, Sawaf et al. found defective functionality
of BTLA in SLE patients (31). T-cell stimulation via TCR in
presence of agonistic anti-BTLA was less efficient suppressing
proliferation and CD25 upregulation of T-cells in SLE patients as
compared to HC (31). It is conceivable that other autoimmune
diseases harbor a different pattern of functional co-inhibitors
as multiple, different and redundant co-inhibitory systems exist
to control T-cell immunity. Therefore, it is not surprising that
another co-inhibitor, the PD1/PDL-1 pathway, is reported to be
dysfunctional in AAV (15).

From our data, we also gain important novel information
on the physiological role of BTLA. Agonistic treatment of TCR
stimulated T-cells reduced not only proliferation –as has been
reported previously- but also suppressed IL-17A and INFγ
secretion in HC as well as in patients. Thus, BTLA-induced
suppression seems to impact effector T-cells such as Th1 and
Th17 cells efficiently. IL-17A is a key factor in pathogenesis
of AAV and IL-17A knock out protects from disease in
murine models (3, 40). As BTLA ligation led to suppression
of ex vivo stimulated Th17 cells in HC and AAV, this co-
inhibitor might be exploited in future for therapeutic purposes.
Similar approaches have already been tested in experimental
animal transplant models and agonistic anti-BTLA treatment
conferred protection from allograft rejection (41, 42). However,
it has not been unraveled whether agonistic BTLA treatment
also counteracts established tissue inflammation by regulating
lesional T-cells. Regulating circulating vs. lesional T-cells has
important implications. If lesional T-cells are not functionally
regulated by BTLA, the therapeutic potency of targeting BTLA
might be limited to prophylactic purposes such as remission
maintenance. It is a limitation of our study that we did not

investigate lesional T-cells. However, we were focused on the
role of BTLA in circulating T-cells to unravel whether this
co-inhibitory pathway is in principle functional in ANCA-
vasculitis. As the access to lesional T-cells is very limited in
human disease and may not allow functional studies, the role of
BTLA in regulating lesional T-cells could be addressed in future
by employing one of the animal models available for ANCA-
vasculitis.

In summary, the BTLA axis seems functional and intact in
AAV. As BTLA ligation suppresses Th17 cells efficiently, this
pathway should be investigated further as potential therapeutic
target in AAV.
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Behçet’s syndrome (BS) is a systemic vasculitis considered as the prototype of a

systemic inflammation-induced thrombotic condition whose pathogenesis cannot be

explained just by coagulation abnormalities. Circulating hematopoietic progenitor cells

(CPC), a population of rare, pre-differentiated adult stem cells originating in the bone

marrow and capable of both self-renewal and multi-lineage differentiation, are mobilized

in response to vascular injury and play a key role in tissue repair. In cardiovascular and

thrombotic diseases, low circulating CPC number and reduced CPC function have been

observed. Oxidative stress may be one of the relevant culprits that account for the

dysfunctional and numerically reduced CPC in these conditions. However, the detailed

mechanisms underlying CPC number reduction are unknown. On this background,

the present study was designed to evaluate for the first time the possible relationship

between CPC dysfunction and oxidative stress in BS patients. In BS patients, we

found signs of plasma oxidative stress and significantly lower CD34+/CD45−/dim and

CD34+/CD45−/dim/CD133+CPC levels. Importantly, in all the considered CPC subsets,

significantly higher ROS levels with respect to controls were observed. Higher levels

of caspase-3 activity in all the considered CPC population and a strong reduction in

GSH content in CPC subpopulation from BS patients with respect to controls were also

observed. Interestingly, in BS patients, ROS significantly correlated with CPC number

and CPC caspase-3 activity and CPC GSH content significantly correlated with CPC

number, in all CPC subsets. Collectively, these data demonstrate for the first time that

CPC from BS patients show signs of oxidative stress and apoptosis and that a reduced

CPC number is present in BS patients with respect to controls. Interestingly, we observed

an inverse correlation between circulating CPC number and CPC ROS production,

suggesting a possible toxic ROS effect on CPC in BS patients. The significant correlations

between ROS production/GSH content and caspase-3 activity point out that oxidative
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stress can represent a determinant in the onset of apoptosis in CPC. These data support

the hypothesis that oxidative-stress-mediated CPC dysfunctioning may counteract their

vascular repair actions, thereby contributing to the pathogenesis and the progression of

vascular disease in BS.

Keywords: Behçet’s syndrome, thrombosis, circulating progenitor cells, oxidation, apoptosis

INTRODUCTION

Behçet’s syndrome (BS) is a systemic vasculitis of unknown
etiology characterized by muco-cutaneous and ocular
manifestations as well as articular, neurological, and
gastrointestinal involvements (1). Vascular involvement is
also present, and represents one of the more important
manifestations in terms of morbidity and mortality (2). BS
affects both veins and arteries of all sizes and is usually more
frequent and severe in young males (3). To date, BS may
be considered as the prototype of a systemic inflammation-
induced thrombotic condition. Although some studies showed
different hemostatic system defects in BS (3, 4), current data
indicate that the pathogenesis of thrombosis in BS cannot
be explained by coagulation abnormalities only (5). Indeed,
neutrophils are pivotal in promoting thrombo-inflammation
by producing high amounts of reactive oxygen species (ROS),
mainly through NADPH oxidase. This mechanism ultimately
leads to a modification of the fibrin clot that becomes less
susceptible to plasmin-induced lysis (6). Moreover, in BS
patients, endothelial injury plays a prominent role in the
onset of thrombosis and inflammation leads to thrombosis
also via endothelial damage and endothelial cell dysfunction
(7). Altogether, these mechanisms may partly explain why
immunosuppressive treatment is essential in the management
of thrombosis occurring in BS, while anticoagulation generally
displays limited effects (8).

Circulating hematopoietic progenitor cells (CPC) are a
population of rare, pre-differentiated adult stem cells that
originate in the bone marrow and are uniquely capable of
both self-renewal and multi-lineage differentiation, including
cardiomyocytes, smooth muscle cells, endothelial progenitor
cells (EPC) and endothelial cells. CPC possess the ability to be
mobilized in response to vascular injury and play a key role
in tissue repair (9, 10). CPC replenish specialized somatic cells
and maintain the normal turnover of regenerative tissues and
organs, such as blood and skin. Interestingly, low circulating
CPC number and reduced CPC function are associated with
cardiovascular disease and mortality (11, 12).

Circulating CPC are involved in the regulation and repair
of the endothelium and in vessel formation (13, 14). Indeed,
enhancedmobilization of CPC into the blood has been associated
with increased endothelial function and repair (11). However,
circulating CPC number and function are dramatically altered
when cardiovascular risk factors are present (14, 15). On the
other hand, while acute inflammation increases CPC, a chronic
inflammatory state might be accompanied by a progressive
CPC reduction (16, 17). It has been demonstrated that
oxidative stress represents one of the main determinant of CPC

number reduction and dysfunction in cardiovascular diseases
(18, 19). Upon ROS production inhibition, the observed CPC
alterations have been reverted (18, 19). However, the underlying
mechanisms of CPC reduction have not been well-understood.

To date, insufficient, and conflicting clinical data to document
the CPC number/function in BS patients exist (20, 21). Therefore,
the present study was designed to evaluate for the first time
the possible relationship between CPC dysfunction and oxidative
stress in BS patients.

MATERIALS AND METHODS

Study Population
This was a case–control study. Sixty-one consecutive patients
with BS who attended the Behçet Center of the University
Hospital of Firenze, Italy, were matched 1:1 for age and sex
with healthy control subjects. Patients with other autoimmune
diseases and active infectious or neoplastic conditions were
excluded, as well as pregnant patients. Control subjects
were excluded if they had a history of cerebro- and/or
cardiovascular diseases, peripheral arteriopathy, venous
thrombo-embolism events, or cancer. Both patients and control
subjects were assessed for the presence of vascular risk factors
and drug use.

The study protocol was approved by the local Ethical
Committee and informed consent was obtained from all
subject enrolled.

Blood Collection
Blood samples were obtained from an antecubital vein in the
morning after an overnight fasting and were collected into
evacuated plastic tubes (BD Vacutainer Systems, Plymouth,
UK) containing ethylenediaminetetraacetate 0.17 mol/L for
CPC evaluation.

Because inflammatory events are known to influence CPC
number (16), blood was withdrawn after excluding the
occurrence of infectious events, defined according to previously
published criteria (22), in the previous 15 days.

Flow Cytometric Analysis of CPC Oxidative
Stress and Apoptosis
CPC number was assessed by flow cytometry as previously
described with minor modifications (16, 22, 23). Briefly, 200 µl
of peripheral venous blood was incubated for 20min in the dark
with the appropriated monoclonal antibodies (PE anti-human
CD34, BD Pharmigen, Becton Dickinson, San Jose, CA; APC
anti-human CD133, Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany; APC-Cy7 anti-human CD45 BD, Becton Dickinson,
San Jose, CA). Then, 4ml of BD FACS Lysing Solution (Becton

Frontiers in Immunology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 2877108

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Emmi et al. CPC Dysfunction in Behçet’s Syndrome

Dickinson Biosciences, San Jose, CA, USA) was added, gently
mixed, and incubated at RT in the dark for 10min, following
the manufacturer’s protocol. Then, the cells were centrifuged,
the supernatant was discarded, and cells were washed twice in
PBS. To determine the level of intracellular ROS generation, cells
were incubated with H2DCFDA (10µM) (Invitrogen, CA, USA)
in RPMI without serum and phenol red for 15min at 37◦C.
After labeling, cells were washed and resuspended in PBS and
immediately analyzed by FACS.

To determine the level of Caspase-3 activity, single-cell
suspensions were incubated in RPMI without serum and phenol
red with FAM-FLICATM Caspase-3 solution (CaspaseFLICA
kit FAM-DEVD-FMK) for 30min at 37◦C, following the
manufacturer’s protocol, and then washed twice with PBS and
immediately analyzed by FACS.

To determine the level of intracellular GSH content, single-cell
suspensions were incubated in RPMI without serum and phenol
red with 5-chloromethylfluoresceindiacetate, CMFDA (10µM),
for 30min at 37◦C, washed twice with PBS, and analyzed
immediately by FACS.

A total of 300,000 cells within the leukocyte gate were acquired
using a FACSCanto analyzer (Becton Dickinson, San Jose, CA).
Data were processed using BD FacsDiva software. By using a
modification of the International Society of Hematotherapy and
Graft Engineering guidelines (24), CPC were defined as cells
forming a cluster with low side scatter, low-to-intermediate CD45
staining, positive for CD34, CD133, and CD34/CD133.

Protein Concentration Assay
Protein concentration in the samples was determined using the
Bradford assay (25). A standard curve of bovine serum albumin
(0–15 µg protein/200 µl volume) was used.

Protein Carbonyl Content (PC)
Oxidative modification on plasma proteins was assessed on the
basis of carbonyl content using 2-4 dinitrophenylhydrazine, as
described by Levine et al. (26).

Samples were diluted to obtain a protein concentration of 10
mg/ml, and 100 µl of each sample was aliquoted in Eppendorf
tubes. For each sample, a blank measurement was prepared.
Then, 400 µl of a DNPH solution (5mM in 2.5M HCl) was
added to tubes. Blank tubes were also prepared, adding the HCl
solution without DNPH. Then, all the tubes were incubated in the
dark for an hour, vortexing every 15–20min. After incubation,
protein content was precipitated by adding 500 µl of a 20%
trichloroacetic acid (TCA) solution, placing tubes on ice for
5min, and centrifuging at 10,000 g for 5min to pellet protein
content. The supernatant was discarded and the pellet was
washed once with 500 µl of 10%TCA, and then twice with 500 µl
of a 1:1 solution of ethanol-ethyl acetate. Finally, the pellet was
resuspended in guanidine hydrochloride at 37◦C for 15min and
the absorbance of carbonyl-bound DNPH was read at 370 nm.
The corrected absorbance was calculated subtracting the mean
of blank values from raw DNPH values. Then, the concentration
was determined using an extinction coefficient of 0.022 µM−1

cm−1, and normalized with the total protein content.

TBARS (Thiobarbituric Acid Reactive
Substances) Estimation
Plasma TBARS levels were measured using a TBARS assay
kit (OXI-TEK, ENZO, USA) as previously reported (27).
Briefly, the adduct generated by reacting malondialdehyde
with thiobarbituric acid after 1 h at 95◦C was measured
spectrofluorimetrically, with excitation at 530 nm and
emission at 550 nm. TBARS were expressed in terms of
malondialdehyde equivalent (nmol/ml) and then normalized for
protein concentration.

Total Antioxidant Capacity (TAC) Assay
The ORAC method (oxygen radical absorbance capacity) was
performed as previously described on plasma samples (28).
Briefly, fluorescein solution (6 nM) was prepared daily in 75mM
sodium phosphate buffer (pH 7.4) and Trolox (250µM final
concentration) was used as a standard. Seventy microliters
of each sample with 100 µl of fluorescein was pre-incubated
for 30min at 37◦C in each well, before rapidly adding
AAPH solution (19mM final concentration). Fluorescence
was measured using Synergy H1 microplate reader (BioTek,
Winooski, VT). Results were expressed as Trolox Equivalents
(µM) and then normalized for protein concentration.

Statistical Analysis
To assess the statistical significance of differences in clinical
data and progenitor cell numbers between patients with BS
and control subjects, the χ2 test for categorical variables and
Mann–Whitney test for numeric variables were used. Logistic
regression analysis, including age, drug use, and sex as variables
possibly influencing the cell number, was performed to test the
independency of associations. In this analysis, the logarithm
of the cell number was used for a better evaluation of the
OR. All analyses were performed using the SPSS (Statistical
Package for Social Sciences, Chicago, IL) software for Windows
(Version 15.0).

RESULTS

All the patients enrolled in the study fulfilled the International
Criteria for Behçet Disease (ICBD) (29). At the beginning of
the disease, almost all the patients presented oral ulcers (96.7%),
followed by cutaneous and articular involvement (65.6 and 59%,
respectively). More than one third of the patients also had
ocular and intestinal manifestations, as well as genital ulcers
and vascular involvement. HLA-B51 was present in 42.6% of
the patients.

All the patients with a Behçet Disease Activity Form (BDCAF)
with a score ≥ 1 were considered active, while BS patients with a
BDCAF equal to 0 were defined inactive.

Only a minority of the patients had no treatment at the time
of the enrollment or were on corticosteroid as the unique therapy
(11.5 and 4.9%, respectively). The majority of the BS patients
were on Disease Modifying Anti Rheumatic Drugs (DMARDs)
(32.8%) or on biologic+/– traditional DMARDs (50.8%).

Demographic and clinical features of the population studied
are summarized in detail in Table 1.
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TABLE 1 | Main clinical and demographic features of the patients enrolled in the

study.

N (% out of 61)

N obs 61

Sex

Male 32 (52.5)

Female 29 (47.5)

Age at diagnosis

Median (IQR; range) 35 (26–42)

HLA-B51

Positive 26 (42.6)

Manifestations at baseline (ICBD criteria)

Oral aphthosis 59 (96.7)

Skin involvement 40 (65.6)

Articular involvement 36 (59.0)

Ocular involvement 23 (37.7)

Intestinal involvement 22 (36.1)

Genital aphthosis 21 (34.4)

Vascular involvement 20 (32.8)

Neurologic involvement 17 (27.9)

Positive pathergy test 4 (6.6)

Disease activity at time of sample collection

Not active (BDCAF = 0) 21 (34.4)

Active (BDCAF ≥ 1) 40 (65.6)

Active manifestations at time of sample collection

Oral aphthosis 22 (36.1)

Articular involvement 17 (27.9)

Intestinal involvement 11 (18.0)

Skin involvement 10 (16.4)

Ocular involvement 9 (14.8)

Neurologic involvement 5 (8.2)

Vascular involvement 4 (6.6)

Genital aphthosis 1 (1.6)

Ongoing pharmacological therapies

No treatment 7 (11.5)

Only corticosteroids 3 (4.9)

Traditional DMARDs 20 (32.8)

Biologic (±traditional) DMARDs 31 (50.8)

Plasma Oxidative Stress
As reported in Table 2, patient plasma displayed significantly
higher total PC and TBARS levels compared to healthy controls
(p < 0.0001 vs. controls).

Levels of Circulating Progenitor Cells
Because several CPC may participate to vascular repair,
different phenotypically defined subpopulations of CD34+
CPC were analyzed by FACS analysis, allowing one
to determine the level of overall CD34+/CD45−/dim

CPC, of CD34+/CD45−/dim/CD133– CPC, and of
CD34+/CD45−/dim/CD133+, representative of more immature
CPC. As summarized in Figure 1A, significantly lower
CD34+/CD45−/dim and CD34+/CD45−/dim/CD133+ CPC

TABLE 2 | Oxidative stress markers.

Controls

n = 61

BS patients

n = 61

Plasma PC (nmol/mg) 10.87 ± 3.08 17.75 ± 4.18 p < 0.0001

Plasma TBARS (nmol/ml) 0.66 ± 0.11 2.21 ± 0.82 p < 0.0001

Plasma TAC (nmol Trolox

equivalent/mg of protein)

21.8 ± 3.9 15.2 ± 4.8 p < 0.0001

levels were observed in BS patients with respect to controls (245
± 92 vs. 637 ± 96, p < 0.0001; 80 ± 28 vs. 536 ± 88, p < 0.0001,
respectively). On the contrary, CD34+/CD45−/dim/CD133–
level was significantly higher (p < 0.0001) in BS patients with
respect to controls (165± 70 vs. 101± 26).

CPC Oxidative Stress and Apoptosis
As shown in Figure 1B, in all the considered CPC subsets, we
observed significantly higher (p < 0.0001) ROS levels in BS
patients with respect to controls (CD34+/CD45−/dim: 14,333
± 5104 vs. 2549 ± 794; CD34+/CD45−/dim/CD133–: 16,941
± 7444 vs. 4728 ± 2165; CD34+/CD45−/dim/CD133+: 10,396
± 3469 vs. 2169 ± 737). Likewise, as shown in Figure 1C, we
observed significantly higher levels of caspase-3 activity (p <

0.0001) in all the considered CPC population in BS patients with
respect to controls (CD34+/CD45−/dim: 8704 ± 3158 vs. 323
± 66; CD34+/CD45−/dim/CD133–: 12,318 ± 5280 vs. 304 ±

73; CD34+/CD45−/dim/CD133+: 2197 ± 1002 vs. 3274 ± 67).
A strong reduction in GSH content (Figure 1D) in the CPC
subpopulation from BS patients with respect to controls was
observed (CD34+/CD45−/dim: 8454 ± 1874 vs. 64,792 ± 7825;
CD34+/CD45−/dim/CD133–: 3993 ± 1407 vs. 48,943 ± 7764;
CD34+/CD45−/dim/CD133+: 17,598± 5101 vs. 67,828± 8206).

Correlation Between Investigated
Parameters
As shown in Figure 2A, in all the considered CPC subsets,
ROS significantly correlated with CPC number. At the same
time, CPC caspase-3 activity (Figure 2B) and CPC GSH content
(Figure 2C) significantly correlated with CPC number, in all
CPC subsets.

DISCUSSION

BS is considered the prototype of systemic inflammatory
disease causing thrombosis, but the mechanisms underlying the
relationship between inflammation and vascular events are far to
be elucidated.

In this study, we investigated in a cohort of Behçet’s patients
the role of CPC, a population of undifferentiated progenitor cells
originated in the bone marrow with the ability to be mobilized
in response to vascular injury and capable of multi-lineage
differentiation including EPC and endothelial cells.

Both EPC and CPC are considered surrogate biomarkers of
cardiovascular health since they appear to constitute a natural
system for the maintenance of vascular function, improving
endothelial repair and neovascularization (30–32). Notably,
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FIGURE 1 | Number (A), intracellular ROS production (B), caspase-3 activity (C), and GSH content (D) in CD34+/CD45−/dim, CD34+/CD45−/dim/CD133– and of

CD34+/CD45−/dim/CD133+ CPC from patients and controls. *Significant difference vs. control at the p < 0.0001 level.

the restoration of blood supply to ischemic tissues is strictly
dependent on endothelial regeneration and angiogenesis. Here,
we demonstrate for the first time that CPC from BS patients, but
not those from healthy subjects, show signs of oxidative stress and

apoptosis. Another important finding emerging from our study is
the reduced CPC number observed in BS patients with respect to
control subjects. Importantly, the number and function of CPC
may reflect the balance between endothelial integrity and repair
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FIGURE 2 | Correlation analysis among CPC number and intracellular ROS production (A), caspase-3 activity (B), and GSH content (C).

and can be used as a marker of endothelial function. Indeed,
patients with hypertension, coronary artery disease, chronic
renal failure, diabetes, sepsis, and rheumatoid arthritis exhibit
decreased CPC number (33–36). Moreover, EPC isolated from
patients with coronary artery disease and hypertension display
an impaired migratory response (34, 35).

The decline in CPC number can be attributed to increased
apoptosis, oxidative stress, inflammation, and senescence, in
addition to reduced growth and migration from bone marrow
(33). However, recent data suggest that increased CPC number
may also represent a homoeostatic stress response contributing
to vascular damage repair (36, 37). Indeed, in acute coronary
syndromes, the early CPC mobilization from the bone marrow
seems related to the extension of myocardial ischemia expressed
as area at risk (38) and may contribute to the healing process by
promoting neovascularization (39).

Moreover, we observed an inverse correlation between
circulating CPC number and CPC ROS production, suggesting

a possible toxic ROS effect on CPC in BS patients. Indeed, signs
of oxidative stress (increased ROS production and reduced GSH
content) and apoptosis in CPC from BS patients were observed,
suggesting a functional impairment of these cells. Furthermore,
the significant correlations between ROS production/GSH
content and caspase-3 activity point out that oxidative stress can
represent a determinant in the onset of apoptosis in CPC.

To date, few data are available about the possible pathogenetic
role of CPC in systemic vasculitis. It was previously reported that
the increased number of circulating inflammatory endothelial
cells could represent an activity marker in patients with systemic
necrotizing vasculitis (40). EPC were reported to be increased
in number also in a patient with BS complicated with cerebral
trombophlebitis (41). Recently, Bozkirli et al. demonstrated
that EPC number was significantly higher in BS patients with
thrombosis (42). On the other hand, it was also demonstrated
that BS is associated with a progressive reduction in EPC number,
which can be interpreted as a mechanism of induction and/or
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progression of vascular injury in these patients (21). However, to
date, there are no data on CPC function in BS patients.

In the case of EPC population, the univocal interpretation of
data is limited by the extremely low frequency of the analyzed
cell populations and by the lack of validation of the utilized
markers. For this reason, in this study, we analyzed the most
abundant CPC population instead of the rare EPC population
(which accounts for about 0.01 – 0.0001% of nucleated cells). To
our knowledge, this is the first study to detect ROS production,
GSH content, and caspase-3 activation in CPC, defined as
CD34+/CD45−/low/CD133+ and CD34+/CD45−/low/CD133–,
in peripheral blood (not in isolated and cultured cells).

It is accepted that EPC mobilization can be stimulated
by transient restricted inflammatory response, while high-
grade inflammation results in decreased EPC number and
EPC dysfunction (43). Considerable evidence also suggests that
ROS play a key role in EPC mobilization/function (44). In
particular, low ROS levels activate pro-angiogenic pathways in
EPC, whereas high ROS levels impair EPC function. Therefore,
oxidative stress is responsible not only for EPC circulating
number reduction but also for an impairment EPC function
with consequent harmful effects in vascular homeostasis. Indeed,
during conditions such as diabetes mellitus, characterized by
oxidative stress, the mobilization of dysfunctional EPC is
observed (45). Indeed, increased superoxide generation reduces
EPC levels and impairs EPC function (46). In addition,
incubation of EPC with hydrogen peroxide has been shown to
induce apoptosis (47), profoundly reducing EPC number (48).
Furthermore, increased ROS production has been associated
with reduced EPC levels in a rat model of myocardial
infarction (49).

An overall imbalance in blood redox status has been proposed
in BS (50). Recently, we demonstrated that neutrophils are
responsible for an increased ROS production in BS patients,
thus favoring thrombosis through a deep modification of
fibrinogen secondary structure (51). Accordingly, in the present
study, plasma protein carbonyls and TBARS were markedly
and significantly increased in BS patients when compared with
control subjects, thus confirming an altered oxidative status in
BS patients.

In human vasculature, ROS production is counterbalanced
by several antioxidant molecules aimed at ROS scavenging.
Intracellular antioxidant enzymes, such as glutathione
peroxidase, catalase, and manganese superoxide dismutase,
were increased in EPC from healthy subjects with respect
to differentiated, mature endothelial cells (52). This is in
agreement with our data that show, for the first time, a
marked increase (+62%) in ROS production in CD133—
population with respect to the more immature CD133+
population, in human peripheral blood. In addition, our
results indicate, in CPC from human peripheral blood, a
significant reduction in GSH content compared with CPC
from control subjects, suggesting that an impairment in
antioxidant system can promote CPC sensitivity toward
oxidative-stress-mediated apoptosis and consequently reduced
CPC number in BS patients. Our observations were supported
by the finding that glutathione peroxidase-1-deficient mice

exhibited a reduced number and functional activity of progenitor
cells (53).

