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It is now well-established that AKI is a serious and common complication following

cardiopulmonary bypass (CPB) in both children and adults, adverse outcomes may

occur in the short term as well as long term, with higher incidence of chronic kidney

disease, increased healthcare utilization and higher frequency of cardiovascular events

in patients who develop post-CPB AKI. Despite the advances in our understanding of

the pathogenesis of the disease and the improvement in diagnostic tools, our therapeutic

options have remained suboptimal. There are multiple challenges in designing a clinical

therapeutic AKI trial, including amulti-factorial etiology, difficulties with accurate diagnosis

of AKI, achievement of adequate study power, and determination of appropriate

outcomes. We are often left with “supportive” care. Studies have shown some benefit

to AKI bundles, but adherence to bundle guidelines may be suboptimal. Current

best practices should include maintenance of adequate renal perfusion pressure and

avoidance of fluid overload, with consideration of early renal replacement therapy. Finally,

multi-center trials of AKI therapies are crucial to finding treatment for this devastating

complication of CPB.

Keywords: acute kidney injury, cardiopulmonary bypass, pediatric, heart, kidney

INTRODUCTION

It is now well-established that AKI is a serious and common complication following
cardiopulmonary bypass (CPB) in both children and adults, leading to worse outcomes and
higher mortality (1–3). While variable, most pediatric studies report an incidence of 30–50%,
with higher rates in neonates, more complex surgeries, and longer cardiopulmonary bypass times
(2–5). Perioperative AKI is not only associated with higher in-hospital mortality but also longer
need for mechanical ventilation, longer intensive care and hospital lengths of stay, and worse
ventricular function on discharge (2, 4–6). Adverse outcomes may also occur in the long term, with
higher incidence of chronic kidney disease, increased healthcare utilization and higher frequency
of cardiovascular events in patients who develop post-CPB AKI (7–10). Despite the advances in
our understanding of the pathogenesis of the disease and the improvement in diagnostic tools, our
therapeutic options for cardiac surgery-associated AKI have remained suboptimal. This manuscript
will review the current status of clinical trials, the inherent problems with these trials, the use of
supportive care bundles and potential promising therapies for AKI.

Before launching into potential AKI therapies, it is crucial to understand the pathogenesis of
AKI after CPB, as doing so may allow the development of targeted treatment. The mechanism of
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injury after CPB is multi-factorial, with variable contributions
from each process affecting the ultimate AKI phenotype. Thus,
AKI after CPB is not homogenous and treatment may not be
one-size-fits-all. In addition to ischemia and reperfusion, CPB is
associated with alterations in hemodynamics, vasoconstriction
and loss of pulsatile blood flow. These factors may lead
imbalances between oxygen supply and demand, leading
to cellular injury. Activation of the systemic inflammatory
response further potentiates cell damage via oxidative stress
injury and coagulopathy. CPB also exposes blood cells to
non-physiologic surfaces and shear forces, leading to cell lysis
and release of plasma free hemoglobin into the circulation.
This and other microemboli contribute to further tubular
damage. On a cellular level, ischemic injury leads to profound
ATP depletion and nitric oxide generation. A number of
oxidative and cell death mechanisms are induced, including
activation of caspase, increase in intracellular calcium, and
generation of reactive oxygen molecules. During the extension
phase, these pathways progress, resulting in apoptosis,
cell membrane alterations, cytoskeletal degradation, and
oxidant injury (11).

THERAPEUTIC TARGETS

A number of therapies with specific targets have been studied
in clinical trials, including vasodilators, iron chelators, anti-
inflammatory agents, anti-apoptotic agents, and diuretics. While
some studies have shown modest improvement, no agent has
seen universal success. Park et al. reviewed over 500 therapeutic
AKI studies from 1950 to 2008 and noted several issues with
these clinical trials (12). First and foremost is that most were
single center trials and were underpowered to evaluate clinical
outcomes. Secondly, the primary outcome in the majority of
studies was laboratory based, rather than clinical, such as
mortality or need for RRT. Lastly, the definition of AKI was
highly variable over the studies, making comparisons difficult.
While the latter has been addressed to some extent with the
development of consistent AKI definitions such as KDIGO (13),
clinical trials remain plagued by insufficient power. Faubel et al.
noted this in a 2012 review of ongoing clinical trials in AKI
(14). As an example of the difficulty in achieving adequate power,
the authors reference the TRIBE-AKI multi-center AKI study
(15), which had a 5% incidence of severe AKI, using AKIN (16)
serum creatinine criteria. Using these data, to have an α = 0.05,
power of 0.9 and 30% effectiveness, almost 3,800 patients per arm
would be needed in a randomized controlled study. Even with an
enriched sample of high-risk patients, with a 20% incidence of
AKI, over 800 patients would be needed in each arm of a study.
While this sample number is difficult even in adult studies, it
becomes nearly impossible in pediatric studies. Further, as with
the earlier review by Park, the authors emphasize that, rather than
laboratory based criteria, AKI trials need a clinically important
endpoint, such as requirement for renal replacement therapy,
quality of life measures, development of chronic kidney disease
or mortality, and propose a national AKI clinical trials network
to continue this important work.

As therapeutic options for AKI remain limited, the mantra
around AKI management is “supportive care.” This includes
limiting fluid intake to avoid fluid overload, maintaining
adequate cardiac output and blood pressure, avoiding high
central venous pressure, augmenting fluid loss, avoiding
nephrotoxins, and waiting for kidney recovery. While much
of this seems intuitive, adherence to these recommendations
often proves difficult. As an example, a 3 kg infant receiving
total fluids at “2/3 maintenance” immediately after surgery has
a fluid allotment of just 8ml per hour. This amount would need
to include any inotropic or vasoactive medications, antibiotics,
pressure monitoring lines, sedation and analgesia, as well as
dextrose. As one can easily imagine, fluid from these alone may
be more than “maintenance,” even without blood products or
true nutrition. Fluid accumulation may be further exacerbated
by oliguria, which is common after cardiac surgery. Nephrotoxin
exposure is also common in the cardiac intensive care unit
(ICU). In a retrospective study of cardiac surgical patients using
the NINJA collaboration definition (17), Uber et al. found that
85% of cardiac ICU patients received at least 1 nephrotoxin
and 21% received ≥3 nephrotoxins, demonstrating suboptimal
adherence this recommendation as well (18). The most common
nephrotoxin that was administered was non-steroidal anti-
inflammatory agents (ketorolac and/or ibuprofen), which are
used widely in post-operative pediatric cardiac patients and have
been associated with subclinical kidney injury even in patients
without AKI (19).

Impact of Hemodynamics
The role of blood pressure in avoiding or treating AKI is less clear.
Significant hypotension during non-cardiac surgery has been
associated with AKI, with higher rates of AKI in patients with
mean arterial pressure<55mmHg, even for short durations (20).
While overt hypotension is clearly undesirable, “ideal” blood
pressure to prevent AKI and the impact of minor hypotension
are unknown. Studies of both healthy adults undergoing hip
arthroplasty under controlled hypotension (21) and critically ill
patients with sepsis (22) found no association between systemic
blood pressure and AKI. However, the latter study demonstrated
a significant association with central venous pressure, indicating
that it is likely that adequate renal perfusion pressure, rather that
systemic blood pressure alone, is key. Similar findings have been
seen in pediatric studies of patients undergoing Fontan palliation,
a physiology that is often associated with high CVP. A study by
Algaze et al. found a significant association between higher post-
operative CVP and the development of AKI in 158 patients after
Fontan surgery (23). This finding has also been demonstrated
in adult studies of patients with advanced decompensated heart
failure. Mullens et al. found that worsening renal function (WRF)
was associated with higher CVP on admission with a stepwise
worsening in function with increasing CVP (24). Systolic blood
pressure was not significantly different in patients with or without
WRF and the development of WRF uncommon if CVP was <8
mmHg on admission. It should noted, however, that the elevated
CVP and AKI are inter-related, since fluid overload from AKI
may lead to increases in CVP, so determining cause and effect
may be challenging at times.
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Diuretics
Diuretic use to augment fluid loss, while used ubiquitously in
the cardiac ICU, has not consistently been shown to improve
outcomes and indeed, may be detrimental in some circumstances
(25, 26). Lassnigg et al. noted in a single center study that
continuous furosemide had no clinical benefit and was associated
with increased incidence of AKI in 126 patients after cardiac
surgery (27). In a meta-analysis of nine prospective randomized
controlled trials, Ho and Sheridan found that furosemide was
not associated with any clinical benefit, including decreased
mortality, need for RRT, time to recovery of renal function
or percent of patients with oliguria (28). One recent study
demonstrated lower post-operative serum creatinine in patients
receiving intra-operative and early post-operative furosemide
but no difference in AKI incidence between study groups
(29). Additionally, almost all diuretics must reach the tubular
lumen by glomerular filtration or proximal tubular secretion to
exert their action (30). If AKI causes a decrease in glomerular
filtration, diuretic delivery is impeded and these medications are
less effective.

With the thought that the detrimental effect of diuretics on
outcomes may be related to intravascular depletion, investigators
have looked at the impact of combined administration of
diuretics and matched hydration which has been shown to
have potential benefit in contrast-associated AKI (31). The
impact of this management strategy in CPB-associated AKI is
unknown, with an initial, small study of 10 at-risk adult patients
demonstrating no AKI after CPB procedures (32). Further study
of this management is warranted.

Supportive Care Bundles
The prevention of AKI using a supportive care “bundle” was
evaluated in the PrevAKI trial (33). In this single center
randomized controlled trial, 276 patients were randomized to
a “KDIGO bundle” consisting of optimization of volume and
hemodynamics, avoidance of nephrotoxins and prevention of
hyperglycemia, or to standard care. The primary outcome was
rate of AKI using KDIGO guidelines. The intervention group
was found to have significantly less AKI and severe AKI.
The intervention group received more dobutamine resulting in
higher mean arterial pressure (and thus higher renal perfusion
pressure), had less hyperglycemia, and received less angiotensin-
converting enzyme inhibitors or angiotensin II receptor blockers.
There was no difference in need for renal replacement therapy or
major adverse events between groups.

Fenoldopam
While supportive care is crucial, the development of AKI
therapies remains a priority. Several therapies have shown
some benefit in select populations and likely warrant further
investigation in larger trials. Fenoldopam, a selective dopamine-
1 receptor agonist, increases renal plasma flow, decreases renal
vascular resistance, and inhibits tubular resorption of sodium.
It was first evaluated in neonates after cardiac surgery who
had insufficient response to conventional diuretics (34). In
this single center study, neonates receiving fenoldopam had a
significant increase in urine output. Ricci et al., in a randomized

controlled trial of high-dose fenoldopam in children after cardiac
surgery, found a decrease in post-operative neutrophil gelatinase-
associated lipocalin and cystatin C levels and a trend toward
less AKI, sooner extubation and shorter LOS in the treatment
group (35). In a meta-analysis of 23 studies, fenoldopam treated
patients had a significantly lower incidence of AKI, with an OR
of 0.46 [0.27–0.79] but no difference was seen in mortality, rate of
RRT or other clinical outcomes (36). This meta-analysis included
both cardiac and non-cardiac surgical patients with differing
durations of therapy so while promising, further multi-center
studies are warranted.

Aminophylline
Aminophylline is a methylxanthine non-selective adenosine
receptor antagonist and has been shown to decrease adenosine
mediated vasoconstriction, inhibit phosphodiesterase, and
increase urine output. One of the earliest single center double-
blinded placebo controlled clinical trials in pediatric patients
after CPB did not show significant differences in AKI incidence
or difference in secondary clinical outcomes between treatment
and control groups (37). Other studies however, have found
variable effects, with several reporting improved clinical
outcomes and lower incidence of AKI (38, 39).

Dexmedetomidine
Dexmedetomidine, an alpha-2 agonist, is used primarily for
sedation. It is noted to have sympatholytic, cytoprotective and
anti-inflammatory properties and has recently been evaluated
in AKI studies. Kwiatkowski et al. noted significantly less AKI
by KDIGO [adjusted OR 0.43 (0.27–0.98)] following congenital
heart surgery but did not find differences in clinical outcomes
(40). A prospective randomized trial in pediatric CPB patients
also found a significant decrease in AKI in the treated group but
also failed to show a difference in clinical outcomes (41).

Fluid Overload
The avoidance of fluid overload (FO) is perhaps the most
important target for AKI intervention, as FO has independently
been associated with worse outcomes including mortality in
AKI (42). Early RRT has been associated with improvement in
clinical outcome in both adult and pediatric patients and earlier
institution of RRT has been associated with better survival (43).
The concept of early, or “prophylactic” peritoneal dialysis has
been around for decades (44–46) and its use is becoming more
common (47). Several centers routinely place dialysis catheters
intra-operatively at the time of cardiac surgery in high-risk
patients, using a trans-diaphragm approach. Catheters are placed
to passive drainage and if early signs of AKI occur, such as
oliguria, peritoneal dialysis is begun with goal to avoid fluid
overload, not necessarily to achieve net negative fluid balance.
After a retrospective study of PD catheter placement after CPB
in infants demonstrated improved clinical outcomes, including
time to extubation and degree of FO (48), Kwiatkowski et al.
embarked on a prospective randomized trial of PD vs. standard
regimen of furosemide (47). This study found that PD patients
were 3 times less likely to have 10% FO, achieved negative fluid
balance one shift sooner, and had improved clinical outcomes
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including less likelihood of prolonged ventilation, or prolonged
ICU stay. Importantly, PD patients had no adverse events
associated with catheter placement or use. Thus, it may be that
prevention of FO with consideration of early RRT or PD is our
current best “treatment.”

CONCLUSION

While significant work has been done in the study of AKI and
potential treatment, a single therapeutic strategy remains elusive.
There are multiple challenges in designing a clinical therapeutic
AKI trial, including a multi-factorial etiology, difficulties with
accurate diagnosis of AKI, achievement of adequate study power,

and determination of appropriate outcomes. We are often left
with “supportive” care. Studies have shown some benefit to AKI

bundles, but adherence to bundle guidelines may be suboptimal.
Current best practices should include maintenance of adequate
renal perfusion pressure and avoidance of fluid overload, with
consideration of early renal replacement therapy. Finally, multi-
center trials of AKI therapies are crucial to finding treatment for
this devastating complication of CPB.
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Over the last decade, our understanding of acute kidney injury (AKI) has evolved

considerably. The development of a consensus definition standardized the approach

to identifying and investigating AKI in children. As a result, pediatric AKI epidemiology

has been refined and the consequences of renal injury are better established. Similarly,

“big data” methodologies experienced a dramatic evolution and maturation, leading the

critical care community to explore potential AKI/big data synergies. One such concept

with tremendous potential is electronic health record (EHR) enabled informatics. Much of

the promise surrounding these approaches is due to the unique position of the EHRwhich

sits at the intersection of data accumulation and care delivery. EHR data is generated

simply via the provision of routine clinical care and should be considered “big” from the

standpoint of volume, variety, and velocity as a myriad of diverse elements accumulate

rapidly in real time, spontaneously generating an immense dataset. This massive

dataset interfaces directly with providers which creates tremendous opportunity. AKI

can be diagnosed more accurately, AKI-related care can be optimized, and subsequent

outcomes can be improved. Although applying big data concepts to the EHR has proven

more challenging than originally thought, we have seen much success and continue

to explore its potential. In this review article, we will discuss the EHR in the context

of big data concepts, describe approaches applied to date, examine the challenges

surrounding optimal application, and explore future directions.

Keywords: acute kidney injury (AKI), pediatrics, big data and analytics, electronic health record (EHR), outcomes

INTRODUCTION

Acute kidney injury (AKI) has become a common complication amongst hospitalized
children (1–3). Studies utilizing modern, consensus definitions report a prevalence of ∼5
and 25% in children receiving acute and critical care, respectively (3, 4). The frequency
with which AKI occurs is of particular concern given its outcome implications. AKI
has been associated with greater mortality, longer lengths of hospital and intensive care
unit (ICU) stay, and the subsequent development of chronic kidney disease (CKD) (3,
5, 6). Recently, the critical care and nephrology communities have standardized the
definition of AKI, culminating in the Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines which identify AKI events based on increasing serum creatinine and/or decreasing
urine output (UOP) (7). With this development, AKI can be identified consistently
across practice environments, data sets, and health care platforms. In parallel, we have
seen substantial growth in the adoption of electronic health records (EHRs) as well as
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the development of innovative clinical informatics methods (8–
10). While the establishment of a uniform approach to AKI
identification and the evolution of healthcare informatics are not
causally related, the temporal relationship has created unique
opportunities for AKI research and care improvement.

Many of the aforementioned informatics techniques and
methodologies have been categorized as “big data,” a relatively
novel concept to healthcare practitioners. Big data (or Big Data)
is defined by the Oxford English Dictionary as, “data of a very
large size, typically to the extent that its manipulation and
management present significant logistical challenges; (also) the
branch of computing involving such data (11).” Based on this
definition, it is relatively easy to see the connection between big
data and the EHR. The data contained within the EHR is “big”
from the standpoint of volume (amount of data present), velocity
(speed at which new data is generated), and variety (number
of different types of data) (12–14). With regard to AKI, this
means that the EHR contains all creatinine and UOP data for
all patients affiliated with a particular organization, accrues new
creatinine and UOP data in real time, and possesses a near-
infinite number of AKI related data elements which are created
and stored through the provision of routine patient care.

Thus, the EHR and its data create a unique opportunity
(14, 15). The ability to accurately identify AKI events within
a clinical platform allows AKI to be explored retrospectively,

FIGURE 1 | Automated, Real-time AKI Identification. In this figure, temporal creatinine (daily) and urine output (hourly) trends are displayed. In (A), the creatinine

gradually increases from a baseline of 0.6 mg/dL, meeting AKI criteria (serum creatinine > 1.5× baseline) on 1/5/19. Likewise, in (B), the patient develops progressive

oliguria, meeting AKI criteria (UOP < 0.5 mL/kg/h for 6 h) at 15:00. In both cases, the ability to detect the threshold value upon documentation allows real-time

diagnosis. This, in turn, opens up a myriad of big data AKI solutions.

investigated prospectively, and studied for quality improvement
or benchmarking purposes. Although the application of big
data approaches to AKI research and care has proven
more challenging than originally thought, we continue to
explore refined, clinically applicable synergies. The goal of this
manuscript is to consider the EHR in the context of big data
concepts, appraise the approaches applied to date, examine
the challenges surrounding optimal application, and explore
future directions.

AKI IDENTIFICATION AND DIAGNOSIS

The cornerstone of EHR-enabled, big data AKI research and
quality improvement is the ability to precisely diagnosis AKI
events (14, 15). EHR data allows us, in a relatively straightforward
manner, to identify AKI in real time by applying the KDIGO
serum creatinine and/or UOP criteria (Figure 1) (7, 16, 17). For
example, as creatinines become available, they may be compared
to all prior creatinine values for that patient, and AKI may be
diagnosed when the relative change threshold is met (Figure 1A).
Serum creatinine results are discrete data which accumulate with
an associated date and time; this, in turn, allows application of
the full temporal components of the KDIGOdefinition. The same
principles can be applied to the UOP criteria (Figure 1B). UOP is
recorded hourly in milliliters (mL) and dividing this value by the
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patient’s weight in kilograms (kg) generates a per-kg-per-unit-
time rate (mL/kg/h).

