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Editorial on the Research Topic

HIV and Cancer Immunotherapy: Similar Challenges and Converging Approaches

INTRODUCTION

Although modern anti-retroviral therapy (ART) permits near-normal life expectancies by
suppressing viral replication to clinically undetectable levels in people living with HIV (PLWH) (1),
sustained treatment is complicated by complex pharmacological (i.e., adverse events, adherence,
resistance) and societal issues (i.e., stigma, cost burden, medical access). Furthermore, ART
is incapable of eliminating the latent viral reservoir, which is responsible for recrudescence
when therapy is interrupted (2–5). Viral persistence is facilitated by a variety of mechanisms
such as the exhaustion of HIV-specific cytolytic T-cells (CTLs) driven by chronic inflammation
(6–8); epigenetic modifications to dampen the expression of viral proteins allowing evasion of
immunosurveillance (9, 10); the localization of infected cells within immune privileged anatomical
sites (11–13); and the survival of long-lived, virus-harboring cells allowing reservoir expansion via
homeostatic proliferation (14, 15). Although formidable challenges exist for completing eradicating
HIV from infected individuals (a “cure”), there is growing enthusiasm that novel immunotherapy
approaches might eventually result in durable control of replication-competent HIV in absence of
any therapy (a “remission”). Much of this enthusiasm comes from dramatic progress made in using
immunotherapy to treating cancer. This editorial summarizes how the 13 review articles included
in this special issue highlight key parallels between HIV and tumor persistence as well as how these
similarities inform the development of novel immunotherapy-based strategies toward an HIV cure.

THE PERSISTENCE OF MEMORY

In both HIV and cancer, subsequent pathology arises from a relatively rare, yet difficult to
distinguish and persistent subset of cells. In the non-human primate model of HIV infection,
the persistent viral reservoir is established within 4–9 days post-infection (16); similarly, very
early ART initiation does not induce viral remission in PLWH (17). In a meta-analysis of
human cohorts, Etemad et al. propose that preferential infection of transitional memory (TTM)
CD4+ T-cells, as opposed to longer-lived central memory or naïve cells, is a key predictor for
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post-treatment control (18) despite weak HIV-specific CD8+

T-cell responses. Intriguingly, Goonetilleke et al. hypothesize
that the generation of the long-lived reservoir, particularly in
central memory (TCM) and stem-cell memory (TSCM) CD4+

T-cells, can be blunted by inhibiting the IL-7 signaling axis,
thereby disrupting the transition and maintenance of CD127+

memory subsets from highly-infected effector CD4+ T-cells (18).
Gavegnano et al. explore the use of Jak inhibitors in inhibiting
the activity of the anti-apoptotic Bcl-2 protein to reduce cellular
lifespans (19, 20). By blocking the formation and maintenance
of the viral reservoir in long-lived memory subsets, the authors
proposed that a reduction in viral burden will facilitate HIV
remission as mimicked in post-treatment controllers.

ESCAPE THROUGH EDITING

Once the viral reservoir is established, HIV-specific CD8+ T-
cells are required for viral suppression (21, 22); however, in most
infected people, HIV-specific CTLs are incapable of eliminating
infected cells (23) indicative of failure in immune surveillance
independent of mutational escape or dysfunction (24). This
incomplete elimination permits subsequent equilibrium phase
sculpting of reservoir-harboring cells by immune pressures,
which in cancer models has been termed “immunoediting”
(25). Analogous to “antigen loss” in tumors models, Huang
et al. explore the novel concept that during ART cells
harboring replication-competent virus undergo clonal expansion
with subsequent immunoediting; thereby decreasing CTL
susceptibility by selecting for BCL-2 expression (26) and
integration sites favoring cell division (27, 28). As HIV infection
impacts on cellular metabolism and oxidative stress (29, 30),
immunoediting may also select for an altered cellular lipid
antigen composition that, as summarized by Tiwary et al.,
in oncology models impinges on chronic inflammation by
modulating the macrophage M1 to M2 balance (31) and impairs
antigen processing in dendritic cells (32); specifically, CD1d
antigen loading for natural killer T-cells (NKT) (33). As a model
comparison (Mota and Jones) examine how HTLV-1 generates
malignant “repliclones” by an interplay of host- and viral-
mediated immunoediting. Therefore, these articles support the
notion that HIV CTL escape might be more complex than viral
epitope mutations, but rather involve the progressive selection of
immunoedited, infected cells resistant to immune surveillance.

WHO WATCHES THE WATCHMEN?

Effective immunosurveillance of HIV-infected cells remains
problematic as CTLs exhibit exhausted effector functions arising
from chronic inflammation and antigen persistence during the
natural course of infection and residual inflammation, driven
by microbial translocation in the gut, despite suppressive ART
(34, 35). Structural defects in gut integrity cause by HIV further
impacts the microbiota distribution (36), which given its ability
in cancer models to modulate toxicity (37) and therapy efficacy
(38, 39), may represent an attractive therapeutic avenue as
proposed by Herrera et al.. In some respects, as describe by

Dhodapkar and Dhodapkar, ART-suppressed HIV mirrors pre-
clinical malignancy, a prolonged state characterized by early-
onset of T-cell exhaustion coupled with the depletion of stem
cell memory (40). However, unlike antigen-rich tumor models,
curative HIV therapies require that latent virus be reactivated
to render infected cells immunogenic and cleared by potent
anti-HIV CTLs (“kick and kill”) (10, 41). Given their capacity
to promote tumor clearance, as detailed by Puronen et al.,
many immunotherapies are being investigated in HIV cure
studies to induce T-cell activation and restore CTL functionality,
such anti-PD-1 and anti-CTLA-4 check point inhibitors (CPI)
(42–44), and IL-7 and IL-15 cytokine therapy (45, 46). Given
emerging data concerning the importance of innate natural killer
(NK) cells in the control of HIV and cancers (47, 48), Lucar
et al., discuss immunotherapies targeting NKG2a and killer-
cell immunoglobulin-like receptors (KIRs) as novel strategies to
determine whether dysfunction NK cell states can be rescued.
Curative strategies centered around CPIs have revolutionized
the treatment of certain refractory cancers by reinvigorating
the host immune response; yet, in PWLH it remains to
be seen whether antigen burden is a critical determinant
of response.

IN CASE OF EMERGENCY—BREAK GLASS

Beyond these strategies, which may above prove too toxic,
fail to penetrate tissue, or lack desire specificity, alternative
curative approaches utilize adoptive T-cell therapy to redirect
CTL responses. Kim et al. describe the re-emergence of chimeric
antigen receptor (CAR) T-cells as an attractive immunotherapy
strategy given its progressive re-engineering in oncology settings
to improve safety, expression, and persistence (49). Although
CAR T-cells have attained remarkable remission rates for
CD19+ B-cell acute lymphoblastic leukemia (50), significant
relapse rates are associated with diminished persistence upon
antigen loss/escape, the suppressive tumor microenvironment,
and impaired tumor penetration (51). These issue impacting
tumor relapse are directly analogous to HIV models vis-á-
vis ART-mediated aviremia, the expansion of regulatory T-cells
(TREGs) (52, 53), and the exclusion of CTLs from secondary
lymphoid tissue (13, 54). Possible strategies to surmount these
issues include engineering CAR T-cells to express 4-1BB co-
stimulatory domains allowing oxidative metabolism (55); secrete
cytokines, such as IL-12 or IL-18 (56, 57); and up-regulate the
chemokine receptor CXCR5 to promote homing to the lymphoid
B-cell follicle (58) as explored by Mylvaganam et al.. Seemingly,
CAR T-cells for HIV applications should be directed against
viral proteins to minimize safety concerns and given the lack
of reliable biomarkers to identify latently-infected cells. Ergo,
CAR T-cells will likely require co-administration with potent
latency reactivating agents to promote therapy persistence and
reveal cellular targets for clearance. Such combination therapies
would benefit from positron emission tomography (PET)-based
imaging, as reviewed by Henrich et al., to observe the total-body
viral antigen distribution (59, 60) and to gain insights concerning
the potential for efficacy in difficult to sample tissues (61, 62).
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SUMMARY

Models of cancer and HIV persistence share an interesting
paradox: responses promoting self-tolerance when exposed
to sustained inflammatory stimuli permit pathological
dissemination and escape from immune surveillance. This
similarity would suggest common curative approaches via the
targeting of immunosuppressive pathways. However, a key
distinction is that in cancer the self-immunogen is pervasive;
whereas, in ART-treated HIV infection chronic antigenic
stimulation arises largely from gut microbial translocation,
not from viral proteins. This different in antigen source may
represent a key obstacle when translating therapies between
cancer and HIV models (63). In designing immunotherapy

strategies, it is also important to consider that adverse event
outcomes between these models have substantially different
tolerances, as HIV is a manageable chronic disease and cancers
are invariably fatal. Future trials will be necessary to determine
whether these mechanistic insights regarding escape and
exhaustion can be successfully adapted to facilitate long-term,
ART-free HIV remission.
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HIV infection exerts profound and perhaps irreversible damage to the gut

mucosal-associated lymphoid tissues, resulting in long-lasting changes in the signals

required for the coordination of commensal colonization and in perturbations at the

compositional and functional level of the gut microbiota. These abnormalities in gut

microbial communities appear to affect clinical outcomes, including T-cell recovery,

vaccine responses, HIV transmission, cardiovascular disease, and cancer pathogenesis.

For example, the microbial signature associated with HIV infection has been shown to

induce tryptophan catabolism, affect the butyrate synthesis pathway, impair anti-tumoral

immunity and affect oxidative stress, which have also been linked to the pathogenesis of

cancer. Furthermore, some of the taxa that are depleted in subjects with HIV have proved

to modulate the anti-tumor efficacy of various chemotherapies and immunotherapeutic

agents. The aim of this work is to provide a broad overview of recent advances in our

knowledge of how HIV might affect the microbiota, with a focus on the pathways shared

with cancer pathogenesis.

Keywords: HIV, cancer, microbiota, immunotherapy, dysbiosis

INTRODUCTION

A hallmark of treated HIV infection is sustained, low-level viral inflammation. While the cause
of this persistent activation of innate and adaptive immunity despite well-controlled HIV RNA
replication is not completely understood, it is widely assumed that chronic defects of mucosal
immunity are a major contributor (1). HIV targets the mucosa on structural and functional
levels (2–4). Arguably, these disturbances will have consequences on the signals required for the
coordination of commensal colonization, which may explain the shifts in microbial distributions
and metabolic activity of gut microbial communities (5–7). In addition, these abnormalities caused
by HIV infection have been shown to result in increased translocation of microbial products from
the gut to the circulation in both animal models and HIV-infected individuals (8, 9). It has been
repeatedly shown that biomarkers of bacterial translocation positively correlate with markers of
T-cell activation, monocyte activation, and proinflammatory cytokines (10). It is widely accepted
now that sustained low-level activation of the innate and adaptive immune systems is a major driver
of AIDS and non-AIDS-related comorbidities (11–15). Collectively, these observations argue that
microbial translocation, a phenomenon intrinsically linked to the gut microbiota, is a driver of
inflammation, and adverse outcomes during treated HIV infection.
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INFLUENCE OF THE MICROBIOTA ON HIV

IMMUNOPATHOGENESIS DURING

TREATED INFECTION

The gut microbiota has been associated with HIV
immunopathogenesis (5, 16–19). Defining the influence of
HIV on the microbiota, however, is more difficult. Studies
on the impact of SIV infection in the gut microbiota of
non-human primates have found only modest differences
in the fecal bacterial communities between SIV-infected
macaques compared to uninfected macaques, suggesting that the
development of immunosuppression, rather than SIV infection
itself, may drive the differences (20, 21). In addition, induction of
dysbiosis with vancomycin does not accelerate the progression
of untreated SIV infection (22). The effects of HIV infection
on microbial diversity appear to be confounded by a number
of factors, including the nadir of CD4+ T-cells (23) and the
risk factor for HIV acquisition (24, 25). While admittedly there
are difficulties dissecting the specific effects of HIV disease on
the microbial communities, there is wide consensus that the
gut microbiomes of HIV-positive individuals exhibit specific
compositional and functional shifts (5, 19, 26–29). Surprisingly,
the microbiota associated with HIV infection shares traits with
that associated with other proinflammatory conditions, such
as the depletion of butyrate-producing bacteria observed in
inflammatory bowel disease (30).

It is therefore tempting to assume that so-called “HIV-
associated dysbiosis” may be implicated in the sustainment
of systemic inflammation in treated HIV disease. Several taxa
and their associated pathways (Figure 1) have been linked with
persistent immune abnormalities (5, 7, 31). The real picture,
however, may be far more complex. From an ecological point
of view, the components of a rapidly evolving ecosystem
will respond to environmental perturbations by adapting their
composition and functions to achieve the optimal fitness within
their changing habitat (32). For example, the fecal microbiota of
people with HIV has been shown to harbor greater abundances of
genes related to resistance to oxidative stress, such as the genetic
machinery for glutathione metabolism or zeatin biosynthesis
pathways (7, 31).

Defining the clinical scope of the changes in gut microbial
communities can be challenging because a big proportion of
bacteria are dead, dormant, or inactive (33, 34). Expensive and
time-consuming techniques are required to measure the proteins
and metabolites synthesized by active bacteria. The extent of
functional adaptation of microbial communities to the ecological
perturbation induced by HIV might influence the different
immunologic outcomes achieved during antiretroviral therapy
(ART). In fact, HIV infection activates an important fraction of
the gut microbiota. Although only 20% of the fecal microbiota
is metabolically active in healthy controls, HIV infection is
characterized by the activation of up to 50% of microbial
communities (35). Among immunological ART responders, the
metabolic activity of some taxa (Succinivibrionaceae family)
is boosted, acting as anti-inflammatory buffers thanks to
the accumulation of proinflammatory mediator. In addition,
cannabinoid oleamide and biliverdin (a viral inhibitor) are

also accumulated within bacteria and may contribute to health
recovery by inhibiting viral replication, stimulating the immune
system, and ultimately reducing inflammation. These findings
are in sharp contrast to those observed in immunological non-
responders whose gut bacteria metabolism is most similar to that
of ART-naïve participants. The metabolic activity of their gut
bacteria is characterized by the cleavage of the sialic and dolichol
components necessary to maintain enterocyte integrity (19).

The Kynurenine Pathway
Indoleamine-2,3-dioxygenase-1 (IDO1) involved in tryptophan
catabolism via the kynurenine pathway is correlated with
epithelial barrier disruption and bacterial translocation in HIV
infection (36). Induction results in the production of kynurenine
derivatives with immunosuppressive effects, impairing mucosal
immunity, and promoting bacterial translocation and higher
mortality (37). In a seminal study, Vujkovic-Cvijin et al.
(5) characterized 140 genera significantly correlated with
tryptophan catabolism. Some of these taxa were found to
encode the genetic machinery that reproduces the same
tryptophan catabolism as human IDO1. This finding was further
confirmed by metabolomic analysis in gut bacteria via the
detection of the kynurenine subproduct 3-hydroxyanthranilate
(34). In a subsequent study combining metagenomic and
metatranscriptomic data, we showed that HIV-infected
individuals exhibited increased anaerobic catabolism of
tryptophan via tryptophanase anaerobic fermentation compared
with healthy controls (23). This expression was upregulated
in the Prevotella, Acidaminococcus, and Clostridium genera.
It is likely that the HIV-associated microbiota exerts a strong
influence on this critical pathway at the crossroads between
metabolism and immunity.

Short-Chain Fatty Acids
Short-chain fatty acids (SCFAs) are the primary fermentation
products of gut microbiota from dietary fibers. The most
abundantly produced SCFAs include acetate, propionate,
and butyrate (38, 39). Butyrate is a regulator of intestinal
homeostasis and a modulator of immune cell response. It is
involved in the maintenance of enterocyte barrier integrity
and mucine production (40), induces transcription of human
genes via histone deacetylase inhibition (41), and promotes
immunotolerance to commensal bacteria (42). Several studies
have demonstrated a decrease in butyrate-producing bacteria,
including Roseburia, Coprococcus, Faecalibacterium, and
Eubacterium, in both HIV-treated and ART-naïve individuals,
in association with altered SCFAs profiles (17, 43). In patients
with ulcerative colitis, depletion of both Faecalibacterium
prausnitzii and Roseburia intestinalis has been proposed to be
the hallmark of dysbiosis (44). It is increasingly accepted that
the butyrate synthesis pathway supports intestinal inflammation
and represents a potential therapeutic target for interventions
aimed at mitigating chronic inflammation (45). Propionate and
acetate have been less studied in HIV but have been linked to
conferring protection against cardiovascular disease and playing
other beneficial roles in other diseases (46).
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FIGURE 1 | Implications of the gut microbiota in HIV pathogenesis. IDO1, indoleamine 2,3-dioxygenase 1; scGOS, short-chain galactooligosaccharides; lcFOS,

long-chain fructooligosaccarides; HDAC, histone deacetylases.

Trimethylamine-N-Oxide
Trimethylamine-N-oxide (TMAO) is a gut microbiota-
dependent choline and carnitine metabolite that is responsible
for an increased risk of atherogenesis and cardiovascular
disease risk (47), particularly in individuals who consume
large quantities of meat and possess a specific microbiome
signature with enriched proportions of the genus Prevotella
(48). This metabolite has also been associated with
atherosclerotic plaque burden in HIV in some (49, 50)
but not all (51) studies. A recent cohort study comparing
the fecal microbiota of HIV-infected individuals with
and without ischemic heart disease showed that high
TMAO plasma levels was a marker of cardiovascular
heart disease and correlated with the fecal abundance
of Phascolarctobacterium, Desulfovibrio, Sutterella, and
Faecalibacterium (52).

Microbiota as a Tool for Precision Medicine

for HIV
Hopefully, future studies will exploit these connections between
microbiota and HIV immunopathogenesis to improve the
clinical management of HIV infection. From a diagnostic point
of view, one could utilize microbiota to identify individuals
at higher risk of HIV acquisition (53–55), to anticipate the

responsiveness to pre-exposure prophylaxis strategies with
topical antiretroviral drugs (56), and to predict the risk of
precancerous anal lesions (57). From a therapeutic point of
view, we may gain the ability to manipulate the microbiota
to enhance vaccine immunogenicity (58), boost immune
recovery after ART initiation (59, 60), and attenuate chronic
inflammation and bacterial translocation (61). A number of
studies assessing HIV patients’ dietary supplementation with
prebiotics and probiotics have collectively suggested that dietary
supplementation may exert some beneficial immunological
effects, particularly in ART-naïve individuals (30, 59, 62–64).
However, two recent controlled studies focused on ART-naive
(60) and ART-suppressed (65) individuals have failed to detect
significant parameters of inflammation, bacterial translocation or
immune activation. These findings call into question the utility
of these strategies. The first pilot study of fecal microbiota
transplantation in HIV failed to demonstrate adequate
engraftment of colonoscopy microbiota on the microbiota
of the recipients (66). Ongoing studies (NCT02256592 and
NCT03329560) are evaluating different modalities of fecal
microbiota transplantation. Clinical trials assessing the use
of postbiotics—metabolites or cell-wall components released
by microbiota—and represent the future landscape of this
fascinating field.
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INFLUENCE OF MICROBIOTA IN CANCER

Microbiota as a Trigger of

Cancer Pathogenesis
Cancer is a multifaceted disease influenced by both genetic
and environmental factors. Microorganisms are emerging as
one of the contributors to carcinogenesis, and today we
know that approximately 20% of the global cancer burden
is directly attributable to infectious agents (67). Beyond the
neoplasias directly linked to infectious agents, increasing
evidence reveals that microbial communities as a whole play a
key role in carcinogenesis by altering the balance of host cell
proliferation and apoptosis; hindering anti-tumoral immunity;
and influencing the metabolism of host-produced factors,
ingested food components, and drugs (68, 69).

Barrier failure has been proposed to be the most relevant
mechanism for bacterially driven carcinogenesis, resulting in
increased host-microbiota interactions (70, 71). The failure
of control mechanisms (e.g., barrier defects, immune defects,
dysbiosis) is believed to represent the trigger of bacterial-driven
carcinogenesis (72), leading to activation of different responses
that converge in cell proliferation and cancer development. The
microbiome itself represent a functional barrier by suppressing
the growth of pathobionts via different mechanisms, including
both resource competition and direct interference competition
(73). Therefore, dysbiosis has also been associated with cancer
(71). Alterations of gut bacteria have been linked to the
development of colorrectal cancer (CRC) (74), but also to
extraintestinal cancers, including liver (75), breast (76), and
lung cancer (77, 78). While lung microbiome investigations
are still in their infancy, the lung microbiotas of patients
with lung cancer are distinct from those of other patients
(e.g., individuals with emphysema) (79). The abundance of
several types of bacteria in the lungs—including Granulicatella,
Streptococcus, and Veillonella—has been proposed to be a
hallmark of lung cancer (80). An association between the
abundance of the Koriobacteriaceae family in the lungs and
recurrence free survival has been reported (81). Furthermore, the
fecal microbiota of individuals with lung cancer is depleted of
Bifidobacteria (82), a commensal genus with known anti-tumoral
effects. Bifidobacteria appears able to enhance the efficacy of
anti-programmed cell death ligand 1 therapy (83).

Microbiota-Associated Pathways Linked

to Carcinogenesis
Recent studies of CRC have identified different mechanisms of
carcinogenesis. The bacterial driver-passenger model proposes
that the colonic mucosa of patients at risk of CRC is colonized
by pro-inflammatory bacteria that can produce genotoxins
that lead to DNA mutations and increase cell proliferation
(“drivers”). These changes facilitate the replacement of the
commensal bacteria with opportunistic pathogens (“passengers”)
with competitive advantage in this niche, which leads to tumor
progression (72). From the 1990s onward, various studies have
demonstrated an association between CRC and specific colonic
bacterial species, which favor the development of cancer through
different pathogenic pathways (Figure 2) (86). Very impressively,

Fusobacterium nucleatum and certain co-occurring bacteria have
been found not only in primary CRC but also in distant
metastases. Antibiotic treatment of mice carrying xenografts
of F. nucleatum-positive human CRC slowed tumor growth,
demonstrating the causal role of this taxon in oncogenesis (87).

Among the carcinogenic mechanisms shown in Figure 2,
microbial fermentation products of dietary fiber into SCFAs,
including butyrate, propionate, and acetate, with known anti-
inflammatory properties (85) likely play a major role. Butyrate
is one of the primary sources of energy for enterocytes, and it has
been associated with the downregulation of the WNT signaling
pathway, inhibition of proliferation and migration of neoplastic
cells, and apoptosis induction (88). Butyrate also reinforces
mucosal health via Treg-cell activation and IL-10 expression
(89). Butyrate producers (e.g., F. prausnitzii, Roseburia, and
Bifidobacterium) are depleted in CRC patients (69).

Another mechanism related to the catabolism of dietary
precursors strongly influenced by the microbiota is the
production of the proatherogenic TMAO.While the implications
of this derivative of choline metabolism appear clear for
cardiovascular disease (47), this pathway has been rarely studied
in the field of oncology. One investigation has suggested that
alterations in cholinemetabolismmay be associated with a higher
risk of CRC (90).

The Microbiota Modulates the Efficacy and

Toxicity of Anticancer Therapies
The microbiota can modulate cancer initiation and progression,
but it might also influence response to therapy and treatment-
related toxicity (91). First, the bioavailability of many oral
drugs depends on their biotransformation in the gut by local
microbiota and may also indirectly affect the metabolism of
systemically delivered drugs via the regulation of xenobiotic
metabolism in distant organs such as the liver (92). Second,
the immune response plays an essential role in anticancer
activity, and themicrobiomemight affect chemotherapy response
via this mechanism. There is evidence that oxaliplatin and
cyclophosphamide activity is modulated by gut microbiota by
priming myeloid cells for high-level reactive oxygen species
(ROS) production (resulting in DNA damage) and enhancing
T-helper cell-mediated anti-tumor responses, respectively (93,
94). Chemotherapy-related adverse events can also be managed
via microbiome modulation. For example, diarrhea caused by
irinotecan toxicity, which is mediated by microbial-produced
β-glucuronidases, can be regulated by targeting microbial
metabolism (95). The microbiota might also play a role in
response and toxicity to radiotherapy. Radiation-related mucosal
injury is associated with changes in the microbiome, and germ-
free mice have been shown to be resistant to radiation enteritis
(91). Lastly, recent pioneering studies have yielded paradigm
shifts in our knowledge of the interactions between gut bacteria
and cancer therapy. The gut microbiome has been shown
to modulate the anti-tumor efficacy in pre-clinical models of
various chemotherapies (93, 94) and immunotherapeutic agents
(96–99), including antibodies against cytotoxic T lymphocyte-
associated antigen 4 (CTLA4) and anti-programmed cell death
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FIGURE 2 | Mechanisms by which bacteria influence cancer development and progression. (A) Barrier loss and increased bacterial translocation engages pattern

recognition by Toll-like receptors (TLRs) and activation of innate and adaptive responses. The interleukin-23 (IL-23)-IL-17 axis, IL-6, and tumor necrosis factor-α, lead

to chronic inflammation mediated by nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation, favoring tumor progression

(68). (B) Bacterial virulence-factors promote carcinogenesis by engaging specific host pathways, which plays a decisive role in many malignancies. Fusobacterium

nucleatum Fad-A binds host E-cadherin on colonic epithelial cells, and triggers Wnt/β-catenin pathway activation, resulting in increased NF-κB, and ultimately in

increased tumor growth (84). Other virulence factor such as H.pylori CagA have been widely studied (68). (C) Some microorganisms modulate tumorigenesis through

specific toxins, which induce host DNA damage. Cytolethal distending toxin (CDT) produced by Gram-negative bacteria, Bacteroides fragilis toxin and Escherichia coli

colibactin constitute some of the most studied toxins identified as potential drivers of CRC (70). (D) Dietary residues determine the composition and metabolic activity

of the microbiota. An imbalanced high-fat, high-meat, low-fiber diet, lead to a greater exposition to secondary bile acids, and protein fermentation metabolites (such

as ammonia, phenols, sulfides, and nitrosamines), which have inflammatory and carcinogenic effects (85).

protein 1 (PD-1) (92). Individuals with metastatic melanoma
responding to anti-PD-1 were enriched with Faecalibacterium
genus in intestinal microbiota; non-responding individuals had
a higher abundance of Bacteroidales (97). Another study found
an abundance of Bifidobacterium in responding individuals;
Ruminococcus obecum and Roseburia intestinalis were associated
with a lack of responsiveness (99). The role of the microbiota on
treatment response is further supported by striking data showing
poorer survival outcomes on patients with metastatic non-small
cell lung cancer or renal cell carcinoma receiving antibiotics
just before or just after initiation of treatment with immune
checkpoint blockade (100). Converging data support a robust
interaction between specific bacteria and the systemic immune
response (97–99). In subjects with non-small cell lung cancer

specific memory CD4+ and CD8+ T-cells against Akkermansia
muciniphila predicted a longer progression-free survival (98).

In subjects with melanoma the abundance of Faecalibacterium

genus positively correlated with the with a higher frequency of
cytotoxic CD8 T-cell infiltration in the tumor bed. Similarly,
in mice intratumoral CD8+ T-cell infiltration after anti-PD-L1
treatment correlated the microbiota composition (100).

Is It Possible to Exploit the Microbiome to

Improve Clinical Outcomes in Oncology?
Emerging evidence suggests that altering the microbiota might
represent a therapeutic avenue for cancer management (101).
Modulation of gut microbiota in preclinical models has been
shown to enhance therapeutic response (102). Landmark studies
have demonstrated that fecal microbiota transplantation from
cancer patients who had responded to anti-PD-1 therapy
improved the effects of PD-1 blockade in germ-free or antibiotic-
treatedmice (97–99). Several trials involving patients on immune

checkpoint blockade undergoing fecal microbiota transplant
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TABLE 1 | Gut microbial signatures associated with clinical outcomes in both HIV and cancer and putative mechanisms.

Bacteria implicated Pathway/Function Mechanisms Biological effect Clinical consequences References

↓ Faecalibacterium prausnitzii

↓ Lachnospira spp.

↓ Roseburia intestinalis

↓Ruminococcaceae

SCFA-production Histone deacetylase inhibition

Human gene transcription

↓ antigen presentation

↑ immunotolerance

Immunotolerance Cell

proliferation

HIV: systemic inflammation.

Higher risk of tuberculosis

Cancer: risk of CRD

development

(Roseburia intestinalis)

(30, 31, 97,

105, 106)

↑ Gammaproteobacteria

↑ Pseudomonas spp.

↑ Bacillus spp.

↑ Burhloderia spp.

↑ Prevotella

↑ Acidaminococcus

Tryptophan

catabolism

IDO1 inhibition

↑ immunosuppressive

kynurenine derivatives

↓ Th17 cells

Immunotolerance

Barrier failure

Angiogenesis

HIV: bacterial translocation,

inflammation, mortality

Cancer: Overexpressed in

tumoral cells (e.g., endometrial

cancer, lung cancer) IDO1

inhibitors under evaluation in

both conditions.

(5, 29, 107–

109)

↑ Bacteroides fragilis IL-10 signaling

pathway

Polysaccharide A production

TLR-2 activation IL-10

expression

Immunotolerance HIV: Systemic immune

activation. Periodontitis

Cancer: anti-tumoral effects.

Enhancement of CTLA-4

blockade efficacy

(5, 110–113)

↑ Actinobacteria

↓ Bacteroidetes

↑ Firmicutes

↑ Gammaproteobacteria

↑ Clostridium XIVa

↑ Faecalibacterium spp.

Choline metabolism TMAO production Endothelial dysfunction

Inflammation

HIV: carotid atherosclerosis,

monocyte activation

Cancer: malignant

transformation, risk of

colorectal cancer

(51, 52, 114–

117)

↑ Bifidobacteria Antitumoral

immunity

↑ Dendritic cell activation

↑ CD8+ T cell priming and

accumulation in the tumor

microenvironment

↑ Cross-reactivity with

tumor antigens

CTL responses

Epithelial cell turnover

Immunomodulatory

strain-dependent

effects

HIV: immune recovery under

ART

Cancer: Protection against

cancer development.

Enhancement of

immunocheckpoint

blockade efficacy.

(19, 82, 83,

118–120)

↓ Akkermansia muciniphila Chemotaxis ↓ Mucin degradation Host immune regulation HIV: higher systemic

inflammation (sCD14, IP10) and

intestinal inflammation (fecal

calprotectin)

Cancer: longer progression

free-survival. Enhanced efficacy

of PD-1 blockade

(26, 121–123)

↑ Fusobacterium spp. Cell proliferation TLR-4 signaling.PPAK1 cascade.

Nuclear factor KB induction

Cell proliferation and

oncogenesis

HIV: poor immune recovery after

ART

Cancer: colorrectal

cancer development

(17, 124–126)

↑ Lactobacillales Inflammation.

Antitumoral

immunity

Upregulated IFN-γ, GZMB, and

PRF1 expression in CD8+ T-cells

Enhanced antitumor

response

HIV: greater immune recovery

after ART

Cancer: predictor of enhanced

immunotherapy efficacy

(19, 99, 126–

128)

ART, antiretroviral therapy; CTL, cytotoxic T-cell mediated; SCFA, short-cain fatty acid; IDO1, indolamine-2,3-deoxygenase-1; LPS, lypopolisaccharide; TMAO, trimethylamine-N-oxidase.

are currently underway, but definitive data are lacking (91).

Probiotics have been shown to boost anti-tumor immune

responses inmice, but their off-trial use in humans is discouraged

because there is still insufficient evidence to implement dietary

guidelines or prebiotic administration in the setting of cancer

therapy (91). Manipulation of the microbiome in cancer

patients might result in novel indications for this intervention,

as illustrated by the efficacy demonstrated in the first case

series of patients with refractory immune checkpoint inhibitor-

associated colitis successfully treated with fecal microbiota

transplantation (103). Nearly 40 clinical trials assessing gut

microbiota modulation in cancer are ongoing (91). The results
of these investigations will inform best strategies and define
indications of this therapeutic approach to improve clinical
outcomes in oncology.

HIV, CANCER, AND THE MICROBIOTA:

CONVERGING PATHWAYS AND

RESEARCH AVENUES

Can we learn anything from microbiome studies of HIV-positive
patients that may be applicable to cancer? First, the vast majority
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of mechanistic studies regarding the influence of the microbiome
in HIV are cross sectional in nature (104). The well-known
limitations of these studies are magnified by underappreciated
confounding factors related to microbiota studies. For example,
it took several years for the field to recognize that the increased
abundance of Prevotella spp. observed in the first studies of
HIV-infected individuals (5, 7, 16, 18) was confounded by the
lower proportion of men who had sex with men in the control
groups (24). Given the particular clinical profile of patients
undergoing anticancer treatment, these confounders may be even
more pronounced in patients with cancer.

Several pathways strongly influenced by microbiota appear
to affect pathogenic mechanisms present in different conditions.
Gut microbial signatures associated with clinical outcomes
in both HIV and cancer and the putative mechanisms are
summarized in Table 1. For example, the major butyrate
producers Faecalibacterium prausnitzii and Roseburia intestinalis
are depleted in subjects with HIV (17, 43), intestinal bowel
disease (44), and CRC (69). Because butyrate production
has been shown to promote Treg-cell activation and IL-10
expression (89, 105), the butyrate synthesis pathway is a
potential therapeutic target for conditions in which enterocyte
barrier integrity and mucosal tolerogenic immune responses are
implicated. The kynurenine pathway has been also implicated
in both HIV (5) and cancer pathogenesis (129). IDO1 is
frequently overexpressed in many malignancies, where it
correlates with poor survival and prognosis. Besides its role
in immunosuppression, IDO1 promotes cancer development
by inducing inflammatory neovascularization, interacting with
checkpoint inhibitors, and modulating gut microbiota (130).
While it is still too soon to draw conclusions about the
therapeutic potential of IDO1 inhibitors for HIV disease
and cancer, an increasing number of IDO1 inhibitors are
currently in preclinical development or under evaluation in
clinical trials (131, 132).

Analyzing gutmicrobiota from a functional perspective will be
crucial to advancing knowledge about the role of the microbiome
in the pathogenesis of cancer and understanding its interactions
with immunotherapy. While bifidobacteria have not typically
appeared to be compositionally relevant in most HIV studies
reliant on 16S sequencing, its functional importance is clear
when we assess the functional level of the microbiota. For
example, while using 16S sequencing we only demonstrated

modest changes in gut microbiota structure after a short prebiotic
intervention, which did not include changes in the abundance
of bifidobacteria (30). Using proteomics we demonstrated a 100-
fold increase in the activity of the Bifidobacteriaceae family,
which strongly correlated with the thymic output, a surrogate
marker of the ability of the immune system to renew the T-
cell pool (118). In a study aimed at identifying the bacterial
biomarkers of precancerous anal lesions in HIV, Bifidobacterium
spp. were also the most predictive taxa in stools of anal
dysplasia (57). Because Bifidobacterium spp. enhance anti-tumor
immunity and anti-PD-L1 efficacy (83), it is likely that the
importance of this genus will remain underappreciated until
researchers evaluate the functional level of the microbiota.

While the microbiome agenda is expanding, it is still
unclear whether we can effectively manipulate the microbiome
to treat HIV and cancer. Pilot studies analyzing the effects
of fecal microbiota transplantation will provide powerful
indications of our ability to modify clinical outcomes via
microbiota manipulation. In the coming years, we look forward
to learning to exploit the potential of the microbiota for
precision medicine (e.g., predicting treatment responsiveness
or toxicities). Gaining further insights into the mechanisms by
which the microbiota influences HIV disease and cancer will
help to leverage the microbiome to develop interventions for
both conditions.
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Among the top priorities of the HIV field is the search for therapeutic interventions that can

lead to sustained antiretroviral therapy (ART)-free HIV remission. Although the majority of

HIV-infected persons will experience rapid viral rebound after ART interruption, there are

rare individuals, termed post-treatment controllers (PTCs), who demonstrate sustained

virologic suppression for months or years after treatment cessation. These individuals

are considered an ideal example of durable HIV control, with direct implications for

HIV cure research. However, understanding of the mechanisms behind the capacity of

PTCs to control HIV remains incomplete. This is in part due to the scarcity of PTCs

identified through any one research center or clinical trial, and in part because of the

limited scope of studies that have been performed in these remarkable individuals. In this

review, we summarize the results of both clinical and basic research studies of PTCs to

date, explore key differences between PTCs and HIV spontaneous controllers, examine

potential mechanisms of post-treatment control, and discuss unanswered questions and

future research directions in this field.

Keywords: HIV, post-treatment controllers, remission, treatment interruption, elite controllers

INTRODUCTION

Within each medical field, there exist individuals who exhibit extreme responses to medical
treatment. As an example, individuals who have an unexpectedly dramatic response to cancer
therapy are termed “exceptional responders.” These exceptional responders represent an area
of intense research interest within the oncology field (1) and have already made important
contributions to the understanding of both basic tumor biology and drug development (2). In this
review, we focus on a group of exceptional responders within the HIV field, specifically individuals
who were treated with antiretroviral therapy (ART) and can subsequently maintain HIV remission
even when the ART is discontinued.

HIV infection is characterized by sustained viral replication and progressive decline in CD4
cell counts (3). ART is effective in suppressing viral replication and decreasing HIV-associated
morbidity and mortality, but it cannot completely eradicate all HIV-infected cells. Consequently,
HIV viral load rebounds rapidly after treatment interruption in most HIV patients (4, 5). However,
there are rare individuals, termed post-treatment controllers (PTCs), who are able to suppress the
virus for a prolonged period of time after treatment interruption (Figure 1). These individuals are
considered an ideal example of durable HIV control and have the potential to provide substantial
insight into the “natural” mechanisms of functional cure and sustained HIV remission (7).
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FIGURE 1 | Examples of post-treatment non-controller (NC) (A), and

post-treatment controllers (B,C). Gray shaded area represents time on

antiretroviral therapy. Adapted from CHAMP study (6).

Interest in ways to induce post-treatment control were initially
kindled by a report of an individual who was able to control
HIV without ART after undergoing several sequential treatment
interruptions (8) and in an in-depth report of 14 early-treated
PTCs reported in the VISCONTI study (7). There have been
a number of subsequent studies of PTCs with a wide range
of reported frequency amongst those who discontinue ART
(6, 7, 9–19). This variation in reported frequency of PTCs
may be attributed to different baseline characteristics of the
populations in which these studies were done, as well as the
heterogeneous definitions applied for defining this rare group of

HIV patients (18). In this review, we will summarize the most
recent findings on the clinical and immunological characteristics
of PTCs, differentiate them from HIV spontaneous controllers
(SCs), and discuss the role of PTCs in the search for strategies
toward HIV remission and cure.

POST-TREATMENT CONTROLLER
DEFINITIONS

Since the initial description of the post-treatment controller
phenotype, a number of observational studies and interventional
clinical trials have been performed to investigate the
characteristics of this rare group of patients and to determine
the mediators of post-treatment control. However, the
heterogeneities in study designs have made it challenging to
compare studies and to gain a clear grasp of the PTC population.
For example, the definition of post-treatment control has differed
dramatically between studies. Some studies have considered
virologic rebound to be a plasma viral load above 50 HIV-1 RNA
copies/ml after treatment interruption, while others have used
a threshold of 400 HIV-1 RNA copies/ml or 1,000 HIV-1 RNA
copies/ml for this purpose (Table 1, Supplementary Table S1).
The duration of viral control after treatment interruption has also
differed dramatically between studies and ranged from a median
of 6 month to more than 2 years (7, 9–32). Furthermore, the loss
of viral control was also defined differently between previous
studies. Some considered 2 consecutive viral loads above 50
HIV-1 RNA copies/ml to indicate the loss of post-treatment
control (8–10), while others considered 1–4 consecutive viral
loads higher than 400 HIV-1 RNA copies/ml as the definition
for viral rebound post-treatment interruption (7, 12, 16–18). Of
note, the largest PTC study to date has been the Control of HIV
after Antiretroviral Medication Pause (CHAMP) study, which
identified 67 PTCs through the pooled analysis of 14 clinical
studies from the AIDS Clinical Trials Group (ACTG) and other
North American cohorts (6, 14, 20–32). In this study, the PTCs
were defined as individuals who maintained viral loads ≤400
copies/mL at two-thirds or more of time points for ≥24 weeks
post treatment interruption (6).

DEMOGRAPHIC CHARACTERISTICS OF
PTCs

The median age of PTCs in these studies ranged from 27 to
46 years old. The majority of PTCs identified were male, likely
reflecting the sex distribution of the clinical trial participants
(6, 7, 9, 11, 12, 15–18). Intriguingly, there have been reports
that female gender may be associated with a higher chance
of post-treatment HIV control (10) and spontaneous control
(33, 34), highlighting the need for studies focusing on female
participants of treatment interruption trials. In addition, the
majority of PTCs have been reported by studies from North
America and Europe (6, 7, 9–12, 15–18) and little is known
about PTCs from outside of those regions. In an analysis of
SPARTAC trial participants who initiated ART during early
HIV infection, individuals with delayed viral rebound could be
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TABLE 1 | Post-treatment controller (PTC) frequency after treatment interruption reported from previously published studies.

References Cohort Timing of ART PTC, Total, N PTC Frequency (%) VF threshold copies/ml PTC duration

Hocqueloux et al. (9) ANRS Early 5 15.6 >50 75 months (median)

Goujard et al. (10) ANRS PRIMO Early 14 8.5 >50 4.5 years (median)

Lodi et al. (11) CASCADE Early 11 5.5 >50 24 months

Saez-Cirion et al. (7) VISCONTI Early 14 15.3 >400 89 months (median)

Stohr et al. (12) SPARTAC Early 4 2.4 >400 164–202 weeks

Van Gulck et al. (15) Secondary Controllers Chronic 4 >1,000 At least 6 months

Assoumou et al. (16) ANRS SALTO Chronic 7 4.2 >400 12 months (7 patients)

36 months (4 of the

7 patients)

Calin et al. (17) ULTRASTOP Early Chronic 1 10 >400 56 weeks

Perkins et al. (18) NHS Chronic 4 4.2 >400 267–1,058 days

Fidler et al. (19) CASCADE Early 22 2.8 >50 24 months

Namazi et al. (6)* CHAMP Early & Chronic 67 13 (Early)

4 (Chronic)

>400 24–804 weeks

*The CHAMP study includes participants from 8 AIDS Clinical Trials Group (ACTG) studies [ACTG 371 (20), A5024 (21), A5068 (22), A5102 (23), A5130 (24), A5170 (25), A5187 (26),

and A5197 (27)], the Montreal Primary HIV Infection Cohort (Montreal PIC) (28), the Seattle Primary Infection Program (SeaPIP) (13, 29), the University of California San Diego Primary

Infection Cohort (UCSD PIC) (14), a National Institutes of Health (NIH) therapeutic vaccine trial (30), the University of California San Francisco (UCSF) OPTIONS study (31), and the

Ragon HIV Controllers cohort (32).

ART, Anti Retroviral Therapy; VF, Viral Failure.

identified from participants enrolled in South Africa and Uganda
(35). Furthermore, African participants tended to have lower
pre-ART viral load and integrated HIV DNA levels, and after
treatment interruption, Africans appeared to experience a longer
duration of viral remission than non-Africans in the SPARTAC
study (12, 36). These results provide a strong rationale for
additional studies of PTCs fromAfrica and other regions to assess
the impact of race andHIV subtype on barriers to HIV remission.

CLINICAL AND IMMUNOLOGICAL
CHARACTERISTICS

Historically, the majority of PTCs have been identified in studies
of patients who initiated ART during early HIV infection (7, 9–
12, 20, 26, 29–31, 37). However, PTCs have also been identified in
participants who were treated during chronic HIV infection (15,
16, 18, 21, 22, 25, 27, 38). The CHAMP study directly compared
the frequency of post-treatment control between individuals who
initiated ART during early and chronic HIV infection. This study
found that individuals who were treated during early infection
were far more likely to meet the PTC criteria after treatment
interruption compared to those treated during chronic infection
(13 vs. 4%, P < 0.01, Figure 2) (6).

At the time of treatment interruption, CD4 cell counts for
the PTCs were generally quite high with a median of 720 to
1,429 cells/mm3 amongst the studies (7, 9–12, 15–19). After ART
discontinuation, PTCs can exhibit a range of viral load dynamics
with a subset demonstrating persistent viral load suppression
(Figure 1B) while others experience early viral rebound before
subsequently regaining viral control (Figure 1C). In the CHAMP
study, ∼45% of PTCs had early viral load peaks ≥1,000 HIV-1
RNA copies/mL and 33% had early viral load peaks≥10,000HIV-
1 RNA copies/mL amongst those with intensive weekly viral load
monitoring (6).

FIGURE 2 | Frequency of post-treatment controllers (PTCs) identified in early-

vs. chronic-treated participants of the CHAMP study (6). NCs, post-treatment

non-controllers.

The comparison of previously published PTC studies has also
been difficult due to heterogeneity in the inclusion of PTCs with
varying duration of viral control. To place the PTC studies in
context, the median time of HIV rebound after ART interruption
for post-treatment non-controllers (NCs) is ∼3–4 weeks and
only a small proportion of non-controllers are able to maintain
viral suppression to 12 weeks or beyond (4). The VISCONTI
study was one of the earliest and most comprehensive of the
PTC studies (7). The inclusion criteria for the 14 VISCONTI
participants were individuals who were treated during early
HIV infection and maintained viral suppression <400 HIV-
1 RNA copies/mL for at least 2 years after ART interruption.
To assess the durability of HIV remission, the CHAMP study
used a more inclusive definition of post-treatment control (viral
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suppression for 24 weeks). In this analysis, the median duration
of post-treatment control was a little over 2 years and the
proportion of PTCs who remained virologically suppressed in
years 1–5 were 75, 55, 41, 30, and 22%, respectively (6). These
results show that post-treatment control is not always durable
and that PTCs will require continued clinical and virologic
monitoring. These results highlight the heterogeneity in the post-
treatment controller phenotype, with some individuals losing
control within 1 year and others maintaining viral suppression
for more than 10 years (6, 7). While the latter group may be the
best model of sustained HIV remission, uncovering factors that
lead to the loss of viral control in PTCs may also provide insight
on the mechanisms behind their HIV remission. It should be
noted though, that the rates of viral suppression reported in the
PTCs are in the absence of any additional interventions and that
strategies to augment key HIV-specific immune responses have
the potential to improve the durability of post-treatment control.

COMPARING SPONTANEOUS AND
POST-TREATMENT CONTROLLERS

Without ART,most HIV-infected individuals will have high levels
of HIV-1 RNA and experience progressive absolute CD4+ T-cell
decline, clinical immunodeficiency, and death (39). However, a
small proportion of those infected with HIV can spontaneously
maintain very low levels of plasma viral load without the
use of antiretroviral therapy (ART) (40, 41). The existence of
these HIV spontaneous controllers (SCs), also known as elite
controllers (ECs), represented the first indication that the goal
of drug-free HIV remission is possible. Although these SCs have
low or even undetectable viremia by conventional viral load
assays, they generally harbor replication competent virus and
have evidence of ongoing viral replication and evolution (42–
45). Through robust genetic and functional studies, the most
consistent mediator of spontaneous HIV control appears to
be through the effects of cytotoxic CD8T lymphocyte (CTL)
responses (46, 47), and the protective effects of certain HLA
alleles, such as HLA B∗27 and B∗57 (48–50). Similar to the PTCs,
SCs appear to be a heterogeneous population of individuals with
respect to the level and durability of HIV control (51, 52). While
some SCs can maintain viral loads <50 copies/ml in absence of
ART (i.e., elite controllers [ECs]) (41, 53). Viremic controllers
(VCs) can maintain a less robust level of viral suppression, with
detectable viral loads below 2,000 HIV-1 RNA copies/mL in the
absence of ART (54).

However, even amongst the ECs, there is evidence of
heterogeneity in immune responses (49, 55), and a subset will
lose viral control and experience immunological and clinical
progression over time (56–58). Low Gag-specific CD8T cell
response, high levels of inflammatory cytokines and high viral
diversity have been reported as factors that predict loss of viral
control in ECs (51).

Due to the rarity of individuals undergoing treatment
interruption, PTCs have for a long time not been recognized
as a separate entity from SCs. While it is possible that some
PTCs treated during early HIV infection may have achieved
spontaneous control in the absence of ART, there are now several

lines of evidence that PTCs are indeed distinct from HIV SCs:
(1) CTL responses have been found to be far weaker in PTCs
compared to SCs (7); (2) Unlike SCs, PTCs do not appear
to be enriched in protective HLA alleles (3, 10, 59), with the
VISCONTI study reporting a high frequency of HLA alleles
previously associated with less favorable clinical outcomes (7);
(3) PTCs frequently present with symptomatic acute retroviral
syndrome and have pre-ART viral loads that are similar to that of
non-controllers, but significantly higher than that of HIV SCs (6,
7); and (4) Results from both the SPARTAC and CHAMP studies
have demonstrated an ART-specific effect as early ART initiation
significantly increases the chances of achieving post-treatment
control (6, 35). Together, these findings support the concept that
PTCs are largely distinct from SCs and represent individuals who
would not have been able to achieve HIV remission without the
period ART.

MECHANISMS AND PREDICTORS OF
POST-TREATMENT CONTROLLERS

While the exact mechanism behind the ability of PTCs to
maintain HIV remission remains unclear, there is evidence
for an unusual degree of reservoir restriction and relatively
weak HIV-specific CTL activity. In prior studies of ART-treated
individuals, the HIV reservoir is primarily maintained within
memory CD4T cells, especially those of central memory (TCM)
and transitional memory (TTM) cells (60). In prior treatment
interruption studies, smaller total and active HIV reservoirs
before treatment interruption have been associated with delayed
HIV rebound after treatment interruption. Specifically, lower
levels of pre-treatment interruption HIV proviral DNA have
predicted delayed viral rebound (16, 61), as has lower levels of
cell-associated HIV RNA (4, 30). In PTCs, levels of HIV DNA
and cell-associated RNA have also been found to be low in
some studies (10, 15) but not others (38). In the VISCONTI
analysis, the predominant cellular subset contributing to the
HIV reservoir has been reported to be the TTM cells (7), similar
to that found in other early treated patients (62) and suggest
that the low frequency of HIV infection within the longest-
lived CD4T cells (naïve and central memory) may contribute
to post-treatment control. In studies of SCs, there have been
reports that the HIV reservoir is also restricted within the
TCM cell subset (63), although this has not been replicated in
other studies (7). In ART-treated individuals, the vast majority
of HIV proviral DNA are defective and until recently, the
proviral landscape within PTCs had not been investigated.
In an analysis of ACTG PTCs, Sharaf et al. reported near-
full length proviral sequencing results showing that PTCs had
an ∼7-fold smaller HIV reservoir compared to NCs prior to
the ATI, but that some PTCs had relatively large fractions of
intact proviruses (64). In a separate case report, post-treatment
control could be maintained despite the presence of a clonally-
expanded population of HIV-infected cells harboring replication-
competent virus (65). Overall, these results demonstrate that
PTCs have a restricted HIV reservoir, especially within longer-
lived cellular subsets, which may contribute to their ability
to maintain HIV remission. Additional studies are needed to

Frontiers in Immunology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 174923

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Etemad et al. HIV Remission in Post-treatment Controllers

explore the role of viral fitness (15), clonal expansion and the
integration sites of intact proviruses in HIV remission.

Primate studies have also provided insight on strategies for
delaying viral rebound. In particular, early ART therapy restricts
the seeding of SIV reservoirs and lead to delayed timing of
viral rebound (66, 67). Similarly, early initiation of ART has
been associated with a significantly increased chance of achieving
post-treatment control both within CHAMP study and others
(6, 19). Prior studies of early ART treatment have found that it
is effective in dramatically reducing the size of the HIV reservoir
(68–71). In addition, early ART may preserve HIV-specific T cell
responses (72–74). However, the VISCONTI study and others
have shown that HIV-specific CD8T cell responses in PTCs are
weak compared to either SCs or viremic individuals (7, 75, 76).
These results are consistent with reports that pre-ART viral loads
are generally quite high in PTCs (6, 7) and that they do not
tend to harbor protective HLA alleles (7, 38, 59, 75). However,
other studies have not found significant differences in T cell
responses between PTCs and SCs (15). In addition, there are
reports from the VISCONTI study that early HIV treatment
in PTCs preserves robust poly-functional CD4+ responses to
HIV (77). Finally, there have been several reports that early
ART initiation in infants may also lead to long-term HIV
remission (76, 78, 79). In the first reported case, known as the
“Mississippi baby,” the infant initiated ART 30 h after delivery
until 18 months of age. ART remission was achieved without
detectable HIV-specific antibody or T cell responses (78), but
viral rebound occurred∼2 years after ART discontinuation (80).
In the second case, the infant became infected despite 6 weeks
of Zidovudine prophylaxis after delivery and initiated ART at 3
months of age. ART was discontinued between 5 and 7 years of
age and viral control has been documented for∼12 years despite
several transient viral blips, a detectable replication-competent
reservoir, and weak HIV-specific CD8+ T cell responses (76).
The final report is that of a child who initiated 40 weeks of
ART at day 61 after delivery as part of the Children with HIV
Early antiretroviral therapy (CHER) trial (81, 82). The child
has maintained viral suppression for almost 9 years after ART
discontinuation, with detectable HIV DNA and residual viremia,
low level of HIV-specific antibody and weak T cell response (79).
Importantly, none of these children harbored the protective HLA
class I alleles B∗27 or B∗57 associated with spontaneous viral
control and levels of immune activation during HIV remission
were low in all three children (76, 78, 79). These cases also
highlight that post-treatment control in children can occur with
a range of ART initiation times (between 30 h and 2–3 months
after delivery), HIV subtypes (B, H, and C in the three cases,
respectively), and duration of ART (10 months to 6 years)
(76, 78, 79). Although these studies support the possibility of
HIV remission in early-treated children, the frequency of post-
treatment control appears to be rare as only 1 of 227 children in
the CHER trial achieved this outcome (79) and smaller studies
of treatment interruption in children have failed to detect any
PTCs (83).

Early ART initiation has also been shown to preserve
HIV-specific humoral immunity by preserving memory B
cell numbers and function (84, 85). There are reports from
a small case series that PTCs may harbor high levels of

autologous neutralizing antibodies (15), although that has not
been replicated in other studies (8, 75).

KNOWLEDGE GAPS AND UNANSWERED
QUESTIONS

Among the top priorities of the HIV field is the search for
therapeutic interventions that can lead to sustained ART-
free HIV remission (41). Understanding the mechanisms and
predictors of post-treatment control would represent a key step
toward that goal as PTCs represent a realistic model for the
functional cure of HIV infection. Only in the past few years have
interest heightened in the study of PTCs and a host of important
questions remain unanswered. First, it has become clear that
early initiation of ART is not only associated with personal
health and public health benefits but may also lower the barrier
to HIV remission and post-treatment control. However, the
optimal timing of ART during early HIV infection is unknown.
It is interesting to note that the vast majority of PTCs in the
VISCONTI and CHAMP studies initiated ART during Fiebig
stages III-V (6, 7) and that a small treatment interruption study
of individuals who initiated ART during Fiebig I did not identify
any PTCs as all individuals demonstrated rapid viral rebound
(86). While extremely early initiation of ART will limit the extent
of HIV reservoir seeding (87), additional research is needed to
assess whether a slight delay in ART initiation allows for the
further maturation of the HIV-specific immune response that
may be important for post-treatment control.

