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Editorial on the Research Topic

Using Cancer ‘Omics’ to Understand Cancer

The notion of using the “big data” approach to study human disease is not new. Scientists
have been tapping data from studies of genomics, proteomics, transcriptomics, metabolomics,
and microbiomics since the initial mapping of the human genome (1). What has changed,
however, is a fundamental shift in how we think about these technologies. The “omics” field is
expanding in scope, blending biology, technology (radiomics), and clinical observations (electronic
health records), as well as size. This amplification of content and quantity has required parallel
development and application of novel informatic tools. The need to accommodate the ever-larger
datasets critical to our understanding of cancer omics has instigated a movement toward
development of high-performance computing, including both hardware and software to analyze
the massive, generated big data. The manuscripts contained in this volume reflect this constantly
evolving panel of bioinformatic programs and resources with capacity to carry out large-scale
data analysis.

Most of the papers in this issue report findings that share the common feature that all distill
a select number of biomarkers from a large spectrum of potential markers from an analysis of
large datasets. This volume of Frontiers broadens its approach to include papers dealing directly
with the attributes, management, and clinical application of big data. Focusing on some of the
key databases, projects and methodologies developed to implement such analyses, emphasizing
the ever-expanding scale of big data, exascale computing is discussed. At the initiation of marker
discovery, the patients and other individuals who serve as the source of big data are highlighted,
while encouraging big data researchers to keep in mind the humanity inherent in these data
(Helzlsouer et al.).

To date much of our focus has been on comparing the omics information of cancer patients
with that of “normal” controls, i.e., healthy individuals, and looking for genotypic or phenotypic
differences that set the patients apart. This rudimentary approach has led to practical applications,
including offering targets for early detection, prognosis, and treatment. Along these lines, in this
special issue of Frontiers, several authors address genomic (and epigenomic) abnormalities that
characterize specific cancers and may thus have practical applications at the clinical level.

The manuscript by Yang et al. offers an example of the application of omics research to
biomarker discovery. This paper describes potential diagnostic markers and therapeutic targets for
leiomyosarcoma (LMS). This cancer is particularly aggressive, with invasive clinical characteristics
and often a poor prognosis. Finding new biomarkers to assess malignancy and prognosis of LMS is
critical. Yang et al. used Weighted Gene Co-expression Network Analysis (WGCNA), a systematic
molecular clustering approach, to look for gene expression patterns that are associated with LMS
and thereby should help to improve our understanding of the molecular mechanisms of this
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cancer. Their results showed that the expression of CDK4, CCT2,
and MGAT1 in LMS tissues was significantly higher than that in
adjacent tissues, suggesting that these genes may be part of the
cancer signaling pathway. Such findings could pave the way for
new strategies for diagnosing and treating LMS.

Another cancer, glioblastoma multiforme (GBM), is the focus
of two articles in this special volume, by Cheng et al. and
by Stajkovska et al. Cheng et al. employed a data mining
approach by tapping into The Cancer Genome Atlas (TCGA).
TCGA is managed by the Genomic Data Commons (GDC)
(2) funded by the National Cancer Institute (NCI) which
provides the cancer research community with a unified data
repository that enables data sharing across cancer genomic
studies in support of precision medicine. They then applied
various bioinformatic tools aimed at discovery of relevant
genes and pathways. They examined the gene expression
patterns of transcription factors associated with GBM and
identified four potential candidates based on their differential
expression between tumor and adjacent tissue: LHX2, MEOX2,
SNAI2, and ZNF22. By clustering transcription factors that are
differentially expressed in GBM and screening these clusters
using appropriate bioinformatic programs, they identified cancer
pathways primarily associated with cell migration, cell adhesion,
epithelial-mesenchymal transition (EMT), cell cycle, as well as
other signaling pathways. Combining these results with patient
characteristics, such as risk score, age, gender, type of treatment,
and treatment response, these authors showed that their model
was able to precisely predict the outcome of patients with
GBM. GBM was further explored in the study by Stajkovska
et al., in their description of a case report of a pediatric
patient. Using targeted gene panel testing in blood and tumor
tissue, these researchers identified a heterozygous frameshift
mutation (c.333_334delTC; p.His112CysfsTer9) in the MLH1
gene in addition to a known heterozygous missense variant
of unknown significance/VUS (c.847C > T; p.Arg283Cys) in
the TP53 gene. Screening of the patient’s parents revealed the
presence of the MLH1 abnormality in the father and the TP53
variant in the mother. They report for the first time the co-
occurrence of a genetic mutation in the MLH1 gene of the
mismatch repair pathway, often associated with Lynch syndrome,
accompanied by a rare variant in the TP53 gene. The authors
stress that co-occurrence of multiple gene abnormalities should
be considered as a possible contributory cause of a cancer.
However, caution must be exercised in interpreting a VUS as
contributing to the cancer phenotype, as these variants are of
unproven pathogenicity, a subject addressed in Helzlsouer et al.
in this volume.

Biomarkers also are the focus of the study by Wang Y. et al.,
who looked at new ways of predicting the progression and
prognosis of bladder cancer (BC) using a big data approach.
Through a series of screenings and WGCNA they identified
“hub” genes (i.e., a hub gene serves as the focal point of
interaction with other genes; in general, the genes connected
to the hub are critical to gene regulation and other biological
processes). Gene-set enrichment analysis (GSEA) revealed that
the sets of highly expressed hub genes were mainly enriched
in “bladder cancer,” “cell cycle,” and “ubiquitin-mediated

proteolysis” related pathways. They further honed their results
to two genes (ANLN, HMMR), which had prognostic value for
different stages and grades of BC. These genes not only could
accurately predict the overall survival of patients with BC, but
also the progression-free survival, a common outcome measure
in clinical trials.

In another biomarker study included in this volume, Wang
X. et al. showed how a set of small nucleolar RNAs (snoRNAs),
which guide themodification of other RNAs and which have been
implicated in alternative splicing, can predict overall survival of
gastric cancer patients. An eight-snoRNA risk signature serves
as a prognostic factor in gastric cancer. The authors validated
the expression patterns of these eight snoRNAs, both in cell
lines and patients’ tissues. The authors point out that seven of
these snoRNAs correlate with survival, suggesting relevance of
these markers to the clinical behavior of the bladder cancer.
One snoRNA, U66, was linked to cell proliferation. These
findings provide potential prognostic and therapeutic clues into
gastric cancer.

Nersisyan et al. addressed the mechanistic basis of
tumorigenesis by examining the component that involves
telomere status. Unlike normal cells where telomeres are
shortened with each cell division, telomere maintenance
mechanisms (TMMs) are found inmost cancers. Of the two types
of TMMs found in cancer, most cancers exhibit a TMM that is
activated via the classical “telomerase” pathway (TEL), using the
telomerase ribonucleoprotein, which contains an RNA template
that guides the synthesis of the telomere DNA. In contrast,
the alternative TMM, which operates in a smaller proportion
of tumors, is the “alternative lengthening of telomeres” (ALT)
pathway. The ALT pathway, which relies on complex molecular
mechanisms including homologous recombination events
between telomeric sister chromatid strands, occurs in the context
of an altered chromatin environment at the telomere region.
Nersisyan and colleagues compared the TMM pathways in
colorectal cancers (CRC) with microsatellite instability/MSI
(both CRCs in Lynch syndrome/LS-CRC and sporadic MSI
CRCs/MSI s-CRC) to a subset of sporadic microsatellite stable
(MSS) CRCs as well as benign mucosa. In their study of
alterations of telomere length, sequence composition, and
transcriptional regulation in relation to the two types of TMMs
(TEL, ALT) in CRCs, they applied bioinformatic analysis to big
data from whole genome DNA and RNA sequencing together
with a pathway model. They observed transcriptomic signatures
that distinguish the two TMM subtypes in CRC, with ALT-TMM
being slightly more prominent in hypermutated MSI s-CRC
and LS-CRC.

Chen et al. show how DNA methylation, an important
regulator of gene expression, can be used, along with other tumor
and patient characteristics, to identify glioma subgroups that
exhibit specific prognostic features. DNA methylation patterns
were examined in 653 gliomas from the TCGA database of NCI.
The authors used consensus clustering to narrow their findings of
methylation levels at each CpG site known to influence survival
into five subgroups. DNA methylation patterns were then
correlated with age, tumor stage, and prognosis. WGCNA of the
CpG sites identified 11 clusters that could be used to differentiate
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between high- and low-methylation groups and which could
be further used to determine prognostic information about the
glioma patients. When applied to in vitro experiments, an inverse
relationship was shown between methylation level of glioma
cells and their ability to migrate or their inability to respond
to standard glioma therapies, temozolomide or radiotherapy.
Thus, epigenetic (methylation) subtypes could potentially serve
as markers for prognosis as well as guides to glioma therapies.

Lee’s article offers context to this study of methylation
in carcinogenesis by providing an overview of epigenetics,
highlighting how abnormal epigenetic modifications contribute
to the development of cancer. Beyond reviewing the basic
molecular mechanisms of epigenetic regulation of gene
expression (methylation, histone modification, and non-coding
RNAs), Lee discusses the role of epigenetics in regulating
differentiation during development while simultaneously
maintaining epigenetic memory during mitotic cell division.
As an example, abnormal methylation of tumor suppressor
genes downregulates expression, which when coupled with
a mutation in the other allele contributes to carcinogenesis,
according to the two-hit theory of Knudson. This concept is
broadened to allele-specific gene expression (ASE) in general
and its epigenetic regulation by allele-specific methylation
(ASM). Starting from these descriptions of individual epigenetic
abnormalities leading to cancer, the article extends into the
epigenomic realm. Lee points out how the use of big datasets
such as TCGA serve as a source not only of genomic information
for analytic exploration but also for comparable investigations
into large-scale epigenomic data. A prototypic example is the
investigation of the TCGA dataset that identified a subset of
GBMs with high CpG island methylation, subsequently labeled
as a “glioma CpG island methylator phenotype” (G-CIMP).
Clinical correlation of G-CIMP-positive tumors included
higher prevalence among lower-grade gliomas and increased
association with isocitrate dehydrogenase 1 (IDH1) somatic
mutations. G-CIMP serves as merely one illustration of the
extension of big data applications into the epigenetic, now the
epigenomic, domain. This paper concludes by bringing the
fruits of epigenetic/epigenomic research into the clinical realm,
enumerating examples of approved cancer therapies that target
cancer-inducing epigenetic abnormalities.

High throughput studies addressing big data also are helping
us to identify subgroups of patients to better understand how
disease affects certain populations. This approach has potential
to predict which populations have patients who are more likely
to respond to certain medications. Using lower throughput
platforms, Kénémé and Sémbène studied genetic determinants
of uterine fibroids (UF), benign tumors that are more frequent
and are associated with more severe symptoms in African-
American women. Focusing on 55 Senegalese women, their
examination of genetic abnormalities in UFs in this population
disclosed high genetic variability in repetition number of a GT
dinucleotide microsatellite in the first intron of the COL1A2
gene. In addition to microsatellite instability, two GT sites had
distinct mutations in the UFs in subsets of women. Furthermore,
beyond confirming the involvement of the COL1A2 dinucleotide
length polymorphism, GTn, in the occurrence of uterine fibroids

in Senegalese women, these UF-associated genetic variants were
additionally analyzed in relation to ethnicity, marital status,
contraception use, diet, and physical activity. For the first time,
these epidemiologic factors were shown to exhibit associations
with the genetic underpinnings of UFs in this population.
The authors consider that these results may create avenues for
understanding the mechanisms involved in the racial variation
in the prevalence and symptomatic severity of UFs as well as the
predisposing factors.

The contents of this volume to this point have addressed
the use of big data in investigations of various types of
molecular mechanisms that underlie carcinogenesis in general
and in specific cancers (and benign tumors). In contrast,
Bhattacharya et al. delve directly into the nature and operation
of data science, enumerating those attributes that enable its
application to the discovery of carcinogenic mechanisms that are
potentially targetable for prevention and treatment. The authors
demonstrate how progress in the quantity and diversity of
biomedical data, together with advances in artificial intelligence
(AI) and machine learning (ML) algorithms, as well as computer
architectures, enable advances in big data with a goal of
accelerating cancer research. The authors take AI and ML to
exascale levels, which are orders of magnitude higher than
those of current high-end machines, in order to gain a deeper
understanding of cancer. They describe a collaboration between
the Department of Energy (DOE) and the NCI, the Joint Design
of Advanced Computing Solutions for Cancer (JDACS4C),
which has three pilot projects intended to push the frontiers
of computing technologies in cancer research at the cellular,
molecular and population levels. An example of the first pilot
involves the application of exascale computing technology to a
precision medicine initiative to develop predictive capabilities
of drug response in pre-clinical models, ultimately leading to
targeted cancer therapies in the clinic. The evolving needs of
population databases, such as the Surveillance, Epidemiology,
and End Results (SEER) registry of U.S. cancer incidence,
as they increase the breadth of information collected, are
being addressed by the high-performance computing and
AI, as seen in the third pilot. The potential scope of
applications of exascale computing is vast and multimodal, with
potential for improving our understanding and management
of cancer.

As evidenced by this special issue of Frontiers in Oncology, the
omics field and the big data tools designed to support cancer
research already are yielding results that are being translated
into clinical practice. Helzlsouer et al. remind us, however,
that the source of every piece of data is a human being. This
connection must not get lost as we delve into the technical
processes of sample collection, preparation, and analysis, both
in the laboratory and at the informatic levels. In essence, we
must take special care to “humanize” these big data. Helzlsouer
et al. show that it is also critical to examine the challenges of
genetic/genomic testing at the individual level, i.e., the human
level. The limitations to clinical implications derived from
analyses of big data, including the probabilistic nature inherent
in genetic findings, need to be made clear to patients, but also to
all health care providers. Maintaining the human aspect of these

Frontiers in Oncology | www.frontiersin.org 3 July 2020 | Volume 10 | Article 12016

https://doi.org/10.3389/fonc.2019.00794
https://doi.org/10.3389/fonc.2019.00794
https://doi.org/10.3389/fonc.2019.00794
https://doi.org/10.3389/fgene.2019.00810
https://doi.org/10.3389/fonc.2019.00984
https://doi.org/10.3389/fonc.2020.00186
https://doi.org/10.3389/fonc.2020.00186
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Dunn and Meerzaman Understanding Cancer With Cancer ‘Omics’

data sources is vital as we look to translate and apply findings to
the cancer research field.

Today’s big data require centralized, well-curated, and
readily accessible databases that accommodate large-scale
datasets. To this end, the National Institutes of Health
and the NCI are actively contributing by establishing a
number of data repositories within a larger Cancer Research
Data Commons (CRDC) (3). These storehouses of data,
coupled with large-scale, high-throughput sequencing
technologies (genome, transcriptome, proteome), and deep
machine learning, are resulting in exponential growth in
data-driven solutions.

This special volume provides only a snapshot of articles
featuring applications and approaches to omics data. Yet, this
is an area that is just beginning to see its full potential.
Big data are expanding our understanding of disease at its
most fundamental level. The manuscripts in this special issue,
given their diversity, reflect the multidisciplinary nature of the
field. They further underscore the importance of collaboration
using a fully integrated approach, from basic scientists to
data/computational/modeling analysts (4).

We’ve come a long way since first mapping the genome. As
we further unlock individual genomes we need to take care that
we can protect personal information and avoid the potential for
bias, highlighting the ethical aspect of data derived from humans
Helzlsouer et al.. The use and reuse of data need to be carefully
managed so that the interest and welfare of patients and others
who share their data are maintained. In another decade we are
sure to realize even greater advances in howwe prevent, diagnose,
and treat not only cancer, but a broad range of diseases, relying
on the availability of robust big data.
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Epigenetic information is characterized by its stable transmission during mitotic cell

divisions and plasticity during development and differentiation. This duality is in contrast to

genetic information, which is stable and identical in all cells in an organism with exception

of immunoglobulin gene rearrangements in lymphocytes and somatic mutations in

cancer cells. Allele-specific analysis of gene expression and epigenetic modifications

provides a unique approach to studying epigenetic regulation in normal and cancer

cells. Extension of Knudson’s two-hits theory to include epigenetic alteration as a

means to inactivate tumor suppressor genes provides better understanding of how

genetic mutations and epigenetic alterations jointly contribute to cancer development.

High-throughput technology has greatly accelerated cancer discovery. Large initiatives

such as TCGA have shown that epigenetic components are frequent targets of mutations

in cancer and these discoveries provide new insights into understanding cancer etiology

and generate new opportunities for cancer therapeutics.

Keywords: epigenetics, cancer, allele, inheritance, therapy

INTRODUCTION

Epigenetics, first coined by Conrad Waddington in 1940s, was a conceptual model that describes
the development process of forming a multicellular organism from a fertilized zygote (1). The
concept had its root in the earlier studies in embryology and developmental biology. This
epigenetic concept provided mechanisms that can bring about cellular changes in development
and physiology but not involving changes of genetic materials. Although Mendel’s work on genetic
inheritance was well-recognized but the exact biochemical nature of genetic material was not
known until a decade later when the double helix model of DNA was proposed in 1953 (2, 3).
Following the discovery of the double helix structure of DNA, there was an explosion of studies
to understand how DNA sequences were replicated and used as templates to synthesize mRNAs,
and how mRNA sequences were translated to produce proteins, resulting in different cellular
phenotypes and ultimately organism phenotypes (4). This was culminated as the central dogma
of molecular biology in 1958 (5). A major focus of the biological research since that time was to
elucidate the molecular mechanisms that underlie the differential gene expression programing in
cellular differentiation in development, physiological response in daily activities, and pathological
changes in diseases. The details emerging from these studies led to a general understanding of
association among DNA methylation, gene expression, and physiological changes at the levels of
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organisms and cells. The contemporary definition of epigenetics
proposed by Holliday stated that epigenetics is the study of
gene expression changes during cellular differentiation and
mitotic inheritance of cellular gene expression pattern, which
doesn’t involve changes in DNA sequence (6). The expanded
view of epigenetics includes many phenomena that can’t be
explained by Mendelian inheritance. Some prominent examples
are X-chromosome inactivation and genomic imprinting in
mammal and position effect variegation in Drosophila (7–11).
Indeed, it was the study of these non-mendelian phenomena
that largely initiated the identification and characterization
of the biochemical components of epigenetic machinery. The
current view of epigenetic system consists of DNA methylation,
histone acetylation and methylation and other posttranslational
modifications, chromatin remodeling complexes, and non-
coding RNAs (12–15). Together, these epigenetic components
control gene expression and form the basis of epigenetic memory
that can be transmitted through mitotic cell division without
DNA sequence changes.

There are numerous excellent reviews on epigenetics and
cancer epigenetics. A few are cited here (12–14, 16, 17). In this
short review, I will focus on a few selected topics that capture
some aspects of epigenetics and epigenetic regulation in cancer
from the perspective of epigenetic stability vs. plasticity and from
the perspective of the allele-specific gene expression.

EPIGENETIC INHERITANCE AND

PLASTICITY

Epigenetic information is characterized by its stable transmission
during mitotic cell divisions and plasticity during development
and differentiation. This duality differs from genetic information,
which remains the same in every cell in an organism with
the exception of a few cases such as immunoglobulin gene
rearrangements in lymphocytes and somatic mutations in cancer.
This duality is depicted in Figure 1. The two-states model
provides a useful conceptual framework to think about epigenetic
stability vs. plasticity.

Two classical examples of epigenetic phenomena are
mammalian X chromosome inactivation and genomic
imprinting (18, 19). Both are characterized by establishing
active and inactive chromatin states in the two chromosomes
in early embryogenesis, which are maintained during the life
time of an organism. X chromosome inactivation involves gene
expression silencing in one of the two X chromosomes, which
ensures similar level of gene expression in both female and
male cells. Which of the two X chromosomes to be inactivated
is chosen randomly in the early embryogenesis. However, in
the case of genomic imprinting, the inactivation occurs in
specific genomic loci and the choice of which chromosome
to be silenced is determined by the parental origin. Hundreds
of imprinted genes have been identified. Some show gene
silencing in all expressed tissues and during the entire life of the
organism while others may display genomic imprinting only
in selected tissues and affected by developmental stages and
environmental exposure.

FIGURE 1 | Epigenetic stability vs. plasticity. The two states may represent

any two conceptual epigenetic states such as an active chromatin vs. an

inactive chromatin state or normal cell vs. cancer cell. The arc above the state

represents maintenance of the state through events such as mitotic division

whereas the arrows between the two states represent interconversion

between the two states such as changes in chromatin structure during cellular

differentiation, physiological response, or disease.

Studies of X chromosome inactivation and genomic
imprinting played an instrumental role in establish DNA
methylation and histone protein post-translational modifications
and chromatin remodeling as the primary determinants of
epigenetic state. There are many reasons why X chromosome
and genomic imprinting are the excellent models to study
epigenetics. The presence of a pair of active and inactive
chromatin provides an ideal system to identify epigenetic
marks that are specific for each epigenetic state but absent
in the other epigenetic state. The DNA modification is
relatively simple, involving methylation of the C5 in a cytosine
(20). In mammalian genomes, the CpG dinucleotide occurs
at much lower frequency than the other dinucleotides.
This is because of the selective loss of CpG resulting
from the conversion of 5-methylcytosine to thymine.
However, there are genomic regions, where cluster of
CpG dinucleotides are not methylated and consequently
protected from the conversion, leading to the formation of
CpG islands (CGIs) (21). About half of the mammalian genes
contain CGIs, which are located near their transcription
start sites.

Modifications of chromatin proteins are much more
complex (12, 16). Both H3 and H4 histones undergo
extensive post-translational modifications in their tails. These
modifications include methylation, acetylation, phosphorylation,
ubiquitination, etc. The combination of these modifications is
referred to as the “histone code” (22), which carries the epigenetic
information responsible for the maintenance of epigenetic state
and dynamic change of epigenetic state.

From the perspective of epigenetic inheritance, DNA
methylation state is maintained through DNA replication
because semi-methylated DNA, the product of DNA replication,
can be converted to fully methylated DNA by the action
of DNMT1, which catalyze DNA methylation using semi-
methylated DNA as substrate. DNA methyl transferase,
DNMT3A, and DNMT3B, catalyze de novo methylation on
DNA, thus providing a mechanism to acquire new DNA
methylation marks to change chromatin state. However,
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the effort of searching for enzymes that can catalyze DNA
demethylation was unsuccessful until about 10 years ago. It led to
the thinking in the past that perhaps DNA demethylation
could be mediated only by passively losing half of the
methylation during each cycle of DNA replication in the
absence of DNMT1 activity. This was changed recently,
when it was discovered that Ten-eleven translocation (TET)
enzymes can catalyze demethylation of 5-methycytosine
through sequential conversion of 5-methycytosine to 5-
hydroxymethyl cytosine, to 5-formylcytosine, then to
5-carboxylcytosine, which can be converted to unmodified
cytosine by terminal deoxynucleotidyl transferase (TDT)
(23, 24).

Histone modifications are far more complicated than
DNA methylation. But the general strategy is similar. There
exist a pair of enzyme systems, histone post-translational
modification “writers” and “erasers.” For examples, histone
acetyltransferase (HAT) serves as a writer whereas histone
deacetylase (HDAC) serves as an eraser. Likewise, there are
histone lysine methyltransferase (KMT) and histone lysine
demethylase (KDM) to serve as writer and eraser, respectively.
There are also protein arginine methyltransferases (PRMT),
which act on arginine. Their opposing enzymes are peptidyl
arginine deiminase (PADI). Each family also contains a large
number of enzymes that can recognize specific substrate
sequences. There is a third class of proteins called “readers” that
can specifically bind to these post-translational modifications.
For examples, bromodomain binds to acetylated lysine residue
and chromodomain recognizes lysine methylation. Interestingly,
histone acetyltransferase often contains bromodomain in
addition to its activity to add acetylation to lysine. The multi-
function structure of HAT enables it to catalyze acetylation
in a processive manner to spread this post-translation mark
(PTM) to the nearby nucleosome. This provides a potential
mechanism for maintaining the PTM through mitotic division.
Unlike DNA methylation, which produces semi-methylated
DNA after DNA replication, the nucleosomes are randomly
distributed into each of the two daughter cells after cell division.
Half of the nucleosomes are derived from the parental cell
and half are from newly deposited nucleosomes, which don’t
have PTMs. The ability of HAT to bind acetylated lysine
and then catalyze addition of acetyl group to the nearby
nucleosome allows the maintaining of this PTM through mitotic
cell division.

The hallmark of epigenetics is the transmission of
epigenetic marks through mitotic cell divisions. The
duration of maintaining an epigenetic state varies. In
the case of X chromosome inactivation and genomic
imprinting, the active or inactive chromatin states are
maintained throughout the lifetime. However, in most of
cellular response to physiologic needs, the new epigenetic
state is established and reversed back to normal state and
the duration varies depending on particular physiology.
DNA methylation mark is more stable while histone
post-translational marks and other chromatin remodeling
complexes display wide range of response time, serving different
physiologic purposes.

ALLELE-SPECIFIC GENE EXPRESSION

X chromosome inactivation and genomic imprinting are
characterized by the mono-allelic gene expression and epigenetic
modifications. Mono-allelic gene expression also occurs in a
number of other biological systems. In B lymphocytes, once
an immunoglobulin gene rearrangement takes place on one
chromosome, the rearrangement of the same gene from the other
chromosome would be prevented. This phenomenum is termed
as allelic exclusion, which ensures that an individual lymphocyte
expresses a unique amino acid sequence of an immunoglobulin
protein (25). Similar mechanism also operates in T lymphocytes
for activating TCR genes (26). Another example of mono-allelic
expression is the expression of human olfactory receptor genes.
There are about 1,000 olfactory receptor genes, each of which is
expressed from only one chromosome in a sensory neuron (27).

In addition, quantitative differences in the degree of gene
expression between two alleles, marked with SNPs, are a
widespread phenomenon, hereinafter referred to as allele-
specific expression (ASE). We initially studied allele-specific
gene expression using the Affymetrix SNP arrays and found
extensive allelic variation in expression in the human genome
(28). ASE differs from mono-allelic expression described in
the previous sections. ASE showed differential gene expression
between the two alleles in the range of 2–4 fold, which is in
contrast to mono-allelic expression observed in imprinting and X
chromosome inactivation. ASE is commonly affected by genetic
polymorphisms near the gene and these polymorphisms play
a regulatory role affecting gene expression (29, 30). This is
particularly relevant since most of the GWAS identified SNPs are
located in intragenic or intergenic regions. These SNPs impact
phenotypes through gene expression regulation at the epigenetic
level or post-transcriptional level.

UNDERSTANDING CANCER FROM THE

PERSPECTIVE OF EPIGENETIC

REGULATION AND ALLELE-SPECIFIC

GENE EXPRESSION

It is well-established that cancer is caused by mutations that are
acquired either from parents through germline inheritance or
generated in somatic cells. Inactivating tumor suppressor genes
and activating oncogenes both contribute to cancer development.
In the case of inactivation of tumor suppressor genes, both
alleles have to be inactivated in the cancer cell. This is best
illustrated by Knudson’s two-hits theory (31). The two-hits
theory was postulated to explain why familial retinoblastoma
develops earlier and bilateral while the sporadic retinoblastoma
develops later and often unilateral. Based on the epidemiologic
observation, Knudson hypothesized that retinoblastoma was
caused by inactivation of both alleles of a tumor suppressor
gene and in the case of familial syndrome one allele was
inactivated in germline and the 2nd allele was inactivated in
somatic tumor whereas in the case of sporadic cancer both
alleles were inactivated in the somatic tumor. This paradigm can
extend to include epigenetic alteration as a means to inactivate
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tumor suppressor genes. Many tumor suppressor genes, such
as BRCA1/2 and CDKN2A/B, are frequently silenced by DNA
methylation and inactive chromatin marks (32–34).

Epigenetic alteration through germline inheritance can occur
in familial cancer syndrome. Lynch syndrome is caused by
mutations in the genes involved in DNA mismatch repair.
Germline mutations in MLH1 and MSH2 causes the majority of
Lynch syndrome. However, in several Lynch syndrome families,
no mutations in mismatch repairs genes were found despite
extensive effort of searching for causative mutations. Instead,
heritable DNA methylation in the promoter regions of MLH1
or MSH2 was identified that silenced gene expression. Chan
et al. analyzed a three-generation family using allele-specific
methylation (ASM) and reported that methylation of MSH2 gene
in the germ line cells correlated with the loss of the MSH2
protein in the colorectal adenocarcinomas (35). Besides silencing
gene expression by DNA methylation, a somatic frameshift
mutation was found in MSH2. The authors concluded that ASM
in germline transmission was the first hit while the somatic
mutation was the 2nd hit. In a separate study of a HNPCC
family, the EPCAM gene had a germline deletion in the 3′ end
and resulted transcription read-through into downstreamMSH2
and an increase in DNA methylation in the promoter region
of MSH2 (36). The deletion was co-segregated with ASM of
the MSH2 promoter and the disease. Epimutation of the RB1
gene was recently found in a six generations retinoblastoma
family (37). The germline methylation was inherited from
the maternal chromosome. Interestingly, the detailed pedigree
analysis also found a germline mutation that was transmitted
through the paternal chromosome and showed incomplete
penetrance. The authors concluded that both genetic mutation
and epimutation contributed to the retinoblastoma in this family.
A rare epimutation in the RB1 gene was also identified from
another recent study (38). The authors showed that germline
DNA methylation was associated with silencing of the RB1
gene expression.

Beckwith–Wiedemann syndrome (BWS), is another familial
syndrome, which increases risk of developing multiple pediatric
cancers. It has served as a model system for studying genomic
imprinting and how abnormal genomic imprinting causes
cancer. Multiple genetic and epigenetic mechanisms were
identified that cause BWS, including mutation in CDKN1C (39),
loss of imprinting in IGF2 (40), translocation involving KCNQ1
(41), and abnormal imprinting of a lincRNA, KCNQ1OT1 (42).
All four genes are imprinted. IGF2 is normally expressed from
the paternal chromosome but expressed from both chromosomes
in tumors. KCNQ1OT1 is normally methylated on maternal
chromosome but the methylation is frequently lost in BWS
patient germline DNA. Allele-specific gene expression and allele-
specific methylation analysis have played an instrumental role in
elucidating various epigenetic mechanisms (43).

Two papers brought about wide appreciation of quantitative
difference in gene expression between two alleles of APC in
familial adenomatous polyposis (FAP) (44, 45). Yan et al. showed
that 50% reduction in gene expression in APC was associated
with predisposition to FAP. They studied six patients from
two FAP families and didn’t find any mutation in the APC

gene. However, using ASE, they found 2-fold difference in gene
expression between the two alleles in all 6 patients. Furthermore,
tumors displayed loss of heterozygosity (LOH) and deleted
specifically the high-expression allele.

An interesting question is whether DNA methylation causes
inactive chromatin state or vice versa. An elegant study from
Vogelstein’s lab provided an important insight into answering
this question (46). They generated double knockout of DNMT1
and DNMT3B, which eliminated most of DNA methylation
in HCT116, a colon cancer cell line. The double knockout
cells had slow growth rate in early passage cells but the late
passage cells grow to comparable rate to the parental cells. This
corresponded to a gradual increase in p16 methylation and
consequently silencing of p16. The kinetics of chromatin marks
changes was faster. Histone H4-acetylation increased as early as
the passage 5 and H3K9-methylation appeared at the passage
22. But DNA methylation appeared at the passage 50. The p16
is heterozygous in HCT116, allowing tracking of both alleles
for allele-specific analysis of gene expression, DNA methylation,
and chromatin marks. The study revealed that only the wild
type allele showed dynamic changes of epigenetic marks. These
observations established that the order of epigenetic changes in
this system was that it began with the gain of H4-acetylation and
expression of p16, followed by H3K9 methylation and silencing
of p16 expression and faster growth, and eventually cells fully
re-gained DNA methylation and lose H4-acetylation mark and
grew at comparable rate as the parental cells. The work also
demonstrated the important role of silencing p16 in driving
cellular proliferation.

ACCELERATING CANCER DISCOVERY

WITH HIGH-THROUGHPUT TECHNOLOGY

The high-throughput analysis of gene mutations in human
cancer was made possible after the human genome sequencing
was completed in 2003. Some of the earliest studies that leveraged
human genome sequence data to systematically identify mutated
genes in human cancer were reported by the researchers from
Johns Hopkins and Sanger Institute. These included the large
scale analysis of coding sequences of human transcriptome in
breast and colorectal cancer from Johns Hopkins in 2006 and
2007 (47, 48) and analysis of the coding exons of 518 protein
kinase genes in multiple human cancers from Sanger Institute
in 2007 (49). In 2005, NCI and NHGRI initiated The Cancer
GenomeAtlas (TCGA) initiative to comprehensively characterize
genomic alterations in all major cancers. The pilot project was
initially focused on glioblastoma multiforme (GBM) and ovary
cancer, and it was extended to include more than 30 types
of cancer in 2010. The first paper published from the TCGA
initiative was the comprehensive analysis of mutation, DNA
methylation, and gene expression of GBM in 2008 (50).

A very interesting study came from the comprehensive
analysis of mutation in glioblastoma multiforme (GBM) by the
Hopkins team in 2008, which led to the discovery of a recurrent
mutation R132H in isocitrate dehydrogenase 1 (IDH1) and the
mutation was shown to be associated with better survival (51).
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The R132H mutation was always present as a heterozygous
mutation, suggesting it functions as an oncogene. Detailed
biochemical study showed that the IDH1 mutation generated
2-hydroxyglutarate (2HG) instead of alpha-ketoglutarate, which
is the normal product of the wildtype enzyme (52). Excessive
accumulation of 2HG contributed to the formation of gliomas,
suggesting that 2HG acted as an onco-metabolite.

In 2010, TCGA team found that a subset of GBM has
high CpG island methylation, which was termed as a glioma
CpG island methylator phenotype (G-CIMP) (53). G-CIMP
tumors were more prevalent among lower-grade gliomas and
associated with IDH1 somatic mutations. The association
between DNA methylation and IDH1 was not unique to GBM
and it also occurred in acute myeloid leukemia (AML) (54).
What was really intriguing was the finding that mutations in
IDH1/2 and TET2 were mutually exclusive in AML. TET2
was known to catalyze the conversion of 5 methyl cytosine to
5 hydroxy methyl cytosine. This immediately suggested that
IDH mutation inhibits TET2 activity. Indeed, expression of
IDH1 mutant inhibited the production of 5 hydroxy methyl
cytosine. The mechanism for the inhibition was because IDH
mutants produced 2-hydroxyglutarate instead of 2-oxoglutarate.
2-oxoglutarate was co-factor for TET2 to catalyze hydroxy
methylation whereas 2-oxoglutarate served as a competitive
inhibitor to TET2. Therefore, either Tet2 mutation or IDH2
could cause accumulation of 5 methyl cytosine, generating
the CpG island methylation phenotype. This explained why
either IDH1/2 or TET2 mutation could block hematopoietic
differentiation and cause proleukemogenic effect.

One of the emerging concepts from the high-throughput
mutational analysis of human cancer genomes was the finding
that chromatin components are the frequent targets of mutations
in human cancer (55–57). Some examples are provided here.
Recurrent mutations of the histone methyltransferase MLL2
were detected in 89% of follicular lymphoma (FL) and 32% of
diffuse large B-cell lymphoma (DLBCL) (58). The histone H3K27
demethylase UTX was mutated in multiple human cancers (59).
Mutations in EZH2, a histone H3K27 methyltransferase, was
found in GCB subtype of DLBCL and follicular lymphoma (60).
Mutations in DNA methyltransferase DNMT3A were identified
in 25% of acute myeloid leukemia (AML) (61). Not only the
histone modifiers were frequently mutated, but histone proteins
were also the direct targets of mutations in human cancer.
Both histone H3 variant H3.3 (H3F3A) and the histone H3.1
(HIST1H3B) were mutated in 30% of pediatric glioblastomas
(62, 63). Interestingly, these mutations occurred at the specific
sites, K27M and G34R/G34V, and were present in heterozygous.
Detailed biochemical studies showed that H3K27Mmutant acted
in a dominant-negative manner to inhibit PRC2 activities and
consequently reduced H3K27me3 level (64).

EPIGENETIC DYNAMICS IN CANCER

TREATMENT

DNAmethyltransferase inhibitors, 5-azacytidine (Vidaza) and 5-
aza-2′-deoxycytidine (decitabine), are FDA approved drugs for

myelodysplastic syndrome (MDS) and AML patients. Treatment
with 5-azacitidine and decitabine increased overall survival in
MDS patients than conventional care in phase III clinical trials
(65, 66). The response rates are between 30 and 60%. The
response in myeloid malignancies are better than lymphoid
leukemia or solid tumors (67). This might be related to
the observation that myeloid leukemia has a relatively low
mutational burden but has mutations in the genes involved
in controlling DNA methylation, such as TET2 or DNMT3A
(68). Many studies were conducted to understand what the
clinical factors and molecular alterations are associated with
treatment response, only TET2 mutation was found to be weakly
associated with clinical response to therapy (69, 70). DNA
methyltransferase inhibitors have bi-modal activities. At low
dose, they cause hypomethylation whereas at high dose, they are
cytotoxic. Following treatment, there was global decrease in DNA
methylation and hypomethylation was associated with better
response (71). Hypomethylation of specific tumor suppressor
genes such as CDKN2B was also observed, which was associated
with reactivation of protein expression to a normal level (72).
This is consistent with the mechanism of drug action.

Vorinostat (SAHA), belinostat (PXD101), and romidepsin
are FDA approved histone deacetylase (HDAC) inhibitors for
cutaneous T cell lymphoma (CTCL) patients (73). The response
rates are between 30 and 40% of patients with CTCL (74–
76). Panobinostat in combination with the proteasome inhibitor
bortezomib is FDA approved for the treatment of drug-resistant
multiple myeloma (77). However, the success of these drugs is
limited to cutaneous T cell lymphoma and multiple myeloma,
and they are not effective for solid tumors. Similar to DNA
methyltransferase inhibitors, HDAC inhibitors also show bi-
modal activities. Their efficacy is dose-dependent, and the drugs
are cytotoxic at high dose (78). The drug targets are more
complex since there are eleven HDACs and also many non-
histone targets. The targets could be nuclear or cytoplasmic. The
complexity makes it hard to predict what factors could determine
how well patients respond to treatment.

Besides targeting DNA methyltransferases and histone
deacetylase, recently identified mutations in histone modifiers
and chromatin remodeling proteins offer new opportunities
for targeted therapy (55, 79). These include development of
JQ1 and I-BET that bind to acetyl lysine recognition motifs of
bromodomain and extra-terminal (BET) of BRD4 (80, 81), which
is involved inDNA translocation in several cancers and activation
of MYC oncogene; development of an inhibitor of H3K79 N-
methyltransferase (DOT1L), which is involved in leukemogenesis
in mixed lineage leukemia (MLL) (82); development of a
small molecule GSK2879552 that inhibits lysine demethylase 1
(LSD1) (83).