The exact oxidative mechanisms underlying CPC dysfunction
has not yet been understood. To date, no study has addressed
the question whether redox balancing therapeutic strategies can
modify CPC function and number. Only when antioxidant
therapies will demonstrate to improve these parameters of CPC
biology will a safe conclusion be drawn regarding ROS and CPC
relationship in humans.

The results of the present study may have implications in
the pathogenesis of thrombotic manifestations in BS. Indeed,
CPC have not only been associated with coronary artery
disease (54) and atherosclerosis (55). Different from other
inflammatory immune-mediated conditions, BS is not associated
with accelerated atherosclerosis, despite without having a clear
pathogenetic explanation (56). Notably, CPC dysfunction has
been also evoked as a potential mechanism in deep vein
thrombosis occurrence (57) and aneurysm formation (58),
typical clinical features of BS.

Future longitudinal studies on a larger BS population would
be helpful in order to explore CPC dysfunction in specific subsets
of BS patients. Moreover, functional analysis showing the impact
of ROS production on vessel wall of BS patients would be
of importance.

However, taking into account that oxidative stress plays an
important role in the pathogenesis of all vascular diseases (59),
our data support the hypothesis that oxidative-stress-mediated
CPC dysfunctioningmay counteract their vascular repair actions,
thereby contributing to the pathogenesis and the progression of
vascular disease in BS patients.
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Precision medicine (PM) is an emerging data-driven health care approach that integrates

phenotypic, genomic, epigenetic, and environmental factors unique to an individual.

The goal of PM is to facilitate diagnosis, predict effective therapy, and avoid adverse

reactions specific for each patient. The forefront of PM is in oncology; nonetheless,

it is developing in other fields of medicine, including rheumatology. Recent studies

on elucidating the genetic architecture of polygenic and monogenic rheumatological

diseases have made PM possible by enabling physicians to customize medical treatment

through the incorporation of clinical features and genetic data. For complex inflammatory

disorders, the prevailing paradigm is that disease susceptibility is due to additive effects

of common reduced-penetrance gene variants and environmental factors. Efforts have

been made to calculate cumulative genetic risk score (GRS) and to relate specific

susceptibility alleles for use of target therapies. The discovery of rare patients with

single-gene high-penetrance mutations informed our understanding of pathways driving

systemic inflammation. Here, we review the advances in practicing PM in patients with

primary systemic vasculitides (PSVs). We summarize recent genetic studies and discuss

current knowledge on the contribution of epigenetic factors and extracellular vesicles

(EVs) in disease progression and treatment response. Implementation of PM in PSVs is

a developing field that will require analysis of a large cohort of patients to validate data

from genomics, transcriptomics, metabolomics, proteomics, and epigenomics studies

for accurate disease profiling. This multi-omics approach to study disease pathogeneses

should ultimately provide a powerful tool for stratification of patients to receive tailored

optimal therapies and for monitoring their disease activity.

Keywords: precision medicine, vasculitis, vasculitides, genome-wide association studies, epigenetics,

extracellular vesicles, monogenic systemic autoinflammatory diseases

INTRODUCTION

Precision medicine (PM) can be defined as tailored medical care that is primarily based upon
understanding the molecular sequence of biologic events causal to disease and critical for
diagnosis and therapy. The term precision medicine should be distinguished from the term
personalized medicine whereby prevention and treatment are being developed uniquely for each
patient, although these two terms are used interchangeably (1). Both communicate a concept of
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individualized medicine, although in PM, the focus is on
identifying health care approaches that will be effective for a
group of patients who share similar genetic, environmental, and
lifestyle disease susceptibility factors. Recognizing subgroups of
patients with similar disease risk factors will ensure that they will
receive optimal treatment to improve their quality of life and
health outcomes.

Primary systemic vasculitides (PSVs) (Table 1) are a
heterogeneous group of diseases in their etiology, clinical
presentation, and response to therapy. Severity and location
of symptoms vary greatly, and most classification schemes
that attempt to advance clinicians the ability to diagnose and
treat patients, are based on blood vessel size, autoantibodies
profile [e.g., anti-neutrophil cytoplasmic antibody (ANCA)], and
histopathological findings. In addition to genetic predisposition,
there is a role for environmental factors, including exposure
to drugs and infectious agents, in the pathogenesis, and
prognosis of PSVs. The past decade has witnessed major
advances in genetics research that have improved our
understanding on molecular mechanisms in PSVs. New
sequencing technologies and high-throughput genotyping
arrays used for genome-wide association studies (GWAS)
generated vast amount of data that will require validation
by meta-analysis in large cohorts of patients. Discovery of
monogenic diseases mimicking PSVs offered additional insights
on biochemical pathways that are shared between rare and more
common forms of vasculitis. Recent advances in epigenetic
research support the role of extracellular vesicles (EVs) in the
pathogenesis of PSVs, which could be used for developing
novel biomarkers to monitor disease activity, prognosis, and
treatment outcomes.

Herein, we discuss the up-to-date knowledge on the genetic
predisposition to PSVs and review recent clinical research studies
aimed to further our understanding of the pathogeneses and
outcomes of vasculitides.

GWAS IN PSVs

GWAS have been used, following the completion of the Human
Genome project in 2003 and the International HapMap Project
in 2005, to identify association of common and reduced-
penetrance variants, termed single nucleotide polymorphisms
(SNPs), with human traits or diseases (3). The primary goal
of GWAS has been to elucidate the biology of polygenic and
complex human diseases, which can be translated toward the
development of novel therapeutics. GWAS have also been used
to study gene-environment interactions, response to therapies,
and more recently for risk prediction. GWAS are based on the
genotyping of large cohorts of patients and ancestry-matched
controls for SNPs in the entire genome. These associations are
tested with gene variants that have a minor allele frequency
(MAF) higher than 5% in the general population and are
considered significant at the p-value genome-wide threshold of
5 × 10−8 (4). For a number of autoimmune disorders, SNPs
in the human leukocyte antigen (HLA) [also known as major
histocompatibility complex (MHC)] and genes encoded within

TABLE 1 | Chapel Hill Consensus Conference Nomenclature (CHCC 2012) of

vasculitides (2).

Large-vessel vasculitis (LVV)

• Takayasu arteritis (TAK)

• Giant cell arteritis (GCA)

Medium-vessel vasculitis (MVV)

• Polyarteritis nodosa (PAN)

• Kawasaki disease (KD)

Small-vessel vasculitis (SVV)

• Antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis (AAV)

◦ Microscopic polyangiitis (MPA)

◦ Granulomatosis with polyangiitis (Wegener’s) (GPA)

◦ Eosinophilic granulomatosis with polyangiitis (Churg-Strauss) (EGPA)

• Immune complex SVV

◦ Anti–glomerular basement membrane (anti-GBM) disease

◦ Cryoglobulinemic vasculitis (CV)

◦ IgA vasculitis (Henoch-Schönlein purpura) (IgAV/HSP)

◦ Hypocomplementemic urticarial vasculitis (HUV) (anti-C1q vasculitis)

Variable vessel vasculitis (VVV)

• Behçet’s disease (BD)

• Cogan’s syndrome (CS)

Single-organ vasculitis (SOV)

• Cutaneous leukocytoclastic angiitis

• Cutaneous arteritis

• Primary central nervous system vasculitis

• Isolated aortitis

• Others

Vasculitis associated with systemic disease

• Lupus vasculitis

• Rheumatoid vasculitis

• Sarcoid vasculitis

• Others

Vasculitis associated with probable etiology

• Hepatitis C virus–associated cryoglobulinemic vasculitis

• Hepatitis B virus–associated vasculitis

• Syphilis-associated aortitis

• Drug-associated immune complex vasculitis

• Drug-associated ANCA-associated vasculitis

• Cancer-associated vasculitis

• Others (e.g., varicella zoster virus–associated vasculitis)

the locus have been shown to play a major role in susceptibility
to disease (4). In primary vasculitides (PSVs), GWAS have been
performed primarily in Kawasaki disease (KD) and Behçet’s
disease (BD) (Table 2) (5–42, 44–46).

Kawasaki Disease
KD is an acute, self-limited vasculitis that typically affects infants
and children under the age of 5 years. Coronary artery aneurysms
(CAAs) occur in 25% of untreated patients and may lead to
ischemic heart disease, myocardial infarction, and sudden death
at a young age. The pathogenesis of KD remains unknown;
however, it is thought that host genetics play an important
role in susceptibility and disease outcome. Interestingly, the
incidence of KD is up to 50-fold higher in children of
Asian descent. Epidemiologic and clinical features of KD also
strongly support an infectious etiology in genetically predisposed
children (47).

GWAS in KD have identified a number of susceptibility
SNPs/genes that contribute to the risk of KD (HLA, FCGR2A,
SLC8A1, ZFHX3, NMNAT2, BLK,DAB1,HCP5,COPB2, ERAP1,
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TABLE 2 | Genome-wide association studies (GWAS) in primary systemic vasculitides (PSVs).

Related risk and references Genes from GWAS Therapeutic implications

Kawasaki Disease (KD)

Susceptibility genes for KD (5–16) HLA, HCP5, FCGR2A, BLK, SLC8A1, CD40, NMNAT2, DAB1, COPB2,

NAALADL2, IGHV, ZFHX3, NFKBIL1, ERAP1, EBF2, CACNB2, LTA, and

LEF1

SNP in SLC8A1 (calcium signaling pathway) can be

proof for using calcineurin inhibitors in KD

Susceptibility genes for cardiovascular

disease in KD (8, 12, 17–22)

TIAM1, NEBL, PLCB4/PLCB1, TUBA3C, SLC8A1, PELI1, KCNN2, TIFAB,

and AGT

Susceptibility genes for intravenous

immunoglobulin (IVIG) resistance in KD

(23, 24)

BCL2L11 and SAMD9L BCL2L11 and SAMD9L: prediction of IVIG resistance

Behçet’s Syndrome (BS)

Susceptibility genes for BS (25–34) HLA-B51, STAT4, IL10, GIMAP, IL23R-IL12RB2, CCR1, ERAP1, KLRC4,

FUT2, IL12A, NAALADL2, YIPF7, CPVL, UBAC2, LOC100129342,

UBASH3B, and KIAA1529

Inhibition of IL-12/IL-23 pathway activation may be a

treatment target

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)

Related with anti-MPO AAV (35) HLA-DQ

Related with anti-PR3 AAV (35, 36) HLA-DP, SERPINA1, and PRTN3

Related with AAV (36, 37) PTPN22, SEMA6A

Takayasu Arteritis (TAK)

Susceptibility genes for TA (38–41) HLA-B/MICA, HLA-DQB1/HLA-DRB1, FCGR2A/FCGR3A, IL12B,

RPS9/LILRB3, IL6, PTK2B, LILRA3/LILRB2, DUSP22, KLHL33,

HSPA6/FCGR3A, the intergenic locus on chromosome

chromosome21q.22, MICB, and HLA-B*52 (poor prognosis)

Immunoglobulin A Vasculitis/Henoch-Schönlein Purpura (IgAV/HSP)

Susceptibility locus for IgAV/HSP (42) HLA-DRB1

Giant cell arteritis (GCA)

Susceptibilty genes for GCA (43) HLA-DRB1*04, PLG, and P4HA2

NAALADL2, CD40, NFKBIL1, IGHV, EBF2, CACNB2, LTA,
and LEF1) (5–16) to the risk of cardiovascular disease in
KD (TIAM1, NEBL, PLCB4/PLCB1, TUBA3C, SLC8A1, PELI1,
KCNN2, TIFAB, and AGT) (8, 12, 17–22) and to the risk
of intravenous immunoglobulin (IVIG) resistance (BCL2L11
and SAMD9L) (23, 24). Involvement of the HLA region in
susceptibility to KD has been controversial and has not been
replicated across different ancestral groups.

Shimizu et al. (12) identified three functional SNPs in
the solute carrier family 8, member 1 (SLC8A1) gene to be
associated with susceptibility to KD in Japanese and European
cohorts (meta analysis p = 0.0001). SLC8A1 encodes NCX1
(a sodium/calcium exchanger) that functions as a bidirectional
sodium/calcium channel. Patients homozygous for the risk allele
(rs13017968) have higher rates of coronary artery abnormalities.
Homozygosity for rs13017968 is associated with an increase in
Ca2+ flux in EBV-transformed B cells of healthy individuals.
The NCX1 protein expression was detected in the postmortem
coronary artery tissue of a young KD patient. Another study by
Onouchi et al. (48) found a coding SNP (rs3741596) in the ORAI
Calcium Release-Activated Calcium Modulator 1 (ORAI1) gene
to be significantly associated with KD in Japanese patients (meta
analysis p= 0.00041). Interestingly, frequency of the risk allele is
more than 20 times higher in Japanese compared to Europeans,
which may account for higher prevalence of KD in the Japanese
population. Together, these genetic and functional data provide

evidence for the role of Ca2+-mediated signaling pathways in the
pathogenesis of KD and for the use of calcineurin inhibitors (49).

Lv et al. (46) used statistically significant candidate variants
from multiple GWAS and other gene association studies
for pathways analysis. This investigation showed that KD
susceptibility genes are enriched in functional networks for
calcium ion homeostasis and immune responses and highlighted
the role of nuclear transcription factor of activated T cells (NF-
AT) and nuclear factor (NF) kappa light chain enhancer of
activated B cells (NF-κB) in the pathogenesis of KD.

Another indication from GWAS for the use of new therapies
in KD has come from the study by Chang et al. (44). The
promoter variant, rs2736340, in the B lymphoid tyrosine kinase
(BLK) gene was significantly associated with susceptibility to KD
in multiple Asian populations [odds ratio (OR) = 1.498, 1.354–
1.657; p= 4.74× 10(−31)]. The transformed and primary B cells
with the risk allele express significantly lower levels of BLK and
have reduced signaling downstream of B cell receptors. These
data suggest a role for humoral immunity in the pathogenesis of
the acute stage of KD (44). Although B cells and autoantibodies
have been found in blood samples of KD patients, their role,
whether they are causal or bystanders of an activated immune
system or specific to an infectious agent in the etiology of KD, is
currently unknown (50).

Standard treatment for KD consists of a single infusion of
high-dose IVIGs and high-dose aspirin (until the fever has
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resolved); however, the mechanism of action remains elusive.
Because IVIG therapy is the mainstay of treatment for KD,
there has been interest to study the effect of SNPs and copy
number variants (CNVs) on the function of receptors for
IgG, the Fc-gamma receptors (FcγRs). There are five genes
encoding the low-affinity FcγRs (FCGR2A, FCGR2B, FCGR2C,
FCGR3A, and FCGR3B) that are clustered in the FCGR2/3 locus.
Recently, Nagelkerke et al. published a study that evaluated
the previously reported genetic association with the rs1801274
variant in this gene locus. The FCGR2A coding SNP rs1801274
has been validated in a number of KD ancestry cohorts and
was shown to cause a difference in the ability of FcγRIIa to
bind the human IgG2 immunoglobulin isotype. This new study
defined haplotype blocks (set of closely linked alleles/markers
that are inherited together) across the FCGR2/3 gene locus in
over 4,000 individuals from different populations. The FCGR2C-
ORF haplotype has stronger susceptibility to KD in the European
cohort than the previously reported risk allele rs1801274.
However, the FCGR2C-ORF haplotype is extremely rare in
Asians and thus cannot explain the high prevalence of KD in
Asian populations. This research points out the importance of
proper interpretation of genetic association studies in the context
of patients’ ancestry (51).

Kuo et al. developed a genetic model to predict IVIG
resistance in KD. They identified 11 candidate SNPs in ADTRP,
KLF6, EX0C2, ZNF438-ZEB1, and MIR548A3-ZPLD1 genes to
calculate a weighted genetic risk score (wGRS) in 126 IVIG
responders and 24 IVIG non-responders (52). Patients with IVIG
resistance had higher wGRS scores than individuals who were
IVIG responsive; however, the wide confident intervals (CIs) for
the OR suggest that these findings should be replicated in larger
cohorts of patients.

Kim et al. (24) recently identified a new gene locus, SAMD9L,
that is associated with IVIG resistance in Korean and Japanese
KD cohorts. The meta-analysis of IVIG non-responders (n =

317) and IVIG responders (n = 1221) showed the association of
the common intronic variant (rs28662; MAF= 13% in gnomAD)
with IVIG resistance [(OR) = 4.30, p = 5.3 × 10−6]. This SNP
was predicted to change themotif for transcription factor binding
site and was also associated with differential expression of the
SAMD9L gene in lymphoblastoid cell lines. Previously, variants
in SAMD9L have been associated with susceptibility for systemic
lupus erythematosus, systemic sclerosis, and other immune-
related diseases, such as juvenile myelomonocytic leukemia,
acute myeloid leukemia, myelodysplastic syndrome, hepatitis-
B-related hepatocellular carcinoma, and ataxia-pancytopenia
syndrome. However, the role of SAMD9L in immune signaling
pathway is unclear (24).

Behçet’s Disease
BD is a chronic multisystem inflammatory disorder characterized
by recurrent oral/genital ulcers, ocular involvement, skin
lesions/pathergy, presenting with remissions and exacerbations.
The disease is common in populations living along the
ancient Silk Road: Turkish, Iranian, Chinese, Korean, and
Japanese. Classic BD is a complex disease with a strong genetic
predisposition. Although the etiology of BD remains unclear,

recent immunogenetic findings from GWAS provide clues to its
pathogenesis (53, 54).

HLA-B∗51 remains the most significant genetic susceptibility
factor for BD in multiple populations; however, it accounts for
<20% of the genetic risk (55, 56). The ongoing controversy
is about whether the disease association with HLA-B∗51 is
attributed to a role of this variant itself or is due to its linkage
disequilibrium (LD) with another variant in the region. There
are also other BD disease-associated amino acids variants in
the HLA-B locus that are thought to reside within the antigen-
binding grove of the molecule (57). The association between
specific MHC class I alleles and certain disease manifestations
have been reported (58–61). A meta-analysis based on 72 studies
in 74 study populations revealed moderate association of HLA-
B∗51/B5 with male gender and high prevalence of eye and
mucocutaneous involvement (60).

GWAS have identified a number of population-specific
associations in the following genes: IL23R-IL12RB2, IL10,
TNFAIP3, STAT4, CCR1-CCR3, KLRC4, ERAP1, and FUT2.
Variants in some genes, includingKIAA1529, UBASH3B, GIMAP,
IL12A, NAALADL2, YIPF7, CPVL, LOC100129342, and UBAC2,
did not reach genome-wide significance (p < 5.0 × 10−8)
(25–34). Most of these alleles act as susceptibility factors,
while some variants appear to be protective. BD-risk alleles
in the IL10 susceptibility gene locus were the first variants
identified outside of the HLA region by GWAS in Turkish
and Japanese populations (29, 30). The SNP rs1518111 was
subsequently replicated in Middle Eastern Arab, Greek, British,
Korean, Iranian, and Han-Chinese samples and is today the only
variant consistently associated with susceptibility to BD across all
ancestries (57).

More recent studies investigated whether there is
evidence for interaction (epistasis) among BD susceptibility
genes. The endoplasmic reticulum (ER)-associated protease
(ERAP1) haplotype tagged by the coding variant, rs17482078
(p.Arg725Gln), has a large effect with an OR of 3.78 in
patient carriers for HLA-B∗51. Interestingly, the same variant
rs17482078 is protective for psoriasis and ankylosing spondylitis
(AS). ERAP1 is an enzyme that clips proteasome-processed
peptides in the ER before these peptides are loaded on
class I HLA molecules (56). The epistasis observed between
HLA-B∗51 and the risk haplotype of ERAP1 suggests that
an HLA class I-peptide presentation contributes to BD.
The difference between risk and protection conferred
by the ERAP1 haplotype may be explained by altered
binding affinities among specific peptides, trimmed or not
trimmed by the ERAP1 variant, for different HLA class I
molecules (62).

Dense genotyping of immune-related loci extended the list of
susceptibility genes to include risk alleles in IL1A-IL1B, IRF8,
CEBPB-PTPN1, and ADO-EGR2 genes in the Turkish set of
1,900 cases and 1,779 controls. This study implicated the innate
immune response to microbial exposure in susceptibility to BD
(63). Bakir-Gungor et al. reported new BD-associated common
variants in pathways, including focal adhesion, complement
and coagulation cascades, mitogen-activated protein kinases
(MAPK) signaling, proteasome pathways, extracellular matrix
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(ECM)–receptor interaction, and transforming growth factor-β
(TGFβ) signaling both in Japanese and Turkish populations (64).

Targeted sequencing of candidate immunological genes has
revealed the contribution of rare non-synonymous variants of
NOD2, TLR4, IL23, and MEFV in the BD pathogenesis. In
particular, heterozygosity for a common high-penetrance familial
Mediterranean fever (FMF)-associated mutation p.Met694Val is
significantly associated with BD risk in the Turkish population,
although not in Japanese patients due to its absence in the
Asian populations (65). MEFV encodes pyrin, which regulates
caspase-1-mediated interleukin (IL)-1β production.

Nakano et al. investigated the functional effect of GWAS-
identified BD risk alleles in IL-10 and CCR1. They observed
a differential protein expression of IL10 and CCR1 in M1 vs.
M2 macrophages (Mφ) derived from BD patients. BD skin
lesions showed predominance of M1 Mφ. This study suggests
that targeting pathways and genes that play a role in the Mφ

polarization should be explored in the treatment of BD (66).
Taken together, GWAS have implicated a number of genes of

the innate and adaptive immunity with increased susceptibility
to BD. Whether inhibition of these molecular pathways will be
effective in the treatment of BD remains to be seen.

ANCA-Associated Vasculitis (AAV)
AAV is a heterogeneous group of disorders characterized by
necrotizing inflammation of small vessels and by the presence of
ANCA. The two most common ANCAs are the autoantibodies
that target the proteins: myeloperoxidase (MPO) and proteinase
3 (PR3). AAV includes the clinical syndromes of microscopic
polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and
eosinophilic granulomatosis with polyangiitis (EGPA). ANCA
directed against PR3 are preferentially associated with GPA, and
anti-MPO is associated mainly with MPA and EGPA. Although
the role of ANCA in the pathogenesis of AAV is appreciated,
the mechanism for ANCA-mediated development of AAV is
not clear. Genetic predisposition and exposure to environmental
factors, such as drugs and infectious agents, are possible triggers
of excessive activation of neutrophils and injury to small blood
vessels. The clinical signs vary andmay affect several organs, such
as the kidney, intestine, lung, and skin.

Currently, three GWAS have been performed in AAV. These
studies identified risk alleles in HLA-DQ, HLA-DP, HLA-DR,
SERPINA1, PTPN22, PRTN3, and SEMA6A genes as contributing
to AAV (35–37). A meta-analysis of 140 reported genetic variants
associated with AAV distinguished the most significant 33 alleles
in 15 genes (67). Twenty of these 33 genetic variants were present
in the HLA region, suggesting an important role for the antigen
presentation in the disease pathogenesis. Two GWAS showed
that the SNP association signal in the HLA region was fully
accounted for by HLA-DPB1∗04 allele (35, 37).

Lyons et al. established that MPA and GPA are two distinct
diseases based on their genetic profile (35). Anti-MPO positive
AAV (MPA) is strongly associated with the HLA-DQ, whereas
anti-PR3 AAV (GPA) is associated with the HLA-DP region
and the genes encoding α(1)-antitrypsin (SERPINA1) and serine
proteinase 3 (PRTN3) (35, 68). SERPINA1 is a major inhibitor
of PR3, and lower levels of α (1)-antitrypsin can lead to higher

levels of circulating PR3 and higher production of anti-PR3
autoantibodies. Population difference in HLA-class II genotype
frequency plays a role in the epidemiology of this disease.
Among AAVs, GPA and PR3-AAV are prevalent in European
populations, whereas MPA and MPO-AAV are predominant in
the Japanese population. In the North American population, the
HLA- DPB1∗04 has the strongest association with GPA, whereas
in the Japanese population, HLA- DRB1∗09:01 is strongly
associated with MPA (68–70).

Other notable variants outside the HLA region include
alleles in protein tyrosine phosphatase non-receptor type 2
(PTPN22) gene, which negatively regulates the production of an
immunosuppressive cytokine interleukin (IL-10) (71). The gain-
of-function risk allele, p.Arg260Trp, is linked to GPA-AAV in
addition to a number of other autoimmune diseases (72, 73). A
non-coding SNP in the vicinity of SEMA6A is linked to GPA in
the GWAS study of Caucasian cohort of 528 patients and at a
genome-wide signficance (p = 2.09 × 10−8). The SEMA6A gene
codes for semaphorin 6A and is highly expressed in dendritic
cells; however, its function is unclear (37).

Lower and higher copy number variants in the FCGR3B gene
and a higher DEFB4 gene copy number have been associated
with risk for AAV (74–76). A possible relationship between the
FCGR3B copy number and susceptibility to AAV needs to be
clarified experimentally (77).