Although automated, real-time AKI identification is
technically feasible, aspects of the definition itself can be
challenging to operationalize. One example is baseline creatinine
determination. Setting each patient’s baseline is important as
it forms the basis for relative change determinations. Several
approaches exist, each of which poses a different big data concern
(16, 18–22). If available, a pre-admission creatinine may be used
for the baseline. Many studies employing this approach have
selected the lowest creatinine value available from the preceding
3–6 months. Outside of neonates and children under 3–6
months of age, creatinine is not likely to undergo a physiologic
change in that timeframe. Unfortunately, prior creatinines are
often unavailable within the EHR; this may be due to patients
receiving ambulatory care in other health systems or it is
possible, especially in pediatrics, that no prior creatinine has ever
been obtained. When an actual value is not available, many have
recommended using the admission creatinine as the baseline.
This approach, while simple and effective from an informatics
standpoint, will miss community acquired AKI which is manifest
on admission; previously published studies suggest that this may
underestimate the AKI burden by a third (20). Alternatively,
a baseline creatinine can be estimated by back-calculating
using a presumed creatinine clearance (CrCl). Studies in adults
and children have tended to assume the CrCl to be 75 and
100–120 mL/min/1.73 m2, respectively (18, 20, 21). This will
capture community acquired AKI but misclassifies patients
with chronic kidney disease (CKD) as having AKI. In adults,
where CKD is highly prevalent, this approach can overestimate
AKI incidence by AKI 50% (20). Technically, this method does
requires a computation, adding complexity any automated AKI
identification diagnostic tool. Furthermore, nearly all estimating
equations require data which are unreliably available within
the EHR (i.e., height and ethnicity). A final option for patients
without a known baseline, is to apply an age-based normative
creatinine value. In this scenario, a population-based serum
creatinine is assigned to each patient based on their demographic
characteristics (23, 24). Each of these potential solutions have
been validated and, ultimately, the approach applied should
reflect the goals of the diagnostic tool.

The UOP criteria also pose challenges, however, in this
case the issues tend to be related to EHR limitations rather
than definitional shortcomings. The most substantial issue is
urine volumes are not obtained with the rigor or regularity of
creatinine. Outside of the ICUs, very few children have indwelling
urinary catheters capable of providing hourly data. As a result,
these patients may not have urine data recorded for hours.
In children, urine may be documented only as a void count,
without giving a specific volume. Given the short temporal
interval set by KDIGO, this could result in patients with normal
renal function being inaccurately diagnosed with AKI. Secondly,
EHRs tend to aggregate intake and output data at static 8–12 h
intervals which coincide with nursing shifts. The UOP criteria,
however, necessitate a dynamic approach which utilizes a rolling
6–24 h window. Processing a rolling calculation for each patient
across an institution may pose resource, computational, and

logistic challenges. Despite these potential issues, the ability to
accurately diagnose AKI in real-time is technically feasible and
this capacity unlocks numerous big-data approaches to AKI care.
To fully realize its potential, however, a standardized solution and
approach to the aforementioned problems must be adopted by
the critical care nephrology community.

While no established approach yet exists, information is
available to inform our approach. With regard to the creatinine
criteria, most agree that a previously obtained creatinine should
be used as the baseline value if it is available (3, 14, 15, 25).
If computational resources are unlimited, one could determine
and use the mean serum creatinine from the prior 12 months
(25, 26). However, using the creatinine most proximal to the
admission is a simpler solution which has demonstrated similar
efficacy (26). If a creatinine is not available, given the relatively
low incidence of CKD in children, using an imputed value as
the baseline is a reasonable approach. Most studies to date have
back calculated the imputed serum creatinine using an estimated
creatinine clearance of 120 mL/min/1.73 m2. However, using
an age based normative value may be equally effective and
will reduce computational requirements (3, 24); either approach
should be considered valid. With regard to UOP, it is important
to note that studies in adults and children demonstrate that some
children meet only the UOP criteria for AKI; non-application
of these KDIGO thresholds may underestimate AKI incidence
(3, 27). Thus, if possible, the UOP criteria should be integrated
into any diagnostic tool if possible. One reasonable compromise
is to utilize the 12 h summative information in its static form to
generate a volume-per-kg-per-hour rate. Although this is not as
accurate as a dynamic window and will miss oliguria of <12 h
duration, it is a simple way to implement the UOP criteria that
will capture a larger portion of the true AKI population.

PREDICTING ACUTE KIDNEY INJURY
EVENTS

Once AKI is accurately diagnosed in real-time, a number of
EHR-enabled interventions become viable. One of the most
exciting prospects is AKI prediction—detecting events before
they occur. AKI events can be temporally anchored within the
EHRwhich creates a pre-disease phase of care containing the data
which accumulated prior to AKI. High-content, high-throughput
techniques can be applied to this data to identify a pre-AKI signal
which, in turn, can help discriminate between patients at low and
high risk for AKI. The ability to predict AKI risk in this way
may have dramatic impact as there are not currently treatments
for AKI once it has developed (28–30). As patients at high risk
are identified, care can be modified and preventative and harm
avoidance strategies can be implemented (Figure 2) (31–36).

AKI prediction was the subject of the 15th Acute Dialysis
Quality Initiative (ADQI) conference (13, 37–39). This
conference highlighted several aspects related to AKI prediction
and risk stratification which impact our ability to fully realize the
potential of this big data approach. This consensus statement
noted that at the time of publication, almost all AKI prediction
models had employed a “supervised” approach, meaning that
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FIGURE 2 | Impact of Big-Data AKI Interventions. Real-time AKI diagnosis temporally separates EHR data into pre-illness and post-illness categories. The pre-AKI

data can be used for predictive analytics. The ability to accurately identify patients at high AKI risk allows preventative strategies to be employed. An episode of Stage

2 AKI (dashed line) could be completely prevented, flattening the creatinine trajectory (dotted line). After AKI is diagnosed, real time notification allows providers to

modify care with the goal of mitigating disease severity. Appropriate interventions might result in a patient developing Stage 2 (dashed line) rather than Stage 3 AKI

(unbroken line). This, in turn, might improve long term (AKI resolution) outcomes. Regardless, once the AKI has resolved, the ability to identify these patients

accurately, allows them to be “tagged” and followed whether they developed ESRD, CKD, or experienced full recovery.

potential predictors were chosen a priori based upon their
association with AKI in prior studies (40–45). While certainly
statistically sound, these approaches do not take full advantage
of big data informatics methods. “Unsupervised” techniques
identify predictors without oversight or prior prejudice.
Although they represent a departure from more traditional
model building approaches, the use of these innovative, dynamic
techniques are necessary to completely optimize the use of EHR
data (13).

Since the 15th ADQI conference, a number of studies
examining AKI prediction models have been performed. An
excellent systematic review of prognostic models was published
in 2017 (46). Hodgson et al. identified 53 models designed to
predict hospital acquired AKI, 11 of which met their inclusion
criteria. Although the area under the receiver operative curve
(AUROC) ranged from 0.71 to 0.8 in the model derivation
populations, AUROC dropped significantly during the validation
phase (0.66–0.8 and 0.65–0.71 in the internally and externally
validated studies, respectively). The manuscript highlighted
methodologic shortcomings and inadequate consideration of
electronic automation as significant limitations to successful
implementation. In 2019, a similarly styled review identified
comparable issues with currently published predictive strategies
(47). Interestingly, this study highlighted the fact that much AKI
in adults is community acquired which cannot be addressed
using most EHR-enabled prediction models. While this is
true in adult populations, pediatric AKI tends to be hospital
rather than community acquired (48, 49). Thus, it is possible
that pediatric populations will benefit more substantially from
predictive models.

To give you a better sense of how big data predictive
techniques can be applied within the EHR, it may be helpful
to discuss an exemplar in greater detail. Tomasev et al. applied
deep learning techniques to a US Veteran’s Affairs (VA) dataset
(50). The dataset consisted of de-identified EHR data for
all patients aged 18–90 years who were admitted to a VA
hospital between October 2011 and September 2015. In total,
the set comprised 703,782 patients and 6,352,945,637 clinical
events (individual data elements). Unsupervised, deep learning
modeling was applied to this dataset with the goal of predicting
AKI. This approach predicted 56% of AKI events and 90% of
dialysis-requiring AKI. 84% of Stage 3 AKI was predicted up
to 48 h in advance of the event and only two false positive
predictions were generated for each true positive. Although this
may initially sound like a high false positive rate, responding
to all alerts (positive and negative) would require attending to
<1% of hospitalized patients. Although this population isn’t
representative of pediatric inpatients, the technique is certainly
applicable and holds great promise. Future efforts should likely
utilize similar machine learning methodologies and insure that
any final models have the capacity for EHR integration.

ACUTE KIDNEY INJURY ALERTS

Accurately diagnosing AKI in real time also allows generation
of automated notifications or alerts. Simply put, AKI alerts
notify care providers as soon as a patient meets the diagnostic
criteria for AKI. This information, in turn, allows practitioners to
modify care in order to eliminate injurious agents or conditions,
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prevent progression, and mitigate AKI sequelae (Figure 2).
While AKI alerts seem straightforward and effective at first
glance, in practice they have proven complex and challenging to
implement effectively.

In 2017, Lachance et al. performed a systematic review of AKI
alerting studies (51). Six studies comprised of 10,165 patients
were included in the analysis. While some of the studies reported
improvement in specific care processes, the pooled analysis did
not demonstrate improved mortality or a reduced need for
renal replacement therapy. Unlike many of the predictive studies
described in the above section, the majority of the alerting
systems were automated and fully integrated with the EHR.
Perhaps the most telling aspect of the studies was the fact that
most did not include a clinical decision support component.
The studies performed to date are clear on this issue—real time
AKI alerting in isolation is inadequate; any such alert must be
accompanied by relevant care recommendations.

Since then, several additional alerting studies have been
published. Al-Jaghbeer et al. studied 64,512 adult patients with
AKI and found that an AKI alert combined with clinical
decision support had a significant impact on patient outcomes
(52). Although the effect was small, this intervention led to
a sustained decreased in length of stay, need for RRT, and
mortality. Park et al. studied an alerting mechanism in 3,193
adults (53). In this analysis, the AKI alert was accompanied by
an automated nephrology consultation. While they did not find
a significant reduction in mortality, they did find that AKI was
accurately diagnosedmore frequently, the risk for severe AKI was
reduced, and AKI recovery was more common. Unfortunately,
no outcome driven AKI alerting studies have been performed
in children. Holmes et al. did prospectively implement an AKI
diagnosis/alerting tool within the national Wales laboratory
information management system, however, no intervention was
included with the alert (54). As a result, it was not possible to
assess the outcome impact of the alert, however, the authors did
report a significantly increased incidence of AKI detected by this
approach. It is clear that while alerting has great promise, we have
not yet fully realized its potential. The combination of an alert
with clinical decision support is a large part of the solution, but
until better therapeutic options become available, AKI alerts may
continue to have only an incremental impact.

LONGITUDINAL AKI CARE AND AKI
TRACING: THE POST-DISEASE STATE

Traditionally, AKI was considered a self-limited disease.
However, the long-term ramifications associated with renal
injury have now been well-described. AKI has been linked
with greater risk for new or progressive chronic kidney disease
(CKD), hypertension, stroke, and cardiovascular disease (5, 55–
58). Despite this, patients who experience AKI often do not
receive adequate follow up care (59). Largely, this can be traced to
a lack of awareness amongst patients and providers of both AKI
and its consequent risks (60). This lack of recognition hampers
our ability to track AKI survivors, especially across institutional
boundaries and administrative datasets (60, 61).

One of the greatest potential benefits of applying big data
concepts to AKI is the ability to overcome many of these barriers.
Tracking patients with AKI hinges on our ability to apply an
AKI identifier “tag” (61). The aforementioned EHR enabled
identification technique described above allows such a tag to be
reliably applied. While a myriad of potential identifiers could
be used, something as simple as the International Classification
of Diseases Ninth/Tenth Revision (ICD-9/10) AKI code might
be adequate. Electronically applying the KDIGO AKI definition
in an automated fashion within the EHR infrastructure will
essentially eliminate the low sensitivity historically associated
with ICD9/10 coding (62, 63). Regardless of the tag ultimately
chosen, once applied, patients with AKI can be followed at the
patient, institution, and population level.

At the patient level, children tagged as AKI survivors could
be directed into the appropriate follow up clinic. For example,
the AKI tag could, at discharge, automatically notify the primary
provider of the diagnosis and place a nephrology referral (64).
The discharge order could even generate outpatient orders for
creatinine and albumin/creatinine ratios, which is consistent the
recommendations of the KDIGO guidelines onAKI (7); currently
patients who experience AKI should be assessed within 3 months
of the event (7, 25). This is relevant as observational studies
have suggested that ambulatory nephrology follow up care after
AKI improves outcomes (65). Within an institution, this tag
could increase awareness and support clinical decision making.
Providers could be directed to avoid nephrotoxic medications or
employ more frequent creatinine monitoring in tagged patients.
Clearly, at the population and intuitional level, this will be
most effective in a self-contained health care organization. Some
degree of system integration will be required if follow up care
will be provided outside of the institution which applies the tag
(61). At the population level, accurate AKI diagnosis and tagging
allows patients to be tracked over time. Patients could be assigned
a unique identifier which would allow them to be followed
between institutions and across administrative databases. The
ability to trace patients in this manner would likely lead to a more
comprehensive description of the healthcare burden generated
by AKI. Administrative databases currently rely upon ICD9/10
codes to identify and track AKI events which is associated with
underdiagnosis and a bias toward more severe episodes (60). As
a result, the cost and morbidity data based upon analysis of these
databases inaccurately reflects of the entire spectrum of disease.
Additionally, at the population level, this approach could enable
more efficient recruitment into clinical trials and registries which,
in turn, creates greater opportunity for scientific advancement.

CONCLUSIONS

Over the past decade, the healthcare community has seen a
surge in EHR adoption and the development of innovative
informatics methods. Contemporaneously, the critical care and
nephrology communities have created a standardized definition
for AKI based upon relative chances in discrete data elements.
This confluence of events has created unique opportunities for
AKI research and care improvement. Integrating the definitional
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criteria for AKI into the EHR can identify patients who develop
AKI precisely at disease onset. This enables the application
of predictive models, real time AKI alerting, and tracking of
events and patients across institutions, registries, and databases.
These interventions, in turn, allow us to better describe
AKI epidemiology and improve outcomes at the patient and
population level (Figure 2). The promise of EHR enabled big

data approaches to AKI discovery and care improvement are
substantial and the potential benefits warrant additional work to
overcome existing challenges and barriers.
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Acute kidney injury (AKI) is independently associated with morbidity and mortality in

critically ill neonates, children, adolescents, and young adults. AKI occurs commonly in

this population, and the vast majority of published studies utilize only a serum creatinine

based criteria for AKI diagnosis and staging. While urine output criteria have been a

part of all AKI systematic and multidimensional AKI definitions for the past 15 years,

oliguria based on these definitions is difficult to extract from the electronic health record.

This manuscript reviews the published data regarding the impact of oliguria on patient

outcomes, and the contribution of oliguria to % fluid overload and resultant changes in

serum creatinine based epidemiology. The aim of this manuscript is to demonstrate that

oliguria is an incredibly valuable biomarker for the management of patients with, or at-risk

for, AKI.

Keywords: acute kidney injury, oliguria, children, fluid overload, epidemiology

INTRODUCTION

Acute kidney injury (AKI) occurs commonly in patients admitted to intensive care units and is
independently associated with morbidity and mortality across the entire spectrum of patient age,
from neonates to elderly adults (1–3). While extensive efforts have been focused on identifying
markers of structural kidney injury (4), our current diagnostic AKI criteria still rely on changes in
kidney function markers, namely serum creatinine, and urine output (5). Most studies to date have
utilized only serum creatinine, as it is a discrete data field in the electronic health record with a
singular validated measured value, whereas urine output requires a dynamic assessment of change
with a time based value in the denominator. Recent data, however, have demonstrated that oliguria
may have a stronger association with patient outcomes, and neglecting the urine output definition
leads to missing a substantial proportion of patients with AKI.

The aims of this manuscript are to review the published data regarding the impact of oliguria on
patient outcomes, and the contribution of oliguria to fluid overload and resultant changes in serum
creatinine based epidemiology. After this review, it will become clear that oliguria is an invaluable
biomarker in the management of the patient with, or at-risk for AKI.

IMPACT OF OLIGURIA ON OUTCOMES IN THE CRITICALLY ILL

PATIENT

Current diagnostic and staging criteria based on the recommendations of the Kidney Disease
Improving Global Outcomes (KDIGO)Work Group for AKI are listed in Table 1 (5). Kellum et al.
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TABLE 1 | AKI staging by the kidney disease: improving global outcomes disease

(KDIGO) guidelines (5).

AKI stage Creatinine criteria Urine output criteria

Stage 1 1.5–1.9 x baseline OR

≥ 0.3 mg/dL absolute increase*

<0.5 mL/kg/h for 6–12 h

Stage 2 2.0–2.9 × baseline <0.5 mg/kg/h for ≥12h

Stage 3 ≥3x baseline, OR

Increase in creatinine to 4 mg/dL, OR

Decrease in eGFR to <35

mL/min/1.73 m2, OR

Initiation of RRT**

<0.3 mL/kg/h for ≥24 h,

OR

Anuria for ≥12 h

*While relative creatinine changes may occur over a 7 days period, this absolute change

must occur over 48 h.

**Initiation of RRTwas used as an outcome rather than a diagnostic criteria for this analysis.

applied the serum creatinine and urine output AKI criteria
in over 32,000 adults at their single center and assessed for
associations with morbidity and mortality in patients who met
the serum creatinine or urine output criteria alone and in
combination (6). They observed a significant increase in hospital
length of stay, renal replacement therapy provision and hospital,
30-, 90, and 1 year mortality in patients who experienced AKI
by either criteria. Importantly, the occurrence of these poor
outcomes nearly doubled in patients who developed AKI by both
criteria vs. either criteria alone.

The multi-national prospective Assessment of Worldwide
Acute kidney injury, Renal angina and Epidemiology (AWARE)
study enrolled nearly 5,000 children to evaluate potential
associations between KDIGO Stage 2 or 3 AKI and outcomes
in critically ill children (2). Indeed, Stage 2 or 3 AKI was
associated with a 1.77 increased risk of 28 days mortality,
after controlling for 16 variables associated with mortality on
univariable analysis. A recent study assessed the 3,318 patients
in the AWARE cohort with sufficient serum creatinine and UOP
data to compare outcomes based on AKI using either criterion
alone, or in combination (7). Twenty-eight-day mortality was
higher for patients Stage 2 or 3 AKI by creatinine criteria (6.7%)
or UOP (7.8%) than patients with no AKI or Stage 1 AKI (2.9%).
It is important to note that 18.1% of patients with Stage 2 or 3 AKI
only met the UOP criteria, and would have been misclassified
as not having severe AKI. While 28-day mortality did not differ
between patients with Stage 2 or 3 AKI by creatinine alone
vs. UOP alone, patients who met Stage 2 or 3 by both criteria
experienced a 5-fold increased 28-day mortality rate (38.1%).
Thus, taken together, these large adult and pediatric studies
support routine assessment of both serum creatinine and UOP
for AKI diagnosis in critically ill patients.

CONNECTION BETWEEN OLIGURIA AND

RESULTANT FLUID OVERLOAD AND

EFFECTS ON AKI EPIDEMIOLOGY

Multiple studies have demonstrated the association between ICU
fluid accumulation and morbidity and mortality in children.
These studies were the subject of a comprehensive systematic

TABLE 2 | How do the KDIGO UOP AKI criteria impact fluid accumulation in a

case of septic shock after 24 hours?

KDIGO

stage

Metric Duration %FO

1 <0.5 ml/kg/h for

6–12 h

6 h (1,800 + 400ml In−90ml Out) 7.0

12 h (1,800 + 800ml In−180ml Out) 8.1

2 <0.5 ml/kg/h ≥12 h 24 h (1,800 + 1,600ml In−360ml Out) 10.1

3 <0.3 ml/kg/h for 24 h 24 h (1,800 + 1,600ml In−216ml Out) 10.6

OR 12 h (1,800 + 800ml In−0ml Out) 8.7

Anuria 24 h (1,800 +1,600ml In−0ml Out) 11.3

Assumptions for calculations:

1) 30 kg patient (body surface area = 1.0 m2 ) with septic shock.

2) 1,800ml fluid resuscitation (60 ml/kg).