A major concern in cancer therapy, either chemotherapy
or targeted therapy, is the development of resistance to
cancer drugs. Many mechanisms contribute to drug resistance,
including drug efflux and mutations in the targeted genes
or related pathways. However, recent studies suggested that
epigenetic alterations could provide another mechanism to
acquire drug resistance, especially for slowly acquired resistance
(84). The drug resistance involved activation of IGF1 signaling
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pathway and chromatin alteration mediated by the histone
demethylase KDM5A in a small population of drug-tolerant cells.
Treatment with IGF1 receptor inhibitors or HDAC inhibitors
can eliminate the drug-tolerant cells. The combination of chemo
withHDAC inhibitors provide a potential new strategy to prevent
development of drug resistance.

In conclusion, the studies of epigenetics and allele-specific
gene expression and application of high-throughput technology
provide powerful approaches to enhancing our understanding
of cancer etiology and progression and also provide new
opportunity for cancer therapeutics. There are some limitations
when we try to understand cancer through the lens of epigenetic
inheritance, allele-specific gene expression, and high-throughput
technology. Germline epimutations are very rare events and
some of which may be caused by yet unknown genetic variants.
Although allele-specific gene expression can provide a unique
perspective on the role of genetic variants on gene expression

regulation, we are often more interested in the combined gene
expression contributed from both alleles and how the gene
expression is associated with other biological phenomena. High-
throughput technology is powerful for the discovery phase of the
research. However, new findings should be rigorously validated
by additional experiments.
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Gastric cancer is one of most common cancers worldwide. Studies have shown that

small nucleolar RNAs (snoRNAs) play important roles in several cancers. In this study,

we analyzed the snoRNAs that were differentially expressed between gastric tumors and

normal tissues, identified survival-associated snoRNAs, and developed an eight-snoRNA

signature to predict overall survival of patients with gastric cancer. Furthermore, we

explored the clinical significance of the eight signature snoRNAs. The risk biomarker

established by the eight snoRNA signature was an independent prognostic factor (hazard

ratio = 3.43, 95% confidence interval: 1.93–6.09, P = 2.72e-05). Furthermore, we

validated the expression pattern of those snoRNAs in different gastric cancer cell lines

and 5 paired normal and tumor tissues by using real time quantification PCR. Knocking

down U66, one of the eight snoRNAs, inhibited the cell proliferation. In conclusion, we

identified an eight-snoRNA risk signature to predict overall survival of gastric cancer

patients. Seven of these snoRNAs were associated with clinical features of the disease.

Knocking down U66 inhibited cell proliferation. These findings provide new clues with

prognostic and therapeutic implications in gastric cancer.

Keywords: small nucleolar RNA, biomarker, gastric cancer, survival, risk signature

INTRODUCTION

Gastric cancer (GC) is one of the leading causes of cancer-related death around the world and is the
second and thirdmost common cancer inmen and women, respectively, in China (1). Many factors
contribute to the genesis of GC such as methylation of genes (2), copy number variation (3, 4),
positive family history of GC, cigarette smoking, and low consumption of fruits (5). Compared
with other cancers, the prognosis is poor with a 5-year survival rate less than 40% (6). This is in
part because there are no strong genetic biomarkers for GC. As a result, new biomarkers to improve
the predictive value of the incidence and prognosis of GC are desperately needed. Such biomarkers
could help to understand cancer pathogenesis and provide personalized treatment.

Small nucleolar RNAs (snoRNAs) are a class of small non-coding RNA molecules, 60–300
base pairs in length. They are encoded predominantly in introns of host genes in vertebrates,
and guide site-specific chemical modifications of ribosomes, transfer RNAs, and small nuclear
RNAs. There are two main classes of snoRNAs based on sequence motifs and secondary
structural elements: C/D box and H/ACA box snoRNAs. Because of advances in next generation
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sequencing and experimental and computational approaches,
many snoRNAs and their functions are being identified.
However, there are many orphan snoRNAs that have no known
targets or specific functions.

Recent studies described snoRNAs that displayed unique
characteristics and expression patterns, as well as interacting
with corresponding protein partners and performing various
functions. Increasing attention is being paid to cancer-related
snoRNAs. For example, growth arrest-specific transcript 5-
associated snoRNAs correlated with TP53 expression and DNA
damage in colorectal cancer (7). In addition, C/D-box snoRNAs
are associated with metastatic progression and malignant
transformation in prostate cancer (8). Finally, snoRNAs and
fibrillarin, an enzymatic small nucleolar ribonucleoprotein, are
frequently upregulated in human breast and prostate cancers, and
those upregulated snoRNAs play crucial roles in tumorigenicity
both in vivo and in vitro (9).

Overall, the results of these studies support the importance
of snoRNAs in cell biological processes. Understanding the
molecular mechanisms underlying the development of GC
is essential for cancer diagnosis and therapy. However, the
functions of snoRNAs in GC remain elusive. In the current
study, we identified differentially expressed snoRNAs, developed
a snoRNA-based signature to predict overall survival of patients
with GC, and explored the potential clinical significance
of snoRNAs.

MATERIALS AND METHODS

Data Collection and Processing
SnoRNA expression data (fragments per million kilobases for
each snoRNA) were downloaded from SNORic, a website used
to explore snoRNAs in different cancers with data from The
Cancer Genome Atlas (10), and corresponding clinical follow-up
data from The Cancer Genome Atlas data portal. Figure 1 shows
the main workflow. We filtered snoRNAs that were expressed
at least 30% of samples and removed patients without complete
clinical information. In total, 37 normal tissues and 349 tumor
samples were included in this study. These tumor samples were
assigned randomly into a training set (50%, 174), that was used
to develop a risk signature and a test set (50%, 175), to verify the
performance of the snoRNA signature. There was no significant
difference in demographic characteristics between the training
and test sets. The basic clinical information is shown in Table 1.
Overall, 324 snoRNA profiles were acquired for all patients. This
study meets the publication guideline of TCGA (https://www.
cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga/using-tcga/citing-tcga). As the data used in the
study was obtained from public datasets, there was no need for
additional written consent.

Identification of Differentially Expressed

and Survival-Related snoRNAs
The presence of snoRNAs that were differentially expressed
between normal and tumor tissues was analyzed by the t-test. A
univariate COX proportional regression was applied to identify
survival-related snoRNAs. The 30 snoRNAs with the lowest P-
values were put into a robust likelihood model by the rbsurvR

package (11). Firstly, the model placed N∗(1 – p) samples
randomly into the internal training set, and N∗p samples into the
validation set. Here, we chose p= 1/2. Secondly, themodel placed
a snoRNA into the training set and calculated the parameter for
this snoRNA. Then the logLik for each snoRNA was evaluated
with the above parameter, including validation in the internal
validation samples. Finally, this model computed the Akaike
information criterion, which is an estimator of the relative quality
of statistical models for a given data set. We chose the optimal
model with the smallest Akaike information criterion. P < 0.05
was considered statistically significant.

Establishment and Validation of the Risk

Formula
SnoRNAs were chosen with the criteria mentioned above and
a multivariate Cox analysis was used to calculate coefficients in
the training set to establish risk formula by which a risk score
for each sample was calculated. All patients were classified into
two different groups (high and low risk) based on the median of
the risk score. The Kaplan-Meier method and log-rank test were
applied to analyze the overall survival of the two groups by using
the R package of survival (12, 13). To evaluate the predictive value
of the risk model, a receiver operating characteristic (ROC) curve
was constructed using the R package of survivalROC (14). Figures
were plotted by ggplot2 (15) and ggfortify (16).

Exploration of the Clinical Significance
We analyzed the expression patterns of snoRNAs that were
identified by the risk formula signature. Clinical correlation
[Lauren class molecular (17), neoplasm histologic grade,
and pathologic stage subtypes] analyses were obtained from
SNORic (10).

Experiment Validation
Real-time quantitative PCR was used to measure the expression
prolife of snoRNAs in five gastric cancer cell lines (SGC-7901,
BGC-823, NCI-N87, MGC-803, and AGS) and one normal
gastric mucosal cell line (GES-1). The primer sequence of
the snoRNAs was presented in Supplementary Table 1. The
PCR product was sequenced by Sanger method and blast
in NCBI, which indicated seven of eight primers work well
(Supplementary Figures S1, S2). We collected five patients’
tumor and adjacent tissue from surgical specimens which has
been approved by Ethics Committee of our hospital. According
the expression profile, we selected U66 to test its function.
Small interfering RNA (SiRNA) was used to knock down U66.
The effect of U66 on cell proliferation was measured by Cell
Counting Kit-8.

RESULTS

We identified 259 snoRNAs that were differentially expressed
in GC compared with normal tissues (Supplementary Table 2).
Primarily, we used a univariate COX proportional regression
to select survival-related snoRNAs in the training set.
The 30 snoRNAs with the lowest P-values were used to
develop the risk formula to predict overall survival. The
risk formula was as follows: (0.0496)∗(expression of U66) +
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FIGURE 1 | The main workflow of this study.

(−0.0191)∗(expression of ACA47) + (0.0363)∗(expression of
ACA10)+ (−0.1711)∗(expression of E2)+ (0.0650)∗(expression
of SNORA58) + (0.0953)∗(expression of HBII-316) +

(−0.4749)∗(U70)+ (−0.2352)∗(expression of U8).
Figures 2A,C show details of the normal andGC tissue groups

based on risk score calculated by the risk formula. Survival
analysis revealed a significant difference between the two groups
(Figures 2B,D). The high risk group had significantly shorter
overall survival than the low risk group (p < 0.0001). The
hazard ratio of this risk formula as a prognostic biomarker,
was 3.43 (95% confidence interval: 1.93–6.09, P = 2.72e-05).
The area under the ROC curve (AUC) of the risk formula was
up to 0.828 (Figure 3A).

The optimal cutoff was identified as 0.94 with the best
Youden’s index: 0.64 (sensitivity: 80.1%, specificity: 84.1%). With
this cutoff, patients in the test set were divided into two groups
(high risk and low risk). Kaplan-Meier curves of the validation
data set indicated a significantly prolonged survival time in low-
risk compared to high-risk patients (Figure 3B; P< 0.05). Results
from the test set were highly consistent with results from the
training set. This suggested that the snoRNA-based signature had
good performance in predicting overall survival.

Figure 4A shows the snoRNA expression patterns between
normal and tumor tissues. We found eight snoRNAs (ACA47,
E2, ACA10, SNORA58, HBII-316, U70, U8, and U66) that

TABLE 1 | Clinical covariates for included patients.

Covariate Total set

n = 349

Training

set

n = 174

Testing

set

n = 175

P-value#

Age, n ≥65 202 97 105 P = 0.421

<65 147 77 70

Gender Male 134 67 67 P = 0.966

Female 215 107 108

Pathological

stage, n

I + II 156 77 79 P = 0.867

III + IV 193 97 96

#x2-test.

were upregulated in tumor compared with normal tissues (P
< 0.05). Furthermore, there was a correlation between the
eight snoRNAs and clinical factors (Figure 4B). Seven (ACA47,
ACA10, SNORA58, HBII-316, U70, U8, and U66) of the eight
snoRNAs were associated with the Lauren classification that
divides GC into three types: intestinal, diffuse, and mixed. Seven
(ACA47, E2, ACA10, SNORA58, HBII-316, U8, and U66) of
eight snoRNAs correlated with the molecular subtype (18). Four
(ACA47, HBII-316, U8, and U66) of eight snoRNAs were related
with the neoplasm histologic grade. However, none of these eight
snoRNAs were statistically correlated with pathologic stage.

Those seven (ACA47, E2, ACA10, SNORA58, HBII-316,
U70, and U66) of eight snoRNAs were detected in cell lines.
Figures 5A–G showed the expression profile of the snoRNAs.
Compared with normal tissue, the expression of seven snoRNAs
was upregulated in patients (Figure 5H). The effect of siRNA of
U66 was validated in NCI-N87 (Figure 5I). Knocking down U66
inhibited the cell proliferation of NCI-N87 (Figure 5J).

DISCUSSION

Because of advances in high throughput sequencing, numerous
snoRNAs have been identified and are emerging as important
RNAs, thereby attracting the attention of researchers. Studies
have shown that some snoRNAs play important roles in
biological processes, and dysfunction of snoRNAs may lead to
oncogenesis (19). These studies also indicated that snoRNAs
could serve as biomarkers in several diseases, including
cancers (20).

In the current study, we used a risk-based formula through
multivariate Cox coefficients to identify eight snoRNAs that were
differentially expressed between normal and GC tissues (ACA47,
E2, ACA10, SNORA58, HBII-316, U70, U8, and U66). The high
risk group classified by the risk score had a shorter survival
time than the low risk group. These results suggested the eight-
snoRNA signature had potential predictive value, and may play
a crucial role in the molecular pathogenesis, progression, and
prognosis of GC.

The AUC of the ROC was up to 0.828. This indicated that
this risk signature had good performance to predict the overall
survival of GC patients. Furthermore, Kaplan-Meier survival
analysis demonstrated that patients in the high risk group
had a shorter overall survival time than those in the low risk
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FIGURE 2 | Risk score of snoRNAs-based signature in training set. (A) The risk score of patients in train set based on risk signature. (B) The distribution of patients’

survival status and time. (C) The expression profile of eight snoRNAs in train set. (D) Survival curve of low-risk group and high-risk group based on median risk score

via Kaplan-Meier method.

FIGURE 3 | Evaluation and validation of the risk signature. (A) The ROC curve of eight-snoRNAs’ model. (B) The survival curve of two groups (low risk and high risk)

based on optimal cutoff in testing set.

group. Thus, the risk biomarker established by the eight-snoRNA
signature served as an independent prognostic factor (hazard
ratio = 3.43, 95% confidence interval: 1.93–6.09, P = 2.72e-05).
To our knowledge, this is the first time a risk formula signature
was developed using a snoRNA expression profile to predict
overall survival of GC patients. These results imply that this risk
formula may be used as a novel biomarker.

We also explored the clinical significance of snoRNAs
in GC. A clinical features association analysis revealed that

seven snoRNAs correlated with the Lauren classification. This
classification places GC into three histological subtypes, and has
an important influence on prognosis in GC because survival
varies depending upon the subtype (21). Seven snoRNAs also
correlated with the molecular subtype that classifies GC into
four groups: Epstein-Barr virus positive tumors, microsatellite
unstable tumors, genomically stable tumors, and tumors
with chromosomal instability (17, 18). Therefore, upregulated
snoRNAsmay be involved in important biological processes such
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FIGURE 4 | Clinical significance of the eight snoRNAs. (A) The expression profile of eight snoRNAs between normal and tumor tissues. (B) The correlation between

clinical features and the eight snoRNAs.

as microsatellite instability, genomic stability, and chromosomal
instability. Although none of the eight snoRNAs correlated
statistically with pathologic stage, they may still play important
roles in GC biological processes.

This work provides some new clues with clinical implications
for the development of novel prognostic factors in GC. Although
these eight prognostic snoRNAs have not been investigated
previously in cancers, the results indicate that they may be
involved in tumorigenesis. We validated seven of eight snoRNAs
expression profile both in cell lines and patients’ tissue. We
validated the function of one snoRNA, U66, which may promote
cell proliferation.

A limitation of this study was the analysis of only a single
data set because other snoRNA datasets are lacking. Thus,

further experiments and more samples are needed to validate
these findings.

CONCLUSIONS

In conclusion, 259 differentially expressed snoRNAs were
identified and used to develop an eight-snoRNA signature
from prognosis-related snoRNAs to predict the overall
survival of GC with an AUC up to 0.828. We also explored
the potential clinical significance of the eight snoRNAs
and found that most were correlated with clinical factors.
Overall these results provide further insight into the
role of snoRNAs in GC. Further experiment indicated
that U66 may promote cell proliferation. Importantly,
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FIGURE 5 | Expression profile of snoRNAs in cell lines and paired tissues. (A–G) Expression profile of snoRNAs upregulated in certain cell lines. (H) SnoRNAs were

mainly upregulated in five patient samples. (I) U66 was knocking down by siRNA. (J) Knocking down U66 inhibited cell proliferation. *p < 0.05; **p < 0.01; ***p <

0.001.

they may have potential prognostic and therapeutic
implications for GC, and serve as predictive biomarkers of
overall survival.
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DNA methylation is an important regulator of gene expression and may provide an important 
basis for effective glioma diagnosis and therapy. Here, we explored specific prognosis 
subtypes based on DNA methylation status using 653 gliomas from The Cancer Genome 
Atlas (TCGA) database. Five subgroups were distinguished by consensus clustering using 
11,637 cytosines preceding a guanosine (CpGs) that significantly influenced survival. The 
specific DNA methylation patterns were correlated with age, tumor stage, and prognosis. 
Additionally, weighted gene co-expression network analysis (WGCNA) analysis of CpG 
sites revealed that 11 of them could distinguish the samples into high- and low-methylation 
groups and could classify the prognostic information of samples after cluster analysis of 
the training set samples using the hierarchical clustering algorithm. Similar results were 
obtained from the test set and 12 glioma patients. Moreover, in vitro experiments revealed 
an inverse relationship between methylation level and migration ability or insensitivity to 
temozolomide (or radiotherapy) of glioma cells based on the final prognostic predictor. 
Thus, these results suggested that the model constructed in this study could provide 
guidance for clinicians regarding the prognosis of various epigenetic subtypes.

Keywords: glioma, consensus clustering, DNA methylation, molecular subtypes, prognosis

INTRODUCTION

Glioma derives from glial cells and is the most prevalent primary central nervous system malignant 
tumor (Aldape et al., 2003; Aquilanti et al., 2018). The overall survival time continues to be 
unsatisfactory, especially for high-grade glioma, although treatment strategies, including surgical 
resection, radiation, and chemotherapy, for glioma patients have been greatly improved (Jain, 2018; 
Zang et al., 2018). It is therefore urgent to elucidate the molecular mechanisms underlying glioma 
tumorigenesis for developing novel therapies.

Epigenetics is recognized as heritable alterations in gene expression not connected to an 
alteration in DNA sequence but plays a crucial role in carcinogenesis (El-Osta, 2004; Issa, 2007; 
Hao et al., 2017). Cancer epigenetics covers aspects of aberrant DNA methylation, dysregulated 

Abbreviations: CDF, consensus cumulative distribution function; CpG, cytosine preceding a guanosine; GBM, glioblastoma 
multiforme; knn, k-nearest neighbors; LGG, lower-grade glioma; SD, standard deviation; TCGA, The Cancer Genome Atlas; 
WGCNA, weighted gene co-expression network analysis.
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non-coding RNA, and altered post-translational histone 
modification, among which aberrant DNA methylation is most 
widely investigated (Dawson and Kouzarides, 2012; Kanwal 
et al., 2015). Aberrant DNA methylation could influence the key 
genes that are involved in glioma carcinogenesis and progression 
and may especially influence some tumor suppressor genes by 
altering their expression and inhibiting their function (Liu et al., 
2016; Charlet et al., 2017). Thus, biological processes, specifically 
alterations in DNA methylation, can provide an important basis 
for early diagnosis and prognosis of cancer and development 
of new approaches for further clinical applications. Although 
the effects of certain genes with aberrant DNA methylation 
on glioma have been reported extensively, the comprehensive 
profile of the interaction network still needs further elucidation.

During the last decades, bioinformatics analysis and microarray 
technology have been widely used to identify general genetic or 
epigenetic alterations in carcinogenesis and screen biomarkers 
for prognosis and diagnosis of cancer (Crispatzu et al., 2017; 
Yang et al., 2019). Several single genes whose global methylation 
status correlates with glioma outcome and gene expression level 
have already been identified (Fanelli et al., 2008; Hill et al., 2014). 
Additionally, some research on aberrant DNA methylation has been 
conducted to identify glioma DNA methylation subtypes by DNA 
methylation profile (Gustafsson et al., 2018; Johannessen et  al., 
2018); however, this classification was not detailed enough, and the 
specific sites that are associated with each category are unclear.

In this study, we addressed glioma classification by identifying 
specific prognosis subtypes based on DNA methylation profiles 
of glioma obtained from The Cancer Genome Atlas (TCGA) 
database. This classification system may help identify molecular 
subtypes or new glioma markers to subdivide glioma patients 
more accurately. Moreover, our classification system provides 
guidance for clinicians on personalized treatments and diagnoses 
by identifying differences in prognosis for each epigenetic subtype.

MATERIALS AND METHODS

Data Pre-processing and the Initial 
Screening of DNA Methylation Loci in 
Glioma
Lower-grade glioma (LGG) and glioblastoma multiforme (GBM) 
DNA methylation data generated with the Illumina Infinium 
HumanMethylation450 BeadChip array were downloaded from 
the TCGA data portal (Weinstein et al., 2013). Methylation level of 
each probe was represented by the β-value, which ranges from 0 to 1, 
corresponding to unmethylated and fully methylated, respectively. 
Probes with missing data in more than 70% of the samples were 
removed. The remaining probes that were not available (NAs) were 
imputed using the k-nearest neighbors (knn) imputation procedure. 
The ComBat algorithm in sva R package was used to remove batch 
effects by incorporating patient ID information and batch and 
integrating all the DNA methylation array data. Unstable genomic 
sites, including cytosines preceding a guanosine (CpGs) in single 
nucleotide polymorphisms and sex chromosomes, were removed. 
We selected CpGs in promoter regions because DNA methylation 
in promoter regions influences gene expression strongly. Promoter 

regions were defined as 2 kb upstream to 0.5 kb downstream from 
transcription start sites. Finally, we selected samples having gene 
expression profiles. In total, 653 gliomas were used for the analysis.

Next, we separated the data set into two cohorts: a training set and 
a test set. The criteria for this grouping were as follows: a) random 
division of samples into two groups and b) similar age distribution, 
staging, follow-up time, and death ratio in the two groups.

Determining Classification Features by 
COX Proportional Risk Regression Models
CpG sites influencing survival significantly were used as 
classification features. First, univariate COX proportional risk 
regression models were constructed with methylation levels of 
each CpG site, age, and stage, and survival data of the cases. Then, 
the significant CpGs obtained from univariate COX proportional 
risk regression models were introduced into multivariate COX 
proportional risk regression models, using tumor stage and 
age as covariates, which were also significant in the univariate 
models. Finally, the CpG sites that were still significant were used 
as classification features. COX proportional hazard models were 
fitted with methylation levels of CpGs using the coxph function 
in survival package R, with clinical and demographic attributes 
(stage and age) as covariates in the multivariate analysis.

Consensus Clustering to Obtain Molecular 
Subtypes Associated With Glioma Prognosis
Consensus clustering was performed with the Consensus ClusterPlus 
package in R to determine subgroups of gliomas based on the most 
variable CpG sites (Wilkerson and Hayes, 2010). In this study, 80% 
of the samples were sampled 100 times by adopting the resampling 
program; the similarity distance between samples was estimated by 
the Euclidean distance (Ghosh and Barman, 2016), and kmdist was 
used as the clustering algorithm to search for the reliable and stable 
subgroup classification. After executing ConsensusClusterPlus, 
the item-consensus results and cluster consensus were obtained. 
The criteria to determine the number of clusters were as follows: 
relatively high consistency within clusters, relatively low variation 
coefficient, and no appreciable rise in the area under the cumulative 
distribution function (CDF) curve. Variation coefficient was 
calculated according to the following formula: coefficient of 
Variation (CV) = (SD/MN)*100%, where MN represents the average 
of samples and SD represents the standard deviation. The category 
number was selected as the area under the CDF curve and showed 
no significant change. The heat map corresponding to the consensus 
clustering was generated by pheatmap R package.

Survival and Clinical Characteristic 
Analyses
Kaplan–Meier plots were used to determine overall survival 
among glioma subgroups defined by DNA methylation profiles. 
The log-rank test was used to measure the significant differences 
among the clusters. Survival analyses were performed with the 
survival package in R software. Associations between biological 
and clinical characteristics and DNA methylation clustering were 
analyzed with the chi-square test. All tests were two-sided, and 
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for all statistical tests, p < 0.05 was considered to be significant 
unless otherwise noted.

Glioma Cell Survival and Migration Assays
After receiving informed consent, glioma specimens were 
obtained from patients undergoing surgery at the Hefei Cancer 
Hospital, Chinese Academy of Sciences, in accordance with the 
Institutional Review Board. Within hours after surgical removal, 
tumor specimens were enzymatically dissociated into single cells, 
following previously reported procedures (Chen et al., 2016). For 
cell survival assay, the cells were plated at a seeding density of 10,000 
cells/plate in a 60 mm plate, treated with or without temozolomide 
or 6 Gy radiotherapy, grown for 48 h in a standard growth medium, 
and washed with phosphate buffer saline (PBS). For cell migration 
assay, cell suspension in serum-free medium was added to the 
upper Transwell chamber and then incubated for 18 h. The cells 
were fixed in cold methanol for 20 min, washed, and stored. Fixed 
cell colonies were visualized by incubating the cells with 0.5% 
(w/v) crystal violet for 0.5 h. Excess crystal violet was removed by 
washing with PBS. Cells that survived or migrated were counted. 
Differences in means were considered statistically significant when 
p < 0.05 using a two-tailed t test.

RESULTS

DNA Methylation Features for 
Classification Based on Prognosis
To identify the specific CpG sites that were significantly correlated 
with survival in glioma, we set up the workflow shown in 

Figure 1. The 450 k methylation profiles were downloaded from 
TCGA; 485,577 CpG sites in 685 samples and clinical follow-up 
information from 1,148 cases were obtained. There were 653 
matched samples between clinical data and methylation profiles. 
The samples were evenly divided into a training set (n = 327) and 
test set (n = 326); four properties (including age, follow-up period, 
proportion of death cases, and clinical stage) between the training 
set and test set samples were observed, and they were found to be 
similar in the training set and test set (Supplementary Figure 1). 
Firstly, the univariate COX proportional hazard regression model 
was used to analyze each methylation site and survival data. When 
p < 0.05 was selected as the threshold, a total of 12,264 methylation 
sites significantly correlated with survival were obtained. Age 
(p = 0.0043) and tumor stage (p = 0.0012) were also significant 
factors. Age and grade were included in the COX proportional 
hazard regression model as covariates, and 13,739 methylation 
sites significantly correlated with survival were obtained, including 
11,637 matching sites between the two analyses.

Consensus Clustering of Glioma Identified 
Distinct DNA Methylation Prognosis 
Subgroups
The methylation profiles of the 11,637 CpG sites from the 327 
samples in the training set were employed for the consensus 
clustering of samples using the ConsensusClusterPlus R software 
package to obtain the glioma molecular subtypes. To determine 
the appropriate cluster number, we calculated the average cluster 
consistency and inter-cluster variation coefficient for the number 
of each cluster, respectively. Typically, the area under the CDF 
curve tended to be stable after five clusters (Figure 2A), the 

FIGURE 1 | Flowchart describing the schematic overview of the study design.
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smallest variation coefficient among all clusters was 0.076, and 
the sample cluster number was 5 (Supplementary Table  1). 
Therefore, five was selected as a suitable cluster number for 
further analysis in this study (Figure 2B).

Notably, most methylation sites displayed low DNA methylation 
levels in each sample; additionally, there were also differences in 
the DNA methylation profile among the five clusters, and the 
DNA methylation levels of Cluster2, Cluster3, and Cluster5 were 
lower than those of Cluster1 and Cluster4 (Figure 2C).

Indeed, the methylation levels of these five subgroups were 
significantly related to some molecular genetic features. For 
example, the methylation levels were positively associated with 
TP53 mutant but were negatively associated with co-deletion 
of 1p/19q in Cluster1 (Supplementary Table 2). In Cluster2, 
tumor protein p53 (TP53) mutant, isocitrate dehydrogenase 
[NADP(+)] 1 (IDH1) mutant, and co-deletion of 1p/19q have 
been reported to be negatively associated with methylation levels 
(Supplementary Table 3). The methylation levels were positively 
related to O-6-methylguanine-DNA methyltransferase (MGMT) 
promoter unmethylation but were negatively associated with 
TP53 mutant, α-thalassemia mental retardation X-linked (ATRX) 
mutant, and co-deletion of 1p/19q in Cluster3 (Supplementary 
Table 4). In Cluster4, the methylation levels have been associated 

with IDH1 mutant, ATRX mutant, and MGMT promoter 
unmethylation (Supplementary Table 5). TP53 mutant, 
telomerase reverse transcriptase (TERT) mutant, and MGMT 
promoter unmethylation were associated with methylation 
levels in Cluster5 (Supplementary Table 6). Thus, the five 
subgroups based on the methylation levels may reflect changes in 
some molecular genetic features.

Characterizing Different Characteristics of 
DNA Methylation Clustering
Furthermore, we analyzed the prognosis, grade and age 
distribution, and survival of each sample in the five molecular 
subtypes. It was discovered through Kaplan–Meier and log-
rank tests that there were significant differences in prognosis 
among samples of these five molecular subtypes (p = 0.00039) 
(Figure 3A); Cluster4 had favorable prognosis, while Cluster2 and 
Cluster3 were associated with poor prognosis and relatively lower 
DNA methylation levels, revealing that the prognosis for low-
methylated samples was poorer than that for highly methylated 
samples. It was also noted that patients in Cluster1 were generally 
between 30 and 45 years of age (Figure 3B) and were younger 
than patients in the other clusters. Comparing the tumor grades 

FIGURE 2 | Consensus matrix for DNA methylation classification with the corresponding heat map. (A) Delta area curve of consensus clustering, indicating the 
relative change in area under the cumulative distribution function (CDF) curve for each category number k compared with k − 1. The horizontal axis represents the 
category number k, and the vertical axis represents the relative change in area under the CDF curve. (B) Color-coded heat map corresponding to the consensus 
matrix for k = 5 obtained by applying consensus clustering. The color gradients were from 0 to 1, representing the degree of consensus, with white corresponding 
to 0 and dark blue to 1. (C) Heat map corresponding to the dendrogram in (B), which was generated using the pheatmap function with DNA methylation 
classification, tumor stage, age, and prognostic status as the annotations.
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of the subgroups, 98.7% and 100% of the samples in Cluster1 
and Cluster4 corresponded to glioma grade 2, respectively, while 
71.1%, 56.4%, and 25% of the samples in Cluster2, Cluster3, and 
Cluster5 corresponded to grade 2, respectively (Figure 3C). Taken 
together, these results indicated that these DNA methylation sites 
could serve as important markers for prognosis.

Next, the online network tool Enrichr was utilized for 
functional enrichment analysis of genes corresponding to the 
gene promoter regions annotated by the CpG sites that were 
significantly correlated with survival (Chen et al., 2013). It 
was found that these genes were enriched in the biological 
processes related to glioma, which included basic cancer-
related biological processes, as well as glioma-related specific 
biological processes, including mitotic recombination, DNA 
metabolism, and ErbB2 signaling pathway (Figure 3D), 
suggesting that the methylation sites revealed in this study 
might affect gliomagenesis and development. The weight 
co-expression network was constructed using the weighted 

gene co-expression network analysis (WGCNA) R software 
package (Langfelder and Horvath, 2008), and to guarantee 
that the network was scale-free, the soft threshold â = 6 was 
selected (Figure 4A). Five modules were obtained after 
further analysis (Figure 4B), among which the gene numbers 
included in each module were 80, 67, 52, 637, 1,319, and 59, 
respectively (Supplementary Table 7). Analysis of the module–
trait relationship showed that several of the modules displayed 
significant correlation or anti-correlation with the five glioma 
molecular subtypes (Figure 4C).

Identifying Specific DNA Methylation 
Markers
Cluster4 was linked to the best prognosis among all clusters; 
therefore, all CpG sites in the turquoise module that was 
most correlated with Cluster4 were selected. The CpG sites 
(connectivity > 1000) in the network were selected as the feature 

FIGURE 3 | Prognosis, grade, age distribution, and survival of each sample in the molecular subtypes. (A) Survival curves of DNA methylation subtypes in the 
training set. The horizontal axis represents the survival time (days), and the vertical axis represents the probability of survival. The numbers in parentheses in the 
legend represent the number of samples in each cluster. The log-rank test was used to assess the statistical significance of the differences. (B) Age distributions 
of nine DNA methylation clusters in the training set. The horizontal axis represents the DNA methylation clustering. (C) Grade distributions of nine DNA methylation 
clusters in the training set. The horizontal axis represents the DNA methylation clustering. (D) The online network tool Enrichr was utilized for functional enrichment 
analysis of genes corresponding to the gene promoter regions annotated by the CpG sites that were significantly correlated with survival.

27

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Glioma Prognosis Subtype DistinctionsChen et al.

6 September 2019 | Volume 10 | Article 786Frontiers in Genetics | www.frontiersin.org

methylation sites of Cluster4 samples, and the correlation among 
108 CpG loci was significantly higher than that among other loci 
using Pearson correlation analysis. Ultimately, we chose 11 CpG 
loci, which intersected the 2 loci (Supplementary Figure 2 and 
Supplementary Table 8).

Constructing and Evaluating the 
Prognosis Prediction Model
These 11 CpG methylation profiles were selected for further 
unsupervised cluster analysis; the similarity between samples 
was calculated by the Euclidean distance. The results suggested 
that the methylation levels of these 11 CpG sites could divide 
the samples into two groups, namely, Cluster1 and Cluster2, of 
which Cluster2 was the high-methylation group, while Cluster1 
was the low-methylation group (Figure  5A). The difference in 
prognosis between the two groups was further analyzed, which 
revealed that the prognosis in the high-methylation group was 
worse than that in the low-methylation group (Figure 5B). The 
methylation profiles of these 11 CpG sites were extracted from 
the methylation profiles in the test set for further hierarchical 

cluster analysis. It was observed that the methylation profiles of 
these 11 CpG methylation sites could be clearly grouped into two 
clusters, among which the methylation level in Cluster1 samples 
was markedly lower than that in Cluster2 samples (Figure 5C). 
The distinct high-methylation and low-methylation samples 
were selected for survival analysis and demonstrated that the 
prognosis in highly methylated samples was notably worse 
than that in low-methylated samples (Figure 5D), which was 
consistent with the training set results.

Based on the final prognostic predictor, we analyzed the clinical 
follow-up data of these 12 glioma patients, which were divided 
into the high-methylation group (n = 6) and low group (n = 6) 
(Supplementary Figure 3 and Figure 6A). There was a positive 
correlation between the methylation level and overall survival 
(p = 0.0162) (Figure 6B), with an area under curve (AUC) of 
0.8542 (Figure 6C). Consistent with these, there was an inverse 
relationship between the methylation level and insensitivity to 
temozolomide (or radiotherapy) (Figures 6D, E) or migration 
ability (Figure 6F) of glioma cells derived from GBM patients. 
Thus, we concluded that this prognostic predictor showed great 
promise for application in clinical practice.

FIGURE 4 | WGCNA analysis of CpG sites. (A) Scale-free topology index and mean connectivity were used to determine the soft threshold (â = 6). (B), Clustering 
dendrogram of CpG sites. The dissimilarity of CpG sites is based on topological overlap. The genes are assigned to different modules and are identified using 
different colors. (C) Module–trait correlation analysis showed that five modules were significantly correlated with each cluster.
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DISCUSSION

Aberrant DNA methylation is one of the hallmarks of cancer 
tissues (Klutstein et al., 2016; Witt et al., 2018). Recent 
developments in sequencing technologies have made it possible 
to analyze genome-wide DNA methylation profiles at high 
resolution. Whole genome bisulfate sequencing is the best 
method to investigate DNA methylation; its efficacy, however, 
is limited by high analytic burden and cost. DNA methylation 

arrays are a good alternative for investigating genome-wide DNA 
methylation in a large collection of tumors. The TCGA database 
is a publicly available resource that covers a wide variety of data 
types in a variety of cancers; thus, the large sample sizes allowed 
us to explore glioma molecular subtypes more comprehensively.

Global loss of methylation and gene-specific DNA promoter 
methylation occur frequently during carcinogenesis, and these 
methylation alterations have been regarded as potential molecular 
markers for cancer initiation and progression (Dor and Cedar, 2018; 

FIGURE 5 | Clustering and survival results of the 11 CpG sites in the training and test set. (A) Consensus clustering of the 11 CpG sites in the training set. (B) 
Survival curves of two clusters predicted from the training set using the prognosis model. The log-rank test was used to assess the statistical significance of the 
difference. (C) Consensus clustering of the 11 CpG sites in the test set. (D) Survival curves of two clusters predicted from the test set using the prognosis model. 
The log-rank test was used to assess the statistical significance of the difference.
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Koch et al., 2018). DNA methylation in mammals mostly occurs at 
position 5′ of the cytosine ring in CpGs through a covalent bond 
of the methyl group (Arber and Linn, 1969; Yarus, 1969). Non-
CpG sequences can also get methylated but with less frequency. In 
normal tissue, CpG island methylation usually increases with age, 
although the total genomic content of methylcytosine decreases 
(Perez et al., 2018). During carcinogenesis, a global loss of DNA 
methylation, together with tumor suppressor gene silencing by 
promoter DNA methylation, has been observed in most tumor 
types. Promoter methylation in tumor suppressor gene CpG 
islands has been demonstrated as a hallmark of cancer. Earlier 
research has profiled gene-specific promoter methylation in 
neck squamous cell carcinoma and head, bladder, lung, and liver 
cancers, among others.

Molecular mechanistic study based on bioinformatics analysis is 
a significant method in cancer research. Previous studies indicated 
that glioma could be classified into three groups based on patterns of 
global DNA methylation: glioma CpG island methylator phenotype 
(G-CIMP) (highly methylated), intermediately methylated, or low-
methylated tumors (Verhaak et al., 2010). One problem associated 
with the use of clustering algorithms to classify tumors into 
subgroups is the failure to realize the “true” number of subgroups 
that are present in a data set. Here, we explored specific prognosis 
subtypes based on DNA methylation status using 653 gliomas from 
the TCGA database. To determine the appropriate cluster number, 
we calculated the average cluster consistency and inter-cluster 
variation coefficient for the number of each cluster, respectively. 
Typically, the area under the CDF curve tended to be stable after 
five clusters, the smallest variation coefficient among all clusters was 
0.076, and the sample cluster number was 5. Thus, five subgroups 
were distinguished by consensus clustering using 11,637 CpGs that 

significantly influenced survival. Similar to recent studies (Ceccarelli 
et al., 2016; De Souza et al., 2018), the subgroups based DNA 
methylation was associated with patient age, advanced stage, and 
prognosis. Importantly, the methylation levels of different subgroups 
could reflect different molecular genetic features.

