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Editorial on the Research Topic

Towards Real World Impacts: Design, Development, and Deployment of Social Robots in

the Wild

INTRODUCTION

Social robots have great potential to provide social, behavioral, emotional, and cognitive support
to people with diverse characteristics and needs. Although still in its infancy, the field of social
robotics has explored various aspects of human-robot interaction (HRI), such as multimodal
communication and personalized interaction, and their applications in different domains including
education and patient care. However, to evaluate the acceptance and efficacy of social robots and
to understand their broader impacts in the real world, it is necessary to deploy these robots in the
“wild” field for an extended period of time. Such deployment typically involves collaboration with
different disciplines such as medicine, social psychology, clinical therapy, industrial design, public
health, marketing, and education.

Thus, this Research Topic focuses on social robotics research with novel algorithms and
computational modeling that have been or are being evaluated with intended users/consumers,
patients, or individuals with special needs. A special focus has been given to results that arose from
multidisciplinary studies in which the roles and impacts of social robots are evaluated in “real-
world” settings, especially in collaboration between engineering, industrial design, clinical science,
medicine, social psychology, marketing, and education.

RESEARCH TOPIC FORMATION

This Research Topic emerged from a discussion among young and active researchers in HRI—Dr.
Park and Dr. Huang from the U.S.A., Dr. Ros from Spain, Dr. Kwak from South Korea, and Dr.
Lemaignan from the United Kingdom—who have all realized the emergent and crucial needs to
explore the topic further and get further input from the many researchers in HRI.
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CONTENTS OF THE RESEARCH TOPIC

As anticipated, the submitted and accepted papers showed
multi-disciplinary characteristics and combined themes from
the proposed Research Topic outline. Out of the multiple
mixed themes, however, we could identify the following four
major important research themes and trends, where the social
robots are taking active roles in the “wild” of the human-robot
interaction frontiers.

HRI Theories and Computational Modeling
We have seen continuous efforts in applying theories from
psychology with more sound experimental settings in the
real world. One recent example is by Agrigoroaie et al.
who have applied the regulatory focus theory in human-
robot communication, with which a Tiago robot approached
people with two communication methodologies based on
either promotion type or prevention type, and evaluated its
effectiveness in correlation with the regulatory focus types of the
individuals (N = 29).

We have also found increased efforts in designing
computational models for HRI in the wild, especially in the
clinical domains. Clabaugh et al. propose a math tutoring
system for children with Autism Spectrum Disorder (ASD)
(aged 4–7), where Reinforcement Learning is used to personalize
instruction and robot feedback. Javed et al. apply machine
learning algorithms to derive personalized models for acquiring
social engagement measures for children with ASD (aged 4–12).

Longitudinal and Large-Group HRI
For the past 10 years, longitudinal and larger-group studies in
HRI have gained great interest from the community aiming at
building systems that can engage and adapt to different users
through time with the ambition of getting closer to a world
where robots can truly be part of our daily lives. The educational
setting is one of the typical areas where the application of social
robots has been studied. A math tutoring system proposed by
Clabaugh et al. has been evaluated with 17 children with ASD
over month-long interventions at their homes. A peer-like social
robot for language learning designed by Kory-Westlund and
Breazeal has been developed, and the role of “rapport” has been
investigated in their 2 months long study with 17 children.
Besides education, social robots are used for elderly care; Van
Maris et al. explored the longitudinal effects of older adults (N =

17) interacting with social robots.
HRI in public, especially interacting with a large group

of people is another emerging Research Topic. Fraune et al.
have studied the impact of group characteristics and norms in
interacting with a robot in public settings and its influences on
people’s behavior changes.

HRI in Healthcare and Special Education
ASD is one of the areas in special education where socially
assistive robot (SAR) systems have shown potential benefits,
typically supporting social development, though not limited
to. An example is a work proposed by Clabaugh et al.,
where they propose a tutoring system for space-themed

mathematics problems addressed to young children with
ASD while embedding social contexts in the learning
environment. Another work by Javed et al. exhibits a robotic
playmate with socio-emotional interventions with personalized
engagement monitoring.

Management of diabetes is another healthcare-related domain
where in-the-wild long-term interventions are key. Neerincx
et al. present the results of a 4-years European project, where they
deploy the Socio-Cognitive Engineering methodology to design
and integrate a SAR, tested for several months with large groups
of children.

Though evaluating SAR systems with end-users is vital, it is
equally important to consider the views of other stakeholders to
guide the design of such systems. As such, Alcorn et al. present
an analysis of educators’ views on the use of SAR systems in ASD
suggesting guidelines to the HRI community, not only regarding
the design of robotic systems but also proposing areas of research
that should be further considered.

Emotions and Ethics
While socially assistive robots are uniquely characterized by their
potential in participating in social-emotional interactions with
people, these robots are currently not as emotionally capable as
humans do. Indeed, emotive behaviors displayed by robots can be
considered as emotional deception, possibly leading to broader
ethical concerns. Van Maris et al. studied how deceptively
emotive behaviors by a social robot might influence older adult’s
perceptions of the robot.

On the other hand, social robots’ behaviors could possibly
help mitigate human negative psychological states such as stress.
Björling et al. explored how teens may interact with social
robots in the school environment where teens might feel stressed.
Little research on robotics and teens has been conducted to
date: this article, relying on mixed-methods where the teens
are in turn users, experimenters, and witnesses, offers a very
novel glimpse into how socially assistive robots could support
this population.

CONCLUSIONS

With the development of robotic technologies, it is imperative
to develop social robots that support people in their daily lives.
The papers published in this issue collectively show the recent
and advanced application of theories from various academic
fields such as healthcare, education, social psychology on social
robots and HRI. More efforts are found to be focusing on
child/adolescents and older adults who are in need of or can
benefit from the company of robots. We believe that these
collective endeavors will help to further extract knowledge
regarding the nature of the interaction between humans and
robots, which we hope to be utilized in building successful
social robots “in the wild,” expanding into wider areas of
applications in diverse human domains (age, gender, culture,
etc.). Specifically, topics presented by the papers including
HRI Theories and Computational Modeling, Longitudinal and
Larger-group HRI, HRI in Healthcare and Special Education,
and Emotions and Ethics provide the readers with a vast
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array of applicable areas of social robots, focused on their
effectiveness in various real-world settings. These studies will
enlighten further research avenues regarding social robots
that are closely connected to the users, which enrich their
satisfaction with their lives by successfully fulfilling their needs.
We believe that these collaborative efforts will contribute to the
further development of the theory and knowledge regarding
HRI, boosting the people’s acceptance of social robots in their
daily lives.
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(2019) Human Group Presence,

Group Characteristics, and Group

Norms Affect Human-Robot

Interaction in Naturalistic Settings.

Front. Robot. AI 6:48.

doi: 10.3389/frobt.2019.00048

Human Group Presence, Group
Characteristics, and Group Norms
Affect Human-Robot Interaction in
Naturalistic Settings

Marlena R. Fraune 1*, Selma Šabanović 2 and Takayuki Kanda 3
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As robots become more prevalent in public spaces, such as museums, malls, and

schools, they are coming into increasing contact with groups of people, rather than just

individuals. Groups, compared to individuals, can differ in robot acceptance based on the

mere presence of a group, group characteristics such as entitativity (i.e., cohesiveness),

and group social norms; however, group dynamics are seldom studied in relation

to robots in naturalistic settings. To examine how these factors affect human-robot

interaction, we observed 2,714 people in a Japanese mall receiving directions from the

humanoid robot Robovie. Video and survey responses evaluating the interaction indicate

that groups, especially entitative groups, interacted more often, for longer, and more

positively with the robot than individuals. Participants also followed the social norms of

the groups they were part of; participants who would not be expected to interact with the

robot based on their individual characteristics were more likely to interact with it if other

members of their group did. These results illustrate the importance of taking into account

the presence of a group, group characteristics, and group norms when designing robots

for successful interactions in naturalistic settings.

Keywords: human-robot interaction, social robotics, group dynamics, entitativity, group norms, gender

INTRODUCTION

Recent years have seen robots in wider use in public venues and organizational contexts, such
as malls, airports, schools, and hospitals. Malls and stores around the world have deployed the
humanoid robot Pepper to direct and guide people. In museums, the humanoid NAO guides guests
through exhibits (Pitsch et al., 2013). The minimalistic robot Mugbot has been used in nursery
schools to read to students and help implement classroom activities (Koike et al., 2009). Along
with being used by individuals and families, the socially assistive robot Paro has also been placed in
common areas of nursing institutions, where residents can interact with it when and how they like
(Wada and Shibata, 2007; Chang et al., 2014).

When one person interacts with a public robot, they often draw other people to interact with it
(Weiss et al., 2008; Fraune et al., 2015). Therefore, in public spaces such as those mentioned, robots
interact with groups more often than with individual humans (Kanda et al., 2004; Sabanovic et al.,
2006). However, such group interaction is seldom studied.

7
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Group interaction introduces new factors that can affect
and should be studied in HRI, such as characteristics of the
human group (Sabanovic et al., 2006; Johansson and Skantze,
2015). Researchers have also begun to address solutions to group
technical problems, such as tracking multiple people in group
configurations (Holthaus et al., 2011; Taylor and Riek, 2016;
Tseng et al., 2016) or switching attention betweenmultiple people
(Bennewitz et al., 2005). However, there are many open questions
as to how varied group social dynamics in HRI should be
addressed. For example, how should a robot respond when group
members show it off to others (Sabanovic et al., 2006) or children
debate over who the English-tutor robot liked more (Kanda et al.,
2004)?—factors that do not arise in one-on-one interaction. For
successful group interaction, it is critical to understand how
social group dynamics change and affect perceptions of and
behaviors toward robots.

Beyond the mere presence of groups, researchers have found
that group behavior is affected both by relational characteristics
of group members (e.g., family, coworker), and norms based
on individual characteristics of group members (e.g., gender,
age; Zanlungo et al., 2017). Although previous studies have
also placed robots in public situations where they interact with
multiple humans (Al Moubayed et al., 2012; Foster et al., 2012;
Gomez et al., 2012; Johansson et al., 2013; Pereira et al., 2014),
studies are only beginning to examine the group dynamics of the
interaction (e.g., Admoni et al., 2013; Jung et al., 2015; Fraune
et al., 2017; Alves-Oliveira et al., 2019).

In this research, we test how the presence of a group, group
characteristics, and group norms relate to people’s behavior
toward a guide robot in a public mall (see Figure 1). We use
behavioral and survey measures to answer our questions. Then,
we discuss how these variables can be implemented in future
robots to enhance interactions with humans.

BACKGROUND

Groups Increase Following Group Goals
When people interact in groups, as opposed to individually, their
motivation, and goals shift to be more similar to the group’s
goals (Reicher et al., 1995). For example, people in a group
for a particular political ideology hold that group’s ideology
and goals more strongly when in that group or thinking of
that group than when in a sewing or sports group. This even
occurs when people are arbitrarily assigned to groups and had
no interaction or common goals with them previously (i.e.,
minimal groups paradigm; Tajfel et al., 1971). In addition, the
goals depend on the interaction context (Sherif, 1936; Gergen
et al., 1973; Johnson and Downing, 1979; Fraune et al., 2019; e.g.,
competitive, collaborative).

When the group’s goals are for competition, the discontinuity
effect occurs—that is, groups are more aggressive and
competitive than individuals (Sherif, 1936; Wildschut et al.,
2002, 2003, 2007; Meier and Hinsz, 2004; Wildschut and
Insko, 2007; Nawata and Yamaguchi, 2011; Insko et al., 2013).
Conversely, when the group’s goals are non-competitive or co-
operative (e.g., groupsmust work together to accomplish a shared
goal), separate groups co-operate with each other, potentially

FIGURE 1 | The humanoid robot, Robovie, used in this study.

even combining groups or re-categorizing into one group to
complete a shared goal (Sherif, 1936; Anastasio et al., 1997;
Gaertner et al., 2000).

This pattern also occurs in HRI. In competitive situations,
human groups competed more than individuals against robots
(Chang et al., 2012; Fraune et al., 2019). In naturalistic
environments, groups of unaccompanied children were more
aggressive toward robots than individual children (Brscić et al.,
2015). Conversely, interacting with robots in a learning context,
groups of children were not more negative toward the robots
(Leite et al., 2015). In naturalistic settings, groups of humans,
rather than individuals, were more likely to stop to interact with
robots (Weiss et al., 2008; Fraune et al., 2015).

In this study, a humanoid robot gave directions in a mall and
actively sought to help participants. In this context, we expect
that the typical participant goal while interacting with the robot
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will be to explore or seek guidance, and that people would be
positive about the experience. The group should hold this goal
more strongly than individuals. Therefore, we hypothesize:

H1. Presence of a group. Groups will be more positive and
willing to interact with a robot than individuals, as measured
in positive survey responses and duration of interaction with
the robot.

Entitativity Increases Following
Group Goals
Group entitativity magnifies certain characteristics of groups.
Entitativity is defined as group cohesiveness, which includes
group members sharing similar static traits (e.g., background,
appearance, that are unlikely to change) and dynamic traits (e.g.,
goals, and outcomes, that may change frequently; Campbell,
1958). Entitativity increases group identification (Castano et al.,
2003), and norms for behavior Lickel et al., 2000, which motivate
members to achieve the goals of the group. The more entitative
a group is, the more the group’s behavior aligns with its goal
(Gergen et al., 1973; Insko et al., 1988, 2013).

In competitive contexts, group entitativity magnifies the
discontinuity effect, increasing competition, and aggression
(Gaertner and Schopler, 1998; Insko et al., 2013) across
cultures (Kumagai and Ohbuchi, 2009). In co-operative or
positive contexts, group entitativity increases positivity (Gergen
et al., 1973; Johnson and Downing, 1979). For example, when
participants were inserted into cohesive groups, context cues
of group harshness (e.g., KKK) influenced behavior to be more
harsh than cues of group kindness (Gergen et al., 1973; Johnson
and Downing, 1979; e.g., vs. nurse or hippie). In the case
of a mall guidance robot, group entitativity should increase
participants’ exploratory and positive manner toward the robot.
We hypothesize:

H2.Group characteristics. Entitative groups will be more
positive and willing to interact with the robot than
Diverse groups.

Although the effects of human group entitativity in naturally-
occurring HRI have not yet been examined, robots can detect
factors of entitativity. Robots have been capable of accurately
predicting child friend groups based on proximity (Kanda et al.,
2007) and adult groups based on how they interacted with each
other (Giuliani et al., 2013). Therefore, if group membership and
entitativity is useful in determining appropriate robot behavior,
practitioners could develop algorithms to detect these patterns in
naturalistic settings.

Group Type as a Natural Indicator of

Group Entitativity
Group entitativity has been shown to vary across different types
of groups. Entitativity is typically high in intimacy groups (e.g.,
family, friends), medium in task groups (e.g., coworkers), and low
in loose associations (e.g., people standing in line; Lickel et al.,
2000). Thus, in this study, we hypothesize that:

H2a.Family and friends will be more positive toward and
interact more with the robot than colleagues because. . .

H2ai.Family and Friend groups will be more entitative than
Other groups (e.g., coworkers) as measured in the survey.

A second likelihood is that intimacy groups will more commonly
share a group goal of leisure and exploration in the mall, whereas
task groups will share more group goals of getting a job done. We
did not measure this, and future studies should examine goals
specific to groups; however, in this study, we do have multiple
measures of group entitativity.

Whereas, prior research investigated entitative groups that
were created in the lab, this study examines naturally-occurring
groups in a public space. This is critical because artificially-
created lab groups may be loose associations or even task groups
centered on a task, but are typically not intimacy groups. This is
the first study to examine intimacy groups in intergroup HRI.

Gender as a Natural Indicator of Group Type in Japan
Literature in social psychology indicates that gender differences
in behaviors and attitudes occur across cultures (Costa et al.,
2001). Gender differences, while small on their own (e.g.,
explaining 5% of the variance aggression; Hyde, 1984), are
increased (Hyde, 1984; Eagly and Wood, 1999) by differences
in the social roles that people of each gender occupy (Rosario
et al., 1988). In particular, in Japan (where we conduct this study),
gender strongly correlates with occupation. That is, in Japan,
males are more likely to be business people and managers, and
females are more likely to be homemakers (Wright et al., 1995;
Steinberg and Nakane, 2012) even in 2018, females made up only
43% of the labor force in Japan (“Labor Force., female (% of
total labor force),” 2018). These gender differences are likely to
account for differences in HRI in naturalistic settings. Therefore,
although gender effects in HRI are mixed (Siino and Hinds, 2005;
Schermerhorn et al., 2008; Siegel et al., 2009; Eyssel et al., 2012),
we expect that in this situation, gender effects will be primarily
driven by females being part of family and friend groups and
therefore more entitative (argued above). Relatedly, past research
indicates that females expected robots to be helpful in their
personal lives (like family and friends), whereas males expected
robots to be helpful in their work (Wang, 2014). This leads us
to hypothesize:

H2b.Females will interact with the robot for longer and rate it
more positively than males, especially coworkers. Because. . .
H2bi.Females will be in more family and friend groups (as
measured by reported group type, video coded group type,
and more children with them), and males in more coworker
groups. Additionally, because. . .
H2bii.Females will rate their groups as more entitative
(because they are more likely to be with family and
friend groups).

Groups Influence People to Follow
Group Norms
Group norms set expectations for typical behavior (Cialdini,
2007; Smith et al., 2007; Goldstein et al., 2008; Burger and
Shelton, 2011). For example, how people respond to death and
whether they take the stairs or elevator (Burger and Shelton,
2011) depends on ingroup norms (Goldstein et al., 2008) that
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are embedded in their culture or explicitly stated (Cialdini,
2007). In unfamiliar situations in which people do not otherwise
know how to act, they are especially likely to follow norms they
observe (Smith et al., 2007).

Within HRI, because robots are unfamiliar, people often look
to norms when interacting with them (Lee et al., 2010; Chang
et al., 2014). In the present study, seeing other people interact
with the robot creates a norm of interacting and may induce
more people to interact with it. Further, creating a norm that is
more relevant to participants may increase following the norm
(Goldstein et al., 2008). For example, participants with their
family may be more likely to interact with the robot if they see
their family member interact with it than if they see a group of
friends interact. We hypothesize:

H3.Participants will be more likely to interact with the robot
if they previously see someone from their group interact with
the robot.

According to H2B, males will be least likely to interact with the
robot. We hypothesize group norms will change this behavior
as follows:

H3a.Males will interact more with the robot if others in their
group interact than if others do not interact with it.
H3b.Males will interact more with the robot if there are more
females in their group.

Overview
In the study, we examine how presence of groups, group
characteristics, and group norms influence people’s behavior
toward robots. We do so by placing a humanoid robot in
a public mall in Japan and using survey and video data to
determine group and individual characteristics and the valence
of participant responses toward the robot. The results will help
practitioners account for and make adjustments to robot designs
to enhance interaction depending on the context of interaction
and characteristics of human groups involved in the interaction.

METHODS

This study was approved by the Institutional Review Board (IRB)
at Indiana University (Protocol code 1606171019). Informed
consent was not required for video recordings, as interactions
occurred in a public setting, but a large sign was placed in the
area indicating that it was being recorded. Verbal consent was
obtained for survey participants.

Procedure
In a large open area in the Asian Trade Center (ATC) mall in
Osaka, Japan, we placed the humanoid robot Robovie (Figure 2).
Robovie remained stationary and waited for people to approach.
When someone was ∼1m in front of or to the side of Robovie,
the robot detected and turned toward them.

The robot introduced itself and asked where visitors would
like to go. It directed visitors to that location by turning,
pointing, and describing the path they should take. Robovie
allowed participants to ask for directions to multiple locations.

As participants began to walk away, Robovie said, “Bye-bye.” The
entire time, Robovie switched between making eye contact with
participants and looking toward where it was pointing to share
joint attention in the direction participants should travel.

Between two and three researchers stood spread out on the
outskirts of the open mall area and intercepted participants who
had interacted with the robot long enough for Robovie to speak
at least three sentences. If there were multiple people in a group,
the researchers asked everyone to take a survey on a clipboard.
The researchers requested that participants take the survey far
from the robot so as to not interrupt anyone else’s interactions
with Robovie.

Video cameras recorded interactions with Robovie with a wide
angle from above.

The experiment took place over the course of 21 days between
October 2016 and February 2017. Each day, the robot was placed
in the mall for ∼3 h at a time. For the purpose of this study,
∼20% of videos, randomly chosen, were coded for a total of
approximately 12 h of analyzed video. Surveys were included in
the analysis regardless of whether or not they overlapped with
video that was coded.

The Humanoid Robot Robovie
Robovie (Figure 2) has two arms (each with four degrees of
freedom [DOF]), a head (3 DOF), two eyes (each with 2
DOF), a mobile platform (two driving wheels and one free
wheel), 10 tactile sensors, an omnidirectional vision sensor,
two microphones to listen to human voices, and two laser
rangefinders for detecting obstacles. The eyes have a pan-tilt
mechanism with direct-drive motors, and they are used for stereo
vision and gaze control.

Although Robovie can function fully autonomously, for the
purposes of this study we controlled certain aspects of Robovie’s
behavior via a wireless local area network (IEEE 802.11a LAN),
employing a Wizard of Oz (WoZ) technique. We employed this
technique because in the loud mall environment, the robot has
difficulty parsing human speech. In this study, Robovie’s gaze
and direction-giving behaviors were autonomous, but a Japanese
researcher typed the locations participants wanted to go to into
a computer so the robot could respond accordingly. From there,
the robot autonomously directed them on how to get there.

Participants
Participants were people in the ATC Mall in Japan. Survey and
video demographics are summarized in Tables 1, 2 below. In the
video, participants were included if they were visible enough in
the video frame that demographic information could be collected
about them. Thus, a total of 2,714 participants were coded in
the video (some of whom interacted with the robot) and 375
participants took the survey. Seventy-eight participants were
both coded in the video and took the survey.

Measures
Survey
The survey took ∼2min (see Appendices A,B for full survey in
English and Japanese, respectively). Questions asked participants
to report on:
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FIGURE 2 | Robovie robot in the ATC Mall with Age-Diverse (Left) and Age-Similar (Right) groups.

TABLE 1 | Survey demographics.

Demographics Experience with… Group type

Age (M) Gender (%) Computer experience (M)* Robot experience (M)** Alone (N) Family (N) Friend (N) Coworker (N)

M/N/% 37.75 50.20 Female 2.15 3.00 12 219 60 43

Std. Deviation 14.22 1.53 5.17

*Scale: from 1 (Novice) to 5 (Programmer). **Scale: 1 (None) to 5 (Build robots).

• Group Characteristics

◦ Group size (number of members; free response)
◦ Group type (family, friend, coworkers,

acquaintances, alone)
◦ Entitativity (i.e., cohesiveness with group, similarity of

members in the group) was rated on a Likert scale from
1 (Strongly Disagree) to 7 (Strongly Agree) for human
groups (Cronbach’s α = 0.826) and humans with the robot
(α = 0.824)

• Participant characteristics

◦ Experience with computers (novice, comfortable for
simple tasks, comfortable for moderately complex
tasks, comfortable programming) and robots (seen
none, in media/TV, interacted with, own one or more,
work with/build)

◦ Year born (free response)
◦ Gender (free response)

• Ratings of Robot

◦ Perceptions of the robot on a Likert scale was rated on a
9-point semantic differential Likert scale (from 0 to 8, i.e.,
negative-positive, scary-friendly, mean-kind, useless-useful,
stupid-smart, non-social-social, machinelike-humanlike;
Fraune et al., 2015)

◦ Willingness to interact (enjoyment of the interaction, would
interact with the robot in the future, would recommend for
others to interact with the robot) was rated on a 9-point
Likert scale from 0 (Definitely not) to 8 (Definitely yes).

Video
Video data were coded by four independent coders using ELAN.
They were trained to code the data in the same way using 60min

of video from the study. They did this in 10min segments, coding
independently, and then meeting to discuss differences in codes.
This process was continued until agreement was 80% or higher.
Then video segments were assigned to the coders to work on
independently based on the times they were available.

Approximately 20% of videos were coded by two of the four
coders who did not know that someone else was coding the
same video. Finally, we calculated percent agreement across all
videos. We calculated percent agreement because other measures
of interrater reliability were not feasible for the thousands of
participants and coding method we used in this study. Due to
the large number of participants, individual coders often gave
different participant numbers to each participant, but generally
coded them similarly (e.g., Coder 1 may have seen someone walk
in from the left side of the camera first and labeled that person
Participant 1, while Coder 2 saw a group walk in from the right
and labeled them Participants 1–4, then labeled the participant
from the left as Participant 5, but looking closely, Coder 1’s
Participant 1 and Coder 2’s Participant 5 match up in terms of
coded gender, time spent looking at the robot, etc.).

For deciding which codes to include in the data analysis
for video sections that were coded by multiple coders, codes
were taken from coders who had the highest interrater reliability
across videos.

Videos were coded for the variables described in Table 3.
Percent agreement in specific video segments ranged from 60 to
100%, but was averaged for overall percent agreement, included
in Table 3.

RESULTS

Data were analyzed in SPSS 24. P-values of < 0.05 were
considered statistically significant. When we conducted multiple
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TABLE 2 | Video demographics.

Age Group type

Older adults Adult Teenager Child Baby Age-diverse Age-similar Business-dressed Business-young

Frequency 60 2,409 50 145 52 535 516 106 20

Percent 2.2 88.6 1.8 5.3 1.9 19.7 19 3.9 0.7

tests, we used Bonferroni corrections. To promote open science,
deidentified video and survey data can be found at https://osf.io/
ew8ta/?view_only=df9ef0f0919b48afb64a773ffa0251ac.

First, we examine if survey and video measures cohere. Next,
we test corollary hypotheses (H2ai, H2bi, H2bii). Finally, we test
the main hypotheses about main effects of group and gender (H1,
H2a, H2b), linear regression of entitativity (H2), and effects of
norms (H3, H3a, H3b).

Survey and Video Measures of Interaction
and Gender Were Consistent. Measures of
Group Type Differed
Interaction
Everyone who completed the survey had interacted with
the robot as coded in the video. Of 2,714 video-coded
participants who walked through the video, ∼15% interacted
with the robot. Participants who interacted with the robot
did so for an average of 47.8 s and a median of 37.3 s.
The maximum time participants interacted with the robot
was 289.3 s or 4min and 49.3 s. A normality test revealed
that skewness of interaction time was at an acceptable
level (1.88).

Gender
Of 78 surveys (32 female, 46 male) that overlapped with
coded video, one self-identified male was coded as female for
a 98.7% accuracy rate for video coding. This false code was
changed to match the survey data. In the video, there were
1,655 Males, 968 Females, and 91 Undefined either because
they were too young to tell their gender or the coder did not
have a good view of their face. In this study, Undefined were
excluded from gender analyses because all but three Undefined
were children.

Groups
Groups had an average (mean) of 2.69 members (SD = 0.95),
with a minimum of two and maximum of six. In surveys,
some participants indicated both Family and Friend as group
types. For these, they were recoded as Family groups. Video
coding and survey responses related to each other as described:
Families and coworkers were typically coded as Age-Diverse
groups (more than 50%) and sometimes as Age-Similar (about
25%). Coworkers were coded as Business-Dressed almost
50% of the time. On some occasions, loose acquaintances
and strangers were coded as Age-Diverse or-Similar groups.
Those who were alone were coded as Alone 100% of the
time (Table 4).

Females Were in More Family and Friend
Groups, and Males in More Coworker
Groups (H2bi)
In this section, we included the variable 2 (Gender: Male, Female)
for most of the tests.

Females Were in More Family and Friend, and Males

in More Coworker Groups, According to

Survey Responses
We ran a chi-squared test on 2 (Gender) × 4 (Group Type:
Alone, Family, Friend, Coworker) reported in the survey.
Loose Acquaintances, Stranger, and Other were excluded
because they violated the expectation of having at least
five counts per cell and they did not fit logically into
the Alone, Family, Friend, or Coworker groups. Results
indicated a significant relationship between Gender and Group
Type (X2(3, N = 327) = 16.19, p = 0.001) such that
Males were more likely to be in groups with Coworkers
(Adjusted Standardized Residual; ASR = 3.5) and slightly less
likely to be in groups with Friends (ASR = −1.9) than
Females (Figure 3).

Females Were Less Likely to be Alone or in

Business-Dressed Groups Than Males, According to

Video Responses
We ran a similar chi-squared test on video data: 2 (Gender)
× 4 (Group Type: Alone, Age-Diverse, Age-Similar,
Business-Dressed). We excluded Student Groups because
it violated the expectation of having at least five counts
per cell. Results indicated a significant interaction effect
of Gender and Group Type (X2(3, N = 2,605) = 259.46,
p < 0.001) such that Males were much more likely
to be Alone (ASR = 11.9) or in groups of Business-
Dressed (ASR = 6.5) than in groups of Age-Diverse
(ASR = −10.7) or Age-Similar (ASR = −9.0) compared to
Females (Figure 4).

Females Were More Likely to Have Children in Their

Group Than Males, Suggesting Family Ties
Gender proportion in groups, as coded on video, are reported in
Figure 5. A 5 (Age: Older Adult, Adult, Teenager, Child, Baby)
× 5 (Gender Proportion: All Male, Mostly Male, 50–50, Mostly
Female, All Female) chi-squared test showed that Age interacted
with Gender Proportion in Group (X2(16, N = 1,273) = 125.66,
p < 0.001). Primary-female groups contained more teenagers,
children, and babies, but fewer adults than expected. Primary-
male groups included more adults, teenagers, and fewer older
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TABLE 3 | Description of video coding scheme and operational definitions of variables.

Variable Percent agreement Code Operational definition

Interaction with robot 82.31% No

Yes (duration) Participants came close enough to Robovie that it would begin talking

to them

Duration of interaction (seconds) 89.86% Began when participants entered the interaction space with the robot

and ending when participants left the space and had stopped looking

at the robot.

Social gesture toward robots No

76.94% Yes Participants made social gestures toward the robot (e.g., After

interacting with the robot, participants turned back and waved).

Age 84.26% Older adults Looked to be approximately older than 55 years (e.g., moved more

slowly).

Adults Looked to be between 18 and 55 years (e.g., tall, medium pace).

Teenagers Looked to be between 13 and 18 (e.g., short, often with adults or

wearing school uniforms).

Children Looked younger than 13, but could walk on their own (e.g., were

shorter, more likely to run, and often with adults or older adults).

Babies Could not walk on their own (e.g., in a stroller or carried the entire time

on camera).

*Three participants were excluded on analyses of age because their age is impossible

to estimate given the camera angle.

Gender Matched survey 98.7%

of the time

Male Appeared to be male.

Female Appeared to be female.

Undefined Used when gender could not be determined, in particular with babies.

Gender Proportion Calculated by

computer based on the

above codes.

All Male

Mostly Male Between 50.1% male and 99.9% male

50/50

Mostly Female Between 50.1% female and 99.9% female

All Female

Group 75.75% No Participant was alone

Yes (divided into categories

below; Figure 2)

Participants walked in close formation with each other and spoke with

each other during their time on the camera. The divisions below are

mutually exclusive.

Age-Diverse Groups with diverse ages

Age-Similar Groups with similarly-aged participants

Business-Dressed Groups of adults dressed in suits or other business wear (Martin and

Chaney, 2012). If participants fit the criteria for business-dressed, they

were coded in this category rather than age-diverse or age-similar.

Business-Young Groups of children or young adults dressed in school uniform. If

participants fit the criteria for business-young, they were coded in this

category rather than age-diverse, age-similar, or business-dressed.

*Data were excluded from Group Type analyses in 36 cases in which the group type

could not be determined (e.g., because some group members were partially excluded

from the camera frame resulting in being unable to tell what type of group it was).

Group Size 76.36% Participants who were in a group were coded to be in a group with a certain number

of participants–one (alone) to six (the maximum group size coded).

Seen Previous Interaction Calculated by

computer based on the

above codes.

No

Yes Participants were considered to have seen a previous interaction if

another participant was coded as having interacted with the robot

<10 s before the current participant. This included if the participant

saw another person approach the robot and the participant

approached the robot while the other person was still interacting with it.

(Continued)
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TABLE 3 | Continued

Variable Percent agreement Code Operational definition

Group of Previous Interaction Calculated by

computer based on the

above codes.

No Previous No interaction occurred 10 s before participants interacted

Different Group A group that was not the participant’s group interacted within 10 s of

the participant interacting

Different Group and Individual A group and individual, both not of the participant’s group, interacted

with the robot 10 s before the participant interacted

Own Group The participant’s own group interaction with the robot 10 s or less

before the participant appeared on screen

TABLE 4 | Comparing video coding with survey description of group type.

Survey description of group Total

Family Friend Coworker Loose acquaintance Strangers Alone

Video-coded group type Age-diverse 31 (69%) 7 (58%) 2 (22%) 1 (50%) 1 (50%) 0 42 (55%)

Age-similar 12 (27%) 3 (25%) 2 (22%) 1 (50%) 1 (50%) 0 19 (25%)

Business-dressed 0 0 4 (44%) 0 0 0 4 (5%)

Business-young 2 (4%) 2 (17%) 0 0 0 0 4 (5%)

Alone 0 0 1 (11%) 0 0 7 (100%) 8 (10%)

Total 45 12 9 2 2 7 77

738 survey description of group.

adults and children than expected. 50/50 groups contained more
elderly and adults and fewer teens and children (Table 5).

Families Were More Entitative Than
Friends and Coworkers (H2ai), and for
Friend Groups, Females Rated Groups as
More Entitative Than Males (H2bii)
An ANOVA revealed a main effect of Group Type (F(2,
298) = 3.45, p = 0.033, n2p = 0.007) such that Families rated
themselves as more Cohesive than Friend groups did and as
more similar (F(2, 290) = 3.90, p = 0.021, n2p = 0.026) than
Coworkers (p = 0.017). An interaction effect between Group
Type and Gender (F(2, 298) = 3.73, p = 0.025, n2p = 0.024)
indicated that Female Friends rated their groups asmore cohesive
than Male Friends, but otherwise Males and Females rated their
group similarly in relation to their cohesion.

Groups (H1), Especially Age-Diverse and
Age-Similar (H2a), and Females (H2b) Were
Typically More Positive Toward Interaction
With the Robot
In this section, we included the variable 2 (Gender: Male, Female)
for most of the tests. Categories were excluded in cases having 12
or fewer participants.

Females were more positive toward the robot than males

according to survey responses (H2b), but there was no main

effect of group (H1) or group type (H2a). We ran a series of
2 (Gender) × 3 (Family, Friend, Coworker) ANOVAs on survey
responses. Main effects of Gender indicated that Females rated

more enjoyment (F(2, 306) = 5.59, p = 0.019, n2p = 0.018) and

usefulness in the future (F(2, 309)= 4.55, p= 0.030, n2p = 0.015)
from the robot than males. No main effects of Group Type were
found. An interaction effect revealed that Females rated the robot
as less smart than Male when in Coworkers groups, but Females
rated the robot as smarter than Males did in Family and Friend
groups (F(2, 306)= 4.55, p= 0.011, n2p = 0.029).

Groups (H1), especially Age-Diverse andAge-Similar (H2a)

were more likely to interact with the robot than Alone

participants. Females were more likely to interact than males

(H2b). We ran a 2 (Gender) × 4 (Group Type: Alone, Age-
Diverse, Age-Similar, Business-Dressed) × 2 (Interaction: Yes,
No) Chi squared test on whether or not participants interacted
with the robot. There were statistically significant differences
(X2(3, N = 2,605) = 339.94, p < 0.001; see Table 6). Groups of
Age-Diverse or Age-Similar participants were more likely, and
Alone participants were less likely, to interact than expected.
When divided by Gender, the same was true of Females, but for
Males, only Age-Diverse (not Age-Similar) were more likely, and
those who were Alone were less likely, to interact than expected.
Further, Females were more likely to interact than Males (X2(1,
N = 2,605)= 36.68, p < 0.001).

Groups (H1), especially Age-Diverse and Age-Similar

(H2a) interacted for longer with the robot than Alone

participants. Females were not more likely to interact

for longer than males (H2b). Excluding participants who
did not interact with the robot, a 2 (Gender) × 3 (Group
Type: Alone, Age-Diverse, Age-Similar) ANOVA indicated
a main effect of Group Type (F(2, 343) = 4.85, p = 0.008,
n2p = 0.028) such that participants who were Alone interacted
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FIGURE 3 | Number of males and females in different group types according to survey ratings.

FIGURE 4 | Number of males and females in different group types as observed in the video.

for a shorter time with the robot than those in Age-Diverse
(p = 0.001) and Age-Similar groups (p = 0.013). There
were no differences among those who were in groups.
No main effects of Gender or interaction effects were
found (Figure 6).

Group (H1) and Group Type (H2a) did not affect social

gestures toward the robot. Females were more likely to

socially gesture than males (H2b). We ran a 2 (Gender) ×

3 (Group Type: Alone, Age-Diverse, Age-Similar) chi-squared
test on whether or not participants made social gestures
toward the robot. There was a main effect of Gender (X2(1,
N = 2,425) = 17.04, p < 0.001) such that Females were
more likely to make social gestures toward the robot than

Males. No main effect of Group Type or interaction effects
occurred (Table 7).

High-Entitative Groups Were Slightly More
Positive Toward the Robot Than
Low-Entitative Groups (H2)
Linear regression indicated no relation between
perceived ingroup entitativity and ratings of the robot
(ps > 0.050), except that participants who rated
their group as highly entitative were more likely to
recommend for others to use the robot (F(1,98) = 6.91,
p = 0.010; B = 0.323; R = 0.257). The equation was:
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FIGURE 5 | Gender distribution in video-coded groups.

TABLE 5 | Percent of participants, divided by Gender Proportion and Age (ASR).

Negative ASR values indicate that the percent was lower than expected.

Older adult Adult Teenager Child Baby

All male 1.01 (−2.1) 84.80 (3.5) 6.76 (2.8) 4.39 (−4.3) 3.04 (−1.3)

Mostly male 0.72 (−1.6) 69.78 (−2.3) 2.16 (−1.2) 24.46 (5.2) 2.88 (−0.9)

50/50 4.41 (2.4) 81.90 (2.7) 0.46 (−4.6) 8.58 (−2.2) 4.64 (0.3)

Mostly female 1.00 (−1.1) 68.00 (−2.4) 0.00 (−2.1) 28.00 (5.5) 3.00 (−0.7)

All female 3.91 (1.3) 70.68 (−3.3) 8.47 (4.6) 10.42 (−0.6) 6.51 (2.1)

TABLE 6 | Percent of participants who interacted with the robot (ASR), divided by

gender and group type.

Alone Age-diverse Age-similar Business-

dressed

Total

Male 3.42 (−13.3) 35.88 (13.9) 20.12 (3.9) 12.12 (0.4) 11.14 (−6.1)

Female 4.95 (−9.4) 39.33 (11.0) 17.27 (−1.1) 13.33 (−0.9) 19.75 (6.1)

Total 3.83 (−16.9) 37.80 (18.5) 18.49 (2.5) 12.31 (−0.8)

Likeliness to recommend = 2.89 + 0.323 ∗ (Human
group entitativity).

Norms of Interaction Affected Participants
(H3), Especially Males (H3a, H3b)
Survey responses related to gender ratio were too few (N = 69),
so for tests of norms we examined only behavior.

Participants (H3), especially males (H3a) were more likely

to interact with the robot if others in their group previously

interacted.. Overall, a 2 (Gender: Male, Female) × 4 (Seen
Previous Interaction: No Previous, Different Group, Different
Group and Individual, Own Group) × 2 (Interaction: Yes, No)
chi-squared test revealed that participants were more likely to

interact than expected with the robot if they saw Own Group
(ASR = 27.3) interact or currently interacting with the robot,
and less likely to interact than expected if they saw No Previous
(ASR = −10.0) or Different Group (ASR = −4.1) interacting
(X2(3, N = 2,466) = 745.96, p < 0.001; Figure 7), regardless
of gender. There was an interaction effect between Gender and
Seen Previous (X2(1, N = 2,466) = 36.84, p < 0.001). Females
were more likely to interact than expected compared to Males
when they saw No Previous (ASR = 2.2, p = 0.031) interaction,
Different Group (ASR = 2.7, p =0.007), or Own Group, and
Individual (ASR = 2.2, p = 0.025). However, there was no
significant difference in Male and Female interaction with the
robot when Own Group had previously interacted (ASR = −1.0,
p= 0.315).

Participants (H3) weremore likely to socially gesture toward

the robot if others in their group previously interacted. Gender

did not affect the relationship (H3a). When the same test was
run on Gesture (Yes, No), the Expected Count for Own Group
Male Gesture was too low (N = 2.4). However, the effects were
similar across gender. Therefore, Gender was collapsed and a 4
(Seen Previous Interaction: No Previous, Group Not, Different
Group and Individual, Own Group) × 2 (Gesture: Yes, No) chi-
squared test was run (X2(3, N = 2,466) = 133.31, p < 0.001)
indicating that participants gestured at the robot less often than
expected when they saw No Previous (ASR = −3.9) and more
often when they saw Own Group (ASR = 11.5) interacting.
Because Different Group and Different Group and Individual
showed interaction in similar direction, they were combined
to find that participants who saw those not in their group
interacting were also less likely to make a social gesture toward
the robot (ASR=−2.5; X2(3, N = 2,466)= 140.84, p < 0.001).

Males (H3a) interacted for a longer duration with the robot

if others in their group had previously interacted. The effect

was not clear for participants overall (H3). A 2 (Gender: Male,
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FIGURE 6 | Group type and gender on duration of interaction. Error bars indicate standard error.

TABLE 7 | Percent of participants who socially gestured toward the robot as

divided by Gender and Group Type [Adjusted Standardized Residual (ARS)].

Alone Age-diverse Age-similar Total

Male 0.57 (−10.3) 12.98 (8.5) 10.37 (4.6) 3.86

Female 1.30 (−6.3) 16.46 (7.1) 6.82 (−0.7) 7.94

Total 0.77 (−12.3) 14.92 (11.7) 8.33 (2.7) 5.44

Female) × 4 (Seen Previous Interaction: No previous, Different
Group, Different Group and Individual, Own Group) ANOVA
was run on interaction time for participants who interacted
with the robot. There was an interaction effect between Gender
and Seen Previous Interaction (F(3,359) = 2.69, p = 0.046,
n2p = 0.022) such that Males interacted for less time than Females
unless they saw their Own Group interacting (Figure 8).

Males interacted more with and made more social gestures

toward the robot if there were more females in their groups

(H3b). We ran logistic regressions for the effects of Gender and
Gender Ratio on behavior relating to the robot (N = 1,270).
On interaction (Y/N), (Nagelkerke’s R2 = 0.015, X2(5) = 61.89,
p < 0.001), only the effect of Gender Ratio was significant
(Wald(1) = 9.23, p = 0.002, B = 0.749) such that the greater
percentage female in the group, the more likely participants
were to interact with the robot. The same was true of
gesture (Nagelkerke’s R2 = 0.015, X2(5) = 16.67, p = 0.011)
(Wald(1) = 4.98, p = 0.026, B = 0.818). When Gender Ratio
was used as a covariate in the 2 (Gender)× 3 (Group Type: Age-
Diverse, Age-Similar, Business-Dressed), no effects were found.

DISCUSSION

In this study, participants interacted with a humanoid robot in
a mall setting. Participants who interacted with the robot were

given the opportunity to complete a survey. Behavior of those
who passed through the area was examined by independent video
coders with high accuracy. The main findings of the study were
twofold: Groups (H1, H2a, H2b), especially entitative groups
(H2, H2ai, H2bii) increased following of group goals, and group
norms of interaction increased actual interaction (H3). These
findings are described in more depth below.

H1 and H2. Groups, Especially Entitative
Groups, Enjoyed the Robot
Groups, especially entitative groups, as compared to individuals,
(1) interactedmore and for longer with, (2) behavedmore socially
toward, and (3) were more positive toward a robot in the mall.
These results were shown across survey and behavioral measures,
supporting H1, H2a, and H2b. These findings indicate that in a
naturalistic setting, groups hadmore positive interaction with the
robot than individuals—at least in the positive and friendly mall
environment. They also contribute the novel information that
the entitativity of pre-existing participant groups can positively
affect subjective and behavioral responses toward a robot in a
naturalistic setting. These results are useful for HRI because they
show that groups do not necessarily turn people against a robot;
group effects can also work in favor of robots in situations in
which the group members support each other to explore the
environment and a robot.

Family, friend, and female groups were highly entitative
(H2ai, H2bii) and responded more positively toward the robot
than others. These results support research indicating that
different types of groups naturally have different levels of
entitativity (Lickel et al., 2001). An alternative reason for
increased interaction when in groups is because participants
in groups could watch their families or friends interact with
the robot, which accounted for some of the time and close
interaction distance with the robot. However, this would not
necessarily account for increased positivity of entitative groups.
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FIGURE 7 | Interaction with the robot based on previous exposure to interactions with it.

FIGURE 8 | Effect of gender and group type on time interacted with the robot. Error bars indicate standard error.

Robot designers may wish to target entitative groups of users to
increase interaction time with their robots. A robot could initially
target those in a group who are more likely to want to interact
immediately with the robot (e.g., women in this study), and once
the group members are present, could switch strategies to appeal
to other group members. Indeed, once participants’ groups were
interacting with the robot, the participants themselves were more
likely to interact with it.

H3. Social Norms Affected Interaction
Participants followed group norms of interacting with the robot
(H3). That is, when others in participants’ group interacted with
the robot, participants who did not typically interact were more
likely to (H3a). Because males interacted less than females, as in

previous observational research of naturalistic interactions with
the robot in public spaces (Chang et al., 2014), this was especially
pronounced for male participants (H3b). Further, once one’s own
group was interacting with the robot, males, and females were
similarly likely to approach and interact. As suggested above,
practitioners trying to increase interaction with the robot might
initially target group members that are more likely to interact
with the robot (females in this case), and once the group is
interacting, engage other group members.

An alternate explanation is that female groups in the mall
were more likely to be there for leisure whereas the male groups
were more likely to be there for business. Therefore, those groups
with more females were more likely to have the group purpose
of exploring and therefore, have more positive interactions with
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the robot, whereas those in groups with more males were more
likely to have the purpose of business and therefore, have fewer
interactions with the robot. Regardless, these findings show
that the group composition and purpose of the group bring
participant behavior to be closer to the behavior of the other
members of the group.

Limitations, Design Recommendations,
and Future Studies
In this study, we examined actual interaction with a robot in
a real world setting, giving our results high external reliability.
As such, none of the variables examined were experimentally
manipulated, meaning that we cannot infer causation. Future
studies should confirm that the effects we found can be replicated
in more controlled studies during actual manipulation, and
in other contexts. For example, in this study, it could be
surmised that people at the mall for fun rather than business
(i.e., family, friend, females, compared to males, coworkers)
were more likely to interact with the robot, rate it positively,
and interact with it for longer. This was especially true
when they were in groups, especially more entitative groups.
Future studies should examine if robots made for a work
environment would attract more coworkers and if entitativity
of coworker groups would also increase interaction time with
the robot.

One confound in the study is that groups that are more
entitative (family, friend, female) were also more likely to be
in the mall for leisure than lower-entitative groups (coworkers,
men). We recommend that scholars take these results with
caution. Future studies should directly manipulate entitativity
or examine entitative groups in different settings to disentangle
these variables.

Further, family groups and female friend groups were not
only more entitative, but perceived the robot as more positive
than other groups. Future designers might market robots toward
women and children for mall settings because these were the
typical users in this study. However, the results indicate that
it is important to remember that it is the social context (e.g.,
family outing) that is at least as important as gender in affecting
responses toward a robot.

Additionally, this study was conducted in Japan. Findings,
especially those related to business people and gender, may differ
in different countries and in different social contexts.

In this study, we did not have enough survey data to examine
the relationship between behavior toward the robot and survey
ratings of the robot. Future studies could employ more surveys,
such as by introducing a simple button near the robot to rate the
interaction (positive, neutral, negative) for participants to employ
after interaction to gain more explicit ratings of the robot.

Another limitation is that, although in some groups we were
able to survey multiple participants, in other groups, only one
participant would take the survey. This may bias the results if,
for example, the person who was most likely to take the survey
was the person who responded most positively to the robot.
This type of self-selection bias is a limitation of all naturalistic
studies that request survey participation. Examining these effects

in a laboratory setting would circumnavigate this limitation.
However, this is not a major concern because participant actual
behavior supports conclusions drawn from surveys.

Finally, the video coders were not accurately able to identify
family vs. friend groups. This could be a limitation in that
we cannot make strong conclusions about behaviors of family
and friends. However, if robots are programmed to identify
different groups, they may also not be able to correctly identify
family vs. friend groups. The identification of age-similar vs.
age-diverse groups that were used in this study could plausibly
be employed by robots in the near future, making this research
directly applicable to today’s HRI.

CONCLUSION

Overall, in this study we sought to find how the presence
of a groups, group characteristics, and group norms relate
to people’s behavior toward a humanoid mall guidance robot.
The results indicated that, in this friendly context, groups, and
especially entitative groups, were more positive toward a robot.
Second, group norms of interacting with a robot influenced
participants who would not normally interact with the robot
to interact with the robot. Practitioners can apply these results
to the design and implementation of public HRI, with robots
targeting high-entitative groups if they are looking for longer
interactions. Future studies might examine more ways to engage
low-entitative groups and others that are less likely to interact
with a public robot.
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CONTRIBUTION TO THE FIELD

Robots are increasingly being placed in public settings, including
malls, museums, and city streets, to help guide and direct people.
The results of this study demonstrate how the characteristics
of human groups influence people’s behavior when interacting
with a robot. It presents the novel finding that groups (especially
integrative groups), compared to individuals followed the group
norm more for interacting with a robot. Researchers and
practitioners can use this information when designing robots
for public interaction with people, and for engaging people who
might not otherwise be interested in interacting with a robot.

FUNDING

Thank you to the National Science Foundation (NSF) Grant
#1650681 and JST CREST Grant Number JPMJCR17A2 for

funding this research, including researchers on the grant
and equipment.

ACKNOWLEDGMENTS

Thank you to research assistants Andrew Buzzelli and Yulu
Huang, Ji Hyung, Sara Wang, and Emily Wattimena for
video coding. Thank you to our partners from Japan who
helped run the study: Jason Lim, Kanako Tomita, and
Satoru Satake.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2019.00048/full#supplementary-material

REFERENCES

Admoni, H., Hayes, B., Feil-Seifer, D., Ullman, D., and Scassellati, B. (2013).

“Dancing with myself: The effect of majority group size on perceptions of

majority and minority robot group members,” in Proceedings of the Annual

Meeting of the Cognitive Science Society (Berlin).

Al Moubayed, S., Beskow, J., Granström, B., Gustafson, J., Mirning, N., Skantze,

G., et al. (2012). “Furhat goes to Robotville: A large-scale multiparty human-

robot interaction data collection in a public space,” Paper presented at the Proc

of LRECWorkshop on Multimodal Corpora (Istanbul).

Alves-Oliveira, P., Sequeira, P., Melo, F. S., Castellano, G., and Paiva, A. (2019).

Empathic robot for group learning: a field study. ACM Transact. Human-Robot

Interact. 8:3. doi: 10.1145/3300188

Anastasio, P., Bachman, B., Gaertner, S., and Dovidio, J. (1997). Categorization,

recategorization and common ingroup identity. Soc. Psychol. Stereotyp Group

Life 236:256.