Lee et al. performed gene-ontology (GO) enrichment and
protein–protein interaction (PPI) networks analysis of significant
risk alleles to identify the key pathophysiological pathways in the
pathogenesis of AAV. The most significant pathways include the
processing of antigens viaHLA class II, T-cell receptor signaling,
and interferon (IFN)-γ mediated signaling pathways (78).

Takayasu Arteritis (TAK)
TAK is a large-vessel vasculitis that predominantly affects young
women and can cause organ-threatening ischemia, such as
pulseless limbs, aortic regurgitation, pulmonary infarct, and
kidney failure by occluding the aorta and/or its branches. TAK
is seen all over the world, but Eastern Asia, especially Japan,
has the highest incidence. The etiology of TAK is elusive,
but genetic predisposition is likely. Corticosteroids, anti-tumor
necrosis factor (TNF)-α, anti-IL-6, and abatacept are used for
induction of remission and with aim to prevent relapse.

GWAS have shown that HLA-B/MICA, HLA-DQB1/HLA-
DRB1, FCGR2A/FCGR3A, IL12B, RPS9/LILRB3, IL6, PTK2B,
LILRA3/LILRB2, DUSP22, KLHL33, and HSPA6/FCGR3A and
the intergenic locus on chromosomes 21q.22, MICB, and HLA-
B∗52 are susceptibility gene loci in TAK (38–41). Risk alleles
in HLA-B/MICA and HLA-DQB1/HLA-DRB1 were identified
in Turkish and European cohorts of patients. Other notable
associations are in PSMG1, IL12, and IL23 gene loci but not
at the level of genome-wide significance (39). HLA-B∗52 allele
is related to poor prognosis in TAK (79, 80). Risk alleles in
the RPS9/LILRB3 locus and IL6 may have immunoregulatory
effects (38). The disease risk variant in RPS9/LILRB3, rs11666543
(p = 2.34 × 10−8), correlates with reduced mRNA expression
of the inhibitory leukocyte immunoglobulin-like receptor gene
LILRB3. One study proposed that risk alleles in the IL6 gene
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and serum level of IL-6 can be used to stratify patients for anti-
IL6 treatment (81). Another risk allele, rs6871626, in IL12B is
shown to influence the expression of IL-12p70 and IL-12p40
genes, resulting in enhanced IL-12 signaling that might further
contribute to the pathophysiology of TAK (82). Terao et al.
showed that interaction of HLA-B∗52 and LILRB1 may be
responsible for activation of natural killer (NK) cells by a way of
suppression of inhibitory pathways (41).

FCGR2A/FCGR3A is a common susceptibility gene locus for
TAK and KD. The Fc-gamma receptors (FcγRs) are responsible
for interactive relationship between adaptive and innate immune
systems. All immune cells possess these receptors. FcγRs can be
classified into one high-affinity receptor (FcγRI) and five low-
affinity FcγRs (the different isoforms of FcγRII and FcγRIII) (83).
Genetic variants of these receptors have been associated with
susceptibility to autoimmune, autoinflammatory, and infectious
diseases and response to immunotherapy in cancer patients
(6, 84–91). Nagelkerke et al. (51) showed that activation of IgG
receptors on monocytes and neutrophils plays a role in the
pathophysiology of KD. Inhibition of this activation may be a
targeted treatment for patients who carry the FCGR2A/FCGR3A
risk alleles.

Immunoglobulin A
Vasculitis/Henoch-Schönlein Purpura
(IgAV/HSP)
IgAV/HSP is a small-vessel vasculitis of the skin, kidney,
gastrointestinal tract, and joints. IgAV/HSP has typically a good
prognosis because of the self-limiting disease course; however,
renal and gastrointestinal involvement can cause morbidity.
IgAV/HSP is the most common childhood vasculitis. Diagnosis
of IgAV/HSP is based on clinical features; however, skin and
kidney biopsy are useful for diagnosis in selected cases.

The first GWAS of IgAV/HSP revealed that the HLA class II
region (mainlyHLA-DRB1∗01 allele) in the European population
is associated with the risk for IgAV/HSP, although this finding
did not reach genome-wide significance (42). A meta-analysis
confirmed that genetic susceptibility to IgAV/HSP is associated
with HLA-DRB1∗01 and HLA-DRB1∗07 variants and suggested
that IgAV may be an HLA class II disease (92). Immunoglobulin
A vasculitis with nephritis (IgAVN) and IgA nephropathy (IgAN;
also known as Berger’s disease) are considered related diseases.
The chromosome 1q32 locus that contains the complement
factor H (CFH) was identified as an IgAN-susceptible locus. Jia
et al. showed the contribution of rs6677604 allele in CFH to
the regulation of the complement activation in both IgAN and
IgAVN (93).

Giant Cell Arteritis (GCA)
GCA is a systemic vasculitis characterized by granulomatous
inflammation of medium- and large-sized vessels and with
particular predilection for the aorta and its extracranial branches.

GCA is the most common vasculitis in the elderly (mostly
women) population from western countries (94). GCA can
cause headaches, visual loss, jaw claudication, painful scalp,
impairment of limb arteries, systemic inflammation, and

polymyalgia rheumatica. GCA is a potentially devastating
disease, with up to 25% of patients developing aneurysmal
disease and stroke. First-line treatment of GCA is a high-dose
glucocorticoid (GC), and it should bemaintained until symptoms
are resolved.

GC resistance and adverse effects are main concerns for
treatment of patients with GCA (95). Other agents, such as
methotrexate and TNF inhibitors, have been used with limited
or no evidence of benefit. Recent studies implicated important
roles for TH1- and TH17-driven inflammatory cascades. Results
from new therapies with abatacept and ustekinumab have also
been promising.

In 2017, the first GWAS in GCA identified theHLA-DRB1∗04
as the strongest risk allele (43). This finding implies that GCA
is a predominantly HLA class II disease and is distinct from
the other large-vessel vasculitis, TAK, which is considered an
HLA class I disease. Carmona et al. (43) reported susceptibility
alleles in plasminogen (PLG) and prolyl 4-hydroxylase subunit
alpha 2 (P4HA2) genes in 10 different populations of European
ancestry at a genome-wide level of significance (rs4252134, p =

1.23 × 10−10, OR = 1.28; and rs128738, p = 4.60 × 10−9, OR =

1.32) (43). Both PLG and P4HA2 play a role in the regulation of
angiogenesis and vascular remodeling. The plasminogen system
is known to regulate several pathways possibly related to the GCA
pathogenesis, such as lymphocyte recruitment and production
of TNF-α and IL-6 cytokines (96, 97). The P4HA2 gene is a
hypoxia-responsive gene with a role in collagen biosynthesis
and composition of ECM. Hypoxia-inducible factor-1 (HIF-1)
regulates the expression of P4HA2 and other genes, such asVEGF,
IL6, andMMP9 (98).

EPIGENETICS AND EPIGENOME-WIDE
ASSOCIATION STUDIES (EWAS) IN
PRIMARY SYSTEMIC VASCULITIDES

Epigenetic mechanisms including DNA methylation, histone
modifications, and non-coding RNAs regulate gene expression,
cellular development, differentiation, and activity (99).
Epigenomic alterations are not the result of genetic mutations,
and they are reversible; however, they can act as integrators of
genetic and environmental disease risk factors. Recent work has
suggested that epigenome modifications, for example, histone
modifications and micro RNA (miRNA) expression, may be used
as a biomarker for disease activity and for monitoring disease
progression (100). EWAS aim to identify epigenetic variations
associated with disease, for example, differentially methylated
CpG sites, by performing a hypothesis-free testing across the
whole genome (101). Thus far, EWAS have mainly investigated
DNA methylation and its association with human diseases. In
general, hypermethylation of promoters typically acts to repress
gene transcription.

Kawasaki Disease
FCGR2A (IgG receptor gene) encodes the low-affinity
immunoglobulin gamma Fc region receptor II-a protein
that is expressed on the surface of macrophages, neutrophils,
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monocytes, and dendritic cells. This protein leads to increased
phagocytosis and production of inflammatory mediators.
Genetic variants in FCGR2A gene have been linked to a genetic
risk for KD (100, 102). The first study to examine the DNA
methylation array in KD showed that CpG sites within the
promoter region of FCGR2A were hypomethylated in whole
blood cells from KD patients compared with controls, and
especially in patients resistant to IVIG treatment (103). Li
et al. demonstrated that DNA methylation patterns changed
after IVIG treatment in KD, including reversal of the disease-
associated hypomethylation in FCGR2A (104). Furthermore,
interaction of FCGR2A and Toll-like receptors (TLR) can induce
a proinflammatory response (105, 106). DNA hypomethylation
on Toll-like receptors (TLRs) was detected in KD patients, and
the methylation level of the TLRs genes was rescued 3 weeks
post-IVIG therapy (107).

FoxP3 acts as both transcriptional activator and repressor in
regulatory T cells (Tregs), and FoxP3-dependent transcriptional
program is epigenetically controlled by histone modifications
at its binding site (108). FoxP3 binds to ∼700 genes and a
number of miRNAs, including miRNA-155, which upregulation
likely contributes to proliferative potential of TR cells. FoxP3
expression in Tregs of patients with KD is affected by miR-155
and miR-31. In patients with acute KD, decrease in FoxP3+ Treg
might be associated with reduced expression of miR-155 and
overexpression of miR-31. These effects were partially reversed
following the IVIG treatment (109).

Huang et al. (110) showed that the expression of a neutrophil
surface molecule, CD177, is higher during acute stage of KD and
correlates with epigenetic hypomethylation. They observed that
the CD177 mRNA level diminished sharply after IVIG treatment
and were higher in patients with atypical presentation or KD or
IVIG-resistant patients.

Chang et al. (111) recently published that gene expression
of PHLPP1 and MAPK14 is significantly high in KD and is
influenced by methylation. They proposed that hypomethylation
status and upregulated expressions of MAPK14 and PHLPP1
could be candidate biomarkers for the diagnosis of KD.

Hepcidin, encoded by the HAMP gene, has a main role in the
pathogenesis of inflammation-associated anemia. Hepcidin levels
are high in KD patients, and they decrease after IVIG treatment.
Huang et al. demonstrated that KD patients had a considerably
higher epigenetic hypomethylation of HAMP promoter than
controls, which was reversed following therapy with IVIG. They
proposed that HAMP promoter hypomethylation and increased
hepcidin levels may serve as a biomarker of KD (112). Huang
et al. (113) performed the first genome-wide DNA methylation
and gene expression assays in blood samples of KD patients.
They found that specific CpG markers were hypomethylated
in samples from patients with active disease compared to
controls and hypermethylated in samples from patients in
convalescent phase compared with samples from patients in
acute phase. In particular, methylation changes of CpG markers
correlated with the expression S100A genes. S100A8 and
S100A9 are inflammatory biomarkers that are usually highly
expressed in acute and chronic inflammation. Using in vitro
model, they showed that S100A proteins enhanced leukocyte

transendothelial migration of neutrophils. In summary, this
study implicates the role of S100A proteins in the pathogenesis of
KD (113).

Behçet’s Disease
The first EWAS in BD showed that CD4+ T cells and
monocytes extracted from the peripheral blood of BD patients
were hypomethylated in genes associated with cytoskeletal
remodeling, cell migration, and tissue invasion, such as RAC1,
RGS14, and FSCN2. Some methylation deficiencies return to
normal level during disease remission. These findings suggest
that epigenetic modifications of cytoskeleton-related genes are
important in the pathogenesis of BD (114). Hypermethylation
of the IL-4, TGF-β , and GATA binding protein 3 (GATA3)
in CD4+ cells was noted in patients with active BD, but this
may not be disease-specific (115, 116). Conversely, treatment
with corticosteroids and cyclosporine (CsA) has beneficial effects
by decreasing the methylation level of TGF-β and GATA3
(115). A systematic analysis of miRNA expression profiles and
pathway analyses in BD identified a specific miRNA signatures
in active disease that regulated the IFNγ , TNF, and VEGF-
VEGFR signaling cascades (117). Woo et al. (118) observed
differential expressions of miRNAs miR-638 and miR-4488 to
be associated with elevated production of IL-6. Activation of
the Notch pathway in active BD disease and its association with
decreased expression of mir-23 and higher Th17 response have
been observed (119). Two functional variants, rs2910164 (miR-
146a) and rs11614913 (miR-196a2; Ets-1), confer the risk for BD
in Han-Chinese by regulating production of proinflammatory
cytokines (120, 121).

The differentially expressed genes identified by EWAS might
be good candidate biomarkers for monitoring the disease activity
and might represent promising candidates for design of novel
therapeutic strategies in BD.

ANCA-Associated Vasculitis
Normally, the expression of MPO and PRTN3 genes (encoding
MPO and PR3 autoantigenes) in neutrophils occurs only in the
early stages of cell maturation; however, MPO and PRTN3 are
found continuously expressed in neutrophils and monocytes of
patients with AAV (122). This deregulation in gene expression
is postulated to be related to epigenetic mechanisms (123–
125). Jones et al. (124) showed that the gene-specific DNA
methylation changes may regulate autoantigen expression, and
they correlate with disease activity in AAV. In remission,
DNA methylation is generally increased. Patients with active
disease had hypomethylation and increased expression of MPO
and PRTN3. The findings suggest that the reactivation of
once-silenced genes can lead to increased antigen availability.
Patients with decreased DNA methylation at the PRTN3
promoter have a significantly greater risk of relapse. Therefore,
fluctuations in the DNA methylation of the PRTN3 promoter
may be associated with stable remission. Methylation status
may prove to be a potential biomarker for prognosis in AVV
patients (124).
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Immunoglobulin A
Vasculitis/Henoch-Schönlein Purpura
Luo et al. (126) observed that global histone H3 acetylation
and H3K4 methylation are increased in peripheral blood
mononuclear cells (PBMCs) isolated from IgAV patients. These
epigenetic modifications had positive correlations with disease
activity and were more common in IgAV patients with
renal involvement compared with IgAV patients without renal
involvement and healthy controls. They observed increased
mRNA expression of GATA3, IL-4, IL-6, and IL-13 genes in
IgAV patients. Serum protein levels of IL-4, IL-6, and IL-13
were significantly increased in HSP with kidney damage patients
compared to healthy controls. Abnormal histone modifications
of transcription factors such as GATA3 may lead to the Th1/Th2
cytokine imbalance in HSP and other immune diseases (126).

Giant Cell Arteritis
Only two epigenetic studies evaluated DNA methylation status
and miRNA expression in temporal artery biopsies (TABs) of
patients with GCA (127, 128). Coit et al. (127) identified 1,555
hypomethylated CpG sites in 853 genes by comparing 12 patients
and 12 healthy age-, gender-, and ancrestry-matched controls.
DNA was extracted from the affected temporal artery tissues in
patients with GCA and from histologically confirmed normal
arteries in controls.

Most of these genes have roles in T-cell activation and
differentiation pathways, especially Th1 and Th17 cells. TNF,
LTA, LTB, CCR7, RUNX3, CD6, CD40LG, IL2, IL6, NLRP1,
IL1B, IL18, IL21, IL23R, and IFNG were proinflammatory
hypomethylated genes that were found in this study.
Interestingly, the significant hypomethylation of genes in
the calcineurin (CaN)/NFAT pathway was shown within the
temporal artery of GCA patients.

Increased activity in NFAT is one of the key factors in
production of proinflammatory cytokines. This study provided
evidence for use of NFAT inhibitors (e.g., dipyridamole) in the
treatment of GCA (127, 129).

Croci et al. showed thatmiR-146b-5p,−146a,−21,−150,−155,
and−299-5p are expressed at higher levels in affected vessels
of TAB-positive GCA patients compared to non-inflamed
TABs from GCA patients and to non-inflamed TABs from
non-GCA patients. Interestingly, these miRNAs were mainly
deregulated at the tissue level, whereas no difference in their
expression was observed in peripheral blood mononuclear
and polymorphonuclear cells from these three groups of
patients and controls. Especially, miR-146b-5p expression was
the most promising diagnostic biomarker for the presence of
inflammation in TABs of GCA patients and the follow up of the
disease activity. Further research is necessary to optimize their
use in medical practice (128).

EXTRACELLULAR VESICLES IN PRIMARY
SYSTEMIC VASCULITIDES

EVs were defined in 1967 as “dust” from platelets (130). More
recently, it has been shown that EVs are membrane vesicles that

are released by almost all eukaryotic cells during cell activation
and programmed cell death (131–134). Heterogeneity of EVs is
essential. They are classified into three groups with regard to
biological features and their size: exosomes, microvesicles (MVs),
and apoptotic bodies (132, 133, 135, 136). EVs are responsible
for immune regulation, cell-to-cell interaction, and signal
transmission by transporting bioactive molecules including
proteins and lipids, DNA, and various RNAs, such as mRNAs,
small-interfering RNAs (siRNAs), microRNAs (miRNAs), and
long non-coding RNAs (lncRNAs) and othermolecules produced
by cells (132, 137–139). EVs can be detected in many organs,
tissues, and all body fluids, such as urine, blood, and synovial fluid
at low levels in physiological conditions (140, 141). The increased
levels of EVs are noted in cardiovascular disease, cancer,
and pathological conditions that are associated with vasculitis:
inflammation, autoimmunity, endothelial damage, angiogenesis,
procoagulation, and intimal hyperplasia (131–133, 136, 140–
142). EVs are known to be released from injured endothelial
cells and are found increased in many diseases associated with
endothelial dysfunction. It is thought that EVs from platelets,
lymphocytes, and monocyte/macrophages contribute to the
pathogenesis of systemic vasculitis (143–170) (Table 3).

In 2004, Brogan et al. (143) reported that the endothelial
microparticles expressing E-selectin-positive or CD105 and the
platelet MVs expressing CD42a were significantly increased
in patients with active vasculitis compared to controls or
children with inactive vasculitis or other febrile illnesses. They
found that endothelial microparticle levels correlate with the
Birmingham Vasculitis Activity Score (BVAS) and acute-phase
reactant levels (143).

Activation of the contact system has proinflammatory and
vasoactive properties. The contact system triggers the kallikrein-
kinin cascade releasing bradykinin from high-molecular-weight
kininogen. Bradykinin concentrations were higher in the
patients’ plasma than in plasma from controls, and kinins were
present in lesional biopsy tissues of kidney and skin of children
with PSVs (173, 174). The kinin B1 receptor is induced by
inflammatory stimuli, particularly in response to the cytokine
IL-1β, and plays a major role in neutrophil recruitment. Kahn
et al. (151) found that leukocyte-derived MVs transfer functional
kinin B1-receptors and in this way may further promote kinin-
mediated inflammation in vasculitis. Mossberg et al. (156)
showed that patients with acute vasculitis had significantly
higher levels of circulating endothelial MVs and more MVs
carrying B1-receptors. These MVs can induce the inflammation
by increasing neutrophil chemotaxis, whereas addition of a C1-
inhibitor decreased the release of B1R+MVs. Kinin-B1 receptor
activation of CXCL5 can further amplify neutrophil chemotaxis
and chronic inflammation (175). Exploring inhibition of the
kallikrein-kinin pathway is potentially a novel target for reducing
neutrophil-mediated inflammation in PSVs.

Kawasaki Disease
Endothelial cell-derived MVs were detected in higher levels in
children with KD (147–149, 163, 166) and HSP (144). TheseMVs
may serve as biomarkers to predict coronary artery aneurysms in
KD and to detect subclinical inflammation in HSP (144, 148).
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TABLE 3 | The role of extracellular vesicles in vasculitis. This table is adapted from Wu et al. (133).

Author and references Origin of EVs Content of EVs Related diseases and

vessels

Possible pathogenic mechanism

Microvesicles

Nakaoka et al. (147) Endothelial cells, CD144 miR-145-5p,

miR-320a

KD, medium vessels Upregulation of proinflammatory

cytokine

Raposo et al. (136) Leukocytes CD45 B1-receptors AAV, IgAV, small vessels Kinin system

Raposo et al. (136) Endothelial cells B1-receptors AAV, IgAV Kinin system

Macey et al. (153) Platelets CD42a/CD62P – BS Inflammation

Dursun et al. (144) Endothelial cells – IgAV/small vessels Inflammation

Daniel et al. (167) Neutrophils CD66b – AAV Inflammation and procoagulation

Mendoza-Pinto et al. (171) Neutrophils annexin Tissue factor AAV Inflammation and thrombosis

Hong et al. (172) Annexin V neutrophils CD18/C, D11b, PR3, MPO AAV Inflammation and procoagulation

Huang et al. (161) Annexin V Tissue factor AAV Procoagulation

Mejia et al. (155) Annexin V – BD Procoagulation

Khan et al. (152) Annexin V Tissue factor BD Procoagulation

Eleftheriou et al. (145) Annexin V, platelets CD41

endothelial cells CD62E

Tissue factor MPA, GPA, PAN, KD, BS Procoagulation

Martinez et al. (154) Platelets CD6 – BS Procoagulation

Yahata et al. (170) Platelets CD42b/CD42a – KD Evaluation of platelets

Kim et al. (169) Annexin V – KD Evaluation of platelets

Hajj-Ali et al. (146) Annexin endothelial cells

CD105/CD144, platelets

CD41, leukocytes CD18,

neutrophils

– GPA/small vessels Platelets activation and endothelial

damage

Tian et al. (166) Annexin V V/CD62E/CD31 – KD/medium vessels Endothelial damage

Erdbruegger et al. (168) Annexin V, endothelial cell

CD105/CD6 2E

– AAV/small vessels Endothelial damage

Ding et al. (163) – KD/medium vessels Endothelial dysfunction

Kumpers et al. (165) Annexin V – CSS/small vessels Endothelial damage

Clarke et al. (162) Annexin V, endothelial cell – MPA, GPA, PAN, KD, BS Endothelial damage

Guiducci et al. (160) Platelets CD42,

erythrocytes, T cells,

endothelial cells

– KD/medium vessels Endothelial damage

Brogan et al. (143) Annexin V, platelets

CD42a/CD62

– MPA, GPA, PAN, KD, BS Endothelial activation

Tan et al. (149) Endothelial cells

CD31/CD146

– KD/medium vessels Endothelial damage

Shah et al. (148) Endothelial cells

CD105/CD62E

– KD/medium vessels Endothelial damage

Exosomes

Jia et al. (150) CD9/CD81/TS miR-1246, miR44 KD/medium vessels Diagnostic biomarker

Zhang et al. (159) – miR-328, miR-575, miR-

134, miR-671- 5p

KD/medium vessels Inflammation

Zhang et al. (158) CD9/CD81/flotilin 38 different contents KD/ medium vessels Inflammation and procoagulation

Zhang et al. (157) CD9/flotillin 69 different proteins KD/medium vessels Inflammation and procoagulation

The role of platelet activation dynamics in acute-phase
KD patients was explored by assaying platelet-derived MVs
(PDMVs). Prior to aspirin treatment, PDMV level was
significantly higher in the acute-phase KD patients in comparison
to patients with common febrile diseases. Guiducci et al. observed
that MVs derived from platelets, endothelial cells, erythrocytes,
and T cells are significantly elevated in plasma samples of patients
with KD. Endothelial and T cells were the major source of MVs,

and the levels were reduced by IVIG treatment (160). Platelet
activation is important in the pathogenesis of KD, thus PDMVs
may serve as a biomarker to evaluate the antiplatelet therapy
response in KD (169, 170).

Measuring microRNAs (miR-4436b-5p, miR-1246, miR-671-
5p, and miR-197-3p) in serum exosomes has been proposed
as a diagnostic biomarker for the prediction of IVIG response
in KD (149, 159). Serum exosomal microRNAs may have a
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role in the pathogenesis of KD by regulating the expression
of inflammatory genes (CX chemokine receptor types 1 and
2, IL-8, and its receptor) in mononuclear cells (159). Serum
exosomes from patients with KD contain many proteins,
such as apolipoprotein A-IV, insulin-like growth factor-binding
protein complex, acid-labile subunit and complement C3, and
their proteomic profile correlates with IVIG therapy (157).
Zhang et al. performed proteomic analyses of serum exosomes
from KD patients with coronary artery dilatation. They found
38 differentially expressed proteins, and the majority are
involved in inflammatory and coagulation pathways (158).
More recent proteomic analysis validated TN, APOA4, LRG1,
and RBP4 proteins as differentially expressed in patients with
coronary artery aneurysms (CAA) (176). These finding provide
additional insights in the pathogenesis of CAA in patients
with KD.

ANCA-Associated Vasculitis
Endothelium-derived MVs have been reported in active AAV
patients (168). Plasma levels of MVs derived from platelet
and neutrophil are high in acute-phase vasculitis (167).
The neutrophil-derived MVs cause increased production of
proinflammatory cytokines IL-6 and IL-8, increased expression
of intercellular adhesion molecule-1, and production of reactive
oxygen radicals by binding to endothelial cells in a CD18-
dependent manner (172). Furthermore, endothelial MVs carry
PR3 and MPO and may contribute to the extensive endothelial
damage and inflammation seen in AAV (177, 178).