Multifold molecular analyses have been used to take advantage 
of tumor biology in response to prediction or risk stratification 
(Krajewska et al., 2017; Masci, 2017). It is known that 
transcriptional activity is regulated by methylation of cytosine 
residues, which constitutes a rather stable DNA modification. 
Reports on DNA methylation signature, which predicts cancer 
risk, are rare, however. It is important to discover tumor-specific 
prognostic factors for glioma to predict outcome and improve 
treatments. Here, WGCNA analysis of the CpG sites revealed 
that 11 of them could distinguish the samples into high- and low-
methylation groups and could classify the prognostic information 
of samples after cluster analysis of the training set samples using 
the hierarchical clustering algorithm. It is worth noting that four 
CpG sites were found in the glial cell line–derived neurotrophic 
factor (GDNF) gene, a member of the transforming growth 
factor-â (TGF-â) superfamily, which signals via the tyrosine 
kinase receptor c-Ret and the Glial cell line-derived neurotrophic 
factor receptor(GDNF)-alpha (GFRá); meanwhile, it is well 
documented that GDNF also supports neuronal differentiation 
and dopaminergic development. Limited availability of clinical 
data and fresh tumor specimens symbolizing transitional steps 
from tumor initiation to progression is an important barrier to 
improving the clinical outcomes and therapeutic strategies for 
glioma patients. Now, we could analyze epigenomic profiles to 
understand the epigenome-based evolution of gliomas. At first 
recurrence, the IDH-wild-type stem cell–like GBM phenotype 

FIGURE 6 | Application in clinical practice of the final prognostic predictor on 11 feature genes. (A) The clinical characteristics of the 12 glioma patients. 
(B) Survival curves of two clusters predicted from 12 glioma patients using the prognosis model. The log-rank test was used to assess the statistical significance of 
the difference. The red line indicates the low-methylation group (high-risk group), while the blue line indicates the high-methylation group (low-risk group), based on 
the final prognostic predictor. (C) receiveroperating characteristic (ROC) curve with AUC under the final prognostic predictor. (D) The proportion of surviving glioma 
cells derived from glioma patients after treatment with temozolomide with indicated concentration. (E) The proportion of surviving glioma cells derived from glioma 
patients after 6 Gy of irradiation. (F) The proportion of migrated glioma cells derived from glioma patients.
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by G-CIMP-low showed molecular similarity to glial cell 
differentiation (De Souza et al., 2018). In our study, we found 
a series of CpG sites at genes involved in brain development or 
neuronal differentiation. These results could provide clues to the 
mechanism of the evolution of glioma. Indeed, genes involved 
in brain development and neuronal differentiation were strongly 
enriched among genes frequently methylated in tumors, for 
example, choline O-acetyltransferase (CHAT), GS homeobox 2 
(GSX2), NK6 homeobox 1 (NKX6-1), paired box 6 (PAX6), 
retina and anterior neural fold homeobox (RAX) and distal-
less homeobox 2 (DLX2) (Wu et al., 2010; Yu et al., 2013). The 
methylation of the genes involved in neuronal differentiation, in 
cooperation with other oncogenic events, may shift the balance 
from regulated differentiation towards gliomagenesis.

A recent report emphasized the relevance of DNA methylation 
profiles in somatic TERT pathway alterations (Ceccarelli et al., 
2016). Indeed, functional enrichment analysis by Enrichr in our 
study found that these genes were enriched in the basic cancer-
related biological processes, including mitotic recombination, 
DNA metabolism, and ErbB2 signaling pathway. These biological 
processes were significantly associated with telomere maintenance. 
Based on the final prognostic predictor, we analyzed the clinical 
follow-up data of these 12 glioma patients and found a positive 
correlation between methylation level and overall survival. Using 
in vitro experiments, we also confirmed that glioma cells with low 
methylation level would have higher migration ability and show 
resistance to temozolomide (or radiotherapy) compared to cells 
with high methylation level. Thus, these results suggested that 
the model constructed in this study could provide guidance for 
clinicians regarding the prognosis of various epigenetic subtypes.

CONCLUSION

Our research identified five different prognosis subgroups using 
glioma data in TCGA that differed either at the molecular level 
or in epidemiology, providing a more detailed explanation for 
glioma heterogeneousness. Additionally, our criteria will provide 
more targets for glioma precision medicine  by identifying 
specific molecular markers for each subtype. Changes in 
DNA methylation can be used as markers to diagnose special 

subgroups, and clinicians can develop personalized treatments 
following these prognoses. Our approaches can also be used to 
study other tumors.
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Background: Type I collagen is a triple helix structure with two α1 and one α2 
chains. Coordinated biosynthesis of α1 and α2 subunits is very important for tissue 
morphogenesis, growth, and repair. In contrast, abnormal deposition in response to 
proinflammatory cytokines is associated with organ dysfunction. In humans, COL1A2 
contains two microsatellite loci: one located at the 5’-flanking region is composed of poly 
CA and poly CG; the other located in the 1st intron is constituted of poly GT. Expression 
of COL1A2 has been noted in gastric cancer and was positively correlated with degree 
of invasion and metastases. But no genetic study taking into account polymorphism of 
COL1A2 in uterine fibroids has been undertaken.

Methods: In this study, repeated dinucleotide GTn of intron 1 COL1A2 was highlighted 
in 55 patients with uterine fibroids (UF). Clinical and pathological data were obtained 
from patient’s records, and other parameters were recorded. Mutation Surveyor version 
5.0.1, DnaSP version 5.10, MEGA version 7.0.26, and Arlequin version 3.5.1.3 were 
used to determine genetics parameters. To estimate genetic variation according to 
epidemiological parameters, index of genetic differentiation (Fst) and genetic structure 
(AMOVA) were determined with Arlequin version.

Results: Based on reference microsatellite pattern (GT)14CT(GT)3CT(GT)3, 15 haplotypes 
were found. Among the 15 haplotypes, 12 have mutation at position 2284C > G and 
7 at position 2292C > G. Insertions of repeated dinucleotide GTn were found on three 
haplotypes against eight haplotypes in which they are deletions. Intron 1 of COL1A2 gene 
exhibits high genetic diversity in uterine fibroids with 35.34% polymorphic sites, 95.74% 
of which were parsimoniously variable and an average number of nucleotide difference 
of 10.442, which reflects an important genetic variability. According to epidemiological 
parameters, our results showed, for the first time, a genetic structuring of uterine fibroids 
according to ethnicity, marital status, use of contraception, diet, and physical activity, 
beyond confirming the involvement dinucleotide length polymorphism GTn in occurrence 
of uterine fibroids in Senegalese women.

Conclusion: Results obtained open up avenues for understanding the mechanisms 
involved in the racial variation in the prevalence of uterine fibroids as well as the 
predisposing factors.

Keywords: uterine fibroid, COL1A2 polymorphism, risk factors, Senegal, microsatellite genetic marker
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INTRODUCTION

Uterine fibroids (UF), more commonly known as myomas or 
uterine leiomyomas, are the most common benign tumors of 
female reproductive organs. They are associated with significant 
morbidity and therefore constitute a real public health problem. 
UF, which are highly variable within uterus, develop at the 
expense of smooth muscle and are often separated from the 
myometrium by a pseudocapsule associated with connective 
tissue condensation (Audebert, 1990). Heterogeneity of 
UF localization and their progression in the same patient 
illustrate the complex biological mechanism involved in their 
development. Clinically, UF are firm, stiff nodular tumours, a 
fact confirmed by biomechanical studies. Proteins of extracellular 
matrix, especially interstitial collagens, are responsible for this 
property of “firmness” and mechanical strength of tissue. Indeed, 
UF have an accumulation of altered collagens and different 
amounts of glycosaminoglycans and a proliferation of cells, 
which is by definition a fibrosis. A complete understanding of the 
role of extracellular matrix proteins, in particular collagen, and 
their effect on the growth and development of UF becomes an 
important issue for elucidating molecular mechanisms involved 
in their etiology.

Located on chromosome 7, COL1A2 is an essential component 
of matrix tissue. It is predominantly produced by mesenchymal 
cells such as fibroblasts, osteoblasts, and smooth muscle cells. 
Transcription of COL1A2 is under control of a regulatory complex 
that includes several DNA elements and several trans-activating 
factors. During the last two decades, type I alpha chain collagen 
2 (COL1A2) has been considered as an informative model for 
studying principles that govern the control of extracellular 
matrix transcription for normal and fibrotic tissues (Kirkland, 
2009; Krasny et al., 2010; Trojonowska, 2002; Yasul et al., 2004). 
In humans, COL1A2 contains two microsatellite loci: one located 
at the 5’-flanking region of the gene is composed of poly CA and 
poly CG; the other located in the 1st intron is constituted of poly 
GT. In a study led by Akai et al. (1999), it has been shown that 
complete transcription of COL1A2 gene is regulated by these 
repeated dinucleotides. Analysis of polymorphism in these two 
regions indicates that these two sequences show a variation in 
their repetition number, suggesting that these dinucleotides 
constitute microsatellites. Lei et al. (2005) hypothesized that 
GTn polymorphism triggers transcription of the gene, and 
variation in the number of repetitions can partly be responsible 
for the difference in transcriptional activity. In this study, we 
evaluate instability of repeated dinucleotide GTn in Senegalese 
patients with UF.

MATERIALS AND METHODS

Clinical Sampling
Tumor tissue samples were collected from 55 patients with 
UF (from Military Hospital of Ouakam and General Hospital 
of Grand Yoff). Clinical and pathological data were recorded 
including age, ethnicity, age at menarche, marital status, number 
of pregnancies, number of childbirth, hormonal contraception, 

diet, and physical activity (Table 1). None of the patients surveyed 
claimed to consuming alcohol and using tobacco, which is why 
these factors are not included in this study.

DNA Extraction, Amplification, and 
Sequencing of Intron 1 COL1A2 Gene
Total DNA of each sample was extracted using Qiagen 
protocol (Qiagen Dneasy Tissue kit). After extraction, repeated 
dinucleotide GTn were amplified using forward 5’-TGTCT 
ACCACTGCATAATTTC-3 and reverse 5’-AATATGAACTCG 
GTAATGTGA-3’ primers (Lei et al., 2005). The 35 cycle PCR 
for COL1A2 intron 1 amplification was carried out using 4 μl 
of human genomic DNA in a 50 μl reaction mixture, which 
contained 0.1 μl of Taq DNA polymerase, 2.5 μl of forward and 
reverse primers, 1 μl of magnesium chloride, 2 μl of mix dNTPs, 
and 5 μl of 10X ammonium sulfate buffer. Thermal cycle 
conditions for amplification PCR consisted of 1st step-3 min 

TABLE 1 | Clinical and pathological characteristics of 55 cases analyzed.

Epidemiological factors Number of patients (%)

Age (n = 36)
≤35 11 (30.55%)
]35–45] 18 (50%)
> 45 7 (19.45%)
Ethnicity (n = 39)
Wolof 13 (33.33%)
Sérère 4 (10.26%)
Lébou 7 (17.95%)
Bambara 3 (7.69%)
Diola 5 (12.82%)
Alpulaar 7 (17.95%)
Marital status (n = 31)
Single 8 (25.80%)
Married 20 (64.52%)
Divorced 3 (9.68%)
Age at menarche (n = 18)
≤12 1 (5.56%)
]12–15] 13 (72.22%)
> 15 4 (22.22%)
Number of pregnancies (n = 31)
0 20 (64.51%)
I 4 (12.91%)
II 4 (12.91%)
III 1 (3.22%)
> III 2 (6.45%)
Number of childbirth (n = 33)
0 23 (69.70%)
I 7 (21.21%)
II 1 (3.03%)
III 2 (6.06%)
> III 0 (0%)
Hormonal contraception (n = 23)
Yes 2 (8.69%)
No 21 (91.31)
Diet (n = 23)
Meat preference 7 (30.43%)
Vegetarian preference 6 (26.09%)
No preference 10 (43.48%)
Physical activity (n = 23)
Yes 5 (21.74%)
No 18 (78.26%)
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cycle of initial denaturation at a temperature of 94°C, followed 
by 2nd step consisting of 35 cycles each of 45 s of denaturation 
at 94°C, annealing at 60°C/1min and primer extension at 
72°C/1  min, and 3rd step: final extension or polymerization 
at 72°C for 10  min. After PCR reaction, all products were 
electrophoresed on 1.5% agarose gel, followed by its analysis 
in an UVitec Gel Documentation system for imaging the gel 
and to determine the amplicon lengths. Sequencing reactions 
were performed in a thermal cycler MJ Research PTC-225 
Peltier type with ABI PRISM BigDye TM Terminator Cycle kit. 
Each sample was sequenced using forward primer. Fluorescent 
fragments were purified with the BigDye Xterminator 
purification protocol. The samples were suspended in distilled 
water and subjected to electrophoresis in 3730xl ABI sequencer 
(Applied Biosystems).

Molecular Analysis
To determine length polymorphism of dinucleotide GTn of intron 
1 COL1A2 gene, the raw sequencing data were submitted to 
Mutation Surveyor software version 5.0.1 (www.softgenetics.com). 
This program can directly compare chromatograms with genomic 
DNA of reference sequence of COL1A2 (NT_007933_94023373). 
Alignment of the sequences was carried out using BioEdit 
software version 8.0.5 and ClustalW algorithm (Thompson 
et  al., 1994). Sequences obtained (Hall, 1999) were thoroughly 
checked, cleaned, and aligned to identify homologies among 
sites, and also to perform other phylogenetic analysis including 
the determination of variability index and genetic diversity as well 
as the parameters of genetic differentiation. Genetic variability 
parameters (number of polymorphic sites, total number of 
haplotype, average number  of nucleotide difference K) were 
obtained through DnaSP 5.10 software (Librado and Rozas, 
2009) and MEGA 7.0.26 (Kumar et al., 2016). To estimate genetic 
variation according to epidemiological parameters, the factor of 
genetic differentiation (Fst) and the analysis of molecular variance 
(AMOVA) were determined with Arlequin software version 
3.5.1.3 (Excoffier and Lischer, 2010). Values of P less than 0.05 are 
considered significant at a 5% confidence interval.

RESULTS

Mutations Status of Microsatellite GTn
COL1A2 was sequenced in 55 tumour tissues. Of these sequences, 
five were removed from the genetic analysis because of a strong 
polymorphism. Based on the microsatellite reference pattern in 
the form (GT)14CT(GT)3CT(GT)3, 15 haplotypes were found 
in 50 Senegalese women with UF (Table 2). These haplotypes 
indicate a variation in GT repetition number ranging from 13 to 
25 (Figure 1).

Of the 15 haplotypes, 12 have mutation at position 2284C > 
G (first site that interrupts GT dinucleotide repeat) and 7 have 
mutation at 2292C > G (2nd site that interrupts GT dinucleotide 
repeat). Insertions of repeated dinucleotide GTn were found on three 
haplotypes (microsatellite elongation) compared to eight haplotypes 
in which they were deletions (microsatellite shortening). Haplotype 
7 representing 20% of the haplotypes was characterized by the 
presence of two types of transversions 2284C > G and 2292C > G. 
Haplotypes 11 (14%) and 8 (12%) were respectively characterized 
by deletions at position 2280-2283_DelGTGT and 2282-2283_
DelGT (Table 2). Some microsatellite length polymorphisms of GTn 
COL1A2 were summarized in Figure 2.

COL1A2 Intron 1 Polymorphisms
Intron 1 of COL1A2 gene exhibits high genetic diversity in UF with 
35.34% polymorphic sites, 95.74% of which were parsimoniously 
variable. Average number of nucleotide differences was 10.442 
(Table 3). The high haplotypic diversity (Hd = 0.9984) and the 
low nucleotide diversity (Pi = 0.0877) showed a rapid evolution 
of microsatellite polymorphism in UF in Senegalese women.

Microsatellite GTn Instability and  
Genetic Differentiation
Depending on epidemiological parameters studied, only repeated 
dinucleotide is taken into account in analysis. This allows us to 
highlight the role of the length polymorphism of intron 1 COL1A2. 
Results obtained show a variable expressivity of dinucleotide GTn in 

TABLE 2 | Length and pattern polymorphism of repeated dinucleotide GTn of intron 1 COL1A2 gene in uterine fibroids.

Haplotype Number (%) Microsatellite pattern Variants

H1 5 (10%) (GT) 14CT(GT)3CT(GT) 3 Wide type
H2 4 (8%) (GT)17CT(GT)3CT(GT)3 2276_2281_InsGTGTGT
H3 2 (4%) GT25 2276_2281_InsGTGTGT; 2284C > G; 2292C > G
H4 1 (2%) (GT)21CT(GT)3 2276_2281_InsGTGTGT; 2284C > G
H5 2 (4%) GT23 2281-2282_InsGT; 2284C > G; 2292C > G
H6 2 (4%) (GT)18CT(GT)3 2284C > G
H7 10 (20%) GT22 2284C > G; 2292C > G
H8 6 (12%) (GT21) 2282-2283_DelGT; 2284C > G; 2292C > G
H9 2 (4%) (GT)13CT(GT)3CT(GT)3 2282-2283_DelGT 
H10 1 (2%) (GT)17CT(GT)3 2282-2283_DelGT; 2284C > G
H11 7 (14%) (GT)16CT(GT)3 2280-2283_DelGTGT; 2284C > G
H12 4 (8%) GT20 2280-2283_DelGTGT; 2284C > G; 2292C > G
H13 1 (2%) GT19 2276-2281_DelGTGTGT; 2284C > G; 2292C > G
H14 2 (4%) (GT)15CT(GT)3 2276-2281_DelGTGTGT; 2284C > G
H15 1 (2%) GT18 2274-2281_DelGTGTGTGT; 2284C > G; 2292C > G

Ins, insertion; Del, deletion.
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Senegalese women with UF (Table 4). For age parameter, tumoral 
tissues were genetically more different in women under 35 (Fst = 
0.04237) and those over 45 (Fst = 0.06574) compared to women 
aged 35–45 years (Fst = 0.03152). This differentiation is more 
significant between the two extremes (under 35 and over 45). This 
heterogeneity of repeated dinucleotide GTn polymorphism is more 
noticeable among women of Bambara, Sérère, Lébou and Alpulaar 
ethnic groups, UF being genetically homogeneous in Wolof and 
Diola women. Strong genetic differentiation was noted between 
Wolof and Alpulaar.

According to marital status, UF seem to have the same genetic 
characteristics in single women (Fst = 0.08964), unlike married 
women (Fst = 0.10771) and divorced women (Fst = 0.23556), 
where there is a strong genetic differentiation within each group. 
However, no statistically significant differentiation is noted 
between these groups.

For the age at menarche variable, only one woman who reported 
having menarche before the age of 12 had a different haplotype 
than the remaining 17 women on which age of menarche data 
was available. Further investigation with a larger patient cohort is 
required to determine the significance of this observation. As for 

the number of pregnancies, no statistically significant differentiation 
is noted between the sub-groups, but nevertheless, we notice a 
strong genetic differentiation in three women with three and more 
than three pregnancies. It is the same for the number of childbirth. 
Compared to hormonal contraception on the one hand and 
physical activity on the other hand, we noted an important genetic 
differentiation between sub-groups.

Polymorphism of repeated dinucleotide GTn was 
genetically different within women who have a meat preference 
and those who have no food preference. Women who are 
preferably vegetarians were genetically homogeneous (Table 4).

Microsatellite GTn Instability and 
Molecular Variance Analysis
The Fst values are further explained by molecular variance analysis 
(Table 5). Repeated dinucleotide GTn analysis showed that UF 
are genetically structured according to ethnicity (p = 0.03421*), 
marital status (p = 0.00782**), hormonal contraception (p = 
0.00098***), dietary preference (p = 0.04301*), and physical 
activity (p = 0.00684***). In other words, molecular mechanisms 
of COL1A2 involved in etiology of UF in Senegalese women 

FIGURE 1 | Microsatellite GTn length and pattern polymorphism in uterine fibroids.
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are modulated by risk factors such as ethnicity, marital status, 
hormonal contraception, diet, and physical activity. Indeed, 
the polymorphism of the repeated dinucleotide GTn of intron 1 
COL1A2 in UF is explained to:

• 8.83% by differentiation between women of different ethnic 
groups;

• 10.57% by a differentiation between women according to their 
marital status;

• 24.88% by differentiation according to whether or not use of 
hormonal contraception;

• 7.94% by dietary preference; and
• 15.10% by a differentiation according to physical activity.

Since there is no multivariate analysis and the sample sizes 
are small for some of these variables, more research is needed to 
highlight these results.

DISCUSSION

COL1A2 Polymorphisms in 
Uterine Fibroids
Located on chromosome 7, COL1A2 is an essential component of 
the tissue matrix. It is predominantly produced by mesenchymal 
cells such as fibroblasts, osteoblasts, and smooth muscle cells 
(Rossert et al., 2000). Transcription of COL1A2 is under control 

TABLE 3 | Index of variability and genetic diversity of intron 1 COL1A2 in 
fibroid cases.

Variability index

Parameters Number Percentage

Number of sequences 50
Number of sites 133
Monomorphic sites 86 64.66%
Polymorphic sites 47 35.34%
Singleton variable sites 2 4.26%
Parsimony informative sites 45 95.74%
Average number of nucleotide 
differences (k)

10.442

Genetic diversity index

Pi ± variance 0.0877 ± 0.00002
Hd ± variance 0.9984 ± 0.00003

Hd, haplotypic diversity; Pi, nucleotide diversity.

FIGURE 2 | GTn COLLA2 deletion in uterine fibroids.
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TABLE 4 | Degree of genetic differentiation of repeated dinucleotide GTn of COL1A2 gene in relation to the epidemiological parameters studied.

Epidemiological parameters Genetic differentiation (Fst)

Groups
Sub-groups

Within sub-groups Between sub-groups

Age Fst Between sub-groups Fst (P-value)

≤35 0.04237 ≤35 &]35–45] 0.01274 (0.32422)
]35–45] 0.03152 ≤35 & >45 0.20818 (0.07812)
> 45 0.06574 ]35–45] & >45 −0.02089 (0.46582)

Ethnicity

Wolof 0.00180 Wolof & Sérère 0.15238 (0.17773)
Sérère 0.20123 Wolof & Lébou 0.06714 (0.29785)
Lébou 0.14805 Wolof & Bambara −0.03106 (0.99902)
Bambara 0.30276 Wolof & Diola 0.10515 (0.19531)
Diola −0.00183 Wolof & Alpulaar 0.18605 (0.07324)
Alpulaar 0.11805 Sérère & Lébou −0.16129 (0.76562)

Sérère et Bambara 0.06667 (0.99902)
Sérère & Diola 0.15152 (0.15918)

Sérère & Alpulaar 0.12513 (0.12891)
Lébou & Bambara −0.33333 (0.99902)

Lébou & Diola −0.09091 (0.60938)
Lébou & Alpulaar −0.08691 (0.72852)
Bambara & Diola −0.40000 (0.99902)

Bambara & Alpulaar −0.52941 (0.99902)
Diola & Alpulaar 0.13754 (0.11523)

Marital status

Single 0.08964 Single & Married 0.03216 (0.24805)
Married 0.10771 Single & Divorcée 0.39683 (0.99902)
Divorced 0.23556 Married & Divorced 0.38444 (0.99902)

Age at menarche

≤12 0.20408 ≤12 &]12 – 15] −0.45799 (0.91992)
]12 – 15] −0.14031 ≤12 & >15 0.00000 (0.39453)
>15 −0.08291 ] 12 – 15] & >15 −0.01850 (0.48242)

Number of pregnancies

0 0.00988 0 & I −0.06950 (0.70508)
I 0.02840 0 & II 0.00284 (0.38184)
II −0.11721 0 & III −0.01720 (0.49707)
III 0.34321 0 & > III 0.42177 (0.99902)
> III 0.34321 I & II −0.35429 (0.80273)

I & III −0.10092 (0.70703)
I & > III −0.17647 (0.99902)
II & III 0.13333 (0.31641)

II & > III −1.00000 (0.99902)
III & > III 1.00000 (0.99902)

Number of childbirth

0 −0.06871 0 & I 0.07169 (0.18652)
I −0.13999 0 & II −0.41520 (0.99902)
II 0.26463 0 & III −0.41520 (0.99902)
III 0.26463 I & II −0.16049 (0.99902)

I & III −0.16049 (0.99902)
II & III  0.00000 (0.99902)

Hormonal contraception

Yes 0,17376 Yes & No 0.24883 (0.07129)
No −0,07280

Diet

1 Meat preference 0.01042 1 & 2 0.17374 (0.07520)
2 Vegetarian preference −0.01543 1 & 3 −0.11892 (0.92285)
3 No preference 0.01406 2 & 3 0.20431 (0.04785)

Physical activity

Yes 0.14435 Yes & No 0.15107 (0.06445)
No 0.07661
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of a regulatory complex that includes several DNA elements and 
several trans-activating factors. In humans, COL1A2 contains two 
microsatellite loci: one located at the 5’-flanking region of the gene 
is composed of poly CA and poly CG; the other located in the 
1st intron is constituted of poly GT. In this study, microsatellite 
polymorphism GTn of intron 1 COL1A2 was highlighted in cases of 
UF in Senegalese women. Based on microsatellite reference pattern 
that is (GT)14(CT)(GT)3(CT)(GT)3, 15 haplotypes  were  found. 
These haplotypes indicate a variation in number of GT repeats 
ranging from 13 to 25. Of the 15 haplotypes, 12 have the 2284C > 
G mutation and 7 have the 2292C > G mutation. Insertions of the 
dinucleotide GTn were found on three haplotypes (microsatellite 
elongation) compared to eight haplotypes in which they were 
deletions (microsatellite shortening). This suggests an altered 
mechanism of the role of COL1A2 gene in UF. Indeed, in a study 
led by Lei et al. (2005), it has been hypothesized that intron 1 
GTn polymorphism triggers transcription of gene and variation 
in number of repeats may be partly responsible for the difference 
in transcriptional activity. In addition, about 200 different 
chromosomal abnormalities have been described in UF including 
long-arm translocations of chromosome 7 occurring in about 
17% of karyotypically abnormal UF (Sandberg, 2005). In contrast 
to normal tissues where collagen is organized into long, thin, 
wavy fibrils parallel to the epithelial boundary, collagen fibrils in 
the tumor stroma are thicker and shorter (Cho et al., 2015). In 
epithelial ovarian cancer, collagenous pathways perpendicular to 
the epithelial boundary have been observed (Adur et al., 2014).

Intron 1 of COL1A2 gene exhibits high genetic diversity 
in UF with 35.34% polymorphic sites, 95.74% of which are 
parsimoniously variable and an average number of nucleotide 
differences of 10.442, which reflects an important genetic 
variability. This could be explained by the fact that compared 
to the myometrium, in UF, not only expression of collagen 
genes increases (Stewart et al., 1994), but also amount of 
mature reticulated collagen protein is increased and the more 

important is modified (Leppert et al., 2004). UF are firm, 
stiff nodular tumors, a fact understood by all clinicians and 
confirmed by biomechanical studies (Rogers et al., 2008; Jayes 
et al., 2013). Extracellular matrix (ECM) proteins, including 
interstitial collagens, are responsible for this property of 
“firmness” and mechanical strength of tissues. ECM is a 
structure that has a supporting role, but on the other hand, it 
provides signals to cells that determines their behavior. The role 
of ECM and mechanotransduction as an important signaling 
factor in human uterus is just beginning to be appreciated. 
ECM is not just substance surrounding cells, but rigidity 
compresses cells or stretches them into signals converted 
into chemical changes, depending on amount of collagen, 
crosslinking and hydration, as well as other components of 
ECM. Since connective tissue integrity, architecture, and 
function result from specific interactions between collagen 
and other components of ECM, the presence of abnormal 
collagen chains may have a strong influence on metabolism 
of non-collagenic components (Tenni et al., 1988). According 
to study by Hauptman et al. (2018) in colorectal cancers, 
the results showed that 9 of 16 genes that show differential 
expression in carcinomas compared to adenomas are 
components of ECM. Among these components, two collagen 
type I proteins (COL1A1, COL1A2) are significantly over-
regulated in cancerous tissues compared to normal tissues. 
Studies on cell lines suggest that type I collagen adhesion 
promotes intracellular signaling pathways.

Microsatellite GTn Instability in 
Uterine Fibroids: Correlation With 
Epidemiological Parameters
Ethnicity
In addition to great variability, repeated dinucleotide GTn of intron 
1 COL1A2 exhibits heterogeneity given to clinico-pathological 
parameters in women with UF. Heterogeneity of predisposing 
factors involved in UF illustrates the complex biological mechanism 
involved in their development. This suggests the involvement of 
several molecular mechanisms in occurrence of UF. Prospective 
studies with larger number of samples would strengthen the 
correlation observed in the current study. Epidemiological data 
have mentioned racial disparity in occurrence of UF. Ethnicity has a 
major influence on development and clinical severity of UF. African-
American women develop UF at higher frequency and with more 
severe symptoms. Hispanic women have an intermediate disease 
profile, and Caucasian women are the least severely affected ethnic 
group (Velebil et al., 1995; Baird et al., 2003; Wise et al., 2012). It 
appears that increased incidence and severity of disease in African-
American women may be due to a combination of specific genetic 
and environmental factors that are not independent risk factors 
for the disease (Commandeur et al., 2015). In this study, we took 
ethnicity into account, although these women are all black. UF are 
genetically heterogeneous in Bambara, Sérère, Lébou, and Alpulaar 
and more homogeneous in Diola and Wolof. In a study conducted 
by Thiaw (2018) on ethnic diversity of Senegalese population 
(unpublished data), analysis of GTn pattern polymorphism shows a 
genetic differentiation between Diola and Wolof compared to other 

TABLE 5 | Genetic structuring of GTn COL1A2 according to epidemiological 
parameters.

Epidemiological 
parameters

Source of variation Percentage 
of variation

Fst (P-value)

Age Within sub-groups 96.03862 0.03961 (0.06843)
Between sub-groups 3.96138

Ethnicity Within sub-groups 91.16560 0.08834 (0.03421)
Between sub-groups 8.83440

Marital status Within sub-groups 89.42471 0.10575 (0.00782)
Between sub-groups 10.57529

Age at menarche Within sub-groups 108.72040 −0.08720 (0.88368)
Between sub-groups −8.72040

Number of 
pregnancies

Within sub-groups 95.80665 0.04193 (0.21994)
Between sub-groups 4.19335

Number of 
childbirth

Within sub-groups 105.40304 −0.05403 (0.79570)
Between sub-groups −5.40304

Hormonal 
contraception

Within sub-groups 75.11658 0.24883 (0.00098)
Between sub-groups 24.88342

Diet Within sub-groups 92.05111 0.07949 (0.04301)
Between sub-groups 7.94889

Physical activity Within sub-groups 84.89311 0.15107 (0.00684)
Between sub-groups 15.10689
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ethnic groups. This differentiation may explain in part 8.83% of 
genetic structure of COL1A2 observed in UF by ethnicity.

Marital Status
Genetic differentiation observed (10.57%) is also explained by 
the differentiation between women according to their marital 
status; greater differentiation is observed among married and 
divorced women compared to single. This could be explained 
by the difference in hormonal status in these women. Studies of 
Barrett et al. (2015) on ovarian steroid status in marital status 
showed that estradiol was higher among married women than 
among unmarried women (β  =  0.19, 95% CI: 0.02–0.36) as 
well as progesterone (β = 0.19, 95% CI: 0.01–0.39). In addition, 
many clinical observations indicate that the development of UF 
is related to hormonal status (Ross et al., 1986). For example, 
UF do not occur in prepubertal women and are rarely seen in 
adolescent girls (Fields and Neinstein, 1996).

Hormonal Contraception
Our results also indicated that 24.88% of differentiation 
observed in cases of UF is explained by a differentiation 
following hormonal contraception use. Relationship between 
oral contraceptives and UF has been largely elucidated. But 
epidemiological data between contraceptive use and UF seems 
controversial. Published studies show a reduction or absence of 
risk between oral contraceptives use combined with appearance 
of UF (Berisavac et al., 2009). One study has shown that oral 
contraception may play a role in development of UF. Others 
have found no association between occurrence of UF and use of 
contraception (Parazzini et al., 1992).

Diet
In relation to diet, a positive correlation was noted between dietary 
preference and genetic expression of COL1A2 in UF (7.94% of 
genetic differentiation). Genetic differentiation is more observed 
in patients with meat preference. Recently, Wise and Laughlin-
Tommaso (2016) published results on relationship between 
dietary fat intake and UF risk in African-American women, 
confirming an increased risk associated with consumption of 
omega-3 fatty acids long chain. They validated hypothesis that 
a diet rich in fruits and vegetables reduced risk. According to 
studies of Chiaffarino (1999), women with UF consume beef, 
other red meats, and ham more frequently and have less frequent 
consumption of green vegetables, fruits, and fish. Multivariate rib 
ratios were 1.7 for beef and other red meats, 1.3 for ham, and 
0.8 for fruit consumption. Limitation of this current diet study 
is the lack of data on total energy intake because information 
was collected only on the frequency of vegetable consumption 
compared to red meat and in interviews with patients. Further 
research would be interesting to evaluate the effect of fat intake 
on uterine fibroids biology.

Physical Activity
There have been few studies on effect of physical activity on risk 
of developing UF. Nevertheless, our results showed a genetic 

structuring of UF according to practice or not of sport (15.10% 
of genetic differentiation). Since this is a modifiable factor, more 
research is  needed to evaluate effects of physical activity on 
UF biology.

CONCLUSION

Results obtained show, for the first time, a genetic structuring of 
UF according to ethnicity, marital status, use of contraception, 
diet, and physical activity, beyond confirming the involvement of 
COL1A2 gene, in particular dinucleotide length polymorphism 
GTn in occurrence of UF in Senegalese women. In addition to 
this, results obtained open up avenues for understanding the 
mechanisms involved in racial variation in the prevalence of UF 
as well as the predisposing factors. Given the admitted results, 
it is clear that more research is needed to determine risk factors 
associated with appearance and growth of UF, as they cause 
significant morbidity and affect quality of life. A clear overview 
of the epidemiology of UF has not yet been realized and future 
research on modifiable risk factors such as vegetarian diet, 
contraception, physical activity, among others could inform the 
prevention of myomas and provide new non-surgical approaches 
to treatment.
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Background: Although the diagnosis and treatment of glioblastoma (GBM) is significantly 
improved with recent progresses, there is still a large heterogeneity in therapeutic effects 
and overall survival. The aim of this study is to analyze gene expressions of transcription 
factors (TFs) in GBM so as to discover new tumor markers.

Methods: Differentially expressed TFs are identified by data mining using public databases. 
The GBM transcriptome profile is downloaded from The Cancer Genome Atlas (TCGA). 
The nonnegative matrix factorization (NMF) method is used to cluster the differentially 
expressed genes to discover hub genes and signal pathways. The TFs affecting the 
prognosis of GBM are screened by univariate and multivariate COX regression analysis, 
and the receiver operating characteristic (ROC) curve is determined. The GBM hazard 
model and nomogram map are constructed by integrating the clinical data. Finally, the 
TFs involving potential signaling pathways in GBM are screened by Gene Set Enrichment 
Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis.

Results: There are 68 differentially expressed TFs in GBM, of which 43 genes are 
upregulated and 25 genes are downregulated. NMF clustering analysis suggested that 
GBM patients are divided into three groups: Clusters A, B, and C. LHX2, MEOX2, SNAI2, 
and ZNF22 are identified from the above differential genes by univariate/multivariate 
regression analysis. The risk score of those four genes are calculated based on the beta 
coefficient of each gene, and we found that the predictive ability of the risk score gradually 
increased with the prolonged predicted termination time by time-dependent ROC curve 
analysis. The nomogram results have showed that the integration of risk score, age, 
gender, chemotherapy, radiotherapy, and 1p/19q can further improve predictive ability 
towards the survival of GBM. The pathways in cancer, phosphoinositide 3-kinases 
(PI3K)–Akt signaling, Hippo signaling, and proteoglycans, are highly enriched in high-
risk groups by GSEA. These genes are mainly involved in cell migration, cell adhesion, 
epithelial–mesenchymal transition (EMT), cell cycle, and other signaling pathways by GO 
and KEGG analysis.
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conclusion: The four-factor combined scoring model of LHX2, MEOX2, SNAI2, and 
ZNF22 can precisely predict the prognosis of patients with GBM.

Keywords: glioblastoma, transcription factors, prognostic signature, lhX2, MeOX2, SNAi2, ZNF22

iNTRODUcTiON

Glioblastomas (GBMs) are the most common malignant 
tumors in the central nervous system (CNS), which accounts 
for 14.9% of primary CNS and 47.1% of primary brain 
tumors. The incidence of GBM increases with age, being most 
common during 75–84 years of age. It is generally associated 
with a poor prognosis, in which median overall survival (OS) 
is 15 months and 5-year survival is only about 5.5% (Ostrom 
et al., 2017). However, studies have shown that the prognosis 
varies widely among individuals. The histopathology which 
is commonly used in the clinic is not an ideal prognosis 
marker and can even lead to erroneous judgement. For the 
past 10 years, rapid advancement in bioinformatics has 
provided better tools to explore the molecular characteristics 
of cancer. This way, many molecular markers and molecular 
characterizing systems of GBM have been identified, which 
offers novel insights into the better understanding of 
progression mechanisms, diagnosis, and treatment of GBM 
(Lee et al., 2018). For instance, the prognostic and predictive 
significance of isocitrate dehydrogenase (IDH)1/2 mutation 
has been validated by many studies. In these studies, GBM 
patients with IDH1/2 mutations have notably longer OS 
compared with patients without (Yan et al., 2009; Beiko et al., 
2014). In addition, O6-methylguanine DNA methyltransferase 
(MGMT) methylation status is another important molecular 
marker, predicting the therapeutic effects of temozolomide 
(TMZ) in GBM patients (Hegi et al., 2005).

Transcription factor (TF), also known as trans-acting factor, 
is a protein with a unique structure that controls the rate of 
transcription or the production of messenger RNA (mRNA).
TF can act as an activator or repressor by interacting with cis-
acting elements. During eukaryotic transcription initiation, RNA 
polymerase II binds to TFs to form a transcription initiation 
complex. Transcription is a very complex process which is 
operated by synchronized multi-protein complexes including 
TFs. According to the functional characteristics of the TFs, 
they can be divided into two types; the first type is general TFs 
such as TFII family proteins which are ubiquitous and bring the 
RNA polymerase through binding to the promoter region near 
the transcription start site to turn on genes (Kadonaga, 2004). 
The second type is sequence-specific TFs that bind upstream of 
the transcription start site to promote or inhibit the expression 
of a particular gene. The sequence-specific TFs contain one or 
more DNA-binding domains and recognize specific DNA motifs 
near the gene to initiate their functions. TFs are involved in 
different biological processes such as cell proliferation, growth, 
differentiation, and apoptosis. Dysfunction of TFs can lead to 
imbalance in homeostasis, leading to a variety of diseases. Due to 

the complexity of transcriptional regulation, there are not many 
systematic studies on transcriptional regulation of GBM. This 
study mainly focuses on changes of transcriptome profiling in 
GBM, with the intention to discover key regulatory molecules 
which can be developed as new markers.

In this study, we have identified, established, and evaluated 
a scoring system with a combination of four TFs (LHX2, 
MEOX2, SNAI2, and ZNF22) to assess the prognosis of GBM. 
To achieve this, we have integrated the analysis of GBM patients’ 
expression profiles or sequencing data from Oncomine, Gene 
Expression Omnibus (GEO), TCGA, and Chinese Glioma 
Genome Atlas (CGGA) databases. We also provide an evidence 
that the expression levels of SNAI and MEOX2 are significantly 
associated with histopathological grade and survival time in 
glioma patients, indicating that these two transcriptional factors 
play a crucial role in the malignancy of glioma.