Bennewitz, M., Faber, F., Joho, D., Schreiber, M., and Behnke, S. (2005). “Towards

a humanoid museum guide robot that interacts with multiple persons,” in

5th IEEE-RAS International Conference on Humanoid Robots, 2005 (Tsukuba:

IEEE), 418–423.
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Prior research has demonstrated the importance of children’s peers for their learning

and development. In particular, peer interaction, especially with more advanced peers,

can enhance preschool children’s language growth. In this paper, we explore one factor

that may modulate children’s language learning with a peer-like social robot: rapport. We

explore connections between preschool children’s learning, rapport, and emulation of the

robot’s language during a storytelling intervention. We performed a long-term field study

in a preschool with 17 children aged 4–6 years. Children played a storytelling game with

a social robot for 8 sessions over two months. For some children, the robot matched the

level of its stories to the children’s language ability, acting as a slightly more advanced peer

(Matched condition); for the others, the robot did not match the story level (Unmatched

condition). We examined children’s use of target vocabulary words and key phrases used

by the robot, children’s emulation of the robot’s stories during their own storytelling, and

children’s language style matching (LSM—ameasure of overlap in function word use and

speaking style associated with rapport and relationship) to see whether they mirrored the

robot more over time. We found that not only did children emulate the robot more over

time, but also, children who emulated more of the robot’s phrases during storytelling

scored higher on the vocabulary posttest. Children with higher LSM scores were more

likely to emulate the robot’s content words in their stories. Furthermore, the robot’s

personalization in the Matched condition led to increases in both children’s emulation

and their LSM scores. Together, these results suggest first, that interacting with a more

advanced peer is beneficial for children, and second, that children’s emulation of the

robot’s language may be related to their rapport and their learning. This is the first study

to empirically support that rapport may be a modulating factor in children’s peer learning,

and furthermore, that a social robot can serve as an effective intervention for language

development by leveraging this insight.

Keywords: children, language development, mimicry, peer modeling, rapport, relationship, social robotics,

storytelling
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1. INTRODUCTION

Children’s early language development is linked to their academic
and overall life success. Numerous studies in the United States,
for example, have found that children who are not exposed
to rich language learning opportunities as they grow up—
such as vocabulary-building curricula, cognitively challenging
preschool activities, greater numbers of novel words and total
words heard—may be significantly impacted, showing language
deficits, lower reading comprehension, and lower vocabulary
ability (Huttenlocher et al., 1991, 2002, 2010; Hart and Risley,
1995; Fish and Pinkerman, 2003; Griffin et al., 2004; Paez
et al., 2007; Snow et al., 2007; Perkins et al., 2013; Schwab
and Lew-Williams, 2016). Numerous interventions have been
developed to support children’s early language development, such
as preschool readiness programs, teacher, and parent resources,
and a wide range of language-focused educational apps, games,
and computer programs.

One way children’s language learning can be supported is
through peer interaction. Children’s peer relationships provide
opportunities for openness, exploration, and discovery. Research
from the past several decades shows that children’s peers,
particularly more advanced peers, can enhance their overall
preschool competency and language growth (Fuchs et al., 1997;
Mathes et al., 1998; Topping, 2005; Schechter and Bye, 2007;
Whitebread et al., 2007; Mashburn et al., 2009; Justice et al.,
2011; DeLay et al., 2016; Lin et al., 2016). Mashburn et al.
(2009), for example, measured preschool children’s receptive
and expressive language skills at the start and end of a school
year. Children’s language growth during the year was positively
related to their peers’ expressive language abilities, a result later
replicated by Justice et al. (2011). Notably, children, particularly
children with lower skills, appeared to benefit most from having
higher ability peers around them.

This research is in line with various theories about how

peer learning occurs, including Vygotsky’s theory that a child’s
more advanced peers can help support or scaffold the child in

acquiring and practicing skills that are otherwise beyond their
skill level (Vygotsky, 1978; Tudge and Rogoff, 1989; Rubin et al.,
1998); Bandura and Walters’ social learning theory which argues

that children frequently learn through observing and imitating
others (e.g., observing and imitating their speech; Bandura and
Walters, 1963; Bandura, 1971; Rubin et al., 1998); and Piaget’s
theories regarding the importance of dialogue and discussion
among peers in promoting cognitive development (Piaget,
1932; Tudge and Rogoff, 1989; Rubin et al., 1998;
De Lisi and Golbeck, 1999).

Because children’s peers can significantly and positively affect
their language learning, numerous researchers in human-robot
interaction have hypothesized that playing with a peer-like robot
companion may lead to similar benefits. For example, some
robots have been positioned as slightly advanced peers (e.g.,
Kanda et al., 2004; Kory and Breazeal, 2014; Gordon et al.,
2016; Kory Westlund et al., 2017b); while others have been
positioned as younger peers or novices (e.g., Movellan et al.,
2009; Tanaka and Kimura, 2009; Tanaka and Matsuzoe, 2012;
Gordon and Breazeal, 2015; Hood et al., 2015; Tanaka et al.,

2015). Some virtual agents have also been created as peer-like
learning companions (Bers et al., 1998; Cassell and Ryokai,
2001; Ryokai et al., 2003; Cassell, 2004; Cassell et al., 2007). In
language learning applications, research has focused primarily on
children’s vocabulary learning, often in English and often with
English as a second language, though language production is also
a growing area of study (Kanero et al., 2018).

It is also very common for robots to be situated as teachers or
tutors (e.g., Robins et al., 2005; You et al., 2006; Chang et al., 2010;
Lee et al., 2011; Alemi et al., 2014; Serholt et al., 2014; Deshmukh
et al., 2015; Kennedy et al., 2016; Park et al., 2017b; Vogt et al.,
2017, 2019; Rintjema et al., 2018). A recent survey of 101 studies
of social robots in education revealed that 86% of studies set up
robots as teachers or tutors, 4% positioned the robot in a mixed
tutor/teacher role, only 9% set up the robot as a peer or novice,
and 1% gave the robot another role (Belpaeme et al., 2018). In
this survey, nearly 60% of the studies surveyed involved children,
and it included studies of many different educational activities,
including language, math, and reading.

Given this interest in using social robots to support children’s
language learning, we should examine more closely what
modulates children’s learning with peers, and by extension,
mechanisms that robots can use to be more effective learning
companions. That is: are children’s peers approximately equal
as sources for promoting language learning, or will children
learn more effectively from some peers than from others? What
features or behavior might help a social robot better enable
children’s language learning?

Some work has begun exploring these questions. For example,
robots that use nonverbal social cues and nonverbal immediacy
behaviors have led to increases in children’s engagement,
learning, and relationships during educational activities (e.g.,
Kanda et al., 2004, 2007, 2012; Breazeal et al., 2016; Kennedy
et al., 2017; Kory Westlund et al., 2017a,b). These results jibe
with literature in psychology and education, where research has
linked improved learning outcomes to use of appropriate social
cues (e.g., Bloom, 2000; Meltzoff et al., 2009; Sage and Baldwin,
2010; Kuhl, 2011), social interaction and greater numbers of
conversational turns (e.g., Hoff, 2006; Romeo et al., 2018a,b),
and nonverbal immediacy (Mehrabian, 1968; Christophel, 1990;
Witt et al., 2004). Robots that personalize content or behavior to
children have also led to increased learning and engagement (e.g.,
Leite et al., 2012; Kory and Breazeal, 2014; Gordon et al., 2016;
Palestra et al., 2016; Scassellati et al., 2018; Park et al., 2019).

Another mechanism that may improve children’s learning
is rapport, as suggested by two recent studies of children’s
language learning during storytelling with social peer-like
robots (KoryWestlund et al., 2017b; Kory-Westlund, 2019; Kory-
Westlund and Breazeal, 2019b). Kory Westlund et al. (2017b)
found that playing with a robot with a more expressive voice led
to increases in children’s engagement and vocabulary learning
as well as increased emulation of the robot’s language. Kory-
Westlund (2019) found that children’s language emulation,
positive emotion, and acceptance of the robot were positively
affected by the robot’s use of speech entrainment and an
appropriate backstory about its abilities. These studies suggest
that children’s rapport may be reflected in their language

Frontiers in Robotics and AI | www.frontiersin.org 2 September 2019 | Volume 6 | Article 8124

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kory-Westlund and Breazeal Children’s Social Emulation and Language

emulation, a result that jibes with related work showing that
humans who have greater rapport with each other will mimic
each other’s language (e.g., Niederhoffer and Pennebaker, 2002;
Pennebaker et al., 2003; Huttenlocher et al., 2004; Tausczik and
Pennebaker, 2010; Ireland et al., 2011; Babcock et al., 2014) and
vocal prosody (e.g., Porzel et al., 2006; Reitter et al., 2011; Borrie
and Liss, 2014) more.

Earlier work with adults and robots (Kidd and Breazeal, 2008;
Lubold et al., 2016, 2018; Lubold, 2017), as well work in human-
human tutoring (Sinha and Cassell, 2015a,b), have also suggested
links between learning and rapport. Children’s social bonds with
their teachers can predict their performance (Wentzel, 1997).
Children who have stronger parasocial relationships with media
characters may learnmore effectively from those characters (Gola
et al., 2013; Richards and Calvert, 2017).

Taken together, the research so far suggests that children’s
rapport with an interlocutor may affect their learning and
language behavior. However, these studies were primarily one
session; they did not examine children’s learning or language
behavior over time. As such, one open and important question
was whether children would emulate the robot’s language long-
term, and if they did, whether this would be related to their
vocabulary learning or their rapport with the robot. To explore
this question, we performed new analyses on an existing dataset
from an 8-session study in which children played a storytelling
game with a peer-like social robot. The design and early results
from this study were presented in (Kory, 2014; Kory and Breazeal,
2014; KoryWestlund and Breazeal, 2015); here we present the full
methodology, as well as results and discussion.

2. METHODOLOGY

2.1. Research Questions
We wanted to explore connections between children’s learning,
their rapport, and their emulation of a peer-like robot’s language
behavior. We asked whether children would be more likely
to emulate language of a robot with whom they had more
positive rapport, whether this was correlated with their learning,
and furthermore, whether children’s emulation or rapport were
consistent over time.

2.2. Design
We performed new analyses on an existing dataset that included
stories from 14 children, who had played a storytelling game with
a robot 1–2 times per week for 8 sessions (Figure 1) (Kory, 2014;
Kory and Breazeal, 2014; Kory Westlund and Breazeal, 2015).

The original study explored whether a peer-like social robot
could facilitate preschool children’s oral language development.
In addition to being one of the first studies exploring the
effectiveness of a long-term, storytelling intervention, this study
examined whether personalizing the general language complexity
of the robot’s stories might increase children’s learning of new
words and use of more complex language in their own stories.
The hypothesis was that presenting stories of an appropriate
challenge for the child, slightly ahead of the child’s general
ability in the zone of proximal development, might promote

learning (Vygotsky, 1978; Csikszentmihalyi, 1990). Thus, the
study followed a two-condition design.

Two versions of each story told by the robot were created, a
harder version and an easier version (for more detail regarding
story creation, see Kory, 2014; Kory and Breazeal, 2014). In the
first half of the study (sessions 1–4), all children heard the same
versions of the stories. In the second half of the study (sessions
5–8), children in theMatched condition (12 children—6 female, 6
male) heard stories matched to their language ability (i.e., harder
stories for children with higher ability; easier stories for children
with lower ability. Children in the Unmatched condition (5
children—4 female, 1 male) heard stories that were not matched
(e.g., easy stories for children with higher ability).

2.3. Participants
Seventeen children aged 4–6 years (10 female, 7 male) from two
Boston-area preschools (9 from the first and 8 from the second)
participated in the original study. Children were recruited from
two schools in order to recruit sufficient children for the study.
There were three 4-year-olds, thirteen 5-year-olds, and one 6-
year-old (M = 4.88, SD = 0.49). The 6-year-old girl did not
complete the final session, and one 4-year-old girl completed
only the first 4 sessions. Children in this age range were targeted
because their expressive language abilities are developed enough
to be able to tell stories. They are still in the process of developing
their narrative abilities. Younger children, as was discovered
during pilot testing, may not tell stories at all and are less likely to
understand and follow the rules of the game.

For the purposes of our analyses here, our data included 206
stories from 14 children (8 female, 6 male, two 4-year-olds, twelve
5-year-olds, age M = 4.86, SD = 0.36) and full transcripts from
all 17 children (3 children did not tell stories).

Children’s parents gave written informed consent prior to the
start of the study, and all children assented to participate. The
protocol was approved by the MIT Committee on the Use of
Humans as Experimental Subjects.

2.4. Hypotheses
We expected the following:

• H1: Children who showed greater rapport with the robot
would be more likely to learn the target vocabulary words,
with receptive knowledge indexed by vocabulary assessment
scores and productive knowledge by use of the words in their
stories. We expected this because prior work has shown that
rapport can facilitate learning (Sinha and Cassell, 2015a,b),
and children have previously mirrored a robot’s vocabulary in
their stories (Kory Westlund et al., 2017b)

• H2: Children who showed greater rapport would be more
likely to emulate the robot’s language in their stories
and throughout the full interaction session. We expected
this because people frequently mirror the language and
behavior of those with whom they have rapport (e.g.,
Dijksterhuis and Bargh, 2001; Niederhoffer and Pennebaker,
2002; Huttenlocher et al., 2004; Chartrand and van Baaren,
2009; Tausczik and Pennebaker, 2010; Ireland et al., 2011;
Babcock et al., 2014).
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FIGURE 1 | (A) The robot was placed on a table across from the child. The tablet was set in a small table between them. The camera was set up behind the robot to

the left. (B) A girl listens while the robot tells a story. (C) This girl turned the robot and tablet so she could sit beside the robot. Written informed consent was obtained

to use these images.

• H3: Because of the expected connections between children’s
rapport and their learning, we also expected that children who
emulated the robot’s language more would also show more
vocabulary learning.

• H4:We expected children’s rapport and their emulation of the
robot’s language to increase over time as they became more
familiar and comfortable with the robot.

• H5: Children who heard personalized stories from the robot
would emulate more, learn more words, and have greater
rapport. We expected this because of suggested links between
a robot’s personalization and children’s engagement and
learning (e.g., Leite et al., 2012; Gordon et al., 2016; Palestra
et al., 2016; Scassellati et al., 2018; Park et al., 2019).

2.5. Procedure
Each child participated in a pretest session and 8 sessions with
a teleoperated robot, over 10 weeks (Kory, 2014; Kory and
Breazeal, 2014; Kory Westlund and Breazeal, 2015). During the
pretest, children were given a language assessment, a subset of the
Preschool Language Scale, 5th Edition (Zimmerman et al., 2011),
to assess aspects of their expressive and receptive language ability.
This assessment did not use any of the robot’s target words.
Children were also given a separate receptive vocabulary pretest
for the target words the robot used in its stories. In this test, for

each word, children were shown a set of four pictures and were
asked to point to the picture showing the target word.

These initial assessments was used to split children into two
groups: higher language ability (above the mean), and lower
language ability (below the mean). These categorizations were
for this study only; “higher/lower language ability” did not mean
children were necessarily above or below what might be expected
for their age, just that they were divided into two groups for the
purposes of the robot’s language level personalization. Children
were randomly assigned to theMatched orUnmatched conditions
after these assessments; their initial language assessment scores
were taken into account in an attempt to balance language ability
across conditions.

Each of the 8 sessions with the robot was 10–15 min long
(Figure 1). The robot briefly engaged the child in conversation
(e.g., asking if the child had done anything fun that morning or
sharing a fact about itself), then showed a story scene on a tablet
and told a short story. Next, the child was invited to tell their
own story about the scene. The robot then showed a second story
scene and told a second story, and the child was invited to tell
a second story. After a brief closing conversation, the interaction
ended. In some sessions, the robot showed a story scene but asked
the child to tell a story first. If children declined to tell their own
story, the robot briefly encouraged them to do so, but if they
refused again, the robot moved on.

Frontiers in Robotics and AI | www.frontiersin.org 4 September 2019 | Volume 6 | Article 8126

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kory-Westlund and Breazeal Children’s Social Emulation and Language

As mentioned above, in the first half of the study (sessions 1–
4), all children heard the same stories. In the second half of the
study (sessions 5–8), children in the Matched condition heard
stories matched to their language ability, while children in the
Unmatched condition heard stories that were not matched.

A storytelling activity was used to promote language
development because storytelling is a socially situated activity
that combines play and narrative, which are two important
aspects of children’s learning and development (Nicolopoulou,
1993; Engel, 1995). Storytelling can allow collaborative, creative
conversation and language practice, and can support emergent
literacy skills, includingmetalinguistic knowledge about language
patterns, structure, and function; vocabulary; “decontextualized”
language that can be understood outside its original context;
as well as supporting cognitive, communicative, and linguistic
development more broadly (Engel, 1995; Cassell, 2004; Curenton
et al., 2008).

Children were interviewed about their perception of the robot
and interaction after sessions 4 and 8. The questions were
adapted in part from (Jipson and Gelman, 2007; Kahn et al.,
2012). Children were invited to answer numerous questions
using a verbal 3-point scale (“a lot,” “a little bit,” or “not
very much”). While this methodology presents some challenges
due to children’s tendency to answer in socially acceptable
ways, anecdotally, children’s engagement and interest observed
during the activities was reflected in their interview responses.
Furthermore, many of the interview questions were followed up
by asking children to explain their response or to say more, which
helped give context to children’s ratings. All interview questions
and language assessments are available on figshare at https://doi.
org/10.6084/m9.figshare.8144456.

2.6. Materials
2.6.1. Robot
This study used the Dragonbot (Setapen, 2012; Kory et al., 2013)
as the learning companion. This robot is capable of expressive
movement based on “squash and stretch” principles of animation.
It can display a variety of facial expressions on the smart phone
that also runs its software, as well as play sounds or speech. The
robot wore green fur, was named “Green,” and was referred to in
a distinctly non-gendered way by the experimenter throughout
the study.

The robot followed a script of speech, expressions, and
movement. Speech was recorded by a human adult female. The
pitch of the speech was shifted higher to sound more like a child.

2.6.2. Teleoperation
A human operator used a custom control interface to send action
and speech commands to the robot. The teleoperator attended
to the child’s speech and actions in order to trigger the robot’s
actions (e.g., playing back speech or showing a facial expression)
at appropriate times. Including a human in the loop allowed
the robot to appear autonomous while sidestepping technical
barriers such as autonomatic speech recognition and natural
language understanding. When the robot’s actions depended on
what the child said or did, such as during the introductory
conversation or when asking the child if they wanted to tell a

story, the teleoperator selected among a limited set of dialogue
options. The robot’s gaze was automatically directed to either
look up at the child or down at the game, based on data collected
during the pilot study regarding where children look during play.

The teleoperator followed several general rules. First, the
teleoperator made the robot’s behavior as socially contingent as
possible—reacting to the child as closely to as a human would
in the same circumstance. When the child spoke, the robot
would acknowledge through speech, verbal exclamations such as
“Ooh!” and “Oh no!,” smiles, and short affirmative non-linguistic
noises. These acknowledgments were primarily triggered during
pauses in the child’s speech. The same sounds or animations
were not triggered twice in close succession, though the same
sounds and animations were often used multiple times per
session. Finally, the teleoperator made the robot’s behavior as
consistent as possible across participants, using the same set of
sounds and animations with approximately the same frequency
for all children. The same person operated the robot for all
participants and had been previously operated this robot in
numerous earlier studies.

2.6.3. Storytelling Game
The storytelling game was inspired by the game developed
by Ryokai et al. (2003) for their virtual peer, in which the
virtual agent which took turns with children telling stories about
characters in a toy castle. In this study, the shared game surface
was a tablet screen set into a small wooden table. Story scenes
showed a background image with several characters and objects
that could be dragged around on the screen, much like virtual
stick puppets. When the robot told stories, the characters were
moved automatically in concert with the robot’s speech. These
movements were recorded and played back so that they would be
consistent for all children. There were no additional animations
or sound effects.

The game included eight story scenes (Figure 2). Over the
course of the study, the robot told two stories using each scene.

The robot’s stories were based on stories told by children
during pilot testing of the game at the Boston Museum of
Science (Kory, 2014). Two versions of each story were crafted for
the personalization with the same general content, but with one
having greater with greater language complexity (“hard” stories)
and one with less (“easy” stories Kory and Breazeal, 2014). For
example, part of one easier story included, “George liked to climb
up massive icebergs. He liked to slide back down in the snow,”
while the more complex version was, “George enjoyed climbing
up to the very top of massive icebergs, then sliding all the way
back down on his belly, beak first”.

2.6.4. Vocabulary
Twenty-four target vocabulary words were selected fromAndrew
Biemiller’s “Words Worth Teaching” lists (Biemiller, 2010),
including nouns (e.g., structure, clump), verbs (e.g., expect,
plunge), and adjectives (e.g., ancient, massive). Three words were
used in each of the robot’s stories. Because the robot told two
stories each session, six words were used each session. After
sessions 1–4, all the words had been introduced. During the
sessions 5–8, the words were used again in new stories to provide
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FIGURE 2 | The eight story scenes used for the storytelling game. Two stories were written for each scene, for a total of 16 stories.

additional opportunities for learning. Children were tested on the
vocabulary words using a picture-based assessment before and
after the study. In each item on the assessment, children were
shown four pictures. They were asked to point to the picture
corresponding to the target word.

2.7. Data
Audio and video of the study sessions were recorded with a
camera beside the robot (Figure 1). Children’s responses to the
vocabulary assessments and interview questions were recorded
on paper and later transferred to a spreadsheet.

2.8. Data Analysis
The recorded audio was used to transcribe children’s speech.
Children’s stories were extracted from the full transcripts. All
children spoke during the conversations with the robot, andmost
told stories as well.

The data we analyzed in this paper included 206 stories from
14 children and full transcripts from 17 children (3 children did
not tell stories). In these data, we examined children’s use of key

vocabulary words and key phrases used by the robot, children’s
emulation of the robot’s stories during their own storytelling,
and children’s language style matching (LSM). LSM is a measure
of overlap in function words and speaking style as opposed to
content words. Our phrase matching metrics looked primarily
at content words. Research has shown that the more “in sync”
two people are, the more they will match function words in
their speech; it may reflect rapport and relationship (Niederhoffer
and Pennebaker, 2002; Pennebaker et al., 2003; Tausczik and
Pennebaker, 2010; Ireland et al., 2011; Babcock et al., 2014). We
use LSM here as a measure of rapport.

One limitation of this methodology is that LSM is a linguistic
measure of rapport. It would be useful in future work to examine
additional ways of measuring children’s rapport with the robot,
to see whether children’s word and phrase use was related to any
non-linguistic signs of rapport or relationship as well.

2.8.1. Target Words and Key Phrases
Using automated software tools, we counted the number of
times children used each of the target vocabulary words in each
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session and in their stories. This analysis was performed on the
full transcripts of each session. Usage of the words may reflect
expressive vocabulary ability, which is often a stronger indicator
of knowledge of a word than the receptive knowledge tested with
the vocabulary assessment (Bloom, 1974; Ingram, 1974; Sénéchal,
1997), as well as mimicry of the robot. We also counted the
number of times children used key phrases that the robot had
used (e.g., “Once upon a time,” “I’ll tell a story about. . . ,” “See
you later, alligator!”). For these, our goal was to see whether
children adopted any of the robot’s frequently used phrases, as
this mimicry may reflect greater rapport.

2.8.2. Language Style Matching (LSM)
LSM analysis requires a minimum of 50 words per participant
in the conversation, but works better with a greater number of
words (Pennebaker et al., 2003; Tausczik and Pennebaker, 2010).
Thus, to get sufficient data for an LSM analysis, we aggregated all
of each child’s stories for sessions 1–4 (the first half of the study)
and then for sessions 5–8 (the second half). We obtained an LSM
score for each set using software tools to access the Receptivity
API (Tausczik and Pennebaker, 2010). LSM scores range from 0
to 1.00, but more often range from 0.5 to 1.00. The closer the
score is to 1.00, the more matching is present.

2.8.3. Stories and Phrase Matching
We analyzed children’s transcribed stories in five ways: length (in
seconds), word count, vocabulary word use, and emulation of the
robot’s phrases. We created an automatic tool to obtain phrase
matching scores comparing each child story to each robot story
that the child had heard prior to telling the story. For example,
a story told by a child in session 2 was compared to the stories
the robot told in session 1 as well as any stories the robot told
before the child in session 2. The analysis was then threefold: (1)
compare each child story to the robot story just prior to it; (2)
compare each child story to other stories in the same scene; (3)
compare each child story to all stories prior to it. The matching
algorithm was as follows:

1. Remove stopwords (i.e., words with no significant information
such as “the,” “uh,” and “an”).

2. Stem words, i.e., convert words to their original form (e.g.,
“running” becomes “run”).

3. Find all N-grams in each text, where an N-gram is a
continuous sequence of N words from the text.

4. Remove duplicate N-grams from one text.
5. Count how many N-grams are the same in both texts.
6. Return that number as the match score.

This produced a score reflecting the number of exact matches—
i.e., words used in the same order by both the child and robot.
It also produced a higher match score for texts that have both
more matching phrases and longer matching phrases. We also
implemented an algorithm for counting similar matches that
were close to each other, but not exactly the same. This algorithm
followed the same steps listed above, where step 5 (counting
matching N-grams) used a fuzzy string matching algorithm to
determine if N-grams matched.

For exact matches, we used N = 3 because a smaller N may
not retain enough information to be considered actual phrase
matching, while a larger N may contain more information than
would comprise a single phrase. For similar matches, we used N
= 4, so that when phrases differed by one or two words, they
might still match.

For example, one of the robot’s stories included the sentences,
“But Turtle still couldn’t find Squirrel. Eventually, it got dark out
and they all got sleepy. So Squirrel had to show his hiding place.”
After stopword removal and stemming, this was converted to:
“turtle still couldn’t find squirrel eventually get dark out they all
get sleepy squirrel show hiding place.” One child’s story included
the similar section, “But he still couldn’t find Squirrel. Then he
bumped into him and started playing. And it’s getting late out. So
Squirrel had not showed his hiding place,” which was converted
to “he still couldn’t find squirrel then he bump into him start
play get late squirrel show hiding place.” This segment included
several exactly matching phrases, e.g., “couldn’t find squirrel,” as
well as several similar matching phrases, e.g., (robot) “squirrel
show hiding place” \ (child) “late squirrel show hiding.”

3. RESULTS

First, we discuss children’s vocabulary learning and information
about the kinds of stories children told. Some of these results were
previously reported in Kory (2014), Kory Westlund and Breazeal
(2015), Kory-Westlund (2019). We also briefly discuss children’s
responses to the interview questions about their perception of
the robot. These interviews are relevant because they showed
that nearly all children reported liking the robot, and that
children’s liking was not identical with ourmeasures of emulation
and rapport.

Next, we present our new analyses regarding children’s use of
the target words and key phrases, emulation of the robot, LSM
scores, and correlations among these measures. Because the new
analyses were post-hoc, we corrected for multiple comparisons
using the Benjamini Hochberg method (to control the false
discovery rate), which indicated that the results with p <0.011
could be considered significant.

3.1. Interviews
As reported in Kory (2014), most children reported that
they liked the game a lot (76.5%), that the robot was their
friend (87.5%), that they wanted to play again (87.5%), that
they liked the stories (93.6%), and that they thought the
stories were interesting (93.6%), and understandable (93.6%)
(Figure 3). There were no differences by condition.

3.2. Target Vocabulary
Across all the children, children’s scores on the vocabulary
assessment increased from the pretest (mean words correct =
13.4 of 24, SD = 3.62) to the posttest (M = 18.9, SD = 2.84),
t(14) = 7.21, p <0.001, d = 1.7. Children’s scores increased by a
mean of 5.7 words (SD= 3.08). Children’s scores increased more
in the Matched condition (M = 6.91 more words correct at the
posttest, SD= 2.51) than in theUnmatched condition (M = 2.50,
SD= 2.08), t(13) = 3.13, p= 0.008, d = 1.9 (Figure 4).
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FIGURE 3 | The majority of children reported liking the robot and the storytelling game.

FIGURE 4 | Children’s vocabulary scores increased over the study, but more so in the Matched condition.

3.3. Stories
Nine children told stories aloud every session. Five children told
primarily silent stories, in which they spent time dragging
characters on the tablet and sometimes murmuring to
themselves, but not speaking aloud very often. Their stories
often appeared short because only spoken words were counted.
Several of these “silent tellers” began vocalizing their stories
more by the final session, telling stories closer in length to the
other children. Three children told no stories, though they did
talk at other times.

The children who spoke aloud told 206 stories with a mean
word count of 81.7 words (SD = 77.8). Of these, 141 stories
were 20 words or longer; the shorter stories were primarily
from the children who only occasionally spoke while playing the
storytelling game.

Qualitatively, children covered a range of themes in their
stories. We observed that children often borrowed elements
from the robot’s stories—such as character names and activities
characters performed. For example, one of the robot’s stories was
about a boy named Micah, who played ball with his friends.
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FIGURE 5 | Children’s mean use of the robot’s key phrases and target

vocabulary words by session.

One child continued using this name and theme (XX’s indicate
inaudible words in the transcript):

“One time there were three friends, XX, Micah and Isabella.
Micah liked going on the swings. Isabella liked going on the slide.
One time they made a new friend, Daisy. She liked ball. One time
she hid behind a bush until nobody saw her. Then both of the kids
that were playing, approached and hid. Then, Micah slid down
the slide and saw her. She stepped out but landed on the top of the
brick tower. So then, they both came down together. The end.”

Several children also retold versions of the robot’s stories,
without prompting (they were merely asked to tell a story and
were not prompted with regards to content). For example, after
the robot told a story about three animals that played hide-and-
seek together, one child told the following story:

“Once upon a time there was a squirrel named, Squirrel, a
turtle named Turtle and a rabbit named Rabbit. That particular
day they played hide and seek. Squirrel hid in the mud. Turtle hid
in the trees while Bunny counted. One, two, three, four. Found
you! Found you, Turtle. My turn. XX behind a tree. Squirrel
found Turtle. And then they played again and again. The end.”

Our observations of these emulations suggested that children
were, in fact, emulating the robot’s stories, which was revealed
quantitatively in our language eumulation results below.

3.4. Keywords and Key Phrases
We performed mixed analysis of variance with condition
(between:Matched vs.Unmatched) and mean of sessions (within:
sessions 1–4 vs. sessions 5–8) on children’s use of the robot’s

FIGURE 6 | Children’s mean LSM scores by condition for the first half vs.

second half of the study.

target vocabulary words and key phrases. We observed a trend
toward amain effect of session on the total number of key phrases
and target vocabulary words children used from the first half to
the second half of the study, F(1,13) = 2.95, p = 0.11, d = 0.22
(Figure 5). Children used somewhat more of the key phrases and
target words in the second half of the study than in the first half.
In particular, children tended to use the phrases “once upon a
time” and “See you later, alligator” more in later sessions.

3.5. LSM
We observed LSM scores ranging from 0.063 to 0.892, with a
mean of 0.696 (SD= 0.212). Only two children had scores below
0.500; in both cases, their scores increased from the first half
to second half of the study. A mixed analysis of variance with
time (within: first half of the study vs. second half) and condition
(between: Matched vs. Unmatched) revealed a trend toward an
interaction of time with condition, F(1,12) = 4.29, p = 0.061. As
shown in Figure 6, LSM scores increased slightly for children in
the Matched condition (first: M = 0.66, SD = 0.25; second: M
= 0.71, SD = 0.23; d = 0.21); the scores decreased slightly for
children in the Unmatched condition (first:M = 0.74, SD= 0.23;
second:M = 0.71, SD= 0.19; d = 0.14).

3.6. Language Emulation
As described earlier, phrase matching scores were computed
against all previously heard stories, only stories from the same
story scene, and only the story heard just prior to the child’s.
We used children’s phrase matching scores as a measure of
language emulation. We performed mixed analysis of variance
with condition (between: Matched vs. Unmatched) and mean of
sessions (within: sessions 1–4 vs. sessions 5–8) for the mean of
children’s exact and similar phrase matching scores per story and
for the sum of children’s exact and similar phrasematching scores
across all stories.

3.6.1. Compared to All Previously Heard Stories
We observed a trend for main effect of time on the mean number
of matching phrases used per story, F(1,12) = 5.65, p= 0.035, and

Frontiers in Robotics and AI | www.frontiersin.org 9 September 2019 | Volume 6 | Article 8131

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kory-Westlund and Breazeal Children’s Social Emulation and Language

FIGURE 7 | Children emulation the robot’s phrases during their storytelling. Their emulation increased during the second half of the study in the Matched condition.

(A) Children’s emulation decreased in the Unmatched condition in the second half of the study. (B) Children’s emulation increased in the second half of the study in the

Matched condition.

a significant interaction of time with condition, F(1,12) = 10.0,
p = 0.008. Children emulated more of the robot’s phrases per
story in the first half of the study, and children in the Unmatched
condition decreased usage more (Figure 7A). We observed a
significant interaction of time with condition when looking at
the sum of matching phrases across stories, F(1,12) = 9.81, p =

0.009. Children in the Matched condition increased their usage
of matching phrases, while children in the Unmatched condition
decreased their usage (Figure 7B).

3.6.2. Compared to Stories Heard From the Same

Story Scene
We observed a significant interaction of time with condition for
the mean number of matching phrases used per story, F(1,12) =
9.10, p= 0.011. Children in the Unmatched condition used fewer
matching phrases on average in the second half of the study, while
children in the Matched condition did not change significantly.
There were no significant differences for the sum of matching
phrases across stories.

3.6.3. Compared to the Story Heard Just Prior
We observed a trend for an interaction of time with condition for
the mean number of matching phrases used per story, F(1,12) =
4.82, p= 0.048. Again, children in theUnmatched condition used
fewer matching phrases in the second half of the study. There
were no significant differences for the sum of matching phrases
across stories.

3.7. Correlations
Children who emulated more of the robot’s phrases during their
storytelling also scored higher on the vocabulary posttest, rs15 =
0.511, p = 0.052 (Figure 8A); as did children who used more
of the robot’s key words and phrases rs15 = 0.532, p = 0.041
(Figure 8B). Children who emulated the robot more during
storytelling were also more likely to use more of the robot’s
key words and phrases, rs15 = 0.688, p = 0.003 (Figure 8C).

This pattern was also apparent when looking at the mean of all
children’s scores for sessions 1–8 (Figure 8D).

Children who had higher LSM scores during sessions 1–4 were
more likely to emulate the robot’s phrases during storytelling, rs15
= 0.667, p = 0.007; they were also more likely to use the robot’s
key words and phrases, rs15 = 0.548, p = 0.034 (Figures 9A,B).
The same pattern held for children’s LSM scores in sessions 5–
8 for phrase emulation, rs14 = 0.732, p = 0.003; and for key
word and phrase use, rs14 = 0.554, p = 0.040 (Figures 9C,D).
Children’s LSM scores from sessions 1–4 were strongly correlated
with their LSM scores from sessions 5–8, rs14 = 0.802, p < 0.001,
suggesting little change in children’s rapport and style matching
over time.

When looking at the mean of all children’s scores for
sessions 1–8, we observed that children who told longer stories
also used more unique words (rs8 = 0.954, p < 0.001) and,
as one might expect, spent more time telling their stories
(rs8 = 0.715, p= 0.046; Figure 10).

4. DISCUSSION

We asked whether children would show greater vocabulary
learning and language emulation when they showed greater
rapport with a social robot with whom they played a
storytelling game over time.We found some evidence supporting
our hypotheses.

First, we observed that most children liked the robot, and their
LSM scores reflected that liking, being reasonably high overall.
We observed that children learned new vocabulary words, as
evidenced by higher vocabulary posttest scores and use of the
target words in their stories. This result reflects prior work
in which children have learned and mirrored new vocabulary
words with social robots during storytelling activities (e.g.,
Kory Westlund et al., 2017b; Park et al., 2017a, 2019). However,
because children were exposed to the target words during the
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FIGURE 8 | (A) Children who emulated more of the robot’s phrases during their storytelling scored higher on the vocabulary posttest. (B) Children who used more of

the robot’s key words and phrases scored higher on the vocabulary posttest. (C) Children who emulated more of the robot’s phrases were more likely to use the

robot’s key words and phrases. (D) Children’s use of the robot’s key words and phrases was correlated with their emulation of the robot’s language over time.

pretest, it is possible that the pretest posed a first learning
opportunity, and that they learned somewhat fewer words with
the robot than the posttest indicates.

In partial support of H1, we observed that children’s LSM
scores were positively related to their use of the robot’s key words
and phrases. However, contrary to our expectations, LSM scores
were not significantly related to children’s vocabulary test scores.

This may be for several reasons. First, because the sessions
with the robot were fairly short (10–15min) and because not all
children told long stories, the amount of conversation between
the robot and child was limited. As such, the amount of data
used to compute the LSM scores was limited, and the LSM scores
should be interpreted with a degree of caution. Second, children’s
LSM scores may not perfectly reflect rapport. Prior work linked
higher LSM scores between two people to higher rapport and a
deeper relationship (e.g., Pennebaker et al., 2003; Ireland et al.,
2011; Babcock et al., 2014), but this work has primarily been done
with adults, not children. Third, we do not know exactly how
rapport affects learning, and thus, the causal connection between
rapport and learning seen in earlier work in human-human
peer tutoring (Sinha and Cassell, 2015a,b) may not appear with

younger children in a language learning context. Rapport may
not necessarily directly impact learning; it may be, for example,
that rapport increases emulation of various behaviors, which in
some contexts could increase learning, or that rapport facilitates
being in a more positive state of mind, which perhaps leads to
more engagement and learning. Furthermore, rapport may play
a different role in peer learning with social robots than in other
contexts with humans.

In our analyses here, we did observe that children’s LSM
scores correlated positively with their emulation of the robot
during storytelling, as expected (H2). This suggests that rapport
is linked to emulation, which is in line with prior work showing
that people will mirror a variety of different behaviors in
others with whom they have high rapport (e.g., Tickle-Degnen
and Rosenthal, 1990; Chisholm and Strayer, 1995; Dijksterhuis
and Bargh, 2001; Rotenberg et al., 2003; Dijksterhuis, 2005;
Chartrand and van Baaren, 2009; Wiltermuth and Heath, 2009;
Lubold, 2017).

In addition, we saw that children’s emulation of the robot’s
language was positively correlated with their vocabulary scores,
supporting H3. Children who correctly identified more of the
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FIGURE 9 | (A) In the first half of the study, children who had higher LSM scores were more likely to emulate the robot’s phrases. (B) In the first half of the study,

children who had higher LSM scores were more likely to use the robot’s key words and phrases. (C) In the second half of the study, children who had higher LSM

scores were more likely to emulate the robot’s phrases. (D) In the second half of the study, children who had higher LSM scores were more likely to use the robot’s key

words and phrases.

target words on the receptive vocabulary test were also more
likely to expressively use the words in their stories. These
results suggest that children’s emulation was related to their
learning—perhaps their rapport with the robot led to greater
emulation, and greater emulation was indicative of greater word
learning. This would be worth investigating in a systematic way
in follow-up work.

We find partial support for H4: When examining children’s
behavior over time, we saw that children slightly increased their
use of the robot’s keywords and phrases from the first half of the
study to the second half. However, children’s overall emulation
decreased over time, while their use of unique words increased. It
may be that children were more creative over time when telling
stories, making up their own that drew less on the robot’s stories
for inspiration. The storytelling activity was designed to facilitate
language development, so both creatively using language as well
as imitating the robot’s language were beneficial outcomes. Story
re-telling (i.e., intentionally imitating another’s storytelling) has
often been used as an educational activity for helping children

learn stories and vocabulary (e.g., Isbell, 2002; Dunst et al.,
2012; Kory Westlund et al., 2017b; Otwinowska et al., 2018;
Kory-Westlund and Breazeal, 2019b).

Children’s LSM scores, on average, did not show a strong
increase over time (there were differences by condition, as
discussed further below). This could indicate little increase in
rapport, or could mean that LSM is not sufficiently sensitive to
capture children’s changes in rapport over the study.

Children’s LSM scores and phrase emulation during
storytelling increased over time for children in the Matched
condition, but decreased slightly for children in the Unmatched
condition. Children in the Matched scoring also had higher
scores on the vocabulary posttest. These results provide some
support for H5; however, given the small sample size, these
results should be interpreted with caution. The robot’s story
level personalization appeared to positively impact children’s
emulation of the robot’s language, their rapport as indexed
by LSM, and their vocabulary learning. This is in line with
prior work showing links between a robot’s personalization
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FIGURE 10 | Children who told longer stories also used more unique words and spent more time telling their stories.

and children’s engagement and learning (e.g., Leite et al., 2012;
Gordon et al., 2016; Palestra et al., 2016; Scassellati et al., 2018;
Park et al., 2019)

However, in addition to the small sample size, the two
conditions were not fully balanced. There were more children
in the Matched condition and there was only one boy in
the Unmatched condition. In addition, although children were
assigned to conditions prior to the start of the robot interaction
using their initial language assessment scores to attempt to
balance language ability across conditions, we did observe
somewhat higher scores for children in theUnmatched condition
across various metrics during the first half of the study (prior to
the robot’s personalization/matching, which only occurred in the
second half of the study). We expect that were the groups more
balanced, these initial differences may be smaller or might even
disappear, while differences between conditions as a result of the
personalization would be larger.

Taken together, our results suggest that first, interacting with
a more advanced peer-like social robot can be beneficial for
children’s language learning. This is in line with work examining
children’s language learning with human peers (Fuchs et al.,
1997; Mathes et al., 1998; Topping, 2005; Schechter and Bye,
2007; Whitebread et al., 2007; Mashburn et al., 2009; Justice
et al., 2011; DeLay et al., 2016; Lin et al., 2016). Second,
children’s emulation of the robot’s language may be related to
their rapport and to their learning. Earlier work has shown
that children will emulate the behavior of social robots—
including mirroring expressiveness (Spaulding et al., 2016),
curiosity (Gordon et al., 2015), and language (Kory Westlund
et al., 2017b)—but had not yet explored mechanisms that

might affect children’s emulation and peer learning. Our
results suggest that rapport may be one such mechanism.
This is the first study we know of to empirically support
that rapport may indeed be a modulating factor in children’s
peer learning.

Finally, this study highlights new opportunities we have
for using social robots as interventions for early language
development, specifically by leveraging this connection between
rapport and learning.

4.1. Limitations
This study had several limitations. First, as mentioned
earlier, the sample size was fairly small and conditions were
unbalanced in number. As such, the statistical power of our
analyses are underpowered. In addition, children’s individual
differences were not controlled for, such as learning ability
or socio-economic status. These factors may all influence
children’s learning and social interactions with the robot.
Future work should attempt to recruit a more balanced,
homogeneous sample and explore the stability of the results
across individual differences.

The target vocabulary words presented in the robot’s stories
included some words that were known by numerous children at
the start of the study (as reported above, children identified a
mean of 13.4 of 24 words correctly at the pretest, SD= 3.62). The
difference between children’s vocabulary scores on the pretest
vs. the posttest did show that children knew more of the words
at the end of the study, but because a set of common words
and not nonce words were used, we cannot know for sure that
children learned these words as a result of the robot interaction
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or because of other events that occurred during the two months
during which the study took place.

Another limitation of the dataset was the lack of additional
assessments of relationship and rapport. We used children’s
LSM scores as a measure of rapport, since numerous prior
studies have linked higher LSM scores between two people
to higher rapport and a deeper relationship (e.g., Pennebaker
et al., 2003; Ireland et al., 2011; Babcock et al., 2014). However,
future work should endeavor to measure children’s rapport
and relationship with the robot in additional ways, e.g.,
using measures presented in Kory-Westlund et al. (2018) and
Kory-Westlund and Breazeal (2019a).

Finally, this study explored a one-on-one interaction
with the robot. However, children often learn with others—
friends, siblings, parents, and teachers. Future work
should explore group interactions that include multiple
children or children with parents, caregivers, and teachers.
This could give us insight into how to integrate robots
into real-world educational contexts, such as schools
and homes.

Despite these limitations, we did see numerous correlations
and differences that are suggestive of links between children’s
learning, rapport, and language emulation. While these results

are exploratory and not definitive, they do provide evidence that
this in an area that warrants further study.
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Researchers, industry, and practitioners are increasingly interested in the potential of

social robots in education for learners on the autism spectrum. In this study, we

conducted semi-structured interviews and focus groups with educators in England to

gain their perspectives on the potential use of humanoid robots with autistic pupils,

eliciting ideas, and specific examples of potential use. Understanding educator views

is essential, because they are key decision-makers for the adoption of robots and

would directly facilitate future use with pupils. Educators were provided with several

example images (e.g., NAO, KASPAR, Milo), but did not directly interact with robots

or receive information on current technical capabilities. The goal was for educators

to respond to the general concept of humanoid robots as an educational tool, rather

than to focus on the existing uses or behaviour of a particular robot. Thirty-one autism

education staff participated, representing a range of special education settings and age

groups as well as multiple professional roles (e.g., teachers, teaching assistants, speech,

and language therapists). Thematic analysis of the interview transcripts identified four

themes: Engagingness of robots, Predictability and consistency, Roles of robots in autism

education, and Need for children to interact with people, not robots. Although almost

all interviewees were receptive toward using humanoid robots in the classroom, they

were not uncritically approving. Rather, they perceived future robot use as likely posing

a series of complex cost-benefit trade-offs over time. For example, they felt that a highly

motivating, predictable social robot might increase children’s readiness to learn in the

classroom, but it could also prevent children from engaging fully with other people or

activities. Educator views also assumed that skills learned with a robot would generalise,

and that robots’ predictability is beneficial for autistic children—claims that need further

supporting evidence. These interview results offer many points of guidance to the HRI

research community about how humanoid robots could meet the specific needs of

autistic learners, as well as identifying issues that will need to be resolved for robots

to be both acceptable and successfully deployed in special education contexts.
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INTRODUCTION

Robotic systems targeted toward people on the autism spectrum,
especially children, are a growing subfield of social robotics and
human-robot interaction (HRI) research. Autism is a lifelong
neurodevelopmental condition or spectrum of related conditions
that affects the way a person interacts with others and experiences
the world around them (American Psychiatric Association,
2013). Many autistic1 individuals also have additional difficulties
with spoken language and/or intellectual disability, as well
as co-occurring mental health problems, especially anxiety,
and attentional difficulties—all of which can involve complex,
long-term support needs. In England, ∼120,000 children are
documented as having autism as their primary form of
special educational need and disability [SEND; (Department
for Education, 2018)]. Of these, 28% percent of autistic
children are educated in special schools and represent over
a quarter of the total special school population. The children
attending these schools often have complex needs, including
an additional intellectual disability and/or limited-to-no spoken
communication, and often require much higher levels of support
from specialist teaching and allied-health staff than regular,
mainstream schools can typically provide. These particular
children are frequently overlooked by researchers (Tager-
Flusberg and Kasari, 2013) but, along with the specialist staff that
support them, represent two sizeable populations of potential
robot users in England—and were thus the focus of the
current investigation.

Autistic children are thought to be especially interested in
and motivated by robots, potentially related to the fact that they
are interactive—but programmed and ultimately rule-based—
devices. Indeed, robot-based programmes are often cited to
be potentially beneficial for this group in particular because
they offer the possibility of fairly predictable and consistent
interactions (e.g., Dautenhahn, 1999; Dautenhahn and Werry,
2004; Duquette et al., 2008; Rudovic et al., 2017; Straten et al.,
2018). These are precisely the sort of interactions that autistic
people are often said to favour (Pellicano and Burr, 2012;
Lawson et al., 2014). The extant HRI literature suggests that
autistic childrenmay be highly engaged during robot interactions
(Robins and Dautenhahn, 2006; Straten et al., 2018), and show
spontaneous joint attention and other social behaviours that are
often challenging for this group (Anzalone et al., 2014; Warren
et al., 2015). Yet, existing research on social robotics for autism
often constitutes proof-of-concept studies with small samples (n
< 10), single rather than repeated robot-child interactions, and
incomplete information about the autistic participants, making
it more difficult to understand the potential applicability of the
work as education or therapy [see reviews by (Diehl et al., 2012;
Scassellati et al., 2012; Begum et al., 2016), for discussion].

Existing autism and HRI studies have predominantly studied
children interacting with robots in lab-based settings (e.g.,

1We use “identify-first” language (“autistic person”) rather than person-first

language (“personwith autism”), because it is the preferred term of autistic activists

(e.g., Sinclair, 1999) andmany autistic people and their families (Kenny et al., 2016)

and is less associated with stigma (Gernsbacher, 2017).

Salvador et al., 2015; Yun et al., 2016) or closely controlled,
researcher-designed procedures that effectively re-create labs
in schools (e.g., Kozima et al., 2007; Robins et al., 2012).
Although there is much to be learned from studies in
controlled lab-like settings, moving robots from the lab into the
classroom (or “the wild”), where teachers apply the teaching
programme unsupervised, is no straightforward task (Diehl et al.,
2012; Huijnen et al., 2016). Embedding robots into existing
autism contexts and pedagogical practices requires in-depth
understanding of specific contexts and practices, and of the adult
users who will support robot-based programmes. Understanding
the views of these adults is therefore essential, as they are key
decision-makers for the adoption of new technologies, and would
be the ones to directly facilitate any future use of robots.

Several studies have sought teachers and professionals’ views
to explore implementing robots within regular educational
settings (Fridin and Belokopytov, 2014; Kennedy et al., 2016;
Serholt et al., 2017; Cheng et al., 2018) but only a handful have
done so within special education settings. Diep et al. (2015)
interviewed six teachers from a Canadian school for children
withmultiple and complex needs about their perceptions of social
robots, in relation to an anticipatory governance framework
(Guston, 2014). Although their results make some reference to
autistic learners, they do not primarily focus on this group. In
a larger study, Hughes-Roberts and Brown (2015) conducted
interviews and focus groups with 20 teachers in special (though
not autism-specific) education settings in the UK, incorporating
a demonstration of a humanoid robot, NAO. Teachers stressed
sustained engagement as a key indicator of success for many of
their SEND pupils, and thus considered facilitating engagement
as a key robot requirement. They highlighted three teacher-
proposed robot activities, which included adults facilitating one
or more children’s game-like interactions. Perceived barriers to
adoption focused on technical factors, describing the need for
simple, fast, versatile, and usable robot controls. The only other
limiting factor mentioned was the potential for robots to distract
students from learning—at least while the robots were new. It was
unclear, however, whether these educators considered, overall,
robots to be relevant, appropriate, and feasible for their SEND
settings and learners—and, most relevant to the current study,
whether they might be especially useful for autistic learners.

Huijnen et al. (2017) took a related approach, combining
focus groups, and co-creation sessions with autism stakeholders
and professionals (including teachers and other school-based
roles, all in the Netherlands) to develop 10 specific “intervention
templates” for the humanoid robot, KASPAR. These included
clear statements of goals, and explicitly mapped out the planned
roles and “flow” of an interaction between a child, robot, and
professional. This group discussed the role, requirements, and
potential impact of the adult robot user in far more detail than
any other study, ultimately “expect[ing] that the person operating
KASPAR is a huge determiner of the success of the interaction
and thereby of the intervention” (p. 3085). They also discussed
characteristics or subgroups of autistic learners in relation to the
suitability of robot use and, in a related paper, identified the
potential educational roles that KASPAR could play, including
those of a trainer, prompter, or mediator (Huijnen et al., 2019).
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The findings from Hughes-Roberts and Brown (2015) and
Huijnen et al. (2016, 2017) suggest that many educators seem
to be broadly receptive—albeit cautious—toward at least some
purposes of robots in autism or special education [though see
(Diep et al., 2015), for more negative or mixed sentiments].
Educator interviews provide a valuable starting point for
understanding whether and how robots might be integrated into
existing educational practices, and might transition into being
teacher- (not researcher-)managed tools. Yet, these studies only
give a partial picture of the information researchers need to
know to work toward robot deployment with autistic learners
within special education settings. This is for three key reasons.
First, these learners’ specific needs and the strategies used to
support them can be very distinct from those educated within
mainstream settings (Eaves and Ho, 1997). Greater knowledge
is needed about the utility of robot-based programmes for these
particular children in their own specific, specialist contexts.
Second, these and other existing studies have frequently asked
educators to answer questions or discuss ideas in relation to
demonstrations of existing robots (e.g., Hughes-Roberts and
Brown, 2015; Coeckelbergh et al., 2016; Huijnen et al., 2016; as
in Cheng et al., 2018). This approach can be useful if the goal is
to generate or assess applications for those specific robots, but
it is necessarily limiting with respect to discussing perceptions
and applications of robots as a category of tools, or for generating
novel use cases, as it primes participants to think of that specific
robot when developing their ideas. Third, much existing research
has either used surveys and questionnaires (e.g., Coeckelbergh
et al., 2016; Kennedy et al., 2016; Cheng et al., 2018) to ask
educators to respond to topics and ideas that have been pre-
identified by researchers, or, have effectively leveraged educators’
expertise for solving particular design or pedagogical problems
(e.g., Huijnen et al., 2016, 2017). Educators’ priorities and ideas
about robotics might be different than those of researchers,
but existing work seems to have given limited opportunities to
explore these issues.