Thromboembolic disease complicating primary systemic
vasculitis is associated with significant morbidity and mortality.
The mechanisms of hypercoagulability in PSV remain poorly
defined. Several studies attempted to identify risk factors
of thrombosis to stratify patients who could benefit from
prophylaxis with antiplatelet or anticoagulant agents. One
study showed that stimulation with ANCAs causes C5a-primed
neutrophils to release neutrophil tissue factor (TF)-expressing
MVs and neutrophil extracellular traps (NETs) that might
promote hypercoagulability in AAV (161). Eleftheriou at al.
have demonstrated that thromboembolic disease in children with
systemic vasculitis is linked to increased level of MVs-mediated
thrombin (145).

Behçet’s Disease
Thrombosis is common in BD patients, and there is a need
for better assessment of risk factors. BD patients with a history
of thrombosis have high serum levels of MVs expressing tissue
factor (TF). The ratio of TF pathway inhibitor (TFPI)-positive
MVs to TF-positive MVs was significantly lower in patients
with thrombosis (152). In contrast, platelet-derived MVs and
procoagulantMVs did not differentiate between BD patients with
or without thrombosis (155).Macey et al. (153) showed that high-
level platelet-derived CD62P+MVs correlate with active disease
in patients in a younger age group, whereas lower levels of MVs
correlate with decreased disease activity in patients older than
50 years.

INSIGHTS FROM STUDIES OF
MONOGENIC SYSTEMIC
AUTOINFLAMMATORY DISEASES

Rare Mendelian diseases of systemic inflammation often present
with severe-like phenotypes of polygenic diseases and can share
underlying biochemical pathways with more common rheumatic
diseases. Identification of patients with monogenic disease can
point to genes and pathways that could be investigated in patients
with polygenic disorders. For instance, polyarteritis nodosa
(PAN) can present either as early-onset monogenic or late-
onset polygenic disease. PAN is a systemic necrotizing vasculitis
that predominantly affects medium-sized arteries, causing tissue
ischemia and organ damage. The disease commonly affects the
skin, gastrointestinal tract, and kidneys, and patients are at an
increased risk of stroke. Most cases of PAN occur in the fourth
or fifth decade, and men are more likely to be affected. A
subset of patients with childhood-onset PAN are found to carry
biallelic loss of function mutations in adenosine deaminase 2
gene. This disease is named deficiency of ADA2 (DADA2)(179,
180). Among many features of DADA2, subcortical ischemic
strokes, hypertension, aneurysms, renal infarcts, and peripheral
amputations have been reported in up to 50% of patients. DADA2
patients are highly responsive to treatment with TNF inhibitors
(181). Although pathogenic variants in the ADA2 gene may not
account for a large number of sporadic adult-onset PAN patients,
TNF inhibitors should be explored in the treatment of those
patients as well (181).

Inflammasomopathies
Inflammasomopathies are rare monogenic autoinflammatory
diseases caused by gain-of -function mutations in the
multiprotein complexes termed the inflammasome. The
inflammasome functions as cytosolic pathogen and danger-
associated molecular patterns (PAMPs/DAMPs) recognition
receptors (PRRs). The core of inflammasome is one of the
nucleotide-binding domain leucine-rich repeat (NLR) proteins
(NLRP1, NLRP3, AIM2, NLRC4) or pyrin. Upon stimulation,
the inflammasome interacts with an inflammasome adaptor
protein, apoptosis-associated speck-like protein with a caspase
recruitment domain (ASC), or with pro-caspase 1 to form
platform for caspase-1-mediated production of IL-1β and
IL-18 cytokines. The best known inflammasomopathies are
familial Mediterranean fever (FMF) and cryopyrinopathities
(CAPS). FMF is caused by recessively inherited hypomorphic
mutations in pyrin, whereas CAPS is linked to dominantly
inherited gain-of-function mutations in NLRP3. The net effect
of these pathogenic variants is increased production of IL-
1β cytokine and systemic inflammation. FMF is a common
disease in many Eastern Mediterranean countries where the
frequency of pathogenic mutations is very high (182–205).
Although vasculitis is not a primary feature of FMF, IgAV and
PAN have been reported in about 3 and 1% of FMF patients,
respectively (206). FMF-associated mutations predispose to
the development of BD in the Turkish population (207–210).
Small and medium vessel skin vasculitis and CNS vasculitis were
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reported in other inflammasomopathies, including CAPS and
other pyrin-mediated autoinflammatory diseases mevalonate
kinase deficiency/hyperimmunoglobulin D (MKD/HIDS);
pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA);
and pyoderma gangrenosum, acne, hidradenitis suppurativa
(PASH) syndromes (211–221). NLRP3 inflammasome activation
was demonstrated in two Kawasaki mouse models (222, 223).
Underlying mechanisms of vasculitis in inflammasomopathies
are unclear, although it is assumed that high systemic IL-1β
production may cause endothelial cell inflammation and
damage. Patients with BD may respond to colchicine and
anti-IL1 therapies like patients with inflammasomopathies (224).

Relopathies
Relopathies are NF kappa-B (NF-κB)-mediated monogenic
systemic autoinflammatory diseases driven by multiple
cytokines including TNF and IL-6 (225). They result from
pathogenic variants in proteins that regulate posttranslational
ubiquitin modifications in the NF-κB pathway. Up to now,
haploinsufficency of A20 (HA20) and OTULIN deficiency have
been defined as relopathies (226). HA20 is a dominantly inherited
disease caused by heterozygous loss-of-function mutations in
TNFAIP3, which encodes the K-63 deubiquitinase protein A20
(227). Common variants in TNFAIP3 have been linked to BD in
the Chinese-Han population (228). Clinically, HA20 resembles
early-onset BD. Two patients with HA20 were diagnosed
with CNS vasculitis based on brain imaging and a frontal
lobe punctate (229). OTULIN deficiency is caused by recessively
inherited loss-of-function mutations in the enzyme that regulates
linear deubiquitination. There are only few patients reported,
and they present with early-onset severe systemic inflammation.
One patient was described with vasculitis of small and medium
vessels on skin biopsy (230). In most patients with HA20 and
OTULIN deficiency, anti-cytokine therapies targeting TNF and
IL-1 are efficient in suppressing the disease activity. Ubiquitin
pathway has been implicated in the pathogenesis of BD by
multiple association studies. The rs9517723 variant in the 3’
region of ubiquitin-associated domain containing ubiquitin-
associated domain containing 2 (UBAC2) gene is significantly
associated with ocular and central nervous system (CNS) lesions
under the recessive model (32, 231). UBAC2 encodes a protein
that plays a role in ubiquitination and proteasomal degradation.
Homozygous risk allele (TT) of the rs9517723 correlates with
increased UBAC2 expression. BD has been also associated with
other ubiquitination pathway-related genes, including ubiquitin
associated and SH3 domain containing B (UBASH3B) and small
ubiquitin-like modifier 4 (SUMO4) (232, 233).

Interferonopathies
Type I interferonopathies consist of Aicardi–Goutières
syndrome (AGS), STING-associated vasculopathy with onset
in infancy (SAVI), chronic atypical neutrophilic dermatosis
with lipodystrophy and elevated temperature (CANDLE)
syndrome, and COPA syndrome (226). Intracerebral vasculitis
is common in patients with AGS (234). High levels of IFN
activities were demonstrated in the cerebrospinal fluid and
serum of AGS patients (234). In SAVI, gain-of-function

mutations in the TMEM173 gene lead to a constitutively
active STING protein, and a high expression of type I IFN-
induced genes (235, 236). Clinically, the SAVI phenotype
mimics the AAV with cutaneous rashes, interstitial lung disease,
peripheral ulcerations/gangrene, and ANCA positivity in some
patients (237). Patients with CANDLE have dysfunction in the
protesome-mediated degradation pathway. Skin biopsies from
CANDLE patients showed evidence for perivascular infiltration
prominent for myeloid cells and leukocytoclasis but not for the
typical vasculitis with fibrinoid necrosis of the vessel walls (238).
JAK1/2 inhibition with baricitinib has been successful in treating
clinical disease manifestations and in suppression of the IFN
signature (239). The role of the IFN pathway in the pathogenesis
of polygenic/complex vasculitides has been recently postulated
by analysis of data from multiple GWAS (78).

Reports of vasculitis in other rare autoinflammatory diseases
are scarce. One patient with the deficiency of IL-1 receptor
antagonist (DIRA) had histopathological evidence of vasculitis
in the connective tissue and cerebral vasculitis or vasculopathy
was detected on magnetic resonance imaging (240). IL-1Ra-
deficient mice frequently develop aortitis at the root of the aorta,
which can be suppressed by a cross with TNF-α-deficient mice.
Bone marrow transplantation of T cells from IL-1Ra−/− mice
induced aortitis in recipient nu/nu mice or in irradiated wild-
type recipient mice (241). This study demonstrates that IL-1Ra
deficiency in T cells is responsible for the development of aortitis.

EXPERT COMMENTARY

i) The main limitations of current genetic datasets in PSVs
are the lack of multiple meta-analyses of GWAS and
inability to confirm functional significance of identified risk
alleles. Validation of disease-associated variants in cohorts of
patients of different ancestry would give more creditability
to the reported findings; however, some genetic variants may
not be present in all populations.

ii) As epigenetic modifications evolve and change over the
life span, the data from EWAS will require validation in
longitudinal cohort studies that are costly to maintain.
Epigenomic investigations maybe accomplished in a shorter
time period if they focus on studies in monozygotic twin
pairs (MZ pairs) or if they would investigate differences in
young vs. old MZ pairs. In addition, it would be interesting
to explore cell-specific epigenomic modifications.

iii) Use of extracellular vesicles (MVs, PDMVs, EMVs) as
potential biomarkers of disease activity in patients with
primary systemic vasculitis is important for diagnostic
and treatment monitoring. At present time, there are
no standardized methods for the sampling process and
detection of EVs.

5-YEAR FORWARD VIEW

Multicenter collaborations and studies in large cohorts of patients
would increase the power of detection and confirmation of PSV
disease-associated variants. These meta studies would also help
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estimate a size effect of identified risk alleles, which is important
for calculation of genetic risk score (GRS) and genetic counseling.
Considering a significant decrease in the cost of whole exome and
whole genome sequencing (WES/WGS), these new sequencing
technologies should capture rare germ-line variants, structural
variants, and mosaic mutations that may explain the missing
heritability in these diseases. At this time, it is still unclear
whether SNPs captured by GWAS are true disease-associated
variants or in linkage disequilibriumwith a risk allele. Performing
WGS of patient cohorts would avoid a need for imputation
studies. Effects of most common disease-associated variants
on protein function are unclear, in particular for non-coding
variants. Disease-associated common variants may have very
small effect sizes but could lead to important and targetable
pathways. Studies in cell culture systems and model organisms
and experiments in primary patient cells are needed to answer
this question.

CONCLUSION

Management of PSVs and other human diseases is beginning to
be more directed with increased use of molecular data to improve
diagnosis and to guide optimal treatment options. This new
clinical paradigm has premise to apply knowledge of genomic,

proteomic, and metabolic variants and epigenomic biomarkers

to generate “omic” profiles. The translation into clinical practice
can be achieved by integrating the “omic” information into
a unique algorithm that will be able to make accurate
diagnosis and to optimize therapeutic decisions to maximize
benefit and minimize harm. Proper implementation of PM will
require multidisciplinary teams of clinicians, bioinformaticians,
geneticists, genetic counselors, and research scientists that can
address multiple challenges in interpretation and integration of
the multi-omics results. Along these lines, successful transition
toward personalized care will also necessitate updating medical
curriculums to facilitate training of a new generation of “omic”-
literate physicians.
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Cytokine Profiling in Aqueous
Humor Samples From Patients With
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Martina Bonacini 1†, Alessandra Soriano 2†, Luca Cimino 3, Luca De Simone 3,

Elena Bolletta 3, Fabrizio Gozzi 3, Francesco Muratore 2, Maria Nicastro 1, Lucia Belloni 1,

Alessandro Zerbini 1, Luigi Fontana 4, Carlo Salvarani 2,5‡ and Stefania Croci 1*‡
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Morphological Sciences, With Interest in Transplants, Oncology and Regenerative Medicine, University of Modena and
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Non-infectious uveitis are intraocular inflammatory conditions caused by dysregulated

activation of the immune response without any detectable infectious agents. The aim

of this study was to explore potential markers and therapeutic targets for two distinct

types of non-infectious uveitis associated with Behçet’s disease (BD) and Vogt Koyanagi

Harada (VKH) disease. Concentrations of 27 cytokines were investigated in aqueous

humor (AH) samples from patients with active uveitis vs. healthy controls (HC) (n = 10

patients with BD-associated uveitis; n= 10 patients with VKH-associated uveitis; n= 10

HC) using the Bio-Plex ProTM human cytokine group I panel. Additionally, leukocytes in

AH samples were counted with hemocytometers and characterized by flow cytometry.

Eleven cytokines were differentially expressed between patients with uveitis and HC with

a median concentration greater than 10 pg/ml. IL-6, IP-10, G-CSF, and IFNγ showed

higher concentrations in AH samples from both BD and VKH patients while IL-2, IL-8,

IL-13, TNFα, eotaxin, IL-1ra showed statistically significant higher concentrations only in

AH samples from BD patients. GM-CSF was the sole cytokine with an opposite profile

showing decreased levels in AH samples from BD patients. IL-1ra and IL-6 were detected

at higher frequencies in AH samples from BD and VKH patients compared with those

from HC while IFNγ and TNFα were not detected in HC. The concentrations of IL-6, IL-8,

IP-10, G-CSF, IFNγ, TNFα, eotaxin, IL-1ra positively correlated with the concentrations

of leukocytes in AH, suggesting that such cytokines can be produced by immune cells

and/or attract and/or promote proliferation and survival of immune cells in these types

of uveitis. The correlation matrix of cytokine concentrations in AH samples revealed that

IFNγ, TNFα, eotaxin, IL-6, G-CSF highly correlated each other. The ratios of cytokine

concentrations between AH and plasma intra-individuals showed that IL-2, IL-6, IP-10,

GM-CSF were increased intraocularly. In conclusion, AH sampling followed by multiplex

analysis of cytokines should be fostered in non-infectious uveitis to identify cytokines

dysregulated intraocularly in each individual laying the groundwork for precisionmedicine.

Keywords: uveitis, cytokines, vasculitis, precision medicine, Behçet’s disease, Vogt Koyanagi Harada disease,

aqueous humor
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INTRODUCTION

Uveitis are fearsome forms of intraocular inflammation,
potentially causing visual impairment and blindness without a
prompt diagnosis and therapy. The incidence is low, estimated
at 17–52/100,000 people per year. Nevertheless, they account
for ∼10% of blindness worldwide (1). Uveitis can derive either
from infectious agents (infectious uveitis) or from aberrant,
deregulated activation of immune system (e.g., against self-
proteins, environmental triggers, tissue damage) in absence of
any detectable infectious agents (non-infectious uveitis). An
etiological diagnosis of non-infectious uveitis is possible in
most cases, from 47 to 75% depending on the studies and
they are frequently associated with systemic immune-mediated
diseases (2–4).

The management of infectious uveitis requires specific
treatments against the infectious agents. On the contrary, the
management of non-infectious uveitis represents a challenge for
clinicians due to disease heterogeneity, still scarce knowledge
on disease pathogenesis, and paucity of randomized controlled
trials assessing the real efficacy of available drugs (5). Current
guidelines for non-infectious uveitis are based on non-specific
immunosuppression. Corticosteroids are recommended as first-
line therapy, followed by immunosuppressive drugs in case
of relapses, and with steroid-sparing purposes (6). Traditional
immunosuppressive agents such as azathioprine, cyclosporine A,
or mycophenolate mofetil are usually preferred in the case of
posterior uveitis (7). Biological agents (e.g., those inhibiting the
TNFα signaling and recombinant IFNα) are currently part of the
therapeutic armamentarium (5, 8–10). In the incoming era of
precision medicine, tailored treatment of uveitis remains to be
defined (11).

Successful therapeutic strategies in non-infectious uveitis
require to act on patients’ immune responses. The identification
of specific immune effectors associated to and/or responsible for
the different types of uveitis is necessary in order to select the
most promising among the available targeted-therapies or design
new targeted-therapies on an individual basis. Immune profiling
of patients with different non-infectious uveitis has indeed
highlighted some immune effectors (e.g., cytokines, chemokines,
immune cell subsets) in aqueous humor (AH) and peripheral
blood possibly involved in uveitis pathogenesis and that may
allow to differentiate the various types of uveitis (12, 13). These
immune effectors could be exploited to implement precision
medicine for treatment of non-infectious uveitis. However,
further drivers of uveitis pathogenesis need to be discovered and
data from single-center studies should be confirmed by other
independent studies.

In this study we investigated the concentrations of 27
cytokines in AH from patients affected by two distinct types
of non-infectious uveitis, associated with systemic inflammatory
diseases: Behçet’s disease (BD) andVogt Koyanagi Harada (VKH)
disease, both in active phase, to provide potential markers and
therapeutic targets.

BD is a chronic systemic inflammatory vasculitis of
unknown etiology characterized by recurrent episodes of
oral aphthous ulcers, genital ulcers, non-granulomatous uveitis,
retinal vasculitis, skin lesions, and other manifestations (14).

VKH is a systemic autoimmune disease characterized by
bilateral granulomatous panuveitis with or without auditory,
neurological, and cutaneous manifestations, partly attributed
to immune responses directed against one or more antigens
expressed by melanocytes and retinal pigment epithelium (15).
Both BD and VKH are rare diseases.

MATERIALS AND METHODS

Cohorts of Patients and Healthy Controls
This is an exploratory, monocentric, independent study
performed at the Azienda Unità Sanitaria Locale-IRCCS, Reggio
Emilia, Italy, one of the national reference centers for BD. A
cohort of 10 patients with BD-related uveitis and a cohort of 10
patients with VKH-related uveitis, both in active disease phase
were enrolled. A cohort of 10 Caucasian subjects who underwent
phacoemulsification intervention for cataract (n = 6) and
cornea surgery (n = 4), not affected by any other concomitant
inflammatory and/or infectious diseases nor with prior history of
uveitis were recruited as healthy controls (HC). All BD patients
satisfied the 1990 criteria for diagnosis of Behçet’s disease (16).
Diagnosis of VKH was based on the revised international
diagnostic criteria (17). The median age for the BD cohort was 30
years (InterQuartile Range; IQR: 25–43) and gender distribution
was: 8/10 males and 2/10 females. The median age for the VKH
cohort was 47 years (IQR: 36–63) and gender distribution was
1/10 male and 9/10 females. The median age for the HC cohort
was 64 years (IQR: 40–79) and gender distribution was: 6/10
males and 4/10 females.

Patients were examined with slit lamp biomicroscopy, indirect
ophthalmoscopy, retinography, optical coherence tomography,
fluorescein and indocyanine angiography. Patients with BD were
considered as having active uveitis at ophthalmologic evaluation
in case of non-granulomatous panuveitis with vitritis, or macular
oedema, or occlusive retinal vasculitis, or retinal ischemia, or
retinal and/or optic nerve neovascularization. Patients with VKH
were considered as having active uveitis at ophthalmologic
evaluation in case of granulomatous panuveitis with bilateral
papillitis and exudative retinal neuroepithelium detachment with
mild or absent vitreitis and choroidal granulomas. The features
of uveitis for each patient are shown in Table 1. 5/10 BD
patients and 2/10 VKH patients were receiving therapies at the
moment of sample collection. The study was approved by the
local ethics committee (Reggio Emilia, Italy, protocol number
2015/0024354) in compliance with the declaration of Helsinki
and written informed consent was obtained from all patients
and HC.

Biological Sample Collection
Samples of AH (100–200 µl) were obtained by anterior
chamber paracentesis (18) conducted under surgical microscope.
Ethylenediaminetetraacetic acid (EDTA) was added at 2mM to
prevent cell aggregation. Cell concentrations were determined
by manual counting in Neubauer hemocytometers. AH samples
were then centrifuged at 400 × g for 8min. Cell pellets were
analyzed by flow cytometry while cell-free supernatants were
stored frozen at −80◦C until cytokine profiling. Six milliliter
of venous blood were collected from BD and VKH patients
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TABLE 1 | Clinical characteristics of patients with BD and VKH-associated uveitis.

Patients Therapy Anatomic location Type of uveitis Macular

edema

Keratic

precipitates

Vitreitis Papillitis Diffuse

capillaritis

Exudative

retinal

detachment

Choroidal

lesions

Vessel

sheathing

BD#1 No Bilateral Panuveitis Non-granulomatous Yes Yes 2 No Yes No No Yes

BD#2 Yes Bilateral Panuveitis Non-granulomatous Yes Yes 1 Yes Yes No No Yes

BD#3 Yes Bilateral Panuveitis Non-granulomatous Yes Yes 1 Yes Yes No No No

BD#4 Yes Unilateral Panuveitis Non-granulomatous Yes Yes 1 Yes Yes No No No

BD#5 Yes Bilateral Panuveitis Non-granulomatous Yes No 1 No Yes No No No

BD#6 No Bilateral Panuveitis Non-granulomatous Yes Yes 3 Yes Yes No No No

BD#7 No Bilateral Panuveitis Non-granulomatous No Yes 1 Yes Yes Yes No Yes

BD#8 Yes Bilateral Panuveitis Non-granulomatous No Yes 1 No Yes No No No

BD#9 No Unilateral Panuveitis Non-granulomatous No Yes 0,5 No Yes No No No

BD#10 No Bilateral Panuveitis Non-granulomatous No Yes 1 Yes Yes No No No

VKH#1 No Bilateral Panuveitis Granulomatous No No No Yes No Yes Yes (5) No

VKH#2 Yes Bilateral Panuveitis Granulomatous No No No Yes No Yes Yes (5) No

VKH#3 No Bilateral Panuveitis Granulomatous No No No Yes No Yes Yes (5) No

VKH#4 No Bilateral Panuveitis Granulomatous No No No Yes No Yes Yes (5) No

VKH#5 No Bilateral Panuveitis Granulomatous Yes No No Yes No Yes No No

VKH#6 No Bilateral Panuveitis Granulomatous Yes No No Yes No Yes Yes (5) No

VKH#7 No Bilateral Panuveitis Granulomatous No No No Yes No Yes Yes (5) No

VKH#8 No Bilateral Panuveitis Granulomatous No No No Yes No Yes No No

VKH#9 No Bilateral Panuveitis Granulomatous No No No Yes No Yes Yes (5) No

VKH#10 Yes Bilateral Panuveitis Granulomatous No Yes No Yes No Yes Yes (5) No

Hypopyon was present only in BD#6. Retinitis was present only in BD#7 and BD#8. Snowbank was present only in BD#2. Snowballs were not present.

into EDTA coated tubes. Plasma samples were obtained by
centrifugation at 1,300 × g for 20min and stored at −80◦C until
use. Biosafety level 2 procedures were applied when working with
patients’ samples.

Flow Cytometry
AH cells were suspended in 300 µL phosphate-buffered saline
(PBS, Euroclone) + 1% heat inactivated fetal bovine serum
(FBS, Thermo Fisher) and acquired with the FACSCanto II
flow cytometer (BD Biosciences), equipped with two lasers for
excitation at 488 and 633 nm. Data were analyzed with FACSDiva
8.0.1. software. Lymphocytes, monocytes, and granulocytes were
identified according to the forward scatter (FSC) and side scatter
(SSC) as shown in Figure S1.

Cytokine Profiling
Concentrations of IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-
8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, eotaxin, basic
FGF, G-CSF, GM-CSF, IFNγ, IP-10, MCP-1, MIP-1α, MIP-
1β, PDGF-BB, RANTES, TNFα, and VEGF were determined
in AH samples using the Bio-Plex ProTM human cytokine
group I panel, 27-Plex (Bio-Rad) following the manufacturer’s
instruction. Cell-free AH samples were centrifuged at 10,000
× g for 10min at 4◦C and then diluted 4-fold in Bio-Plex
sample diluent adding bovine serum albumin (BSA) at 0.5%
as recommended for samples with low content of albumin.
Plasma samples were centrifuged at 10,000 × g for 10min
at 4◦C then were diluted 4-fold in Bio-Plex sample diluent.

Eight serial dilutions of cytokine standards plus blanks (diluent)
were included in each assay. Data were obtained with Bio-
Plex MAGPIXTM multiplex reader instrument and analyzed with
Bio-Plex ManagerTM software. Standard curves were calculated
with the five-parameter logistic equation regression method.
Values extrapolated from the standard curves were considered
not reliable and concentrations = 0.01 pg/ml were arbitrarily
assigned to be able to draw graphs with logarithmic axes. The
lower limits of cytokine detection are reported in Table S1.

Clustering and Pathway Analysis
Clustering was performed using the ClustVis software (19)
consisting of the following data pre-processing: (1) logarithmic
transformation [ln (x+1)]; (2) row centering; (3) no scaling
and applying the Euclidean complete distance for rows and
columns. Pathway analysis was performed using REACTOME
and PANTHER analysis software (reactome.org; pantherdb.org).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 6
software. In order to compare two groups, non-parametric
Mann-Whitney U-test was used for quantitative variables, while
Fisher’s exact test was used for qualitative variables. The Kruskal-
Wallis test with Dunn’s correction for multiple comparisons
was used to compare cytokine concentrations in AH samples.
Spearman’s correlation was chosen to determine correlations
between quantitative variables followed by the Bonferroni
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TABLE 2 | Concentrations of cytokines in AH from BD patients, VKH patients and HC.