As noted above, there is increasing evidence that PTCs do
not appear to mediate HIV suppression through the same CTL
and HLA-mediated mechanisms as SCs. While important, the
favorable genetic profiles of SCs have not been easily translatable
to therapeutics and the elucidation of the mechanisms of control
in PTCs may have a greater impact on the design and evaluation
of the next generation of HIV therapeutics. Studies of the HIV
reservoir in PTCs have revealed the restricted size of the reservoir,
including the intact proviral genomes (64). This, however, does
not fully explain post-treatment control, especially given our
experience in hematopoietic stem cell transplant participants
who can dramatically lower their peripheral reservoir size, but
are unable to maintain HIV remission (88). Additional studies
are needed to assess potential differences in the distribution
of infected cell types (7), cellular transcription environment,
integration sites, and other factors that could contribute to the
maintenance of a “deeper” state of viral latency (89).

Finally, little is known about the clinical implications of post-
treatment control. While SCs can maintain low or undetectable
viremia in the absence of ART, the ongoing viral replication
and immune response in SCs may be associated with adverse
consequences, including the progressive loss of CD4+ T cells in
some individuals, increased T cell activation and inflammation
(90–93). Chronic immune activation and systemic inflammation
has been associated with poor clinical outcomes in non-
controllers (94–97) but also in SCs, who are reported to have an
increased risk of cardiovascular disease (98) and hospitalization
(58), although the extent of this risk is still a matter of some
uncertainty (99, 100). There is some evidence that PTCs may
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not exhibit the same heightened levels of immune activation
as SCs (7, 10), but additional studies are needed to confirm
these findings and to assess the long-term clinical implications
of sustained HIV remission.
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Immunoediting is an important concept in oncology, delineating the mechanisms through

which tumors are selected for resistance to immune-mediated elimination. The recent

emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer

therapy has intensified interest in immunoediting as a constraint limiting the efficacy of

these approaches. Immunoediting manifests at a number of levels for different cancers,

for example through the establishment of immunosuppressive microenvironments within

solid tumors. Of particular interest to the current review, selection also occurs at the

cellular level; and recent studies have revealed novel mechanisms by which tumor cells

acquire intrinsic resistance to immune recognition and elimination. While the selection of

escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic

HIV infection, can be considered a form of immunoediting, few studies have considered

the possibility that HIV-infected cells themselves may parallel tumors in having differential

intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level

of an infected cell, may not play a significant role in untreated HIV, where infection is

propagated by high levels of cell-free virus produced by cells that quickly succumb to

viral cytopathicity. However, it may play an unappreciated role in individuals treated with

effective antiretroviral therapy where viral replication is abrogated. In this context, an

“HIV reservoir” persists, comprising long-lived infected cells which undergo extensive

and dynamic clonal expansion. The ability of these cells to persist in infected individuals

has generally been attributed to viral latency, thought to render them invisible to immune

recognition, and/or to their compartmentalization in anatomical sites that are poorly

accessible to immune effectors. Recent data from ex vivo studies have led us to propose

that reservoir-harboring cells may additionally have been selected for intrinsic resistance

to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here,

we draw on knowledge from tumor immunoediting to discuss potential mechanisms by

which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The

establishment of such parallels may provide a premise for testing therapeutics designed

to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at

curing HIV infection.

Keywords: HIV, cancer, latent reservoir, immunoediting, immunotherapy
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INTRODUCTION

The cancer immunoediting hypothesis proposes that the immune
system sculpts tumor immunogenicity even as it protects the
host against the development of cancer. This occurs through
a dynamic process consisting of three stages—elimination,
equilibrium, and escape. Tumor elimination is the process
through which the cancer immunosurveillance network is
assembled, and drives the rapid elimination of tumor cells as they
acquire somatic mutations. Equilibrium represents the period of
immune-mediated clinical latency that follows the incomplete
elimination of potentially cancerous cells, where the immune
response and tumor engage in a cycle of tumor cell elimination,
followed by selection and outgrowth of mutants escaped from
immune pressure. The final stage involves the escape of
tumor cells from immune control, resulting in the unrestrained
outgrowth of the tumor. Cancer immunoediting was first
reported in mouse models of cancer, where immunodeficient
mice showed earlier and greater penetrance of carcinogen
induction and spontaneous cancer development compared to
wild-type mice (1–6). A substantial body of evidence now shows
that this process is also prevalent in humans [reviewed in (1, 2,
7)]. Of particular importance, it has been shown that CD8+ T
cells play an important role in cancer immunoediting, especially
in cancers that acquire resistance to the adaptive immune
response (8–10). In this Hypothesis and Theory article, we draw
attention to the similarities between immunoediting in cancer
and HIV, highlighting established and hypothetical parallels
between tumor escape and the persistence of HIV-infected cells,
and their potential implications on future applications of HIV
cure strategies.

Immunoediting in Cancer Evolution
Over the past several decades, there has been increased
appreciation that adaptive and innate immunity can help sculpt
the mutational landscape of cell lineages constituting tumors
during cancer evolution and progression (3, 9–14), in some
cases even before they are macroscopically detectable (15, 16).
Observational studies have revealed that when either mice or
patients are immunodeficient in adaptive immunity, incidence of
certain types of cancer, including viral-induced cancers, increases
(17–19). The overall process of how tumors are sculpted by
adaptive and innate immune responses is referred to as cancer
immunoediting (and less commonly, immune surveillance or
immunoselection). While most studies of immunoediting have
focused on T cell mediated immunoediting, a growing number
of studies provide evidence highlighting the role that Natural
Killer (NK) cells may play, particularly for tumor cells that have
lost class I major histocompatibility complex (MHC) cell surface
presentation (see below) (20–23).

The initial studies proposing the existence of immunoediting
were largely drawn from studies of chemically induced mouse
tumors in interleukin-2 receptor common subunit and VDJ

Abbreviations: CTL, Cytotoxic T lymphocyte; HIV, Human Immunodeficiency

Virus; ARV, Antiretrovirals; ART, Antiretroviral therapy; QVOA, Quantitative

viral outgrowth assay; PCR, Polymerase chain reaction; TCGA, The Cancer

Genome Atlas; TME, tumor microenvironment.

recombinase (RAG) mutant mice that are immunodeficient in
T cells, B cells, and NK cells (15, 16, 24). However, more
recent studies evaluating the landscape of the specific mutations
carried by individual tumors paired with the host patient
HLA alleles provide additional evidence that tumor-specific
changes in MHC-mediated antigen presentation affect tumor
growth in humans (25, 26). All homeostatic nucleated human
cells (except for certain testicular cell types that are immune-
privileged) are decorated by class I MHC molecules on the cell
surface membrane referred to as HLA. These molecules present
proteasome degraded cytosolic 8–11 amino acid peptides to
CD8+ cytotoxic T cells (CTLs) for recognition. Briefly, different
dendritic cell populations (DCs) that encounter tumor cells
can act as antigen presenting cells and present tumor antigens
in the context of class II MHC [reviewed in (1, 2, 7)]. This
cross-presentation by DCs expands and activates CD8+ cells,
as well as CD4+ helper T cells that promote CD8+ cytotoxic T
cell expansion.

Class I MHC HLA is encoded by three genes (HLA-
A, -B, and -C) and is highly polymorphic. Different allelic
combinations of HLA-A, -B, and -C, create significant diversity
between individuals as to which antigens can be presented
to CD8+ T cells. Typically, early in tumor development,
cancer cells retain their HLA, and can be recognized and
eliminated by immune cells if they present mutated host
proteins (referred to as neoantigens). Additionally, cancer cells
may over-express homeostatic antigens found in “normal”
tissues (e.g., Mucin I (MUC1), or the HER2 growth factor
receptor), that can have varying degrees of effect on central
(thymic) tolerance. Recent studies (25, 26) show that, for
human tumors paired with their patient host HLA from
The Cancer Genome Atlas (TCGA), neoantigens with higher
predicted HLA-neoantigen binding affinities, indicative of a
higher likelihood of presentation to CD8+ T cells, were
significantly more likely to experience mutations that decrease
the HLA affinity of the targeted neoantigens. Additionally,
these studies revealed that recurrent oncogenic mutations,
such as KRAS or BRAF or IDH1 (collectively present on
>35% of all solid tumors as well as many hematological
tumors), have low predicted HLA-binding affinities. Thus, these
paired tumor-host studies provide important new evidence
that immunologically invisible human mutations are under an
evolutionary selective pressure.

As mentioned above, cancer immunoediting is typically
delineated into three stages: elimination, equilibrium and escape
(9, 10, 20). Elimination is the first phase, whereby pre-
malignant cells are killed by adaptive and innate immune cells
patrolling normal tissues. This has been studied in mouse
models, where both adaptive (T cell) (4, 8) and innate (NK
cell) immunity (27–29) have important roles. For transformed
cancer cells that evade elimination, perhaps starting even at
the single-cell stage, cancer cell consortia form and enter
the equilibrium stage. During the equilibrium stage, adaptive
and innate immune cells kill some, but not all, tumor cells,
leading to an evolutionary process whereby the epigenetic
and somatic mutation landscape of tumor cells is sculpted.
Consequently, although tumors may not appear to grow
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macroscopically, the “mutanome” of cancer clonal lineages
that together comprise cancer consortia continuously evolve
to promote immune escape. A common model to study this
evolutionary process during equilibrium is colorectal cancer, as
it is (a) often a relatively slow growing tumor, (b) a subset
are hypermutators and have highly elevated mutations rates
from DNA mismatch repair or DNA polymerase Delta/Eplison
that can be tracked sequentially and (c) there are distinct
histopathological stages that occur during its progression (e.g.,
normal colorectal epithelial crypts, aberrant crypt foci, dysplasia,
carcinoma in situ, polyps and adenomas, frank carcinoma
and metastases). Recent studies evaluating the landscape of
tumor mutations during the evolution of colorectal cancers
provide evidence that specific Single Nucleotide Variant (for
example KRAS), small insertion/deletion (for example APC),
and structural variants (e.g., TP53 loss), evolve, both as
these lesions remain in equilibrium and also expand during
progression (30–34).

Tumor cells that have acquired the pre-requisite mutations
necessary to overcome immune pressure during equilibrium
then enter the escape stage. The phenotypic changes required
to reach this stage rely on a variety of factors, ranging
from the geography of the tumor, to whether the cancer
is liquid or solid. In solid tumors, an important step for
immune escape is the development of an immunosuppressive
microenvironment, known as the tumor microenvironment
[TME, reviewed here (35, 36)]. This microenvironment is
generally characterized by the secretion of immunosuppressive
cytokines such as IL-10 and TGF-Beta [reviewed in (37–
40)], nutrient scarcity imposed on immune effector cells by
the ability of cancer cells to scavenge macronutrients from
their environment (41), generation of a hypoxic environment
that inhibits tumor infiltration and killing by T cells, B cells,
and NK cells (42), and the promotion of a extracellular
matrix that both enhances tumor cell growth while inhibiting
immune cell penetration (43). While TMEs are not present
in liquid cancers, similarities remain in how these cancerous
cells escape from elimination, including: (1) the absence of
a strong tumor antigen (44, 45), (2) the downregulation/loss
of MHC-class I expression levels or co-stimulatory molecules
(46, 47), (3) upregulation of exhaustion markers [e.g., CTLA-
4, PD-L1, (45, 48)] (4) or the development of apoptosis
resistant phenotypes due to increased expression of pro-
survival proteins [e.g., BCL-2, MYC, STAT3, and 5, reviewed
here (43)].

Interestingly, some of these characteristics that facilitate the

escape of liquid cancers are similar to those seen in people
living with HIV—Nef downregulation of MHC-I leads to low

antigenicity of infected cells, and viral epitopes rapidly mutate in

response to immune pressure, and escape immune recognition.
Furthermore, our recent work has highlighted the inherent
resistance of HIV-infected cells to immune-mediated elimination
during suppressive anti-retroviral (ARV) therapy (49, 50). The
following sections will highlight the potential mechanisms
through which these phenotypes may arise, and discuss how the
immunoediting of HIV-infected cells may occur.

Treated vs. Untreated HIV Infection As
Distinct Arenas for Immunoediting
In the absence of ARV therapy, HIV infections are characterized
by three stages—acute infection, chronic infection, and AIDS.
Acute infection encompasses the first 4–8 weeks of infection,
and is characterized by rapidly rising viral loads, often to >106

copies/mL, and steep declines in the numbers of CD4+ T cells,
both in circulation and in tissues (51). At ∼6 weeks post-
infection, robust HIV-specific CD8+ T cell responses develop
that capably suppress HIV viremia to a set point that is typically
2–3 logs below peak (52, 53). While CD8+ T cells may control
viral replication through a number of mechanisms (54–56), a
key mode of action is the direct recognition and elimination of
infected cells by CD8+ CTLs (57–60). This viral load set point is
the primary characteristic of the second stage of HIV infection,
known as the chronic phase, and represents the equilibrium
between ongoing viral replication, viral immune evasion, and
elimination of infected cells by the host immune response
[reviewed in (61)]. Individuals with higher viral load set points
progress more rapidly than individuals with lower set points
to the final stage of HIV infection (62); where HIV eventually
overcomes immune pressure in the large majority of individuals,
leading to the onset of AIDS (Figure 1).

The current treatment for HIV is antiretroviral therapy
(ART), which can durably suppress viremia to levels that are
undetectable by clinical tests, and halt progression to AIDS
for as long as treatment is maintained. However, using ultra-
sensitive PCR methods, it has been shown that low-levels of
virus production do persist in the majority of individuals (63),
and are not reduced even if ART regimens are intensified (64,
65). Additionally, anywhere from 4 to 10% of people on ART
may display levels of persistent viremia that are detectable by
standard assays (50–500 copies/mL), even in the absence of
drug resistance (66). Although there is strong evidence that
ongoing cycles of viral replication do not occur during ART (67–
69), uncertainty remains as to why HIV-specific CD8+ T cell
responses do not seem to eliminate all infected cells that are
producing viral particles. Lastly, upon ART cessation, viral loads
rapidly rebound within a few weeks in the majority of individuals
(70). This occurs despite the pre-existence of robust HIV-
specific T cell responses which, though diminished in magnitude
relative to untreated infection, are sustained at readily-detectable
levels in most ART-suppressed individuals (71–74). While these
studies seemingly highlight the limitations of CD8+ T cells in
controlling and eliminatingHIV-infections, multiple studies have
unambiguously established the importance of CD8+ T cells in
viral suppression (52, 57, 58, 75–78). Indeed, in non-human
primate studies, CD8+ T cells are necessary for maintaining viral
suppression of SIV during the course of both natural infections
and ART (54, 79). These contrasting results raise important
questions about why certain HIV-infected cells are efficiently
eliminated by HIV-specific CD8+ T cell responses, while others
persist, and may even continue generating viral particles during
ART. While viral latency is known to play a critical role in HIV
persistence, we will draw on insights from tumor immunoediting
to propose additional cell-intrinsic mechanisms by which HIV
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FIGURE 1 | Immunoediting during natural infection. During the acute phase of infection, HIV rapidly expands infecting new target CD4+ T cells. Approximately 2

weeks post-infection, HIV-specific CD8+ T cell responses develop and eliminate many infected CD4+ T cells decreasing viral burden by ∼1 × 102−3 RNA copies/ml

of plasma. A viral set point is reached when virus replication and CD8+ T cell elimination of infected cells reaches an equilibrium. During the equilibrium phase,

ongoing rounds of viral replication and CD8+ T cell elimination provides evolutionary pressure to select for viral variants that are not recognized by CD8+ T cell

responses. A combination of viral escape variants and CD8+ T cell exhaustion eventually leads to viral escape and progression to AIDS.

reservoir-harboring cells may resist elimination by CD8+ T
cells, and thus pose the question: have cells harboring the HIV
reservoir been immunoedited?

IMMUNOEDITING OF THE VIRUS DURING
THE COURSE OF UNTREATED HIV
INFECTIONS

A critical distinction in our discussion is between immunoediting
of the virus during the course of untreated infections (which
is a well-characterized phenomenon, although not typically
branded as immunoediting), and the more novel idea that
immunoediting may also occur on the level of reservoir-
harboring cell physiology, particularly in the context of ART.
The current section will focus on the former, which largely
consists of the interplay between viral evolution and escape in
response to CD8+ T cell pressure. While HIV infections are
generally established by one to five “transmitter/founder” viruses
(59, 80, 81), the high error rate of HIV reverse transcriptase
(∼1 point mutation per reverse transcription event, and a
recombination frequency of ∼2.8 crossovers) gives rise to a vast
number of HIV “quasispecies,” each with varying degrees of
replicative fitness (82–87). These mutations often incur a fitness
penalty on the virus, as evidenced by the fairly homogenous
makeup of viral sequences prior to CD8+ T cell pressure, despite
the high mutation rate of HIV reverse transcriptase (88–91),
and the presence of secondary compensatory mutations that
arise in response. Despite these fitness costs, multiple lines of
evidence have shown the importance of these mutations for
viral replication, as they modify epitopes targeted by the host
immune response and allow subdominant viral quasispecies to
escape from immune recognition (75, 92–95). This mechanism

of immune escape is well-documented in many longitudinal
studies of HIV-infected individuals, where dominant CD8+ T cell
responses can be matched to changes in the amino-acid sequence
of targeted viral epitopes, leading to poor HLA presentation
and the outgrowth of new HIV quasispecies (57, 96). Such
escape on the level of viral epitope recognition is paralleled by
the phenomenon of “antigen loss” in tumors—for example, the
loss of MART-1 antigen in melanoma patients after adoptive
transfer of MART-1 specific T cells (97, 98), or the loss of CD19
following CD19 targeted CAR T cell therapy for acute myeloid
leukemia (99) [reviewed in (100)]. Thus, immunoediting on the
level of viral sequence diversity has been well-established in
HIV infection, and this “immune escape” is analogous to the
phenomenon of tumor “antigen loss.” Antigen loss, however, is
just one facet of tumor immunoediting, inspiring us to consider
whether other mechanisms may also have parallels in HIV.

DOES IMMUNOEDITING AT THE LEVEL OF
INFECTED CELLS OCCUR IN INDIVIDUALS
ON ART?

Immunoediting in untreated HIV infections involves the
equilibrium between CD8+ T cell responses and HIV, followed
by the eventual escape of HIV from CD8+ T cell killing in the
majority of individuals. However, viral replication to a degree
that allows for evolution does not occur during suppressive anti-
retroviral therapy (67–69), preventing the development of new
HIV escape mutations in response to CD8+ T cell mediated
immune pressure. Instead, infected cells are thought to persist
and evade the immune response during ART by hiding in a non-
immunogenic quiescent, or latent, state. Infected cells that do not
undergo this transition are largely eliminated: HIV DNA levels
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experience an 86% decline within the first year following ART
initiation before stabilizing (101–103), while HIV RNA levels
in the plasma drop precipitously over the first 7–10 days post-
ART, with a half-life of 6 h, followed by a second phase of slower
viral decay with a half-life of 14 days (104, 105). Infected cells
that survive this selection and persist are remarkably stable, with
a minimal half-life of at least 44 months as measured by total
or intact HIV DNA, or by quantitative viral outgrowth assays
(QVOAs) assessing the number of cells infected with replication
competent proviruses (106–108). This suggests that the persistent
reservoir would require at least 73 years to naturally decay in the
majority of people living with HIV.

It is important to note that although HIV-specific CD8+ T
cell responses decay sharply upon ARV initiation, in parallel
with frequencies of HIV-infected cells, they are still readily
detectable by ex vivo assays (ex. ELISPOT) in the large majority
of individuals on long-term suppressive ART (71). The main
paradigm for how infected cells persist during ART, despite the
existence of CD8+ T cell responses, is that the reservoir “hides”
from the immune system; this occurs primarily by maintaining a
state of viral latency, but also through sequestration in anatomical
sites that are poorly accessible to CD8+ T cells, such as lymph
node follicles (109, 110). While these are indisputably important
mechanisms of persistence, we propose that interactions between
reservoir-harboring cells and CD8+ T cells are also likely to
occur at some frequency in individuals on long-term ART (see
Is Immune Selection Pressure Exerted on Infected Cell Clones
During ART?, below), providing the potential for the shaping
of the landscape of reservoir harboring cells in ways which may
parallel tumor immunoediting.

Immunoediting is an evolutionary process, and thus will
occur over time when the following three requirements are
met: (i) reproduction, (ii) selective pressure, and (iii) heritable
variation (14). The mechanisms by which these criteria are met
in tumor cells are described above. Here, we make the case
that these ingredients are also present in the persistent HIV
reservoir, defined as follows: (i) reproduction—clonal expansion
of HIV reservoir-harboring cells, (ii) selective pressure—ongoing
immune recognition and clearance of certain reservoir-harboring
cells, and (iii) heritable variation—genetic or epigenetic features
of reservoir-harboring cells that confer differential susceptibility
to immune recognition and clearance.

Reproduction—Expansion of Clones of
HIV-Infected Cells During ART
A major hallmark of cancer is the ability of cancer cells
to promote continued expansion, even in a nutrient scarce
environment, or lack of external stimuli. These hallmarks are
a result of mutations in oncogenes (i.e., MYC), which promote
growth, or tumor suppressor genes (i.e., p53), which may inhibit
cell division, repair DNA damage, or induce apoptosis if cellular
functions become deregulated. In liquid cancers, the deregulation
of c-myc—e.g., translocation from chromosome 8–14 in Burkitt’s
lymphoma (111)—generates abnormally high levels of MYC
expression, resulting in enhanced cell cycle progression and
cell growth (112). Conversely, p53 induces cell cycle arrest and

apoptosis in the presence of cellular stress signals such as nutrient
deprivation or DNA damage, and mutation of this gene allows
cancer cells to continually proliferate under otherwise genotoxic
conditions (113). Together, these gene mutations allow cancer
cells to engage in constant clonal proliferation.

In contrast to cancer cells, the HIV-reservoir is thought
to largely reside in long-lived resting memory CD4+ T cells,
where the expansion and/or division of these cells are generally
driven by either recognition of cognate antigen, or cytokine-
induced homeostatic proliferation (114). Until recently, it was
generally thought that an HIV-infected cell would be incapable
of expanding in numbers, as cell division was thought to be
inextricably linked to viral expression—which in turn, it was
thought, would lead to death through viral cytopathic effects
or immune-mediated elimination (102, 103). However, multiple
studies have since demonstrated the ability of infected cells
to proliferate in vitro. Hosmane et al. observed in QVOAs
(115) that increasing numbers of cells producing replication
competent viruses were found as CD4+ T cells were subjected
to additional rounds of activation by mitogens (116), suggesting
that cell activation and division are not intrinsically linked
with reactivation of latent proviruses. Furthermore, a study
by Bui et al. observed sustained levels of HIV RNA in a
culture supernatant over 21 days, following activation with
PMA/ionomycin, including sequences matched to replication
competent viruses found in QVOAs. As these assays were
performed in the presence of ARVs, these results demonstrate
that production of replication competent viruses in reservoir-
harboring cells does not necessarily lead to cell death (117).

The fact that HIV-infected CD4+ T cells can clonally expand
in vivo was unambiguously established by the observation that
40–60% of all cells harboring proviruses had genomic integration
sites that were identical to those of at least one other infected
cell (118–121). Since HIV integrates into the genome without
targeting specific sequences, it is extraordinarily improbable
that the same integration site would occur independently in
two separate cells, indicating instead that these cells clonally
expanded from a common infected-cell ancestor. As the
integration site loop amplification assay used to determine
proviral integration sites (120) only amplifies a small portion
of the 5′ and 3′ ends of the provirus, it was unclear whether
these expanded clones contained intact proviruses, vs. the
defective proviruses that make up the large majority of proviruses
in individuals on long-term ART (ex. containing deletions,
hypermutations, or other mutations that render them replication
incompetent) (122, 123). It thus initially seemed that a simple
potential explanation for how these cells could divide, without
dying from cytopathic effects or immune elimination, was that
they may contain defective proviruses—a subset of which are
incapable of expressing virus or viral antigens (124). However,
multiple studies have since provided evidence indicating that
a subset of these clonally expanded populations can harbor
intact, replication competent proviruses (125–128). These studies
utilized QVOAs to isolate viral RNA from single viruses, and
then assessed their clonality on the basis of viral sequences. It
was inferred by phylogenetic and statistical approaches that these
clonal proviruses almost certainly arose as the result of clonal

Frontiers in Immunology | www.frontiersin.org 5 August 2019 | Volume 10 | Article 184233

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Has HIV Reservoir Been Immunoedited?

expansion of the host cell, as opposed to the seeding of multiple
infections by a single massive infection event.

More recently, a novel assay (matched integration site and
proviral sequencing, MIP-seq) was developed to determine
near full-length proviral sequences and the corresponding
integration site simultaneously (129). This assay utilized a
limiting dilution of proviral templates, followed by multiple
displacement amplification to generate multiple copies of the
proviral template and surrounding DNA, which could then be
used for both full-length sequencing and integration site analysis.
This approach definitively demonstrated that clonally expanded
cells could indeed harbor intact proviruses (129). Moreover, the
authors observed that these intact proviral sequences matched
the sequences of viruses that had grown out in previous
QVOAs from these same individuals. Thus, clonal expansion
provides a mechanism through which the “replication with
heritability” criterion of evolution may be fulfilled, accounting
for the expansion of certain infected cell clones while others
are eliminated.

Is Immune Selection Pressure Exerted on
Infected Cell Clones During ART?
Clonal expansion of HIV reservoir-harboring cells occurs in
a setting where the overall size of the reservoir is relatively
stable (106, 108). This implies that the death or elimination
of some infected cells must occur on an ongoing basis, to
counterbalance clonal expansion. A recent study examined
this, by analyzing clonal composition of replication competent
reservoir viruses (from viral outgrowth assays) longitudinally
in 8 study participants. Wang et al found that while most of
the clonal proviral populations were found at each time point
throughout the course of the study, their proportional makeup
of the total population differed at each time point (130). The
authors observed a similar variation in the makeup of HIV clones
found in the plasma of these participants, and concluded that
populations of infected cell clones likely persist, but change in
proportion relative to each other (“wax and wane”) over time.
There are three possible and non-mutually exclusive explanations
of these population dynamics: (i) stochastic effects—either
random fluctuations of in vivo prevalence or in sampling, (ii)
driven by the physiology of the CD4+ T cells themselves—ex.
Expansion of a given clone driven by exposure to its cognate
antigen, and iii) driven by fitness differences with respect to a
selective pressure imposed on the infected cell.

In the oncology setting, a key determinant of whether or not
a cancer cell clone will be subject to immune selection pressure
is whether it possesses neoantigens that can be recognized as
foreign by the immune system. In the case of an HIV reservoir-
harboring clone, foreign antigens exist in the form of provirus-
encoded viral genes. Moreover, these viral gene products are
known to be immunogenic—in particular Gag, Pol, and Nef—
and, in untreated infection, stimulate high magnitude T cell
responses in the majority of infected individuals. In considering
whether a reservoir-harboring clone is subject to immune
selection, the key question is therefore the degree to which these
gene products are expressed in an individual on ART.

In the large majority of individuals, cell-associated HIV RNA
remains detectable at relatively low, but stable, levels in ex vivo
CD4+ T cells even after years of suppressive ART (131). While
the presence of viral RNA cannot be equated with protein
expression, given that blocks to translation can exist at various
levels, including splicing (132), and nuclear export (133), the
transcriptional level data also are not counter-indicative of the
possibility that antigen expression may occur at some level
in individuals on ART. The direct assessment of HIV antigen
expression in individuals on ART is limited by the much poorer
sensitivity of protein vs. RNA detection assays, given the low
frequency of infected cells. However, some studies have reported
the detection of HIV proteins in ex vivo T cells from individuals
on long-term ART (134). One way to infer whether ongoing
interactions occur between the immune system and HIV in
individuals on ART is to study the decay of HIV-specific immune
responses in this context.

The maintenance of effector immune responses is dependent
upon the presence of antigen (135–138). In addition to
being a general tenet of immunology, this is supported by
several lines of evidence in HIV. The first comes from the
study of rare individuals who, without ongoing ARV therapy,
exhibit extraordinary control over HIV infection as defined by
undetectable plasma viremia by a single copy assay, extremely
low to undetectable HIV DNA levels, and difficult to isolate
replication-competent virus (139). These extremely low to
absent levels of HIV were associated with the loss of HIV-
specific antibody responses (sero-reversion), and with low to
undetectable HIV-specific CD8+ or CD4+ IFN-γ responses in
ex vivo PBMCs. In vitro stimulation did however result in the
proliferation of HIV-specific T cells and subsequent antiviral
activity, suggesting that cells had been present in a memory
state. In contrast, while ART-treatment initially results in the
decay of HIV-specific T cell responses with a half-life of 38.8
weeks for ∼2 years (140), these then appear to stabilize, as
HIV-specific T cell responses are readily detectable in ex vivo
assays (ex. IFN-γ ELISPOT) in the large majority of individuals—
even those who have been on treatment for over a decade
(71). Similarly, while HIV-specific antibody responses wane upon
initiation of therapy, ART-treated individuals do not sero-revert
[with the exception of some individuals who initiate therapy
very early (141)]. The second line of evidence for ongoing
interactions between the immune system and HIV comes from
the observation that themagnitudes of HIV-specific Ab responses
correlate directly with frequencies of HIV-infected cells (HIV
DNA) in individuals on long-term ART (142). Similarly, we have
observed that T cell responses directed against the early HIV
gene product Nef correlated directly with HIV DNA in this
cohort (with Ab and T cell responses also correlating with each
other) (71). While additional longitudinal studies are needed,
these data are consistent with an ongoing interaction between
HIV-infected cells and the immune system, including CD8+ T
cells. Finally, it is interesting to note that the two individuals
who achieved long-term remission of HIV through bone marrow
transplantation—the “Berlin patient” and the “London patient”—
also sero-reverted, and the London patient lost HIV-specific T
cell responses (143, 144), though the ablation of the recipient
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immune systems does complicate the applicability of these
cases to the current argument. Thus, while additional study
is needed, we propose that the preponderance of evidence
supports some level of ongoing interaction between the immune
system and HIV-infected cells in individuals on long-term
ART. If this occurs, it would satisfy the second criteria for
the evolutionary process of immunoediting to occur—namely,
selective pressure.

How Might Reservoir-Harboring Clones
Possess Heritable Variation in
Susceptibility to Immune Clearance?
In the tumor immunoediting model, heritable variations
generally arise during the cell replication cycle due to the failure
of DNA mismatch repair enzymes to fix mutations, or when the
cell fails to undergo apoptosis following a chromosomal break
or translocation. Mutations that confer a selective advantage—
through enhanced cell proliferation, resistance to apoptosis,
and/or resistance to immune mediated elimination—are passed
on to progeny cells, which will continue accumulating mutations
that improve their survival or proliferative capabilities. Two
major pathways that are mutated in many cancers, are those
involved in MHC-I expression and BCL-2 overexpression,
paralleling observations in reservoir harboring cells: the HIV
protein Nef downregulates MHC-I expression, while Tat can
upregulate BCL-2 expression. Here, we propose three potential
sources of heterogeneity in the susceptibility of a given reservoir-
harboring cell to immune-mediated elimination in ART-treated
individuals: (i) virus intrinsic factors, (ii) host cell intrinsic factors
(iii), and proviral integration sites.

Virus Intrinsic Sources of Heterogeneity in

Susceptibility to CTL
Virus intrinsic mechanisms include variation in targeted epitopes
that affect sensitivity to CD8+ T cell recognition, as discussed
in section Immunoediting of the Virus During the Course of
Untreated HIV Infections (above), as well as variable activity
of viral immune evasion activity. As an example of the latter, it
has been recently demonstrated that viruses reactivated from the
reservoirs of ARV-treated individuals can vary greatly in their
abilities to downregulate HLA-C through the actions of HIV-Nef
(145). Of the three mechanisms of heterogeneity proposed here,
these virus intrinsic mechanisms are the most well-established,
and thus will not be a principle focus of this Hypothesis and
Theory article.

Host Cell Intrinsic Sources of Heterogeneity in

Susceptibility to CTL
With respect to host cell intrinsic mechanisms, it is known that
various CD4+ T cell subsets display natural heterogeneity in their
intrinsic susceptibility to CD8+ T cell-mediated killing. Effector
and transitional memory CD4+ T cells are more susceptible to
elimination than central memory CD4+ T cells (146), where the
majority of the latent reservoir is thought to reside in (147).
Another study observed that the CD4+ T cells of elite controllers
were intrinsically more susceptible to CD8+ T cell mediated
elimination than those from progressors, suggesting that CD4+

T cell sensitivity to killing may play a role in disease outcomes
(148). Although the mechanisms underlying this heterogeneity
within the CD4+ compartment are not well-understood, multiple
mechanisms of resistance are known in other cell types. CTL
protect themselves from this killing process by inactivating
perforin through Cathepsin B or CD107a expression (149, 150).
Similarly, macrophages and dendritic cells avoid being killed
by expressing serine protease inhibitors that degrade granzyme
B (151–154). BCL-2 can also confer resistance to CTL further
downstream in both the perforin/granzyme B and FasL/Fas
pathways by sequestering Bid, thus preventing mitochondrial
membrane permeabilization by tBid (155, 156). In recent work,
we have identified one mechanism by which HIV reservoir
harboring cells are disproportionately resistant to CTL killing:
through the over-expression of the prosurvival factor BCL-2 (50).
Interestingly, previous studies have also described a disparate
role for BCL-2 in the survival of reservoir-harboring cells
through prevention of apoptosis mediated through Casp8p41,
an HIV-protease cleavage product of procaspase-8 (157–159).
While this is a fairly nascent area of research, barring the
null hypothesis—which is that all CD4+ T cells are precisely
equal in their susceptible to killing—it stands to reason that
any heritable variation in susceptibility to CTL will influence
which infected cells survive to form the persistent reservoir,
and thus the subsequent sensitivity of the reservoir to immune-
mediated clearance.

Proviral Integration as a Potential Source of

Heterogeneity in Susceptibility to CTL
Likely the most provocative of our proposed sources of
heterogeneity in sensitivity to CTL is the potential role of proviral
integration sites. As a retrovirus, a defining step in the lifecycle of
HIV is integration of the proviral DNA into the host genomic
DNA. After reverse transcription generates a double stranded
cDNA of the viral RNA, the reverse transcription product is
shuttled into the nucleus via the nuclear pore complex as part
of a pre-integration complex (PIC). Once inside the nucleus,

Integrase (IN) resects 2 nucleotides from both 3
′
ends of the viral

DNA molecule, binds the target genomic DNA, then makes a 5-
nucleotide staggered cut in the host DNA allowing for transfer of
the viral DNA onto the host genome where host enzymes, DNA
polymerase and ligase, fill in the gaps and irreversibly ligate the
two DNA strands together—now designated the HIV provirus
[reviewed in (160)]. While HIV integration occurs across the
human genome, the chromosomal location of integration is
not completely random. In vitro studies have shown that HIV
preferentially integrates into actively transcribed genes, gene-rich
regions, intronic regions, and largely avoids promoter regions
(161). Preferences for these sites are largely mediated by cellular
cofactors that bind IN and possess chaperone-like and chromatin
tethering activity, most notably, the transcriptional activator
LEDGF/p75 (162, 163). While LEDGF/p75 plays an important
role in guiding chromosomal integration, it is not a necessary
factor as loss of LEDGF/p75 showed no decrease in the overall
frequency of HIV integration, but instead resulted in an altered
proviral landscape (164).
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In vivo studies of patients on long-term ART corroborated
in vitro findings with a preference for HIV integration into
transcriptionally active genes, and principally within introns
(165–167). In vivo studies have also identified large, clonally
expanded populations of HIV-infected cells with integration
sites within genes controlling cell growth and division (120,
121). Of note, multiple patients have been identified with
integrations in the BACH2, MKL2, and STAT5B genes. In vitro
infections of primary cells demonstrated integrations throughout
BACH2 and MKL2 with equal distribution of chromosomal
orientation. However, large clonally expanded proviral sequences
from patients on long-term ART were all in the same orientation
as gene transcription and found only within a specific subset
of introns (121). While the exact mechanism of survival is not
completely understood, it is believed that BACH2 and MKL2
gene expression may be driven by the HIV LTR promoter
[reviewed in (161)]. The existence of these clonal integrations
within genes associated with cell growth in patients on long-
term ART strongly suggests a role in maintaining the persistent
reservoir through the induction of clonal expansion. However,
to our knowledge, there are currently no studies extensively
evaluating the impact that the site of HIV integration may
have on maintaining the persistent reservoir by providing a
mechanism of resistance to immune recognition and clearance.

Our hypothesis that HIV proviral integration sites may
alter susceptibility of target cells to CTL recognition and
elimination was inspired by findings related to immunoediting
in cancer. Immunotherapies have recently achieved remarkable
success in the treatment of certain types of cancer, but exhibit
variability in responses across patients (168). A recent study
of patients undergoing anti-PD-1 therapy (pembrolizumab)
for metastatic melanoma who experienced cancer relapse after
tumor regression, found that a majority of relapsing cancer cells
contained somatic mutations in genes associated with interferon
receptor signaling (JAK1 and JAK2) or antigen presentation
(B2M) (169). These cancer cells were therefore less responsive
to IFN-γ or had reduced MHC-I surface expression, leading to
escape from immune-mediated control. Additionally, a number
of groups have employed high-throughput CRISPR screens to
identify genes controlling susceptibility/resistance to immune
clearance (170, 171). Using a large-scale CRISPR screen of a
melanoma cell line, Patel et al. found that disruptions in antigen
processing/presentation and IFN-γ signaling pathways resulted
in decreased CD8+ T cell effector functions (170). The top
hits identified in the CRISPR screen were compared back to
the TCGA database where it was demonstrated that identified
mutations in these genes naturally occur in human cancers. Thus,
the acquisition of resistance to CTLs by tumors can underlie poor
responses to immunotherapy.

Integration of the HIV genome into cellular genes has
parallels with cancer-induced mutations or CRISPR-mediated
disruptions, leading us to posit that HIV integration into genes
essential for immune recognition and signaling could reduce
CD8+ T cell killing of those cells, thereby resulting in an
immunoedited subset of survivor cells enriched for integrations
in those genes. A few important differences, however, exist
between CRISPR-mediated gene disruptions and those caused

by HIV proviral integration. First, CRISPR gRNA libraries are
developed to specifically target exonic regions, resulting in loss-
of-function mutations. As discussed previously, the vast majority
(93–96%) of HIV integrations occur within introns (165–167).
The impact of a ∼9 kb intronic insertion containing an LTR
promoter, or of a truncated defective provirus, depends upon
a number of factors, and could plausibly increase, decrease,
or not at all impact gene expression and/or protein function.
Second, HIV only integrates into a single locus of a given gene
whereas CRISPR-mediated cleavages typically disrupt both alleles
of the target gene. Therefore, HIV integration into a single allele
may not impact overall protein function. However, a number of
genes exhibit haplo-insufficiency, whereby a single copy of the
gene product is not sufficient to support normal gene function,
and thus disruption in a single allele may disrupt normal gene
function; either wholly or on a nuanced level [reviewed in (172)].

While it is possible that the site of HIV integration may
impact the susceptibility of an individual cell to recognition
and/or elimination by CD8+ T cells—thereby providing a means
of immunoediting—further research is needed to determine
if this is indeed a genuine HIV-induced survival mechanism.
There are quite daunting challenges involved in testing this
hypothesis: (i) The fact that most proviral integrations in ARV-
treated individuals are associated with defective proviruses—
many of which are non-antigenic—comprise a source of
“noise,” since only the minority of antigen-expression competent
proviruses would potentially be subject to immune selection.
Thus, bulk integration site analysis would be expected to
miss any selection for integration sites that affect immune
susceptibility. (ii) There is extensive complexity inherent in
both the vast landscape of potential unique integration sites
across the genome, and the divergent impacts that any
potential integration could have in terms of gain/loss of
function, or more exotic effects such as the generation of
novel chimeric proteins (173). This will likely make it much
more difficult to discern patterns than simple CRISPR loss
of function mutations. (iii) Any selection on the level of
integration sites would occur on the backdrop of differential
susceptibility to CTL on virus- or host-cell intrinsic levels.
As a simple example, an infected cell with an integrated
provirus that contains escape mutations to autologous CD8+

T cell responses would be exempt from any putative selection
on the level of integration sites, and thus would confound
analysis if not accounted for. Despite these challenges, the
question of whether or not integration sites affect immune
susceptibility may be addressable if one were to effectively
harness novel approaches to obtaining integration sites in
conjunction with whole provirus sequences; and to apply
sophisticated analytical approaches. Inspiration for how this
might be approached can be drawn from the study of cancer
immunotherapy resistance—ex. the TIDE (Tumor Immune
Dysfunction and Exclusion) computational framework, which
draws on transcriptomic signatures from 33,000 samples taken
across 189 studies to predict immune checkpoint blockade
responses and derive insights into immunotherapy resistance
mechanisms (174). While the outcomes of such efforts in the
setting of HIV may indeed be to find that integration sites
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FIGURE 2 | Parallels in immunoediting: comparing cancer and HIV during suppressive ART. Cancer–Elimination: Innate and adaptive immune cells work together to

destroy developing tumors before they become clinically apparent, which play critical roles in cancer immunosurveillance. Highly antigenic tumor cells are recognized

and eliminated by increased antigen presentation and IFN-γ, NKG2D, TNF, IL-12, TRAIL, Perforin, and Granzymes. Equilibrium: Tumor cells that survive elimination

may enter the equilibrium phase. T cells, IL-12, and IFN-γ work in tandem to maintain the tumor cells in a state of functional dormancy. Tumor cells are in a state of

genetic instability, and acquire an ever-increasing number of mutations to resist immune pressure. Escape: Tumor cells surviving the equilibrium phase of the cancer

immunoediting process enter the escape phase, where tumor growth is no longer blocked by immunity. Tumor cell evasion generally occurs in cases with poor

antigen presentation, and increased tumor-derived immunosuppressive cytokines, ligands, and inhibitors of T cell responses (see section Immunoediting in Cancer

Evolution). Tumor cells escaped from immune pressure can grow unchecked, resulting in clinically apparent disease progression. HIV–Elimination: Seeding of millions

of infected cells, each with a unique viral and host cell signature. The majority of infected cells die from viral cytopathicity or immune-mediated elimination following

ART initiation. Some infected cells persist. Equilibrium: low-level/episodic antigen presentation allows for ongoing selection of infected cells. Some infected cell clones

are eliminated, while others persist and expand. The overall number of infected cells remains stable. Escape: Expansion of infected cell clones with characteristics that

enhance their resistance to immune recognition and/or elimination.

have no bearing on susceptibility to CTL, the alternative result
would both have important implications for efforts to cure HIV
infection, and would comprise a potential source of fundamental
immunological insights—with the potential to cross-fertilize our
understanding of cancer immunoediting. The proposed parallels
between the immunoediting of tumors and the persistent HIV
reservoir are summarized in Figure 2.

IMPLICATIONS OF A PERSISTENT
RESERVOIR THAT HAS BEEN
IMMUNOEDITED

The potential ongoing selection of certain infected cell
populations in vivo during suppressive ART has many
implications for current cure approaches, and may help
explain the differential outcomes of these strategies in vitro vs.
in vivo. One particularly prevalent approach, termed “kick-
and-kill,” combines latency reversing agents to initiate viral
transcription, ARVs to prevent viral spread, and effectors to
eliminate reactivated virus-harboring cells. While applications

of kick-and-kill initially had shown great promise in primary
cell models of latency (175), these approaches have, thus far,
not measurably reduced the latent reservoir in multiple clinical
trials (176–182). Multiple studies have also attempted to apply
kick-and-kill approaches in further in vitro or ex vivomodels, but
have not definitively shown reductions in the natural, replication
competent reservoir (49, 179, 183, 184), suggesting that there
are intrinsic differences in susceptibility to CD8+ T cell killing
between natural and model reservoirs.

One possibility is that the remaining infected cells comprising
the latent reservoir may be adapted to survive the host immune
response, as our group has provided evidence that cells harboring
the latent reservoir may be intrinsically resistant to CD8+

T cell killing (49). We combined maximal T cell activating
agents, such as stimulation using anti-CD3/CD28 antibodies
or PMA/ionomycin, with autologous HIV-specific CD8+ T cell
clones targeting non-escaped epitopes, and still failed to detect
decreases in the number of replication competent proviruses by
QVOA. We then harvested the replication competent proviruses
that grew out in the QVOA, which are individual clonal
lineages due to the limiting dilutions utilized in QVOAs,
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and super-infected activated CD4+ T cells from the same
donor. We then co-cultured these newly infected cells to
the same HIV-specific CD8+ T cell clones as before, and
observed elimination of nearly all the infected cells. These
contrasting results of efficient CD8+ T cell elimination of
infected cells during productive infections, but inability in
eliminating latently infected cells, suggests that there likely
are host-cell associated factors that impact survival of latently
infected cells.

Drawing from the tumor immunoediting literature, we
identified overexpression of the pro-survival protein BCL-2
as one potential mechanism of resistance—which can act to
antagonize perforin/granzyme killing by sequestering truncated
BH3-only domain members of the BCL-2 family (185). Using
cells from individuals on long-term ART, we observed that
reactivated HIV reservoir-harboring cells from ex vivo CD4+

T cells over-expressed BCL-2 relative to uninfected cells (50).
In contrast, we did not observe over-expression in ex vivo HIV
infected cells from ART-naïve individuals—suggesting that this
was a unique feature of long-term reservoirs. The addition
of the BCL-2 antagonist ABT-199 to combinations of HIV-
specific CD8+ T cells and latency reversal agents resulted in
partial eliminations of ex vivo reservoirs from ARV-treated
individuals. We propose that these results comprise proof-of-
principle for the idea that reservoir-harboring cells may be
selected for resistance to CD8+ T cells, but would suggest that
BCL-2 over-expression may be just one of many mechanisms yet
to be discovered.

Other long-term implications of the potential immunoediting
of persistently HIV-infected cells during suppressive ART are
unclear. In a paired submission to this same issue, we discuss in
detail a model of virus- and host-coordinated immunoediting of
a retrovirus that causes cancer: adult T cell leukemia/lymphoma
arises in ∼5% of individuals living with the Human T cell
leukemia virus type 1 (HTLV-1), although the development
of malignancy can take 40–50 years (186, 187). The HTLV-
1 specific immune response acts in concert with cancer
immunosurveillance, driving the proliferation of immortalized
immune-evading infected clones with identical integration sites
that may acquire properties through years of equilibrium that can
drive malignancy. Virus- and host-coordinated immunoediting
sculpts the selection of a single clonal population to become
malignant after decades of latency and clonal expansion (188).
Although HIV does not persist through the classical escape
phase and is not known to cause T cell malignancy, the
immunoediting of HIV-infected cells that persist through ART
may drive the selection of clonal populations of cells arising
from a single integration site, which persist indefinitely. We
argue that this persistence may represent the escape phase
for people living with HIV on ART, particularly for clonally
expanded cells harboring replication competent HIV that remain
refractory to immunosurveillance and survive for years. The
fate of these cells remains unknown, and understanding the
mechanisms of their survival will ultimately inform their capacity
to be purged.

SUMMARY

The recent revolution in cancer immunotherapy has underscored
the potential for the human immune system to combat tumors,
and shone a spotlight on the diverse mechanisms by which
cancers can acquire cell-intrinsic immune resistance. Using
sophisticated Omics approaches, and cutting-edge technologies,
it has been revealed that both the genetic and epigenetic features
of a given tumor cell can influence its intrinsic sensitivity
to immune recognition and elimination. This variation serves
as the basis for an evolutionary process known as clonal
selection, which leads to the escape of tumors that have been
immunoedited. Some mechanisms of immunoediting may be
therapeutically targetable—e.g., IFN-γ treatment to augment
antigen processing and presentation, or PD-L1 blockade for
tumors that overexpress this co-inhibitory ligand (189). In
contrast, the field of HIV persistence has generally not considered
the idea that reservoir-harboring cells themselves may differ
intrinsically in their susceptibilities to CTL, focusing instead on
the roles of virus expression/latency, and on aspects of CTL
functionality. Here, we have attempted to build a case for the
potential role of cell-intrinsic immunoediting in the persistence
of the HIV reservoir; including preliminary evidence supporting
this model, suggested mechanisms for how this may arise, and a
discussion of how this theory can be further evaluated. In moving
forward, we propose drawing on the concepts, technologies,
and methodologies that have been developed to study tumor
clonal section and immunoediting to accelerate progress toward
understanding the nature of HIV persistence, and how this may
be overcome to cure infection.
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Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on

cART, evidence of HIV-induced immunosuppression remains, and normally benign

and opportunistic pathogens become major sources of co-morbidities, including

virus-induced cancers. In fact, cancer remains a primary cause of death even in virally

suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection,

contribute substantially to disease modulation and vaccine protection, and are also major

therapeutic targets for cancer immunotherapy. However, much like other lymphocyte

populations, recent burgeoning evidence suggests that in chronic conditions like HIV,

NK cells can become functionally exhausted with impaired cytotoxic function, altered

cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent

work suggests functional anergy is likely due to low-level ongoing virus replication,

increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed,

HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically

shown to cause lymphoma and also increases replication of CMV. In this review, we

will discuss current understanding of NK cell modulation of HIV disease, reciprocal

exhaustion of NK cells, and how this may impact increased cancer incidences and

prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent

evidence supporting adaptive functions of NK cells and highlight the potential of adaptive

NK cells for cancer immunotherapy.

Keywords: HIV, cancer, natural killer, innate immunity, immunotherapy

NK CELLS HAVE THERAPEUTIC POTENTIAL TO ENHANCE
CONTROL OF BOTH HIV AND HIV-RELATED CANCERS

While efficient suppression of plasma viremia by combination antiretroviral therapy (cART)
has substantially decreased mortality of people living with HIV (PLWH), burgeoning evidence
suggests a higher occurrence of a vast range of comorbidities linked to long-term treatment
and aging among PLWH, including cancers. The incidence of AIDS-defining cancers such as
Kaposi Sarcoma, Non-Hodgkin lymphoma, and cervical cancer, has substantially decreased with
access to cART. However, cART-treated PLWH still have a higher susceptibility to non-AIDS
defining cancers (NADCs) compared to the general population, and NADCs currently represent
a major cause of mortality among PLWH (1, 2). In particular, lymphomas, including Burkitt and
classical Hodgkin lymphomas, have been reported at a significantly higher frequency in PLWH,
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yet many other cancers associated with infections (i.e., anus,
oropharynx, liver) and some cancers associated with cigarette
smoking (i.e., lung, kidney) were also found to be elevated
among PLWH (3). Several mechanisms have been proposed to
explain the predisposition of cART-treated PLWH to NADCs
(4). Nevertheless, as cART treatment only partially prevents
HIV-induced chronic inflammation and immune senescence,
it is very likely that immune dysregulation in PLWH is an
important determinant of NADCs and explains why most
cancers predominantly found in PLWH are related to viral
infections (4, 5).

NK Cell Subpopulations
Natural killer (NK) cells are large granular leukocytes that
play a central role in the control of viral infections and
neoplasms. Human NK cells are defined as CD3negCD56pos

lymphocytes (6) and can be subdivided into functionally distinct
subpopulations based on expression levels of CD56 and CD16
(7). CD56brightCD16neg NK cells have a high proliferation
potential and the ability to secrete a large amount of cytokines,
notably IFN-γ in response to IL-12, with limited cytotoxic
functions (8), while CD56dimCD16pos NK cells display strong
cytolytic activity as well as a significant capacity to secrete
cytokines upon triggering of activating receptors (6, 9). In
addition, a subset of CD56negCD16pos NK cells appears to expand
in chronic viral infections including HIV and might represent an
exhausted/anergic subset of NK cells (10–12).

Our understanding of human NK cells has essentially been
acquired while studying peripheral blood NK cells, yet it is
now clear that subsets other than CD56bright and CD56dim

NK cell subpopulations can be found in peripheral tissues.
Tissue-resident NK cells differ from circulating NK cells and
are found not only in secondary lymphoid organs but also in
many peripheral tissues including the uterus, lung, and liver
where they represent up to 50% of lymphocytes (13–15). Findings
from recent studies have allowed reliable identification of tissue-
resident NK cells based on their expression of CD69, CD49a,
or CD103, three markers functionally involved in the retention
of lymphocytes in tissues. Besides the uterus, lung and liver,
NK cells have been characterized in many additional tissues
such as the intestinal mucosa, skin, and kidneys. However, in
a majority of older studies it is not clear if those NK cells
represent tissue-resident NK cells, NK cells circulating between
tissues and blood, or innate lymphoid cells (ILCs). Indeed, ILCs
can express markers associated with NK cells such as CD56,
NKp46, or NKp44, and it was only lately appreciated that a
deeper analysis of expressed transcription factors and produced
cytokines is required to discriminate NK cells and ILCs. Until
recently, NK cells were even considered as part of ILC group
1 due to the common innate lymphoid progenitors. However,
NK cells are now distinguished from other ILCs because of their
unique development and cytotoxic functions (16). In summary,
tissue-resident NK cells likely play a crucial role in select tissues
or organs involved in cancer and HIV disease, yet due to the
scarcity of data on the contribution of tissue-resident NK cells
in HIV infection or cancer development, herein we will focus
primarily on circulating NK cells.

NK Cell Function
NK cells can efficiently discriminate between transformed or
virally-infected cells and normal cells without the need for
prior sensitization, and have the capacity to kill abnormal
cells before adaptive immunity develops, thereby containing
viral replication or tumor development. NK cells can clear
cellular targets by a number of different mechanisms, including
(i) exocytosis of cytotoxic granules containing perforin and
granzyme that results in cell lysis, (ii) signaling through Fas ligand
or TRAIL death receptors which induces apoptosis, (iii) release
of cytokines with potent anti-viral and anti-tumor activities, and
(iv) antibody-dependent cellular cytotoxicity (ADCC), triggered
through binding of the FcγRIIIA receptor (CD16) on NK cells
by the constant (Fc) domain of IgG antibodies. NK cells also
play major roles in tuning and controlling adaptive immune
responses (17).

NK Cell Receptors
Unlike other lymphocytes, NK cells lack antigen-specific
receptors but lyse target cells following the integration of
inhibitory and activating signals. These signals are generated
by an arsenal of germline encoded cell surface molecules, with
effector functions taking place when activating signals overcome
inhibitory ones (18). The major NK cell receptors, which
allow NK cells to discriminate between “self ” and a variety
of pathological cell states belong to three main categories: (i)
natural cytotoxicity receptors (NCRs) such as NKp46, NKp30,
and NKp44, which can bind to several viral or tumor-associated
molecules (19, 20), (ii) NKG2A/C/E-CD94 heterodimers and
NKG2D homodimers, which are c-type lectins binding to the
non-classical Human Leukocyte Antigen E (HLA-E) molecule
and stress-induced ligands, respectively, and (iii) the killer-
cell immunoglobulin-like receptors (KIRs), which primarily
recognize HLA class Ia (HLA-Ia) and Ib (HLA-Ib) molecules and
related surface molecules (21).

The classical HLA-Ia group includes the highly polymorphic
and ubiquitously expressed HLA-A, -B and -C antigens. Non-
classical HLA-Ib antigens comprise HLA-E, -F, and -G molecules
which are expressed in a tissue-specific manner, display low
genetic diversity, and limited peptide repertoire (22). While
the biological function and clinical relevance of most HLA-Ia
and -Ib antigens have been investigated in detail, HLA-F was
only recently recognized for its important immune-regulatory
functions in cancer (23–26) and potentially in HIV infection
(27). Besides their role in mediating recognition and elimination
of unhealthy cells, a direct interaction between inhibitory KIRs
and their HLA class I ligands during NK cell development is
necessary for NK cells to acquire self-tolerance and functionality
through an education process termed “licensing.” Besides NK
cell licensing, which involves engagement of self-HLA class Ia
molecules by their inhibitory ligand, non-classical HLA class I
as well as non-HLA class I molecules also contribute to NK cell
education (28).