The current study is part of the European Union funded DE-
ENIGMA project (de-enigma.eu), in which teams with technical
and autism education expertise are collaborating to explore the
potential of humanoid robots as tools in autism education,
particularly with respect to teaching social and emotional skills,
and to develop real-time multimodal processing of autistic
children’s behaviour. One strand of the project sought to
better understand current specialist autism education settings in
England, i.e., the target users and context of use for DE-ENIGMA
outputs. This paper reports Part B of a two-part interview study
with autism educators. We focused on educators, rather than
a wider range of autism stakeholders, because DE-ENIGMA’s
focus has been specifically on schools. Part A (reported in Ainger
et al., Manuscript in Preparation) investigated autism educators’
current goals and pedagogical practices. Part B, reported here,
discussed the potential future use of robots.

Our goal in Part B was to elicit educators’ views and
perspectives on the potential use of humanoid robots with autistic
learners in special schools, to better understand the factors
perceived to be important for deploying robots in these settings.
We also focused on understanding educators’ perceptions and

suggested applications of humanoid robots as tools for teaching
social and emotional skills, due to the focus on this topic within
the DE-ENIGMAproject. Unlike some previous studies that have
asked educators to respond to ideas and topics pre-identified
by researchers (e.g., in surveys and questionnaires), we used a
semi-structured interview schedule, with researchers exploring
participants’ ideas in detail, following from fairly open questions.

MATERIALS AND METHODS

Participants and Educational Settings
Thirty-one educators (female: n = 25) took part in individual
semi-structured interviews or small focus groups, between
December 2016 and January 2018. These educators were
recruited via convenience sampling through existing community
and personal contacts. All of our participants worked in specialist
settings in England: 26 in special schools (n = 7, autism-specific;
n = 18, general SEND), five in autism resource bases attached
to a mainstream school, and one working across multiple
SEND settings.

Autistic children educated in special schools in England
usually have a high degree of adult interaction and support
throughout the school day. In special schools, classes are small
(often 5–10 children), with a highly trained teacher and a team
of teaching assistants, who often have less specialist training.
There is further input from specialist allied health professionals,
including speech and language therapists and occupational
therapists. Consistent with this context, our participants reported
working with learners on the autism spectrum in a variety of
educational roles, including as a primary (n= 12) or secondary (n
= 5) teacher, teachers working across multiple ages and/or school
settings (n = 2), a teaching assistant (n = 2), a headteacher or
deputy headteacher (n = 3), a speech and language therapist (n
= 3), or an occupational therapist (n = 2). Many participants
indicated more than one autism-related role and had worked
with multiple age groups over time, from Early Years education
(<5 years), up to age 18–19 years. They varied widely in their
level of experience, ranging from <1 to 18 years’ experience in
their current education setting (M = 4.7 years, SD = 4.1) (see
Supplementary Table 1 for participant details).

Procedure
Fourteen participants (female: n = 11) completed individual,
semi-structured interviews in a quiet room at the university
or school, and 17 participants took part in one of three
focus groups (female: n = 14) in participating schools (two
groups contained six participants, one contained five), facilitated
by a researcher (see Supplementary Table 1). Part A of the
interview study (Ainger et al., Manuscript in Preparation)
focused on current educational contexts and practices, including
participants’ aspirations for their autistic students, their views
on how social and emotional skills are currently taught within
classrooms, curricula and supports used in their setting, and
uses of technology (see Supplementary Table 2). To introduce
the discussion of humanoid robots in Part B, the focus of the
current study, participants viewed six example images of existing
robots (Milo, KASPAR, NAO, Flobi, PARLO, and Pepper). They
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were not given any further information about these particular
robots, their current capabilities, or examples of use and were
encouraged not to be concerned about issues of technical
feasibility. Instead, they were asked to consider the potential uses
of humanoid robots for autistic children’s learning, including
potential benefits and concerns (see Supplementary Table 2).

While the interview did not explicitly ask about respondents’
prior experience with or knowledge of robotics, almost all
educators stated that they had no prior experience or knowledge
of robots. The exceptions were one educator working with older
students, who reported using commercially available Bee-Bot R©

robots to teach science and programming, and some educators
who had seen previous demonstrations of a humanoid robot
(Milo) in connection with the DE-ENIGMA project.

The protocol was approved by UCL Institute of Education
Research Ethics Committee (REC857). All participants gave
written informed consent to the interviews, including audio
recording, in accordance with the Declaration of Helsinki. The
total duration of the individual semi-structured interviews lasted
30–54min (M = 40min) and focus groups lasted 52–78min
(M = 62min). The robotics-focused questions (Part B) lasted
5–12min in individual interviews, equating to 14–31% of the
total time (M = 8.5min, 20%), and the robot section of focus
groups lasted 15–18min, or 24–35% of total discussion time (M
= 17min, 29%).

Thematic Analysis
Audio-recordings were transcribed verbatim. The robot
interview data were analysed using thematic analysis (Braun
and Clarke, 2006), which included familiarisation of the data;
generating of initial codes; generating themes, reviewing,
defining and naming themes; and compiling this report. We
adopted an inductive approach (i.e., without integrating the
themes within any pre-existing coding scheme or preconceptions
of the researchers) within an essentialist framework (to report
the experiences, meanings, and reality of the participants). Two
authors (AA and EP) independently familiarised themselves
with the data and liaised several times to review the themes and
subthemes, focusing on semantic features of the data, resolving
discrepancies and deciding the final definitions of themes and
subthemes. Analysis was thus iterative and reflexive in nature.
Participants’ responses to Part A of the interviews, on current
educational goals and practices, were analysed and reported
separately (Ainger et al., Manuscript in Preparation).

RESULTS

We identified four themes in educators’ interviews (see Figure 1
for summary of themes and subthemes). Throughout, educator
quotes are attributed via participant ID numbers.

Theme 1: Autistic Children Are Likely to
Find Robots Engaging
Participants stressed the importance of engagement and
motivation for learning, and anticipated that the autistic learners
in their settings would be “so interested” in and motivated
by humanoid robots, potentially more motivated than when

interacting with adult educators, or non-technical activities. One
explained: “I think if the robot’s doing it [modelling behaviours],
it’s more captivating than just us as a person. This is a toy that
plays back essentially, it’s engaging” [101]. Educators also felt that
this engagement could have a positive impact on their readiness
to learn: “They would be really happy to work with it for longer
periods of time, much longer than usual because, let’s be honest, a
piece of paper and a worksheet, it’s not as exciting as a humanoid
robot can be” [011].

Participants reported that, for some children, the attraction
of a humanoid robot might be sufficient to encourage them to
engage in otherwise challenging social interactions: “engagement
is a big key to the social barriers that children may face, and if
they’re able to engage and experience some of those interactive
activities, which they avoid at all cost in other settings. . . I
really think [a robot] could support the social skills” [004].
Yet, robot attractiveness and engagement were not perceived as
wholly positive. Respondents often discussed this characteristic
alongside potential drawbacks, including concerns “about the
extent we’re going to use the robots. . . when we’re talking about
autistic children, we need to be very careful with something [not]
to become an obsession” [011]. Another educator commented:
“particularly with the younger ones with autism, we’re trying
to make them think that people are amazing. . . so all the
teachers in the sessions try to become the most exciting thing
in the room” [105]. For some children, educators further felt
that access to a highly attractive robot could conflict with
overarching educational goals to help autistic learners attend to
and understand other people (see also Theme 4B).

Theme 2: Robots Offer Predictable,
Consistent Interactions; Children Know
What to Expect
Educators in this study expected humanoid robots to be
“consistent” and “obviously predictable” compared to people,
who “behave in all sorts of different manners and ways” [015].
One educator summed it up:

“Robots, unlike humans, they will always be the same. Their tone

of voice will always be the same, their inflection will always be

the same, the body language is always the same. They’re very

predictable, like if you say a certain thing, it will say a certain thing

back to you. So I think with kids with autism, they love that kind

of thing, predictability” [014].

Overwhelmingly, they saw predictability as a potential benefit for
their students but, as in Theme 1, they frequently discussed this
benefit alongside less-positive implications.

Subtheme 2A: Predictability Is Understandable and

Non-threatening
Educators emphasised autistic children’s difficulty in making
sense of other people’s often-unpredictable behaviour: “this is
a struggle, they cannot predict people but a robot is quite
predictable with its reactions” [017]. Robots were perceived to be
“easier” for children because “they know what to expect” [010]
and could help them to “predict what might happen” [015].
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FIGURE 1 | Summary of themes and subthemes.

Educators often talked about the importance of their students
feeling safe and secure, and thought that “a robot like that
would be something safe for my students, safe to interact, safe
to communicate. . . they wouldn’t feel threatened” [008]. One
specific, anticipated benefit of a robot’s predictability was that
children might feel more at ease interacting with robots, relative
to how they feel in other school activities or human interactions:
“These children might respond to the robots better than the
way they respond to other people because they might predict
their reaction. So, for example, if they know that when they say
‘happy’ he smiles, it could be less scary for them” [002]. Some
educators also felt that this benefit could have a positive impact
on their learning:

“Many of my students won’t push themselves harder because

they are afraid of making a mistake. Maybe if a robot like that

would exist in my classroom, they wouldn’t feel so intimidated or

threatened from the teacher’s authority and they would be able

to try different things and that would help them progress and

develop in different aspects” [008].

Subtheme 2B: Consistency Could Support Learning
Respondents also highlighted the possible benefits of a robot’s
consistency or “sameness,” particularly in its visual appearance
and manner. One educator remarked:

“We do have different people coming in as supply teachers or

supply TAs [teaching assistants] for the day and, if some of the

students do not like the way someone is dressed or smells or talks

to them, they won’t communicate with them. But a robot like

that will have the same specific characteristics every single day

and that’s something that would be very useful for my students.

They will know that this robot would look exactly the same every

day and they will be able to build a trust with the robot and

communicate more” [008].

Another respondent suggested using the robot for helping
to focus their attention on academic learning due to their
unchanging manner and appearance: “[autistic students] can
only concentrate to the words that the robot says.When we [staff]
used to teach them, they could concentrate on everything else on
us, like the way wemove our hands, the way that our hair is today.
So I think a robot could actually attract their interest on a specific
thing that we want them to learn” [005].

Educators also used “consistency” to refer to a concept
sometimes described in the autism-robotics literature as
repeatability: a robot could repeat usually-variable social
behaviour (e.g., a facial expression) over and over, helping autistic
children to begin identifying patterns and associating meanings
with the behaviour.

“The challenges of face-to-face and eye contact and response

to facial expression and understanding somebody’s facial

expressions are so inconsistent that, with a robot, [autistic

children] can start to learn what those consistencies are and

it becomes much easier for them to respond to them, rather
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than a human facial expression, which could mean all kinds of

things. I think with a robot they learn very quickly. . . [they] may

start to associate meaning with some of those facial expressions

and recognise those in others and maybe seek some of those

communicative responses” [004].

Educators also felt that robotic consistency might be particularly
advantageous if applied to classroom interventions that require
consistency and rule following, such as the Picture Exchange
Communication System (PECS; Bondy and Frost, 1994), a
widely-used alternative/augmentative communication system.
Indeed, they felt that a robot might deliver such an intervention
withmore fidelity than a human teacher:

“The PECS system is very definite and it’s very, very rule based,

but as humans, there’s distractions and that means the delivery of

this rule-based training we often get wrong. Robots would do it

consistently so that a child, an autistic child working with a robot

that’s programmed to deliver training only in that specific way

following that specific algorithm, [the child is] going to respond

much better because they’re getting a consistent response. So I

think you’d have better outcomes if robots are teaching autistic

kids certain protocols” [013].

Subtheme 2C: But the World Is Fast-Paced and

Unpredictable
Educators repeatedly highlighted that, unlike the expected
behaviour of robots, both humans and life are unpredictable,
and that one key educational goal was to support children in
learning to deal with this uncertainty. Educators were concerned
that predictable and consistent robots would potentially hinder
children’s progress in this regard: “[technology], largely speaking,
you know, does what they want it to do. What we want them to
understand is that the world is unpredictable and the world has
huge variety in it, and we want them to be able to respond quite
flexibly to things, as well as follow somebody else’s agenda” [201].

Educators noted that, while a robot might not “mind how long
it takes for a child to do anything. . . it could be really deskilling for
the child because you don’t have all the time in the world with a
robot waiting for you when you’re an adult, like you do have to
just go on the bus and swipe your [bus pass], you do just have to
transition” [103]. Transitioning between activities and/or settings
can be an area of particular difficulty for autistic children.

Our participants also felt that, while children might learn
more easily or feel more comfortable with a highly predictable
robot than when learning with a person, that type of learning
could be counter-productive in the long run because it does not
support skill generalisation: “I don’t know, maybe it’s going to
be too predictable for them, and then how will they generalise
when they actually have to interact with actual people. So maybe
by teaching them this predictability, it’s not that easy to help them
generalise it” [010]. Some educators reported that a robot could
provide a “good base” for teaching simple social skills but warned,
“if our goal is to teach kids social skills and interaction and how
to interact into the world and the community, then that’s not
through robots because at the end of the day, our community and
our real world are not made of robots. So it’s very important that
we phase out a bit and then have more human contact” [014].

Theme 3: Roles of Robots in Autism
Education
Educators’ examples of how robots could potentially be used
varied widely depending on their settings and the profile of their
learners. Nevertheless, there were several key commonalities
across the interviews.

Subtheme 3A: “It Is Not a Toy”: Robot Use Must Be

Planned and Evaluated
Educators agreed that robots are “not a toy.” Rather, any use
of social robots in their settings would need to be planned
by teachers, “really thinking carefully, ‘How do I use it? Is it
appropriate?”’ because a robot “might not be appropriate for
every single child” [203]. Some framed the need for planning
in relation to their past experiences with iPads in class. Like
robots, iPads were perceived to be attractive, flexible technologies
but, according to educators, were often introduced without clear
goals, creating knock-on problems in which autistic learners
might “see an iPad or a technological device as something that
is mainly a toy. They can develop some obsessive behaviours or
they will be repeatedly asking for an iPad without completing the
work” [008]. One interviewee neatly summarised: “I don’t think
[robots] should end up being used like iPads, just for fun and just
as a toy. I think they, when you use them, should have a very clear
target for why you’re using it and for a very clear amount of time
and with a purpose” [011].

Indeed, educators emphasised that educational planning
would therefore need to consider whether the robot was
“appropriate for every single child... really just thinking carefully,
like everything we do here, ‘Oh is that child ready?’ and to really
teach something specific, not thinking just putting them in the
same room with the robot and then leave and think they’ll know
everything” [204]. Another focus group agreed: “It wouldn’t have
to be like, ‘okay, now we’re learning the social skills next time the
robot is coming up’ but I would look at each child and see like,
‘okay, how am I going to use it with that learner’ and then find a
time and a setting that feels appropriate” [302].

One respondent further suggested that planning to introduce
robots or any new tool must incorporate evaluation, perhaps
especially if teachers have high expectations and perceive the
new tool as a “[scheme] that they believe will work and will fix
everything.” She noted,

“We say, ‘oh yes, try that, that might work,’ and there’s nobody

assessing as to whether or not it is working. We need a baseline

check to start with and then we need to check whether or not

it’s worked at the end of the intervention. Interventions are

incredibly expensive so therefore you have got to have themindset

that you’re going to look to see whether that intervention has

worked” [007].

Subtheme 3B: Robots Should Not Be

One-Size-Fits-All; They Must Be Personalised
In autism education, “personalisation” is a fundamental task in
which educators choose, adapt (and often, invent) tools, and
strategies “that are catered to that child” [301]. The educators we
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spoke to clearly expected that the same type of fine-grained child-
level personalisation would be necessary and “programmable”
with robots, in addition to choices about the types of learning
activities different students may do: “[robots have] got to be based
on the likes and dislikes of the child. . . the adjustments would be,
you know, that [the robots are] programmed to do a variety of
different things” [013].

“If I have a very verbal student who just needs to practise

reciprocal conversation or needs to practise its tone of voice

or practise identification of feelings and expressions, then I’d

program the robot for that. But then if I have only that one robot

but then I want to use it with a different kid, who’s non-verbal,

doesn’t like interacting with people at all, then I would have the

robot programmed to not say anything, to not maybe do any

sudden movements. I would program it depending on what level

the student is or what social skill I want to work on” [014].

One respondent agreed wholeheartedly with the importance of
technology personalisation, but questioned how well teacher-
implemented robot personalisation would work in practice,
based on their current experiences with a dyslexia-focused app,
Wordshark (https://www.wordshark.co.uk/). She described how
this program “can be tailor made to fit the particular child
and quite often teachers don’t use that tailor-made bit. They
just think, ‘oh yeah, Wordshark, Wordshark is supposedly very
good so let’s use it,’ and they’re not using it in the way that the
manufacturers intended” [007]. She also pointed out that these
issues around personalisation and correct use can be exacerbated
by school-level decisions around technology and training, in
which institutions “invest in one particular member of staff, ‘here
you are, you’re the expert in this’ and then either that trend is not
cascaded down, or that person then leaves and the technology is
left behind and nobody really knows how to use it.”

Subtheme 3C: Robots Can Take on Some Adult

Classroom Roles, but They Are Not Teachers
In their discussions, interviewees’ suggested robot roles reflect
the types of routine support that staff members offer autistic
children throughout the day, including “to guide them, to give
them ideas, and maybe even to prompt them or to praise them”
[008], “especially the higher ability ones, who when I leave them
to work independently, they lose track of what they’re doing”
[009]. Others also felt that educators “could use it as a tool as
a part of the group, so the robot could almost form part of the
group or it could be used as, it might lead the session or the
group” [302].

Yet, while the interviewees suggested that robots could
usefully offer some types of support and facilitation currently
provided by various adult staff, other discussions made clear
that the robot was not seen as a potential teacher. Educators
emphasised that “the adult always needs to be in control with
what’s happening” [303], especially with regard to planning
and goal-setting. Where some respondents indicated that robots
could be adaptively responding to children, these comments
were always made within the context of supporting educational
or social goals already identified by teachers. There was no

discussion of future humanoid robots “assessing” or identifying
children’s needs.

Beyond issues of planning and control, respondents pointed
out that special education teachers are trained in a distinct set
of skills and strategies that they need to support their learners.
Educators were concerned that reliance on a robot may both
deprive autistic learners of the benefit of those skills, but also
(over time) detract from staff members’ ability to exercise those
skills. One focus group participant explained:

“Part of our skills we have as special needs educators is that

we’re able to empathise, and use lots of creative strategies, to the

point where you understand why someone finds it challenging

to transition and hopefully don’t find it so frustrating anymore.

I think it’s important to swap around as a team as well, not just

leave it to a robot” [102].

This “professional deskilling” concern was shared. Another
educator noted their own lack of robot experience and training,
explaining that their “main concern is whether I would be able
to use it appropriately and I wouldn’t lose other aspects of my
teaching. For example, I wouldn’t want to rely too much on the
robot to communicate with my students or to help my students
access the knowledge” [008].

Subtheme 3D: Robots as Interaction Partners
Even before being explicitly asked about possible applications
of humanoid robots to social and emotional skills teaching,
respondents spontaneously suggested social applications and
roles for the robot. As they had explained earlier in the interviews
(Ainger et al., Manuscript in Preparation), “the most important
goal is to help them progress with their social skills” [010].
Teachers believed that attractive robots might act as social
partners, motivating children to work on inherently challenging
social and communication skills that are already targeted in
existing class activities, such as turn-taking in activities (“You’re
waiting for the robot to finish talking and then it’s your turn to
talk, so it’s like turn taking, you know, how to have a conversation
with somebody” [011]) and conversations (“like having kids just
learn general conversations like teach them to say, ‘hi, my name
is A, what’s your name? How are you feeling today?’ Like just
have them practise conversations, have them practise answering
questions but also having the kids practise coming up with
questions themselves” [014]).

Educators specifically highlighted the role a robot could play
in understanding how children’s own behaviour affects others—
one of “the biggest thing[s] for our learners” [302]. Another
interviewee concurred that some autistic learners “cannot see
how the way that they’re behaving affects other people. So
this would be a nice thing to use the robots for. . . [learners]
could perhaps see how their behaviour was affecting somebody
else” [007]. Other respondents gave specific examples of how
they might work on this concept, using the robot, including
“a programme for how to make the robot happy today. . . The
programme might ask for some steps that the child has to do
like feeding or giving water or going for a walk or holding
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hands or playing a game, whatever makes a robot happy” [017].
Another offered:

“I just think of like a robot crying and then having like props of

tissues or whatever, you know, and then making my children try

to calm him down. . . care for the robot as well, you know, when

he says that he’s angry or he’s got a cut in his wrist or something,

I think they really could connect with that. I think that could be a

great tool actually” [015].

Educators also suggested that understanding cause-and-effect
with the robot could also be used to go beyond grasping event
relationships, to “build that empathy and understanding [of]
other people. So, the child is angry and might be pulling or
shaking the robot or hitting the robot, that the robot might be
able to respond to that in a way that it’s communicating to the
child how those actions are making him feel” [304].
Respondents were not universally approving of using the robot
to teach social communication. One respondent was receptive
to the idea of robots in general, saying “with the right software
or the right purpose, it could be awesome,” but was emphatic
that its uses should not include anything “related to emotions
or behaviour management or any patronising sort of thing” and
“nothing like engaging in social skills or emotional stuff” [016].
This same respondent had expressed particular concern about
the robot’s capacity to meaningfully render complex human
behaviour, and to respond appropriately to autistic children.

Theme 4: Children Ultimately Need to
Interact With People, Not Robots
While they expressed interest and cautious optimism about the
use of humanoid robots in autism education, interviewees were
also very clear that robots were perceived to have potential and
acceptability primarily as “stepping stones” to fostering human-
human interaction.

Subtheme 4A: Robots Supporting Progression

Toward Human-Human Interaction
Respondents either implicitly or explicitly indicated that working
with a robot in a school context would be a transitory, middle
phase between two different types of human-human interaction.
Educators felt that they would first need to introduce the robot
“in a familiar space, with trust and familiar adults that can
say, it’s okay” [301]. Many autistic children are highly anxious
about all new people and activities, and staff suggested addressing
this issue using existing educational strategies such as “a social
story about it, [showing] pictures beforehand, [explaining] what’s
going to happen with the robot, when the robot will be coming”
[301] (see Gray, 1994, on social stories). These steps, which can
“build up almost the story of this robot, how it’s coming here,
and when it arrives then the pupils will probably be more—shall
we say, prepared for its arrival” [101], are useful for any child’s
interaction with a robot, but especially so for autistic children,
who require additional preparation to adapt to novel objects and
events their environment.

Educators then described how children might work with the
robot on skills or activities over time, again potentially supported
by some degree of adult guidance: “that’s one of our targets,

especially in my class, is getting kids to talk to one another. So
that could be almost the first step, rather than talking to an adult,
you’re talking to the robot” [305]. At a later point, children might
transition away from work with the robot, applying those skills
in interaction with peers, adults, or the community: “You can
practice having conversations, you can have the robot opposite
you and you can set certain rules and you can first practise with
robots before you move on to adults” [011].

Respondents suggested that humanoid robots might be
particularly successful at supporting social learning and later
generalisation, because “the fact that it is human-like might help
them to associate the robot with human behaviour.” Another
explained with reference to the robot image examples provided in
the interviews/focus groups: “I prefer the ones that lookmore like
a human.Most importantly, it’s going to be like it’s a real boy, it’s a
real-life example. They would consider the rest like a toy but this
[humanoid robot] might be actually an example” [010]. Other
educators felt the opposite, that human-like robot appearance
and behaviour could be confusing and create problems: “I think
that will be my main concern, you know, how to explain to
the child that this is only a robot, it doesn’t have feelings, and
it’s different than mum and dad or friends and teachers” [015].
Another agreed that “we don’t want them to start thinking this
is a human, ‘this is my friend’ or ‘It’s the same as my peers”’
[204]. Others thought children’s understanding of robot-human
differences would be dependent on their age and cognitive ability,
and one respondent flatly dismissed these concerns, maintaining
that to “someone who has autism, a robot is a robot, even if it
looks like a person” [016].

Subtheme 4B: “You Don’t Want Them to Connect Too

Much to the Robot”
Educators expressed concern that children might have “too
much” interaction with a humanoid robot, in various ways.
Some perceived time spent interacting with the robot as directly
detracting from time spent with people: “withmy kids, you know,
[my concern] would just be maybe about the amount of time
they would be engaging with it and making sure that they’re not
always engaging with the robot and they’re engaging with other
children” [302].

Our participants were also worried about children’s emotional
investment in the robot. They felt certain that autistic learners
could trust and emotionally connect with a robot—perhaps more
so than with a person: “You don’t want them to connect toomuch
to the robot, that then it’s almost like an imaginary friend, like that
they rely so heavily on this robot that then they don’t socialise”
[303]. Another predicted: “they will become too dependent,
they will prefer to be with the robot than be with mum or be
with sibling and interact with friends. I would be just scared
that they will get too attached. I would rather see my children
interacting and playing with me or with each other than with the
robot” [015].

Suggested applications where children would “build up”
from robot interactions to human interactions were repeatedly
positioned as a way to balance the potential benefits of
supportive, reciprocal robot interactions with the risk of these
overshadowing existing relationships. One participant summed
this up:

Frontiers in Robotics and AI | www.frontiersin.org 8 November 2019 | Volume 6 | Article 10747

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Alcorn et al. Educator Views on Humanoid Robots

“I feel that a robot will work more or less in the same way as

our students. There would be a common ground to communicate

and share feelings and emotions, a better way to express those

emotions instead of interacting with an adult, or their peers. And

I’m not saying necessarily to interact just with the robot because

that would lose their communication part with, the other human

beings in the classroom, with the adults or with their peers. But

I think that would be the first step for them to start expressing

their feelings and emotions and then it would be easier for them

to involve other human beings in the classroom. . . [in] their

everyday lives and showing their emotions and communicating

their needs” [008].

Subtheme 4C: Robots May Not Convey—or Be Able

to Process—Human Complexity
Educators repeatedly noted the complexity of human behaviour,
and were concerned that humanoid robots’ behaviour would
lack nuance and variation, particularly for social communication:
“You could teach a robot to do this and that but not everyone
does it the same way. One person when they’re angry might
cross their arms but some people might tap their foot. So
human behaviour is so erratic and unpredictable and everybody’s
behaviour for whatever emotion is different” [001]. Educators
felt that this lack of variation would limit the robot’s potential
with regard to what it could teach: “With autistic kids, certainly
they could mimic [the robots] but because they could mimic
them, they would be in risk of learning one expression for one
feeling and that’s not right ‘cause the diversity of emotions is so
wide and the way we adjust and the way we process emotions
is so different” [016]. As with the mixed implications of robot
predictability and consistency (Theme 2), educators felt that
a robot that is programmed to—or is physically limited to—
showing a social behaviour in only one way might potentially
do autistic children a disservice by not preparing them to
understand the true range of human behaviour. They also
described how a real, two-way exchange of feeling would be
missing: “Social interaction is emotional for both sides, so it’s
somethingmore than you just get with the robot who is just there,
he’s predictable. Human relationships are much more complex
than the robot I think can show” [104].

Other concerns focused on how the underlying technology
would not be able to adequately cope with—and adapt to—
the diversity and unpredictability of autistic learners’ behaviour:
“Even if our students are very structured and predictable, they
can also be unpredictable and I don’t know if a robot could be
able to adjust to those things” [013]. Additionally, “I doubt that
a robot could recognise the different ways a person with autism
could express [the] same emotions. I think it would be hard to
design a software for that” [016].

DISCUSSION

In this study, educators were provided with minimal information
about what humanoid robots “are like” or their current or
future uses to avoid biasing educators’ reflections toward specific,
existing examples. Educators were therefore free to project their
own ideas of whether, and in what ways, future humanoid

robots might contribute to autism education. This approach
differs from some recent practitioner studies, where participants
were introduced to specific robots, or were asked to solve
specific problems (e.g., whether KASPAR could add value to a
particular learning domain; Huijnen et al., 2016). Overall, the
current respondents were open to discussing humanoid robots
within autism education contexts. They expressed a willingness
to find out more about them, or to try interacting with them
for themselves to see what their capabilities might be. These
respondents from autism education settings shared many basic
perceptions of robots with both the mainstream, UK-based
educators in Kennedy et al. (2016), including robots as having
“simplistic interactions” and being “primarily seen as a scripted,
reactive machine” (p. 5), and with the Canada-based special
educators in Diep et al. (2015), who felt that robots might
“[provide] structure and repetitiveness in a consistent fashion”
(p. 2). Yet, the same qualities that our participants saw as
potentially so promising for meeting the needs of autistic learners
were perceived as obstacles to adoption by the Kennedy et al.
(2016) mainstream sample (see also Serholt et al., 2017); an
illustration that “educators,” “autistic children” and “schools” are
not homogenous groups and will have different needs—which
need to be fully understood to inform future robotics work.

Our respondents’ openness to discussing future robot use
did not equate to unqualified endorsement, however. Where
educators predicted that robots could benefit their learners, these
predictions were both conditional and carefully circumscribed:
robots may be beneficial, if used in a certain way, and if certain
measures are in place. These circumscriptions consistently
position proposed future robot use within established
educational goals and supports. Educator responses also
revealed a shared prediction that any future robot use would
pose a series of complex cost-benefit trade-offs: if a robot is
appealing and motivating, it may become a liability if children
engage with it to the exclusion of other interactions; a predictable
robot could support short-term learning goals, but might then
interfere with children’s longer-term capabilities to cope with a
mutable world. As part of their initial consideration of whether
robots belong in autism education, teachers were already looking
at the implication of robots across a child’s school career, or
their lifespan. Such predicted trade-offs must be addressed by
carefully planning robot use, within existing practices and within
individual learners’ pre-existing goals (subtheme 3A). Autism
specialists in Huijnen et al. (2017) made similar comments
on the imperativeness of planning robot use, though did not
discuss its longer-term implications and trade-offs as did the
current participants. These perceived benefits and trade-offs have
significant implications for the autism-robotics field, and will be
discussed in turn below.

Robots Are Novel, but Not Different From
Existing Tools
Across all of the interview prompts, educators discussed
humanoid robots in a remarkably similar way. Interviewees
proposed robot uses that supported existing curricular goals,
and volunteered a range of established educational strategies

Frontiers in Robotics and AI | www.frontiersin.org 9 November 2019 | Volume 6 | Article 10748

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Alcorn et al. Educator Views on Humanoid Robots

that could be applied to introduce robots and support their use.
Suggested robot activities and roles built on existing classwork
(e.g., practicing turn-taking in a small group) and staff roles.
Respondents’ emphases on cause-and-effect and turn-taking,
plus the specification that adults must be present to support
robot use, echo the teacher-proposed robot learning activities
in Hughes-Roberts and Brown (2015) and indicate that social
skills practice with robots has wider relevance for special
education populations.

Humanoid robots are a novel technology to autism educators,
and one for which they can propose possible applications.
However, the current interviewees did not have an expectation
of robots affording completely new educational goals, but rather,
of robots representing a potentially powerful tool to pursue
existing goals. Overall, humanoid robots were not perceived
as being fundamentally different from current, widespread
technologies, such as tablets. Autism specialists interviewed
on their existing iPad use in King et al. (2017) described
comparable patterns of use to those that our respondents
envisioned for robots, “attempting to integrate tablets into the
standard instructional methods that they were already using”
(p. 9). To the current respondents, humanoid robots could be
fully compatible with current autism education practices, if they
can support key longer-term priorities (see Generalisation and
Effectiveness: Challenges to Educational Robot Adoption?). This
perceived instructional compatibility does not negate the desire
for specialist training about robot use, and for that training
to be distributed across school staff. Respondents in Huijnen
et al. (2017) and King et al. (2017) made similar points about
KASPAR and iPads respectively: they wanted training both on
how to operate the devices and how to make the most of
them pedagogically.

As with any educational tool, educators indicated that
humanoid robots should be one component or phase of
educational activity that is carefully planned to integrate
into wider practices; participants in Huijnen et al. (2017)
similarly stressed the need for integration. Lesson planning,
introducing the robot, and—eventually—transitioning to human
interaction were envisioned as being planned and managed by
teachers. At least some teachers also seemed to envision taking
responsibility for programming robots, or otherwise adapting
them to individual learners (see Personalisation, Content, and
Teachers-as-Programmers). Respondents’ examples of potential
robot use implied that some degree of autonomous behaviour
would be acceptable and useful, such as robots being able to
respond to children in an ongoing activity, to detect when
children need prompting, or to offer praise. In Huijnen et al.
(2016), participants suggested similar preferences for “semi-
autonomous” robot operation with autistic learners with specific
reference to the existing KASPAR platform. However, some
current interviewees raised the concern that robotic technology
may not be well-equipped to autonomously interpret and
respond to autistic children’s variable behaviour.

Even if robots do not demand new ways of working,
interviewees still identified areas of desired improvement from
existing practices around technology use in their schools. They
clearly had mixed experiences with iPads in particular, as devices

that could be too engaging, and specifically referenced them
when emphasising the need for careful lesson planning around
robot use. Once again, there is close alignment between these
respondents’ views and those reported in King et al. (2017), in
which educators acknowledged “numerous challenges” of iPads
such as “perseveration,” but yet retained “an overall optimism
about tablet use. They were aware of the incredible motivation
tablets provided for [autistic children] and realised their potential
across several areas” (p. 8).

One area in which the current results differed from other
teacher studies on robots or iPads was the degree of concern
over children becoming too emotionally attached, or robots
potentially detracting from children’s peer, family, and staff
relationships. This is more specific than concerns over the
amount of use, and also seems distinct from concerns about
technology isolating autistic children (e.g., King et al., 2017).
This may be one area in which humanoid robots are perceived
as special and facilitative of social relationships with autistic
children in a way that other devices may not be. However, as
with other robot characteristics, human-ness and social capacity
were also perceived as pedagogically important (subthemes 3D,
4A). These concerns about overly close and important social
relationships with robots are diametrically opposed to some
of the Canadian special educators’ opinions in Diep et al.
(2015), where “face-to-face interaction was seen as an important
task they felt the robot could not provide” and that robots
“cannot perform the task of providing emotional comfort or
communication” (p. 2). These divergent views may indicate both
differences of opinion between groups of educators, but also
views of robots shifting over time (data from Diep et al. were
collected from six teachers in 2012) as technology becomes more
sophisticated and is increasingly publicised.

Generalisation and Effectiveness:
Challenges to Educational Robot
Adoption?
When asked to discuss potential applications of humanoid
robots, educators consistently talked about them as a “stepping
stone” to learning, between an introduction that is carefully
managed by school staff and a supported transition away from
the robot, toward applying new skills with human partners.
Endorsing this basic three-stage pattern of robot use appeared to
counteract some respondents’ concerns about the possibility of
children becoming overly reliant on robots, or interacting with
them at the expense of classmates and families (subtheme 4B),
and made them more ethically acceptable. The stepping stone
pattern also relies on educators’ special skills and knowledge
of children. (Huijnen et al., 2017) participants perceived this
same factor as critical to the robot’s success, and also linked
it to the potential for generalisability—especially in Wizard-of-
Oz interfaces with direct and fine-grained adult control. A child
could practice transfer even within robot interactions by working
with different staff, or in different locations.

The “stepping stone” strategy (see also Vygotsky, 1978; or
“social bridge” in Hughes-Roberts and Brown, 2015; Huijnen
et al., 2016) assumes that children would successfully generalise
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skills from a robot interaction context to a human one, after
sufficient practice. Yet, supporting autistic children to generalise,
or transfer, their skills from the lab/intervention setting to a
more real-world context is notoriously difficult (e.g., Schreibman
et al., 2015). Concepts such as the “therapy register” (e.g.,
Johnston, 1988; Yoder et al., 2006) capture the issue of autistic
children successfully learning and applying skills in one setting
(e.g., speech and language therapy), but struggling to apply
them in other relevant settings and situations (e.g., at home).
Several studies that have specifically investigated autistic children
generalising skills from technological contexts have not been
particularly promising [e.g., see (Wainer and Ingersoll, 2011;
Wass and Porayska-Pomsta, 2014; Whyte et al., 2015)]. With
respect to technology-based autism tools, McCleery (2015) points
out that there has been very limited, direct study of near transfer
(i.e., skill transfer to another related task), and far transfer
(i.e., skill transfer to other domains or naturalistic interaction
contexts). The existing research has focused predominantly on
screen-based technologies, over a wide range of ages and ability
profiles, but not on social robots. More research is needed
to test specifically whether robot-based activities can support
near and far transfer of skills, and for which robots, activities,
and subgroups of autistic learners (see section Conclusion).
Following Huijnen et al. (2017), perhaps the role of adults in
robot-based interventions, and in supporting successful transfer,
should also be more overtly defined. For educators to see
humanoid robots as potentially valuable and ethically acceptable
tools, future research should focus on providing evidence of
robots consistently supporting skill transfer into “real contexts.”

The interviewees’ examples of potential future robot use also
make a second critical assumption: that robots can actually
teach autistic children new skills, particularly through implicit
instruction. As with generalisation, this is not a settled question.
Numerous social robotics studies have tested the efficacy of
robots (i.e., whether a process can produce an intended result
in a highly controlled setting), teaching autistic children specific,
isolated skills such as point-following (e.g., David et al., 2018).
Yet there are relatively few—if any—studies of robots’ teaching
effectiveness in non-lab contexts (though see Scassellati et al.,
2018) and methodological issues mean many HRI studies do not
provide clinically useful evidence (see Begum et al., 2016). Many
of the skills that these educators wish to teach are also more
complex than those in existing studies, with murkier criteria for
success (e.g., a child understanding how her actions affect another
person). Assuming that robots could facilitate skill transfer and
show effectiveness in educational contexts, one outstanding
question is whether robots could offer sufficient added value (vs.
other technological/educational tools) to compensate for their
current expense, fragility, and complexity.

Personalisation, Content, and
Teachers-as-Programmers
Strikingly, none of the educators made any reference to any kind
of “robot app store,” or of otherwise buying or accessing pre-
packaged curricula for robots, as they may already do with tablets
or with some autism interventions. Instead, they repeatedly

highlighted that successful robot use would need personalisation
or adaptation of teacher-planned activities, especially given the
enormous diversity of behaviours, preferences and traits of
autistic learners. Directly or indirectly, respondents indicated
that they (or people in teaching roles) should be the ones to
implement whatever robot personalisation is required, with some
explicitly explaining this in terms of programming (subtheme
3B). In both Hughes-Roberts and Brown (2015) and Huijnen
et al. (2017), participants also stressed the need to personalise
activities and robot behaviours (e.g., speech) to individual
learners, suggesting that teachers would have responsibility over
personalisation within the classroom, and even during the course
of an interaction.

Yet, technical complexity and need for expertise were
perceived as significant practical barriers to robot adoption.
One participant in a leadership role described existing problems
with teachers not using the personalisation capacities of existing
technologies, such as apps, due to lack of training or time
constraints. Others were concerned that technology expertise
and training may be deliberately limited to single “experts,” and
thus not easily “cascaded” through an entire teaching team.
Other participants agree: Hughes-Roberts and Brown (2015)
interviewees raised similar requirements for “the teacher [to]
manipulate the robot without needing external support,” warning
that “if it takes too long to set up the robot or deliver a lesson...
[teachers] won’t use (it)” (p. 52). Participants in Huijnen et al.
(2016) cited as a particular strength of KASPAR that they would
be able to use software to create interaction scenarios themselves,
without specialist technical support. These views and concerns
highlight a clear deployment challenge for robot developers
and for educators: if the type of flexible robots that educators
envision require extensive training or technical knowledge, they
may struggle to gain traction in schools because of expertise
bottlenecks, or overly complex, time-consuming procedures.

What Type of Tools Are Robots? Educator
Views vs. Current Research
The current findings suggest that autism educators at special
schools in England have notably different expectations and
priorities for humanoid robots than many existing HRI research
projects, though share many points of agreement with other
SEND and autism educators (Hughes-Roberts and Brown, 2015;
Huijnen et al., 2017; though see Diep et al., 2015) and autism
specialists working with other technologies (King et al., 2017).
Educators expected that if they could access humanoid robots
in the future, these would be flexible tools for them and their
teams. They would be able to plan lessons using the same robot to
work on different goals with individual learners or small groups,
depending on need. This “flexible tool” view also agrees with
a recent survey of UK-based teachers in regular, mainstream
schools, where the second most popular proposed use of robots
in schools was as a “versatile tool for the teacher, used in many
situations” (Kennedy et al., 2016, Figure 6).

Yet, many existing autism-robotics and educational robotics
research projects do not appear to be working toward a “flexible
tools” endpoint. There are some clear practical reasons for that,
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including the difficulty of demonstrating feasibility and efficacy
for a tool that could be used in almost any way, or investigating
learning gains when every participant may have unique targets.
Existing proof-of-concept and psychological experimentation
work with robots (see section Introduction) often have basic
science goals that add to the autism-robotics knowledge base and
have focused on the needs of child users, rather than the needs of
adult users who may operate robot systems. While the KASPAR
research programme (e.g., Robins and Dautenhahn, 2017) has
worked on iteratively developing and evaluating domain-specific
robot-based lessons over time and has created customisation
software for end-users to develop new learning scenarios, this
capability does not appear to be well-known or well-documented
compared to other aspects of the project (though see Huijnen
et al., 2017). There are also several examples of packaged
robot-based or robot delivered content. US-based Robokind
manufactures humanoid robots, but has also developed and sells
the “robots4autism” curriculum for autistic learners (https://
robots4autism.com/). Scassellati et al. (2018) developed a month-
long home-based social communication intervention for school-
aged autistic children, using an autonomous robot. While both
robots4autism and the Scassellati et al. (2018) system can present
content adaptively to different children, neither offers the degree
of flexibility and type of personalisation that educators within
autism-specific special education settings seem to envision (e.g.,
programming the robot to use particular phrasing).

At present, the robotics industry may be offering something
closer to educators’ desired flexible use and to the “single,
simple point of control” that Hughes-Roberts and Brown
suggested (2015, p. 52). There are several tablet-based controls
for commercially available robot NAO, such as the “AskNAO
Tablet” app (Softbank and ERM Robotique https://www.asknao-
tablet.com/), which offers a range of controls from push-button
selection of pre-programmed actions to integrating with a
powerful desktop program (Choreographe) for programming
new robot behaviours. They also have a companion blocks-based
visual programming language, AskNAO Blockly. Also using
NAO, the EU-funded DREAM project developed a simplified,
tablet-controlled version of their original autonomous system,
DREAM Lite (Mazel and Matu, 2019), which therapists in
Romania found fairly easy to learn and use, though they also
requested further simplification (Cao et al., 2019). In addition to
the contributions made by doing controlled robot experiments
and developing specific teaching programmes, it would be
a much-needed contribution for HRI and Human-Computer
Interaction researchers and the commercial robotics industry
to collaborate with educators, developing or modifying robot
programming/control platforms to be both usable and secure.

LIMITATIONS

This study is not without limitations. First, given the convenience
sampling of participants, we cannot be sure that our findings
reflect the views of autism educators in all special schools across
England, or of educators working with autistic students in
mainstream schools (in which the majority of autistic students
are educated; Department for Education, 2018). Nevertheless,
given the current interviewees’ expertise in working with autistic

students, particularly those with high support needs, they are
likely to have provided particularly informed and nuanced
views on the potential of robots as educational tools, as our
findings attest.

A second key limitation is that the interviews prioritised the
concerns of the larger DE-ENIGMA project in asking specifically
about humanoid robots. Our respondents may have had different
views and suggested other uses for animal-like robots such as
Keepon (Kozima et al., 2007), or non-biomimetic robots. It is
unclear whether the consensus present in the current dataset,
such as using robots as “stepping stones” to human interaction,
would also be present if discussing other robots. For the same
reason, the interviews also specifically prompted respondents to
consider applications for social and emotional skills teaching,
but did not prompt them about academic or other applications,
somewhat skewing the dataset in terms of the types of educational
activities discussed.

CONCLUSION

The findings of this study show multiple, strong points of
agreements with how related participant groups (e.g., Hughes-
Roberts and Brown, 2015; Huijnen et al., 2016, 2017, 2019) have
conceptualised robots as potential tools for autism education.
Importantly, our educators were not uncritically approving of the
use of robots in the classroom (see also (Serholt et al., 2017), for
similar views from mainstream educators). Rather, they carefully
outlined specific use-cases and circumstances in which robots
were predicted to be beneficial (e.g., as “stepping stones” to
social interaction), and conditions that would need to be met
to ensure their adoption in the classroom, including integration
with educational curricula, and the capacity to personalise robots
to meet the specific needs of individual, autistic learners.

The findings suggest several promising avenues for future
research. First, educators repeatedly highlighted the idea,
prevalent in HRI literature, that robots’ predictability and
consistency of behaviour should benefit autistic learners in
particular (e.g., Rudovic et al., 2017; Straten et al., 2018);
it should reduce demands on them, put them at ease, and
potentially facilitate learning. These claims are logical based
on the diagnostic features of autism and current educational
practices that aim to offer children predictability and structure
at school (e.g., Mesibov and Shea, 2010), as well as theories of
autistic perception and information processing (e.g., Pellicano
and Burr, 2012; Lawson et al., 2014). However, they have not
been rigorously operationalised and evaluated at a behavioural
level. Research is required to test these widely-held beliefs about
the benefits of robot predictability and exactly how it may affect
children in learning contexts.

Second, the capacity of humanoid robots to support autistic
children in developing transferrable, generalisable skills is not
currently supported by clear research evidence. Given the
centrality of educator views that robots need to be a stepping
stone to human-human interaction, investigating skill transfer
should be an urgent priority. Further generalisation studies might
also test educators’ beliefs, as expressed herein, that a humanoid
robot might better teach, or support transfer of, social skills,
than would other robot morphologies. These questions are not
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only the domain of autism education researchers; they should
also concern robotics researchers. Based on this current research,
robots for autism education—no matter how appealing or user-
friendly—would not meet educators’ and children’s needs if they
did not consistently support skill transfer. Robots that only
facilitate learning gains within robot-based activities (i.e., training
effects) are unlikely to be ethically or financially justifiable for
educators or the broader autism community.

Educator interview studies are a valuable source about of
information for robotics researchers and industry about the
needs of child and adult users, but are not in themselves sufficient
to bridge the “deployment gap” between preliminary, lab-based
research, and the vision of robots as educational tools. Huijnen
et al. describe this gap perfectly, writing:

“For socially interactive robots to actually make a difference to

the lives of children with ASD and their carers, they have to

find their way out from case studies with ‘standalone’ robots

in robotics labs to. . . education environments as part of daily

activities/therapies. Being effective in eliciting a certain target

behaviour of a particular child in a lab environment, will not

automatically ensure. . . adoption of use by professionals in the

field” (2016, p. 446).

Greater engagement with educators—and other key stakeholders,
including autistic children themselves—during design,
implementation, and evaluation should help to ensure that
the resulting robotics systems and programmes are relevant
to autistic learners and those who support them, sufficiently
tailored to the realities of their everyday learning contexts,
and consistent with their values (e.g., Lloyd and White,
2011). Such participatory processes are being championed
across autism research (Nicolaidis et al., 2011; Pellicano and
Stears, 2011; Fletcher-Watson et al., 2019), but especially
within technology-related autism research (Frauenberger
et al., 2011; Porayska-Pomsta et al., 2012; Brosnan et al.,
2016). The children’s interaction design community can offer
useful examples and methodological guidance for undertaking
participatory technology research with educators and children,
including children on the autism spectrum (e.g., Frauenberger
et al., 2013).

In advocating for HRI researchers to engage more fully
with autism education practitioners while planning, developing,
and evaluating robotic tools, we realise that this could pose a
substantial change to many established ways of working, and
that fully co-produced research might not be possible on many
projects. Yet stakeholder participation in research—beyond
being a passive participant or subject—can take many forms,
including as advisors, as consultants, or as full decision-making
partners throughout a project. The risks of designing robots that
do not consider stakeholders’ views, needs and contexts could be
far-reaching for research and industry, especially given the costs
of developing and deploying robots.

The current findings highlight that there will be no one-size-
fits all design “solution” for robotics in autism education, and that
current “solutions”may pose later challenges for autistic children.
Such future work therefore needs to involve key stakeholders

in the design and implementation process (see also Serholt
et al., 2017), designing with educators, parents and autistic
children, rather than to, on, or for them, to ensure that this
work has a direct and sustained impact on those who need
it most. This process will require beginning from a point of
rigorously co-investigating the assumed and predicted benefits
of robotics for autistic children, and balancing these against
potential interpersonal, developmental, and resource costs. We
envision that robot design driven by technical innovation will
be increasingly combined with—or shaped by—approaches that
prioritise the needs and values of users.
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Caitlyn Clabaugh 1†, Kartik Mahajan 1*†, Shomik Jain 1, Roxanna Pakkar 1, David Becerra 1,

Zhonghao Shi 1, Eric Deng 1, Rhianna Lee 1, Gisele Ragusa 2 and Maja Matarić 1

1 Interaction Lab, Department of Computer Science, Viterbi School of Engineering, University of Southern California,

Los Angeles, CA, United States, 2 STEM Education Research Group, Division of Engineering Education, Viterbi School of
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Socially assistive robots (SAR) have shown great potential to augment the social and

educational development of children with autism spectrum disorders (ASD). As SAR

continues to substantiate itself as an effective enhancement to human intervention,

researchers have sought to study its longitudinal impacts in real-world environments,

including the home. Computational personalization stands out as a central computational

challenge as it is necessary to enable SAR systems to adapt to each child’s unique

and changing needs. Toward that end, we formalized personalization as a hierarchical

human robot learning framework (hHRL) consisting of five controllers (disclosure,

promise, instruction, feedback, and inquiry) mediated by a meta-controller that utilized

reinforcement learning to personalize instruction challenge levels and robot feedback

based on each user’s unique learning patterns. We instantiated and evaluated the

approach in a study with 17 children with ASD, aged 3–7 years old, over month-long

interventions in their homes. Our findings demonstrate that the fully autonomous SAR

system was able to personalize its instruction and feedback over time to each child’s

proficiency. As a result, every child participant showed improvements in targeted skills

and long-term retention of intervention content. Moreover, all child users were engaged

for a majority of the intervention, and their families reported the SAR system to be

useful and adaptable. In summary, our results show that autonomous, personalized

SAR interventions are both feasible and effective in providing long-term in-home

developmental support for children with diverse learning needs.

Keywords: long-term human-robot interaction, personalization, socially assistive robotics, reinforcement learning,

home robot, autism spectrum disorders, early childhood

1. INTRODUCTION

Human development follows non-linear trajectories unique to each individual (Vygotsky, 1978).
Therefore, socially assistive interventions need to be tailored toward the specific needs and
preferences of each participant over time. In a long-term setting, this means interventions must
continuously and rapidly adapt toward the user’s unique personality. Given the complexity,
unpredictability, and uniqueness of each user’s progress, intervention strategies must be adapted
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in situ via untrained human feedback. Creating autonomous
long-term personalized adaptation poses many computational
and engineering challenges.