3) 1,600 ml/day standard fluid prescription (BSA metric).

4) Upper limit of KDIGO Urine Output criteria.

5) Insensible losses not factored into the calculation since critically ill patients are often

intubated and have minimal insensible losses.

review and meta-analysis by Alobaidi et al. and an extensive
review is beyond the scope of this paper (8). In general,
however, fluid overload of >10–20% body weight was noted to
be a threshold that demonstrated associations with prolonged
mechanical ventilation, ICU length of stay and mortality,
both in patients who received, or did not receive renal
replacement therapy.

In the following case, we can assess the resultant fluid
accumulation status based on a standard volume of fluid
resuscitation, required daily intake, and oliguria based on
KDIGO staging. The case involves a 30 kg (body surface area of 1
m2) patient with septic shock.Wewill assume the patient receives
60 ml/kg of crystalloid (1,800ml) for fluid resuscitation and then
is put on a fixed rate of fluid of 1,600 ml/day (based on a standard
rate of 1,600 ml/m2 BSA for a patient with normal kidney and
other homeostatic functions). Table 2 details the percent fluid
accumulation per unit time as defined by the upper limit of
UOP for each of the three KDIGO AKI strata. These calculations
demonstrate that the patient will achieve the 10% fluid overload
threshold within 24 h by KDIGO Stage 2 or 3 criteria, and would
be more than halfway to 10% fluid overload at 6–12 h with by
Stage 1 criteria. Thus, it is extremely important to note the UOP
rate and duration early in the ICU course, as the patient is at
risk of developing significant fluid accumulation association with
morbidity and mortality.

As noted in the previous section, nearly 20% children in
the AWARE study who met the KDIGO UOP AKI criteria
did not meet the serum creatinine criteria. Recent studies
have demonstrated the impact of fluid accumulation on AKI
ascertainment by serum creatinine criteria, with the concept
that serum creatinine may be diluted in a fluid overloaded
patient, thereby blunting the creatinine rise and leading to a false
negative assessment for AKI. Liu et al. performed this assessment
in the Fluid And Catheter Treatment Trial (FACTT), which
randomized 1,000 adult patients to a liberal vs. conservative
fluid provision strategy after resuscitation (9). They found a
significant reclassification of AKI in the patients randomized to

Frontiers in Pediatrics | www.frontiersin.org 2 January 2020 | Volume 7 | Article 56518

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Goldstein Oliguria as an AKI Biomarker

TABLE 3 | How do the KDIGO UOP criteria affect serum creatinine based on a dilutional effect after 24 hours?

KDIGO stage Metric Duration +FB (ml) Corr [SCr]

1 <0.5 ml/kg/h for 6–12 h 6 h (1,800 + 400ml In−90ml Out) 2,100 0.90

12 h (1,800 + 800ml In−180ml Out) 2,420 0.88

2 <0.5 ml/kg/h > 12 h 24 h (1,800 + 1,600ml In−360ml Out) 3,040 0.86

3 <0.3 ml/kg/h for 24 h 24 h (1,800 +1,600ml In−216ml Out) 3,184 0.85

OR 12h (1,800 + 800ml In−0ml Out) 2,600 0.87

Anuria 24 h (1,800 +1,600ml In−0ml Out) 3400 0.84

Assumptions for calculations:

1) 30 kg patient with septic shock.

2) 1,800ml fluid resuscitation (60 ml/kg).

3) 1,600 ml/day standard fluid prescription (BSA metric).

4) Upper limit of KDIGO Urine Output.

5) Volume of distribution of water = 18,000ml (600 ml/kg).

6) Corrected [SCr] = [(1 mg/dl) × 18,000 ml/(18,000ml) + fluid balance (FB)].

7) Insensible losses not factored into the calculation since critically ill patients are often intubated and have minimal insensible losses.

the liberal fluid administration group, and a higher mortality
rate in patients reclassified from not having AKI to having AKI
based on creatinine correction for fluid overload, compared
to patients who did not have AKI after creatinine correction.
Basu et al. performed a similar exercise in a pediatric cohort
undergoing the arterial switch operation for transposition of the
great vessels (10). In this study, AKI was associated with poor
outcomes including higher postoperative day 1 fluid balance,
higher inotrope scores postoperative days 1 and 2, and longer:
postoperative ICU length of stay, overall ICU length of stay, and
postoperative hospital length of stay. All of these associations
between AKI and morbidity strengthened after AKI status
was reclassified based on serum creatinine correction for fluid
overload. Table 3 illustrates the impact of KDIGO UOP criteria
on fluid balance and serum creatinine dilution applied to the
case of the 30 kg patient with septic shock, assuming a measured
serum creatinine of 1.0 mg/dl, after 12–24 h, the dilutional effect
led to a 10–16% decrease in serum creatinine levels.

CONCLUSIONS

In summary, most published studies in the AKI field rely on
serum creatinine based definitions, due to their ease of data
extraction from the electronic health record as well as the

technical challenges of urine collection in neonates, infants
and toddlers without an indwelling bladder catheter (11). Yet,
AKI defined by oliguria often portends a worse prognosis
and the AKI diagnosis would be missed in a substantial
proportion of patients where UOP is not assessed. While we
don’t yet understand the mechanisms for the worse outcomes
with oliguria, all of these observations support the concept
that assessment and recognition of oliguria, and its effect on
patient fluid accumulation and serum creatinine based AKI
diagnosis ascertainment, are crucial for management of critically
ill patients at risk for AKI. It is important to note however,
that early identification of patients at risk for severe AKI and
adverse outcome can influence physician’s decision-making, e.g.,
with regard to the implementation of the critical care bundle
for AKI or with regard to the early insertion of catheters
for subsequent initiation of renal replacement therapy. Hence,
therapeutic management of AKI benefits from criteria that allow
for an immediate diagnosis of AKI, integrating the information
regarding the impact of UOP on AKI diagnosis presented in
this article.
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Acute kidney injury (AKI) affects one in four neonates, children, and adults admitted to the

intensive care unit (ICU). AKI-associated outcomes, including mortality, are significantly

worsened. Several decades of research demonstrate evidence for a need to rethink the

pathophysiology and drivers of injury as well as to reconsider the existing diagnostic

framework. Novel urinary and serum biomarkers of injury have, however, not been readily

integrated into practice—partially because of the limited scope to current testing. The

predominant focus to date has been the adjudication of a single biomarker measured at a

single point of time for the prediction of either AKI progression or disease-relatedmortality.

This approach is pragmatically problematic. The imprecise, umbrella classification of

AKI diagnosis coupled with the absence of a consistently effective set of therapies

creates a difficult rubric for biomarkers to demonstrate value in the scope of practice.

AKI is, however, not a binary process but more an ICU syndrome—with complex biology

underpinning injury, interacting and disrupting other organ function, multidimensional in

manifestation, and varying in severity over time. As such, a more appropriate diagnostic

paradigm is needed. In this minireview, the status quo for AKI diagnosis and associated

limitations will be discussed, and a novel, dynamic, and multidimensional paradigm will

be presented. Appreciation of AKI as an ICU syndrome and creation of an appropriately

matching and sophisticated diagnostic platform of injury assessment are possible and

represent the next step in AKI management.

Keywords: AKI, biomarkers, pediatrics, critical care, syndrome, NGAL, TIMP2/IGFBP7, FST

INTRODUCTION

Acute kidney injury (AKI) continues to be an epidemic in patients admitted to the intensive care
unit (ICU) (1–4). Across age range (from neonates to adults), regardless of illness severity, and
independent of socioeconomic factors, critically ill patients suffering AKI have increased hospital
resource utilization (mechanical ventilation, length of stay), higher costs of care, and increased rate
of death (1, 5). Significant academic effort has been placed into improved earlier recognition and
prediction of disease, either through the tradition markers of serum creatinine (SCr) and/or urine
output (UOP) or more novel biomarkers in the urine or serum. Despite nearly two decades of data,
however, very few new assessment techniques have gained acceptance and integration into practice
(6). Part of the reason may be a near monocular focus on biomarker prediction of AKI progression
or AKI-related mortality—two outcomes which are confounded by myriad other factors. AKI
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does not occur in isolation. The drivers of AKI and the end-
organ effects of AKI, like other ICU syndromes such as sepsis and
“ARDS,” extend beyond the kidney itself, are multidimensional
and change over time (7). Like sepsis and ARDS, management
is supportive and aimed at preventing further injury if possible.
Finally, there remain no consistently effective, definite therapy
for AKI—as there are no true restorative or curative therapies
for sepsis and ARDS. In sepsis and ARDS, a significant
focus of attention is now placed on refining the phenotype
of injury and identifying characteristic manifestations of the
syndrome(s) amenable to intervention and trackable over time
(8). This is possible for AKI as well. In this minireview,
a contemporary approach to biomarker characterization will
be discussed. A dynamic and multidimensional approach to
AKI, using an AKI biomarker composite (ABC) panel over
time, will be presented as a versatile theoretic construct
usable to characterize and phenotype AKI itself, refining the
precision of diagnosis and making possible the ability to track
different aspects of the injury as they change over time. The
dynamic assessment would facilitate a focus on the process of
management, similar to how sepsis and ARDS are assessed
and managed. Shifting the focus in this way would potentially
increase the opportunities for AKI biomarkers to demonstrate
importance in clinical management. Given the increasing
broader recognition of both AKI and associated complications,
a contemporary and renewed approach to the injury syndrome
is warranted.

ONE POINT AND ONE OUTCOME: THE

LIMITATIONS OF STATIC ASSESSMENT

Over two decades of research in biomarker research has failed
to result in a consensus opinion on the value of incorporating
novel diagnostics into routine practice (6, 9). Meta-analyses of
biomarker data yield information with limited individual-specific
clinical applicability (9, 10). A majority of the studies included in
such analyses investigate a single biomarker measured at a single
timepoint using the metric of predictive discrimination [area
under curve–receiver operating characteristics (AUC-ROC)] to
evaluate predictive performance for AKI progression, use of
renal replacement therapy, and/ormortality. The AUC-ROCdata
available, however, identify very few biomarkers with consistently
excellent performance (AUC-ROC > 0.85–0.90) for prediction
of the three separate outcomes or any individual outcome
across multiple populations. Problematically, the comparisons
between biomarkers are used to identify the “best” biomarker,
with the implication that the best marker would be not only
broadly applicable but also the parallel of troponin for acute
coronary syndrome—sensitive to injury, responsive to degree
of damage, and specific for type of injury (11). There are
strengths and weaknesses with this approach. Numerous models
of experimental or clinical AKI have identified a number of
putative biomarkers, both in the urine and serum (12). Using
a consistent outcome(s) leads to a generalizable understanding
of the performance of a biomarker vs. other biomarkers (i.e.,
frame of reference). In addition, picking consistent outcome(s)

allows adjudication of the performance of that biomarker
across different populations of interest. Unfortunately, there are
significant limitations to the current approach. The biomarkers
themselves have been mapped to reflect different locations of
injury or mechanisms of injury within the kidney, but the
predicted outcomes do not reflect this etiologic or “geographic”
heterogeneity (13, 14). The individual biomarkers demonstrate
marked variation in kinetic profile in relation to injury—rate of
rise, magnitude of elevation in relation to purported injury, and
rate of decay of detectable biomarker concentration (7, 15, 16).
However, using a single point in time does not consider how
these biomarkers change over time. Available data would suggest,
however, that the change in biomarker concentration can be
correlated with phase of AKI (onset, progression, resolution).
Together, biomarkers have not been commonly used to subtype
or phenotype AKI (thereby refining the precision of diagnosis)
but to predict AKI diagnosed by changes in SCr or UOP.
Meanwhile, consensus expert opinion has explicitly delineated
the importance of improving the precision of AKI diagnosis
and, conversely, moving beyond the imprecision of using SCr
or UOP alone for delineating functional vs. tubular damage
associated AKI (17). In addition, comparison of biomarker AUC-
ROC values between studies often does not typically involve
statistical tests for superiority (i.e., which test is “better”).
Finally, the conclusion of many individual studies and meta-
analyses highlighting the biomarker(s) demonstrating the highest
predictive performance stops short of offering suggestions of
how management itself can change. The implementation is
for diagnosis or prognosis only, rarely to guide therapy, or
even predict response to therapy (theragnosis). Amidst the
numerous meta-analyses, summary statements, and reviews
on AKI biomarkers, over 200 biomarkers have been studied
in some capacity in human populations—ranging across age
and illness. The proportion of these data are notable—
for the predominance of a small subset of the discovered
markers (∼ 10/200) and focus on certain populations of
interest (Supplementary Figure 1).

The lack of proven therapeutic options and reliance
on supportive management, an inherently reactive strategy,

is partially a result of the limited diagnostic tools used

in practice. Although stratification systems such as RIFLE,

AKIN, and KDIGO have made possible the identification of

AKI epidemiology and outcomes, there remains considerable

skepticism about what AKI actually is Devarajan (18). Meaning,

what injury is actually being predicted by the stratification

system-based scores, by changes in creatinine concentration?
Just as sepsis and ARDS syndromes are complex and unlikely
to be completely described (either predicted or characterized)
by a single marker such as fever, white blood cell count, or
oxygen saturation, it would be illogical to presume that the
complex biology of AKI could be comprehensively ascertained by
a single biomarker. Yet, the diagnosis andmonitoring of AKI, has
largely been dependent on two determinants [change in serum
creatinine (SCr) from baseline and then from day to day or
tiered amounts of urine output] (Supplementary Table 1). The
importance of urine output assessment has only recently been
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highlighted (19, 20). These markers carry known limitations—
including only affording the ability to identify AKI broadly and
without precision to type of injury (12).

Taken together, the existing diagnostic paradigm is imprecise,
poorly applicable to a complex and changing disease process akin
to a syndrome, and not capable of helping guide management.
Novel diagnostics have, unfortunately, been tested in the exact
system as existing diagnostics, which has hindered identification
of their potential for prognosis, diagnosis, and theragnosis.

PRECISION IN AKI: COMBINATIONS AND

SEQUENTIAL BIOMARKERS

The management of critically ill patients is improved by
diagnostics specific for the type of injury and the ability to
rely on these tests to mirror the recovery or progression of
injury. Problematically, the concordance of SCr change with
renal injury, the mainstay of alerting a provider to the presence
or development of kidney insult, is fraught with limitation,
particularly in younger and smaller patients. Reliance on a
substandard diagnostic has propagated misclassification of AKI
into broad, outdated, and imprecise umbrella categories of “pre-
renal” or “intrinsic” AKI. For example, “pre-renal” theoretically
defines, in one term, severity, timing, duration, and reversibility
of injury while simultaneously underscoring the recommended
therapy (i.e., fluid administration). A patient with congestive
heart failure, however, would be diagnosed as having pre-renal
AKI but violates the aforementioned descriptions of injury
and could be significantly harmed by such a one-size-fits-all
approach. Furthermore, the pathobiology of pre-renal AKI, often
attributed to volume depletion or ischemic AKI, demonstrates
marked heterogeneity in acute gene dysregulation and adaptive
or maladaptive protein expression in the kidney (18). There is
also limited histological evidence supporting the dogma equating
intrinsic AKI to acute tubular necrosis (21).

The diagnosis of AKI is being refined. The Acute Dialysis and
Quality Initiative (ADQI) international consensus panels have
been instrumental in shifting the current paradigm. The 10th
ADQI advocated improving the precision of AKI nomenclature
using more pathophysiological terms such functional or tubular
damage-associated AKI (13) and using a combination of
biomarkers to refine the biology related to damage. The
combination of a functional marker (SCr) with a tubular damage
biomarker such as urinary neutrophil gelatinase associated
lipocalin (uNGAL) have been validated in several populations
to separate functional vs. damage-associated AKI (22–24). In
addition, the classification of “sub-clinical” AKI, damage without
measurable changes in SCr, has been made possible and is
associated with worse overall outcomes, both with regards to
kidney function and overall patient status (22, 25–27). The 16th
ADQI recommended study (including risk scores, functional
markers, and use of biomarkers) to identify, predict, and further
characterize patients with persistent AKI (i.e., ≥48 h of SCr
elevation or oliguria) and to consider SCr elevation with return to
baseline in the first 48 h to be considered separately from actual
AKI (28). Risk stratification systems such as the renal angina

index can identify the patients with the highest pretest probability
(risk) for evolution into severe AKI after 72 h (29). Meanwhile,
matching aberrancies in hemodynamic and bioenergetic drivers
of AKI with the kidney’s response to insult, as assessed by the
adaptive or maladaptive responses to injury, has opened the door
to diagnostics matching the phase of illness (30).

Biomarkers demonstrate time-dependent profiles reflective of
injury pathology. A broad adult study of multiple biomarkers
following cardiac surgery demonstrated unique temporal profiles
of the most commonly cited individual biomarkers: NGAL,
interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1),
and liver-fatty acid binding protein (31–33). An important
conclusion of these data and more recent individual population
study data is the concordance of specific biomarkers for specific
characteristics of AKI. For instance, the profile of KIM-1 appears
to be reflective of AKI with high risk of chronic kidney disease
(34, 35); in fact, follow-up studies of patients with cardiac surgery
associated AKI demonstrate persistent elevation of KIM-1 in
patients with chronic kidney disease following AKI. The temporal
profile of a biomarker reflective of kidney “stress,” the cell-
cycle arrest, marker tissue inhibitor of matrix metalloproteinase-
2/insulin-like growth factor binding protein-7 demonstrates
marked variation in relation to different drivers of potential AKI
(i.e., nephrotoxins, non-steroidal anti-inflammatory agents, and
cardiac surgery) (36, 37). Finally, case examples of sequential
uNGAL identifies fluid-based AKI phenotypes reflective of not
only AKI diagnosis and prognosis but also theragnosis (38).
The negative or positive deflection of the biomarker appears to
be predictive, specifically, of response to diuretic therapy and
function of the tubule for clearance of solute and fluid.

In the absence of novel biomarkers, simply assessing changes
in SCr or UOP in a new manner may yield informative,
actionable information. SCr in the mathematical construct of
kinetic estimated glomerular filtration rate offers insight as to
trajectory of filtration injury or recovery (39, 40). Adjustment
of the kinetic estimated glomerular filtration rate for total body
volume, often significantly labile in critically ill patients, may
further refine the prognostic value of this methodology (41).
Correction of SCr for fluid balance and as the fluid balance
changes may delineate the independent effects of AKI and fluid
overload (FO), identifying unique AKI-FO phenotypes (42, 43).
Recent data from both adults and children demonstrate the
importance of close monitoring of urine output early in ICU
course (19, 20). As accumulation of fluid can be a proxy for
reduced UOP, and evidence indicates excessive positive fluid
balance (FO) is associated with poor outcome (44), attention
to how UOP and FO change over time may offer a point
of intervention earlier than changes in SCr. To this end, the
furosemide stress test (FST), a standardized metric to gauge urine
flow after a single diuretic dose, may be valuable to phenotype
renal reserve and tubular function (36, 45, 46).

In total, diagnostic assessment of AKI should mirror the
pathology of the syndrome. The biology of AKI is manifest
in different segments of the nephron and via different
mechanistic underpinnings. The manifestation of AKI itself
varies considerably as well. Currently, the focus rests squarely
upon clearance of solute and fluid, but a significant body of
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evidence supports the extrarenal distant organ effects of isolated
AKI—demonstrating wide ranging physiological perturbation.
Following biomarkers in a multiplicative fashion and as they
change over time will likely facilitate a deeper understanding of
what injury is actually occurring under the umbrella diagnosis of
AKI and potentially the trajectory of these injuries.

