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Editorial on the Research Topic
 Cross-Modal Learning: Adaptivity, Prediction and Interaction



Crossmodal learning has in recent years emerged as a new area of interdisciplinary research. The term crossmodal learning refers to the synergistic synthesis of information from multiple sensory modalities such that the learning that occurs within any individual sensory modality can be enhanced with information from one or more other modalities. Crossmodal learning is a crucial component of adaptive behavior in a continuously changing world, and examples are ubiquitous, such as: learning to grasp and manipulate objects; learning to walk; learning to read and write; learning to understand language and its referents; etc. In all these examples, visual, auditory, somatosensory or other modalities have to be integrated, and learning must be crossmodal. In fact, the broad range of acquired human skills are crossmodal, and many of the most advanced human capabilities, such as those involved in social cognition, require learning from the richest combinations of crossmodal information. In contrast, even the very best systems in Artificial Intelligence (AI) and robotics have taken only tiny steps in this direction. Building a system that composes a global perspective from multiple distinct sources, types of data, and sensory modalities is a grand challenge of AI, yet it is specific enough that it can be studied quite rigorously and in such detail that the prospect for deep insights into these mechanisms is quite plausible in the near term. Crossmodal learning is a broad, interdisciplinary topic that has not yet coalesced into a single, unified field. Instead, there are many separate fields, each tackling the concerns of crossmodal learning from its own perspective, with currently little overlap. By focusing on crossmodal learning, this Research Topic brings together recent studies demonstrating avenues of progress in artificial intelligence, robotics, psychology and neuroscience.

Several articles of this Research Topic review recent developments in this emerging field and, thus, are well-suited to provide the reader with an overview and with a compact introduction to several aspects of particular interest. The review by Bruns focuses on ventriloquism, one of the classic examples of crossmodal integration and learning. The article provides an overview of established experimental paradigms to measure the ventriloquism effect and aftereffect and summarizes new results regarding the role of top-down influences, recalibration processes and brain networks involved in multisensory learning. Li et al. discuss applications of probabilistic models in machine signal processing and human psychophysics. Focusing on audio-visual processing, they aim to identify commonalities between probabilistic models addressing brain processes and those aiming at building intelligent machines. Fu et al. review studies of selective attention in unimodal and crossmodal settings from the perspectives of psychology and cognitive neuroscience, and evaluate different ways to implement analogous mechanisms in computational models and robotics. Alaçam et al. review the interaction of language and vision in human crossmodal processing and describe performance characteristics that facilitate the robustness of language understanding. Furthermore, they discuss how such empirical findings in humans can be applied for situated language comprehension in artificial systems. Focusing on neural mechanisms, Xu et al. review the interdependence of low- and high-level cortical areas for the emergence of crossmodal processing during development. Furthermore, they discuss the applicability and relevance of insights on biological crossmodal processing for brain-inspired intelligent robotics.


CROSSMODAL LEARNING IN NATURAL SYSTEMS


Crossmodal Recalibration

Three articles of this Research Topic address the question of how vision calibrates representations of other sensory modalities, either audition (Ahmad et al.; Kramer et al.) or haptics (Katzakis et al.). Ahmad et al. investigated patients who have lost central vision due to a retinal disease called macular degeneration. They observe crossmodal changes, that is, not only visual but also additionally distorted auditory spatial representations. These results suggest that vision shapes auditory space. Kramer et al. experimentally investigate a similar question. It has been known for a long time that in case of discrepant auditory spatial stimulation, auditory localization is shifted toward the visual stimulus (the ventriloquist effect). After a repeated exposure to audio-visual spatial discrepant stimulation, auditory localization is adapted (the ventriloquist after effect), similar as shown over a longer time scale by Ahmad et al. in patients with macular degeneration. Kramer et al. provide evidence that both audio-visual integration and visual recalibration of auditory spatial are subject to top-down modulation rather than being exclusively bottom-up driven. Katzakis et al. demonstrate that the life-long ability of crossmodal recalibration allows human observes to adapt to virtual reality. They asked subjects to judge haptic size in the context of discrepant visual information in virtual reality and observed a similar visual dominance as known for real world situations.



High-Level Cognitive Processes

It remains unclear how crossmodal information is integrated and represented in crossmodal learning. Three articles address this question in different ways. Using a congruency evaluation task, Spilcke-Liss et al. find that participants made more errors and responded more slowly to paired audio-visual stimuli accompanying with an unattended incongruent stimulus than with an unattended congruent stimulus. The results indicate that semantic incongruencies of crossmodal integration could occur even when they are not endogenously attended. Using a mental rotation task of digitally-rendered haptic objects, Tivadar et al. observe a typical mental rotation effect for trained letters. The findings indicate that multiple sensory modalities can support spatial computations and have important implications on how to mitigate visual impairments. Using a prototype category learning task, Zhou et al. find that participants could incidentally combine the sound and the defined visual features to form category knowledge. Moreover, a larger learning effect for the edge- than the surface-based category in implicit knowledge rather than explicit knowledge indicates that edge-based features play a more crucial role than surface-based features in implicit category learning.