Benefits of personalization are well-established across the
domains of education (Bloom, 1984; Anderson et al., 2001)
and healthcare (Artz and Armour-Thomas, 1992; Beevers and
McGeary, 2012; Cesuroglu et al., 2012; Swan, 2012). While
personalized services are paramount, they are neither universally
nor equitably affordable. This provides motivation for human-
machine interaction research that seeks to develop personalized
assistance via socially assistive agents, whether disembodied,
virtually embodied (DeVault et al., 2014), or physically embodied
(Matarić, 2017).

Socially assistive robotics (SAR) combines robotics and
computational methods to broaden access to personalized,
socially situated, and physically co-present interventions (Feil-
Seifer and Matarić, 2011). A large body of work has supported
the importance of physical embodiment (Deng et al., 2019),
including its role in increasing compliance (Bainbridge et al.,
2008), social engagement (Lee et al., 2006; Wainer et al.,
2006), and cognitive learning gains (Leyzberg et al., 2012).
Correspondingly, there has been a significant body of work
using various types of robots for children with autism spectrum
disorders (ASD) in short-term studies (Diehl et al., 2012;
Scassellati et al., 2012; Begum et al., 2016), and one long-term
study (Scassellati et al., 2018).

The majority of past work with SAR for ASD has
been related to social skills. However, it is well-established
that learning in general is impacted by social factors; this
is particularly important for young learners, because their
learning is most often socially mediated (Durlak, 2011). Social
difficulties often interfere with children’s learning; therefore
embedding social contexts in learning environments presents
a developmentally appropriate practice that is preferable over
isolating social behaviors from cognitive activities (Zins et al.,
2004). Consequently, this work addresses the social and cognitive
learning domains in tandem, in an intervention that is
specifically designed for such learning by children with ASD
(White et al., 2007; Guadalupe, 2016).

Personalizing the learning process is especially important in
ASD. Given sufficient domain knowledge, personalization of SAR
can be achieved through human-in-the-loop or Wizard of Oz
(WoZ) frameworks, wherein intervention strategies are mapped
to individuals a priori or in situ via human input (Riek, 2012).
However, in practice, considering diverse individual needs and
the noise of real-world environments, and the scale of need
in ASD, non-autonomous personalization of SAR is infeasible.
Reinforcement learning (RL) methods have been successfully
applied to adapting to a user’s learning habits over time,
particularly in early child development studies (Ros et al., 2011).
Moreover, recent long-term SAR studies have demonstrated
success in maintaining persistent co-present support for
educators, students, and caregivers (Bongaarts, 2004). There is
therefore an opportunity to develop RL-based personalized long-
term learning SAR systems, especially when teaching abstract
concepts, such as mathematics (Clabaugh et al., 2015).

In this work, we propose a personalized SAR intervention
framework that can provide accessible and effective long-term,

in-home support for children with ASD. To accommodate the
variable nature of ASD, our framework personalizes to each
user’s individual needs. To that end, we introduce a hierarchical
framework for Human Robot Learning (hHRL) that decomposes
SAR interventions into computationally tractable state-action
subspaces contained with a meta-controller. The meta-controller
consists of disclosure, promise, instruction, feedback, and inquiry
controllers that personalize instruction challenge levels and robot
feedback based on each child’s unique learning patterns. The
framework is implemented and evaluated in a fully autonomous
SAR system deployed in homes for session-based, single-
subject interventions with 17 child participants diagnosed with
ASD aged 3–7 years old. Using space-themed mathematics
problems, the system combined tenets of educational robotics
and computational personalization to maximize each child
participant’s cognitive gains. Our findings show that the SAR
system successfully personalized its instruction and feedback to
each participant over time. Furthermore, most families reported
the SAR system to be useful and adaptable, and correspondingly,
all users were engaged for a majority of the in-home intervention.
As a result, all participants showed improvements in math skills
and long-term retention of intervention content. These outcomes
demonstrate that computational personalization methods can
be successfully incorporated in long-term personalized SAR
deployments to support children with diverse learning needs.

This paper is organized as follows. Background overviews
SAR in the relevant contexts of learning, ASD, and
personalization. Formalizing Personalization in SAR describes
the hierarchical human robot learning framework, with a
focus on personalization of the challenge level and robot
feedback. Personalized SAR Intervention Design details
the study design, data collection, and outcome measures.
The Results section details the adaptation performance
of the SAR system, its influence on user engagement,
participating families’ perspectives, and cognitive learning
gains over the long-term interaction. Discussion and
Conclusion summarize key insights and recommendations for
future work.

2. BACKGROUND

Socially Assistive Robotics (SAR) lies at the intersection of
socially interactive robotics and assistive robotics, and focuses
on developing intelligent, socially interactive robots that provide
assistance through social interaction, with measurable outcomes
(Feil-Seifer and Matarić, 2005; Matarić and Scassellati, 2016).
We review the relevant background in the main contribution
areas of this work: SAR for learning (section 2.1) and SAR for
personalization (section 2.2), both with a particular emphasis on
the ASD context, given particular challenges and opportunities
for SAR.

2.1. SAR for Learning
A large body of evidence across multiple disciplines supports
personalized instruction as a means of positively impacting
development and motivation of individual learners. Examples
include personalized tutoring systems in human-computer
interaction research (Wenger, 2014), personalized robot tutors
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in HRI and SAR research (Leyzberg et al., 2014) and optimal
challenge points (Guadagnoli and Lee, 2004), and the Zone
of Proximal Development methodologies in education research
(Chaiklin, 2003).

A significant body of SAR research has focused on user
learning, with a specific focus on developing personalized robot
tutors for young children (Clabaugh and Matarić, 2019). Many
SAR and HRI studies have found a robot’s embodiment to
augment learning in a variety of settings (Gallese and Goldman,
1998; Lee et al., 2006; Gazzola et al., 2007; Wainer et al.,
2007; Bainbridge et al., 2008; Leyzberg et al., 2012; Fridin and
Belokopytov, 2014). Additionally, several studies on intelligent
tutoring systems (ITS) have involved computational models of
student learning patterns; however, in contrast to SAR, these
works have predominately focused on university students in
highly controlled environments (Anderson, 1985; Murray, 1999).
From that body of past work, key principles about SAR for
learning have been grounded in theories of embodied cognition,
situated learning, and user engagement.

Embodied cognition research has shown that knowledge
is directly tied to perceptual, somatosensory, and motoric
experience, and that a robot’s physical embodiment can help
contextualize a user’s ideas (Niedenthal, 2007; Deng et al.,
2019). For example, SAR has helped participants develop motor
(Goldin-Meadow and Beilock, 2010), behavioral (Fong et al.,
2003), and cognitive skills (Toh et al., 2016). SAR has also shown
success in helping users learn abstract concepts; for example,
Clabaugh et al. (2015) implemented a SAR system that used
deictic gestures to help preschoolers learn number concepts.

Situated learning refers to the importance of the social and
physical environment on the learning process and outcomes
(McLellan, 1996). Cognitive gains are dependent on context
and are enhanced by social interaction (Anderson et al., 1996).
Therefore, SAR intervention efficacy must be analyzed in real-
world learning settings, involving user learning in various spatial
and social contexts (Sabanovic et al., 2006). Environmental
conditions impact the quality of SAR interactions and the
resulting assistive outcomes. However, real-world scenarios
are inherently noisier and less predictable, requiring more
complex experimental designs and robust robot platforms
(Ros et al., 2011).

User engagement is an important measure of SAR’s
effectiveness and is inherently tied to learning. In the context
of HRI, engagement is widely accepted as a combination of
behavioral, affective, and cognitive constructs. Specifically,
engagement involves on-task behavior, interest in the robot and
task at hand, and a willingness to remain focused (Scassellati
et al., 2012). Rudovic et al. (2018) successfully modeled users’
engagement with a personalized deep learning framework,
however the model was developed post-hoc, not in real time. As
discussed in Kidd (2008), maintaining user engagement in real
time is a major challenge for real-world, long-term studies, as are
overcoming technological difficulties and accounting for external
human actors.

All of the challenges of SAR for learning are significantly
amplified in the ASD context, but ASD is also the context where
the success of SAR in supporting learning is especially promising.

ASD is a complex developmental disorder that is oftenmarked by
delays in language skills and social skills, including turn-taking,
perspective-taking, and joint attention (White et al., 2007).
Personalized therapeutic and learning interventions are critical
for individuals with ASD, but the substantial time and financial
resources required for such services make them inaccessible to
many (Ospina et al., 2008; Lavelle et al., 2014), creating an
opportunity for SAR support.

There is a large and growing body of research on using SAR
for a variety of ASD interventions, as reviewed in Diehl et al.
(2012), Scassellati et al. (2012), and Begum et al. (2016). SAR has
been shown to help children with ASD develop behavioral and
cognitive skills, specifically increased attention (Duquette et al.,
2008), turn-taking (Baxter et al., 2013), social interaction (Robins
et al., 2005), and many other skills. SAR’s ability to perceive,
respond, and adapt to user behavior is especially critical in the
ASD context (Clabaugh and Matarić, 2019), as users with ASD
vary greatly in symptoms and severities, underscoring the need
for personalization, as our work also demonstrates.

2.2. Personalization in SAR
SAR systems have shown great potential for providing long-
term situated support for meeting individual learning needs.
Autonomous or computational personalization in SAR often
seeks to maximize the participants’ focus and performance, using
rule-, model-, or goal-based approaches to personalization.

Rule-based approaches to personalization have been successful
in both short-term and long-term SAR interventions. For
example, Ramachandran et al. (2018) designed single session
interventions where the robot encouraged participants to think
out loud. Scenarios were presented based on whether a
participant successfully answered a question, and this simple
rule-based method resulted in learning gains across all users.
Additional studies have expanded rule-based approaches for
sequential interactions using hierarchical decision trees (Kidd
and Breazeal, 2008; Reardon et al., 2015). Furthermore, in a
study setup similar to ours, Scassellati et al. (2018) developed
a personalized SAR system for month-long interventions with
children with ASD. The system adapted the challenge level of
activities using past performance and fixed thresholds. As a result,
participants showed increased engagement to the robot and
improved attention skills with adults when not in the presence
of the robot. In contrast, this work personalizes feedback and
challenge level using a goal-based approach, discussed below.

Model-based approaches use models to evaluate the user’s
success and make optimal decisions. Bayesian Knowledge
Tracing (BKT), a domain-specific form of Hidden Markov
Models (HMMs), is a common model-based approach to
personalization in SAR where the hidden state is based on
the user’s performance and loosely represents their knowledge
(Desmarais and Baker, 2012; van De Sande, 2013). For example,
BKT can assess how well a participant understands a concept,
such as basic addition by examining the sequence of the user’s
correct and incorrect responses. To represent the variability
present in most learning interactions, BKT uses two domain-
specific parameters: the probability that a participant will slip
and the probability that they will guess. These parameters are
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dependent on the interaction context; students with ASD may
have difficulty concentrating for extended periods and thus may
slip more frequently than typically-developing users (Schiller,
1996). BKT has been successfully applied in SAR; Gordon and
Breazeal (2015) and Schodde et al. (2017) used it to adapt to user
age and experience, leading to increased learning gains. Leyzberg
et al. (2014) applied BKT to training a SAR system to help users
solve challenging puzzles more quickly. While outside of ASD,
these studies demonstrate the value of BKT in adapting SAR to
varying learner needs.

Goal-based methods help the SAR system to select actions
that maximize the user’s progress toward an assistive outcome.
Reinforcement Learning (RL) is a popular goal-based approach,
where each user action produces some reward representing
progress toward the goal. Throughout the interaction, RL
develops a unique, personalized strategy for each participant
based on reward-favoring paths. Within HRI, RL has been used
to maximize the user’s affective state, leading to more effective
interactions (Conn et al., 2008; Chan and Nejat, 2011; Castellano
et al., 2012; Gordon et al., 2016). Prior studies have shown RL to
require deep datasets given the noise of real-world environments.
In a single-session context, Gordon et al. (2016) showed RL to
successfully adapt in an average of three out of seven sessions.
Castellano et al. (2012) also utilized RL to increase engagement;
the model was trained on a 15 min interaction and was no
better at adapting than a randomized empathetic policy. Conn
et al. (2008) showed a RL which was able to adapt quickly,
but simplified the robot state to three distinct behaviors. To
enable a broader range of behaviors, Chan and Nejat (2011)
implemented a hierarchical RL model to personalize feedback
within a memory-based SAR interaction. As demonstrated by
past work, long-term studies provide the datasets needed for
effective RL-based personalization.

Related work has addressed improving social skills of children
with ASD. To manage noisy environments and the unpredictable
nature of ASD, two studies are particularly relevant as they
used RL to parameterize action spaces and speed up robot
learning. Velentzas and Khamassi (2018) used RL to personalize
the robot’s actions to maximize a child’s engagement; the robot
guided children through a Tower of Hanoi puzzle and used
RL to effectively identify non-verbal cues and teach at the
learning rate of the participant. That work parameterized the
robot’s action space to enable efficient decision making and
learn single moves in the absence of traditional hierarchical
models. Khamassi and Tzafestas (2018) utilized a parameterized
action space to select the appropriate robot reaction that
maximizes a child’s engagement. That work also used RL to
maximize the participant’s engagement when interacting with
a robot. By using the participant’s gaze and past variations in
engagement, their Q-Learning algorithm became more robust
over time. The work used a parameterized environment to
simultaneously explore a discrete action space (e.g., moving an
object) and a continuous stream of movement features (e.g.,
expressivity, strength, velocity). These two studies provide insight
into maximizing engagement in the absence of hierarchical
models, especially when encouraging social interaction (e.g.,
talking, moving).

The work described in this paper is complementary but
different from past work in that it analyzes a long-term SAR
intervention for abstract concept learning, specifically helping
children with ASD learn mathematics skills. As the next section
details, a goal-based RL approach was developed to personalize
the instruction and feedback provided to each child by the
SAR system.

3. FORMALIZING PERSONALIZATION IN
SAR

To address the challenge of long-term personalization in SAR
in a principled way, we present a solution to the problem as
a controller-based environment which we define as hierarchical
human-robot learning (hHRL).

3.1. Human-Robot Learning
Past work has explored methods for computational
personalization, with the objective of finding an optimal
sequence of actions that steers the user toward a desired goal.
While this problem has been studied in the contexts of user
modeling in HCI (Fischer, 2001), machine teaching (Chen
et al., 2018), as well as active (Cohn et al., 1996), and interactive
machine learning (ML) (Amershi et al., 2014; Dudley and
Kristensson, 2018), computational personalization is yet to be
formalized in the context of SAR.

We define and formalizeHuman-Robot Learning (HRL) as the
interactive and co-adaptive process of personalizing SAR. At the
highest level, the quality of a SAR intervention can be assessed
relative to some goal G. Since SAR contexts often involve long-
term goals, success is better assessed via intermediate measures of
progress towardG. Hence, it is important to design and represent
SAR intervention interactions in a manner that maximizes
observability. In this work, HRL is framed from the perspective of
the robot, so that optimization is limited to the robot’s actions and
not those of the human, in contrast to human-robot collaboration
and multi-agent learning (Littman, 1994; Nikolaidis et al., 2016).

3.2. Hierarchical HRL
We introduce a hierarchical framework for HRL (hHRL) as
one that decomposes SAR interventions into computationally
tractable state-action subspaces. Building on the work of
Kulkarni et al. (2016), the hHRL framework is structured as
a two-level hierarchy, shown in Figure 1. At the top level,
a meta-controller considers high-level information about the
intervention state and activates some lower-level controller. SAR-
specific controllers wait for activation to select the robot’s action
based on a simplified state representation. The hHRL framework
assumes that SAR interventions can be characterized by five
abstract action categories: (1) instructions I, (2) promises P, (3)
feedback F, (4) disclosures D, and (5) inquiries Q. Each category
is modeled by a separate controller activated by the overarching
meta-controller.

Each controller is responsible for a theoretical subset of SAR
actions, henceforth referred to as SAR acts. In this work, SAR
acts are formalized based on the directive, commissive, and
representative illocutionary speech acts, or simply illocutions,
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FIGURE 1 | The hierarchical framework for human-robot learning (hHRL) comprises of a two-level hierarchy: (1) The meta-controller takes high-level information about

the current state of the intervention and activates a lower-level controller. (2) The lower-level controllers await activation to select the robot’s action based on a

simplified state representation, reward, and action category: instructions, promises, feedback, disclosures, and inquiries.

originally defined in linguistic semantics (Searle and Searle,
1969; Austin, 1975). Searle (1976) defined illocutions in terms
of speaker, hearer, sincerity condition, psychological state,
propositional content, and direction of fit. In the SAR context,
the speaker is the robot, the hearer is the human user, and the
direction of fit is either action-to-state, where the objective is to
make the robot’s action match the state of the intervention, or
state-to-action, where the objective is to make the state of the
intervention match what is expressed through the robot’s action.
Illocutions uniquely manifest themselves through other modes
of communication, such as gestures (Mehrabian, 2017), pictures
(Danesi, 2016), music (Kohn et al., 2004), and other multimodal
signals (Horn, 1998; Forceville and Urios-Aparisi, 2009). These
alternative signals are particularly relevant to SAR because robots
have inherently expressive embodiments (Fong et al., 2003).
Additionally, SAR interventions target special populations (Feil-
Seifer and Matarić, 2005), such as linguistic minorities [e.g.,
American Sign Language (Stokoe et al., 1976)] or personals with
disabilities that involve speech and language difficulties or delays
[e.g., Dysarthria (Darley et al., 1969) or autism spectrum disorder
(Kasari et al., 2012)]. Therefore, SAR acts are defined to be
illocutions irrespective of communicative modality.

3.3. Abstract Controllers
Within the hierarchical model, instructions are defined as
attempts by the robot to get the user to do something that
might generate progress toward the intervention goal. Within
the instruction controller, there may be some predefined or

learned ordering among instructions, such as the level of
challenge or specificity.

Feedback is defined as beliefs expressed to the user by the
robot about their past and current interactions. The direction of
fit is action-to-state, the sincerity condition is belief B, and the
propositional content is that some past or current state s had
or has some property p. In this way, feedback F is defined as a
specific form of representatives. Representatives were defined by
Searle (1976) to commit the speaker to the truth of the expressed
proposition. The propositional content is information about the
state relative to some instruction or goal. The feedback controller
is responsible for selecting the information or assistance given
to the user by the robot. Feedback can be modeled in a variety
of ways, the impacts of which have been studied in psychology
and human-machine interaction. Specifically, feedback can be
adapted to match individual proficiency or independence, as in
scaffolded (Finn and Metcalfe, 2010) or graded cueing models
(Feil-Seifer and Matarić, 2012; Greczek et al., 2013). It can also
be modeled to increase self-efficacy, as in the growth mindset
(O’Rourke et al., 2014; Park et al., 2017) and constructive
feedback models (Ovando, 1994). Additionally, feedback timing
has also been studied (Kulik and Kulik, 1988), such as feedback
in response to help-seeking (Roll et al., 2011) and disengagement
(Leite et al., 2015).

Extrinsic motivation is a well-studied driver of behavior,
explored in educational (Vallerand et al., 1992), professional
(Amabile, 1993), and personal settings (Sansone and
Harackiewicz, 2000), as well as a common measure in evaluating
the effectiveness of human-robot interaction (Breazeal, 1998;
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Dautenhahn, 2007; Fasola and Matarić, 2012). In the hHRL
framework, promises are defined as commitments made by the
robot for performing future actions that aim to motivate the user
through the promise controller. Promises also relay information
critical to collaboration and transparency, expressed via verbal
or non-verbal signals, such as gross motion (Dragan et al., 2013).
Although they are not directly tied to quantitative measures,
promises help to make the robot more personable and consistent
over a long-term study period.

Disclosures are defined as beliefs expressed to the user by the
robot about its past or current self. The disclosure controller
selects internal information for the robot to share with the user
as a means of fostering human-robot reciprocity and solidarity.
Robot transparency has shown to increase trust (Hancock et al.,
2011; Yagoda and Gillan, 2012), improve collaboration (Breazeal
et al., 2005; Kim and Hinds, 2006), and build empathetic
relationships (Leite et al., 2013). Past work has also shown that
non-verbal signals can be particularly effective in disclosing
internal states, such as emotion (Bruce et al., 2002).

Inquiries are defined as attempts by the robot to get the
user to express some truth. The inquiry controller selects what
information the robot should attempt to elicit. Inquires may be
posed for a variety of interaction benefits, such as improving
engagement, relationship, and trust (Hancock et al., 2011).
Inquires may also be used to gather feedback about the robot
or information about the user, as in interactive machine learning
(Amershi et al., 2014).

3.4. Computational Personalization
To personalize the SAR system, the proposed hHRL controller
was instantiated as a group of domain controllers, based
on the abstract controllers defined in section 3.3. Figure 2

represents how the abstract controllers were contained within
a domain-specific meta-controller. The meta-controller activated
one controller at a time. We used insights and data from our
prior work, reported in Clabaugh et al. (2015), to inform the
design of the controllers for SAR personalization. Our prior study
collected data from 31 typically developing preschool children
who interacted with a SAR tutor in a single session at their child
development center preschool. The data were used to develop
a model that predicted a child’s performance on the game. We
used this performance model to bootstrap the prediction of the
children’s performance in our study. Specifically, the instruction
controller in the personalization framework optimized the level
of challenge (pLoC) and the level of feedback (pLoF) to match
each child’s performance, as described next.

3.4.1. Personalization of the Level of Challenge
Personalization was partially accomplished within the instruction
controller. Learning games g were randomly sampled without
replacement from all games G and parameterized by some
personalized level of challenge (LoC) c ∈ [1, 5]. The
instruction controller was designed to optimize LoC to match
individual proficiency. This optimization problem was based
on the concepts of optimal challenge from the Challenge Point
Framework by Guadagnoli and Lee (2004) and from the research
on the Zone of Proximal Development (ZPD) by Chaiklin (2003);

FIGURE 2 | The real-world long-term SAR intervention for early childhood

math learning used a meta-controller that sequentially executed each

controller. At the beginning of a session, the robot disclosed that it needed the

child’s help to reach a specific planet. It then promised that they would reach

the planet if they completed all the games they needed to do that day. The

child and robot played 10 games whose challenge (pLoC) and feedback

(pLoF) levels were set by the computational personalization methods. At the

end of each session, the robot congratulated the child on completing the

games and reaching the promised planet. It then asked the child some

open-ended questions about their day.

both define the goal as challenging individuals enough that they
are presented with new information, but not so much that there
is too much new information to interpret.

Since the goal is long-term adaptation, personalized LoC
(pLoC) was framed as a RL problem, trained using Q-learning
(Watkins and Dayan, 1992). Within the instruction controller, a
reward function was used to quantify the intervention state and
supply Q-learning. The intervention, at time t, was defined by:

1. the current game gt ,
2. the current LoC ct , and
3. the current number of mistakesmt

More formally, the state space was defined as G and the action
space was defined as C, for a total of G × C = 10 × 5 = 50
(state, action) couples. As previously explained, the next game g
was randomly sampled without replacement from all games G.
Therefore, the RL seeks to find a policy with the optimal LoC
c ∈ [1, 5] per game for the individual child.

Given the formulation above, the RL would select and
evaluate different LoCs for each child. If some LoC in some
game was too difficult or too easy for a child, the RL would
learn to select a different LoC for that game, over time.
This was accomplished through a reward function designed
to maximize LoC without pushing the learner to make too
many mistakes. Formally, at time t, let mt be the number of
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mistakes a learner has made and M be the pre-defined threshold
of maximum mistakes [we used a threshold of five, based on
our empirical findings from prior research (Clabaugh et al.,
2015)]. The reward function R(t) returns a value equivalent
to the LoC ct , unless the mt > M; then, R(t) returns the
inverse of LoC.

R(t) = ct ·MC(t), (1)

where

MC(t) =

{

1, ifmt ≤ M

−1, otherwise.
(2)

3.4.2. Personalization of the Level of Feedback
Feil-Seifer and Matarić (2012) and Greczek et al. (2014)
applied the concept of graded cueing to adapt feedback in
the context of SAR interventions for children with ASD. A
similar approach was taken in this work to instantiate the
feedback controller, as mentioned in section 3.4. Analogous
to the instruction controller, the feedback controller was
modeled as a MDP, wherein the decision was to select one
of five levels of feedback (LoF) f ∈ [1, 5] to match
individual need. The feedback actions were specific to early
mathematics learning.

Personalized LoF (pLoF) was framed as a RL problem, trained
using Q-learning (Watkins andDayan, 1992) overmany repeated
interactions. Within the feedback controller, at time t, the
intervention was represented by four parameters:

1. the current game gt ,
2. the current LoF ft ,
3. the current number of mistakesmt , and
4. the current number of help requests ht

Similar to LoC, the state space for the feedback controller
consisted of theG = 10 game states. The action space consisted of
the four LoFs f ∈ [1, 4]. The final LoF f = 5 was not included as
part of the personalization problem. The final feedback level was
selected if and only if the child made more than the five allotted
mistakes, and the meta-controller would move on to the next
interaction. Therefore, the feedback controller included a total of
G× F = 10× 4 = 40 (state, action) couples.

The reward function was designed to minimize LoF without
pushing the learner to make too manyM mistakes (whereM was
the predefined threshold of maximum mistakes) or penalizing
them too heavily for making help requests.

R(t) =

(

−1 ·
ft

mt + ht + 1

)

+MC(t), (3)

where

MC(t) =

{

5, ifmt ≤ M

0, otherwise.
(4)

4. PERSONALIZED SAR INTERVENTION
DESIGN

The SAR personalization framework was instantiated in a SAR
systems designed for and evaluated in a month-long, in-home
SAR intervention in the homes of children with ASD, and
approved under USC IRB UP-16-00755. The details of the SAR
system, study design, data collection, and outcomes measures are
described next.

4.1. System Design
The physical robot was designed to be a near-peer learning
assistant, intended to act as the child’s companion rather than
tutor. Toward that end, it was given a neutral, non-threatening
character that presented educational games on a tablet and
provided personalized feedback.

4.1.1. Physical Design
To enable long-term in-home deployments, including ensuring
the protection of the system’s sensitive components, we designed
a self-contained and portable system, shown in Figure 3,
consisting of the robot, and a container that encompassed the
robot’s power supply, speakers, and tablet. The container was
approximately the same width as the robot to minimize the
overall system footprint.

The robot platform we designed was modified the Stewart
Platform Robot for Interactive Tabletop Engagement (SPRITE)
with the Kiwi skin (Short et al., 2017). SPRITE used CoR-Dial,
also known as the Co-Robot Dialogue system, the software stack
that controls the robot’s physical movements and virtual face.
The SPRITE consists of a 3D printed base, housing electronic
components and threaded rods that support a laser-cut platform
with six degrees of freedom. Within the exterior skin, a small
display was used to animate the robot’s face that included two
eyes, eyebrows, and a mouth, all of which were controlled using
Facial Action Coding System (FACS) coding in CoR-Dial.

The Kiwi skin and character were designed to appeal to
the target user population. Children with ASD are often
overwhelmed by sensory input, so Kiwi was designed to be non-
threatening and simple in its affective displays. It was also gender-
neutral in its appearance, allowing each child to assign the robot’s
gender if and as desired.

4.1.2. Game Design
The design of the SAR intervention was conceptualized by
our multidisciplinary team of researchers, leveraging established
game design principles, including iterative prototyping (Adams,
2013). Through these processes, Clabaugh et al. (2018) designed
an intervention that balanced the needs of the domain with
the limitations of SAR technology. The initial game prototype
was presented to a focus group of early childhood educators
who served as subject matter experts and provided formative
feedback on what was developmentally appropriate for children
with ASD diagnoses. This informed the second generation of the
game design, which was then piloted in a preschool classroom.
Following these pilot studies, further adjustments were made
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FIGURE 3 | The physical in-home setup included the SPRITE robot with the

Kiwi skin (C) mounted on top of the container encasing a computer, power

supply, and speakers (E), with an easy-access power switch (D), a camera (B),

and touchscreen monitor (A), all located on a standard child-sized table (F).

to accommodate specific needs of children with ASD before
the system was iteratively deployed and validated over multiple,
long-term, in-home interventions for 17 children with ASD.

The game types within the system were tailored specifically
for children with ASD, based on previous case studies,
developmentally appropriate practices in working with children
with ASD (Copple and Bredekamp, 2009), and standards
recognized by the National Association of the Education of
Young Children. More specifically, they were developed in
concert with developmentally appropriate practices for young
children ages 3–8 and informed by contemporary learning
theory Omrod et al. (2017). Each game employed a scaffolded
approach to gradually increasing difficulty level as the child
navigated through successful completion of a particular game
level (Sweller et al., 2007). Both the content and difficulty
levels were also aligned both to best practices in child
development standards of the National Association of Education
of Young Children (NAEYC) and the National Common
Core Mathematics Standards [for more advanced levels; CCMS
(Copple and Bredekamp, 2009)].

The games were also aligned with the Wechsler Individual
Achievement Test (WIAT), a developmental-level standard
assessment (Wechsler, 2005), used as a pre-post measure of the
impact of the game, as described in section 4.3.1. Numerical
operation and math reasoning were selected as pre-academic
content for the games because they are the early math skills
needed by children in preschool and kindergarten. As a result,
they are also areas that control for potential social biases found in
many early childhood games.

Figure 4 illustrates an example of the different challenge levels
of one of the games; game challenge levels were personalized to
each child participant as described in section 3.4.1.

4.1.3. Child-Robot Interaction
The Kiwi character described itself as a space explorer and a
peer to the child user that continuously needed help from the

child in order to return to its home planet. Users were told they
could help Kiwi by playing the provided tablet-based games. The
games tested a variety of preschool and kindergarten math skills,
including addition, counting, and pattern matching. The SAR
system offered ten different types of games based on five different
levels of challenge (LoC). Child participants were encouraged
to play at least one game during each interaction; the games
involved the user performing the following on-screen tasks:

1. Pack Moon-Rocks: Drag 1–10 moon-rocks into a box.
2. Select Galaxy: Select the galaxy with more or fewer stars.
3. Select Planet: Select the planet with a particular number.
4. Feed Space Pets: Evenly divide a set of stars between two

“alien pets.”
5. Pets on a Spaceship: Drag numbered “alien pets” into a

spaceship in increasing or decreasing order.
6. Organize Moon-Rocks: Separate and organize moon-rocks

based on sprite and number.
7. Organize Space Objects: Separate and organize various space-

themed objects based on sprite and number.
8. Pattern Completion: Complete a pattern with the provided

space objects.
9. Identify Alien Emotion: Determine the emotion of one or

more “alien friends” based on their facial expressions.

The graphics in the game used an age-appropriate comic book
design style, with colorful aliens guiding the user through the
games. Each game allowed up to five mistakes; every mistake was
followed by a verbal hint delivered by Kiwi paired with child-like
body movements that signaled whether the user was struggling
or excelling. The feedback actions were specific to the game
context of early mathematics learning. For example, if the child
was presented with the instruction “Put five energy crystals into
a box” but used too few crystals, the feedback controller executed
one of the following actions:

1. “We need to have a total of five energy crystals inside the box.”
2. “Try counting out loud as you drag each crystal one by one.”
3. “You have too few energy crystals. Try adding some to

the box.”
4. “We currently have three energy crystals. So we need twomore

energy crystals. Can you drag two more crystals into the box?”
5. “Let’s try something else.”

4.2. Study Participants
Seventeen children with ASD were included in this research,
hereafter referred to as P1-P17. Families were recruited through
regional centers within the state’s Department of Developmental
Services and through local school districts. Together, these
two recruitment venues provide services for >10,000 children
and adults with ASD, with ∼1/3 of the population under the
age of ten.

Study recruitment flyers were provided to service
coordinators, school district administrators, and family research
center coordinators who are employed in regional centers and
the schools. Families who were interested in participating in
the research contacted our research team and provided written
information about their child with ASD. A licensed psychologist
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FIGURE 4 | The child-robot interaction was designed around Kiwi as a robot space explorer. The following diagram displays varying challenge levels of the Pack

Moon-Rocks game, with more challenging problems combining math reasoning and numerical operation concepts.

on our team reviewed each child’s developmental and health
information for a match with the study’s inclusion criteria:

1. Age between 3 and 8 years old
2. Stable physical, sensory (hearing, vision), and medical health
3. English as a primary language spoken in the family
4. Clinical diagnosis of ASD in mild to moderate ranges as

described in the Diagnostic and Statistical Manual of Mental
Disorders–Version 5 (Van Bourgondien et al., 1992; Baird
et al., 2003; Dover and Le Couteur, 2007; Kanne et al., 2008).

Of the 17 children in the study, 2 were female and 15 male. They
were between 3 years, 4 months and 7 years, 8 months of age.
Additionally there were 3 sets of sibling pairs (P3 and P4, P5 and
P6, and P16 and P17). More information about each participants
living situation, education level, and age can be found in the
Supplementary Materials.

Due to the challenges of ASD and real-world studies, there
were some exceptions among the participants. Specifically, there
are no personalization data for P1 and P2, as the system was not
yet fully developed for those first two deployments. Additionally,
P3 did not complete the post-study assessments for personal
reasons, but did participate in the study for over a month and
provided all other study data. Besides these exceptions, the rest of
the participants participated in the entire study.

There is no control condition in this study, as is common
in ASD studies, because individuals on the autism spectrum
present an extremely broad range of symptoms, symptom
combinations, and symptom severities. Consequently, work with
ASD participants typically follows a single-case study model
rather than the randomized trial model. The single-case study
model relies on pre/post-comparisons, as was done in this
paper (Lobo et al., 2017). The pre/post-WIAT Interventions in

section 4.3.1 serve as a sample baseline to evaluate participant
improvement over the course of the study.

All child participants in the study were enrolled in full-time
educational and therapeutic interventions that were consistent
with the state’s educational and developmental services standards
and statutes. These services varied based on child needs and
family preferences. All child participants had intelligence scores
within “normal” limits levels (scores>70) based either on the
Leiter International Performance Scale-3 (Roid et al., 2013) or the
by the Differential Ability Scales (Elliott, 2012).

The child participants’ ASD diagnoses were obtained via
clinical best estimate (CBE) by trained psychologists or
psychiatrists who had >10 years of experience in diagnosing
children with ASD and other developmental disabilities. The
tools used to diagnose ASD varied across clinician and
referring agency. In each case, multiple measures were used to
determine the diagnosis and level of ASD. Common measures
used for the ASD diagnoses were the Autism Diagnostic
Interview-Revised (Wing et al., 2002; Tadevosyan-Leyfer et al.,
2003), Autism Diagnostic Observation Schedule (Lord et al.,
2000; Gotham et al., 2008), and Child Autism Rating Scale
(Van Bourgondien et al., 1992). All children with ASD diagnoses
in the study had diagnoses in the mild to moderate range
(Van Bourgondien et al., 1992).

4.3. Procedure
The SAR intervention was deployed in the home of each
participating family for at least 30 days. The duration of each
deployment was determined by when the minimum number of
20 child-robot interactions was completed; the average duration
of deployment was 41 days, with a standard deviation of
5.92 days. On the day of deployment for each family, all
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system equipment was provided and assembled by the research
team; the only requirement from participating families was a
power outlet and sufficient space. During system setup, child
participants were assessed by an educational psychologist using
the measures described in section 4.2. After the system was set
up, the research team conducted a system tutorial with the child
participant and family.

To capture natural in-home interactions, the SAR system was
fully autonomous and could be turned on and off whenever the
family desired. The child participants were encouraged but not
required to complete five sessions per week. Similarly, during
each session, they were encouraged but not required to play each
of the 10 games at least once.

4.3.1. Objective Measures
A large corpus of multi-modal data was collected, including
video, audio, and performance on the games. The USB camera
mounted at the top of the game tablet recorded a front view of
the child participant. A second camera recorded the child-robot
interaction from a side view. All interactions with the tablet were
recorded, including help requests and answers to game questions.

User engagement was annotated by analyzing the camera
data. A participant was considered to be engaged when paying
full attention to the interaction, immediately responding to the
robot’s prompts, or seeking further guidance or feedback from
others in the room.

Due to numerous technological challenges common in noisy
real-world studies, we were able to analyze sufficient video and
audio data from seven participants (P5, P7, P9, P11, P12, P16,
P17). A primary expert coder annotated whether a participant
was engaged or disengaged for those seven participants. To verify
the absence of bias, two additional annotators independently
annotated 20% of data for each participant; inter-rater reliability
was measured using Fleiss’ kappa, and a reliability of k = 0.84
was achieved between the primary and verifying annotators.

The primary quantitative measure of cognitive skills gained
throughout the study were the pre- and post-assessments,
inspired by the standardized Wechsler Individual Achievement
Test (WIAT II) (Wechsler, 2005) used to assess the academic
achievement of children, adolescents, college students, and
adults, aged 4–85. The test evaluates a broad range of academics
skills using four basic scales: Reading, Math, Writing, and
Oral Language. Within those, there are nine subtest scores,
including two math subtests, numerical operations (NO) and
math reasoning (MR), which were the most relevant to the
SAR intervention content. For young children, NO refers to
early math calculations, number discrimination, and related
skills; MR refers to concepts of quantity and order, early word
problems, patterning, and other skills that require reasoning to
solve problems. WIAT II was selected over the WIAT III because
the timing of math fluency in version III presents a potential bias
for children with ASD diagnoses.

The WIAT II provides raw and composite scores. Standard
scores and percentile ranking are computed by comparing an
individual assessment to large national samples of typically
developing individuals aged 3 to adult (i.e., 2015 US normative
sample N = 2, 950). A standard score of 100-110 is considered

an “average achievement score” by national standards. The
percentile ranking indicates how an individual compares to the
national sample on which the tests were normed. The WIAT-
II was used as a pre-post comparison measure to determine
achievement gains over the SAR intervention. Procedurally, the
pre-assessment was conducted during the first few days of the
intervention and the post-assessment was conducted at the end
of the intervention for each child.

4.3.2. Subjective Measures
We conducted biweekly interviews with participating families
throughout the deployments to evaluate the system in terms of
its usefulness and relationship with the participating child, rating
responses on a 7-point Likert scale with 1 being least likable and 7
being most likable. Given the variable nature of in-home studies
and different degrees of ASD across the participants, the surveys
used a single-subject design (Horner et al., 2005) wherein each
child served as their own unique baseline. The semi-structured
interviews contained similar questions, each tailored for a specific
evaluation criterion, as follows.
Based on prior work by Moon and Kim (2001), these were the
questions about Kiwi’s usefulness:

• Does Kiwi help your child do better on the tasks? Why or
why not?

• How could Kiwi be more useful?
• How involved do you have to be while your child is playing

with Kiwi?

Based on prior work by Lee et al. (2005) and Rau et al. (2009),
these were the questions about the child-robot relationship:

• Do you think Kiwi is your friend?
• Do you think Kiwi listens to you?
• Do you feel like Kiwi knows you?

5. RESULTS

The presented month-long in-home deployments produced a
large set of results. Sections 5.1 and 5.2 describe the patterns
and quantitative results, respectively, of the hHRL framework
instantiation. Section 5.4 discusses how the adaptive system
influenced the engagement of the child participants. Section 5.5
reports on how the adaptive SAR system influenced cognitive
skills gains across all participants, as measured by the pre-post
intervention assessments.

5.1. Personalized Level of Challenge
As illustrated by the learning curve in Figure 5, the personalized
level of challenge (pLoC) changed over time and varied by
participant. Since the goal of the adaptation was to find the
optimal LoC for each participant, this learning curve cannot be
interpreted in a traditional sense. For instance, if a child was not
proficient at math, the learning systemmay not have been able to
reach higher reward values, because the reward is based on both
LoC and child performance.

Therefore, other factors must also be considered in
interpreting the pLoC results. First, more than 100 episodes or
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FIGURE 5 | The reinforcement learning reward for the personalized level of

challenge (pLoC) ranged between −5 and 5, where 5 indicated that the user

was completing games at the highest challenge level. The average cumulative

reward of pLoC matched each participant’s pre-intervention scores of the

WIAT II subtests for numerical operations and math reasoning. Therefore, the

pLoC adapted to each participant over the month-long intervention (there is no

pLoC data for P1 or P2, as explained in section 4.2).

games were required for pLoC to begin to converge. For example,
for participants P3 and P8, the pLoC curve did not have a chance
to converge over the few games these participants played. On
the other hand, for P6, P11, and P15, the system was able to
smoothly adapt given the long interaction periods.

If a child played 10-20 games in a session, consistent with the
13.27 average of the study, then 10 sessions were required before
the pLoC began to converge, totalling to∼132 episodes. This is a
reasonable requirement given that the participants completed an
average of 14.10 sessions with the robot. Excluding participants
P3 and P8, who, as noted above, played significantly fewer games
per session, we find an average of 17.57 sessions with the robot.

Consequently, we can conclude that the SAR system was able
to adapt and personalize to each child over time. Specifically,
the pLoC implementation of the instruction controller did
personalize to each child, but required a minimum number of
episodes and interaction consistency to do so.

5.2. Personalized Level of Feedback
The learning curve for the personalized level of feedback (pLoF)
model, shown in Figure 6, adapted the level of feedback to each
participant more rapidly than pLoC. Analogous to pLoC, the
pLoF learning curve cannot be interpreted in the traditional sense
of simply maximizing cumulative reward; it is meant to match
each child’s need.

Participants with high mistake totals and long interventions
usually had the longest feedback curves and, subsequently,
allowed the system to adapt to their needs. The pLoF tail was
longest for P10, who had the third highest mistake average,
balanced with overall intervention length. Although P3 and P8
had the highest mistake averages, they also had the shortest
interventions. This can be compared to the pLoF curves for
P5 and P6, who had the lowest mistake averages and longest

FIGURE 6 | The reinforcement learning reward for personalized level of

feedback (pLoF) ranged between 0 and 1, where 1 indicated that a child

completed games with the least amount of support or feedback. The average

cumulative reward of pLoF converged over 25–50 episodes (i.e., mistakes and

help requests) and is correlated with the intervention length and the average

number of mistakes made by child participants per game (there is no pLoF

data for P1 or P2, as explained in section 4.2).

intervention lengths; the cumulative reward is higher and tails
are shorter for both P5 and P6 compared to those of P10.
Subsequently, P10 stands out as the longest and flattest among
the three, demonstrating the value of longer interactions. Overall,
the pLoF model successfully adapted to each child participant
over time.

5.3. Participant SAR Evaluation
SAR survey results, utilizing a seven-point Likert scale, assessed
the average adaptability and usefulness of the system throughout
the study.

Participants’ responses about the adaptability of the SAR
system, seen in Figure 7, correlate with the challenges
encountered in adapting to the individual needs of each
participant. P17 reported the lowest average score for adaptability
and usefulness. The result for P17 is likely due to the participant’s
age, as this was the second oldest and highest performing student
in the study, so even the maximum difficulty was too easy for
the participant.

The reported scores for usefulness were similar to those of
adaptability, as seen in Figure 7, since the two measures are
related: a system that is more adaptive to a participant is more
useful. P1 and P17 were once again outliers with the lowest
reported scores for usefulness.

P1 and P7 had personal similarities: they were less than
a year apart in age and had parents with the same levels of
education (high school). Consequently, one would expect the
system to adapt relatively similarly to both participants. Their
reported scores for usefulness (5 vs. 3) and adaptability (5 vs.
4) were similar, thus supporting the consistency of the system
across participants.

Sibling pairs (P3 and P4, P5 and P6, and P16 and P17) showed
discrepancies that can be explained by the fact that the systemwas
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FIGURE 7 | Participant survey results for adaptability (left) and usefulness (right).

FIGURE 8 | Overall engagement for each analyzed participant, with error bars denoting standard deviation across sessions (left). High variance but no linear trend

(p = 0.99) in engagement is observed across sessions (right) (engagement was only analyzed for participants with adequate video and audio data).

better suited to the needs of one sibling than the other, likely due
to their age. For example, P3 was younger than P4, and therefore
was not able to engage with the games as well, resulting in the
lower adaptability and usefulness scores. Similarly, P6, the older
sibling, reported higher scores for adaptability and usefulness
than P5. The higher scores mean that the child liked the robot
more and found it more adaptable and useful.

5.4. Effect of Personalization on
Engagement
We found that our SAR system elicited and maintained
participants’ engagement throughout the month-long
intervention, an important measure of effectiveness. As
mentioned in section 4.3.1, we analyzed the seven participants
(P5, P7, P9, P11, P12, P16, P17) with adequate video and audio
data to analyze measures of engagement.

5.4.1. Short-Term and Long-Term Engagement
The SAR system maintained reasonable levels of participant
engagement during individual sessions and over the month-long
intervention. As shown in Figure 8, all participants were engaged
on average 65% of the intervention. Across sessions, participants
had an average engagement range of 32% and standard deviation
of 11%. However, there was no statistically significant (p = 0.99)
increase or decrease in engagement over the study, as determined
by a regression t-test and shown by the plotted trend line. In
addition, the median duration of continuous engagement over all
participants was higher than the median duration of continuous
disengagement: 13–5 s on average, respectively.

Furthermore, the robot was able to elicit and maintain user
engagement during each game. Engagement was higher shortly
after the robot had spoken; participants were engaged about 70%
of the time when the robot had spoken in the previous minute,
but <50% of the time when the robot had not spoken for over
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FIGURE 9 | Variance in engagement is higher across participants than across LoC (left). Participants with high optimal LoC were more engaged

(rs = 0.84,p = 0.018) (right). Engagement was only analyzed for participants with adequate video and audio data.

FIGURE 10 | All participants (excluding P3 who did not complete the study) showed significant improvements (d = 0.54, p < 0.01) on the WIAT II subtests for

numerical operations (left), and math reasoning (right) between the pre-intervention and post-intervention assessments.

a minute. Participants also remained engaged after 5 min of
starting a game nearly 60% of the time.

5.4.2. Engagement and the Level of Challenge
Engagement varied significantly across participants and their
level of challenge (LoC), as shown in Figure 9. A two-way
analysis of variance (ANOVA) showed (p < 0.01) that average
engagement for each participant varied significantly and that
average engagement under each LoC also varied significantly.
The variance across participants accounted for 91% of the total
variance, indicating the importance of personalization in SAR.

The personalized level of challenge (pLoC) did not necessarily
maximize engagement. As discussed above, pLoC eventually
converged to an optimal LoC for each participant. But, as shown
in Figure 9, participants whose optimal LoC was low were less
engaged (rs = 0.84, p = 0.018). We hypothesize that this effect

is due to the time required for the learning system to adapt to
each user; it took >100 games for the pLoC to begin to converge,
and thus participants with a lower LoC were presented with
many games of higher challenge level before convergence. This
further supports the importance of personalization for increasing
engagement, especially with a sufficiently fast convergence rate.

5.5. Impact on Math Learning
Overall, this study observed positive gains in math learning for
all participants, excluding P3 who did not complete the study. As
seen in Figure 10, participants’ pre- and post-intervention scores
on the WIAT II subtests increased significantly for numerical
operations (NO) (p = 0.002) and math reasoning (MR) (p <

0.001), as determined by a t-test. In addition, both NO and MR
scores had a significant effect size of d = 0.53 and d = 0.54,
respectively, as calculated using Cohen’s d.
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The result reveal that NO and MR both increased even when
there was a large discrepancy between the initial assessment of
certain participants. For example, P17 scored much higher on
MR than on NO on the pre-assessment and even with such
different starting points, both NO and MR increased at the post-
assessment. On the other hand, P11 started with the same MR
and NO scores, and both scores improved after the intervention.

When observing total cognitive gains, it is important to
consider developmental factors: the age and subsequent skill level
of each participant. Where older students generally had smaller
net gains, they started near or above average. On the other hand,
younger students started far below average, and thus had much
room to improve. P8’s pre-intervention scores (MR = 48; NO
= 56) were significantly below the national average. Given P8’s
age (3.75 years), the scores are cautiously computed in terms
of what they represent nationally. In another case, P16’s pre-
intervention scores (MR = 68; NO = 69) were far below the
national average. P16 was the youngest participant (3.11 years)
and still made significant progress, improving by over 10 points
in both categories (MR = 80; NO = 84). On the other hand,
P17 was tied second oldest (7.2 years) and only made marginal
gains, despite making fewmistakes and performing at the highest
challenge level.

6. DISCUSSION

The results of the long-term in-home deployment provide several
insights for personalization in SAR.

We found that both the personalized levels of challenge
(pLoC) and feedback (pLoF) converged for almost all
participants. After ∼100 games, the feedback and challenge
curves stabilized, showing that the system adapted to an
appropriate LoC for each student. Therefore, the long-term
nature of the study was important for successful personalization.
The participants with the longest episodes in the pLoC were P6,
P16, and P11, with 715, 592, and 520 episodes (games played),
respectively. In contrast, pLoF interacted most with for P10,
P7, and P9, who had 353, 237, and 228 episodes (mistakes and
help requests), respectively. The SAR system adapted to the
participants in both cases.

Regardless of the difference in sessions, participants who
yielded a consistent score by the end of the interaction in
the pLoC had similar success with pLoF, and vice versa.
This happened for participants who interacted with equal or
above average 113.4 and 302.5 episodes for pLoF and pLoC,
respectively. On the other hand, P16 illustrated the negative
impact of minimal interaction, as both the pLoC and pLoF failed
to standardize given only 129 total interactions both on pLoC and
pLoF, reaching over 171 episodes below average for pLoC.Within
the interaction, the pLoC reward for P16 fluctuated by 2.6 points
between the 61st and 129th episode. For reference, the second
highest fluctuation in this same interval was 1.02 points by P16,
whose system ultimately converged after 592 games.

Overall, the pLoF and pLoC demonstrate the ability to adapt
to each user’s preferences given their willingness to interact with
the robot and provide the system opportunities to learn. The

participant surveys support this conclusion and provide the user’s
perspective on the SAR’s ability to adapt.

P6, P7, P9, and P11, who both the pLoC and pLoF had
adapted to, reported in their post-interaction interviews an
average rating of 6.25, showing a shared appreciation for the
system’s adaptiveness. The only study participant who believed
the system did not adapt was P17, who likely felt this way because
of limited success with the feedback model; P17 had only 112
feedback episodes over 298 total games. Aside from this outlier,
the survey results supported the effectiveness of pLoC and pLoFs.
P9 was an ideal participant, who believed the system adapted
and had above average episodes while stabilizing both pLoC
and pLoF.

Usefulness questionnaire data provide additional insights into
the value of creating an adaptive system. All participants reported
very similar scores for usefulness and adaptiveness, implying
that the usefulness of the system is related to its adaptiveness.
The pre-post assessments supported this finding while providing
quantitative data about the learning gains of each participant as a
result of SAR personalization.

Participants whose optimal LoC was lower were less engaged,
as shown in Figure 9. For example, the system converged to
the lowest pLoC for P16, who also had the second lowest
engagement. This is likely because P17 was presented with
games of higher challenge before the system began to converge
to an optimal LoC. When also considering that P16 had a
below average number of episodes, it is likely the robot failed
to adapt quickly ultimately discouraging the participant from
interacting further.

The analysis of the objective and subjective outcomemeasures
supports the success of the system as a whole, with all participants
improving in math skills over the course of the long-term in-
home interaction. Regardless of whether the system was able to
adapt to an optimal LoC, all participants demonstrated cognitive
gains. The participants gained an average of 7.0 points on
numerical operation (NO) and 7.125 points on math reasoning
(MR). Although for P16 the system was unable to adapt both
in pLoF and pLoC personalization, that participant was still in
the top five in both NO and MO gains, with an increase of 15
and 12 points, respectively. This is likely due to the participant’s
initially low scores that allowed much room for improvement.
All participants who had at or above average number of episodes
(either in pLoC and pLoF) showed strong positive gains. P8
illustrated the disadvantages of insufficient interaction time,
being the participant with the least episodes in both pLoF and
pLoC and resulting with below average gains in both NO and
MR assessments.

7. CONCLUSION

Socially assistive robotics (SAR) has demonstrated tremendous
potential for use in high impact domains, such as personalized
learning for special needs populations. This work considered the
problem of computational personalization in the context of long-
term real-world SAR interventions. At the intersection of HRI
and machine learning, computational personalization seeks to
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autonomously adapt robot interaction to meet the unique needs
and preferences of individual users, providing a foundation for
personalization.