Concentration (pg/mL) P-value

BD

n = 10

VKH

n = 10

HC

n = 10

BD vs. HC VKH vs. HC BD vs. VKH

IL-1β 0.01 (0.01–12.63) 0.01 (0.01–0.85) n.d. n.s. n.s. n.s.

IL-1ra 185.80 (31.64–534) 46.99 (24.83–74.54) 0.01 (0.01–39.96) 0.0053 n.s. n.s.

IL-2 13.32 (9.16–33.60) 9.88 (7.96–11.69) 8.32 (7.13–9.83) 0.0384 n.s. n.s.

IL-4 1.24 (0.01–6.97) 0.60 (0.01–1.53) n.d. 0.0118 n.s. n.s.

IL-5 0.01 (0.01–8.42) 0.01 (0.01–1.18) n.d. n.s. n.s. n.s.

IL-6 812.2 (107.5–32478) 333.70 (33.13–2303) 6.79 (0.01–27.66) 0.0004 0.0153 n.s.

IL-7 14.43 (0.01–28.99) 5.00 (0.01–15.46) 0.01 (0.01–4.67) n.s. n.s. n.s.

IL-8 69.46 (15.48–532.3) 24.15 (9.18–97.47) 6.53 (0.01–33.14) 0.0088 n.s. n.s.

IL-9 8.36 (2.85–10.65) 2.85 (0.01–8.50) 1.23 (0.01–4.92) n.s. n.s. n.s.

IL-10 14.41 (10.51–23.84) 10.43 (8.75–14.57) 10.39 (8.71–12.69) n.s. n.s. n.s.

IL-12 (p70) 27.36 (13.82–54.45) 15.40 (8.80–27.85) 18.15 (0.01–32.33) n.s. n.s. n.s.

IL-13 10.43 (2.66–14.04) 5.06 (2.08–9.46) 1.87 (1.11–3.05) 0.0263 n.s. n.s.

IL-15 0.01 (0.01–108.9) 12.12 (0.01–70.30) 47.45 (0.01–65.57) n.s. n.s. n.s.

IL-17A 17.00 (13.16–69.00) 20.83 (11.57–28.16) 22.03 (13.45–27.81) n.s. n.s. n.s.

Eotaxin 16.27 (6.63–70.58) 13.83 (0.01–24.22) 0.01 (0.01–9.13) 0.0260 n.s. n.s.

Basic FGF 85.24 (57.83–127.80) 65.29 (34.83–88.79) 84.37 (70.57–106.40) n.s. n.s. n.s.

G-CSF 85.19 (0.01–1638) 46.17 (6.48–393.40) 0.01 (0.01–3.31) 0.0176 0.0305 n.s.

GM-CSF 209.30 (175.40–244.10) 230.80 (133.30–683.40) 438.40 (299.10–709.50) 0.0072 n.s. n.s.

IFNγ 54.82 (9.26–574.70) 41.46 (0.01–66.48) n.d. 0.0011 0.0321 n.s.

IP-10 10,311 (3,172–155,581) 2,400 (724.3–10,990) 123.20 (31.59–214.80) 0.0001 0.0063 n.s.

MCP-1 397.6 (128.9–2,306) 323.6 (167.60–626.40) 235.20 (114.40–420.30) n.s. n.s. n.s.

MIP-1α 2.04 (0.01–6.81) 1.69 (0.01–2.56) 0.01 (0.01–0.87) 0.0407 n.s. n.s.

MIP-1β 41.63 (9.13–124.90) 19.06 (14.5–29.78) 35.23 (8.16–61.61) n.s. n.s. n.s.

PDGF-BB 8.54 (0.01–26.34) 2.24 (0.01–10.22) 0.01 (0.01–2.81) n.s. n.s. n.s.

RANTES 7.63 (0.01–48.72) 0.01 (0.01–0.01) 0.01 (0.01–17.24) n.s. n.s. n.s.

TNFα 20.48 (0.01–268.80) 17.74 (0.01–46.59) n.d. 0.0055 n.s. n.s.

VEGF 58.44 (34.66–116.70) 49.90 (26.39–85.33) 65.62 (28.95–108.60) n.s. n.s. n.s.

n.d., non detectable; n.s., not significant. Cytokines with concentrations below the lower limits of detection were considered as non-detected and concentrations = 0.01 pg/ml were

arbitrarily assigned. Data were analyzed with the Kruskal-Wallis test with Dunn’s correction for multiple comparisons. Median concentrations with interquartile ranges (in brackets)

are shown.

correction for multiple testing. P < 0.05 (two-tailed) were
considered statistically significant.

RESULTS

Cytokine Concentrations in AH Samples
From BD and VKH Patients Compared to
HC
To better understand ocular inflammatory milieu of patients
with non-infectious uveitis, concentrations of 27 cytokines were
determined in AH samples from patients with BD and VKH-
associated uveitis in comparison with HC.

IL-6, IP-10, G-CSF, and IFNγ showed higher concentrations
in AH samples from both BD and VKH patients (Table 2 and
Figure 1A). IL-6 and IP-10 were detected in all the patients’
samples: IL-6 had 116-fold difference between BD and HC
(p = 0.0004) and 48-fold difference between VKH and HC
(p = 0.0153); IP-10 had 83 fold difference between BD and

HC (p = 0.0001) and 20-fold difference between VKH and
HC (p = 0.0063). Moreover, IL-2, IL-4, IL-8, IL-13, TNFα,
MIP-1α, eotaxin, IL-1ra showed statistically significant higher
concentrations in AH samples from BD patients compared to
HC (Table 2 and Figure 1B). GM-CSF was the unique cytokine
with an opposite profile, revealing lower concentrations in AH
samples from BD patients compared to HC (Table 2). AH
samples from VKH patients showed a bimodal distribution
regarding GM-CSF and 6/10 patients had concentrations lower
than HC (Figure 1C).

IL-1β, IL-5, IL-7, IL-9, IL-10, IL-12p70, IL-15, IL-17, MCP-
1, MIP-1β, PDGF-BB, RANTES, VEGF, basic FGF showed
comparable levels among groups (Table 2 and Figure S2).
Moreover, no differences in AH cytokine levels were found
between BD and VKH patients (Table 2).

It must be underlined that some patients were receiving
immunosuppressive therapies at the moment of AH collection
despite the presence of active uveitis. To investigate if therapies
affected cytokine concentrations, we compared AH samples
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FIGURE 1 | Cytokines differentially expressed in AH from patients with BD- and VKH-associated uveitis compared to HC. Dot plot visualization of cytokine

concentrations (pg/ml) in AH from patients with BD (n = 10), VKH (n = 10), and HC (n = 10). (A) Cytokines expressed at higher levels both in BD and VKH.

(B) Cytokines expressed at higher levels only in BD. (C) Cytokines expressed at lower levels in BD. Horizontal lines show the median ± IQR. Dotted lines indicate the

lower limits of cytokine detection. Data were analyzed by the Kruskal-Wallis test with Dunn’s correction for multiple comparisons.

from patients with and without therapies. This analysis was
feasible only in the cohort of BD patients which included 5
patients under therapies and 5 patients naïve from therapies
(Table 1). MCP-1, IL-7, IL-8, G-CSF, MIP-1α, MIP-1α, TNFα,
IFNγ showed higher concentrations and GM-CSF showed
lower concentrations in AH from patients without therapies
(Figure S3) but the statistical significances were not maintained
after correction for multiple testing.

To investigate if some cytokines were detected more
frequently in AH from patients than from HC, the percentages
of AH samples with detectable levels of cytokines were compared
among the cohorts. IL-1ra, IL-4, IL-6, IFNγ, and TNFα were
detected at higher frequencies in AH samples from BD and VKH
patients compared with those from HC (Table 3). In particular,
IL-4, IFNγ and TNFα were not detected in any of the samples
from HC.

No differences in terms of frequencies of cytokine detection in
AH samples were found between BD andVKHpatients (Table 3).

Subsequent analyses were focused on the 11 cytokines which
resulted differentially expressed between patients with uveitis
and HC and, to have a higher degree of confidence, which
showedmedian concentrations greater than 10 pg/ml. To identify
cytokines with similar profiles, we calculated the correlation
matrix of cytokine concentrations in the AH samples. IFNγ,
TNFα, eotaxin, IL-6, G-CSF highly correlated each other (p <

10−6) (Table 4).
To investigate which cytokines had higher levels in the ocular

environment, cytokine concentrations in AH were compared to
those in plasma intra-individuals. GM-CSF and IL-6 showed
higher levels in AH from all the patients, IL-2 from 19/20
patients and IP-10 from 16/20 patients. Specifically, IL-2 was
detected only in AH samples from 18 patients and IL-6 was
detected only in AH samples from 12 patients. On the contrary,
eotaxin showed lower levels in AH from 16/20 patients and was
detected only in plasma from 6 patients. The other cytokines
showed heterogeneous patterns (Table 5). Looking at the AH
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over plasma cytokine profiles across patients, BD patient#9
displayed higher concentrations in AH of all the cytokines while
BD patient#2, BD patient#7 and VKH patient#7 showed higher
concentrations in AH of 10/11 cytokines with the exception of
eotaxin (Table 5).

TABLE 3 | Presence of cytokines in AH from BD patients, VKH patients and HC.

Positive sample (fraction) Fisher test (p-value)

BD

n = 10

VKH

n = 10

HC

n = 10

BD vs. HC VKH vs.

HC

BD vs.

VKH

IL-1β 4/10 2/10 0/10 n.s. n.s. n.s.

IL-1ra 9/10 10/10 3/10 0.0198 0.0031 n.s.

IL-2 10/10 10/10 10/10 n.s. n.s. n.s.

IL-4 6/10 5/10 0/10 0.0108 0.0325 n.s.

IL-5 4/10 2/10 0/10 n.s. n.s. n.s.

IL-6 10/10 10/10 5/10 0.0325 0.0325 n.a.

IL-7 7/10 6/10 3/10 n.s. n.s. n.s.

IL-8 10/10 10/10 6/10 n.s. n.s. n.a.

IL-9 9/10 7/10 5/10 n.s. n.s. n.s.

IL-10 9/10 10/10 9/10 n.s. n.s. n.s.

IL-12 (p70) 8/10 9/10 7/10 n.s. n.s. n.s.

IL-13 9/10 10/10 8/10 n.s. n.s. n.s.

IL-15 4/10 5/10 7/10 n.s. n.s. n.s.

IL-17A 10/10 9/10 10/10 n.a. n.s. n.s.

Eotaxin 8/10 6/10 4/10 n.s. n.s. n.s.

Basic FGF 10/10 10/10 10/10 n.a. n.a. n.a.

G-CSF 7/10 8/10 2/10 n.s. 0.0230 n.s.

GM-CSF 10/10 10/10 10/10 n.a. n.a. n.a.

IFNγ 8/10 7/10 0/10 0.0007 0.0031 n.s.

IP-10 10/10 10/10 10/10 n.a. n.a. n.a.

MCP-1 10/10 10/10 10/10 n.a. n.a. n.a.

MIP-1α 7/10 7/10 4/10 n.s. n.s. n.s.

MIP-1β 10/10 10/10 10/10 n.a. n.a. n.a.

PDGF-BB 6/10 5/10 3/10 n.s. n.s. n.s.

RANTES 5/10 1/10 4/10 n.s. n.s. n.s.

TNFα 7/10 6/10 0/10 0.0031 0.0108 n.s.

VEGF 9/10 9/10 9/10 n.s. n.s. n.s.

n.a., not applicable; n.s., not significant. The numbers of samples in which cytokine

concentrations were equal to or higher than the respective lower limits of detection

are shown.

Correlation Between Cytokine
Concentrations and Loads of Inflammatory
Cells in AH Samples
Concentrations of leukocytes in AH samples were assessed by
manual counting with hemocytometers while concentrations of
lymphocytes, monocytes and granulocytes (neutrophils) were
semi-quantitatively estimated applying their percentages
obtained by flow cytometry (Figure S1). Samples were
heterogeneous in terms of concentrations of infiltrating
leukocytes and two samples did not show any cells (Table 6). The
median concentration of leukocytes in AH from BD patients did
not differ from that of VKH patients (24,700 cells/ml, IQR: 470–
63,375 vs. 3,750 cells/ml, IQR: 1,004–16,050). Concentrations of
IL-6, IL-8, IP-10, G-CSF, IFNγ, TNFα, eotaxin, IL-1ra positively
correlated with concentrations of leukocytes. Among them,
IP-10 and IL-8 showed the best correlations (p= 0.0011, r = 0.82
and r = 0.76). Instead IL-2, IL-13, and GM-CSF levels did not
correlate with leukocyte concentrations (Figure 2).

Correlation analyses between cytokine concentrations and
leukocyte subsets (Table 6) showed that IL-6, IL-8, IP-10, G-CSF,
IFNγ, TNFα, eotaxin, IL-1ra concentrations positively correlated
also with the semi-quantitative degrees of lymphocytes/ml,
monocytes/ml and neutrophils/ml in AH. Higher correlations
(lower p-values and higher r values) were found with the degrees
of monocytes and neutrophils compared to those of lymphocytes
(Figures S4–S6). In particular, the best correlations (p= 0.0011, r
= 0.75) were shown by IL-8 and IFNγ with the semi-quantitative
densities of neutrophils/ml.

Finally, cytokine concentrations did not correlate with the
percentages of lymphocytes, monocytes and neutrophils in AH
(data not shown).

Unsupervised Cluster Analysis and
Pathway Analysis
To explore possible clustering of the subjects based on the 27
cytokine profiles in AH samples, unsupervised cluster analysis
was performed (Figure 3). Subjects were clustered in 2 major
groups: the first one composed of all HC plus 7 BD and VKH
patients; the second one composed only of BD and VKH patients
(n = 13). Within such two groups other two clusters appeared.
In particular, cluster II contained 9/10 HCs and BD#8 whose

TABLE 4 | Correlation matrix of cytokine concentrations in AH samples from patients with BD- and VKH-associated uveitis.

IL-1ra IL-2 IL-6 IL-8 IL-13 Eotaxin G-CSF GM-CSF IFNγ IP-10

IL-2 0.424308

IL-6 0.001086 0.568329

IL-8 0.002796 1.000000 0.000662

IL-13 1.000000 0.212626 0.896414 1.000000

Eotaxin 0.008220 0.663621 0.000000 0.005417 0.252160

G-CSF 0.000338 0.445325 0.000000 0.015374 0.314126 0.000000

GM-CSF 1.000000 1.000000 0.311010 0.176605 0.019136 0.052681 0.192300

IFNγ 0.000008 0.184949 0.000000 0.000399 0.252101 0.000000 0.000000 0.122415

IP-10 0.015567 1.000000 0.079025 0.000099 1.000000 0.020413 0.184789 0.097607 0.006462

TNFα 0.001325 0.348987 0.000000 0.001020 0.258832 0.000000 0.000000 0.093605 0.000000 0.014286

Spearman’s correlation was calculated for every pair of data set. P-values are shown after the Bonferroni correction.
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TABLE 5 | Ratios between cytokine concentrations in AH and plasma for each patient.

IL-6 IP-10 G-CSF IFNγ IL-2 IL-8 IL-13 TNFα Eotaxin IL-1ra GM-CSF

BD#1 Only AH 14.6 5.8 2.4 Only AH 10.7 1.3 1.7 −2.6 1.5 6.7

BD#2 Only AH 794.7 34.9 Only AH Only AH Only AH 1.8 Only AH −1.5 18.3 4.3

BD#3 Only AH 11.9 Non detected Only AH Only AH Only AH −2.9 Non detected Only plasma Only AH 4.3

BD#4 Only AH 11.1 1.6 −1.8 Only AH 2.4 −3.3 −2.2 −2.7 −1.3 5.9

BD#5 7.7 −3.2 Only plasma Only plasma Only AH −1.1 −3.4 Only plasma Only plasma −9.0 7.0

BD#6 7,360.6 151.0 92.1 2.2 3.6 27.1 −1.1 4.3 1.2 3.1 2.4

BD#7 Only AH 184.1 Only AH Only AH Only AH Only AH 1.9 Only AH 1.3 Only AH 3.2

BD#8 1.4 3.8 Only plasma Only plasma −1.5 −2.5 −7.8 Only plasma −27.0 Only plasma 6.6

BD#9 Only AH 5.0 713.9 Only AH Only AH Only AH 3.9 Only AH 2.8 20.3 Only AH

BD#10 Only AH 43.8 Only AH Only AH Only AH Only AH Non detected Only AH −3.8 Only AH Only AH

VKH#1 Only AH 13.0 14.2 1.0 Only AH 5.7 −7.6 1.1 −3.2 −1.2 4.4

VKH#2 3.9 10.6 Only plasma Only plasma Only AH 1.2 −5.1 Only plasma Only plasma −29.3 46.2

VKH#3 Only AH 2.5 −1.9 −11.2 Only AH 1.1 1.1 Only plasma Only plasma −1.2 5.9

VKH#4 Only AH 39.7 2.0 1.0 Only AH 25.0 1.8 Only AH −6.2 −2.1 5.9

VKH#5 Only AH 5.0 Only AH Only AH Only AH Only AH Only AH Only AH −2.2 Only AH 3.3

VKH#6 34.3 −1.1 2.3 −1.9 Only AH 2.3 3.8 −1.2 −4.3 −3.7 Only AH

VKH#7 Only AH 59.6 Only AH Only AH Only AH Only AH Only AH Only AH −1.1 Only AH Only AH

VKH#8 612.9 −2.0 8.9 −2.3 Only AH 1.2 −7.0 −1.2 −2.4 −2.4 16.4

VKH#9 1.7 8.8 Only plasma Only plasma Only AH −3.1 −3.4 Only plasma Only plasma −3.5 Only AH

VKH#10 3.0 −1.3 −8.7 Only plasma Only AH −2.6 −6.0 Only plasma Only plasma −4.1 33.3

Ratios between cytokine concentrations in AH and plasma are reported. In case the ratios were below 1 the following formula was applied:-−1/ratio. Therefore, negative values indicate

a higher expression of the cytokines in plasma, positive values indicate a higher expression in AH. “Only AH,” cytokines detected only in AH samples. “Only plasma,” cytokines detected

only in plasma samples. “Non detected,” cytokines detected neither in AH nor in plasma samples.

TABLE 6 | Characteristics of the immune cells present in the AH samples.

Patients Leukocytes/ml Lymphocytes (%) Monocytes (%) Granulocytes (%) Lymphocytes/ml§ Monocytes/ml# Granulocytes/ml**

BD#1 25,000 84 13 2 +++ ++ ++

BD#2 47,500 62 33 4 +++ +++ +++

BD#3 470 64 25 11 + + +

BD#4 28,100 80 18 1 +++ +++ ++

BD#5 0 0 0 0 0 0 0

BD#6 220,000 24 11 65 +++ +++ +++

BD#7 24,400 46 16 38 ++ +++ +++

BD#8 470 70 5 24 + + +

BD#9 12,500 50 8 42 ++ ++ +++

BD#10 111,000 52 17 31 +++ +++ +++

VKH#1 15,000 82 15 3 ++ ++ ++

VKH#2 630 72 11 17 + + +

VKH#3 0 0 0 0 0 0 0

VKH#4 19,200 80 18 2 ++ ++ ++

VKH#5 5,000 68 26 6 ++ ++ +

VKH#6 1,129 34 39 27 + ++ +

VKH#7 166,250 93 6 1 +++ +++ +++

VKH#8 2,500 38 14 48 ++ ++ ++

VKH#9 3,750 85 7 9 ++ + ++

VKH#10 3,750 57 27 17 ++ ++ ++

Leukocytes/ml were determined by counting with Neubauer hemocytometers. Percentages of lymphocytes, monocytes and granulocytes were determined by flow cytometry setting

gates based on FSC and SSC. Such percentages were applied to the leukocytes/ml to estimate lymphocytes/ml, monocytes/ml and granulocytes/ml. Concentrations of such immune

cell subsets were divided in three classes: ≤33% percentile; 33–67% percentile; ≥67% percentile to semi-quantitatively assess the immune cell loads.

§: +, ≤900 lymphocytes/ml; ++, 900–16,000 lymphocytes/ml; +++, ≥16,000 lymphocytes/ml.

#: +, ≤350 monocytes/ml; ++, 350–3,500 monocytes/ml; +++, ≥3,500 monocytes/ml.

**: +, ≤300 granulocytes/ml; ++, 300–1,200 granulocytes/ml; +++, ≥1,200 granulocytes/ml.

Samples of AH from HC did not contain any leukocytes.
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FIGURE 2 | Correlation of cytokine concentrations with the load of leukocytes in AH. Correlations between log-scale cytokine concentrations and leukocyte

concentrations in AH samples are depicted (n = 20). Spearman’s correlation was determined. P-values after the Bonferroni correction for multiple testing are shown.

AH sample derived from a blinded eye with few leukocytes/ml
(Table 6). 5/7 patients in cluster I-II vs. 2/13 patients in cluster
III-IV were receiving therapies at the moment of AH sampling
(p = 0.0223, Fisher’s exact test). Patients in cluster I-II had
lower leukocytes/ml than patients in cluster III-IV (470 cells/ml,
IQR: 0–3,750 vs. 24,400 cells/ml, IQR: 8,750–79,250; p = 0.0011,
Mann-Whitney U-test). Finally, cluster III included 5/6 patients
with higher neutrophils/ml (score = + + +, Table 6). We were
unable to find other common clinical characteristics (Table 1) in
the clustered patients.

Cytokines were clustered in two major groups: the first
one included cytokines with the highest fold difference in
concentrations between patients with uveitis and controls: IL-6,
IL-8, IFNγ, TNFα, IP-10, G-CSF, IL-1ra (Figure 3).

To appreciate cytokine profiles in the clinical diagnostic
clusters, a heatmap displaying cytokine concentrations in AH
from each subject classified as BD, VKH and HC was drawn
(Figure S7).

Loading the list of the 11 dysregulated cytokines in
REACTOME and PANTHER software produced respectively
the “interleukin-10 signaling pathway” as top over-represented
pathway and “granulocyte and leukocyte chemotaxis” as
biological process.

DISCUSSION

The present study proposes multiplex analysis of cytokine
concentrations in AH from patients with non-infectious uveitis

vs. HC, as a tool to identify cytokines deregulated intraocularly
in each individual, in order to gain insight in uveitis
pathogenesis and explore potential targets for the development
of tailored treatments.

Concentrations of the deregulated cytokines: IL-6, IL-8, IP-
10, G-CSF, IFNγ, TNFα, eotaxin, IL-1ra positively correlated
with the levels of inflammatory cells in AH. This was expected
supposing that cytokines in AH from patients with uveitis are
produced by leukocytes and/or attract leukocytes and/or sustain
leukocyte survival and proliferation. Moreover it is in line with
findings by other authors regarding positive correlations between
cytokine levels in AH and disease activity in patients with BD-
and VKH-associated uveitis, graded according to the criteria of
the Standardization of Uveitis Nomenclature Working Group
(20–23). Such cytokines can be produced by and/or attract
monocytes/macrophages and neutrophils. This is consistent with
the stronger correlations found between cytokine levels and the
degrees of monocytes and granulocytes in AH, which points
to a possible role of the innate immune system in BD- and
VHK-associated uveitis.

Concentrations of IL-2 and IL-13 did not correlate with
the loads of inflammatory cells. That was unexpected because
CD4+ and CD8+ T cells, NK cells, and dendritic cells are the
major sources of IL-2, while CD4+ T cells, NKT cells, mast
cells, basophils and eosinophils are the major sources of IL-13.
However, these findings could be explained by production of IL-
2 and IL-13 also by ocular cells, supported by the fact that IL-
2 and IL-13 were detected also in AH from HC that normally
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FIGURE 3 | Unsupervised clustering. Clustering was performed with ClustVis software.

did not contain leukocytes. Thus, we might speculate that IL-
2 and IL-13 play a role not only in inflammation but also in
ocular homeostasis.

Another cytokine which could be produced also by ocular
cells is GM-CSF, being highly detected in AH from HC. The
decreased levels of GM-CSF in AH from patients with non-
infectious uveitis may suggest eye-protective, anti-inflammatory
effects of such a cytokine. GM-CSF can be secreted by both
immune cells (e.g., macrophages, T lymphocytes, NK cells)
and stromal cells (e.g., endothelial cells and fibroblasts). It
is generally thought as a pro-inflammatory cytokine playing
as a growth and differentiation factor for granulocytes and
macrophages. However, it can also promote immunological
tolerance (24, 25) and induce the expression of the immune
checkpoint molecule PD-L1 dampening immune responses (26).
We may suppose that GM-CSF is involved in the maintenance
of ocular immune privilege, a phenomenon restraining local
immune and inflammatory responses in order to preserve vision
through physical barriers (i.e., blood–ocular barrier), soluble and
surface-bound molecules and modulation of systemic immune
responses (27).