Mechanisms of Crossmodal Processing

Two of the articles in this Research Topic deal with mechanisms that may be involved in crossmodal learning. The study by Li et al. investigates the long-term dynamics of cortical activity patterns during the formation of multimodal memories by two-photon imaging of immediate early gene expression in the mouse. The results demonstrate that, in superficial cortical layers, the patterns show similar dynamics across structurally and functionally distinct cortical areas and can be consistent across several days. By contrast, in deep layers, the activity dynamics varies across different areas and is sensitive to activities at previous time points. These results suggest different roles of superficial and deep layer neurons in the long-term multimodal representation of the environment. A modeling study by Maye et al. investigates the learning of sequences of uni- and multisensory events which are presented in a rhythmic manner. The paper introduces a neurobiologically plausible computational model that captures the sequences by attuning an ensemble of neural oscillators. The learning properties of the model are compared with behavioral results from a study in human participants, yielding good agreement for sequences with different levels of complexity.




CROSSMODAL LEARNING IN ARTIFICIAL SYSTEMS


Sensorimotor Processing

Three articles in this Research Topic consider crossmodal learning of crossmodal perception and visuo-motor skills in robots. Unsupervised learning of multisensory bindings of visual and auditory stimuli is addressed by Barros et al. For example, humans quickly learn to associate a barking sound with the visual appearance of a dog, and continuously fine-tune this association over time. The authors develop a computational model for this task that addresses the important properties of expectation learning, namely the lack of explicit external supervision other than temporal co-occurrence. The proposed hybrid neural model is based on audio-visual autoencoders and a recurrent self-organizing network. The authors demonstrate the learning of concept bindings by evaluating the trained system on unisensory classification tasks on a large video corpus. Deng et al. introduce a grasp planning system that combines a computational visual attention model to locate regions of interest in a table scene with a deep convolutional neural network to predict grasp type and grasp contact areas. The system is trained on images of common household objects, each annotated with grasp type and finger contact regions. The approach is evaluated in simulation and real-world experiments, showing a speed-up and improved grasp stability over the tested baseline. The paper by Kerzel et al. introduces the NICO robot, a child-sized humanoid specially designed for both social interaction and manipulation experiments. To engage in social interaction, the robot can express stylized facial expressions and utter speech via an Embodied Dialogue System. The ability for social interaction is considered a key factor for companion robots that learn with the help of non-expert teachers, as these robots are capable of asking questions that are vital to their learning process. In the presented study, NICO acquires visuomotor grasping skills by interacting with its environment and human teachers with little or no prior experience with robots.



Language Processing Grounded in Robotic Actions

In crossmodal language learning, information from multiple modalities is processed to form abstract semantic representations that are associated with language. Language itself can be regarded as an abstract modality that can be transferred differently, e.g., by acoustics, sign language or text. Three of the papers in this Research Topic (Heinrich et al.; Mi, Liang, et al.; Mi, Lyu, et al.) propose models to investigate the problem of language grounding in the context of adaptive and interacting robots. Heinrich et al. study early language learning in a neurocognitively plausible end-to-end model. While the robot interacts with the environment receiving language labels, the model neurons act on multiple timescales to self-organize hierarchically and capture abstract information. Mi, Liang, et al. apply affordance detection on the image objects and extract the semantic intention from the command, in order to predict abstract desires, such as “I am thirsty,” which do not refer to objects explicitly. Mi, Lyu, et al. use visual language grounding to address ambiguities of natural language queries in human-robot interactions. A referring expression comprehension network understands visual semantics while a scene graph network allows finding relevant regions on the image even when the given language commands are complex. These three related papers on language grounding include validations on complementary robots such as the humanoid NICO, the UR5 arm, and the Robotiq 3-finger gripper.



Knowledge and Reasoning

Visual reasoning is a multimodal task that extends visual classification by requiring both abilities of comprehension and reasoning. Three papers in this Research Topic report results on visual reasoning in multiple domains, namely visual question answering (Su et al.), video captioning (Chen et al.), and knowledge graph generation (Mao et al.). Su et al. improve the state-of-the-art of visual reasoning in visual question answering. They extend a neural module network, which is capable of spatial reasoning over the input image, by a layout generation network, which learns a policy that combines primitive modules of reasoning. The policy is rewarded in a dual-image task and, as a result, generates more comprehensible reasoning steps than previous models. Chen et al. introduce multiple innovations to video captioning models. They improve the visual input features for better detection of semantics with adequate complexity, overcome some constraints of teacher-forcing by adding self-teaching, and propose a sentence-length-modulated loss function that promotes the model to generate longer, more expressive sentences. Mao et al. generate structured knowledge graphs from either text or images as inputs. To generate a semantic graph of a scene, a hybrid relation extractor iteratively predicts relation pairs with the use of explanatory logic rules. The model performs particularly well for dense knowledge graphs. Together, these three models demonstrate how state-of-the-art models can acquire knowledge and perform reasoning on large-scale real-world visual data.