This work presented a formalized framework for human-
robot learning as a hierarchical decision-making problem
(hHRL) that decomposes a SAR intervention for tractable
computational personalization, and utilized a reinforcement
learning approach to personalize the level of challenge and
feedback for each user. The approach was instantiated within
the interactive games and tested in month-long in-home
deployments with children with ASD. The SAR system was
able to personalize to the children with ASD who demonstrated
cognitive gains, supporting the effectiveness of the approach.

The body of results of the presented study demonstrate that
the hHRL framework and its instantiation can engage and adapt
to children with diverse needs in math learning over multiple
weeks. These findings highlight the tremendous potential of
in-home personalized SAR interventions.
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Health and Wellbeing, Milan, Italy, 4Department of Electrical and Electronic Engineering, Imperial College, London,
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Social or humanoid robots do hardly show up in “the wild,” aiming at pervasive and

enduring human benefits such as child health. This paper presents a socio-cognitive

engineering (SCE) methodology that guides the ongoing research & development for

an evolving, longer-lasting human-robot partnership in practice. The SCE methodology

has been applied in a large European project to develop a robotic partner that

supports the daily diabetes management processes of children, aged between 7 and

14 years (i.e., Personal Assistant for a healthy Lifestyle, PAL). Four partnership functions

were identified and worked out (joint objectives, agreements, experience sharing, and

feedback & explanation) together with a common knowledge-base and interaction design

for child’s prolonged disease self-management. In an iterative refinement process of

three cycles, these functions, knowledge base and interactions were built, integrated,

tested, refined, and extended so that the PAL robot could more and more act

as an effective partner for diabetes management. The SCE methodology helped

to integrate into the human-agent/robot system: (a) theories, models, and methods

from different scientific disciplines, (b) technologies from different fields, (c) varying

diabetes management practices, and (d) last but not least, the diverse individual and

context-dependent needs of the patients and caregivers. The resulting robotic partner

proved to support the children on the three basic needs of the Self-Determination Theory:

autonomy, competence, and relatedness. This paper presents the R&D methodology

and the human-robot partnership framework for prolonged “blended” care of children

with a chronic disease (children could use it up to 6 months; the robot in the

hospitals and diabetes camps, and its avatar at home). It represents a new type of

human-agent/robot systems with an evolving collective intelligence. The underlying

ontology and design rationale can be used as foundation for further developments of

long-duration human-robot partnerships “in the wild.”

Keywords: child-robot interaction, conversational agent, human-robot partnership, socio-cognitive engineering,

diabetes management, personal health, pervasive lifestyle support
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1. INTRODUCTION

Despite substantial progress in AI, robotics, conversational
agents, and related technologies (Klopfenstein et al., 2017; Wu
et al., 2017; Anjomshoae et al., 2019; Montenegro et al., 2019),
social or humanoid robots do hardly show up in sound long-
term field studies for pervasive human benefits such as child
health (Moerman et al., 2018; Dawe et al., 2019; Robinson et al.,
2019). The studies with a prolonged deployment and long-term
behavior support ambition have been more exploratory, covering
“only” a few robot functions and interactions in a time span of a
couple of weeks, for example to explore child-robot relationship
development (Looije et al., 2016; Westlund et al., 2018). To make
this ambition reality within the foreseeable future, the research &
development approach has to change substantially: We have to
take an integrative socio-cognitive approach in which robots are
researched and developed as part of a human-robot collective that
has collaborative intelligence (Epstein, 2015; Johnson and Vera,
2019; Rahwan et al., 2019).

This paper presents such an approach, the socio-cognitive
engineering (SCE) methodology that aims at such a developing
collective: The building of human-robot partnerships for
prolonged performance and well-being. In an extensive case
study, the European Personal Assistant for a healthy Lifestyle
(PAL) project, this methodology has been applied to develop a
robotic partner and human-robot activities that support the daily
diabetes management processes of children, aged between 7 and
14 years (i.e., supporting a healthy lifestyle).

Type 1 Diabetes Mellitus (T1DM) is one of the main
chronic diseases in childhood with severe consequences for
physical and mental well-being. The disease prevalence is
rising substantially, doubling every 20 years. T1DM is often
diagnosed in early or middle childhood (age between 1 and
11 years) based on symptoms of high or low blood glucose
(i.e., hyper- or hypoglycemia) (Betts et al., 1996; Boyer and
Paharia, 2008; Jin et al., 2017). Symptoms of a hyper can be
headaches, fatigue, thirst, and nausea, while a hypo can start
with tremors, sweating and palpitations, and eventually can
continue in confusion, impaired thinking, and even seizures.
The long-term health consequences of T1DM can be serious,
damaging the eyes (retinopathy), peripheral nerves (neuropathy),
or kidney (nephropathy) (Centers for Disease Control and
Prevention, 2011). Managing T1DM requires strict lifestyle
adjustments, which proves to be complex and demanding
(Iannotti et al., 2006). Daily management behaviors are, for
example, monitoring blood glucose (at least 4 times a day),
counting carbohydrates before every meal or snack, anticipating
physical exercises, and calculating and administering insulin
(Boyer and Paharia, 2008). When children enter puberty,
the management challenges are increasing: Bodily changes
(e.g., hormones) bring about new dynamics in the blood
glucose regulation processes, socio-emotional changes bring
about different (possibly negative) appraisals, and autonomy
development can bring about resistance to parents and caregivers
advises. Unfortunately, most children are not, in advance, well-
prepared or -trained to deal with these challenges, as the parents
can take care of them well. The result is a decrease in glycemic

control and regimen adherence when children enter puberty
(Ellis et al., 2007; Pai and Ostendorf, 2011).

We started the PAL project to develop a social robot that
supports the child in learning to correctly manage T1DM and,
this way, prevents serious consequences to appear at the age
of puberty. The envisioned robot acts as partner in a (small)
diabetes management team, primary for the child (as a “pal”),
but also for the Health Care Professional (HCP) and parent (as a
“mediator,” e.g., for responsibility transfer from parent to child).
It is a conversational agent that is integrated into a distributed
behavior change support system, embodied as a humanoid robot
in hospitals and diabetes camps, and as an avatar on a tablet
at home. Via a mobile timeline and dashboards, the diabetes
management activities, information processes and outcomes are
visible, accessible, and manageable at all locations. The collective
Human-PAL intelligence is evolving over time based on (1) the
incremental additions and refinements of robot capabilities in
the successive development cycles and (2) the intrinsic learning
capabilities of the humans and robots (e.g., based on experiences
and feedback).

This paper provides an overview of the PAL research &
development activities and outcomes, focusing on three general
research questions. The first question is: “How to develop
human-agent partnerships for long-term lifestyle support?” The
second question concerns the design outcome: “How can a
robotic partner support the daily diabetes management of
children over a longer period?” The third evaluative question
is: “Does this partnership improve child’s diabetes-control
and well-being?” Section 2 argues that the SCE-methodology
provides an answer to the first question, and provides an
overview of this methodology. Section 3, 4, and 5 describe the
application and results for each SCE-component: the foundation,
specification and evaluation of the PAL system. Taken together,
they present the evolving knowledge base and partnership
behaviors of the human-robot collective to be applied and further
developed in practice. Section 6 contains the general discussion
and conclusions.

2. SOCIO-COGNITIVE ENGINEERING

In the eighties, cognitive (system) engineering was proposed
to integrate social sciences, like cognitive psychology, into the
design of human-machine systems or so-called joint cognitive
systems (Norman, 1986; Woods and Roth, 1988; Rasmussen
et al., 1994; Hollnagel and Woods, 2005). Subsequently, this
approach was refined to facilitate re-usability and theory
building (generalization) by the construction of a design
rationale that explicates the contextual dependencies, calling the
methodology situated cognitive engineering (SCE) (Neerincx and
Lindenberg, 2008; Neerincx, 2011). This rationale describes the
design solution with its theoretical and empirical foundation
in a coherent and concise format and structure. Core is
the specification of claims (“hypotheses”) on the effects of
machine (e.g., robot) functions in specific use cases, and the
development of design patterns for the corresponding machine
behaviors (Neerincx et al., 2016b; Looije et al., 2017). To better
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address the technological progress on Artificial Intelligence (AI),
Robotics, Conversational Agents and Connectivity, with their
capabilities to transform social processes and human-technology
relationships, SCE toke a more principled focus on human-
agent/robot teamwork and patterns, and got its corresponding
new first syllable: Socio-Cognitive Engineering (Sharples et al.,
2002; Bradshaw et al., 2012; Van Diggelen et al., 2018). In our
view, SCE can contribute to the research and development of the
robotic systems by supporting the acquisition, modeling, sharing,
and extension of the evolving social intelligence.

Long-term interaction “in the wild” is an important research
and development challenge for socially assistive and educational
robots (SAR). For example, Coninx et al. (2016) stated that,
to pursue learning and therapeutic goals through child-robot
interaction, it is important to ensure the child remains engaged
in the relationship and that the child experiences progress in
achieving educational goals. To establish such engagement and to
accommodate individual differences, they developed an adaptive
social robot with which children can perform various activities.
This robot was evaluated in three 1 h hospital sessions (with
about 2 weeks in between each session), showing positive effects
on engagement and bonding (Looije et al., 2016). The design
rationale was well-explicated by Looije et al. (2017), but did
hardly include formal specifications of robot’s social intelligence
and did not inform how to extend. As a second example, Jones
and Castellano (2018) used an open learner model (OLM) for
a robotic tutor that promotes self-regulated learning (SRL) in a
personalized scaffolding process. Based on this model, the robot
shows skill meters for each competency, prompts the learner to
reflect on their developing skills, and can suggest to work on an
activity of an appropriate difficulty level for learning. The robot
was evaluated at a primary school during 4 sessions (1 session
per week) with positive results. As far as we know, the underlying
OLM- and domain-models are not formalized in a way that
enables (automatic) reasoning on causes and effects of the robot

feedback (as an evolving “social educative intelligence”). Gordon
et al. (2016) provide a third example of long-term human-
robot interaction in which children play a second-language
learning game with a "social robotic learning companion." An
affective policy was developed to provide appropriate affective
responses when the child finished a task or was not active for
a while. The robot was evaluated in preschool classrooms for
a duration of 2 months (each child interacted from 3 to 7
sessions). Personalization of the affective response had a positive
effect on child’s emotional state (valence). This study is a good
example of the design of model-based social responses, but the
scope is still rather limited and does not (yet) address robot’s
role in the class room (e.g., its relation with the teacher). As
a last example, Clabaugh et al. (2018) presented preliminary
results of a 30-day, in-home case experiment with a robot for
children with autism. Their findings underline the importance
of personalization of robots and show the relevance of research
in realistic long-term, family-situated contexts. For example,
parents were more comfortable to let the children interact with
the robot independently and reported that the robot gave them
more time for other things. How the robot could systematically
support such situated social processes is not yet clear, however.
Findings of these studies underline the relevance of applying a
comprehensive socio-cognitive methodology that systematically
addresses the social context, the building of a shared human-
robot knowledge base and the opportunities to improve and
learn continuously.

Figure 1 presents an overview of the Socio-Cognitive
Engineering (SCE) methodology, distinguishing the foundation,
specification, and evaluation. To establish the foundation, i.e.,
the operational demands, technology and human factors, a
selection of established human-computer interaction and human
factors methods can be applied, e.g., from the People, Activity,
Context and Technology (PACT) analyses (Benyon, 2019) or
CognitiveWork Analyses (Vicente, 1999; Naikar, 2017). SCE puts

FIGURE 1 | Overview of the socio-cognitive engineering methodology.
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specific emphasis on the identification of expert knowledge and
cognitive theories that are relevant and can be formalized for
implementation in the human-robot knowledge-base. See, for
example, the "situated design rationale" method for formalizing
and contextualizing behavior change support techniques of
Looije et al. (2017). From the foundation, a design specification
is derived that defines "what" the system shall do (function) in
a set of use cases ("when") to bring about a desired effect (i.e.,
the claim, "why"). In the evaluation, the claims are tested via
prototyping or simulations, in order to validate and refine the
foundation and design specification. It is an iterative, incremental
development process, aiming at a sound, theoretically and
empirically grounded, prototype with a coherent description of
its design rationale. Each design-test cycle will advance (a) the
prototype, (b) its foundation in the human factors, technology
and operational demands, and (c) the design specification. For
the building, maintaining and re-using of design knowledge,
SCE distinguishes the following development principles. First,
creating human-centered AI and robots is viewed as an
inter-disciplinary collaborative activity with active stakeholder
involvement during the complete development process (cf.
Riek, 2017). Second, functional modules are defined and tested
incrementally in an iterative refinement process. As learning
and adaptation are key characteristics of human-AI systems,
this process of iterations should continue during the complete
life-cycle of these systems. Third, design decisions are explicitly
based on claims analyses, explicating the up-downside trade-
offs. Fourth, keeping and sharing the design rationale is key
for progress and coherence in the development of AI and
social robots. Fifth, a common ontology should be developed
and implemented, which defines the core concepts, with their
relationships, for human-robot collaboration (e.g., tasks) and
communication (e.g., style).

The PAL project applied these five principles in the three
design-test cycles in Italy and the Netherlands (in a period
of 4 years). In each cycle, we constructed, extended and
refined the foundation, design specification and prototype of
the PAL system. It should be noted that the direct stakeholders
(children, parents, and Health-Care Professionals), the designers
& engineers and the researchers (from computer science, AI,
Psychology, educational science, health-care, human-computer
interaction) were actively involved in the PAL research &
development team from the start to the end of the project.
The next sections provide more information on the SCE
theories, models and methods that were applied in the
PAL project.

3. FOUNDATION OF ROBOTIC LIFESTYLE
PARTNER

3.1. Human Factors
Human Factors theories and methods should be used in the
development of robotic lifestyle partners. The Self-Determination
Theory (SDT) provides a coherent and well-founded starting
point to support the behavior change that disease management
requires. It distinguishes three human basic needs that affect
the development and habituation of human behaviors in a

social environment: The needs for competence, autonomy and
relatedness (Legault, 2017; Ryan and Deci, 2017). By supporting
these needs, as important sub-objectives, PAL is expected to
achieve the main objective of enhanced self-management. For
each basic need, a support strategy for a social robot (NAO) has
been designed and tested successfully for children with diabetes
(Blanson Henkemans et al., 2017a).

First, autonomy proves to be supported by providing choice

and rationale for the (educative) activities, acknowledging
children’s feelings and minimizing pressure and control. It is
expected that personalizing the learning objectives and providing
explanations improves the responsibility transfer further. The
difficulty of the learning tasks should be attuned to the skill level
of the learner for an optimal learning experience and outcome.
The Zone of Proximal Development (ZPD) theory states that
adaptive support (or “scaffolding”) can establish the required
balance, encouraging and advancing the individual learning
processes (Vygotsky, 1980; Chaiklin, 2003; Charisi et al., 2015).
Such a balance will also help to develop an adequate level self-
efficacy (Bandura, 1977).

Second, competence proves to be enhanced by providing
effectance-based (instead of norm-based), reinforcing and
challenging feedback. Applying motivational interviewing
techniques can help to improve this feedback, i.e., providing
appropriate informative feedback (corrective, descriptive,
evaluative, or confirmatory responses) and motivational
feedback (encouragement, praise, remark, or mood matching)
(Schunk and Lilly, 1984; Tudge et al., 1996).

Third, relatedness proves to evolve positively by approaching
the child in a personal, positive and respectful way. Via
experience sharing in the form of reciprocal disclosures,
relatedness can be further enhanced (see the Social Penetration
Theory, Cohn and Strassberg, 1983; Altman and Taylor, 1987;
Rotenberg and Chase, 1992; Burger et al., 2017).

Gamification principles have been studied, proposed, and
applied for diverse behavior change support systems, to
enhance users motivation, for example for child’s diabetes self-
management (Blanson Henkemans et al., 2017b). For PAL,
we worked out these principles in the following educational
games. A quiz is used to learn and test knowledge. A
break-and-sort game is used to train the players to rapidly

recognize the content of box (e.g., the categories of certain
foods), challenging player’s reflexes. A memory game provides

a relatively relaxed and slow-paced experience for thinking and
reflection. The general gamification approach entails an activity-
based reward system which enables the “players” to unlock
additional features for personalized engaging tasks in the PAL
timeline. An achievement dashboard (Peters et al., 2019b) shows
the personal achievements and (learning) goals, progress toward
attainment and the possible activities for further advancement.
The achievements and goals are chosen collaboratively between
the child and health care professional (HCP) and selected via the
HCP-dashboard (inspired by ability trees). Goal attainments are
rewarded with coins. Figures 2, 3 show, respectively, a screenshot
of the achievement dashboard and the goal tree. Coins can be
earned and used to unlock new desirable content. In PAL four
categories were implemented: Floor images, background images,
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FIGURE 2 | Screenshot of the achievement dashboard in the MyPAL application to follow own goal attainment (this example shows child’s progress on

“Cycle to school”).

FIGURE 3 | Screenshot of the goal-tree in the PAL control & inform application to select personal goals.

color of the avatar, and dance moves (i.e., features to design
dances that can be shown by the avatar and the robot). In a shop,
these features can be unlocked and activated. See Figure 4 for a
screenshot of the shop in the MyPAL application.

Children are frequent users of interactive technologies for
different kinds of purposes, but have hardly been involved in
the design process itself to provide their specific needs and

ideas (Druin, 1999, 2002; Davis, 2010). A coherent and concise
set of co-design methods is needed, which (a) allows children
to choose their own way of expression and communication
and (b) provides complementary insights in their values, needs
and situations (Darbyshire et al., 2005). To fulfill this need, we
developed the Co-design for Child-Computer Companionship
(4C) suite (Blanson Henkemans et al., 2016), consisting of
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FIGURE 4 | Screenshot of the shop in the MyPAL application where one can buy nice skins and robot dance features with coins earned by doing diabetes related

activities in the MyPAL applications.

two methods for eliciting daily experiences, needs and values
regarding T1DM (i.e., photo-elicitation and user journey
map), and three methods for collecting envisioned interactions
and requirements for the PAL system (draw-write-tell, story
telling, and image theater). The 4C suite has been developed
by a multi-disciplinary team, involving robotics researchers,
service designers, psychologists and ethicists, to establish a
comprehensive, responsible and practical approach for (a) value,
need and context analyses, and (b) generation of design ideas.
Blanson Henkemans et al. (submitted) provide more background
information on the C4 suite and its development.

3.2. Operational Demands
The direct stakeholders, particularly the children, parents, and
health care professionals (HCPs), were intensively involved in
both the design and test activities. At the start of the project,
focus group sessions with the HCPs and diabetes organizations
provided information on diabetes management and the child,
family and context factors, and on the support needs of the HCPs
themselves. Similarities and differences between the nations and
hospitals were identified, and explicated in (a) flow charts of the
care processes, (b) descriptions of personas and (b) journey maps
for these personas (“disease management related activities of a
child and his or her caregivers during the week”).

Every year, the national patient organizations set-up so-
called diabetes camps in Italy and the Netherlands, among
other things to acquire further insight in children’s values,
needs and ideas for PAL support, and to assess interim designs
and prototypes. As parents were partially present, their values,
needs, ideas, and assessments could be acquired too. Follow-up
focus group sessions with the HCPs and diabetes organizations
provided further information on diabetes management and the

corresponding child, family and context factors, and on the
support needs of the HCPs themselves.

In these sessions, we acquired so-called value stories for each
direct stakeholder (i.e., child, parent, and HCP), as a first step of
the requirement analysis. Value stories have the following format:
As STAKEHOLDER I want/need REQUIREMENT to support VALUE

in a certain SITUATION. An example is: As A CHILD I need
A PERSONAL ROBOT THAT SHARES EXPERIENCES BY ACTIVE

LISTENING AND TELLING ABOUT ITSELF IN A SIMILAR WAY to
support RELATEDNESS in THE PAL-ACTIVITIES AT THE CAMP,
HOSPITAL AND HOME. In addition, possible value tensions were
identified (such as the tension between privacy and health for
the sharing of information about diabetes regime adherence).
To address these tensions adequately, we formulated a general
requirement on the creation, activation, and adaptability of
agreements (permissions, prohibitions, and obligations to share
information, e.g., when the child is staying with a friend; cf. Kayal
et al., 2018a,b).

3.3. Technology
The PAL project uses a state-of-the-art humanoid robot, the NAO
of Softbank Robotics, which has four microphones, two speakers
and two video cameras. The robot is present at the hospital and
diabetes camps (and might sometimes visit the child at home or
school). As an avatar, a virtual 3D robot model (i.e., a “copy”)
was developed in the Unity environment, which has the same
appearance, movement and interaction characteristics (there is
one “expression model” for these two embodiments). The avatar
is developed for Android mobile devices, particularly for a tablet
that is used at home.

Cloud computing is used to establish an evolving modular
and distributed intelligence that facilitates long term interaction
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(Kehoe et al., 2015). It enables (a) accessing external libraries
for enriching interaction such as dialogues, (b) relatively heavy
computations such as statistical analyses of previous behaviors
and their outcomes, (c) collective human-agent learning (the
human and the robot can, in real-time, learn from each others’
interactions by means of data sharing), and (d) monitoring the
robot’s interactions and adapting the decision making where
and when needed. The PAL “brain” is set-up in a modular
manner to support incremental development [easy addition and
updating of (sub-)modules]. All messages go through a common
messaging board called the nexus. Eachmodule sendsmessages of
a particular type and decides itself to subscribe to specificmessage
types of other modules.

A hybrid AI approach was chosen that combines symbolic
reasoning methods [like Belief-Desire-Intention (BDI) agent
frameworks] with Machine Learning methods. The symbolic
reasoning frameworks allow to implement expert knowledge
into the system, and to provide meaningful control and
interpretable output for the human. The machine learning
methods allow to leverage the available data for potentially
continuous performance improvements. For example, estimating
child’s knowledge level is an important continuous process
(“user modeling”) for the planning of the next (learning) tasks.
Concerning machine learning, a combination of collaborative
filtering, Gaussian processing, and covariance matrices is used
to track child’s knowledge level in PAL (see Cully and Demiris,
2019), and a deep learning Gated Recurrent Unit (GRU) model
for aspect extraction to track child’s emotional state on the
topic of a textual expression (Haanstra and de Boer, 2019).
Concerning symbolic reasoning, a Cognitive Agent Architecture
Framework is used to provide adaptive—goal-, belief-, emotion-
based—explanations (Kaptein et al., 2016; Neerincx et al., 2018),
and a dialogue management framework for the human-agent
conversations in general.

The knowledge base of the symbolic reasoning framework
of PAL entails a federated ontology. Ontologies provide explicit,
formal descriptions of objects and concepts (their properties),
and of the relations among them (Gruber, 1993). In SCE (see
Figure 1), the ontology covers concepts from the foundation,
specification and evaluation, and functions as an evolving
knowledge base that: (1) provides an unambiguous vocabulary
and communication between stakeholders, (2) supports system
implementation of knowledge-based reasoning functionalities,
and (3) serves as a basis for interoperability in human-agent
interaction (as they contain human expert knowledge and have
an inbuilt logic that machines can process and interpret). The
PAL ontology integrates individual ontologies (“models”) via one
top-level ontology. These models are high-level building blocks
that contain smaller, more specific areas of interest (“frames”)
(Neerincx et al., 2016a). When useful, existing ontological frames
can be rather easily included in the evolving ontology. The PAL
system uses an extended Resource Description Framework (RDF)
storage component and reasoner (HFC) to process the knowledge
models (classes) and running instances in conjunction (van
Bekkum et al., 2016).

Kaptein et al. (in review) provide more background
information on the PAL system architecture and technology.

4. SPECIFICATION OF SITUATED
HUMAN-ROBOT PARTNERSHIPS

Based on the human factors, operational and technological
analyses of section 3, we worked out the core functions (4.1)
and knowledge-base (4.2) of the robotic partner with the
corresponding interaction design (use cases, requirements, and
claims; 4.3) of the PAL system.

4.1. Partnership Functions
Five high-level (“core”) functions of a robotic lifestyle partner
like PAL are expected to enhance the disease self-management,
distinguishing 4 partnership functions in italics (see Figure 5):

1. Providing personal, reliable and reinforcing assistance on
diabetes management via learn-by-playing activities.

2. Planning and pursuing joint objectives for the disease
management. These objectives (like enhanced diabetes
management) drive robot activities in a consistent and
transparent way, and are compliant with stakeholder values.
Furthermore, the style of communication is harmonized with
the joint objectives (e.g., showing “warmth,” “competence,”
and “dominance,” Peters et al., 2015, 2017b, 2019a).

3. Proposing and committing to agreements for value-sensitive
information sharing. To address value trade-offs adequately,
information sharingmight be permitted, prohibited or obliged
for specific stakeholders, situations and periods (such as
keeping emotional statements private in specific situations).

4. Sharing experiences via disclosures that match the disclosures
of its human partner. For long-term lifestyle partnerships,
mutual understanding and relationship building is crucial
(such as learning to cope with the effects of specific
stress events and sport activities on the personal blood
glucose regulation).

5. Providing feedback on partner’s behaviors, learning progress,
and explanations of own behaviors. These responsive and
pro-active communications should be constructive and
personalized to establish prolonged motivation, learning
and trust.

4.2. Partnership Knowledge-Base
We worked closely together with health care professionals to
obtain and implement an ontology that contains the relevant
knowledge and content for these core partner functions. The
PAL ontology integrates individual ontologies (“models”) via one
top-level ontology. Relevant existing ontological frames were
identified and included in the PAL ontology. For some, only
parts of the frame were relevant, and therefore partially included
(e.g., the self-management activities of diabetes, but not the
entire professional medical diagnosis and treatment model of
diabetes). Other frames had to be extended with additional
concepts into a PAL model [e.g., the well-known task ontology
Van Welie et al. (1998) in the PAL Objective Model]. The
PAL ontology contains models that capture mutually different
knowledge; no direct dependencies have to be specified for the
concepts of one model to the concepts of another model. The
independence of the models has as advantage that it provides
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FIGURE 5 | The PAL actor (robot and avatar), its core functions and knowledge-base to act as partner in the diabetes management of a child and his or her diabetes

care team.

clean sub-ontologies which can be reusable in other projects
and/or domains. Besides that, this structure had a practical
advantage that different project partners could work on the sub-
ontologies simultaneously, without interfering with each other.
Currently, the PAL ontology consists of ten models, the top-
level ontology and nine models that capture different knowledge
(most are available as separate files using the Web Ontology
Language, OWL, which can be directly re-used in other hybrid
AI systems):

• The PAL Objective Model (POM) entails a decomposition
of achievements into (learning) goals, which are further
decomposed into (learning) tasks (Peters et al., 2017a, 2019b).
When the underlying tasks are completed, the goal is attained
(it can be that either task A or task B has to be completed).
When the underlying goals are attained, the achievement is
gained. For example, to gain the achievement of competence
for a sleepover, the child has to attain the learning goals to
know “how and when to measure blood glucose” and “what to
do when I am experiencing some tremors” by completing the
corresponding tasks of the diabetes quiz and memory game.

• The Domain model describes characteristics of diabetes, the
PAL system, the direct stakeholders (end-users) and locations
(such as hospital, diabetes camp, home). The classes could
be core domain concepts (e.g., actor, activity, food, ..) or
relate to other classes (e.g., “pen” and “pump” are sub of
“device”). Specific information for the dialogue modeling
has been included in the domain model (i.e., the classes

and properties that constitute the information state of the
dialogue components).

• The Episodic Memory model combines the Ontology-based
Unified Robot Knowledge (OUR-K) with a temporal episode
ontology that models the 5W1H (When, Where, Who, Why,
What, and How) (Lim et al., 2011, 2013; Han et al., 2013). This
model is used to record and activate memory episodes. Based
on rules, each episode is tagged with possible triggers (e.g.,
child login) that, for example, can activate a corresponding
speech act.

• The Agreement model specifies the underlying concepts with
their relations: Type (permission, prohibition, obligation),
creditor, debtor, antecedent, consequent, condition, and
adaptability (Kayal et al., 2018a,b; Mioch et al., 2018). In the
current PAL system, the focus is on the sharing of child’s
data. For indications of serious health risks (e.g., very high or
low blood glucose values, or a long-lasting negative emotional
feeling), policies to inform parent and HCP were specified
and implemented. The default setting for other information
is: Sharing information with PAL is permitted, whereas it is
prohibited with other stakeholders (e.g., parent and HCP).
Agreements can be set-up to change this information sharing.
PAL will act according to these agreements and provide the
information as agreed upon.

• The Semantics model is tailored to the specific needs of
the PAL games (quiz, break & sort, and memory game).
We developed a simple frame semantics that is oriented
along thematic roles, and deviated from the FrameNet Frame

Frontiers in Robotics and AI | www.frontiersin.org 8 November 2019 | Volume 6 | Article 11880

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Neerincx et al. SCE of a Robotic Partner

semantics (which would require heavy modification and
extension as it is very general). Among other things, it aims to
underpin natural language generation and interpretation, and
to support multilingualism (i.e., linking concrete realizations
in the different languages to the abstract concept as, e.g.,
Multilingual WordNet does).

• The Affect model is based on James Russell’s Circumplex
Model of Emotions, the Schachter-Singer theory of emotion
and Joseph Forgas’ Affect Infusion Model (Schachter and
Singer, 1962; Forgas, 1995). It describes how Mood and
Emotion continuously influence each other.

• The Interaction Style model is based on Leary’s Interpersonal
Circumplex, the Model of Interpersonal Teacher Behavior,
and Grasha’s theory on teaching styles (Leary, 1958; Grasha,
1994; Wubbels et al., 2012). It describes how (teaching) styles
are constructed from dominance, friendliness and competence
expressions, and the (learning) activities for which they
are appropriate.

• The Feedback model is based on motivational interviewing
techniques that distinguish four informative feedback styles
(corrective, descriptive, evaluative or confirmatory responses)
and four motivational feedback styles (encouragement, praise,
remark or mood matching) (Schunk and Lilly, 1984; Tudge
et al., 1996). It specifies the events and states that trigger
the corresponding feedback style, and the speech acts for
each style.

• The Explanation model describes characteristics of the
explanations and the agents involved (Neerincx et al., 2018). It
distinguishes Roles (such as student and teacher), Explanation
Types (such as contrastive and BDI-based), Interpretation,
Explanandum, Explanans, One or more statements provided
through some medium (e.g., sentences) that are offered to
explain a phenomenon or an argument.

• The Small Talk model provides the data structure
specifications for all kinds of small talk dialogues. It
distinguishes Starters, Prompts, Disclosures (with topic and
intimacy level) and Closure parts to conduct such dialogues.
Other concepts have been added to enrich the conversation,
like parameters concerning Intimacy level, Topic, Valence,
and Liking (Burger et al., 2017).

This ontology represents an important part of the human-
robot collective intelligence: Knowledge that the robotic system
and the humans share and use for their reasoning and
conversations (e.g., the feedback and conversations). For
example, Figure 6 presents the “Health Monitor” tab of
the Health Care Professional’s dashboard that is based on
the Domain Model, sharing information on child’s glucose
level (hype / hyper), insulin administration, carbohydrates
in consumed nutrition, activities and emotions (The “Goal
and Achievements” tab, not shown, contains child’s plan and
progress in achievements, goals and tasks, based on the PAL
Objective Model).

4.3. Use Cases, Requirements, and Claims
Following the partnership functions and knowledge-base, we
specified more in detail a set of use cases with the required PAL

functions (i.e., the functional requirements) and expected effects
(i.e., the claims; see Figure 1). Each use case refers explicitly
to an objective, its pre- and post-conditions and the actors
involved. It specifies the sequence of actions and dialogues with
an explicit reference to the corresponding requirement and claim.
For example, the use case “Managing child’s objectives” contains
an action and dialogue “HCP monitors child’s progression at his
or her work place,” referring to a requirement “PAL shall provide
an interactive overview of the realized and active objectives”
and a claim “HCP identifies progress successes and delays
effectively and efficiently.” Use cases have been defined for the
hospital and home settings. Requirements have been derived
for the overall system, the actor (robot and avatar) behaviors,
the timeline, the dashboards, and the tasks. Claims concerned
diabetesmanagement behaviors (e.g., the working on the learning
goals) and outcomes (e.g., the HbA1c as measure of blood
glucose regulation in the last period), well-being indicators (e.g.,
child vulnerability), PAL system usages (e.g., usage time), and
social effects (e.g., responsibility transfer). In total, 19 measuring
instruments were selected or constructed to test the claims. Looije
et al. (2017) give a detailed description of the method (and tool)
to specify and test the use cases, requirements and claims in a
coherent way.

5. EVALUATIONS OF THE PROTOTYPES

As mentioned before, the 4-year PAL-project entailed three
design-test cycles. A summary of the SCE specification per
design cycle can be found in Table 1. After the first year, we
established the first integrated system that was tested in Italy
and the Netherlands. Following the incremental development
approach, the system kept on running, being available for all
the tests and being updated when appropriate (development
was taking place on a test environment, a “copy” of the
system in use). This way, the development and evaluation
activities could continue in parallel and prototypes could be
always assessed at all locations. A diverse set of complementing,
formative and summative, evaluations was conducted during
each cycle. For the formative studies, we developed the 4C-
suite that has been described in section 3.1. Dedicated usability
tests were performed, e.g., focusing on (a) the games usage
at home, the hospital (e.g., see Figure 7) or diabetes camp,
(b) the comprehensibility and use of the objective model,
(c) the ease-of-use in general, and (d) the dashboards (e.g.,
Peters et al., 2019b).

In Cycle 1, a first version of the human-robot partnership
framework was worked out, built and tested. The Self-
Determination Theory (SDT) is an important foundation of
the objectives that are being served, provided and established
by, respectively, the functions, use cases and (expected) effects
in the design specification (see Figure 1). For the “gamified”
quiz use case with an empathetic robot and avatar (among
other things), three claims were specified that fulfill the human
basic needs: Increased knowledge for competence (e.g., being
able to recognize symptoms of a hypo), liking for relatedness
and positive experiences for autonomy. These concepts were
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FIGURE 6 | Screenshot of the “Health Monitor” dashboard for Health Care Professionals, showing over a time period: Child’s glycemia level (e.g., hypo / hyper),

insulin administration, carbohydrates (CHO) in consumed nutrition, activities and emotions.

TABLE 1 | Explanatory selection of PAL’s foundation, core functions, use case (UC) implementations, and claims that were evaluated per design-test cycle.

Cycle Foundation Core functions UC implementation Claims

1 Self-determination theory, zone of

proximal development, gamification,

ALIZ-E design rationale. Value stories,

journey maps, co-designed

scenarios. Cloud computing, hybrid

AI and federated ontology.

R1: PAL shall provide learn-by-playing

activities with personal, reliable, and

reinforcing assistance on diabetes

management.

R2: PAL actor shall show empathic

partnership.

R3: PAL shall support joint planning

and pursuing personalized objectives.

Robot interaction: Acquaintance,
quiz.

MyPAL environment: Avatar,
timeline and quiz.

Dashboards: PAL control and

inform.

C1: Child has increased knowledge on

T1DM.

C2: Child likes the PAL actor (robot and its

avatar).

C3: Child experiences diabetes-related

activities more positively.

2 Social penetration theory, motivational

interviewing, folk psychology. New

co-designed scenarios. System

reliability, usability engineering for

children.

R4: PAL actor shall share experiences

via mutual self-disclosure.

R5: PAL actor shall provide feedback

and explanations on behavior.

R6: PAL actor shall show

personalized learning styles

Robot interaction: Break and sort

game.

MyPAL environment: Dialogues,
reward system (earn coins) and a

shop.

C4: Child bonds with the PAL actor via the

robot and its avatar.

C5: Child is motivated to work on his or

her personal objectives with PAL.

3 Expert knowledge on child’s learning

processes for diabetes management

with culture- and hospital

dependencies. New co-designed

scenarios. Game-based learning.

R1.1: PAL’s support for planning and

pursuing objectives shall be

personalized and harmonized to

child’s daily life.

R7: PAL shall propose and commit on

agreements for information sharing.

PAL actor: Small talk, dancing

designed by child.

MyPAL environment: Tip of the

day, memory games (3), videos,

real world tasks, high score

board, interactive overview of

objectives.

Dashboards: Making agreements

about information sharing.

C1.1: Child has increased situated

knowledge on T1DM.

C6: Child is aware of T1DM state and

causes and develops self-efficacy

C7: Child has a higher Quality of Life

concerning T1DM

C8: Children seamlessly follow culture-

and hospital-dependent diabetes

management processes.

C9: Child pursues relatively difficult goals.

The successive rows (cycles) show the increments on the previous row (i.e., the extensions of the foundation, functions, implementations, and claims).

applied and tested at diabetes camps and hospitals with children
aged 7–10 years. First, during 1-week diabetes camps in Italy
and the Netherlands, a user needs assessment was conducted

and PAL mock-ups were tested (N = 55). Second, an initial
version of the PAL system (PAL 1.0) was evaluated in a 1-
month test at Italian and Dutch hospitals (N = 21). The
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FIGURE 7 | Child-robot interaction during the quiz.

claims were tested in these different evaluations, for usage
periods between 1 and 4 weeks. In general, positive effects
were recorded on the SDT-related claims. Children enjoyed to
interact with the PAL robot and avatar (which made diabetes-
related activities more positive) and showed an increased diabetes
knowledge when using the PAL system (i.e., functions R1
and R2 and claims C1, C2, and C3 in Table 1). However,
for meaningful benefits over a longer period, the PAL system
needed substantial improvement. Particularly, shortcomings
of the reliability, usability, and goal structure hindered the
acceptance and trust of health care professionals. Further,
enhanced personalization proved to be needed to establish
adherence of the children.

In Cycle 2, the SCE-activities continued, building on the
results of the first cycle. After establishing the general PAL
framework in cycle 1, innovative PAL functions were identified
for which, first, the specific module had to be developed and
tested, before it would be integrated in the overall system
(actually, already in cycle 1 and continuing in cycle 3, this
modular approach was taken). For example, Burger et al. (2017)
tested the experience sharing function with 11 children over
the course of ∼ 2 weeks at home (i.e., function R4 and claim
C4 in Table 1). The number of child disclosures proved to be
an indication of their perceived relatedness at the end of the
experiment. The higher the relatedness, the better the system
usage. Subsequently, this function was implemented in the PAL
system. In a similar way, the feedback & explanation functions
were tested (i.e., function R5 and claim C1 in Table 1). For
example, Kaptein et al. (2017) tested robot’s self-explanation with
19 children and 19 adults in which the robot performed actions
to support type 1 diabetes mellitus management. Adults showed
a higher preference for goal-based explanations than children,
providing a foundation for personalizing the explanation. The
explanations have been integrated in the PAL system. As a third
example, Peters et al. (2017b) developed a model of non-verbal
warmth and competence robot behaviors, which is expected to
improve robot’s teaching style (i.e., function R6 and claim C1
in Table 1). A perception experiment at primary schools and a

diabetes camp showed that even subtle behavior manipulations
affect children’s warmth-competence perceptions of the robot.
This model has been implemented in the PAL system. The last
example of a focused experiment concerns the avatar function
that was tested at a diabetes camp (Sinoo et al., 2018). The
bonding with the physical robot was higher, but this effect
reduced when children perceived the physical robot and its
avatar more as the same agency. The stronger friendships, the
higher the motivation to perform the tasks to do. Therefore,
we improved the similarity and consistency between robot and
avatar in the next version of PAL. Finally, a study in Italian
and Dutch hospitals was conducted with children aged 7–12
years (N = 35). The primary aim of the experiment was to
refine, further develop and evaluate the second release of the
PAL System (2.0), during a longer period of use (i.e., from
3 to 4 months). Main results were that the children bonded
with the PAL actor (robot and avatar), and perceived the robot
and avatar somewhat as similar. During the experiment, they
perceived it increasingly as a buddy who was supporting and
making them happy (i.e., functions R4, R5, and R6 and claim
C4 in Table 1). Notably, the majority of the children stopped
using MyPAL App some weeks after the beginning of the study.
A large number of children already had participated in cycle 1
and as can be expected, the novelty effect disappeared. They felt
there was insufficient new interesting content (i.e., amount and
variety of activities) and rather limited child-actor interactions
to maintain motivation to use the PAL system for such a
long period.

In Cycle 3, based on the results of the two first cycles,
to work toward ongoing and impacting use of the PAL
system by children in regard to T1DM self-management, we
introduced new and improved existing functionalities in the
PAL system, which were discussed earlier in this paper: (1)
General usability of the MyPAL app, goal setting, enriched
interaction, additional educational material, gamification, and
monitoring for parents (PAL dashboard). This last design-test
cycle, contained a randomized controlled trial: A summative
evaluation that compared child’s self-management with the PAL-
system 3.0 vs. “care as usual,” for a period of twice 3 months (with
49 children aged 7–14 years, in the Netherlands and Italy). Phase
1 (the first 3 months) consisted of the effect study, and phase
2 of an implementation study in which both the children who
used PAL and the children who got care-as-usual ("waiting-list")
could chose to use a further improved version of PAL (PAL-
system 3.5). In total, 14 children interacted with the MyPAL
application for 6 months while 26 children participated with
the MyPAL application for 3 months (16 were in the waiting-
list group and 10 participated in phase 1 only). Each phase
started and ended in the hospital. In the intervention condition
at the hospital, the child, parent and health care professional
set or reflected on the objectives and made agreements about
information sharing using the PAL dashboard. Further, during
the first visit to the hospital, the interaction with the robot
consisted of introduction, acquaintance and play of a game (quiz
or break and sort). During the last visit to the hospital, the robot
also did a dance choreographed by the child through MyPAL at
home (with the avatar). In between the hospital visits, over a 3
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month period, the children could play with the avatar via the
MyPAL application at home. It is a "real" avatar that continues the
activities and interactions of the robot; i.e., the robot and avatar
have "only" a different embodiment but act as the same actor
(based on the same models and memory). The children were
free in deciding how often they wanted to play with the system.
Interaction with the avatar at home consisted of saying “hello,”
reviewing personal goals, and performing tasks contributing
to goals. Human-robot interactions entailed, for example,
one of the educative games (quiz, break & sort, memory),
watching a video, keeping a diabetes diary, a real life activity,
dialogue acts (task suggestions, tips, feedback & explanations) or
small talk.

PAL proved to partially support the three human basic needs
that affect the development and habituation of human behaviors
in a social environment, such as disease self-management (see
Self-Determination Theory, section 3.1). Children liked the PAL-
robot and were motivated to continue the robot-mediated tasks
(relatedness). This is consistent with the results of a previous
experiment at the diabetes camp, presented in section 5 (Sinoo

et al., 2018). The tasks to pursue differed between Italian
and Dutch children, reflecting cultural differences on diabetes
management (function R1.1 and claim C8). In regard to diabetes
knowledge, children in the intervention group, using the PAL 3.0,
in comparison to the control group, showed a stronger increase
after 3 months, than children in the wait-list group [F(30) = 4.17,
p= 0.05].Moreover, we found a correlation between time playing
with the MyPAL app and children’s knowledge. Also, children in
the intervention groups had a stronger increase in self-care score
[F(30) = 6.60, p = 0.01], as an indication of improved autonomy.
Furthermore, younger children in the intervention group showed
a stronger increase in self-care score, in comparison with their
older peers in the intervention group (p= 0.03). We did not find
an effect of PAL on parental stress and child’s glucose regulation
(including HbA1c and percentage of measures in healthy range).
However, we did find an effect on diabetes related quality of life
in children [F(30) = 6.14, p = 0.02] (i.e., functions R1 through
R7 and claims C1.1 and C5 through C9 in Table 1). Blanson
Henkemans et al. (submitted) provide a detailed description of
the randomized controlled trial.

FIGURE 8 | Screenshot of the menu and PAL start page of the Socio-Cognitive Engineering Tool (SCET).
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6. CONCLUSIONS

This paper presented an overview of the SCE-methodology and
its application for the PAL research & development activities
to develop a robotic partner. As a first contribution to the
field of social robotics, it shows how to progressively integrate
domain and human factors knowledge into social robots via
co-design, modeling and evaluations. The models and design
rationale, integrated in the robots, are constructed for re-use
and further development. As a second contribution, the paper
presents a social robot with dedicated partnership functions and
a corresponding knowledge-base that is constructed and shared
with the human stakeholders. This robotic system has been
evaluated "in the wild," i.e., at hospitals, diabetes camps and
home, in Italy and the Netherlands.

The introduction of this paper distinguished three research
questions. Section 2 proposed the Socio-Cognitive Engineering
(SCE) methodology as answer to the first question: “How
to develop human-agent partnerships for long-term lifestyle
support?” We succeeded to integrate into the PAL-system:
(a) theories, models and methods from different scientific
disciplines, (b) technologies from different fields, (c) diabetes
management practices from different nations and hospitals,
and (d) last but not least, the diverse individual and context-
dependent needs of the children and their caregivers. Our PAL
experiences underpin the argumentation for SCE in section 2,
but it needs further grounding in usages by others. It should be
mentioned that the re-usable PAL design rationale, ontological
models and Co-design for Child-Computer Companionship
(C4) suite are maintained and accessible in the Socio-Cognitive
Engineering Tool (SCET), which is built and maintained in
Atlassian Confluence (a wiki content tool for teams to collaborate
and share knowledge efficiently; currently within the PAL
consortium, but we are exploring ways to share it with other
research & development communities). Figure 8 shows a screen
shot of the SCET with PAL content (Note that the menu left is
consistent with Figure 1).

The second research question was addressed in section 4
and illustrated by Figure 5: “How can a robot partner
support the daily diabetes management of children over a
longer period?” This section described the 4 partnership
functions, the knowledge-base and interaction design
of the situated human-robot partnerships for the
development of child’s disease self-management. In our
view, it is one of the first examples of prolonged human-
agent/robot teamwork for a healthy lifestyle that has
been researched, developed and tested in the field. It
represents a new type of evolving human-robot systems
with collective intelligence. Both the robot and the human
stakeholders acquired more knowledge about child’s diabetes
management (e.g., recorded in the ontology, like the PAL
Objective Model).

The third evaluative question can be answered positively:
“Does this partnership improve child’s diabetes-control and well-
being?” Section 5 provided a brief overview of the evaluation
results. PAL proved to support the children on the three basic
needs of the Self-Determination Theory: autonomy, competence,
and relatedness. To our knowledge, PAL provided the first field

study of prolonged “blended” care with a robot for children
with a chronic disease, showing positive results in a 3 month
evaluation period.

In the next steps of the research and development,
we recommend to improve the team aspects concerning
responsibility transfer and caregiver involvement. For this,
explicit responsibility (transfer) objectives should be included in
the PAL Objective Model, and the PAL dashboards should be
integrated with the hospital information system (i.e., the work
environment of the HCPs). Further, the children would profit
substantially from better (technical) integration of their diabetic
measurement and administration devices with the PAL system.

Another direction is to apply the models and methods for the
management of other diseases of children, such as asthma, and
patient or client groups, such as older adults with Type2 Diabetes.
Concerning scientific progress, we are researching hybrid AI
models that can provide enhanced personalized predictions on
patient’s health condition (such as hypo or hyper) and can
explain these predictions to humans in a way that the human can
understand and use (e.g., for the child, the parent, and the HCP).
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Emotional deception and emotional attachment are regarded as ethical concerns in

human-robot interaction. Considering these concerns is essential, particularly as little is

known about longitudinal effects of interactions with social robots. We ran a longitudinal

user study with older adults in two retirement villages, where people interacted with

a robot in a didactic setting for eight sessions over a period of 4 weeks. The robot

would show either non-emotive or emotive behavior during these interactions in order to

investigate emotional deception. Questionnaires were given to investigate participants’

acceptance of the robot, perception of the social interactions with the robot and

attachment to the robot. Results show that the robot’s behavior did not seem to influence

participants’ acceptance of the robot, perception of the interaction or attachment to the

robot. Time did not appear to influence participants’ level of attachment to the robot,

which ranged from low to medium. The perceived ease of using the robot significantly

increased over time. These findings indicate that a robot showing emotions—and

perhaps resulting in users being deceived—in a didactic setting may not by default

negatively influence participants’ acceptance and perception of the robot, and that older

adults may not become distressed if the robot would break or be taken away from

them, as attachment to the robot in this didactic setting was not high. However, more

research is required as there may be other factors influencing these ethical concerns,

and support through other measurements than questionnaires is required to be able to

draw conclusions regarding these concerns.

Keywords: social robots, older adults, longitudinal study, ethics, deception, attachment

1. INTRODUCTION

Awareness of, and a growing interest in, ethical considerations for the development of social robots
is increasing due to the predicted increasing likelihood of robots being a part of our everyday lives
in the future (Malle et al., 2015; Esposito et al., 2016; Li et al., 2019). This is evident through the
emergence of relatively new conferences like the International Conference on Robot Ethics and
Standards1, and new ethical standards in robotics and AI (Winfield, 2019). Socially assistive robots
can provide psycho-social, physical and/or cognitive support while interacting with their users
(Robinson et al., 2014). Therefore, potential ethical concerns of prolonged use of social assistive

1https://www.icres2019.org/
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robots needs to be considered while these systems are still being
developed. This will help to ensure that appropriate safeguards
are considered and built into systems as an integral part of
their design. In addition, this will facilitate clear guidelines and
regulations for safe deployment. One area for investigation that
has been identified is the use of emotional expression in the
robot, which can lead to emotional deception (Sharkey and
Sharkey, 2012). Emotional deception could occur when the user
believes that the robot really experiences these emotions, leading
to unrealistic expectations that can possibly result in the user
prioritizing the robot’s well-being over other people’s or their own
well-being, as well as over-relying on the robot as a social assistant
without exerting one’s own critical judgment (Fulmer et al., 2009).
Another ethical concern is the possible development of emotional
attachment to the robot (Sullins, 2012), which may cause distress
in the user when the robot breaks or is taken away. Whilst these
issues are important to consider in all human-robot interactions,
the current study focuses on self-reported healthy older adults.
This group was selected due to the emergence of social robots as a
way to support caregivers and care homes as they meet a growing
demand for care for the aging population (Unies, 2015). Safe
and responsible introduction of social robots to this target group
is essential, as a potential lack of knowledge of and experience
with new technologies may lead to situations that potentially
affect psychological and/or physical safety (Borenstein et al.,
2017). Moreover, the step between utilizing robots for cognitively
healthy older adults to vulnerable older adults that suffer from
e.g., dementia is small, and baseline requirements found through
studies with healthy older adults are essential to ensure that
it is ethically safe for vulnerable older adults to interact with
the robot.

Frennert and Östlund described several matters of concern
that arise during the development of social robots for older
adults (Frennert and Östlund, 2014). Some of these entail the
role that the robot will play in the older adults’ lives, factors
that can influence social robot acceptance, methodology used
in robotic research and ethical implications. These matters
were addressed in this study. A specific role for the robot
was determined and communicated to the participants, namely
that of a didactic learning companion. Factors that may
influence acceptance were investigated, and whether these
could have ethical consequences. We addressed methodology
concerns and even though the number of participants is
still low, we did use a comparison group (Bemelmans
et al., 2012) and ran the study in a naturalistic setting. As
the goal is to ensure that social interactions are ethically
safe and acceptable, the concern that social interactions
are driven by technological determinism has been addressed
as well.

The aims of this study are to establish whether the ethical
concerns of emotional deception and emotional attachment that
have been established in the literature are reflected in practice.
More specifically, this study investigates whether older adults
are emotionally deceived by a robot when it shows emotional
expressions during didactic interaction in a naturalistic setting,
and whether they will become emotionally attached to the
robot over time. Suggestions for how the social robot could

be adapted to address ethical and acceptability concerns are
considered. As no similar study has been previously conducted
in the literature, this work could provide useful insights into
conducting longitudinal field studies and lay the foundation for
future work with vulnerable populations of older adults, such as
those with dementia.