While NKp30, NKp46, NKG2D, and NKG2C are expressed
at relatively comparable levels on circulating CD56dim and
CD56bright NK cells, other major NK cell receptors are
differentially expressed on distinct subsets of NK cells (11).
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Peripheral blood CD56bright NK cells have been proposed to
represent a mixture of immature NK cells that are direct
precursors of CD56dim NK cells (29, 30), and mature NK
cells, including CD56dim NK cells that have upregulated CD56
and lost CD16 upon activation in peripheral tissues (31).
Immature CD56bright NK cells lack expression of KIRs, which
are sequentially acquired during the differentiation process into
mature CD56dim NK cells, a process that occurs in parallel with a
progressive decrease in NKG2A expression and acquisition of the
marker of terminal differentiation CD57 (32). NKp44 is usually
not expressed on peripheral blood NK cells and up-regulated
upon IL-2- or IL-15-mediated NK cell activation (33).

Other groups of receptors have received attention because
their expression on NK cells is modulated in HIV and/or
cancer and impacts NK cell function. These include Signaling
Lymphocyte Activation Molecule (SLAM)-related receptors such
as 2B4 (34–37) that displays co-stimulatory functions on NK cells
and binds to CD48, or sialic acid-binding immunoglobulin-type
lectins (Siglec), which are HLA class I-independent inhibitory
receptors that recognize sialic acid-containing carbohydrates
(38, 39). T cell immunoglobulin and mucin-domain containing-
3 (Tim-3), which can binds to galectin-9, carcinoembryonic
antigen cell adhesionmolecule 1 (Ceacam1), high-mobility group
box 1 (HMGB1) or phosphatidylserine (PtdSer), is another
immunoregulatory molecule highly expressed on NK cells with
relevance for NK cell function in both HIV and cancer (40–
47). NK cells also express members of the immunoglobulin (Ig)
superfamily such as the activating receptor DNAM-I (48–51),
which has been shown to recognize CD112 (PVR) and CD155
(Nectin-2), two ligands expressed on tumor cells.

NK Cell Control of Cancers and HIV
Infection
NK cells were originally defined as immune cells capable of
lysing tumor cell lines. Since then, their capacity to kill primary
cancer cells in vitro as well as their ability to prevent growth and
metastasis of certain tumors in vivo, principally hematological
cancers, has been clearly established (52–54). In particular,
protection against development of cancer has been associated
with higher NK cell cytotoxicity (55) and increasing evidence
has highlighted the implication of NK cells in defense against
leukemia. Importantly, in the context of hematopoietic stem cell
transplantation (HSCT), it has been demonstrated that allogeneic
NK cells from the donor can prevent relapse of myeloid leukemia
via graft-vs.-leukemia effect (56, 57). However, thus far clinical
trials aimed at harnessing NK cell anti-tumor activity have
shown marginal therapeutic efficacy (58–61), with beneficial
effects reported mainly against hematologic malignancies (62).
Development of therapeutic strategies to enhance NK cell activity
against tumor cells in vivo has therefore become a major field
of investigation.

Besides NK cell anti-metastatic properties, numerous studies
have emphasized the early and pivotal role of NK cells in the
control of HIV infection. Notably, particular KIR genes expressed
in conjunction with their HLA ligands are associated with
significantly slower HIV disease progression and lower viral set-
point (63, 64), elite control of HIV (65), and protection against
disease acquisition (66, 67). In particular, activating KIR3DS1

has been associated with delayed HIV disease progression in
individuals with specific HLA-B alleles since a first study by
Martin et al. (63), yet a ligand for KIR3DS1 was only recently
described, underscoring the relevance of HLA-F in regulating
immunity to HIV (27). Indeed, HLA-F open conformers (OCs),
which constitute heavy chains not bound to β2-microglobulin,
can be recognized by several KIRs but have the highest affinity
for KIR3DS1 (27, 68). HLA-F OCs trigger polyfunctional
responses by KIR3DS1pos NK cells, which efficiently suppress
HIV replication in vitro. HLA-F is expressed on activated CD4pos

T cells and may act as a marker of cellular stress in specific
conditions including viral infections and cellular transformation.

Control of HIV infection has also been associated with NK
cells displaying potent cytotoxic function and IFN-γ expression
after stimulation (69) as well as with polyfunctional CD8αpos

NK cells (70). Moreover, it has been demonstrated that NK
cells expand in the peripheral blood during early acute HIV
infection, can inhibit HIV replication in vitro, and can mediate
in vivo immune pressure in infected individuals, resulting in
viral escape (71–77). Finally, indirect NK cell-mediated ADCC
has been linked to vaccine-induced protective immunity against
HIV infection (78), elite control of HIV (79–81) and slower
HIV disease progression (82, 83). Therefore, in cART-treated
PLWH, therapeutic interventions targeting NK cells might result
in improved control of HIV and other viral infections as well as
in decreased incidence of cancers.

ABERRANT EXPRESSION OF KEY NK
CELL RECEPTORS MAY CONTRIBUTE TO
DECREASED CONTROL OF
PRE-CANCEROUS CELLS IN PLWH

NK cell-mediated immunosurveillance is decreased in PLWH,
mostly as a long-term consequence of chronic HIV infection.
While administration of suppressive cART partly restores
NK cell properties, NK cells undergo many HIV-associated
functional and phenotypic alterations, which are likely to severely
impair NK cell-mediated control of viruses as well as of
pre-cancerous cells.

Engagement of the well-described NCRs, NKG2D, and CD16
receptors represent major pathways to promote potent NK cell
activation and cytotoxic responses. In both chronic HIV infection
and cancer, NK cell recognition of abnormal cells through those
activating receptors is defective, mainly as a result of chronic
exposure to the respective ligands, which results in persistent
down-modulation of NCRs, NKG2D, and CD16 on NK cells.
In this section, we will review known effects that malignancies
and HIV infection have on the expression of key NK cell
receptors (Figure 1, left panel). It is important to note that a
simplified definition of NK cells as CD3negCD56pos lymphocytes
or different gating strategies to identify the major NK cell
subsets represent a caveat of some older studies, precluding
any definite conclusions on phenotypic alterations specifically
affecting individual NK cell subsets.

NCRs represent a particularly important family of activating
receptors in NK cell-mediated elimination of tumor cells, with a
few tumor-associated ligands described for those molecules thus
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FIGURE 1 | Rescuing and harnessing NK cell potency in PLWH developing cancers. Left: HIV-infected and cancer cells share common NK cell escape mechanisms.

1. Over-engagement of inhibitory receptors (i.e., NKG2A, inhibitory KIRs, PD-1...) blocks killing abilities of NK cells. 2. Down-modulation (blocking expression of ligand

or shedding of ligand) or over-exposure (constant expression of ligands or release of soluble ligands) induce down-expression of activating receptors (NKG2D, NCRs,

DNAM-1…) on NK cells. Right: Novel immunotherapies are being develop to harness NK cell potency and target HIV-infected and cancer cells. 1. Monoclonal

antibodies (mAb) release engagement of inhibitory receptors, unleash NK cell cytotoxicity and engage Fc receptors (CD16) to induce ADCC. Several clinical trials are

in progress. 2. Engineered proteins, Bi-specific or Tri-specific Killer engagers (BiKEs or TriKEs) and Chimeric Antigen Receptors (CARs), act as a link between NK cells

and target cells to induce cytotoxicity. BiKEs or TriKEs induce ADCC by engaging CD16 receptors and bind to antigen on target cells. 3. Adaptive features of NK cells,

defined by a higher expression of CD57, NKG2C, and/or absence of FcR-γ, could be harnessed to elicit specific killing of target cells.

far (19). Accordingly, strategies to escape immune recognition
by NCRs have been reported in both HIV infection and
cancer, and have been associated with dysfunctional NK cells
expressing lower levels of NCRs than NK cells from control
subjects in many studies. Upon HIV infection, a population of
dysfunctional CD56negCD16pos NK cells expands at the expense
of the CD56dimCD16pos NK cell subset and is progressively
eliminated with cART treatment. In PLWH, decreased NK cell
expression of NKp30 and NKp46 receptors has been reported,
and appears to be a characteristic of CD56negCD16pos NK cells,
reducing their cytokine production and cytotoxicity, notably
against tumor target cells, as well as their ability to interact
with other immune cells (84–86). Similarly, decreased NK cell
cytotoxicity in patients with acute or chronic myeloid leukemia
(AML or CML) correlates with lower levels of NKp30 andNKp46
expression on NK cells compared to healthy individuals (87–
89). NCRs downregulation on NK cells is induced by cell-to-
cell contact with AML blasts and linked to poor survival in
AML patients (87), whereas high levels of NKp30 and NKp46
expression on NK cells at AML diagnostic are predictive of
better outcomes (90, 91). In AML, high expression of the
immunosuppressive glycoprotein CD200 on tumor cells has been
shown to directly impair NK cell anti-tumor responses and is
associated with downregulated expression of NKp44 and NKp46
receptors on NK cells (92).

As overexposure to their ligands promotes decreased NCRs
expression on NK cells, it is not surprising that shedding of
NCR ligands is a hallmark of tumor escape, underscoring further
the importance of this family of receptors in anti-metastatic
NK cell functions. The A disintegrin and metalloproteinase
ADAM-10 and ADAM-17 can cleave B7–H6, a ligand for NKp30,
from the surface of tumors, likely leading to reduced NKp30
expression on NK cells surrounding the tumor (93, 94). Shedding
of NKp30 ligands has also been described in chronic lymphocytic
leukemia (CLL), in which exosomal expression of BAG6mediates
NK cell activation, whereas soluble BAG6 suppresses NK cell
cytotoxicity (95). Galectin-3 is another molecule released by
tumor cells that can serve as ligand for NKp30 and prevent
NK cell activation (96). As another immune escape mechanism,
catabolites specifically generated in tumor microenvironments,
such as L-kynurenine, can also directly down-modulate NKp46
expression on NK cells (97). Whether HIV infection-associated
NCR ligands are shed from the surface of infected cells remains
to be fully determined, but likely contributes to impaired NCRpos

NK cell function in HIV infection.
Altogether, these data suggest that fully restoring and even

enhancing NCR-mediated signaling in NK cells might be crucial
to efficiently control pre-cancerous cells in PLWH. Of note,
B7–H6 is the only NCR ligand expressed on tumors that
has been characterized so far. Identification of NCR ligands
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specifically expressed in cancer or HIV infection would represent
a milestone in the development of therapeutic interventions
aimed at maintaining NCR-mediated NK cell function in PLWH.
Finally, given the crucial role played by NCRs in regulating NK
cell function in both blood and tissues, therapeutic interventions
to enhance tumor surveillance by NK cells and targeting NCR
signaling are currently being explored (20).

NKG2D is one of the most important NK cell activating
receptor in terms of recognition and elimination of abnormal
cells expressing stress-induced ligands. Similarly to NCRs,
tumors and HIV evolved immune escape mechanisms to
specifically circumvent NKG2D-mediated recognition by NK
cells. In HIV infection, reduced NKG2D expression on NK cells
and dampened NK cell function have been linked to elevated
levels of the soluble form of its major histocompatibility complex
I-related chains A (MICA) ligand in patient sera (98). MICA is
likely released by HIV-infected CD4pos T cells based on their
increased expression levels of matrix metalloproteinases MMP-2
and -7, a family of enzymes previously described for their role
in proteolytic shedding of NKG2D ligands in human tumors
(99, 100). UL16 binding proteins (ULBP) also serve as ligands for
NKG2D and their expression is induced on HIV-infected cells
(34), yet levels of ULBP-1 and -2 is down-modulated by the HIV
accessory proteinNef, thereby dampeningNKG2D-mediatedNK
cell cytotoxicity (101).

Tumor progression has been associated with lower levels of
NKG2D (as well as NKp30 and NKp46) expression on NK cells
from patients with cervical cancer (102), and defective NK cell
function owing to NKG2D downregulation has been linked to
high-risk myelodysplastic syndrome (MDS) (103). Shedding of
NKG2D ligands also plays a central role in tumor escape. In AML
patients, chronic exposure to MICA/B decreases expression of
NKG2D on NK cells (104) and the concentration of NKG2D
soluble ligands in the peripheral blood correlates with reduced
NK cell cytotoxicity in AML and CML (105). MICA is released in
multiple myeloma (106, 107), and MICA/B as well as ULBP-6 are
shed from leukemic cells (108). NKG2D ligand shedding is also
involved in Hodgkin lymphoma, in which lymph node stromal
cells express proteases that shed MICA and ULBP-3 from the
surface of the lymphoma cells (109). Thus, NKG2D and its well-
described ligands represent additional promising therapeutic
target to enhance immunosurveillance by NK cells in PLWH.
Accordingly, it has been recently demonstrated that antitumor
responses by NK cells can be efficiently promoted by antibodies
against MICA by blocking MICA/B shedding and coating
MICA-expressing tumor cells, rendering them susceptible to
ADCC (110).

Function of additional NK cell receptors is modulated by HIV
infection and play an important role in NK cell responses to
cancerous cells, including the activating receptor DNAM-1 that
is expressed on the majority of peripheral blood NK cells (111–
115). The CD155 ligand for DNAM-I has been shown to be
present on HIV-infected T cells and, although discrepant results
were obtained based on the cell culture model used, some studies
found CD155 to be counter-regulated by the HIV proteins Nef
and Vpu, thereby preventing NK cell activation (50, 51, 116).
Many tumors also express ligands for DNAM-1, triggering NK

cell cytokine production and cytotoxicity (117, 118). Tumor
escape from DNAM-1 has been described and associated with
DNAM-1 downregulation onNK cells isolated from patients with
cancer (119–124).

Siglec receptors, and particularly Siglec-7 and -9, have also
gained a lot of attention in the past decade for their involvement
in immune evasion of tumor and virus-infected cells. Siglec-7
and Siglec-9 are constitutively expressed on all peripheral blood
NK cells and on a mature subset of cytotoxic CD56dim NK cells,
respectively (125). Reduced Siglec-7 expression marks a subset
of dysfunctional NK cells that appears in early stages of HIV
infection, prior to downmodulation of CD56, in subjects with
elevatedHIV replication, and also characterizes the dysfunctional
CD56neg NK cell subset in chronic HIV infection (126, 127).
Interestingly, an association between downregulation of Siglec-
7 and dysfunction of NK cells has also been described in HIV-2
infection (128).

Siglec-7 and -9 ligands are widely expressed on distinct
tumor cells and shield them from Siglec-7pos and Siglec-9pos

NK cells (125). Siglec-10, another member of the Siglec family
expressed by NK cells, is associated with decreased survival
and impaired NK cell function in hepatocellular carcinoma
(129). Therefore, targeting Siglec molecules on NK cells, or
their ligands on malignant cells, might prove an attractive
immunotherapeutic strategy to augment NK cell antitumor
immunity (130). Supporting this hypothesis, a Siglec-7neg NK-
92 cell line exhibited high cytotoxicity against leukemia cells
in vitro (131).

Overall, interactions between ligands and major activating
receptors on NK cells are impaired in both HIV and cancer,
with some common underlying mechanisms such as cleavage
of membrane-bound receptor molecules by zinc-dependent
endopeptidases such as MMPs and ADAMs. Therefore, drugs
that prevent shedding of NK cell-activating ligands or receptors
may enhance protection against development of cancer in
PLWH. Several inhibitors of the metalloproteinase ADAM17, for
instance, have already entered clinical trials and are being tested
in combination with other therapeutics against cancer (132).
Metalloproteinase inhibitors would also prevent CD16 shedding
form the surface of NK cells, a mechanism that naturally
occurs following CD16 ligation (133, 134) yet is dysregulated
in HIV infection and cancer, thereby decreasing ADCC activity
and cytotoxicity against HIV-infected or tumor cells. Moreover,
increased levels of inhibitory receptors such as inhibitory KIRs
or TIGIT on NK cells further contribute to decreased NK cell
functions in PLWH (135, 136). Finally, unresolved inflammation
is a hallmark of chronic HIV infection and is widely accepted
to elicit malignant transformation of cells and carcinogenesis
(137, 138). Several inflammatory mediators, such as TNF-α,
IL-6, tumor-derived transforming growth factor β (TGF-β),
and IL-10 have been shown to play a role in carcinogenesis.
For instance, TGF-β is a cytokine endowed with immune-
suppressing and anti-inflammatory properties that plays a key
role in promoting NK cell dysfunction and is found elevated in
both the tumor microenvironement and plasma of PLWH. In
addition, TGF-β has been shown to elicit production of vascular
endothelial growth factor by NK cells, thereby promoting tumor
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growth along with other cytokines chronically found elevated in
PLWH (137, 139).

Altogether, these observations show that the ability of
NK cells to eliminate tumor cells is impaired by the tumor
microenvironment and further constrained in HIV infection,
and that NK cell dysfunction in cART-treated PLWH may
significantly contribute to their enhanced susceptibility to
develop malignancies.

RECENT ADVANCES IN DEVELOPMENT
OF NK CELL-BASED STRATEGIES FOR
THE TREATMENT OF CANCER

NK cell-based immunotherapies rely on enhancement of
endogenous NK cell activities in the tumor microenvironment
or on adoptive transfer of NK cells with improved function.
Strategies so far have included blockade of inhibitory NK
cell receptors or immunosuppressive processes in the tumor
microenvironment as well as enhancement of NK cell activation
via cytokine stimulation or chimeric receptor expression (140).
In this section, we will focus on strategies that could be of
particular benefit in PLWH for elimination of HIV as well as
HIV-associated cancers (Figure 1, right panel).

mAb-Mediated Release of NK Cell
Inhibition
Autologous NK cells are oftentimes suppressed by self HLA class-
I molecules expressed on tumor cells that bind to inhibitory
CD94/NKG2A or KIR. This can be circumvented by adoptive
therapy of allogeneic NK cells with a KIR-HLA class I mismatch.
Alternatively, release of inhibitory signals using mAbs that target
HLA class I-binding NK cell inhibitory receptors represent
another strategy to enhance NK cell antitumor functions. This
approach might be particularly beneficial in PLWH, as HIV
infection results in downmodulation of the major activating NK
cell receptors.

NKG2A is a c-type lectin that has been shown to mediate
NK cell suppression in both HIV infection and cancer. In
particular, elevated expression of HLA-A has been linked to
poor control of HIV (141). This deleterious effect is mediated
by NKG2Apos NK cells that are functionally suppressed by
increased levels of HLA-E; whose expression is directly regulated
by the availability of HLA class I-derived peptides. Whether
increased HLA-A also correlates with poor outcome in cancer
remains to be determined. Overexpression of HLA-E by tumor
cells has long been proposed as a mechanism of escape
from the action of NK cells (142). For instance, enhanced
expression of HLA-E in hepatocarcinomas is driven by IL-
10 released in the tumor micro-environment and is associated
with enhanced NKG2A expression, a profile that correlates
with NK cell exhaustion/anergy, as measured by low IFN-
γ intracellular production upon stimulation with IL-12, and
with a poorer prognosis (143). Failure to achieve remission
in AML patients has been linked to impaired function of NK
cells that upregulated NKG2A (144), and expression of HLA-
E in multiple myeloma cells decreases NK cell cytotoxicity
(145). Accordingly, efficacy of a specific IgG4 mAb that targets

NKG2A (Monalizumab) is currently being assessed in various
tumor settings along with other mAbs (61). Promising results
were obtained in phase II trials in combination with the anti-
EGFR antibody Cetuximab in head and neck cancers (146).
Interestingly, Monalizumab targets both T cell and NK cell
responses, promoting effector T cell responses in combination
with anti-PDL1 and enhancing NK cell effector functions,
including ADCC. Whether therapeutic blockade of HLA-
E:NKG2A interaction, potentially in combination with PD-1
signaling blockade, could significantly improve control of HIV
remains to be evaluated. NKG2A also significantly contributes
to NK cell education in the early stages of NK cell ontogenesis.
Accordingly, administration of Monalizumab has been suggested
to promote NK cell alloreactivity against malignant cells when
administered early after haplo-HSCT, thereby circumventing the
need for a KIR-mismatched donor (147).

Inhibitory KIRs represent another interesting target for
immunotherapies. For instance, Lirilumab, an IgG4 mAb that
targets KIR2DL1/2/3 and KIR2DS1/2 has been evaluated in
several clinical trials in combination with different mAbs in
AML (phase II NCT02399917), MDS (phase II NCT02599649),
lymphoma (phase II NCT01592370), and CLL (phase I
NCT02481297). However, long-term use of inhibitory KIR
blocking agents might lead to desensitization of NK cells (60).
Finally, the recent discovery of HLA-F OCs’ ability to bind KIRs,
and particularly KIR3DS1 that has a widespread influence in
human diseases including HIV, has made HLA-F a target of
significant interest for therapies to enhance anti-tumor function
of NK cells that might be particularly relevant for PLWH
with malignancies.

Numerous antibody-based immune checkpoint inhibitors
currently under investigation target the interaction of PD-1 or
CTLA-4 and their cognate ligands on tumor cells, in order to
boost the power of tumor-specific CD8pos T cells. In particular,
clinical studies assessing the blockade of PD-1 or its ligand PD-
L1 reported potent therapeutic efficacy against several cancers
such as melanoma and non-small cell lung cancer. Selective PD-
1 expression on CD56dimCD57pos mature NK cells in some but
not all healthy individuals has been reported (148) and associated
with functional defects (149). However, overall expression and
functional relevance of those markers on NK cells in health
and disease is still unclear, and recent studies suggest that
blockade of CTLA-4 and PD-1might enhance NK cell anti-tumor
activity mostly via indirect mechanisms (150). Interestingly, PD-
1 also mediates T-cell exhaustion in chronic HIV infection,
and dual immune checkpoint blockade targeting PD-1 and IL-
10 significantly enhances NK cell function through reversal
of adaptive immune exhaustion in PLWH (151). Therefore,
immunotherapeutic interventions targeting PD-1 may augment
NK cell responses against both HIV and tumors in PLWH.

Another immune checkpoint inhibitor currently tested in
clinic is a mAb targeting Tim-3, a receptor associated with
exhaustion in T cells. Tim-3 has been proposed to mark mature
NK cells, with chronic Tim-3 upregulation being associated
with NK cell dysfunction, yet the precise impact of TIM-3
expression on NK cell function require further investigations
(152). While Tim-3 has been shown to be upregulated on NK
cells in various tumors, studies dissecting the effects of Tim-3
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blockade on NK cell function in cancer settings have yielded
mixed results (150).

Finally, even though it represents a promising approach
for the treatment of cancer, administration of mAbs targeting
regulatory immune checkpoint molecules has been associated
with toxicities known as immune-related adverse events (irAEs)
(153). irAEs are mainly caused by the release of inhibitory
mechanisms that normally constrain the immune response,
leading to various local and systemic autoimmune responses.
Clinical benefit of immune checkpoint therapy is also restricted
to a subset of patients. Several mechanisms of resistance to
immune checkpoint inhibition have been described (154, 155).
Notably, cancer therapy based on administration of mAbs
promotes the induction of antibodies against such humanized
mAbs and it is not clear yet whether such antibodies do or do not
play a role by neutralizing the effects of the therapy. However, the
potential of such antibodies to induce hypersensitivity reactions
need to be considered.

mAb-Based NK Cell Activation
Antibody therapy that targets activating NK cell receptors is
another strategy that has shown efficacy in certain malignancies.
Elotuzumab, an antibody that targets SLAMF7, directly activates
NK cells and can simultaneously induce ADCC by coating
multiple myeloma cells, which express SLAMF7. The ability of
a therapeutic mAb to induce ADCC results in potent NK cell
activation and led to the design of bi-specific and tri-specific killer
cell engagers, BiKEs and TriKEs, respectively. These single-chain
variable fragment recombinant reagents can bind the tumor cells
and NK cells via CD16 to induce direct killing via ADCC. This
technique has been used in clinical trials where Hodgkin target
cells expressing CD30 were linked to CD16 expressed on NK
cells (156). The anti-CD16XCD33 BiKE activation can override
the inhibitory signals mediated by ligation of inhibitory NK
cell receptors and their HLA class I ligands expressed on AML
(157) and MDS (158) targets. However, BiKEs do not promote
in vivo proliferation and survival of NK cells. To overcome this
issue, TriKEs were manufactured to engage the IL-15 receptor
and are evaluated in different tumor pathologies (159–161). Use
of therapeutic mAbs with potent ADCC activity may lead to
substantial benefit in PLWHwho present high frequencies of NK
cells with enhanced antibody-dependent activation, as described
in the last section.

Activation of NK Cells via CAR
A new tool for immunotherapy is chimeric antigen receptor
(CAR)-engineered NK cells. CAR are artificial receptors
composed of an extracellular antibody-derived tumor antigen
binding domain as well as transmembrane and intracellular
domains for activating signal transduction (162). Thus far,
CAR T cells have been developed and successfully employed
in the treatment of hematological malignancies. However, use
of CAR-T cells has been limited as therapy for solid tumors
and triggered numerous severe side effects in clinical trials
that can be overcome with the use of CAR-NK cells. These
include graft-vs.-host disease, cytokine release syndrome, and
off-target toxicities. Moreover, CAR-NK cells can also eliminate

tumor cells in a CAR-independent manner through recognition
of ligands expressed on tumor cells by a range of activating
receptors such as NKp30, NKG2D, DNAM-I, providing another
advantage to use CAR-NK cells over CAR-T cells for cancer
immunotherapies (163, 164). However, safety and efficacy of
CAR-NK cells in humans need to be fully evaluated as only few
clinical trials have been using CAR-NK cells up to now. One issue
pertaining to CAR-NK cells is their limited in vivo persistence.
To circumvent this restriction, a phase II trial is currently
assessing the persistence and anti-tumor activity of IL-15- and
caspase-9 suicide gene-transduced CD28-CAR-NK cells in B
cell lymphoma (NCT03056339). Alternatively, CAR expression
in adaptive NK cell subsets discussed in the next section may
overcome expansion and persistence issues while simultaneously
boosting anti-tumor activity. Finally, implementation of CAR-
based strategies optimized for NK cells is warranted. For instance,
induced pluripotent stem cell (iPSC)-derivedNK cells transduced
with novel CAR constructs that include NK cell-specific signaling
domains instead of CD3ζ signaling-based domains are being
evaluated and may significantly enhance their potency (165).
Importantly, while CAR-T cell-based clinical trials have failed
to provide clinical benefit and HIV viral suppression in PLWH,
advanced CAR strategies that are developed specifically for NK
cells in the cancer field can benefit PLWHas they could be applied
to efficiently redirect NK cell functions toward HIV-infected
cells (166).

Immunotherapeutic Potential of Adaptive
NK Cells
While NK cells are classically viewed as non-specific effector cells
of the innate immune system, a vast amount of independent
studies has demonstrated that subsets of murine, non-human
primate and human NK cells are capable of adaptive immune
functions, including antigen-dependent expansion and long-
lived immunological memory (167, 168). Adaptive NK cell-
based immunotherapies may circumvent many of the limitations
inherent to the various strategies tested thus far to harness anti-
tumor functions of conventional NK cells.

The best characterized adaptive NK cell subset in humans
is the one driven by HCMV infection, originally identified
as a population of NK cells expressing high levels of the
activating CD94/NKG2C receptor and the marker of terminal
differentiation CD57, which expand upon HCMV infection or
reactivation and can persist for years at high frequency in
HCMV-seropositive individuals (169–173). Corroborating the
adaptive features of this NK cell subset, it was recently shown
that expansion and differentiation of this CD94/NKG2Cpos NK
cell subset is driven by the HCMV UL40 peptide presented by
HLA-E, the ligand for NKG2C (174).

The CD94/NKG2Cpos NK cell population largely overlaps
with an FcεRIγ adaptor protein-deficient memory NK cell subset
with enhanced antibody-dependent functions (FcγR1g NK cells)
that has more recently also been characterized in HCMV-
seropositive subjects (175–184) and rhCMV-positive macaques
(185). Adaptive characteristics of FcγR1g NK cells include a
distinctive epigenetic signature close to that of memory CD8pos T
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cells, endowing these adaptive NK cells with specialized functions
such as enhanced responses to CD16 cross-linking, potent
IFN-γ production to selective stimuli and reduced activation by
innate cytokines.

Interestingly, adaptive CD94/NKG2Cpos NK cells proliferate
not only in response to CMV reactivation or infection in patients
receiving hematopoietic transplantation (169, 172, 186–188), but
also upon de novo infection with different viruses including
HIV and upon HCMV reactivation in PLWH (171, 189, 190).
Several reports strongly suggest that HCMV-associated adaptive
NK cells improve control of HIV infection. Higher frequencies
of CD94/NKG2Cpos NK cells during primary HIV infection
are linked to lower viral set points, are predictive of higher
CD4pos T cell counts and of an overall better outcome in
treated PLWH (191, 192). In contrast, individuals with NKG2C
gene deletions are more susceptible to HIV infection and
once infected may have accelerated disease progression (193).
Finally, in HCMV-seropositive PLWH, CD94/NKG2Cpos NK
cells exhibiting adaptive signatures of FcγR1g NK cells present
conserved effector functions (190). The beneficial effect of
adaptive CD94/NKG2Cpos NK cells has also been demonstrated
in cancer settings. HCMV reactivation has been linked to longer
relapse-free survival in patients with hematological malignancies
receiving allogeneic hematopoietic cell transplantation (194).
More specifically, expansion of adaptive NKG2CposCD57pos NK
cells upon HCMV reactivation after HCT is associated with
reduced leukemia relapse (195, 196). Of note, specific phenotypic
signatures have been associated with this NK cell adaptive
subset and include lack of NKG2A expression. As a result, these
cells are intrinsically insensitive to tumor-mediated suppression
through HLA-E. Therefore, HCMV-associated adaptive NK
cells represent an attractive subset of NK cells that could be
exploited instead of conventional NK cells to limit cancer
incidence in PLWH, particularly in combination with tumor-
targeting therapeutic antibodies that efficiently promote NK cell-
mediated ADCC.

NK cell memory has been described against multiple viral,
bacterial, and tumor antigens, and can also be induced by brief
exposure to specific cytokines. Indeed, NK cells can differentiate
into cytokine-inducedmemory-like (CIML) NK cells that display
enhanced effector functions after a short pre-activation with a
combination of IL-12, IL-15, and IL-18 followed by a prolonged
rest period (197). Re-stimulation of CIML NK cells using
leukemia target cells, cytokines or FcγRIIIa ligation is associated
with increased responsiveness that can be retained for several
weeks following their initial pre-activation (197–202). CD56bright

and CD56dim NK cells both have the potential to differentiate into
CIML NK cells (197). Potent effector functions of CIML NK cells
have been linked to expression of the high-affinity IL-2 receptor
αβγ (IL-2Rαβγ), demethylation of the conserved upstream
non-coding enhancer region of the IFN-γ gene, recruitment
of anergic unlicensed NK cells, enhanced antibody-mediated
functions and release from KIR-mediated inhibition (198, 200,
201, 203). Therefore, superior functionality of CIML NK cells is
not affected by prior licensing through HLA class-I molecules.
Compared to control NK cells, CIML NK cells have been shown

to express higher levels of CD56, CD94, NKG2A, NKG2D,
NKp46, CD25, NKp30, NKp44, CD62L, CD27, TRAIL, perforin
and granzyme B, and lower levels of CD16, whereas NKG2C
expression was found similar between control and CIML NK
cells (197, 199).

The long-lived properties of CIML NK cells have tremendous
potential to be exploited for cancer immunotherapy, and
preliminary results from a first-in-human phase 1 clinical trial
have shown that NK cells pre-activated with IL-12, IL-15, and
IL-18 can expand in vivo and exert robust responses against
leukemia targets, leading to remission in a subset of AML patients
(199). A better understanding of the mechanisms behind CIML
NK cell responses may lead to novel strategies to further enhance
their antitumor function. For instance, recent studies suggested
that targeting the interaction between SEMA7A, a potent
immunomodulator expressed by cytokine-activatedNK cells, and
integrin-β1 might provide a novel immunotherapeutic approach
to potentiate antitumor activity of CIML NK cells (204).

Strikingly, burgeoning evidence also supports the existence
of true antigen-specific memory NK cells in humans (174,
177, 205), including a recent report of human HIV-specific
memory NK cells (168). While further studies are warranted to
fully characterize human antigen-specific NK cells and define
the mechanisms underlying NK cell memory formation and
maintenance, it is possible that adaptive NK cells that can
specifically recognize tumor-associated antigens and efficiently
eliminate cancerous cells develop in cancer patients. Vaccines
including components to boost tumor-specific NK cells or
infusion of expanded tumor-specific NK cells represent attractive
avenues for the development of novel therapeutic interventions.

Overall, the immunotherapeutic potential of adaptive NK cells
is expected to exceed that of conventional NK cells as they
may overcome some of the major limitations faced in NK cell-
based cancer therapies that have been evaluated so far in pre-
clinical or clinical studies. For instance, adaptive NK cells can
be expanded ex vivo, are long-lived and persist in vivo, are
less sensitive to regulatory T cells-mediated suppression (206)
or myeloid-derived suppressor cell inhibition (207) and can
achieve significantly enhanced antibody-dependent functions
(194) or antigen-specific cytotoxicity (168). Importantly, HCMV-
dependent adaptive NK cells are increased 7-fold (181) and
confer protection in PLWH (191, 192). Therefore, exploitation
of adaptive NK cells may represent an attractive strategy to
efficiently prevent or treat malignancies in PLWH.
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Recent studies demonstrate that the stable HIV-1 reservoir in resting CD4+ T cells is

mostly formed from viruses circulating when combination antiretroviral therapy (ART) is

initiated. Here we explore the immunological basis for these observations. Untreated

HIV-1 infection is characterized by a progressive depletion of memory CD4+ T cells

which mostly express CD127, the α chain of the IL-7 receptor (IL-7R). Depletion results

from both direct infection and bystander loss of memory CD4+ T cells in part attributed

to dysregulated IL-7/IL-7R signaling. While IL-7/IL7R signaling is not essential for the

generation of effector CD4+ T cells from naïve cells, it is essential for the further transition

of effectors to memory CD4+ T cells and their subsequent homeostatic maintenance.

HIV-1 infection therefore limits the transition of CD4+ T cells from an effector to long-lived

memory state. With the onset of ART, virus load (VL) levels rapidly decrease and the

frequency of CD127+ CD4+ memory T cells increases, indicating restoration of effector

to memory transition in CD4+ T cells. Collectively these data suggest that following ART

initiation, HIV-1 infected effector CD4+ T cells transition to long-lived, CD127+ CD4+ T

cells forming the majority of the stable HIV-1 reservoir. We propose that combining ART

initiation with inhibition of IL-7/IL-7R signaling to block CD4+ T cell memory formation

will limit the generation of long-lived HIV-infected CD4+ T cells and reduce the overall

size of the stable HIV-1 reservoir.

Keywords: CD4+ T cell, HIV-1, memory, latency, reservoir, IL-7, CD127

KEY POINTS

- Both the long-lived defective and replication competent HIV-1 reservoirs in CD4+ T cells form
near the time of ART initiation.

- The replication competent HIV-1 reservoir in CD4+ T cells is stable under ART.
- Memory CD4+ T cells which mostly express the IL-7 receptor (IL-7R) α chain, CD127 are
profoundly depleted during untreated HIV-1 infection.

- HIV-1 infection disrupts IL-7/IL-7R signaling and CD4+ T cell memory formation.
- CD4+ T cell memory formation and IL-7/IL-7R signaling is restored following ART initiation.
- Blocking IL-7/IL-7R signaling limits CD4+ T cell memory generation.
- Blocking IL-7/IL-7R signaling at ART initiation may limit the transition of HIV-infected cells to
long-lived memory CD4+ T cells, decreasing the overall size of the stable HIV-1 reservoir.
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THE HIV-1 RESERVOIR IS ESTABLISHED
AROUND THE TIME OF ART INITIATION

Untreated HIV-1 infection is characterized by continual
viral replication and evolution. However, two papers by
independent groups, combining HIV-1 sequencing approaches
and longitudinal sampling of persons living with HIV (PLWH),
before and after ART initiation, concluded that the majority
of the HIV-1 reservoir is formed around the time of ART
initiation (1, 2). Brodin et al. used an IlluminaTM deep sequencing
approach to compare p17gag sequences in plasma virus RNA
(vRNA) collected longitudinally for at least the first 5 years after
diagnosis but before ART (pre-ART) to proviral DNA isolated
from peripheral blood mononuculear cells (PBMCs) after at
least 2 years of suppressive ART. In this study of 10, mostly
HIV-1 clade B-infected Swedish individuals (9 male, 1 female),
phlyogenetic analysis found that ∼60% of the post-ART DNA
sequences were most similar to RNA variants that were present
in the plasma just prior to ART initiation (1).

The HIV-1 DNA reservoir is dominated by defective
proviruses (3–5), therefore Brodin et al.’s study did not provide
information on the timing of establishment of the stable
replication competent reservoir, which is a primary source of
rebounding virus following ART interruption. This question
was addressed by Abrahams, Joseph et al., who used samples
from nine HIV-1 clade C-infected South African women to
compare pre-ART HIV-1 RNA (longitudinally sampled from
the plasma during 2.7–6.9 years of untreated infection) to
replication competent HIV-1 in resting CD4+ T cells obtained
post-ART (after 4.7–6.1 years of ART) (2). Briefly, MiSeq with
PrimerID (6, 7) was used to sequence five regions of the
HIV-1 genome (gag, nef, and three regions in env) in pre-
ART vRNA. In addition, resting CD4+ T cells (CD25-CD69-
HLADR-) isolated post-ART were cultured after stimulation
(PHA, IL-2, and allogenic PBMC) and the PacBio platform
was used to generate 5′ and 3′ half genome sequences from
the HIV-1 RNA produced by the resting CD4+ T cells.
Phylogenetic analyses of these sequences revealed that a median
of 78% of outgrowth viruses were most genetically similar
to viruses circulating in the year before ART. Together these
studies show that both the defective (3) and replication
competent HIV-1 reservoirs (2) form near the time of
ART initiation.

These independent observations, made in distinct clinical
cohorts, are most simply explained by ART indirectly increasing
the half-life of cells harboring integrated virus resulting in a stable
reservoir. Given that most studies agree that virus evolution does
not occur on ART (1, 8–10), the work of Abrahams, Joseph
and colleagues identifies a narrow time window immediately
after therapy initiation in which the majority of the stable/long-
lived HIV-1 reservoir is established. This suggests that strategies
to limit the formation of the stable HIV-1 reservoir could be
combined with ART initiation, when patients are receiving
intense clinical care. Preventing generation of long-lived latently
infected CD4+ T cells should result in a smaller HIV-1 reservoir,
providing a less intractable target for curative approaches.
Reducing the size of the HIV-1 reservoir may also reduce ongoing

immune senescence and HIV-1 co-morbidities experienced by
PLWH on ART.

Here, we propose that establishment of the HIV-1 reservoir
at the time of ART initiation is driven by the restoration of IL-
7/IL-7R signaling that increases CD4+ T cell transition to long-
lived memory cells (Figure 1). In this review, we discuss how
untreated HIV-1 infection disrupts CD4+ T cell homeostasis and
how homeostasis is subsequently restored on ART, consistent
with ART facilitating the establishment of the majority of the
stable HIV-1 reservoir in long-lived CD4+ T cells. We propose
that a novel approach to complement existing HIV-1 therapies
is to minimize establishment of the HIV-1 reservoir at ART
initiation by blocking the IL-7/IL-7R-mediated CD4+ T cell
memory transition until viremia is cleared and the immune
environment transitions to a less inflammatory state.

ART-SUPPRESSED INDIVIDUALS HARBOR
A STABLE HIV-1 RESERVOIR

ART is highly effective at stopping new rounds of HIV-1
infection, with regimens including integrase strand transfer
inhibitors (INSTIs) achieving viral control (<50 copies/ml)
in >65% of PLWH within 4 weeks (12) and increasing to
>80% of individuals within 12 weeks (12, 13). Viral RNA
decay is at least bi-phasic, with an initial steeper decline
reflecting the loss of HIV-1 infected cells that are short-lived
(t1/2–hours to days) and a second slower decline reflecting
loss of longer-lived HIV-1 infected cells (t1/2–weeks to years)
(14–18). In most individuals, peripheral CD4+ T cell counts
increase significantly within 4 weeks of ART initiation and are
restored to levels comparable with uninfected individuals in
∼12 months (13). ART also significantly reduces virus-driven
immune activation (19), though levels of cellular activation and
some proinflammatory cytokines remain higher than in HIV-
1 seronegative individuals [reviewed in (20)]. Individuals with
durably suppressed viral load on ART in North America and
Europe now enjoy near-normal lifespans (21, 22). Yet, with the
notable exception of two case reports of long-term remission (23–
25), HIV-1 infection cannot be cured using current regimens.

In durably suppressed (>12 months) individuals, the barrier
to HIV-1 cure is a rare population of HIV-1 infected cells
that are not producing virions (are therefore impervious to the
host immune system) but can reactivate to produce replication
competent virus. Collectively, these cells are referred to as the
latent HIV-1 reservoir (26) and, following interruption of ART,
are the source of virus rebound. HIV-1 rebound is consistently
observed after 1–12 weeks of ART withdrawal, irrespective of
whether ART was initiated in the first weeks–months of infection
or years later in chronic infection (27–29). Rebounding virus
is typically oligoclonal, suggesting reactivation of >1 latently
infected cell (28, 30).

The best-characterized portion of the latent reservoir resides
in CD4+ T cells (31, 32). In ART-treated people, >95% of
HIV-1 proviruses encode a viral genome that is replication
incompetent (4, 5). However, replication competent proviruses
can be reactivated following mitogenic stimulation of cells
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FIGURE 1 | CD4+ T cell lineage differentiation is impaired following HIV-1 infection. IL-7, that is mostly produced by stromal cells, binds the IL-7 receptor (IL-7R)

comprising CD132 and IL-7Rα (CD127) initiating signaling pathways including as Jak/STAT5 signaling and expression of anti-apoptopic genes, including Bcl-2. Naïve

CD4+ T cells, selected against self-antigens, express the IL-7R. IL-7/IL-7R signaling is necessary for homeostatic turnover of naïve T cells (curved blue arrow).

Following priming by foreign antigens, CD4+ T cells undergo significant transcriptional and phenotypic changes, including downmodulation of the IL-7R. These

effector CD4+ T cells express activation markers (not shown), undergo rapid division and exit the lymph node to home to the site of infection. Most effector CD4+ T

cells undergo apoptopic death; a subset however re-express the IL-7R and induce expression of anti-apoptopic genes. These memory cells are long-lived,

undergoing slow mitotic division/homeostatic proliferation. HIV-1 infection drives ongoing expansion of effector CD4+ T cells. In addition, dysregulated IL-7/IL-7R

signaling resulting from HIV-induced immune activation impairs several stages of CD4+ T cell lineage—naïve CD4+ T cell survival, generation of long-lived memory

CD4+ T cells and homeostatic proliferation of naïve and memory CD4+ T cells. Other cytokines, notably IL-2 and IL-15, contribute to CD4+ T cell differentiation and

homeostasis [not illustrated, reviewed in (11)].

in vitro and quantified by measurement of viral RNA or viral
antigen. Finzi et al. showed that inmost individuals resting CD4+

T cells (not expressing markers of cellular activation) produce
replication competent HIV-1 following mitogenic stimulation
(33). The frequency of cells harboring inducible, replication
competent virus is very low, ∼1 infected cell/106 resting CD4+

T cells (33) [range: 0.01–10 infected cells/million resting CD4+

T cells (34)] but is remarkably stable in ART-suppressed
individuals. Two independent longitudinal studies showed that
the half-life of the measured reservoir is 44 months (34, 35).
These data can best be explained by ART-suppressed individuals
harboring a small population of HIV-1 latently infected CD4+ T
cells that are long-lived and/or undergo homeostatic proliferation
and undergo occasional stochastic reactivation. Note, while
replication competent virus can also be recovered from resting
CD4+ T cells in untreated infection, the frequency of infection
is >2 logs higher and correlates directly with plasma virus
load (15), suggesting that these resting CD4+ T cells harbor
contemporaneous viruses (similar to those in the plasma) and do
not represent a stable reservoir.

To date, efforts to cure HIV-1 in ART-treated participants
have been unsuccessful. Early ART treatment both in non-human
primates 3 days after infection with a simian immunodeficiency
virus (SIV) (36) and HIV-1-infected people (37–39) has not
prevented reservoir formation. In addition, latency reversing
agents that seek to force HIV-1 reactivation have induced
transient blips of detectable virus in the plasma, but have not
impacted the size of the stable replication competent reservoir
(40). The intractable nature of the HIV-1 reservoir has led to
support for “functional cure” strategies that do not entirely
eradicate HIV-1 but rather constrain viral rebound following
ART interruption (28). Given that strategies to purge or suppress
the stable HIV reservoir have had limited success, it is worth

considering whether it is possible to limit the size of the reservoir
by blocking its formation.

THE IL-7/IL-7Rα (CD127) PATHWAY IS A
CRITICAL REGULATOR OF CD4+ T CELL
HOMEOSTASIS

In both humans and animal models, the primary T cell response
to infection is dominated by, antigen-specific T cells that
are strongly proliferative (Ki67+), express activation markers
including CD69 and CD25 (in humans, HLA-DR), but mostly
are short-lived. As the acute antigen load decreases, the bulk
of primary activated T cells undergo apoptotic death and
the effector T cell pool contracts (41, 42). A subset of cells
survive (42, 43), having undergone changes that enable them
to become long-lived and persist in the absence of antigen.
These memory cells retain proliferative potential including
homeostatic proliferation (41, 42, 44–46). Memory T cells are
responsible for mediating ongoing immune surveillance. In
humans, both vaccine studies and BrdU (synthetic nucleoside)
labeling of proliferating T cells [reviewed in (47)] have identified
subpopulations of memory T cells with half-lives as long as 9
years (48, 49). In response to secondary antigen stimulation,
memory T cells exhibit rapid proliferation and give rise to
both short-lived effector memory and terminally differentiated
effector T cells. In humans who are exposed to many different
pathogens, including chronic infections like HIV-1 in which
antigen stimulation is ongoing, both short-lived effector and
long-lived memory T cells co-circulate.

Short- and long-lived antigen-specific T cells can be further
delineated based on their homing capability, anatomical location,
phenotype and function which collectively reflect lineage
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differentiation. Stem cell-like (TSCM) and central (TCM)
cell phenotypes harbor a high proportion of long-lived cells
whereas transitional (TTM), effector (TEM) and terminal effector
(TEMRA) cell populations are more short-lived and express
higher levels of activation markers (50).

Maintenance of the equilibrium between naïve, effector and
long-lived memory T cells (and their lineage subsets) is termed T
cell homeostasis. IL-7 is a common γ-chain cytokine that together
with IL-2 and IL-15 regulate homeostasis of both CD4+ and
CD8+ T cells, as well as other lymphocytes. IL-7 is constitutively
expressed by stromal and epithelial cells in the thymus, lymphoid
tissue and bone marrow, and regulates multiple stages of the T
cell life cycle including thymopoeisis, memory cell maturation
(44), survival (51), and homeostatic proliferation (52–55). IL-
7 is not, however, required for the initial primary expansion of
activated effector T cells (53).

IL-7 signals through the IL-7R heterodimer which consists
of the common gamma chain (CD132), shared by IL-2 and IL-
15 receptors, and IL-7Rα (CD127), which confers specificity to
IL-7. IL-7/IL-7R engagement induces JAK/STAT signaling which
regulates expression of proliferative and anti-apoptopic genes,
including increased expression of the Bcl2 anti-apoptotic gene
family, promoting cell survival (54, 56). IL-7 binding also reduces
CD127 expression on T cells through both transcriptional and
post-transcriptional mechanisms. CD127 is expressed at high
levels on naïve T cells (52) and TSCM (57) but is downregulated
on activated effector T cells (50, 53, 58–60). As cellular
activation decreases and T cells transition to long-lived memory,
CD127 is re-expressed (44, 50, 53, 61) (Figure 1). In healthy
humans with no overt infection, 60–90% of circulating memory
(CD45RO+) CD4T cells in the blood [unpublished observations
(62, 63)] and 60–80% of resident memory CD4+ T cells
(CD69+CD4+CD45RO+) in lymphoid, lung, and gut tissues are
CD127hi (64). Consistent with CD127 expression patterns and
cellular half-lives, Bcl2 expression is high in naïve and memory
CD4+ T cells but lower in effector T cells (52, 65, 66).

The dynamic nature of CD127 expression on CD4+ (and
CD8+) T cells reflects that IL-7 levels are not regulated by
production but by consumption (67). Downmodulation of
CD127 in response to IL-7 binding allows available IL-7 to
be shared by the greatest number of cells (68, 69). When T
cell homeostasis is dysregulated and lymphopenia occurs (e.g.,
following myeloablative chemotherapy or CD4+ T cell depletion
following HIV infection), IL-7 consumption declines and serum
IL-7 levels increase (70). This excess drives rapid expansion of
both CD127+ naïve (52) and memory T cells (70) promoting
restoration of lymphocyte levels.

CD127+ MEMORY CD4+ T CELLS HARBOR
REPLICATION COMPETENT HIV-1

HIV-1 infects T cells via CD4+ and a co-receptor (CCR5 or
CXCR4). In untreated infection, HIV-1 infection occurs mostly
in effector memory and not naïve CD4+ T cells, in part because
memory, particularly activated memory (CD127lo), CD4+ T
cells express higher co-receptor levels (63, 71). By contrast,

naïve CD4+ T cells typically lack CCR5 (72). Characterization
of CD4+ T cells harboring latent HIV in ART-suppressed
individuals is very challenging due to the low frequency of
circulating infected long-lived cells. Primary cell models of HIV
latency, in which a much higher frequency of CD4+ T are
infected have proved informative. In superinfected aggregate
cultures of tonsils, CD127+CD4+ T cells were infected with
HIV but did not support viral gene expression (73), suggesting
these, CD127+ CD4+ T cells may promote HIV latency. In
another primary cell model of HIV-1 latency, in which CD4+

T cells were derived from PBMC, CD127 expression was highly
associated with latent infection (74). Shan and colleagues also
employed primary cell models to show latent HIV infection (as
opposed to productive infection), preferentially occurs at the
transition of CD4+ T cells from an effector to a memory state
(75). Transcriptional reprogramming of CD4+ T cells from the
effector to memory state, which was marked by high CCR5
expression, facilitated HIV-1 integration but not subsequent
HIV-1 gene expression, thereby promoting latency (75). In
summary, HIV-1 CD127+ CD4+ memory T cells may be more
likely to harbor persistent HIV-1 with establishment occurring
at the transition of activated effector (CD127lo) to longer-lived
memory (CD127hi) CD4+ T cells.

HIV-1 INFECTION DYSREGULATES CD4+ T
CELL HOMEOSTASIS

HIV-1 infection creates multiple challenges for CD4+ T cell
homeostasis, most obviously reflected in the absolute loss of
CD4+ T cells in untreated infection The cytopathic effects
of direct CD4+ T cell infection alone do not explain this
loss of CD4+ T cells, suggesting indirect mechanisms (76).
A major contributor to CD4+ T cell depletion in acute and
chronic infection is generalized immune activation driven by
unabated HIV-1 viremia that can reach 108 copies/ml during
acute infection and typically remains >104 copies/ml in chronic
infection (77). These unusually high and sustained antigen levels
in turn, induce sustained elevation of activation and exhaustion
markers on CD4+ T cells (78, 79). This is associated with
diminished IL-2 release by CD4+ T cells (58, 80), increased
peripheral turnover of both naïve and memory CD4+ T cells
and critically, failure to generate long-lived memory CD4+ T
cells (81–84).

Dysregulated IL-7/IL-7R signaling in HIV-1 infection (85) has
been proposed by several groups as a critical link between HIV-
1-driven immune activation and bystander CD4+ T cell loss
(86–88). Firstly, activation-induced lymphodepletion increases
serum levels of IL-7 (89), combines with other proinflammatory
cytokines, such as IL-1β [which is elevated in the lymphoid
tissues of HIV infected individuals (88)], to increase turnover of
antigen-specific CD4+ T cells favoring the generation of short-
lived CD127lo/-activated effector T cells (84, 90, 91). Although
circulating IL-7 levels rise, IL-7 bioavailability in the lymphoid
tissues is significantly decreased following infection due to
TGF-β1-mediated collagen deposition that results in the loss of
IL-7-producing fibroblast reticular cell (FRC) networks (92, 93).
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This is proposed to directly contribute to the increased apoptosis
and loss of naïve CD4+ T cells that mostly reside in lymphoid
tissue (93, 94).

The overall effect of these changes is impairment of both
the generation and maintenance of long-lived CD4+ T cells
in viremic individuals. Several groups have reported both
significantly lower frequencies of CD127+CD4+ T cells as well
as lower CD127 expression levels on CD4+ T cells in untreated
HIV-1 infection (50, 62, 86, 89, 95, 96). Notably, expression
of the CD132 common γ chain remains normal on CD4+

T cells in infected individuals, suggesting a specific impact
on IL-7 signaling on CD4+ T cells (97). Down-regulation of
CD127 on T cells correlated significantly with both depletion
of absolute levels of CD4+ T cells and also with increased
concentration of serum IL-7. The decreased CD127 expression
was associated with lower cellular levels of Bcl-2 and with the
poorer survival of T cells in the presence of IL-7 in vitro (86).
CD127+CD4+ T cells also exhibited increased rates of apoptosis
in untreated infection relative to healthy controls suggesting
in untreated infection, CD127 expression on memory cells is
not itself sufficient to maintain cell survival in the face of
uncontrolled HIV-1 viremia (89, 98). By contrast, HIV-1 infected
individuals who exhibited long term non-progression had higher
CD127+CD4+ T cell frequencies than HIV-1 infected typical
progressors (62, 99) and in some individuals, decreased CD127
expression on CD4+ T cells preceded subsequent loss of virus
control (62).

The loss of CD127+CD4+ memory T cells in untreated
HIV infection is reflected in lower antigen-specific CD4+ T cell
responses to chronic infections. Frequencies of Cytomegalovirus
(CMV) (100) and Mycobacterium tuberculosis (M.tb)-specific
CD4+ T cell responses (101) are significantly lower in HIV
infected individuals relative to healthy individuals and, despite
clearly detectable HIV-specific CD8+ T cell responses, little
to no HIV-specific CD4+ T cell proliferation is detectable in
untreated HIV infection (100). Generally, immune responses
to vaccination (humoral and cellular) are lower and less
durable in HIV infected individuals compared to healthy
individuals, suggesting weaker CD4+ T cell help [reviewed in
(102, 103)]. In one study, vaccination with the experimental
vaccine Modified Vaccinia Ankara (MVA) expressing the
M.tb antigen, 85A was compared in HIV uninfected, HIV
viremic (CD4+ count >300 cells/mm3) and ART-suppressed
individuals. Consistent with the formation of long-lived T
cell memory being limited during untreated HIV-1 infection,
vaccine-induced oligofunctional CD4+ T cell responses
at peak and over the course of the following year were
significantly lower in untreated HIV-1 infected participants
relative in uninfected and HIV infected, ART-treated study
participants (101).

In summary, uncontrolled HIV-1 infection skews the memory
CD4+ T cell response to a short-lived effector phenotype with
lower frequencies of long-livedmemory CD4+ T cells, suggesting
either or both impaired effector to memory transition of CD4+

T cells or a failure to maintain long-lived memory CD4+

T cells. Dysregulated IL-7/IL-R signaling appears central to
these changes.

ART RESTORES THE CD4+ T CELL
MEMORY TRANSITION

As described above, as a pathogen is cleared the population of
activated, short-lived effector T cells contracts and quiescent,
longer-lived pathogen-specific memory cells emerge. A similar
phenomenon but on a broader scale, impacting bothHIV-specific
and non-specific CD4T cells, is observed in the weeks to months
following ART initiation.