The detection of a cytokine does not imply that it plays
a role in disease pathogenesis. However the identification of
which cytokines are deregulated in each patients can provide a
rationale to select targeted therapies, in particular the exclusion

of the drugs whose targets are not deregulated or detected in
individual patients.

The specific presence of IFNγ and TNFα in AH samples only
from patients with uveitis renders these cytokines promising
targets in a therapeutic perspective. Indeed, biological drugs
anti-TNFα have been proven to be effective in non-infectious
uveitis and have been approved by FDA and EMEA for
therapy (6, 10, 28–32). Inhibitors of IFNγ (e.g., AMG811;
Fontolizumab, Emapalumab) are being evaluated in clinical
trials on immune mediated diseases. Our results suggest that
they might be also evaluated for treatment of patients with
non-infectious uveitis.

To be noted, administration of recombinant IFNα which
belongs to the type I interferons, has been proved to be effective
in patients with BD-related uveitis refractory to conventional
immunosuppressive treatment (33, 34). IFNα has anti-viral,
anti-proliferative, anti-angiogenic and anti-tumor activities and
can modulate the immune system. Although there are not
evidences that BD results from direct infection by viruses or
bacteria, many data suggest an important role for infective
agents as triggers of the immune-responses observed in BD
(35). Administration of IFNα seems to (1) shape polarization of
CD4+ lymphocytes toward Th2; (2) decrease Th17 lymphocytes,
γδ T lymphocytes and NK cells; (3) reduce the expression of
Toll-like receptors on CD4+ T lymphocytes and monocytes; (4)
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inhibit neovascularization; (5) enhance functions of blood-ocular
barrier (36–39).

The great differences in the concentrations of IP-10, IL-6, and
G-CSF between AH from patients with uveitis and HC (at least
20-fold), in the majority of the patients, make them top candidate
therapeutic targets as well. Therefore it could be interesting to test
whether biological drugs such as anti-IP10 (e.g., eldelumab BMS-
936557, MDX-1100), anti-IL-6 (e.g., tocilizumab, sarilumab,
siltuximab, sirukumab, olokizumab, clazakizumab), anti-G-CSF
(e.g., CSL324) might be beneficial in non-infectious uveitis. In
support of such hypothesis, the anti-IL-6 receptor monoclonal
antibody tocilizumab has already shown some efficacy in patients
with non-infectious uveitis (40–42).

To the best of our knowledge, this is the first report about
an increased production of IL-1ra in BD-associated uveitis.
IL-1ra is a natural endogenous inhibitor of the pro-inflammatory
effect of IL-1β through the binding IL-1 receptor. IL-1ra is
mainly produced by monocytes, neutrophils, epithelial cells,
and keratinocytes. An increased production of IL-1ra has been
documented also in AH from patients with HLA-B27-associated
anterior uveitis (43). The increased production of an inhibitor
of inflammation could represent a feedback loop to dampen
the inflammatory responses. The biological drug Anakinra is a
recombinant, slightly modified version of IL-1ra and its efficacy
has been reported in the management of BD-related uveitis (44).
Whether Anakinra efficacy might depend on the baseline levels
of IL-1ra in AH is unknown. Since AH cytokine levels were
heterogeneous among patients, clinical trials are strongly needed
to verify the hypothesis of beneficial effects of different class of
biological therapies in patients with non-infectious uveitis based
on the levels of the respective targets in AH.

To identify which cytokines can be consistently dysregulated
in AH from patients with uveitis associated with BD and VKH,
we compared our data with literature data (Table 7). IL-1ra, G-
CSF, IL-9, PDGF, and basic FGF were investigated for the first
time in the present work, whereas the other cytokines have been
previously investigated by other groups. Increased levels of IL-6,
IL-8, IFNγ, IP-10 are confirmed respectively by four, nine, six and
three independent studies (20–22, 45, 46, 48–56). Three studies
confirm higher levels of TNFα in AH (20, 47, 48), while three
studies are discordant with our results (45, 46, 49).

The profile of the other cytokines is heterogeneous in the
literature and not consistently in line with our results (Table 7).
Differences in the results can derive from technical aspects (e.g.,
types of assays used to quantify the cytokines; processing of
AH samples: cell-free AH samples vs. whole AH samples) and
from differences in the clinical characteristics of the cohorts
of patients (e.g., therapies at the moment of sample collection;
degree of uveitis). Efforts are needed (1) to standardize the
protocols inter-laboratories using common cytokine standards
to have data which can be compared among laboratories; (2) to
define the range of cytokine concentrations in AH from HC to
have references of non-inflammatory conditions; (3) to promote
multicentric studies.

Merging our data with literature data (Table 7) pointed out
that IL-8 could be an additional promising target for therapies in
non-infectious uveitis. IL-8 can induce chemotaxis in neutrophils

TABLE 7 | Literature data about the expression of the investigated cytokines in

AH from patients with BD- and VKH- associated uveitis compared to HC.

Cytokine Our data Literature data References

IL-1β =* nd/↑/=/= (22, 45–47)

IL-1ra ↑ no data

IL-2 ↑ nd/nd/=/=/↑ (45, 46, 48–50)

IL-4 ↑** nd/nd/↓/=/= (45, 46, 48–50)

IL-5 =* nd/nd/= (45, 46, 49)

IL-6 ↑ ↑/↑/↑/↑ (22, 45, 46, 51)

IL-7 = = (46)

IL-8/CXCL8 ↑ ↑/↑/↑/↑/↑/↑/↑/↑/↑ (21, 45, 46, 51–56)

IL-9 =** no data

IL-10 = ↓/=/=/=/nd/nd/↑/↑ (20, 45–50, 52)

IL-12p70 = =/=/=/= (23, 45, 46, 48)

IL-13 ↑ = (46)

IL-15 =* ↑/↑/= (20, 46, 48)

IL-17 = ↑ (20)

Eotaxin/CCL11 ↑ =/↑ (46, 57)

FGF basic = no data

G-CSF ↑ no data

GM-CSF ↓ ↑/= (23, 46)

IFNγ ↑ ↑/↑/↑/↑/↑/↑ (20, 45, 46, 48–50)

IP-10/CXCL10 ↑ ↑/↑/↑ (21, 54, 55)

TNFα ↑ ↑/↑/↑/nd/nd/= (20, 45–49)

MCP-1/CCL2 = =/↑/↑/↑ (46, 51, 53, 57)

MIP-1α/CCL3 ↑** = (53)

MIP-1β/CCL4 = = (53)

PDGF =** no data

RANTES/CCL5 = * =/=/= (46, 53, 55)

VEGF = =/↑/↑ (51, 52, 56)

Only studies including BD-associated uveitis and VKH-associated uveitis compared with

HC are reported. ↑, increased production; ↓, decreased production; nd, not detected;

=, unchanged.

*cytokines with median concentrations lower than the limits of detection.

**cytokines with median concentrations lower than 10 pg/ml.

and other granulocytes, stimulate phagocytosis and promote
angiogenesis. Inhibitors of IL-8 (e.g., BMS-986253), currently in
development for treatment of some solid tumors, might be also
tested in non-infectious uveitis.

Limits of the present study are (1) the small number of patients
(although that is in line with the other studies on cytokine
profiling in AH from patients with non-infectious uveitis); (2)
the heterogeneity in terms of treatment schedule and degree of
ocular inflammation at the moment of AH sample collection.

On the other hand, the strengths of the study mainly
consist in the accurate clinical evaluation performed by expert
rheumatologists and immune-ophthalmologists for defining BD
activity and uveitis activity respectively, apart from simultaneous
profiling of several cytokines and the characterization of the
immune cells in AH by manual counting and flow cytometry,
which has been rarely performed in other studies.

To resume, AH sampling followed by cytokine profiling
allows identifying potential therapeutic targets for non-infectious
uveitis and could help stratify patients for tailored treatments. IP-
10, IFNγ, IL-6, G-CSF, TNFα IL-8, IL-1ra, and GM-CSF emerged
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as the most promising cytokines to be further investigated for
treatment of BD- and VKH-associated uveitis.
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Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV) is a rare and

severe autoimmune multisystemic disease. Its pathogenesis involves multiple arms

of the immune system, as well as complex interactions between immune cells and

target organs. Experimental animal models of disease can provide the crucial link from

human disease to translational research into new therapies. This is particularly true

in AAV, due to low disease incidence and substantial disease heterogeneity. Animal

models allow for controlled environments in which disease mechanisms can be defined,

without the clinical confounders of environmental and lifestyle factors. To date, multiple

animal models have been developed, each of which shed light on different disease

pathways. Results from animal studies of AAV have played a crucial role in enhancing

our understanding of disease mechanisms, and have provided direction toward newer

targeted therapies. This review will summarize our understanding of AAV pathogenesis

as has been gleaned from currently available animal models, as well as address their

strengths and limitations. We will also discuss the potential for current and new animal

models to further our understanding of this important condition.

Keywords: autoantibodies, antineutrophil cytoplasmic, animal models, autoimmunity, glomerulonephritis,

myeloperoxidase, proteinase 3, translational medical research

INTRODUCTION

The anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitides (AAV) are autoimmune
diseases characterized by systemic inflammation and subsequent destruction of small to medium
blood vessels within target organs, particularly the kidneys and respiratory tract. It is a rare but
life-threatening condition, with an incidence of 13–20 people per million per year worldwide, and
a peak age of onset of 65–74 years (1). Syndromically, AAV can present as granulomatosis with
polyangiitis (GPA; formerly known as Wegener’s granulomatosis), microscopic polyangiitis (MPA)
or eosinophilic granulomatosis with polyangiitis (EGPA). If untreated, mortality of AAV may be
as high as 80% within 1 year of diagnosis (2). Treatment involves potent immunosuppressive
agents that may have significant associated adverse effects, including infection and malignancy.
Infection accounts for almost half of the deaths in treated patients in the first year (3). AAV-related
glomerulonephritis (GN) is an important cause of end stage kidney disease and commonly defines
outcomes in AAV.

AAV is a largely heterogeneous condition, with substantial variation in clinical presentation and
sequelae. This variability presents significant challenges for patients and their doctors, as well as for
recruitment and categorization in clinical studies. The hallmark of disease is the presence of auto-
antibodies targeting proteins within azurophilic (primary) granules of neutrophils, with the two
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most clinically relevant autoantigens being proteinase 3 (PR3)
and myeloperoxidase (MPO). These proteins are important
players in the antimicrobial activity of neutrophils. AAV can be
classified based on syndromic features or on the auto-antigen
involved, specifically MPO-AAV or PR3-AAV. The Chapel Hill
Consensus guidelines divide AAV into syndromic categories:
GPA, MPA, and EGPA (4). The majority of people with GPA
or MPA are ANCA positive at diagnosis, but in around 10%
of patients ANCA are not detected in sera by conventional
assays. Dual positive PR3-ANCA and MPO-ANCA serology is
uncommon. Whilst most patients with GPA are PR3-ANCA
positive, and similarly for MPA patients with MPO-ANCA,

FIGURE 1 | Features of central and peripheral mechanisms of tolerance to MPO as defined by animal models. (A) Central tolerance in the thymus is regulated by the

transcription factor autoimmune regulator (AIRE) within the nucleus of thymic epithelial cells. This regulates autoantigen presentation to T cells on human leukocyte

antigen (HLA) class II molecules, with subsequent T cell selection. (B) Peripherally, tolerance to MPO is maintained through MPO presentation on HLA class II by

unlicensed dendritic cells to naïve T cells under the influence of IL-10 producing mast cells, promoting the development of regulatory T cells. (C) In certain situations,

tolerance to MPO is lost, prompting expansion of T cells, and subsequent help for B cells to produce ANCA.

overlap between the clinical syndrome and ANCA specificity is
incomplete. Observational studies have suggested that serological
classification may better predict clinical features such as relapse
rate (5), renal survival and mortality (6). The concept that PR3-
AAV and MPO-AAV are different but related conditions is
further supported by the identification of different genetic and
epidemiological backgrounds between PR3-AAV andMPO-AAV
[reviewed by Cornec et al. (7)].

The pathophysiology of AAV is complex and remains
incompletely understood. First, T and B cell tolerance to
MPO or PR3 is lost, via mechanisms that remain incompletely
described (Figure 1). Subsequently, with T cell help, autoreactive
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B cells or plasma cells produce ANCA. ANCA activate
neutrophils (Figure 2) and induce their adherence to vulnerable
microvascular beds, such as the glomerulus, where they
degranulate and undergo NETosis, inducing endothelial injury
(Figure 3). In this process, ANCA antigens are also deposited
in the glomerulus, with the ability to be recognized by effector
T cells, further contributing to injury [reviewed in Hutton
et al. (8)]. It is hypothesized that monocyte/macrophages play
a role later in disease (9); they themselves can be activated by
ANCA and also have the capacity to present antigens to effector
T cells (10).

Much of our understanding of the pathophysiology of AAV
comes from animal models of disease, coupled with observations
in human disease and in vitro studies. For example, since
the discovery of ANCA in humans in 1982 (11), in vitro
studies during the 1990s demonstrated that ANCA could activate
human neutrophils (12–14), with animal studies later confirming
the pathogenicity of ANCA in vivo with passive transfer of
ANCA into mice (15). Similar advances have been made in
understanding the role of effector T cells (16), complement
(17), and the nature of T and B cell epitopes (18–20) in
the pathogenesis of AAV. Furthermore, the judicious use of
animal models has allowed pre-clinical investigation of new
targeted therapies, exemplified by work on complement in a
model involving the passive transfer of anti-MPO antibodies
(21, 22). Whilst clinical and in vitro research into PR3-AAV is
plentiful, no consistent PR3-AAV animal models currently exist,
meaning that the in vivo understanding of AAV pathogenesis
is based largely on models of anti-MPO disease. Whilst PR3-
AAV and MPO-AAV share many pathological and clinical
similarities, the differences between them span epidemiology,
genetic predisposition, clinical features and histopathology
[reviewed by Hilhorst et al. (23)]. Given these differences, it
is important that animal models of PR3-AAV are developed,
to further our understanding of the complexities of PR3-AAV,

the differences between MPO-AAV and PR3-AAV, and to more
accurately target treatments.

AAV is a unique autoimmune disease. Its pathogenesis
involves all aspects of the immune system, with complex
interplay between innate and adaptive immunity. It is one of
only a few autoimmune diseases in which a single pathogenic
autoantibody is measured. Furthermore, ANCA is pathogenic
by binding to neutrophils and monocytes and inducing cellular
activation, with resultant microvascular endothelial injury.
However, depletion of the autoantibody alone may not be
effective in disease control, and disease can be quiescent while the
antibody remains detectable, suggesting redundancy in injurious
autoimmune pathways.

Animal models of disease allow for a controlled environment,
with the consequent ability to thoroughly interrogate human
clinical observations and test hypotheses derived from these
observations. AAV is a rare disease and consequently human
studies often have limited numbers of patients. Patients are often
heterogeneous and difficult to compare, due to confounders
such as autoantigen specificity and potential epitope spreading
throughout the course of disease, diverse clinical manifestations
and immunosuppressive treatments. Animal models are also
necessary for pre-clinical development of more effective, targeted
treatments, before their translation into clinical experimentation.
Ultimately though, models are just that: models. Whilst their
use is invaluable in scientific research, they are only part
of the puzzle of comprehensive understanding of a uniquely
human disease.

This review will outline existing models which have
contributed to the field of AAV. While many of these models
have illuminated the biology of AAV, no single animal model
presented here is able to replicate every stage of AAV, from
loss of tolerance through to the development of end-organ
fibrosis. Furthermore, these models still leave us with significant
gaps in our disease understanding, including loss of tolerance,

FIGURE 2 | Features of neutrophil priming and activation by ANCA as defined by animal models. (A) Pro-inflammatory stimuli (including lipopolysaccharide and

complement factor C5a) cause neutrophil priming, with increased expression of ANCA antigens on the neutrophil surface. (B) Mediated by regulatory Fcγ receptors,

ANCA have the capacity to activate neutrophils. Neutrophil activation causes release of C5a, with subsequent complement pathway activation as well as further

neutrophil priming.
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FIGURE 3 | Features of neutrophil migration and adhesion, and endothelial damage as defined by animal models. (A) Activated neutrophils migrate to vulnerable

vascular beds, including the glomerulus. The presence of TNF is associated with TLR4 upregulation on glomerular endothelial cells, which contributes to neutrophil

migration through production of chemoattractants CXCL1 and CXCL2. After activation by ANCA, neutrophils express β2-integrins (LFA-1 and MAC-1), which enhance

neutrophil adhesion to the glomerular endothelium. Neutrophil retention within the glomerular capillaries is moderated by the C5a receptor. (B) MPO is planted onto

the glomerular endothelium, allowing local recognition by MPO-specific effector T cells and subsequent injury. Circulating monocytes have been shown experimentally

to present antigens within glomeruli; however, microvascular endothelial cells and dendritic cells may also be involved in antigen recognition by effector T cells.

Release of interleukin-17A (IL-17A) by T cells further encourages neutrophil migration. After localization to vulnerable vascular beds, neutrophils undergo necroptosis,

and form neutrophil extracellular traps (NETs). This process promotes complement activation, and subsequent endothelial damage. Furthermore, NETs facilitate MPO

presentation and propagation of the autoimmune response.

phenotypic heterogeneity and relapse prediction. Despite their
critical roles in advancing our understanding of diseases, models
have also been limited by their lack of consistency between
laboratories, making research collaboration and conducting
replication studies a significant challenge.

Of note, most animal models of AAV assess the impact of
disease on the kidneys. Although renal disease is responsible
for a major part of disease burden, other common organ
manifestations are largely unstudied.

Different models have each shed light on different aspects
of disease pathogenesis. Inspired by the identification of ANCA
and its ability to activate neutrophils in vitro, earlier studies
confirmed the pathogenicity of ANCA. The roles of priming
and activating neutrophils, neutrophil migration to target organs
and neutrophil degradation and extracellular trap formation have
been investigated. The complex interplay between the adaptive
and innate immune systems continues to be explored, including
the role of T cells, complement and mast cells.
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ANIMAL MODELS OF MPO-AAV

In particular, animal models of MPO-AAV have been invaluable,
in part due to significant homology with the human equivalent.
The autoantigen itself is highly homologous, the pattern of
ANCA binding to neutrophils is similar and the effects in the
kidney are comparable, with a pauci-immune focal segmental
crescentic GN. Table 1 summarizes selected models of MPO-
ANCA associated renal vasculitis.

Passive Transfer of Anti-MPO Antibodies,
Splenocytes, or MPO-Specific T Cells
Transfer of Anti-MPO Antibodies
Models centered on passive transfer of MPO-ANCA-like
antibodies have been used in several laboratories to elucidate
the complex pathogenesis of disease (15, 25, 31). Antibodies are
usually generated by immunizing MPO deficient mice. While
these antibodies are similar to MPO-ANCA, they are generated
in mice that are not tolerant to MPO (15, 32) and therefore
are most accurately described as anti-MPO antibodies. Models
based on these principles have been valuable in explaining several
areas of the effector response in AAV. These include the role of
ANCA, neutrophil priming, activation, migration and adhesion,
followed by endothelial injury. Furthermore, targets for potential
treatments have been identified and trialed (21).

ANCA were initially identified in patients with segmental
necrotising GN in the 1980s (11). While subsequent in vitro
studies showed that ANCA can cause neutrophil activation and
degranulation (12, 14, 33, 34), the first in vivo animal model data
supporting the pathogenicity of ANCA were not published until
many years later, when Kobayashi et al. showed enhancement
of glomerular injury caused by anti-glomerular basement
membrane (GBM) antibodies when co-administered with anti-
MPO serum (24). Mouse models of anti-MPO GN involving
passive transfer of anti-MPO antibodies were subsequently
developed. Transfer of anti-MPO IgG, from MPO-immunized
Mpo−/− mice, into C57BL/6 mice and Rag2−/− mice (that lack
T and B lymphocytes) caused focal necrotising and crescentic
pauci-immune GN, demonstrating the pathogenicity of ANCA
in vivo and its role in acute glomerular injury (15). A key role
for neutrophils as effectors in this model was demonstrated
by neutrophil depletion that completely protected mice from
glomerular histological injury, suggesting that ANCA induced
glomerular injury was neutrophil mediated and that neutrophils
were a major ANCA target (35).

Whilst passive transfer of anti-MPO antibodies without
neutrophil priming has been shown to cause GN (15), disease
is usually more severe when pro-inflammatory signals, such as
lipopolysaccharide (LPS), are administered around the time of
antibody transfer. Administration of LPS shortly after anti-MPO
antibody transfer, with subsequent elevation in tumor necrosis
factor (TNF) and circulating MPO levels, was shown to result
in a significantly greater proportion of glomerular crescents and
glomerular necrosis. This effect could be attenuated by TNF
blockade (32). Neutrophil numbers, in addition to priming, were
shown to be important in later experiments. Daily granulocyte
colony stimulating factor (G-CSF) injections, causing an increase

in circulating neutrophils, were administered in addition to LPS
in the passive transfer model, leading to more severe disease
(31). Based on in vitro experiments, the ability for ANCA to
activate neutrophils is thought to be dependent on Fcγ receptors,
in particular FcγRIIA (36–38). In vivo data supports a regulatory
role for FcγRIIB in ANCA mediated injury, with Fcgr2b−/−

mice pre-treated with LPS and anti-MPO antibodies developing
increased glomerular injury compared with FcγRIIB intact
mice (39).

Given the role of complement as a potent mediator in vascular
inflammation in other diseases, Xiao et al. hypothesized that
despite the paucity of complement deposition in renal biopsies
in AAV, complement activation may well be an important player.
Xiao et al. showed in vitro that complement is activated after
stimulation of human neutrophils with ANCA, via C3a detection
(17), with subsequent experiments confirming that this effect
was through activation of the C5a receptor (C5aR) (40). C5
deficient mice or mice treated with a neutralizing anti-C5a
antibody were protected from glomerular damage after passive
transfer of anti-MPO IgG (41). In addition to neutrophil priming,
activation of the C5aR on dendritic cells promotes autoimmunity
to MPO (22). A C5aR antagonist CCX168 (avacopan) protected
mice expressing human C5aR from glomerular injury (21),
with subsequent translation into human clinical trials of this
compound in the treatment of AAV (42). The membrane attack
complex does not seem to play a significant role, showing that
C5a’s effects are via the C5aR (21).

Further work has explored the relative contributions of other
complement factors. C3 depletion with Cobra Venom Factor
(CVF) prevented GN after passive transfer of anti-MPO IgG or
anti-MPO splenocytes (17), though C3aR deficient mice are not
protected from glomerular injury after passive transfer of anti-
MPO IgG (43), and C3aR is not required for neutrophil priming
(40). As such, it is conceivable that since C3 is upstream in
the complement cascade, its role in neutrophil activation is as a
precursor for C5a generation.

The alternative pathway of complement appears to be the
dominant pathway in neutrophil activation in experimental AAV.
Deficiency of factor B, which is specifically involved in alternate
pathway activation, protected mice from development of disease.
In contrast, mice deficient in C4, required for activation of
the classical and lectin pathways, were not protected (44).
Initiation of complement activation appears to be independent
of both properdin, which is released by activated neutrophils and
can initiate the alternative pathway, and MBL-associated serine
protease 2 (MASP-2), which can activate the lectin pathway
(41). Properdin deficient mice were not protected from disease
after anti-MPO antibody transfer. As such, the initiator of the
alternative pathway in AAV remains unknown. Recent in vitro
data suggests that NETs may provide a scaffold for complement
activation (45), including allowing MPO interaction with Factor
H, an important alternative complement pathway regulator (46).

After activation by ANCA, neutrophils are attracted
to vulnerable vascular beds, where they degranulate and
subsequently cause endothelial damage and disease. Inhibiting
neutrophil migration may serve as a promising target for
treatment of AAV. Experiments by Summers et al. explored
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TABLE 1 | Selected models of MPO-ANCA associated renal vasculitis.