The following hypotheses are investigated in this study: It is
expected that effects of emotional deception will be minimal,
as the level of deception was designed to be low. Furthermore,
any effects that occur will decrease over time, once participants
become familiar with the displayed emotions of the robot.
Additionally, it is hypothesized that emotional attachment will
initially be low but increase over time, and that attachment will be
higher for participants interacting with the emotive robot, as the
display of emotions by the robot will increase people’s perception
of the robot being a social entity.

2. SOCIAL ROBOTS AND HUMAN-ROBOT
INTERACTION

One issue relating to human-robot interaction and social robotics
relates to the lack of a common definition for a social robot. For
example, Dautenhahn and Billard state that a social robot is an
embodied agent that is part of a society of robots and/or humans
(Dautenhahn and Billard, 1999). This statement is followed by
the notion that these agents can recognize one another, join
a social interaction, and learn from each other. An alternative
definition is provided by Fong, who describe a social robot as
an agent for which interaction is important (Fong et al., 2003).
This lack of consensus regarding a definition presents challenges
when developing a framework for the investigation of social
robots, as it is difficult to ensure all parties involved envisage
the same outcome without a common definition to refer to.
Combining research by Breazeal and Fong, we can distinguish
seven different classes of social robots: socially evocative, social
interface, socially receptive, sociable, socially situated, socially
embedded and socially intelligent (Fong et al., 2003; Breazeal,
2004). In this research, we will focus on robots from the first
two categories, socially evocative and social interface, since
these require little social cognition and will be easier to use
in real-world settings in less time, but will, due to the small
amount of social cognition required, raise several possible
ethical concerns.

2.1. Ethical Concerns in HRI
The population of older adults is growing, and the demand for
care is growing with them (Unies, 2015). However, the capacity to
supply this call for care is limited. This is one of the reasons why
research in robotics is so attractive (Sparrow and Sparrow, 2006).
Use of social robots by older adults will require ongoing care and
health education. The fact that social robots are not designed to
be influenced by an emotional state, nor judge people (Breazeal,
2011) might make them less stigmatizing to use in this context
(Breazeal, 2011).

Several ethical implications of using robots for older adults
have been established in the literature. Example implications are

Frontiers in Robotics and AI | www.frontiersin.org 2 January 2020 | Volume 7 | Article 190

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


van Maris et al. Designing Ethical Social Robots

reduced human contact, loss of control, loss of personal liberty,
loss of privacy, matters regarding responsibility, infantilization,
emotional deception and emotional attachment (Sharkey and
Sharkey, 2012; Sullins, 2012; Kolling et al., 2013). Even though
these are all valid concerns, there are counterarguments against
several of these as well. Some of these counterarguments have
been raised by Sharkey and Sharkey themselves (Sharkey and
Sharkey, 2012). For example, the use of social robots may
reduce people’s contact with others, but it can also reduce
isolation and increase conversation opportunities both with
the robot and other users (Sharkey and Sharkey, 2012). Other
ethical issues are loss of control and loss of personal liberty,
but robots can also give older people the opportunity to self-
manage their well-being and the ability to reduce risks (Callén
et al., 2009). Privacy issues are equally important, but do not
apply solely to social robotics and are being investigated for
many other technologies deployed in human environment and,
therefore, will not be discussed in this paper, as well as matters
regarding responsibility, which are being researched through e.g.,
autonomous cars. Encouraging people to interact with robots,
that can sometimes have a toy like appearance, might give them
the feeling they are being infantilized. However, this can be
addressed by taking into account the aesthetics of the robot and
including the older adults in the development process, which
have been identified as a matters of concern when developing
robots for older adults (Frennert and Östlund, 2014). This
leaves two ethical concerns: emotional deception and emotional
attachment. These two concerns were investigated in more depth
in this study.

2.1.1. Emotional Deception
Deception occurs when false information is communicated
to benefit the communicator (Arkin et al., 2012); it implies
that an agent acts in a way that it induces a false belief
in another agent (Hyman, 1989). This can also mean that
no information is communicated at all (Dragan et al., 2015).
Deception can be approached through different perspectives like
philosophy, economics, and biology (Shim and Arkin, 2013).
Both the perspective of philosophy and biology discuss the
division of deception into either unintentional or intentional
(Dragan et al., 2015). Unintentional deception takes place
when some feature of the (unintentional) deceiver evokes
unforeseen expectations in the agent being deceived. Intentional
deception takes place when the deceiver is aware that these
features will raise false expectations in the agent being deceived.
This distinction suggests that emotional deception is not a
binary materialization, but a spectrum with different gradations
(Winkle and Van Maris, 2019).

Deception is generally perceived as bad. However, this is not
necessarily the case. An example where deception benefits the
agent being deceived is the use of placebo-effect. This beneficial
form of deception is called benevolent deception (Adar et al.,
2013). Benevolent deception has always been part of medical care
(Jackson, 1991), and may even be required to act morally (Arkin
et al., 2012).

Deception is created when robots are used in assistive settings
(Sharkey and Sharkey, 2011), since the robot’s social behavior

often does not correspond with its actual capabilities. This
could be a risk, since users may perceive robots differently than
intended and raise expectations that cannot be met by the robot.
For a robot to be able to successfully perform a deceptive action,
it requires specific knowledge about the person that it intends to
deceive (Wagner and Arkin, 2011). Also, the robot should convey
its intentions and have a theory of mind for the person being
deceived to be able to manipulate their beliefs (Dragan et al.,
2015). However, an area that is often not discussed is the fact that
a robot can also unintentionally deceive through its appearance
and/or behavior.

When objects, in this case the robot, provide social support,
interactions may be more effective (Kidd et al., 2006). More
effective interactions will lead to a better interaction quality
and improvement of quality of life, which is the main reason
why robots are used in care for older adults. Providing a robot
with emotive behavior is a way to improve its capability to
communicate with a person (Kirby et al., 2010). People are
capable of recognizing facial expressions in robots (Kirby et al.,
2010), and perceive the emotion they recognize themselves
as well.

Displays of robot-human affection would be an appearance
of affection from the robot toward the human, as real affection
requires emotions, which are difficult to implement in robots
(Weijers, 2013). Being able to convey emotions is a requirement
for a successful companion robot (Breazeal and Scassellati,
1999). However, one might argue this is a form of deception,
as the robot does not actually experience emotions. Especially,
as emotional deception is stated as the misrepresentation of
one’s emotional state (Fulmer et al., 2009), and the robot
provides incorrect information about its internal state when
displaying emotive behavior. As the perception of emotional
deception is a subjective response it is measured indirectly
through other variables in this study. Older people may benefit
from emotive robot behavior, as receiving little affection can
have negative consequences for people that are feeling lonely like
cardiovascular function (Cacioppo and Patrick, 2008). Whether
emotional deception by a robot is benevolent and thus ethically
acceptable, especially when interacting with vulnerable users,
has to be researched more thoroughly, which was one of the
aims of this study. The results provided insights in effects of
emotional deception in a didactic setting, which have not been
investigated yet.

2.1.2. Emotional Attachment
Attachment can be described as the sum of cohesion episodes that
a person has made with other persons or objects (Huber et al.,
2016). A cohesion episode entails joint experiences with these
other people or objects, in which cohesion factors are present.
Cohesion factors can be defined as shared factors like values and
preferences, charisma factors like attractiveness and sympathies,
personal factors like expressed openness and social factors like
non-situation-specific reciprocity).

Research on attachment and robots has either focused on
robots showing attachment to the user or eliciting attachment
in the user through its behavior (e.g., Hiolle et al., 2009, 2012).
It is possible to become attached to a robot, as people are
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capable of becoming attached to objects (Keefer et al., 2012).
Scheutz has highlighted that there is very little needed for people
to become attached to robots, even if these robots do not
show behavior that elicits attachment (Scheutz, 2011). Therefore,
it is particularly important to explore attachment in socially
assistive robots interacting with older adults. There are four
attachment styles that distinguish how easily a person becomes
attached to someone or something: secure attachment, fearful
attachment, preoccupied attachment and dismissive attachment
(Brennan et al., 1998). Since social robots (and other assistive
technologies) become more advanced, the likeliness of users
forming attachment-like bonds to them increases (Collins et al.,
2013). Opinions on whether it is acceptable for a robot to
elicit attachment in its users are divided. On the one hand,
eliciting attachment will support the process and goals of its
use (Coeckelbergh et al., 2016). Some even say that eliciting
attachment in its users is a necessity for the robot to be fully
effective in a care providing context (Birnbaum et al., 2016).
However, once users have become attached to the robot, taking it
away may cause emotional distress (Sharkey and Sharkey, 2010;
Coeckelbergh et al., 2016).

Emotional deception and emotional attachment have been
raised as ethical concerns in the literature. However, this has
never been investigated in practice, which was one aim of this
study. Whether these concerns are reflected in practice was
investigated through a longitudinal human-robot interaction
study, where people’s acceptance of the robot, perception of the
social interaction and attachment to the robot were measured
over time. The robot’s behavior was manipulated to investigate
emotional deception. This study investigated how emotional
deception and emotional attachment may relate to acceptance of
the robot and perception of the social interaction, as these will
be indicators for the future development of ethically safe socially
assistive robots.

3. METHODS

3.1. Overview
The aim of this study was to investigate emotional deception
and emotional attachment. Participants’ responses to a robot
displaying either emotive or non-emotive behavior, and their
level of attachment to the robot over time were investigated.
Questionnaires were administered several times during
the experiment to study participants’ attachment to the
robot, their acceptance of the robot, and their perception
of the social interactions with the robot. Most participants
interacted with the emotive and the non-emotive robot,
except for a small control group that interacted with the
non-emotive robot only. Other data regarding the participants’
affect, physiological state and behavior were also measured
using sensors and video recordings, however this paper
only presents the qualitative aspects of the study from the
participants’ perspective.

3.2. Participants
In total 17 older adults participated in this experiment.
Participants were recruited from two retirement villages where

residents have their own apartments and live independently;
however if they need support they can call the village manager
for assistance. Participants were offered a gift card to compensate
them for their time. Ten participants were recruited through
one retirement village and seven from a second retirement
village. As this study was directed toward typical aging, prior to
scheduling sessions, participants were asked to self-report health
issues/diagnoses (i.e., dementia, etc.) that could affect their ability
to complete measures or limit their capacity to consent. No
participants were excluded based on this criteria. In addition,
participants from one retirement village had their capacity for
informed consent monitored by a locksmith (an individual who
monitors residents). As part of the procedure, participants of
the retirement village that did not have a locksmith available
were administered using the Montreal Cognitive Assessment test
(MOCA; Nasreddine et al., 2005) for overall cognitive function.
Based on these scores, data from two participants was excluded
as they scored below 15 (out of 30) where all other participants
scored between 26 and 30. One participant completed four
sessions but was unable to complete the study. As such, data
from only 14 participants was included in the analyses. The
ages of the participants that completed the experiment (9 male,
5 female) ranged from 61 to 90 years old (M = 76.29, SD =

8.50). Twelve participants reported being generally unfamiliar
with social robots and two participants (both male) indicated
that they were somewhat familiar with them [M = 1.35, SD =

0.74 on a scale from 1 (unfamiliar) to 5 (familiar)]. Participants
reported being familiar with technological devices (e.g., smart
phones, tablets, laptops, desktops) and using them on a daily
(N = 13) or weekly (N = 1) basis. Participant characteristics
can be found in Table 1. This table also provides attachment
style and level of attachment, which will be discussed in the
next section.

TABLE 1 | Case characteristics of the user trials.

Participant Group Gender Age Familiarity Attachment

style

Level of

attachment

1 Test M 74 Somewhat Secure Low

2 Test M 72 Low Secure Medium

3 Test F 72 Low Fearful Low

4 Test F 77 Low Dismissive Medium

5 Test M 82 Low Dismissive Medium

6 Test M 72 Low Fearful High

7 Test M 61 Low Secure Medium

8 Test F 76 Low Dismissive Low

9 Test M 90 Low Fearful Medium

10 Test F 85 Low Secure High

11 Control M 68 Somewhat Fearful Medium

12 Control M 90 Low Secure Low

13 Control M 68 Low Secure Low

14 Control F 81 Low Dismissive Medium
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3.3. Materials
The robot used for this study was a Pepper robot, developed
by Soft Bank Robotics2. The software “Choregraph,” provided
by Soft Bank, was used to create the robot behaviors and run
the experiments.

3.3.1. Questionnaires
The order in which the questionnaires were administered and all
items in each questionnaire were randomized. Several existing
questionnaires were used. Some of these use a five-point scale,
where others use a seven-point scale. For consistency and tomake
it easier for our participants, it was decided to use a five-point
scale for all questionnaires.

• Demographics: Age, gender and level of education were
collected. Interestingly, several participants did not provide
their level of education and gave insufficient answers like
“not high” and therefore, this question was not used for
data analysis.

• Montreal Cognitive Assessment (MOCA): This brief
cognitive assessment measures performance in executive
functioning, memory, language, attention and visuo-spatial
perceptual skills.

• Acceptance of the robot: Several constructs of the Almere
model of technology acceptance (Heerink et al., 2010)
were used to determine participants’ acceptance of the
robot and whether this changed over time. Used constructs
were anxiety to use the robot, attitude toward the robot,
perceived enjoyment, perceived ease of use, perceived
sociability, perceived usefulness, social influence, social
presence and trust.

• Perception of the social interaction with the robot: Most
constructs of the Godspeed questionnaire (Bartneck et al.,
2009) were used to determine participants’ perception
of the robot, and whether it changed over time. Items
used included anthropomorphism, likability of the robot,
perceived intelligence of the robot and perceived safety during
the interactions.

• Attachment to the robot: Unlike the acceptance and
perception questionnaires, there is no existing questionnaire
for attachment in HRI that has been established in previous
work. Therefore, a questionnaire for object attachment
(Schifferstein and Zwartkruis-Pelgrim, 2008) was adapted to
fit this study. This consisted of nine statements, and the
average of these statements was used to get an overall number
for attachment.

• Attachment style: In order to assess attachment types,
participants were asked to fill in an adapted version of the
Experiences in Close Relationships Inventory to determine
their attachment style (Brennan et al., 1998). Statements
involving “(romantic) partners” were adapted to a more
general variation with “people that are dear to me.”

• Debrief interview: Several questions were asked after
participants were debriefed to gather their opinion on the

2https://www.softbankrobotics.com/emea/en/pepper

ethical concerns. The questions asked in this interview
are: “Will you miss Pepper?,” “Do you think Pepper had
an influence on your mood?,” “Do you think Pepper was
emotionally deceptive and if yes, do you think this was
acceptable?,” “Do you think you would get bored of Pepper,
if you could use it whenever you want?” and “What role would
you like Pepper to play in your life?” Note that for the question
regarding emotional deception participants were first given the
definition of emotional deception used in this research: a robot
is deceiving its user when it displays emotions, which may
result in the users building an incorrect mental model of the
robot’s abilities.

As emotional deception is said to occur when an agent falsely
displays feelings of emotions (Fulmer et al., 2009) and therefore
is a subjective response, it can best be measured indirectly
through other variables. In this study, emotional deception was
investigated by looking at participants’ acceptance of the robot
and perception of the social interaction. For example, if the
perceived intelligence or perception of the robot as a social
entity are higher for the emotive robot, this might indicate that
participants are deceived by its behavior.

3.4. Study Procedure
Ethical approval was obtained from the University of the West
of England ethics committee prior to recruitment. Informed
consent was gathered for all participants before any data was
collected. Participants interacted with the robot for eight sessions:
two interactions per week for 4 weeks. During these interactions,
the robot informed participants about the Seven Wonders of
the Modern World and the Seven Wonders of the Ancient
World. Interactions lasted between 5 and 8 min. Ten out of the
fourteen participants that completed the experiment interacted
with the non-emotive robot during the first four interactions,
and the emotive robot during the last four interactions, or vice
versa. The order of robot behaviors was counterbalanced between
participants. The remaining four participants interacted with the
non-emotive robot during all eight sessions as control group.
Besides these eight interactions with the robot, there was one
introductory session before the first interaction and one debrief
session after the last interaction with the experimenter only. The
robot was present during the introductory session and would
introduce itself briefly so participants would get a first impression
of the robot’s voice and behavior, so they felt more familiar with
it once the interactions started. The robot was not present in the
room during the debrief session.

An example part of an interaction between the robot and
a participant about the Statue of Zeus at Olympia; R = robot,
P= Participant:

• R: “As mentioned before the statue depicts Zeus sitting on a
wooden throne. However, did you know that the whole statue
and not only the throne was made of wood?”

− If P said “no”: R: “Yes, the whole statue was sculpted
in wood. After that, Zeus was covered with ivory and
gold plates.”
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− If P said “yes”: R: “Indeed, the whole statue was sculpted
in wood. After that, Zeus was covered with ivory and
gold plates.”

• R:“Have you ever been to Olympia, or other places
in Greece?”

− If P said “no”: R: “Now let us continue with...”
− If P said “yes”: R: “Would you like to tell me about it?”

– If P says “no”: R: “Ok, now let us continue with....”
– If P talks about positive experience: R: “That sounds nice.

Now let us continue with....”
– If P talks about negative experience:R: “Sorry to hear that.

Now let us continue with....”

The protocol for a participant who would become upset after
mentioning a negative experience was for the robot to not reply
to the experience at all. However, no participants became upset
during the experiment.

Participants were seated opposite the robot. The distance
between the chair and the robot was approximately 1.5
m, which falls within the social space of Hall’s proxemics
categories (Hall et al., 1968), but approaches the personal
zone as well, as the threshold between these two zones is
at 1.2 m. The social space represents the distance between
two strangers having a conversation, where the personal
space represents the distance where two friends have a
conversation. Figures 1, 2 show the experiment room for the two
retirement villages.

The emotive and non-emotive behaviors displayed by the
robot have been established in earlier research (Van Maris et al.,
2018). In the non-emotive condition, the robot would show
“neutral” behavior. In the emotive condition, the robot would
show context-appropriate emotions. Differences in emotive
and non-emotive behavior were identified by a different pitch
in voice (higher pitch when happy, lower pitch when sad),
different talking speed (faster when happy, slower when sad),
changing head position (chin up when happy, chin down
when sad) and arm movements (larger movement when happy,
smaller movement when sad). These factors were based on

FIGURE 1 | Experimental set-up retirement village.

existing literature (Kwon et al., 2007; Beck et al., 2013).
The emotive behavior and possible emotional deception were
designed to be low in this study. As mentioned earlier, emotional
deception can be both intentional and unintentional, and the
goal of this research is to investigate unintentional deception.
This occurs when emotions are displayed to create a more
pleasant interaction experience for the user and not to elicit
certain reactions from them. The emotive behaviors in this
study may have some influence on people’s perception of the
robot, but the deception will be much lower compared to
when the emotive behaviors elicit reactions from the users.
Therefore, the emotional deception in this study is intended
to be low.

The Wizard of Oz strategy was used for this experiment.
Interactions were pre-programmed, but the experimenter would
manually prompt the robot to continue with the interaction
to ensure the robot would continue at the appropriate times.
This was necessary as speech recognition is not optimal yet,
and the need for participants to focus on speaking loudly and
clearly could have distracted them from the robot’s displayed
behavior. In one retirement village, the experimenter was
located in an adjacent room with all doors open. In the other
retirement village, only one experiment room was available so
the experimenter was located behind the participants to be out of
sight during the interactions. Participants received a photograph
of themselves with the robot (taken after the final interaction
with the robot), and a £20 gift card for their participation
during the debrief session. Contact details of the experimenter
were provided in case they would want to see the robot again.
This exit strategy was essential, as it would have been unethical
to investigate people’s emotional attachment to the robot and
not provide them with the possibility to see it again if they
wanted to.

When each questionnaire was administered is shown in
Table 2. The questionnaires given at each session varied as
participants could not comment on their attachment and
acceptance of the robot prior to interactions.

A more detailed explanation for each measuring point is
as follows:

FIGURE 2 | Experimental set-up second retirement village.
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• T1: Introductory session. For the retirement village that
did not have a locksmith available, participants started with
MOCA and demographics, followed by an explanation of
what would happen during the following sessions. The
people that were excluded from data gathering after the
MOCA received the explanation without demographics being
taken. Other questionnaires taken during this session can be
found in Table 2. To get a first impression of the robot, it
would briefly introduce itself. There was no interaction with
the robot.

• T2: After finishing interaction 4. Participants would interact
with the non-emotive robot the first four sessions and the
emotive robot the last four sessions or vice versa. At the end

TABLE 2 | Questionnaires given at different times.

T1 (introduction) T2 (after

interaction 4)

T3 (after

interaction 8)

T4 (debrief)

MOCA (one village only) Attachment Attachment Attachment

Demographics Almere Almere Almere

Attachment Style Godspeed Godspeed Godspeed

Godspeed Interview

Almere was used to measure acceptance of the robot, Godspeed was used to measure
perception of the interaction and MOCA measured cognitive performance.

of each condition, they had to fill in questionnaires which can
be found in Table 2.

• T3: After finishing interaction 8, once participants had
finished all interactions with the robot.

• T4: Debrief session. There would be no interaction with
the robot this session, and it would not be present in
the experiment room. Participants filled in the attachment,
acceptance and perception questionnaires one more time,
to investigate whether there was an influence of time and
the robot no longer being physically present in the room
on their responses. After filling in these questionnaires,
they were debriefed by the experimenter. Finally, the
participants were asked some final questions in an interview
by the experimenter.

Figure 3 provides an overview of what questionnaires were
performed when, and what behavior the robot displayed during
the interactions.

The timeline below provides an overview of the whole
experiment. Participants in the control group interacted with
the non-emotive robot at all times. Participants in the test
group interacted with the non-emotive robot first and the
emotive robot later or vice versa. It was aimed for the time
between sessions to be as consistent as possible, so most
interactions were planned every 3–4 days. If not possible,
the minimum would be 2 days between sessions and the
maximum 7 days.

FIGURE 3 | Experimental procedure for the test groups 1 and 2 and control group 3.
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4. RESULTS

First, we tested the reliability of the questionnaires we used. The
questionnaires measuring acceptance of the robot, perception of
the social interaction and attachment questionnaire all showed
high internal reliability (α = 0.85, α = 0.83, and α =

0.91, respectively). After participants were debriefed, they were
interviewed on their experience with the robot and their opinions
regarding emotional deception and emotional attachment.

A mixed between-within subjects design was used for this
study. Out of 14 participants that completed the experiment,
ten participants (6 male, 4 female, age M = 76.75, SD = 10.75)
were assigned to the test group and interacted with the
emotive robot during the first four interactions and the non-
emotive robot during the last four interactions, or vice versa.
The remaining four participants acted as control group and
interacted with the non-emotive robot only (3 male, 1 female,
age M = 76.10, SD = 8.10). This design allowed for between-
subjects comparisons after four sessions as well as within-subjects
comparisons across the entire study.

4.1. Emotional Deception
A mixed between-within subjects analysis of variance was
conducted in order to assess the impact of emotional deception
over time (T2, T3, T4) between the two groups (test × control).
Examining the acceptance questionnaire, a main effect of group

on the perceived social presence of the robot was found, with

participants in the test group that interacted with both the
emotive and non-emotive robot perceiving the robot as more of

a social entity than participants in the control group that only

interacted with the non-emotive robot [F(1, 12) = 4.93, p= 0.046,
η
2
p = 0.29]. This difference can be found in Figure 4. No other

significant differences were found for any of the constructs in
either the acceptance or perception questionnaires.

To investigate the effect of the robot’s displayed behavior,
acceptance and perception questionnaire scores from
participants from the test group after interacting with the emotive
robot were compared to their responses after interacting with
the non-emotive robot. One-way ANOVA showed no significant
differences for any construct in either of the questionnaires. The
averages for the constructs in both questionnaires depending on
the robot’s displayed behavior can be found in Figures 5, 6.

Between-within subjects analysis of variance was conducted
in order to compare acceptance and perception ratings by group
and over time (T2, T3, T4). There was no significant interaction

FIGURE 4 | Perceived social presence of the robot over time for control group

and test group as measured by the acceptance questionnaire.

FIGURE 5 | Acceptance of the robot be the test groups depending on its

displayed behavior as measured by the acceptance questionnaire. ANX,

anxiety to use the robot; ATT, attitude toward technology; PE, perceived

enjoyment; PEOU, perceived ease of use; PS, perceived sociability; PU,

perceived usefulness; SI, social influence; SP, social presence; TRUST, trust in

the robot.

of time by group or a main effect of group. Investigating the
acceptance questionnaire, there was a main effect of time over
perceived ease of use [F(2, 24) = 4.22, p = 0.03, η

2
p = 0.26], as

shown in Figure 7. Post-hoc tests using the Bonferroni correction
showed a significant difference between T2 and T4 [p = 0.042],
and T3 and T4 [p = 0.046], as indicated by the asterisks in
Figure 7. There was no significant difference between T2 and T3
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FIGURE 6 | Perception of the social interaction by the test group depending

on the robot’s displayed behavior as measured by the perception

questionnaire. AN, anthropomorphism; LI, likeability; PI, perceived intelligence;

PS, perceived safety.

FIGURE 7 | A significant increase in perceived ease of use over time for

control group and test group as measured in the acceptance questionnaire.

*p < 0.05.

[p = 0.82]. No other constructs of the acceptance questionnaire,
nor any constructs of the perception questionnaire significantly
changed over time.

4.2. Emotional Attachment
The acceptance and perception questionnaires were used
again to investigate emotional attachment, as trust and
anthropomorphism can be indicators of emotional attachment.
The attachment questionnaire was included to investigate
whether participants became emotionally attached to the robot.
Participants’ attachment styles can be found in Table 1. Six
participants were categorized with a secure attachment style, four
with a fearful attachment style, four with a dismissive attachment
style, and none with a preoccupied attachment style. Acceptance
of the robot, perception of social interaction and attachment
to the robot were not significantly influenced by participants’
attachment style, nor was there an influence of attachment style
on any of these factors over time.

Comparing participants’ attachment to the robot with
constructs of the acceptance questionnaire, Pearson correlation

FIGURE 8 | Average attachment to the robot over time as measured by the

attachment questionnaire.

analyses showed a positive correlation between participants’
attachment to the robot and their perceived ease of using
the robot [r(14) = 0.42, p = 0.04], and the extent to which
they perceived the robot as a social entity [r(14) = 0.42,
p = 0.04]. Pearson correlation analyses were run for the
constructs of the perception questionnaire and attachment
as well, as high scores for anthropomorphism and likability
can be an indicator for participants becoming attached to
the robot. These analyses showed strong positive correlations
between participants’ attachment to the robot and the constructs
anthropomorphism [r(14) = 0.66, p < 0.01], likability [r(14) =
0.51, p= 0.01] and perceived intelligence [r(14) = 0.51, p= 0.01].

Attachment to the robot fell in the low to medium range, as
can be seen in Figure 8. However, two participants (onemale, one
female) scored high on attachment [M = 4.06, SD= 0.24]. Their
attachment to the robot was high when it was first measured
at T2 and remained high during T3 and T4. These participants
belonged to the test group and interacted with the emotive robot
during the experiment.

A mixed between-within subjects analysis of variance was
conducted in order to assess the impact of emotional attachment
over time (T2, T3, T4) between the two groups (test × control).
No significant difference was found for overall attachment [p =

0.34]. Looking at the attachment questionnaire items separately,
a significant influence of the robot’s displayed behavior was
found for the statement ‘I have feelings for Pepper’ that was
rated significantly higher by participants from the test group
with respect to participants from the control group. [F(1, 12) =
5.33, p = 0.04, η

2
p = 0.31]. No other significant differences for

attachment between the control group and test group was found.
To investigate the effect of the robot’s displayed behavior on

attachment to the robot, attachment scores from participants
from the test group after interacting with the emotive robot
were compared to their responses after interacting with the
non-emotive robot, which were taken at T2 and T3. One-way
ANOVA showed no significant differences for participants’ level
of attachment to the robot [p= 0.55].

One-way repeated measures ANOVA showed that time did
not significantly influence participants’ attachment to the robot
[p = 0.61]. Looking at the nine statements in the attachment
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questionnaire separately, the only factor that significantly
changed was participants reporting that they felt less emotionally
affected by Pepper over time [F(2, 24) = 5.88, p < 0.01, η2p = 0.33].

Based on participants’ answers to the attachment statements,
they were categorized in one of three groups: low, medium,
or high attachment. One-way ANOVA was used to compare
participants’ attachment categories with the constructs of the
acceptance questionnaire; there was a significant difference
between participants’ attachment category and the robot’s
perceived ease of use [F(2, 21) = 4.76, p = 0.02, η2p = 0.31], social

influence [F(2, 21) = 4.97, p = 0.02, η
2
p = 0.32], social presence

[F(2, 21) = 7.82, p < 0.01, η
2
p = 0.43] and trust [F(2, 21) = 4.25,

p = 0.03, η
2
p = 0.29]. The mean and standard deviations for

these constructs and their significance can be found in Table 3.
Social influence, social presence and trust were significantly
lower for participants with low levels of attachment to the
robot with respect to participants with high levels of attachment.
Perceived intelligence and social influence were significantly
lower for participants with low levels of attachment with respect
to participants with medium levels of attachment to the robot.
There were no significant differences for any of the constructs
of the perception questionnaire based on participants’ level of
attachment to the robot.

Results from T3 and T4 were compared to investigate whether
participants’ felt differently when some time had passed since
their last interaction with the robot and it was not physically
present in the room. Paired sample t-tests showed that there
was no significant difference between the answers given to any
of the questionnaires at T3 and T4. As there were no significant
differences between T3 and T4 and participants’ experience was
still fresh at T3 when they finished all interactions, the results
of the test group and control group at T3 were compared to
investigate the effect of the robot’s emotive behavior. One-way
ANOVA showed a significant difference for the construct anxiety
to use the robot of the acceptance questionnaire [F(1, 12) = 5.52,
p = 0.04, η2p = 0.32], where the participants of the control group

TABLE 3 | Mean and standard deviation for constructs of the acceptance

questionnaire that showed a significant difference between different levels

of attachment.

Acceptance construct Level of attachment M SD N

Perceived ease of use Low* 3.13 0.50 5

Medium* 3.78 0.45 7

High 3.45 0.47 2

Social influence Low*+ 2.75 0.46 5

Medium* 3.67 0.91 7

High+ 3.88 0.25 2

Social presence Low** 2.70 0.48 5

Medium 3.22 0.51 7

High** 3.80 0.16 2

Trust Low* 2.75 0.53 5

Medium 3.25 0.62 7

High* 3.75 0.50 2

*p <0.05, +p <0.05, **p <0.01.

reported being less afraid to use the robot [M = 1.56, SD= 0.52]
than the participants of the test group [M = 2.23, SD= 0.46]. No
other significant differences were found and this difference was
not significant for T4.

4.3. Interview
After the participants were debriefed, they were asked some final
questions regarding their experience with, and opinion of, the
robot. Nine participants (six male, three female) indicated they
would want to use the robot on a daily basis in the future, these
participants also reported they did not think they would get
bored of the robot over time. Four participants (two male, two
female) declared they would want to use it on a weekly basis.
One participant (male) would not want to use the robot at all.
This participant stated that, although he liked interacting with
the robot, he found that it was not sufficient for his needs as he
preferred a robot that was capable of physical assistance.

Four (three female, one male) participants reported that they
would miss Pepper, ranging from “Yes, I guess I will” to “Oh yes,
definitely!.” Three of these participants were from the test group
and one was from the control group. Two of them (both female)
scored low on attachment to the robot.

Three participants could not imagine the robot ever playing a
role in their life (“do not need a companion,” “happy talking to
myself when I feel the need to”). Four participants would like to
have a robot as a companion, and eight participants thought it
would be useful as a helper. This could either be in the sense of
helping with tasks, providing useful information or monitoring
people’s health.

After participants were debriefed about the need to investigate
emotional deception, some participants reported finding that the
robot was indeed deceptive (“I guess it was deceptive, as it showed
some form of emotions”). These participants interacted with the
emotive robot and either scored medium or high on attachment.
The other participants did not find the robot deceptive, mainly
because they thought of it as a machine and/or tool (“I take it for
what it is: a distraction for when you are lonely,” “I realize it is
a machine, therefore I do not find it deceptive”). All participants
that found the robot deceptive, all reported finding this deception
acceptable, as otherwise the robot would have appeared too
machinelike and not pleasant to interact with. Interestingly, two
of these three participants were highly attached to the robot.

5. DISCUSSION

This study measured participants’ acceptance of a Pepper
robot, perception of the social interaction with the robot and
attachment to the robot to gain insight into the extent to
which emotional deception and emotional attachment are ethical
concerns in human-robot interaction. The study consisted of
several didactic interactions with the robot spread over several
weeks, as time is an essential factor for both emotional deception
and emotional attachment. It was expected that effects of
emotional deception would be minimal, as the level of deception
was designed to be low. Furthermore, any effects that occurred
were expected to decrease over time once participants became
familiar with the displayed emotions of the robot. Additionally,
it was anticipated that emotional attachment would be low but
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increased over time, and that attachment would be higher for
participants interacting with the emotive robot, as the display of
emotions by the robot would increase people’s perception of the
robot being a social entity.

5.1. Emotional Deception
As emotional deception is a subjective response it can best be
measured indirectly through other variables. In this study, it was
measured through the acceptance and perception questionnaires.
Participants from the test group perceived the robot significantly
more as a social entity than participants from the control group,
indicating that some level of deception may have occurred.
However, as expected, no other significant effects were found.
This suggests that the effects of the emotional deception used
in this study were limited. Emotional deception was designed
to be low in this study. It was argued that deception is not
a binary value but a spectrum with different gradients, and
emotional deception in this study was intended to be low, to
find a baseline for acceptable emotive robot behavior. Constructs
of the acceptance and perception questionnaires were used to
investigate whether emotional deception occurred and how it
impacted participants. However, even though it was anticipated
that potential effects would decrease over time, indicating that the
robot would be perceived as less of a social entity over time, this
was not found in the results. During the interview, participants
were asked whether they found the robot emotionally deceptive.
21% of the participants indeed thought it was deceptive, where
the other 79% did not. It is interesting that all participants that
thought the robot was deceptive scored medium or high on
attachment. It is possible that these participants thought of the
robot more as a social entity than the participants that scored
low on attachment and did not think the robot was deceptive
as they perceived it as a tool. The participants that did think the
robot was deceptive reported they thought it was acceptable as
otherwise it would not be pleasant to interact with. As reported
in the results, some of these participants were highly attached
to the robot. The risks for vulnerable users are supported by
research from Klamer and Allouch (2010), who also investigated
acceptance of the robot and perception of the social interaction
with the robot. They ran a longitudinal study with participants
with mild cognitive impairments using similar measurements,
but the participants scored higher for nearly all constructs of the
acceptance and deception questionnaires than the participants
from this study. This may be due to different factors like the use
of a different robot and different experiment scenarios. However,
as the participants of the study from Klamer and Allouch (2010)
were more vulnerable due to mild cognitive impairments with
respect to healthy older adults in this study, the additional
risks for vulnerable users should be investigated further. These
findings indicate that even though the effects of emotional
deception appear limited in a didactic setting, deception still
occurs and is therefore an ethical concern in practice as well as
in the literature. Further investigation into additional measures
of perception are necessary before conclusions can be drawn.

5.2. Emotional Attachment
Emotional attachment to the robot ranged from low to medium.
This was expected due to the didactic nature of the interactions.

However, there was no significant change in attachment over
time. This was surprising, as it was hypothesized that attachment
would increase when participants were exposed to the robot
more often. From an ethical point of view, low attachment to
the robot is positive as it suggests that the robot’s behavior did
not elicit attachment and decreases potential ethical risks, at least
for didactic interactions as used in this experiment. However,
no change over time indicates that attachment remains high
for participants that are attached to the robot from the start.
There were two participants who became highly attached to
the robot and remained highly attached to the robot for the
duration of the experiment. These participants are potentially at
risk of experiencing negative consequences of their attachment to
the robot such as over-trusting it, having too high expectations
of it and relying on it too much. Even though there was
not a significant influence of the robot’s emotive behavior on
participants’ overall attachment, the two participants that became
highly attached to the robot were both from the test group and
therefore interacted with the robot showing emotive behavior as
well as non-emotive behavior. As the low number of participants
may be a cause for the absence of a significant difference, this is
something that needs further investigation. However, even with
a low number of participants the findings of this study are still
crucial for the development of ethically safe robots.

Participants’ attachment category significantly influenced the
extent to which the robot was perceived as a social entity and how
much the robot was trusted. This shows that participants with
a higher level of attachment were more likely to be emotionally
deceived by the robot, and may be more at risk of over-trusting
the robot and becoming dependent on it. This is especially
important for older adults that are more vulnerable due to for
example loneliness, as they may become more easily attached to
the robot than other users. Thirteen of the participants in this
study were either married or in a relationship and reported they
did not feel lonely.

No significant influence of participants’ attachment style on
their level of attachment to the robot was found. However, it
is likely that effects of attachment style were not found due
to the small sample size, as almost half of the participants
had a secure attachment style, where it is expected that people
with an insecure attachment style are more vulnerable with
respect to emotional deception and emotional attachment. As
higher levels of attachment provide more ethical concerns to be
aware of, and results from other studies indicated that different
attachment styles require different approaches (Dziergwa et al.,
2018), attachment style should be regarded as a useful metric for
emotional attachment.

During the interview, 36% participants reported they would
miss the robot. This may be an indicator that they became
attached to the robot; however, 50% of these participants scored
low on attachment. A possible explanation for this finding is
that participants would miss the whole social experience and
the novelty of interacting with a robot, and not necessarily the
robot itself. Their willingness to use the robot in the future was
high, with nine of them declaring they would like to use it every
day. These participants also did not think they would get bored
of the robot. Future work will include behavior analysis, speech
synthesis and physiological analyses to investigate whether they

Frontiers in Robotics and AI | www.frontiersin.org 11 January 2020 | Volume 7 | Article 199

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


van Maris et al. Designing Ethical Social Robots

are useful additional metrics for understanding attachment.
Overall, it can be concluded that emotional attachment to the
robot may occur in practice and should be investigated in
more detail.

5.3. Limitations
One drawback of this study was that, whilst every effort was
made to recruit participants for this study, the number of
participants was low. Future studies may want to explore why
there was resistance to participate and whether or not it was
due to the use of robots. However, due to the novelty of this
study and its importance for HRI as a research field the findings
from this experiment are still deemed to be valuable. This low
number of participants and the discrepancy between reported
statements from participants and their replies to the attachment
questionnaire make it hard to draw conclusions from the results.
Future work that includes analyzing participants’ behavior and
their speech prosody data will hopefully provide clarification.
Furthermore, a disadvantage of running field studies is that it is
hard to control the experimental environment. In one retirement
village, the experiment room was small and the experimenter was
located behind the participant, as there was no other place for
the experimenter to be. Even though the experimenter tried to
limit the interactions between themselves and the participants,
it is possible that participants’ answers to the questionnaires
were influenced by their close proximity to, and therefore
bond with the experimenter. Besides that, participants talked
to one another about the experiment and possibly influenced
each other’s opinion of the robot. Additionally, the study was
conducted in an environment where other people were working,
who accidentally interrupted the experiment by walking into the
experiment room. In this study, this happened while participants
were filling in questionnaires, not during interactions with the
robot. Also, even though the experiment was run in the field and
not a laboratory setting, it was still a controlled experiment with
a limited number of interactions. The freedom that participants
had during these interactions was limited, as the interaction was
pre-programmed and although the participants were given the
opportunity to provide some personal input, this was limited and
may have influenced people’s opinion of the robot. This limitation
was introduced deliberately to ensure interactions were as similar
as possible between participants which made it easier to compare
results as all participants would have the same impression of the
robot’s abilities. However, the nature of the interaction (didactic
rather than personal conversations) may possibly have influenced
the results. Lastly, as ethical concerns have not been studied in
real-life settings as much as other aspects, there are few results
to compare this work with which makes it harder to discuss to
what extent the findings can be generalized and how easy it is to
reproduce the study.

6. CONCLUSION

The likelihood of older adults interacting with social robots
is ever increasing (Esposito et al., 2016; Li et al., 2019), and
with it ethical concerns regarding these interactions are raised.
Some of these concerns are emotional deception and emotional

attachment, which have been raised as ethical concerns in the
literature (e.g., Sharkey and Sharkey, 2012; Sullins, 2012; Kolling
et al., 2013). The aims of this study were to establish whether
these concerns are reflected in practice, and investigate what
factors influence these concerns. It was found that both concerns
may arise in practice and therefore need further investigation.
This research is important for HRI as a research field, as it
will help develop robots which comply with the principles of
ethical design. Moreover, as social robots are also used with
vulnerable users like older adults suffering from dementia it is
essential to have guidelines on what human-robot interactions
are ethically safe and acceptable. Even though the number of
participants in this study was low and it is difficult to draw
clear conclusions from the findings, this work does provide
useful insights into conducting longitudinal field studies and
specific directions for future research. Lastly, knowing to what
extent ethical concerns raised in the literature have an impact
in practice is essential for HRI development as -important as
they are- ethical considerations can limit the deployment of these
technologies. Speculation about the consequences of a technology
can inform research directions, but may carry more weight if
proven through experimental study. Speculation may not only be
a weak discouragement of poor practice, but may also constrain
useful development and study if the worry about a putative ill
proves to be unfounded.

Future socially assistive robots should be ethically safe
to interact with. Therefore, solely using questionnaires to
investigate ethical concerns is a useful starting point to find
trends, but not sufficient for stronger claims regarding these
concerns. Future work will involve finding additional metrics
for emotional attachment, analysis of people’s behavior through
video recordings and speech patterns, and analyzing people’s
physiological reactions to the robot’s behavior. Once the
boundaries for emotive robot behavior with respect to emotional
deception and emotional attachment are clear for didactic
interactions, the guidelines can be extended to apply to other
settings with more personal human-robot interactions.
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As social robots continue to show promise as assistive technologies, the exploration

of appropriate and impactful robot behaviors is key to their eventual success. Teens

are a unique population given their vulnerability to stress leading to both mental and

physical illness. Much of teen stress stems from school, making the school environment

an ideal location for a stress reducing technology. The goal of this mixed-methods

study was to understand teens’ operation of, and responsiveness to, a robot only

capable of movement compared to a robot only capable of speech. Stemming from a

human-centered approach, we introduce a Participatory Wizard of Oz (PWoz) interaction

method that engaged teens as operators, users, and witnesses in a uniquely transparent

interaction. In this paper, we illustrate the use of the PWoz interaction method as well as

how it helps identify engaging robot interactions. Using this technique, we present results

from a study with 62 teens that includes details of the complexity of teen stress and a

significant reduction in negative attitudes toward robots after interactions. We analyzed

the teens’ interactions with both the verbal and non-verbal robots and identified strong

themes of (1) authenticity, (2) empathy, (3) emotional engagement, and (4) imperfection

creates connection. Finally, we reflect on the benefits and limitations of the PWoz

method and our study to identify next steps toward the design and development of our

social robot.

Keywords: social robots, participatory, adolescence, empathy, Wizard of Oz, mental health, human-centered

design

1. INTRODUCTION

Teens are now the most stressed age group, with 27% percent of US teens reporting very
high levels of daily stress, and 31% reporting feeling overwhelmed as a result of negative stress
(American Psychological Association, 2014). Increased stress has been shown to lead to depression
(Maughan et al., 2013) and negatively impacts cognitive function that affecting learning (Vogel and
Schwabe, 2016). Many schools lack the resources (time and personnel) to implement and maintain
school-based mental health programs (Eiraldi et al., 2015).

Social robots have the potential to improve mental health, especially in teens. Given
that teens’ lives are mediated through a variety of digital technologies, using a digital
device to support them may be contextually appropriate. To address the mental health
challenges of teens, Project EMAR (Ecological Momentary Assessment Robot) aims to develop
a social robot for teens that will be stationed at schools to gather accurate momentary
data about teen stress and provide micro-interventions to reduce stress. We used a
participatory design approach, involving teens in all research and design activities and decisions.
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In the last 3 years, our research team has conducted a number
of exploratory high school visits, a social robot design challenge
with 7 participating high schools (Rose et al., 2019), and several
participatory design and interaction studies that were all in
the wild at schools (Rose and Björling, 2017; Björling et al.,
2018). Our current investigation involves teens as co-researchers
and co-designers to help us explore (1) differences between
movement-only and speech-only robot interactions and (2)
appropriate robot responsiveness to teen stressors. The goal of
conducting this study was to explore both movement and speech
behaviors to inform our larger project.

In this paper, we present the results of a study to explore
how teens teleoperate and respond to two distinctly different
robots. One is a soft-bodied, movement robot with no speech
capabilities. The other is an immobile, boxy-robot with speech
capability. First, we provide a background on teen stress, social
robots, and participatory, human-centered design. Second, we
detail the methods of the study and how it was conducted,
including the development of a novel method to investigate
teen and robot interactions called of participatory Wizard of
Oz. Third, we share the findings of the study that explore
the complexity of stress, attitudes about robots, comparison of
two robot prototypes, and the themes from an analysis of teen
engagement with the robot prototypes. Fourth, we discuss the
findings and reflect on how the results of the study can inform
social robot design for teens. We conclude with a discussion on
limitations and next steps.

2. BACKGROUND

2.1. Teen Stress and Mental Health
Eighty-three percent of teens report school as a primary negative
stressor (Thapar et al., 2012; American Psychological Association,
2014). Recent evidence shows the cumulative impact of everyday
sources of negative stress is highly prevalent and impactful
on teens (Hamilton et al., 2016). Although positive stress is
experienced by adolescents and appears to benefit their well-
being (Branson et al., 2019), chronic negative stress is a known
risk factor for both physical and mental health problems (Juster
et al., 2010) as often stressful life events precede the onset of
adolescent depression (Mazurka et al., 2016). The developing
adolescent brain makes adolescents especially vulnerable to the
cumulative insults of chronic stress (McEwen and Morrison,
2013). A nationwide survey of high school students in the
United States found that 16% of students reported that they were
seriously considering suicide, 13% reported creating a plan, and
8% reporting trying to take their own life in the 12 months
preceding the survey. Adolescents also exhibit the highest rates
of self-harm, including attempted suicide (Ting et al., 2012).

Effective, school-based stress reduction interventions for
adolescents exist. The Mindfulness-Based Stress Reduction
program for teens has been shown to reduce teen stress and
decrease the possibility of mental health problems (Biegel et al.,
2014; Edwards et al., 2014). In addition, cognitive behavioral
and dialectical behavioral school-based therapy programs have
both been successful at reducing stress and incidence of
depression (Werner-Seidler et al., 2017). However, most school-
based interventions are cost-prohibitive and require significant

commitment of staff and student time, which is not possible
for many schools, especially those that are under-resourced
(Eiraldi et al., 2015). Therefore, designing assistive technologies
to support teens in reducing stress can result in increased access
to necessary mental health tools.

Technologies designed and aimed to reduce stress and
improve mental health do exist. Chatbots such as Woebot
(Gabriels, 2019) and Vivibot (Greer et al., 2019) have been shown
effective in reducing anxiety and depression in adults. And,
although a chatbot has been successful in smoking cessation for
adolescents (Simon et al., 2019), a large review of chatbots for
mental health concluded more reserach is needed to understand
the true effect on mental health and none of the chat agents
were focussed specifically on stress reduction (Abd-alrazaq et al.,
2019).

2.2. Assistive Social Robots
Social robots provide a variety of benefits and can assist
humans by fulfilling unmet needs (Feil-Seifer andMataric, 2005).
Social robots have been suggested as an appropriate tool for
mental health applications, providing therapeutic and assessment
capabilities in a variety of populations (Breazeal, 2011) including
those that are vulnerable (Kim et al., 2013). Several robots
have shown promise in terms of therapeutic interventions.
For example, the social robot Therabot (Duckworth et al.,
2015) is an animated dog designed to support those who have
survived trauma and experience feelings of being overwhelmed.
Additionally, Paro (Wada et al., 2005) is a plush seal designed
for seniors in assisted living environments to reduce stress and
stimulate interaction.

Social robots have also been designed specifically for their
therapeutic effect for children. Researchers have identified the
importance of empathy in social robot interactions with children
(Leite et al., 2012; Giannopulu et al., 2018). Social robots
have been highly effective for increasing social interactions and
communication for children with autism (Fernaeus et al., 2010;
Scassellati et al., 2012; Kim et al., 2013). In addition, social
robots have been shown to reduce anxiety in children who
are hospitalized (Jeong, 2017; Logan et al., 2019). Little work
has specifically explored the relationship between teens and
social robots.

The design of a social robot to specifically help measure and
address teen stress, is a timely expansion of the application of
social robots with potential for significant benefits. Project EMAR
is an interdisciplinary project using human-centered design to
develop a social robot to capture stress andmood data from teens
while providing a micro-intervention to relieve stress. EMAR
is designed to live in a school setting and collect aggregate,
anonymous data and be a tool for teens to better understand and
manage their stress, see Björling et al. (2018) for more detail.

2.3. Participatory, Human-Centered Design
With Teens
In designing and developing social robots, our project uses
human-centered design (HCD), an approach to developing
technology that focuses on people and their needs throughout
the design process, defined by ISO 9241-210:2010(E). It is a
process with a philosophical commitment to upholding human
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dignity and human rights (Buchanan, 2001; Walton, 2016).
Within HCD, this project employs participatory design methods
to engage participants (Schuler and Namioka, 1993) which is an
appropriate way to engage vulnerable populations such as teens.

While the methods for this study are detailed further in
the methods section below, we differentiate our approach from
other common approaches to designing social robots. First, the
research in this study is conducted in the wild, rather than in
a lab. Lab studies can not adequately account for the open-
ended encounters that happen between people and robots that are
context-dependent (Šabanović et al., 2006). Studies in HRI often
privilege the technological capabilities of robots over important
factors such as social context and needs of a diverse group of users
or stakeholders (Šabanović et al., 2014).

A variety of methods are appropriate for engaging people in
design in the wild. Each of these methods have strengths and
weaknesses. Contextual inquiry (Beyer and Holtzblatt, 1998) is
a method where the researcher engages in detailed observation
and interviewing in the context where a product or design
will be used, in the wild. This method places the researchers
in an apprentice relationship and privileges the expertise and
perspective of the target user. However, while this method is well
suited to gaining an understanding of how existing processes and
procedures, specifically in work settings are completed, it is less
appropriate for groups of people, engaging in loosely structured
interactions with novel technologies in a social setting. Further,
ethnography is a helpful method for understanding a culture or
group of people as a way to inform design (Millen, 2000; Olson
and Kellogg, 2014). Ethnography is helpful to understand the use
and adoption of novel technologies, including social robots, over
time (Forlizzi, 2007; Sabelli et al., 2011). However, ethnography is
not always an appropriate method choice when designing new or
novel technologies that are not fully functional and still require
formative feedback and iteration.

Given our participatory approach, we were primarily
interested in choosing methods that specifically engaged teens
as collaborators in both the research and design process. Other
methods that recognize the expertise of users, include the
approach of Ladner (2015) to design for user empowerment
which calls on the HCI community to build infrastructure and
design opportunities to promote the ability for more people to be
engaged during the end to end process of design. As he states,
“In design for user empowerment, users develop the project,
design the requirements and features, develop the prototypes,
test the prototypes, and analyze the results of testing to refine
the design” (p. 27). Engaging people throughout design in a
meaningful and fully engaged way can create more appropriate
design solutions.

Other approaches that engage users in the design of social
robots that comes closer to Ladner’s vision, includes the
technique of body storming, where one person role plays being
a robot in order to explore design ideas, interactions, and
scripts (Oulasvirta et al., 2003). An additional method that
includes even more interactivity from this type of role-play is
the Wizard of Oz technique, a common approach for simulating
the functionality of design (Kelley, 1984) where an operator

simulates key features of a technology. The challenge of the
Wizard of Oz approach is that it often includes deception
and is not transparent about what aspects of the technology
are simulated or functional. The Wizard of Oz technique has
not been explored extensively in participatory design, with
the exception of one study asking participants to create their
own gestural interfaces using the Wizard of Oz technique
(Akers, 2006).