MATeRiAlS AND MeThODS

identification of the Differentially 
expressed TFs
Gene expression profile data of the SUN brain, Murat brain, 
GBM, and normal brain tissue in TCGA were obtained from 
the Oncomine (https://www.oncomine.org/resource/) database. 
The statistically significant differentially expressed TFs (DETFs) 
were identified with a fold change larger than 2. The candidate 
cell-specific TF markers per tissue were derived from the 
molecular signature database [http://software.broadinstitute.org/
gsea/msigdb/gene_families.jsp, Molecular Signatures Database 
(MSigDB) V6.0]. The overlapped upregulated or downregulated 
TFs of four groups were defined as the most widely and 
significantly DETFs.

Datasets
The genome-wide mRNA array expression profile of GBM 
patients and their corresponding clinical information, 
including histology, gender, age, survival information 
and IDH1 gene mutation status, 1p/19q codelet, GeneExp 
subtype, and others, were downloaded from TCGA (https://
xenabrowser.net) (Goldman et al., 2019). These clinical 
features and mRNA expression profile of TCGA GBM array 
are utilized as the training dataset which includes 524 patient 
samples. As for the validation dataset, there are 60 samples 
from GSE74187, 215 samples from the CGGA GBM RNA-Seq 
dataset, and 157 samples from the TCGA GBM-seq dataset, 
which are an independent human glioma gene expression 
profile. The CGGA GBM RNA-Seq dataset is downloaded 
from the CGGA (http://cgga.org.cn/index.jsp). The GBM 
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mRNA-seq dataset was also gained from TCGA (https://
xenabrowser.net) (Goldman et al., 2019).

Risk Model establishment Analysis of the 
Detfs and Prognosis Survival of GBM
We employed the nonnegative matrix factorization (NMF) 
method to find the key genes and signal pathways by clustering 
the DETFs, which were identified in a previous step. The gene 
function and pathway annotation were performed using the 
clusterProfiler package in R (Yu et al., 2012). Univariate Cox 
hazard analysis was used to identify individual single genes 
that affect the survival of TCGA GBM patients. And then 
multivariate Cox regression analysis was used to establish a 
linear joint risk score of gene expression level (expr) using 
regression coefficient β. The risk score for each sample was 
calculated as follows: risk score = exprgene1 × βgene1 + exprgene2 
× βgene2 + ··· + exprgenen × βgenen. The area under the receiver 
operating characteristic (ROC) curve (AUC) of the time-
dependent risk score was calculated using the survivalROC 
package of R. The samples were then divided into high- and 
low-risk groups based on the median or the best cutoff of risk 
scores, for survival analysis. Next, we randomly selected half 
of the samples from TCGA GBM array training set to validate 
the efficacy of our model. After that, we conduct the external 
validation with the GSE74187 dataset, the CGGA dataset, 
and TCGA GBM RNA-Seq dataset. The correlation analysis 
between high- and low-risk groups towards clinical features 
was performed in the training set. The multivariate Cox model 
was constructed using the survival package for the risk score 
and clinical features with a P value < 0.05 as cutoff, and the 
Nomogram chart was drawn using the regplot package. The 
risk model was assessed by the calibration curve and AUC.

Gene Set enrichment Analysis
The GSEA was performed via the clusterProfiler package of R. 
The GBM samples in TCGA were divided into downregulated 
and upregulated groups based on the median of the risk score 
of the TFs. The absolute value of normalized enrichment score 
(NES) > 1, P value < 0.05, and false discovery rate (FDR) q 
value < 0.25 were defined as the statistically significant criteria. 
The co-expressed genes of the prognostic-related TFs identified 
in TCGA dataset were identified (|Spearman’s r|  ≥ 0.4). The 
genes were then subjected to the clusterProfiler package for GO 
(biological process) and KEGG enrichment analysis, with P < 
0.05 as the cutoff.

Statistical Analysis
All statistical analyses were performed using SPSS 22.0 or R 
software. Two groups’ statistical significance was calculated using 
the t-test or non-parametric t-test. The chi-square test was used 
to analyze the correlation of the classified data. In this study,  
P < 0.05 was defined as a statistically significant cutoff. For the 
Cox regression analysis, the time-dependent Cox model variable 
test was verified using the proportional hazard hypothesis 
(PH hypothesis).

ReSUlTS

identification of the DeTFs
A total of 68 significantly DETFs were identified from TCGA/SUN 
brain/Murat brain database, of which 43 were upregulated and 25 
were downregulated (Table 1 and Figures 1A, B). Furthermore, 
we have obtained the gene expression profile matrix of TCGA 
GBM patients and have found that GBM patients can be divided 
into three categories using the NMF clustering method (Figure 
1C). Representative genes of each group are shown in Table 1. 
Among them, the proneural patients in the Cluster A group 
were the most (56%) accounted for. Mesenchymal and classical 
patients were mostly in the Cluster C group, accounting for 44% 
and 48%, respectively. The proportions of three subtypes in the 

TABle 1 | Differentially expressed transcription factors (TFs).

GBM vs normal braint Representative genes

Up Down cluster A cluster B cluster c

ASCL1 ARNT2 ARNT2 CBX6 HIF1A
BAZ1A BCL11A ASCL1 CBX7 MEF2A
CBX3 CBX6 ETV1 CHD5 MEOX2
ETV1 CBX7 HEY1 FEZF2 PDLIM5
EZH2 CHD5 LHX2 HIVEP2 PRRX1
FOXM1 FEZF2 LIMA1 HLF RELA
HEY1 HIVEP2 RNF41 LDB2 RUNX1
HIF1A HLF SOX11 LDOC1 SHOX2
HMGB2 LDB2 SOX2 LMO3 SMAD1
HOXA10 LDOC1 TRIM24 MEF2C SNAI2
HOXA5 LHX2 ZNF207 MYT1L SNAPC1
HOXA7 LMO3 ZNF22 OPTN TBX2
HOXB2 MED14 BAZ1A PRDM2 TGFB1I1
HOXC10 MEF2A BCL11A RIMS3 TGIF1
HOXC6 MEF2C CBX3 RUNX1T1 ZNF217
ILF3 MYT1L EZH2 STON1
LIMA1 NFYB FOXM1 ULK2
MBD2 OPTN HMGB2 ZMYND11
MEOX2 PRDM2 ILF3
PDLIM5 PSIP1 MBD2
PRRX1 RIMS3 MED14
RARA RNF41 NFYB
RELA RUNX1T1 PSIP1
RUNX1 ULK2 RARA
SHOX2 ZMYND11 SOX4
SMAD1 TCF3
SNAI2 TFAP2A
SNAPC1 WHSC1
SOX11 HOXA10
SOX2 HOXA5
SOX4 HOXA7
STON1 HOXB2
TBX2 HOXC10
TCF3 HOXC6
TFAP2A
TGFB1I1
TGIF1
TRIM24
WHSC1
ZFAND6
ZNF207
ZNF217
ZNF22

GBM, glioblastoma.
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Cluster B group were very close, and the neural type accounted 
for a large proportion (38%) (Figures 1D, E, F). Correlation 
analysis between the 68 identified TFs has revealed that the 
genetic correlation among three clusters was quite good (Figure 
2A). Patients in the Cluster A group had the best prognosis, 

with a median OS of 493 days. Patients in the Cluster B group 
had a median OS of 457 days; while patients in the Cluster C 
group had the worst prognosis with a median OS of 419 days 
(Figure 2B).The gene function and pathway annotation analysis 
by the clusterProfiler package have revealed that the most 

FiGURe 1 | Identification of differentially expressed transcription factors (DETFs). (A) total of 43 significantly upregulated transcription factors were screened from 
the three databases of The Cancer Genome Atlas (TCGA)/SUN brain/Murat brain. (B) A total of 25 significantly downregulated transcription factors were screened 
from the three databases of TCGA/SUN brain/Murat brain. (c) Clusters A–C of glioblastoma (GBM) patients through 68 transcription factors using the nonnegative 
matrix factorization (NMF) clustering method. (D–F) Proportions of proneural, mesenchymal, classical, and neural in Clusters A–C.
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enriched pathways of the 68 TFs were chromatin remodeling, 
glial cell differentiation, regulation of transcription regulatory 
region DNA binding, and regulation of gliogenesis (Figure 
2C). The most enriched pathways of Cluster A were gliogenesis, 
chromatin remodeling, regulation of transcription regulatory 
region DNA binding, glial cell proliferation, and regulation of 
G0-to-G1 transition (Figure 2D). The most enriched pathways 
of Cluster B were cell fate commitment, negative regulation of 
1-kappa B kinase/nuclear factor (NF)-kappa B signaling, histone 
lysine methylation, and histone methylation (Figure 2E). The 
most enriched pathways of Cluster C were cell fate commitment, 
regulation of angiogenesis, stem cell proliferation, negative 
regulation of apoptotic pathway, and positive regulation of 
vasculature development (Figure 2F).

construction of Prognostic classifier 
From the Training Sets and Validation
The GBM expression profile of TCGA was used as a train dataset 
to screen the DETFs. Univariate Cox hazard analysis was used 
to identify individual single genes from 68 TFs that affect the 
survival of TCGA GBM patients, in which we obtained 12 
statistically significant genes: ASCL1, HOXB, HOXC1, LHX2, 
MEOX2, RARA, RUNX1, SNAI2, SOX4, TCF3, TGIF1, and 
ZNF22. The 12 TFs were entered into the multivariate regression 
analysis. The four TFs (LHX2, MEOX2, SNAI2, and ZNF22) 
were inputted to the final equation, and the results indicated that 
these four TFs can be used as independent predictors for the 
prognosis of GBM. The β-cofactors of LHX2, MEOX2, SNAI2, 
and ZNF22 were 0.318, 0.264, 0.332, and -0.349, respectively. 

FiGURe 2 | Survival analysis and gene function enrichment of Clusters A–C. (A) Gene expression correlation of Clusters A–C in The Cancer Genome Atlas (TCGA) 
glioblastoma (GBM) data. (B) Survival analysis of the three groups, Clusters A–C: the patients in Cluster A had the best prognosis, while those in Cluster C had the 
worst prognosis. (c) Gene Ontology (GO) (biological process) enrichment results of 68 transcription factors. (D–F) GO (biological process) enrichment results of 
Clusters A–C.
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The joint risk score of the four TFs was calculated by substituting 
the coefficient into the formula. The median value was 3.3361 
by ranking the risk score from low to high, which was used to 
divide the samples into low- and high-risk groups (Figure 3A). 
Through time-dependent ROC curve analysis, it was found that 
the predictive ability of the joint risk score of the four TFs for 
the patients’ survival prognosis gradually increased with the 
predicted termination time (Figure 3B), and the AUC of the risk 
score ROC curve at the predicted termination time of 3 years 
was 0.735 (Figure 3C). GBM patients were divided into high- 
and low-risk groups by the median value of the risk score, and 
the results showed that the OS time between the low- and high-
risk groups was very significant (P = 0.0052) (Figure 3D). While 
the results of twice internal validations and the ROC curve are 
satisfied (Figures S1A–D), to validate the risk model with the 
external dataset, the GSE74187 dataset, the CGGA dataset, and 
TCGA dataset, we used the β-cooperative coefficient to calculate 
the joint risk score of the four TFs in each dataset that will predict 
the prognosis of GBM patients. With these taken together, these 

results manifested that the OS of GBM patients in the high- 
and low-risk groups was significantly different (GSE74187 P = 
0.0024, the CGGA dataset P < 0.0001, and TCGA dataset P = 
0.0055). The ROC curve also corresponds with our expectation 
(Figures 3E and S1E–H).

Prognostic Value of the integrated 
classifier is independent of the 
clinical Feature
To assess whether the prognostic classifier was an independent 
indicator in GBM patients, we analyzed the effect of each 
clinicopathological feature towards survival by using the 
Cox regression model. The multivariate regression analysis, 
the risk score based on TFs, age, gender, chemotherapy, 
radiotherapy, and 1p/19q codelet were entered into the final 
equation of the Cox regression model (Table 2). We found that 
the risk score based on TFs was strong and an independent 
predictive factor in the GBM data of TCGA (Table 2). Next, 

FiGURe 3 | Construction and verification of the hazard assessment system. (A) The distribution of risk score, patient survival time and status in The Cancer 
Genome Atlas (TCGA) set, and heatmap of the gene risk assessment model in TCGA dataset. (B, c) The area under the curve (AUC) for the risk assessment model 
in TCGA set and time-dependent receiver operating characteristic (ROC) for predicting the 3-year survival. (D, e) Kaplan–Meier curves of the high-risk group and 
low-risk group of TCGA dataset and GSE74187 dataset.

Frontiers in Genetics | www.frontiersin.org October 2019 | Volume 10 | Article 90647

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


A Prognostic Model Based on Transcription FactorsCheng et al.

7

we constructed a nomogram that integrated TF classifiers and 
clinicopathological features to predict the 1-year and 3-year 
survival of GBM patients (Figure 4A). The calibration curve 
showed that the predicted 1-year and 3-year survival rates were 
closely related to the actual observed ratio (Figure 4B). GBM 
patients were divided into high- and low-risk groups by the 
median value of the new classifier based on the TF risk score 
and the clinical features. The outcome of this analysis shows that 
the OS of GBM patients in the high- and low-risk groups was 
significantly different (P < 0.0001) (Figure 4C). By calculating 
the AUC of the new classifier, we found that the AUC value 
was 0.819 at the predicted 3-year end time and 0.734 at 1-year 
end time (Figure 4D), which was higher than that using the TF 
classifier alone. By calculating ROC values of different times, 
the ROC value of the new classifier was significantly higher 
than that using the TF classifier only (Figure 4E). These results 
demonstrated the robust and predictive power of the new 
classifier based on the TF risk score and the clinical features 
performed better.

Functional Analysis for the Prognostic 
classifier of Genes
To identify the potential functional mechanisms that led to 
different prognosis in high- and low-risk groups, we applied 
functional enrichment analysis (GSEA) on identified TFs. The 
top 30 pathways were shown in Figure 5A where |NES| > 1, P 
value < 0.05, and FDR q value < 0.25 were used as the cutoff 
for identifying differentially enriched signal pathways. Pathways 
in cancer such as the phosphoinositide 3-kinases (PI3K)–Akt 
signaling pathway, hippo signaling pathway, proteoglycans 
in cancer, and other signaling pathways (Figures 5B–E) were 
significantly enriched in high-risk groups, which may partly 
explain the reason for poor prognosis in high-risk group 
patients. The co-expressed genes of LHX2 were mainly involved 
in pathways such as glial cell differentiation and cell adhesion. 
The co-expressed genes of MEOX2 were mainly related to the 
glial cell differentiation, extracellular matrix composition, 
cell adhesion, PI3K–Akt pathway, and other functional and 

pathways. The co-expressed genes of SNAI2 were mainly 
involved in extracellular matrix, cell invasion, cell adhesion, 
PI3K–Akt pathway, and NF-kappa B pathway. The co-expressed 
genes of SNAI2 were mainly involved in mRNA processing, 
histone modification, chromosome segregation, cell cycle, and 
Notch signaling pathway.

DiScUSSiON

Glioma is the most common type of tumor in the brain, and its 
OS is still not satisfactory. In particular, the GBM patients with 
high-grade malignancy still have a high mortality rate (Ostrom 
et al., 2017). New studies are focusing on better classification, 
prognosis prediction, molecular mechanism, and targeted drug 
therapy for GBM (Touat et al., 2017). TFs play an important role 
in turning genes “on” and “off,” yet there are few systematic studies 
focusing on their roles in gliomas. By analyzing the DETFs in 
GBM using TCGA, SUN brain, and Murat brain datasets, we 
identified 68 TFs that were differentially expressed in GBM 
patients compared to the normal brain tissues. Using TCGA 
dataset as a training dataset, we found that GBM patients can be 
divided into three distinct subpopulations based on 68 TFs. It is 
well known that there is a significant heterogeneity within the 
malignant tumor, which leads to a large difference in its prognosis 
and response to various treatments. From the perspective of TFs’ 
expression profile, we elucidated the intrinsic differences in GBM 
patients, which indicated the underlining mechanisms of tumor 
development in different subtypes of GBM that are regulated 
by different signaling pathways. Our analysis showed that 
gliogenesis, chromatin remodeling, regulation of transcription 
regulatory region DNA binding, glial cell proliferation, and 
regulation of G0-to-G1 transition may play a major role in 
cancer progression in Cluster A. Cell fate commitment, negative 
regulation of 1-kappa B kinase/NF-kappa B signaling, histone 
lysine methylation, histone methylation, and so on were mainly 
involved in Cluster B. In the subtype of Cluster C, cell fate 
commitment, regulation of angiogenesis, stem cell proliferation, 
negative regulation of the apoptotic pathway, positive regulation 

TABle 2 | Univariate and multivariate Cox regression analysis of factors affecting overall survival of patients in The Cancer Genome Atlas (TCGA) glioblastoma (GBM) 
cohort.

Univariate analysis Multivariate analysis

P hR 95%ci P hR 95%ci

Risk score <0.001 1.37 1.20–1.57 0.005 1.23 1.06–1.43
Age group (> 45) <0.001 2.291 1.632–3.216 <0.001 2.01 1.39–2.91
Gender (Female) 0.094 0.810 0.634–1.036 0.001 0.64 0.50–0.84
Subtype
Proneural 0.118 0.769 0.552–1.069
Mesenchymal 0.267 1.193 0.874–1.629
Neural 0.588 1.101 0.778–1.558
Chemotherapy (Yes) <0.001 0.378 0.283–0.505 <0.001 0.48 0.33–0.69
Radiotherapy (Yes) <0.001 0.131 0.094–0.183 <0.001 0.19 0.130–0.28
IDH status (WT) <0.001 0.321 0.196–0.524
1p/19q codelet 
(non-codel)

0.046 4.24 1.026–17.52 0.005 8.54 1.89–38.5

HR, hazard ratio; IDH, isocitrate dehydrogenase; WT, wild type.
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of vasculature development, and so on played a more critical role. 
These different mechanisms of tumor progression of GBM can 
also explain the complex heterogeneity and differences in the 
prognosis. According to the subtypes of Verhaak et al. (2010), 
Cluster A contained more proneural subtypes, and its prognosis 
was better. The proportions of subtypes in Cluster B were roughly 

the same, while Cluster C had the most mesenchymal and 
classical subtypes, which may cause poor prognosis.

In order to find out which of these factors plays a key role in 
the prognosis of GBM, we used the Cox hazard ratio model to 
analyze and finally determined four independent factors (LHX2, 
MEOX2, SNAI2, and ZNF22) as predictors of GBM prognosis. 

FiGURe 4 | Prognostic value of the integrated classifier is independent of clinical feature. (A) Prognostic nomogram for glioblastoma (GBM) patients with six chief 
characteristics. (B) The calibration curve of overall survival (OS) at 1/3 year. Nomogram-predicted probability of the OS is plotted on the x-axis, and the observed 
OS is plotted on the y-axis. (c) Comparison of OS between high-risk-score group and low-risk-score group. *P < 0.05, **P < 0.01, ***P < 0.001. (D, e) The time-
dependent receiver operating characteristic (ROC) for predicting the 1/3-year survival and area under the curve (AUC) for the risk assessment model in The Cancer 
Genome Atlas (TCGA) set.
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Time-dependent ROC analysis and survival analysis found that 
the joint risk score based on the four TFs can accurately predict 
the survival prognosis. LHX2 is the major “cortical selection 
gene” in the cerebral cortex and plays multiple roles in different 
organs including the development of CNS (Chou and Tole, 2018). 
The relationship between LHX2 and tumor development has 
not yet been identified. It has been recently found that miR-124 
can inhibit the migration and invasiveness of lung cancer cells 
by inhibiting LHX2 expression (Yang et al., 2017). Zakrzewski 
et al. (2015) discovered that LHX2 expressed differentially in 
different regions that were associated with disease progression 
in the underlying fibroma astrocytoma by bioinformatics, and 
studies have shown that this factor may play an important 
regulatory role in the development of tumors. The mesenchymal 
homeobox (MEOX) family includes two homeodomain 

protein+s, MEOX1 and MEOX2, with 95% sequence identity 
in the homologous domain, which are required for proper bone 
and muscle development in mouse embryos. MEOX2 is also 
known as a growth arrest 65-specific homeobox protein (Gax) 
(Northcott et al., 2017). Abnormal gene expression of MEOX2 
has been found in a variety of diseases, including hepatic portal 
hypertension, Alzheimer disease, and cancer (Wu et al., 2005; 
Zeng et al., 2006). Additionally, in these diseases, MEOX2 has 
also been found to be associated with vascular dysfunction. 
MEOX2 inhibits cell proliferation and epithelial–mesenchymal 
transition (EMT) of vascular smooth muscle and endothelial 
cells (Valcourt et al., 2007). Tachon et al. (2019) demonstrated 
that MEOX2 expression was associated with IDH1/2 wild-type 
molecular subtype and was significantly correlated with the OS 
of all gliomas, especially in lower-grade gliomas. The Snail family 

FiGURe 5 | Functional analysis for the prognostic classifier of genes. (A) Gene Set Enrichment Analysis (GSEA) based on risk score of transcription factors is 
performed to identify associated pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets. (B–e) Gene Ontology (GO) (biological process) terms 
and KEGG pathway related to co-expressed genes of LHX2, MEOX2, SNAI2, and ZNF22 in The Cancer Genome Atlas (TCGA) dataset.
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of zinc finger transcriptional repressors includes three members: 
snai1/snail, snai2/slug, and snai3/smuc, which play key roles 
in EMT (Nieto, 2002; Strobl-Mazzulla and Bronner, 2012; Liu 
et al., 2014; Liu et al., 2017). It has been found that mRNA 
expression of SNAI2 was associated with histological grade and 
invasive phenotype in primary human glioma specimens and 
can be induced by epidermal growth factor receptor (EGFR) 
activation in human GBM cells. The overexpression of SNAI2/
Slug increased the proliferation and invasion of GBM cells in 
vitro and promoted angiogenesis and tumor growth in vivo. 
Importantly, knockdown of endogenous SNAI2/Slug in GBM 
cells reduced invasion and increased survival in the mouse 
intracranial human GBM xenograft model (Yang et al., 2010). 
Liao et al. (2015) found that miR-203 can target SNAI2 to inhibit 
EMT and promote drug sensitivity and implied that targeting 
SNAI2 may be a potential therapeutic approach to overcome 
chemoresistance in GBM. In this study, we found that SNAI2 
was overexpressed, and SNAI2 overexpression is characteristic 
for interstitial transformation, of Cluster C, proving the 
precision of cluster classification. ZNF22 is thought to be 
involved in the development of teeth (Gao et al., 2003), and its 
role in tumors has not been studied thoroughly. In this study, 
GO and KEGG analysis of DETFs revealed that these genes were 
mainly enriched in signal pathways such as cell migration, cell 
adhesion, EMT, and cell cycle, which are consistent with the 
studies mentioned above.

By dividing the GBM patients into high- and low-risk 
groups based on the four-factor joint risk score, we found that 
the signal pathways involved in different groups were quite 
different. Pathways in cancer, PI3K–Akt signaling pathway, 
hippo signaling pathway, and proteoglycans in cancer signaling 
pathways were mainly enriched in high-risk patients. These 
enriched malignant pathways can lead to significantly greater 
tumor proliferation and invasion in the high-risk group than 
in the low-risk group. PI3K is responsible for the conversion of 
PIP2 to PIP3, which activates the downstream target PKB/Akt 
(Chang et al., 2017; Fu et al., 2017). The PI3K pathway is usually 
activated by EGFR and other growth factor receptors (Zoncu 
et al., 2011). It was shown that the PI3K pathway was activated 
in almost all GBM, although only less than 15% of GBM 
showed activating mutations in the PI3K gene. The activation 
of the PI3K/Akt/mTOR pathway led to the development of 
GBM resistance, thereby inhibiting the therapeutic effect 
of chemotherapy (Li et al., 2016). The prognosis of GBM 
patients with activation of the PI3K–Akt pathway was terribly 
poor (Chakravarti et al., 2004). The hedgehog (Hh) signaling 
pathway, also known as hedgehog-patched (Hh-Ptch), 
hedgehog-Gli (Hh-Gli), or hedgehog-patched-smoothened 
(Hh-Ptch-Smo), is an evolutionarily conservative signaling 
pathway from the cell membrane to the nucleus (Skoda et al., 
2018). Dysfunction or abnormal activation of the Hh signaling 
pathway is associated with developmental malformations 
and cancer, such as basal cell nevus syndrome (BCNS), 
sporadic basal cell carcinoma (BCC), medulloblastoma (MB), 
rhabdomyosarcoma, meningioma, and glioma (Taipale and 
Beachy, 2001; Xu et al., 2012; Skoda et al., 2018). Xu et al. (2010) 
found that CD44 promoted the resistance of glioma cells to 

reactive oxygen species-induced and cytotoxic agent-induced 
stress by attenuating the activation of the hippo signaling 
pathway. Lu et al. (2017) found that IKBKE regulated cell 
proliferation, invasion, and EMT of malignant glioma cells in 
vitro and in vivo by affecting the hippo pathway. Proteoglycans, 
including heparan sulfate and chondroitin sulfate proteoglycans 
(HSPG and CSPG, respectively), regulate the activity of many 
signaling pathways as well as cellular–microenvironment 
interactions (Nagarajan et al., 2018). Proteoglycans are the 
main component of the extracellular environment of the brain 
and regulate cell signaling and cell migration. The abnormality 
of proteoglycans and their modification enzymes in GBM leads 
to the changes of EGFR or PDGFRα signaling pathways (Wade 
et al., 2013). Proteoglycans are very critical for the mechanistic 
understanding of proteoglycan function in carcinogenic 
signaling and tumor microenvironment interactions in 
GBM and can be used to identify the new tumor biomarkers 
and druggable targets. These genes involved functions and 
pathways that are coincident with the results we found.

We analyzed the effect of each clinicopathological feature 
and TF risk model affecting survival by using the Cox regression 
model. In the multivariate regression analysis, the risk score 
based on TFs, age, gender, chemotherapy, radiotherapy, and 
1p/19q codelet was entered into the final equation of the Cox 
regression model. The calibration curve of this model and AUC 
values indicate that the model has satisfactory accuracy. Next, 
we constructed a nomogram that integrated TF classifiers and 
clinicopathological features to predict the 1-year and 3-year 
survival of GBM patients. This nomogram can be used to guide 
doctors in judging the prognosis of GBM patients and to help 
them better communicate with patients.

In summary, the significantly DETFs in GBM that promote 
malignant progression of the tumors are mainly involved in 
the PI3K-Akt signaling pathway, hippo signaling pathway, 
proteoglycans in cancer, and other related signaling pathways. 
We believe that these pathways lead to poor prognosis and 
resistance to treatment in GBM. We have established a four-
factor predictive joint risk score model that can be used to 
predict the prognosis of patients with GBM effectively. Based 
on this, two TFs closely related to the malignant progression of 
glioma are identified, which will provide a foundation to develop 
new biomarkers and targeted therapies in GBM.
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The application of data science in cancer research has been boosted by major advances

in three primary areas: (1) Data: diversity, amount, and availability of biomedical data; (2)

Advances in Artificial Intelligence (AI) and Machine Learning (ML) algorithms that enable

learning from complex, large-scale data; and (3) Advances in computer architectures

allowing unprecedented acceleration of simulation and machine learning algorithms.

These advances help build in silico ML models that can provide transformative insights

from data including: molecular dynamics simulations, next-generation sequencing,

omics, imaging, and unstructured clinical text documents. Unique challenges persist,

however, in building ML models related to cancer, including: (1) access, sharing, labeling,

and integration of multimodal and multi-institutional data across different cancer types;

(2) developing AI models for cancer research capable of scaling on next generation

high performance computers; and (3) assessing robustness and reliability in the AI

models. In this paper, we review the National Cancer Institute (NCI) -Department of

Energy (DOE) collaboration, Joint Design of Advanced Computing Solutions for Cancer

(JDACS4C), a multi-institution collaborative effort focused on advancing computing and

data technologies to accelerate cancer research on three levels: molecular, cellular,
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and population. This collaboration integrates various types of generated data,

pre-exascale compute resources, and advances in MLmodels to increase understanding

of basic cancer biology, identify promising new treatment options, predict outcomes, and

eventually prescribe specialized treatments for patients with cancer.

Keywords: cancer research, high performance computing, artificial intelligence, deep learning, natural language

processing, multi-scale modeling, precision medicine, uncertainty quantification

INTRODUCTION

Predictive computational models for patients with cancer can
in the future support prevention and treatment decisions
by informing choices to achieve the best possible clinical
outcome. Toward this vision, in 2015, the national Precision
Medicine Initiative (PMI) (1) was announced, motivating
efforts to target and advance precision oncology, including
looking ahead to the scientific, data and computational
capabilities needed to advance this vision. At the same time,
the horizon of computing was changing in the life sciences,
as the capabilities and transformations enabled by exascale
computing were coming into focus, driven by the accelerated
growth in data volumes and anticipated new sources of
information catalyzed by new technologies and initiatives such
as PMI.

The National Strategic Computing Initiative (NSCI) in 2015
named the Department of Energy (DOE) as a lead agency for
“advanced simulation through a capable exascale computing
program” and the National Institutes of Health (NIH) as one
of the deployment agencies to participate “in the co-design
process to integrate the special requirements of their respective
missions.” This interagency coordination structure opened the
avenue for a tight collaboration between the NCI and the DOE.
With shared aims to advance cancer research while shaping the
future for exascale computing, the NCI and DOE established
the JDACS4C in June of 2016 through a 5-year memorandum
of understanding with three co-designed pilot efforts to address
both national priorities. The high-level goals of these three
pilots were to push the frontiers of computing technologies
in specific areas of cancer research: (1) Cellular-level: advance
the capabilities of patient-derived pre-clinical models to identify
new treatments; (2) Molecular-level: further understand the
basic biology of undruggable targets; and (3) Population-
level: gain critical insights on the drivers of population cancer
outcomes. The pilots would also develop new Uncertainty
Quantification (UQ) methods to evaluate confidence in the AI
model predictions.

Using co-design principles, each of the pilots in the JDACS4C
collaboration is based on—and driven by—team science,
which is the hallmark of the collaboration’s success. Enabled
by deep learning, Pilot One (cellular-level) combines data
in innovative ways to develop computationally predictive
models for tumor response to novel therapeutic agents.
Pilot Two (molecular-level) combines experimental data,
simulation, and AI to provide new windows to understand
and explore the biology of RAS-related cancers. Pilot
Three (population-level) uses AI and clinical information

at unprecedented scales to enable precision cancer surveillance
to transform cancer care.

AI AND LARGE-SCALE COMPUTING TO

PREDICT TUMOR TREATMENT

RESPONSE

After years of efforts within the research and pharmaceutical
sectors, many patients with cancer still do not respond
to standard-of-care treatments, and emergence of therapy
resistance is common. Efforts in precision medicine may
someday change this by using a targeted therapeutics approach,
individually tailored to each patient based on predictive models
that use molecular and drug signatures. The Predictive Modeling
for Pre-Clinical Screening Pilot (Pilot One) aims to develop
predictive capabilities of drug response in pre-clinical models of
cancer to improve and expedite the selection and development of
new targeted therapies for patients with cancer. Highlights of the
work done in Pilot One is shown in Figure 1.

As omics data continues to accumulate, computational
models integrating multimodal data sources become possible.
Multimodal deep learning (2) aims to enhance learned features
for one task by learning features over multiple modalities.
Early Pilot One work (3) measured performance of multi-
modal deep neural network drug pair response models with 5-
fold cross validation. Using the NCI-ALMANAC (4) data, best
model performance was demonstrated when gene expression,
microRNA, proteome, and Dragon7 drug descriptors (5) were
combined obtaining an R-squared value of 0.944, which indicates
that over 94% of the variation in tumor response is explained
by the variation among the contributing gene expression, micro
RNA expression, proteomics and drug property data.

Mechanistically informed feature selection is an alternative
approach that has the potential to increase predictive model
performance. The LINCS landmark genes (6) for example
has been used to train deep learning models to predict gene
expression of non-landmark genes (7) and to classify drug-target

interactions (8). Ongoing work in Pilot One is exploring the

impact on prediction using gene sets like that of the LINCS
landmark genes and other mechanistically defined gene sets.

The potential of employing mechanistically informed feature
selection extends beyond improving prediction accuracy, to

building models on the basis of existing biological knowledge.
Transfer learning is another area of important research

activity. The goal of transfer learning is to improve learning in
the target learning task by leveraging knowledge from an existing
source task (9). Given challenges in obtaining sufficient data
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FIGURE 1 | Pilot 1 research aims, general workflow, and supporting data.

for target Patient Derived Xenografts (PDXs), where tumors are
grown in mouse host animals, ongoing transfer learning work
holds promise for learning on cell lines as a source for the target
PDX model predictions. Pilot One is first working on generating
models that generalize across cell line studies, a precursor to
transfer learning from cell lines to PDXs.

Using data from the NCI-ALMANAC (4), NCI-60 (10), GDSC
(11), CTRP (12), gCSI (13), and CCLE (14), models can be
constructed that generalize across cell-line studies. Using multi-
task networks which combines additional learning of three
different classification tasks—tumor/normal, cancer type, and
cancer site—with learning of the drug response task, it could
be possible to capture more of the total variance and improve
precision and recall when training on CTRP and predicting on
CCLE for example. Demonstrating cross-study model capability
will provide additional confidence that general models can
be developed for prediction tasks on cell lines and PDXs
and organoids.

Answering questions of howmuch data and what methods are
suitable is a critical part of Pilot One. Although it is generally
held that deep learning methods outperform traditional machine
learning methods when large data sets are used, this has not
yet been explored in the context of drug response prediction
problem. Early efforts underway in Pilot One are exploring the

relationship among sample size, deep learning methods, and
traditional machine learning methods to better characterize the
dependencies on predictive performance. This information of
sample size together with model accuracy metrics will be of
critical importance to future experimental designs for those who
wish to pursue deep learning approaches to the drug response
prediction problem.

Such extensive deep learning and machine learning
investigations require significant computational resources,
such as those available at DOE Leadership Computing
Facilities (LCF) employed by Pilot 1. A recent experiment
searched 23,200 deep neural network models using COXEN
(15) selected features and Bayesian optimization ideas (16)
to find the best model hyperparameters (hyperparameters
generally define the choice of functions and relationship among
functions in a given deep learning model). This produced
the best cross-study validation results to-date, underscoring
the critical need for feature selection and hyperparameter
optimization when building predictive models. Further,
uncertainty quantification (explained in more depth later) adds
a new level of computing demand. Uncertainty quantification
experiments involving over 30 billion predictions from 450 of
the best models generated on the DOE Summit LCF system are
ongoing to understand the relationship to between best model
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uncertainty and the model that performs best in cross-study
validation experiments.

Reflecting on insights from Pilot 1 activities and current gaps
in available literature, future work will focus on exploring new
predictive models to better utilize, ground, and enrich biological
knowledge. Efforts to improve drug representations for response
prediction are expected to benefit from research involving
training semi-supervised networks on millions of compounds. In
efforts to improve understanding of trained models, mechanistic
information is being incorporated into more interpretable deep
learning models. Active learning in response prediction—which
balances uncertainty, accuracy, and lead discovery—will be
used to guide the acquisition of experimental data for animal
models in a cost-effective and timely manner. And finally, a
necessary step toward precision models is gaining a fine-grained
understanding of prediction error, an insight enabled by the
demonstrated capability in large-scale model sweeps.

AI AT THE FOREFRONT OF RAS RELATED

CANCERS

Oncogenic mutations in RAS genes are associated with more
than 30% of cancers and are particularly prevalent in those
of the lung, colon and pancreas. Though RAS mutations have
been studied for decades, there are currently no RAS inhibitors
and a detailed molecular mechanism for how RAS engages
and activates proximal signaling proteins (RAF) remains elusive
(17). RAS signaling takes place at and is dependent on cellular
membranes, a complex cellular environment that is difficult to
recapitulate using current experimental technologies.

Pilot Two, Improving Outcomes for RAS-related Cancer, is
focused on delivering a validated multiscale model of RAS
biology on a cell membrane by combining the experimental
capabilities at the Frederick National Laboratory for Cancer
Research with the computational resources of the National
Nuclear Security Administration (NNSA), a semi-autonomous
agency of the DOE. The principal challenge in modeling this
system is the diverse length and time scales involved. Lipid
membranes evolve over a macroscopic scale (micrometers and
milliseconds). Capturing this evolution is critical, as changes
in lipid concentration define the local environment in which
RAS operates. The RAS protein itself, however, binds over
time and length scales which are microscopic (nanometers and
microseconds). In order to elucidate the behavior of RAS proteins
in the context of a realistic membrane, our modeling effort must
span the multiple orders of magnitude between microscopic
and macroscopic behavior. The Pilot Two team has built such
a framework, developing a macroscopic model that captures
the evolution of the lipid environment and which is consistent
with an optimized microscopic model that captures protein-
protein and protein-lipid interactions at the molecular scale.
Macroscopic model components (lipid environment, lipid-lipid
interactions, protein behavior and protein-lipid interactions)
were characterized through close collaboration between the
experimentalists at Frederick National Laboratory and the
computational scientists from the DOE/NNSA. The microscopic

FIGURE 2 | CGMD simulation captures the molecular details of RAS in

complex lipid membranes.

model is based on standard Martini force fields for Coarse-
Grained Molecular Dynamics (CGMD), modified to correctly
capture certain details of lipid phase behavior (18–21). A
snapshot from a typical micro-scale simulation run, showing two
RAS proteins on a 30 nm × 30 nm patch of lipid membrane
(containing∼150,000 particles) is shown in Figure 2.

In order to bring the two scales together, the team
devised a novel workflow whereby microscopic subsections
of a running macroscopic model are scored for uniqueness
using a machine learning algorithm operating in a reduced
order space that has been trained on previous simulations.
The most unique subsections in the macroscopic simulation
are identified and re-created as CGMD simulations, which
explore the microscopic behavior. Information from the (many
thousands of) microscopic simulations is then fed back into the
macroscopic model, so that it is continually improving even as
the simulations are running (22).

This modeling infrastructure was designed to exploit
the Sierra supercomputer at Lawrence Livermore National
Laboratory. The scale and heterogeneous architecture of Sierra
make it ideal for such a workflow that combines AI technology
with predictive simulation. Running on the entire machine,
the team was able to simulate at the macroscopic level a 1 by
1µm, 14-lipid membrane with 300 RAS proteins, generating
over 100,000 microscopic simulations capturing over 200ms of
protein behavior. This unprecedented achievement represents an
almost two orders of magnitude improvement on the previously
state of the art. That being said, the space of all possible lipid
mixtures is huge, requiring tens of thousands of samples for any
meaningful coverage. This type of MUltiple Metrics Modeling
Infrastructure (MuMMI) simulations will always be limited by
the available High Performance Computing (HPC) resources.
With an exascale machine we can substantially increase the
dimensionality of the input space and its coverage, significantly
improving the applicability of future campaigns.