Animal Severity (+ to

+ + +)a
Duration

(effector phase)

Contribution to

knowledge of

pathogenesisb

Limitations

EXPERIMENTAL MPO-AAV

Passive transfer No model studies active

autoimmunity to MPO

Anti-MPO serum with

anti-GBM Ab (24)

Wistar rats ++ to +++ 3 or 15 h, or 14

days

Neutrophil activation is a

prerequisite

Dual hit required

Strong linear IgG deposition

Transfer of anti-MPO Ab (15) C57BL/6 or

Rag2−/− mice

++ 6 days Proof of pathogenic role of

anti-MPO Ab and

neutrophils

Not strictly autoimmune

(anti-MPO Ab raised in

Mpo−/− mice)

Transfer of splenocytes from

MPO-immunized Mpo−/−

mice (15)

Rag2−/− mice ++ 13 days Injury mediated by MPO

specific cells

Some immune complex

deposition

Not strictly autoimmune

Immunodeficient recipients

Transfer of MPO intact bone

marrow to MPO-immunized

Mpo−/− mice (25)

Mpo−/− mice ++ 8 weeks MPO expression by

leukocytes is required for

anti-MPO Ab effects

Not strictly autoimmune in

the induction of immunity

Requires bone

marrow transplantation

Transfer of effector

MPO-specific CD4+(18, 26)

or CD8+ (20) T cells/T cell

clones

Rag1−/− mice ++ 14 days MPO-specific CD4+/CD8+

T cells recognize MPO

planted in the glomerulus,

then effect injury

Anti-MPO Ab have been

used for antigen

deposition/recognition, but

often uses sheep

anti-mouse GBM

Immunodeficient recipients

Active autoimmunity

Active autoimmunity, with

disease trigger: neutrophil

lysosomal enzyme extract

with H2O2 (27),

ischemia/reperfusion (28),

low-dose anti-GBM Ab (29)

Brown Norway

rats

++ to +++ 10 days MPO-ANCA alone may not

be sufficient for disease;

trigger required

Significant IgG and C3

deposition

Some versions

technically challenging

Active autoimmunity in

GN-susceptible rats (30)

WKY rats ++ 6 weeks Loss of tolerance to MPO

after immunization

Rat strain specific

No clear demarcation

between induction of

immunity and

effector responses

Active autoimmunity, with

disease trigger (16)

C57BL/6 mice + to ++ 4–5 days Understanding of steps in

antigen recognition and role

of T cells as effectors

Requires trigger

Short term effector phase

due to the development of

active immune responses to

foreign globulin

a+, mild; ++, moderate; +++ severe.
bOnly initial contribution listed due to space limitations.

Ab, antibody; ANCA, anti-neutrophil cytoplasmic antibodies; GBM, glomerular basement membrane; GN, glomerulonephritis; MPO, myeloperoxidase; Rag, recombination activating

gene; WKY, Wistar Kyoto.

the drivers of neutrophil recruitment to target organs (47).
Highly purified LPS, which specifically engages toll-like
receptor 4 (TLR4), was associated with increased neutrophil
recruitment and functional renal injury when injected with
anti-MPO antibodies. TLR4 was predominantly upregulated
in glomerular endothelial cells in mice and human cell lines,
leading to production of functionally important neutrophil
chemoattractants. These effects were mediated by TLR4
expressed both by immune cells and by endothelial cells
secreting CXCL1 and CXCL2, the murine homologs of CXCL8
interleukin-8 (IL-8). Subsequent studies in human MPO-ANCA
associated GN demonstrated that intrarenal TLR4 expression
correlates with the extent of renal injury (48).

Intravital microscopy in both rats and mice after passive
transfer of anti-MPO antibodies has enabled a more detailed
exploration of interactions between neutrophils and the vascular
endothelium. Initial work in this area studied the rat mesenteric
post capillary venule (49). CXCL1 was applied topically to
the rat mesentery, and rat MPO-ANCA or control antibodies
were injected. Topical CXCL1 alone significantly increased
endothelial leukocyte adhesion, as well as transmigration that was
further enhanced in rats receiving MPO-ANCA after CXCL1.
Similar findings were demonstrated in an active immunization
model. In both models, changes were not seen in rats with
MPO-ANCA that did not receive CXCL1, highlighting the
requirement for chemokine involvement in endothelial injury.
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Nolan et al. imaged post capillary venules in the cremaster
muscle to assess the response to administration of anti-MPO
IgG after pre-treatment with several different cytokines (50).
Within minutes of anti-MPO IgG administration, there was
reduced leukocyte rolling, enhanced adhesion and increased
transmigration across the endothelium. These interactions were
Fcγ receptor and β2 integrin dependent, and were mediated
by cytokines, in particular TNF. Neutrophil migration and
adhesion is partly dependent on activation of the kinin
system, with genetic deficiency or pharmacological blockade
of bradykinin receptor 1 associated with reduced neutrophil
surface expression of adhesion molecules and attenuated
GN (51).

Post capillary venules are the primary sites of physiological
and pathological leukocyte recruitment, but in AAV leukocytes
are recruited to capillary beds, particularly glomerular capillaries.
The glomerular microvasculature is not only an important target
in AAV, but also is unique in the manner by which leukocytes
interact with the endothelium (52, 53); as such, the effects of
anti-MPO antibodies in promoting leukocyte adhesion within
the glomerulus itself were examined. In a murine model, anti-
MPO antibodies were shown to bind to circulating neutrophils,
altering adhesion molecules and inducing glomerular leukocyte
adhesion via multiple pathways. Mechanisms of adhesion to
the glomerular endothelium were affected by the dose of anti-
MPO antibodies, as well as pre-treatment with LPS to model
a pre-existing inflammatory state (53). In the presence of LPS,
low dose anti-MPO antibodies induced CD11a/CD18 dependent
glomerular neutrophil adhesion, while higher dose antibodies
induced α4 integrin dependent adhesion. In these experiments,
the same stimuli did not induce leukocyte recruitment to
cremasteric post capillary venules, consistent with clinical
observations of preferential and often selective renal involvement
of glomeruli in AAV. In vivo multiphoton microscopy, with
the capacity to image glomerular leukocyte behaviors over time
without the risk of endothelial photoactivation, has demonstrated
that neutrophils are retained in glomeruli in inflammation,
are activated and crawl bidirectionally within the glomerular
microvasculature. A single activated neutrophil can crawl at
10µmperminute, a finding that may explain the acute segmental
glomerular necrotic lesions seen in AAV (52). This system has
also furthered the understanding of the role of complement in
neutrophil migration and endothelial injury. C5a was shown
to play an important role in MPO-ANCA induced neutrophil
retention and activation within the glomerulus (22).

After activation by ANCA and localization to vulnerable
vascular beds, neutrophils degranulate but they can also undergo
cell death via multiple mechanisms, including neutrophil
extracellular trap (NET) formation (known as NETosis) (54).
These web-like histone containing structures contain MPO and
PR3, and many pro-inflammatory proteins and peptides, some
of which are endogenous TLR agonists (55). NETs are released
within the microvasulature, where they not only contribute to
endothelial injury but also may activate TLRs expressed on
resident tissue cells (48, 56) and may promote local alternate
complement pathway activation (57). They also deposit the
autoantigens MPO and PR3 in target tissues, making them

potentially able to be presented to effector antigen-specific T cells
(58). While mechanistic understanding of NETs has largely been
gleaned from in vitro studies (54, 59), the functional role of NETs
as effectors of injury has also been translated to animal models
of AAV. After anti-MPO antibody transfer into mice, enhanced
degradation of NETs by administration of DNase I was protective
against development of anti-MPO antibody GN (45).

Endothelial cell activation and injury in AAV is mediated
by signal transduction pathways, including NF-κB signaling.
Activation of NF-κB by external stimuli allows for migration
of NF-κB into the nucleus, to promote transcription of pro-
inflammatory signals. Choi et al. identified that release of
TNF from ANCA-activated neutrophils upregulated NF-κB in
endothelial cells, with subsequent IL-8 production. Prophylactic
application of immunoliposomes which downregulated
endothelial NF-κB was associated with reduced glomerular
necrosis (60).

Whilst the role of neutrophils is well-established,
monocyte/macrophages have context driven pro-inflammatory
roles in immune diseases and play a pathogenic role in AAV. In
addition to their general pro-inflammatory properties, primed
monocytes also express MPO and PR3 on the cell surface and so
plausibly may also play a role in disease (10, 61, 62). Anti-MPO
antibody transfer experiments showed that selective monocyte
depletion limited histological but not functional kidney injury
(9). Further evidence of the potential role of macrophages
in AAV is gleaned from clinical data. Macrophages comprise
a significant proportion of leukocytes in kidneys of people
with AAV, especially in early disease (63–65). They generate
macrophage extracellular traps (METs) and ∼25% of CD68+
macrophages are positive for MPO protein by immunostaining
(55). Furthermore elevated urinary soluble CD163, shed by
monocytes and macrophages, is strongly associated with active
renal vasculitis and has potential as a biomarker to detect renal
relapses of AAV (66).

The demonstration of the pathogenicity of ANCA in this
model has prompted strategies to alter interactions between
ANCA and effector leukocytes. Modification of ANCA IgG
glycosylation via IgG hydrolysis limited the clinical and
pathological features of GN (67). Interrupting leukocyte
signaling has been examined in this and other models (68).
A specific inhibitor of p38 mitogen-activated protein kinase
(MAPK) administered either before or after transfer of anti-
MPO antibodies limited glomerular crescent formation without
reducing haematuria or proteinuria (69). Dooley et al. trialed
EDO-S101, a drug combining the alkylating agent bendamustine
with the histone deacetylase inhibitor, vorinostat. Whilst
pretreatment with this drug reduced circulating leukocytes, it
did not prevent development of GN in the passive transfer
model (70).

The effects of factors such as environmental exposures on
AAV are unclear. However, age is a risk factor for AAV
development and severity (6). To evaluate the effect of MPO-
ANCA in aged animals, anti-MPO antibodies were passively
transferred into recipient aged mice. Aged mice developed
more severe GN, with increased circulating and glomerular
neutrophils and increased gene expression of pro-inflammatory
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cytokines (71). Although costly, aged mice may better model
aged humans and in the future may contribute significantly
to the understanding of disease pathogenesis and to studies of
new treatments for AAV. Similarly, mice exposed to infections
may have an immune system more analogous to adult humans
(72, 73), and although these systems currently come with
several drawbacks, they may contribute to our understanding in
the future.

Transfer of Splenocytes From MPO-Immunized Mice
As well as transfer of antibodies, splenocytes from MPO-
immunized Mpo−/− mice can induce nephritis. Transfer of
splenocytes (including both T and B cells) from Mpo−/− mice
hyperimmunized with either MPO (or BSA as a control protein)
into immunodeficient Rag2−/− mice resulted in detectable
serum anti-MPO antibodies within 3 days with dose-dependent
necrotising and crescentic GN and renal impairment by day
13, as well as variable involvement of other organs. There was
significant glomerular immune complex deposition both in mice
receiving anti-MPO splenocytes and control mice which received
anti-BSA splenocytes (15).

Transfer of MPO Intact Bone Marrow to

MPO-Immunized Mpo-/- Mice
The pathogenicity of anti-MPO antibodies and the requirement
for MPO expression by innate leukocytes was further explored
in a bone marrow transfer model where Mpo−/− mice were
immunized with MPO, irradiated and reconstituted with bone
marrow fromMPO intact mice (25). Mice that received wild type
bone marrow developed GN with crescent formation in ∼30%
of glomeruli. MPO-immunized mice that receivedMpo−/− bone
marrow remained disease free. Disease could be induced by
transfer of anti-MPO antibodies into non-immunized Mpo−/−

mice reconstituted with bone marrow from MPO-intact mice.
Collectively, this model confirms the requirement for MPO
to be present on leukocytes, most likely neutrophils. Further
evidence of the pathogenicity of ANCA was provided in this
model by Bontscho et al., with a reduction in renal disease, fewer
glomerular neutrophils and lower anti-MPO antibody titres
after administration of the proteasome inhibitor bortezomib
(or corticosteroids and cyclophosphamide) post bone marrow
transplantation (74).

This model has also been used to enhance our understanding
of the pathways involved in anti-MPO antibody-neutrophil
interactions and injury. One such pathway involves
phosphoinositide 3-kinase (PI3K), which controls neutrophil
respiratory burst and migration. Bone marrow cells from
PI3Kγ-deficient (but MPO intact) mice resulted in only mild
glomerular abnormalities. Further, a small molecule inhibitor
of PI3Kγ (AS605250) protected mice from development of
GN after transfer of wild type bone marrow (68). Neutrophil
serine proteases (NSPs: cathepsin G, neutrophil elastase and
proteinase 3) mediate inflammation and injury. To determine
their roles, bone marrow transfer studies were undertaken. Mice
receiving NSP deficient bone marrow or marrow from mice
lacking dipeptidyl peptidase I (DPPI, required for activation of
NSPs) were protected from developing crescentic GN, possibly

due to disrupted signaling via IL-1β (75). In addition to the
passive anti-MPO antibody studies outlined above, this bone
marrow transplant model has helped established a role for
C5a-C5aR interactions using C5aR deficient mice (40), as
well as a role for NETs in the effector phase of MPO-AAV
using Receptor-interacting protein kinase-3 (RIPK3) deficient
mice (45).

Transfer of Effector CD4+ or CD8+ T Cells
Passive T cell transfer studies have defined a role for CD4+ and
CD8+ cells in AAV. Autoreactive CD4+ and CD8+ cells are
present in people with AAV (76–79). The obligatory and well-
documented presence of the autoantigen in inflamed tissues in
these conditions (due to local myeloid cell release of MPO and
PR3) (55) implies a role for T cells as effectors of injury, assuming
these antigens can be processed and presented to antigen-specific
T cells locally. Model antigens have been shown to recruit T
cells to glomeruli to cause injury (80), and at least for MPO,
a similar process operates. Experimentally, transfer of antigen-
specific CD4+ or CD8+ T cells (as clones) induces necrotising
GN when MPO is planted in glomeruli (18, 20).

Experimentally, MPO or MPO peptides can be deposited
in glomeruli in several ways. Early experiments perfused renal
arteries with MPO (27). In the context of T cell transfer
studies, MPO has been deposited in glomeruli in three ways.
Firstly, injection of low dose heterologous anti-GBM antibodies
induces transient neutrophil recruitment with MPO deposition
in glomeruli. Secondly passive transfer of anti-MPO antibodies
with LPS results in similar deposition of MPO (18). Thirdly,
immunogenic MPO peptides can be coupled to a “carrier”
monoclonal mouse anti-GBM monoclonal IgG1 antibody (18,
81). The nephritogenicity of the antibody itself is negligible as
mouse IgG1 does not fix complement and has low affinity for Fc
receptors. The transfer of clones specific for MPO, either effector
Th1 CD4+ T cells or CD8+ cells, to Rag1−/− mice results
in severe necrotising GN after MPO is planted in glomeruli.
Glomerular injury is mild to minimal after transfer of cells
specific to an irrelevant specificity (ovalbumin) (18, 20). Antigen
can be presented intravascularly by patrolling monocytes (58)
and may also be presented locally by glomerular endothelial cells,
while later in disease dendritic cells infiltrate diseased glomeruli
in human AAV (82).

Experimental Autoimmune Anti-MPO
Disease Induced by Active Immunization
With MPO
Whilst passive transfer experiments have contributed greatly to
our understanding of effector mechanisms in AAV, these systems
do not include loss of tolerance toMPO (or PR3). In most passive
transfer studies, recipients receive fixed doses of antibodies or
cells from donor MPO-immunized animals. Thus, tolerance
is not broken in recipients and they do not develop active
autoimmunity, meaning that fundamental questions relating to
loss of tolerance and potential therapies to re-establish tolerance
cannot be addressed. As such, active immunization models of
disease have been developed in both rats and mice.
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Active Experimental Anti-MPO Disease in Rats
Immunization of Brown Norway rats with MPO, with
subsequent development of MPO-ANCA, is not sufficient
for development of disease. However, necrotising crescentic
GN in the presence of ANCA has been initiated by causing
glomerular endothelial damage either through perfusion with
lysosomal extract containing MPO (27), ischemia/reperfusion
(28), or a sub-nephritogenic dose of anti-GBM antibodies (also
known as “nephrotoxic serum”) (29). There are several possible
explanations for the increased injury observed by these additional
triggers. However, subsequent studies have demonstrated that
this enhanced injury is largely due to planting of MPO, as
an antigen, within glomerular capillaries and subsequent
recognition by effector T cells (16, 18, 20). This occurs either
by direct localization of MPO (or antigenic MPO peptides),
or by transient recruitment of neutrophils that deposit MPO,
allowing local recognition of MPO by MPO-specific effector T
cells. A variation of these models in rats investigated the role of
products released from activated neutrophils, including MPO, in
the pathogenicity of MPO-ANCA, especially in the development
of ANCA-associated pulmonary disease (83, 84).

Active MPO immunization of the GN-susceptible Wistar
Kyoto (WKY) rat strain results in loss of tolerance to MPO with
ANCA,mild GN and at times pulmonary disease (30). The role of
TNF has been explored in this model. Treatment with anti-TNF
antibodies 4 weeks after immunization significantly curtailed
active AAV, both functionally and pathologically, without
affecting MPO-ANCA titres (85). However, administration
of TNF did not enhance disease and TNF levels were not
different in rats immunized with MPO compared with controls
(86). Unfortunately, a human trial of anti-TNF therapy using
etanercept were not successful (87), despite anecdotal reporting
of its benefit in humans (88). Although not effective in a mouse
passive transfer model of disease, treatment with EDO-S101, that
combines an alkylating agent with a histone deacetylase inhibitor,
limited renal and lung pathology in MPO-immunized WKY
rats even when given after disease establishment, suggesting
significant effects on active anti-MPO autoimmunity (70).
Co-administration of a sub-nephritogenic dose of anti-GBM
antibody to WKY rats enhances glomerular crescent formation
and albuminuria. This is associated with overexpression of
glomerular chemoattractants including CXCL1 and CXCL2, and
enhanced neutrophil activation and adherence to endothelial
cells (86).

Active Anti-MPO Glomerulonephritis in Mice
Based on studies in rats in the 1990s (29), an active model of
AAV was developed in mice (16). In these models, autoimmunity
to MPO is initiated in genetically intact mice, but the MPO-
ANCA that develops is not sufficient in itself to induce disease.
GN is triggered by injection of a low dose of sheep anti-mouse
glomerular basement membrane (anti-GBM) antibodies that, as
in the T cell transfer models described above, transiently recruits
neutrophils to glomeruli (89) with deposition of MPO. When
mice are immunized with MPO, moderate injury develops, but
immunization with an irrelevant antigen (usually ovalbumin)
results in minimal injury mediated only by the anti-GBM

antibodies. Initial studies in this model demonstrated that it is
dependent on MPO, as Mpo−/− mice did not develop disease
despite mounting an immune response to MPO. This outcome
confirms that the use of low-dose anti-GBM antibodies can
achieve neutrophil influx and MPO deposition with minimal
potential confounding injury. CD4+ T cell depletion in the
effector phase markedly attenuated injury, demonstrating the
role of effector CD4+ T cells. Furthermore, B cell deficient mice
developed similar disease to mice with intact B cells thereby
proving the antibody-independent role of T cells in this model of
anti-MPO associated GN. Later experiments further highlighted
the role of T-cell mediated injury. GN caused by passive transfer
of anti-MPO antibodies into B cell deficient mice was enhanced
by pre-immunization with MPO to induce MPO-specific CD4+
T cells. These effects could be prevented with T cell depletion
(26). Effectively, this active model demonstrated that in the
presence of MPO locally in human AAV, most likely via ANCA-
activated neutrophil adhesion, effector T cells mediate injury. In
the model, ANCA is bypassed by the use of low dose anti-GBM
antibodies to deposit MPO in glomeruli, resulting in an effector
response that is akin to a delayed type hypersensitivity reaction.

This model has led to further investigation into the role
of T cells in AAV. CD4+ effector T cells, in particular upon
differentiation to Th17 cells, mediate production of neutrophil
chemoattractants by tissue cells via release of IL-17A (80). After
MPO immunization, IL-17A deficient mice were protected from
disease, via effects on both neutrophils and macrophages (90).
Studies using mice deficient in Th1 or Th17 defining cytokines
have shown an initial Th17 dominant lesion followed later
by a Th1 dominant outcome, where Th17 defining cytokines
were redundant (81). Other types of T cells have also been
implicated, including CD8+ T cells (20). Unconventional γδ

T cells, also a source of IL-17A, play a role in glomerular T
cell and neutrophil recruitment. Mice genetically deficient in
γδ T cells developed less severe disease compared to wild type
mice (91).

The role of FcγRIIB beyond its involvement in neutrophil
activation by ANCA was assessed in this T cell dependent
model of disease. Whilst not expressed on T cells, FcγRIIB
was shown to inhibit T cell responses via a tonic inhibitory
effect on professional antigen presenting cells, with FcγRIIB
deficient mice having increased CD4+ T cells, macrophage
and neutrophil recruitment to glomeruli, resulting in increased
glomerular injury (39). In addition to its effects on T and B
cell responses, FcγRIIB is also likely to directly limit the activity
of effector macrophages. In an analogous manner, complement
plays an important role in disease beyond neutrophil stimulation.
C5aR1 modulates development of autoimmunity to MPO, with
C5ar1−/− mice relatively protected from T cell mediated disease,
as dendritic cells lacking the C5aR1 are not able to fully
activate anti-MPO T cells (22). In contrast, the absence of
C3aR did not affect the development of disease in this active
model (43).

Given the induction of autoimmunity in this model, it can
be used to interrogate mechanisms of loss of tolerance to MPO.
Tan et al. determined that the transcription factor autoimmune
regulator (AIRE) promotes the expression ofMPO in the thymus,
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enabling the deletion of autoreactive anti-MPO T cells in the
thymus (Figure 1A). This work also found that depletion of
regulatory T cells led to more anti-MPO-specific T cells, higher
ANCA titres and more severe GN (92). Mast cells contribute to
peripheral tolerance to MPO, through IL-10 mediated effects on
regulatory T cells (Figure 1B) (93). Furthermore, autoimmunity
and GN can be attenuated by disodium cromoglicate, a mast cell
stabilizer (94).

Animal models have been used to discover and define
immunodominant MPO T and B cell epitopes. Specifically, three
papers have collectively defined an MPO epitope hot spot in a
similar region of the MPO heavy chain, with pathogenic CD4+
T cells (mouse studies across several MHC II allomorphs) (18),
B cells (human studies with functional murine models) (95) and
CD8+ T cells (a pathogenic MPO peptide in mice that is likely
to also bind to common HLA Class I alleles) (20). The CD4+
T cell and B cell epitopes have been validated in human studies
(96). As antigen-specific tolerogenic therapies have potential as
curative therapies in autoimmune disease (97, 98), knowledge
of these epitopes has been used in combination with several
tolerogenic platforms in AAV, including nasal tolerance (99),
injection of MPO peptide loaded apoptotic cells (81), and
injection of tolerogenic dendritic cells (100). While the exact type
of regulatory cell varies with different strategies, the mechanism
of action in each of these three studies is via the generation
of MPO-specific T cells that regulate and suppress established
anti-MPO autoimmunity. Collectively these studies show proof
of concept that using the previous defined immunodominant
MPO T cell epitope can be used in tolerogenic studies, with
antigen-specific effects.

Clinical observations have suggested a correlation between
infection and AAV (101, 102). There are several potential
mechanistic explanations for this association that are not
mutually exclusive. One potential explanation involves the
engagement of TLRs, expressed on leukocytes or on intrinsic
tissue cells, which stimulate immunity and can alter the
strength and direction of the immune response. When mice
were co-immunized with MPO and TLR ligand, Summers
et al. observed enhanced cellular and humoral autoimmunity,
compared with mice immunized with MPO alone (103).
TLR2 ligands directed Th17 anti-MPO autoimmunity while
TLR9 ligands supported Th1 immunity. Infection may also be
associated with loss of tolerance to MPO through molecular
mimicry. Immunization of mice with a plasmid-encoded
peptide with some sequence homology with the T cell
immunodominant MPO epitope, but found only in some strains
of Staphylococcus aureus, induced anti-MPO autoimmunity and
vasculitis (104).

A variation ofmodels that immunize withMPOwas published
by Yumura et al. (105) BSA administration induced anti-
BSA antibodies, which themselves activate neutrophils causing
release of MPO, promoting loss of tolerance to MPO and the
development of anti-MPO antibodies. Mice developed features of
pulmonary disease and severe crescentic GN. Despite pulmonary
disease being a common clinical feature in AAV, most animal
models are limited to renal manifestations of AAV.

ANIMAL MODELS OF PR3-AAV

Compared with experimental models of MPO-AAV, consistent
animal models of PR3-AAV (summarized in Table 2) have been
difficult to establish. There are several possible reasons for this.
Compared with MPO, human and mouse PR3 have limited
homology of 68%, and the antigenic determinants of human PR3
may not be preserved in mouse PR3 (106). Peripheral blood
neutrophil numbers are lower inmice (107) and total white blood
cell numbers may be lower compared to humans, depending on
mouse strain (108). In contrast to humans, where neutrophils
account for up to 70% of total leukocytes, in commonly used
inbred mouse strains (C57BL/6 and 129/Sv) neutrophils account
for 7.7 and 14% of total white blood cells (9–9.4 × 103/µL),
respectively (109). Under resting conditions, PR3 is expressed on
the plasma membrane in humans through its co-expression with
CD177, via a hydrophobic patch on PR3 (110). Murine PR3 lacks
this hydrophobic patch, possibly accounting for why PR3 is not
strongly expressed on the mouse neutrophil surface, especially in
the resting state (111). Thismay be significant in the development
of murine models of PR3-AAV, as it is believed that expression
of PR3 on the neutrophil surface is critical to the pathogenesis
of AAV (112). Furthermore, in vitro evidence suggests that PR3-
ANCA causes neutrophil activation via FcγRIIA expressed on
human neutrophils (37). Importantly, this Fc receptor does not
have a murine ortholog (113), which may contribute to the
inability of PR3-ANCA to activate mouse neutrophils.