Successful ART (91) rapidly reduces viremia. Immune
activation is significantly reduced, but not fully abrogated,
possibly because of residual low-level viremia. Elevated turnover
of CD4+ T cells is decreased to levels that are comparable with
healthy controls (81, 104) within 12 weeks of ART (39, 77).
Both absolute CD4+ T cell counts and CD127+ CD4+ memory
T cell frequencies increase to levels observed in uninfected
individuals (105), though CD127 expression levels on CD4+ T
cells remain lower (106). With restoration of absolute CD4+ T
cell levels, IL-7 in the serum decreases and IL-7 mediated STAT-
5 phosphorylation, which is elevated in memory CD4+ T cells
in untreated infection (107), is normalized (108). Functionally,
memory CD4+ T cells exhibit improved IL-2 release, HIV-1-
specific CD4+ T cell responses increase in frequency (100, 109)
and CD4+ T cell responses to vaccination improve (101). By
comparison, immunological non-responders to ART, in whom
viremia is controlled but absolute CD4+ T cells counts are
not fully restored, have higher serum IL-7 levels and lower
CD127+CD4+ T cells compared with immunological responders
(105, 106, 110). Altogether, in most people ART largely restores
CD4+ T cell homeostasis, including CD4+ T cell transition from
effector to long-lived memory T cells.

THERAPEUTIC IMPLICATIONS OF
ART-MEDIATED RESTORATION OF CD4+ T
CELL HOMEOSTASIS

While current curative strategies (eradication or functional)
against HIV-1 largely target the established stable HIV-1 reservoir
in durably suppressed individuals, we propose that strategies to
limit the seeding of long-lived latently infected cells at the time
of ART will likely decrease the size of the reservoir. We propose
targeting the IL-7/IL-7R pathway by specifically blocking CD127
signaling on CD4+ T cells in early ART to delay restoration of the
CD4+ T cell memory transition (Figure 2).

Monoclonal antibodies (MAb) that antagonize the IL-
7Rα (111) are in investigation for treatment of a range of
autoimmune diseases and inflammatory conditions, including
diabetes (112), multiple sclerosis, rheumatoid arthritis (113,
114), and inflammatory bowel disease (115). The aim of these
approaches is to suppress aberrant memory CD4+ T cell
responses (116). A single intravenous administration of anti-
CD127 antagonist antibody resulted in inhibition of antigen-
specific memory CD4+ T cell responses and decreased chronic
inflammation in primates that was sustained for 11 weeks (111).
In diabetes studies in mice, CD127 blockage decreased T helper
1 (TH1) IFN-γ-producing CD4+ T cells in secondary lymphoid
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FIGURE 2 | Blockade of IL7/IL-7R signaling at the time of ART initiation may limit the size of the stable HIV-1 reservoir. (A) HIV-1 infection is characterized by extensive

viral replication (red line) and virus evolution (colored virions). Virus-driven immune activation (purple dotted line) is observed throughout untreated infection. ART

rapidly reduces plasma virus levels. Immune activation is also significantly reduced but not fully abrogated. (B) HIV-1 infection impairs CD4+ T cell effector to memory

transition (black dotted line), which is restored on ART. Abrahams et al. (2) showed that on average, 80% of the replication-competent virus in CD4+ T cells from

durably ART-suppressed individuals is derived from virus present in plasma in the year prior to ART initiation. Viruses that were circulating earlier in untreated infection

comprise a minority of the latent reservoir. (C) Blocking IL-7/IL-7R signaling at the time of ART initiation, aimed at delaying ART-mediated restoration of CD4+ T cell

effector to memory transition, may limit the entry of viruses circulating immediately prior to ART into the HIV reservoir.

tissues (117) and elevated PD-1 expression on autoreactive
CD4+ T cells, limiting long-memory responses (118). In
other murine studies, anti-CD127 antibodies blocked memory
CD4+ T cell proliferation and blunted vaccine-induced immune
responses (119).

In humans, a single intravenous administration of an αCD127
antagonist mAb was well-tolerated (120) with both full receptor
occupancy and inhibition of IL-7/IL-7 signaling (ex vivo STAT5
phosphorylation) observed for over 21 days following dosing.
Transient depletion of CD19+ B cells and limited changes
to T cells, including T regulatory cells (discussed below),
were observed during the 24 weeks of participant follow-up.
Expression of the activation/exhaustion marker, PD-1 on T cells
did not consistently change following dosing. In summary, anti-
CD127 immunotherapy is a promising approach to limit CD4+ T
cell memory immunity that in clinical studies to date is supported
by pharmokinetic and safety data (120).

While we propose blocking CD127 in combination with ART
initiation to limit reservoir establishment, others had proposed

IL-7 treatment in PLWH on ART as a strategy to improve
CD4+ and CD8+ T cell immunity to HIV-1, particularly in
individuals who do not regain normal CD4+ T cell counts
after virologically successful ART. Consistent with other IL-7
immunotherapy studies (121, 122), treatment of durably ART-
suppressed individuals successfully increased circulating CD4+

and CD8+ T cell counts for several months after last dosing
(123–126) by increasing expression of pro-survival genes (127).
However, the effect on the HIV reservoir was also to increase
the frequency of CD4+ T cells containing HIV-1 (124, 128),
possibly by CD95-mediated proliferation (129). These results
complement our hypothesis that that CD4+ T cell homeostasis
mediated by IL-7/IL-7R signaling is critical for the establishment
and maintenance of the long-lived latent HIV-1 reservoir.

INSTIs are now widely included as a first-line therapy
against HIV-1 largely because of good tolerability (130). INSTI
containing regimens produce ∼1 log greater decrease in VL
within the first 10–15 days following ART initiation (18). This
more rapid decrease in antigen levels produces proportionate
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and earlier decreases in cellular immune activation (131) that
are likely to result in earlier T cell memory restoration, arguably
within days. Accordingly, we propose that blocking of T cell
memory formation to prevent HIV-1 seeding of the reservoir
should begin very early, possibly alongside ART initiation and
continue short-term until all productively infected CD4+ T
cells are cleared; that is the participant is no longer viremic
(Figure 2). In the pre-INSTI era, ART regimens increased
CD127+CD4+ CM T cells within 1 month of ART initiation
(132). Detailed studies describing the kinetics of CD4+ T cell
memory restoration in the weeks-months following INSTI-ART
initiation are however needed to better inform dosing strategies.

IL-7 is also critical for memory T cell homeostatic
proliferation. While this perspective prioritizes employing
IL-7R blocking to delay CD4T cell restoration at ART initiation,
CD127 antagonismmay have application in limiting homeostatic
proliferation of latently infected cells under durable ART (8).
Here, bi-specific antibody approaches to express cis-acting
antibodies [reviewed in (133)] targeting both CD127 and
membrane-bound HIV proteins may increase specificity and
facilitate longer-term treatment.

SPECIFIC
CONSIDERATIONS/LIMITATIONS

There are number of considerations and limitations to this
perspective to HIV cure.

1. Firstly, antagonizing CD127 signaling at ART initiation will
not block HIV-1 already integrated into long-lived CD4+ T
cells. Both studies by Brodin et al. (3) and Abrahams et al.
(2) as well as another smaller study by Jones et al. (134)
found that HIV-1 variants frommuch earlier in infection were
genetically similar to a subset of post-ART viruses. Further
work is required to understand the mechanism/s by which
HIV-infected cells harboring these viruses were able to persist
during long periods of untreated infection. One possibility
is that while HIV-1 infection impairs CD4+ T cell memory
formation, this is incompletely abrogated and a small number
of cells infected early in untreated infectionmay become long-
livedmemory CD4+ T cells despite profound dysregulation in
IL-7 signaling at the population level (Figure 1).

2. The observations of Brodin et al. (1) and Abrahams, Joseph
et al. (2) were made in peripheral CD4+ T cells. HIV
reservoirs are not limited to the blood. Recent studies have
identified T follicular helper cells (TFH) (135) that reside
in lymph nodes as the major CD4+ T cell subset for HIV
infection and replication in PLWH (136, 137) that continue
to serve as a persistent HIV reservoir in PLWH on ART
(138, 139). Whether replication competent viruses in TFH
also cluster with viruses circulating around the time of ART,
suggesting TFH could also be targeted by CD127 blocking,
requires investigation. Similar studies are needed to examine
other tissue reservoirs. Here, animal models of HIV infection
and persistence will be particularly useful.

3. While α-CD127 antibody therapy has been well-tolerated in
healthy individuals [(120) NCT02293161, NCT02293161],

treatment of PLWH must be evaluated for risks associated
with delayed recovery of CD4+ T cell homeostasis
[immunological non-responders (140)], particularly in
individuals with advanced disease and/or low CD4+

nadir (141).
First-line INSTI ART regimens are associated with a higher

incidence of immune reconstitution immunodeficiency
syndrome (IRIS) (142, 143). IRIS, that can worsen
existing opportunistic infections or unmask previously
subclinical infections, very commonly M.tb, is associated
with redistribution and restoration of functional memory
T cells within the first months of ART (144). A single dose
of α-CD127 antagonist mAb in NHP produced significant
and prolonged decreases of IFN-γ secreting M.tb-specific
CD4T cells without CD4+ T cell depletion (111). It is
attractive to speculate whether short-term α-CD127 antibody
therapy when given in combination with ART-initiation
to PLWH, could also afford some protection against
IRIS-associated events.

4. T regulatory (Treg) CD4+ T cells function to suppress
potentially deleterious activities of other T helper cells
particularly TH1 and TH17 cells. Like other CD4T helper cell
subsets, Treg CD4+ T cells express CCR5, are readily infected
in untreated HIV infection (145) and in PLWH on ART, can
harbor replication competent virus (139); with some reports
that Treg CD4+ T cells are enriched for latent HIV relative to
conventional T helper subsets [reviewed in (146)]. Treg CD4+

T cells differ from other conventional CD4+ T helper subsets
in that they are CD127lo (147). IL-7 can however induce
STAT-5 phosphorylation in these cells in a dose-dependent
manner (115). Following ART initiation, Treg CD4+ T cells
frequencies increase further in the first week of ART initiation
then decrease to normal ranges in most individuals (148).
The effect of CD127 antagonism on Treg CD4+ T cells
appears different in NHP and mice models. In NHP, CD127
blocking did not increase PD-1 expression (111) but increases
in PD-1 expression as well and increases Treg CD4+ T cells
frequencies were observed in mice (112). Further studies
are needed, particularly to investigate if outgrowth viruses
from Treg CD4+ T cells cluster with early or late (pre-ART)
viruses. Treg CD4+ T cells in PLWH however represent a cell
subset that may be refractory to IL-7/IL-7R blocking strategies
following ART initiation (112).

5. A CD127 blocking strategy will impact the signaling of all
CD127 expressing cells. This includes naïve CD4+ T cells,
naïve and memory CD8+ T cells (111), γδ T cells and
innate lymphoid cells (ILCs) including NK cells. In humans,
clinical administration of an anti-CD127 antagonist antibody
induced minimal changes beyond short-term B cell loss
(120), consistent with observation in NHP in which anti-
CD127 mAbs produced no changes in peripheral T and B cell
frequencies, nor changes in T cell subsets including Treg cells
(111). In that study, CD127 antagonism did not increase PD-1
levels on CD8+ T cells (111), however, studies in humanized
mice using the same antibody clone increased the exhaustion
signature particularly Tim-3 and PD-1 on CD8+ T cells (115).
Given the disparities in animal studies, detailed functional
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studies are needed in humans to examine the impact of CD127
antagonism on lymphocyte subsets, particularly cytolytic,
subsets. Non-cytolytic ILCs do not recover on ART (149) and
similarly, studies are needed to investigate whether there are
any additional, deleterious effects of CD127 antagonism on
this cell subset (150).

6. While resting CD4+ T cells constitute the largest HIV-1
reservoir in the body, other CD4+ expressing cells, such as
macrophages, can harbor HIV-1 and may contribute to virus
rebound (151). Much less is understood about formation
of HIV latency in these cell subsets. Macrophages express
CD127 and antibody blocking of this pathway increases
autophagy (152). How this process would impact the HIV
persistence is unclear. γδ T cells have been shown to harbor
replication competent HIV in PLWH on ART (153) and also
express CD127. Future studies will need to investigate how
CD127 blocking modulates HIV persistence in non-CD4+ T
cell subsets.

SUMMARY

We propose that restoration of CD4+ memory transition in
ART treated participants, which enables the generation of long-
lived CD4+ T cells, drives the majority of HIV-1 reservoir
formation. A temporary blockade of IL-7/IL-7R signaling at
the time of ART initiation, by delaying memory CD4+ T cell
restoration until virus has been cleared, could limit the size of
the stable HIV reservoir, facilitating HIV-1 cure efforts. Limiting

the size of the long-lived reservoir could also be combined with
other strategies aimed at minimizing homeostatic proliferation
of memory CD4+ T cells harboring HIV by limiting CD4+ T cell
proliferation (154) or strategies to further reduce the established
HIV reservoir following latency reversal and immune-mediated
clearance. It is likely a combination of HIV cure strategies
will be required to enable long-term ART interruption without
virus rebound.
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HIV infection alters the natural history of several cancers, in large part due to its effect

on the immune system. Immune function in people living with HIV may vary from

normal to highly dysfunctional and is largely dependent on the timing of initiation (and

continuation) of effective antiretroviral therapy (ART). An individual’s level of immune

function in turn affects their cancer risk, management, and outcomes. HIV-associated

lymphocytopenia and immune dysregulation permit immune evasion of oncogenic

viruses and premalignant lesions and are associated with inferior outcomes in people with

established cancers. Various types of immunotherapy, including monoclonal antibodies,

interferon, cytokines, immunomodulatory drugs, allogeneic hematopoietic stem cell

transplant, and most importantly ART have shown efficacy in HIV-related cancer.

Emerging data suggest that checkpoint inhibitors targeting the PD-1/PD-L1 pathway

can be safe and effective in people with HIV and cancer. Furthermore, some cancer

immunotherapies may also affect HIV persistence by influencing HIV latency and

HIV-specific immunity. Studying immunotherapy in people with HIV and cancer will

advance clinical care of all people living with HIV and presents a unique opportunity to

gain insight into mechanisms for HIV eradication.

Keywords: HIV, immunotherapy, HIV reservoir, cancer, PD-1, Kaposi sarcoma, lymphoma

INTRODUCTION

People living with HIV (PLWH) have an elevated risk of developing cancer compared to the general
population. This increased risk is partially attributable to comorbid conditions and social factors
such as smoking or poorer access to preventative services. However, there is strong evidence that
immunologic factors such as decreased immunologic surveillance and increased susceptibility to
oncogenic viral infection play a significant role (1–5). Historically, cancers developing in the setting
of HIV have been classified as AIDS-defining malignancies (ADM; cancers that, when present,
confer a diagnosis of AIDS) and non-AIDS definingmalignancies (NADM; cancers whose presence
does not necessarily indicate AIDS) (6). Many HIV-related cancers have a viral etiology (7). These
include Kaposi sarcoma (KS) [Kaposi sarcoma herpes virus (KSHV)]; cervical, anal, penile and
vulvar squamous cell cancer and oropharyngeal cancers [human papilloma virus (HPV)]; B cell
non-Hodgkin lymphomas (NHL) including diffuse large B-cell lymphoma, Burkitt lymphoma,
plasmablastic lymphoma, primary central nervous system lymphoma, primary effusion lymphoma,
classic Hodgkin lymphoma, and lymphoproliferative disorders [in some cases, Epstein-Barr
virus (EBV) and/or KSHV]; hepatocellular carcinoma [hepatitis B and C viruses (HBV/HCV)],
and Merkel cell carcinoma [Merkel cell polyoma virus (MPV)]. In epidemiological studies of
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non-Hodgkin lymphoma, Kaposi sarcoma, and anal cancer,
uncontrolled HIV viremia is an independent risk factor (4, 5, 8).

The introduction of antiretroviral therapy (ART) after 1996
resulted in a reduction in the incidence of many ADMs by
75–80% (9), largely due to reduced prevalence of profound
immunodeficiency. NADMs including lung cancer, Hodgkin
lymphoma, anal cancer, and oropharyngeal cancer now comprise
an increasing proportion of total cancers in PLWH in North
America (10, 11). A similar trend has been documented in
Europe, Australia (12) and the Asia-Pacific region (11, 13).
This epidemiological switch in prevalence away from ADMs
and virally-associated malignancies corresponds with increasing
life expectancy of PLWH, increased availability of ART and
promotion of viral suppression (14–16).

HIV LEADS TO PARTIALLY REVERSABLE
PERTURBATION IN T-CELL FUNCTION

HIV has multiple effects on T-cell immunity that may contribute
to cancer risk. Absent effective ART, uncontrolled HIV infection
leads to massive depletion of HIV-infected CD4 cells and
uninfected bystander CD4s in both blood and tissue (17). In
the same setting, CD8 counts often rise, leading to inverted
CD4/CD8 ratios that are an independent measure of immune
dysfunction. Moreover, HIV and other chronic viral infections
lead to increased expression of immune checkpoint proteins
(such as PD-1), exhaustion markers, and impaired CD8T cell
function (18–20), causing systemic immune dysfunction and
dysregulation (21). Untreated HIV perturbs not only the quantity
but also the breadth of T-cell immunity. HIV leads to decreased
numbers of naïve T cells, less diversity of the T-cell repertoire
in the blood (22, 23), and skewing of the T-cell receptor
(TCR) repertoire secondary to CD4 depletion and expansion
of oligoclonal CD8 populations (24). HIV viremia is rapidly
suppressed with modern ART. Immune reconstitution after
initiation of ART leads to CD4 recovery and CD8 decline over
time (25). The likelihood of full immune recovery improves
with earlier diagnosis and a younger age at ART initiation
(26), although immune recovery is often incomplete (27).
The heightened pro-inflammatory state associated with both
untreated and treated HIV contributes to long-term adverse
outcomes (28, 29).

ONCOGENESIS IN THE SETTING OF
HIV-INDUCED IMMUNE DYSFUNCTION

Immunodeficiency is an established risk factor for the
development of cancer, and the underlying causes are likely
many, including uncontrolled proliferation of oncogenic viruses
and inadequate immune surveillance. Many oncogenic viruses
have been shown to cause cancer in other immunosuppressed
states, including inherited immunodeficiencies and solid-
organ transplantation (30). CD4 deficiency is strongly linked
to malignancy (31), independent of HIV infection (32–35).
The presence, number, and functionality of CD4T cells are
important in multiple steps of the oncogenic pathway, including

recognition of tumor antigens, development of effective
neutralizing antibody, and cellular responses to viral pathogens,
and clearance of premalignant lesions. The risk of many HIV-
associated malignancies decreases with improved CD4 count
on ART (9, 12, 36–39) and cancer-specific mortality correlates
inversely with CD4 count (12, 40). The link between reduced
CD4 count and elevated cancer risk is profound in KS and
NHL (41–43), but also present in other malignancies (37). An
individual’s risk of cancer (and long-term immune dysfunction)
is likely influenced by the CD4 nadir, perhaps indicative of
a synergistic relationship between chronic inflammation and
impaired immune surveillance (10, 44–49).

CD4 lymphocytopenia, ineffective CD8 response, and
associated immune dysregulation lead to a reduction in
immunosurveillance, a key mechanism in HIV-associated
oncogenesis (21, 50). This is illustrated in the link between HIV,
immune status, and cervical cancer (37). PLWH are more likely
to acquire high risk HPV (51, 52), less likely to clear HPV, and
more likely to progress to higher-grade forms of dysplasia (53).
PLWH with lower CD4 counts are also more likely to progress
from dysplasia to invasive cancer (54). In an HPV vaccine trial
in adolescents with HIV, the induced antibody titer correlated
positively with CD4 count (55), supporting the importance of
CD4T cells in the production of high-affinity antibodies (51),
the primary correlate of protection of the HPV vaccine (56).
Tissue-localizing HPV-specific CD4 and CD8T cells are also
potentially important to tumor regression (57, 58).

Immune exhaustion and T-cell senescence are prominent
features of both chronic viral infections and malignancies (59).
In PLWH, T-cell dysfunction is most strongly implicated in
the development of EBV-related lymphomas and KS (60). In
HIV-associated B cell NHL, reduced T-cell polyfunctionality
and TCR diversity is associated with poorer prognosis (61).
These observations, among others (62), have led to interest
in remedying immune dysfunction to treat malignancy in
PLWH (63).

ANTIRETROVIRAL THERAPY AND OTHER
FORMS OF IMMUNOTHERAPY IN
HIV-RELATED CANCER

ART is itself an effective form of immunotherapy for ADM.
Improvements in ART in 1996 resulted in a decline in the
incidence and severity of KS, as well as changes in its natural
history (9, 64–66): the risk of death due to KS decreased at
similar HIV RNA levels and CD4 count (66), suggesting that
ART resulted not only in improved immune control of KSHV
but also decreased immune dysregulation. ART-induced immune
reconstitution results in regression of KS lesions in ∼80%
of PLWH with early KS (67). However, ART alone is often
insufficient in advanced KS.

Several immunotherapies have shown efficacy in KS and other
HIV-related cancers (Table 1). Interferon alpha (IFN-α), the first
true immunotherapy used in HIV-associated KS, generated a
20–40% response rate (98–100). IL-12, which enhances Th-1
type immune responses (91), has been shown to have anti-KS
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TABLE 1 | Select immunotherapeutic agents used in cancers that occur at increased frequency in people with HIV and their demonstrated or hypothesized effect on

measurements of the HIV reservoir.

Agent Mechanism Indication in cancer

that is associated

with HIV

Adverse events Potential effect on

HIV reservoir

References

Checkpoint

inhibitors

(ipilimumab

nivolumab,

pembrolizumab,

durvalumab, etc.)

Block inhibitory T cell receptors including

CTLA4, PD-1, or PD-L1, allowing T cell

activation and promoting cytotoxic killing

of target cells

Lung cancer, classical

Hodgkin lymphoma,

head and neck cancer,

liver cancer

Fatigue, rash,

arthralgia, pruritis, GI

toxicity, asthenia,

pulmonary toxicity,

pyrexia, autoimmune

phenomena, headache

Transient increases in

unspliced HIV RNA and

decreases in HIV DNA

in blood, variable

effects on plasma HIV

RNA

(68–72)

Pomalidomide Modulates substrate specificity of cereblon

E3 Ubiquitin ligase, altering protein

expression. Induces cell cycle arrest and

apoptosis in plasma cell malignancies.

Enhances T cell- and natural killer (NK)

cell-mediated cytotoxicity, inhibits

angiogenesis, modulates cytokines, and

cell microenvironment

Under evaluation for KS Thromboembolic

events, teratogenicity,

fatigue and asthenia,

cytopenias, GI toxicity,

dyspnea, back pain,

pyrexia

Immune stimulation,

increased killing of

reservoir cells

(73–75)

Brentuximab

vedotin

Monoclonal antibody drug conjugate with

anti-CD30 antibody (expressed on

Hodgkin Reed-Sternberg Cells) and MME

(microtubule disruptor) payload

Classical Hodgkin

lymphoma

Cytopenias, peripheral

sensory neuropathy,

fatigue, GI toxicity,

pyrexia, rash, cough

Transient loss of

detectable CD4 T-cell

HIV RNA and reduction

in plasma HIV viremia

(76, 77)

Alemtuzumab Monoclonal antibody to CD52 (expressed

on lymphocytes, monocytes,

macrophages, NK cells, and some

granulocytes)

Hematopoietic stem

cell transplant

conditioning

Infusion reaction,

serious infections,

cytopenias, secondary

autoimmune disorders

Ex vivo elimination of

latently-infected CD4T

cells. Evidence of

decreased frequency of

HIV-infected CD4T

cells in vivo.

(78–81)

IL-7 Modulates T cell development and

maturation in the thymus. Modulates T cell

homeostasis and proliferation and memory

differentiation. Inhibits T cell apoptosis and

promotes proliferation.

Under evaluation in

combination with CD19

CAR T-cells in relapsed

B-cell lymphoma

Infusion reaction,

hypersensitivity

Transient increases in

HIV viral load without

observed clinical

sequelae, as well as

enhanced anti-HIV CD8

activity

(82–90)

IL-12 Promotes activation and differentiation of T

lymphocytes and NK cells

Under evaluation in

therapeutic vaccines

for HPV associated

cancers, phase 1

studies in solid tumors.

Immune activation Latency reversal ex vivo (91–93)

IL-15 Stimulates the proliferation of memory T

cells and regulates their turnover.

Promotes the survival of naive T cells.

Under evaluation in

refractory B-cell

lymphomas and solid

tumors

Infusion reaction,

hypersensitivity

Ex vivo killing of

latently-infected CD4T

cells by cytotoxic

CD8T cells

(94–97)

activity in patients who are progressing despite ART (92) and is
currently being developed as a tumor-targeted immunocytokine,
NHS-IL12 (101). A recent trial of the immunomodulatory drug
pomalidomide in 22 participants with heavily pretreated KS who
were virally suppressed on ART noted an overall response rate
of 60% among HIV-infected participants, which is comparable
to traditional cytotoxic chemotherapy for KS. The investigators
observed expansion of central memory cells and decreases in
CD57+ immunosenescent T-cells (73, 74).

Despite immune dysfunction due to HIV, cancer in PLWH
is often responsive to immunotherapy. Thus far, the best-
studied agents are tumor-targeting monoclonal antibodies in
the management of HIV-associated lymphomas. Rituximab, a
monoclonal antibody to the B-cell antigen CD20 that works
in part through antibody-dependent cell-mediated cytotoxicity,
is associated with improved overall survival in NHL when
compared to chemotherapy alone (102–104). In people with

HIV-associated lymphoma, a pooled analysis of over 1,500
patients noted that rituximab improved overall survival in those
with a CD4 count >50 cells/µL (105). Brentuximab vedotin, an
antibody-drug conjugate directed at CD30 on Reed-Sternberg
cells, has been shown to have activity in HIV-associated Hodgkin
lymphoma: in a study of 6 patients with HIV and classical
Hodgkin lymphoma, all achieved a complete response with
minimal hematologic toxicity or infectious complications (106).

More recently, immune checkpoint inhibitors (CPIs),
monoclonal antibodies to cytotoxic lymphocyte associated
protein 4 (CTLA-4) or programmed cell death 1 or its ligand
(PD-1 and PD-L1), have gained widespread use due to their
demonstrated activity and favorable toxicity profile in many
malignancies. CPIs, which function by blocking T-cell inhibitory
signaling, have performed well in clinical trials of many
malignancies that are common in the setting of HIV, including
lymphoma, lung cancer, cervical cancer, liver cancer, and
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head and neck cancers (107, 108). While nearly all these trials
excluded PLWH (109), case reports and retrospective cohort
studies from US and European collaborative groups have
described an acceptable safety profile with the use of nivolumab,
pembrolizumab, and ipilimumab in PLWH, with reported
tumor responses in classical Hodgkin lymphoma, melanoma
and lung cancer (68, 69, 110–116). A systematic review of CPIs
in PLWH noted overall response and adverse event rates that
were similar to the general population. In the subset of patients
in whom viral load was measured, HIV remained suppressed
in 93% of participants, and CD4 counts increased modestly.
Notably, CPI use in KS was associated with an overall response
rate of 63% (117). A prospective cohort study of 10 PLWH with
NSCLC treated with nivolumab noted similar response rates to
HIV-uninfected patients: 2 patients had a partial response, 4 had
stable disease, and 4 progressed. All patients tolerated nivolumab
well with no serious adverse events (70). A prospective phase
1 study of pembrolizumab in PLWH with a CD4 count >100
cells/µl and advanced cancer demonstrated evidence of safety
and activity in KS, NHL, lung cancer, and liver cancer (118).
A study of durvalumab in 20 aviremic PLWH with advanced
solid tumors likewise reported no serious adverse events, nor
evidence of HIV reactivation during durvalumab therapy
(119). Ongoing studies evaluating CPIs in HIV-associated
cancers include a phase 1 study of nivolumab (anti-PD-1)
combined with ipilimumab (anti-CTLA-4) in relapsed classical
Hodgkin lymphoma or solid tumors (NCT02408861), a phase
2 study of nivolumab in advanced non-small cell lung cancer
(NCT03304093), a phase 2 study of durvalumab in advanced
cancer (NCT03094286), a study of pembrolizumab as first
systemic therapy in KS (NCT02595866), and intralesional
nivolumab for limited cutaneous KS (NCT03316274).

CANCER IMMUNOTHERAPY AND HIV
PERSISTANCE

Although HIV-infected individuals on ART may have
undetectable plasma HIV RNA by standard clinical assays,

a reservoir of latently HIV-infected cells (120, 121) persists
from which the virus will resurface after discontinuation of
ART (122). Persistence of the HIV reservoir is partly due to
the inherent longevity of resting memory CD4T cells; growing
evidence suggests that its persistence is maintained by clonal
expansion (123, 124). In whole genome-based studies, HIV
integration favors sites of active gene transcription (125) which
benefits HIV replication and establishment of latency (126, 127)
and promotes pathways associated with oncogenesis (124).
The HIV reservoir has been a major subject of research into
a functional cure for HIV. One theory called “kick and kill”
(Figure 1) (128, 129) proposes that HIV latency reversal in the
setting of ART (meaning activation of HIV replication within
a latently infected cell), can lead to increased immunogenicity
of HIV infected cells, enhancement of anti-HIV immunity, and
increased cell death of HIV reservoir cells.

Several immunotherapeutic agents used in the treatment of
cancer may have cause HIV latency reversal and/or have a
targeted effect on HIV persistence. CPIs have been proposed to
have latency reversal activity. Anti-PD-1 therapy is associated
with changes in CD4 count and HIV RNA (130–132), perhaps
due to direct targeting of the HIV reservoir. PD-1 and CTLA-4
expression are increased in the setting of chronic HIV infection,
and HIV DNA and unspliced RNA are enriched in PD-1+ cells
in blood and lymph nodes of individuals with HIV on ART
(133–136). Multiple case reports and prospective studies have
documented transient increases in HIV transcription in CD4
cells in people with HIV-associated malignancies on ART who
are treated with anti-PD-(L)1 drugs, although many of these
participants later experienced decreases in plasma HIV RNA
(117, 128, 129, 132, 137). In one study, 2 of 28 patients who
had undetectable HIV RNA prior to CPI therapy developed
detectable HIV RNA, whereas 5 of 6 patients who had detectable
viremia experienced a decrease in their viral load (117). A
prospective study of the effect of ipilimumab in 24 PLWH with
detectable viremia and without cancer, of whom 17 were on
ART, also demonstrated a range of responses: 2 participants
had slight decreases in HIV RNA but 14 had slight increases.
None experienced significant change in CD4 or CD8T cell

FIGURE 1 | Immunotherapy and the HIV reservoir. A variety of immunotherapeutic agents used to treat cancer may perturb the HIV reservoir through induction

of latency reversal or increased cell killing. Some of these agents are being evaluated in clinical trials targeting HIV persistence. CPI, immune checkpoint inhibitor;

IL, interleukin.
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count (138). These observations support the activity of CPIs to
produce latency reversal. Additional studies are being performed
to evaluate the effects of CPIs on anti-HIV T-cell function.

The effects of anti-CD30 monoclonal antibodies on HIV
latency have also been investigated. Early work in HIV
demonstrated that cross-linking of CD30 on latently-infected
CD4T cells induced HIV transcription (139). More recently,
brentuximab vedotin has been associated with transient loss
of detectable CD4 T-cell HIV RNA and reduction in plasma
HIV viremia (76). CD30 is therefore speculated to be a marker
of latent, but transcriptionally-active, HIV-infected cells and a
potential therapeutic target for HIV eradication (140).

Alemtuzumab is a monoclonal antibody targeting CD52,
which is expressed by T cells including HIV-infected T cells,
regardless of CD4 count or plasma viremia. Latently-infected
CD4T cells have been eliminated in vitro with alemtuzumab
(78). In vivo, a case report of alemtuzumab in an individual with
HIV and Sezary syndrome described decreased frequency but not
elimination of HIV-infected CD4T cells (79). Alemtuzumab was
also part of the conditioning regimen of one of the patients with
sustained HIV aviremia after HSCT (141).

T-cell growth factors, many of which are being investigated
for cancer indications, have also been shown to affect the
HIV reservoir. Interleukin 7 (IL-7) is a homeostatic cytokine
that increases T-cell repertoire diversity through expansion
of naive T cells (82) and is being investigated in several
malignancies. IL-7 levels increase in HIV-associated CD4
lymphocytopenia and decrease with immune reconstitution
(142). Exogenous administration of IL-7 is associated with dose-
dependent increases in CD4 and CD8T cells in PLWH on ART
(143), including HIV-specific CD8T cells (83). In patients with
suppressed HIV, administration of IL-7 led to transient increases
in HIV viral load without observed clinical sequelae (84), as
well as enhanced anti-HIV CD8 activity. Another T-cell growth
factor, IL-15, induces antigen-specific T-cell proliferation, most
pronounced in the CD8 compartment (94, 95, 144, 145). IL-15
is produced during acute HIV infection (95). Stimulating NK
cells with IL-15 ex vivo from participants with suppressed HIV
on ART led to ex vivo killing of latently-infected CD4T cells by
cytotoxic CD8T cells (96). Early phase studies of IL-7 and IL-15
in several malignancies are underway.

HEMATOPOIETIC STEM CELL
TRANSPLANTATION IN HIV

In 2007, an individual with HIV infection and leukemia
underwent hematopoietic stem cell transplant (HSCT) in Berlin,
using cells from a donor who was homozygous for CCR5-delta32,
a mutation that renders CD4 cells resistant to CCR5-tropic HIV.
After transplant, HIV was undetectable in blood and biopsy
specimens, despite discontinuation of ART (146, 147). Recently,
a second patient who underwent allogeneic HSCT for Hodgkin
lymphoma using cells from a homozygous CCR5-delta32 donor
and whose HIV remained undetectable 18 months after stopping
ART (141) was described. Allogeneic stem cell transplant itself

appears to substantially decrease the HIV reservoir. In the
European IciStem cohort of PLWH on ART who underwent
HSCT for hematologic malignancies from CCR5 wild-type
donors with full donor engraftment and who remained on ART,
5 of 6 were found to have no detectable HIV DNA in CD4 cells
from blood and tissues and no evidence of HIV in a humanized
mouse viral outgrowth assay (148). However, ART interruption
is required to demonstrate functional cure, and in cases of
allotransplants from CCR5 wild-type donors, HSCT has failed to
produce long-lasting viral suppression in the absence of ART. In
an ART interruption study of 2 PLWH who underwent HSCT
for hematologic malignancies from CCR5 wild-type donors and
had undetectable HIV RNA for years post-transplant while
on ART, both participants developed detectable viremia after
ART interruption: patient A at day 84 and patient B at day
225 (149).

Given the success of allotransplants from homozygous CCR5-
delta32 donors, CCR5-mutant cell products have been developed
via gene editing and have been shown to be safe when infused
into participants with chronic aviremic HIV. When ART was
interrupted, the edited CD4 cells declined at a slower rate
than endogenous CD4 cells. While these results are promising,
additional work is required to develop a scalable approach to
address HIV persistence on ART (150–153).

IMPROVING OUR UNDERSTANDING OF
HIV-RELATED CANCER

As PLWH are living longer, cancer has become a major cause
of morbidity and mortality, well above the burden faced by the
general population. Although the incidence of AIDS-defining
malignancies has decreased, mortality associated with NADMs
is rising. Given the persistent immune abnormalities despite
ART and the implications for cancer risk, immunotherapy is
uniquely poised to improve outcomes in HIV-associated cancers.
In order to advance our understanding, PLWHmust be included
in immuno-oncology studies. Recent recommendations from
ASCO and the FDA provide guidance for appropriate inclusion
of PLWH and cancer in clinical trials (109, 154). Furthermore,
studying cancer immunotherapy in this population represents
an opportunity to gain a better understanding of HIV itself.
Investigation of the immunologic and viral responses to cancer
immunotherapy in PLWH will lead to novel insights into HIV
elimination and, above all, improve the outcomes of people with
HIV and cancer.
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As the AIDS epidemic unfolded, the appearance of opportunistic infections in at-risk

persons provided clues to the underlying problem: a dramatic defect in cell-mediated

immunity associated with infection and depletion of CD4+ T lymphocytes. Moreover,

the emergence of HIV-associated malignancies in these same individuals was a clear

indication of the significant role effective cellular immunity plays in combating cancers.

As research in the HIV field progressed, advances included the first demonstration of

the role of PD-1 in human T cell exhaustion, and the development of gene-modified

T cell therapies, including chimeric antigen receptor (CAR) T cells. In the intervening

years, the oncology field has capitalized on these advances, effectively mobilizing the

cellular immune response to achieve immune-mediated remission or cure of previously

intractable cancers. Although similar therapeutic advances have not yet been achieved

in the HIV field, spontaneous CD8+ T cell mediated remission or functional cure

of HIV infection does occur in very small subset of individuals in the absence of

anti-retroviral therapy (ART). This has many similarities to the CD8+ T cell mediated

functional control or elimination of cancers, and indicates that immunotherapy for HIV

is a rational goal. In HIV infection, one major barrier to successful immunotherapy is

the small, persistent population of infected CD4+ T cells, the viral reservoir, which

evades pharmacological and immune-mediated clearance, and is largely maintained

in secondary lymphoid tissues at sites where CD8+ T cells have limited access

and/or function. The reservoir-enriched lymphoid microenvironment bears a striking

resemblance to the tumor microenvironment of many solid tumors–namely high levels of

anti-inflammatory cytokines, expression of co-inhibitory receptors, and physical exclusion

of immune effector cells. Here, we review the parallels between CD8+ T cell-mediated

immune control of HIV and cancer, and how advances in cancer immunotherapy may

provide insights to direct the development of effective HIV cure strategies. Specifically,

understanding the impact of the tissue microenvironment on T cell function and

development of CAR T cells and therapeutic vaccines deserve robust attention on the

path toward a CD8+ T cell mediated cure of HIV infection.
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INTRODUCTION

Human immunodeficiency virus (HIV) remains one of the most
pervasive global health challenges of our time. Currently there
are an estimated 37 million persons infected with HIV worldwide
with more than 35 million AIDS-related deaths to date (1). The
development of combination anti-retroviral therapy (ART) has
mitigated the severity of this disease, significantly improving
survival rates and life expectancy for persons infected with HIV.

Despite these encouraging developments, the number of new
HIV infections has remained largely static and co-morbidities
including cancers continue to develop inHIV treated individuals.
Furthermore, individuals must remain on life-long therapy due
to the persistence of latently-infected CD4+ T cells, intractable
to ART and immune detection due to proviral integration into
the host chromosome and being transcriptionally silent, and due
to sequestration in anatomical sites largely devoid of HIV specific
CD8+ T cells [reviewed in (2)]. In particular, secondary lymphoid
sites, such as the gut-associated lymphoid tissue (GALT) and
lymph nodes (LN), bear the largest fraction of the HIV burden
in ART suppressed individuals (3). Unique microenvironments
and distinct compartmentalization of immune subsets within
these anatomical sites provide an ideal niche for ongoing
viral persistence and limited immune pressure. Although T
cell exhaustion and immune escape further hinder the impact
of adaptive HIV-specific CD8+ T cell responses, there are
clear examples of persons who spontaneously control HIV for
decades without medications (4), indicating that effective HIV
immune containment, if not eradication, can be achieved despite
these barriers.

As the HIV field has attempted and largely failed thus far to
mobilize the immune system to better prevent, treat, and cure
infection, the cancer field has experienced dramatic advances
through application of immunotherapeutic interventions that
either genetically modify and re-direct T cells or liberate
endogenous T cell responses to tumor neoantigens. Remarkable
examples of immune-mediated disease-free remissions have
been achieved for some previously intractable malignancies,
such as melanoma (5–7), non-small cell lung cancer (8, 9),
and chemotherapy-refractory leukemia and lymphoma (10,
11). Indeed, key barriers to cancer eradication bear multiple
similarities to hurdles experienced in immune control of HIV,
such as lack of accessible antigens, chronic immune dysfunction,
and tissue microenvironments that impede effective clearance
of cancerous cells. The dramatic advances in therapeutic
interventions to augment effective CD8+ T cell immunity in
cancer provide important insights for therapeutic interventions
in HIV infection. Here, we discuss the role of CD8+ T cell
mediated immunity in HIV and cancer, and lessons learned from
the advances in cancer treatment thatmay aid in the development
of HIV cure strategies.

EVIDENCE FOR CTL-MEDIATED CONTROL
OF HIV AND CANCER

Among the most striking data implicating CD8+ CTLs in
control of AIDS virus infections come from rapid rebound of

viremia following CD8+ T cell depletion in the non-human
primate (NHP) model of SIV infection (12). These data are
supported by human data demonstrating rapid emergence of
HIV specific CD8+ T cells mediating strong selection pressure
concomitant with post peak viral decline (13–15) the observed
inverse relationship of HIV-specific CTLs with both viral set-
point and rate of CD4+ T cell loss (16, 17) and the profound
viral control exhibited by a select group of elite controllers who,
in the absence of ART, maintain potent HIV-specific T cell
responses and do not progress immunologically [reviewed in (4)].
These untreated elite controllers represent <1% of HIV-infected
persons, some of whom have been infected for more that three
decades and maintain prolonged control of plasma viremia (HIV
RNA <50 copies/mL of plasma) (18, 19).

The role of CD8+ T cells in this remarkable control of
HIV is consistently seen in the context of expression of certain
“protective” HLA class I alleles such as B∗27 and B∗57, and
specific amino acids lining the class I peptide binding groove
that present viral peptides for CD8+ T cell recognition (20, 21).
Containment of viremia in elite controllers has been linked
to more polyfunctional CD8+ T cells than in persons with
progressive disease (22), perhaps in part due to maintenance of
virus-specific CD4+ T cells (23), as well as enhanced recognition
of epitope variants (24).

Complementary evidence of CD8+ T cell mediated immune
control of HIV also derives from studies of the virus itself.
Transmission of amino acid “escape” mutations within the 8–10
amino acid epitopes targeted by CTL is associated with worse
outcomes due to replication of pre-adapted viruses (25, 26).
Other studies have shown impaired viral fitness due to viral
mutations associated with CD8+ T cell selection pressure (27,
28). More recent studies indicate that persons who spontaneously
control HIV without the need for medication do so at least in
part by targeting epitopes containing highly networked amino
acids that are critical to structure and function of the virus
(29, 30). These sites are highly mutationally intolerant, such
that immune driven mutations are likely to impair viral fitness
and be less resolvable by compensatory mutations at secondary
sites. In addition, HIV infection and depletion of CD4+ T cells,
with preferential infection of HIV-specific CD4+ T cells (31),
exacerbates immune impairment by providing insufficient help
for HIV-specific CD8+ T cells. Indeed, immediate treatment of
acute infection leads to preservation of CD4+ T cell responses
and induction of CD8+ T cells with greater functionality (32).

Despite a long history of debate as to whether the immune
system plays a role in controlling cancers, particularly of non-
viral origin, it is now clear CD8+ T cell-mediated immunity
is also a major host defense against tumors. In 1909, it was
first hypothesized that immune surveillance suppressed the
outgrowth of cancers (33), but it took decades to identify
cancer neoantigens, giving credence to the idea that tumors
could be recognized as foreign (34). Early, in vitro studies
demonstrated that melanoma-specific CD8+ T cells could lyse
tumor targets (35). Further evidence included the identification
of tumor associated antigen (TAA) expressed on tumor cells
but not on normal cells, and the observation that a high
frequency of TAA-specific CD8+ T cells localized within tumors
that spontaneously regressed (36). Density of tumor infiltrating
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CD8+ T cells (TILs) has been shown to negatively correlate
with progression of colorectal metastasis (37) and oligoclonal
expansions of tumor-infiltrating T cells have been associated
with tumor regression (38). Furthermore, the development
of checkpoint inhibitors that target and effectively block the
PD-1 and CTLA-4 axes have convincingly underscored the
importance of endogenous CD8+ T cells in the recognition and
elimination of tumor cells, but most importantly that the cancer-
specific immune response can be manipulated for therapeutic
benefit. Of note, this checkpoint blockade-mediated liberation
of anti-tumor T cell responses is most effective in tumors
that have a high mutational burden (39, 40) [i.e., that result
in greater presentation of neo-antigens, especially those with
mismatch-repair defects (41, 42)], and in those that upregulate
the checkpoint ligands such as PD-L1 (43, 44). In addition,
engineered autologous T cells transduced to express synthetic,
chimeric antigen receptors, or CAR T cells, have demonstrated
that T cells can be engineered to recognize surface antigens
present on tumor cells and successfully eliminate the cancer,
particularly lymphoid malignancies like B-cell leukemia (45),
lymphoma (46, 47), and multiple myeloma (48).

MECHANISMS OF CD8+ T CELL IMMUNE
FAILURE IN HIV AND CANCER

Immune failure is a hallmark of cancer and persistent viral
infections such as lymphocytic choriomeningitis infection
(LCMV), simian immunodeficiency virus (SIV) and HIV.
Understanding the mechanisms driving immune dysfunction
is critical to the rational development of immunotherapies
for the treatment of both HIV and cancer. There are
three areas that are particularly relevant to both HIV and
cancer, namely immune exhaustion, immune escape, and
immunoregulatory factors in the lymphoid tissue (HIV) and
tumor microenvironment (cancer).

Immune Exhaustion
One of the major obstacles to immune control of both HIV
and cancers is progressive T cell exhaustion in the face of
ongoing pathogen burden. The original demonstration of this
phenomenon came from the lymphocytic choriomeningitis virus
(LCMV) model (49). Armstrong and Clone 13 LCMV variants
result in vastly different immunological outcomes, associated
with differences in antigen load and persistence (50). Clone
13 has two nucleotides that differ from LCMV Armstrong,
resulting in ineffective clearance by CD8+ T cells, chronic
viremia, and progressive dysfunction of LCMV-specific CD8+

T cells. This includes impaired proliferative capacity and
decreased polyfunctionality. Gene expression analysis of virus-
specific CD8+ T cells revealed upregulation of the negative
immunoregulatory molecule PD-1 on these cells in the context
of Clone 13 infection compared to Armstrong (49), indicative
of immune dysfunction with ongoing antigen persistence.
Importantly, the immune exhaustion was shown to be reversible
through blockade of the interaction of PD-1 with its ligand PD-L1
or PD-L2.

These features of T cell exhaustion are strikingly similar
to what is observed in untreated HIV infection and cancer.
Chronic viral infection and cancer are both disease states
with inadequate antigen clearance. Memory T cell (Tmem)
development is impaired, and effector T cell (Teff) become
functionally exhausted with elevated and sustained expression
of the check-point receptors like PD-1. The first evidence
that reversible T cell exhaustion occurs in humans came from
studies of HIV infected persons, and like in the LCMV model,
blockade of the interaction with PD-L1 or PD-L2 could at least
partially reverse cellular dysfunction (51). In cancer, in vitro
studies showed that tumor-specific T cells in human melanoma
metastases share many features of the exhaustion signature
that was characterized in LCMV infection (52). Exhaustion was
found to be associated with altered epigenetic and transcriptional
profiles, a distinct metabolic signature (53–55) and impaired
responses to homeostatic cytokines (56). In HIV infection, PD-
1 levels are significantly increased on CD8+ T cells during
chronic HIV infection, directly correlating with plasma viremia
and inversely with CD4+ T cell counts (51, 57). It was also
found that T cells residing within the LN compartment exhibited
even greater levels of inhibitory receptors when compared to
the peripheral blood (57) demonstrating anatomical differences
in parameters of immune exhaustion, posing the question of
how distinct microenvironments shape T cell function. Indeed
upregulation of these immunoregulatory ligands on tumor cells is
an important mechanism of immune dysregulation (57). Beyond
inhibitory receptor expression, the transcriptional and epigenetic
profiling of virus-specific and tumor-specific CD8T cells has
revealed key similarities and differences between CD8+ T cell
responses in the two disease settings. Multiple transcriptional
regulators have been associated with CD8+ T cell exhaustion,
including NFAT, Eomes, BLIMP-1, BATF, FOXO1, FOXP3,
IRF4, VHL, c-Maf, implicating various metabolic, and signaling
pathways as important contributors to various states of CTL
exhaustion [(58–62); reviewed in (50)].

Another consideration in loss of T cell effector functions in
HIV and cancer is depletion or diminished activity of antigen-
specific CD4+ T cells [reviewed in (63, 64)]. These cells enhance
CTL expansion, activity, migration, tissue invasion, and memory
differentiation. HIV preferentially infects HIV-specific CD4+ T
cells (31), and loss of these cells is associated with a reversible
defect in CD8+ T cell in vitro proliferation (65). CD27 agonism
was shown to recapitulate CD4+ T cell help by improving
induction of effector CD8+ T cells, antigen-specific cell killing,
and overall survival in a murine cancer vaccine model (63). Loss
of CD4+ T cells by HIV infection, or diminished antigen-specific
CD4+ T cell activity by tumor or virus-induced downregulation
of MHC class II impairs induction, expansion, and efficacy of
CTL responses capable of viral or tumor clearance, and means
to rectify this are needed for both HIV and cancer.

Immune Escape
Effective primary CD8+ T cell responses may drive viral or
tumoral evolution, particularly in the context of rapidly mutating
pathogens, allowing the outgrowth of variants that are no longer
recognized by the host CD8+ T cell response. This has been

Frontiers in Immunology | www.frontiersin.org 3 September 2019 | Volume 10 | Article 210982

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mylvaganam et al. T Cell Mediated Control of HIV–Lessons From Cancer

termed CD8+ T cell escape in the HIV context [reviewed in (66)],
and tumor immunoediting in the cancer field [reviewed in (67)],
rendering initial CD8+ T cell responses ineffective. Following
immune escape, induction of effective de novo CD8+ T cell
responses targeting the mutated epitope or a different epitope is
necessary to restore antigen-specific immune control.

In HIV infection, wheremore than 300 viral epitopes and their
restricting class I alleles have been defined, immune escape occurs
during the initial period of peak viremia [reviewed in (68)];
moreover, transmission of CD8+ T cell immune escape variants
is already shaping global viral evolution (69). Of particular
relevance to any immunotherapeutic approaches is the finding
that the majority of immunodominant CTL epitopes in persons
with chronic infection may harbor escape mutations (70), such
that simple reversal of CTL dysfunction may be insufficient to
augment an antiviral effect.

T cell responses against tumor-associated antigens (TAAs)
may be rendered ineffective by immune escape in tumors with
high mutation burden. The concept of tumor immunoediting
encompasses three phases of the interaction between the
protective aspects of adaptive immunity against cancers as
well as the “tumor sculpting” functions of the immune
response: elimination, equilibrium, and escape (71). TAAs arise
from non-synonymous somatic mutations (NSSMs) in protein-
coding genes, aberrant expression of an embryonic, placental,
testes or other tissue-specific differentiation genes, aberrant
overexpression of a wild type gene, and viral proteins expressed
by cancer cells. In contrast, the high mutability of HIV is due
to the infidelity of the viral reverse transcriptase, which induces
errors during the process of converting incoming viral RNA
into proviral DNA. On the positive side, mutations that escape
adaptive immune surveillance may also inflict a fitness cost to the
virus or cancer cell and thus serve to the advantage of the host.
And in the HIV context, predictable mutations that arise under
immune selection pressure can be incorporated into vaccine
immunogens, such as is currently being tested in an efficacy trial
of a mosaic vaccine (72).

Tumor and Lymph Node
Microenvironments
One of the shared challenges for CD8+ T cell mediated
clearance of HIV or cancer is the need for migration into
and induction of effector function within immunosuppressive
tissue environments. In HIV infection, this involves the
lymph node microenvironment (LNME), whereas in cancer the
tumor microenvironment (TME) is the major site of immune
engagement (Figure 1).

Lymph nodes (LN) are not only the inductive site for adaptive
immune responses, but are a major site of HIV infection
[reviewed in (79, 80)]. They are characterized by interaction
of lymphocytes and antigen-bearing dendritic cells (DC) within
a fibroblastic reticular network (FRC) (81). Localization of
DC subsets, stromal cells, and immune cells within the LN
in combination with various cytokines, costimulatory signals,
secondary metabolites and the amount and nature of foreign
antigen (82–84) impact T cell differentiation by establishing

distinct microenvironmental niches (85). Moreover, the LNME
is largely immunosuppressive, regulating both naïve and pre-
activated T cells through the production of indolamine 2–3
dioxygenase (IDO), Prostaglandin E2 (PGE2), adenosine 2A
receptor (A2AR) agonists and tumor growth factor β (TGFβ)
(78, 86).

As the major site of HIV replication is in CD4+ T cells,
LNs and the gut associated lymphoid tissue are the initial and
persistent targets of infection. Importantly, germinal centers
(GC) within LN are important anatomic sites for HIV persistence
[reviewed in (87)]. Peripheral blood CD4+ T cells constitute
∼0.2% of the HIV reservoir, whereas lymphoid resident CD4+

T cells represent>50% of the overall HIV burden (3). T follicular
helper cells (Tfh, defined as CXCR5hi PD-1hi CD4+ T cells)
accumulate during chronic HIV/SIV infection, and are highly
susceptible to HIV infection (88–91), contributing to both viral
production and persistence during chronic untreated and treated
HIV infection. Importantly, germinal centers largely exclude
HIV-specific CTLs (92).

Progressive dismantling of the FRC networks within lymphoid
tissue during HIV infection (93), a consequence of profound
CD4+ T cell loss, results in increased collagen deposition and
significant fibrosis (93–95). These alterations restrict access to
IL-7 and limit the life-span of naïve CD4+ and CD8+ T cells
within the LN and the overall generation of T cell immunity
within the lymphoid tissue. Excessive accumulation of collagen
and other extracellular matrix (ECM) components that occur
during HIV/SIV infection has been linked to an early induction
of an immunoregulatory response within secondary LT such as
increased levels of TGFβ (96–98).

In contrast to the limited understanding of the LNME
during chronic HIV/SIV, the TME and its corresponding
impact on immune function has been well-characterized. The
physical and chemical content within the TME such as the
extracellular matrix (ECM), fibroblasts, stromal cells, myeloid
cells, and immune cells as well as secreted chemokines and
cytokines, collectively impact tumor progression and impair
immune function either directly or in trans (99). The induction
and localization of immune subsets such as regulatory T
cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor
infiltrating DCs (TIDCs), and tumor-associated macrophages
(TAMs) can hinder effector function and CD8+ T cell infiltration
and actively contribute to the maintenance of CD8+ T cell
exhaustion. Tumor cell oncogenic pathways, including oncogenic
Wnt/ß-Catenin signaling and gain of function MYC have also
been shown to impart immunosuppressive signals within the
TME that limit T cell recruitment, activation, and infiltration
[reviewed in (100)]. Transcriptional regulation through Signal
Transducer and Activator of Transcription 3 (STAT3) within
CD8+ T cells has also been implicated in limiting CD8+

T cell recruitment to (101) and cytotoxic function within
(102) tumors. Significant metabolic challenges also occur
within the TME which impact T cell function and tumor
regression including hypoxia, decreased pH, increased levels
of extracellular adenosine, high interstitial fluid pressure, and
increased extracellular matrix (ECM) stiffness, akin to what
is observed during LN fibrosis in chronic HIV infection.
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FIGURE 1 | Parallels between immunoregulation in solid tumors and lymph nodes. Tumors and LNs are composed of stromal and immune cells that secrete

cytokines and growth factors such as transforming growth factor b (TGFβ), prostaglandin E2 (PGE2), indolamine 2-3-dioxygenase (IDO), and adenosine that shape the

tumor and LN microenvironment and collectively contribute to suppression of the T cell response. Adenosine signals through the adenosine 2A receptor (A2AR) and

promotes production of cyclic AMP, which impairs T cell trafficking, proliferation, and cytotoxicity (73). Immunosuppression is also induced by regulatory T cells (Treg)

that express higher levels of CTLA-4, an inhibitory receptor that outcompetes CD80/CD86 on the surface of effector cells and promotes the production of IDO, an

enzyme that degrades tryptophan and leads to impaired proliferation and Treg differentiation. Additionally, Tregs express high levels of CD73/CD39, enzymes that

convert ATP to adenosine, which inhibit immune function (74, 75). Tumors upregulate inhibitory ligands such as PD-L1 that bind to inhibitory receptors resulting in

suppression of adaptive immune responses (75). Several strategies have been developed in the immune-oncology field to overcome these barriers such as

checkpoint blockade, small molecule inhibitors, therapeutic vaccines, and CAR T cell therapy. These immune based therapies can all be extended to the HIV cure

field. Several mechanisms that result in resistance to checkpoint blockade and CD8T cell exclusion include activation of the WNT/β -catenin pathway (76), localization

of M2 macrophages within the tumor (77), and the secretion of TGFβ (78).