A DYNAMIC MULTIDIMENSIONAL

APPROACH TO AKI: THE AKI BIOMARKER

COMPOSITE

ICU management is multidimensional and dynamic. The
care for a patient suffering sepsis or respiratory failure is
guided by not only patient exam and context but also a
series of diagnostic evaluations that occur in multiplicative
fashion over the time of ICU course. As an example,
respiratory failure from ARDS is assessed, managed, and
treated in a sequential, iterative way. Multiple diagnostic
inputs ranging from physical exam, radiography, blood gas
assessment, capnography, and pulse oximetry are used over time
to personalize the approach to a patient. Unique interventions
are also specifically directed toward improving oxygenation,
augmenting ventilation, reducing secretion load, and mitigating
bronchospasm—all within the paradigm of monitoring the
syndrome as it changes over time using a diagnostic platform
that concurrently changes. Similarly, to track the progression of
septic shock, markers such as lactate and central venous oxygen

saturation (SvO2) are followed longitudinally; measurement
at a single timepoint only does not allow for adjudication
of management or make it possible to track effects of
therapy (Table 1). A dynamic diagnostic approach to AKI,
mirroring the approaches used for respiratory failure or septic
shock, may ultimately lead to more precise and effective
therapeutic options.

An AKI biomarker panel may facilitate simultaneous patient
monitoring and targeting. Akin to a blood gas assessment for

the purposes of tracking and managing respiratory failure, an

ABC can be constructed to parallel biology and mechanistic

characteristics of the injury (Figure 1). Urine output reflects

homeostasis and overall organ function, while SCr serves as
a reflection of filtration. This parallels a blood gas: pH is

used as the first arbiter of homeostasis in respiratory failure,

while partial pressure of oxygen (pO2) is a marker of filtration
of oxygen along the alveolar–capillary endothelial border. A

marker of tubular epithelial injury mirrors the marker in the
lungs of alveolar epithelial function—the ability to exchange
gas (O2 for carbon dioxide—CO2). Damage markers such as
uNGAL may identify renal tubular epithelial cell dysfunction,
similar to the imputation of alveolar epithelial functionality
determined by an arterial partial pressure of carbon dioxide
(pCO2). The furosemide stress test as mentioned earlier reflects
renal functional reserve and can be utilized as a functional
capacitance marker, identifying the amount of reserve left in
the renal system. Incorporation of FO% into the composite
is a real-time assessment of compensation in relation to AKI,

TABLE 1 | Comparison of common diagnostics used for ICU syndromes.

Syndrome Prevalence in ICU patients Effective management Risk stratification Diagnosis Surveillance and

therapeutic monitoring

Sepsis 5–10% Antibiotics

Early Goal Directed Therapy

APACHE-III

SOFA, qSOFA

PRISM I, II, III, IV

PELOD 1, 2

PIM 1, 2

Mental Status

Temperature

HR, RR

MAP

WBC Lactate

SvO2

Blood Culture/GS

CSF Cx/GS

Urine Cx/Analysis

Physical Exam

Lactate

pH

Base deficit or excess

SvO2

Urine Output

Coagulation Profile

Echocardiogram

C-reactive protein

ESR

Procalcitonin

NIRS Oximetry

Cytokine profile

IVC POCUS

ARDS 6–10% Low tidal volume ventilation

Neuromuscular blockade

Prone Positioning

Berlin Criteria

OI

S/F ratio

P/F ratio

Co-morbidity

CXR

Chest CT

SpO2

PaO2

Echocardiogram

Sputum Culture

CXR

SpO2

pCO2

pH

Lung Ultrasound

Respiratory Secretions

AKI 25–30% Creatinine Creatinine

Urine Output

Creatinine

Urine Output

Common ICU injury syndromes with associated characteristics related to prevalence, management and detection. APACHE-III = Acute Physiology, Age, Chronic Health Evaluation.

SOFA, Sequential Organ Failure Assessment; PRISM, Pediatric Risk of Mortality; PELOD, Pediatric Logistic Organ Dysfunction; PIM, Pediatric Index of Mortality; HR, heart rate; RR,

respiratory rate; MAP, mean arterial pressure; WBC, white blood cell count; SvO2, venous oxygen saturation; GS, gram stain; CSF, cerebrospinal fluid; Cx, culture; ESR, erythrocyte

sedimentation rate; NIRS, near infrared spectroscopy; IVC POCUS, inferior vena cava point of care ultrasound; OI, oxygenation index; S/F, saturation of oxygen/fraction of inspired oxygen;

P/F, partial pressure of oxygen/fraction of inspired oxygen; CXR, chest radiograph; CT, computed tomograph; SpO2, oxygen saturation; pCO2, partial pressure of carbon dioxide.
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FIGURE 1 | The AKI biomarker composite (ABC). Drawing a parallel to the arterial blood gas, the ABC integrates a series of individual AKI biomarkers to facilitate the

status and progression of acute kidney injury (AKI). An AKI biomarker composite integrates a marker of homeostasis (urine output: UOP), filtration (serum creatinine:

SCr), tubular function (urine neutrophil gelatinase associated lipocalin: NGAL), renal reserve (furosemide stress test: FST, renal functional reserve: RFR), renal

compensation (percent fluid overload: FO%), and stress (tissue inhibitor of matrix metalloproteinase-2/insulin like growth factor binding protein 7: TIMP2/IGFBP7).

potentially an analog to the base excess or deficit on a blood gas.
Finally, tissue inhibitor of matrix metalloproteinase-2∗insulin-
like growth factor binding protein-7 may identify varying levels
of renal stress, just as serum lactate is used for shock to
adjudicate the balance between supply and demand in the
setting of oxygen metabolism. The ABC offers the possibility
of identifying how much stress exists on the system, the
change from homeostatic conditions, aberrancies within the
system for clearance of fluid and solute, and how much renal
reserve exists—and does so concurrently—as opposed to testing
individual biomarkers in isolation and/or at a single point in
time. Although untested at this time, and theoretic in nature, this
multidimensional combination of markers used simultaneously
and over time may provide a dynamic system for tracking
AKI—prognosis, diagnosis, and theragnosis. The concept could
be implemented in a manner analogous to the use of arterial
blood gas sampling for the purposes of respiratory failure—
iterative to guide intervention on the ventilator (e.g., fluid
balance management) or as an adjudication of a daily trend.
Significant work will be required to demonstrate validity to
this approach; however, the justification remains simple—the
existing diagnostic paradigm is simply too generic, imprecise,
unsophisticated, and cannot reasonably be expected to match the
heterogeneity and complexity of AKI.

The AKI syndrome affects critically ill patients of all
ages and requires a personalized medicine approach. A
contemporary and appropriately personalized diagnostic

paradigm is possible, practical, and may ultimately identify
opportunities to target and manage specific aspects of injury in
real time.

CONCLUSION

In summary, critically ill patients suffering from AKI need
a modern and personalized approach to care. Use of a
conventional and one-size-fits-all diagnostic approach to AKI
will likely perpetuate the poor outcomes associated with AKI.
The potential exists to refine the understanding of AKI and
improve diagnostics using sophistication and precision. A
dynamic and multimodal approach to AKI, paralleling the
approach used for other critical illnesses, may make it possible
to identify newer and targeted therapeutic possibilities in
the future.
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Nihilism has been pervasive in the acute kidney injury field for decades, given that

no studies, had been able to reduce AKI rates in hospitalized patients. Furthermore,

children with AKI comprise an orphan population, where there is little incentive to

develop diagnostics, therapeutics or devices specifically for them. The 3rd International

Symposium on Acute Kidney Injury in Children, held in Cincinnati in October 2018,

provided a platform to demonstrate the advancements in the diagnosis and treatment

of children with, or at-risk for AKI, and also highlighted barriers to advancing care for

this population. The progress made in the pediatric AKI since the 2nd International

Symposium in 2016, highlighted the positive outcomes emanating from federal agency,

private foundation and corporate sponsor investment in pediatric AKI. As a result, the

time should be over for nihilism in the pediatric field.

Keywords: acute kidney injury, children, renal replacement therapies, biomarkers, nihilism

INTRODUCTION

Nihilism comes from the Latin nihil, or nothing. It is the belief that values are falsely invented. The
term nihilism can also be used to describe the idea that life, or the world, has no distinct meaning or
purpose. Nearly 20 years ago, Kellum and Angus wrote a landmark editorial reviewing the current
state of acute renal failure (1). This editorial contained six foundational statements:

• A commonly held belief among intensivists and nephrologists is that patients die with, and not
of, acute renal failure (ARF);

• Although this may seem a trivial distinction, its implications are far reaching;
• This raises the rather obvious but tricky questions of “why” and “what can we do to improve

the situation”?
• Preventing the development of ARF in at-risk populations is an attractive but difficult goal;
• Well-powered studies have failed to demonstrate that drugs, such as low-dose dopamine or

diuretics, can prevent onset or deterioration of renal function in the critically ill, and some
studies have even suggested harm;

• The best advice to date is disappointingly empirical—avoid hypotension, dehydration, and
exposure to nephrotoxins.

Implicit in these statements a heralding of a turning point from in the perspective from ignorance
to nihilism, which in many cases, persists today. However, these statements also reflect the authors’
hope that since patients are dying from and not just with their acute renal failure, it is incumbent
upon clinician researchers in the field to not give into nihilism, but do something about it.

PROGRESS IN PEDIATRIC AKI

The 3rd International Symposium on Acute Kidney Injury in Children, held in Cincinnati
in October 2018, provided a platform to demonstrate the advancements in the diagnosis and
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treatment of children with, or at-risk for acute kidney injury.
Selected advancements are highlighted in this issue of Frontiers
in Pediatrics. A tangible demonstration of the proverbial needle
moving forward was a detailing of the fulfilled expectations from
the end of the 2nd International Symposium held in 2016. At the
end of the 2nd Symposium, I highlighted a number of areas I
“hoped” we would be discussing in 2018:

(1) AKI biomarker directed care algorithms;
(2) Renal replacement therapy devices specifically designed for

and/or targeted for uses in children with the plan for FDA
clearance for use in children in the United States;

(3) Dissemination of the successful single center nephrotoxic
medication associated AKI program NINJA (2, 3), to
multiple pediatric centers.

The progress toward each of these goals is detailed below.

AKI Biomarker Directed Care Algorithms
Meersch and colleagues employed use of the cell-cycle arrest
biomarkers, TIMP-2-IGBP7 (NephrocheckTM, Biomerieux, Inc.),
to direct a care bundle in patients with an elevated biomarker
product after cardiac surgery (4). Although this study was
conducted in adults, the investigators demonstrated a significant
reduction in AKI rates in the patients who received the
bundle of care. Our team is currently conducting a prospective
study in the pediatric ICU population to integrate a real time
AKI risk assessment algorithm, the renal angina index (5–7),
with urine AKI biomarker assessment (Neutrophil Gelatinase
Associated Lipocalin, NGAL, BioPorto, Inc.), to guide fluid
management and renal replacement therapy initiation (TAKING
FOCUS 2, NCT03541785, 2P50 DK096418-06). Initial results
were presented at the 3rd International Symposium showing
patients who were RAI+ (with a score >8) and NGAL+ (with
a concentration >150 ng/ml), comprised an overwhelmingly
majority of patients who developed >10% fluid overload and
required renal replacement therapy. The importance of using an
AKI biomarker in these studies is to enrich the sample of patients
to include only those who would be truly at increased risk for
AKI development. These studies should serve as a trial design
template for future interventional trials aimed at preventing AKI
or mitigating its effects.

Renal Replacement Therapy Devices

Specifically Designed for and/or Targeted

for Uses in Children With the Plan for FDA

Clearance for Use in Children in the

United States
Currently, three different devices have completed studies and/or
have applications in process with the FDA for a pediatric
indication. The HF20TM CRRT circuit (Baxter Healthcare,
McGaw Park, IL), would represent that small dedicated CRRT
circuit available in the US. It has been used in countries
outside of the United States for over 10 years (8). A five
center US pediatric consortium completed a prospective study
with the HF20TM in 2018 with the aim of FDA clearance
(NCT02561247). The Cardiorenal Pediatric Emergency Dialysis

Machine (CARPEDIEMTM, Medtronic, Inc., Mirandola Italy) is a
CRRT machine designed specifically for neonates with AKI and
is available in Europe (9, 10). The FDA is currently reviewing
a submission for the CARPEDIEMTM for clearance for use
in the United States. The Selective Cytopheretic Device (SCD,
Seastar, Inc., San Diego, CA), has been demonstrated to improve
outcomes in adult patients with AKI receiving CRRT, where the
circuit ionized calcium is maintained at <0.4 mmol/L (11). The
SCD is use in tandem with CRRT and its mechanistic effect is
by immune modulation. Currently, a 5 center US consortium
is prospectively evaluating the SCD in pediatric patients
(NCT02820350, R01FD005092). In addition, since the time of
the 2018 Symposium, a multicenter retrospective US study has
detailed the use and associated outcomes of an ultrafiltration
device (AquadexTM, CHF Solutions, Inc, Minneapolis, MN)
to support children with AKI and/or fluid overload (12).
Thus, these studies clearly demonstrate that despite significant
challenges, devices are being made specifically for children, or
successfully adapted for them. Hopefully, the devices under
consideration at FDA will be cleared and made available in
the US.

Dissemination of the Successful Single

Center Nephrotoxic Medication Associated

AKI Program NINJA, to Multiple Pediatric

Centers
Nephrotoxic medication exposure represents one of the most
common causes of AKI in hospitalized children. Our center
realized a 38% reduction in nephrotoxic medication exposure
and a 62% reduction in associated AKI after implementation of
the Nephrotoxic Injury Negated by Just in time Action (NINJA)
program (3). NINJA identifies patients in near real time who
are exposed to three or more nephrotoxic medications on the
same day or receiving an IV aminoglycoside or IV vancomycin
for three or more days. Exposed patients are then recommended
to have a daily serum creatinine to assess for AKI development
systematically. A nine center collaborative recently completed
a 3 year implementation of NINJA (1R18HS023763-01) to
determine if NINJA could be successfully disseminated to these
centers and to ascertain the contextual factors that accelerated or
hindered successful implementation. Preliminary data presented
at the 3rd International Symposium showed a 23.8% reduction
in AKI rates across the collaborative. Other data from this effort
assessed projected health care cost reductions associated with
NINJA, and various AKI rates in different service lines in the
NINJA collaborative.

CONCLUSIONS

While the nihilistic perspective Kellum and Angus were
concerned about nearly 20 years may still persist in some circles,
the advancements in AKI clinical care, research and investment
in pediatric AKI research and devices, suggests the tide may be
finally turning. The progress made in the past 2 years has been
especially dramatic, as highlighted in the pages of this Golden
Research Topic volume. With persistence and determination,
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a brighter future should be realized to improve outcomes for
children with, or at-risk for AKI. In the not too distant future,
the time for nihilism will be over.
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In 2013, literature about the epidemiology of neonatal acute kidney injury (AKI) was

limited to primarily retrospective, single center studies that suggested that AKI was

common and that those with AKI had higher rates of mortality. We developed a 24-center

retrospective cohort of neonates admitted to the NICU between January 1 andMarch 31,

2014. Analysis of the Assessment of Worldwide Acute Kidney Epidemiology in Neonates

(AWAKEN) cohort, has allowed us to describe the prevalence, risk factors and impact of

neonatal AKI for different gestational age cohorts. The ample sample size allows us to

provide convincing data to show that those with AKI have an increase independent higher

odds of death and prolonged hospitalization time (1). This data mirrors similar studies in

pediatric (2) and adult (3) critically ill populations which collectively suggest that patients

do not just die with AKI, but instead, AKI is directly linked to hard clinical outcomes.

This study has allowed us to answer multiple other questions in the field which has

expanded our understanding of the risk factors, complications, impact of fluid overload,

the definition of neonatal AKI and suggests interventions for improving outcomes.

Furthermore, this project brought together neonatologist and nephrologist within and

across centers. Finally, the AWAKEN project has enabled us to build relationships and

infrastructure that has launched the Neonatal Kidney Collaborative http://babykidney.

org/ on its way to accomplish its stated mission to improve the health of newborns with

or at risk for kidney disease through multidisciplinary collaborative research, advocacy,

and education.

Keywords: acute kidney injury, neonate, acute renal failure, collaborative, epidemiology, outcomes, survival

On April 9, 2013, the National Institute of Health sponsored a workshop in Washington DC with
the following objectives (1) review the state-of-the-art knowledge of acute kidney injury (AKI)
in neonates; and (2) determine the feasibility of studying this group in an organized prospective
manner. This conference brought together experts from the fields of pediatric nephrology,
neonatology, general pediatrics, industry, and professional organizations to get a broad perspective
on the issues to be considered. Two white papers were published. The first, reports a framework
whereby the scientific community can answer critical questions about how and when to evaluate
neonates at risk for chronic kidney disease (4). The second, focused on the definition of neonatal
AKI (5). Furthermore, this meeting solidified the need to develop amulti-center, multi-disciplinary,
neonatal kidney collaborative.

Up until this time, the field of neonatal AKI was limited to small single center studies. The use
of the staged AKI criteria had only just begun to be used in neonatal studies. Using these staged
AKI definitions, small single-center neonatal studies of very low birth weight neonates (6–11),
term asphyxiated infants (12–15), those who underwent extra-corporeal membrane oxygenation
(16–18), and cardiac pulmonary bypass surgery (19–22) had rates of AKI between 10 and 83%.
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Consistently in these manuscripts, those with AKI had higher
mortality than those without AKI; however, due to their relative
small sample size, it was difficult to surmise the independent
impact of AKI on survival after accounting for confounders.

At the American Society of Nephrology meeting in Atlanta
Georgia on November 7, 2013, a group of pediatric nephrologist
agreed to form a collaborative (27 and 5/7 weeks after conception
at the NIH Neonatal AKI workshop). The following Spring
at the Pediatric Academic Society in Vancouver, Canada we
had our first official Neonatal Kidney Collaborative meeting. At
this meeting interested neonatologist and nephrologist began to
develop themission, vision, strategy, and necessary infrastructure
for sustained collaboration. Shortly thereafter, researchers who
attended the NIH workshop, and those who were doing single-
center neonatal AKI studies joined the group. The only criteria
to join was a commitment to participate in a retrospective
multi-center study, and an identified neonatology and pediatric
nephrologist at the institution willing to work together on the
project. Our short-term goals were simple: first, to develop an
infrastructure for communication and knowledge acquisition;
second, to perform amulti-center epidemiology study that would
improve our understanding of the practice patterns, incidence,
and outcome in neonates spanning the gestational age spectrum
who were critically ill. Our long-term goal was to improve
the short and long-term outcomes for neonates at risk for
kidney disease.

With commitments from 24 centers, the Neonatal Kidney
Collaborative worked to develop the questions, the data
forms, the database and the committee infrastructure for
our inaugural project, the Assessment of Worldwide Acute
Kidney Epidemiology in Neonates (AWAKEN)1. This acronym
symbolizes our intention to “wake up” the community to the
need to better understand neonatal kidney disease. Fortunately
we had support from many. We partnered with Dr. Stuart
Goldstein, who had recently completed the collection of data
from children admitted to the pediatric intensive care unit in
a study called Assessment of Worldwide Acute kidney injury
and Renal Angina Epidemiology (AWARE). Leveraging these
resources, we developed a web based data entry system for the
AWAKEN study.

We outlined the most important questions we could answer
through a multi-center retrospective study. One of the most
important decisions we had to make up front was to determining
the inclusion and exclusion criteria. Recognizing that many
babies who are only in the NICU for a short duration (i.e.,
transient tachypnea of the newborn) do not get assessed for
kidney disease, we chose to only look at infants who received
intravenous fluids for more than 48 h as a key inclusion criteria.
In addition we chose to only include infants who were admitted
to our NICU’s within the first 2 weeks of life, and we excluded
those who had severe congenital heart disease requiring heart
surgery within the first perinatal week, those who died within 48 h
(as we could not assign them to having AKI or not), those with
lethal chromosome anomalies, and those with severe bilateral

1Supplementary Presentation 1 is a slide-deck used as part of a presentation on

AWAKEN presented at the 3rd pAKImeeting in Cincinnati Ohio in October 2018.

congenital kidney disease. Of the infants who were admitted to
the hospital, about 50% met inclusion/exclusion criteria. Thus,
the AWAKEN study should not be generalized to all neonates,
nor all who are admitted to the NICU; instead, the AWAKEN
study can be generalized only to sick infants who need extensive
support beyond 48 h after birth. The methods for the study were
published prior to data analysis (23).