Participatory Design (PD) has been used in other contexts
to develop social robots. Many robotics projects start with a
technological stance or intervention, whereas PD starts with
an aggregation and analysis of the concerns of a community
or group. Members of that group become active in the design
process throughout the project. Designs are synthesized from
that stand point rather than exclusively gathering feedback on
existing designs (Rodil et al., 2018). PD invites participants to
use their experiences and bring “their lifeworlds through their
design” (DiSalvo et al., 2008; Rodil et al., 2018) and engage
in “critical engagements” that can reveal and question existing
beliefs about technology (DiSalvo et al., 2008).

3. STUDY DESIGN: EXPLORING
DIFFERENT TYPES OF ROBOTS DURING
TEEN-ROBOT INTERACTION

The long term goal of our research is to design and develop a
social robot that can capture and aggregate data about perceived
adolescent stress in schools and offer interventions to help to
reduce teen stress. In the past 3 years, we have gathered input
from teens to inform the design using a number of different
methods. In this paper, we focus on the context of teenagers
talking to the robot (in free form) to share details of what stresses
them (e.g., an upsetting interaction or an upcoming exam). Our
goal was to better understand how the robot should behave
such that users feel heard. In particular, we sought to gather
input about different embodiments (section 3.2) and understand
parameters of robot behaviors (how it should move, what it
should say) to give the sense of being heard. In the following
section, we describe our method for gathering data from teens
in the wild (i.e., at schools), describe the procedure we followed,
and enumerate the types of data we gathered.

3.1. Participatory Wizard of Oz Method
While the advantages of observing human-robot interactions
in the wild are clear, the researchers’ ability to do so is
often limited by the availability of social robot platforms that
allow rapid prototyping of robust interactions. To address this
challenge and take full advantage of conducting studies in the
wild with teen participation, we developed a new method that
extends the Wizard of Oz technique. Our method, which we
call Participatory Wizard of Oz, involved removing the typical
deception of the WoZ method where a researcher operated
the robot without the participant’s awareness. Similar to the
suggested framework of Druin (2002) where child participants
were placed in multiple roles, e.g., user, tester, informant, or
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FIGURE 1 | Illustration of the Participatory Wizard of Oz in the Wild Method used in our research. Wizards control robot behavior, users directly interact with the robot,

and witnesses observe user-robot interaction.

design partner, our Participatory WoZ (PWoZ) method was fully
transparent with the following characteristics:

• Research was conducted in the wild (in situ).
• Participants were the creators of interaction content.
• Participants were wizards of the robot.
• Participants were users of the robot.
• Participants were witnesses to the robot interaction.

The characteristics are illustrated in Figure 1 and described in
more detail below.

3.1.1. In the Wild
Conducting research “in the wild” is critical to the goal of
developing a social robot that will ultimately be implemented
in schools and will require continued engagement from teens in
order to have an impact on helping them cope with stress. Having
teens interact with our robot prototype in the same context in
which the robot will be implemented, enabled them to consider
environmental contexts that may not be evident in a lab setting.
Further, maintaining ecological validity (Oulasvirta et al., 2003;
Carter et al., 2008), greatly strengthened our data stemming
from this PWoZ method. Unlike laboratory studies, our study
embraces the numerous, uncontrollable variables that exist in
the wild. We allow for freedom of choice, the influence of social
factors and interactions, and real world distractions. We utilized
real-world spaces to conduct our studies in the wild (e.g., flexible
spaces and classrooms). In addition, researchers stepped out of
the way during interactions and were often not visible, making
the interactions even more contextually valid. Finally, studying
the interaction in context gave us the opportunity to study how
the interaction might be perceived by observers.

3.1.2. Four Participant Roles
In this method, participants played all the key roles in the
social interaction, and provided data about their experience of
each role including (1) content creators, (2) robot operators
(Wizards), (3) robot users, and (4) interaction witnesses. By
asking participants to fulfill each of these roles, researchers

primarily became facilitators of the method, rather than, wizards
or witnesses, therefore allowing teens to be more naturalistic
in their group interactions. Researchers set up the study and
provided an overview, but faded into the background of the
research context as teens design and drove the interactions.

In this method, teens participated in the research in multiple
capacities providing design input and feedback from different
perspectives. Wizard participants provided input about how
they thought the robot should behave by controlling the
robot’s actions, such as what the robot said, what facial
expression it displayed, or how it moved in reaction to the
user’s story. User participants directly interacted with the robot
prototype demonstrating how the interaction unfolded and
gaining first hand experience about how the interaction felt.
Witness participants observed the interaction from a third
person perspective. After experiencing the interaction from three
different perspectives, participants in all three roles provided
feedback about the robot’s behavior in the interaction (chosen by
the wizard participant) as well as attributes (e.g., size, material,
look) and capabilities (e.g., voice, range of motion) of the robot.

This method combined advantages of many alternative
methods discussed in section 2.3: (1) in the wild, (2) low fidelity
prototype (like WoZ), (3) significant involvement of teens in
multiple roles. One clear distinction of this method from the
traditional Wizard of Oz method was that the user participants
who interacted with the robot were not under the impression
that the robot is operating autonomously. Teens were fully aware
that the robot was controlled by their peer, making the experience
more teen-centric.

3.2. Robot Platforms
Our prior research with teens resulted in a number of design
requirements, but due to the variability we observed in teens’
preferences we had not yet fully committed to a particular robot
platform. In this work, we explored the use of two different robot
platforms, both with high degrees of customizability. Given we
wanted to explore the functions of speech and movement, the
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FIGURE 2 | The two robot platforms used in our studies. (Left) EMAR V4 and the browser-based control interface for making the robot speak and changing its facial

expression. (Right) Blossom and the mobile phone interface for controlling the robot’s pose and movement.

TABLE 1 | Participant ages and grade levels.

School n Age (m) Grade (m)

1 23 17.61 11.96

2 20 16.07 11.96

3 14 16.25 10.58

4 5 17.00 11.00

robots were chosen given their specific functionalities (speech
or movement) and limitations (lack of speech or movement). In
addition, both of these platforms had simple and intuitive control
interfaces, which was key to enabling our research method in
which teens take the role of wizard to control the robot. The two
platforms and their control interfaces are shown in Figure 2.

EMAR V4 is a social robot designed for facial expression and
speech communication. It has a box-like structure based upon
previous design requirements from teens (Björling et al., 2018).
It has two Nexus 7 tablets encased in a soft felt body. One tablet
is used as the robot’s face, which is a web application running on
a browser on the tablet. The face has two eyes that blink and its
facial expression can be changed. This tablet is also used to make
the robot speak using the browser’s text-to-speech capability. The
other tablet is located at the robot’s belly and is intended as an
input/output touchscreen for communication with the user.

The robot’s actions are controlled through another browser-
based “Wizard of Oz” interface. In this study, the primary
way in which the robot responded to the user was through
speech. The control interface has a small number of buttons
corresponding to simple pre-specified utterances (e.g., “I see,”
“That sucks”) that the wizard can trigger in response to the
user’s utterances. The interface also includes a free form text
box that the wizard can type in what they want the robot
to say. In addition to making the robot speak, the wizard
had control over what facial expression the robot displayed
(neutral, happy, sad) and where the robot looked (center, up,
down, left, right, randomized). Components of the robot (two
tablets) and the control interface communicated through a
real-time database. The robot can be customized in different

ways such as changing features of the face, using shells of
different size, color, or material, and dressing the robot with
additional accessories.

Blossom is a soft-bodied, flexible robot with a crocheted outer
shell and a 3 degrees of freedom inner mechanism (Suguitan
and Hoffman, 2018). The robot has no facial expression or
speech capabilities and therefore represents movement as its only
response. The mechanism allows the robot to rotate around the
vertical axis (pan) and bend its neck down in any direction (tilt).

Blossom is teleoperated in real time using a smartphone
with a gyroscope and magnetoscope. The pan/tilt angles of the
smartphone determined by these sensors are directly mapped
to the robot’s neck pan-tilt angles. This is done in a tight loop
that enables continuous motions of the robot to be transformed
into continuous robot motions such as nodding or shaking the
robot’s head.

4. METHODS

4.1. Sample
The study was conducted in four Pacific Northwest urban,
public high schools. Teens were recruited from a physics class,
a computer science class, an after school STEM club, and a Girls
Who Code club. Participants were asked demographic questions
including age, grade, and self-reported gender and ethnicity.
No identifying information (names or contact information)
was gathered. We captured data from 62 teens between the
ages of 14 and 18 (M = 16.77) and in grades 9–12 (M
= 11.13), see Table 1. Twenty-four females, 32 males, and
5 teens who identified as non-binary, participated in our
interaction study. Teens were invited to self-identify their
ethnicity in an open question. See Figure 3 for a summary of
reported ethnicities.

4.2. Instruments
4.2.1. Negative Stress
It was important to understand teens’ stress levels. Therefore,
self-reported stress reflecting on the past month was captured
using the Perceived Stress Scale (Cohen and Williamson, 1988)
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as part of our intake questionnaire. The PSS is a 10-item
questionnaire that measures the degree to which situations in
one’s life are appraised as stressful.

4.2.2. Robot Attitudes
In order to capture teens’ beliefs about robots, participants
completed a slightly modified, 10-item version of the Negative
Attitudes Toward Robots Scale (NARS) (Nomura et al.,
2006). NARS has been used in many experiments to evaluate
participant attitudes toward many kind of robots. It consists of
three subscales:

S1: Negative Attitude toward Situations and Interaction with
Robots (6 items).
S2: Negative Attitude toward Social Influence of Robots
(5 items).
S3: Negative Attitude toward Emotions in Interaction with
Robots (3 items).

To make NARS appropriate for teenagers we removed questions
that were written from an adult’s perspective, such as “I am afraid
that robots may negatively influence children’s mind” (S2) and
“I feel anxiety when I imagine that I may be employed and

FIGURE 3 | Self-reported ethnicities of our non-white participants (n = 22).

assigned to a workplace where robots should be used” (S1). We
retained all of S3 as we were most interested in teen’s attitudes
related to emotions in robot interactions. We also added three
new items related sharing data with robots and the general role
of robots (Q8–Q10 in Table 2). We used the standard NARS 5-
point Likert scale from Strongly Disagree (1) to Strongly Agree
(5) for all items.

4.2.3. Interaction Survey
We created a brief survey to capture data from the PWoz
interactions. We asked wizards, users and witnesses to respond
to the survey after each teen-robot interaction activity. The
PWoz survey consisted of a brief 7-point Likert scale in response
ranging from 1 = not at all to 7 = very much to two items
about the interaction for the users and the witnesses. For the
operator, we asked an open-ended question shown below which
led to descriptions regarding how they tried to operate the robot
to show it was listening.

• Operator: How did you try to communicate that the robot was
listening? (open-ended).

• Users: How much do you think the robot was listening to your
stress story? (7-point Likert).

• Witnesses: How much do you think the robot was listening to
the speaker? (7-point Likert).

4.2.4. Exit Interview
The exit interview was a customized, single question prompt with
probes targeted toward concerns teens may have about the robot.
“If a robot were in your school to help with stress, what concerns
might you have?”

4.3. Ethics
The research was reviewed and approved by university Internal
Review Board and school district research review. Students
who were under 18 also obtained parental permission for their
participation in our research study. No personal identifiers
were captured during the study, only study ID numbers were
assigned to identify participants. Photos and videos were taken
for research purposes and parents and teens had the option to

TABLE 2 | Baseline measurement of teen attitudes toward robots.

Question Mean SD

Q1 NARS I would feel uneasy if robots really had emotions. 2.69 1.16

Q2* NARS I would feel relaxed talking with robots. 3.26 1.08

Q3* NARS If robots had emotions, I would be able to make friends with them. 3.23 1.19

Q4* NARS I feel comforted being with robots that have emotions. 2.74 0.981

Q5 NARS I would feel very nervous just standing in front of a robot. 4.02 1.09

Q6 NARS I would feel nervous talking with a robot in front of other people. 3.11 1.24

Q7 NARS I would feel paranoid talking with a robot. 3.54 1.12

Q8* I would trust a robot with my data. 2.57 1.10

Q9* I would feel comfortable sharing my emotional data with a robot. 2.98 1.18

Q10* I think robots can help people. 4.46 0.91

*Indicates reverse coded. There were n = 61 teen participants who completed the attitude survey before participating in robot design activities. Items where most participants selected
“Strongly Disagree” or “Strongly Agree” (reverse coded) are in bold.
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also opt in to give permission for the photos to be used for
social media and research publications. Given the importance
of maintaining trusting relationships with teens (Björling and
Rose, 2019) and their school communities, no deception was
used in our study. In fact, teens were told up front about our
research and our project, our intention for this particular study,
as well as our process of using a participatory, human-centered
design approach. Teens were made aware of how the robots
were programmed and operated. All teens had the option to opt
out of any activity at any time. A few teens refused or forgot
to complete a survey, but all teens engaged in the interactions
and often seemed disappointed when the activity was over. No
personal data (names or contact information) were captured at
any time. Teens were assured their video and interaction data
would be used for research purposes only. Data were stored in
password protected and university approved online database and
were accessible only to the research team.

4.4. Study Procedure
The following section describes the study procedures and data
collected as part of the study.

4.4.1. Introduction to the Study
All studies were conducted in high school classrooms.We arrived
and set up multiple stations including multiple versions of V4
and Blossom with one researcher facilitating the interactions for
each station. Before beginning, we presented an overview of the
project to the whole group as well as provided some background
on the process of human-centered design. Teens were reminded
of the consent process and their option to disengage at any time
during any of the activities.

4.4.2. Questionnaires, Scripts, and Storyboards
Teens completed intake questionnaires (Demographics, NARS,
PSS) and were then divided into pairs to create a stress story
(either a script or a storyboard scenario). Teens collaborated
together to create these materials for use in the study. We
observed that this collaboration was engaging for teens and
elicited a great deal of data as teens worked together to illustrate
their experiences of stress.

4.4.3. Teen-Robot Interaction Activity
After completing stress stories, teens were assigned to groups of
3-4 and were directed to interaction activity stations. The number
of groups was dependent upon the sample at the site which can
be referenced in Table 1. At larger sites (schools 1 and 2), teen
groups were randomly assigned to an interaction station with
either Blossom or V4. At smaller sites (schools 3 and 4), teens
had time to interact with each of the robots.

At their interaction station, teens received a brief overview
of the platform (V4 or Blossom) and how it is controlled.
They chose a role (user, wizard, witness) and were assured they
could alternate roles if desired. The wizard was shown how to
control the platform and decided upon a comfortable position
for operation. The wizard was often visible to the user during
interaction. The user then chose to share their own stress story,
or a script of other stories written by teens. Witnesses were given
seats where they could witness the entire interaction. Once the
teens were ready for their roles, the researcher started video

recording and moved away and observed from a distance to help
the teens to feel comfortable. At the end of the interaction, the
researcher returned and handed each participant the brief PWoZ
questionnaire. Then teens then had the option to change roles
to experience another side of the interaction. All groups were
able to rotate roles at least once, offering each teen at least two
different roles.

4.4.4. Wrap Up and Group Interviews
After the teen-robot interaction activities, the group came back
together to complete a final NARS questionnaire. All data were
collected and then teens were broken into groups of 4–7 for a
group interview. During the group interview, researchers asked
questions about their experience and opinions of the robots.
Finally, the teens were offered a chance to ask any questions about
the study or the robots and given robot stickers as a thank you for
their time.

4.5. Analysis
Both the NARS and the PSS data were reverse coded
appropriately and then scored. Descriptive analysis was used to
explore total scores and individual items. Statistical normality
tests were performed. In addition, a repeated measures t-test in
SPSS, version 24 was used to detect any differences in the pre
and post NARS total or individual items. A one-way ANOVAwas
used to explore differences in both the NARS and PSS in relation
to grade, age, or gender. Likert scale responses from interaction
witnesses and users were analyzed using independent samples t-
tests to determine any differences between the two robots, EMAR
V4 and Blossom.

Exit interviews, storyboards, video interaction data, and open
ended responses from wizards were explored qualitatively using
a collaborative, applied thematic analysis (Guest et al., 2011).
The team of four authors divided data sources by study site
and began with review and immersion into the raw data. Using
the method of open coding and extraction of salient excerpts,
the team made an effort to maintain the context of extracted
quotations. The team used the collaborative, online Miro.com
(Miro, 2019) site to capture data excerpts including video clips,
text and images. The team then met to explore all of the extracted
data, the associated context, and preliminary, emergent codes.
Through this discussion, substantive themes were collaboratively
identified and documented along with their associated evidence.
Each author then used a priori coding method on the data again
to explore further confirmation of existing themes.

5. FINDINGS

5.1. Complexity of Stress
Given our larger project’s aim to design a robot appropriate to
both gather stress data, while providing a micro intervention, it
is important to capture the general stress level of our teen co-
designers. As has been found previously (Björling and Singh,
2017; Björling et al., 2019), the teens in this particular study had
high to very high stress levels as indicated by the Perceived Stress
Scale (PSS) instrument. As mentioned in the instrumentation
section, the PSS is a retrospective self-report referencing the
individual’s past month. These data allow us to understand the
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FIGURE 4 | Gender differences in participant mean stress scores.

current context in which our participants are interacting with
the robots. The participants’ mean stress score of 23.16 (SD
6.67) was much higher than the PSS published norm (m =

14.2). Nineteen percent of teens (n = 12) scored at the low
stress level, 67.7% (n = 42) scored at the moderate level, and
9.7% (n = 6) scored at the high level. Stress scores did not
significantly differ by age or grade, although they were higher
for teens in 11th grade. See Figure 4 for more detail. However,
PSS scores were higher for females (m = 21.09), compared to
males (m = 17.76), and significantly higher for participants
who identified as non-binary/fluid (m = 23.25) [F = 3.321 (df
= 2) p = 0.043]. However, it is important to note that that
the non-binary/fluid group was very small consisting of only
five participants.

Stress was a ubiquitous experience among all the teens
in the study. They had no trouble illustrating stress stories
or storyboards depicting their recent or common experiences
of stress. Teen stories of stress typically illustrated academic
stress, commonly related to grades, test scores, or college.
Their stress stories illustrated the breadth of their stressors
including, relationships, financial worries, and feeling alone.
As one teen stress story illustrated, “I just feel like nobody
cares about my problems” [Group activity, School 1]. Stress
stories included experiences of feeling pressure from teachers,
coaches and parents, e.g., “The pressure Ted had been
receiving from his father figure was dampening his whole
life.” [Group storyboard, School 1] Teen stress stories also
illustrated the experience of competing priorities, typically
described as academic and extracurricular (sports) or paid
work. For example, “Sam feels super stressed knowing he has
to study for all of his tests while juggling the rest of his
life. He has sports practice each day and doesn’t know how
he’ll be able to make everything work” [Group storyboard,
School 1].

Finally, some outliers were illustrated in the teen stress
stories including the articulation of being stressed about a “sexist
teacher” and not knowing how to handle the situation. “There is a
very sexist teacher named X at school, but when Hank confronts

him, he implies that Hank is stupid. . .Hank doesn’t know what to
do” [Group storyboard, School 1].

Teens also shared reasoning for why they are not sharing
their stressors with friends and family. One female teen stated,
“I know I should be able to talk to people, but I don’t want
to disappoint anyone” [Group storyboard, School 1]. Another
male teen verbally expressed that it is often difficult to talk about
stressors with friends and family as often they are part of what is
creating stress [Group interview, School 1].

5.2. Attitudes Toward Robots
Total NARS scores (m = 32.61) were not significantly different
by age. However, similar to the stress scores, the NARS scores
did differ significantly by gender with the highest mean score
reported by participants who identified as non-binary/fluid (m=

38.5) followed bymales (m= 33.3), and then females (m= 30.70)
[F = 3.35 (df = 2), p= 0.042]. As far as items on the NARS, most
teens strongly disagreed with feeling nervous about standing in
front of a robot or talking to a robot. They also felt strongly that
robots could help people. See Table 2 for more detail.

After the teens interacted with the robots in our study as
wizards, users, and witnesses, their overall negative attitude
scores decreased significantly. Forty-seven participants fully
completed all 10 items of the NARS before and after interacting
with or operating robots. Significant differences were found
including: (1) decreased uneasiness in talking to robots, (2)
increased comfort with robots who have emotions, (3) and
increased belief that robots can help people. Strongly scored
items at intake such as disagreement with the statement about
feeling paranoid talking with a robot, and nervousness standing
in front of a robot remained stable. See Table 3 for more detail.

5.3. Comparing EMAR V4 Blossom
A key intention of our study was to explore differences between
teen responsiveness to a non-moving, verbal robot (EMAR V4)
and a moveable, non-verbal robot (Blossom). However, from
our post-interaction surveys with witnesses and users showed no
significant differences for EMAR V4 or Blossom. However, on
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TABLE 3 | Participant change in NARS item.

Paired differences n m (diff) SD SE t df Sig. (2-tailed)

Uneasy 49 −0.469 0.915 0.131 −3.59 48 0.001

Relaxed 49 −0.18367 1.01393 0.14485 −1.268 48 0.211

Friends 49 −0.16327 0.74574 0.10653 1.533 48 0.132

Comforted 49 −0.26531 0.83605 0.11944 −2.221 48 0.031

Nervous Standing 49 −0.224 0.985 0.141 −1.596 48 0.117

Nervous Talking 49 0.102 1.388 0.198 0.515 48 0.609

Paranoid 48 −0.083 0.986 0.142 −0.586 47 0.561

Trust 49 0.12245 0.9494 0.13563 0.903 48 0.371

Sharing Emotion 48 −0.16667 1.01758 0.14687 −1.135 47 0.262

Robots Help 49 −0.32653 0.94401 0.13486 −2.421 48 0.019

NARS Total 47 −1.382979 3.892876 0.567834 −2.436 48 0.019

Statistically significant items are in bold.

FIGURE 5 | Post-interaction survey responses comparing EMAR V4 and blossom.

TABLE 4 | V4 Operator verbal responses and associated outcomes.

Theme School Operator utterance Outcome User response

1. Advice 4 “That’s too bad, you should try to study a bit more

next time.”

Disengagement “Thanks robot, I didn’t really need

advice.”

2. Suggestion 1 “Go listen to some music.” Connection “Okay. Thanks robot.”

3. Empathy: Active 4 “People do care, I care.” Emotional Connection Touches heart and says, “Thank

you. Thanks for hearing me out.”

4. Empathy: Passive 4 “That sucks.” Emotional Connection “Yeah, it does.”

5. Humor 1 “I have to deal with miserable kids like you day after

day. They should really give me AI so I can help you.”

Engagement Lots of laughter, connection to

robot.

6. Inquiry 3 “Why do you think that was so hard for you?” Engagement Further discussion / articulation.

7. Reassurance 2 “I am sure everything is going to be okay.” Emotional Connection Sigh, “Thank you.”

all item responses, participants reported EMAR V4 responses as
slightly higher than Blossom. See Figure 5 for more detail.

5.4. Categorizing Wizard Responses and
Associated Outcomes
In an overall analysis of all teen-robot interactions including V4
and Blossom, there were several distinguishable categories related

to how teens operated the robots. From these interactions, we
identified specific responses that led to increased engagement and
those that led to disengagement.

5.4.1. V4—Verbal Responses
Teen wizards of V4 had the opportunity to type what V4 said
in response to the user’s stress. Some of the wizard’s responses
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FIGURE 6 | Blossom operator behaviors and associated responses.

were very successful at creating engagement or a connection
with the user and others were not. For a summary of detailed
verbal response themes, see Table 4. In almost every example,
offering advice to the user led to disengagement, whereas offering
an empathic response led to an emotional connection between
the teen and the robot. Teens also seemed to greatly appreciate
humorous responses and these often led the user to connect to
both the robot and the wizard.

5.4.2. Blossom—Movement Responses
Teen wizards of Blossom had the opportunity to use movement
as a form of responsiveness to the user’s story of stress. Figure 6
illustrates the six main categories of wizard responses and their
associated outcomes. Most teens intuitively used a head tilt, or
gentle head turning to convey listening or empathy. Rapid head
movement with a downward nod, similar to head shaking, was
often used to convey disbelief or understanding in relation to
a user’s stress. Occasionally, teens turned Blossom’s head away
from the user (sometimes unintentionally) which often signaled
looking at witnesses for confirmation. Surprisingly, even when
Blossom’s movements were not in line with a typical human
response, rarely was there any disengagement with the user or
the witnesses.

5.5. Teen-Robot Interactions
Through the data sources: teen stress stories, open-ended wizard
surveys, and interaction video data, we observed teens as
operators and the effect their operation had on the users’
interaction with the robots. As operators, teens attempted
to conduct the robot in an appropriate manner and one
that would resonate with their peers. In our analysis of the
interactions that occurred as a result of teens operating the
two different robots, four key themes emerged: (1) Authenticity,
(2) Empathy, (3) Emotional Engagement and (4) Imperfection
Creates Connection. These themes were supported by multiple
pieces of data captured in our interaction study.

FIGURE 7 | Examples of the Heartfelt theme expressed by users during an

emotional interaction with the robot. (A) Male participant interacting with

Blossom. (B) Female participant interacting with EMAR.

5.5.1. Authentic Operators
Authenticity appeared numerous times in reviewing the open-
ended survey and interview data from teens who had operated
EMAR V4 and Blossom robots. We saw several examples of
teens articulating their attempts to be “real” or “authentic”
in their operation of the robot and even in their responses
to the robots. One operator of EMAR V4 said, “I tried to
say things that I would say to my friend and say things that
seemed genuine” (Group interview, School 3). Authenticity also
appeared before we had conducted any robot interactions. At
our first study site (School 1), we had crafted scripts for the
users to read to read the robot in the event they did not want
to share their own stress story. Although based in teen data,
these scripts were written by our research team. Two teens
immediately commented in the margins on the script about our
manufactured scripts. One noted, “This is now just making fun
of stress rather than dealing with it.” Therefore, we iterated on
the method and immediately asked teens to write the actual
scripts, verbatim, to use for future interactions. Apparently these
teen-written scripts seemed authentic as we never again received
negative feedback.
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5.5.2. Operating for Empathy
Teen operators were asked to try to make the user feel heard
during the interaction. Many teens described attempting to
operate the robot in an “empathetic” or “sympathetic” manner.
One teen reported, “I was trying to be empathetic, I wish there
was more preloaded conversations” [P151, Operator survey,
School 4]. As users, teens also expressed feeling empathy from
the robot, “The robot didn’t say anything, but the movements
showed it cared” [P74, Operator survey, School 2]. Overall teens
seemed genuinely interested in showing empathy through the
robot which often led to an emotional response from the users
and witnesses.

5.5.3. Emotional Engagement
The manner in which the teens operated the robots often led
to an emotional response from the teen user and sometimes
the witnesses.

As users, many of the teens felt the robots cared about them.
Throughout participant interactions with the V4 and Blossom
robots, our research team observed participants exhibiting
engaged facial expressions, body behavior, and verbal responses.
We considered the highest level of engagement to be the
combination of all three response types. We witnessed on
multiple occasions the “heartfelt” gesture which combined a
smile (facial expression), hand across the chest (body behavior),
and “Aww. . . ” verbal response (Figure 7).

Teens often made strong eye contact (Figure 8A) during
conversation with the robots. At times, they looked for cues of
responsiveness from others (especially in relation to Blossom)
before continuing their story. Teens also from time to time
touched the robot, not typically during interaction, but in-
between interactions or when an interaction was completed
(Figure 8B). Many times a users’ response to the robot was
laughter and engagement (Figure 8C).

Teens also used social referencing (Figure 8D) in response to
a particularly salient moment in the robot interaction. During
social referencing a teen looks for another teen to acknowledge
their experience in that moment. Teens often did this when
the robot said something funny, surprising, or truly empathetic.
Witnesses were important participants in the interaction. During
the study, witnesses were often part of the collective response to
the interactions between the wizards and the users interacting
with the robot. Witnesses often had similar reactions to the
person interacting with the robot. For example, when the wizard
had the robot say or do something empathetic, the witnesses
would also respond in a similar way to the user interacting the

robot. For example, when an operator said “That sucks” in a
response to a teens stress story, the witnesses laughed along
with the user having the interaction. Further, we observed the
witnesses glancing and making eye contact with one another
during the robot interactions.

5.5.4. Imperfection Creates Connection
When a novice operator commanded a robot, human error
became a part of the human-robot interaction. An EMAR V4
operator would press the return key multiple times and a phrase
would be repeated by the robot. A Blossom operator would turn
the mobile phone controller too far, causing the robot to spin
completely around. These unintended actions, resulting from
operator “error” caused unexpected outputs, but interestingly
evoked strong engagement (often a response of smiling and
laughter) in the user and the witnesses.

In one example, a study participant in the operator role
submitted a command to have V4 say, “Wow.” V4 executed the
command and spoke out loud, “Wow, wow, wow, wow.” This
caused smiling and laughter with all three study participants:
the operator, user, and witness. Instead of evoking frustration
or irritation from any of the teens involved, they seemed to
genuinely enjoy the operator, and thereby robot, imperfections.
One might expect that after multiple errors, teens would become
frustrated or disengaged, but the opposite seemed to be true in
many cases.

Finally, in an exit interview a male participant described
Blossom, “I feel like it has a little personality. The way it moves.
. . . even it being a little hard to control makes it seems a little
bit real” [Group interview, School 1]. In this example the link
between imperfection and realness, suggests that being real or
authentic is good and that being fallible is part of that realness.

6. DISCUSSION

The breadth of physiological and cognitive responses to robots
is challenging to observe without entering more bias into
the system. Responses are dynamic, conscious or unconscious,
microscopic or macroscopic, and often differ from expressed
attitudes. This is why we structured our study to gather
attitudinal and behavioral data from multiple viewpoints.

Teens enjoyed participating in this method and found it
engaging. And although we found no significant difference
between Blossom and V4 measures post-interaction, we did find
measurable reduction on the Negative Attitudes Scale, likely
resulting from robot interaction.

FIGURE 8 | Examples of the emotional responses teens had during robot interaction. Eye contact (A), physical contact (B), laughing (C), social referenceing (D).
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6.1. Authenticity and Imperfection
We repeatedly saw teens attempt to be genuine and authentic
operators as well as strong emotional responses from users in
both types of interaction. The importance of authenticity for
teens is not a new concept (Ullman, 1987; Chessick, 1996). More
recently, authenticity has been found an important component
in teen health education (Grabowski and Rasmussen, 2014), the
success of older teens in college (Lenz et al., 2016), and has been
shown to be an integral component of successful mental health
counseling for teens (Holliman and Foster, 2016). So it should
be no surprise that teens attempted and appreciated authentic
behavior authentic behavior, even through the use of a social
robot agent.

Robot imperfection has also been studied previously. Mirnig
et al. (2017) purposefully programmed faulty behavior into a
robot’s interaction in order to understand the impact of faults
on likability. They found participants preferred the faulty robot
interaction significantly more than the flawless interaction. They
also showed that shifts in gaze and laughter are typical human
reactions to unexpected and imperfect robot behavior. This is
very similar to what we saw in our teen-robot interactions.

The teens desire for authenticity, discussed above, might
also explain why teen imperfection during robot operation
increased engagement and human to human connection during
the interactions. Mistakes are human and therefore, reveal the
authentic behaviors of humans.

6.2. Active Listening
“It could move. . . it felt more like it was actively listening to you”
[P154, School 4].

We identified that successful teen-robot interactions, ones that
gained a positive response and strengthened engagement, often
included components of active listening. Active listening is an
empathetic and therapeutic human to human interaction focused
on reflection and empathetic expressions described by Carl
Rogers a psychotherapist (Rogers and Farson, 1957). Rogers felt
that when people are fully listened to, rather than given advice, or
asked to think differently, they can hear themselves more clearly,
thus bringing about emotional maturity. The powerful human to
human engagement of active listening was the impetus for the
first chatbot, Eliza (Rzepka and Araki, 2015) and perhaps a reason
that the Eliza program became so engaging for users.

Findings from our study point to the importance of non-
verbal and verbal signs of active listening in the human-
robot relationship. In the case of non-verbal communication,
study participants displayed the strongest emotional connection
with the robot when smiling, laughing, and making direct eye
contact. These non-verbal communications could be reflected
or mirrored by a robot as a sign of attentive listening in future
versions of EMAR.

6.3. Human to Human Connections
Finally, it is worth noting that in the design and development
of our social robot, we have heard concerns from adults
(researchers, teachers and colleagues) about the downside of
creating a digital agent that teens find truly engaging. The
concern raised is often that the robot engagement will mimic that

of cell phones and social media which have been suggested as
addictive and potentially leading to poor mental health in teens
(Twenge, 2019). The main concerns raised by adults about our
social robot is that as teens increasingly engage with a digital
device, they will further disconnect with the humans in their lives.
However, during this interaction study, we see quite the opposite
effect. Just as the teen-robot engagement is strong, so are the teen-
teen connections during robot interactions. Teens use of social
referencing to connect with other teens during interactions and
to seek out teen-teen engagement during teen-robot interactions
is reassuring that a social robot may be encouraging human-
human interaction. This also has been studied in HRI research
(Wada et al., 2005; Kim et al., 2013). Finally, teens chose to engage
with the robot operator during this study, suggesting that they
see through the robot to the operator and can connect with both
agents simultaneously. Given that the robot is being designed
for a public space and will be interacting with groups of teens,
paying attention to the collective responses of the witnesses and
the resulting group interactions helps to better understand the
communal interaction.

6.4. Reflections on the Participatory Wizard
of Oz Method
Due to our desire to collect data from the study that was
congruent with a human-centered design and participatory
approach, we developed a new method of Participatory Wizard
of Oz (PWoz). This method has a variety of benefits for collecting
data and also some limitations.

In terms of conducting a study, PWoZ offers benefits for
participants. First, it provides a level of ecological validity by
having the teens themselves develop the scripts and operate
the robots for the study. Their actions and choices provide the
primary direction and data for the study. Further, making both
the constraints and limitations of the robot makes the technology
more transparent. The low fidelity nature of the robots are
revealed to the participants in the study providing amore realistic
impression of the technological capability of the robots, which is
quite modest. It both refuses to over promise the ability for social
robots to function completely autonomously and also reveals
the limitations of the data collected. Second, it provides a more
authentic interaction between teens and robots. As evidenced
of the teen scripts and the ability to operate the robots, which
is more authentic than the adults taking part in the study
and making assuming or presupposing what interactions teens
might want or find to be authentic. Third, students were highly
engaged, and described their participation as fun and enjoyable.
The interaction added more humanness into the prospect of
designing a robot. Exposing teens to the design of social robots
and concepts related to human centered design are promising to
engage more young people in STEM related activities and could
potential stoke future interest.

In addition to the enjoyable experience of being in the study,
in the study, this method provides rich and layered data to inform
the design of robots.We used 360◦ cameras to capture the activity
of all the participants in the study: Wizards, users, andWitnesses.
This method gives us as much data about the users and witnesses
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as it does about the Witnesses who are watching the interaction.
Further, we can see this data in real time and simultaneously. The
layered aspect to this data allows the team to look at the different
view points of the interactions. Finally, this approach allows for
input from users earlier in the design process, it does not require
a fully functional or autonomous robot to get direction from end
users about a whole host of considerations for design.

While there were a variety of significant benefits to using
this method, there were also limitations to consider and adapt
to in the future. There are clear technical limitations given the
inability to control the interaction, possibly resulting in a less
systematic exploration of possible robot behaviors. Further, this
method eliminates the illusion of interacting with an autonomous
robot, thus making it difficult to determine how interactions may
change once the robot is autonomous.

Implementing this method also proved challenging. First,
the tone and directions need to be clearly communicated to
participants. We felt fortunate in this study that teens were
engaged, cooperative, and interested. This was in part due to
the relationship building and partnerships with schools, teachers,
and advisors that we had established over time.We could imagine
that another group that had not been primed or was less socially
connected might pose challenges in having an effective data
collection session. Numerous challenges exist when designing
and testing social robots in the wild. As discussed by Šabanović
et al. (2014) difficulties measuring interactions are compounded
by our naturalistic environment, but did offer access to a situated,
real-world user experience. Another challenge to doing PWoz in
the wild is that each group and each location can provide different
challenges. Given that the study was conducted in 4 different
locations, sometimes the constraints in each location lead to
changes or adjustments in the set up. Finally, while the scripts
were written by teens and contained details that were authentic
and based on teens experience of their lives, the process of
reading them aloud to channel a specific emotion was somewhat
artificial. The participants in the study were willing to do this but
often did it in a playful way, it was still a simulation. Overall, we
found the method to be a promising way to engage teens in the
design of a social robot and plan to continue to implement and
refine it in future studies.

7. LIMITATIONS AND NEXT STEPS

We chose to conduct all of our studies in the wild (school settings)
in order to maintain ecological validity, however, this also meant
that many factors were out of our control. For instance, students’

operation of or responsiveness to the robot could have been

heavily moderated by the room they were in, or the students
in their group, as they were self-selected. In addition, our

sample was fairly homogeneous given our geographic location

and thus, it is important to consider similar studies in other
locations, e.g., rural. There may also be cultural aspects (school
culture and ethnic cultures) that have influenced our data or
how we perceive our data. therefore, continuing to diversify our
participant sample and our research team is important. Finally,
the teens were greatly limited by the prototype technology and

had we presented them with a more robust device, they may have
had very different experiences. Teens also did not havemuch time
to become comfortable with the device and the devices were very
novel. Both of these factors likely influenced our data and need to
be taken into consideration.

8. CONCLUSION

Using social robots to help teens address stress is a promising
application. In this study, we privileged the experiences and
voices of teens through human-centered design and participatory
design to learn more about their needs and preferences for
interactions with a social robot prototype. While there were
no significant differences between the two social robots that
teens interacted with, the rich data collected through the PWoZ
method lead to a variety of insights about teens’ desires for robots
to be authentic, imperfect, and active listeners.
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Šabanović, S., Reeder, S. M., and Kechavarzi, B. (2014). Designing robots in the

wild: in situ prototype evaluation for a break management robot. J. Hum. Robot

Interact. 3, 70–88. doi: 10.5898/JHRI.3.1.Sabanovic

Sabelli, A. M., Kanda, T., and Hagita, N. (2011). “A conversational robot in an

elderly care center: an ethnographic study,” inHuman-Robot Interaction (HRI),

2011 6th ACM/IEEE International Conference on (Lausanne: IEEE), 37–44.

Scassellati, B., Admoni, H., and Matarić, M. (2012). Robots for
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Social engagement is a key indicator of an individual’s socio-emotional and cognitive

states. For a child with Autism Spectrum Disorder (ASD), this serves as an important

factor in assessing the quality of the interactions and interventions. So far, qualitative

measures of social engagement have been used extensively in research and in practice,

but a reliable, objective, and quantitative measure is yet to be widely accepted and

utilized. In this paper, we present our work on the development of a framework for the

automated measurement of social engagement in children with ASD that can be utilized

in real-world settings for the long-term clinical monitoring of a child’s social behaviors

as well as for the evaluation of the intervention methods being used. We present a

computational modeling approach to derive the social engagement metric based on a

user study with children between the ages of 4 and 12 years. The study was conducted

within a child-robot interaction setting that targets sensory processing skills in children.

We collected video, audio and motion-tracking data from the subjects and used them

to generate personalized models of social engagement by training a multi-channel and

multi-layer convolutional neural network. We then evaluated the performance of this

network by comparing it with traditional classifiers and assessed its limitations, followed

by discussions on the next steps toward finding a comprehensive and accurate metric

for social engagement in ASD.

Keywords: computational model, personalization, social engagement, autism spectrum disorder, convolutional

neural network

INTRODUCTION

Social engagement of a child is an indicator of his/her socioemotional and cognitive states. It is
the interaction of a child with the environment in a contextually appropriate manner and reflects
a complex internal state that signifies the occupation of the child with a person or a task. Much of
the research so far has relied on the perceptual evaluation of engagement, utilizing questionnaires
and behavioral assessments administered by trained professionals, which typically attempt to
identify key behavioral traits that serve as important indicators of social engagement. Automatic
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quantification of engagement is still limited but can allow not
only for an objective interpretation of engagement and the
contributing target behaviors, but also help to identify methods
to improve engagement in different settings, especially when
targeting a specific health condition. Therefore, it serves both as
an outcome measure and as an objective measure of the quality
of an activity, interaction, or intervention (Kishida and Kemp,
2006).

Social engagement has often been reported to be particularly
deficient in children with Autism Spectrum Disorder (ASD).
ASD is a neurodevelopmental disorder that causes significant
impairment in three broad areas of functioning: communication,
social interaction, and restricted and repetitive behaviors
(American Psychiatric Association., 2013). This means that
children interact with their peers infrequently, thus preventing
the formation of lasting and meaningful social relationships
and resulting in social withdrawal. These children often feel
isolated from or rejected by peers and are more likely to develop
behavioral problems (Ollendick et al., 1992) as well as anxiety and
depression (Tantam, 2000; Bellini, 2006).

Behavioral and physiological cues can provide insight into
the engagement state of a child, with gestures, subtle body
language changes, facial expressions, vocal behaviors, and various
physiological signals, all carrying significant indications of a
child’s level of interest and engagement in an interaction. Eye
gaze focus, smiling, vocalizations, joint-attention, imitation,
self-initiated interactions, and triadic interactions are among
the important behavioral cues that can be utilized to assess
engagement (Tiegerman and Primavera, 1982, 1984; Wimpory
et al., 2000; Nadel, 2002; Ingersoll, 2008; Stanton et al., 2008;
Katagiri et al., 2010; Sanefuji and Ohgami, 2011; Tapus et al.,
2012; Slaughter andOng, 2014; Dubey et al., 2015; Contaldo et al.,
2016). Heart rate, electrodermal activity, electrocardiography,
electromyography, blood pressure etc. are among the key
physiological indicators of engagement state (Kushki et al., 2012;
Lahiri et al., 2012; Hernandez et al., 2014). A combination of these
multi-modal behavioral and physiological features can present a
comprehensive feature set for effective engagement evaluation.

A major hurdle in the path toward automated measurement
of social engagement is of the identification and classification of
these key behaviors. While it may be a simple task for trained
professionals to identify these high-level behaviors and infer a
fairly accurate engagement state from real-time observations of
a child’s interactions, it remains a considerable challenge for the
state-of-the-art algorithms and machines. Instead, the current
technologies are better equipped to extract lower-level behaviors
that can be used as a rough estimation of the target behaviors.

This paper presents our first step toward an automated
quantifiable measure of social engagement derived from
behavioral data collected from two groups of children, one
typically developing (TD) and one with ASD. Research from our
team thus far has focused on child-robot interaction scenarios
that target several ASD symptoms, including sensory processing
(Javed et al., 2019), imitation (Bevill et al., 2017), emotion
recognition and emotion regulation skills (Javed et al., 2018).
In these studies, we collected multi-modal interaction data,
including video and audio recordings, as well as motion tracking

data. The overall goal of our work is to develop a framework
for personalized child-robot interactions for ASD. To this end,
our framework aims to (1) sense important features of a child’s
interaction with a robot, (2) interpret and derive meaningful
deductions about a child’s engagement in the interaction, (3)
identify target behaviors that may be lacking in the detected
interaction pattern, (4) reassess the current robot behavior
strategy and modulate it to elicit a higher level of engagement
from the child. This paper focuses on step 2 of the above approach
by processing the multimodal behavioral data collected from this
study through a deep learning-based multi-label classification
model in order to contribute toward deriving an automated
measure of social engagement.

This paper is organized as follows. Section Related Work
discusses the previous studies that have designed methods to
formulate an automated measure of social engagement. Section
Interaction Scenario Design describes the child-robot interaction
scenario we used in this study. Sections Multimodal Data
Collection and Extracting Ground Truth present the modalities
of the data we collected during our experiments and the methods
we employed to label these data. Sections Feature Extraction and
Network Architecture discuss our feature extraction methods
and design of our convolutional neural network for multi-label
classification. Sections User Study, Results, and Comparison with
Other Machine Learning Classifiersdescribe the user study, its
results and a comparison of the proposed network with other
classical algorithms. Section Discussion presents a discussion on
these findings while Section Conclusion concludes this paper
with comments on the future work.

RELATED WORK

Several studies in the past have contributed to this area of
research with each method typically varying in terms of the
feature set, number of engagement classes and computational
model that were used, as well as the demographics of the
participants from whom the data were collected. Rajagopalan
et al. (2015) showed the feasibility of utilizing low-level
behavioral features in the absence of accurate high-level features,
and used a two-stage approach to first find hidden structures in
the data (using Hidden Conditional Random Fields) and then
learn them through a Support Vector Machine (SVM). Only
head pose orientation estimates were used to assess engagement
and the approach was evaluated by conducting experiments
on labeled child interaction data from the Multimodal Dyadic
Behavior Dataset (Rehg et al., 2013), obtaining an accuracy of
around 70%.

Gupta et al. (2016) designed an engagement prediction system
that utilized only the prosodic features of a child’s speech as
observed during a structured interaction between a child and
a psychologist involving several tasks from the Rapid ABC
database. Three engagement classes and two levels of prosodic
features (local for short-term and global for task-wide patterns)
were defined. The system achieved an unweighted average recall
of 55.8%, where the best classification results were obtained
by using an SVM that utilized both categories of the prosodic
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features. Another study by Lala et al. (2017) used several verbal
and non-verbal behavioral features, including nodding, eye gaze,
laughing and verbal backchannels. The authors collected their
own dataset comprising audio and video recordings based on
conversational scenarios between a human user and a humanoid
robot, while human annotators provided labels to establish
ground truth. A Bayesian binary classifier was used to classify the
user as engaged or not engaged and obtained an AUC (area under
the precision-recall curve) score of 0.62.

A study from Castellano et al. (2009) used both behavioral
features from the user (gaze focus and smiling) and contextual
information from the activity in order to train a Bayesian
classifier to detect engagement in users for a child-robot
interaction scenario. The labels generated from human coding
were based only on the two user behaviors. The authors reported
only a slight improvement in the classifier recognition rate when
using both behavioral and contextual features (94.79%) vs. when
only behavioral features were utilized (93.75%), highlighting the
key importance of the behavioral information.

Kim et al. (2016) investigated the use of vocal/acoustic
features in determining child engagement in group interaction
scenarios. The annotation scheme involves the giving and
receiving of attention from other group members. They used
a combination of ordinal regression and ranking with SVM
to detect engagement in children and found this technique
to outperform classification, simple regression and rule-based
approaches. Such a system may be acceptable to use with
typically-developing children, but since children with ASD may
often be non-verbal and/or shy or unwilling to communicate
using speech/vocalizations, the exclusive use of acoustic features
may not be suited to research involving the ASD population.

Another study from Parekh et al. (2018) developed a video
system for measuring engagement in patients with dementia,
which uses deep-learning based computer vision algorithms to
evaluate their engagement in an activity to provide behavior
analytics based on facial expression and gaze analysis. Ground
truth was extracted through scoring performed by human
annotators by classifying engagement states in terms of attention
and attitude. The video system presented in this study was
exclusively tested with elderly patients with dementia who were
required to participate in a digital interaction while seated
directly in front of the camera. Additionally, since only facial
expressions and gaze features were utilized, the proximity of the
participants to the camera was important, hence, limiting their
physical movements.

Oertel and Salvi (2013) studied the relation between group
involvement and individual engagement using several features
of eye gaze patterns defined as presence, entropy, symmetry and
maxgaze. They utilized the Stockholm Werewolf Corpus, which
is a video dataset of participants engaging in a game that involved
the use of speech and eye gaze. Once again, since only eye gaze
patterns were used as features to train a classifier, participants
were required to remain seated in front of the cameras.

A study that specifically tested their system on the ASD
population was from Anzalone et al. (2015) that used a
combination of static (focus of attention, head stability and body
posture stability) and dynamic (joint attention, synchrony, and
imitation) metrics within two distinct use cases including one

where the robot attempts to learn the colors in its environment
with the help of a human, and another that elicits joint
attention from participating children with ASD. The features
were extracted using histogram heatmaps and clustered using the
K-means algorithm.

In Rudovic et al. (2018) also targeted the automated
measurement of engagement for ASD children with multimodal
data collection including features from video (facial expressions,
head movements, body movements, poses, and gestures), audio,
and physiological (heart rate, electrodermal activity, and heart
rate) data. The child-robot interaction setting involved an
emotion recognition activity with a humanoid robot that
required children to be seated in front of the robot (Rudovic et al.,
2017). Participating children belonged to one of two cultures
(Eatsern European and Asian) and the cultural differences were
also taken into account during engagement estimation. The
authors generated ground truth through expert human labelers
who marked changes in engagement on a 0–5 Likert scale that
is based on the different levels of prompting required from
the therapist during the interaction with the robot. In fact, in
this work, child engagement is considered to be a function of
task-driven behavioral engagement and affective engagement.

Despite the overlap, this approach is significantly different
from the one proposed in this paper in several ways. Firstly,
we define engagement as a function of several key behavioral
indicators that provide an insight into an individual’s internal
engagement state (Javed et al., 2019), which generates a novel
measure to estimate social engagement state i.e., the engagement
index. Additionally, our methods do not restrict the movement
of the subjects by requiring them to be seated in front of
a camera or a robot, and the interaction design allows for
free, naturalistic movement in order to closely resemble real-
world social settings as opposed to other restrictive experimental
approaches. Importantly, this approach toward engagement
estimation can be easily generalized to any child, with or without
ASD, and to a variety of different, interactive experimental
settings that may or may not involve a robot.

The work described in this paper presents a social engagement
prediction system for children. It utilizes a combination of
features extracted from facial expressions and upper bodymotion
tracking data to train a deep convolutional neural network that
can then classify the engagement state of a child.We intentionally
designed the experiments to not be strictly structured in order
to encourage naturalistic and unguided child-robot interactions
during data collection that impose no restrictions on the
movement of a child. The nature of the features used in our
approach allow for independence of interaction context and can
easily be extended to a variety of scenarios within laboratory
or home settings. In addition, a unique engagement model is
obtained for every individual participant to ensure personalized
interaction with the robot, giving it potential to be used as an
intervention tool for ASD.

INTERACTION SCENARIO DESIGN

For this work, we used socially assistive robots to design a
child-robot interaction that targeted the sensory processing
difficulties in ASD, as detailed in our previous work (Javed
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et al., 2019). In this pedagogical setting, two different mobile
robots were used to model socially acceptable responses to
potentially overwhelming sensory stimulation that a child is
likely to encounter in everyday experiences. The humanoid
robot, Robotis Mini (from Robotis) and the iPod-based robot,
Romo (from Romotive) both had their unique set of capabilities.
While Mini used gestures and speech to communicate, Romo
relied mostly on its large set of emotional expressions and
some movements.

A maze-like setup consisting of a station for each of the
visual, auditory, olfactory, gustatory, tactile and vestibular senses
was used, as shown in Figure 1. Though one of the goals
of the interaction was to leverage the relationship between a
robot and a child with ASD, as established by a plethora of
previous research (Dautenhahn and Werry, 2004; Scassellati,
2007; Diehl et al., 2012; Cabibihan et al., 2013), the focus
of this work (Javed et al., 2019) was to assess the potential
of this setup as a tool to socially engage children with ASD

and to use the collected data to contribute toward deriving
an automated measure of social engagement. Each sensory
station simulated an everyday experience, such as encountering
bright lights at the Seeing station, loud music at the Hearing
station, scented flowers at the Smelling station, different food
items at the Tasting station, materials with different textures
at the Touching station and summersaulting to celebrate at the
vestibular station (Figure 2). These scenarios were chosen to
incorporate everyday stimulation that all children experience
in uncontrolled environments like malls, playgrounds, cinemas
etc. and in the activities of daily living such as eating meals
and dressing. This interaction was designed to be highly
interactive and engaging, and required the child to participate
actively by answering questions from the robots, following
their instructions, and “helping” them complete the maze.
Details of this study, including the nature of interaction
between the children and the robots, can be found in
Javed et al. (2019).