Tumor associated hypoxia commonly occurs during the later
stages of cancer, but hypoxia inducible factors (HIFs) can be
upregulated due to acidification and glycolytic metabolites within
the TME. The concerted effort to understand the TME has
led to the development of immune based therapies, currently
in clinical trials for the treatment of solid tumors [reviewed
in (103)].

Limitations to CD8+ T cell trafficking act to impede immune
clearance in both HIV infection and solid tumors. Through a
variety of mechanisms, CD8+ T cells appear to be excluded
from both solid tumor masses and LN germinal centers. In
both HIV and numerous tumors the relative frequency of
tumor infiltrating or GC infiltrating CD8+ T cells is inversely
correlated with disease outcome in numerous cancers and HIV
infection, respectively (104–108). Studies have demonstrated
that intra-follicular localization of HIV specific CD8+ T
cells is correlated with lower plasma viremia (106); however,
whether the cytolytic function of these CD8+ T cells mediates
control remains unknown. Studies from patients with follicular
lymphomas (FL, tumors situated in LN) indicate that the
presence of functional granzyme B+ CTLs at the follicular
border within the LN correlated with prolonged progression
free-survival (109), whereas higher levels of the inhibitory

receptor TIM3 on FL CTLs correlated with shorter relapse-free
survival (110).

Understanding the immune suppressive elements of the
LNME and TME are likely to lead to additional avenues
to immunotherapy. For example, one potential mechanism
of immunoregulation shared between the LNME and TME
is the pleiotropic cytokine TGFβ. TGFβ has been shown to
promote immune exclusion, impair immune function, and limit
responsiveness to check-point blockade in metastatic urothelial
cancer and other tumors (78, 111). Administration of a TGFβ
blocking antibody in combination with anti-PD-L1 has been
shown to promote T cell localization within tumors and enhance
anti-tumor immunity, leading to increased regression (78, 112).
Higher levels of TGFβ have also been observed in the LN
during progressive HIV infection. These shared observations
suggest that immunoregulation via TGFβ might be playing a
similar role in restraining CD8+ T cell effector function in
the LNME and TME. These data demonstrate the potential for
CD8+ T cells within LN sites to exhibit cytotoxicity. However,
further investigation is required to elucidate the conditions
under which CD8+ T cell cytotoxicity can occur within the LN,
which will have direct implications for the development of HIV
cure therapeutics.
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IMPLICATIONS FOR
IMMUNOTHERAPEUTIC INTERVENTIONS

Therapeutic vaccines and immune based therapies aimed at
achieving durable remission or cure of HIV have garnered
significant interest within the HIV cure field with the
identification of the first functionally cured individual known as
the “Berlin patient” (113, 114) and hopeful second case reported
in London earlier this year (115). Both underwent allogeneic
hematopoietic stem cell transplant (HSCT) from HIV-resistant
CCR5132 homozygous donors, resulting in reduced expression
of the CCR5 co-receptor required for HIV entry. Both patients
exhibited virological and immunological features of remission
and have been considered cured. However, there is limited
feasibility in applying HSCT as a standard of care approach to
curing HIV due to toxicity, cost, availability of CCR5132 HSCs
and continued susceptibility to infection with CXCR4-utilizing
strains (116, 117). The profound outcomes observed in these
two cases have nevertheless energized efforts to develop safe
and effective HIV cure strategies. Since robust immunological
remissions occur in the 1 in 300 HIV infected persons (elite
controllers), immune based approaches toward a functional
cure are in our view the most rational approach. Given that
immunotherapeutic interventions have transformed the cancer
field, review of those therapeutic successes is likely to provide
critical information for advancing HIV immunotherapy efforts.

Biological Inhibition of Immuno-Regulatory
Pathways
Immune check-point inhibitor (ICI) therapy targeting the CTLA-
4 and PD-1 pathways has profoundly altered the management
of several cancers, significantly enhancing anti-tumor responses
and prolonging progression-free survival. CTLA-4 competes
with the co-stimulatory molecule CD28 for binding to CD80/86
on antigen presenting cells, resulting in attenuation of T cell
signaling. Ipilimumab, a monoclonal antibody to CTLA-4, blocks
this interaction and prevents the inhibitory signal, allowing
CTL to kill cancerous or virus infected cells. Pembrolizumab
and nivolumab, monoclonal antibodies targeting the PD-1
pathway, engage the PD-1 ligand on target cells, resulting in
dephosphorylation of TCR proximal signaling and decreased
polyfunctionality, cell cycle progression, survival, and effector
function (118, 119). Ipilimumab was the first FDA approved
ICI, based on studies in advanced melanoma showing a modest
improvement in the overall survival of patients previously treated
for metastatic melanoma (120). At present, overall response rate
of single ICI therapy is only about 30% in most tumor types for
which activity has been shown, such as non-small cell lung cancer
(NSCLC), renal cell carcinoma, and metastatic melanoma (7,
121, 122). Biomarkers of ICI responsiveness include an immune
inflamed tumor phenotype, described as a gene signature of
immune related genes (123), pre-existing anti-tumor CD8+ T
cells (124), low levels of circulating immunoregulatory cells and
cytokines such as IL-10 and TGFβ (125), and a high tumor
mutational burden which leads to high levels of tumor associated

neoantigens, presumably associated with neoantigen-specific T
cells (126, 127).

Efforts to better predict treatment outcomes are advancing
effective implementation of ICI therapy for cancer. Parameters
including displayed increased localization of CD8+ T cells
to the tumor core, and increased expression of check-point
regulators such as PD-L1 expression on tumor stroma have
been shown to correlate with positive disease response to ICI
(126, 128). Interestingly, these findings parallel the association
of follicular infiltrating CD8+ T cells within germinal centers
during HIV/SIV infection. Higher frequencies within the GC
are associated with reduced plasma viral loads during chronic
infection, and these cells retain higher levels of inhibitory
receptors (105, 106, 108, 129) and are more responsive to anti-
PD-1 therapy (130).

Despite the fact that the initial demonstration of ICI leading
to augmentation of CTL function came from studies of HIV,
the effective use of ICI in HIV infected individuals is yet to
be realized. Indeed, most in vivo data assessing ICI for the
treatment of AIDS virus infection have been generated in the
SIV macaque model. In vivo PD-1 blockade of progressive SIV
infection resulted in an increase in magnitude and quality of SIV
specific CD8+ T cells (131, 132), anti-viral B cells (131) and a
transient decline in plasma viremia—a clear signal but far short
of the best outcomes in cancer. A separate study observed a
decrease in hyperimmune activation and microbial translocation
in macaques treated with anti-PD-1 (133). Several limited case
reports demonstrated that PD-1 blockade promoted increased
anti-viral immunity in HIV infected patients and was tolerated
(134, 135), but toxicity concerns remain.

PD-1 expression on CD4+ T cells has also been explored
as a potential cellular biomarker of immune cells enriched in
active and latent SIV/HIV (89–91, 136–138). In vitro studies
have described variable effects of PD-1 blockade on disrupting
the latent viral reservoir (139), and substantial reactivation of
the latent HIV reservoir with anti-PD-1 alone (140) and in
combination with the latency reversal agent (LRA) bryostatin
(141). In a macaque study, anti-PD-1 administration during
suppressive ART led to transient increase in plasma viremia and
a reduction in replication competent virus (142). These data
suggest that PD-1 signaling may play a role in maintaining viral
latency and blockade may allow for disruption and reactivation
of the latent viral reservoir. CTLA-4+ PD-1− CD4+ T cells have
also been implicated as a subset of T cells enriched in viral
DNA during suppressive ART (143). A recent open-label study
found that ascending doses of anti-CTLA-4 were well-tolerated
and showed variable changes in detectable plasma viral RNA
(144). Check-point blockade monotherapies have elicited modest
immunological responses and reactivation of the viral reservoir,
suggesting that combination therapeutic approaches may be
required for significant destabilization of the HIV reservoir.

We believe that check-point blockade should be considered
cautiously as a treatment modality for HIV, as ICIs carry
significant toxicity profiles, setting a higher bar when alternative
HIV treatments are available. Following ICI therapy for cancer,
immune-related adverse events (irAEs), and increased immune
cell infiltration into healthy tissues have caused autoimmune-like

Frontiers in Immunology | www.frontiersin.org 6 September 2019 | Volume 10 | Article 210985

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mylvaganam et al. T Cell Mediated Control of HIV–Lessons From Cancer

toxicities. Severe irAEs are more common with ipilimumab (15–
43% of patients) than nivolumab or pembrolizumab. However,
10–23% of patients given anti-PD-1 therapy still develop
potentially life-threatening toxicities, that increase with co-
administration of anti-CTLA-4 (145). A comprehensive meta-
analysis conducted to assess irAE’s resulting from ICI found
higher risk of all-grade rash and colitis with anti-CTLA-4
treatment (146) and a case study of a patient with widespread
uveal melanoma had an exceptional response to ipilimumab
and nivolumab but suffered severe immune-related sequelae,
with identical T cell clones found in the tissues affected (147).
Moreover, a recent report assessing patients treated with a single-
agent nivolumab or pembrolizumab for advanced cancer found
an overall response rate of 82.5% in patients experiencing irAE
(148), highlighting autoimmunity as an emerging biomarker for
responsiveness to ICI. Thus, there is an ongoing medical need
to not only define biomarkers of ICI resistance, but identify
mechanisms underlying cross-reactivity and toxicity as well, in an
effort to develop therapies that promote remission while limiting
immune toxicities.

Adoptive T Cell Therapy
Chimeric antigen receptor (CAR) T cell immunotherapy has
emerged as an important adoptive T cell therapy for the
treatment of cancer with the recent FDA approval of the CD19-
targeted CAR T cell “living drug,” tisagenlecleucel (Kymriah)
for the treatment of adult and pediatric B cell malignancies
(45). CARs are synthetic receptors comprised of a single-
chain variable fragment (scFV) of an antibody fused to a
transmembrane domain and intra-cellular signaling complex
[reviewed in (149)]. CAR T cells can re-direct specificity,
functionality, and localization of T cells. Clinical trials have
shown dramatic outcomes in patients with relapsed, refractory
B cell cancers. A phase II clinical trial utilizing the CD19-
targeting CAR for the treatment of B cell acute lymphoblastic
leukemia (ALL) observed an 81% complete response (CR) rate
at 28 days of follow-up, and a relapse-free survival of 59% with
a short median 12-month follow-up. Despite initial high rates
of remission, a significant fraction of patients will relapse with
CD19+ or CD19− tumors due to decreased persistence/function
of the CAR T cells, antigen loss, and impairment due to the
immunosuppressive tumor microenvironment (150). Increased
persistence of circulating CAR T cells correlated with durable
responses and improved clinical outcomes, indicating that these
therapies can be further improved (151). This is especially true for
CAR T cells that contain the 4-1BB costimulatory domain, which
allows the CAR T cells to primarily utilize oxidative metabolism
vs. glycolysis which CD28 costimulatory CARs rely on, allowing
for enhanced persistence (152).

Despite persistence of CAR T cells, relapses can occur due
to antigen loss post CAR infusion, which accounts for 40%
of relapses (153). Moreover, the immunosuppressive tumor
microenvironment significantly contributes to poor clinical
outcomes by inducing early dysfunction, decreased expansion
of CAR T cells, and limited persistence in vivo (154). A new
generation of CAR T cells is being constructed to overcome these
immune barriers. Alternative strategies include the development

of CAR constructs targeting antigens other than CD19, the
generation of bi-specific CARs that target more than one antigen,
cytokine secreting CARs that produce IL-12 (155) and IL-18
(156), or anti-PD-1 (157). Additionally, CAR T cells may be
engineered to express chemokine receptors and cytokines to
improve their homing and tumor infiltration, but the efficacy of
these approaches has not yet been confirmed in clinical trials.
One example of this approach is engineering CAR T cells to
express IL-7 and CCL19 (158) to enhance survival and T cell
trafficking to secondary lymphoid sites, respectively.

Chimeric antigen receptor (CAR) T cell therapy for HIV
actually predates its use in cancer, with the first studies completed
in the mid 1990’s, when a CD4-based CAR, shown to be effective
in vitro and safe and well-tolerated in vivo, provided no clear
clinical benefit and no reduction in the peripheral viral reservoir
(159, 160). Follow-up studies attributed lack of efficacy to limited
CAR T cell persistence, likely due to the high IL-2 dose used
in manufacturing. The CAR contained CD4 extracellular and
transmembrane domain, which might have increased CAR T
cell susceptibility to infection, but lacked costimulatory domains,
which could limit cellular functionality (161). Inclusion of
costimulatory domains has been shown to be critical for CAR
T cell efficacy in cancer. Despite limited function, there were no
associated malignancies found with the transduced infused HIV
CD4 CARs, which was promising for virally transduced adoptive
T cell therapy. In the last several years, a growing number of
high affinity broadly neutralizing antibodies (bNAbs) has been
identified against HIV passive antibody infusion trials assessing
the efficacy of HIV bNAbs have produced modestly decreased
viral loads in viremic patients (162), increased clearance of
infected cells (163), a delay in viral rebound (164, 165) and
viral suppression post treatment interruption in 30% of patients
until bNAb titers waned. Moreover, VRC01 and PGT121, bNAbs
targeting the CD4 binding site and the V3 glycan of env,
respectively, blocked HIV-1 replication from reactivated latently
infected cells in vitro (166).

The growing repertoire of HIV bNAbs and enhanced function
and persistence of second and third generation CAR T cell
vectors have propelled efforts to design bNAb CARs for HIV
remission or cure. Several groups have reported the development
of bNAb and CD4 expressing CAR T cells (CD4 CAR) that
can effectively limit HIV replication in vitro (159, 167–169).
Moreover, the recent identification of follicular CXCR5+ CD8+

T cells and their potential contribution to control of viral
replication within GC “hotspots” of active and latent HIV, has
led to the development of HIV CAR T cells that over-express
the chemokine receptor CXCR5, to promote trafficking into B
cell follicles. A proof-of-concept study in macaques showed that
infusion of CD8+ T cells overexpressing rhesus CXCR5 increased
localization within the GC (170). A separate group developed
CXCR5+ CAR T cells expressing the CD4 co-receptor for HIV
env specificity and found the cells functionally capable of limiting
SIV infection in vitro and chemotaxing in response to CXCL13 in
transwell and LN organoid cultures (171). These studies highlight
the potential feasibility of developing virus-specific CAR T cells
with an increased ability to traffic to specific anatomical sites such
as GC that harbor a large fraction of the HIV reservoir.
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Several considerations should be taken in developing adoptive
cell therapies that enhance CD8+ T cell trafficking to and
detection of infected CD4+ T cells in GC of lymphoid tissue.
In contrast to tumor masses, GC/B cell follicles are critical
anatomical sites for the induction of systemic immunity. Tfh
cells localized within GC not only harbor a significant fraction
of the HIV reservoir but are key mediators in the development of
humoral immunity. Enhanced infiltration of CD8+ T cells into
the GC of LN may impact antibody development and pathogen
specific immunity. Of note, recent trials assessing the efficacy
of re-programmed autologous CAR T cells for the treatment
of follicular lymphoma (FL) demonstrated successful restoration
of immune function in patients with relapsed or refractory
disease (172); however cytokine release syndrome (CRS) and
neurotoxicities were experienced in line with what has been
observed in other CAR T cell trials. Additional studies to assess
the efficacy of ICI in the context of FL found varying objective
response rates with some measured as high as 67% (172).
However, with limited power in these studies, it is unknown
whether ICI treatment of FL comes with a similar toxicity profile
to what has been observed in other ICI responsive cancers.
These findings suggest that enhanced accumulation of CD8+
T cells within lymphoid sites may be mechanistically supported
and immunologically tolerated, but further studies need to be
conducted to understand CD8+ T cell targeting of LNME and
the associated toxicities of targeting cells at LN sites.

Additionally, although the LNME has not been fully
characterized in the context of HIV infection, collective data
suggest an immunosuppressive environment may hamper the
local functionality of CAR T cells. Immuno-oncology strategies
to enhance intra-tumoral CAR T cell efficacy may serve to
overcome similar constraints of the LNME. Strategies include
combining CAR T cells with ICI therapy and development
of CAR T cells with endogenous PD-1 knockout or encoding
secretable check-point inhibitors and effector cytokines such as
IL-18 (156, 173), IL-12 (174), or a tethered IL-15 (175), as well
as engineering T cells to express a domain-negative form of the
TGFβ receptor (176, 177). A recent in vivo trial in macaques
using the human IL-15 superagonist ALT-803 demonstrated
enhanced trafficking of SIV specific CD8+ T cells to B cell
follicles. HIV specific CARs with the ability to secrete IL-15 in
situmay direct localization of these cells within B cell “sanctuary
sites.” Additionally, there is potential for viral escape following
treatment with HIV-specific CAR T cells that target a single HIV
env epitope, similar to what was observed in phase 1 studies
assessing single infusions of bNAbs targeting distinct HIV-1
envelope epitopes (164, 178). However, more recent studies
have found that despite selection of escape variants, rebound
viruses did not show further resistance to other antibodies
that targeted different envelope epitopes (164, 165, 178) and
combination approaches withmultiple bNAb scFVs canmaintain
viral suppression (179) and limit viral resistant variants. Thus,
combination multi-specific CAR T cell approaches could be
taken to promote durable viral control. Further studies need to
be conducted to assess the in vivo potential of the single and
multi-specific bNAb CAR T cells to reduce the HIV reservoir
and mediate post-treatment viral control. What is very clear is

that advances in CAR T cell therapy for cancer and HIV will
benefit both.

Therapeutic Vaccines
The rationale for therapeutic vaccines is similar for cancer and
for HIV: for both tumors and viruses, genomic heterogeneity
limits the efficacy of naturally induced immune responses, and
in both diseases, there is compelling evidence revealed by next
generation sequencing and advances in bioinformatics to suggest
that targeting the CD8+ T cell response to specific epitopes may
be beneficial. Moreover, in both diseases there is evidence for
dysfunctional natural immune responses that might be countered
by therapeutic immunization. For cancer, there are now multiple
vaccines that have been licensed by the FDA, and exciting
new advances from early phase human clinical trials targeting
cancer neoantigens (180), but for HIV, despite some promising
results in monkeys infected with SIV, human studies have mostly
been disappointing. This is thus an overlap area that deserves
considerable attention.

The first attempt at therapeutic vaccination for cancer
came over a century ago with the administration of bacterial
toxin directly into tumors, which led to tumor regression
in a person with an advanced sarcoma (181). This was the
first evidence that a tumor-specific immune response could
be augmented by immunization. In the cancer field today,
there are multiple licensed therapeutic vaccines, starting in
2010 with FDA approval of Sipuleucel-T (Provenge; Dendreon),
an autologous dendritic cell vaccine for prostate cancer
(182). Autologous and allogeneic tumor vaccines have been
tested in different cancer modalities, enhancing anti-tumor
responses and prolonging survival (183, 184). GVAX, the most
extensively studied whole cell vaccine which is comprised of
irradiated, allogeneic, or autologous pancreatic tumor cells
genetically engineered to secrete granulocyte colony stimulating
factor (GM-CSF), has been used in pre-clinical and clinical
studies in an attempt to stimulate dendritic cell activation
and T cell priming (185). Despite an observed increase in
anti-tumor immunity (186), a phase II trial with GVAX
in combination with cyclophosphamide for the treatment
of pancreatic cancer failed to show an increase in overall
survival (187). More recent advances have been associated with
individualized vaccines using tumor whole exome sequencing
to identify autologous neoantigens, which have been shown
to be immunogenic for intratumoral CD4+ and CD8+ T
cell responses in early phase clinical trials in glioblastoma
(180). Thus, far the impact on disease course has been
modest, and none of these approaches has effected a cure or
sustained remission.

In the setting of HIV infection, there have been multiple
attempts at therapeutic vaccination to augment HIV-specific
CD8+ T cell responses, but thus far there have been no clear
successes in humans. Studies of DC based immunotherapy
clinical trials conducted for the treatment of HIV have shown
modest immunogenicity and modest impact on viral load
(188–191), which has often been difficult to interpret due to
lack of appropriate controls. More promising results come
from recent studies in NHPs suggest that immune modulation
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may be possible. Several studies conducted in rhesus macaque
models have underscored the importance of generating a
robust anti-viral CTL response for therapeutic SIV/HIV control.
An epidermally administered DNA vaccine expressing highly
conserved elements (CE) of the SIV capsid protein p27 in
SHIV infected macaques experiencing chronic but controlled
SHIV infection. Macaques experiencing a stronger induction of
CE specific responses exhibited lower plasma viral loads (192).
In a separate study, Ad26/MVA (recombinant adenovirus 26
serotype (Ad26) prime/modified vaccinia Ankara (MVA) boost)
with a TLR-7 (Toll-like receptor 7) adjuvant demonstrated a
delay in viral rebound and a 2-log reduction in plasma viral
loads post treatment interruption (193), where the breadth
of the immune response directly correlated with time to
rebound and inversely with plasma viral loads. However, a
recent randomized controlled trial utilizing a therapeutic vaccine
regimen in HIV infected patients who began cART early during
the course of infection, showed a limited induction of anti-
viral CD8+ T cells, no significant effects on the kinetics of
viral rebound, and no reduction in the viral reservoir post
discontinuation of ART (194). This was despite the addition
of human interleukin (IL)-12p35 and p40 proteins via in
vivo electroporation to maximize immunogenicity, previously
shown in non-human primates to enhance the potency of the
HIV DNA based vaccine (195, 196). Moreover, the subjects
enrolled in this study were within the acute phase of infection
with early cART treatment and potentially better preserved
immune function, but still failed to show any effect on post-
treatment control.

For both HIV and cancer, epitope mutation resulting in
immune escape appears to play a major role in the lack of
efficacy of host T cell responses, but recent studies suggest
that this property may be exploited to therapeutic benefit. In
cancers, neoantigens which can be bioinformatically identified
have been used as immunogens and shown promise in early
phase human trials (180, 197). In HIV infection, application
of network theory to HIV structure has revealed that mutation
of epitopes at important network positions disproportionately
impairs viral replication capacity and that CD8+ T cell targeting
of highly networked epitopes distinguishes persons who naturally
control HIV, even in the absence of protective HLA alleles
(30). These data suggest that targeting mutationally constrained
epitopes is a promising approach for vaccine design. Support
for induction of immune responses to neoantigen epitopes or
highly networked epitopes comes from recent studies showing
that a synthetic DNA, multi-neoantigen cancer vaccine in a
mouse model drives robust MHC class I CD8+ T-cell responses
which are able to impact tumor growth (198). It is still
unknown whether therapeutic vaccinations alone can increase
the magnitude of the HIV specific response to a level that can
both detect very low antigen levels in ART treated patients as
well as induce durable viral suppression upon ART cessation,
but future studies incorporating check-point blockade, cell based
therapies, and tissue specific/LNME agonists in combination

with therapeutic vaccines to develop a functional, highly potent
CTL response may be key to containing or eradicating the latent
HIV reservoir.

CONCLUSIONS

HIV remains a significant global health burden and despite
the profound efficacy of ART in preventing viral transmission
(199), the number of individuals living with HIV and on
treatment continues to rise each year and non-AIDS related
morbidities are increasing with the duration of HIV and time
on ART (200, 201). Given the limited impact of ART on
viral “sanctuaries,” there is a critical need to identify immune
mechanisms within tissue sites that harbor the HIV reservoir
and hinder anti-viral immunity, similar to the need for immune
based therapies in cancer to access malignant cells in tissue
sites and overcome tumor immunosuppressive environments.
In the same way that advances in cancer immunotherapy
have resulted in durable remission in patients with seemingly
incurable malignancies, there is strong rationale for immune
control if not eradication of HIV, given that some persons
are able to achieve a state of immune-mediated functional
cure of HIV infection without the need for ART. A deeper
understanding of common mechanisms of immune dysfunction
and exclusion as well as mechanisms of tumor response leading
to durable remission, will be critical to attaining a functional
state of viral remission or cure in HIV infected patients. These
include enhancing T cell trafficking into tumors and lymph
node HIV sanctuaries, overcoming immune exhaustion, and
escape, reversing tumor and lymph node immunosuppressive
environments, and eliciting robust CTL responses against neo-
epitopes and highly networked epitopes. Caution, however, must
be taken when exploring immunotherapeutic interventions to
avoid emergence of autoimmunity and other adverse events. A
greater understanding of the immune mechanisms regulating
the LN microenvironment and the impact of check-point
blockade on CTL function, localization, and viral clearance
within the LNME will be crucial to the development of HIV
cure strategies. Thus, as the field of cancer immunotherapy
progresses, the HIV cure field must take heed in determining
what therapeutic interventions will prove safe, effective, and
clinically justifiable to explore in HIV infected individuals
currently durably suppressed with ART.
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A major obstacle to HIV eradication is the presence of infected cells that persist despite

suppressive antiretroviral therapy (ART). HIV largely resides outside of the peripheral

circulation, and thus, numerous anatomical and lymphoid compartments that have the

capacity to harbor HIV are inaccessible to routine sampling. As a result, there is a limited

understanding of the tissue burden of HIV infection or anatomical distribution of HIV

transcriptional and translational activity. Novel, non-invasive, in vivomethods are urgently

needed to address this fundamental gap in knowledge. In this review, we discuss past

and current nuclear imaging approaches that have been applied to HIV infection with an

emphasis on current strategies to implement positron emission tomography (PET)-based

imaging to directly visualize and characterize whole-body HIV burden. These imaging

approaches have various limitations, such as the potential for limited PET sensitivity

and specificity in the setting of ART suppression or low viral burden. However, recent

advances in high-sensitivity, total-body PET imaging platforms and development of new

radiotracer technologies that may enhance anatomical penetration of target-specific

tracer molecules are discussed. Potential strategies to image non-viral markers of HIV

tissue burden or focal immune perturbation are also addressed. Overall, emerging nuclear

imaging techniques and platformsmay play an important role in the development of novel

therapeutic and HIV reservoir eradication strategies.

Keywords: human immunodeficiency virus, positron emission tomography imaging, simian immunodeficiency

virus, nuclear medicine, molecular imaging

INTRODUCTION

Despite the overwhelming success of antiretroviral therapy (ART) to achieve complete or near-
complete HIV suppression, residual virus that integrates into host cell genomes prior to ART
initiation persists indefinitely. Blood-derived resting CD4+ T cells comprise one of the most
characterized reservoirs of latent HIV, and integrated viral DNA can exist at frequencies below
one copy per million resting CD4+ T cells (1–6). However, HIV largely resides in organized
lymphoid or other tissues outside of the peripheral circulation, and many anatomical regions are
inaccessible to routine sampling (7–16). Only a small amount of tissue from a small number of sites
can be realistically obtained from living human participants, and one of the major barriers to the
successful design and implementation of HIV eradication or immune-based therapeutic strategies
is the limited ability to characterize the tissue-wide burden of HIV in the setting of ART.
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HIV-1 infection leads to immune activation and inflammation
throughout all stages of disease. Markers of T-cell activation
remain elevated in blood and lymphoid tissues in HIV-infected
individuals, even in the setting of elite control or after years
of suppressive ART. Certain immune privileged environments
may be especially important foci of HIV persistence and viral
transcriptional activity. For example, CD4+ T-follicular cells
(TFH) within lymph node B cell follicles have been shown to
be highly enriched in HIV-1 DNA, are very permissible to HIV
infection, and are able to produce high levels of replication
competent virus upon ex vivo stimulation (12, 17–19). TFH

cells may be protected from various host immune responses by
their location in the unique histological makeup (12, 17–19).
Even outside of infected tissues, persistent HIV has lasting and
often profound effects on tissues such as vascular endothelium,
gut, and brain, and leads to sustained, systemic inflammatory
responses. Markers of inflammation, coagulation, and immune
activation remain elevated in effectively treated HIV infection
and are strong predictors of mortality and non-AIDS events,
which has been demonstrated in a variety of cohorts (20–23).
As a result, there are direct and indirect consequences of HIV
infection that are clinically relevant, even in the setting of treated
and suppressed HIV. For example, HIV has been associated
with increased cardiovascular disease, neurological disorders,
and various hematological and solid-tumor malignancies (24).

The direct and indirect impact of persistent HIV on
immune activation, systemic inflammation, and increased
clinical comorbidities has led to interest in positron emission
tomography (PET) and other molecular imaging techniques
as tools to better understand the whole-body burden and
consequences of HIV infection. Molecular imaging has been
critical for the diagnosis, treatment, and management of various
malignancies and other diseases. Similar modalities have the
potential to provide insights into the design, implementation,
and analysis of immunotherapies and other interventions to
reduce HIV reservoir burden, lower inflammation, and thus
reduce HIV-related morbidity.

NUCLEAR IMAGING APPROACHES TO HIV

PERSISTENCE AND HIV-RELATED

MORBIDITY

The Molecular Imaging Toolbox
Innovative strategies to perform molecular imaging, from
microscopic visualization and characterization techniques on the
tissue level, to whole-body in vivo anatomical and functional
imaging incorporating techniques such as SPECT and PET, are
rapidly being developed for a wide range of diseases, including
HIV and other chronic infections (see Table 1).

Ex vivo molecular imaging on the cellular and tissue level has
already providedmany important insights into HIV pathogenesis
such as identifying foci of residual infected cells in the setting of
ART and characterizing the immunological microenvironments
of such foci (58–65). These studies have focused largely on gut,
lymphoid, and central nervous system tissues but may involve a
wide variety of other scenarios such as tumormicroenvironments

TABLE 1 | Historical and current PET radiotracers used in the context of HIV

infection.

Early SPECT radiotracer Target or response in disease

99mTc-HMPAO Cerebral blood flow (25–34)

123 I-Iodoamphetamine Cerebral blood flow (35–38)

123 I-FP-CIT Cocaine analog, dopaminergic

neurotransmission (39)

123 I-iodobenzamide Dopaminergic neurotransmission

201Thallium Differentiation of CNS lymphoma from

toxoplasmosis (40–43)

Current (dates) PET radiotracers Target or response in disease

18F-Fluorodeoxyglucose FDG Glucose metabolism

TSPO imaging (11C-PBR28,
18F-DPA-714, 11C-DPA-713,
11C-PK11195)

Neuroinflammation (44–50)

Fluoromisonidazole Reduced hypoxia associated with Nelfinavir

(51)

82Rb Myocardial perfusion (52, 53)

11C-DASB Dysregulated serotonergic transmission

(54, 55)

11C-PiB Alzheimer disease (AD) plaque tracer—no

increased AD risk (56, 57)

and quantifying vascular inflammation. However, the focus of
this review covers in vivo nuclear medicine approaches with an
emphasis on novel PET imaging approaches of HIV persistence.

Nuclear Imaging Approaches to HIV

Infection
Common nuclear imaging approaches that have been applied
to HIV infection for over 20 years include SPECT/CT and
PET/CT imaging (44). These modalities involve the detection,
anatomical location, and kinetics of radioactive tracer uptake,
with SPECT involving the detection of single photon gamma
emission and PET measuring positron emission. Clinically, these
nuclear imaging modalities are commonly used to diagnose
various malignancies and provide information on potential
tumor burden or sites ofmetastases, disease staging, and response
to various treatment strategies. They are also used to differentiate
benign, metabolically quiescent tissues from metabolically active
foci, which may be manifested by active infections, reactive
lymphoid tissues, vascular inflammation, and more. As a result,
nuclear imaging has been applied in the setting of HIV infection
and HIV-related comorbidities. HIV imaging studies are diverse
and have involved numerous tracers and measured outcomes. As
summarized in Table 1 and below, PET imaging has been used
to (1) measure cellular metabolic activity in a variety of different
clinical scenarios (e.g., 18F-FDG); (2) carry out anatomical and
functional neuroimaging involving various metabolic measures,
cerebral fluid, dopamine transport, and cellular activation in the
setting of HIV-associated neurological disease (HAND), central
nervous system malignancies, and opportunistic infections; (3)
determine ART-related toxicities; (4) quantify changes in various
immune cell types, such as CD4+ T-cell distribution in the
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setting of immunomodulatory therapies in animal studies; and
(5) characterize the effects of HIV on cardiovascular disease. A
recent PubMed search using HIV or AIDS and PET yielded 537
references, averaging about 10 articles per year.

Over the past several years, there has been increased interest
in the development of HIV-specific tracers to provide direct
anatomical localization and burden of infection. In vivo studies
are currently taking place using techniques such as radiolabeling
monoclonal antibodies (mAbs) specific for HIV or SIV envelope
proteins (66, 67). In addition, traditional nuclear medicine
approaches, such as FDG-PET, have been applied to look at HIV
persistence in the setting of active infection, HIV controllers
(i.e., those who are able to suppress virus without ART),
and ART-suppressed individuals (see discussion below). These
immunoimaging approaches have the potential to significantly
improve our understanding of where and how residual viral
replication and HIV-related inflammation resides in the setting
of suppressive therapy. More specifically, the diverse nuclear
imaging toolbox may prove to be useful in people living with
HIV to:

• Understand the temporal changes that occur within the
whole body as a function of disease status, ART use, viral
recrudescence following cessation of therapy, or foci of
HIV reactivation during a “shock and kill” approach to
HIV remission.

• Distinguish opportunistic infections and malignancies from
direct or indirect impact of active or suppressedHIV infection.

• Assist in the development of new drugs and
therapeutic paradigms.

• Aid in participant selection for various therapeutic strategies.
• Monitor individualized responses to various therapeutic

interventions (including ART, immunotherapies, etc.).

Radiopharmaceutical, Pharmacokinetic,

and Nuclear Imaging Considerations
The utility of a specific nuclear imaging strategy is tightly linked
with the various properties of the applied radiopharmaceutical
tracer. These properties include radiologic dose, exposure, decay
rates and tissue uptake, drug metabolism, and excretion. PET
tracers involve a radiolabeled molecule as a source of positrons.
These isotopes have a wide range of radiological half-lives
(t1/2). Decay rates range widely from minutes to many days
as summarized in Table 2, and ideally are in synergy with
the pharmacokinetics of the radiolabeled tracer. For example,
mAbs may take several days to reach target tissues and bind
to specific targets, therefore requiring longer-acting isotopes
such as zirconium-89 (t1/2 = 78 h), whereas FDG uptake
(fluorine-18 t1/2 = 110min) is rapid and glucose is internalized
relatively quickly by metabolically active cells. Special care in
matching the appropriate radioactive molecule with the target
drug will be critical in the rational design and implementation
of HIV-specific imaging agents. In addition, human studies are
limited by the total radiation exposure to a participant, leading
to challenges with administration of high enough doses for
clinically meaningful target-to-background contrast, restricting
the frequency of tracer administration andmay limit longitudinal

TABLE 2 | Common radioisotopes used in HIV nuclear imaging.

Radioisotope Half-

lives

Pros and cons

11C 20min Short half-life good for repeat studies,

carbon-11 for carbon-12 exchange in small

molecules/drugs produce the same labeled

molecule/drug, half-life may be too short to

achieve adequate signal-to-noise ratio, may not

be transported to distant scanners

18F 110min Ideal positron emission characteristics for

high-resolution PET imaging may incorporate

into small-molecules/drugs. Half-life suitable for

longer imaging and delivery to remote scanner

sites. May not be long enough for larger

biologic molecules. Free 18F-Fluoride ion

accumulates in bone

64Cu 12.7 h Half-life compatible with imaging larger

molecules like mAbs. However, half-life may

limit utility when using HIV gp120-specific or

other mAb, which take time to penetrate

certain target tissues

89Zr 78 h Half-life compatible with imaging larger

molecules like mAbs. Radiation dose to patient

is higher so lower administered dose is

necessary. Takes a long time to clear from body

so repeat studies limited but allows for serial

imaging over days with a single radioisotype

injection. May be beneficial when using HIV

gp120-specific mAb, which takes time to

penetrate certain target tissues. Ideal for

transport to distant scanners. 89ZrCl3 may

accumulate in active bone

imaging studies. In addition, target densities may be quite
low in various clinical scenarios such as ART-suppressed HIV
infection, where viral proteins may be expressed in very low
amounts or frequencies on cells or in tissue, if at all. As a
result, there are expected to be significant challenges to increase
signal-to-noise ratios in these participants, and this highlights
the continued need for non-viral-specific tracers to provide
information on location, burden, and immunological impact of
persistent HIV infection.

PET Imaging in HIV Infection—Cellular

Metabolic Activity, Immune Activation, and

HIV Persistence
In the research setting, PET/CT has commonly been used in
conjunction with FDG, which provides ameasurement of glucose
metabolism as a surrogate for inflammation, which is taken up
substantially higher by inflammatory cells and macrophages in
the tissue (68, 69). FDG-PET imaging has been reported for
HIV in the mid to late 1980s, with monitoring of HIV pre-
and post-AZT monotherapy (combination ART was not widely
available until the mid-1990s), and workup of HIV-associated
neurological disorders along with staging of malignancies (44,
70, 71). In addition, FDG-PET studies have involved anatomical
localization of HIV-associated immune activation, correlating
lymph node inflammation with disease stage, and associating
high areas of FDG uptake in non-human primates with
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productive SIV infection (72–77). Since this time, studies in the
general population have demonstrated that arterial inflammation
assessed using FDG-PET/CT can predict future cardiovascular
(CV) events (78). Furthermore, lipid lowering using statin
therapy along with thiazolidinedione therapy has reduced arterial
FDG-PET uptake in several clinical trials (79–83). Our group
also has recently reported that using a mAb to IL-1β significantly
reduced inflammatory markers along with arterial and bone
marrow metabolic activity assessed using FDG-PET/CT in the
setting of treated HIV (84). Studies involving animal models
and humans showed that both relative and absolute FDG
uptake within inflamed tissues (e.g., atherosclerotic plaques)
correlate with the degree of immune cell infiltration (12, 17–
19, 85–89). More recently, FDG-PET has been applied to assess
altered glucose metabolism in HIV-associated inflammation
and has demonstrated that HIV patients have higher arterial
inflammation that is associated with sCD163 (87). Initiation
of ART reduced bone marrow activity but did not affect
arterial inflammation; furthermore, metabolic activity on FDG-
PET/CT prior to ART was predictive of immune reconstitution
inflammatory syndrome development (90).

Subsequently, our group showed that HIV-infected
individuals on ART have higher metabolic activity as measured
by FDG-PET/CT in the arterial vasculature and lymph nodes
than matched uninfected controls and that these markers
correlated with measures of HIV persistence in peripheral blood
(91). Importantly, individuals on ART had higher FDG uptake in
lymph nodes and arterial vasculature than matched uninfected
controls. Overall, lymph node FDG activity was significantly
associated with levels of integrated HIV DNA measured in
peripheral blood mononuclear cells (91). This study suggests
that PET-based imaging of inflammation or immune activation
has the potential to provide information regarding regional
areas of HIV persistence. However, FDG is likely taken up by
immune activation/inflammation even when not in tissue with
HIV-persistent foci (e.g., arterial wall, which may be influenced
by monocyte activation); therefore, more specific markers of
T-cell trafficking and targeting of infected tissues are needed.

Recently, advances in molecular imaging of immune
activation by PET have made it possible to use non-invasive
strategies to monitor immune activation with increased T-
cell specificity than FDG. Increased activity of nucleoside
salvage pathways has been associated with the proliferation
of adaptive immune cells (92). In preclinical models, the PET
probe [18F]-2-fluoro-d-(arabinofuranosyl)cytosine ([18F]-
FAC), which targets the deoxycytidine salvage pathway, was
shown to localize to focal sites of immune activation (93) and
is predominantly accumulated in proliferative T cells (94).
Recently, a radiofluorinated imaging agent [18F]F-AraG (95) was
synthesized with a goal of development for human use. F-AraG
is a fluorinated purine derivative with selective T-cell uptake. A
water-soluble AraG prodrug, Nelarabine, is FDA-approved for
the treatment of relapsed T-cell acute lymphoblastic leukemia
and T-cell lymphoblastic lymphomas (96, 97). [18F]F-AraG is a
high-affinity substrate for deoxyguanosine kinase (dGK) and a
low-affinity substrate for deoxycytidine kinase (dCK). Both dGK
and dCK are over-expressed in activated T cells. Blocking the

expression of either dGK or dCK causes reduction in [18F]F-
AraG uptake, while over-expression of either dGK or dCK
leads to increased accumulation of [18F]F-AraG. T-cell-specific
tracers such as these may play an important role in imaging HIV
persistence, with the potential to be more specific to regional
areas of immune perturbance as a result of HIV replication or
residual viral transcriptional activity.

Neuroimaging Microglia Activation in HIV

Infection and Related Neurologic Disorders
PET imaging using tracers specific for activated microglial cells
is another example of how non-specific markers of increased
immune activation has been successfully applied to study HIV-
related comorbidities in the central nervous system. More
specifically, molecules have been developed that target the 18-
kDa mitochondrial translocator protein (TSPO) that shuttles
cholesterol into mitochondria for steroid biosynthesis (45–50).
TSPO is upregulated in activated microglia, and, as a result, has
been used in neuroimaging to determine differences between
HIV-infected and uninfected individuals and to characterize
differences between various HIV clinical disease manifestations,
including HAND (50). PET imaging with TSPO-specific tracers
appear to bemore specific to innate immune activation than FDG
(45) and have led to some important insights into central nervous
system persistence of HIV. For example, ART-suppressed
individuals without cognitive impairment have been observed
to have chronically elevated microglial activation (48), whereas
other studies showed that TSPO levels correlated with worse
executive brain performance and other HIV-associated cognitive
vulnerabilities (46, 49). Despite varying results complicated
by various experimental designs and definitions of cognitive
impairment (50), there is continued interest in using PET-based
immune activation approaches to study the direct impact of
residual HIV infection in the setting of suppressive ART.

Antiretroviral Drug Labeling
The question of whether or not there is ongoing replication
in various tissue sanctuaries in the setting of otherwise
suppressive ART remains controversial. For example, there
is a paucity of robust phylogenic evidence for evolution
of HIV sequences or development of resistant mutations
in suppressed individuals over time and ART intensification
studies have not demonstrated reductions in low-level, residual
plasma HIV RNA levels (98–103). Many of these studies
were performed in peripheral blood or limited by the depth
of sequence coverage or tissues sampled. Other studies have
shown potential indirect evidence of replication such as an
increase in unintegrated episomal HIV DNA in blood and cell-
associated RNA in tissue (104–106). One topic of interest is
the extent to which various ART drugs reach or have activity
in various anatomical tissue compartments (107), potentially
creating viral sanctuaries that permit low-level replication or,
at the very least, allow higher levels of viral transcriptional
activity (9, 106, 108). Transcriptionally active cells may also
lead to chronic immune activation and inflammation. However,
sampling all of the potential sites of persistent HIV for
concomitant ART concentrations and viral reservoir persistence
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is not practical. It is also difficult to obtain information on
the kinetics of drug distribution within tissues outside of
peripheral blood. As a result, PET-based imaging of radiolabeled
antiretroviral drugs may play an important role in pinpointing
areas of poor ART penetration and therefore important sites
of persistent HIV burden and potential foci of viral rebound
following ART cessation. Imaging studies using fluorine-18-
labeled raltegravir (a strand-transfer integrase inhibitor) are
ongoing (NCT03174977) and have the potential to locate areas
of HIV persistence.

PET Immunoimaging of CD4+ T Cell

Dynamics in SIV Infection
CD4+ T cells are the main target of HIV infection. Active
disease leads to subsequent and profound reduction in CD4+
lymphocytes throughout the blood and tissues.While countsmay
improve in many individuals on ART, lasting perturbations to
tissues such as the lymph nodes and gut-associated lymphoid
tissues are common (8, 109–114). As a result, there has been
interest in CD4+ T-cell-specific PET-based imaging techniques
to follow CD4+ T-cell dynamics and recovery following
various interventions. A recent investigation of the use of an
α4β7 mAb in acute SIV infection in macaques demonstrated
sustained virological control in mAb-treated monkeys. While
these results have yet to be confirmed, the study involved PET-

CT imaging using a 64Cu-labeled F(ab
′
)2 antibody against CD4.

The study demonstrated repopulation of CD4+ T cells in a
number of tissues, including gut, which was unexpected based
on the original study hypothesis that the α4β7 mAb would
interfere with CD4+ T-cell trafficking to these areas (67). This
investigation is an example of how imaging various cell-specific
markers may provide critical information regarding whole-
body responses to various immune-based or other therapies
for a wide variety of diseases. For example, CD8+ T-cell
responses can theoretically be tracked over time in response
to interventions such as vaccines or therapies that remove
immune checkpoint and reverse T-cell exhaustion (e.g., anti-
PD1 therapy).

PET-Based Direct Imaging of SIV Infection
As above, PET-based imaging techniques have the potential
to delineate tissue burden and sequelae of HIV infection.
PET/CT imaging approaches using a radiolabeled 64Cu-labeled
SIV gp120 mAb-specific clone (7D3) have been recently
applied to assess SIV envelope protein expression in infected
macaques with varying degrees of viremic control and in
the setting of early initiation of ART (66). Results from this
pivotal study demonstrated that areas of active SIV replication
can be visualized and distinguished from non-selective tracer
uptake in uninfected animals, with some HIV-related signal
detected several weeks following ART initiation. As would be
expected, lymphoid-rich areas were localized predominately at
sites of persistent SIV protein expression (66). The study also
showed that anatomical regions that are often neglected by
in vivo tissue sampling, such as nasal-associated lymph node
tissue, may play an important role in initial HIV seeding

and subsequent persistence. A follow-up sub-study of anti-
α4β7 treatment in SIV-infected macaques incorporating the
radiolabeled SIV gp120 mAb demonstrated a reduction in SIV
protein expression in various tissues, including the lung, spleen,
and lymph node chains (89). These data suggest that direct
SIV or HIV imaging radiotracers have the potential to play a
critical role in characterizing HIV persistence and response to
curative strategies. As a result, there is currently a high level of
interest in direct HIV imaging techniques to humans. However,
immunoimaging in SIV infection does have several potential
limitations. For example, mAb or antigen binding fragments may
have heterogeneous tissue distribution in vivo, and humanization
or simianization may lead to immunogenicity concerns (115).
Finally, the SIV orHIV antigen-specific PET-imaging approaches
do not allow for direct discrimination between actively viral
producing cells, cells expressing SIV or HIV antigens at the
surface, viral particles, or simply viral antigen trapping by non-
infected cells.

Human HIV-Specific PET Imaging:

Challenges and Promises
Despite the early success of direct SIV specific in the first
non-human primate PET/CT imaging studies, there are several
challenges in adopting these techniques to human imaging.
For example:

1. Non-human primates are typically infected with a clonal
SIV strain with known binding affinity to gp120-specific
mAb. HIV-infected humans can be extraordinarily diverse
with both minority and majority clones capable of harboring
resistance mutations to the clinically available HIV-specific
mAbs, which have been previously developed as therapeutic
broadly neutralizing antibodies (116–122). As a result, there is
expected to be a wide range of mAb binding affinities between
study participants that will require implementation of mAb
resistance testing and careful considerations as to data analysis
and interpretation.

2. HIV gp120 expression is expected to be very low among
infected tissues in participants on suppressive ART. As a
result, there may be insufficient signal-to-noise ratio in order
to visualize areas of persistent infection. However, PET
imaging may be particularly useful during early infection
and for characterizing foci of early tissue HIV recrudescence
following cessation of ART; incorporating PET imaging
approaches in studies involving analytical ART interruptions
is of utmost importance.

3. mAbs do not readily cross the blood–brain barrier. Barring
any inflammation andmajor perturbations of the blood–brain
barrier, imaging potential foci of HIV in the central nervous
system will be challenging. As a result, the development of
small-molecule HIV-specific tracers with improved central
nervous system or other immune privileged tissue penetration
is urgently needed.

4. Longitudinal human trials are limited by radiation exposure;
therefore, multiple imaging time points may be difficult
to incorporate into a variety of studies. This may be a
particular issue when implementing tracers conjugated with
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radioisotopes with longer half-lives in vivo, which are likely
going to be required given the kinetics of mAb uptake as
discussed above. These limitations provide the rationale to
incorporate more than one radiotracer in human studies.
For example, administering an HIV-specific mAb tracer
following PET imaging using a non-viral specific marker of
inflammation or immune activation may provide important
insights into the relationship between ongoing immune
perturbations and HIV persistence.

Fortunately, several strategies exist or are in development
to address these challenges using radiolabeled mAbs in
PET imaging. For example, smaller affibody proteins or
antibody fragments (e.g., minibodies, nanobodies, and single-
chain variable regions) (123–125) may have improved tissue
penetration and favorable pharmacokinetics for imaging low-
level HIV protein expression in various tissues. There is also
a high level of interest in the development of dual or multi-
targeted molecules for immunoimaging (126) or engineering
antibodies to have greater anatomical barrier penetration. One
exciting strategy is increasing antibody delivery across the blood–
brain barrier by developing bispecific antibodies or designer
molecular shuttles that bind to the transferrin receptor (127–
130). Animal studies are exciting and can theoretically be applied
to HIV-specific mAb or antibody fragments.

The development and implementation of very-high-
sensitivity, total-body PET scanners, such as the EXPLORER
platform (131–133), are also likely to overcome some of the
signal-to-noise limitations of imaging HIV-infected cells in ART-
suppressed individuals or those with low overall HIV envelope
protein expression. These platforms are just now coming on
line for in vivo use, and have the potential to revolutionize
immunoPET imaging. Approximately 1% of the photons emitted
during traditional PET scanning are detected given a limited
axial field of view and body length that can be imaged at one
time. The field of view in EXPLORER is extended to the entire
individual by using a large number of parallel detectors that
simultaneously detect photon emission (134). Early data suggest
that EXPLORER PET provides a >40-fold gain in effective
sensitivity and a >6-fold increase in signal-to-noise ratio
compared with standard PET scanners (135). The first-in-human
imaging studies have recently been completed (131) and offer
an opportunity to significantly advance PET-based imaging of
HIV reservoirs. Other emerging technologies include solid-state
digital photon counting PET systems, such as those that use
solid-state silicon photomultiplier technology (136). These
systems have led to improvements in signal-to-noise ratios and
enhancing image contrast (137, 138) and may play an important
role in improving PET imaging in HIV infection.

Limitations of in vitro Modeling of

HIV-Specific Immunoimaging Techniques
HIV or SIV envelope-specific PET immunoimaging strategies
are likely to be semiquantitative at best. For example, PET/MR
or PET/CT imaging techniques reveal relative changes in mAb
tracer uptake in various tissue region of interest (e.g., lymph node
tissues, gut) before or after initiation of ART or immunotherapy

(66, 67). However, questions arise as to what the intensity of the
PET signal means in terms of the actual number of infected,
HIV or SIV envelope-expressing cells. In other words, can PET
imaging be used to directly quantify the burden of HIV in vivo?
One solution that is often presented is to perform ex vivo studies
involving PET imaging of three-dimensional clusters of known
numbers of infected and uninfected cells (either laboratory
infected or derived directly from infected individuals) in order to
determine the sensitivity of PET to detect various levels of HIV
protein expression. While appealing, these studies are limited by
the multitude of variables within living organisms that determine
tracer uptake and PET detection. Modern PET scanners are
sensitive and able to detect tracer-derived positron emission
events above normal background radiation (139). Simply labeling
a cell or a group of cells that express HIV envelope will likely
lead to a detectable signal. However, regardless of what threshold
in the number of infected cells can be detected (e.g., 10, 100, or
1,000 in a sub-centimeter cluster) in isolation, these types of ex
vivo experiments are unable to account for many biasing factors.
For example, radiotracers are often delivered in microdoses,
with or without a specified amount of unlabeled antibody. The
distribution of these microdoses to various tissues relies on many
variables, such as blood flow dynamics, tissue fibrosis, and non-
specific tracer uptake, to name just a few. In addition, there is
background radiation that is given off by tracers in the macro and
microcirculation and from organs involved in tracer metabolism
and excretion. Coupled with the need for PET attenuation and
tomographic reconstructions in image acquisition and analysis,
it will likely be difficult to correlate readout of ex vivo PET
sensitivity studies with actual uptake in living organisms. In
addition, each individual has different metabolic and physiologic
dynamics (e.g., liver function, cardiac output, body surface area
andmass, renal glomerular filtration rates, local microanatomical
variations, etc.). As a result, performing parallel in vivo tissue
biopsy studies along with PET imaging may be the most
useful strategy to provide some quantitative understanding of
radiotracer uptake signal and direct cellular measures of HIV
burden or cell activation state.

CONCLUSIONS

PET imaging offers several exciting strategies to characterize
HIV and HIV-related comorbidities. Despite limitations of
traditional of nuclear imaging techniques in identifying HIV-
infected cells in vivo, proof-of-concept SIV non-human primate
studies demonstrate that various immunoimaging approaches
have potential to enhance HIV curative and persistence research.
Signal-to-noise issues are likely to limit imaging in ART-
suppressed individuals when cell-surface HIV protein expression
is expected to be low. However, novel approaches such as high-
sensitivity, total-body EXPLORER imaging, PET imaging during
latent HIV reservoir reactivation or ATI, and development and
implementation of non-viral markers of HIV persistence have
the capacity to overcome these limitations and provide important
tools for the development of novel therapeutic strategies. In
addition, technical and data processing advancements may
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allow for combination imaging approaches, from tissue-level
microscopy to whole-body PET imaging.
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Natural killer T (NKT) cells are CD1d restricted T cells that mostly recognize lipid antigens.

These cells share characteristics with both adaptive and innate immune cells and have

multiple immunoregulatory roles. In a manner similar to innate immune cells, they respond

quickly to stimuli and secrete large amounts of cytokines, amplifying and modulating the

immune response. As T cells, they express T cell receptors (TCRs) and respond in an

antigen-specific manner like conventional T cells. There are at least two subtypes of NKT

cells, type I and type II, that differ in the nature of their TCR, either semi-invariant (type I) or

diverse (type II). The two sub-types generally have opposing functions in tumor immunity,

with type I promoting and type II suppressing tumor immunity, and they cross-regulate

each other, forming an immunoregulatory axis. The tumor has multiple mechanisms by

which it can evade immune-surveillance. One such mechanism involves alteration in

tumor lipid repertoire and accumulation of lipids and fatty acids that favor tumor growth

and evade anti-tumor immunity. Since NKT cells mostly recognize lipid antigens, an

altered tumor lipid metabolic profile will also alter the repertoire of lipid antigens that

can potentially affect their immune-modulatory function. In this review, we will explore the

effects of alterations in the lipid metabolites on tumor growth, antigen cross-presentation,

and overall effect on anti-tumor immunity, especially in the context of NKT cells.