As of December 2019, we have published 13 original
manuscripts from this cohort which we summarize in Table 1.
We are planning additional manuscripts as we continue to pose
and test specific hypotheses. All manuscripts have neonatology
and nephrology representation, and most have a neonatologist
and nephrologist as first and last authors pairs. Most first-
author for these manuscripts have been led by early academic
investigators, medical students, and fellows. The first four
sets of questions (epidemiology, risk factors, fluid balance,
and definition) were determined prior to the data abstraction
and were led by the Neonatal Kidney Collaborative steering
committee. The rest of the manuscripts below were developed via
the secondary analysis manuscript process.

The primary hypothesis for AWAKEN was that AKI was
independently associated with mortality after controlling for
numerous confounders. Using the Neonatal KDIGO AKI
definition, we found that ∼30% of the cohort had at least one
episode of AKI. Interestingly, the incidence differed across the
gestational age in a “U” distribution. The incidence of AKI
was 43% in those <29 weeks GA, 18% in those between 29
and 36 weeks GA, and 37% in the those >36 weeks GA. Of
the 605 infants with AKI, 59 (9.7%) died compared to only
20/1,417 (1.4%) who did not have AKI. Even after controlling
for numerous confounders known to be associated with neonatal
mortality, the adjusted OR for death in those that had AKI was
4.6 times higher the odds of death in those who did not have AKI.
Furthermore, those with AKI had an adjusted 8.8 more hospital
days compared to those without AKI (1). These relationships
held true when we explored subsets of patients categorized by
gestational age.

One of the unique parts of this study was that for the first time,
we are able to compare the risk factors of AKI in neonates of
different GA ranges, and in different time points of the hospital
course. We published on these risk factor of early neonatal AKI
(first perinatal week) where we showed how perinatal risk factors
(maternal and infant demographics, APGAR scores, perinatal
medications) are closely associated with AKI (24). Next we
reported the risk factors of late AKI (after the post-natal week).
After the first week, the perinatal factors are less as important in
predicting AKI, but a previous episode of AKI, sepsis, surgery,
and nephrotoxin medications are risk factors for AKI (25). For
both of these timeframes, we describe the risk factors by different
gestational age groups. Currently, we are also describing how
anemia, hypoalbuminemia, and dysnatremias are associated with
early neonatal AKI (presented as abstracts—not yet in press).

The impact of fluid balance in critical illness is one of
the most important questions in critical care nephrology.
Besides a few reports on neonates who required extra-
corporeal membrane oxygenation and those who had cardio-
pulmonary bypass surgery, there is a paucity of data on
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TABLE 1 | Original manuscript published as of January 2020 from the AWAKEN Study.

Author Journal Article name Summary of findings DOI

Starr et al. American Journal

of Perinatology,

November 2019

Acute Kidney Injury and

Bronchopulmonary

Dysplasia in Premature

Neonates Born <32

Weeks’ Gestation.

Moderate or severe broncho-pulmonary dysplasia (BPD) occurred

in 214 of 546 (39%) infants, while death occurred in 32 of 546

(6%); the composite of moderate or severe BPD/death occurred in

246 of 546 (45%). For infants born ≤29 weeks of gestation, the

adjusted odds ratio (OR) of AKI and the primary outcome was

1.15 [95% confidence interval (CI) = 0.47–2.86; p = 0.76]. Infants

born between 29 and 32 weeks of gestation with AKI had four-fold

higher odds of moderate or severe BPD/death that remained after

controlling for multiple factors (adjusted OR = 4.21, 95% CI:

2.07–8.61; p < 0.001). Infants born between 29 and 32 weeks of

gestation with AKI had four-fold higher odds of moderate or

severe BPD/death that remained after controlling for multiple

factors (adjusted OR = 4.21, 95% CI: 2.07–8.61; p < 0.001).

doi: 10.1055/s-0039-3400311

Starr et al. American Journal

of Perinatology,

November 2019

Acute Kidney Injury is

Associated with Poor

Lung Outcomes in

Infants Born >32

Weeks’ Gestation.

Chronic Lund Disease (CLD) occurred in 82/1,348 (6.1%) infants,

while death occurred in 22/1,348 (1.6%); the composite of

CLD/death occurred in 104/1,348 (7.7%). Infants with AKI had an

almost five-fold increased odds of CLD/death, which remained

after controlling for GA, maternal polyhydramnios, multiple

gestations, 5-min Apgar’s score, intubation, and hypoxic-ischemic

encephalopathy [adjusted odds ratio (OR) = 4.9, 95% confidence

interval (CI): 3.2–7.4; p < 0.0001]. Infants with AKI required longer

duration of respiratory support (count ratio = 1.59, 95% CI:

1.14–2.23, p = 0.003) and oxygen (count ratio = 1.43, 95% CI:

1.22–1.68, p < 0.0001) compared with those without AKI.

doi: 10.1055/s-0039-1698836

Selewski

et al.

Pediatric

Research,

September 2019

The impact of fluid

balance on outcomes

in premature neonates:

a report from the

AWAKEN study group.

One hundred and forty-nine (14.8%) were on mechanical

ventilation (MV) at post-natal day 7. The median peak Fluid

Balance (FB) was 0% (IQR: −2.9, 2) and occurred on post-natal

day 2 (IQR: 1,5). Multivariable models showed that the peak FB

(aOR 1.14, 95% CI 1.10–1.19), lowest FB in first post-natal week

(aOR 1.12, 95% CI 1.07–1.16), and FB on post-natal day 7 (aOR

1.10, 95% CI 1.06–1.13) were independently associated with MV

on post-natal day 7. In a similar analysis, a negative FB at

post-natal day 7 protected against the need for MV at post-natal

day 7 (aOR 0.21, 95% CI 0.12–0.35).

doi: 10.1038/s41390-019-0579-1

Stoops

et al.

Neonatology,

August 2019

The Association of

Intraventricular

Hemorrhage and Acute

Kidney Injury in

Premature Infants from

the Assessment of the

Worldwide Acute

Kidney Injury

Epidemiology in

Neonates (AWAKEN)

Study.

AKI was documented in 22.2% (183/825) of infants and

Intraventricular hemorrhage (IVH) in 14.3% (118/825). Infants with

AKI (n = 183) were more likely to have IVH (26.8%, 49/183) than

those without AKI (n= 642) who had IVH (10.7%, 69/642, p <

0.0001). After controlling for 5-min Apgar score, vasopressor

support within the first week of age, and gestational age, infants

with AKI had 1.6 times higher adjusted odds to develop any grade

IVH (95% CI 1.04–2.56). Furthermore, infants of gestational age of

22–28 weeks had 1.9 times higher adjusted odds to develop IVH

(OR 1.87, 95% CI 1.08–3.23).

doi: 10.1159/000501708

Charlton

et al.

Clinical Journal of

American Society

of Nephrology,

February 2019

Incidence and Risk

Factors of Early Onset

Neonatal AKI.

In over 2,000 patients, early AKI (≤7 days) occurred in 21% of

neonates. Infants with early AKI had higher risk of death (aOR 2.8,

95% CI 1.7–4.7) and longer length of stay (7.3 days, 95% CI

4.7–10). Risk factors for early AKI are: outborn delivery;

resuscitation with epinephrine; admission diagnosis of

hyperbilirubinemia, inborn errors of metabolism, or surgical need;

frequent kidney function surveillance; and admission to a children’s

hospital. Protective factors were: multiple gestations, cesarean

section, and exposures to antimicrobials, methylxanthines,

diuretics, and vasopressors.

doi: 10.2215/CJN.03670318

Harer et al. JAMA Pediatrics,

April 2018

Association Between

Early Caffeine Citrate

Administration and Risk

of Acute Kidney Injury

in Preterm Neonates:

Results from the

AWAKEN Study.

Of 675 preterm infants ≤33 weeks, AKI occurred less frequently in

neonates who received caffeine than those who did not [50 of 447

(11.2%) vs. 72 of 228 (31.6%), P < 0.01]. After multivariable

adjustment, the number needed to treat to prevent one case of

AKI was 4.3 and those receiving caffeine were less likely to develop

high grade AKI (stage 2 or 3, OR 0.20, 95% CI 0.12–0.34).

doi: 10.1001/jamapediatrics.2018.0322

(Continued)
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TABLE 1 | Continued

Author Journal Article name Summary of findings DOI

Kraut et al. Pediatric

Research, May

2018

Incidence of neonatal

hypertension from a

large multicenter study

[Assessment of the

Worldwide Acute

Kidney Injury

Epidemiology in

Neonates (AWAKEN)].

Of over 2,000 infants, hypertension was documented in 1.8% and

an additional 3.7% were defined as having undiagnosed

hypertension. Hypertension was associated with a diagnosis of

AKI and other risk factors for HTN were hyperbilirubinemia,

Caucasian race, outborn, vaginal delivery, and congenital heart

disease. Protective factors were small for gestational age, multiple

gestation, and maternal betamethasone.

doi: 10.1038/s41390-018-0018-8

Kirkley

et al.

Pediatric

Research, August

2018

Acute kidney injury in

neonatal

encephalopathy: an

evaluation of the

AWAKEN database.

Of 113 patients with neonatal encephalopathy, 41.6% developed

AKI. Risk factors for AKI were outborn, Intrauterine growth

retardation, and presence of meconium at delivery. AKI resulted in

longer hospital stays (8.5 days, 95% CI 0.79–16.2).

doi: 10.1007/s00467-018-4068-2

Selewski

et al.

Pediatric

Research,

September 2018

The impact of fluid

balance on outcomes

in critically ill near

term/term neonates: a

report from the

AWAKEN study group.

The median peak fluid balance was 1.0% and occurred on

post-natal day 3. Multivariable models showed the peak fluid

balance, lowest fluid balance in 1st post-natal week, and fluid

balance on post-natal day 7 were independently associated with

need for mechanical ventilation on post-natal day 7.

doi: 10.1038/s41390-018-0183-9

Askenazi

et al.

Pediatric

Research,

December 2018

Optimizing the AKI

definition during the

first post-natal week

using Assessment of

Worldwide Acute

Kidney Injury

Epidemiology in

Neonates (AWAKEN)

cohort.

The absolute rise in serum creatinine of 0.3 mg/dL outperformed a

≥50% rise in serum creatinine during the first week of life for

predicting mortality. The optimal serum creatinine thresholds to

predict AUC and specificity were ≥0.3 and ≥0.6 mg/dL for ≤29

weeks gestational age and ≥0.1 and ≥0.3 mg/dL for >29 week

gestational age. The maximum serum creatinine value provides

great specificity.

doi: 10.1038/s41390-018-0249-8

Charlton

et al.

Pediatric

Research,

December 2018

Late onset neonatal

acute kidney injury:

results from the

AWAKEN study.

n over 2,000 patients, late AKI (>7 days after birth) occurred in 9%

of neonates. Infants with late AKI had increased risk of death (aOR

2.1, p = 0.02) and longer length of stay (21.9, p < 0.001). Risk

factors for late AKI are: intubation, oligo- and polyhydramnios,

mild-moderate renal anomalies, admission diagnoses of

congenital heart disease, necrotizing enterocolitis, surgical need,

exposure to diuretics, vasopressors, and NSAIDs, discharge

diagnoses of patent ductus arteriosus, necrotizing enterocolitis,

sepsis, and urinary tract infection.

doi: 10.1038/s41390-018-0255-x

Jetton

et al.

Lancet Child

Adolescent Health.

September 2017

Incidence and

outcomes of neonatal

acute kidney injury

(AWAKEN): multicenter,

multinational,

observational cohort

study.

In over 2,000 infants admitted to the NICU on IVF for at least 48 h,

30% developed AKI based on the neonatal KDIGO definition. AKI

varies by gestational age at birth: 48% for those born 22–29

weeks, 18% for 29–35 weeks, and 37% for babies ≥36 weeks.

Babies with AKI have higher mortality (OR 4.6, 95% CI 2.5–8.3)

and longer length of hospital stay (8.8 days, 95% CI 6.1–11.5)

after adjusting for multiple confounding factors.

doi: 10.1016/S2352-4642(17)30069-X

Jetton

et al.

Frontiers in

Pediatrics, July

2016

Assessment of

Worldwide Acute

Kidney Injury

Epidemiology in

Neonates: Design of a

Retrospective Cohort

Study.

Describes the formation of the NKC and establishment of the

AWAKEN cohort and database—the largest most inclusive

neonatal AKI study to date.

doi: 10.3389/fped.2016.00068

the impact of fluid balance and neonatal outcomes. The
AWAKEN study allows us to explore these relationships
as we show that different fluid balance parameters during
the first perinatal week predict the need for mechanical
ventilation at 7 days, even after controlling for multiple potential
confounders in premature neonates (26) and in near-term/term
neonates (27).

One of the most challenging aspects to the evaluation
and clinical research on neonatal AKI is the complexity of
interpreting the normal SCr patterns seen during the first

perinatal weeks and the pragmatic approach to defining neonatal
AKI. We use the AWAKEN database to show that different GA
groups have different optimal SCr cutoffs at different timepoints
after birth to predict mortality. In addition, we show that the
addition of a percent rise in SCr does not add any important
information to an absolute SCr rise in the ability to predict
mortality. This has allowed us to propose a framework for
future investigations in understanding how to diagnose neonatal
AKI, which will need to be tested in other large clinical
cohorts (28).
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In a manuscript published in JAMA-Peds, we show that
despite the fact that infants who received caffeine (commonly
done to keep infants from needing to get intubated) were sicker,
those who received caffeine had a much lower adjusted odds of
developing AKI than those who were not exposed to caffeine
(number needed to treat = 4.3) (29). Other ancillary studies
include a report the association of AKI and Hypertension (30),
a study showing the association between AKI and mortality in
those with severe neonatal encephalopathy (31), the association
of AKI and Intra-ventricular hemorrhage (32), the association
of AKI and Chronic Lung Disease in premature (33) and near
term/term infants (34).

IMPLICATIONS FOR THE FUTURE

The AWAKEN study has allowed us to answer multiple
previously unanswered questions, and has “AWAKEN’ed” the
field of Neonatal Kidney Disease. We have shown that AKI
is very common in sick critically ill neonates, and those
who have AKI have a much higher mortality risk than those
without AKI. Thus, it is no longer acceptable for the medical
community to say that neonatal AKI is rare and carries no
sequalae. We have identified that caffeine may prevent AKI,
which may have implications not only in neonates but for
other populations. Furthermore, we have shown a wide disparity
in evaluating for AKI using SCr, and not surprisingly, those
centers who measure SCr often have much higher rates of
AKI, suggesting a wide practice variation. We have described
the potential consequences of impaired kidney function in
the neonate (impaired fluid balance, blood pressure control)
and its associations with chronic lung disease and intra-
ventricular hemorrhage. Finally, this dataset allows centers to
compare their current practice to the group as a whole as
we provided center-specific data in relation to the AWAKEN
cohort collectively.

Importantly, we have supported the ability for medical
students, residents, fellows and young attendings to lead
manuscripts, and participate in the project. We hope that
this experience will stimulate their academic careers with an
emphasis on neonatal nephrology, thereby enriching the field
with talented, young academicians with strong mentors from the

group. Importantly, AWAKEN has provided neonatologist and
nephrologist interested in neonatal nephrology an opportunity
to problem-solve, study, interpret data, and share ideas together.
Finally, the answer to these questions stimulates researchers to
ask the next set of questions and motivation us to improve
outcomes in this vulnerable population.
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INTRODUCTION

Drug development is largely an exercise in failure punctuated with infrequent, and rarely, dramatic
successes. In general, only 1 in 10,000 compounds assessed for medical use go on to become
Food and Drug Administration (FDA) approved drugs (1). This attrition rate is exacerbated
by the fact that drug development is usually a long-term project. In general, the time from
initial compound development to FDA approval requires 10–15 years. Added to the poor success
rate and long duration, drug development requires compounds that are produced under good
manufacturing practice (GMP), requires animal and toxicology studies, that must conform to good
laboratory practice (GLP), and require successful clinical studies in patients that conform to good
clinical practice (GCP). All of these provisions add cost and time to the process. On average, the
development cost for a drug which eventually gains FDA approval is $30–150 million (2). Thus, it
is clear that drug development is capital intensive and requires both patience and perseverance to
achieve success.

With this background in mind, recognize that the capital-intensive portion of this equation sets
the stage for which therapeutic areas are pursued and which are ignored. Investors do not mind
long-term investments so long as they achieve a good return on the investment (ROI).Why does an
investor choose drug development as an investment over something more banal such as purchasing
the stock of a large stable company (i.e., a large utility company)? The answer lies in the ROI—better
ROI justifies taking more risk. The companies that decide on which therapeutic areas to pursue are
cognizant of these factors and tend to pursue drugs that will generate a good ROI; thus, cultivating
the requisite investment.

These factors conspire to make pediatric acute care medicine less attractive than other
therapeutic indications. For purposes of this exercise, we will use a 20-year timeline which assumes
10 years to drug approval (a rapid time frame to get a drug approved) and 10 years to make profits
and recoup the investment. In order to illustrate this point, let’s look at a conservative investment of
100 million dollars in a safe high-yielding utility stock that generates a reliable 4% annual dividend
(assume annual compounding of the interest) and assume that the stock price does not change
for 20 years. At the end of 20 years, an investor who invested in this utility company would have
219 million dollars. Therefore, in order for an investor to decide to place their investment in drug
development instead, the investor expects a better ROI. In terms of investment, any factor which
increases the time of drug development, increases the risk of failure, or decreases the ability to
recoup profits will make an investment less attractive. The question at hand is simply this: does
acute care pediatrics increase the time of development, have a higher risk of failure, and does it
decrease profit potential? The answer is yes on all counts.
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PEDIATRIC RESEARCH AND IMPACT ON
THE FINANCES OF DEVELOPMENT

How does pediatric acute care decrease the expected ROI. First,
in order to bring a drug into Phase 1 studies (humans), the drug
must undergo comprehensive toxicology studies in two species of
animals (there can be exceptions, but this the standard guidance).
Any drug destined for investigation in children requires juvenile
toxicology studies which add both time and money to the
equation. In addition, pediatric trials have a higher failure rate
than adult studies and they take longer to enroll. Moreover, since
children are generally in good health, there are fewer sick patients
available to study. Studies in in children typically require different
dose formulations, and drug production work of these smaller
formulations need to be done before pivotal trials can be done.
If these hurdles were not enough, drug companies make more
money on outpatient drugs than acute care drugs. One reason for
this is that acute care is shorter in duration, whereas in chronic
diseases the drugs are taken for a longer duration of time (i.v.
antibiotics vs. statins) (Figure 1).

For purposes of investment decision making, let’s assume the
average ROI in a portfolio of drugs is 8% (double the safe utility
company) and assume the stock price does not change and drug
is guaranteed to succeed. Now if we take the same 100-million-
dollar investment and change the ROI from 20 years and add

FIGURE 1 | Children versus Adult Development Hurdles.

a 5-year delay for acute care pediatrics the value proposition is
quite different. In the first case of a 20-year timeline, 100 million
dollars invested at 8% pays off 466 million. If that same 466
million was earned over 25 years instead of 20, the interest rate
return is 6.35% instead of 8%—a difference of 1.65% or 165 basis
points. This may not seem like a big difference, but if it was your
ownmortgage payment, that difference would bemeaningful. For
an investor with 100million dollars, the difference is much larger.
Assessed another way, 100 million dollars invested over 20 years
at 6.35% yields 342 million whereas 8% yields 466 million for a
difference of 124 million dollars. If it was your money, would you
invest in the acute care pediatric drug, or the drug for adult type II
diabetics? Since most investors are capitalists, they tend to invest
in chronic prevalent adult disease and avoid acute diseases.