FIGURE 1 | Station setup for the sensory maze game (the child’s photo rights reserved).

FIGURE 2 | The two robots at each sensory station, adapted from Javed et al. (2019).
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FIGURE 3 | Upper body and facial keypoints generated by OpenPose.

MULTIMODAL DATA COLLECTION

A high-quality measure for social engagement estimation must
take into account all behavioral and physiological cues that can
serve as quantifiers of social motivation and social interaction.
As discussed in Section Introduction, a number of behavioral
traits and physiological signals can be used effectively to this end.
However, when designing an interaction for autistic children,
their unique needs and sensitivities must be taken into account.
For this study, this meant that only non-contact sensors could
be used in order to limit tactile disturbances to the children and
enable free movement to allow for naturalistic interaction. The
combination of sensors also needed to provide a wholistic and
accurate representation of a child’s engagement changes over the
length of the interaction.

We collected video recordings of the child-robot interactions
with a camcorder placed in one corner of the room, which
was repositioned by an instructor as the child moved during
the interaction. From these recordings, we were able to extract
audio data as well as 2-D motion tracking data with the
OpenPose library (Cao et al., 2017). While OpenPose provides
full body motion tracking (Figure 3), we were only able to
utilize upper body data since the chosen experimental setting
meant that children were often standing in front of the
table that hosted the maze setup, preventing a full-body view
from being captured. In addition, OpenPose also allowed for
the extraction of facial expression datapoints from the same
video data.

EXTRACTING GROUND TRUTH

Unlike some of the previous studies described in Section Related
Work, we did not use any existing video datasets to test our
methods. Since our goal was to derive an engagement measure
specific to the interactions that we designed for children with
ASD, we opted to test our methods on the relatively limited
data available from our user study. To extract ground truth
for a child’s engagement in the interaction with the robots,
we defined six target behaviors that have been found to be
key behavioral indicators of social engagement (Tiegerman and
Primavera, 1982, 1984; Wimpory et al., 2000; Nadel, 2002;

Ingersoll, 2008; Stanton et al., 2008; Katagiri et al., 2010; Sanefuji
and Ohgami, 2011; Tapus et al., 2012; Slaughter and Ong, 2014;
Dubey et al., 2015; Contaldo et al., 2016). These included eye gaze
focus, vocalizations, smiling, self-initiated interactions, triadic
interactions and imitation.

Three raters then coded these videos using the Behavioral
Observation Research Interactive Software (BORIS) (Friard and
Gamba, 2016) to annotate the start and stop times of each target
behavior as it was identified in the video recordings. An inter-
coder correlation (ICC) score of 0.8752 ± 0.145 was achieved
for the 18 participants, which was used to evaluate the quality of
the annotations. Details of the evaluation criteria are reported in
Javed et al. (2019).

An eye gaze event was tagged each time the child’s gaze moved
to the robots or the setup and stopped when the gaze focus
was lost. Vocalizations comprised of any verbal expression from
the child, including but not limited to a shriek of excitement
while interacting with the robots or the utterance of words
to communicate sentiments or queries regarding the robots.
Smiling recorded all events where a child was observed to
visibly express joy in the form of a smile or laugh. Self-
initiated interactions involved all interactions with the robots
or setup that are initiated by the child. Triadic interactions
comprised of an interaction where a child voluntarily involved
a third entity in the interaction with the robot, such as sharing
their excitement with the parent. Lastly, imitations included
all events of voluntary imitation the robot’s actions by the
child. An in-depth report on the inclusion criteria of the target
behaviors, their significance and annotations in video data can be
found in Javed et al. (2019).

Based on these annotations, multiple analytics were derived
to quantify the social engagement with respect to each robot
and target behavior, and across stations to obtain a fine-grained
analysis of the child’s interaction preferences (Javed et al., 2019).
However, for the current work, we have only used the raw
time series data of every child’s changing engagement state
as determined by the chosen target behaviors. These overall
engagement changes are shown in Figure 4, along with the
subplots of each contributing key behavior.

Therefore, each instance of time was mapped to an
engagement state. Every behavior contributed a factor of 1/6

Frontiers in Robotics and AI | www.frontiersin.org 5 April 2020 | Volume 7 | Article 43122

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Javed et al. Automated Social Engagement Measure in ASD

FIGURE 4 | Plots depicting changes in the overall engagement level of a child during an interaction, along with subplots of the target behaviors contributing to this

engagement, adapted from Javed et al. (2019).

to the engagement value, thus resulting in a metric with seven
distinct values that ranged from 0 (no target behavior observed)
to 1 (all target behaviors observed).

FEATURE EXTRACTION

An ideal automated engagement measure in this case would
incorporate all of the above behaviors, but also necessitates the
automated classification of these behaviors. This is no trivial task,
and involves contributions from multiple disciplines including
computer vision, speech analysis and machine learning. As a
part of a more practical approach that is fitting of a first
step toward the derivation of an automated measure of social
engagement in ASD, we decided to extract low-level behavioral
components from our video data as indicators of engagement in
the interactions with the robots. For this purpose, we utilized
the 2D body tracking and facial expression data generated by
OpenPose (Cao et al., 2017).

Using the body tracking data, we derived three new features
based on Laban Movement Analysis (LMA), a method for
describing and interpreting all types of human movement (Groff,
1995) used frequently in a variety of fields including dance,

acting, music, and physical therapy etc. LMA categorizes all
body movements into the categories of body effort, space and
shape. Out of the four categories, effort represents the dynamics
of human movement and provides an insight into the subtle
characteristics of movements with respect to inner intention.
This makes it an important feature to use in studies involving
the estimation of affect, intention, and engagement states. Effort
itself is classified into space, weight and time, which are the
three features that we incorporated in our current work. Space
represents the area taken up over the course of a movement,
weight indicates the power or impact of movement, and time
conveys the speed of an action, including a sense of urgency or a
lack thereof in a movement. The equations (Masuda et al., 2009;
Wakayama et al., 2010) for each of these features are as shown
in Table 1.

OpenPose generates 50 keypoints for skeletal tracking as
described in Cao et al. (2017). In addition to the skeletal data,
we also recorded facial keypoints to incorporate the changes in
a child’s facial expressions in our feature set. Figure 5 [taken
from CMU Perceptual-Computing-Lab (2019)] depicts these
datapoints. While a total of 69 facial keypoints is available, we
only used the lip and eye keypoints shown on the right. Including
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the x and y coordinates for each of the 34 facial keypoints and
the three Laban features derived from the upper body skeletal
keypoints created a total of 71 features in the dataset. A moving
window of 1 s, i.e., 30 frames, was used to compute the Laban
features in order to incorporate the sequential nature of the
movement data. A 1 second interval was chosen to capture
meaningful, yet rapidly changing movement patterns in response
to the actions of the robot during the child-robot interaction.
The number of available datapoints per participant depended
on the length of interaction of each participant and ranged
between 9,300 and 30,508 datapoints. Further details are listed
in Table 3.

TABLE 1 | Equations for the derived Laban features adopted from Masuda et al.

(2009) and Wakayama et al. (2010).
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L = Distance between joints

i = Joint number
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where i = Joint number

ω̇i= Angular velocity for joint i

NETWORK ARCHITECTURE

We used a multi-channel and multi-layer convolutional neural
network (CNN) for this temporal multi-label classification
problem. The network was composed of two Conv1D layers to
identify temporal data patterns (with 5 channels with 64 and 128
filters, respectively, and a kernel size of 3 with 20% dropout) and
three dense layers for classification [kernel sizes 256, 256, and
7 (number of output labels: value ranges of engagement level)].
This is illustrated in more detail in Figure 6. A 10-fold cross-
validation (train/test split of 0.8/0.2) was used for every subject’s
individual dataset and optimization was performed using the
Adam optimizer.

The two Conv1D layers are meant to extract high-level
features from the temporal data since the dataset being used
has a high input dimension and a relatively small number of
datapoints. Since the data have a non-linear structure, the first
two dense layers are used to spread the feature dimension,
whereas the last one generates the output dimension. The
dropout layers are used to avoid overfitting.

USER STUDY

We conducted a user study with a total of 18 children, 13 TD and
5 with ASD between the ages of 4 and 12 years who participated
in a one-time interaction with our robots within the setting of a
sensory maze game. The average age of the TD group was 7.07±
2.56 years and that of the ASD group was 8.2 ± 1.10 years. The
TD group consisted of 5 females and 8 males, whereas the ASD
group was composed of all male participants. These details are
presented in Table 2.

The participants were allowed to participate for the entire
course of the interaction as designed with the two robots, one
after another. The data presented in this study is for one-time
interactions between each subject and the robots. The length
of the interaction for each participant is listed in Table 2. The
average TD interaction length was 464.92 s whereas that of the

FIGURE 5 | Illustrations of the skeletal and facial keypoints extracted by OpenPose (CMU Perceptual-Computing-Lab, 2019) (permission acquired from the author for

using these images with citation).
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FIGURE 6 | Architecture of the CNN used for multi-label classification.

ASD group was 620 s. Individual engagement prediction models
were generated for each participant and their performances
were evaluated.

RESULTS

Table 3 presents the detailed results produced by training,
validation and testing our network for every subject in the study.
The length of interaction is important and provides an insight
into the number of video frames, and hence, the datapoints that
would be available to the network. The datapoint count is also
affected by the processing performed by OpenPose, which can
drop some frames where processing could not be completed. This
is particularly evident in the case of participant 6 and 12, where
the number of available datapoints are far fewer than expected.

Before presenting the results, it must be highlighted that the
metrics shown in this work are all weighted metrics, so as to
address the impact of the imbalance in engagement level samples
within the dataset. The network has an average accuracy of 0.7985
for the TD group and 0.8061 for the ASD group in the training
stage. For the test data, the performance remains steady with an
average accuracy of 0.7767 for the ASD group and 0.7918 for the
TD group. These details are shown in Table 4.

Figure 7 depicts the accuracy and loss plots for training and
validation data for a participant from each group illustrating
the changes in accuracy with respect to the number of
epochs. Figure 8 shows the timeseries plots of the changing
engagement states for the participants. The red line shows
the true engagement as determined by the annotations (Javed
et al., 2019). Predictions made by the network are marked
in blue. Since the dataset was randomly partitioned into test
and training data, the predictions on the test set appear as
a scatter plot.

In addition to the individual models described above, we
also trained a group model for each of the two groups by
using all the datapoints collected from the participants from
each group. The ASD classifier was able to achieve a training

TABLE 2 | Demographic details of the subjects.

ID Age Gender Group

1 10 M TD

2 4 F TD

3 5 F TD

4 11 F TD

5 9 M TD

6 10 F TD

7 9 M TD

8 5 M TD

9 5 F TD

10 5 M TD

11 5 M TD

12 5 M TD

13 9 M TD

14 7 M ASD

15 8 M ASD

16 10 M ASD

17 8 M ASD

18 8 M ASD

accuracy of 0.6389 and a test accuracy of 0.6524, while the
TD classifier achieved a slightly higher training accuracy of
0.6733 and a test accuracy of 0.6803. The slightly superior
performance of the classifiers on the test data as opposed to
the training data can be attributed to the use of regularization
techniques used when constructing the classifier structure, in
this case, the Dropout layers, which are only applied during the
training phase.

We also trained a combined classifier on the data collected
from all the participants. This model underperformed slightly
compared to the group-specific classifiers, indicating that a
group-specific classifier may be better suited for generalization
to all participants within the group rather than a single classifier
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TABLE 3 | Performance metrics for the individual classifiers (TD Group: ID1–ID13, ASD Group: ID14–ID18).

ID Interaction length (s) No. of datapoints (frames) Train Validation Test

Accuracy Loss Accuracy Loss Accuracy

1 315 9,444 0.8101 0.5028 0.7790 0.6681 0.7946

2 519 15,357 0.6499 0.7278 0.6398 0.7797 0.6393

3 540 16,412 0.6703 0.8723 0.6407 1.0095 0.6526

4 658 10,933 0.8302 0.4189 0.8131 0.4923 0.8240

5 797 22,996 0.9255 0.1903 0.9198 0.2484 0.9159

6 696 9,300 0.9200 0.2850 0.8925 0.3856 0.9124

7 316 9,388 0.7821 0.5423 0.7417 0.7946 0.7338

8 457 13,725 0.7561 0.6065 0.7418 0.6796 0.7483

9 574 10,463 0.6671 0.8486 0.6535 0.9333 0.6364

10 780 16,627 0.9104 0.2253 0.8831 0.3907 0.8698

11 726 12,726 0.8390 0.3843 0.8303 0.4039 0.8283

12 685 9,723 0.8118 0.5162 0.7715 0.6980 0.7720

13 540 12,879 0.8084 0.4296 0.7812 0.5858 0.7702

14 517 15,502 0.8163 0.4417 0.7952 0.5621 0.7907

15 578 14,624 0.9204 0.2276 0.8923 0.3390 0.9108

16 679 15,950 0.6810 0.7582 0.6501 0.9095 0.6398

17 610 16,401 0.8306 0.3946 0.8232 0.4923 0.8366

18 1058 30,508 0.7822 0.5467 0.7759 0.6323 0.7812

FIGURE 7 | Classifier accuracy and loss with respect to the number of epochs for two different participants.
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FIGURE 8 | Plots showing the ground truth labels in red and the classifier predictions in blue.

TABLE 4 | Average metrics to compare classifier performance.

ID Average interaction

length (s)

Train Validation Test

Accuracy Loss Accuracy Loss Accuracy

TD 584.8 0.7985 0.5038 0.7760 0.6207 0.7767

ASD 688.4 0.8061 0.4738 0.7873 0.5870 0.7918

for all participants (Table 5). Accuracy and loss plots for the
training and validating processes for all three grouped conditions
are shown in Figure 9.

COMPARISON WITH OTHER MACHINE
LEARNING CLASSIFIERS

A number of standard Machine Learning (ML) classifiers were
also trained for all the scenarios described above as a way to
situate the performance of the CNN, which included Support
Vector Classification (SVC), Random Forest (RF), Decision
Trees (DT), and K-Nearest Neighbors (KNN). The reported
metrics were also averaged across all participants to compare the
overall performance of the classifiers. As before, each classifier
was trained and tested on entire group datasets to compare
performance as a generalized group classifier. These results are
shown in Table 6.

After averaging over the metrics for all participants, RF is
seen to have the best performance followed by KNN and CNN,
respectively. A similar trend is seen for grouped classifiers, where
RF once again outperforms all other classifiers in terms of both
the accuracy and the F1 score, followed again by KNN and
CNN, respectively. All classifier performances drop slightly when

TABLE 5 | Performance metrics for group classifiers.

Classifier Train Validation Test

Accuracy Loss Accuracy Loss Accuracy

TD 0.6733 0.8472 0.6800 0.8263 0.6803

ASD 0.6389 0.9320 0.6512 0.8858 0.6524

Combined 0.6733 0.8472 0.6800 0.8263 0.6803

data from the two groups are combined, suggesting that a single
classifier may not be as useful for generalization as a group-
specific classifier.

DISCUSSION

In this work, we propose the use of a Deep Learning
Convolutional Neural Network to model and predict child social
engagement as a part of our larger goal to personalize child-robot
interactions. We utilized key social behaviors as indicators of
engagement in an interaction, which formed the criterion for the
human-generated labels that serves as the ground truth for this
engagement classification approach.

We found that the proposed CNN was able to achieve a
performance that was comparable to the highest performing
classical ML approaches in this work. The RF and KNN classifiers
only slightly outperform the CNN in the case of both individual
classifiers and grouped classifiers. The individual classifiers serve
as personalized engagement prediction networks for the unique
behavioral expressions of each individual participant, whereas the
grouped classifiers were used to evaluate the potential for a single
classifier to generalize the learnt patterns to all the participants
within a group.

Frontiers in Robotics and AI | www.frontiersin.org 10 April 2020 | Volume 7 | Article 43127

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Javed et al. Automated Social Engagement Measure in ASD

FIGURE 9 | Classifier accuracy and loss for training and test datasets for three grouped conditions.
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TABLE 6 | Performance metrics for all classifiers under individual and group conditions.

Classifier

CNN SVC RF DT KNN

ID Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

1 0.79 0.77 0.77 0.72 0.80 0.78 0.77 0.75 0.81 0.79

2 0.64 0.62 0.58 0.55 0.75 0.75 0.65 0.64 0.72 0.71

3 0.65 0.59 0.66 0.55 0.67 0.61 0.65 0.58 0.67 0.61

4 0.82 0.79 0.82 0.76 0.83 0.81 0.82 0.79 0.83 0.81

5 0.92 0.91 0.89 0.87 0.93 0.92 0.90 0.89 0.93 0.93

6 0.91 0.89 0.92 0.90 0.90 0.89 0.91 0.89 0.92 0.90

7 0.73 0.73 0.61 0.59 0.80 0.80 0.72 0.71 0.80 0.80

8 0.75 0.74 0.51 0.47 0.82 0.82 0.66 0.66 0.82 0.81

9 0.64 0.57 0.63 0.56 0.65 0.60 0.63 0.57 0.67 0.61

10 0.87 0.87 0.79 0.77 0.88 0.87 0.82 0.82 0.85 0.85

11 0.77 0.76 0.69 0.65 0.78 0.77 0.72 0.71 0.76 0.74

12 0.83 0.78 0.81 0.74 0.84 0.81 0.82 0.79 0.84 0.80

13 0.77 0.77 0.73 0.69 0.79 0.80 0.77 0.77 0.79 0.80

14 0.79 0.79 0.70 0.69 0.82 0.81 0.73 0.73 0.81 0.81

15 0.91 0.90 0.87 0.83 0.92 0.90 0.90 0.88 0.92 0.91

16 0.64 0.62 0.61 0.57 0.67 0.65 0.62 0.60 0.68 0.66

17 0.84 0.84 0.70 0.69 0.88 0.88 0.76 0.75 0.84 0.84

18 0.78 0.78 0.63 0.60 0.79 0.78 0.61 0.58 0.78 0.78

Average 0.78 0.76 0.72 0.68 0.81 0.79 0.75 0.73 0.80 0.79

TD 0.68 0.65 0.63 0.58 0.74 0.74 0.64 0.61 0.74 0.73

ASD 0.72 0.71 0.60 0.58 0.77 0.76 0.61 0.60 0.76 0.76

Combined 0.65 0.62 0.59 0.54 0.74 0.71 0.60 0.56 0.71 0.71

On the individual level, the CNN was able to attain a best
case accuracy of 0.92 (participant 5) and a worst case accuracy of
0.64 (participant 2). On the other hand, the RF classifier reached
a highest accuracy of 0.93 (participant 5) and lowest accuracy
of 0.65 (participant 9). For the averaged metrics as well as the
groupedmetrics, the RF accuracy is nomore than 2% higher than
that of the CNN.

The individual ASD and TD classifiers were generally found
to achieve a higher accuracy than the single classifier trained
on data from all the participants. This points the possibility
of a generalized group classifier that can be used effectively
to classify social engagement for all the children in each
group while providing a high level of personalization in
the interaction.

The CNN is a complex structure with a large number of
tunable parameters that generally requires much larger datasets
to fully exploit the potential of deep networks. Given the number
of input features, the number of output classes and the size of the
dataset (generated by single session child-robot interactions only)
used in this study, the CNN was able to achieve a performance
comparable to simpler ML classifiers but not exceed them. We
anticipate that as we continue to collect interaction data from
additional participants for a long-term study involving multiple
sessions, the proposed deep learning network will likely become
a more suitable choice for social engagement classification.

It must also be pointed out that in terms of deployment to
a robotic platform, a CNN may also be a more suitable option
since the traditional algorithms require expensive resources when
deployed to mobile platform in real-world applications, whereas
deep learning algorithms can fully take advantage of the scalable
computing platforms with GPUs that have low-cost modules (like
the NVidia Jetson Nano) while retaining the capacity to handle
much larger datasets.

The current work is limited in that it only utilizes single
session data for each participant based on which the classifiers are
trained. Classifier performance is likely to improve as subsequent
sessions are conducted and larger datasets are collected. Another
limitation of this work is that the datasets for the two groups
are unbalanced, with 13 participants in the TD group and only
five in the ASD group generating much larger training dataset for
the TD classifier than ASD. Conducting long-term studies with a
population such as ASD remains a considerable challenge for all
researchers in the field and explains the lack of open multi-modal
datasets to benefit the ASD research community.

Since our focus in this work was to evaluate social engagement
in a naturalistic interaction setting, the video recordings of the
sessions mainly focused on the participant but also included
other members of the research team and/or parent in several
segments of the videos as the child moved around the room
to interact with the robots. OpenPose was chosen to process
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the movements of the participants particularly because it offers
a feature to track multiple persons by assigning each a fixed
ID. In practice, however, this ID assignment was found to lack
reliability, which we discovered by visualizing the participant’s
skeletal tracking data. In addition, we also found that the number
of frames in the input video and the number of frames generated
as output by OpenPose were often inconsistent, contributing to
the loss of data.

It would be interesting to see how the classifier performance
changes over long-term interactions between the children and
robots. Child engagement is likely to vary with continued
exposure to the robots and inclusion of additional temporal
features in the dataset may become important. We also aim
to incorporate additional modalities to our dataset, including
physiological signals like heart rate, electrodermal activity, body
temperature and blood pressure, as well as audio features. For
this complex feature set, we foresee a deep learning network
to be a more suitable classifier choice capable of identifying
patterns relating to different levels of social engagement
in children.

CONCLUSION

In this paper, we presented a multi-label convolutional neural
network classifier to formulate an automated measure of social
engagement for children. To provide a personalized metric that
is the best representation of the unique expression of emotion,
interest and intention of each individual, we trained a separate
classifier for each subject and then evaluated its performance. We
designed the study to ensure the participants were not restricted
in their movements at all in order to closely mimic naturalistic
interactions in the real world. The use of this setting increases
the complexity of data collection and analysis but enables the
generalization of the presented analysis techniques to other
interaction scenarios and populations, which sets this work apart
from other research studies in this domain.
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Research related to regulatory focus theory has shown that the way in which a message

is conveyed can increase the effectiveness of the message. While different research fields

have used this theory, in human-robot interaction (HRI), no real attention has been given

to this theory. In this paper, we investigate it in an in the wild scenario. More specifically,

we are interested in how individuals react when a robot suddenly appears at their office

doors. Will they interact with it or will they ignore it? We report the results from our

experimental study in which the robot approaches 42 individuals. Twenty-nine of them

interacted with the robot, while the others either ignored it or avoided any interaction

with it. The robot displayed two types of behavior (i.e., promotion or prevention). Our

results show that individuals that interacted with a robot that matched their regulatory

focus type interacted with it significantly longer than individuals that did not experience

regulatory fit. Other qualitative results are also reported, together with some reactions

from the participants.

Keywords: HRI, regulatory focus, in the wild, acceptance, social robotics

1. INTRODUCTION

It is a well-known fact since ancient times that people approach pleasure and avoid pain. Looking
at this from a different perspective, we can imagine that people approach or engage in tasks which
they find enjoyable, and avoid tasks or situations which brings them pain, or that they do not find
enjoyable.While not all tasks that individuals have to perform in their every-day working life can be
viewed as only enjoyable or not enjoyable, the question arises at to which strategies will they apply
in order to achieve their goals? In the psychology literature, Higgins (1997) introduces a theory
stating that individuals adopt one of two possible approaches in achieving a goal.

The theory is the Regulatory Focus Theory (RFT) (Higgins, 1997) and the two approaches are:
promotion and prevention. In Crowe and Higgins (1997), the authors characterize promotion
type individuals as individuals that guide their actions toward achieving their goals. Whereas,
prevention type individuals guide their actions in order to avoid failure.

According to Higgins (2000), regulatory fit is defined as an increased motivational intensity
that is experienced when the manner in which an individual engages in an activity sustains his/her
current interests. As an example, in order to successfully pass a course, a promotion type individual
will be more inclined to read supplementary material in order to maximize their results, while
a prevention type individual will be careful to fulfill the minimum course requirements in order
to pass.

Furthermore, it was also shown in Higgins (2000, 2005) that people that experience regulatory
fit, engage more strongly in their current activity. Therefore, it is expected that individuals who
experience regulatory fit will engage for longer in a given task. Moreover, regulatory fit can be used
to effectively change attitudes and behaviors, and to improve the quality of life in interpersonal
conflicts. For instance, regulatory fit and non-verbal cues can be used to increase persuasiveness
(Cesario and Higgins, 2008) (e.g., body gestures, movement speed, or speech rate).
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Robots are more and more present in our every-day lives. As
a result, more research is being carried in which robots play a
social role in human-centric environments. Their roles can be
diverse, ranging from a teacher for children (Tazhigaliyeva et al.,
2016), to personal companion (Breazeal, 2017). By taking into
consideration the regulatory focus theory and the more andmore
social role of robots, we can imagine that robots have the potential
of helping individuals to achieve their goals, to increase their
motivation (Nakagawa et al., 2011; Andrist et al., 2015).

The authors of Faur et al. (2015) have designed artificial agents
based on RFT. They designed a game scenario and have found
that regulatory fit had an effect on the prevention type end-users
(i.e., likability of the game). The RFT was also successfully used
in designing persuasive technologies (Rezai et al., 2017). On the
other hand, a review of the HRI literature has shown that RFT
has not received much attention. The first study using RFT in an
HRI scenario is presented in Cruz-Maya et al. (2017). The authors
have improved the performance of the participants in a Stroop
task, by matching the behavior of the robot with the regulatory
focus type of the participants. The same authors, have continued
to use of RFT in a negotiation type scenario with a humanoid
robot (Cruz-Maya and Tapus, 2018). Their results show that RFT
and regulatory fit can be successfully used in HRI scenarios.

The study presented in this paper is based on the works of
Cruz-Maya et al. (2017), Cruz-Maya and Tapus (2018). Thus, the
purpose of this study is to investigate if RFT can be applied in
an in the wild HRI scenario. Our main research question is RQ:

“How do individuals (based on their RFT type) react when

a robot appears at their doorway to ask them to perform a

short questionnaire?”. By applying different strategies (either
promotion or prevention) we wanted to investigate if individuals
will be more inclined to perform the task. Of interest for this
study is not the answers given to the questionnaire, but if the
participants approached the robot to interact with it or they just
ignored it based on the robot’s behavior and user’s regulatory
focus type (promotion or prevention type).

The paper is structured as follows. Section 2 is dedicated to
the presentation of the interaction scenario, robot navigation,
and robot behavior. The results are presented in section 3, while
section 4 shows a discussion of these results. Lastly, the paper is
concluded in section 5.

2. METHODOLOGY

This study is designed as a 2 (behavior of robot, i.e., promotion
or prevention) × 2 (regulatory focus type of the participants)
between participants experimental study. In Table 1 is presented
the distribution of the participants into the four conditions.

According to Higgins (2000, 2005), individuals who
experience regulatory fit engage more strongly in the activity they
are performing. Therefore, we hypothesize that the participants
that experience regulatory fit will engage for longer with the
robot than the participants that do not experience regulatory fit.

H: Participants that have a matching regulatory focus type

with the behavior of the robot (i.e., regulatory fit) will interact

with the robot for longer than the participants that do not

TABLE 1 | Distribution of participants based on different factors.

Knowledge about robotics

1

(“Not at

all”)

2 3 4 5

(“Very

much”)

4 4 9 6 6

Regulatory focus results

Promotion Prevention

19 10

Conditions

Robot Participant

Promotion Prevention

Promotion 11 6

Prevention 8 4

have a matching regulatory focus type with the behavior of

the robot.
Taking into account the different office layouts and the

different times needed by the participants to reach the robot, we
consider the measure time_interaction as the time needed by the
participants to fill in the questionnaire (i.e., between pressing the
START andQUIT buttons) and it represents the interaction time
between the participants and the robot.

To test our research hypothesis, we consider the measure
time_interaction as the dependent variable, and the regulatory
fit/no fit as the independent measure.

2.1. Scenario
For this study, Tiago, a robot developed by PAL Robotics1, was
used. The robot features a mobile base, a lifting torso, a touch
screen mounted on its torso (as shown in Figure 1), and a head.
The eyes of the robot are equipped with an RGB-D camera and
the speakers are located between the head of the robot and the
touch-screen.

The study presented in this paper was carried out at the
university where the authors are located. The participants are
some of the employees from the various departments of the
university and they were not informed in any way about this
study. The diagram of the experimental scenario is shown in
Figure 2.

The experiment starts with the robot loading the map (see
section 2.2) and the points of interest (POI) corresponding to
the doorways of the offices in the university. Each POI had a
corresponding flag that indicated if the office was visited before
or not. The robot started with the first POI and then continued to
visit each office, until all offices were visited.

Once arrived at a POI, by using its laser, the robot checked
if the current door was open. However, due to frequent laser
malfunctions, this information was given to the robot by the
investigators. Even if the robot was navigating autonomously, the

1http://tiago.pal-robotics.com/
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FIGURE 1 | Tiago robot.

investigators were always in the close proximity of the robot, just
to make sure that there were no problems during the interaction.
Moreover, the investigators made sure that the participants did
not see them.

Next, the robot started checking howmany people were in the
office. For small interaction distances (i.e., <1.5 m), the robot
is able to accurately detect how many people are in an office by
using the face detector provided by the Dlib toolkit (King, 2009).
However, since there were no two offices with the same layout,
and the lightning conditions were very different from one office
to another, using an automatic face detector proved not to be
very reliable for this scenario. Therefore, as a fail-safe method,
we decided to manually determine how many people were in an
office, by checking the video-feed provided by the RGB-D camera
located in the eyes of the robot.

The interaction was designed for at most two people in an
office. If more than two people were detected, the robot would
turn around and leave the office. Otherwise, it randomly chose its
behavior (i.e., either promotion or prevention) and it would say
the message presented in section 2.3. It had a waiting time of 30
s (Timeout, in Figure 2). This moment is considered as the first

ping (i.e., the first time that the person hears themessage from the
robot). If during the first waiting time there was no reaction from
the person, the robot approached the desk and it would repeat
the same message after saying “Excuse me, can you please listen
to me?”. This moment is considered as the second ping (i.e., the
second time that the person hears the message). When the robot
approached the desk it would use a moving speed appropriate to
the behavior that is currently displaying (see section 2.3). Then,
it would wait for 15 s (Timeout2), and if there was no reaction
from the person, it would say again the same message (i.e., third
ping) and waited for another 30 s (Timeout) for a reply. If the
participant still did not want to interact with the robot, it thanked
the person and approached the second person in the office (if
there was one) or it left the office. When leaving the office the
robot set the flag for the office as visited and it approached the
next office.

By reaction from the person it is understood that the person
would approach the robot and press on the START button
displayed on the tablet of the robot [see Figure 3 (left)]. The
participants could stop at any time by pressing on theQuit button
located on the upper right corner of the screen [see Figure 3

(right)]. The participant could see at all times the number of the
current question and the total number of questions.

The task that the participants had to perform, was a 28
questions questionnaire that was displayed on the tablet of the
robot. The questions concerning stress at work were selected
from the Copenhagen Psychosocial Questionnaire (COPSOQ)
(Kristensen et al., 2005). The dimensions selected from the
questionnaire were: Cognitive demands (e.g., “Does your work
require you to make difficult decisions?”), Work engagement
(e.g., “I am enthusiastic about my job”), Stress (e.g., “How often
have you had problems relaxing?”), Cognitive stress (e.g., “How
often have you had problems concentrating?”), and Self-efficacy
(e.g., “I feel confident that I can handle unexpected events”).
Some other questions were added that were not part of the
questionnaire (e.g., “Do you have enough time in a day to
complete your work?”).

2.2. Robot Navigation
A total of four maps were created of the entire environment. Each
floor of the school contains offices as well as laboratories and
small classrooms. We created maps only for the office regions
on each floor. For this purpose, the advanced navigation system
designed by Pal Robotics was used. The navigation module is
based on the ROS (Quigley et al., 2009) 2D navigation stack2.

The navigation software can be used to perform the mapping
as well as to enable the robot to autonomously navigate on the
selectedmap. Themapping system of the robot (i.e., GMapping3)
uses the readings from the 2D laser scanner which is located
on the mobile base to create an Occupancy Grid Map (OGM).
Usually when there is somebody in an office, the office door is left
open. Therefore, as themapping was done after the usual working
hours, most of the offices were already closed (see Figure 4

(left) for the original map). Therefore, the map was modified in

2http://wiki.ros.org/navigation?distro=indigo
3http://wiki.ros.org/gmapping
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FIGURE 2 | Experimental scenario.

FIGURE 3 | (Left) Start button for starting the questionnaire; (Right) Example question.
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FIGURE 4 | (Left) Map created by the robot; (Middle) Map used for navigation; (Right) Example of one of the paths of the robot overlayed on one of the modified

maps.

GIMP4 so as to contain the approximate shape of the offices [see
Figure 4 (middle)]. Otherwise, the robot did not know about the
existence of the office and the global planner would not allow
the robot to enter the office. This modified map was used by
the robot to localize itself and to navigate autonomously in the
environment. We used the local and the global planners designed
by Pal Robotics.

The doorway of each office was designated as a POI. The robot
could then easily plan its path from its current location to any
of the POIs defined on the map. For each office, we also defined
a secondary POI immediately inside the office, in front of the
door. This enabled the robot to easily enter each office. At the
end of each interaction the robot navigates to the primary POI
of the office and then to the POI of the next office door. As the
investigators were always in the close proximity of the robot, in
case the robot’s local planner would not find a possible path and
detect that it could not exit the office, they controlled the robot to
reach the doorway and then let the robot autonomously move to
the next POI. The intervention of the experimenters was required
only for a few instances. In the majority of the interactions, the
robot successfully found a path for it to exit the office and to reach
the next POI.

Next, the behavior of the robot is presented.

2.3. Robot Behavior
As shown in section 1, the way in which a message is conveyed
can increase the effectiveness of that message. Therefore, of
importance is the way in which the message is framed by the
robot in order to persuade the participants to stop whatever they
were doing and to start an interaction with it.

The robot could display one of two behaviors (i.e., promotion
type or prevention type). As shown in Lee and Aaker (2004),
a regulatory fit can be created by using an eager framing for
promotion type individuals, and by using a vigilant framing for
prevention type individuals. The research presented in Cesario

4https://www.gimp.org

and Higgins (2008) describes which non-verbal cues can be
used to define a vigilant and an eager type behavior. Thus, an
eager type behavior is characterized by: fast body movement,
fast speech rate, and open hand movements, among others. On
the other hand, a vigilant type behavior is characterized by:
slower body movement, a slower speech rate, and by gestures that
show precision, among others. As our robot does not feature any
arms, we could only change the body movement and the speech
rate between the two behaviors. Moreover, we also changed the
speed of the approach accordingly. No indication was found
in the literature for the specific values for the speech rate and
the approach speed for the robot. They were empirically set
by the experimenters, by taking into consideration also some
of the hardware limitations of the robot. Therefore, as the
maximum speed of the robot is of 1 m/s, we decided to select an
approach speed of 0.6 m/s for the promotion type robot, and an
approach speed of 0.2 m/s for the prevention type robot. While
preparing the study, the robot did not have a French TTS engine,
thus we used a different TTS5 engine to generate the audio files
that contained the speech of the robot. From the online TTS
engine, we chose the slow speech rate for the prevention robot
(which corresponds to a speech rate of ∼150 words/min) and
the fast speech rate for the promotion robot (which corresponds
to a speech rate of ∼198 words/min). For each interaction the
robot randomly selected between the two types of behavior (i.e.,
promotion or prevention).

Another important aspect to be considered is how themessage
is presented. More specifically, the framing of the message can
show the recipient the desirable or the undesirable outcomes
from successfully or unsuccessfully pursuing a certain goal
(Higgins, 2005). Therefore, for the promotion type behavior, the
message had to be framed so as to show what was the desirable
outcome for the robot if the individual successfully pursuits
the task asked by the robot. However, for the prevention type
behavior, the message had to be framed in such a manner as for

5http://www.fromtexttospeech.com
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the individual to understand which was the undesirable outcome
if he/she does not successfully pursuit the task asked by the
robot. Based on these considerations, we designed the following
messages and non-verbal cues:

2.3.1. Promotion Type Robot
The robot had a moving speed of 0.6 m/s and the speech rate of
198 words/min, with a total speech time of 18 s. The message was
the following:

Hello. My name is Tiago. I am trying to learn more about stress at

the workplace. I have 28 questions for you. If you answer at least

20 of them, I will be able to learn more about what it is like to

be active in the workforce. You can stop at anytime you want by

pressing on the QUIT button. When you are ready you can press

on the START button.

2.3.2. Prevention Type Robot
The speed of the robot was set to 0.2 m/s and the speech rate of
150 words/min, with a total speech time of 25 s. The message was
the following:

Hello. My name is Tiago. I am trying to learn more about stress at

the workplace. I have 28 questions for you. If you do not answer

at least 20 of them, I will not be able to learn more about what

it is like to be active in the workforce. You can stop at anytime

you want by pressing on the QUIT button. When you are ready

you can press on the START button.

2.4. Participants
For this experiment, a total of 42 participants were approached
by the robot. Out of these, 29 (69%) interacted with it, while the
others either avoided it completely or simply ignored it. At the
end of the experiment, the 29 participants (8 female and 21 male)
that interacted with Tiago, signed a consent form that allows us
to use their data for research purposes. Moreover, they were also
asked to fill in the questionnaires presented at the end of this
section, and to answer some demographic questions. The ages of
the participants ranged between 23 and 52 years old (M = 36.42,
SD = 9.86). When asked about their background, 14 of them had
a computer science background, 7 had a technical background,
while for the other participants their backgrounds were diverse,
including, linguistics, statistics, human resources, or art history.
All the participants were asked to rate their knowledge about
robotics, on a scale from 1 (“Not at all”) to 5 (“Very much”).
The results are shown in Table 1. Even if the majority of the
participants (17 out of 29) had no serious knowledge about
robotics, 25 of them interacted with a robot before.

To determine the regulatory focus type of the participants,
the Regulatory Focus Questionnaire—proverb form (Faur et al.,
2017) was given to each of them upon the completion of
the experiment. Therefore, the experimenters did not know
before the interaction the regulatory type of the participants.
The questionnaire contains 18 proverbs and it was originally
developed in French. The proverbs were translated into English
for the 6 participants that were not French native. The
distribution of the participants is shown in Table 1.

From the BIG5 (Goldberg, 1990) personality questionnaire
only the questions related to the Conscientiousness personality
trait were selected. As shown in the review paper (Barrick and
Mount, 1991), research has shown that an individual with high
conscientiousness is dependable, hard-working, persevering.
Therefore, we believe that the level of conscientiousness
will influence the number of questions answered during
the interaction.

The last questionnaire that the participants had to fill was a
custom designed post-questionnaire, in which the participants
were asked to rate, on a Likert scale from 1 (“Strongly Disagree”)
to 5 (“Strongly Agree”) their thoughts about the robot’s behavior
(e.g., polite, persuasive, motivating, intimidating).

3. RESULTS

3.1. Hypothesis Results
As previously shown, our research tries to show that participants
will interact for longer with a robot that displays a behavior
that matches their regulatory focus type than with a robot
that displays a behavior that does not match their regulatory
focus type.

The two assumptions for the ANOVA analysis are the normal
distribution of the data and the variance across groups has to
be homogeneous. First, we tested the normal distribution of
the data by applying a Shapiro-Wilk normality test. With a p-
value > 0.05 (W = 0.94, p = 0.16), we can conclude that
our data is normally distributed. Next, we apply Levene’s test
for homogeneity of variance across groups. Based on our results,
[F(1,27) = 1.79, p = 0.19] we can assume the homogeneity of
variances in the two groups.

Therefore, we can apply one-way ANOVA analysis to test
our hypothesis. The results of the test, as well as the summary
statistics by groups (i.e., count, mean, standard deviation) are
presented in Table 2. Based on these results, we can conclude
that our research hypothesis is validated. The participants that
interacted with a robot that matched their regulatory focus type
interacted with it for longer than the participants that interacted
with a robot that did not match their regulatory focus type.
This result is also represented graphically as a raincloud plot6

in Figure 5. To further validate our results we have performed
a power analysis for the one-way analysis of variance by applying
the specific function from the pwr R package that implements
the power analysis as outlined by Cohen (2013). With the two
groups (fit, no fit), a common sample size in each group of 14
participants and a power of 0.8, and a significance level of 0.05,
our results show that the effect size for our one-way ANOVA
analysis is equal to 0.55. According to Cohen (2013), this result
represents a large effect size.

Next, we investigated separately the results for the Promotion
type individuals, as well as for the Prevention type individuals.
Raincloud plots were created for each group, as shown in
Figure 6 for promotion type individuals, and in Figure 7 for the
prevention type individuals, respectively. The average interaction
times for each group are shown in Table 3. While it is clear

6https://micahallen.org/2018/03/15/introducing-raincloud-plots/
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from the table that the participants that experienced regulatory
fit interacted longer than participants that did not experience
regulatory fit, the differences between the two robot behaviors
are not significant [F(1, 17) = 2.83, p = 0.11 for promotion
type individuals, and F(1, 17) = 1.78, p = 0.22 for prevention
type individuals, respectively]. Further investigation is needed in
order to determine if there are significant differences between the
promotion and prevention types individuals.

3.2. Qualitative Results
We believe it is also noteworthy to present a selection of
the qualitative results. They provide valuable insight into how
individuals react when they are approached by a robot, without
being told beforehand. We consider as qualitative results some of

TABLE 2 | Results for research hypothesis.

Summary statistics by groups

Group Count Mean SD

Fit 15 268 88.7

No Fit 14 210 60.2

Anova results

Df F Pr (>F)

Fit 1 4.21 0.049*

Residuals 27

*Represents the standard way of representing a significant result for a p-value less

than 0.5.

Bold values indicates that the result is significant.

the reactions of the individuals that either interacted, avoided, or
ignored the robot. First, we present examples of the reactions of
the individuals that did not interact with the robot.

A total of 13 individuals (5 females and 8 males) refused to
interact with Tiago. One individual completely ignored it, by
putting back his headphones. Other two individuals just looked at
the robot while it talked to them, but did not display any intention
of interaction [see Figure 8 (left)].

Two individuals first wanted to interact with the robot,
however, they had to leave their offices due to work obligations.
One individual came to our office and approached us to ask
if it is necessary for her to interact with the robot, as she
was very busy. We tried to limit the interaction with her as
much as possible by telling her that it is totally optional and
that it is her choice if she wants to interact with the robot or
not.

In one office, the occupants were very angry when they saw
the robot in their doorway. They thought that the robot was
very invasive and they demanded for the robot to be removed
from their office door. As the investigators were seeing and
hearing remotely the reaction of these participants, the robot

TABLE 3 | Interaction times for each group.

Interaction times (s)

Promotion type

Mean (SD)

Prevention type

Mean (SD)

Promotion behavior 265.42 (94.05) 225.90 (26.89)

Prevention behavior 197.25 (76.27) 274.24 (84.79)

FIGURE 5 | Raincloud plot for interaction time based on regulatory fit/no fit.
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FIGURE 6 | Interaction times for promotion type individuals.

FIGURE 7 | Interaction times for prevention type individuals.

was remotely controlled to say “Bye Bye! Thank you for the
interaction” and to leave the office.

Another interesting reaction from the individuals that
avoided the robot consisted of closing the office when
the robot approached. For example, two individuals
(from two different offices) showed real interest when

they saw the robot in the hallway. However, when the
robot tried to approach their doors, they shut the door
clearly showing that they had no interest to interact
with it.

From the interactions with the 29 participants there were a
couple of unexpected reactions. One participant when seeing the
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FIGURE 8 | (Left) Individual just looking at the robot without interacting; (Middle) Participant filming Tiago; (Right) One participant gave Tiago some eye-brows.

robot, put two post-its on the head of the robot representing the
eye-brows [see Figure 8 (right)]. Other participants were very
excited and started taking pictures of the robot or even filming
it [see Figure 8 (middle)].

There were participants that were very serious while filling the
questionnaire, while others smiled and continuously spoke with
Tiago. One female participant saw the robot in the hallway and
she started talking to it and saying things like, “Come and follow
me Tiago. I want to interact with you.” She saw that the name
Tiago was written on the back of the robot, so she supposed that
the robot is called Tiago.

3.3. Other Results
First, we looked at the number of questions answered by
the participants. From the 29 individuals that started the
questionnaire, 26 answered all questions, one participants
answered two questions, one participant answered 4 questions
and one participant answered 11 questions. Taking into
consideration these results, we do not have enough participants
that did not complete the entire questionnaire in order to
investigate if the conscientiousness level of the participants had
any influence. Of the 29 participants, 28 had a conscientiousness
score ≥3 (on a scale from 1 to 5).

Of the total participants, 24 approached the robot after the
first ping (i.e., the first time that the robot said the message
presented in section 2.3). One participant approached the robot
after the second ping (promotion type individual interacting
with a promotion type robot), and four participants approached
the robot only after the third ping. Again, considering the
distribution of the participants based on the number of pings, we
cannot investigate further these results.

Next, we were interested in finding out what were the
impressions of the participants of the robot. By using a post-
questionnaire we assessed on a scale from 1 (“Strongly disagree”)
to 5 (“Strongly agree”) if the participants thought that the robot
was: polite, friendly, intimidating, motivating and persuasive.
In Table 4 are shown the results of the post-questionnaire. The
majority of the participants, both in the regulatory fit group, as
well as in the regulatory no-fit group, agreed or strongly agreed

TABLE 4 | Distribution of participants based on different factors (1 - “Strongly

disagree”; 5 - “Strongly agree”).

Regulatory fit Regulatory no-fit

1 2 3 4 5 1 2 3 4 5

Polite – – 2 10 3 – – 1 6 7

Friendly – 1 3 10 1 – 1 3 7 3

Intimidating 5 4 2 3 1 3 4 4 1 1

Motivating – 5 7 3 – 1 2 6 4 1

Persuasive 1 2 3 7 1 1 2 3 7 1

with the statement that the robot was polite, with an average
rating of M = 4.24 (SD = 0.63). A similar result was observed
for the statement that the robot is friendly. Eleven participants
in the regulatory fit group either agreed or strongly agreed that
the robot is friendly, while 10 participants in the regulatory no-fit
group either agreed or strongly agreed with the statement. An
average rating of M = 3.79 (SD = 0.77) was obtained. With
an average rating of M = 2.51 (SD = 1.32), the participants
in the study did not agree with the statement that the robot is
intimidating. Similar average ratings were found in the regulatory
fit group (M= 2.4) and in the regulatory no-fit group (M= 2.64).

After completing the experiment, the path of the robot was
overlayed on the extended map of each floor. An example of a
final result of a map is shown in Figure 4 (right). From the figure
it can be seen that the robot moved very much in the area around
the lower right corner of the map. This is due to the fact that is
the location of the laboratory from where the experiment started.

4. DISCUSSION

Even if not all the individuals approached by the robot chose to
interact with it, the reaction of all 42 individuals is interesting and
needs to be considered. It is quite remarkable that some people
would choose to intentionally get up from their desks and to
close the door of their offices when the robot tried to interact
with them. Even more so, as the participation was completely
voluntary. The robot could be ignored, or, as the robot also told
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them, the interaction could have been stopped at any given time,
by simply pressing on the Quit button. Therefore, we consider
that this is one of the limitations of this study. It is possible
that some of the individuals that chose to deliberately ignore the
robot were indeed quite busy and that is why they chose to close
the door. Maybe at a different time of the day, or even during
a different day they would have been more inclined to interact
with the robot. Another aspect to consider is that in some offices
there were multiple individuals. This could have influenced if the
individuals chose to interact with the robot or not and also the
length of the interaction.

When the interaction was over and the investigators
approached the participants to give them the questionnaires,
some participants stated that when they reached question 20, the
number that had to be reached so that the robot can learn more
about stress at the work place, they thought about pressing on the
Quit button. However, they chose to complete the questionnaire,
saying that, as long they started the questionnaire, they might as
well finish it.

One results that we found shows that when interacting with
a promotion type robot, the participants started approaching
the robot faster than when interacting with a prevention type
robot. RFT states that increased motivation happens when there
is a regulatory fit between the regulatory profile of the person
and the behavior of the agent it interacts with (Higgins, 2005).
However, in Cesario and Higgins (2008) it was shown that
the effectiveness of a message can be increased by using faster
rates for conveying a message. This also leads to an increase
in the competence and credibility of the source of the message.
Therefore, we can conclude, that the participants that interacted
with the promotion type robot (i.e., 17 out of 29 interactions),
were more eager to approach the robot. This result can be of
potential interest for designing HRI scenarios.

Even though, at some moments there was still a need for
the investigators to intervene in order to make sure that the
interaction was as natural as possible, the robot was autonomous
most of the time of the interaction. It has to be taken into
consideration that the interaction was carried out in the wild
and not in a controlled environment (e.g., in a laboratory).
Furthermore, the participants were not aware that they will
interact with a robot. They were not previously recruited to
take part in the experiment. They were performing their every-
day tasks at the workplace and suddenly the robot appeared
in their doorway. Thus, the reactions of some individuals are
totally understandable (e.g., ignoring the robot, going outside
their offices and looking in the hallway to see if they can find
the operator of the robot), while others can be considered as
surprising (e.g., intentionally going and closing the door).

Further research in the wild is needed in order to better
understand how individuals of all ages react toward robots. Of
course, these results might have been different if the interaction
were to take place with students, with the elderly, or with different
groups of individuals. Furthermore, results might have been
different in other countries.

One limitation of this study is related to the relatively
small number of individuals approached by the robot (i.e., 42

individuals). The RFT was mostly studied in the psychology
literature. Therefore, the number of participants in these studies
is in the hundreds of participants, while for our study we
recruited 42 participants. However, if we consider the related
studies in the HRI literature, we can find a similar number
of participants as in our study [e.g., in Faur et al. (2015) 20
participants were recruited, while in Cruz-Maya and Tapus
(2018) a total of 40 participants took part in the study]. Therefore,
we consider that before performing a large scale study, it was
important to investigate and to try to understand how individuals
might react in such a scenario. Further research is currently
planned based on the currently obtained results. We hypothesize
that a social robot displaying a behavior in accordance with
the regulatory focus theory (i.e., promotion or prevention)
can be used in different tasks (e.g., to play cognitive games,
to motivate individuals to finish undesirable tasks) and with
different populations (e.g., with children, with the elderly).

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a study carried out with 42
participants in which a humanoid robot approached them in
their own offices without being previously informed by the
investigators that the interaction will take place (i.e., in the
wild type of interaction). Out of the 42 individuals approached
by the robot, only 29 interacted with it. The other 13, either
avoided the robot or ignored it. In the interaction, the robot
displayed one of two types of behaviors: promotion type or
prevention type. The behavior was modeled on RFT that exists
in the psychology literature. More specifically, in a promotion
type of behavior the robot moved faster, spoke with a higher
speech rate, and the message communicated was framed in the
context of the desirable outcomes that can be obtained from
successfully carrying out the task suggested by the robot. On
the other hand, a prevention type behavior means lower moving
speed, lower speech rate, and a message framed so as to show the
undesirable outcomes that result from unsuccessfully pursuing a
certain goal.

Our results show that the interaction time with a robot
that matches the regulatory focus type of an individual is
significantly longer than the interaction time with a robot that
does not match the regulatory focus type of the individual.
Therefore, we posit that the regulatory focus theory has to
be considered when designing interactions between robots
and humans.

Our future work will be focused on using a different RGB-
D sensor so that the face detector can be more reliable.
Furthermore, the approach behavior of the robot will be
improved so that no intervention from the human operator is
required. And finally, the French TTS will be installed on the
robot and a speech recognition module will be used for a more
natural dialog between the end users and the robot. Concerning
the results of our work, we consider them as a basis for our future
work.We plan on doing more in the wild experiments in order to
test how the two robot behaviors (i.e., promotion and prevention)
can be used in HRI.
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