Keywords: lipid metabolism, tumor immunity, natural killer T-cells, antigen presentation, dendritic cells

INTRODUCTION

Natural killer T cells (NKT cells) are a specialized subset of T-lymphocytes that share characteristics
of both the innate and adaptive immune system. By definition, NKT cells are cells that recognize
mostly lipid antigens presented by a non-classical class I MHC molecule, CD1d (1). CD1d
is a member of the CD1 family, which are involved in presentation of a variety of both
endogenous and exogenous lipid antigens to T-lymphocytes (2). NKT cells respond quickly
and produce copious amounts of cytokines, further amplifying the immune response, while
at the same time acting in an antigen specific manner. They are further categorized into two
broad subsets based on their TCR repertoire. Type I NKT cells express a TCRα chain with
limited diversity and therefore are referred to as semi-invariant NKT cells or invariant NKT
cells (iNKT). The TCRα chain expressed by type I NKT consists of Vα14Jα18 in mice and
Vα24Jα18 in humans, which preferentially pairs with Vβ8, Vβ7, Vβ2 in the former, and Vβ11
in the later (3–5). A marine sponge-derived lipid, α-GalCer (α-galactosylceramide) bound to
CD1d, is a prototype ligand that binds to and activates virtually all type I NKT cells. In mice,
type I NKTs are mostly CD4 single positive and CD4/CD8 double negative cells, whereas in
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humans these are CD4 or CD8 single positive as well as double
negative cells (6). Type II NKT cells are a distinct CD1d restricted
NKT population that does not react to α-GalCer. These cells
express a more diverse TCR repertoire. A subset of type II NKT
cells that reacts to sulfatide, a self-glycolipid, was the very first
subtype to be identified by a specific ligand (7). Although type
II NKTs can recognize a variety of lipids presented by CD1d,
to date, sulfatide reactive type II NKT cells remain one of the
best-described subsets (8). Type II NKT cells appear to be the
predominant population in humans (9), but due to the lack of
a specific ligand and isolation techniques, they have been difficult
to study (10). Although NKT cells recognize lipid antigens, they
can recognize hydrophobic peptides in addition to lipids as
well, which is beyond the scope of this review and is reviewed
elsewhere (11–14). Both Type I and II NKT cells modulate the
immune response during tumor development and progression.
Although highly contextual, in general, type I NKT cells are
shown to have enhanced anti-tumor immune response whereas
type II NKT cells generally act in an opposing manner (5, 15–18).
However, in some mouse tumor models, type I NKT cells also
have been shown to be suppressive of tumor immunity (18–22).

NKT cells recognize a diverse repertoire of both endogenous
and exogenous lipids (2, 23). Most information on NKT lipid
antigenic repertoire has come from mouse studies. Unlike
humans, mice express only CD1d among the CD1 gene family
(24). The generic structure of a lipid antigen-loaded to the CD1d
molecule consists of a polar headgroup (e.g., a galactose sugar)
linked to hydrophobic side chains. The CD1d molecule has
two hydrophobic pockets, the A′ and F′ pockets, into which
the hydrophobic side chains fit, whereas the polar headgroup
sits outside and interacts with the TCR on the NKT cell (13).
The length of the hydrophobic side chain as well as structural
modifications in both the side chain and the polar headgroup can
affect the binding of the lipid antigen presented by CD1d to the
TCR on NKT cells. This, in turn, can have a differential effect on
their activation status and eventual immune responses (25, 26).

Studies have reported several lipids that bind to CD1d and can
potentially be presented to NKT cells. Glycerophospholipids and
sphingolipids are the two major lipid groups that bind to CD1d
(27). Phosphatidylcholine (PC), phosphatidylethanolamine (PE),
Phosphatidylserine (PS), phosphoinositoI, phosphatidylglycerol,
and phosphatic acid are the various glycerophospholids that have
been shown to bind to CD1d with variable affinities. Several self-
lipid antigens stimulate both murine and human NKT cells (28)
such as lysophosphatidylethanolamine, and lysophosphatidic
acids. Some lipids stimulate type I over type II NKT cells and vice
versa. In particular, lysosphingomyelin stimulate only human
type I NKT cells. Lysophospahtidylcholine stimulate both type
I and type II NKT cells in humans, however, its reactivity with
type I NKT is weaker. Additionally, lysophosphatidylcholine also
reacts with murine type II NKT cells (29).

There are thousands of lipids within a mammalian cell serving
functions ranging from energy storage to structural integrity to
signal transduction (30). Any change in the lipid repertoire can
disrupt tissue homeostasis leading to cellular transformation,
cell proliferation, and migration (31–33). In this review, we will
discuss the effect of altered lipid composition on tumor growth,

anti-tumor immunity both NKT cell dependent and NKT cell
independent. Some of the mechanisms by which lipid changes
can modulate NKT cell dependent immune functions, directly
or indirectly, that will be discussed here are (1) alteration in
the quality of lipid antigen repertoire that can be presented
to NKT cells, (2) impaired antigen cross presentation by DCs
either by affecting the antigen processing machinery or MHC
and CD1d surface expression, (3) modified quality and quantity
of lipid reactive NKT cells, and (4) homing of NKT cells to the
tumor sites.

ALTERED LIPID METABOLIC STATUS AND

EFFECT ON TUMOR GROWTH

Lipids are integral components of the cellular membrane
where they participate in lipid raft formation and impact
signal transduction (34). Thus, lipids have both structural and
functional roles in maintaining cellular homeostasis. Fatty acids
(FA) and cholesterol are the building blocks of all lipids in the
body and are synthesized de novo in specialized tissues from
Acetyl CoA. Other than synthesis, FAs are also taken up by the
cells from the surroundings such as circulation, nearby tissues,
and diet. Short chain saturated FAs are further elongated and
desaturated by a specific set of enzymes to generate mono and
polyunsaturated fatty acids (31). The human body is unable to
synthesize long-chain polyunsaturated fatty acids (PUFAs) called
omega 3 (DHA, docosahexaenoic, and EPA, eicosapentaenoic
acid) fatty acids and omega 6 (arachidonic acid) at a reasonable
rate and therefore, supplementation is required through dietary
sources (35, 36). Alteration in lipid repertoire, such as saturated
vs. unsaturated lipids, can influence multiple cellular functions.
To illustrate, an altered lipid repertoire can impact membrane
fluidity, cell-cell interaction, as well as the membrane protein
landscape, which in turn can affect the downstream signaling
cascade (37, 38). There are several studies that have reported a
metabolic reprograming favoring de novo synthesis of lipids in
cancer (39, 40). Additionally, an association between increased
uptake of saturated fatty acids and cancer development has
been reported in multiple cancer types (41–44). Also, a diet
high in polyunsaturated fatty acids, especially omega 3s, have
been shown to be negatively associated with cancer development
(45–47). Consistent with that, one recent study reported a
significant loss of PUFA especially omega 3 in breast cancer
brainmetastasis, by downregulation of its specific receptor,Major
Facilitator Superfamily Domain Containing 2a (MFSD2a) on
tumor endothelium (48).

Tumor cells have high metabolic flux. To sustain growth,
they need a rapid and constant supply of FAs and lipids
to generate bio-membrane, which is achieved by uptake of
FAs from the surrounding tissues as well as upregulation of
endogenous lipogenic pathways (49). Figure 1 outlines the effects
of altered lipid metabolism on tumor growth as well as anti-
tumor immunity. One pioneering study showed that tumor cells,
in addition to uptake from the surrounding tissues, can also
synthesize fatty acids de novo (39). Additionally, tumors can
upregulate metabolic pathways leading to the accumulation of
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FIGURE 1 | Alteration in lipid metabolism in tumor and potential effects on NKT independent and dependent immune function. Upregulation of de novo pathway and

loss of tumor suppressive lipids such as DHA leads to differential accumulation of lipids in tumors, which favors tumor growth and provides energy sources and

building blocks for bio-membranes. Alteration in lipid pool can affect immune response in an NKT independent or NKT dependent manner as outlined in the figure. It

can lead to impaired macrophage function during inflammation and defective antigen presentation. Additionally, altered lipids can also serve directly as antigens for

NKT cells and modulate their role in anti-tumor immunity. Homing of NKT cells can also be affected by altered lipids. Therefore, identifying the lipids as well as the

pathways that lead to their upregulation and blocking it, can have potential therapeutic benefit in cancer.

specific fatty acids and lipids that promote tumor growth and
exclude those that suppress it. Consistent with that, various
studies identified upregulation of several key lipid metabolic
enzymes (such as ACC, Acetyl Co-A carboxylase, FASN, Fatty
acid synthase, and ACLY, ATP-citrate lyase) under tumor
conditions, and suppression of these enzymes involved in fatty
acid synthesis has been shown to be preventive against tumor
growth and metastasis (50–52). Additionally, sterol regulatory
element-binding protein (SREBP), a master regulator of lipid
biogenesis (53), is aberrantly upregulated inmultiple cancer types
and leads to upregulation of its target genes, promoting cancer
growth (54). Furthermore, genetic or pharmacological inhibition
of SREBP in pre-clinical studies, shows anti-tumorigenic effect by
altering tumor specific lipid metabolism (55, 56).

EFFECTS OF ALTERED CELLULAR LIPIDS

ON NKT CELL INDEPENDENT IMMUNE

RESPONSES

Lipidmediators are at the crux of both initiating an inflammatory
response as well as resolving it (57–59). Therefore, metabolic
deficiencies, pathogenic conditions, tumors, and dietary habits

can cause an imbalance in the lipid metabolism that can skew
the balance toward the accumulation of certain lipids over others,
leading to aberrant immune activation.

Effect of Altered Lipid Metabolism on

Antigen Presentation
A high-fat diet that predominantly contains saturated fatty
acids (SFAs) positively correlates with cancer development and
progression (60–62). Although, both SFAs and PUFAs can
have immunomodulatory effects under various pathological
conditions (63), their effect on the immune system in the context
of cancer development and progression is not well-understood.
Many cancers accumulate SFAs by upregulating the de novo
fatty acid synthesis pathway. These SFAs are preferentially taken
up from the surrounding milieu. Additionally, tumors exclude
PUFAs from their lipid pool. Alterations in the fatty acid pool of
a cell can lead to gene expression changes as well as structural
changes in the bio-membrane. Not much is known about the
effect of altered lipid metabolism on lipid antigen presentation,
recognition, and consequent activation of cytotoxic T cells
(CTLs) and NKT cells, especially in cancer.

Dendritic cells (DCs) are the professional antigen presenting
cells in the body. Efficient antigen presentation by DCs results
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in enhanced activation and the cytotoxic response of CD8+ T
cells. Several studies have shown that a high-fat diet, enriched
in SFAs, can significantly impair the ability of DC’s to activate
naïve T cells. In addition to SFAs, PUFAs can also diminish
the immunogenic function of DCs (64). APCs, when treated
with high levels of palmitic acid (PA), express significantly
reduced levels of class I MHC on their cell surface (Figure 2A).
Additionally, this also leads to an impaired conjugation rate of
APCs and lymphocytes (65) (Figure 2C). This effect is primarily
due to altered membrane dynamics, and defects in membranes
generated by high PA. Furthermore, co-treatment of oleic acid
(a monosaturated fatty acid) with PA, sequesters PA into lipid
droplets and negates its effect on cytoskeletal organization. This
has important effects on antigen presentation and can thereby
rescue the antigen presentation ability of APCs even when PA
is present.

Other than treatment with exogenous fatty acids, endogenous
fatty acids also affect DCs, both qualitatively and quantitatively.
One study reported a significant reduction in the number
of DCs as a result of blocking cell intrinsic fatty acid
synthesis (66). However, their antigen presentation ability was
not compromised. The study further reported a diminished
maturation, yet an upregulated expression of TLRs on DCs
upon inhibition of FA synthesis. Additionally, blocking FA
synthesis led to increased production of inflammatory cytokines
as well as enhanced antigen capture by the DCs. Taken together,
these data suggest that an immune response elicited by DC-
mediated antigen presentation, irrespective of peptide or lipid
antigen, is highly contextual under physiological conditions and
is dependent on the nature and levels of fatty acids.

Tumor cells can alter the DCs causing them to become
dysfunctional and inefficient in antigen presentation (67). DCs
can take up lipids from the tumor microenvironment, which can
significantly affect their antigen presentation ability and hence
immunogenicity (68). During growth tumors accumulate high
levels of triglycerides (TAGs). DCs from a tumor-bearing mouse
become significantly enriched for TAGs when compared to DCs
from a naïve mouse. Further, this accumulation of lipids in the
DCs from tumor-bearing mice is mainly by upregulation of
scavenger receptor A in DCs. Additionally, high lipid content
in DCs from tumor-bearing mice negatively affects the antigen
processing machinery (69, 70). Also, the DCs in peripheral blood
in persons with cancer show a lipid excess, and their numbers
as well as their antigen presentation ability is significantly
compromised (71). One hypothesis why DC vaccines or DC-
based cancer therapies may not work is due to the accumulation
of lipids when these cells are either in circulation or in the
tumor microenvironment and a subsequent loss of antigenicity.
If that turns out to be the case, then use of autologous monocytes
to produce autologous DCs ex vivo, pulsing or transducing
them with antigen, and maturing the DCs in vitro could
produce tumor-targeted DC vaccines that evade this suppressive
mechanism in the tumor microenvironment. Such a strategy
is already being applied to avoid other immunosuppressive
effects of tumors on DC maturation (72, 73). Interestingly, the
defects of DC function induced by high lipid content seems
to be reversed by reducing the lipid levels, thereby restoring

their antigen presentation function and enhanced efficacy of
DC-based cancer vaccines (69). Recently, one study reported
defective antigen cross-presentation by tumor-associated DCs
due to the accumulation of lipid bodies in the DCs containing
oxidatively truncated lipids. The defect in the cross-presentation
was due to impaired trafficking of MHC class I molecules to
the cell surface (74). Another recent study reported an impaired
antigen presentation of peripheral blood DCs in late-stage lung
cancer patients due to high levels of TAGs (71). Together, these
data suggest that an altered lipid environment in the tumor
environment can directly affect DC function, both at the tumor
site and peripherally.

Effects of Altered Lipids on Macrophages
Macrophages are diverse cell population found in every
tissue (75). Tissue-specific environmental cues define their
characteristics (76, 77). During inflammatory conditions,
macrophages play distinct roles in an orchestrated manner,
where initiation state is marked by the M1 phase, whereas,
the M2 phase defines the beginning of the resolution, re-
epithelialization and return to the homeostatic stage (78).
Both M1 and M2 phenotypes of macrophages are dependent
on specialized lipid mediators. A lipid class switch from pro-
inflammatory AA (arachidonic acid) derived lipid mediators to
an anti-inflammatory, DHA (docosahexaenoic acid) and EPA
derived lipid mediators is important to push the macrophages
to the resolution state, thereby inhibiting inflammation and
re-establish homeostasis (58). Figure 3 outlines the effect of
different lipids on macrophage function in inflammation.
Tumor-associated macrophages (TAMs) play roles in promoting
tumor growth. One study recently reported that debris generated
by chemotherapy in tumors can stimulate TAMs to secrete pro-
inflammatory cytokines thereby facilitating tumor growth. This
effect was reversed by resolvins, which are a class of pro-resolving
lipid mediators generated by DHA, thereby stimulating debris
clearance by macrophages and suppression of tumor promoting
inflammation (79).

EFFECTS OF ALTERED LIPIDS ON NKT

CELL FUNCTIONS

Alteration in cellular lipids can directly influence NKT cell
function via affecting antigen cross presentation by DCs, altered
lipid antigen repertoire leading to different CD1d:lipid complexes
that are presented to NKT cells, and modulating expression of
CD1d. Here, we will outline the effect of altered lipid repertoire
in metabolic defects and cancer on NKT cell function as well
as CD1d expression on DCs. Since antigen cross presentation
can also influence NKT independent immune responses, we will
cover that in a separate section.

Effects of Metabolic Disorders on NKT Cell

Development
Lipids are essential for development of NKT cells (80). Mice
deficient in a lysosomal enzyme β-galactosidase (β-Gal) or
lysosomal lipid transfer enzyme Niemann Pick C (NPC) 2 have
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FIGURE 2 | Effect of altered lipids on antigen presentation. (A) Accumulation of lipid bodies, mostly saturated lipids, negatively affects the localization of both class I

MHC as well as CD1d. (B) Also, polyunsaturated fatty acids (PUFAs), especially DHA, can induce PPARγ levels in dendritic cells which in turn induce the expression of

CD1d. (C) Lipid excess can also affect membrane dynamics, which in turn can interfere with CD1d:lipid antigen conjugation rate with TCRs on NKT cells, leading to

sub-optimal NKT function.

FIGURE 3 | Effect of altered lipids on macrophages. Macrophages play important roles during inflammation in a highly orchestrated manner. During initiation of

inflammation, arachidonic acid (AA)-derived lipid mediators, such as prostaglandins and leukotrienes, are required. M1 to M2 transition is mediated by lipoxins, which

are also derived from AA. The resolution state of inflammation requires docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) derived lipid mediators such as

resolvins, neuroprotectins, and maresins.

reduced numbers of lipid-reactive type I NKT cells (81). This is
largely due to defective CD1d antigen presentation and impaired
thymic selection of type I NKT cells. Even though the number
of NKT cells is reduced, there are still residual NKT cells with
differential TCR Vβ usage and CD4 expression in both β-Gal−/−

and NPC2−/− mice. This effect is due to the accumulation of
different lipids leading to altered CD1d: lipid antigen complex
formation. This in turn gives rise to NKT cells with different
functional subsets where a significant decrease in Vβ8.2/Vβ7
ratio in β-Gal−/− but not in NPC2−/− was observed, in contrast
to an increased ratio of CD4−/CD4+ in NPC2−/− but not in β-
Gal−/− mice was observed. This suggests a direct effect of the
type of lipid antigen presented on both quality and quantity of
NKT cells. Several other mouse models of the lysosomal storage
disease (Tay-Sachs, GM1 gangliosidosis, Fabry, NCP1) also show
a reduced number of type I NKT cells, not due to defective
CD1d presentation or lack of APCs, but due to impaired loading
of lipid antigen on to the CD1d molecule (82). In addition
to the decreased number, some lysosomal mouse models also
show a defective function of type I NKT cells (82). Interestingly,
in human patients with lysosomal storage disease, harboring

NPC1 mutations, there does not appear to be any change in
the number of type I NKT cells. Additionally, APCs from the
patients can present lipid antigens to type I NKT cells efficiently
(83). Although the quantity remains unchanged, the effect on
the quality of type I NKT cells in response to altered lipids in
lysosomal storage disease (84) is not known in humans.

Effect of Altered Lipids on CD1d Antigen

Presentation
DCs are professional APC that carry antigens from local
tissues to the draining lymph nodes and are necessary to prime
T cells including NKT cells. For the NKT cell priming, the
expression level of CD1d is critical. One study reported increased
expression of CD1d on human keratinocytes undergoing
terminal differentiation upon increased cellular ceramide
synthesis as well as exogenous ceramide application (85). Under
physiological conditions, one study showed that peroxisome
proliferator-activated receptor γ (PPARγ) upregulates CD1d
in monocyte-derived DCs at the transcriptional level (86)
(Figure 2B). Moreover, PPARγ mediated upregulation of CD1d
is via activation of the retinoic acid pathway. PPARγ also
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enhances internalization activity and effective lipid antigen
presentation to iNKT cells, leading to their activation and
expansion, when α-GalCer is present (87). Interestingly, DHA-
derived lipid mediators act as potential PPARγ agonists (88).
Also, DHA has been reported to generate a tumor suppressive
effect via PPARγ (89, 90). Consistent with that DHA can
specifically upregulate PPARγ expression and levels of its target
genes in DCs, and this upregulation is reversed by blocking
PPARγ activity (91). However, DHA and lipid mediators
derived from it are missing from the tumor environment (48).
Several studies report an anti-tumor effect of DHA. DHA dietary
supplementation, as well as its use as an adjuvant, has been shown
to improve disease outcome in cancer patients (92). Additionally,
PPARγ functions as a tumor suppressor and its expression is lost
in many cancers (93). We can hypothesize that accumulation
of tumor specific lipids in the tumor microenvironment can
affect the expression of CD1d on both tumor cells and DCs,
thereby suppressing their immunogenicity and facilitating
eventual immune evasion. Immunogenic cell death as a result of
intratumoral treatment of tumors with anti-cancer agents can
lead to release of tumor-specific antigens, which then can activate
T-cell mediated immunity and confer long term immunologic
memory against tumor (94). The use of EPA/DHA alone or in
combination with various chemotherapeutic agents has shown
anti-tumor effects, mostly via apoptosis (92). We propose
that co-treatment of tumors with EPA/DHA and intratumoral
anti-cancer agents may provide a novel effective immunotherapy
by mediating presentation of tumor antigens to T-cells and
induction of long term anti-cancer immunity.

Effects of Altered Lipids on NKT Cell

Function in Inflammation and Cancer
Non-alcoholic fatty liver (NAFLD) is considered as a pre-
malignant stage in the liver. One study in an obese mouse model
for NAFLD reported a reduction in the number of hepatic NKT
cells, as a result of activation-induced death of NKT cells by
activated Kupffer cells due to lipid excess (95). Additionally, lipid
excess in high fat diet (HFD)-induced obese mice activates type
I NKT cells and skews the balance toward a pro-inflammatory
cytokine environment. Further, lipid excess also causes obesity-
induced insulin resistance and hepatic steatosis in an NKT
dependent manner and can be reversed by deficiency of either
type I NKT cells or CD1d (96) Another study reported a role of
type II NKT cells in HFD induced obesity in mice (97). The study
reported minimal weight gain, reduced inflammation, hepatic
steatosis and insulin resistance in CD1d−/− mice compared
to Ja18−/− mice. In addition to that, a direct role of CD1d
mediated presentation of endogenous lipid antigens to activate
NKT cells in mice fed with HFD was shown (98). Moreover,
deletion of CD1d in adipocytes led to decreased weight gain
and higher insulin sensitivity in mice. In a contrasting study,
type I NKT cells were reported to suppress diet induced obesity
and development of type II diabetes. The study further showed
an increased infiltration of pro-inflammatory macrophages and
decreased type I NKT in adipocytes during development of
obesity. Moreover, an adoptive transfer of iNKT into Jα18−/−

obese mice or α-GalCer treatment of WT mice abrogated
obesity induced disorders (99). Yet another study, reported no
difference in weight gain, insulin sensitivity, inflammation and
liver steatosis between CD1d−/− vs. WT mice when fed with
HFD (100). In context of hepatocellular carcinoma (HCC) as
a result of NAFLD, one study reported no significant change
in the NKT cell number as a consequence of increased lipid
content in the liver in a transgenic mouse model (101). Another
study identified a subset of NKT cells reactive to lysoPC lipid
species in myeloma patients (102). In Gaucher disease (GD),
another pathology caused by a lipid metabolic defect, it was
shown that accumulation of β-glucocyceramide (β-GL1-22) and
glucosylsphingosine (LGL1) led to induction of a different subset
of type II NKT cell in both mice and humans (103). This specific
subset of type II NKT cells leads to aberrant activation of humoral
immunity and increased risk of B-cell malignancy.

Ceramides are released when cancer cells are exposed to
chemotherapeutics or ionizing radiation leading to apoptotic
death of tumor cells (104, 105). As ceramide is a major species
of lipid that can be presented by CD1d to be recognized by
NKT cells, the activation of NKT cells by ceramides released
from treated tumors likely modulates the anti-tumor immune
response. Interestingly, in the 4T1 pre-clinical tumor model,
radiotherapy in mice deficient in type I NKT cells significantly
enhanced tumor regression compared to WT mice with intact
type I NKT cells (106). Additionally, administration of α-GalCer,
NKT cell agonist that induces strong anti-tumor immunity, did
not enhance the response to radiotherapy inWTmice, suggesting
a potential immunosuppressive role of type I NKT cells that were
exposed to tumor-derived lipids.

Gangliosides are yet another sialic acid-containing diverse
group of glycosphingolipids that bind to and activate a subset
of NKT cells (107, 108). Any alteration in lipid repertoire
can also lead to altered ganglioside milieu. In regard to that,
gangliosides disialoganglioside 2 (GD2) and disialoganglioside
3(GD3) have been reported to be overexpressed in cancer and
shown to regulate tumor growth and metastasis (109). Mice
immunized with melanoma cells expressing GD3 were found
to have GD3 reactive NKT cells that were shown to be CD1d
restricted (110). Additionally, coimmunization of GD3 loaded
APCs along with GM3 loaded APCs suppressed the type I NKT
cell function (108). GM3 also suppressed IL-4 production but
not IFN-γ by type I NKT cells in response to α-GalCer. Also,
GM3 is expressed in several malignancies and targeting it by
specific antibody has anti-tumorigenic activity (111–113). In
an ovarian cancer model, GD3 was shown to be enriched in
tumor microenvironment and inhibit NKT cell activation. Also,
GD3 abrogated a α-GalCer mediated NKT cell activation in
vivo and in vitro by competing for the binding to CD1d (114).
Furthermore, increased VEGF levels in tumor enhances GD3
levels in ovarian cancer (115). CD1d expressing APCs treated
with GD3 significantly suppress NKT cell activation, suggesting
a direct role of GD3 as a lipid antigen enriched in tumor in
suppressing anti-tumor immunity in an ovarian cancer model
through presentation by CD1d to NKT cells. Additionally, both
GD3 and GM3 were recently reported to be present in TLR9
stimulated DCs (116) and synthetic versions of β-linked GM3

Frontiers in Immunology | www.frontiersin.org 6 September 2019 | Volume 10 | Article 2187111

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tiwary et al. Lipid Effects on Tumor Immunity

and GD3 were able to activate type I NKT in mice, both in
vivo and in vitro in a CD1d dependent manner. Taken together,
an altered lipid environment in the inflammatory conditions
and tumor microenvironment can potentially affect NKT cell
function and fine tune the immune response. Understanding the
biology behind this can open up several therapeutic avenues such
as therapeutically targeting synthesis of tumor promoting (e.g.,
GD3) lipids and/or using tumor inhibitory lipids (e.g., DHA) as
adjuvants to enhance anti-tumor immunity.

EFFECT OF LIPIDS ON HOMING OF NKT

CELLS

Localization of an immune cell to the site of injury is critical
for resolution of inflammation and tissue homeostasis. In cancer,
there are very limited studies that report localizing of NKT cells
to the tumor site. CCR2 (expressed by NKT cells) and CCL2
(expressed by a subset of MYCN non-amplified neuroblastoma
cells) mediated homing of NKT cells to neuroblastoma was
shown in subset of neuroblastoma patients. Also, the survival
of patients with NKT cell infiltration was significantly longer
than that of patients without infiltration (117). In a follow-
up study, it was demonstrated that MYCN repressed the
expression of CCL2, thereby preventing homing of NKT cells
to the tumor site in both mouse models and human patients
(118). Interestingly, MYCN inhibition resulted in reduced tumor
growth and improved survival in a transgenic mouse model. At
the same time, there was an accumulation of lipid droplets in
neuroblastoma cells which were treated with MYCN-inhibitors,
suggesting a potential role for lipid metabolites involved in
tumor regression (119). Not much is known about the nature
of the lipids and mechanisms by which they may affect
the recruitment of NKT cells to tumor site, which remain
open questions.

One of the early studies reported a role of leukocyte function
associated antigen-1 (LFA-1) on accumulation of NKT cells
in the liver and LFA-1 deficient mice were shown to have
significantly fewer NKT cells. (120). Also, LFA-1-intercellular
adhesion molecule 1 (ICAM1) interaction was shown to be
critical for tissue resident NKT cells in mice, such that blocking
of either LFA-1 or ICAM1 led to a rapid release of NKT cells in
circulation, in a parabiotic mouse study. Furthermore, this LFA-
1-ICAM1 mediated tissue homing of NKT cells was shown to
be dependent on the transcription factor promyelocytic leukemia
zinc finger (PLZF) (121). Yet another study revealed the role of
a chemokine receptor CXCR6 expressed on the NKT cell surface,

and its specific receptor, CXCL16 (a transmembrane chemokine
which is expressed on liver, lung and spleen cells), in homing of
CXCR6 expressing NKT cells to the liver (122). This pathway is
also lipid-dependent because the gut microbiome’s metabolism of
lipid bile acids affects the induction of CXCL16 and thus NKT cell
homing to the liver and ability to control liver cancer (123).

CONCLUSIONS

To date, most immune therapy treatment regimens in cancer
focus on peptide-antigen-recognizing conventional T cells.
However, lipid-reactive NKT cells have emerged as one of the
major immune-modulators in tumor immunity, in pre-clinical
mouse models. Although contextual, it is generally acceptable
that type I NKT cells exert anti-tumorigenic effect whereas type II
NKT cells have an opposite effect. Notwithstanding that both type
I and II NKT cells constitute a small percentage of lymphocytes
as compared to the conventional T cells, both NKT cell types
mediate substantial immunomodulatory effects. Therefore, a
deeper understanding of their differential regulation under
normal and tumor conditions could unravel novel therapeutic
nodes that can prove beneficial for anti-tumor immune therapy.
Deregulated lipid metabolism is reported in several cancers.
Unlike functional studies of DNA and proteins, knowledge of
both the structural and functional roles of lipids in the process
of cellular transformation and tumor growth has lagged behind.
Changes in lipids can have a global effect on immune response
and can influence anti-tumor immunity in both NKT-dependent
and NKT-independent manners. Functional studies focused on
understanding these aspects of tumor immunity can provide
some unique and clinically useful therapeutic interventions.
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Immunoediting is a process that occurs in cancer, whereby the immune system acts

to initially repress, and subsequently promote the outgrowth of tumor cells through the

stages of elimination, equilibrium, and escape. Here we present a model for a virus

that causes cancer where immunoediting is coordinated through synergistic viral- and

host-mediated events. We argue that the initial viral replication process of the Human T

cell leukemia virus type I (HTLV-1), which causes adult T cell leukemia/lymphoma (ATL)

in ∼5% of individuals after decades of latency, harmonizes with the host immune system

to create a population of cells destined for malignancy. Furthermore, we explore the

possibility for HIV to fit into this model of immunoediting, and propose a non-malignant

escape phase for HIV-infected cells that persist beyond equilibrium.

Keywords: immunoediting, HTLV-1, HIV, viral reservoir, ATL (adult T-cell leukemia)

INTRODUCTION

Cancer immunoediting describes the dynamic reciprocity in which the immune system
both protects against cancer while inadvertently sculpting a population of cells that
may become malignant, progressing through three distinct phases: elimination, equilibrium,
and escape [reviewed in (1, 2)]. During elimination, the coordination of innate and adaptive
immunosurveillance enables the detection and destruction of early potential tumor cells, while
some cells evade the immune response. Cells that survive elimination persist through what can
be decades of equilibrium in a dormant state with continued selection pressure that promotes
the survival of cells that have developed immunoevasive phenotypes. These cells proceed into the
escape phase with acquired somatic mutations and genetic instability that drive their ability to
proliferate indefinitely while maintaining invisibility from immunosurveillance, ultimately causing
malignancy in the individual (1, 2).

As we discuss what is known about immunoediting in cancer to elucidate the capacity for
immunoediting to occur in HIV infection, as discussed in detail in our sister publication in this
issue, we explore the intersection of cancer caused by a virus to highlight differences between host-
vs. viral-mediated immunoediting, to reveal whether we can untangle the two concepts. Human
T cell leukemia virus type 1 (HTLV-1) was the first retrovirus identified to infect humans and was
discovered as the etiological agent of adult T cell leukemia/lymphoma (ATL) (3, 4). The prevalence
of ATL is as high as 20% among carriers who were born with or contracted HTLV-1 around birth,
and infected children have a 25% lifetime risk of developing ATL (5). ATL is extremely aggressive
with poor survival outcomes, and even with intensive chemotherapy or allogeneic hematopoietic
stem cell transplantation (HSCT), relapse remains high (6). While cancers caused by viruses may
undergo what is classically defined as immunoediting, there exists another layer encoded within the
viral genome itself to specifically modify how that cell is able to survive or how it can interact with
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the immune system. During the decades of latency prior to T
cell transformation the processes of mutation, clonal selection
and expansion, and selection by the immune system allows for
HTLV-1 infected cells to complete the immunoediting process
in carriers who develop ATL. This is due to the myriad of
epigenetic and genetic changes that accumulate over time,
initiated early by viral-mediated events that fated this specific cell
to eventual transformation.

EVENTS DURING EARLY HTLV-1
INFECTION SET THE STAGE FOR THE
ELIMINATION PHASE OF IMMUNOEDITING

There exist many parallels between HTLV-1 infection and the
course of HIV infection, especially in the case of people living
with HIV who are treated with suppressive antiretroviral therapy
(ART), including their preferential infection of activatedmemory
CD4+ T cells (7) followed by integration into transcriptionally
active regions within the host genome (8, 9). Unique integration
sites arise through the infectious spread of both viruses, with
decades of mitotic division resulting in the clonal expansion of
infected cells (10–12). In contrast, unlike the exhaustive viral
replication of HIV that leads to an average of 105 virions per mL
of plasma (13–16), the productive replication of HTLV-1 spreads
through the virological synapse (17) in the absence of detectable
cell-free virions in peripheral blood (10).

Early in viral replication, the HTLV-1 Tax protein acts
as a transcriptional transactivator of the viral long terminal
repeat (LTR) (18, 19) analogous to HIV Tat (20). Tax acts
through binding host cAMP response element binding protein
(CREB) to recruit histone acetyl transferases to the Tax-
responsive element 1 (TRE-1) to promote viral transcription
(21, 22). Tax can also transcriptionally activate the expression
of or alter function of cellular proteins with roles in T cell
activation, proliferation, and survival (23–34). Particularly, Tax
can inactivate the transactivation function of cellular p53 by
inhibiting its N-terminal activation domain (35), abrogating the
p53-induced G1 cell cycle arrest required to allow appropriate
repair in response to DNA damage (36). Tax alters the expression
of many host proteins associated with cell cycle, accelerating
progression through G1 and disabling checkpoints at cell cycle
transitions, meanwhile stimulating antiapoptotic signals, and
affecting telomerase expression (37). Maintaining the cell in
a metabolically active state confers a fitness advantage for
viral replication but with grim consequences to the host
cell, potentially enabling chromosomal instability, and the
accumulation of host genomic mutations (37).

Infectious spread of HTLV-1 establishes thousands of
infected-cell clones and then peaks within 3 months of infection
before plateauing (38) to a level that is dependent upon the
quality of the individual’s mounting immunity (39). The proviral
genome encodes its own mechanism to impede the activity of

Abbreviations: HTLV-1, human T cell leukemia virus type I; ATL, adult

T cell leukemia/lymphoma; CTL, cytotoxic T lymphocyte; HIV, human

immunodeficiency virus; ART, antiretroviral therapy.

Tax protein. The 3
′
LTR drives an antisense transcript, expressing

HTLV-1 basic leucine zipper factor (HBZ) (40) which can
outcompete Tax in binding CREB, blocking interaction with
TRE-1 and downregulating viral transcription (40, 41). Tax and
HBZ rival in many host cell signaling pathways to alter viral
replication and change expression profiles within the cell to
coordinate proliferation and survival of HTLV-1 infected cells
(42). Where Tax activates pathways including NF-kB, AP-1,
NFAT, and Wnt signaling, HBZ acts to repress them (30, 32, 43–
46). By hindering ongoing viral replication, cells expressing HBZ
are driven into a latent state (40).

Although the control of latency is not as well-defined as in
HIV, there are specific cellular attributes that repress HTLV-1
expression. DNA methylation accumulates along the provirus
after seroconversion and throughout chronic infection, which
is not correlated with the methylation patterns of host genes
surrounding viral integration sites (47–49). Early methylation is
observed in regions that encodeGag, Pol, and Env, with the 5′LTR
becoming heavily methylated over time; sometimes associated
with hypoacetylated histones, silencing viral sense transcription
(47–49). The 3′LTR remains unmethylated, permitting continued
expression of HBZ to drive clonal proliferation (47, 48). These
distinct patterns of epigenetic modification are established
through the 11-zinc finger protein CCCTC-binding factor
(CTCF)—a host insulator element that restricts the spread
of epigenetic modifications to define boundaries between
transcriptionally active and inactive regions of the genome (50,
51). The binding of CTCF to proviral DNA at the defined
epigenetic border modifies viral transcription and splicing (50),
contributing to the regulation of latency as similarly observed in
EBV (52) and KSHV (53).

Virus-coordinated events early in replication alter the
population of CD4+ T cells infected with HTLV-1. Whether
Tax expression is a prerequisite for malignancy remains debated
in the field, yet we theorize that initial Tax activity is a
major driver of immunoediting. Tax-induced changes to the cell
that promote viral protein expression and the presentation of
neoantigens provoke immunosurveillance and progression into
the elimination phase of immunoediting. Initial Tax activity
changes the cell and may predestine it to become malignant
(31, 34), should it survive the robust HTLV-1 specific immune
response and acquisition of appropriate somatic mutations
through decades of latency.

ELIMINATION: HOW THE HOST IMMUNE
RESPONSE SCULPTS THE PERSISTENCE
OF HTLV-1 INFECTED CLONES

The interplay between early viral protein expression and
the establishment of HTLV-1 latency synchronize with
host immunosurveillance into the elimination phase of
immunoediting, where a strong immune response remains
unable to eradicate the virus and does not intrinsically prevent
ATL (54). CD8+ Cytotoxic T lymphocyte (CTL) responses
are detected against viral Gag, Pol, and Env, although Tax
remains the immunodominant target (55–61). Studies in rats
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demonstrate that siRNAs against Tax sufficiently downregulate
Tax expression, repressing Tax-specific CTL killing of HTLV-1
infected cells (62). In asymptomatic individuals, whilst Tax
expression remains low or undetectable immediately ex vivo,
short-term culture of CD4+ T cells is sufficient to reactivate viral
expression from latency which is rapidly controlled with the
addition of autologous CD8+ T cells (61). There exists sequence
heterogeneity across HTLV-1 isolates, although not as extensive
as the diversity observed in HIV that drives the emergence
of CTL escape mutants (63, 64). Natural variation in the tax
gene, however, can lead to peptide presentation that cannot be
recognized by consensus-sequence Tax-specific CTLs (63). These
variants render severe functional impairment of Tax activity, and
therefore a survival advantage that enables the maintenance of
a population of cells with reduced sense transcriptional activity
that continue to evade immune recognition (59, 63).

Chronically active HTLV-1 specific CTLs are present in
otherwise asymptomatic carriers of HTLV-1 without associated
disease (58), and the proliferation rates of memory CD8+ T cells
are 3-fold higher than in uninfected controls (65). The frequency
of HTLV-1 specific CTLs does not correlate with proviral
loads, while transcriptomic analysis of CD8+ T cells reveals
that individuals with low proviral loads highly express gene
clusters associated with improved effector function, and with
CTL-mediated lysis (66). Additionally, Tax-expressing CD4+ T
cells increase the expression of molecules, i.e., ICAM-1, Fas,
and TRAIL-R1/2, improving the susceptibility of these cells to
CTL-mediated lysis (60). These data support the notion that
bursts of antigenic stimulus throughout latency drive persistent
immunosurveillance and depletion of infected cells expressing
antigen, suggesting an equilibrium is established between
replicating virus and the immune response (58, 59, 66, 67).

The infected individual’s human leukocyte antigen (HLA)
alleles restrict the repertoire of antigen presented to CTLs (60,
68). HLA-A∗02 binds various Tax epitopes, with a particularly
strong affinity of Tax11−19 for the peptide binding groove of
A∗02, which confers a lower proviral load and selective pressure
against Tax-expressing cells in asymptomatic carriers (54, 58, 69–
71). HBZ also binds to the protective alleles A∗02 and CW∗0801,
leading to lower proviral loads in asymptomatic carriers (54).
However, the frequency of HBZ-specific CTLs is significantly
lower than Tax-specific CTLs, and the binding affinity of HBZ
to HLA molecules is notably weaker than Tax peptides (54, 60).
The low immunogenicity of HBZ in asymptomatic carriers is
mirrored in subsequent malignancy—ATL cells constitutively
express HBZ, yet HBZ-specific CTLs fail to lyse transformed
ATL cells (72). However, more recent work has demonstrated
that vaccines harboring specific HBZ epitopes, i.e., HBZ157−176,
can elicit anti-HBZ CTLs in model ATL mice (73), warranting
further research to improve the immunogenicity of low-affinity
HLA-associated HBZ peptides to enhance ATL immunotherapy
(74). That HBZ does not stimulate strong CTL responses may
be surprising, given its imperative action in maintaining the
survival and proliferation of infected cells throughout all phases
of immunoediting. This could be due to the additional function
elicited by HBZ in its RNA form, inducing distinct antiapoptotic
activity, therefore precluding the expression of antigen while
promoting cell survival (75).

The capacity of HBZ to downregulate Tax-induced
viral transcription occurs, in part, to evade the stronger
immunodominant Tax-specific CTLs. The dynamic coordination
between early virus- and immune-mediated events permit
the sufficient control of active viral replication while creating
longevity in a population of infected cells refractory to immune
recognition, inherently sculpting the persistence of certain
clonal populations of infected CD4+ T cells that do not express
Tax. This elimination phase of immunoediting synchronized
by the virus and the host immune response orchestrates the
immortalization of infected cells without transforming them,
securing their persistence for years.

HIV also evades immune recognition, albeit through different
mechanisms including Nef-directed downregulation of CD4 and
MHC class I receptors (76, 77). In our sister article, we describe
in depth, models of immunoediting duringHIV infection and the
progression to AIDS, as well as through suppressive ART. Entry
into latency is established soon after HIV transmission, either
by infected activated CD4+ T cells reverting back to a resting
state (78–81) or through the direct infection of resting CD4+

T cells (82–85). Individuals living with HIV who have access to
ART can achieve undetectable viral loads (13–16). This medical
intervention (which is not required to inhibit the infectious
spread of HTLV-1) allows for the recovery of CD4+ T cells
(13–16). Consequently, this recovery enables clonally infected
populations that exist before the initiation of ART (86) or that
are seeded as viral replication wanes, to expand and contract
(87) through years of equilibrium congruent with this model
of immunoediting.

EQUILIBRIUM: VIRAL AND HOST
FACTORS THAT CONTRIBUTE TO THE
CONTINUED SELECTION AND SURVIVAL
OF HTLV-1 INFECTED CLONES

HTLV-1 infected cells that have survived the elimination phase,
and exist in latency with an immune-evading phenotype, will
endure into the equilibrium phase of immunoediting. During
equilibrium, sustained polyclonal expansion of infected cells will
favor clonal populations that continue to accumulate somatic
changes that facilitate cell survival (Figure 1).

HTLV-1 integrates preferentially into transcriptionally active
regions of the host genome (88, 89), with a modest preference for
integration near host transcriptional start sites (90), with a small
percentage of ATL cases (<6%) containing proviruses near genes
associated with hematological malignancies (91). Asymptomatic
carriers harbor between 104 and 105 clones with unique
integration sites (92, 93) capable of indefinite proliferation (51)
and a preference for the expansion of clones containing proviral
integration within the long arm of acrocentric chromosomes 13,
14, 15, and 21 (91). The hypothesized survival of these particular
integration sites is that these chromosomes are physically
associated with the nucleolus of non-dividing cells, and this
nucleolar periphery remains transcriptional quiescent—such that
these cells evade HTLV-1 specific CTL killing (51, 91).

Throughout decades of equilibrium, clonal populations are
selected for, expand and contract, and integration site sequencing
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FIGURE 1 | Model for viral and host coordinated immunoediting. HTLV-1: We propose a model of immunoediting that leads to ATL, mediated through HTLV-1

replication, and the host immune response. HTLV-1 infection spreads through the virological synapse without cell-free virions, maintaining low proviral loads. The viral

protein Tax drives viral replication and alters the expression or activity of many host proteins involved in survival and proliferation, facilitating the immortalization of

infected cells. During the elimination phase, the development of a robust Tax-specific CTL response will kill off cells that continue to express Tax, and infection

plateaus. HBZ expression from the antisense transcript will repress viral transcription to protect cells from CTL killing, meanwhile driving them into latency.

Immortalized cells that can evade the immune response are selected into equilibrium, where continued HBZ expression maintains the survival and proliferation of

latently infected cells. Over decades of equilibrium, clonal populations with identical proviral integration sites continue to proliferate, accumulating somatic mutations

and epigenetic modifications that may lead to the eventual transformation into ATL. Through the escape phase, a malignant cell emerges from a monoclonal

population, with HBZ expression and the acquired somatic mutations enabling ATL cells to continue to proliferate and evade cancer immunosurveillance. HIV: We

propose that HIV, in part, fits into this immunoediting model, albeit with differing mechanism. During the elimination phase, robust viral replication of HIV initially

establishes high proviral load, with strong HIV-specific CTL responses enabling infection to plateau. With the addition of antiretrovirals (ARVs), infection is driven into

latency and as viral replication ceases, latently-infected cells not recognized by CTLs will persist into the equilibrium phase. Throughout decades of latency, cells with

the same proviral integration sites will clonally expand, with clonal populations waxing and waning over time. Less is known about what drives the proliferation of

certain HIV infected clonal populations. Recently, the concept of a “repliclone” has been established, representing the expansion of a monoclonal population with

replication competent provirus defined by a single integration site. Although these cells are not malignant, they persist into the escape phase given a yet unknown

selection advantage for survival and proliferation.

reveals that 90% of cancer cells from patients with ATL are
expanded from a single predominant malignant clone (91, 94).
What drives the selection of this monoclonal population of

malignant cells in the background of polyclonal populations
that fail to transform? The prevalence of each clonal population
represented by the proportion of observed integration sites to
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PVL suggests that a malignant clone emerges from an initially
low-abundant clonal population (91), rather than a largely
expanded clonal population (11, 93). While high-abundance
clones manage to progressively increase over time, low-
abundance clones tend to decay, likely due to their modest levels
of Tax expression during latency (51, 93). Low-abundance clones
that progress to ATL display the highest level of integration
within acrocentric chromosomes 13 and 15 (91), potentially
contributing to sporadic Tax expression during cell division-
or stress-induced dispersal of nucleoli, temporarily releasing
viral transcriptional repression (51). There are documented plus-
strand transcriptional bursts during chronic infection that enable
intermittent expression of Tax protein (95) that can trigger
antiapoptotic machinery (96), thought to contribute to survival
of infected cells and lasting Tax-specific CTL responses (51) and
an additional push toward transformation into ATL cells.

Each clone has a particular susceptibility to experience
malignant transformation, initially predisposed through Tax-
induced changes to the cell (51), as described above. While
Tax is not commonly expressed in latency or transformed
ATL cells, HBZ is constitutively expressed throughout chronic
infection and in ATL, and displays oncogenic properties (51,
97). HBZ promotes proliferation by targeting retinoblastoma
tumor suppressor protein (98) and further inhibits apoptosis
by repressing the transcriptional activity of p53 (99, 100), and
by suppressing the pro-apoptotic genes Bim and Fas ligand by
downregulating their transcriptional activator, FoxO3a (101).
Even in the absence of Tax expression, HBZ can maintain
the immortalized status of the cell and continues to drive
clonal expansion.

Proliferation of these clones over decades also allows for the
accumulation of somatic mutations due to random errors during
DNA replication, i.e., somatic mutations (102). Independent of
Tax- or HBZ-induced inhibition of p53 function, which occurs
in the presence of wild type p53 protein, 30–40% of ATL
patients have acquired mutations in the p53 gene (23, 103–
105). In an incredible integrated molecular analysis of ATL cells
from 426 individuals, Kataoka et al. investigated the whole-
genome exome, transcriptome, and methylome of ATL cells
(97). They identified significant mutations in 50 genes, with
over 30% of mutations observed in both the phospholipase
C γ1 (PLCγ1) gene and a member of the PKC family of
proteins (PRKCB), additionally correlated to mutations in the
cytoplasmic scaffolding gene CARD11, with RNA sequencing
confirming transcripts with acquired mutations (97). Other
hotspot mutations were observed in genes within the same
pathway, and although there were no functional analyses on
the acquired mutations in this study, literature in other cancers
indicate that together the observed changes in amino acid
sequence are gain-of-function mutations in this set of genes,
and can act to increase TCR signaling and antigen-receptor
induced NF-kB activation of T cells (97). Interestingly, 56% of
ATL cells exhibited deleterious mutations that would predispose
them to evade immunosurveillance, including within the major
histocompatibility complex (MHC) class I, immune checkpoints,
and death signaling pathways. The MHC class I gene was
also discovered to be extensively hypermethylated, with 90%

of ATL cases harboring mutations and/or methylation patterns
within this gene that would render a loss of expression of
MHC class I (97). Other mutated pathways discovered through
this study are common in other human malignancy, including
DNA repair mechanisms, epigenetic regulation, and telomere
preservation. Overall, the accumulation of these mutations over
time demonstrate the ability of cells to continue to proliferate
while evading immune response.

In addition to the integration site and accumulation of somatic
changes, another mechanism for persistence is the accumulation
of clonal populations containing defective provirus. Defective
proviral genomes may lack the 5′LTR and flanking genomic
regions that encode immunogenic gene products, particularly
Tax, contributing to immune evasion (106, 107). Defective
proviral genomes that explicitly express HBZ can proliferate
and avoid immunosurveillance, while driving cells toward
malignancy. HBZ is sufficient to stimulate T cell lymphoma
in mice in the absence of any other viral proteins (108) even
after a period of latency (109), and the concept that HBZ alone
could induce ATL has been observed in vivo (107). While HBZ
is ubiquitously expressed in ATL (97), defective proviruses are
observed in up to 56% of ATL cells (107, 110, 111). Tamiya et al.
identified the existence of what they termed a type II defective
provirus as one that contains a large recombination between
env and the 5′LTR, partially deleting the LTR and most of the
genome, whilst others have identified the complete deletion of the
5′LTR (112, 113)—in both cases, only an active 3′LTR remains,
and individuals with type II defective proviruses have the most
aggressive forms of ATL (107). Cells that harbor defects in the
5′LTR that preclude Tax expression would completely evade Tax-
specific CTLs. The discovery of these type II defective proviruses
was made over a decade before the identification of HBZ; Tamiya
et al. could only speculate at this point that a viral gene other than
tax could potentially drive transformation, and they were correct.
It is now widely accepted that an intact 3′LTR and HBZ gene are
essential for oncogenesis (51, 113, 114).

Further supporting Tax immortalization but HBZ oncogenesis
is the closely related retrovirus, HTLV-2, which is not associated
with malignancy (115, 116). The Tax protein of HTLV-2 has
demonstrated behavior in driving T cell immortalization by
promoting survival and abnormal proliferation through similar
mechanisms observed by HTLV-1 Tax (117). HTLV-2 also
encodes an antisense protein, APH-2, which can repress HTLV-
2 Tax-mediated transcription (118, 119), yet does not exhibit the
oncogenic properties of HBZ, and does not promote malignancy
(120). These studies suggest the oncogenic behavior of HBZ is
distinct from Tax-driven immortalization of CD4+ T cells.

HTLV-1 infected clonal populations are selected for through
decades of equilibrium from the initial immortalization
of these cells by Tax, with maintained survival achieved
from the ubiquitous expression of HBZ. In addition, certain
common integration sites, proviral defects, and the acquisition
of genetic and epigenetic changes that drive proliferation
whilst protecting against immune responses promote further
survival of these clones. While HIV latently-infected cells
with identical integration sites are also demonstrated to
undergo clonal proliferation (9, 12, 121, 122), it remains
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unknown what drives this expansion. Similar to HTLV-1, HIV
preferentially integrates within introns of actively transcribing
genes. And while HIV does not express a protein analogous
to HBZ to promote cell proliferation, HIV has demonstrated
integration patterns within genes responsible for controlling
cell division and growth, perhaps contributing to their clonal
expansion (12). Despite different mechanisms, both retroviruses
promote the clonal proliferation of their latently infected
cells. HTLV-1 infected CD4+ T cells expand in a polyclonal
manner, with a dominant clone selected for malignancy in
a fraction of individuals (Figure 1). Although HIV does
not transform cells, polyclonal populations wax and wane
throughout latency (87), raising the possibility that particular
populations could be selected for through the escape phase
of immunoediting.

ESCAPE: HOW A SINGLE HTLV-1 CLONE
BECOMES CANCER

Now that HTLV-1 infected cells have survived through decades
of equilibrium, a select monoclonal population that has
accumulated the appropriate set of mutations, and which remains
resistant to immune defenses, will enter the escape phase of
immunoediting, and become the malignant population of ATL
cells in 5 to 20% of individuals living with HTLV-1. ATL is
classified into four clinical subtypes, acute, lymphoma, chronic,
and smoldering; each with varying clinical manifestations,
pathogenesis, and treatment strategy (123). Cells that have
undergone transformation into ATL display hallmarks of
malignancy, the majority of which are driven by HBZ activity—
some identified hallmarks have enabled the development of new
targeted therapies for ATL.

Now that an HTLV-1 infected clonal population has
become malignant, it must continue to counteract cancer-
specific immunosurveillance, not only HTLV-1-specific immune
responses. A variety of cancers can manipulate immune
checkpoint expression to evade immunosurveillance, leading
to the development of immune checkpoint blockade as a
successful therapeutic strategy for certain cancers (124). The
co-inhibitory receptor T cell immunoglobulin and ITIM
domain (TIGIT) is a well-characterized inhibitory checkpoint.
When upregulated on CD4+Foxp3+ T cells, TIGIT induces
the expression of IL-10, contributing to dysfunctional CD8+

T cells within tumor microenvironments (125). Classically,
CD4+Foxp3+ T cells are defined as T regulatory (Treg) cells,
and up to 70% of transformed ATL cells express Foxp3 (126–
130). These findings initially associated ATL with Tregs, even
suggesting that ATL originates from the Treg subset infected
by HTLV-1 (131). More recent findings have demonstrated
that HBZ can modify the immunophenotype of conventional
CD4+ T cells to exploit the desired properties of Treg
cells while impairing their suppressive function (109). HBZ
can enhance Foxp3 transcription and hijack its function to
stimulate proliferation of ATL cells (44, 109, 132). TIGIT is
also highly expressed on ATL cells (132–134). HBZ directly
increases the expression of TIGIT to protect ATL cells from

immunosurveillance (132), meanwhile abrogating the inhibitory
effect TIGIT generally has on T cell proliferation, allowing the
cells to continue to proliferate (133). HBZ can also induce the
expression of the immunosuppressive cytokine IL-10, increasing
its secretion from ATL cells, further supporting the role
HBZ plays in the evasion of anti-viral and anti-cancer host
defenses (132).

Expression of the host CC chemokine receptor CCR4 is
observed in 90% of tumor cells isolated from individuals
living with ATL (135–137). Gain-of-function mutations in the
CCR4 gene enhance the chemotactic properties of ATL cells,
thought to drive infiltration into organs by impairing CCR4
internalization, and improve cellular metabolism and survival
by prolonging PI3K/AKT signaling (97, 138). HBZ can induce
the expression of CCR4 through its major transcription factor
(GATA3), driving migration and proliferation of ATL cells (139).
These findings led to the development of mogamulizumab, a
defucosylated monoclonal antibody against CCR4, which was
recently approved for treatment of relapsed ATL (137, 140, 141).
The defucosylated portion of the Fc region of mogamulizumab
enhances antibody-dependent cellular cytotoxicity (ADCC)
against CCR4+ ATL cells given an increased affinity to bind the
Fc receptor on effectors cells (137, 142, 143). In a small clinical
study to investigate the dynamics of this successful monotherapy,
mogamulizumab was demonstrated to reduce proviral load, with
a particularly rapid reduction of the abundance of the CCR4+

malignant clone (144). Researchers suggest that individuals with
high levels of CCR4+ HTLV-1+ cells could benefit from this
therapy to prevent the development of ATL. This type of
immunotherapy, however, must proceed with caution. CCR4
is expressed on Tregs to drive their migration to and mitigate
inflammatory responses in tissue (145), and while a reduction
in Tregs may boost immunity in the tumor microenvironment,
it may simultaneously create autoimmunity in tissue sanctuaries
(146). Although mogamulizumab treatment is demonstrated to
maintain ATL remission and decreased HTLV-1 proviral loads,
the associated reduction in normally functioning Tregs can cause
severe adverse events, as observed in individuals with ATL treated
with mogamulizumab; one individual developed fatal Stevens-
Johnson syndrome due to reduced Treg populations (146).