In the coming years, the team will exploit this capability
to explore RAS behavior on lipid membranes and extend the
model in three important directions. First, both the macro and
micro models will be modified to incorporate the RAF kinase,
which binds to RAS as the first step in the MAPK pathway
that leads to growth signaling. Second, we will extend the
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infrastructure to include fully atomistic resolution, creating a
three-level (macro/micro/atomistic) multiscale model. Third, we
will incorporate membrane curvature into the dynamics of the
membrane, which is currently constrained to remain flat. The
improved infrastructure will allow the largest and most accurate
computational exploration of RAS biology to date.

ADVANCING CANCER SURVEILLANCE

USING AI AND HIGH-PERFORMANCE

COMPUTING

The Surveillance, Epidemiology, and End Results (SEER)
program funded by the NCI was established in 1973 for the
advancement of public health and for reducing the cancer burden
in the United States. SEER currently collects and publishes
cancer incidence and survival data from population-based cancer
registries covering ∼34.6% of the U.S. population. The curated,
population-level SEER data provide a rich information source for
data-driven discovery to understand drivers of cancer outcomes
in the real world.

An outstanding challenge of the SEER program is how
to achieve near real-time cancer surveillance. Information
abstraction is a critical step to facilitate data-driven explorations.
However, the process is fully manual to ensure high quality
data. As the SEER program increases the breadth of information
captured, the manual process is no longer scalable. By partnering
computational and data scientists from DOE with NCI SEER
domain experts, Pilot Three, Population Information Integration,
Analysis, andModeling for Precision Surveillance, aims to leverage
high-performance computing and artificial intelligence to meet
the emerging needs of cancer surveillance. Moreover, Pilot
Three envisions a fully integrated data-driven modeling and
simulation framework to enable meaningful translation of big
SEER data. By collecting and linking additional patient data,
we can generate profiles for patients with cancer that include
information about healthcare delivery system parameters and
continuity of care. Such rich data will facilitate data-driven
modeling and simulation of patient-specific health trajectories to
support precision oncology research at the population level.

To date, Pilot Three has mainly focused on the development,
scaling, and deployment of cutting-edge AI tools to semi-
automate information abstraction from unstructured pathology
text reports, the main source of information of cancer registries.
In partnership with the Louisiana Tumor Registry and the
Kentucky Cancer Registry, several AI-based Natural Language
Processing (NLP) tools have been developed and benchmarked
for abstraction of fundamental cancer data elements such
as cancer site, laterality, behavior, histology, and grade (23–
29). The NLP tools rely on the latest AI advances including
multi-task learning and attention mechanisms. Scalable training
and hyperparameter optimization of the tools is managed
by relying on pre-exascale computing infrastructure available
within the DOE laboratory complex (30). Following an iterative
optimization protocol, the most computationally efficient and
clinically effective tools are deployed for evaluation across
participating SEER registries. Based on preliminary testing the

NLP tools have been able to accurately classify all five data
elements for 42.5% of cancer cases. Further refinement of this
accuracy level is underway in subsequent versions as well as
incorporation of an uncertainty quantification component to
ease and increase user confidence.

Although the patient information currently collected across
SEER registries is mainly clinical (clin-omics), increasingly
other -omics type of information is expected to become part
of cancer surveillance. Specifically, radiomics (i.e., biomarkers
automatically extracted from histopathological and radiological
images via targeted image processing algorithms) as well as
genomics will provide important insight to understand the
effectiveness of cancer treatment choices.

Moving forward, Pilot Three will implement the latest
NLP tools into production application across participating
SEER registries using Application Program Interfaces (APIs) to
determine the most effective human-AI workflow integration for
broad and standardized technology integration across registries.
The APIs will be integrated in the registries’ workflows. In
addition, working collaboratively with domain experts, the team
will extend the information extraction across biomarkers and
capture disease progression such as metastasis and recurrence.
This pilot is engaging in several partnerships with academic
and commercial entities to bring in heterogeneous data sources
for more effective longitudinal trajectory modeling. Efforts to
understand causal inference beyond treatment (social, economic,
and environmental) impact in the real world are also part of
future plans.

LOOKING AHEAD: OPPORTUNITIES AND

CHALLENGES

In addition to large-scale computing as a critical and necessary
element to pursue the many opportunities for AI in cancer
research, other areas must also develop to realize the tremendous
potential. In this section, we list some of these opportunities.

First, HPC platforms provide high-speed interconnect
between compute nodes that is integral in handling the
communication for data or model parallel training. While
cloud platforms have recently made significant investments
in improving interconnect, this remains a challenge and
would encourage projects like Pilot Three to limit distributed
training to a single node. That said, on-demand nature of
cloud platforms can allow for more efficient resource utilization
of AI workflows, and the modern Linux environments and
familiar hardware configurations available on cloud platforms
offer superior support for AI workflow software which can
increase productivity.

Second, the level of available data currently limits the potential
for AI in cancer research. Developing data resources of sufficient
size, quality, and coherence will be essential for AI to develop
robust models within the domain of the available data resources.

Third, evaluation and validation of data-driven AI models,
and quantifying the uncertainty in individual predictions, will
continue to be an important aspect for the adoption of AI
in cancer research, posing a challenge to the community to
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concurrently develop criteria for evaluation and validation of
models while delivering the necessary data and large-scale
computational resources required.

In the next two subsections, we highlight two efforts within
the JDAC4C collaboration to address these challenges. The first
focuses on scaling the training of the deep neural network
application on HPC systems, and the second quantifies the
uncertainty in the trained models to build a measure of
confidence and limits on how to use them in production.

CANDLE: CANcer Distributed Learning

Environment
CANDLE (16), builds a single, scalable deep neural network
application and is being used to address the challenges in each
of the JDACS4C pilots.

The challenge problem for the CANDLE project is to
enable the most challenging deep learning problems in cancer
research to run on the most capable supercomputers in the
DOE and NIH. Implementations of CANDLE have been
tested on the DOE Titan, Cori, Theta and Summit systems,
and using container technologies on the NIH Biowulf system
(31). The CANDLE software builds on open source deep
learning frameworks including Keras, TesnsorFlow and PyTorch.
Through collaborations with DOE computing centers, HPC
vendors and Exascale Computing Project (ECP) co-design and
software technology projects, CANDLE is being prepared for the
coming DOE exascale platforms.

Features currently supported in CANDLE include feature
selection, hyperparameter optimization, model training,
inferencing and UQ. Future release plans call for supporting
experimental design, model acceleration, uncertainty guided
inference, network architecture search, synthetic data generation
and data modality conversion. These features have been used
to evaluate over 20,000 models in a single run on a DOE
HPC system.

The CANDLE project also features a set of deep learning
benchmarks that are aimed at solving a problem associated
with each of the pilots. These benchmarks embody different
deep learning approaches to problems in cancer biology, and
they are implemented in compliance with CANDLE standards
making them amenable to large-scale model search and
inferencing experiments.

Uncertainty Quantification
UQ is a critical component across all three JDACS4C pilots. It
is a field of analysis that estimates accuracy under multi-modal
uncertainties. UQ allows detecting unreliable model predictions
(32) and provides for improved design of experiments. UQ
quantifies the effects of statistical fluctuations, extrapolation,
overfitting, model misspecification and sampling biases, resulting
in confidence measures for individual model prediction.

Historically, results from computational modeling in the
biological sciences did not incorporate UQ, but measures
of certainty are essential for actionable predictive analytics
(33). The problems are exacerbated as we start addressing
problems with poorly understood causal models using large—but
noisy, multimodal and incomplete—data sets. Methodological

advances are allowing all three pilots to use HPC technology to
simultaneously estimate the uncertainty along with the results.

In addition to providing confidence intervals, the
development of new UQ technology allows assessment and
improvement of data quality (34); evaluation and design of
models appropriate to the data quality and quantity; and
prioritization of further observations or experiments that can
best improve model quality. These developments are currently
being tested in the JDACS4C pilots and are likely to impact the
wider application of large-data-driven modeling.

CONCLUSION

The JDACS4C collaboration continues to provide valuable
insights into the future for AI in cancer research and the essential
role that extreme-scale computing will have in shaping and
informing that future. Concepts have been transformed into
preliminary practice in a short period of time, as a result of
multi-disciplinary teamwork and access to advanced computing
resources. AI is being used to guide experimental design to make
more effective use of valuable laboratory resources, to develop
new capabilities for molecular simulation, and to streamline and
improve efficiencies in the acquisition of clinical data.

The JDACS4C collaboration established a foundation for team
science and is enabling innovation at the intersection of advanced
computing technologies and cancer research. The opportunities
for extreme-scale computing in AI and cancer research extend
well beyond these pilots.
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Our study’s goal was to screen novel biomarkers that could accurately predict the

progression and prognosis of bladder cancer (BC). Firstly, we used the Gene Expression

Omnibus (GEO) dataset GSE37815 to screen differentially expressed genes (DEGs).

Secondly, we used the DEGs to construct a co-expression network by weighted gene

co-expression network analysis (WGCNA) in GSE71576. We then screened the brown

module, which was significantly correlated with the histologic grade (r = 0.85, p =

1e-12) of BC. We conducted functional annotation on all genes of the brown module

and found that the genes of the brown module were mainly significantly enriched in

“cell cycle” correlation pathways. Next, we screened out two real hub genes (ANLN,

HMMR) by combining WGCNA, protein-protein interaction (PPI) network and survival

analysis. Finally, we combined the GEO datasets (GSE13507, GSE37815, GSE31684,

GSE71576). Oncomine, Human Protein Atlas (HPA), and The Cancer Genome Atlas

(TCGA) dataset to confirm the predict value of the real hub genes for BC progression and

prognosis. A gene-set enrichment analysis (GSEA) revealed that the real hub genes were

mainly enriched in “bladder cancer” and “cell cycle” pathways. A survival analysis showed

that they were of great significance in predicting the prognosis of BC. In summary,

our study screened and confirmed that two biomarkers could accurately predict the

progression and prognosis of BC, which is of great significance for both stratification

therapy and the mechanism study of BC.

Keywords: bladder cancer (BC), gene-set enrichment analysis (GSEA), protein-protein interaction (PPI), weighted

co-expression network analysis (WGCNA), The Cancer Genome Atlas (TCGA) dataset

INTRODUCTION

BC is one of the most common malignancies of the urinary tract (1), and is a complex disease
with high morbidity and mortality if not diagnosed timely and treated optimally (2). It is estimated
that there are 429,000 new cases and 165,000 deaths worldwide each year (3). The most common
symptom of BC is painless hematuria, which is seen in more than 80% of patients. At present, BC
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can be divided into two major categories according to tumor
stage: non-muscle invasive bladder cancer (NMIBC) andmuscle-
invasive bladder cancer (MIBC) (4, 5). NMIBC is characterized
by the co-activation of FGFR3 mutations, high recurrence rate
(50–70%), and the 5-year survival rate > 90% (6). However,
MIBC is characterized by frequent TP53 mutations, high
metastasis and a 5-year survival rate < 50% (7). 70–80% of BC
patients had non-muscle-invasive bladder cancer (NMIBC) (8),
and 20–30% of these patients will progress to MIBC (9). Once
BC progression is detected, the patient’s prognosis decreases
(10, 11); currently, there is a lack of effective biomarkers that
can accurately predict the progress and prognosis of BC, so such
biomarkers need to be discovered urgently.

With the rapid development of microarray and high-
throughput sequencing technology, bioinformatics plays an
important role in various fields (12–15). In the medical field,
the most commonly used means of bioinformatics is to
find biomarkers (16–18). However, at present, many studies
only consider the differences in gene expression between
different samples, and only look for biomarkers with differential
expression as the limiting condition, while ignoring the
underlying connection of each gene (19, 20).

Here, we constructed WGCNA co-expression network and
incorporated genes with similar expression patterns into the same
modules. After all the modules were related to the calculation
of clinical phenotype data, the modules most related to the
progression of BC were obtained. Finally, after a series of
screening tests, we found the real hub genes (ANLN, HMMR)
that could truly predict the progression and prognosis of BC. Our
study fully considered the internal relationship between genes,
rather than only considering differential expression genes. The
GSEA analysis and functional annotation showed that the real
hub genes played their role in BC through signaling pathways
such as “bladder cancer” and “cell cycle.” We combined a large
number of databases (GEO, TCGA, Oncomine, HPA, String,
GEPIA, GSCALite) to verify the ability of real hub genes to
predict the progression and prognosis of BC, ensuring the
stability and reliability of the results.

MATERIALS AND METHODS

Data Collection and Study Design
The microarray dataset GSE13507, GSE31684, GSE37815,
GSE71576 and the corresponding clinical information data of
these microarray datasets were downloaded from the Gene
Expression Omnibus (GEO) database of the NCBI database
(https://www.ncbi.nlm.nih.gov/). The datasets GSE37815 and
GSE13507 both performed on the Illumina human-6 v2.0
platform, the former was used to screen for different expression
genes (DEGs), the latter was used to verify the hub genes.
The dataset GSE71576, which performed on the Affymetrix
Human Gene 1.0 ST platform, was used to perform weighted
co-expression network analysis. The dataset GSE31684, which
performed on the Affymetrix Human Genome U133 Plus 2.0
platform, was also used to verify the hub genes. The level three
RNA-seq data (Illumina RNASeqV2) and corresponding clinical
information about BC were downloaded from The Cancer

GenomeAtlas (TCGA) database (http://cancergenome.nih.gov/).
The dataset, which included 408 BC samples and 19 normal
bladder samples, was used to verify the hub genes, perform
GSEA, correlation analysis and survival analysis. The inclusion
cohort was defined as a cohort containingmicroarray or RNA-seq
data and clinical phenotypes and follow-up data. By consulting
the literature, we took the cohorts without performed WGCNA
as training sets and internal validation sets, and the cohorts
that have undergone WGCNA research as external validation
sets. Dataset GSE37815 contained 18 BC and 6 normal bladder
samples, so we chose it for DEGs analysis. Furthermore, we
chose datasets GSE37815 and GSE71576 as training and internal
validation datasets, whereas the datasets GSE13507, GSE31684,
and TCGA were set as external validation datasets. The detailed
information of these datasets was listed in Table 1, and the flow
chart of our entire experiment is presented in Figure 1.

Data Preprocessing and DEGs Screening
All the raw expression data were subject to quality control,
background correction, normalization, logarithmic conversion
and remove batch effects processing, using the R packages “affy”
(21) or “limma” (22). After that, samples without clinical data
were filtered out, and the resulting data were subsequently
analyzed. The RNA-seq data of the TCGA dataset were
normalized using the “DESeq2” (23) R package. The “limma”
R package was used to screen the DEGs between eighteen BC
and six normal bladder samples in dataset GSE37815. The false
discovery rate (FDR) <0.05 and |log2FC| ≥1 were set as the
threshold for screening DEGs.

Establishment of Weighted Co-expression
Network
The DEGs were used to construct a weighted co-expression
network by the R package “WGCNA” (24). Firstly, we used
the function “goodSamplesGenes” in the “WGCNA” package
checked to see if the input genes (DEGs) and input samples were
good genes and good samples. Secondly, Pearson’s correlation
analysis of all pairs of genes was used to construct an adjacency
matrix. After that, the adjacency matrix was used to construct
a scale-free co-expression network based on a soft-thresholding
parameter β (β was a soft-thresholding parameter that could
enhance strong correlations between genes and penalize weak
correlations) (25). The adjacency matrix was then turned into
a topological overlap matrix (TOM). TOM could measure the
network connectivity of a gene, which was defined as the sum
of its adjacency with all other genes, and was used for network
generation (26). At the same time, in order to classify genes with
similar expression patterns into gene modules, average linkage
hierarchical clustering was conducted according to the TOM-
based dissimilarity measure with a minimum size (gene group)
of 50 for the genes dendrogram.

Identify Significant Relevant Module and
Module Functional Annotation
To investigate the biological function of the brown module,
which significantly related to the histologic grade of BC,
we uploaded the list of all genes in the brown module to
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TABLE 1 | Information of datasets used in this study.

Datasets GSE37815 GSE71576 GSE13507 GSE31684 TCGA

Training validation datasets External validation datasets

Platform Illumina

human-6 v2.0

Affymetrix

human gene

1.0 ST

Illumina

human-6 v2.0

Affymetrix

human genome

U133 plus 2.0

Illumina

RNASeqV2

SAMPLE NUMBER

Total 18 44 256 93 427

Bladder cancer 6 44 165 93 408

Normal bladder – 0 68 0 19

Recurrent bladder cancer – – 23 – –

pStage I – – – 10 2

pStageII – – – 17 130

pStage III – – – 42 140

pStage IV – – – 19 135

Unknown stage – – 0 5 1

Grade I – 14 105 – –

GradeII – 11 60 – –

Grade III – 17 0 – –

High grade – – – 87 385

Low grade – – – 6 22

Unknown grade – 2 – – 1

Ta – 27 24 – –

T1 – 6 80 – –

T2 – 3 31 – –

T3 – 2 19 – –

T4 – 4 11 – –

Unknown T stage – 2 – – –

the DAVID website (https://david.ncifcrf.gov) for functional
annotation analysis. The threshold was the p < 0.05.

Real Hub Genes Identification by WGCNA,
PPI, and Survival Analysis
By calculating the correlation between modules and clinical
phenotypes by the module-trait relationship of WGCNA, we
could screen the module most relevant to the clinical phenotype
we were interested in. In our study, histologic grade (r = 0.85,
p = 1e-12) was selected as interested clinical phenotype for
subsequent analysis.

After the interesting module was chosen, same as in the past
(27, 28), we defined the cor.geneModuleMembership > 0.8 (the
correlation between the gene and a certain clinical phenotype)
and cor.geneTraitSignificance > 0.2 (the correlation between
the module eigengene and the gene expression profile) as the
threshold for screening hub genes in a module.

To further target and screen more meaningful hub genes,
we uploaded the list of 49 hub genes to the STRING database
(https://string-db.org/) to construct a protein-protein interaction
(PPI) network (29). The minimum interaction score of these
genes was >0.4 and were defined as the threshold of the hub
genes of the PPI network. The Cytoscape software (30) was
used to visualize network diagrams for PPI analysis. Finally, we
used the Gene Expression Profiling Interactive Analysis (GEPIA)
database (31) (http://gepia.cancer-pku.cn/) to test the prognostic

value of hub genes, and the hub genes with the ability to
predict prognosis were the real hub genes. To verify the value
of predicting prognosis of hub genes, a survival analysis of real
hub genes was performed using the GSE13507 dataset from
GEO datasets.

Gene Set Enrichment Analysis of Real Hub
Genes
The GSEA software was downloaded from http://software.
broadinstitute.org/gsea/index.jsp. The GSEA analysis was
conducted with a small cohort GSE37815 and a large cohort
TCGA dataset, respectively. We divided the samples into two
groups according to the median expression of hub genes, and
chose the C2 (c2.cp.kegg.v6.1.symbols.gmt) sub-collection
downloaded from the Molecular Signatures Database (http://
software.broadinstitute.org/gsea/msigdb/index.jsp) as the
reference gene sets to perform GSEA analysis.

Verify the Expression Pattern and the
Prognostic Value of Real Hub Genes
The datasets GSE37815 and GSE71576 were selected as
internal validation datasets, the datasets GSE31684, GSE13507,
and TCGA were set as external validation datasets. All
of them were used to verify the real hub genes’ mRNA
expression pattern in different histologic grades or pathologic
stage of BC. In addition, we used the Oncomine database
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FIGURE 1 | Flow diagram of the study.

(https://www.oncomine.org/resource/main.html) and the
above dataset to verify the expression of real hub genes
between BC tissues and adjacent tissues. We used the
one-way analysis of variance (ANOVA) or Student’s t-test
to measure the statistical significance of the calculated
results. After that, we performed a Kaplan-Meier survival
analysis of hub genes in each cohort using the “survival”
R package.

RESULTS

Screening of Differentially Expressed
Genes
The R package “limma” was used to screenDEGs between BC and
normal bladder samples in GSE37815, where a total of 792 DEGs
were screened (240 up-regulated and 552 down-regulated) under
the threshold of FDR < 0.05 and logFC (fold change) ≥1. The
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FIGURE 2 | WGCNA and PPI network analysis. (A) Sample dendrogram and trait indicator. The clustering was a visual result of calculations based on Pearson

correlation coefficients between samples. The color intensity was proportional to T stage and histologic grade of BC. (B) Identification of modules associated with the

clinical traits of BC. (C) PPI network of WGCNA hub genes, the red nodes represent the hub genes in the PPI network. (D) Distribution of average gene significance

and errors in the modules associated with histologic grade of BC. (E) Scatter plot of module eigengenes related to histologic grade in the brown module.

heatmap of DEGs is shown in Supplementary Figure S1, and all
DEGs are listed in Supplementary Table S1.

Establishment of Co-expression Network
We used the R package of “WGCNA” to construct the weighted
co-expression network. No outlier samples were found by

Pearson correlation analysis (Figure 2A). We put 792 DEGs
with similar expression patterns into modules by cluster analysis.
In this study, the power of β = 6 (scale-free R2 = 0.95) was
chosen for the soft-thresholding to ensure a scale-free network
(Supplementary Figures S2A–D), and we got four modules for
the next analysis (Supplementary Figure S2E).
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FIGURE 3 | Functional annotation and GSEA analysis for brown module. (A) The signaling pathways, (B) biological process, (C) cellular components, (D) molecular

composition of the brown module. (E,F) GSEA analysis revealed that the genes of brown module were mainly enriched in bladder cancer and cell cycle related

pathways.

Identification of the Most Significant
Modules
To identify genes associated with the progression of BC,
we analyzed the association between modules and clinical
phenotypes. The modules most significantly associated with

tumor grade and T stage are of great value in predicting BC

progression. Histologic grade (r = 0.85, p= 1e-12) and T stage (r

= 0.49, p = 9e-04, Figure 2B) were significantly associated with

brown module by Module-feature relationship analysis. Besides,
the brown module had the highest gene significance in relation
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FIGURE 4 | Survival analyses on real hub genes in the TCGA and GEO database. (A,B) Overall survival analysis related to ANLN (A) or HMMR (B) expression levels in

the TCGA database. (C,D) Disease-free survival analyses related to ANLN (C) or HMMR (D) expression levels in the TCGA database. (E,F) Overall survival analysis

related to ANLN (E) or HMMR (F) in the GEO database (GSE13507).

to histologic grade (Figure 2D). Therefore, we chose the brown
module for further analysis.

Brown Module Functional Annotation
In order to study the function of the brown module, we uploaded
the list of all genes in the brown module to the DAVID

(https://david.ncifcrf.gov) website for a functional annotation
analysis. The KEGG analysis revealed that the “cell cycle,”
“FoxO signaling pathway,” “Tight junction,” “MicroRNAs in
cancer,” and “p53 signaling pathway” were mainly enriched
in the brown module (Figure 3A). The biological process of
the brown module was mainly related to “microtubule-based
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TABLE 2 | Results of GSEA analysis based on the expression level of hub genes.

Group Term Enrichment score NOM p-val

High ANLN/HMMR KEGG_BLADDER_CANCER 0.674 0.004

KEGG_CELL_CYCLE 0.671 0.010

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0.431 0.012

KEGG_HOMOLOGOUS_RECOMBINATION 0.717 0.014

KEGG_RNA_DEGRADATION 0.485 0.022

KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.495 0.026

KEGG_BASE_EXCISION_REPAIR 0.643 0.032

KEGG_MISMATCH_REPAIR 0.730 0.040

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0.613 0.045

Low ANLN/HMMR KEGG_TYPE_II_DIABETES_MELLITUS −0.475 0.004

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY −0.520 0.014

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY −0.446 0.016

KEGG_DILATED_CARDIOMYOPATHY −0.618 0.018

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM −0.606 0.026

KEGG_HEMATOPOIETIC_CELL_LINEAGE −0.647 0.027

KEGG_HISTIDINE_METABOLISM −0.675 0.030

KEGG_TRYPTOPHAN_METABOLISM −0.643 0.034

KEGG_FOCAL_ADHESION −0.580 0.047

movement,” “mitotic chromosome condensation,” “activation
of protein kinase activity,” and so on (Figure 3B). The cell
component of brown module was mainly enriched in “midbody,”
“kinesin complex,” “spindle microtubule,” etc. (Figure 3C). And
the molecular function was mainly enriched in “ATP binding,”
“microtubule motor activity,” “protein kinase C binding,” etc.
(Figure 3D). The threshold was the p < 0.05. The information
of functional annotation is listed in Supplementary Table S2.

Identification of Real Hub Genes
To further screen for the most significant hub genes, we
combined three methods (WGCNA, PPI, and survival analysis)
to screen real hub genes together. First, 49 hub genes with
high connectivity were screened out from the brown module
(Figure 2E). Secondly, we uploaded these 49 hub genes to
the STRING database for a PPI network analysis. Under the
threshold of a minimum required interaction score > 0.4, 10 hub
PPI genes were screened (Figure 2C, Supplementary Table S3).
Finally, we used the GEPIA database for the survival analysis
of these 10 hub genes, and the hub genes with the ability
to predict prognosis were real hub genes (ANLN, HMMR,
Supplementary Table S4). The results showed that both real hub
genes were predictive of overall survival and disease-free survival
in BC (Figures 4A–D, Supplementary Table S3). Meanwhile,
the external validation dataset GSE13507 was used to confirm the
prognostic value of real hub genes (Figures 4E,F).

GSEA Analysis of Real Hub Genes
In order to explore the functions and pathways of these two
hub genes, we conducted GSEA on these hub genes, respectively.
The GSEA analysis of two hub genes in the GSE37815 dataset
revealed that the samples of highly expressed real hub genes
were mainly enriched in “bladder cancer,” “cell cycle,” and
“ubiquitin mediated proteolysis” related pathways (Figures 3E,F,

Table 2). Subsequently, our GSEA analysis in the TCGA database
produced similar results (Supplementary Tables S7–S9).

Verification of the Expression Pattern of
Real Hub Genes
Since these real hub genes were screened out by DEGs,
we first verified the expression pattern of real hub genes
between BC and paracancerous. The results showed that
the expression of real hub genes was up-regulated in BC

(Supplementary Figure S3), and the results were consistent in
multiple datasets (Oncomine dataset, GSE13507, GSE37815,
and TCGA dataset). Secondly, since the real hub genes belong
to the brown module, which was significantly related to the
histological grade and pathological stage of BC, the expression
pattern of ANLN (Figure 6) and HMMR (Figure 7) in different
histological grade and pathological stage were verified in
internal validation datasets (GSE71576) and external validation
datasets (GSE13507, GSE31684, and TCGA dataset). The one-
way analysis of variance (ANOVA) or Student’s t-test was used
to measure the statistical significance of the calculated results.
The results of receiver operating characteristic curve (ROC)
analysis showed that real hub genes could well distinguish cancer
and paracancer, different grades, different stages, NMIBC and
MIBC (Supplementary Table S5). In addition, we verified the
expression patterns of the protein levels of ANLN and HMMR
in tissues in the HPA database, and found that the higher the
grade of BC, the higher the protein levels of these two genes were
(Supplementary Figure S6).

Validation of Prognostic Value of Real Hub
Genes
To further explore the prognostic value of hub genes in BC,
we conducted a subgroup survival analysis of these two genes
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FIGURE 5 | Subgroup survival analysis of hub genes. Overall survival (left panels) and Progression-free interval analyses (right panels) of ANLN were performed in

different tumor grade subtypes (A,B); Again, we did the same analysis in tumor stage subtypes (C,D); Corresponding to the previous analysis, we did the same

analysis for HMMR (E–H).
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FIGURE 6 | Expression pattern validation for ANLN. ANLN in GSE71576 (A,B) GSE13507 (C,D) GSE31684 (E,F), TCGA database (G,H) of different grade and stage

of expressing validation. Statistical differences in these data were calculated using One-way analysis of variance (ANOVA) or Student’s t-test.

in the TCGA dataset. The results showed that these two genes
showed significant prognostic value in different stages and
grades, which could not only accurately predict the overall
survival rate of BC, but also predict its progression-free interval
(PFI) event (Figure 5).

Drug Sensitivity of Real Hub Genes
GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/)
is a web-based analysis platform for gene set cancer
analysis (32). We used this database to analyze
drug sensitivity of real hub genes, which provides
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FIGURE 7 | Expression pattern validation for HMMR. HMMR in GSE71576 (A,B) GSE13507 (C,D) GSE31684 (E,F), TCGA database (G,H) of different grade and

stage of expressing validation. Statistical differences in these data were calculated using One-way analysis of variance (ANOVA) or Student’s t-test.

support for drug selection of real hub genes
targeted therapy.

Finally, we explored the drug sensitivity of real hub genes
using the GSCALite database, and the results were shown
in Supplementary Figure S5, which provides support for drug
targeted therapy of real hub genes.

DISCUSSION

BC is one of the most common tumors of the urinary system.
Currently, radical cystectomy is the most effective treatment
for BC, but in most cases, this treatment will greatly reduce
the quality of life of patients (33). Therefore, it is urgent to

Frontiers in Oncology | www.frontiersin.org 11 October 2019 | Volume 9 | Article 103072

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Bioinformatics Analysis of Bladder Cancer Biomarkers

find biomarkers that can accurately predict the progression and
prognosis of BC.

Through a series of rigorous screening, two real hub genes
(ANLN, HMMR) that could accurately predict the progression
and prognosis of BC were found. Similar studies have focused
mostly on one clinical phenotype (34–36). Our study conducted
correlation analysis of T staging and grading as both clinical
phenotypes and modules are of interest to us, and the results
revealed that the brown module was highly correlated with both
T staging (r = 0.49, p = 9e-04) and grading (r = 0.85, p = 1e-
12). We then used a lot of datasets to verify this, and it turned
out that the real hub genes were actually significantly correlated
with BC T stage, pathological stage, and histological grade.
Moreover, we also hoped to find biomarkers that could accurately
predict the prognosis of BC, so we used survival analysis as a
screening condition, which was neglected in some similar studies
(37, 38). In the following two hub genes, we analyzed the survival
analysis of the two hub genes and analyzed them in different
subgroups (stage, grade), and found that these two genes had a
high prognostic value for BC.

The excessive proliferation of tumors is often accompanied
by cell cycle disorders. We used GSEA analysis to explore the
function of real hub genes, and we found that both ANLN and
HMMR were significantly enriched in functions and pathways
related to “cell cycle.” Correlation analysis also supports this
result. These two genes were also enriched in the pathway related
to “bladder cancer,” and we speculate that these two genes may
play a key role in the pathogenesis of BC.

ANLN (Anillin) is an actin-binding protein and has reportedly
been shown to be significantly upregulated in the BC, knockdown
of ANLN results in G2/M phase block and reduces expression
of cyclin B1 and D1, and it was also demonstrated that ANLN
can promote the progression, migration, and invasion of BC
(39). Other studies have found that ANLN could promote the
progression of pancreatic cancer by inducing the up-regulation
of EZH2 bymediating themir-218-5p /LASP1 signaling axis (40).
ANLN has also been found to play a key role in the development
of human lung cancer (41). All these suggest that ANLN plays
a very important role in the development and progression of
tumors. We found a high correlation between ANLN and CIRBP
(Supplementary Figure S4B, Supplementary Table S6), a gene
that we studied before (42); therefore, we can further explore
the interaction between ANLN and CIRBP in the pathogenesis
of BC. We also found a strong correlation between ANLN and
KIF23 (Supplementary Figure S4A, Supplementary Table S6),
an independent prognostic target for glioma (43).

HMMR (Hyaluronan Mediated Motility Receptor) is widely
expressed in many types of tumors, including prostate and
breast cancer, and various forms of leukemia (44–46). Previously
reported overexpression of HMMR is associated with the

development of metastatic prostate cancer (PCa) and castration-
resistant PCa (46). But HMMR has never been studied in human
BC, so our study found a new potential biomarker for BC.
We found a strong correlation between HMMR and KIF20A
(Supplementary Figure S4C, Supplementary Table S6),
and a recent study found that KIF20A affects the
prognosis of BC by promoting the proliferation and
metastasis of BC (47). These studies are very helpful
for our future research on the pathogenesis of HMMR
in BC.

Taken together, through the integrated analysis of multiple
databases and the establishment of the co-expression network by
WGCNA analysis, two hub genes that can accurately predict the
progression and prognosis of BCwere screened out layer by layer,
providing potential targets for the pathogenesis and treatment
selection of BC.
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A Pediatric Case of Glioblastoma 
Multiforme Associated With a Novel 
Germline p.His112CysfsTer9 Mutation 
in the MLH1 Gene Accompanied by 
a p.Arg283Cys Mutation in the TP53 
Gene: A Case Report
Aleksandra Stajkovska 1†, Sanja Mehandziska 2†, Rodney Rosalia 2, Margarita Stavrevska 2, 
Marija Janevska 1, Martina Markovska 1, Ivan Kungulovski 1, Zan Mitrev 2  
and Goran Kungulovski 1*

1 Sector of Genetics, Bio Engineering LLC, Skopje, Macedonia,2 Laboratory of Genetics and Personalized Medicine, Zan 
Mitrev Clinic, Skopje, Macedonia

Targeted gene panel testing has the power to interrogate hundreds of genes and 
evaluate the genetic risk for many types of hereditary cancers simultaneously. We 
screened a 13-year-old male patient diagnosed with glioblastoma multiforme with the 
aim to get further insights into the biology of his condition. Herein, we applied gene 
panel sequencing and identified a heterozygous frameshift mutation c.333_334delTC; 
p.His112CysfsTer9 in the MLH1 gene in blood and tumor tissue accompanied 
by a known heterozygous missense variant of unknown significance c.847C > T; 
p.Arg283Cys in the TP53 gene. Parental screening revealed the presence of the same 
TP53 variant in the father and the same MLH1 variant in the mother, who was in fact 
undergoing treatment for early-stage breast cancer at the time of her son’s unfortunate 
diagnosis. This case reports for the first time the co-occurrence of a genetic mutation in 
the MLH1 gene of the mismatch repair pathway, commonly associated with the Lynch 
syndrome, accompanied by a rare variant in the TP53 gene. This report underlines the 
need for broad panel gene testing in lieu of single-gene or syndrome-focused gene 
screening and evaluation of the effects of multiple pathogenic or modifier variants on 
the phenotypic spectrum of the disease.

Keywords: next-generation sequencing, North Macedonia, hereditary cancer syndromes, Lynch syndrome, TP53, 
MLH1, Li-Fraumeni, case report

BACKGROUND

MMR-Dependent Hereditary Cancer Syndromes
The DNA mismatch repair (MMR) machinery is a highly conserved cell-intrinsic fail-safe system that 
recognises and repairs mismatched bases emanating from spurious DNA replication, recombination, 
or chemical/physical insults (Richman, 2015). A malfunction of the MMR machinery may lead to 
microsatellite instability, which in turn increases the rate of mutations.
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By virtue of this, germline genetic mutations in the MLH1, 
MSH2 (or through EPCAM), MSH6, and PMS2 genes lead to 
an inborn functional deficiency of the MMR pathway, thereby 
significantly increasing the risk of cancer. Mutations in the MMR 
pathway are associated with hereditary cancer syndromes such as 
Lynch syndrome, Turcot syndrome, and Muir–Torre syndrome.

Turcot syndrome (OMIM 276300) is a disease that manifests via 
multiple adenomatous colon polyps; patients have an increased risk 
of colorectal cancer and brain cancers, namely glioblastoma. Turcot 
syndrome typically follows an autosomal dominant inheritance 
pattern. It is closely associated with other rare hereditary cancers, 
such as familial adenomatous polyposis or Lynch syndrome (Hegde 
et al., 2014; Khattab and Monga, 2019).

Genetic mutations in APC gene associated with familial 
adenomatous polyposis, or a mutation in one of the MMR genes, 
the MLH gene in particular associated with Lynch syndrome, form 
the molecular basis for most cases of Turcot syndrome (Carethers 
and Stoffel, 2015). There is a dichotomous trend observed in 
regard to the etiology and clinical presentation of the hereditary 
brain cancers; APC mutations typically trigger an oncogenic 
pathway leading to medulloblastoma. In contrast, mutations in 
the MMR machinery usually lead to glioblastoma multiforme 
(GBM) (Alifieris and Trafalis, 2015), a devastating brain cancer; 
diagnosis of GBM is associated with a dire clinical outcome in 
the majority of cases. Despite aggressive combinatorial therapy, 
survival of (adults) ranges between 8 and 18 months, depending 
on the extent of the disease (Kohlmann and Gruber, 1993; Sehgal 
et al., 2014; Stepanenko and Chekhonin, 2018).

TP53-Dependent Hereditary 
Cancer Syndrome
TP53 is a tumor-suppressor gene, encoding the p53 protein, which 
has a crucial role in the regulation of cell proliferation (Wawryk-
Gawda et al., 2014). In particular, p53 regulates apoptosis, genomic 
stability, and angiogenesis (Pentimalli, 2018). Li-Fraumeni 
syndrome (LFS) (OMIM 151623) is a rare disorder, inherited in 
an autosomal dominant manner, caused by germline mutations 
in the TP53 gene. Mutations that lead to suboptimal function 
or total loss of function of the p53 lead to compromised tumor 
suppression and cell proliferation. Consequently, individuals 
with dysfunctional p53 are highly susceptible to a broad range of 
cancers (Olivier et al., 2010).

The tumors most closely associated with LFS are so-called 
“core” cancers; brain cancers form part of this group of LFS-
associated malignancies (Malkin, 2011; Sorrell et al., 2013; 

McBride et al., 2014; Kratz et al., 2017). The Chompret criteria 
have been proposed for the screening of patients suspected for 
LFS (Tinat et al., 2009).

Individuals with LFS are eligible for treatment; a personalized 
approach is required according to the intrinsic properties of 
the tumor. In addition, caution is warranted due to the known 
adverse effects of conventional radiotherapy. Several (pre-)
clinical studies have shown an increased risk for radiation-
induced cancers in LFS patients.

CASE PRESENTATION

The proband was a 13-year-old boy, who was referred for genetic 
testing due to a suspected hereditary cancer syndrome, following 
a diagnosis of GBM WHO grade IV. He previously underwent 
surgical resection combined with adjuvant temozolomide 
chemotherapy. The father reported no family history of cancer; 
however, the mother was diagnosed with breast cancer at the age 
of 56 and underwent a bilateral mastectomy. Furthermore, the 
maternal grandmother was also diagnosed with breast cancer at 
old age. Upon taking written and signed informed consent from 
the proband’s legal guardians, gene panel sequencing revealed 
a novel heterozygous frameshift mutation c.333_334delTC; 
p.His112CysfsTer9 in the MLH1 gene and another known, but 
rare, heterozygous missense VUS c.847C > T; p.Arg283Cys in the 
TP53 gene (Table 1; Figure 1).