The FDA is aware of these issues and has attempted to
incentivize pediatric development. If a drug gains a pediatric
indication after the initial adult indication, the exclusivity
of the drug is increased by 6 months. The FDA has also
placed incentives such as priority review vouchers to incentivize
pediatric research on drug development on rare diseases.
Nonetheless, the brutal truth is this—acute care pediatrics is
a higher risk investment with worse ROI compared to adults
with a chronic disease. In my view, these are key factors that
drive the general neglect felt by most acute care physicians
particularly pediatricians.
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TABLE 1 | Strategies to improve enrollment time and efficiency.

Strategic Investment Reasons

Standing acute care pediatric

trial networks

Avoids the feast/famine of investigator and

coordinator personnel and budgets

Enrollment Screening Tools that

are linked to the EMR

Improve efficiency of planning trials and

enrollment

Use of precision diagnostics The routine availability of these diagnostics

makes them actionable for study enrollment.

The use of these diagnostics for research

purposes only increases cost and time

Alignment of incentives Promotion and academic advancement must

align with the needs of improvements in clinical

trial enrollment and efficiency. The failure to

align these incentives precludes the ability to

retain talent.

DISCUSSION

What can be done to mitigate these factors? Simply put, the
acute care pediatric community can only directly control one
of these many factors. The ability to recoup profits from the
chronic outpatient vs. the acute inpatient is a structural issue
and will require policy initiatives. However, the probability and
time to success can be improved. In order to improve the
time to completion of acute care pediatric studies, I would
offer four suggestions (Table 1). One, clinical trial networks
involving many pediatric-centered hospitals must be organized
and maintained so that when a drug is ready to be tested, the
infra-structure is already in place. Two, screening tools that
leverage electronic medical records in order to facilitate timely
and efficient enrollment of patients should be put into place
as a part of routine practice. Third, the acute care pediatric

communitymust embrace precision diagnostics into their regular
clinical practice; thus enabling identification of patients that
may benefit from an investigational drug. All too often, the
nihilistic view is that since there is no drug for this disease,
I don’t need to diagnose it in a precise or timely fashion and
these diagnostics are not put into routine practice. Fourth,
academic centers must create financial and promotion incentives
to support clinical investigators so that the talent is brought to
the bedside and not pushed into the lab. Incentives matter, and
currently the incentives at academic centers is to get government
and non-profit research to increase the coveted indirect funding
dollars and avoid industry trials. Indirect funding is good for
an academic center’s bottom-line, but in order to gain FDA
approval, the sponsor must be a company that can make the drug
to the FDA standard. The National Institutes of Health, Gates
Foundation, and other luminary institutions do not manufacture
drugs even though they may fund billions in research dollars.
Plainly stated, if the acute care pediatric care community wants
to alter the financial equation and shepherd investment into this
therapeutic area, they must enroll their trials faster and cheaper
while maintaining high quality and safety.

In conclusion, the nature of pediatric acute care drug
development creates a tendency for under-investment. Some

of the factors that contribute to this are structural and
hard to change. However, initiatives that foster collaboration,
academic promotion incentives for investing in clinical trials
personal/infra-structure, and improved trial enrollmentmay help
offset these hurdles.
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Current acute kidney injury (AKI) literature focuses on diagnosis, treatment, and

outcomes. While little literature exists studying the quality of care delivered to patients

with AKI. However, improving outcomes for patients is dependent on the specifics of the

delivered care (i.e., the who, what, when, and how). Therefore, it is necessary to direct

attention to process measures to assess the relationship between care and outcomes.

The application of quality improvement science to the care of AKI, uses a series of metrics

encompassing both processes and outcomes to better understand, evaluate, and ensure

the delivery high quality care.

Keywords: acute kidney injury (AKI), continuous renal replacement therapy (CRRT), quality improvement (QI),

dashboard, standardization, epidemiology

INTRODUCTION

Recent pediatric epidemiology and prevalence studies reported AKI developed in 26.9% of critically
ill children, with severe AKI occurring 11.6% (1). The current management for AKI is support with
interventions that target improving hemodynamics, removing the potential sources of the renal
injury, and the utilization of renal replacement therapy in the setting of severe AKI (2). While
diagnosis and treatment of AKI is well-described in the literature, very few studies focused on the
quality of care delivered in the AKI care continuum. There is an assumption that care delivery is
consistent between institutions, as well as within an institution. However, when examined further
significant practice variations exist across the AKI care continuum (3, 4). Analyzing the relationship
between process measures, outcomes measure, and patient outcomes is the foundation of quality
improvement (QI) science. QI science performs a series of metrics encompassing both processes
and outcomes to better understand, evaluate, and ensure the delivery high quality care. Process
measures reflect adherence to the standardized steps and practices performed by health care staff
members that are necessary to ensure quality care is delivered to every patient (5). Literature is
skewed heavily toward understanding the associations between care and outcome measures (e.g.,
mortality). However, improving outcomes for patients is dependent on the specifics of the delivered
care (i.e., the who, what, when, and how). More attention is now given to process measures,
understanding how the degree of variability in the process of delivering care is associated with
patient outcome.

Aimed at reducing practice variation and standardizing care for managing AKI, the 5Rs
approach was recently introduced (6). The 5Rs approach identifies area for interventions along the
AKI care continuum; Recognition, Response, Risk identification, Renal support, and Rehabilitation
(6). Interventions in each category may include the use of electronic health record alerts to identify
patients, provide clinical decision support algorithms for care delivery, implementation of care
bundles to reduce variation, and development of a QI dashboard for reporting. Studying these
process measures and the association with patient outcomes is the foundation for improving care.
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STANDARDIZE CARE DELIVERY AND QI

METHODOLOGIES

QI practices are grounded in understanding how care delivery
processes (and variation in processes) impact patient outcomes.
Practice variation and its association with poor outcomes is
well-described in the literature (7–9). For example, central
line infections (outcome measure) are directly associated with
mortality (patient outcome), so focus is given to measuring
the performance of providers in actions aimed to reduce the
infections such as bundles of care and infection prevention
standards (process measures). This kind of quality improvement
analysis is also evident in other complex therapies such as
cardiopulmonary resuscitation—a reported process measure is
depth of compressions in relation to published guidelines (10,
11). In these investigations, measuring process outcomes is
leading to the understanding that the quality, consistency, and
reproducibility of the care provided (and adherence to existing
guidelines or benchmarks) is itself important. Therefore, the
logical first step in applying QI strategies to an AKI/CRRT
program is establishing standardized practices for the delivery
of care. Standardization of practice is achieved by developing
detailed recommendations to guide practitioners in providing
appropriate evidence-based interventions [e.g., standard practice
guidelines (SPG), care pathways, or care bundles].

The benefits of standardization are two-fold. Establishing
a standard of care ensures each patient receives high quality
consistent care, as well as providing a platform for standardizing
team expectations and communication (12). For example, a SPG
recommends performing a blood prime initiation procedure for
patient weighing <10 kg. However, the orders are not consistent
with the SPG. The team members recognize the variation
in practice and communicates this with ordering practitioner,
preventing an error and potential harm. It is important to
acknowledge that SPG are meant to provide recommendations
for care and do not limit the practitioner from using expertise to
modify interventions or therapies based on patient responses.

Following the implementation of standardized practices, the
next steps are data collection, data analysis, and preparing
and distributing reports. An essential component of data
analysis is identifying deviations from established benchmarks
or goals. Upon the detection of a deviation, a “deep dive”
is done to investigate for potential causes through factor
analysis of patient (selection criteria, initiation, size and body
habitus, special circumstances), equipment (inclusive of access
catheter and machine), technical proficiency (nursing care and
pharmacy), and the prescription of the therapy (modality, dose,
anticoagulation) (2). Interventions, if necessary, are based on the
final results of the “deep dive.”

QUALITY IMPROVEMENT IN AKI

Recognition (Early)/Response/Risk

Identification
The early recognition of AKI has been associated with improved
patient outcomes. Forde and colleagues report earlier diagnosis

of AKI and improvement AKI management following targeted
education and implementation of a checklist (13). The AKI
checklist/bundle uses a simple acronym ABCDE; Address drugs,
Boost blood pressure, Calculate fluid balance, Dip urine, and
Exclude obstruction (13). The primary aim, diagnosing AKI
within 24 h, improved from 30 to 100%. The checklist was
implemented 75% of the time in the post-education period.

Other early recognition QI programs utilize the electronic
health records to detect patient at risk for AKI or have AKI.
The electronic health record identified the target population
and alerts the practitioner. However, the literature suggests
that alerting practitioners alone, does not improve patient
outcomes (14). A systematic integration of clinical decision
support with the alert is necessary to influence patient
outcomes (15). The ideal AKI QI initiative aimed at recognition
involves detected AKI, followed by an alert to the appropriate
personnel and recommends intervention of preventative and
therapeutic measures.

Renal Support
As previously discussed, there is a paucity of literature studying
the delivery of renal replacement therapy (RRT). The majority
of the research is focused on patient characteristics, indications
for RRT, and patient outcomes (16–18). The care is continuous
in nature and involves numerous processes for safe, effective care
to be delivered. Studying process measures, both categorical and
temporal, provides an index of quality by providing a quantifiable
level of adherence to accepted performance standards.

Activity
Activity metrics are tracked to study the relationship between
frequency of therapies and other process measures. Specifically,
assessing if available resources are sufficient to deliver high
quality of care.

Filter Survival
The optimal delivery of CRRT is contingent on maintaining
a well-functioning CRRT circuit. However, filter life is
multifactorial and therefore is assessed using two process
measures: filter life and unplanned filter changes (UPC).

Filter life
Filter life is defined as the duration of time, measured in
hours, an individual filter or circuit is delivering therapy to the
patient (2, 19).

Unplanned filter changes
UPC is defined as any filter changed prior to 60 h, censored for
patient procedures, emergent events or patient death (2, 19).

Prescription
Prescribed and achieved CRRT effluent doses are an important
process measures and provides an objective assessment of the
delivered care. Variations between prescribed and delivered
was quantified by simultaneously measuring both values and
calculating % delivered (2, 19).
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Minimum prescription
The minimum prescription is defined as the total number
of CRRT hours and the total effluent measured in mL
normalized to patient body surface area. The standard
prescription for pediatrics is 2,000 ml/1.73 m2/h. Therefore,
prescription below this dose were identified as a deviation from
the standard.

Average treatment time
The average treatment time is the quantified average of time
the CRRT delivered therapy for an individual patient treatment
course on CRRT (2).

Fluid balance
Fluid as a metric, is separated into fluid status at initiation and
achievement of daily fluid goals. Fluid accumulation is expressed
as percent fluid overload (% FO). The formula for calculating
fluid overload is: [((Intake (liters) from ICU admission to
CRRT start – Output (liters) from ICU admission to CRRT
start)/1000))/ICU admission weight (kg)] (20).

Achieved Fluid Goal (Desired Total Fluid Output) is defined
as achieving the established fluid goal within the acceptable range
of a fluid goal is ±10% of target. Calculation of the variability
from the target fluid goal assumes the actual 24-h total output
will be equivalent to the total 24-h intake minus the net 24-h fluid
balance goal (2).

Rehabilitation
The final R in the AKI continuum is Rehabilitation. Recent
literature report patients who recover from an AKI event have
an increase in risk for developing chronic kidney disease (CKD)
(21, 22). Therefore, using QI strategies to ensure adequate follow-
up for AKI survivors is essential. Currently, there is a lack of

evidence that answers the questions regarding follow-up (e.g.,
who, what, when, and how). Recent literature reported the use
of an algorithm for establishing follow-up standards and well as
what patient measures to assess (22).

CONCLUSION

The use of an AKI dashboard provides and ongoing assessment
of process measures and facilitates analyses of variations and
deviations from standards of care. Assumptions about how
effective the therapy is cannot be made simply by whether
a patient survives. Ultimately, process metrics are valuable to
study in and of themselves but are likely directly impactful to
the traditional hard patient outcomes specific to the kidney, to
morbidity, and to mortality.
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Decades of pre-clinical research have revealed biologic pathways that have suggested

potential therapies for acute kidney injury (AKI) in experimental models. However,

translating these to human AKI has largely yielded disappointing results. Fortunately,

recent discoveries in AKI molecular mechanisms are providing new opportunities for early

detection and novel interventions. This review identifies technologies that are revealing

the exceptionally complex nature of the normal kidney, the remarkable heterogeneity

of the AKI syndrome, and the myriad responses of the kidney to AKI. Based on the

current state of the art, novel approaches to improve the bench-to-bedside translation

of novel discoveries are proposed. These strategies include the use of unbiased

approaches to improve our understanding of human AKI, establishment of irrefutable

biologic plausibility for proposed biomarkers and therapies, identification of patients

at risk for AKI pre-injury using clinical scores and non-invasive biomarkers, initiation

of safe, and effective preventive interventions of pre-injury in susceptible patients,

identification of patients who may develop AKI post-injury using electronic triggers,

clinical scores, and novel biomarkers, employment of sequential biomarkers to initiate

appropriate therapies based on knowledge of the underlying pathophysiology, use of new

biomarkers as criteria for enrollment in randomized clinical trials, assessing efficacy, and

empowering the drug development process, and early initiation of anti-fibrotic therapies.

These strategies are immediately actionable and hold tremendous promise for effective

bench-to-bedside translation of novel discoveries that will change the current dismal

prognosis of human AKI.

Keywords: acute kidney injury, electronic triggers, clinical scores, biomarkers, anti-fibrotic therapies

INTRODUCTION

Acute kidney injury (AKI) is a growing global epidemic, afflicting about 30% of children in neonatal
and pediatric intensive care units and at least 5% of non-critically ill pediatric hospitalizations.
Impressive improvements in the clinical care of hospitalized children have inexorably shifted the
AKI epidemiology from primary renal diseases toward a consequence of systemic illnesses and
their treatments and nephrotoxin exposure. In contrast with AKI in adults, pediatric AKI typically
strikes early in the course of a critical illness, but it is more often reversible in the absence of
major comorbid complications. However, AKI is independently associated with increasedmortality
and morbidity, including the development of chronic kidney disease, in all age groups. Several
decades of intense pre-clinical and translational research have uncovered biologic pathways and
mechanisms that have suggested promising therapeutic approaches in animal models. However, the
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translational efforts in human AKI have largely yielded
disappointing results, and the incidence of and the complications
from human AKI remain unacceptably high, with no satisfactory
preventive or therapeutic solutions in sight. Fortunately, recent
discoveries in AKI molecular mechanisms are shifting old
paradigms and providing new approaches for early detection
and intervention. This review will focus on the state-of-the-
art technologies that are revealing the exceptional complexity
of the normal kidney, the remarkable heterogeneity of the AKI
syndrome, and the myriad responses of the kidney to AKI.
Novel approaches to improve the bench-to-bedside translation
of novel discoveries will be proposed—at the present time, these
remain largely the author’s personal opinions that have not been
systematically studied.

THE UNEXPECTED COMPLEXITY OF THE

NORMAL KIDNEY

Our understanding of the normal kidney has advanced
dramatically during the past decade, with the advent of unbiased
gene, protein, and metabolome expression analysis, propelled
by the enabling technologies of molecular nephrology (1, 2).
In particular, single-cell RNA sequencing (scRNA-seq) can now
uncover the expression level of every gene in every cell type,
enabling the rapid determination of serial gene expression
changes in many thousands of cells, identification of previously
unknown cell populations, and even novel heterogeneity within
a given cell type. For example, the scRNA-seq analysis of
the developing collecting duct has newly identified sub-cluster
cell types that include principal cells, β-intercalated cells, and
other previously unknown cell subtypes (3). Similar studies
in the fully developed collecting duct have revealed a novel
crosstalk between signal transduction pathways as well as an
improved understanding of physiologic regulatory pathways
(4). A comprehensive scRNA-seq analysis of adult mouse
kidneys has identified novel cell types that remain to be fully
characterized (5). An examination of human kidney transplant
biopsies has uncovered 16 distinct cell types and novel cell
states within endothelial cells as well as pro-inflammatory
parenchymal responses in the rejecting kidney (6). Thus, scRNA-
seq techniques are identifying new categories of known cell
sub-types as well as previously unknown cell types that are
improving our understanding of the developing, mature, and
diseased kidney at an unprecedented level of detail.

THE UNANTICIPATED HETEROGENEITY

OF ACUTE KIDNEY INJURY

Decades of meticulous clinical phenotyping have taught us that
all AKIs are not created equal. As clinicians, we have become
adept at recognizing several AKI subtypes, including pre-renal,
intrinsic, ischemic, hypoxic, nephrotoxic, septic, inflammatory,
and obstructive forms. An improved understanding of the
molecular underpinnings of AKI subtypes was ushered in
two decades ago with the advent of transcriptome profiling
technologies. Data mining of gene expression profiles from 150

microarray experiments performed in 21 different models of AKI
(including mouse, rat, pig, and human models) identified novel
upregulated genes that have now been well-characterized and
are now considered “usual suspects” in AKI parlance—including
LCN2 (encoding lipocalin 2 or NGAL), KIM-1 (kidney injury
molecule-1), CCL2 (chemokine ligand 2 or MCP-1), HMOX1
(heme oxygenase), TNF (tumor necrosis factor), and CLU
(Clusterin) (7). Downstream translational analyses in animal and
human AKI are now beginning to yield pathways for therapeutic
targeting, as well as excellent non-invasive assays for the early
diagnosis of AKI and its sequelae (1).

More recent deep sequencing studies have identified
significant differences in the responses between the AKI
subtypes. For example, there exists a remarkable diversity
of changes in the kidney genomic response to ischemic and
septic injuries (8). While TNF and LCN2 are dramatically
upregulated in both ischemic and septic AKI, KIM-1 is induced
primarily in ischemic injury and ICAM-1 in sepsis only (8).
Furthermore, a comparison of the ischemic and the volume
depletion models of AKI, often considered to be a continuum
and therefore predicted to have similar gene expression response,
unexpectedly showed that <10% of the expressed genes were
differentially regulated in the two models despite identical
elevations in serum creatinine (9). Volume depletion induced
metabolic pathways and anti-inflammatory molecules. By
contrast, ischemic injury activated hundreds of known and
novel inflammatory, coagulation, and epithelial repair pathways,
including the “usual suspects” LCN2, KIM-1, CXCL1, and IL-6,
all of which were totally unchanged in the volume depletion
model (9). For added complexity, different nephron segments
responded with distinct signatures to different injuries. For
example, volume depletion predominately affected the inner
medulla, whereas ischemic changes were noted primarily in
the outer medulla. In addition, ischemic injury induces mRNA
expression of KIM-1 specifically in the proximal tubule and,
in contrast, LCN2 specifically in the distal nephron (9). Hence,
different insults lead to diverse responses reflecting alterations in
segment-specific pathophysiology.

Recent metabolomic approaches have further validated
additional dramatic differences in the response of the kidney to
injuries that were previously thought to be closely related. For
example, experimental models of ischemia–reperfusion injury
display the rapid appearance of alanine, leucine, and glucose
in urine, with a downregulation of urinary creatinine and
nicotinamide (10). In marked contrast, hypoxic injury rapidly
induces the urinary excretion of benzoate and fructose, while
citrate and isothionate are suppressed (11). The differential
appearance of these metabolites in the urine may hold important
clues toward etiology-specific biomarkers and therapeutic targets
in humans.

Additional recent metabolomic studies in a mouse model
of ischemic AKI have identified a deficiency in the urinary
and intra-renal nicotinamide adenine dinucleotide (NAD), an
essential component of energy generation via glycolysis and
the Kreb’s cycle (12). In a phase I study of oral NAM
supplementation (which generates NAD via a salvage pathway)
in adults undergoing cardiac surgery, the rise in serum creatinine
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was prevented compared to placebo (12). Additional studies
are underway.