Overall, immunoediting coordinated by the virus and by
the host immune response has inherently compelled particular
HLTV-1 infected cells down a pathway toward cancer. This
transpires in at least 5% of individuals, and within those
individuals, only occurs from 1 in 105 unique clones. ATL is
rare, yet very aggressive. It takes 40–50 years for infected cells to
transform and depends on the initial immortalization of cells by
Tax, years of proliferation driven by HBZ, and the accumulation
of the appropriate set of host cell genetic and epigenetic
changes, all while evading HTLV-1- and cancer-specific
immunosurveillance. In this circumstance, immunoediting
has enabled the immune system to protect against viral
infection whilst promoting the persistence of cells fated to
become malignant, and the historical evolution of HTLV-1 with
human cellular machinery has created a symbiotic relationship
between the virus and its host cell, at eventual the cost of
human lives.
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WHAT DOES HIV LOOK LIKE IN THE
ESCAPE PHASE UNDER THIS MODEL?

There have been no reported cases to date of HIV causing
malignancy in CD4+ T cells, which is likely due to the fact
HIV does not express a protein homologous to HTLV-1 HBZ,
the driver of ATL. Although HIV and HTLV-2 both encode an
antisense element [ASP (147) and APH-2 (118), respectively],
neither display oncogenic properties (120, 148). What does
the escape phase of immunoediting look like for HIV to
fit into this model, even without malignancy? We propose
that the final “escape” of clonally expanding cells that remain
refractory to immunosurveillance are those recently termed
“repliclones,” an emerging concept in which CD4+ T cells
harbor full-length replication-competent proviral sequences with
identical integration sites, sometimes contributing to clinically-
detectable viremia in individuals on long-term suppressive
therapy. Although these integration sites represent rare events
in the background of the multitude of defective proviral
genomes, the clones themselves are large, with an estimated
expansion between 50 to 300 million CD4+ T cells (Halvas
EK; Conference on Retroviruses and Opportunistic Infections
2019; Seattle, Washington) (Figure 1). Currently, there is no
evidence that they are selected for, and research is warranted
to define mechanisms that drive their capacity to expand and
potentially contract, and to elucidate their ability to produce
clinical viremia in the presence of circulating HIV-specific
CD8+ T cells.

There are multiple suggested and demonstrated mechanisms
that drive the clonal expansion of HIV latently infected cells,
encompassing progression through normal T cell function
undergoing homeostatic proliferation while enduring bursts of
expansion in response to antigen (149). In a case study, Simonetti
et al. reported on an individual that developed low-level viremia
after 12 years on ART. Single genome sequencing of plasma viral
RNA revealed a portion of this population was genetically diverse
and viremia was attributable to drug resistance. The other portion
of viral RNA was identical, and lacked drug resistance mutations.
Changing ART regiment suppressed the diverse sequences with
resistance mutations, but did not affect the identical sequences.
These sequences were mapped to an integration site in an
ambiguous region of the human genome, thus labeled AMBI-1,
with an estimated expansion to 9 million cells over time (150).
The authors suggest that this clone could persist and expand
over years whilst producing virus particles because this individual
never achieved full T cell recovery, potentially impairing immune
responses. Additionally, this individual developed squamous cell
carcinoma, and AMBI-1 RNA sequenced from plasma waned
post-cancer treatment, but reemerged with its relapse. Autopsy
of the metastatic lesions revealed that infiltrating CD4+ T cells
in tumor tissue were enriched for AMBI-1 clones (150). This
suggests proliferation of this clone could have been driven
through response to tumor antigen (12), and is consistent with
a model where response to antigens or homeostatic proliferation
are the major drivers of clonal expansion. In some cases, the
proviral integration site itself may also contribute to enhanced

clonal expansion and persistence of cells. This is supported by
studies which have reported over-representation of expanded
clones with integrations into genes associated with proliferation,
i.e., MKL2 and BACH2 (12). The study of factors responsible for
driving clonal expansion in HIV remains an active and important
area of study.

Although the repliclone does not become malignant as
observed in HTLV-1, it follows the concept that a clonal
population can be selected for, refractory to immune response,
and can survive for years. Given these expanded clones are
difficult to study, evidence for them is limited, with more
reports emerging at conferences. It appears that the escape
of a repliclone has many mechanisms at play and will
likely differ across individuals. Whatever the mechanism of
expansion, it remains clear that these repliclones do persist,
and perhaps have accumulated survival phenotypes throughout
decades of elimination, antiretroviral therapy, equilibrium, and
escape. As discussed in our partner manuscript, we have
recently described that replication competent HIV-infected
cells from individuals on suppressive ART are resistant to
HIV-specific CTL killing, even when stimulated to reactivate
latent infection (151). The inherent survival of these cells that
have undergone robust T cell activation and are otherwise
hardwired to achieve successful viral replication and antigen
presentation with susceptibility to CTL killing, suggests these
cells have acquired a unique feature or set of features
through the various phases of immunoediting that facilitate
proliferation and survival and the acquisition of an immune-
evading phenotype. Research to uncover these mechanisms of
persistence and immune evasion is extremely relevant for the
field, and may elucidate treatment strategies to curb populations
that otherwise continue to expand and greatly contribute
to the perseverance of the stable, replication competent
latent reservoir.
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Re-directing T cells via chimeric antigen receptors (CARs) was first tested in HIV-infected

individuals with limited success, but these pioneering studies laid the groundwork for the

clinically successful CD19 CARs that were recently FDA approved. Now there is great

interest in revisiting the concept of using CAR-expressing T cells as part of a strategy

to cure HIV. Many lessons have been learned on how to best engineer T cells to cure

cancer, but not all of these lessons apply when developing CARs to treat and cure HIV.

This mini reviewwill focus on how early CAR T cell studies in HIV paved the way for cancer

CAR T cell therapy and how progress in cancer CAR therapy has and will continue to

be instructive for the development of HIV CAR T cell therapy. Additionally, the unique

challenges that must be overcome to develop a successful HIV CAR T cell therapy will

be highlighted.

Keywords: T cell, lentiviral (LV) vector, immune escape and surveillance, clinical trials, immune privilege

HOW INITIAL HIV STUDIES PAVED THE WAY FOR SUCCESSFUL

CD19-DIRECTED CAR THERAPY

From a T cell perspective, controlling HIV replication and cancer growth share many of the
same challenges: antigen escape, antigen persistence resulting in T cell exhaustion, and active
mechanisms employed by both HIV and tumors to avoid T cell recognition and elimination. Thus,
the use of CARs to redirect T cells toward both HIV and cancer as a means to bolster T cell
control of these maladies was an attractive concept, which led to the preclinical studies using both
HIV and cancer models. In the 1990s when antiretroviral therapy (ART) was in its infancy and
not yet able to provide durable control of HIV replication, the rationale to treat HIV infection
with CAR T cell therapy advanced more rapidly, and in this setting, the first CAR T cell trials
were performed. These studies tested the ability of T cells expressing a major histocompatibility
complex (MHC)-unrestricted chimeric receptor consisting of CD4, as the natural ligand of the
HIV Envelope (Env) glycoprotein, and the CD3 zeta (ζ) chain (1) to suppress viral replication in
HIV–infected individuals (2–4). While clinical success was not achieved with these early efforts
in the just-emerging CAR T cell field, these efforts were not a “failure,” but in fact, successfully
laid fundamental groundwork that enabled success using CAR T cells to treat CD19-expressing
tumors. Several key observations and discoveries foundational to the overall field of CAR T cell
therapy were made during the clinical investigation of CD4-ζ CAR T cells. For one, the field
gained an appreciation that a combination of CAR-modified CD4 and CD8T cells, rather than
purified CD8T cells alone, resulted in a marked improvement in CAR T cell persistence (3).
This was ultimately confirmed by demonstration of >10 years of durable CD4-ζ CAR T cell
detection in treated subjects (5). Additionally, these early studies demonstrated that rapid and

129

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02310
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02310&domain=pdf&date_stamp=2019-09-27
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rileyj@upenn.edu
https://doi.org/10.3389/fimmu.2019.02310
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02310/full
http://loop.frontiersin.org/people/780557/overview
http://loop.frontiersin.org/people/742733/overview
http://loop.frontiersin.org/people/32276/overview


Kim et al. CAR T Cell Therapy

reproducible CAR T cell manufacturing could be achieved both
from uninfected and viremic HIV-infected subjects following 10-
day culture incorporating T cell co-stimulation with anti-CD3
and anti-CD28 immuno-magnetic beads. This manufacturing
process resulted in improved functional properties of CD4-ζCAR
T cells as well as stable and durable in vivo persistence (3–5).
Moreover, evidence in randomized trials suggested modest anti-
viral activity in HIV-infected subjects through demonstration of
trends in reduction of blood- and gut-associated HIV reservoirs,
and a reduction in transient viral rebound in plasma (or “blips”)
in aviremic subjects (2, 4). Finally, these studies demonstrated
a lack of immunogenicity of the fully human CD4-ζ construct
and an absence of depletion of MHC class II expressing cells,
suggesting that CD4-MHC class II interaction was not sufficient
to trigger CAR activity. Of note, these early trials with CD4-
ζ CAR T cells were performed with the first generation CAR
constructs using gamma-retroviral vectors and including only the
CD3-ζ cytoplasmic domain without the benefit of co-stimulatory
molecules, such as CD28 or 4-1BB, included in successful modern
CAR T cell trials. Additionally, these early HIV-specific CAR
T cells were not protected from HIV infection, a risk that
is further exacerbate by using CD4 as a retargeting domain.
Recently, a CD4-based CAR that was re-engineered (see details
below) to incorporate lessons learned from successful cancer
targeting CARs (6), was shown to confer greater antiviral activity
than widely-investigated broadly neutralizing antibody (BNAb)
based CARs. This CAR coupled with agents to protect the
CAR from HIV infection (7–10) has recently entered the clinic
(NCT03617198) to determine whether these changes augment
HIV CAR T cell activity and provide some durable control of
HIV replication and/or reduce the latent reservoir. The evolution
of CAR design is summarized in Table 1.

CANCER AND HIV: SHARED CHALLENGES

AND OPPORTUNITIES

Persistent Antigen and Exhaustion
Persistence of antigen at high levels drives exhaustion of T
cells, which limits the functional properties of T cells and is
characterized by high expression of immune checkpoint (IC)
molecules, such as programmed death-1 (PD-1), and cytotoxic T-
lymphocyte-associated antigen 4 (CTLA-4), ultimately hindering
clearance of tumors and chronic infections (13–16). An
advantage of CAR T cell therapy is that new, fully functional T
cells can be redirected toward HIV or tumor antigens. Once re-
infused, however, these CAR T cells are susceptible to becoming
exhausted if they are unable to clear the targeted antigen in
a timely manner. Thus, the reversal or prevention of T cell
exhaustion may represent a mechanism whereby dysregulated
immunity is prevented, allowing CAR T cells to have a longer
therapeutic window to control either HIV replication or tumor
cell growth.

Antibodies targeting ICs (e.g., PD-1, PD-L1 or programmed
death-ligand 1, and CTLA-4) have shown clinical responses in
multiple tumor types, including melanoma, renal cell carcinoma,
non-small cell lung cancer (17), and bladder cancer (18).

So far, there are six U.S. FDA-approved immune checkpoint
inhibitors (ipilimumab, nivolumab, pembrolizumab, avelumab,
atezolizumab, and durvalumab) and their objective response
rates have ranged from 27% in melanoma patients, to 30%
in non-small cell lung cancer patients, and 63% in Kaposi
sarcoma patients (19). However, there have been significant
immune-related toxicities, including onset of type 1 diabetes,
colitis, and dermatological issues (20) that may represent an
acceptable risk/benefit to advanced cancer patients, but may
be unacceptable to HIV-infected individuals whose viral load
is well-controlled by ART. Several clinical trials are currently
underway to explore the effect of anti-PD-1 based therapies in
HIV-infected individuals who also have tumors known to be
responsive to PD-1 blockade (NCT03367754, NCT02408861)
(19) and one trial is treating non-tumor bearing HIV-infected
individuals (NCT03787095). It will be interesting to see if and,
if so to what extent, anti- PD-1 therapies can re-invigorate the
HIV-1 specific immune response and whether side effects of this
anti-PD-1 therapy in this otherwise healthy population confer an
overall benefit/risk sufficient to permit wider exploration in HIV
Cure studies.

Furthermore, some studies show that PD-1 also contributes
to the establishment and maintenance of HIV latency, so
checkpoint blockade may be a promising approach to reverse
latency (21). In order for the remaining hidden pool of virus to
become recognized by HIV–specific T cells, it must be reactivated
first and this could be accomplished by various latency reversing
agents (LRAs) (e.g., histone deacetylase inhibitors (HDACis)
and protein kinase C class drugs) (22). IC blockades could
also function to reverse HIV latency through limiting inhibitory
signals sent from IC molecules into cells harboring latent HIV.
CTLA-4 blockade results in significant increases in plasma
viremia and T cell activation (23). Thus, the combination of
IC blockade coupled with HIV CAR T cell therapy may be an
effective “shock and kill” (24) strategy.

If systemic checkpoint inhibitor approaches prove too toxic
for routine use in HIV-infected individuals, specific targeting of
checkpoint genes within HIV-specific CAR T cells via clustered
regularly interspaced short palindromic repeats (CRISPR) or
small hairpin RNA (shRNA) technologies may prove an effective
and safe way to make HIV-specific CAR T cells exhaustion
resistant because only the HIV CAR T cells will have their
checkpoint genes disabled (25, 26). Here, cancer-based therapies
are paving the way for HIV-specific therapies. A clinical trial
using a CRISPR-based approach to disable PD-1 is currently
underway (NCT03399448) to determine if this improves the anti-
tumor efficacy of engineered New York esophageal squamous cell
carcinoma 1 (NY-ESO-1), a cancer-testis antigen expressed in a
wide range of tumor types -targeted T cells. If successful, this trial
could establish sufficient safety and feasibility to warrant coupling
HIV CARs with PD-1 CRISPRs. Other immune checkpoint
inhibitors, such as those targeting T-cell immunoglobulin
andmucin-domain containing-3 (Tim-3), lymphocyte-activation
gene 3 (LAG-3), and T-cell immunoreceptor with Ig and ITIM
domains (TIGIT), may also help enhance anti-HIV CAR T cell
therapy by overcoming T cell exhaustion, possibly with a more
acceptable safety profile (27–30).
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TABLE 1 | Evolution of CARs used in HIV and cancer cell and gene therapy.

Component First generation

HIV CARs (11)

CD19 CARs that led to

first FDA approval (12)

Current

HIV CARs being tested in

NCT03617198 (6)

Functional impact

Viral vector γ Retrovirus (MMLV-based) Lentivirus

(HIV-based)

Lentivirus

(HIV-based)

Safety, sustained expression

Promoter PGK EF1α EF1α Higher expression (MFI), sustained

expression

Hinge None CD8α CD8α Flexibility

Transmembrane CD4 CD8α CD8α Helps prevent infection, dimerization to

promote activation

Signaling

motifs

CD3ζ CD3ζ, 4-1BB CD3ζ, 4-1BB Improved in vivo expansion, survival, and

persistence

Extracellular domain CD4 EC domains scFv domains CD4 EC domains No immunogenicity or off target

recognition. HIV’s ability to escape will

likely be limited

Antigen Escape
Antigen escape and efforts to limit T cell recognition of targeted
cells are major hurdles for effective T cell-based HIV and cancer
control (13). Most common mechanisms of antigen escape in
cancers are (1) the immune selection of cancer cells, which
lack or mutate immunogenic tumor antigens or lose expression
of the antigens targeted by CAR T cells, (2) the acquisition
of defects or deficiencies in antigen presentation [e.g., loss
of major histocompatibility (MHC) expression], or (3) deficits
of antigen processing machinery (31–33). Multiple compelling
studies suggest that aberrant signal transducer and activator of
transcription 3 (STAT3) signaling plays a key role in facilitating
tumor escape from immune detection by impairing antigen
presentation and reducing production of immunostimulatory
molecules (34). Thus, STAT3 inhibition in concert with other
immunostimulatory agents, such as toll-like receptor (TLR)
3, TLR7, and TLR8 agonists like stimulator of interferon
genes (STING) or retinoic acid inducible gene (RIG)-I, could
provide promising combination immunotherapeutic strategies.
Additionally, a variety of CD19 mutations and alternative
splicing have been observed with development of acquired
resistance of acute lymphocytic leukemia (ALL) to CD19 targeted
CAR T cells (35). In this regard, CARs targeting distinct motifs
on the tumor surface may be an effective strategy to prevent
resistance through tumor escape. For example, Ruella et al.
demonstrated that the combination of CD123-targeted and
CD19-targeted CAR T cells prevented relapses caused by antigen
loss in preclinical models (36). Another study used bispecific
CARs that targeted both CD19 and CD20 in order to minimize
antigen escape from CD19-negative leukemia. Those bispecific
CAR T cells were able to eradicate heterogeneous populations of
leukemic cells in NSG mice (37).

In the case of HIV, the virus has evolved features to escape
from immune monitoring with quick selection for cytotoxic
T lymphocytes (CTL) escape mutations prior to antiretroviral
therapy (ART) due to an error prone reverse transcriptase (10).
Additionally, the HIV-1 negative regulatory factor (Nef) protein
modulates expression of MHC class I, CD28, and other proteins
involved in immune recognition to evade CTLs (38–40). As
a result, recent efforts have focused on introducing a potent

engineered immune response designed to overcomeHIV’s escape
mechanisms instead of solely relying on the endogenous immune
response to control HIV replication in the absence of ART (41–
43). One advantage of CARs to target HIV is that HIV Env
expression on the cell surface is not affected by Nef; thus, CAR T
cells may recognize HIV-infected cells better than natural HIV-
specific T cells. HIV can rapidly escape from a single BNAb
(44–46), and will likely escape from a CAR that uses a BNAb
as its targeting domain, though those targeting the CD4 binding
site seem to be more resistant to escape (47). However, like in
cancer, bi- or multi-specific HIV CARs have been constructed
and have demonstrated superior efficacy against several HIV-1
primary isolates in vitro, warranting further in vivo investigation
(8, 10, 48, 49). Moreover, it is not clear whether use of BNAb
is advantageous as a means to redirect T cells to HIV as
BNAb binding relative to non-BNAb binding promotes Env
internalization (50). Thus, in both HIV and cancer, loss of
target recognition by CAR T cells via antigen escape is an issue,
but through simultaneous targeting of multiple antigens or the
targeting of biologically important functions such as HIV binding
to CD4, this issue seems to be solvable.

Immune-Privileged Sites
Immune privileged sites are anatomical regions (CNS, testes, and
eyes) in which the immune response is purposely attenuated,
usually to protect sensitive tissue from immune-related, off-target
damage. These immune sanctuaries are often used by HIV and
some tumors to hide from the immune attack. To overcome
these issues, recent preclinical studies have shown the antitumor
efficacy and safety of intracranial administration of EGFRvIII,
HER2, and IL13Rα2 redirected CAR T/NK cells. Brown et al.
described a patient who received multiple infusions of IL13Rα2-
CAR T cells over 220 days via infusions to the resected tumor
cavity and the ventricular system (51, 52).

Immune privilege coupled with HIV latency is an even more
daunting problem for T cell-based therapies targeting HIV.
Recent data have highlighted the fact that the >99% of all
HIV-infected CD4+ T cells are found outside the vasculature
within secondary lymphoid organs (SLOs), gut, brain, lung, and
other tissues (53). Immunologic clearance of these infected cells
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is thought to largely involve cytotoxic CD8+ T cells, specifically
CD8+T cells with a fully differentiated “CTL” phenotype (CCR7-
CD62L-CD27-CD45RA+) (54–59). CTLs, however, do not bear
the markers (CCR7 and CD62L) necessary to enter lymphoid
tissue (60–63). Betts and colleagues recently demonstrated that
peripheral blood CTLs are rarely found in HIV-infected lymph
nodes, and instead lymph nodes are populated by HIV-specific
CD8+ T cells with very limited cytotoxic function (64, 65).
In addition, it has been demonstrated that intestinal mucosal
tissue is similarly populated with CD8+ T cells that have
limited cytotoxic function (66). HIV-infected CD4+ T follicular
helper cells (TFH cells) in B cell follicles of lymphoid tissue
are a major compartment for persistent virus replication during
combination ART (cART) (67–69). Even though virus-specific
CTLs have been detected in lymph nodes, they are largely absent
from the B cell follicles because they lack expression of CXC-
chemokine receptor 5 (CXCR5), which is responsible for the
trafficking of cells into the B cell zone along a CXC-chemokine
ligand 13 (CXCL13) concentration gradient (70, 71). Therefore,
the lack of CXCR5 expression on virus-specific CTLs is one
mechanism that promotes the persistence of infected CD4+ TFH

cells within an immune-privileged site (72). On the other hand,
increasing evidence suggests the existence of tissue-resident
macrophages as HIV-1 reservoirs (73, 74). Allers et al. found that
macrophages were significantly enriched in the gut of untreated
HIV patients (75). This also corresponds with a decrease in blood
monocytes and increased expression of gut homing receptors
(e.g., chemokine receptor CCR9 and integrin α4β7) on those
monocytes, suggesting that blood monocytes may be a major
source of macrophages that infiltrate gut mucosa. It has been
reported that α4β7 is able to bind HIV-1 Env protein gp120 and
is 3-fold larger than CD4 receptor, allowing it to capture HIV
efficiently (76). Lastly, it is unclear whether engineered T cells
will be able to transverse the blood brain barrier in HIV-infected
individuals in order to target the HIV reservoir hiding in the
CNS (77).

Taken together, there are at least three major issues facing
HIV CAR T cells: (1) Will the latent reservoir of HIV-infected
cells express sufficient levels of the target antigen (e.g., HIV
Env) to drive CAR T cell recognition after a latency reversal
agent is used? (2) Will the HIV CAR T cell be able to traffic
to the site where the HIV-infected cell is hiding? and (3) if it is
expressing antigen and the HIV CAR T cell is able to recognize
the infected cell, will the CART cell have the necessarymachinery
(perforin and granzyme) that may be lost as part of the T cell
exhaustion program to kill the HIV-infected cell and eliminate
the latent reservoir?

CANCER AND HIV: UNIQUE CHALLENGES

AND OPPORTUNITIES

Cancer CAR T Cells Are Infused When

Antigen Level Is High; HIV CAR T Cells Are

Infused When Antigen Level Is Low
Unless employed to prevent tumor relapse or treat minimal
residual disease, cancer-specific CAR T cells are generally infused
when there is abundant target antigen available. CAR T cells

that quickly recognize their target have an engraftment advantage
(78, 79). Moreover, CAR T cell recognition and killing of target
cells can result in massive expansion of CAR T cells. In one
celebrated case, a single CAR T cell whose vector integrated into
and disrupted the function of the Tetmethylcytosine dioxygenase
2 (Tet2) gene preferentially expanded to>90% of all of the CART
cells within the body and this clone was able to maintain durable
control of the targeted leukemia (80), indicating that CAR T
cells have massive expansion potential. Thus, for individuals with
established tumors, it may be possible to infuse a small number
of well-engineered T cells and let the body serve as the bioreactor
to generate enough T cells to eradicate the targeted tumor.
However, CAR T cells that enter a body without significant target
antigen may massively contract with a small subset becoming
memory T cells, similar to what happens in a natural T cell
response once antigen is cleared. Initial studies (NCT03617198)
propose to infuse HIV CAR T cells in individuals whose ART
has fully suppressed viral replication. It is unclear how well
these adoptively transferred T cells will engraft in the absence
of high levels of target antigen; however, it is reassuring that
first generation CAR T cells targeting CD4-ζ demonstrated brisk
expansion and prolonged persistence following infusion into
aviremic patients effectively managed with ART therapy (2). For
approaches that attempt to block viral rebound once ART is
removed, there needs to be a sufficient quantity of T cells present
that are widely distributed throughout the body to recognize
the vast majority of cells expressing HIV Env as soon as they
emerge. Thus, strategies such as infusion of very high numbers
of T cells or vaccination approaches that maintain high levels of
HIV-specific CAR T cells in the presence of minimal antigen may
be required for HIV-specific CAR T cells to be used as part an
HIV cure strategy (68).

HIV Can Be Specifically Targeted, but HIV

Can Target the CAR T Cells
The search for a CAR target that uniquely recognizes a tumor
has proven very challenging. Currently, targets fall into two
categories: (1) those with acceptable on-target/off-tumor toxicity,
i.e., loss of “expendable” tissue such as B cells in the case of
CART-19 therapies or (2) targets highly expressed on tumors
and weakly expressed on a limited set of healthy cells, which
may allow the CAR T cells to preferentially kill tumor with
minimal effects on healthy cells. On-target/off-tumor recognition
of CAR T cells has been observed in a variety of organ systems,
including gastrointestinal, hematologic, and pulmonary (81). A
fatal example of on target/off tumor CAR T cell recognition was
observed with the cancer-associated antigen HER-2/neu. Rapid
respiratory failure, multi-organ dysfunction, and subsequent
death was attributed to reactivity against pulmonary tissue
expression of HER-2/neu (82). Fortunately, for HIV CAR T cell
therapy, HIV is non-self and thus highly specific agents can be
developed that are unlikely to cross-react with human tissue.
However, while HIV can be uniquely targeted, there are some
challenges: (1) only the HIV Env protein is expressed on the cell
surface after latency reversal, making it the only target suitable
for CAR T cell therapy, and thus limiting some combinatorial
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approaches that may improve the efficacy and/or safety; (2)

extensive sequence diversity within Env making it challenging
to find antibody-based targeting agents that can bind all strains

of HIV. Consequently, the natural HIV ligand, CD4, is attractive

for use in a CAR construct, because HIV escape from binding to
CD4, would likely result in a virus with greatly reduced fitness;
(3) HIV Env expression levels are not fixed as in most cancer
targets. Rather, the number of HIV Env targets on the cell surface
increases over time as HIV replicates within the cell. However,
the best chance for HIV CAR T cells to control HIV replication
is to recognize and kill HIV-infected targets as soon as possible
after infection when there is minimal HIV Env on the cell surface
in order to limit the spread of the virus. Thus, CAR constructs
that can redirect T cells to recognize minute levels of HIV Env on

the cell surface will likely be very successful to limit HIV spread.

This race between the CAR T cell to recognize HIV and HIV’s

effort to infect new cells has no clear parallel to cancer CAR T
cells. It will therefore be interesting to see how this difference

impacts the ability of HIV CAR T cells to control HIV replication
in HIV-infected individuals.

Additionally, whereas tumors create hostile environments for
T cells to function (83), HIV actively infects and kills T cells.

While CD4 is a necessary binding receptor for most HIV strains,
CD8T cells can temporally express CD4 after T cell activation
permits making both CD4 and CD8 HIV-specific CAR T cells

susceptible to infection (6, 84, 85). For these reasons, HIV-
specific CAR T cells will need to be protected fromHIV infection.
A variety of strategies exist including chemokine co-receptor
disruption and fusion inhibitors that provide robust protection of
T cells from infection (41). The only challenge in these strategies
is the additional engineering that is required during the T cell
manufacturing process.

The Bar by Which Therapies Are Deemed

Successful Differs Considerably Between

HIV and Cancer Cell and Gene Therapy
Current cancer treatments such as chemotherapy, surgery,
and/or radiation, have significant side effects and in most cases
low rates of cure in advanced disease settings. CAR T therapies
are currently being explored in patients with advanced/refractory
malignancies and are FDA approved in chemotherapy refractory
leukemia and lymphoma. Clinical success and FDA approval
for Sipuleucel-T (Provenge), a dendritic cell-based therapeutic
vaccine, was based on ∼4 month increase in survival time for
prostate cancer patients. In contrast, ART is nearly universally
successful in compliant individuals with access to healthcare,
and those individuals whose virus remains undetected due to
ART have lifespans approaching those of non-HIV infected
individuals (86). Thus, both commercial and clinical success for
cancer therapies is measured by increasing mean survival time
whereas for HIV, only a cure, whether functional or sterilizing
(87, 88), is considered a success. Given that only two people
have been cured of HIV infection (89, 90), having a lifetime
cure as the only measure of success is quite a high bar. This
is why analytical treatment interruptions (ATIs) are crucial to
advance the HIV CAR T cell field. Here, individuals involved in
an IRB approved clinical trial voluntary stop taking ART after
receiving an experimental agent and the time to viral rebound is
measured.Most individuals reboundwithin 2–4weeks; therefore,
individuals who are part of an interventional study that is able
to limit the virus from replicating significantly longer provide
evidence that the experimental therapy is having some effect.
As the field matures and many approaches are studied, one
can then analyze ATI data to propose combination trials to
determine whether further delays in viral rebound occur. This

TABLE 2 | Synergy between HIV and cancer cell and gene therapy.

Advance Initial impact Impact on other disease

Bone marrow transplant Lifesaving approach to restore patient bone marrow after severe

cancer therapy that can induce graph v. tumor effects (96)

Part of the regimen of the individuals cured of HIV (89, 90)

Retroviral vectors The first time a genetically modified cell was infused into humans

was when neomycin was expressed by a retroviral vector in

cancer infiltrating T cells (97)

The clinical development of retroviral vectors in cancer paved the

way for the first CAR T cell trial in HIV (3, 4)

CD3/28 bead culture

system for T cell Stimulation

Development of a GMP compliant, robust method to expand

HIV-infected CD4T cells in the absence of ART due to CCR5

downregulation (98–101)

Used widely to manufacture T cells for cancer CAR therapy

including in the first indication that led to FDA approval

(12, 102–104) using SOPs initially developed for HIV

CAR T cell Fusion of CD4 with the CD3 zeta chain created the first CAR

construct tested in humans and demonstrated the long term

persistence of CAR T cells (5)

Manufacturing advances and safety data obtained from HIV CAR

T cell studies paved the way for development of the first FDA

approval of any gene therapy- and the first CAR T product

(12, 102, 105, 106)

Lentiviral vectors A lentiviral vector that expressed anti-sense HIV Env in transduced

T cells represented the first time lentiviral vectors were used in

humans (107)

Lentiviral vectors have preferred integration pattern (108),

improved expression (6), and are the preferred vector for cancer

CAR T cell therapy

Genome editing Infusion of CCR5 ZFN treated T cells into HIV-infected individuals

represented the first time genome edited T cells were employed

(109)

NYESO-1-specific T cells with disrupted TCR and PD-1 alleles

were recently infused into cancer patients (NCT03399448)

TCR enhanced affinity T cells expressing an affinity enhanced TCR specific for MAGE-A3

resulted in two treatment related deaths due to unexpected

off-target toxicity (110, 111)

A clinical trial using similar technology to redirect T cells to HIV was

stopped because the TCRs used did not undergo an improved

screen for off target recognition (NCT00991224)
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combinatorial, iterative approach is likely the best chance we have
to develop an effective and safe HIV Cure regimen. To date,
carefully monitored ATIs have not resulted in ART escape or
increased the viral reservoir (91–93), suggesting that there are
no long term adverse outcomes for individuals participating in
clinical trials that have ATIs (94).

OUTLOOK: RECENT LESSONS FROM

CANCER WILL INFORM THE NEXT

GENERATION OF HIV SPECIFIC–CARS

The development of cancer and HIV CAR T cell therapy
has a long, intertwined, and symbiotic relationship (95), and
this relationship is highlighted in Table 2. Exactly how did
success with cancer CAR T cell therapy inform the design and
implementation of HIV CAR T cell therapy? The initial CD4-ζ
CAR was housed in a murine gammaretroviral vector, contained
the CD4 transmembrane domain, lacked costimulatory domains,
and was driven by the phosphoglycerate kinase (PGK) promoter
(1, 112). In a side-by-side, step-by-step study, Leibman et al.
compared this first generationHIVCARwith the vector design of
CARs that achieved FDA approval for CD19-expressing tumors
(6). Surprisingly, the choice of vector delivery made a huge
difference in CAR expression and this translated into greater
control of HIV replication. Substituting the EF-1a promoter
resulted in both more stable and higher CD4 CAR expression.
Replacing the CD4 transmembrane domain with the CD8 hinge
region resulted in slightly less expression, but rendered the
HIV CAR T cells less susceptible to infection and improved
the overall efficacy of these T cells. Lastly, endowing the CD4
CAR with 4-1BB costimulation promoted both the survival
and expansion in vivo as previously observed in tumor models
(6, 113).

In a convergence of fields, much attention is now focused
on where a CAR vector integrates. Pioneering studies by
the Bushman lab demonstrated that HIV (and HIV-based
vectors) prefers to integrate in coding regions, whereas murine
gammaretroviruses target promoter regions (108, 114). More
recently, the site of HIV integration has been shown to play a role
in whether T cells will become part of the latent reservoir (115),
suggesting that the site of integration can impact a T cell’s long
term persistence and ability to homeostatically expand. Using
approaches to study howHIV integrates, Fraietta et al. uncovered
how a CD19 CAR vector fortuitously integrated into the TET2
locus, and this integration resulted in a central memory-like T
cell phenotype with an incredible ability to expand and function
(116). As genome engineering becomes more effective, safer and
less expensive (117), one can imagine that it will be possible to
specifically insert a CAR vector into a precise spot in the genome

to provide a functional advantage or survival benefit to either
HIV or cancer CAR T cells.

As mentioned in the beginning, the field of T cell
manufacturing was in its infancy when the first HIV CAR
T cell therapy trials were performed. The field has matured
considerably, but there is muchmore to learn in order to improve
how T cells are produced for use in adoptive T cell applications.
Cancer CAR T therapy has seen a strong correlation in how
well T cells expand ex vivo with their in vivo function and
persistence (118). Additionally, it has been demonstrated that
changes in T cell manufacturing such as expanding T cells in
the absence of human serum (119) improves the in vivo efficacy
of CAR T cells. Here, developers of cancer CAR and HIV CAR
can support each other as many of the developments in T cell
manufacturing are likely to benefit both fields. One possible
difference is that for HIV CAR T therapy large quantities of
HIV CAR T cells may be required to have enough effectors on
hand to prevent viral rebound after ART removal since there is
minimal antigen present to induce in vivo CAR T cell expansion.
In contrast, for cancer CAR T cell therapy, infusion of less CAR
T cells may be safer, less expensive and just as effective so the
manufacturing for these two therapies are reasonably similar now
but they may diverge considerably once we learn more about
what is required to obtain therapeutic responses. Lastly, HIV-
infected individuals are currently excluded from receiving CART
therapy in part because the commercial manufacturers have not
developed a process by which HIV-infected T cells can be GMP
manufactured. Perhaps one of the last gifts HIV CAR therapy can
give to cancer CAR therapy is to share the best practices by which
HIV CAR T cells are manufactured using T cells from HIV-
infected individuals so that HIV-infected individuals can benefit
from this life saving, cancer CAR T cell technology.
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Recently, a second individual (the “London patient”) with HIV-1 infection and concomitant

leukemia was cured of both diseases by a conditioning myeloablative regimen followed

by transplantation of stem cells bearing the homozygous CCR5 132 mutation. The

substantial risks and cost associated with this procedure render it unfeasible on a large

scale. This strategy also indicates that a common pathway toward a cure for both HIV and

cancer may exist. Successful approaches to curing both diseases should ideally possess

three components, i.e., (1) direct targeting of pathological cells (neoplastic cells in cancer

and the HIV-infected reservoir cells), (2) subsequent impediment to reconstitution of

the pool of pathological cells and (3) sustained, immunologic control of the disease

(both diseases are characterized by detrimental immune hyper-activation that hinders

successful establishment of immunity). In this review, we explore medications that are

either investigational or FDA-approved anticancer treatments that may be employed

to achieve the goal of curing HIV-1. These include: thioredoxin reductase inhibitors

(phases 1–3), immune checkpoint inhibitors (phases 1, 3), Jak inhibitors (FDA approved

for arthritis and multiple cancer indications, summarized in Table 1). Of note, some of

these medications such as arsenic trioxide and Jak inhibitors may also reversibly down

regulate CCR5 expression on CD4+ T-cells, thus escaping the ethical issues of inducing

or transferring mutations in CCR5 that are presently the subject of interest as it relates to

HIV-1 cure strategies.

Keywords: HIV, immunomodulator, inflammation, eradication, latent reservoir HIV infected CD4T cells, apoptosis

of HIV infected CD4T cells

INTRODUCTION

Human Immunodeficiency Virus (HIV-1) is currently well-managed and achieves plasma viral
suppression with existing combination antiretroviral therapy (ART). Despite durable virologic
suppression, a major barrier to eradication of HIV-1 remains the effective elimination of cells
harboring integrated HIV in a latent or low-level replication state, including pharmacological
sanctuaries such as the central nervous system (CNS) (1–6). Further, many reports now
demonstrate that chronic immune activation and exhaustion transpire in people living with HIV
(PLWH) even with well-controlled viremia. These markers include elevated levels of inflammatory
and immunomodulatory cytokines including IL-1α/β, TNF-α, IL-6, D-dimer, C reactive protein
(CRP), IL-7, IL-15, sCD14, and sCD163. These correlate with increased morbidity and mortality
in PLWH (2, 6–16). For example, IL-7/15 drive homeostatic proliferation and IL-15 reactivates
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HIV-1 from latent stores, thereby expanding the viral reservoir
(2, 10, 11). Elevated inflammation is a driver of immune
exhaustion (elevated PD-1), which is also associated with disease
progression for PLWH (7, 17, 18).

Existing antiretroviral agents do not completely eliminate
ongoing inflammation and immune activation for all
virologically suppressed individuals, nor do these agents
target the latent or persistent viral reservoir (19–21). These
limitations have led to the burgeoning exploration of
well-defined anti-cancer agents that target key cellular and
immunomodulatory pathways.

The interface between cancer and HIV-1 treatment is not new;
the first FDA-approved antiviral agent was azidothymidine, an
adenosine nucleoside analog originally explored as an anticancer
agent to block DNA synthesis given its lack of the 3′ hydroxyl
group (22–24). The wealth of FDA-approved agents with well-
described mechanisms of action and clinical profiles provide
a robust foundation that can be readily leveraged for HIV-
1 treatment. This review focuses on key anti-cancer agents
that either are FDA-approved or have already begun clinical
investigation in PLWH.

HEMATOPOIETIC STEM CELL

TRANSPLANTATION AND CELLULAR

THERAPY

The concept of disease eradication followed by reconstitution of
depleted cell lines using a living, unrelated donor is over 60 years
old. The first allogeneic hematopoietic stem cell transplantation
(HSCT) was performed in 1957 by E. Donnall Thomas on six
individuals with various malignancies (25). Only two patients
engrafted after conditioning chemotherapy with radiation, and
all died within 100 days. Allogeneic transplants require the bone
marrow graft to be derived from a healthy donor, in contrast to an
autograft (self) transplantation. The procedure usually requires
an initial round of high dose chemotherapy along with total
or selective body irradiation to reduce the tumor burden and
weaken native immunity prior to transplantation. Thereafter,
donor cells are infused, followed by the administration of
immunosuppressive agents initially to prevent rejection and
later to minimize graft-vs.-host disease (GVHD). After the
introduction of histocompatibility matching in the 1980s,
disease-free survival dramatically improved as graft rejection
and GVHD decreased (26). In the modern era of HSCT, the
majority of patients undergoing this procedure have refractory
leukemia or multiple myelomas well as other malignancies such
as lymphomas (non-Hodgkin’s and Hodgkin’s), gliomas and
neuroblastomas. HSCT has also been an effective therapeutic
strategy for non-malignant diseases including autoimmune
disorders and sickle cell disease (27, 28). According to the

Abbreviations: HIV, Human Immunodeficiency Virus; CRP, C Reactive Protein;

PLWH, People Living withHIV; ART, antiretroviral therapy; HSCT, hematopoietic

stem cell transplantation; GVHD, graft-versus-host disease; TrxR, Thioredoxin

reductase; ATO, Arsenic trioxide; PML, promyelocytic leukemia protein; Jak-

STAT, Janus activating kinase signal transducer and activator of transcription; PKC,

protein kinase C; TLR, toll-like receptor.

WHO, over 50,000 HSCT are performed worldwide each year
for malignant indications, with more than 90 % resulting in a
cure (29).

In the early years of the HIV epidemic, HSCT was explored
as an option to treat cancer or reconstitute the immune system
for people living with HIV (PLWH). For untreated, advanced
HIV infection, most patients experienced little clinical benefit
and ultimately succumbed to AIDS. Interestingly, several of the
allogeneic HSCT recipients had, at necropsy, undetectable levels
of HIV from various tissues as late as 10 months after transplant
(30). Interestingly, syngeneic transplants recipients remained
viremic throughout the post-transplant period indicating the
potential value of a graft-vs.-virus effect. As ART became
available, the interest in developing HSCT as a strategy to
specifically treat HIV disease waned. Outcomes of autologous
HSCT for PLWH with lymphoma continued to improve and
approached those of HIV negative individuals (31). However, the
effectiveness of moderately intensive chemotherapy or HSCT on
the HIV reservoir had been minimal due to reinfusion of infected
CD4+ T cells contaminating autografts, new infection of donor-
derived CD4+ T cells, and chemotherapy-resistant infected cells.

In 2007, Timothy Brown (the “Berlin patient”) underwent
HSCT for relapsed acute myelogenous leukemia (AML). Gero
Hütter, the treating physician, identified a donor lacking the
CCR5 coreceptor (homozygous for the 132 deletion) on CD4+

T cells, which is critical for R5-tropic HIV viral entry. ART
was discontinued, and subsequently HIV in blood and various
tissues were undetectable (32). After more than a decade since
transplantation, he remains free from both HIV and AML
becoming the first patient ever cured of HIV by this strategy
(33). Two additional patients in Boston (who were themselves
heterozygous for the 132 deletion) underwent HSCT using
a reduced-intensity conditioning regimen and CCR5+ wild-
type donors (34). Unfortunately, both patients experienced
viral rebound 12 and 32 weeks after ART cessation despite
maintaining undetectable levels while receiving ART until
full chimerism was achieved. More recent evidence of HIV
remission following HSCT has been documented from a patient
in London who is now over 18 months undetectable (35).
Numerous protocols are underway to examine this approach
in various international settings (30). The Berlin patient
prompted new research aimed at knocking–down CCR5 on
CD4+ T cells using CRISPR/Cas9, zinc-finger nuclease and
transcription activator-like effector nuclease genome editing
systems (36). There are some concerns around the use of
lentiviral transduction resulting in insertional oncogenesis
and the potential effect of losing the CCR5 co-receptor for
immune function and mortality (37). Furthermore, without
fully myeloablative chemotherapy or high efficiency of graft
transduction, it is unclear how to best to achieve complete
chimerism in the host, and identification of donor matched
132 for all PLWH is not possible, given this mutation is
a rare mutation in the human population at large (38).
Additionally, there are ethical considerations for altering the
human genome; modifying CCR5 signal transduction may have
implications for specific pathogens and long-term immunity that
are incompletely understood.
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Despite encouraging evidence, this procedure incurs a
significant risk of complications, challenging pharmacological
interactions and substantial financial costs. Survival at 1 year is
around 60% with the underlying malignancy often described as
the cause of death. The major adverse events include infection,
liver injury due to veno-oclusive disease, and GVHD. At a
median total healthcare cost at 100 days of $289,283 for the
myeloablative HSCT and $253,467 for reduced-intensity HSCT
(39), allogeneic HSCT is not a viable treatment option for
the nearly 37 million PLWH globally. This reason alone has
weakened support of HSCT as a viable strategy for HIV cure
(40–43). More recently, the use of virally transduced chimeric
antigen presenting autologous T-cells (CAR-T) has broadened
the potential utility of immune directed anticancer therapy with
approval of several agents in this class by the US FDA for the
treatment of refractory leukemia and lymphoma (44). While the
success of HSCT has been limited to hematologic malignancies,
CAR-T has the potential to positively impact the treatment of
solid malignancies in the near future. Despite the advancement
of this potential intervention for cancer, implementation of CAR-
T cells to HIV-positive individuals presents with significant
logistic limitations since it requires transplantation, limiting its
application to the nearly 37 million PLWH worldwide.

CHECKPOINT INHIBITORS

There are a number of approved immunotherapeutic agents
directed at CTLA-4 (ipilimumab), programmed cell death 1
protein or PD-1 (nivolumab, pembrolizumab, cemiplimab), and
PD-L1 (atezolizumab and durvalumab) (45). See Table 1 for
summary of indication and route of administration for this class
of agents. Each of these monoclonal antibodies present critical
pharmacokinetic challenges. For example, they are not orally
bioavailable and there is poor tissue delivery of these agents at
adequate concentrations to confer efficacy.

Immunologic dysfunction associated with HIV infection
and persistence, including T cell exhaustion, is related to
overexpression of checkpoint molecules including CTLA-4,
PD-1, LAG-3, and TIM-3. This overexpression is a major
contributor of the viral reservoir in ART-suppressed, HIV-
positive patients and non-human primates (46–48). Recently, a
report from Fromentin et al. demonstrated that PD-1 blockade

TABLE 1 | Summary of anti-cancer agents that have been explored for the

indication of HIV.

Agent Target Route of administration

Nivolumab, pembrolizumab,

cemiplimab), and PD-L1

(atezolizumab and

durvalumab

PD-1 Monoclonal antibody;

infusion

Auranofin Thioredoxin reductase Oral

Arsenic trioxide Thioredoxin reductase Intravenous

Ruxolitinib Jak 1/2 Oral

Baricitinib Jak 1/2 Oral

potentiates HIV latency reversal ex vivo in CD4+ T cells from
ART-suppressed individuals (49), further underscoring the role
of PD-1 in HIV-1 latency, reversal, and overall reactivation.

Clinical trials are already underway (NCT02408861,
NCT03354936) or have been completed to test checkpoint
blockade. In a previous case report, ipilimumab was given to a
HIV positive patient with melanoma. This patient experienced
an increase in CD4+ T cell quantity, T cell activation and
cell-associated unspliced HIV RNA with a subsequent decline in
plasma HIV RNA (50). Moreover, a HIV-positive patient with
lung cancer was given nivolumab with a subsequent reactivation
of latently-infected T cells (51). Significant adverse effects have
been reported when using these agents in cancer; as these
molecules are involved in antigen self-tolerance, disruption can
lead to autoimmune or inflammatory side-effects, reactivation
of underlying autoimmune conditions, or new autoimmune
conditions such as type 1 diabetes mellitus (52). Several case
reports have described colitis, skin toxicities, endocrinopathies,
pneumonitis, and hepatitis (53, 54). Finally the substantial cost
of these agents necessitates a careful consideration of which
patients and populations would be ideal candidates for this
class of drug (55). Together, these significant safety limitations
coupled with cost of treatment, likely preclude their development
for the indication of HIV-1 cure.

THIOREDOXIN REDUCTASE INHIBITORS

Thioredoxin reductase (TrxR) is a key suppressor of oxidative
stress and regulates cell death and differentiation. It is a
selenoprotein which reduces the oxidized from of thioredoxin
(Trx), turning this protein into its active reducing form, thus
maintaining the functional levels of one of the main cellular
antioxidants (56). The presence of a selenocysteine in the active
center of TrxR renders it sensitive to inhibition by a number of
metal and metalloid ions, which directly bind the selenium ion of
selenocysteine thus blocking the active center of the protein (57).

Auranofin is the only gold salt which is orally available and
FDA-approved, see Table 1 for summary of indication and route
of administration (58, 59), although it is rarely prescribed in
the modern era due to toxicities, and development of other
more specific, safe and well tolerated agents. Auranofin was
developed for RA treatment in the 1970s, but, at that time, the
mechanisms behind its effects on the immune systemwere largely
unknown (58). It was known, however, that the compound
inhibited lymphocyte proliferation (60), and, in this light, its
anticancer potential soon became apparent (61). A recent human
clinical trial with five HIV-positive individuals was conducted
(NCT02961829) (62). The findings demonstrate that no severe
adverse events were reported for the duration of the study, apart
from a decline in total CD4T cells at week 8 and week 12.
A sample size of five individuals per group, statistical analysis
to confidently perform appropriate statistical tests to determine
significance of findings cannot be performed; nonetheless, the
trial demonstrates that auranofin may be safely tolerated in
HIV-positive individuals; further studies are needed to better
understand the impact of this agent on the viral reservoir.
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To date, auranofin has been largely replaced by modern-era
anti-cancer agents that demonstrate a significant improvement in
safety and specificity profiles. Nonetheless, the ability of this agent
to block activation based events that drive immune activation add
to a better understanding of links between inflammatory events
and HIV persistence.

ARSENIC TRIOXIDE (ATO)

Early reports demonstrated that ATO potently suppressed
lymphocytic proliferation in acute promyelocytic leukemia
(APL) (63), however the fact that it blocks T cell proliferation
provides serious concern for application toward PLWH, given
CD4T cell loss is a major hallmark of disease pathology
in this population. A case-report study demonstrated that
oral arsenic trioxide–based maintenance regimens conferred
complete remission of APL in a 10-year follow up study,
underscoring that agent can be tolerated in this cohort to
achieve remission (64). APL requires a 15:17 chromosome
translocation and chimerization of the retinoic acid-RAR-α
and the promyelocytic leukemia protein (PML). PML is a
primary constituent of the nuclear bodies, a molecular “hub”
attracting chromatin-modifying enzymes and transcription
factors regulating cell death and proliferation and, interestingly,
HIV-1 transcription (65). A combination of the RAR-α ligand all-
trans retinoic acid and ATO, found to be a PML ligand (65), has
become an effective, FDA-approved treatment for APL, inducing
stable remission of the disease (66). See Table 1 for summary
of indication and route of administration. Despite this approval,
arsenic-based compounds are considered to be toxic, although
the benefits to patients with cancer may outweigh the risks. It
remains to be seen whether this risk-benefit ratio will be similar
for PLWH.More recently in the past decade, the inhibitory effects
of ATO on TrxR were discovered (67). ATO was thus tested,
alone or in combination with other drugs in a wide variety of
cancers without the 15:17 chromosome translocation including
solid malignancies such as melanoma and small cell lung cancer
(68, 69) and was approved as a treatment for hepatocellular
carcinoma in China (70).

Currently, ATO could provide insight into mechanisms for
cure-based work for several reasons: First, ATO has been
reported to demonstrate efficacy in the traditional “shock
and kill” strategy, with a mechanism that is related to TxR
inhibition (65, 71), which implies a relationship between TxR
inhibition and viral reactivation. Additionally, ATO reduces
the susceptibility of subsequent HIV infection down-regulating
CCR5 expression on CD4+ T-cells without the need of a bone
marrow transplantation. A recent report also stated that ATO
(72) conferred a delay in viral rebound for two SIV-infected
macaques (out of four total animals in the study), with doses
similar to those administered to humans with APL. A larger
sample size to determine the impact of these agents in macaques
is warranted, although concern for overall T cell loss with an
anti-leukemic agent in PLWH will require a thorough evaluation
of the risk/benefit ratio. CCR5 down-regulation is the likely
result of the pro-differentiating effects of ATO in lymphocytes:
similarly to auranofin, ATO induces CD27 down-regulation, thus
limiting their potential to become activated (73). A Phase 1

human study (20 total participants randomized to control or
treatment groups) to examine this agent is currently recruiting
in China, which may provide critical insight into the safety
and efficacy of this agent in PLWH (https://clinicaltrials.gov/
ct2/show/NCT03980665). Together these mechanisms provide
insight into control of the viral reservoir, although direct clinical
application of ATO to HIV-positive individuals is uncertain at
present. Weighing the risk/benefit ratio for an agent that may
block pro-HIV events, vs. its clinical safety profile must be
carefully considered with agents, especially those that are not
prescribed currently due to their safety profiles.

JAK INHIBITORS

The Janus activating kinase signal transducer and activator of
transcription (Jak-STAT) pathway is activated within 2 h of
HIV-1 envelope gp120 binding to CD4, in both primary T-
cells and macrophages, in a co-receptor independent manner
(74). Downstream activation results in Jak activation, subsequent
STAT phosphorylation, and extracellular production of pro-
inflammatory and cytokines that are key drivers of HIV
persistence, disease progression, reservoir magnitude, and
decreased CD4T cell counts (7, 75–78).

Jak 1/2 inhibitors including ruxolitinib (Jakafi; Jakafi.com),
and baricitinib (olumiant; olumiant.com) are FDA-approved for
myelofibrosis or polycytemia vera (ruxolitinib), and rheumatoid
arthritis (baricitinib), respectively. Baricitinib is FDA-approved
for long-term use, including in children, rendering its safety
profile favorable for consideration in PLWH. See Table 1

for summary of indication and oral administration for jak
inhibitors. Jak 1/2 blockade represents an attractive cellular
target because Jak 3 but not Jak 1/2 blockade induces natural
killer cell depletion and systemic side effects that can promote
immunosuppression (79–82). Ruxolitinib has demonstrated
potent inhibition of reservoir establishment, maintenance and
expansion in primary T cells and macrophages in vitro and
ex vivo (7), and demonstrated reduction in immune activation
markers associated with HIV-1 persistence including CCR5,
HLA-DR, CD38, CD25, Ki67, and PD-1. Further, Jak inhibitors
significantly reduce Bcl-2 expression in non-dividing p24+

primary T cells ex vivo, thereby offering the potential to reduce
the lifespan of reservoir cells by down-regulating a key marker
that controls lifespan of cells (7, 14, 78, 83, 84). These data
provided the foundation for a recently completed multi-site
Phase 2a AIDS Clinical Trial Group (ACTG)-funded study
(https://www.clinicaltrials.gov/NCT02475655. It was recently
reported that ruxolitinib was safe and well-tolerated in a
highly-selected cohort of PLWH on suppressive ART (85). The
ruxolitinib arm demonstrated a trend in reduction of IL-6, and a
statistically significant decrease in sCD14 (85), coupled with an
increase in circulating T cells through undefined mechanisms.
Data are forthcoming about the impact of this agent on viral
reservoirs, and key markers of viral persistence.

Additional work has begun to explore another Jak 1/2
inhibitor, baricitinib for HIV (86). Baricitinib is an FDA
approved once-daily dosed, orally bioavailable inhibitor that is
renally cleared, approved for long-term use in children (primary
indication rheumatoid arthritis, and under investigation for
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various inflammatory or malignant indications). A recently
published study demonstrated that baricitinib reverses HIV
associated neurocognitive disorders in a severe combined
immunodeficiency (SCID) mouse model and reservoir seeding
in vitro (86). Importantly, baricitinib was shown to significantly
reduce activated phagocytic cells from the periphery that
recruit to the CNS during HIV infection, highlighting the link
between blockade in the periphery and potential application
to CNS infection with HIV. Together, these data provide a
rationale for future studies of Jak inhibitors in PLWH who have
residual inflammation or immune dysfunction despite long-term
suppressive ART.

PREVIOUS WORK PAVES A ROAD

TOWARD A BRIGHT FUTURE

Many early studies exploiting anti-cancer agents were based
on the “shock and kill” concept (87, 88). These agents,
notably panobinostat (primary indication: multiple myeloma)
and vorinostat (primary indication: cutaneous T cell lymphoma)
failed due to toxicity and lack of efficacy (89). Other modalities
targeting key pathways reactivating the latent virus, including
protein kinase C (These markers include elevated levels) agonists
and toll-like receptor TLR agonists, are being explored, however
to date no agent has demonstrated durable reduction in the latent
reservoir (90). These agents also may promote systemic immune
activation since they are reactivation agents, which could have
fuel HIV persistence, representing a major limitation associated
with these approaches. Nonetheless, these studies provide a better
understanding of potential application of anti-cancer agents and
the effect of the shock and kill approach on the HIV reservoir
(i.e., reactivation of the latent virus followed by elimination of
the infected cell).