The mutation in the MLH1 gene results in a truncated protein 
and most likely leads to loss of function, predisposing carriers to 
hereditary malignant syndromes, for example Turcot syndrome or 
the related Lynch syndrome. The discovered variant in the TP53 gene 
meets PM1, PP3, and PP5 ACMG pathogenicity criteria (Richards 
et al., 2015); in the ClinVar database, it is annotated as a variant of 
uncertain significance—albeit with probable functional relevance. 
The presence of the MLH1 mutation was validated independently in 
blood and tumor tissue with next-generation sequencing (NGS) (130 
brain tumor-relevant genes) and Sanger sequencing. In addition, 
DNA methylation analysis of the tumor tissue in comparison with 
a reference database of 2,800 tumors, categorized the tumor in the 
methylation class glioblastoma, isocitrate dehydrogenase wild type, 
subtype RTK III. These data indicated MGMT promoter methylation 
and potential loss of CDKN2A.

Moreover, we evaluated the NGS result and inheritance 
pattern by Sanger sequencing—we concluded that the TP53 
mutation was inherited from the paternal side, while the 

TABLE 1 | Properties of detected variants, symptoms and medical history.

Method Gene Nucleotide 
change

Protein change rsID MAF Clinvar 
sig

ACMG Novelty Inheritance Symptoms and 
family history

TruSight 
Cancer;
MMR 
sequencing;
Sanger 
sequencing

MLH1 c.333_334delTC p.His112CysfsTer9 / / / PVS1, 
PM1, 
PM2

Unknown Dominant Proband: 
Glioblastoma 
multiforme, age 12
Mother: breast 
cancer, age 56, and 
bilateral mastectomy
Grandmother: 
breast cancer

TP53 c.847C > T p.Arg283Cys rs149633775 0.00008 Uncertain 
significance

PM1, 
PP3, 
PP5

Known 
VUS

Dominant
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FIGURE 1 | Genome browser views of the (A) MLH1 gene showing sequence alignment around the region of the detected c.333_334delTC mutation and (B) TP53 
gene showing sequence alignment around the region of the detected c.847C > T mutation. (C) Lollipop scheme of the MLH1 gene, pinpointing the region of the 
detected mutation. (D) Lollipop scheme of the TP53 gene, pinpointing the region of the detected mutation.
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MLH1 mutation was inherited from the maternal side. Sanger 
sequencing of a maternal cousin failed to detect the TP53 and 
MLH1 mutations (Figure 2).

Laboratory Tests
The patient and his family underwent gene panel sequencing 
(TruSight Cancer, Illumina) or Sanger sequencing, respectively. 
In brief, DNA was extracted from 400 µl of whole blood on a 
SaMag-12 automatic nucleic acid extraction system (Sacace 
Biotechnologies, Como, Italy). Libraries were prepared following 

the manufacturer’s recommendations, and raw sequences were 
obtained from the NextSeq machine (Illumina, San Diego, USA). 
Sequence quality control, single nucleotide polymorphism, 
and insertion/deletion calling, together with advanced variant 
annotation were done with proprietary technologies such as 
the Sophia DDM platform (Sophia Genetics, Saint-Sulpice, 
Switzerland). The NGS panel of brain-tumor-relevant genes, the 
DNA methylation analysis with the 850K Illumina array, and 
methylation classification (internal classifier V11b2) were carried 
out at the University Clinic in Heidelberg.

FIGURE 2 | Sanger sequencing of (A) MLH1 gene, pinpointing the presence or absence of the c.333_334delTC mutation in the patient and family members and  
(B) TP53 gene, pinpointing the presence or absence of the c.847C > T mutation detected by in the patient and family members.
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DISCUSSION AND CONCLUDING 
REMARKS

In this case report, we used gene panel sequencing to evaluate the 
hereditary cancer risk of a pediatric GBM patient and his family 
and to get an insight into the biology of the tumor.

Through this approach, we identified two heterozygous 
highly probable disease-causing mutations: c.333_334delTC; 
p.His112CysfsTer9 in the MLH1 gene, and c.847C > T; 
p.Arg283Cys in the TP53 gene. The proband inherited the 
pathogenic variant in the MLH1 gene from his mother. We 
hypothesize that the frameshift mutation in the MLH1 gene is 
most likely the primary oncogenic driver and the main culprit 
causing cancer proclivity in this pediatric case of GBM.

Given the rare clinical presentation and absence of abdominal 
symptoms, the patient was never suspected of Turcot syndrome 
or Lynch syndrome. Hence, colonoscopy screening was never 
performed. We are unable to exclude the presence of other primary 
(pre-)malignant lesions at distal sites, which could have strengthened 
the diagnosis. However, the hereditary genetic profile strongly points 
to the aforementioned cancer syndromes manifesting as GBM.

GBM (Alifieris and Trafalis, 2015) is an epithelial tumor of 
the central nervous system with frequent genetic and epigenetic 
alterations (Heiland et al., 2017) and a worldwide incidence of <10% 
that commonly manifests as a solitary lesion; multiple GBM 
lesions are rare. GBM manifests in adults between the age of 45 
and 70 years old (Zhang et al., 2016). Conversely, our patient 
developed aggressive intracranial malignancy at a very young 
age, prompting the suspicion of multiple oncogenic or modifier 
mutations. Indeed, further analysis uncovered the paternally 
inherited mutation, c.847C > T; p.Arg283Cys, in the TP53 gene.

We speculate that the p.Arg283Cys variant in TP53 served 
as an additional oncogenic driver or modifier, resulting in 
the unusually early onset of GBM. There are several lines of 
evidence supporting this claim. First, Monti et al. showed that 
the p.Arg283Cys variant, among other TP53 germline variants, 
showed severe deficiency to transactivate MDM2, BAX, and 
PUMA, but not CDKN1A, in a luciferase-based quantitative assay 
in yeast, when compared to the wild-type allele (Monti et  al., 
2011). Similarly, another in vitro functional study indicated that 
the germ-line p.Arg283Cys variant could still transactivate the 
CDKN1A but not the BAX gene and thus retained the ability to 
induce growth arrest of human glioblastoma cells (Fulci et al., 
2002). Furthermore, it has been shown that the p.Arg283Cys 
p53 protein is cold sensitive and unable to activate p53-RE 
placed upstream of the ADE2 reporter in yeast (Jagosova et al., 
2012). These studies illustrate that the c.847C > T; p.Arg283Cys 
mutation, unlike other highly pathogenic mutations in the TP53 
gene (Pavletich et al., 1993; Muller and Vousden, 2014; Shajani-Yi 
et al., 2018), causes a partial loss of function with unclear  
clinical repercussions.

Second, in genetic studies, the p.Arg283Cys mutation was 
identified together with a nonsense variant in BRCA2 in a patient with 
metachronous breast cancers and a subsequent leiomyosarcoma, 
with a family history of ovarian cancer, breast and ovarian cancer, 
and glioblastoma (Manoukian et al., 2007). In addition, the 

c.847C > T; p.Arg283Cys mutation was the only variant detected in a 
CDH1 negative gastric cancer patient, with a family history of gastric 
cancer, leukemia, and liver cancer (Yurgelun et al., 2015).

Collectively, our current observations and published reports 
provide circumstantial evidence for the functional relevance of the 
p.Arg283Cys, TP53 variant, but further studies are necessary to 
substantiate this claim. Moreover, functional studies are warranted 
to evaluate the ramifications of the co-occurrence of MLH1 loss-of-
function mutations and the p.Arg283Cys mutation in TP53.

Targeted gene panel testing of known cancer-associated genes 
is a cost-effective diagnostic tool to simultaneously evaluate 
patients and their relatives suspected of hereditary malignant 
syndromes. As genetic testing is getting readily available to an 
increasing number of institutions, we anticipate that the number 
of similar cases will increase. This is a cautionary tale for clinicians, 
medical geneticists, and genetic counselors to take into account 
the possibility of a patient having two or more disease-causing or 
disease-modifying variants, which might influence the severity, 
tissue specificity, and onset of the disease (Cohen et al., 2016)
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Background: Activation of telomere maintenance mechanisms (TMMs) is a hallmark

of most cancers, and is required to prevent genome instability and to establish cellular

immortality through reconstitution of capping of chromosome ends. TMM depends on

the cancer type. Comparative studies linking tumor biology and TMM have potential

impact for evaluating cancer onset and development.

Methods: We have studied alterations of telomere length, their sequence composition

and transcriptional regulation in mismatch repair deficient colorectal cancers arising in

Lynch syndrome (LS-CRC) and microsatellite instable (MSI) sporadic CRC (MSI s-CRC),

and for comparison, in microsatellite stable (MSS) s-CRC and in benign colon

mucosa. Our study applied bioinformatics analysis of whole genome DNA and RNA

sequencing data and a pathway model to study telomere length alterations and the

potential effect of the “classical” telomerase (TEL-) and alternative (ALT-) TMM using

transcriptomic signatures.

Results: We have found progressive decrease of mean telomere length in all

cancer subtypes compared with reference systems. Our results support the view

that telomere attrition is an early event in tumorigenesis. TMM gets activated in

all tumors studied due to concerted overexpression of a large fraction of genes

with direct relation to telomere function, where only a very small fraction of them

showed recurrent mutations. TEL-related transcriptional state was dominating in all CRC

subtypes, showing, however, subtype-specific activation patterns; while contribution

of the ALT-TMM was slightly more prominent in the hypermutated MSI s-CRC

and LS-CRC. TEL-TMM is mainly activated by over-expression of DKC1 and/or

TERT genes and their interaction partners, where DKC1 is more prominent in MSS

than in MSI s-CRC and can serve as a transcriptomic marker of TMM activity.
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Conclusions: Our results suggest that transcriptional patterns are indicative for TMM

pathway activation with subtle differences between TEL and ALT mechanisms in a CRC

subtype-specific fashion. Sequencing data potentially provide a suited measure to study

alterations of telomere length and of underlying transcriptional regulation. Further studies

are needed to improve this method.

Keywords: telomere attrition, colorectal cancer, mismatch repair, telomerase and alternative telomere

maintenance, pathway models, DNAseq and RNAseq data analysis, telomere length, telomere repeat variants

INTRODUCTION

The view on telomeres has progressed from simple caps that
conceal chromosome ends from DNA repair machinery (1, 2)
to complex structures involving hundreds of proteins that have
an active role in organizing the genome (3, 4). Telomeres are
shortened with each cell division and finally trigger a DNA-
damage response resulting in senescence (5). Tumors avoid this
by adding newly synthesized telomeric DNA to the chromosome
ends via a telomere length maintenance mechanism (TMM),
which counteracts telomere shortening and saves the tumor cells
from the onset of telomeric crisis thus essentially contributing
to cancer progression (6). In most tumors, TMM gets activated
via the telomerase pathway (TEL) which utilizes the telomerase
ribonucleoprotein containing an RNA template for telomeric
DNA synthesis (7). The TEL-TMM is typically active in germline,
and to a less degree, in stem cells, but not in somatic cells, due to
transcriptional silencing of the TERT-encoded catalytic subunit
of telomerase (7, 8). A lower proportion of tumors activates an
alternative lengthening of telomeres (ALT) pathway that relies
on homologous recombination events between telomeric strands
of sister chromatids, distant chromosomes, or extrachromosomal
telomeric repeat sequences (9, 10). Usually ALT is associated with
altered chromatin environment at telomeres, frequent mutations
in ATRX and DAXX genes, the presence of extra-chromosomal
telomeric repeat sequences and ALT-associated promyelocytic
leukemia bodies (APB) (11, 12).

Most of the tumors (70–90%) are usually assumed to utilize
TEL-TMM, while the rest are thought to refer to ALT-TMM
(10). Several studies in the last years suggest a more diverse
picture where tumors seem to characterized not by just one TEL
or ALT TMM phenotype. A recent PanCancer study cross 31
tumor types demonstrated that 73% of the analyzed samples
expressed TEL, 5% was associated with ALT, while the remaining
22% of tumors neither expressed clear TERT nor harbored ALT-

associated alterations (13). This result is supported by reports that
in a so-called ever-shorter telomeres phenotype neither of the
two TMMs get activated (14). In addition to such “neither ALT
nor TEL” situations, also “TEL and ALT coexistence” in vitro and
in cancer and “TEL-to-ALT switching” situations were discussed
[see (12) and references cited therein]. Mutations of ATRX and
of TERT are not sufficient as possible indications for ALT- and
TEL-TMM because loss of ATRX coexist with TEL-TMM in
some cell lines (15) and melanomas, which can show ATRX
and TERT mutations in parallel (16), while they are mutually
exclusive in in glioma (17). On the other hand, TERT promoter

mutations are not enough to cause activation of telomerase (18).
Despite emerging conceptual models, e.g., to explain TEL-to-ALT
switching in epithelial tissues (12), it remains largely unclear as to
why TEL and/or ALT become activated in specific cancer subsets
and what is the molecular mechanism (19).

TEL-positive tumors are typically identified by mutated
and/or activated TERT where however about 20% of CRC do
not show this characteristics (20). ALT-positive tumors are often
deduced from the presence of telomere length maintenance
in the absence of TERT activity and/or by assays based on
genetic or phenotypic markers, such as the presence of C-circles
and/or APBs, but these assays are potentially not definitive
for several reasons (21). For example, existence of APBs does
not yet ensure telomere synthesis (22). On the other hand,
C-circles may be missing in cells with otherwise high ALT
activity (22).

Whole genome DNA and RNA sequencing data open novel
perspectives for studying telomere length dynamics and TMM
in cancer. Here we have applied a bioinformatics approach of
telomere length and of sequence variant computation based on
DNA-seq data, where, at least the former application represents a
robust and accurate alternative to experimental techniques (23–
25). This structural information about telomeres is combined
with a thorough expression analysis of genes contributing to
TEL and ALT activation to shed light into aspects of the
underlying transcriptional regulation of TMM. Omics data are
frequently available in many molecular cancer studies and data
repositories, such as The Cancer Genome Atlas (https://www.
cancer.gov/about- nci/organization/ccg/ research/ structural-
genomics/tcga). They offer an alternative and independent
option for studying telomere biology of cancer based on omics
data and judging the telomere status as a potential marker of
disease development. Understanding the mechanisms regulating
telomere length is of importance for development of telomere-
targeted cancer therapies (26, 27) and also for identification of
markers suited for characterization of early and later stages of
cancer development.

TMM may vary from cancer to cancer, and even among
cancer subtypes. Consequently, the study of TMM requires a
tumor-type specific approach. For example, dysregulation of
telomere length is a hallmark of colorectal cancer (CRC), but
reports of telomere lengths and their ascribed cancer risks have
been discordant, with both very short and very long telomeres
implicated (28–30, 30–33). While most studies have addressed
telomere length alterations in CRC (30, 32, 34), the mechanisms
of telomere length maintenance regulation and, particularly, the
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role of mismatch repair deficiency in TMM are still not fully
characterized. Here, we focus on CRC showing microsatellite
instability (MSI) arising from dysfunctional mismatch repair
(MMR) mechanisms in Lynch syndrome (LS-) CRC and in
sporadic (s)-CRC as well. LS is one of the most frequently
inherited cancer predisposition syndromes contributing to about
3% of all CRC cases (35, 36). It is defined by an autosomal
dominant heterozygous constitutional mutation in one of the
four key MMR genes MLH1 (about 60%), MSH2 (about 30%),
MSH6 or PMS2 (37, 38) all leading to MSI. In contrast, MSI in s-
CRC most frequently results from promoter hyper-methylation
of the MLH1 gene giving rise to about 20% of all CRC cases (39,
40). The MMRmachinery not only has a role in mismatch repair,
but also in cell cycle checkpoint activation and DNA damage
induced cell cycle regulation. Proteins involved in the MMR
pathway, such as PCNA, RPA, and DNA polymerase δ, are also
important players in ALT-TMM (30, 41). It has been reported
that MSH2 deficiency can accelerate telomere shortening (42).
Additionally, it has been shown that MSH6-MMR deficiency
leads to a hyper-recombinant phenotype, increased survival of
tumor cells in response to telomerase inhibition and shows
some evidence of telomeric sister chromatid exchange that are
possible signs of ALT (43). Another study has observed a trend
of lower expression of TERT and high levels of APBs in MMR-
deficient gastric cancer (44). However, possible activation of the
ALT TMM in response to MMR-deficiency in CRC still has to
be investigated.

With this aim our study addresses TMM ofMSI cancers in LS-
CRC and in s-CRC, and also in benign colon mucosa and in MS
stable (MSS) s-CRC for comparison, which overall constitutes
about 60% of all CRC cases. Our study is based on whole
genome DNA and RNA sequencing data of patient matched
tumor and tumor-distant mucosa samples generated recently by
us (45) and of s-CRC data taken from the TCGA repository (40).
An interesting aspect results from the fact that cancerogenesis
of LS-CRC is driven by immune escape from inflamed non-
cancerogenous mucosa (36, 46) with possible impact on telomere
biology. The publication is organized as follows: in the first part
we analyze alterations of telomere length and of the abundance
of canonical and non-canonical telomere repeat variants in the
different tumor subtypes and in the reference mucosa systems. In
the second part we study how TEL and ALT TMM are regulated
at transcriptional level, thus forming different TMM phenotypes.

MATERIALS AND METHODS

DNA- and RNA-seq Data
We made use of whole-genome DNA-seq and RNA-seq data
of Lynch Syndrome (LS) referring to paired patient-matched
fresh frozen tissue specimens of tumor and tumor-distant non-
neoplastic mucosa (reference samples), which were collected
from 11 LS-CRC patients, as described and characterized in
Binder et al. (45). Tumor samples split into adenoma (N = 3)
and cancer (N = 9) specimen with only one patient-matched
adenoma-cancer pair (samples were assigned by patient no. and
“reference,” “adenoma” or “cancer” sample types). DNA- and
RNA-seq data refer to the same mucosa and tumor samples.

The data are available at the dbGaP database (www.ncbi.nlm.
nih.gov/gap) under accession number phs001407). According
to our previous analysis, the LS cases split into two genetically
distinct groups named G1 (six patients) and G2 (five patients).
G1 tumors showed higher load of somatic mutations (108.000
vs. 34.000 per tumor), a higher number of MLH1 constitutional
mutations (5x MLH1 and 1x MSH2 vs. 1x MLH1, 2x MSH2
and 1x MSH6) and higher microsatellite slippage rate, compared
to G2 (45). For comparison, we included sequencing data of
microsatellite stable (MSS) and instable (MSI) sporadic CRC
(s-CRC) cases and of healthy (normal) colonic mucosa taken
from the TCGA repository as described in Binder et al. (45).
DNA-seq data were taken from patient matched pairs of s-
CRC tumors and normal mucosa (5 MSS cases and 8 MSI
cases). RNA-seq data refer to unmatched cases of reference
mucosa (20 samples), MSS s-CRC (21), MSI-low s-CRC (24),
and MSI-high s-CRC (20). In accordance with previous studies
(47) the MSS and MSI-low samples were subsumed into one
combined MSS group. In support of this, transcriptome patterns
along the chromosomes show clearly a common chromosome
instability phenotype for MSS and MSI-low s-CRC in contrast
to MSI-high s-CRC samples (48), which were assigned the CpG
hypermethylation phenotype (CIMP, Supplementary Figure 1).
MSI-high cases were annotated as MSI throughout the paper.
TCGA-accession numbers of all cases studied were listed in
Supplementary Table 2 in Binder et al. (45).

Telomere Length and Telomeric Repeat

Variants
Mean telomere lengths (MTL) were calculated using the whole
genome DNA-seq data and the program Computel (v1.2,
accessible at: https://github.com/lilit-nersisyan/computel) using
default parameter settings (25). This program detects reads
originating from telomeres by alignment to a reference sequence
that consists of telomeric repeat patterns (25). It then computes
MTL across the chromosomes in units of base pairs (bp),
by comparing the coverage at the telomeric reference to the
total sequencing depth and normalizing to the number of
chromosomes. All LS-tumors, and all s-CRC tumors, except for
one, were diploid [see Supplementary Table 1 in Binder et al. (45)
which also provided detailed sample characteristics in terms of
constitutional mutations, microsatellite status, tumor cell content
and patient characteristics, and (49) for s-CRC]. Among s-CRC
MTLs were computed for all the runs per sample, and the median
MTL was taken for subsequent analysis. Computel also estimates
the composition of telomeric repeat variants (TRVs), providing
the amount of canonical (“TTAGGG”) and non-canoncial TRVs.
In contrast to pattern matching algorithms, Computel is not
restricted to predefined non-canonical variants, but can capture
any variation, be it substitution, insertion or deletion.

Gene Expression Analysis
Identification of differentially expressed genes (DEGs) was
performed based on read count data using Wald test
implemented in DESeq2 package (50). For functional
interpretation of gene expression data we applied gene set
analysis in terms of gene set enrichment z-score (GSZ) profiles
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(51). Gene sets were taken from the GSEA-repository and from
literature for different functional categories (52).

Pathway and Network Analysis of Telomere

Maintenance Mechanisms
The genes and pathways involved in TEL and ALT
TMM were taken from a literature search and pathway
reconstruction approach using reference gene expression
data in TEL- and ALT-positive cell systems [see (53, 54) and
Supplementary Methods for details]. A list of TMM genes
is provided in Supplementary Table 1 together with two
independent verifications by means of enrichment analysis in
gene ontology categories (Supplementary Table 2) and their
characteristics as provided by TELNet telomere knowledge base
(Supplementary Table 3). The activity of the TMM-pathways
was estimated by means of the pathway signal flow (PSF)
algorithm (55) using the TMM app for Cytoscape. It estimates
the transcriptional activity of each pathway node in terms of
PSF-scores making use of the local pathway topology and of
gene expression fold changes compared to average expression as
described in Nersisyan et al. (55, 56). The impact and specifics
of PSF-pathway analyses compared with gene set approaches
were demonstrated recently in a series of applications to
characterize aberrant pathway activation in the context of
different diseases (45, 57–59).

We performed TMM-based computations for each of the
LS- and s-CRC groups separately. The PSF scores of the
different TEL and ALT pathway branches and of the final sink
nodes were used to characterize the different tumor subtypes.
To estimate the effect, which a selected gene exerts on a
certain node of the pathway, we have calculated the partial
influence (PI)-score. It is defined as the node’s differential
PSF-score upon neutralizing the affecting gene by setting
its expression fold change to unity. We used the PI-score
to select the genes that exert strongest effect on the PSF-
scores of the major TMM-branches, either as activators (PI
> 0) or as inhibitors (PI < 0), with respect to mean
pathway activity of the respective group of samples (see also
Supplementary Figure 2).

The correlation networks of gene expression and PSF values
of the TMM network nodes were constructed using a Pearson
correlation significance threshold of p < 0.05 for edge selection.
Visualization and betweenness centrality (BC) analysis were
performed with NetworkAnalyzer in Cytoscape 3.6 (60).

RESULTS

Telomeres Predominantly Shorten in CRC

as an Early Event in Tumor Development
In order to explore telomere length changes during malignant
transformations, we have analyzed mean telomere length (MTL)
in LS-CRC and in s-CRC from whole genome sequencing data
using Computel software (25). MTL systematically shortens in
all tumor tissues of types G1 and G2 LS-CRC and in MSI and
MSS subtypes of s-CRC compared to the respective reference
mucosa samples (Figures 1A,B), which is in agreement with
prior knowledge (56). On average, MTL decreases by 2.7 and 2.3

kbp in G1 and G2 LS-CRC, by 2.7 kbp in MSI s-CRC and only
by 1 kbp MSS s-CRC (see also Supplementary Table 4A). The
larger differences in LS-CRC and MSI s-CRC are in agreement
with previous observations that link MSI and (sporadic) defects
in MMR with higher telomere shortening rates (31). The MTL-
differences between the cancer subtypes and the respective
reference mucosa can be eventually attributed to different mean
ages of the respective patients (44 ± 9 vs. 53 ± 15 years
for G1 and G2 LS-CRC patients, respectively; and 63 ± 12
vs. 75 ± 12 years for MSI and MSS s-CRC, respectively)
and the overall age-related shortening of telomeres in healthy
colon mucosa (30, 61), and eventually also CRC (62), which
suggests shorter telomeres in the mucosa of older patients
(see also Supplementary Figure 3 for detailed analysis). Overall,
we find a broad decrease of mean telomere length in all
cancer subtypes.

Telomeric Repeat Variants Suggests

Accumulation Near Proximal Regions

Without Substantial Changes of Their

Composition
Telomeres are not merely composed of canonical TTAGGG
repeats, but can also incorporate several types of repeat variants
(TRV), such as TCAGGG, TGAGGG, andGTAGGG, particularly
in the proximal telomeric and subtelomeric regions (63–65).
In order to estimate whether novel TRVs are generated during
malignant transformations or as a result of dysfunctional
mismatch repair machinery, we have computed the TRV
content in our samples. Figures 1C,D schematically depicts
the average changes in TRV content (mean length in units
of bp) in LS-CRC and s-CRC cancers and in reference
mucosa. All the samples showed similar TRV distributions
(Supplementary Figures 4–6). In LS-CRC and s-CRC, the most
abundant non-canonical repeat variants all terminated with
“GGG,” in agreement with the notion of strong selective pressure
of this sequence (63). The top TRVs were the G- and A-insertion
variants TTAGGGG and TTAAGGG, the (TG)-substitution
variant TGAGGG and the T- and A-deletion variants TAGGG
and TTGGG, respectively (Supplementary Figures 4–6). The
mean cumulative length of the TRV was within the range of 20–
60 bp per chromosome end, which, in total, comprises<1% of the
overall MTL. The shortening rate of canonical TTAGGG repeats
(35% in LS-CRC and s-CRC) was slightly higher compared
to non-canonical TRVs (26% in LS-CRC and 32% in s-CRC).
This difference can be explained by a biased placement of non-
canonical TRVs toward the proximal (centromeric) regions of
telomeres (Figures 1C,D). Further differences are noted when
comparing TRV in MSI vs. MSS s-CRC. The mean length
of TRVs was larger in MSI, consistent with longer telomeres
in this subtype (Figure 1). Concomitantly, the percentage of
most TRVs was lower in MSI tumors, as well as in reference
samples compared to MSS (Supplementary Figure 6). Relative
lower proportion of TRVs were previously reported in ALT
positive vs. ALT negative cancers, also attributed to longer
telomeres in the former (66). Interestingly, selected TRVs
such as the C-substitution variants TTCGGG and TCAGGG
are found to show largest differential lengths in our data
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FIGURE 1 | Mean telomere length (MTL) and telomere repeat variant (TRV) analysis in Lynch syndrome and sporadic colorectal cancer. MTL and its differences in

tumors with respect to paired reference mucosa samples for LS-CRC (A) and s-CRC (B) indicate that telomeres broadly get shorter in all tumor types on the average

(see Supplementary Table 4A for details). Average TRV content in reference and tumor samples of LS-CRC (C) and s-CRC (D) showed that non-canonical repeats

get shorter at slightly lower rates (26–32%) compared to canonical repeats (35%) which suggests their accumulation in the sub-telomeric region as indicated

schematically in the figure. The TRVs comprise only 1–2% of the telomere length on the average. The TRV shortening showed a consistent trend in all samples (see

Supplementary Figures S1, S2).

(Supplementary Table 3B). TRV analyses largely suggests a small
effect size and their likely accumulation in proximal telomeric
regions, with selected TRVs (e.g., TTCGGG), showing different
trends compared to the rest of the TRVs (66).

All in all, the effects we have observed are small in amplitude
and mechanistically not fully understood. Additionally, we also
find similar differences in the reference system of MSI and
MSS s-CRC. Therefore, TRV dynamics require further, more
systematic studies.

TMMs Compensate for Proliferative

Telomere Attrition
We next proceeded with gene set analysis to identify biological
processes associated with telomere length regulation. We

considered two Reactome gene sets for telomerase-based
elongation of telomeres (“extension of telomeres” and “telomere
maintenance”) and one gene set related to alternative lengthening
mechanism collecting genes involved in ALT obtained from
literature (67). Since activation of TMM usually accompanies
the processes of apoptosis and DNA damage-response in most
cancer cells, we have also analyzed cellular programs related
to cell division, namely, KEGG “mismatch repair”, Reactome
“regulation of apoptosis” and “cell cycle” taken from Whitfield
et al. (68) (Figure 2A). They are clearly at lower activity levels
in G2 LS-CRC compared to G1, even though MTL shortening
is comparable in both subtypes (Figure 2A). Possible reasons of
this difference between G1 and G2 are addressed below. The
comparison of TMM gene sets between tumor and reference
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tissue of each LS-CRC subtype showed that the telomerase based
TMM is markedly activated both in G1 and in G2 cancers, while
the ALT-TMM shows, if at all, only weak activation in tumors.
Similar to LS-CRC, the TMM- and the cell division-related gene
sets show transcriptional activation in MSS and MSI s-CRC
compared to normal mucosa. We also observe activation of the
ALT gene set in the MSI and, to a slightly smaller degree, in the
MSS s-CRC subtypes.

Plots combining the GSZ-scores of the gene sets with that of
cell-cycle activity show marked correlation in all cases, which
suggests a high degree of mutual co-regulation, particularly
between cell cycle on one hand and TMM, apoptosis and MMR
on the other hand (Figure 2B). In other words, high cell cycle
rates obviously require also high rates of MMR and of TMM
to compensate for replication errors and telomere attrition,
respectively, which, in turn, relate to increased apoptosis rates
(69) that require feedback toward increased cell cycle activity for
net survival of the cells. On one hand, TMM, especially TEL,
represses apoptosis via telomere maintenance and probably also
by extra-telomeric functions of TERT, e.g., via modulation of
oxidative stress in mitochondria and interactions with apoptotic

pathways [see (70) and references cited therein]. On the other
hand, only a part of cells acquires immortality at telomere crisis
and proceeds to cancerogenesis while the other part becomes
apoptotic (71). Our transcriptomics data thus suggest a direct
relation between cell cycle, TMM and apoptotic regulation rates.
Note also that the data points of MSI s-CRC are systematically
shifted toward smaller values for “extension of telomeres” and
“mismatch repair” compared with MSS s-CRC, which reflects
lower activity of these processes in MSI s-CRC at the same
proliferation rate. This kind of feedback is also observed in
reference mucosa, which means that the feedback mechanism
is obviously not restricted to tumors, but is also present in
pre-neoplastic reference mucosa. Hence, TMM seems to follow
rather a continuous than a stepwise activation beyond a certain
threshold. This hypothesis is further supported by the plot of
the MTL of the LS samples as a function of cell cycle activity.
It demonstrates that MTL decays non-linearly with increased
proliferation rate and levels off into a lower critical value in
tumors (Figure 2B, part top-left). In other words, telomere
attrition due to increased cell cycle activity in tumors gets
compensated by TMM resulting in a low, “steady state” critical

FIGURE 2 | Transcriptome analysis of cellular programs associated with regulation of telomere lengths: (A) The gene-set Z-score (GSZ) profiles reflect activation of

cellular programs ensuring lengthening of telomeres, cell division, apoptosis and DNA mismatch repair in LS-tumors and s-CRC compared with reference mucosa.

LS-CRC samples are sorted with decreasing telomere length in each sample group (A, top-left), while s-CRC samples are ranked with increasing GSZ-score of the

gene set “telomere maintenance” because of lack of MTL-information. (B) Biplots of the GSZ-scores of the gene sets “extension of telomeres,” “ALT genes,”

“mismatch repair” and “regulation of apoptosis” as a function of cell cycle activity suggest a high degree of co-regulation. Note that there is virtually no gene overlap

between the gene sets. The plot of MTL as a function of cell cycle activity indicates that telomere lengths asymptotically levels off toward a lower critical MTL-limit in

the tumors with increasing cell cycle activity. This trend reflects the fact that replicative telomere loss in tumors is compensated by upregulation of “telomere length

maintenance” and “extension of telomeres” mechanisms.
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MTL-value. Overall, we find that a whole battery of cellular
processes must get up-regulated in concert with cell division rates
in order to maintain proper cell functionality, and particularly, a
minimum critical telomere length required for cell survival.

Concerted activation of TMM, mismatch-repair, cell cycle
and apoptosis related gene sets in cells with high proliferative
activity inherently imply that unsupervised analyses of gene
expression, e.g., based on correlation with MTL, usually reveal
not only canonical TMM genes, but also a large number of
genes involved in other cellular programs. To avoid these
interferences of mostly unknown background, we focus on a set
of genes involved in TMM pathways which have previously been
selected based on literature reports and reference gene expression
data (53).

Telomerase (TEL) and Alternative (ALT)

TMM Pathways in LS-CRC and s-CRC
For detailed supervised analysis on telomere maintenance
mechanisms, we make use of previously constructed TMM
pathways describing (i) the “classical” TMM that is governed

by the catalytic action of the telomerase enzyme (TEL), and
(ii) the alternative TMM (ALT) which is realized through
homologous recombination events [Supplementary Figure 7,
(53) and references cited therein]. These pathways decompose
into sub-processes that concertedly affect the activity of the
TEL- or ALT-TMMs (Figures 3A,B). Particularly, the final sink
of the TEL-pathway collects activities from the three pathway
branches related to telomerase complex components hTERT,
hTR, and dyskerin, encoded by TERT, TERC, and DKC1,
respectively, and processes leading to their activation, such as
nuclear localization and complex assembly (Figure 3A). The
ALT pathway gets activated via homologous recombination (HR)
events involved in break induced repair (BIR) at telomeres,
as well as by chromatin decompaction near the telomeres,
accumulation of other proteins involved in ALT associated
promyelocytic leukemia body (APB) formation and by TERRA
induction and telomeric instability. Verification of pathway genes
selected using independent knowledge information confirms
enrichment of genes with direct involvement in telomere biology
(see Supplementary Tables 2, 3 for details).

FIGURE 3 | Schematic representation of the TEL (A) and ALT (B) TMM pathways and their mean PSF-activation patterns averaged over the tumors of each CRC

subtype (C–H). The most relevant genes acting either as activators or suppressors are listed in each of the nodes [see (53) for details]. The color of the nodes in part

(A,B) codes the respective genes and processes throughout the paper. The TEL and ALT-TMM get activated in all CRC subtypes compared with reference mucosa.

(H) The barplot of the PSF scores of the major TMM-pathway branches reveal that TEL pathway activation in G1 LS-CRC occurs mainly through TERT and DKC1

branches. In s-CRC the TEL pathway is activated either through the DKC1 and TERT branches (MSS) or merely the TERT branch (MSI). ALT-TMM activation occurs

mainly via HR- Step 2 and HR-Step 3 and APB nodes in all tumor subtypes, with pronounced activation of Step 2 in MSI s-CRC and G1 LS-CRC.
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The activity of these pathways was estimated with the pathway
signal flow (PSF) algorithm (53, 55, 56). The algorithm considers
expression values of the genes and their mutual interactions
to estimate the pathway activity in terms of PSF-scores in
each the individual sample, as well as PSF-activities of each
individual pathway node. We find marked activation of the
TEL- and ALT- TMM pathways in G1 LS-CRC and s-CRC
compared with the respective referencemucosa for each of cancer
subtypes studied (Figures 3C–H). The PSF-scores of the final
sinks of the TEL- and ALT-TMM pathways increase in patient-
matched tumor samples compared with reference mucosa in G1
(Figures 4A,C,D), but not in G2 LS-CRC (Figure 4B). Further
analysis showed that neither of the TMM genes is significantly
differentially expressed in G2 tumors with respect to reference
mucosa (Supplementary Figure 8B). Moreover, the G2 tumors
showed relatively low cell cycle activity compared with G1 tumors
(Figure 2A). Because of these facts we, excluded G2 data from
further analysis, as their transcriptomes seem not to reflect the
TMM phenotype of G2 cancer cells. One reason for this problem
can be seen in the fact that stromal components in G2 LS-CRC
samples (45) can dominate over more subtle expression traits
inherent to cancer cells (72, 73).

TMM analysis of the s-CRC samples indicate considerable
activation of the TEL pathway in MSS and MSI s-CRC compared
to normal mucosa, while ALT-TMM gets activated specifically
in MSI s-CRC (p = 0.004, Mann-Whitney U test, Figures 4E,F).
Notably, MSI s-CRC show low variance of TEL pathway activity
compared to MSS (F test p = 0.001), suggesting existence
of a regulatory mechanism dumping variability of TEL TMM
activity in these samples (vide infra). Overall, supervised TMM
pathway analysis reveals pronounced activation of TEL-TMM in
all cancers. Moreover, it suggests specific activation of ALT-TMM
in MSI s-CRC.

Transcriptional and Mutational Patterns of

TMM Genes
An expression heatmap of the TMM genes, provided in Figure 5,
suggests their widespread activation in cancer compared to
reference mucosa. Indeed, 34% (LS-CRC) and 79% (s-CRC) of all
67 TMM genes in the TEL and ALT-pathways show significant
up-regulation (adjusted p< 0.05), while only three genes (RBM7,
SP100, and RAD52) get significantly down-regulated in at least
one of the subtypes (Figure 6, Supplementary Figure 9). Overall
19 TMM genes (32%) were commonly up-regulated in all three
cancer types and another 24 (40%) in MSS and MSI s-CRC
(Figure 6A) (see Table 1 for top genes). No gene is found down-
regulated in all three cancer subtypes at once: SP100 loses
expression in LS-CRC and MSS s-CRC, while RAD52 deactivates
in MSS and MSI s-CRC.

Analysis of somatic mutations of the tumors of all three types
doesn’t reveal highmutational recurrence of TMMgenes and also
no clear effect of mutations on gene expression in G1 LS-CRC
(Supplementary Figure 10). Interestingly, we found four genes
(FXR1, RAD50, SP100, SMC6) mutated in 50% of the G1 LS-
cancer samples, with the latter three belonging to the APB branch
of the ALT-TMM pathway. All four genes are also recurrently

mutated in MSI s-CRC in more than 40% of cases what suggests
eventually a mutation-driven mechanism of activation of the
APB-branch in G1 LS- and MSI s-CRC as well. No recurrently
mutated TMM genes were found in MSS s-CRC possibly due
to smaller mutational load compared with the hypermutated
subtypes LS-CRC and MSI s-CRC. Besides mutations, epi-
mutations, via, e.g., alterations of DNA-methylation patterns in
the promoter regions of the genes can affect their expression
level. CIMP gene signatures obtained from independent MSI s-
CRC and LS-CRC datasets don’t show pronounced differential
methylation in the promoter regions of TMM genes which makes
DNA methylation, at least not a dominant factor that shapes
TMM activity (Supplementary Figure 1).

In summary, TMM gets activated in all cancers studied due to
concerted overexpression of a large fraction of the TMM genes,
which seems not to be driven bymutations and/or aberrant DNA-
methylation of these genes. In LS-CRC andMSI s-CRC recurrent
mutations were found in a few genes of the APB branch of the
ALT pathway.