In contrast to MPO-AAV, it has been difficult to use PR3-AAV
models of disease to confirm unequivocally the pathogenicity
of PR3-ANCA in vivo. Passive transfer of human PR3-ANCA
from patients with active vasculitis into BALB/c wild type
mice led to development of mouse ANCA. After some months
many mice developed respiratory inflammation, and diffuse
immunoglobulin deposition in the glomeruli, as opposed to
the classical pauci-immune GN found in humans with PR3-
AAV (114, 115). Subsequent studies passively transferred mouse
anti-PR3 antibodies. PR3 antibodies raised in mPR3/neutrophil
elastase (mNE) double-deficient mice and passively transferred
to wild type mice were not able to induce vasculitis (116).
Similarly, anti-PR3 antibodies from rats immunized with
chimeric human/mouse PR3 were transferred into wild type
mice. Despite high titres of PR3-ANCA, the mice did not develop
clinical or histological features of vasculitis (117).

The presence of PR3-ANCA in itself did not cause disease
in non-obese diabetic (NOD) mice, which develop spontaneous
autoimmune disease. However, splenocyte transfer from these
mice into NOD-severe combined immunodeficiency (NOD-
SCID) mice caused crescentic GN and death. In contrast,
splenocytes transferred into Rag1−/− mice did not develop
vasculitis. These experiments imply a significant role for the
regulatory immune response in maintaining tolerance and
limiting effector responses in PR3-AAV (118).

To overcome species-specific differences in PR3 structure
and of Fc receptors, Little et al. transferred PR3-ANCA into
mice with a humanized immune system. Irradiated NOD-
SCID-Il2rγ−/− mice were immune reconstituted with human
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hematopoietic stem cells. Passive transfer of human PR3-
ANCA caused pauci-immune proliferative GN, and histological
evidence of pulmonary vasculitis (119), providing the strongest
in vivo experimental evidence to date for the pathogenicity
of PR3-ANCA.

The latest attempts to overcome species differences and
develop a representative murine model of PR3-AAV have
involved mice that express human PR3. Mice with podocytes
that express human PR3 (under a podocin promoter) did not
develop disease after injection with anti-PR3 antibodies (120),
perhaps due to a lack of access of the antibodies to the antigen that
was expressed extravascularly on podocytes. A double-transgenic
approach produced mice with human PR3 in neutrophils along
with its co-receptor CD177. Vasculitis could not be induced
through passive transfer of anti-PR3 antibodies, possibly because
the mice may have been unable to process human pro-PR3
into mature PR3 (121). A third transgenic approach by Martin
et al. generated mice expressing the mature form of human
PR3, which appeared to be enzymatically active. In a model of
zymosan-induced peritonitis, the presence of the hPR3 transgene
increased neutrophil accumulation and enhanced neutrophil
survival compared to PR3 wild type controls (122). Studies in
experimental AAV using this mouse are yet to be reported.

OTHER MODELS OF AAV

These models are summarized in Table 2.

Models of ANCA-Associated Pulmonary
Vasculitis
Most animal models of AAV use glomerular disease as the
primary endpoint. However, several animal models of pulmonary
disease have been designed. Focal pulmonary hemorrhage and
granuloma formationwere identified inMPO-immunized Brown
Norway rats 7 and 14 days after intravenous infusion of human
neutrophil lysosomal extract and hydrogen peroxide (84). These
changes were accompanied by haemorrhagic lesions within
the intestines. Of note, granuloma formation is more closely
associated with PR3-AAV, rather than MPO-AAV. A variation
of this model explored the role of ANCA in the lung (83).
Isolated left lungs of MPO-immunized rats were perfused with
a neutrophil lysosomal extract. The isolated left lung displayed
inflammatory lesions in both immunized and non-immunized
mice, though more extensive in the immunized group; in
contrast, there were inflammatory infiltrates also in the right lung
only in the presence of anti-MPO antibodies.

Other systems have modeled PR3-AAV associated pulmonary
involvement. C-ANCA from patients with GPA was transferred
to Wistar rats (123). All animals displayed marked pulmonary
vasculitis 24 h after antibody transfer in a dose-dependent
manner [despite the limited homology between human and
mouse PR3 (106)], with no disease observed in mice treated
with control IgG. Co-perfusion of isolated rat lungs with
primed human neutrophils along with murine monoclonal
PR3 antibody rapidly caused oedema formation and increased
microvascular permeability (124). This was not observed after

perfusion of primed neutrophils alone or anti-PR3 antibodies
alone, suggesting synergistic roles for anti-PR3 antibodies and
neutrophils in pulmonary pathology in AAV.

Pulmonary findings have been described in models that
otherwise focus on renal disease. Pulmonary capillaritis
developed in 5 of 16 mice after passive transfer of high doses
of anti-MPO splenocytes into Rag2−/− mice, and in 2 of 6
wild type mice after transfer of anti-MPO antibodies (15). A
similar result was also seen in MPO-immunized Mpo−/− mice
which were irradiated and reconstituted with bone marrow from
wild type mice (25), and after transfer of human PR3-ANCA
into irradiated NOD-SCID-Il2rγ−/− mice reconstituted with
human hematopoietic stem cells (119). Pulmonary lesions were
occasionally and inconsistently detected after transfer of MPO
peptide-specific CD4+ T cell clones, despite all mice developing
glomerulonephritis (18).

Experimental AAV Induced by
Autoimmunity to LAMP-2
Whilst MPO and PR3 are the most common antigenic targets
of ANCA, other neutrophil proteins have been identified,
including lysosome-associated membrane protein-2 (LAMP-2).
Autoantibodies to LAMP-2 have been detected in humans, and
were detectable in WKY rats after immunization with LAMP-
2; these antibodies induced acute focal necrotising GN on
transfer (125). The bacterial adhesin FimH contains a sequence
with strong homology to the immunogenic epitope of LAMP-
2 (with eight of the nine amino acids identical). Immunization
with FimH induced anti-LAMP-2 antibodies and pauci-immune
GN. It was proposed that autoimmunity to LAMP-2 was
due to molecular mimicry, potentially explaining the temporal
relationship between bacterial infection and AAV. The authors
hypothesized that antibodies to LAMP-2 may alter presentation
by neutrophils of cytoplasmic antigens, facilitating generation
of autoantibodies to MPO or PR3. The results of these animal
experiments were not replicated by another research group (129),
though anti-LAMP-2 antibodies were found in European AAV
cohorts (130, 131).

ANCA and Disease in Lupus Prone Mice
Clinically, ANCA can be detected in some patients with systemic
lupus erythematosus (SLE) (132, 133), and recent observations
suggest that this is associated with a more vasculitic renal
phenotype (134). Similarly, some mouse strains that develop
systemic autoimmunity also have perinuclear ANCA formation
and crescentic GN. A proportion of lupus-prone MRL/lprfas

mice develop MPO-ANCA that bind to MPO on the neutrophil
surface. Thesemice exhibit a phenotype with some characteristics
of AAV (135, 136). MRL/lpr mice have been further genetically
modified to knockout Nos3, in order to investigate the potential
for endothelial nitric oxide synthase (eNOS, or NOS3) to inhibit
vascular inflammation. Paradoxically, NOS3 deficient mice had
accelerated onset and increased incidence of renal vasculitis
compared with control MRL/lpr mice (137).

Derived from two lupus prone strains, MRP/lpr and BXSB,
and selectively bred for crescent formation, spontaneous
crescentic GN forming/Kinjoh (SCG/Kj) mice have more
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TABLE 2 | Selected models of ANCA associated vasculitis (see Table 1 for animal models of MPO-ANCA associated renal vasculitis).

Animal Severity (+ to

+ + +)a
Duration

(effector phase)

Contribution to knowledge of

pathogenesisb
Limitations

EXPERIMENTAL PR3-AAV

Passive transfer

PR3-specific splenocyte transfer

(118)

NOD-SCID mice ++ to +++ 20-40 days Anti-PR3 B and T cells mediate

injury; role for regulatory immune

response

Poor homology between

human and mouse PR3

Passive transfer of human

PR3-ANCA to mice reconstituted

with human stem cells (119)

Irradiated NOD-

SCID-Ill2rγ−/−

mice

+ 6 days In vivo evidence for human

PR3-ANCA pathogenicity

Human PR3 present on

chimeric neutrophils and

monocytes required

Challenging immune

reconstitution of the mice

PULMONARY DISEASE

Active anti-MPO autoimmunity

with human neutrophil lysosomal

extract infusion (84)

Brown Norway

rats

++ to +++ 14 days Chronic inflammation and fibrosis

seen at 14 days

Granuloma formation

unusual in MPO-AAV

Active anti-MPO autoimmunity

with localized single lung human

neutrophil lysosomal extract

infusion (83)

Brown Norway

rats

++ 10 days Local and systemic effects of

neutrophil degranulation

Infusion caused pulmonary

damage in the absence of

MPO-ANCA

Passive transfer of human

PR3-ANCA into rats (123)

Wistar rats ++ to +++ 24 h In vivo evidence of pathogenicity

of PR3-ANCA

Not strictly autoimmune

Perfusion of isolated rat lungs

with primed human neutrophils

and monoclonal PR3 Ab (124)

CD (SD) rats ++ 3 h Acute lung injury caused by

neutrophil degranulation and free

oxygen radicals

Ex vivo model

Does not model the process

of neutrophil migration to

the lungs in vivo

OTHER MODELS

Passive transfer of LAMP-2 Ab

(125)

WKY rats + to ++ 5 days LAMP-2 is an additional target of

ANCA

Not all Ab preparations are

pathogenic

Immunization with FimH (125) WKY rats ++ 39 days Molecular mimicry may underpin

loss of tolerance to LAMP-2

Antigen processing not

taken into account

No clear demarcation

between induction of

immunity and

effector responses

Spontaneous crescent formation

in autoimmune-prone mice (126)

SCG/Kj mice +++ Life span 120–135

days

Early onset severe disease Derived from lupus prone

strains

Other auto-Ab present

Significant immune complex

deposition in glomeruli

Passive transfer of NET-loaded

DC (59)

BALB/c and

C57BL/6 mice

++ to +++ 3 months NETs may be involved in

development of autoimmunity to

MPO and PR3

Production of other auto-Ab

in addition to ANCA

Long model, requires

multiple DC infusions

Passive transfer of PTU-induced

abnormal NETs, PTU-induced

MPO-ANCA production (127)

WKY rats + 30 days Prolonged MPO exposure via

NETs may participate in loss of

tolerance

Mild disease

Nephrotoxic serum nephritis

(128)

C57BL/6 mice +++ 7–21 days Mechanisms of severe nephritis Mechanistically different

effectors

No induction of responses

to ANCA antigens or

transfer of specific cells

or Ab

a+, mild; ++, moderate; +++ severe.
bOnly initial contribution listed due to space limitations.

Ab, antibody; ANCA, anti-neutrophil cytoplasmic antibodies; CD (SD) Cesarean derived (Sprague-Dawley); DC, dendritic cells; LAMP-2, lysosome-associated membrane protein 2; MPO,

myeloperoxidase; NETs, neutrophil extracellular traps; NOD, non-obese diabetic; PR3, proteinase 3; PTU, propylthiouracil; Rag, recombination activating gene; SCG/Kj, spontaneous

crescentic glomerulonephritis-forming/Kinjoh; SCID, severe combined immunodeficiency; WKY, Wistar Kyoto.

extensive glomerular crescents in all mice (126), though
the renal disease may be largely immune complex mediated
(138), with development of disease and progression to renal

failure significantly delayed by calorie restriction (139). Initial
suggestions that neutrophils are required for ANCA-associated
GN development were based on experiments in these mice, in
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which increased peripheral neutrophil numbers and glomerular
neutrophil infiltration correlated with disease (140). Multiple
genetic associations with MPO-ANCA development in SCG/Kj
mice have been defined (141). This model has also been used
to investigate possible treatments for ANCA-associated GN,
including 15-deoxyspergualin (142, 143) and omega-3 fatty acid
eicosapentaenoic acid (EPA) (144).

Dendritic cell transfer studies have implicated NETs in the
development of autoimmunity to MPO and PR3 (59). NETosis-
prone neutrophils from naïve mice were co-cultured with
myeloid dendritic cells (mDC), resulting in mDC uploading with
NET components including MPO. Wild type mice subsequently
immunized with NET-loaded dendritic cells (but not dendritic
cells exposed to apoptotic or DNAse1 treated neutrophils), lost
tolerance to MPO and PR3 and produced ANCA. Furthermore,
induction of ANCA was associated with moderate to severe renal
injury. However, antibodies to other targets were also produced,
including single-stranded and double-stranded DNA, implying
a more generalized loss of tolerance consistent with SLE or an
SLE-like syndrome.

It is difficult to isolate the effects of anti-MPO and anti-
PR3 autoreactivity in these models. While ANCA are present,
so are other autoantibodies, including anti-double stranded
DNA (dsDNA) antibodies. These models are potentially useful
as models of vasculitis occurring in the context of SLE with
concurrent MPO-ANCA, where in humans segmental necrosis
is more likely and in which ANCA may play a role (134).

Drug-Induced Experimental AAV
The development of MPO-ANCA and clinical features of
AAV has been reported in association with many different
drugs [review in Gao and Zhao (145)]. The anti-thyroid drug
propylthiouracil (PTU) is associated with production of MPO-
ANCA in up to 30% of patients, with some patients developing
MPO-AAV (146). In vitro, incubation of human neutrophils
with PTU in the presence of phorbol myristate acetate (PMA)
induces NETs. These PTU induced NETs have an abnormal
conformation and are more resistant to breakdown by DNase I.
It is thought that prolonged MPO exposure on NETs participates
in loss of tolerance to MPO, and subsequent ANCA production.
Passive transfer of these abnormal NETs into WKY rats caused
development of MPO-ANCA and pulmonary capillaritis. In an
active model of disease, MPO-ANCA and features of vasculitis
developed in rats given PTU in addition to intraperitoneal PMA,
with evidence of DNase1-resistant abnormal NET formation. In
contrast, mice given only intraperitoneal PMA developed NETs
without development of MPO-AAV (127). In a similar model
of PTU-induced MPO-ANCA associated vasculitis, BALB/c
mice were given PTU; NET formation was attenuated by
peptidylarginine deiminase (PAD) inhibition, with lower MPO-
ANCA titres (147).

Autologous Phase Anti-GBM GN
(Nephrotoxic Serum Nephritis)
The most commonly used model of severe and rapidly
progressive GN is the autologous phase (accelerated or non-
accelerated) “anti-GBM” model, also known as nephrotoxic

serum nephritis (128). This model has been used as proxy for
ANCA-associated GN (148). However, while glomerular injury
may appear similar histologically, the pathogenesis of this model
is substantially different to that of AAV. Glomerular injury in this
model is not due to autoimmunity and autoreactivity to MPO is
not present (149, 150).

The relative contributions of cellular and humoral effectors in
this model depend on the strain and species of rodent used, and
the nature, timing and dose of the foreign globulin. The initial
phase of injury is neutrophil mediated, though unlike ANCA-
associated vasculitis, here the heterologous globulin binds to the
glomerulus and neutrophils are retained in glomeruli via this in
situ immune complex mediated disease (89, 151). Subsequently,
in non-accelerated iterations of this model, immunity to the
foreign globulin (usually raised in sheep or rabbits) as a foreign
antigen (not as an autoantigen) develops. Anti-sheep (rabbit)
antibodies and/or anti-sheep (rabbit) T cells localize to glomeruli
as the antigen (the heterologous globulin) is bound to the
glomerulus (152, 153). In the accelerated model, immunity to
sheep (rabbit) globulin has been induced by priming with the
foreign antigen in adjuvant, but injury does not occur until the
antigen localizes to the glomerular basement membrane.

Thus, while theremay be some similarities in cellular effectors,
critical differences in the induction of immunity (including
regulatory T cells), and effector mechanisms mean that this
model does not represent ANCA-associated GN. It should not
be described as autoimmune and care should be taken in
extrapolating results in these models to autoimmune ANCA-
associated GN.

DISCUSSION AND CONCLUDING
REMARKS

The use of animal models of AAV, especially combined with
careful observational and in vitro human studies has been
instrumental in the major advances in our understanding of the
pathogenesis of AAV, ranging from the pathogenicity of ANCA,
through to elements of loss of tolerance, the role of infection
and the participation of cellular immunity. Animal studies on the
functional role of complement have led to human trials of new
therapies based on complement inhibition. Each of the models
used in this search and described in this review has informed
us about different aspects of pathogenesis. Table 3 summarizes
insights into the pathogenesis of AAV obtained by using animal
models and their translational potential.

However, the development of a single, accurate and
translatable animal model of ANCA-associated vasculitis has
challenged researchers for decades. This disease, and its
pathogenesis, is unique in multiple respects. Firstly, it is
a systemic autoimmune disease, though there is only one
autoantibody clinically detected. ANCAs themselves are unusual
in that they cause activation, rather than destruction of the
target cell. Effector responses are complex. The autoantigens
themselves are both interesting and unusual; whilst MPO and
PR3 are present systemically, the disease manifestations are
in organs where the autoantigen is not expressed. Clinically,
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TABLE 3 | Influence of animal models on selected elements of the pathogenesis of ANCA-associated vasculitis.

Observation from humans and in vitro In vivo animal models Future directions

RISK FACTORS

Incidence increases with age (1) Anti-MPO antibodies transferred into aged mice associated

with more severe disease (71)

PR3 models of disease

PR3-AAV significantly associated with HLA-DP4 (154)

and HLA-DR15 (155)

Understanding mechanism of risk

LOSS OF TOLERANCE

Association between AAV and infection (102)

Autoimmunity to PR3 may be triggered by exposure to

complementary proteins (156)

Anti-MPO immunity triggered by exposure to bacterial

peptide with MPO sequence homology (104)

Autoimmunity to LAMP-2 developed after immunization with

a homologous peptide from FimH (125)

Re-induction of tolerance

PATHOGENICITY OF ANCA

Presence of ANCA in patients with AAV (11)

In vitro, capacity of ANCA to induce neutrophil

stimulation and degranulation (12, 34)

Treatment response to autoantibody and B cell depletion

Passive transfer anti anti-MPO antibodies caused

development of GN (15)

Binding of ANCA to neutrophils induces glomerular leukocyte

adhesion (53)

Clarify the role of autoantibody depletion in

induction of disease remission

Role for treatments which alter the

antibody itself

NEUTROPHILS AS EFFECTORS

Paucity of immunoglobulin in renal biopsies suggests

antibody-independent mechanisms

Number of activated neutrophils in glomeruli is

associated with severity of renal disease (13)

In vitro, neutrophil degranulation after stimulation with

ANCA causes endothelial damage (157)

Presence of ANCA-like antibodies without neutrophil

activation is insufficient to cause disease (24)

Increased peripheral neutrophil numbers and glomerular

neutrophil infiltration correlated with disease (140)

Neutrophil depletion protects from disease (35)

G-CSF administration exacerbates renal injury (31)

Potential therapies for AAV that

de-activate neutrophils

EFFECT OF CYTOKINES AND CHEMOKINES ON NEUTROPHIL PRIMING, MIGRATION AND ADHESION

Association between AAV and infection (102, 158)

In vitro, priming of neutrophils is required for optimum

activation by ANCA (159)

Passive transfer of anti-MPO antibodies in conjunction with

LPS (neutrophil priming) causes more severe disease (32)

Engagement of TLR4 on glomerular endothelial cells with

highly-purified LPS associated with production of CXCL1 and

CXCL2, leading to increased neutrophil migration, adhesion

and transmigration (47)

Upregulation of β2 integrins, mediated by TNF, is associated

with decreased leukocyte rolling and enhanced adhesion (50)

Further studies of anti-TNF therapies as

potential treatment

Studies of inhibiting neutrophil adhesion in

AAV

COMPLEMENT IN AAV

Role of complement first elucidated in animal models,

and then confirmed in humans

Patients with AAV have increase plasma levels of

alternative pathway activation markers (160)

C3 depletion prevents GN in mice in passive transfer

model (17)

Plays a role in neutrophil retention within the glomerulus and

subsequent glomerular injury (22)

Role of complement inhibition in disease

management e.g. CCX168/avacopan

NEUTROPHIL EXTRACELLULAR TRAPS (NETs)

NETs at sites of vascular injury (55) After activation by ANCA, neutrophils undergo cell death and

develop NETs, which promotes autoimmunity to MPO and

propagates glomerular endothelial damage (161)

Role for enhanced NET degeneration for

disease treatment

ROLE OF T CELLS

Tubulointerstitial and intraglomerular T cells associated

with worse renal injury (55)

Induction of T cell autoimmunity to MPO results in NCGN,

even in the absence of B cells and ANCA (16)

T cells involved in neutrophil chemoattraction through

production of IL-17A (80)

Depletion of peripheral regulatory T cells associated with

more severe disease (93)

Understanding the mechanism of CD8T

cell mediated end-organ damage

Regulatory T cell based therapies for AAV

MONOCYTES

Activated by ANCA (10)

Presence of monocytes and macrophages in renal

biopsies

Soluble CD163 in urine, which is shed by monocytes, is

strongly associated with active renal vasculitis (66)

Monocyte depletion reduces glomerular necrosis and

crescent formation after passive transfer (9)

Pre-clinical evaluation of monocyte-related

biomarkers and therapies

AAV, ANCA-associated vasculitis; ANCA, anti-neutrophil cytoplasmic antibodies; G-CSF, granulocyte colony stimulating factor; GN, glomerulonephritis; HLA, human leukocyte antigen;

LAMP-2, lysosome-associated membrane protein-2; LPS, lipopolysaccharide; MPO, myeloperoxidase; NCGN, necrotizing crescentic glomerulonephritis; NETs, neutrophil extracellular

traps; PR3, proteinase 3; TLR4, toll-like receptor 4; TNF, tumor necrosis factor.
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the disease is heterogeneous, with significant variability in
genetic predisposition, environmental risk factors, severity, organ
involvement, and risk of relapse.

Given the multi-faceted pathophysiology of AAV, it is not
surprising that no single model can recapitulate all aspects of
disease. Several disease models are required to comprehensively
model and study AAV. Thus far, passive transfer models have
proven valuable in studying early effector responses and have
resulted in the translation of anti-C5aR therapies into Phase 2 and
Phase 3 clinical trials (21, 42, 162). Further work is necessary to
refine and establish animal models that reflect human disease as
accurately as possible. Furthermore, themodels should be reliably
reproducible, tractable and transferrable between laboratories,
to promote collaborative research and treatment development.
Establishment of such models will facilitate a human-rodent-
human iterative approach which may accelerate understanding,
discovery and research translation.

Despite the extensive advancement in knowledge over the
past decades, treatment of ANCA-associated vasculitis remains
non-specific and toxic. With the likely exception of rituximab,
new therapies have not been more efficacious than standard
of care, itself associated with significant risks of infection
and malignancy. Given the complexity of the pathophysiology,
treatment may need to be multi-targeted, requiring collaborative
research for development and testing.

Given the emerging knowledge of the differences between
PR3-AAV and MPO-AAV, there is a growing need for a model
of PR3-AAV. Much can be learnt from the experiences of
previous attempts to develop an animal model. The ideal model
would likely require human mature PR3 expression in the
neutrophil through geneticmutation,manipulation of neutrophil
numbers and PR3 membrane expression, as well as consider
the importance of Fcγ receptors in the ability of ANCA to
activate neutrophils. Furthermore, mice transgenic for human
immune genes, such as HLA, may be used for understanding
the strong genetic associations identified with PR3 (154, 155,
163, 164) and model key pathways in loss of tolerance and
effector responses. Currently there are no published models
of eosinophilic granulomatosis with polyangiitis (EGPA). A
significant proportion of people with EGPA have MPO-ANCA
antibodies and recent GWAS studies suggest a combination of
genes relevant both to autoimmunity and to allergy/eosinophil
function may be involved in EGPA (165).

In the future, the current animal models need to continue
to evolve to address key clinical questions at hand. Examples

of how these questions might be addressed are outlined below.
ANCA associated vasculitis is largely a disease of older people,
and older age is associated with worse renal outcomes and
increased mortality, with more complications of treatment (166).
The use of aged mice in translational research is increasing,
and allows a unique opportunity to more closely mimic human
disease (167). Multiple genetic associations with AAV have been
identified, especially with regards to antigen presentation (154,
155, 168), which could be mechanistically explored in HLA
transgenic mice. The role of concurrent infections, including
but not limited to latent cytomegalovirus infection, in loss of
tolerance to ANCA antigens, as well as disease outcomes, needs
to be considered (169, 170).

At this stage, animal models of MPO-AAV are unable to
meaningfully mimic chronic end-organ disease. Clinically,
how to best manage AAV in the medium to long term, given
its chronic relapsing autoimmunity with tissue injury and
damage is a major challenge, and can lead to use of long-
term immunosuppression that may or may not be required.
Precision medicine would ideally include the capacity to
recognize patients at risk of relapse, and reliably identify
relapses before end-organ damage ensues. Furthermore,
as in many chronic inflammatory diseases, treatments
that prevent progressive fibrosis are needed to preserve
function after tissue damage mediated by anti-PR3 and
anti-MPO autoimmunity.
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