STRATEGIES TO IMPROVE

BENCH-TO-BEDSIDE TRANSLATION IN

AKI

Thus, different etiologies of AKI elicit dramatically divergent
responses. Additional basic and translational studies, too
numerous to be elucidated here, have yielded characteristic
structural, functional, and regenerative responses to each
AKI stimulus. However, animal studies do not faithfully
recapitulate the human AKI phenotype, rendering bench-to-
bedside translation enormously challenging. Despite promising
pre-clinical data, the human AKI literature is littered with
numerous disappointing treatment failures—including forced
diuresis and RGD peptides for tubular obstruction, ATP
donors (ATP-Mg, thyroxine) for intracellular ATP depletion,
natriuretic peptides and dopamine for vasoconstriction, reactive
oxygen species scavengers and iron chelators for oxidative
stress, anti-ICAM antibodies for endothelial–leucocyte adhesion,
anti-apoptotic agents, growth factors (IGF-1, HGF, FGF,
and erythropoietin), anti-inflammatory agents (α-MSH), and
regenerative factors (mesenchymal stem cells) (13). The strategies
proposed by the author to close this bench-to-bedside chasm are
detailed below.

Use Agnostic Approaches to Better

Understand AKI in Animal and Human

Models
We recommend the use of unbiased approaches to identify
AKI susceptibility genes in humans. Large-scale genome-wide
association studies (GWAS) can identify potentially pathogenic
genomic sequences that are statistically enriched in AKI cases
compared to controls. A recent GWAS analysis of a discovery
cohort of 1,400 adults with critical illness (760 with AKI) followed
by a separate replication cohort of 200 AKI cases (14) has
yielded two single-nucleotide polymorphisms (SNPs) involving
the transcription factor interferon regulatory factor 2 (IRF2)
and an additional two SNPs close to the transcription factor T-
box 1 (TBX1). The identification of SNPs near IRF2 suggests a
potential role for the immune system in AKI, a concept with
already strong biologic plausibility. TBX1 is expressed during
kidney development, and this finding supports the intriguing
concept that ontogeny recapitulates phylogeny after kidney
injury, whereby genetic programs involved in nephrogenesis that
become dormant after birth are once again reactivated and are
essential for the recovery process after injury in post-natal life.
Additional GWAS studies with even larger cohorts of control and
AKI subjects are underway and may yield new AKI susceptibility
genes of critical biological significance.

We recommend the employment of dramatic advances
in single-cell RNA sequencing to examine both animal and
human AKI models (15, 16). A recent comprehensive analysis
of a mouse model of ischemia–reperfusion AKI using whole

kidney total mRNA sequencing has already identified time-
dependent changes in the expression of genes involved in tubular
injury/repair, fibrosis, and innate and adaptive immunity (17).
As an extension to humans, the NIH-funded Kidney Precision
Medicine Project will analyze human AKI kidney biopsies based
on elevations in serum creatinine and a urinary biomarker (based
on the “usual suspects” previously mentioned). Single-cell RNA-
seq and other advanced deep sequencing studies are expected
to yield a detailed molecular atlas of the human kidney and
potentially identify new pathways for future therapies.

Establish Irrefutable Biologic Plausibility in

Multiple Animal Models Prior to Embarking

on Etiology-Specific Human Studies
We recommend detailed molecular analyses of animal models
most pertinent to human AKI, followed by bioinformatic
determination of both common and etiology-specific pathways,
and downstream confirmation of biologic significance with
additional techniques. Such studies will begin to address
the enormous complexity of human AKI, which is often
multifactorial, with overlapping components—in addition
to volume depletion, ischemia–reperfusion injury, and
nephrotoxins, clinicians have to worry about hypoxia, sepsis,
inflammation, obstruction, and primary kidney diseases, to
name a few situations. All of these induce comparable elevations
in serum creatinine levels, the current highly flawed “gold
standard” for the diagnosis and staging of AKI, a major limiting
factor in AKI diagnostics today (1).

Recent publications validate this recommendation. Reliable
animal models have now been developed to recapitulate
many human AKI pathophysiologies, including the AKI-to-
CKD transition (18). A careful analysis of these models has
begun to elucidate the myriad responses at the structural and
the molecular levels (17). In a murine bilateral ischemia–
reperfusion survival model that recapitulated the human AKI-
to-CKD transition, serum creatinine peaks after 2 days. However,
histology at day 1 already revealed characteristic tubular changes
in the outer medullary region that mimic the human phenotype.
At 6 months after the injury, cortical fibrosis is the predominant
finding. At 1 year later, additional cystic changes and a severe
chronic interstitial nephritis appear, all reminiscent of end-
stage kidney disease in humans. At the molecular level, the
earliest changes included a significant expression of immediate
early response and stress-related genes that are conserved
between mouse and humans and are also activated soon after
transplanting deceased donor kidneys (17). Within 24 h of injury,
elevation of genes regulating apoptosis and proliferation, which
persisted for weeks after injury, was prominently noted, attesting
to the critical significance for the balance between cell death and
cell survival during recovery from AKI. Most prominent among
these were the genes encoding NGAL and KIM-1, both crucial
to the processes of cellular regeneration and repair, lending
ample biological plausibility for their roles as early non-invasive
biomarkers (1, 7).

Animal models of ischemia–reperfusion AKI have
additionally identified diverse epigenetic changes that in
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turn control AKI gene expression (8). For example, histone
acetylation (which results in a transcriptionally permissive
chromatin structure) was significantly associated with Tnf
gene expression. Similarly, changes in histone methylation
(which provides docking sites for chromatin modifiers) were
identified in Tnf, Kim-1, and Ngal genes (8). These and other
epigenetic changes are potentially reversible with appropriate
pharmacotherapy and provide novel targets for drug design
in AKI.

A translational molecular analysis of septic AKI has been
limited by the fact that most animal models of this condition do
not faithfully mimic the human condition (19). Murine models
have utilized cecal ligation and puncture, fecal implantation
in the abdomen, and lipopolysaccharide (LPS) injections and
have resulted in varying degrees of structural and functional
AKI. Despite these limitations, recent studies have revealed
dramatic differences in gene transcription and in epigenetic
changes in the kidney following LPS injection vs. ischemia–
reperfusion (8). While the Tnf and Ngal genes are strongly
induced in both models, Kim-1 and Tlr4 were upregulated only
in ischemia–reperfusion and Icam-1 only after sepsis. Many
genes such as Klotho and Netrin1 were downregulated only after
ischemia–reperfusion, while several angiogenic genes exhibited
a decreased expression following LPS injection. Understanding
the heterogeneity of genetic and epigenetic responses in etiology-
specific animal models will contribute to the discovery of
interventions tailored to the cause of AKI.

Identify Patients at Risk for AKI Pre-injury
We recommend the use of clinical scoring systems to predict AKI
pre-injury. For example, to predict AKI in adults, clinical risk
factors have been incorporated into the well-known Cleveland
Clinic Score (for cardiac surgery) andMehran Score (for contrast
agents). These scores can be adapted for use in pediatrics. Indeed
in a prospective multicenter analysis of children undergoing
cardiac surgery, risk factors associated with a greater AKI
incidence included lower age, weight, body surface area, and
preoperative serum creatinine (20). Longer bypass time was also
associated with AKI development. Those that had a bypass time
>180min showed a nearly 8-fold greater odds of developing AKI
when compared to those with a bypass time <60 min (20).

We recommend the use of non-invasive pre-procedural
biomarkers to predict AKI in children at risk. One of the
best studied pre-operative biomarkers is uromodulin, a well-
established nephroprotective protein—uromodulin knock-out
mice are more susceptible to ischemia–reperfusion kidney injury
and are more likely to experience tubular inflammation and
necrosis, especially in the highly susceptible S3 segment of
the proximal tubule (21). In a recent analysis of 101 children
undergoing cardiac surgery with bypass, 47% developed AKI, and
only 8% of the patients in the highest quartile of preoperative
urinary uromodulin (uUMOD) concentrations developed AKI,
in contrast with 92% of the participants in the lowest quartile
(22). Preoperative uUMOD strongly predicted postoperative
AKI, with area under the curve (AUC) of 0.90 (22). These results
suggest that if pre-operative uUMOD is used to identify patients

at risk for AKI after bypass, preventive measures might minimize
post-operative AKI.

Initiate Preventive Interventions Pre-injury

in Susceptible Patients
We recommend the initiation of safe and inexpensive preventive
measures in context-specific susceptible patients. One well-
studied example is the use of N-acetyl cysteine (NAC) to prevent
contrast-induced AKI. While this remains controversial, it is safe
and orally effective. It is our practice to administer NAC (in
addition to intravenous hydration and urinary alkalinization) in
children scheduled for a contrast study with underlying chronic
kidney disease stage 3 or greater who have a history of contrast-
induced AKI (23).

Although intense renal vasoconstriction and vasospasm are
well-known pathogenic processes in many forms of AKI,
vasodilator therapies such as the natriuretic peptides and
dopamine have been ineffective in preventing human AKI and
are not recommended (23). However, the use of fenoldopam, a
short-acting selective dopamine-1 receptor agonist (which the
renal vasculature is particularly enriched in) with additional
anti-inflammatory properties, is intriguing. In a prospective
randomized double-blind trial of 80 children undergoing
cardiac surgery, 40 received placebo and 40 were treated
with fenoldopam intra-operatively (24). The fenoldopam group
displayed a significant reduction in urinary biomarkers of AKI
(NGAL and cystatin C) and a reduced need for diuretics and
other vasodilators in the post-operative period. These data are
promising but need independent confirmation in larger studies.

Identify Patients Who Are at Risk for AKI

Post-injury Early
We recommend the use of clinical scoring systems to predict
AKI post-injury or when the timing of injury is unknown. The
Renal Angina Index (RAI) has emerged as a useful scoring
system in children who are critically ill (25). The RAI combines
validated clinical risk factors (ICU admission, solid organ or stem
cell transplant, mechanical ventilation, and vasopressor need)
with evidence for decreased kidney function (increases in serum
creatinine or degrees of fluid accumulation) to stratify patients at
risk for subsequent severe AKI. Importantly, the incorporation
of urinary biomarkers further improves the predictive ability of
the RAI (26). In a prospective study of 184 children admitted
to the pediatric ICU, a positive RAI (score ≥8) was present in
33% of patients at day 0 and predicted day 3 AKI with an AUC
of 0.80. Inclusion of admission urinary NGAL further increased
the AUC to predict day 3 AKI to 0.97. The RAI has thus emerged
as an important tool to direct biomarker measurements in select
patients who are most likely to benefit from such determinations.

We recommend the use of non-invasive biologically plausible
urinary and plasma biomarkers to predict AKI and its severity
in all clinical settings that portend a risk for AKI development.
The most extensively studied such biomarker is NGAL, which
is rapidly induced in the distal nephron following a variety of
injurious stimuli and exerts a profound nephroprotective effect
due to its anti-apoptotic, pro-proliferative, and bacteriostatic
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properties (1, 7, 27–29). A myriad of prospective studies, many
in children, have now established the highly predictive role of
NGAL as a biomarker to predict AKI and its complications
in numerous clinical settings including critical illness, sepsis,
cardiac surgery, nephrotoxins, and organ transplants (30–33).
Following an analysis of many thousands of subjects and many
thousands of AKI events in the literature, we now have six
large meta-analyses attesting to the diagnostic properties of
NGAL measurements for AKI prediction, with a consistent area
under the curve of over 0.8 for a urinary NGAL value >150
ng/ml (34–38).

The combination of two biomarkers of cellular stress, namely,
TIMP-2 and IGFBP-7, has also recently emerged as a promising
early biomarker of AKI, particularly in adults with critical illness.
In a recent meta-analysis of five studies with 1,619 critically
ill patients, urinary TIMP-2 × IGFBP7 cutoff points of 0.3
(ng/ml)/1,000 had an AUC of 0.75 for AKI prediction (39).
The pediatric experience with TIMP-2 and IGFBP-7 has been
limited to date to small studies in which these biomarkers have
been promising but are somewhat delayed predictors of AKI in
comparison to NGAL (40, 41).

Use Automated Electronic Health Records

Plus Early Biomarkers to Assess for AKI
We recommend employing automated electronic health record
(EHR) systems to direct measurements of serum creatinine
and other predictive AKI biomarkers in children at risk for
AKI. The utility of this approach is best exemplified by a
prospective single-center study in which the EHR identified
hospitalized children receiving aminoglycosides for more than
3 days or more than three nephrotoxins simultaneously (42).
This triggered the pharmacists to recommend daily serum
creatinine monitoring in exposed patients. During the study
period, the exposure rate decreased by 38%, and the AKI
rate decreased by 64%. An estimated 633 exposures and 398
AKI episodes were avoided. Thus, EHR-based surveillance
for nephrotoxic medication exposure can lead to sustained
reductions in nephrotoxin use and AKI. These interventions have
now been translated to 30 other pediatric centers.

We recommend the use of the EHR-based serum creatinine
increases to trigger biomarker measurements. In our clinical
practice, urine NGAL is measured automatically in critically ill
children with 50% or greater increase in serum creatinine. The
results drive an early nephrology consultation as well as rational
initial management, depending on the presence of intrinsic
structural AKI (NGAL ≥ 150 ng/ml) or volume-responsive
functional AKI (NGAL ≤ 50 ng/ml).

Use Sequential Biomarkers to Initiate

Context-Specific Therapies
We recommend the use of temporally sequential biomarkers
to establish the time of initial injury as well as to initiate
appropriate therapies based on knowledge of the underlying
pathophysiology. Experimental AKI proceeds in four sequential
phases: initiation, extension, maintenance, and recovery. During
the initiation phase, there is profound intracellular ATP

depletion and generation of reactive oxygen molecules and labile
iron. Vasodilator, ATP-donor, anti-oxidant, and iron chelation
therapies may be effective during this phase, and the appearance
of the earliest non-invasive biomarkers such as NGAL may
be used to trigger such therapies. Several published studies in
humans, including children with AKI (41, 43), have documented
the appearance of NGAL in the urine and the blood very
early after ischemic, nephrotoxic, or septic structural kidney
injury (but not in pre-renal functional injury). In the extension
phase, tubules undergo reperfusion-mediated cell death, and the
injured endothelial and epithelial cells amplify the inflammatory
cascades. This phase may be marked by intermediate biomarkers
such as L-FABP, and therapeutic interventions might include
anti-apoptotic and anti-inflammatory strategies. During the
maintenance phase, cell regeneration predominates. Slightly
delayed markers with high specificity, such as the cell cycle
biomarkers (TIMP-2 and IGFBP-7), may trigger therapeutic
measures such as growth factors and stem cells that accelerate
repair. These concepts are illustrated in Figure 1 and are
ready for implementation since both NGAL and the cell cycle
biomarkers are now widely available for clinical use.

Use Injury-Specific Biomarkers as

Eligibility Criteria for Clinical Trial

Enrollment
We recommend the use of widely available early AKI biomarkers
such as NGAL to enroll patients in AKI clinical trials. This
concept is illustrated in Figure 2, whereby patients known to
have clinical risk factors for AKI are triaged using a biomarker
measurement (irrespective of the serum creatinine value). Using
early biomarker elevation to enroll subjects in AKI trials can
increase the proportion of patients enrolled early in the course of
AKI and decrease the sample size required, thereby dramatically
reducing trial cost. This concept has been validated in recent
publications using hypothetical simulations (44). In patients
undergoing cardiac surgery, by using a combination of a known
clinical risk factor (prolonged bypass time) and injury markers
(IL-18 or NGAL), the authors showed that an AKI therapeutic
trial cost could be decreased by 64% (44).

Furthermore, we recommend the use of AKI biomarkers
to assess the response to therapies and as outcome measures
to identify the therapies that warrant further testing in larger,
multicenter trials. In this concept, a reduction in biomarker
concentration can be considered as an initial success—this will
once again decrease the cost of completing initial proof-of-
principle AKI trials and will identify the best context-specific
agents for more definitive trials that include widely accepted
longer-term outcomes such as the “three Ds” (death, dialysis,
and doubling of serum creatinine) and “MAKE” (major adverse
kidney events).

Use Injury-Specific Biomarkers in the Drug

Development Process
We recommend the use of injury-specific biomarkers in the pre-
clinical phases of drug development, specifically for the early
identification of nephrotoxic AKI independent of the serum
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FIGURE 1 | Sequential biomarkers to establish the time of initial injury as well as to initiate appropriate therapies based on knowledge of the underlying

pathophysiology.

FIGURE 2 | Use of biomarkers as criteria for enrollment in randomized clinical trials as well as to assess the efficacy of the agent being studied.

creatinine. Extensive pre-clinical studies by the academia and
the industry have revealed highly specific urinary biomarkers
that predict structural nephrotoxic AKI in the absence of serum
creatinine increase. In 2008, the Food and Drug Administration
(FDA) and the European Medicines Agency approved the use
of seven safety biomarkers in pre-clinical drug toxicity, and
this initial roster was extended in 2016 to include NGAL.
Consequently, in 2018, a safety biomarker panel was approved by
the FDA (including clusterin, cystatin C, KIM-1, NAG, NGAL,
and osteopontin) to detect kidney tubular injury in healthy
human volunteers participating in phase 1 clinical trials (45).
It is hoped that the use of this safety biomarker panel can

be extended to phases 2 and 3 AKI clinical trials, not only to
identify any nephrotoxic injury or lack of therapeutic response
(whereby biomarker concentration would increase) early but
also to establish therapeutic efficacy (evidenced by a downward
trajectory in biomarker concentration).

Early Initiation of Anti-fibrotic Therapies
We recommend for clinical trials to investigate the early
initiation of anti-fibrotic therapies. Recent publications validate
this recommendation. Clinical evidence for the progression
of pediatric AKI to CKD is now abundant. Animal models
have now been developed to recapitulate many human AKI
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pathophysiologies, including the AKI-to-CKD transition (18). A
careful analysis of these models has begun to challenge the dogma
that the fibrotic response of the kidney to injury is a late and final
common pathway. In a murine bilateral ischemia–reperfusion
survival model that recapitulated the human AKI-to-CKD
transition, the serum creatinine peaks after 2 days, and kidney
sections at day 1 revealed surprising segment-specific responses.
While significant acute tubular damage was noted in the outer
medullary region, the same regions adjacent to the damaged S3
segments also unexpectedly revealed significant fibrosis (17). In
the ensuing weeks, the outer medullary fibrosis extended further,
with the additional appearance of cortical fibrosis.

Encouraging new experimental data suggest that this early
fibrotic response can be prevented. In murine AKI due to
ischemia–reperfusion, an intraperitoneal administration of a
peptide (pUR4) that binds fibronectin and inhibits fibronectin
polymerization (an early event in the fibrotic cascade) soon after
injury dramatically attenuated the early fibrotic response (46).
The pUR4 peptide was devoid of any adverse effects, rendering its
translational application to humanAKI a very realistic possibility.

CONCLUSION

Propelled by the enabling technologies of molecular
nephrology, this review has identified ten strategies that
hold tremendous promise for effective bench-to-bedside
translation to change the current dismal prognosis of pediatric
AKI. These strategies are immediately actionable and well
within the reach of the nephrology community. We are
optimistic that this “call to arms” will be heeded, tested,
and implemented.
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PEDIATRIC MEDICAL DEVICES: UNDERSERVED AND LARGELY
IGNORED

Few FDA approved medical devices are specifically designed for children’s needs. FDA approval
for clinical indications of medical devices specify procedures and not patient ages. Accordingly,
the majority of both devices and drugs in pediatric patients are used for off-label indications.
Data suggests that 60–75% of medical devices or drugs in pediatric patients are used for off label
indications (1). This approach has drawbacks including safety and performance concerns with lack
of proper education and instructions for the use of an adult device for a pediatric patient.

Barriers to pediatric medical device development arise from the small numbers of pediatric
patients, numbered in the thousands vs. hundreds of thousands in the adult market. The number
of cancer patients in pediatrics is∼2,000 vs. 600,000 adult patients; the number of defibrillators use
in pediatrics is 1,600 vs. 200,000 in adult cardiology (1). Due to the low volume of patients, clinical
trials in children have much slower enrollment than adult trials. Parental consent also complicates
the enrollment of children in clinical research protocols. Liability concerns, although not discussed
openly, may be another detriment for pediatric drug and device innovation.