TERT and DKC1 Activate TEL-TMM
Genes of the DKC1 and TERT branches of the TEL-TMM were
commonly up-regulated in all three cancer types (Figure 6A),
which resulted in the markedly increased PSF-score along these
pathway branches (Figures 3C–H). The TERT branch involves
expression of TERT, the catalytic subunit of telomerase, as well as
factors supporting and repressing its posttranslational activation
(53, 74–76). Activating genes in this branch, first of all TERT, heat
shock protein 90 (HSP90AA1, HSP90AB1), importin 7 (IPO7)
and p23 (PTGES3) are overexpressed in cancer, while the heat
shock protein 70 (HSPA1A) and CHIP ubiquitin ligase (STUB1),
both acting as suppressors, are underexpressed (Figure 5). Note
that TERT gets up-regulated in MSI and MSS s-CRCs as well
(adjusted p < 0.05, Figure 6A). In G1 LS-CRC, it is not among
the top up-regulated DEGs (adjusted p = 0.23), however it
shows highly variant response with strong activation in two-
three patients and weak activation in four out of seven tumors
(Supplementary Figures 8, 9, Supplementary Table 5).

The genes of the DKC1 branch including DKC1, encoding
the telomerase subunit dyskerin, and the telomerase complex
assembly genes Pontin (RUVBL1) and Reptin (RUVBL2) are
consistently up-regulated in all cancer subtypes (Figures 5, 6,
Supplementary Figure 9). Expression of RUVBL1 and DKC1
progressively increases with telomere length in G1 LS- mucosa
(see the plots for these genes in Supplementary Figure 11).
Also, previous studies report overexpression of DKC1 upon
telomere shortening (77) and increased proliferation (78). The
overexpression of DKC1 and RUVBL1 in s-CRC is more
prominent in MSS, than in MSI (adjusted p < 0.05, Figure 6B),
which explains the less pronounced activation of the DKC1
branch inMSI s-CRC (Figure 3H) and presumably also the lower
variability of TEL activity in MSI compared to MSS (Figure 4).

Next, we evaluated the gene’s partial influence (PI) on pathway
and branch activity. We find that TERT and DKC1 are indeed
the most influential genes strongly affecting the activity of
the TEL sink in all CRC subtypes (Figure 7). RUVBL1 and
RUVBL2 are among the top four genes influencing the ALT
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FIGURE 4 | PSF analysis of TEL and ALT TMM pathways in LS-CRC, s-CRC, and the respective reference mucosa samples. The biplots show mutual activation

pattern of the ALT and TEL TMM pathways in the LS-CRC (A,B) and s-CRC (E,F) samples studied. The arrows point from the reference to the tumor for the

patient-matched sample pairs. They indicate consistent activation of TMM in all G1 samples but not in G2. The point sizes in (A,B) scale proportional to the

MTL-values in LS-CRC revealing that shortening of telomeres associates with TMM activation in G1 tumors. The boxplots of the TEL (C,G) and ALT PSF (D,H) scores

show activation of TEL TMM in G1 LS-CRC (C) and both s-CRC subtypes (G) on the average while ALT-TMM specifically activates in MSI s-CRC (H) and to a less

extend in G1 LS-CRC (D). Note the larger variability of ALT-TMM PSF in MSI s-CRC compared with MSS s-CRC (H).

sink, with a prominent effect of RUVBL2 specifically in LS-
CRC. At branch level, we observe subtype-specific differences
(Supplementary Figures 12, 13). In particular, the TERT branch

is affected by p21 (PTGES3) in LS-CRC, while in s-CRC cancers,
we observe high influence of heat shock proteins (HSP90AB1
and HSPA1A). In MSI s-CRC, the TERT branch is activated by
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FIGURE 5 | Heatmap of TMM gene expression of G1 LS-CRC (left) and s-CRC (right). The samples are ranked within each subtype with increasing PSF score of TEL

TMM pathway activity shown as barplots together with the MTL (A) and the ALT-PSF score above the heatmap (B). The genes in the heatmap are sorted according to

the pathway branches they belong to. The majority of genes in all TMM branches get upregulated in CRC.

RANBP2, a gene encoding a nuclear pore complex that together
with importin 7 (IPO7) activates the so called alternative pathway
of hTERT entry to the nucleus (75). Interestingly, IPO7 strongly
influences the TERT branch also in LS-CRC, suggesting that in
LS-CRC andMSI s-CRC, nuclear import of hTERT occurs via the
alternative pathway (Supplementary Figures 12, 13) (53, 75).

These results, altogether, show that the TEL pathway is
mainly activated through the TERT and DKC1 branches, by
overexpression ofDKC1 and/or TERT genes in all CRC subtypes.
Importantly, expression of DKC1 is more prominent in MSS,
than in MSI.

Activation of ALT-TMM
Expression of the majority of genes of the ALT-TMM increases
in all cancers studied compared with the reference mucosa with
a large overlap between them (Figures 5, 6). On mean PSF-level,
we found that the ALT pathway is activated in MSI s-CRC and
partly also in G1 LS-CRC, but not inMSS s-CRC, and is paralleled
by a markedly increased variability of the PSF-values of the ALT-
branch compared with that of reference mucosa (Figure 4). In all
cancer types, we noted activation of the HR branch of ALT-TMM,

especially of step 2 and 3, and also of the APB branch compared
to reference with larger amplitude in MSI compared with MSS
s-CRC (Figure 3).

Activation of ALT in MSI s-CRC is mainly due to

overexpression of RAD51 (HR Step 1), POLD3, and RFC1
(polymerase δ subunit, HR Step 2) which suggests activation of
template directed synthesis of telomeres via the RFC1-PCNA-
POLD3 axis (41) (Figure 6). In addition, the APB branch
component PML is overexpressed in MSI s-CRC. MSS s-
CRC shows also specific up-regulation of a series of other
APB-genes (MRE11A, RAD50, SMC6, and NSMCE2), and
down-regulation of SP100, which has an inhibitory effect
on ALT through sequestration of the MRN complex (NBN,
RAD50, MRE11A) from APBs (Figure 6) (79, 80). Interestingly,
SP100 is found to be the only gene significantly down-
regulated in G1 LS-CRC (Figure 6, Supplementary Figures 8A),
which suggests a common function in G1 LS- and MSS s-
CRC. Notably, SP100 differential gene expression between
CRC tumors and reference mucosa changes in concert with
transcriptional signatures of inflammation which indicates
especially a marked decay in G1 LS-CRC due to immune
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FIGURE 6 | Differential expression analysis of TMM genes of tumor-vs. -reference comparison in LS-CRC and s-CRC and of MSI-vs. -MSS comparison in s-CRC.

(A) The Venn diagram indicates that 19 out of 59 TMM genes (32%) are commonly differentially expressed between tumors of all subtypes and reference mucosa

(adjusted p < 0.05, Wald test) and another 24 DEGs (40%) overlap between MSI and MSS s-CRC. (B) The biplot of the logged fold expression changes (log FC)

between the tumors and reference mucosa of MSS and MSI s-CRC provides a more focused view on gene expression differences only between s-CRC subtypes and

shows two types of DEGs which are differentially expressed in tumors-vs. -reference a) but not between MSS and MSI s-CRC (blue circles), or b) also between both

s-CRC subtypes in either direction (red and cyan circles). DEGs with adjusted p smaller than 0.05 (Wald test) are indicated by asterisks.

escape driven tumorigenesis (45). SP100 and PML accomplish
also extra-telomeric functions related to inflammation and
immune response (81), and oxidative stress reduction (82), which
presumably overlay, or even couple with their roles in TMM
(83). High immune cells infiltration is a characteristics of MSI
s-CRC (84).

Generally, the top PI-values of the ALT-genes are markedly
smaller (range −0.05–0.05) than that of the TEL-TMM
(−0.2–0.2). This difference indicates an overall smaller
influence of single genes on the ALT-TMM in units of PSF.
In addition, we have observed stronger inhibitory effects (PI
< 0) of repressor genes in ALT, compared to TEL TMM

(Figure 7). Among them, the chromatin modifiers SUV39H1
and SUV420H2 affecting chromatin decompaction (85),
ATRX repressing ALT via the TERC/TERRA-instability
branch (11), and Holiday junction resolvases EME1 and
SLX4 that suppress telomere synthesis during ALT (19).
Among the top activators of ALT-TMM are the nuclear
receptor NR2F2 and ZNF827, with NR2F2 promoting ZNF827-
directed recruitment of the NuRD complex to telomeres (86);
BRCA1 and PML, genes involved in APB formation (87); and
POLD3, encoding the catalytic subunit of DNA polymerase
δ, involved in template directed telomere synthesis during
ALT (41).
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TABLE 1 | Top TMM genes in LS- and s-CRC according to different measuresa.

Method TMM G1 LS-CRC MSS s-CRC MSI s-CRC

DEb Gene log2 FC Gene log2 FC Gene log2 FC

TEL NHP2 1.92 DKC1 1.86 HSP90AB1 1.08

RUVBL2e 1.74 RUVBL1 1.44 HSP90AA1 1.32

DKC1 1.21 HSP90AB1 1.26 DKC1 1.16

GAR1 1.56 IPO7 1.05 RUVBL1 1.14

HSP90AB1 0.86 RUVBL2 0.99 RUVBL2 0.88

ALT SP100 −1.58 MRE11A 1.18 CHEK1 1.40

CHEK1 1.75 CHEK1 1.32 MND1 1.89

EME1 2.06 ATR 0.82 FEN1 1.24

SUV420H2 1.31 MND1 1.76 BRCA1 1.36

MND1 2.48 BRCA1 1.34 PML 1.20

PIc Gene Mean PI Gene Mean PI Gene Mean PI

TEL TERT 0.20 TERT 0.20 TERT 0.20

DKC1 0.19 DKC1 0.14 DKC1 0.13

RUVBL2 0.16 RUVBL1 0.06 RUVBL1 0.05

RUVBL1 0.07 RUVBL2 0.05 RUVBL2 0.05

GAR1 0.05 HSPA1A −0.02 HSPA1A −0.02

ALT EME1 −0.04 SUV39H1 −0.03 SUV39H1 −0.03

ATRX −0.04 NR2F2 0.03 NR2F2 0.03

SLX4 −0.03 SUV420H2 −0.02 SUV420H2 −0.03

NR2F2 0.02 ATRX −0.02 PML 0.02

BRCA1 0.02 BRCA1 0.02 ATRX −0.02

BCd Gene BC Gene BC Gene BC

TEL - - DKC1 197 PTGES3 252

- - RUVBL2 121 TERT 125

- - TERT 121 NAF1 59

- - RANBP2 120 PARN 56

- - SRRT 117 HSP90AA1 54

ALT - - BLM 178 EME1 352

- - FEN1 111 ATRX 330

- - MND1 101 HNRNPA1 194

- - BRCA1 92 RPA3 193

- - ATR 84 NR2F2 176

aThe full list of all TMM genes with differential expression values is given in Supplementary Table 1.
bMean differential expression (DE) of genes in CRC vs. reference (log2 fold change (FC), adjusted p < 0.001, Wald test).
cPartial influence (PI) of genes on TEL and ALT pathways averaged over sample groups.
dBetweenness centrality (BC) of genes in the pairwise gene expression correlation network in MSS and MSI s-CRC. Not computed for LS-CRC, because of small sample size.
eRedundantly found genes were highlighted in bold font.

Hence, ALT seems to be affected by numerous genes,
especially in MSI s-CRC, which concertedly adjust the activity of
this pathway by activating and inhibitory influences of relatively
small amplitudes. This is in line with the notion that the
regulation of ALT is more complex and involves multiple layers
of processes such as epigenetic modifications and homologous
recombination events (12, 88), while TEL may be regulated in
a simpler way by single factors, such as induction of TERT or
TERC expression. Altogether, our data indicate that TEL is the
major TMM in the CRC cases studied, while the ALT pathway
additionally activates mainly in MSI s-CRC due to the concerted

action of a number of factors, among them the HR and APB
TMM branches as the main drivers.

Gene Regulatory Networks in MSI and

MSS s-CRC
To assess the degree of co-regulation between the TMM-genes,
we constructed pairwise correlation networks of expression
values separately for MSI and MSS s-CRC (but not for LS-
CRC because of small sample size). We included also the
PSF-scores of the major sink nodes of the TEL- and ALT-
branches of the TMM-pathways to directly evaluate correlations
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FIGURE 7 | Partial influences (PI) of TMM genes on TEL and ALT pathway activities and their expression differences in units of log FC. DKC1 and TERT, as well as

RUVBL1 play strongest roles in TEL pathway activity in all cancer subtypes (A,E). The ALT TMM pathway shows less pronounced PI amplitudes: it becomes activated

by NR2F2 and BRCA1 and suppressed by chromatin modifiers (SUV420H2, SUV39H1), holiday junction proteins (SLX4, EME1) and ATRX (C,G). These observations

are mostly (with some exceptions) supported by respective gene expression changes (B,D,F,H).

between branch and gene activities (Figure 8). The degree
of interconnectivity of the nodes of the networks was then
compared between the two s-CRC types using betweenness
centrality (BC) as a measure (Figure 8). The distributions of
BC-values of both s-CRC types indicate scale-free properties
of the networks, which are characterized by a few highly
interconnected “hub”-genes and/or -nodes accounting for most
of the regulatory interactions and a large number of weakly
connected genes/nodes.

More detailed inspection revealed pronounced differences
between MSS and MSI s-CRC: most of the genes having
high BC values in MSS s-CRC belong to the TEL pathway
(e.g., TERT and DKC1), including also the TEL-sink node
while the tail of the distribution showing low BC values
accumulates ALT genes (Figure 8B). The reverse picture with
highly connected ALT- and weakly connected TEL-genes and
nodes is found for MSI (Figure 8D). In this subtype, the ALT-
genes EME1 (step 3 of HR branch) and ATRX (TERRA/Telomere
instability branch) are strongest hub regulators according to
their large BC values. This result is in line with the known
fact that the chromatin re-modeler ATRX, being responsible
for proper histone deposition at telomeres, acts as a key
regulator suppressing ALT in many cancers, where however

its deactivating mutation (as, e.g., in astrocytic gliomas) is not
mandatory by unknown reasons. However, also a few TEL genes
predominantly from the TERT- (PTGES3, TERT, HSP90AA1,
see Table 1) and TERC- (NAF1, PARN) branches are obviously
strongly involved into the network of this subtype suggesting
coupling with ALT-TMM. Note also that DKC1, which is one
of the strongest regulators in MSS s-CRC, nearly completely
lacks interconnections in the MSI network, which is in line
with the decreased activity of this gene in this subtype. Overall,
these results suggest that the TEL pathway is more prone for
activation in MSS, while ALT in MSI s-CRC according to
the “guilt by association” paradigm assuming that co-regulated
genes are likely to be involved in the activation of a biological
process (89).

We do not observe separate clustering of TEL and ALT
pathway genes in either of the subtypes, but rather a common
network with a high degree of cross-connectivity suggesting
mutually linked co-regulation of the two TMM processes.
Interestingly, a number of anti-correlated and thus mutually
repressive interactions were detected between TEL- and ALT-
networks, especially in MSI s-CRC, e.g., between ATRX (TERRA
branch) and PTGES3 (TERT branch) both showing also highest
BC-values which makes them candidates of regulatory links
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FIGURE 8 | Correlation networks of TMM gene expression and ranked node betweenness centrality (BC) in MSS (A,B) and MSI (C,D) s-CRC. The edges of the

network refer to Pearson correlation coefficients between gene expression and/or PSF-scores of the TMM nodes. It shows that the MSS network is dominated by a

large number of connections linked to the TEL-node, while the MSI network is characterized by interconnections between ALT-nodes.

between TEL- and ALT-TMM. In summary, co-regulatory
network analysis supports the notion of a more pronounced
activation of TEL inMSS, and of ALT inMSI s-CRC (Figure 4), at
the same time showing no clear-cut decoupling between the two
telomere maintenance processes, but rather their coexistence,
and co-regulation.

DISCUSSION

We have performed a combined study of telomere length and
its transcriptional regulation in selected subtypes of CRC using
bioinformatics analysis based on DNA and RNA sequencing
data and using a TMM-pathway model. Our analysis provides
insights into telomere length regulation in MMR deficient
CRCs caused either by constitutional mutations mainly of the
MLH1-gene in LS-CRC or by hypermethylation of the MLH1-
promotor in MSI s-CRC, both leading to hypermutated cancer
phenotypes (Figure 9). For comparison, we includedMSS s-CRC
cases forming a chromosomal instability (CIN) phenotype and
specimen of non-tumor mucosa.

Alterations of Telomere Length Indicate

Tumor Onset but Are Virtually Insensitive

for CRC Subtypes
We have found that all CRC-types studied had on average
shorter telomeres than non-tumor colonic mucosa tissues, in
agreement with previous reports (30, 32, 34, 61). Gene set analysis
of transcriptomic data shows that accelerated cell division
rates inversely relate to MTL until telomere length reaches a
critical lower limit, which is then maintained after activation of
TMM. This scenario is in agreement with the classical model
of telomere maintenance. Accordingly, intensive proliferation
of cancer cells leads to loss of telomeric caps, which triggers
telomere crisis, and chromosomal instability and then drives
early carcinogenesis (90–92) enabling cancer cells to bypass
telomere-induced apoptosis by activating TMM just on a level
which maintains the minimum critical telomere length required
for survival (93).

Our observation that the transcriptional level of cell cycle-
related genes is proportional to the activity of TMM genes also
in non-tumor mucosa suggests that TMM becomes continuously
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FIGURE 9 | Schematic summary of the major aspects of TMM pathways in LS-CRC and in MSI and MSS s-CRC associating with different tumor phenotypes: (A) The

transcriptional activation patterns of the TMM pathways lead to a shift from more active ALT-TMM in MSI s-CRC toward more active TEL-TMM in MSS s-CRC and

concerted activation of both TMM in LS-CRC (see also Figure 3). The top differentially regulated genes (DEGs) and top partial influencers (PI) in cancer vs. reference

tissues are depicted. The activity of the final TEL node is strongly “influenced” by TERT and DKC1 genes while ALT is under control of a series of genes exerting

activating as well as inhibiting effects of small and moderate amplitudes (see also Figure 7). Overall, TERT and DKC1 are key factors leading to activation of TEL-TMM

in all cancer subtypes studied while ALT TMM is affected first of all by APB, HR, and other subbranches of the TMM pathways. (B) The dark yellow ellipses

schematically illustrate the distribution of tumor data. Their more distant position from the coordinate origin compared with the location of mucosa reference samples

(green circles) reflects activation of TMM in the tumors (see also Figure 4). The decreased variations along the TEL and ALT axes reflect repression of these TMMs in

MSI and MSS s-CRC, respectively. (C) Stronger activation of TEL- or ALT-TMM accompanies with markedly increased interconnectivities of the correlation networks

formed between the genes and sink-nodes of these TMMs, respectively (see also Figure 8).
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activated in pre-neoplastic mucosa. This view is supported by the
continuously decreasing distribution of MTL-values in reference
mucosa without clear-cut separation with respect to MTL in
the tumors. Moreover, all LS-adenomas show MTL near the
minimum values observed in the LS-cancers. Overall these results
support the view that telomere attrition is an early event in CRC
tumorigenesis (94) and that early carcinomas arise from cells with
critically short telomeres (95).

We find that the difference between reference tissue and
tumor telomere lengths is larger in MSI s-CRC and LS-CRC,
compared to MSS s-CRC which can be rationalized by higher
telomere shortening rates in hypermutated tumors (31, 96), or,
alternatively, also by earlier diagnosis and the younger mean
age of LS- and MSI s-CRC patients, possessing on average
longer telomeres in their reference tissues. We find slightly
shorter mean MTL in MSI compared with MSS tumors, in
agreement with (96), however at low significance level (p= 0.19),
presumably due to our small sample size. Experiments on mice
have indicated that dysfunctional TEL-TMM and MMR-defects
can abolish anticancer activity of short telomeres via cell cycle
related mechanisms (97).

Telomeric Repeat Variants—Suited

Markers for TMM?
Non-canonical telomere repeat variants (TRV) were found to
cover up to 2% of the overall telomere length in the tumors and
reference tissues studied in agreement with data on other cancer
types (66). Themost abundant TRVs detected are the substitution
variant TGAGGG, previously reported in other studies (66, 98),
and a novel insertion variant TTAGGGG. The slight increase
of the relative amount of TRVs in tumors (by up to 1.5%) can
be rationalized by biased accumulation of TRVs in the proximal
telomeric regions virtually not affected by telomere attrition (98).

Only a few studies have explored the difference between
TRV generation in tumors with activated telomerase or ALT
so far (63, 66), to the best of our knowledge. They have
reported differences in TRV abundances between TEL and
ALT TMM, mostly based on cell line systems. TEL, on one
hand, is found to induce substitutions at repeat positions 1
and 3 due to improper telomerase function (63). ALT, on
the other hand, seems to induce random placements of TRV
arising from proximal and terminal regions of telomeres via
homologous recombination (63). Later, the same group has
classified ALT positive(+) from ALT negative(−) cell lines,
based on relative TRV content and relative telomere length
(66). Most of the ALT-related TRVs had lower relative TRV
content, largely attributed to longer telomeres in these cell
lines and to “proximity effect.” We found a similar trend
in MSI-vs.-MSS comparisons (Supplementary Figure 6) which
corresponds to the slightly enhanced ALT-TMM expression
signature in MSI s-CRC reported by us. Interestingly, all
the TRVs, except for TTCGGG behaved similarly, showing
reduced relative content in MSI vs. MSS s-CRC, in agreement
with ALT+ vs. ALT- differences observed in Lee et al. (66)
(Supplementary Table 3B). Overall, our TRV analysis thus
agrees with the previous reports regarding the basic trends

to distinguish ALT-vs.-TEL TMM in agreement with our
transcriptomic data.

Importantly, TRV studies based on sequencing data are still
(very) rare. Absolute quantification of TRV lengths requires
systematic methodical studies. Computational telomere and
especially TRV length estimates should be interpreted as
subjective measures with possible off-sets between the methods.
The different approaches in these methods, such as telomeric
read capture [alignment (25) vs. repeat count with differing
count thresholds (63, 66)] may lead to capturing subtelomeric
and interstitial telomeric repeats at varying degrees, which may
eventually affect absolute TRV length and relative content.
Consequently, they provide consistent quantitative results only
within each method used. TRV-estimates are expected to be
prone to systematic shifts due to varying GC-content and G-
stack formation with strong effects on hybridization chemistry
(99) and possible consequences for read-count estimates.

Overall, our results and previously reported findings
underline the need for further studies on association of TRV
composition with TMM activation across cancers in general and
in CRC subtypes in particular. Moreover, the small amplitude
of TRV changes and confounding factors affecting, e.g., age and
telomere length and their overlay with TRV-proximity effects
leaves a series of questions still unanswered.

Different Levels of Expression Analysis

Provide Consistent TMM-Related

Transcription Patterns Specific to CRC

Subtypes
Gene expression data were analyzed making use of pathway
models considering a set of 67 genes with relevance for
TEL- and ALT-TMM. Analyses have been performed at
four levels addressing different aspects of transcriptomic
regulation (Figures 9A–C): (i) Differential expression analysis,
as the most “simple” approach, was applied to estimate
expression differences of the genes between cancer and reference
mucosa and between the cancer subtypes, as independent
entities; (ii) Pathway signal flow (PSF) analysis, has been
used to estimate the activity of genes in a certain pathway
topology considering their mutual interactions; (iii) The partial
influence (PI) was applied to estimate the specific impact
of a selected gene on a certain node of the pathway; (iv)
Finally, correlation network analysis enabled us to select
co-expressed and thus potentially co-regulated genes in an
unsupervised fashion, i.e., without assuming a predefined wiring
between them.

In all these analyses, we separately considered the TEL- and
ALT-TMM in order to compare their particular impact on each
of the CRC subtypes. For this purpose, we generated biplots
of their pathway activities (Figure 9B) and provided TEL-and
ALT-specific lists of top genes in units of differential expression,
PSF, PI, and BC, respectively (Figures 9A–C and Table 1). This
parallel view on both mechanisms was motivated by recent
research indicating that categorization of tumors into either TEL-
or ALT-positive ones appears to be imprecise. In other words,
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tumors do not necessarily classify into exclusively a single TMM-
type. Particularly, TEL- and ALT- TMM can coexist either in
different cancer cell sub-populations of the same tumor (12)
or within the same cell (15). Moreover, TEL- and ALT-TMM
are capable of switching from one mechanism to the other
one during different stages of tumor development or upon
treatment (15).

Our results support this view. We find concordant activation
of both TMM pathways in all the CRC subtypes studied
compared with the reference mucosa systems, showing no clear-
cut separation between samples in terms of either TEL or ALT
pathway activation (Figure 9). TEL seems to be the dominating
TMM in all analyzed CRC subtypes. However, the branches
leading to activation of hTERT (TERT branch) and dyskerin
(DKC1 branch) contribute differently with distinctly stronger
mean contribution of DKC1 in MSS compared with MSI s-CRC.
In turn, ALT-TMM shows stronger effects in MSI compared
to MSS s-CRC; mainly via APB formation (APB branch) and
homologous recombination events (HR branch) (Figures 9A,B).
Regulation of ALT pathway is more complex than TEL and
involves multiple events. Strikingly, the two TMMs show strong
co-regulation of member genes.

Notably, higher mean activity of ALT-TMM in MSI CRCs
is accompanied by higher variability of the ALT-PSF values in
these samples and stronger co-regulations between the ALT-
genes in the gene network. Such co-regulations are indicated
by higher network connectivity in these CRCs compared with
MSS s-CRC, where the relations between these characteristics are
reversed. These results stand for a possible trend of increased
sensitivity for ALT in MSI and of TEL in MSS s-CRC, which,
in turn, can reflect repressive feedback mechanisms between
TEL- and ALT-TMM presumably mediated by anti-correlated
links detected in network analysis especially in MSI s-CRC. On
the other hand, co-activation of TEL and ALT in the tumors,
strong co-regulation between the TEL- and ALT-TMM genes
and positive correlation of both TMM with cell cycle activity
and other cellular processes, indicate that mutual activation
of TEL and ALT-TMM is possible in most of the cancer
samples. All together, these results support the notion of a
TEL-ALT continuum of expression and pathway activation
patterns, where both pathways are concertedly regulated in a
fine interplay of activating or mutually repressive interactions.
This kind of regulation eventually leads to a situation, where
TEL and ALT can co-exist in the same tumor, although at
different activity levels. These levels can be specific for each
tumor subtype.

TMM Genes as Markers of Telomere

Attrition and Limitations of the Study
LS-CRC (G1) and MSI s-CRC reveal an increased mutational
load compared with MSS s-CRC including the TMM genes
(45). However, only few of them were mutated on moderate
recurrence levels of <50% mainly in the APB branch of ALT-
TMM (Supplementary Figure 10). Hence, mutation markers
seem not to be suited for judging tumor development, subtypes
and/or TMM in CRC. This contrasts to other cancer types, such

as gliomas that show strong association between astrocytic and
oligodendroglial subtypes and telomere biology, which is driven
mainly by mutations of the ATRX and TERT genes, respectively
(100), as well as aggressive metastatic melanomas (101) and other
cancers [see (102) and references cited therein] showing a high
percentage of TERT mutations.

According to our results, RNA-seq data has the promise to
offer an alternative and independent option for judging the
telomere status of CRC. Fortunately, they are available in many
molecular cancer studies. Frequently, TERT is used as a gene
expression measure of TMM activity, e.g., to estimate tumor
progression in CRC [see (28–30, 30–33) and references cited
therein]. Here, we found significant differential expression of
TERT between s-CRC tumors and reference. However, TERT
showed by far not the largest effect (position 23, 29, and 31 in
the ranked lists of 67 DEGs in MSS, MSI and LS, respectively;
see Supplementary Table 5). Because of multiple extra-telomeric
functions of TERT, by TERT-bypassing mechanisms of tumor
development (103) and because of subtle epigenetic regulatory
mechanisms of TERT activity (104). Moreover, whether TERT
expression translates directly to telomerase activity is unclear
because only the full-length transcript (as opposed to known
isoforms) has been found to activate telomerase (105, 106).
Thus, the transcriptional level of this gene may not serve as a
stable indicator of TEL pathway activity. We found that other
transcripts, such as RUVBL2 (telomerase complex assembly),
DKC1 (telomerase subunit) and also HSP90AB1 (TERT nuclear
import), show much stronger and more consistent effects
in our TEL-TMM data making them suited candidates for
estimating TEL-activity (Table 1). Interestingly, DKC1 (and
partly also RUVBL2) overexpression associates consistently with
unfavorable prognosis in renal, liver, head-neck, endometrial and
skin (melanoma) cancers (107, 108). We expect these transcripts
to function as potential markers with prognostic impact also
in CRC.

The partial influence (PI) of TERT on TEL pathway activity
is highest in all cancer subtypes in contrast to TERT differential
expression, presumably due to the stabilizing effect of the
interaction partners of TERT in its local pathway topology.
TERT also occupies top positions in the betweenness centrality
rankings. These two measures together show that consideration
of pathway topology and/or degree of co-regulation will increase
the impact of TERT as TEL-TMM marker. Please, recall also
that MTL levels off at shortest boundary values in cancers,
which makes it virtually insensitive to cancer progression, while
expression of many TEL-genes is still considerably variable,
thus making them potentially more sensitive markers for cancer
development (Supplementary Figure 11).

Limitations of our study are linked to the relative small
sample size, which decreases resolution especially of the MTL
and TRV data obtained from whole genome DNA sequencing.
On the other hand, our dataset of matched tumor-reference
and combined whole genome DNA-seq and RNS-seq of LS-
CRC is the only presently available data of its kind, to our
best knowledge. So it represents a unique data source of this
relatively rare disease (about 3% of bowel cancers). It is well-
characterized in terms of subtypes, somatic and constitutional
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mutations and transcriptional states (45) and, it is reviewed
as state of the art study addressing molecular heterogeneity
of LS-CRC and providing novel insights into immune escape
mechanisms of carcigogenesis of LS-CRC (46). The latter review
emphasizes the need for identification of suitable molecular
markers for describing tumor development and heter6ogeneity
in these cancer types (46). The present study, despite its relative
small size, provides a potential starting point for the search of
such markers with focus on telomere biology. Please note also,
that sub-stratification into molecular subtypes is an intrinsic
problem in molecular cancer studies because they naturally
reduce sample size in the strata. On the other hand, G1
and G2 behave similarly concerning telomere lengths what, in
turn, increases significance in a combined view on the data
(Supplementary Table 4A).

The supervised pathway approach restricts our results to
a limited number of TMM genes selected and curated based
on literature knowledge. Our conclusions regarding TEL/ALT-
TMM activation thus refer to expression data and the pathway
model applied. In a general sense they are not definite, but
are indications of trends that have to be further validation by
independent experimental approaches. Because of pleiotropic
roles of many of these genes, e.g., related to extra-telomeric
cellular functions accompanying telomere shortening, their
particular function for TMM remains ambiguous in many
cases and requires further studies. Selection, specification
and extension of genes considered and adjustment of their
interactions in terms of pathway topologies, together with
systematic study of other cancer entities, are expected to
improve the functional understanding of TMM and its impact
in the context of tumor biology. Overall these analyses
illustrate the general problem, namely that there is no clear-
cut separation between “telomere biology” and other cellular
functions. Pathways in general (i.e., not only our TMM
pathways), represent models which consider direct interactions
between genes and proteins on one hand but on the other
hand focus on a definite “cutout” of cellular function which
neglects relations to functionalities outside this “window.”
This is their strength on one hand, but also their weakness.
Such pathway models have been proven in many applications
because of their focused view, which allows description of
selected biological processes by means of definite ingredients.
Our approach is only a first step in this direction, which
needs improvement in future work. On the other hand,
application of TMM-pathway models to “real world” data
such as CRC omics data as done here are needed for
such improvements.

CONCLUSIONS

The present study demonstrated that genome and transcriptome
sequencing can provide a detailed picture of alterations of
telomere length, sequence composition and of gene expression
changes related to transcriptional regulation of telomere
maintenance in selected CRC subtypes. Thereby, gene expression
data can provide an alternative to genomic data and/or
complementary measure of the telomere status in tumors.
Consideration of interaction topologies in pathway analysis
provided additional information about the mechanisms of
telomere length regulation in addition to standard gene
expression analysis. Our study thus provides an example how
omics data can support understanding of selected aspects of
tumor biology.
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Background/Aims: Leiomyosarcoma (LMS) is a tumor derived from malignant
mesenchymal tissue associated with poor prognosis. Determining potential prognostic
markers for LMS can provide clues for early diagnosis, recurrence, and treatment.

Methods: RNA sequence data and clinical features of 103 LMS were obtained from the
Cancer Genome Atlas (TCGA) database. Application Weighted Gene Co-Expression
Network Analysis (WGCNA) was used to construct a free-scale gene co-expression
network, to study the interrelationship between its potential modules and clinical features,
and to identify hub genes in the module. The hub gene function was verified by an
external database.

Results: Twenty-four co-expression modules were constructed using WGCNA. A dark
red co-expression module was found to be significantly associated with disease
recurrence. Functional enrichment analysis and GEPIA and ONCOMINE database
analyses demonstrated that hub genes CDK4, CCT2, and MGAT1 may play an
important role in LMS recurrence.

Conclusion: Our study constructed an LMS co-expressing gene module and identified
prognostic markers for LMS recurrence detection and treatment.

Keywords: leiomyosarcoma, prognosis, weighted gene co-expression network analysis (WGCNA),
TCGA, recurrence
INTRODUCTION

Leiomyosarcoma (LMS) is a highly malignant mesenchymal-derived tumor with varying degrees of
smooth muscle differentiation, accounting for approximately 10% of soft tissue sarcomas (Noujaim
et al., 2015; Pautier et al., 2015). These tumors occur mainly in adults in any body location and are
associated with very high mortality. Leiomyosarcoma is divided into a variety of pathological
subtypes according to cell morphology and molecular atypia, including typical leiomyosarcoma,
epithelioid leiomyosarcoma, and pleomorphic leiomyosarcoma. Because this type of tumor is prone
to recurrence and metastasis, it often has invasive clinical characteristics and poor prognosis. The 5-
year recurrence rate is less than 40% (Serrano and George, 2013). Although many genes and
signaling pathways have been identified to improve detection and treatment of LMS, surgical
removal of tumors is currently the most effective way to treat leiomyosarcoma. Poor prognosis of
February 2020 | Volume 10 | Article 14081103
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LMS is related to a higher degree of malignancy, larger tumor
volume, and deeper tumor site (Hayashi et al., 2010; Ognjanovic
et al., 2012; Croce and Chibon, 2015). Therefore, identification of
new biomarkers to assess malignancy and prognosis of LMS
is essential.

Weighted correlation network analysis (WGCNA) is a
systematic biological approach used to describe the pattern of
gene association between different samples. WGCNA analysis
uses correlation coefficient weights to make the connections
between genes in the network obey scale-free networks, which
is more biologically significant (Langfelder and Horvath, 2008).
WGCNA can be used to identify highly synergistically altered
gene sets and identify candidate biomarker genes or therapeutic
targets based on the association of gene set connectivity and
phenotype (Radulescu et al., 2018). Compared to genes that only
focus on differential expression, WGCNA uses thousands of the
most variable genes or all of the genes to identify the set of genes
of interest and conducts a significant association analysis with
the phenotype. WGCNA may make full use of information, and
to convert thousands of genes and phenotypes into several gene
sets and phenotypes, eliminating the need for multiple
hypothesis testing (Zuo et al., 2018).

In this study, we constructed a co-expression network of LMS
through WGCNA to systematically analyze the pathogenesis of
LMS and tumorigenesis. Our goal is to study new and key
biomarkers and to develop a better understanding of the
molecular mechanisms of LMS to provide new strategies for
diagnosis and treatment of diseases.
MATERIALS AND METHODS

Data Collection
The mRNA sequence data and corresponding clinical traits of
LMS were downloaded from the TCGA database (https://tcga-
data.nci.nih.gov/tcga/), which contained 103 tumor tissues. Gene
symbol annotation information was used to match probes with
corresponding genes. TCGA was publicly available and in an
open access platforms. As a result, ethics committee approval
was not required.

Co-Expression Network Construction With
WGCNA and Target Prediction
The WGCNA algorithm runs in the R software package (http://
www.r-project.org/) to assess the importance of genes and their
associated modules by calculation the correlation coefficient
between any two genes (Person Coefficient). To measure
whether two genes have similar expression patterns, screening
is performed and values above a pre-determined threshold are
considered similar. WGCNA analysis uses the correlation
coefficient weighting value, which is the Nth power of the gene
correlation coefficient, so that the connections between the genes
in the network obey the scale-free networks, which is more
biologically significant. A hierarchical clustering tree was
constructed based on the weighted correlation coefficients of
genes. Genes were classified according to expression patterns,
Frontiers in Genetics | www.frontiersin.org 2104
and genes with similar patterns were classified into one module.
Different branches of the cluster tree represent different gene
modules, and different colors represent different modules. This
strategy allows for tens of thousands of genes can be divided into
dozens of modules based on gene expression patterns, which is a
process of extracting information. After weighted correlation
analysis, we predicted target genes using a co-expression network
produced using Cytoscape 3.7.0 software.

Construct Module-Trait Relationships of
LMS
Gene modules are linked to the traits of the study to screen for
key gene modules. We used “module eigenvalues” to represent
the combined value of the gene set expression of the module.
Therefore, each module can be associated with a trait by the
eigenvector of the module and the correlation coefficient of the
phenotype or the saliency P value of the module. In addition, the
modules do not exist in isolation, but are related to each other.
Using a network heat map, the connections between the trait
association module and other modules can be visualized.

Functional Enrichment Analysis of Co-
Expression Module
To explore the function of genes in key co-expression modules,
we uploaded the data to DAVID for analysis. DAVID is an
online database (https://david.ncifcrf.gov/) (Tang et al., 2017;
Nagy et al., 2018). It is a classic gene enrichment analysis website,
mainly used for differential gene function and pathway
enrichment analysis.

Identification of Hub Genes In Key Module
After screening the key gene modules associated with the traits,
the gene co-expression network map was drawn based on the
relationships of the genes within the module. This network
diagram belongs to the scale-free network. Mathematically, for
a network graph, each node is given the concept of a degree, and
the degree of a point refers to the number of edges associated
with that point. In a scale-free network visualized by Cytoscape
(3.7.0), the degree of a few nodes is significantly higher than the
average point, and these points become hubs. A small number of
hubs are associatedwith other nodes to form the entire network. The
gene in the gene module that regulates the network center is the hub
gene.At last, we decided the key genes throughK-Msurvival analysis
in the GEPIA database (http://gepia.cancer-pku.cn/).