COMMON STRATEGIES FOR CURING HIV

AND CANCER

Curing cancer has a major mechanistic hallmark of stopping
proliferation of malignant cells and/or inducing cell death,
while maintaining immune function and reducing toxicity of
uninfected cells. HIV-1 eradication strategies are now beginning
to adopt this paradigm to target and eliminate only HIV-
infected cells. This archetype represents the beginning of a new
horizon, where better understanding of the complex and delicate
interplay between cellular signaling, inflammation, autocrine and
paracrine events, and the impact of these events both locally

and across organ compartments. The field of HIV has been
able to move forward with much greater speed and knowledge
due to the wealth of information collected from anti-cancer
approaches spanning diverse mechanisms of action. The data
collected to date have provided insight into some approaches
that are not viable, while simultaneously providing insight
into why they may have failed, providing a potential pathway
to re-evaluate these mechanisms with different agents. Other
approaches have provided promising preliminary data in humans
and will require further rigorous evaluation in PLWH. Careful
consideration for agents that are safe, specific, and potent that
can be translated for large-scale use in PLWH, including children,
must be considered. Further, the bioavailability of the agent, its
pharmacokinetic profile, and ability to be administered without
drug-drug interactions to PLWH who are receiving ART are
critical components to repurpose oncology chemotherapeutic
agent for use in HIV infection. The data generated to date will
facilitate better understanding of the potential impact of these
agents on the viral reservoir and end-organ disease, and provide
great potential to identify a candidate agent that can lead to a
functional HIV cure.

CONCLUSIONS

Targeting and eliminating HIV-infected cells without conferring
toxicity to uninfected cells systemically remains a critical key
to HIV eradication. The information gained from oncology and
its rapidly advancing target library will undoubtedly continue
to guide eradication strategies for HIV-1. Data learned from
previous work provides hope that eradication of HIV-1 is
possible, when guided by the lighthouse of cellular-factor targeted
agents and anti-cancer therapies.

AUTHOR CONTRIBUTIONS

CG was the primary author and also edited all other contributing
portions into the doucment. AS provided sections for
thioreductase inhibitors, auronafin, and historical perspectives.
TO provided sections for anti-cancer agents and crosstalk
to background and clinical application in cancer. VM was the
senior author andwrote historical sections, edited document, and
guided CG toward completion and structure of the manuscript.

ACKNOWLEDGMENTS

This work was supported by Emory Center for AIDS
Research (P30AI050409).

REFERENCES

1. Barouch DH, Deeks SG. Immunologic strategies for HIV-1 remission and

eradication. Science. (2014) 345:169–74. doi: 10.1126/science.1255512

2. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab

B, et al. HIV reservoir size and persistence are driven by T cell survival

and homeostatic proliferation. Nat Med. (2009) 15:893–900. doi: 10.1038/

nm.1972

3. Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM,

et al. Molecular characterization, reactivation, and depletion of latent HIV.

Immunity. (2003) 19:413–23. doi: 10.1016/S1074-7613(03)00236-X

4. Cenker JJ, Stultz RD,McDonald D. Brainmicroglial cells are highly susceptible

to HIV-1 infection and spread. AIDS Res Hum Retroviruses. (2017) 33:1155–

65. doi: 10.1089/aid.2017.0004

5. Chun TW, Moir S, Fauci AS. HIV reservoirs as obstacles and opportunities

for an HIV cure. Nat Immunol. (2015) 16:584–9. doi: 10.1038/ni.3152

Frontiers in Immunology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 2267143

https://doi.org/10.1126/science.1255512
https://doi.org/10.1038/nm.1972
https://doi.org/10.1016/S1074-7613(03)00236-X
https://doi.org/10.1089/aid.2017.0004
https://doi.org/10.1038/ni.3152
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gavegnano et al. Crossroads of Cancer and HIV-1

6. Katlama C, Deeks SG, Autran B, Martinez-Picado J, van Lunzen J, Rouzioux

C, et al. Barriers to a cure for HIV: new ways to target and eradicate HIV-1

reservoirs. Lancet. (2013) 381:2109–17. doi: 10.1016/S0140-6736(13)60104-X

7. Gavegnano C, Brehm JH, Dupuy FP, Talla A, Ribeiro SP, Kulpa DA, et al.

Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors. PLoS

Pathog. (2017) 13:e1006740. doi: 10.1371/journal.ppat.1006740

8. Hsu DC., Zonghui H, Carroll C, Maka K, Rupert A, Deeks SG, et al. IL-6

and CD8 senescence independently associate with atherosclerosis in treated

HIV. In: Conference on Retroviruses and Opportunistic Infections. Seattle,

WA (2015).

9. Riou C, Yassine-Diab B, Van grevenynghe J, Somogyi R, Greller LD, Gagnon

D, et al. Convergence of TCR and cytokine signaling leads to FOXO3a

phosphorylation and drives the survival of CD4+ central memory T cells. J

Exp Med. (2007) 204:79–91. doi: 10.1084/jem.20061681

10. Vandergeeten C, Fromentin R, DaFonseca S, Lawani MB, Sereti I, Lederman

MM, et al. Interleukin-7 promotes HIV persistence during antiretroviral

therapy. Blood. (2013) 121:4321–9. doi: 10.1182/blood-2012-11-465625

11. Younes SA, Freeman ML, Mudd JC, Shive CL, Reynaldi A, Panigrahi S, et al.

IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection.

J Clin Invest. (2016) 126:2745–56. doi: 10.1172/JCI85996

12. Barcellini W, Rizzardi GP, Borghi MO, Fain C, Lazzarin A, Meroni

PL. TH1 and TH2 cytokine production by peripheral blood

mononuclear cells from HIV-infected patients. AIDS. (1994) 8:757–62.

doi: 10.1097/00002030-199406000-00006

13. Bastard JP, Soulie C, Fellahi S, Haim-Boukobza S, Simon A, Katlama C,

et al. Circulating interleukin-6 levels correlate with residual HIV viraemia

and markers of immune dysfunction in treatment-controlled HIV-infected

patients. Antivir Ther. (2012) 17:915–9. doi: 10.3851/IMP2093

14. Shive CL, Mudd JC, Funderburg NT, Sieg SF, Kyi B, Bazdar DA,

et al. Inflammatory cytokines drive CD4+ T-cell cycling and impaired

responsiveness to interleukin 7: implications for immune failure in HIV

disease. J Infect Dis. (2014) 210:619–29. doi: 10.1093/infdis/jiu125

15. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, et al.

Soluble markers of inflammation and coagulation but not T-cell activation

predict non-AIDS-defining morbid events during suppressive antiretroviral

treatment. J Infect Dis. (2014) 210:1248–59. doi: 10.1093/infdis/jiu254

16. Borges AH, O’Connor JL, Phillips AN, Baker JV, Vjecha MJ, Losso MH,

et al. Factors associated with D-dimer levels in HIV-infected individuals. PLoS

ONE. (2014) 9:e90978. doi: 10.1371/journal.pone.0090978

17. Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D, et al.

Program death-1 engagement upon TCR activation has distinct effects on

costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-

4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol. (2003)

170:711–8. doi: 10.4049/jimmunol.170.2.711

18. Hatano H, Jain V, Hunt PW, Lee TH, Sinclair E, Do TD, et al. Cell-based

measures of viral persistence are associated with immune activation and

programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect

Dis. (2013) 208:50–6. doi: 10.1093/infdis/jis630

19. Utay NS, Ananworanich J, Pinyakorn S, Rupert A, Sutthichom D,

Puttamaswin S, et al. Inflammation persists despite early initiation of ART

in acute HIV infection. In: Conference on Retroviruses and Opportunistic

Infections. Seattle, WA (2015).

20. Schechter M, Andrade B, Wilson EM, Sheikh V, Krishnan S, Caplan M, et al.

Persistent elevation of inflammation markers in HIV+ persons with CMV

disease. In: Conference on Retroviruses and Opportunistic Infections. Seattle,

WA (2015).

21. Kamat A, Misra V, Cassol E, Ancuta P, Yan Z, Li C, et al. A plasma biomarker

signature of immune activation in HIV patients on antiretroviral therapy.

PLoS ONE. (2012) 7:e30881. doi: 10.1371/journal.pone.0030881

22. Stambuk D, Youle M, Hawkins D, Farthing C, Shanson D, Farmer R, et al.

The efficacy and toxicity of azidothymidine (AZT) in the treatment of patients

with AIDS and AIDS-related complex (ARC): an open uncontrolled treatment

study. Q J Med. (1989) 70:161–74.

23. Stambuk D, Hawkins D, Gazzard BG. Zidovudine treatment of patients

with acquired immune deficiency syndrome and acquired immune deficiency

syndrome-related complex: St Stephen’s Hospital experience. J Infect. (1989)

18 (Suppl. 1):41–51. doi: 10.1016/S0163-4453(89)80079-9

24. Fischl MA, Richman DD, Grieco MH, Gottlieb MS, Volberding PA, Laskin

OL, et al. The efficacy of azidothymidine (AZT) in the treatment of patients

with AIDS and AIDS-related complex. A double-blind, placebo-controlled

trial. N Engl J Med. (1987) 317:185–91. doi: 10.1056/NEJM198707233170401

25. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of

bone marrow in patients receiving radiation and chemotherapy.N Engl J Med.

(1957) 257:491–6. doi: 10.1056/NEJM195709122571102

26. Henig I, Zuckerman T. Hematopoietic stem cell transplantation-50 years

of evolution and future perspectives. Rambam Maimonides Med J. (2014)

5:e0028. doi: 10.5041/RMMJ.10162

27. Swart JF, Delemarre EM, van Wijk F, Boelens JJ, Kuball J, van Laar JM, et al.

Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev

Rheumatol. (2017) 13:244–56. doi: 10.1038/nrrheum.2017.7

28. Alexander T, Bondanza A, Muraro PA, Greco R, Saccardi R, Daikeler

T, et al. SCT for severe autoimmune diseases: consensus guidelines of

the European Society for Blood and Marrow Transplantation for immune

monitoring and biobanking. Bone Marrow Transplant. (2015) 50:173–80.

doi: 10.1038/bmt.2014.251

29. Gratwohl A, Pasquini MC, Aljurf M, Atsuta Y, Baldomero H,

Foeken L, et al. One million haemopoietic stem-cell transplants: a

retrospective observational study. Lancet Haematol. (2015) 2:e91–100.

doi: 10.1016/S2352-3026(15)00028-9

30. Kuritzkes DR. Hematopoietic stem cell transplantation for HIV cure. J Clin

Invest. (2016) 126:432–7. doi: 10.1172/JCI80563

31. Krishnan A, Palmer JM, Zaia JA, Tsai NC, Alvarnas J, Forman SJ. HIV status

does not affect the outcome of autologous stem cell transplantation (ASCT)

for non-Hodgkin lymphoma (NHL). Biol Blood Marrow Transplant. (2010)

16:1302–8. doi: 10.1016/j.bbmt.2010.03.019

32. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-

term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N

Engl J Med. (2009) 360:692–8. doi: 10.1056/NEJMoa0802905

33. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K,

Thiel E, et al. Evidence for the cure of HIV infection by

CCR5Delta32/Delta32 stem cell transplantation. Blood. (2011) 117:2791–9.

doi: 10.1182/blood-2010-09-309591

34. Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, Keating SM, et al. Long-

term reduction in peripheral blood HIV type 1 reservoirs following reduced-

intensity conditioning allogeneic stem cell transplantation. J Infect Dis. (2013)

207:1694–702. doi: 10.1093/infdis/jit086

35. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al.

HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell

transplantation. Nature. (2019) 568:244–8. doi: 10.1038/s41586-019-1027-4

36. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y,

et al. Elimination of HIV-1 genomes from human T-lymphoid cells by

CRISPR/Cas9 gene editing. Sci Rep. (2016) 6:22555. doi: 10.1038/srep28213

37. Wei X, Nielsen R. CCR5-32 is deleterious in the homozygous state in humans.

Nat Med. (2019) 25:909–10. doi: 10.1038/s41591-019-0459-6

38. Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB. Global distribution

of the CCR5 gene 32-basepair deletion. Nat Genet. (1997) 16:100–3.

doi: 10.1038/ng0597-100

39. Broder MS, Quock TP, Chang E, Reddy SR, Agarwal-Hashmi R, Arai S, et al.

The cost of hematopoietic stem-cell transplantation in the United States. Am

Health Drug Benefits. (2017) 10:366–74.

40. Baker KS, Davies SM, Majhail NS, Hassebroek A, Klein JP, Ballen KK,

et al. Race and socioeconomic status influence outcomes of unrelated donor

hematopoietic cell transplantation. Biol Blood Marrow Transplant. (2009)

15:1543–54. doi: 10.1016/j.bbmt.2009.07.023

41. Joshua TV, Rizzo JD, ZhangMJ, Hari PN, Kurian S, PasquiniM, et al. Access to

hematopoietic stem cell transplantation: effect of race and sex. Cancer. (2010)

116:3469–76. doi: 10.1002/cncr.25297

42. Majhail NS, Nayyar S, Santibanez ME, Murphy EA, Denzen EM. Racial

disparities in hematopoietic cell transplantation in the United States. Bone

Marrow Transplant. (2012) 47:1385–90. doi: 10.1038/bmt.2011.214

43. Hong S, Rybicki L, Abounader DM, Bolwell BJ, Dean R, Gerds AT, et al.

Association of socioeconomic status with autologous hematopoietic cell

transplantation outcomes for lymphoma. Bone Marrow Transplant. (2016)

51:1191–6. doi: 10.1038/bmt.2016.107

Frontiers in Immunology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2267144

https://doi.org/10.1016/S0140-6736(13)60104-X
https://doi.org/10.1371/journal.ppat.1006740
https://doi.org/10.1084/jem.20061681
https://doi.org/10.1182/blood-2012-11-465625
https://doi.org/10.1172/JCI85996
https://doi.org/10.1097/00002030-199406000-00006
https://doi.org/10.3851/IMP2093
https://doi.org/10.1093/infdis/jiu125
https://doi.org/10.1093/infdis/jiu254
https://doi.org/10.1371/journal.pone.0090978
https://doi.org/10.4049/jimmunol.170.2.711
https://doi.org/10.1093/infdis/jis630
https://doi.org/10.1371/journal.pone.0030881
https://doi.org/10.1016/S0163-4453(89)80079-9
https://doi.org/10.1056/NEJM198707233170401
https://doi.org/10.1056/NEJM195709122571102
https://doi.org/10.5041/RMMJ.10162
https://doi.org/10.1038/nrrheum.2017.7
https://doi.org/10.1038/bmt.2014.251
https://doi.org/10.1016/S2352-3026(15)00028-9
https://doi.org/10.1172/JCI80563
https://doi.org/10.1016/j.bbmt.2010.03.019
https://doi.org/10.1056/NEJMoa0802905
https://doi.org/10.1182/blood-2010-09-309591
https://doi.org/10.1093/infdis/jit086
https://doi.org/10.1038/s41586-019-1027-4
https://doi.org/10.1038/srep28213
https://doi.org/10.1038/s41591-019-0459-6
https://doi.org/10.1038/ng0597-100
https://doi.org/10.1016/j.bbmt.2009.07.023
https://doi.org/10.1002/cncr.25297
https://doi.org/10.1038/bmt.2011.214
https://doi.org/10.1038/bmt.2016.107
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gavegnano et al. Crossroads of Cancer and HIV-1

44. June CH, SadelainM. Chimeric antigen receptor therapy.NEngl JMed. (2018)

379:64–73. doi: 10.1056/NEJMra1706169

45. Jardim DL, de Melo Gagliato D, Giles FJ, Kurzrock R. Analysis of drug

development paradigms for immune checkpoint inhibitors. Clin Cancer Res.

(2018) 24:1785–94. doi: 10.1158/1078-0432.CCR-17-1970

46. Banga R, Procopio FA, Noto A, Pollakis G, Cavassini M, Ohmiti K, et al.

PD-1(+) and follicular helper T cells are responsible for persistent HIV-

1 transcription in treated aviremic individuals. Nat Med. (2016) 22:754–61.

doi: 10.1038/nm.4113

47. McGary CS, Deleage C, Harper J, Micci L, Ribeiro SP, Paganini S, et al. CTLA-

4(+)PD-1(-) memory CD4(+) T cells critically contribute to viral persistence

in antiretroviral therapy-suppressed, SIV-infected rhesus macaques.

Immunity. (2017) 47:776–88 e775. doi: 10.1016/j.immuni.2017.09.018

48. Fromentin R, Bakeman W, Lawani MB, Khoury G, Hartogensis W,

DaFonseca S, et al. CD4+ T cells expressing PD-1, TIGIT and LAG-3

contribute to HIV persistence during ART. PLoS Pathog. (2016) 12:e1005761.

doi: 10.1371/journal.ppat.1005761

49. Fromentin R, DaFonseca S, Costiniuk CT, El-Far M, Procopio FA, Hecht FM,

et al. PD-1 blockade potentiates HIV latency reversal ex vivo in CD4(+)

T cells from ART-suppressed individuals. Nat Commun. (2019) 10:814.

doi: 10.1038/s41467-019-08798-7

50. Wightman F, Solomon A, Kumar SS, Urriola N, Gallagher K, Hiener

B, et al. Effect of ipilimumab on the HIV reservoir in an HIV-

infected individual with metastatic melanoma. AIDS. (2015) 29:504–6.

doi: 10.1097/QAD.0000000000000562

51. Guihot A, Marcelin AG, Massiani MA, Samri A, Soulie C, Autran B, et al.

Drastic decrease of the HIV reservoir in a patient treated with nivolumab for

lung cancer. Ann Oncol. (2018) 29:517–8. doi: 10.1093/annonc/mdx696

52. Pino M, Paiardini M, Marconi VC. Progress in achieving long-

term HIV remission. Curr Opin HIV AIDS. (2018) 13:435–45.

doi: 10.1097/COH.0000000000000487

53. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint

inhibitors. Cancer Treat Rev. (2016) 44:51–60. doi: 10.1016/j.ctrv.2016.02.001

54. Larsen BT, Chae JM, Dixit AS, Hartman TE, Peikert T, Roden

AC. Clinical and histopathologic features of immune checkpoint

inhibitor-related pneumonitis. Am J Surg Pathol. (2019) 43:1331–40.

doi: 10.1097/PAS.0000000000001298

55. Verma V, Sprave T, Haque W, Simone CB II, Chang JY, Welsh JW,

et al. A systematic review of the cost and cost-effectiveness studies

of immune checkpoint inhibitors. J Immunother Cancer. (2018) 6:128.

doi: 10.1186/s40425-018-0442-7

56. Mustacich D, Powis G. Thioredoxin reductase. Biochem J. (2000) 346 (Pt

1):1–8. doi: 10.1042/bj3460001

57. Gandin V, Fernandes AP. Metal- and semimetal-containing inhibitors of

thioredoxin reductase as anticancer agents. Molecules. (2015) 20:12732–56.

doi: 10.3390/molecules200712732

58. Chaffman M, Brogden RN, Heel RC, Speight TM, Avery GS.

Auranofin. A preliminary review of its pharmacological properties

and therapeutic use in rheumatoid arthritis. Drugs. (1984) 27:378–424.

doi: 10.2165/00003495-198427050-00002

59. Kean WF, Hart L, Buchanan WW. Auranofin. Br J Rheumatol. (1997) 36:560–

72. doi: 10.1093/rheumatology/36.5.560

60. Finkelstein AE, Burrone OR, Walz DT, Misher A. Effect of auranofin on

DNA and protein synthesis in human lymphocytes. J Rheumatol. (1977) 4:

245–51.

61. Simon TM, Kunishima DH, Vibert GJ, Lorber A. Cellular antiproliferative

action exerted by auranofin. J Rheumatol Suppl. (1979) 5:91–7.

62. Diaz RS, Shytaj IL, Giron LB, Obermaier B, Libera ED Jr, Galinskas

J, et al. Potential impact of the antirheumatic agent auranofin on

proviral HIV-1 DNA in individuals under intensified antiretroviral therapy:

results from a randomized clinical trial. Int J Antimicrob Agents. (2019).

doi: 10.1016/j.ijantimicag.2019.08.001. [Epub ahead of print].

63. Antman KH. Introduction: the history of arsenic trioxide in cancer therapy.

Oncologist. (2001) 6 (Suppl. 2):1–2. doi: 10.1634/theoncologist.6-suppl_2-1

64. Au WY, Kumana CR, Lee HK, Lin SY, Liu H, Yeung DY, et al. Oral arsenic

trioxide-based maintenance regimens for first complete remission of acute

promyelocytic leukemia: a 10-year follow-up study. Blood. (2011) 118:6535–

43. doi: 10.1182/blood-2011-05-354530

65. Lusic M, Siliciano RF. Nuclear landscape of HIV-1 infection and integration.

Nat Rev Microbiol. (2017) 15:69–82. doi: 10.1038/nrmicro.2016.162

66. Gill H, Kumana CR, Yim R, Hwang YY, Chan TSY, Yip SF, et al. Oral arsenic

trioxide incorporation into frontline treatment with all-trans retinoic acid and

chemotherapy in newly diagnosed acute promyelocytic leukemia: A 5-year

prospective study. Cancer. (2019) 125:3001–12. doi: 10.1002/cncr.32180

67. Lu J, Chew EH, Holmgren A. Targeting thioredoxin reductase is a basis for

cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA. (2007) 104:12288–

93. doi: 10.1073/pnas.0701549104

68. Tarhini AA, Kirkwood JM, Tawbi H, Gooding WE, Islam MF, Agarwala SS.

Safety and efficacy of arsenic trioxide for patients with advanced metastatic

melanoma. Cancer. (2008) 112:1131–8. doi: 10.1002/cncr.23284

69. Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, et al.

Patient-derived xenografts faithfully replicated clinical outcome in a phase II

co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl

Med. (2016) 14:111. doi: 10.1186/s12967-016-0861-5

70. Lv XH, Wang CH, Xie Y. Arsenic trioxide combined with transarterial

chemoembolization for primary liver cancer: a meta-analysis. J Gastroenterol

Hepatol. (2017) 32:1540–7. doi: 10.1111/jgh.13789

71. Benhar M, Shytaj IL, Stamler JS, Savarino A. Dual targeting of the thioredoxin

and glutathione systems in cancer and HIV. J Clin Invest. (2016) 126:1630–9.

doi: 10.1172/JCI85339

72. Yang Q, Feng F, Li P, Pan E, Wu C, He Y, et al. Arsenic trioxide impacts viral

latency and delays viral rebound after termination of ART in chronically SIV-

infected macaques. Adv Sci. (2019) 6:1900319. doi: 10.1002/advs.201900319

73. Chirullo B, Sgarbanti R, Limongi D, Shytaj IL, Alvarez D, Das B, et al. A

candidate anti-HIV reservoir compound, auranofin, exerts a selective ’anti-

memory’ effect by exploiting the baseline oxidative status of lymphocytes. Cell

Death Dis. (2013) 4:e944. doi: 10.1038/cddis.2013.473

74. Kohler JJ, Tuttle DL, Coberley CR, Sleasman JW, Goodenow MM. Human

immunodeficiency virus type 1 (HIV-1) induces activation of multiple STATs

in CD4+ cells of lymphocyte ormonocyte/macrophage lineages. J Leukoc Biol.

(2003) 73:407–16. doi: 10.1189/jlb.0702358

75. Alhetheel A, Yakubtsov Y, Abdkader K, Sant N, Diaz-Mitoma F,

Kumar A, et al. Amplification of the signal transducer and activator

of transcription I signaling pathway and its association with apoptosis

in monocytes from HIV-infected patients. AIDS. (2008) 22:1137–44.

doi: 10.1097/QAD.0b013e3283013d42

76. Bovolenta C, Camorali L, Lorini AL, Ghezzi S, Vicenzi E, Lazzarin A, et al.

Constitutive activation of STATs upon in vivo human immunodeficiency virus

infection. Blood. (1999) 94:4202–9.

77. Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD. STAT1

signaling modulates HIV-1-induced inflammatory responses and leukocyte

transmigration across the blood-brain barrier. Blood. (2008) 111:2062–72.

doi: 10.1182/blood-2007-05-091207

78. Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the

survival of human CD4+ effector/memory T cells by up-regulating Bcl-

2 proteins and activating the JAK/STAT signalling pathway. Immunology.

(2010) 130:418–26. doi: 10.1111/j.1365-2567.2009.03244.x

79. Chan HC, Ng SC. Emerging biologics in inflammatory bowel disease. J

Gastroenterol. (2017) 52:141–50. doi: 10.1007/s00535-016-1283-0

80. Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT

signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res.

(2013) 76:1–8. doi: 10.1016/j.phrs.2013.06.007

81. Costa L, Del Puente A, Peluso R, Tasso M, Caso P, Chimenti MS, et al. Small

molecule therapy for managing moderate to severe psoriatic arthritis. Expert

Opin Pharmacother. (2017) 18:1557–67. doi: 10.1080/14656566.2017.1378343

82. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME,

et al. Themechanism of action of tofacitinib - an oral Janus kinase inhibitor for

the treatment of rheumatoid arthritis. Clin Exp Rheumatol. (2016) 34:318–28.

83. Takahashi H, Chen MC, Pham H, Matsuo Y, Ishiguro H, Reber HA, et al.

Simultaneous knock-down of Bcl-xL and Mcl-1 induces apoptosis through

Bax activation in pancreatic cancer cells. Biochim Biophys Acta. (2013)

1833:2980–7. doi: 10.1016/j.bbamcr.2013.08.006

84. Marconi VC, Moser C, Gavegnano C, Tsibris A, Kantor A, Overton ET,

et al. Safety, tolerability, and immunologic activity of ruxolitinib added to

suppressive ART. In: Conference on Retroviruses and Opportunistic Infections.

Abstract # 37, Session O-03. Seattle, WA (2019).

Frontiers in Immunology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 2267145

https://doi.org/10.1056/NEJMra1706169
https://doi.org/10.1158/1078-0432.CCR-17-1970
https://doi.org/10.1038/nm.4113
https://doi.org/10.1016/j.immuni.2017.09.018
https://doi.org/10.1371/journal.ppat.1005761
https://doi.org/10.1038/s41467-019-08798-7
https://doi.org/10.1097/QAD.0000000000000562
https://doi.org/10.1093/annonc/mdx696
https://doi.org/10.1097/COH.0000000000000487
https://doi.org/10.1016/j.ctrv.2016.02.001
https://doi.org/10.1097/PAS.0000000000001298
https://doi.org/10.1186/s40425-018-0442-7
https://doi.org/10.1042/bj3460001
https://doi.org/10.3390/molecules200712732
https://doi.org/10.2165/00003495-198427050-00002
https://doi.org/10.1093/rheumatology/36.5.560
https://doi.org/10.1016/j.ijantimicag.2019.08.001
https://doi.org/10.1634/theoncologist.6-suppl_2-1
https://doi.org/10.1182/blood-2011-05-354530
https://doi.org/10.1038/nrmicro.2016.162
https://doi.org/10.1002/cncr.32180
https://doi.org/10.1073/pnas.0701549104
https://doi.org/10.1002/cncr.23284
https://doi.org/10.1186/s12967-016-0861-5
https://doi.org/10.1111/jgh.13789
https://doi.org/10.1172/JCI85339
https://doi.org/10.1002/advs.201900319
https://doi.org/10.1038/cddis.2013.473
https://doi.org/10.1189/jlb.0702358
https://doi.org/10.1097/QAD.0b013e3283013d42
https://doi.org/10.1182/blood-2007-05-091207
https://doi.org/10.1111/j.1365-2567.2009.03244.x
https://doi.org/10.1007/s00535-016-1283-0
https://doi.org/10.1016/j.phrs.2013.06.007
https://doi.org/10.1080/14656566.2017.1378343
https://doi.org/10.1016/j.bbamcr.2013.08.006
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gavegnano et al. Crossroads of Cancer and HIV-1

85. Gavegnano CHW, Hurwitz SJ, Tao S, Jiang Y, Schinazi RF, Tyor WR.

Baricitinib reverses HIV associated neurocognitive disorders in a SCIDmouse

model and reservoir seeding in vitro. J Neuroinflammation. (in press).

86. Vier J, Groth M, Sochalska M, Kirschnek S. The anti-apoptotic Bcl-2

family protein A1/Bfl-1 regulates neutrophil survival and homeostasis and is

controlled via PI3K and JAK/STAT signaling. Cell Death Dis. (2016) 7:e2103.

doi: 10.1038/cddis.2016.23

87. Bashiri K, Rezaei N, Nasi M, Cossarizza A. The role of latency reversal agents

in the cure of HIV: A review of current data. Immunol Lett. (2018) 196:135–9.

doi: 10.1016/j.imlet.2018.02.004

88. Smith MZ, Wightman F, Lewin SR. HIV reservoirs and

strategies for eradication. Curr HIV/AIDS Rep. (2012) 9:5–15.

doi: 10.1007/s11904-011-0108-2

89. Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”:

strategies to eliminate latent, HIV. Cell Host Microbe. (2018) 23:14–26.

doi: 10.1016/j.chom.2017.12.004

90. Rasmussen TA, Anderson JL, Wightman F, Lewin SR.

Cancer therapies in HIV cure research. Curr Opin HIV

AIDS. (2017) 12:96–104. doi: 10.1097/COH.0000000000

000328

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Gavegnano, Savarino, Owanikoko and Marconi. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 8 October 2019 | Volume 10 | Article 2267146

https://doi.org/10.1038/cddis.2016.23
https://doi.org/10.1016/j.imlet.2018.02.004
https://doi.org/10.1007/s11904-011-0108-2
https://doi.org/10.1016/j.chom.2017.12.004
https://doi.org/10.1097/COH.0000000000000328
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 10 October 2019

doi: 10.3389/fimmu.2019.02385

Frontiers in Immunology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 2385

Edited by:

Brian J. Czerniecki,

Moffitt Cancer Center, United States

Reviewed by:

Olivera J. Finn,

University of Pittsburgh, United States

Robert J. Canter,

University of California, Davis,

United States

*Correspondence:

Madhav V. Dhodapkar

madhav.v.dhodapkar@emory.edu

Kavita M. Dhodapkar

kavita.dhodapkar@emory.edu

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 26 July 2019

Accepted: 23 September 2019

Published: 10 October 2019

Citation:

Dhodapkar MV and Dhodapkar KM

(2019) Moving Immunoprevention

Beyond Virally Mediated Malignancies:

Do We Need to Link It to Early

Detection? Front. Immunol. 10:2385.

doi: 10.3389/fimmu.2019.02385

Moving Immunoprevention Beyond
Virally Mediated Malignancies: Do We
Need to Link It to Early Detection?
Madhav V. Dhodapkar 1,2* and Kavita M. Dhodapkar 2,3*

1Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States, 2Winship Cancer Institute,

Emory University, Atlanta, GA, United States, 3Department of Pediatrics, Aflac Cancer and Blood Disorders Center of

Children’s Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States

Vaccines can successfully prevent viral infections and have emerged as an effective

strategy for preventing some virally mediatedmalignancies. They also represent our major

hope for cost-effective reduction of the cancer burden. The concept that the immune

system mediates surveillance and editing roles against tumors is now well-established in

murine models. However, harnessing the immune system to prevent human cancers

that do not have a known viral etiology has not yet been realized. Most human

cancers originate in a premalignant phase that is more common than the cancer itself.

Many of the genetic changes that underlie carcinogenesis originate at this stage when

the malignant phenotype is not manifest. Studies evaluating host response in human

premalignancy have documented that these lesions are immunogenic, setting the stage

for immune-based approaches for targeted prevention of human cancer. However, recent

studies suggest that the hierarchy of T cell exhaustion and immune-suppressive factors

have already begun to emerge in many preneoplastic states. These considerations

underscore the need to link immune prevention to earlier detection of such lesions and to

personalize such approaches based on the status of the pre-existing immune response.

Keywords: preneoplasia, early detection, cancer prevention, T cell exhaustion, cancer vaccine, cancer interception

WHY PREVENTION?—LESSONS FROM VIRALLY MEDIATED
MALIGNANCIES

Despite major advances in therapies for several cancers, most patients with advanced cancer
eventually succumb to the underlying malignancy. Many cancers carry considerable genomic
complexity at diagnosis and acquire mechanisms of resistance to current therapies, including
chemotherapy, targeted therapy, and immune therapies. Even the most successful cancer immune
therapies, such as immune checkpoint inhibitors and adoptive transfer of engineered T cells,
only benefit a subset of patients and are not amenable to easy application for the prevention of
cancer, particularly in the developing world. In addition to the need to reduce human suffering
and mortality from cancer, the increasing and unsustainable costs of cancer care also create an
economic argument to reduce the cancer burden, even in rich nations (1). One such approach to
prevention is vaccination, which has been highly effective against some pathogens. In the setting of
virally mediated disease, evidence is emerging that preventive vaccines for reducing viral infections
are also effective for preventing virally mediated cancers (2). The risk of chronic liver disease and
hepatocellular carcinoma (HCC) following hepatitis B virus (HBV) infection is higher in children
who acquire the infection before the age of 5 years (3). HBV infant vaccination programs have
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shown remarkable efficacy in the reduction of HCC incidence
compared to non-vaccinated controls (3, 4). Vaccines against
human papillomavirus (HPV) represent another success story
in terms of protection from virus-induced malignancy (2, 5, 6).
Two currently approved HPV vaccines provide protection not
only against chronic infection with HPV types 16 and 18 but also
against cervical intraepithelial neoplasia (CIN), adenocarcinoma
in situ, and cervical cancer. Vaccines targeting E6 and E7
antigens from HPV 16 and 18 have also shown remarkable
efficacy in mediating the regression of CIN lesions (2). For
example, women with grade 3 vulvar lesions vaccinated with
long peptides derived from these antigens experienced high rates
of complete regression of these lesions (7). In the Papilloma
Trial against Cancer in young Adults (PATRICIA trial), HPV
vaccination led to complete protection from CIN as well as
adenocarcinoma in situ lesions (5, 6). In view of its effects on
precursor lesions, it is projected that HPV vaccination will lead
to a major reduction in cervical cancer mortality in the next
20–30 years. One important lesson from this experience is that
vaccines incorporating antigens that do not lead to regression
of established cancers are still highly effective in preventing
early lesions.

IMMUNE SURVEILLANCE AND EDITING:
INSIGHTS FROM MOUSE MODELS

Although it has been over 50 years since the initial evidence
for immunity against carcinogen-induced tumors in mice was
published, the concept that the immune system could mediate
surveillance against tumors has now overcome initial skepticism
(8). Several strains of immune-deficient mice have been shown
to be deficient in immune surveillance in one form or another in
models that include both carcinogen-induced and spontaneous
cancers. Schreiber and colleagues proposed the term cancer
immune editing, which incorporates three distinct phases:
elimination, equilibrium, and escape (8). An important aspect
of the equilibrium phase, as different from prior concepts of
dormancy, is that the tumor is not really static but is likely
engaged in ongoing interactions with the immune system leading
to evolution (or editing) until there is escape from immune
destruction (9). A deeper understanding of the equilibrium
phase is particularly critical for translation to secondary cancer
prevention in the clinic, as it resembles the premalignant or
clinically silent phase preceding cancer.

HOST RESPONSE TO PRENEOPLASTIC
LESIONS IN HUMANS

Most studies of cancer immunity in humans have focused on
patients with clinical cancer, which represents the escape phase.
In this setting, the presence of immune infiltration within tumors
has emerged as a strong predictor of outcome, in some cases
more dominant than the clinical staging systems currently in
place (10). Indeed, the presence of pre-existing tumor immunity
forms the basis for the clinical success of immune checkpoint
therapies (11). However, genomic studies have shown that many

of the oncogenic mutations are acquired long before the clinical
malignancy is manifest (12). Studies on such human precancer
lesions are limited, as these lesions (e.g., colon polyps) are
typically resected at the time of initial diagnosis. However, even
in these settings, it has been shown that there are changes in
adjacent “normal” mucosa that predict the risk of recurrence
(13), thereby making a case for targeting these abnormal cells
to reduce recurrence. The presence of immune infiltration
has now been demonstrated in diverse preneoplastic states
including intraductal papillary mucinous neoplasms (IPMNs)
that precede pancreatic cancer (14, 15), oral leukoplakia as a
precursor to oropharyngeal cancer (16), non-invasive bladder
cancer (17), bronchial lesions preceding lung cancer (18–20),
and ductal carcinoma in situ (DCIS) of the breast (21–24).
One of the earliest examples of specific immune responses to
human preneoplasia in the tumor microenvironment was in the
setting ofmonoclonal gammopathy of undetermined significance
(MGUS), which serves as a precursor to myeloma (MM) (25).
In contrast to other cancers, tumor cells in MGUS cannot be
surgically resected at initial diagnosis, and therefore it provides
an important and unique model for studies on early response to
preneoplastic lesions in humans (26). Notably, although MGUS
lesions carry many of the genetic changes found in MM cells,
only a small proportion go on to develop clinical malignancy
(26, 27). Prior studies have shown that the immune system does
recognize these lesions, and this leads to alterations in both innate
and adaptive immune cells in the bone marrow (25, 28–31).
Importantly, pre-existing T cell immunity was a strong predictor
of reduced risk of progression to clinical myeloma in a large
prospective clinical trial, with protective effects manifest across
all major genetic subtypes of MGUS (32, 33). As is the case with
precursor states to more common solid tumors, MGUS lesions
are quite common and can be detected even with less sensitive
methods in up to 3% of individuals over 50 years of age (26). It is
important to note that while MGUS is not surgically resectable as
in some other preneoplastic lesions, several aspects of the biology
and genetics of these lesions resemble the more common solid
tumor counterparts. For example, genome sequencing studies
have shown that precursor and pre-invasive lesions in solid
tumors carry many of the genomic alterations found in their
clinically malignant counterparts, and this is true in the setting
of MGUS as well (27, 34).

Chronic immune responses can lead to T cell dysfunction
or exhaustion (35). As the premalignant phase of cancer is
immunogenic and lasts much longer than the malignant phase
itself (typically several years), an important question arises—how
does the host maintain such a chronic immune response? In
mouse models of chronic viral infections such as lymphocytic
choriomeningitis virus (LCMV), the maintenance of chronic
immune responses and the prevention of the attrition of
exhausted T cells depend on the presence of a subpopulation
of stem-like T cells (36–38). Loss of this subset leads to
attrition of the immune cells and loss of immunity in these
models (36). Similar biology may also be operative in the
setting of premalignancy. Utilizing complementary single-cell
technologies, T cells infiltrating MGUS lesions were found to
be less differentiated than those seen in MM (39). These cells

Frontiers in Immunology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 2385148

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Dhodapkar and Dhodapkar Immunoprevention of Cancer

were also enriched for TCF1/7+ memory T cells as well as those
with tissue-resident phenotypes (39). Therefore, the hierarchy
of T cell exhaustion seems to be established early in the setting
of cancer development. Another insight from these studies is
that changes in innate immunity as well as in the myeloid
compartment also occur early (15, 30, 39). Early emergence of
suppressive myeloid populations may be an important obstacle
to immune-based prevention targeting these lesions (15, 40). An
important challenge in terms of studying the biology of host
response to human preneoplasia relates to the limitations of
existing models in terms of permitting the growth of human
preneoplastic cells in vivo. Recent advances with humanized
models do permit the growth of human premalignant MGUS
cells in vivo (41) and may provide a useful tool for probing
these questions.

ANTIGENIC TARGETS FOR CANCER
PREVENTION

Ideally, an antigenic target for a preventive vaccine would be
highly tumor-specific, essential for tumor biology, expressed by
the entire clone (or clonogenic progenitors), and capable of
eliciting an immune response of sufficient potency to mediate
protection. Advances in cancer genetics have shown that the
genomic complexity of cancer is established early, even during
the premalignant stages and that the tumor in each patient has
a distinct set of genomic alterations and oncogenic mutations
that yield neoantigenic targets (42). While this suggests the
need to consider personalized approaches such as those targeting
mutation-associated neoantigens (MANA) to prevent cancer
(discussed later), strategies that target non-mutated tumor-
associated antigens shared between tumors present fewer
logistical challenges and are more amenable to clinical testing.
One such antigen is MUC1, which is immunogenic in several
human preneoplastic states and has therefore emerged as
an attractive target for such preventive approaches (43). For
example, intraductal papillary mucinous neoplasms (IPMNs)
as precursors to pancreatic cancer express a hypo-glycosylated
form of MUC1 and develop IgG antibodies against this antigen
(15). Heavy smokers with preneoplastic lung lesions were shown
to develop IgG antibodies against cyclin-B1 (44). HER2 is
overexpressed on tumor cells in ductal carcinoma in situ and
leads to the induction of immune responses in this setting (22,
45). Progression to invasive breast cancer is associated with a
decline in these responses, setting the stage for targeting this
antigen in the context of preventive vaccines (22, 45). The efficacy
of vaccines against these antigens has also been demonstrated
in murine models of breast cancer (46). An antigen screen for
immune-reactivity in MGUS suggested that shared antigenic
targets of host response in MGUS may differ from the malignant
counterpart, myeloma (28). Specifically, the top antigenic targets
in MGUS were genes such as SOX2 that are known to play a
role in the biology of embryonal stem cells and are enriched
on clonogenic progenitors (28, 47). In murine models, vaccines
targeting early-stage antigens were more effective than vaccines

targeting antigens expressed later in the course of the cancer
(48). The presence of a T cell response against SOX2 emerged
as an independent predictor of reduced risk of malignancy in
MGUS in a large prospective study (32). Recent studies have also
shown that OCT4, another embryonal stem cell-associated gene,
can be immunogenic in humans (49). T cell responses against
these antigens have also been observed in the setting of tumor
regressions in the setting of checkpoint blockade, chimeric-
antigen-receptor (CAR)-T cells, and chemotherapy of highly
curable germ cell tumors (49–51). Further studies are needed
to better understand whether immune targeting of stemness
pathways in preneoplastic lesions can be clinically exploited for
immune prevention (52, 53).

MUTATION-ASSOCIATED NEOANTIGENS
AS TARGETS FOR PREVENTION

As much of the antitumor-response in preneoplastic lesions
seems to be specific to an individual lesion (25), mutation-
associated neoantigens (MANA) may be an important target for
T cell response-targeting for cancer prevention. The importance
of the T cell response against MANA has been demonstrated in
mouse models and can impact the evolution of tumors during
the equilibrium phase (54, 55). Serial analyses of human cancer
have also provided evidence of immune-mediated regulation of
cancer evolution, including that involving neoantigens (55, 56).
However, whether T cells against neoantigens are essential for
effective cancer prevention in the clinic remains to be established.
Several studies have tried to vaccinate cancer patients against
neoantigens in order to elicit MANA-specific T cells in vivo
(42). While these studies have shown the feasibility of eliciting
such responses, they seem to be of low frequency compared to
immune responses following viral infections, and whether they
mediate clinically meaningful anti-tumor effects remains to be
established. It should be noted that as the genomic makeup or
tissue of origin of cancers cannot currently be predicted before
they develop, most of the efforts toward cancer prevention are
only feasible as secondary cancer prevention, such as in patients
with preneoplastic states. Primary cancer prevention is, however,
potentially attractive in the case of hereditary cancer syndromes
with defined patterns of organ-specific cancer, such as patients
with Lynch syndrome.

INSIGHTS FROM VACCINES IN CHRONIC
VIRAL INFECTIONS

If preventive vaccines in cancer can realistically only be tested
in the setting of pre-existing preneoplasia at present, then some
of the lessons learned from mouse models and human studies of
chronic viral infections such as human immune deficiency virus
(HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV) are
worth considering. In chronic viral infections, the T cells target
non-self-epitopes, similar to their response against neoantigens.
Vaccines generally lead to poor T cell expansion in the case
of chronic infection with the clone 13 strain of lymphocytic
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choriomeningitis virus, which leads to chronic viral infection
(57). In the case of simian-immunodeficiency-infected primates,
prior reduction of viral load with anti-retroviral therapy was
required in order to elicit strong T cell responses to gag
antigens (58). Peptide and viral vaccines against hepatitis B
and C have led to only mild increases in T cells against target
antigens in infected patients, although the ability to elicit T cells
in uninfected individuals was much greater (59–61). Chronic
exposure to the virus also leads to a loss or a reduction in
the loss or deletion of T cells with the highest affinity to the
antigen. For example, in chronic gamma-herpesvirus infection,
high-affinity clones mediate early robust expansion but undergo
attrition, while intermediate/low-affinity clones are maintained
longer (62). Similar observations have been made in human HIV
infection (63). These considerations raise the possibility that T
cell responses, even to neoantigens, may not be as impressive as
currently hoped if applied late in the course of preneoplasia.

LESSONS FROM THERAPEUTIC
VACCINATION IN CANCER

The discovery of the T cell response to tumor-associated
antigens, beginning with the MAGE family (64), not only
provided the foundation for the field of cancer immunology
but also led to studies of therapeutic vaccination. Several
strategies have been utilized for inducing immunity to tumor-
associated antigens. These include injection of peptides with
adjuvants, DNA vaccines, viral vectors, dendritic cell vaccines,
and prime-boost approaches (65). Prime-boost approaches have
also commonly been utilized in the case of chronic viral
infections. With increasing appreciation of the importance of
MANA, several of these strategies are currently being applied
to try to elicit immunity to neoantigens in the clinic (42).
However, many of the initial studies focused on patients with
clinical malignancy but often lacking measurable disease, and
the clinical efficacy of such approaches remains to be established
(42). The vaccination field was greatly aided by the discovery of
dendritic cells (DCs) as critical antigen-presenting cells and led
to several studies targeting mature DCs (66–68). However, while
monocyte-derived DCs led to T cell responses in several patients,
these studies led to tumor regressions in only a small proportion
of patients, although some of these responses have been long-
lasting (67, 69). Only one of the DC vaccines, Sipuleucel-T,
has to date led to improved survival in the setting of cancer
(70). It is important to note that the initial studies did not
target the immune-suppressive pathways, including immune
checkpoints and regulatory T cells. More recent studies have
successfully targeted human DCs in situ, which is more amenable
to larger-scale clinical trials (71). However, these studies were
also conducted without addressing immune-suppressive factors
in the tumor bed. Vaccine-based studies exploiting the biology
of human DC subsets, and in particular those with enhanced
potential for cross-presentation, have not yet been carried out,
although evidence for the feasibility of targeting these subsets is
emerging (72, 73). Strategies that target DCs directly in situ may

also be preferable to those that target DCs ex vivo because the
former may allow targeting of naturally occurring DCs in greater
numbers compared to those limited by the effect of in vitro
culture (71). In this regard, specific targeting of DC subsets in situ
remains an unmet need. It is possible that combinatorial targeting
of defined DC subsets may be essential for robust immunity
(73, 74). An important desired goal of vaccines is to elicit T cells
that mediate long-term protection (75). It has been suggested,
for example, that vaccines that elicit tissue-resident memory T
cells may be needed to mediate protective immunity (76). Studies
with yellow fever vaccine, one of the most effective vaccines in
humans, have provided important insights into the properties
of long-term protective immunity, involving the induction of
a broad immune response and the generation of long-lasting
memory T cells (77, 78). It remains to be demonstrated whether
T cells with similar properties can be elicited in the context of
vaccination against tumor antigens.

DIVERSITY OF PRENEOPLASTIC
LESIONS—DO WE NEED TO LINK IMMUNE
PREVENTION WITH EARLY DETECTION?

It is now well-appreciated that preneoplastic lesions can exhibit
significant diversity. At the clinical level, this includes features
such as size, dysplasia, and genomic changes in preneoplastic
cells that confer an increased risk of malignant transformation.
However, these lesions may also differ considerably in terms
of the nature of the host immune response. As discussed
earlier, many of the oncogenic mutations found in cancer cells
originate in the precursor phase. The initial studies describing
the presence of expanded hematopoietic clones carrying genomic
mutations have now been extended to clones of cells with somatic
mutations within normal tissues in otherwise healthy individuals
(79, 80). The long natural history of these lesions, typically
spanning several years, implies (although it is not proven) that
the immune system has already undergone chronic exposure
to these antigens. The application of single-cell technologies to
study the immunology of these lesions has illustrated the diversity
of human preneoplastic states, wherein the immune response
evolves over time (Figure 1) (18, 19, 39). As discussed earlier,
the persistence of exhausted T cells in models of chronic viral
infection depends on a subset of T cells that exhibit more stem-
like features (36). Recent studies in MGUS patients have shown
that similar hierarchies of T cell exhaustion that are responsible
for maintaining chronic T cell responses are established early
during carcinogenesis (39). Advanced lesions also carry greater
dysfunction of innate cells including NK cells, innate lymphoid
cells, and altered polarization of myeloid cells (30, 39). Changes
in the myeloid compartment may therefore be an important
driver of the malignant phenotype and the loss of immune
control (15, 39, 40). Strategies that target innate immunity
may therefore also be explored for cancer prevention (81). The
concept that precursor lesions are not immunologically silent
suggests that strategies that overcome immune checkpoints may
also be effective in these patients. While current strategies for
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FIGURE 1 | Immunological diversity and evolution of precursor states. The application of single-cell technologies to studying precursor states has shown that the

earliest lesions are associated with changes in the immune microenvironment. The hierarchy of T cell exhaustion is established early and is associated with a relative

decline in stem-like and resident memory T cells over time. More advanced lesions are associated with infiltration by more immune-suppressive myeloid

populations. These data suggest that immune prevention through vaccination may be most effective for earlier lesions, with more advanced lesions requiring

combination strategies.

checkpoint blockade do carry the risk of adverse autoimmune
events that may be unacceptable for this patient population (82),
advances in preventing such complications (83) may make it
more feasible to pursue checkpoint blockade to target high-risk
precursor lesions.

The concept that the immunologic evolution of the tumor
microenvironment begins early also has important implications
for the timing of immune prevention. It may be desirable to target
lesions that still have high levels of stem-like and tissue-resident T
cells and low levels of immune-suppressive myeloid cells in order
to achieve a durable response to immune-mediated prevention.
This, in turn, may require that strategies that pursue immune
prevention are directly linked to early detection before the
adverse aspects of the preneoplastic immune microenvironment
are fully established. Alternatively, combination approaches
(such as are being pursued in the context of therapeutic
manipulation of immunity in established cancers) may be
required for immunologically altering the natural history of more
advanced preneoplastic lesions. Traditionally, the rationale for
early detection in cancer has been limited to enhancing the
potential for the surgical resection of the lesion, presumably
with curative intent (84). Here we suggest that even in a setting
wherein surgical resection is not feasible (e.g., hematologic
premalignancies) or is clinically not indicated, early detection
may be essential for achieving a window of opportunity for
effective immune prevention.

CLINICAL STUDIES OF
IMMUNOPREVENTION

In contrast to the large body of literature evaluating therapeutic
vaccination in cancer, data about preventive vaccination,
particularly for non-viral vaccines, are limited. One of the
antigens evaluated in more advanced studies is the tumor-
associated antigen MUC-1. The safety and immunogenicity of
a MUC-1 peptide vaccine have been demonstrated in initial
clinical studies (85). While colon polyps are typically resected at
diagnosis, the rationale for vaccination in this setting is based
on reducing the recurrence of polyps. In the initial studies, the
immunogenicity of the vaccine was impaired in patients with
elevated myeloid suppressor cells, suggesting that vaccination
in the earlier stages of preneoplasia should be considered,
as discussed earlier (85). Nonetheless, MUC-1 vaccination is
currently being tested in the context of a phase III trial.
Instillation of Bacillus Calmette Guerin (BCG) has been shown
to mediate the regression of in situ bladder cancer lesions but
is ineffective in the setting of more advanced muscle-invasive
lesions (17). Vaccination in the neoadjuvant setting has been
trialed to evaluate the induction and anti-tumor effects of
vaccination for preneoplasia. Vaccination of women with DCIS
of the breast with dendritic cell vaccines presenting Her2-derived
peptides led to the induction of immunity and provided some
early evidence of antitumor effects, with a reduction in DCIS
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lesion seen in some patients at surgery (45). Preneoplastic lesions
that cannot be resected (as is the case with MGUS, a precursor
to myeloma) represent an attractive model for establishing
the principles of immunomodulation for the prevention of
human cancer. In a recent study, patients with smoldering
myeloma (an intermediate preneoplastic stage between MGUS
and myeloma) were randomly assigned to either observation
alone as the standard of care or administration of single-agent
lenalidomide, an immunomodulatory drug (86). Lenalidomide
led to a significant prolongation of progression-free survival
compared to observation, with a nearly 70% reduction in the
risk of clinical malignancy (86). These data provide an example
of successful immune-modulation-based interception of human
cancer (87), in this case utilizing an oral therapy that would
otherwise be inadequate as a single agent in the setting of
established cancer. These findings may not only change clinical
practice for the subset of patients at highest risk of clinical
progression; they also set the standard for future studies testing
immune-based prevention in MM.

CHALLENGES AND BARRIERS TO
PREVENTIVE VACCINES AND OTHER
APPROACHES

In spite of an improved understanding of the immunology
of precursor states, there are several potential challenges
to preventive vaccination of cancer, even when targeting
preneoplastic lesions (88). At present, it is not feasible to
accurately predict which specific antigen (or combination
thereof) will serve as a rejection antigen or effectively prevent
cancer in an individual patient. While peptide-based strategies
have been employed to target both shared antigens and
neoantigens, several variables, such as the choice of peptides
and their immunogenicity, clearance, and expense may impact
the clinical efficacy and application of peptide-based vaccines.
Targeting a limited set of antigens also carries the potential
for antigen-loss variants as a mechanism for immune escape.
Antigen-loss has been shown to be a potential mechanism of
tumor immune escape in murine models (54, 89). However,
the degree to which this occurs in the setting of preventive
vaccination in the clinic remains to be established. One potential
strategy may be to target “trunk” mutations or genes essential for
a malignant phenotype, but this has, to date, proven challenging
in the clinic, and several of the trunk mutations may not be
immunogenic (42). Other barriers that limit therapeutic cancer
vaccines may also apply to preventive vaccination, particularly
if the latter is approached in the setting of more advanced
precursor lesions. These include intra-tumoral heterogeneity,
stem-like features of tumor cells or even putative cancer stem

cells, and other immune-suppressive features in the tumor
microenvironment (90). If true, this would imply that preventive
vaccination would also need to use combination approaches
as is currently being explored in the setting of established
cancer. As discussed previously, these considerations further
reinforce the need to link immune prevention to early detection,
and perhaps even before clinically meaningful preneoplastic

lesions are manifest. In addition to vaccines, other strategies
such as T-cell redirection (e.g., bispecific antibodies) and
other immunomodulatory antibodies are being considered for
immune-based interception. Recent success with lenalidomide in
the prevention of myeloma, as discussed earlier, may encourage
such studies. However, given the cost and potential toxicity,
it would be important to limit such approaches to patients at
highest risk and with careful attention to long-term effects.

SUMMARY

In the preceding sections, we have discussed the emerging
evidence in support of immunological approaches to preventing
cancer. In contrast to therapeutic vaccination, these are still
very early days for clinical or even translational studies testing
these hypotheses. However, advances in cancer genetics and
recent successes in cancer immunotherapy have begun to set the
blueprint for strategies to harness tumor immunity to prevent
cancer. It is now being appreciated that clonal expansions of cells
carrying potentially oncogenic mutations are common in healthy
tissues (80). As the biological and immunological principles
underlying these strategies are being established, careful clinical
investigation will be required to move the field forward. One of
the challenges that makes cancer a formidable foe is its ability to
adapt and evolve, as is also the case with pathogens. Therefore,
the immune system, with its capacity to adapt, evolve, and persist,
may be our best defense against cancer, as is already evident from
its success in preventing pathogens (91). Planned investments
in defining the landscape of precursor states to human cancer
should go a long way toward helping us achieve these goals
(12, 92).
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