To encourage pediatric device development, Congress and FDA established the Pediatric
Medical Device Safety and Improvement Act of 2007 (PL-110-85). This allowed the FDA to
designate a Humanitarian Use Device (HUD) designation for disorders with 4,000 patients
annually and allowed a Humanitarian Device Exemption (HDE) marketing approval by the FDA
for a device. This approval is based upon “safety and probable benefit” rather than the FDA
standard Premarket Approval (PMA) process based upon randomized control trials demonstrating
statistically significant “safety and effectiveness.” This approach was due to the low number of
patients inmany pediatric diseases to perform randomized control trials in a reasonable time frame.
The elimination of the profit restriction on devices approved under anHDE also promoted financial
incentives for pediatric device development (2). On December 2016 the twenty-first Century Cures
Act (PL-114-255) changed the population estimate required to qualify for HUD designation from
“fewer than 4,000” to “not more than 8,000” to further incentivize pediatric device development.

Even prior to these Congressional mandated incentives for pediatric devices, the passage of the
Orphan Drug Act in 1983 (PL-97-414) also encouraged the development and approval of drugs
for rare diseases. This Act established the Orphan Products Clinical Trials Grant Program in the
FDA’s Office of Orphan Products Development (OOPD) to support developing drugs and devices
to treat orphan diseases. An orphan disease is defined as a disorder affecting fewer than 200,000
patients in the United States. Since developing a new drug or device is costly with inherent risk,
large pharmaceutical drug companies have had little interest due to small market size and difficulty
in recruiting sufficient number of subjects to study safety and efficacy of a new compound or device.
Accordingly, this Act and its subsequent amendments in 1984, 1985, 1988, and 2007, provided a
number of incentives for companies to develop compounds to treat rare diseases, including tax
credits for the costs of clinical research, 7-year period of exclusive marketing after an orphan drug
is approved, and waiver of Prescription Drug User Fee Act (PDUFA) filing fees (over $1 million).

52

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2020.00079
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2020.00079&domain=pdf&date_stamp=2020-04-07
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dhumes@med.umich.edu
https://doi.org/10.3389/fped.2020.00079
https://www.frontiersin.org/articles/10.3389/fped.2020.00079/full
http://loop.frontiersin.org/people/811216/overview


Humes and Westover Little World Found

With these incentives interest in orphan disease indications
have occurred over the last decade (3, 4). This interest is
driven also by the facts that there are ∼7,000 rare diseases
affecting 30 million people in the United States and 400 million
worldwide and the recognition that many of these rare diseases
have no effective treatments. Accordingly, small biotechnology
companies have been formed with funding from private equity to
develop new approaches to the unmet medical needs of orphan
diseases due to high potential returns on investment. In fact,
drugs to treat orphan diseases have commanded high price tags
due to the small number of patients and non-competition (5). A
recent study has shown that companies with regulatory approved
orphan drugs are more profitable and are more attractive
investment opportunities than companies without orphan drugs
(6). With this background, the development of a potentially
transformative device to treat adult and pediatric ICU patients
with acute kidney injury requiring continuous renal replacement
therapy(CRRT) provides an illustration of how the regulatory
environment and the congressional legislation described above
resulted in a pivoted focus on pediatric rather than adult
indications. This opinion is based upon a singular experience in
the bumpy road to commercialization of an immunomodulatory
device named the Selective Cytopheretic Device (SCD).

A SERENDIPITOUS DISCOVERY

Many scientific discoveries have occurred due to chance
observations by scientists with detailed background knowledge
and an honest curiosity to understand the unexpected results of
planned experiments (7). In this regard, an unanticipated result
in a clinical trial led to a platform discovery to immunomodulate
the detrimental effects of the activated innate immunologic
system in both acute and chronic organ failures. This resulted in
the development of a Selective Cytopheretic Device.

The SCD originated from the clinical evaluation of a tissue
engineered Renal Assist Device (RAD) (8) containing adult
human renal epithelial cells as a component of a bioartificial
kidney to provide more complete renal replacement therapy
(RRT). The use of the metabolic activity of renal tubule cells
was evaluated to assess whether this addition could improve the
poor outcomes of ICU patients with severe acute renal failure
requiring RRT. After safety and efficacy signals in Phase I/II
and Phase II clinical trials, a change in clinical protocol was
made in the RAD Phase IIb clinical study. Subsets of patients
were treated with a cell containing RAD or a sham (non-renal
cell containing) RAD cartridge (9). The Phase IIb study was a
randomized control, blinded multicenter study in ICU patients
with Acute Renal Failure secondary to Acute Kidney Injury (AKI)
undergoing continuous renal replacement therapy (CRRT). The
clinical study was suspended after an interim analysis due to
an unanticipated high survival rate of the sham device arm. In
retrospective analysis of the sham control groups, the improved
survival rate was demonstrated in the presence of regional citrate
anticoagulation (RCA) when compared to systemic heparin
anticoagulation (10). Subjects were divided into four groups: (1)
RAD with citrate anticoagulation, (2) sham device with citrate

anticoagulation, (3) RAD with heparin anticoagulation, and (4)
sham device with heparin anticoagulation. The 28-day survival
rate in the heparin sham patient group was 50 vs. 75% in the
citrate sham group (n = 12 for each treatment arm), and the
90-day survival rate was 25% (heparin) vs. 67% (citrate). The
baseline demographics for the two subsets were comparable, with
similar sequential organ failure assessment (SOFA) scores (13.4
± 1.1 vs. 12.2 ± 0.9), organ failure number (4.17 ± 0.46 vs.
3.93 ± 0.36) and incidence of sepsis (58 vs. 58%) for the citrate
vs. heparin sham groups, respectively (10). This clinical result,
although unexpected, was consistent with a potential clinical
benefit of the fiber based sham device without cultured renal cells
(RAD sham), when used with RCA, which later became known
as SCD therapy (Figure 1).

The therapeutic benefit afforded by this combination of a
device and a compound (citrate) on a systemic clinical disorder
can be better understood from the following: (1) Microscopy
of the sham cartridges (future SCD) after patient treatment
demonstrated adherent leukocytes on the outer surface of
the membranes of the cartridge along the blood flow path
(Figures 2A,B) (9). The attached leukocytes were dominated
by neutrophils and monocytes (Figure 2C), which preferentially
adhere, compared to other leukocytes such as lymphocytes (11).
The ability of leukocytes to adhere to the outer walls of the
hollow fiber membranes rather than the inner walls, which is
the conventional blood flow path for renal dialysis/hemofiltration
applications, was due to the shear forces of blood flow. The
shear stress of blood along the outer wall of the membrane
was near capillary force of <1 dyne/cm2 compared to the shear
stress of 100 dyne/cm2 for blood flowing along the conventional
luminal surface of the hollow fiber membranes. (2) RCA lowers
the iCa in blood within the circuit to <0.4mM, a level which
inhibits the coagulation system, has an inhibitory effect on
leukocyte and platelet activation (11, 12), and also affects the
calcium-dependent selectin and integrin mediated interactions
between leukocytes and the membrane (13, 14). Extravasation
of neutrophils and monocytes from the systemic circulation
into tissues is a highly regulated process. In a low shear force
environment like that found in capillaries or created within the
SCD, neutrophils and monocytes roll along surfaces and are
slowed via selectin binding followed by integrin mediated firm
adhesion prior to diapedesis (13).

Data from an in vitro blood study utilizing flow chambers
to visualize leukocyte interactions with fiber materials suggested
that leukocytes roll, then adhere to fibers, are retained for
a significant time period (11) (referred to as sequestration)
and are then released. Binding selectivity for more activated
leukocytes in the SCD is increased in the low iCa environment
where calcium dependent selectin rolling, integrin binding,
and downstream conformational changes of attached cells are
inhibited (15). Neutrophils (16, 17) and monocytes (18, 19)
mobilize intracellular stores of CD11b, to the cell surface
as they become (primed) activated. Measurement of CD11b,
allows for real time measurement of systemic acute neutrophil
(priming) and monocyte activation. Additionally, monocyte
populations are heterogeneous in their expression of CD11b,
with CD14hiCD16− being the highest, and CD14lowCD16+ being
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FIGURE 1 | Schematic representation of the circuit used for selective cytopheretic device therapy.

FIGURE 2 | Micrographs of cross-sectional area of sham, acellular cartridges (as part of the regional citrate anticoagulation arm of the Renal Assist Device clinical trial

now known as the selective cytopheretic device) (A,B). Low-power micrograph showing adherent cells around each fiber (A, 4× objective). Higher-power micrograph

showing clustering of bound leukocytes (B, 20× objective). High-power micrograph of a cytospin prepared from adherent cells washed from the outer membrane of

the SCD after 24 h of therapy on the first pediatric patient (C, 63× objective). Patient treatment demonstrated adherent leukocytes with a predominance of neutrophils

and monocytes on the outer surface of the membranes along the blood flow path which translated into patient benefit.

the lowest (20). It follows that the preferential sequestration
of inflammatory CD14hi monocytes is enhanced in the low
iCa environment. The selectivity of binding of the highest
activated leukocytes has been repeatedly observed in preclinical
animal models where systemic CD11R3: the porcine analog
of human CD11b (21), levels decrease through the treatment
course (10, 11, 22, 23). This effect was measured directly in a
clinical trial by comparing the CD11R3 relative fluorescence of
the circulating cells in the peripheral blood to those directly

associated with the SCD (24). These results when taken together

(10, 11, 22–25), suggest a SCD mechanism of action with
a simultaneous, combination effect to transiently sequester
activated circulating neutrophils and monocytes, with enhanced

selectivity for inflammatory leukocytes, which alters the overall
activation of bound and processed leukocytes. Clinical efficacy
in AKI with Multi-Organ Dysfunction (MOD) may be due

to sequestration and immunomodulation of leukocytes in the
SCD. This process appears to block the inflammatory sequence
associated with accumulation and aggregation of leukocytes in
the peritubular capillaries and reduce infiltration into interstitial
spaces, that when unchecked promotes kidney injury following
systemic inflammatory response syndrome (SIRS).

CLINICAL DEVELOPMENT OF THE SCD:
ADULT TRIALS

Preclinical large animal studies confirmed the efficacy of the
SCD in a porcine model of septic shock with concomitant
acute tubular necrosis (26). Product development continued
with successful Phase I/II and Phase II clinical studies which
demonstrated safety and strong signals for efficacy in ICU
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patients with AKI (11, 27). Accordingly, a phase III multi-center,
randomized, controlled, pivotal study to assess the safety and
efficacy of a SCD in patients with AKI (IDE G090189, Protocol
SCD-003) (28)was initiated. The primary objective of this study
was to determine whether CRRT+SCD therapy, compared to
CRRT alone, results in a clinically relevant and statistically
significant improvement in all-cause mortality through day 60.
Secondary objectives included assessment of RRT dependency
at day 60, mortality at day 28, number of ventilator free days
at day 28, and mortality at day 60 of the subset of patients
with severe sepsis. This study was a two-arm, randomized,
open-label, controlled multi-center pivotal study that enrolled
134 patients at 21 US medical centers. ICU AKI patients
of each participating hospital were randomized to treatment
undergoing CRRT or CRRT+SCD. Each participating clinical
site used their established RCA protocol for the CRRT+SCD
circuits (Study Arm) and for the CRRT only (Control Arm).
The recommended iCa (riCa) level (measured post SCD) in
the CRRT and SCD circuit was specified to be between 0.25
and 0.4 mmol/L.

During the second quarter of the enrollment period, a national
calcium shortage occurred in the US from FDA related quality
manufacturing issues of the major US supplier. This shortage
resulted in most centers unable to recruit to the study, since
injectable calcium is required for RCA. Due to reliance of the
SCD on a narrow intra-circuit iCa range for functional efficacy
and the concern that patients randomized to SCD therapy were
not getting effective therapy, the interim analysis was performed
early-after enrollment of 134 patients. Enrollment was paused
on May 24, 2013, to assess the clinical impact of the calcium
shortage on study endpoints. The shortage of calcium infusion
solutions resulted in a tendency to minimize citrate infusion
rates. Accordingly, iCa levels within the blood circuit tended
to be above the recommended (r)iCa of 0.25–0.40 mmol/L.
Subsequently, the injectable calcium shortage resulted in 9 of
the 21 open clinical sites being unable to enroll patients due to
low hospital inventories of injectable calcium, contributing to
the early termination of the study. Of the 134 patients in the
analysis, 69 received CRRT alone and 65 received SCD therapy.
No significant differences were noted between the control and
treatment groups in baseline characteristics. No statistically
significant difference was found between the treated and control
patients with a 60-day mortality of 39% (27/69) and 36% (21/59),
respectively, with six patients lost to follow up. The amount of
time the patients in both the control and treatment group were
maintained in the riCa range (0.25–0.40 mmol/L), as specified
in the study protocol, was substantially lower than expected
due to the injectable calcium shortage. Of the 134 patients
enrolled at the time of the interim analysis, 19 SCD patients
and 31 control patients were maintained at riCa for ≥90% of
the therapy time. Furthermore, none of the significant adverse
events (SAE) were considered device related per the principal
investigator and the Data Safety Monitoring Board. Comparison
of these subgroups of patients revealed 60-day mortality was
16% (3/19) in the SCD group compared to 41% (11/27) in
the control group (p = 0.11). Dialysis dependency showed a
borderline statistically significant difference between the SCD

vs. control patients maintained for >90% of the treatment in
the protocol’s riCa target range with values of 0% (0/16) and
25% (4/16), respectively (p = 0.10). When the riCa SCD and
control subgroups were compared for a composite index of 60-
day mortality and dialysis dependency, the percentage in SCD
subjects was 16 vs. 58% in the control subjects (p < 0.01).
When the riCa subpopulation was considered, a statistically
significant difference was detected in several parameters: log
urine output substantially increased, and absolute leukocyte and
neutrophil counts diminished in the SCD vs. control groups over
time (28).

ADULT CLINICAL TRIALS SUMMARY

The observation that, in those patients who had the riCa
level >90% of the time of SCD treatment, mortality improved
from 41 to 16%, is clinically compelling. In addition, the
observation both that in SCD clinical trials no patient
receiving appropriate SCD therapy was dialysis dependent
at day 60 is also compelling. Previous large prospective
clinical studies in AKI with MOD had >20% incidence of
dialysis dependency of patients followed for 60 or more days
(29, 30). The effect of SCD therapy to modulate excessive
leukocyte activation most likely plays a critical role in the
recovery of renal function after a substantive AKI event. The
relationship of ongoing inflammation in the kidney after AKI
and chronic progressive kidney disease and dialysis dependency
has been demonstrated (31, 32). In this patient population,
immunomodulation by SCD therapy appears to positively
promote kidney healing as evidenced by the lack of dialysis
dependency at day 60. Additionally, improvement in overall
mortality may suggest improved immune balance that persists
through the late SIRS process to ameliorate the compensatory
anti-inflammatory response which follows the excessive systemic
pro-inflammatory state in AKI and MOD (33). Furthermore,
the significant decrease in absolute leukocyte and neutrophil
counts, as well as the improvement in urine output over
time corroborates the mechanistic and pilot studies previously
published (11, 27, 34).

PIVOT TO PEDIATRIC DEVICES

With this compelling post-hoc analysis, the company, Cytopherx,
which licensed this technology from the University of Michigan
to commercialize this therapy, underwent a diligent attempt to
obtain private equity to undertake a final Premarket Approval
(PMA) clinical trial to use the composite index of 60-day
mortality and dialysis dependency for FDA approval and rights
to market this device in the United States. This effort proved
to be difficult with venture capital and private equity firms
hesitant to commit tens of millions of dollars to undertake
a final multicenter randomized, control study which failed in
the initial attempt. Despite the compelling post-hoc analysis,
and the lessons learned regarding careful control of the
circuit iCa in the recommended range of 0.25–0.4mM, the
perception of a previously failed trial (minimizing the post-hoc
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analysis) and the risk of capital was too high of a hurdle to
obtain commitment to fund the clinical program to achieve
FDA approval.

With the failure to obtain funding commitments but being
convinced from the compelling preclinical and the safety and
efficacy clinical data from adult trials, our group considered
testing SCD therapy in the pediatric population for a number of
reasons. Since the pediatric patient with AKI and MOD usually
is not saddled with various chronic diseases which may cause
mortality within 60 days of recovery from AKI and dialysis, this
patient population would have less obfuscating co-morbidities.
An efficacy signal would be apparent in lesser number of patients,
thereby confirming the post-hoc analysis of the Phase III adult
trial. In addition, the route to FDA approval would not require a
large number of patients due to a Humanitarian Use Designation
(HUD) since there are <8,000 pediatric patients with AKI and
MOD requiring CRRT annually in the United States. Upon
demonstrating safety and probable benefit in this HUD pediatric
trial, a Humanitarian Device Exemption (HDE) approval by the
FDA will allow marketing and commercial sale of the SCD in the
United States. Upon HDE approval, funds derived from private
equity or public markets to carry out the PMA adult clinical trial
would be more readily obtained.

With this strategy, our group contacted the prospective
pediatric (pp) CRRT consortium (35, 36) directed by Dr.
Stuart Goldstein, who agreed that this direction was feasible.
Accordingly, our group with the collaboration of Dr. Goldstein,
submitted an FDA Office of Orphan Products Development
(OOPD) grant to carry out this clinical study. Funding was
received in 2014 and the trial was initiated in 2015.

Accordingly, similar to the adult AKI clinical trial, a
multicenter US study of the SCD in critically ill children
(>15 kg, age up to 22 years) with AKI and MOD receiving
CRRT as part of standard of care was initiated and is on-
going under the FDA approved IDE#G150179 (clinicaltrials.gov
NCT02820350). Mortality rates in pediatric patients with AKI
and MOD requiring CRRT has historically approached 50%
(35–37). In this clinical trial, pediatric patients have received
SCD therapy for up to 7 days or when CRRT is discontinued,
whichever comes first. Interim analysis of the 14 patients treated
with the SCD revealed compelling safety and efficacy data similar
to the post-hoc analysis of the Phase III adult SCD study of
patients treated per protocol with the recommended iCa levels
below 0.4mM ninety percent of treatment time. The 14 treated
patients had an age range between 5 and 20 years, hadmultiorgan
failure between 2 and 5 organs, averaging 2.92 organ failures
as a group. Eight of fourteen treated patients also presented
with severe sepsis or septic shock. All patients received RCA

per protocol with the recommended iCa levels below 0.4mM
for 90% of measured values during treatment. When compared
to the historical control standard of care CRRT treatment of
pediatric patients with AKI/MOD, SCD therapy reduced both
60-day mortality and ICU length of stay. No patient was dialysis
dependent at 60 days. These results, therefore, support a plan to
submit an HUD/HDE application to the FDA. These data also
strongly support the post-hoc analysis of the adult study. A final
IDE adult study using a composite outcome measure of 60-day

mortality or 60-day dialysis independence has been approved
by the FDA and successful fundraising is anticipated to move
this therapy back to the large adult market which comprises of
160,000 patients in the U.S. on an annual basis.

SUMMARY

This case study demonstrates that creative strategic planning,
recognition of FDA pathways and support for pediatric devices
can coalesce to promote the development of a life saving device
reaching the bedside to save lives and save hospital costs with
decreasing length of stays. The product development of pediatric
therapies may provide a unique opportunity to more clearly
demonstrate the potential effectiveness of a therapy with a smaller
population due to the lack of complications and comorbidities
as is often seen in adult disease. The development of a pediatric
therapy not only is ethically sound, but can also lead to easier
and faster transition into the adult market negating the initial
hesitancy from a perceived limited market. This case study
provides a perspective of the clinical development of a pediatric
device as an important step in the commercialization of an
innovative therapy.
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