Validation of the Key Genes
We validated the function of candidate genes through a public
databases, the ONCOMINE database (https://www.oncomine.
org/) (Tang et al., 2017). Then, the overall survival and event-free
survival analysis of hub genes were performed using Kaplan-
Meier curve in Kaplan Meier plotter (https://kmplot.com/
analysis/index.php?p=background) (Nagy et al., 2018) and
LOGpc (Long-term Outcome and Gene Expression Profiling
Database of pan-cancers) (http://bioinfo.henu.edu.cn/
DatabaseList.jsp) (Wang et al., 2019). Finally, we performed
multi-factor COX analysis on three key genes, established a
February 2020 | Volume 10 | Article 1408
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r i sk model , and per formed surv iva l ana lys i s and
model identification.
RESULTS

Data Preprocessing
Gene annotation of gene expression data obtained from TCGA,
matching probes and genes, removal of probes matching
multiple genes, and gene annotation of the genes were
matched by multiple probes using the median value as the
final expression value. A total of 20,098 genes were identified.
We calculated the variance of each gene and then selected the top
25% (5,025) of genes with the largest variance for WGCNA and
sample cluster analysis (Figure 1).

Construction of Co-Expression Modules
A gene co-expression network was constructed using weighted
expression correlation. The soft threshold power value was used
for initial screening. When the soft threshold power was equal to
4, the degree of independence reached 0.9 and the average
connectivity was higher (Figure 1). Therefore, based on the
Frontiers in Genetics | www.frontiersin.org 3105
weighted correlation, the WGCNA package automatically
constructed a co-expression network, performed hierarchical
clustering analysis, and segmented the clustered results
according to the predetermined thresholds to obtain different
gene modules. Of all the genes in the LMS network, 4,255 were
assigned to 24 modules (Table 1), and the remaining 770 genes
were assigned to the same “gray” module (Figure 2) and were
included in the heat map. Branches of cluster trees and different
color represent different clustering modules.

Correlation Between Modules and
Identification of Key Modules
We calculated the eigengenes in-modules connectivity and
clustered them to study the co-expression relationships of all
modules. The results showed that each module was independent
of the others, demonstrating the high degree of independence
between modules and the relative independence of gene
expression in each module. A heat map drawn from adjacent
relationships showed similar results. The dark module ME was
highly correlated with recurrence compared to other modules,
suggesting that the dark module may play a key role in disease
recurrence (Figures 3 and 4).
FIGURE 1 | Clustering of samples and determination of soft-thresholding power. (A) The clustering was based on the expression data of LMS, which contained 103
LMS tumor tissue. The top 25% genes with the highest SD values were used for the analysis by WGCNA. (B) Analysis if the scale free fit index for various
softthresholding powers (b). (C) Analysis of the mean connectivity of various soft-thresholding powers. In all, 4 was the most fit power value.
February 2020 | Volume 10 | Article 1408
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Function Enrichment Analysis
To clarify the gene functions in the modules, we performed gene
ontology enrichment analysis of the identified genes using
DAVID, and explored combination of genes related to
biological processes (BP), molecular functions (MF), and
cellular components (CC) in key modules. (Details of GO
enrichment are given in Table 2). GO analysis showed that
these genes are involved in the components of the cell, embryo
development, and transcription, and play an important role in the
biological processes of cell division, signal transduction, and
transcriptional regulation. The result of functional enrichment
analysis showed that genes associated with biology processes were
mainly enriched in GO:0060070 (canonical Wnt signaling
pathway), GO:0009636 (response to toxic substance),
GO:0060349 (bone morphogenesis), GO:0001657 (ureteric bud
development), GO:0045892 (negative regulation of transcription,
DNA-templated). Genes associated with Molecular Function
were enriched in in GO:0043237 (laminin-1 binding),
GO:0008201 (heparin binding), GO:0001948 (glycoprotein
binding), GO:0005578 (proteinaceous extracellular matrix), and
GO:0005737 (cytoplasm). According to the Kyoto Gene and
Genomic Encyclopedia (KEGG) pathway analysis, the dark red
module genes were mainly enriched in the p53 signaling pathway
and the bladder cancer signaling pathway (Table 3 and Figure 4).
FIGURE 2 | Construction of co-expression modules by WGCNA package in R. (A) The cluster dendrogram of module eigengenes. (B) The cluster dendrogram of
genes. Each branch in the figure represents one gene, and every color below represents one co-expression module.
TABLE 1 | Co-expressions modules.

Module color Genes

Black 144
Blue 559
Brown 412
Cyan 112
Dark green 63
Dark gray 45
Dark red 68
Dark turquoise 58
Green 221
Green yellow 124
Gray 770
Gray 60 89
Light cyan 93
Light green 82
Light yellow 74
Magenta 132
Midnight blue 105
Pink 134
Purple 131
Red 151
Royal blue 68
Salmon 113
Tan 115
Turquoise 816
Yellow 346
February 2020 | Volume 10 | Article 1408
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Practical ClueGo was used for visual analysis of KEGG pathway
(Bindea et al., 2013).

Identification of Hub Genes
We used Cytoscape software to visualize the dark red module
network to build the module and calculate connectivity within
the module (Shannon et al., 2003). Genes with high connectivity
were identified as hub genes based on connectivity within the
module. Genes with significant survival results were selected and
sorted by node degree (Figure 5). Twelve genes in the selected
modules were considered hub genes: TSFM, AATF, BBS10,
CDK4, CTDSP2, PLAGL1, DYRK2, FGFR3, CNOT2,
METTL1, CCT2, and MGAT1. These hub genes were selected
using cytoHubba (Chin et al., 2014). We used GEPIA (http://
gepia.cancer-pku.cn/) to perform survival analysis on these hub
genes to determine their biological significance (Tang et al.,
2017). GEPIA was used to verify the expression characteristics
Frontiers in Genetics | www.frontiersin.org 5107
of the twelve genes selected. Among these genes, CDK4, CCT2,
and MGAT1 were associated with overall survival and
recurrence-free survival, and the expression levels of these
three genes were significantly higher in tumor tissues
(Figure 6). Therefore, these genes were identified as key genes.

Validation of Key Genes
Using the data from ONCOMINE database (https://www.
oncomine.org/), we noted that leiomyosarcoma patients who
had an association of genomic alterations in CDK4,CCT2, and
MGAT1 (Figure 7). The expression of the three key genes in the
dark red module positively correlated with the disease state.
Oncomine analysis of cancer vs. normal tissue showed that cdk4,
cct2, and MGAT1 were significantly overexpressed in
leiomyosarcoma in the different datasets (Figure 8) (Quade et
al., 2004; Detwiller et al., 2005; Nakayama et al., 2007; Barretina
et al., 2010; Chibon et al., 2010). Using the data from Kaplan
FIGURE 3 | (A) interaction relationship analysis of co-expression genes. Different colors of horizontal axis and vertical axis represent different modules. The
brightness of yellow in the middle represents the degree of connectivity of different modules. There was no significant difference in interactions among different
modules, indicating a high-scale independence degree among these modules. (B) hierarchical clustering of module hub genes that summarize the modules yielded in
the clustering analysis and heat map plot of the adjacencies in the hub gene network. (C) heat map of the correlation between module eigengenes and the clinical
traits of LMS. The dark red module was the most positively correlated with recurrence of disease.
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Meier plotter and LOGpc, we noted that leiomyosarcoma
patients who had an association of genomic alterations in
CDK4, CCT2, and MGAT1 showed reductions in overall and
disease-free survival. However, those observations were
statistically significant for overall survival time and no
statistically significant for event-free survival (Figure 9).
Finally, through multi-factor COX analysis of the three genes,
we obtained the risk prediction formula, risk score = CDK4*
0.00848 + MAGT1*(−0.01012) (Table 4). The model is analyzed
for survival and the ROC value is calculated for verification
(Figure 10).
DISCUSSION

Leiomyosarcoma, which occurs in smooth muscle connective
tissue, accounts for ten percent of all soft tissue sarcomas. LMS is
malignant and exhibits a high degree of invasiveness, high
FIGURE 4 | Go and KEGG enrichment analysis of genes in dark red module.
TABLE 2 | GO enrichment analysis of genes in co-expression modules.

Category ID Term Count P value

BP GO:0060070 Canonical Wnt signaling
pathway

4 3.4092E-03

BP GO:0009636 Response to toxic substance 4 3.6460E-03
BP GO:0060349 Bone morphogenesis 3 4.2975E-03
BP GO:0001657 Ureteric bud development 3 8.3898E-03
BP GO:0045892 Negative regulation of

transcription, DNA-templated
7 9.3260E-03

BP GO:0043524 Negative regulation of neuron
apoptotic process

4 1.2264E-02

BP GO:0006977 DNA damage response 3 2.1347E-02
BP GO:0071300 Cellular response to retinoic

acid
3 2.6763E-02

BP GO:0008284 Positive regulation of cell
proliferation

6 2.6878E-02

BP GO:0016055 Wnt signaling pathway 4 3.0529E-02
BP GO:0010955 Negative regulation of protein

processing
2 3.9253E-02

BP GO:0001829 Trophectodermal cell
differentiation

2 4.6225E-02

BP GO:0051131 Chaperone-mediated protein
complex assembly

2 4.6225E-02

BP GO:0030336 Negative regulation of cell
migration

3 4.6720E-02

BP GO:0014912 Negative regulation of smooth
muscle cell migration

2 4.9693E-02

CC GO:0005578 proteinaceous extracellular
matrix

7 3.8200E-04

CC GO:0005737 Cytoplasm 32 8.7000E-04
CC GO:0016020 Membrane 16 9.3874E-03
CC GO:0030666 Endocytic vesicle membrane 3 2.3207E-02
CC GO:0005794 Golgi apparatus 8 3.3526E-02
MF GO:0005515 Protein binding 44 1.0017E-02
MF GO:0043237 Laminin-1 binding 2 2.2536E-02
MF GO:0008201 heparin binding 4 2.2845E-02
MF GO:0001948 Glycoprotein binding 3 2.5251E-02
TABLE 3 | KEGG analysis of genes in co-expression modules.

Term Count P value Genes

hsa05219: Bladder
cancer

3 0.009534445 FGFR3, MDM2, CDK4

hsa05200: Pathways in
cancer

6 0.01219952 WNT10B, FGFR3, BIRC7,
MDM2, WNT11, CDK4

hsa04550: Signaling
pathways regulating
pluripotency of stem cells

4 0.013674563 WNT10B, FGFR3, WNT11,
KLF4

hsa04115: p53 signaling
pathway

3 0.02427143 CCND3, MDM2, CDK4

hsa05205: Proteoglycans
in cancer

4 0.034788315 WNT10B, SDC1, MDM2,
WNT11
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FIGURE 6 | Survival analysis of 12 hub genes identified by WGCNA.
FIGURE 5 | (A) Scatter plot of module eigengenes in the dark red module. (B) The hub genes in the dark red module and node size is correlated with connectivity
of the gene by degree. Hubgene is represented as a bright yellow node in (B).
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FIGURE 8 | Oncomine analysis of cancer vs. normal tissue of CDK4,CCT2, and MAGT1. Heat maps of CDK4, CCT2, and MGAT1 gene expression in clinical
sarcoma samples vs. normal tissues.
FIGURE 7 | Expression profiles and analysis of cancer vs. normal tissue for CDK4, CCT2, and MAGT1 in human cancers analyzed using Oncomine.
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recurrence rate, and high mortality (George et al., 2018). LMS
can occur in any location of the body such as in the extremities,
small intestine, or retroperitoneal space. As LMS is most
common in the uterus, it can be classified as uterine LMS
(ULMS) or non-uterine LMS (NULMS) (Guo et al., 2015).
ULMS is highly aggressive and is not sensit ive to
chemotherapy and radiation therapy. Surgical resection is
currently the best treatment. The median survival of
individuals with NULMS and ULMS is less than 5 years
(Eriksson, 2010). In-depth study of the biological behavior and
potential molecular mechanisms of LMS is of great significance
for improving the efficacy and prognosis of LMS (Pautier et al.,
2015; Schoffski et al., 2016; Mir et al., 2016; Tawbi et al., 2017;
Gronchi et al., 2017).

In this study, we assessed gene expression to identify potential
biomarkers for LMS using WGCNA. Twenty-four co-expression
modules were constructed for 5,025 genes from 103 human LMS
samples. Because WGCNA focuses on the association between
co-expression modules and clinical features, the results are more
reliable and biologically meaningful. Genes that are functionally
related to each other are clustered together in the same module.
Thus, WGCNA can identify biologically relevant modules and
central genes that can ultimately become biomarkers for
detection or treatment. We found that the dark red module
Frontiers in Genetics | www.frontiersin.org 9111
was most significantly associated with disease recurrence. Using
a total of 68 genes in the dark red module were screened. GO and
KEGG analyses showed that these genes are involved in the
components of the cell, embryo development, and transcription,
and play an important role in the biological processes of cell
division, signal transduction, and transcriptional regulation. We
believe that the dark red module was the most important module
for characterization of the LMS recurrence mechanism.

Further analysis of the dark red module showed that three
genes (CDK4, CCT2, and MGAT1) significantly correlated with
survival analysis and were identified as hub genes. The hub genes
were further validated in GEPIA and ONCOMINE. Some studies
have reported that these three key genes are cancer-associated
genes involved in mitotic regulation in cancer cells and
inhibition of cell proliferation, which may contribute to
tumorigenesis and malignant phenotype. CDK4 is an
important effector of the P53 signaling pathway. CDK4
encodes a member of the Ser/Thr protein kinase family, which
is important for cell cycle G1 progression. Mutations of this gene
and its related proteins, including D-type cyclins, p16 (INK4a),
and retinoblastoma gene product (Rb), have been found to be
involved in tumorigenesis in a variety of cancers. Multiple
polyadenylation sites of this gene have been reported (O'Leary
et al., 2016). Increased expression of CDK4 is associated with
FIGURE 9 | (A) Overall survival analyses of key genes were performed using Kaplan-Meier plotter (B) Event-free survival of key genes were performed using LOGpc.
(P < 0.05 was considered statistically significant.)
TABLE 4 | COX analysis of key genes.

id Coef HR HR.95L HR.95H P value

CDK4 0.008487993 1.008524118 1.000962917 1.016142437 0.027061684
MGAT1 –0.010120172 0.989930865 0.977568773 1.002449286 0.114468861
February 2020 | Volume 10
 | Article 1408

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Yang et al. Prognostic Genes Identification in Leiomyosarcoma
advanced soft tissue sarcomas and is often observed in many
types of cancer. This may be due to an imbalance in the cyclin D-
CDK4/6-INK4-Rb pathway, leading increased abnormal cell
proliferation (Lucchesi et al., 2018). The expression of CDK4
in tumor tissues is specific and can provide a sensitive marker for
diagnosis of low-grade osteosarcoma (Dujardin et al., 2011).
Targeted therapy has recently received increased attention.
Inhibitors of CDK4/6 have been shown to have significant
activity against several solid tumors, increase intracellular
double-stranded RNA levels, and activate endogenous
retroviral elements to inhibit tumor cell expression (Goel et al.,
2017). Due to the importance of CDK4/6 activity in
tumorigenesis, targeted inhibitors of the CDK4/6 gene have
become new candidates for tumor therapy. The CDK4
inhibitor letrozole has been used to successfully treat breast
cancer and has recently entered clinical trials for treatment of
various diseases (Klein et al., 2018). CCT2 is a member of a
chaperone protein containing the TCP1 complex (CCT), also
known as the TCP1 loop complex (TRiC). It is a macromolecular
complex of 16 subunits forming a back-to-back bicyclic
structure, each ring containing eight different subunits a, b, g,
d, ϵ, z, h, and q (CCT1–8). This gene has been found to encode
two different transcript variants. CCT has the function of
assisting the correct folding of proteins, and cytoskeletal
proteins and cell cycle regulators are the most important
substrates. Blocking CCT activity can cause significant
morphological changes and cell cycle arrest. Previous studies
Frontiers in Genetics | www.frontiersin.org 10112
have found that CT2 is overexpressed in some tumors, and CCT2
expression in intestinal and hepatocarcinoma tissues is
significantly higher than that in adjacent tissues, and its
expression is highly correlated with PCNA, suggesting that
CCT2 may be involved in cell proliferation. The positive
expression of CCT2 in gallbladder carcinoma is associated with
TNM stage and lymph node metastasis. In addition, the
expression of CCT2 is associated with histological grade,
suggesting that it is associated with tumor differentiation and
progression. Recent studies have found that CCT2 is critical for
the survival of breast cancer patients, and is significantly higher
in hepatocellular carcinoma, colon cancer, extrahepatic
cholangiocarcinoma, gallbladder cancer, and gastric cancer
than benign lesions and normal tissues. However, how CCT2
affects HCC proliferation and progression remains to be
explored. In conclusion, CCT2 is closely related to the
development of HCC, which provides a theoretical basis for
CCT2 to become a target for HCC molecular targeted therapy
(Amit et al., 2010; Zou et al., 2013; Guest et al., 2015; Pavel et al.,
2016; Minegishi et al., 2018). In our study, positive expression of
CCT2 was negatively correlated with survival time, and was an
independent risk factor for prognosis of LMS. The main function
of monoacylglycerol acyltransferase (MGAT) is to catalyze the
synthesis of diacylglycerol by monoacylglycerol. Currently, three
genes encoding MGAT have been found, namely MGAT1,
MGAT2, and MGAT3. MGAT is an important gene for the
synthesis of diacylglycerol during fat deposition, and is closely
FIGURE 10 | COX analysis of the key genes. (A) Survival analysis of high risk and low risk. (B) The hazard ratio of key genes of CDK4 and MGAT1. (C) ROC curve
and AUC value. (D) Risk score of the patients.
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related to the absorption of fat in the intestine, the synthesis and
storage of lipids, and intracellular signal transduction. An
important function of MGAT1 is an important target of the
Wnt/b-catenin signal. The protein has a characteristic type II
transmembrane protein characteristic and plays an important
role in the early development of animal embryos, organ
formation, tissue regeneration, and other physiological
processes, and is considered to be essential for normal
embryogenesis. Stable overexpression of the MGAT1 gene in
the Huh7 cell line resulted in a significant increase in tumor
growth rate in severe combined immunodeficiency (SCID) mice.
Down-regulation of MGAT1 expression in the liver can
significantly reduce hepatic steatosis in mice, while reducing
body weight and increasing glucose tolerance (Lee et al., 2012;
Akiva and Birgul Iyison, 2018).

The results showed that the expression of CDK4, CCT2, and
MGAT1 in LMS tissues was significantly higher than that in
adjacent tissues and an important member of the cancer
signaling pathway. Clinical data from the GEPIA dataset
confirms that CDK4, CCT2, and MGAT1 expression levels are
highly correlated with prognosis, and that up-regulation may
lead to a significant reduction in survival time in patients with
soft tissue sarcoma. At last, the result of cox analysis suggests that
CDK4 and MGAT1 may play an important role in the
development of LMS and can be used as predictors of LMS
patients as a post-evaluation indicator. A recent large cohort
study of 99 patients with LMS found that CDK4 may be a key
Frontiers in Genetics | www.frontiersin.org 11113
gene for leiomyosarcoma recurrence, and palbociclib, an
inhibitor of CDK4, may provide a new option for targeted
therapy in patients with LMS (Bohm et al., 2019). However,
LMS tumorigenesis is not well understood, and further
evaluation of large sample clinical data is critical.

We studied co-expressed gene modules that were highly
correlated with tumor recurrence, and determination of hub
genes in these module helped to determine the major functions
of the genes in these modules. The study of these three central
genes may help us to understand the molecular mechanisms of
tumorigenesis and these genes may represents new diagnostic
marker and therapeutic target for LMS.
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The term “big data” refers broadly to large volumes of data, often gathered from several

sources, that are then analyzed, for example, for predictive analytics. Combining and

mining genetic data from varied sources including clinical genetic testing, for example,

electronic health records, what might be termed as “recreational” genetic testing such as

ancestry testing, as well as research studies, provide one type of “big data.” Challenges

and cautions in analyzing big data include recognizing the lack of systematic collection

of the source data, the variety of assay technologies used, the potential variation in

classification and interpretation of genetic variants. While advanced technologies such

as microarrays and, more recently, next-generation sequencing, that enable testing

an individual’s DNA for thousands of genes and variants simultaneously are briefly

discussed, attention is focused more closely on challenges to analysis of the massive

data generated by these genomic technologies. The main theme of this review is to

evaluate challenges associated with big data in general and specifically to bring the

sophisticated technology of genetic/genomic testing down to the individual level, keeping

in mind the human aspect of the data source and considering where the impact of the

data will be translated and applied. Considerations in this “humanizing” process include

providing adequate counseling and consent for genetic testing in all settings, as well as

understanding the strengths and limitations of assays and their interpretation.

Keywords: big data, predictive analytics, precision medicine, cancer risk prediction, clinical genetics/genomics,

direct-to-consumer testing, data sharing

INTRODUCTION

Precision medicine in cancer treatment is defined by the National Cancer Institute as a “genetic
understanding” of cancer, offering a specific treatment tailored to an individual (1). Cancer results
from a variety of factors, both genetic and environmental. The developmental path to the actual
tumor results from an accumulation of genetic changes which vary across and within tumors.
Some of these genetic changes are inherited germline mutations, but the majority are somatic
changes, uncorrected by DNA repair processes, that result from exposures or random events. These
genetic changes may present treatment targets; however, the genetic changes are heterogeneous
and specific actionable treatment targets may be rare. To detect these changes, data on many
tumors in many patients are required. Similarly, germline genetic changes that are inherited may
increase susceptibility to cancer either directly by affecting key proteins such as those critical to
repairing DNA damage or by increasing susceptibility to effects of cancer-causing environmental
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factors. These germline changes may also be very rare; thus,
analysis of large datasets is required to determine if there is an
association with cancer development and to determine if the
changes are useful in predicting risk.

The search for treatment targets and for predictive analytics
has fueled the demand for large data sets, i.e., “big data.”
Despite the current widespread use of the term, no consistent
or single definition of “big data” has been agreed on (2–5). The
online Oxford Dictionaries definition is: “extremely large data
sets that may be analyzed computationally to reveal patterns,
trends, and associations, especially relating to human behavior
and interactions” (6). In essence, “big data” denotes any data set
large enough to permit valid use of statistically based analytical
methods to extract a level of knowledge in an area of interest.

This massive data collection requires combining data from
varied sources, collected in disparate manners and assayed using
multiple techniques. The specific application of big data to be
discussed in this paper is genomics and related omics as they feed
into clinical management of patients.

These large data sets can be extremely complex, typically
characterized by references to the “Vs” [high volume, velocity,
variety, veracity, value, variability (4, 5, 7, 8)]. The growth in
acquiring and using “big data” is due to a variety of factors
including an increase in research and clinical applications
of genetic findings, pharmaceutical company interest in large
datasets to develop and apply targeted treatments, consumer
interest in genetic tests for ancestry and medical applications,
and a growth in the direct-to-consumer genetic test market.
“Big Data” is now big business and growing. The market for
genetic testing is projected to exceed $22 billion by 2024 (9).
Companies now produce, buy, and sell genetic data. Buyers of
data include researchers and pharmaceutical companies. Sellers
include companies that provide genetic testing and/or companies
that build and sell access to large data sets (data aggregators),
as well as a new developing market for individuals, not just the
companies, to benefit monetarily from the selling of their data
to companies (10). Companies that market DNA data also may
offer to perform testing. With this developing business around
producing and sharing data, outside of the clinical setting, the
danger exists of losing site not only of both how the data were
collected and assayed, but also of the individual who is sharing
the most intimate of data, their genetic profile.

The sharing and aggregation of genetic information into large
data sets may obscure the fact that the basic underlying source of
each data point is an individual. Individuals provide the data, the
data frommany are aggregated, and ultimately the information is
translated back to an individual. Thus, analyzing and interpreting
big data require recognizing the individual source of the data,
how the data are obtained, stored, and assayed and analyzed,
and how, ultimately, to apply them. In essence, the data must
always be viewed and used with the humanity of the individuals
providing their genetic material kept in mind.

The main theme of this review is to discuss challenges
associated with big data in general and specifically to bring the
sophisticated technology of genetic/genomic testing down to the
individual level, where the impact of the data will be translated
and applied. The latter activities reflect the “humanizing” of big

data as applied to genomic medicine. This article will address
analytical aspects of both genetics and genomics data and their
evolution over time.Whereas, “genetics” involves the functioning
and make-up of individual genes, the field addressed by big
data sets containing genetic information is “genomics”: genomics
deals with all genes in an organism and their inter-relationships
(11). The additional complexity in such big data has downstream
implications for clinical interpretation and management for the
individual. For this article, we will use the term “genetics” to
include both genetics and genomics data, and we will address
primarily germline genetics (i.e., also genomics), as elaborated
below. Finally, as we review the sequential stages of genetic
testing, we wish to re-emphasize the need to consider the
relationship of each technical phase of the pipeline to the human
being who is the source of the genetic material being analyzed.

CHALLENGES TO ANALYSIS OF GENOMIC

AND MEDICAL DATA FOR DISCOVERY OF

CLINICALLY RELEVANT GENETIC

VARIANTS

Laboratory Testing of Germline DNA

Variants
Testing of the germline for DNA variants, passed from one
generation to the next, that confer deleterious phenotypic
attributes has evolved radically over the years. This is largely
in response to the evolution of technologies that enable
massive testing of the genome (12), including microarrays but
especially next-generation sequencing (13, 14). The huge data
sets generated by these methods pose major challenges to the
next stage in the pipeline: bioinformatic analysis and statistical
validation. Such laboratory technologies allied with their follow-
up bioinformatic analyses provide the venue through which
“big data” are generated, and then funneled down into clinically
interpretable genetic information, i.e., that which is directly
relevant to the patient.

Challenges to analyzing genomic data for knowledge
discovery begin in the laboratory at the technical level in
the choice and conduct of specific approaches to sample
preparation and laboratory analysis (15). The challenges
continue downstream with the initial phases of the bioinformatic
pipeline for identification of clinically relevant variants. These
initial challenges involve selection of algorithms for optimal
filtering of genetic variants and are followed down the pipeline
through selection of appropriate algorithms at all subsequent
informatic stages necessary to identify meaningful variants (15).
Furthermore, the very large number of loci interrogated in
such discovery research represent individual tests for clinically
relevant genetic variants, posing the statistical challenge inherent
in multiple testing and concerns about identifying false positives.
The quality of the data generated at the end of this genomic
pipeline, i.e., the data on which clinical associations will be based,
must be carefully monitored throughout. Bias and variable
thresholds for calling individual genetic variants as clinically
relevant can feed into erroneous conclusions drawn from data.
Scrutiny of the findings at each stage of the pipeline is essential
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to maximize the chance of identifying true positive variants
and avoid missing false negatives. Furthermore, impediments
to generation of accurate, meaningful data are not limited
to technical decisions but are subject as well to inconsistent
communications among researchers with differing expertise at
each stage of the genomic pipeline (15). Cautionary approaches
are therefore necessary if the users of the genomic findings in the
healthcare setting can trust the quality of the underlying data.

Addressing the Limitations of Genomic

Technologies: Analytic Validity and

Probabilistic Outcomes
The laboratory technologies allied with their follow-up
bioinformatic analyses provide the venue through which
“big data” are generated, and then funneled down into clinically
interpretable genetic information, where “humanization” of
the “big data” needs to be emphasized. This stage is where the
“variety” attribute of generated data must be sifted through to
glean out irrelevant findings and select for meaningful outcomes
that are potentially pertinent to clinical interpretation. Key
to humanizing the data is communicating to the patient the
limitations at the clinical level of the transmitted information,
both technical and genetic.

The platforms most commonly used to identify
pathogenic variants in the clinical setting are single
nucleotide polymorphism (SNP) chip (microarray)-based
and next generation sequencing (next gen sequencing)-based
technologies. Although they are used in standard clinical
practice, caution must be exercised in interpreting the results
of these analytic tools. They are not perfect, and the limitations
of the diagnostic accuracy, or analytic validity (16), of a given
platform must be considered when communicating results to a
patient. This is particularly true of SNP chips. When juxtaposed
against results obtained from next gen sequencing, the diagnostic
accuracy of SNP chips has been shown to be uncertain when
used to detect rare pathogenic variants in the general population
(17). The analytic validity of such rare variants is poor, leading
to a very high false discovery rate. Thus, although SNP chips are
useful for assessing the presence of common variants in a given
population, such as polymorphisms, this does not translate into
the rare variants relevant to clinical genetic diagnoses. Similar
limitations exist for SNP chips from different manufacturers.
This contrasts with sequencing platforms which are not affected
by the same technical issues as chips and are therefore more
accurate in genotyping rare variants (17).

Even in a setting of strong analytic validity, as seen with
sequencing, many uncertainties remain. An accurately identified
variant may have questionable clinical validity, the strength
of its association with the phenotypic outcome of interest
(16, 18), i.e., disease, being uncertain. These unknowns are
inherent in the probabilistic nature of phenotypic expression
of genetic variants. Patients may assume that identification of
a pathogenic variant equates to certain development of the
associated disease, whereas incomplete penetrance is generally
the rule in heritable diseases such as adult cancers. Nevertheless,
the actual penetrance of rare alleles is uncertain and can

be over-estimated by clinical ascertainment methods (19).
Even greater uncertainty exists for variants with unknown
pathogenicity, namely “variants of uncertain significance,” or
VUSs. Without humanizing such findings by communicating
the absence of documented clinical relevance to the patient,
unnecessary anxiety may be provoked and avoidable invasive
treatment interventions undertaken. Finally, documentation
of analytic and clinical validity is not sufficient to make
a genetic test truly useful to the patient. The test must
have clinical utility in that it lays the groundwork for
beneficial interventions, whether pharmaceutical, surgical, or
behavioral, without overriding risks (16). By establishing that
a genetic test can lead to a clinically actionable intervention,
the role played by big data in performance of the test
becomes humanized.

CHALLENGES TO MANAGEMENT OF BIG

DATA: GENOMIC AND CLINICAL DATA

Ethical Challenges
Ethical issues evolving from the amassing of genetic data
should be addressed by researchers, health care providers and
companies. Subsequent use of “big data” must consider the
selective nature of the source of the data, i.e., the patient, and the
generalizability as well as the absolute necessity to prevent data
breaches and ensure data security (8). Informed consent is an
essential part of this process. The sharing of information from big
data accumulated from thousands of individuals, has long raised
concerns about maintaining individual privacy while advancing
our understanding of genetic associations that will promote
public health (8, 20, 21). The potential disregard of maintaining
genetic privacy has led to anxiety about sequelae involving
discrimination in multiple aspects of life, including employment
and health insurance (20). While the Genetic Information
Nondiscrimination Act (GINA) was enacted to prohibit such
discriminatory behavior, additional domains (e.g., life, disability,
and long-term care insurance) have remained vulnerable to
misuse of genetic information (20). The ethical issues arising
from the need to optimize these two “goods”– health vs.
privacy—while balancing the risks and benefits emerging from
this process (22) constitute an essential part of humanizing the
big data.

Security Challenges
Although security challenges overlap those inherent in the ethical
concerns just described, a number of issues relating to security
merit independent mention. Data needs to be accessible and
at the same time secure. Security must guarantee privacy of
data relating to the individual. An actual set of criteria, FISMA
(Federal Information Security Management Act), provides a
framework to guide protections of any information involving
government activities. The private sector parallel is HIPAA
(Health Insurance Portability and Accountability Act), which is
widely adhered to in healthcare settings. These security concerns
are becoming increasingly challenging due to the explosion of big
data and their storage on multiple cloud resources (23).
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Challenges to Management of Data Size

and Data Storage (the Silo Problem)
The huge size of big data, exacerbated by its continuous growth
in volume, poses challenges to storage (5, 24). Traditionally data
have been generated and stored in isolated compartments that
may even differ qualitatively from each other. As an example,
different departments in the same organization may store data
in their own data bases, resulting in “data silos.” The content
of siloed data in different departments may overlap but be
encoded using differing terminology such that these data cannot
“speak to each other.” This creates a serious impediment to
integrated analyses of healthcare-related data across siloes; such
analyses are critical to understanding factors affecting health-
directed outcomes, including genetics. Among critical siloed data
sets are Electronic Health Records (EHRs) (23), valuable for
generating trends and predictive models, including genomic and
pharmacogenomic markers (5, 25). The huge size of certain
types of data, i.e., genomic data, which must be integrated with
other data types of smaller size but much greater complexity,
i.e., phenotypic data as contained in the EHR, poses additional
challenges, which will be discussed below.

Challenges to Management of Data in

Unstructured Formats (26)
Frequently superimposed on the sheer size and ongoing
growth of the data is the extreme architectural complexity
of the data. The complexity of certain types of data (e.g.,
genomic) poses daunting challenges to being moved from
home storage to an analytic environment. Unstructured data
does not conform to a consistent accessible framework and
language. Therefore, it needs to be converted into a structured
readable format in order to identify useful information. In
the clinical genomic setting, this conversion to a structured
format is essential to teasing out genetic variants that are
clinically meaningful and actionable. Historically, medical
charting was entirely unstructured, comprising handwritten
notes interspersed with machine-generated data, such as
laboratory values. The EHR represents a first step at structuring
such patient data by providing a consistent template for entries
of medical information (23). However, data derived from the
EHR are of multiple types (27). One estimate has 80% of data
contained in EHRs as unstructured (26, 28). These varied entries
in the EHR have value in that they can be used to formulate
phenotypic classifications of patients. The technical challenges
to this conversion process involve sophisticated algorithms
using machine learning, natural language processing (NLP), and
artificial intelligence (AI) (26). In the clinical genetic setting,
examples of unstructured data that are difficult to convert to
structured formats include EHRs, genomics, and other omic
datasets. Commonly, for example, integration of the EHR
with genomic and other types (e.g., biospecimen) of clinically
relevant data results in questionable phenotypic diagnoses due
to inaccurately determined correlations (29, 30). In essence,
challenges to data quality, reliability, accuracy and integration
must always be addressed. The ultimate goal is to discover
associations between genetic/genomic variations and clinical

phenotypes that are accurate and clinically meaningful in that
they can be used to manage patient care, essentially creating
predictive models (26).

Challenges to Data Sharing
Essential to gleaning meaningful, actionable information from
large data sets, in any context, is sharing of data among data
producers (31). Given the need for as much data as possible
to deduce clinically meaningful genomic variants, sharing of
data among source clinical sites is critical, especially for rare
genetic diseases (32). A guideline known as FAIR (Findable,
Accessible, Interoperable, and Reusable) has been developed to
guide investigators in managing the sharing of big data (33). To
optimize the quality and usefulness of shared data sets, regulatory
policies governing all genomic-related data generated by NIH-
funded research have been established. Such Genomic Data
Sharing (GDS) policies are specific to given types of data (34).

Challenges to Testing of the Individual, i.e.,

the Data Source
Sources for large analytic data sets, i.e., “big data,” include
data from clinical settings as well as genetic testing companies.
Thus, potential selection factors for who gets testing will affect
the results and interpretation. Until recently, the ordering of
cancer genetic tests for cancer susceptibility syndromes for those
diagnosed with cancer or with a strong family history of cancer
was done in the clinical setting, after genetic counseling by a
qualified health care provider. More recently, cancer genetic
testing, as well as other health-related genetic testing, has
expanded beyond the clinical setting, with companies advertising
and offering testing directly to consumers without the need for
involving a health care provider, or offering the test with a
company-provided physician to order the test. The benefit of
direct-to-consumer testing is potentially improved accessibility
through convenience of in-home testing, bypassing requirements
for health care provider visits, and lower cost tests. Data sets
with a preponderance of clinically sourced data are likely to have
higher risk individuals than direct-to-consumer or consumer-
driven genetic testing. Also, in contrast to direct-to-consumer
generated data, clinical settings are more likely to have extensive
family history information, which is critical for interpreting test
results. However, the extensive family history documentation
may or may not be adequately or accurately transmitted to the
“big data” compilation.

The individual who is the source of the data, the researcher
analyzing it, and the clinicians who use the results of analyses
should have a broad understanding of the process of consent,
genetic testing, its benefits, harms and limitations, the potential
implications of data sharing and with whom genetic testing
results are shared. Immersed in the massive amounts of
information and issues surrounding the use of genetic/genomic
data at the clinical level, the input source of these data—the
patient/individual—and the process of generating the data may
be overlooked.

Pre-test counseling prior to proceeding with genetic testing is
recommended because of the complexity of genetic information,
and the need to anticipate how that information will be used for
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subsequent management of risk. Counseling includes several key
components: medical and family history, risk assessment, risk
perception, discussion of the most appropriate test, benefits and
limitations of testing, communication with family members, and
follow-up management (35, 36). This patient-centered approach
espouses shared decision making, a process by which the patient
has an informed discussion with the health care provider about
the above issues, taking into consideration their personal values
and whether or not to pursue genetic testing. Pre-test genetic
counseling informs the individual and facilitates shared decision
making while ensuring patient autonomy in the process (37)
and is recommended by the U. S. Preventive Services Task
Force (USPSTF) (38) and the National Comprehensive Cancer
Network (NCCN) (39) in appropriate situations. Unlike other
medical tests, genetic testing has implications for the family
members, leading to issues such as how to communicate test
results to family members as well as how the data may be
shared. These downstream components of the genetic pipeline
illustrate the strong human element with which the process
culminates. Those using big data should ensure that the
individual’s preferences are respected and that they are informed
of the potential broad sharing of data. Similarly, when applying
information gathered from analyses of “Big Data,” the uncertainty
that may be introduced by the methodologic issues in data
generating activities as noted previously should be considered.
Progress in technical and computational methodologies has
simplified the generation of massive genomic analyses but
limitations still exist.

SUMMARY

The application of technologies to generate and interpret big
data related to genetic testing holds promise for the future
of cancer medicine. The practice of “precision medicine,”
in which the diagnostic and therapeutic interactions are
tailored to a given patient, should benefit considerably
from modern genomic technologies. Unquestionably

genetic understanding is a key component of this approach
to patient care, given the foundational role played by
cumulative somatic mutations in carcinogenesis (40). Precision
medicine must be built on precision data. The sources of
the data used in “big data” should be stated along with the
characterization of the population source, specimen source
and preparation, assays used and analytic methods and
algorithms employed. At the application and interpretation
of data, the “precision” of precision medicine derives as
much from an understanding of the psychological and social
setting and needs of the patient and from the standard
clinical attributes that brought the individual to the medical
system as from the genetic underpinnings of the cancer
or cancer risk. The composite of all these attributes makes
the focus on a given patient truly precise, humanizing the
process of incorporating genetic content into the practice of
cancer medicine.

The potential of technology to improve the public health
is unquestionable. However, understanding how technical
platforms that analyze large-scale data feed into clinically
relevant information can be daunting for patients and healthcare
providers without specific genomic training. In this paper we
have drawn attention to the many challenges and limitations as
well as benefits associated with analyzing and applying big data
to clinical applications. Our goal has been to point the way to
demystifying the complexity of “big data” so that recipients of
its benefits, patients and providers, will be in a better position
to make appropriate clinical decisions. In this sense, we have
attempted to “humanize big data,” by unraveling its many
components in an effort to make its meaning, if not all its details,
more accessible to non-specialists.
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