OUTLOOK

Combined, the 22 papers in this Research Topic present an up-to-date and representative overview of current trends in the emerging research field of crossmodal learning, integrating contributions from psychology, neuroscience, artificial intelligence, and robotics. On the theory side, the review and survey papers collected in this volume all agree on the fundamental importance of Bayesian approaches for crossmodal information integration and learning. The computational models developed for the behavioral studies included here are based on this, and future research can be expected to follow this line as well. Except for one paper still reporting an elegant analytical model, the different application studies all propose deep neural networks trained on custom datasets, confirming the recent near-absolute dominance of deep learning approaches for complex artificial intelligence or robotics tasks. However, the proposed deep networks are all different and highly optimized toward their respective domain and input modalities. This remains in striking contrast to the operation of the mammalian brain, with its apparent ease to process, integrate, and memorize information from a variety of sensory channels using a surprisingly uniform structure. Proponents of deep learning often conjecture that performance will scale with network and training set size. We expect that the trend toward more complex networks trained on ever larger and more diverse multimodal datasets will continue, resulting in better AI applications as well as better computational models for neuroscience and psychology.
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Sensory substitution is an effective means to rehabilitate many visual functions after visual impairment or blindness. Tactile information, for example, is particularly useful for functions such as reading, mental rotation, shape recognition, or exploration of space. Extant haptic technologies typically rely on real physical objects or pneumatically driven renderings and thus provide a limited library of stimuli to users. New developments in digital haptic technologies now make it possible to actively simulate an unprecedented range of tactile sensations. We provide a proof-of-concept for a new type of technology (hereafter haptic tablet) that renders haptic feedback by modulating the friction of a flat screen through ultrasonic vibrations of varying shapes to create the sensation of texture when the screen is actively explored. We reasoned that participants should be able to create mental representations of letters presented in normal and mirror-reversed haptic form without the use of any visual information and to manipulate such representations in a mental rotation task. Healthy sighted, blindfolded volunteers were trained to discriminate between two letters (either L and P, or F and G; counterbalanced across participants) on a haptic tablet. They then tactually explored all four letters in normal or mirror-reversed form at different rotations (0°, 90°, 180°, and 270°) and indicated letter form (i.e., normal or mirror-reversed) by pressing one of two mouse buttons. We observed the typical effect of rotation angle on object discrimination performance (i.e., greater deviation from 0° resulted in worse performance) for trained letters, consistent with mental rotation of these haptically-rendered objects. We likewise observed generally slower and less accurate performance with mirror-reversed compared to prototypically oriented stimuli. Our findings extend existing research in multisensory object recognition by indicating that a new technology simulating active haptic feedback can support the generation and spatial manipulation of mental representations of objects. Thus, such haptic tablets can offer a new avenue to mitigate visual impairments and train skills dependent on mental object-based representations and their spatial manipulation.

Keywords: haptic, object, multisensory, mental rotation, sensory substitution, low vision, vision impairment


INTRODUCTION

In everyday life, vision supports crucial functions that enable us to successfully interact with our environment, such as manipulation of objects as well as spatial orientation and navigation in space. These functions depend on the correct acquisition and maintenance of mental representations of our environment and the objects within it. In sighted individuals, vision typically predominates these functions and spatial abilities more generally (e.g., Welch and Warren, 1980; Knudsen and Knudsen, 1989; Schutz and Lipscomb, 2007). However, visual impairments affect nearly 300 million people globally, with another ~36 million suffering from complete loss of vision (World Health Organization, 2000). This calls for effective rehabilitation methods, including sensory substitution approaches.

Studies in visually impaired individuals document the extensive neuroplasticity of both non-visual functions, as well as within visual cortices. For example, visual deprivation enhances tactile acuity not only in sighted individuals (Pascual-Leone and Hamilton, 2001; Merabet et al., 2007; Norman and Bartholomew, 2011), but also in blind and visually impaired patients (Goldreich and Kanics, 2003; Lederman and Klatzky, 2009). It is now well-established that cross-modal plasticity can promote functions that are supported predominantly by vision. Tactile information has been most widely utilized to date to train functions such as reading (e.g., Braille) and exploration of space (e.g., white cane). Specifically, object geometry and form judgments based on haptics have been demonstrated to activate visual areas along the so-called dorsal pathway (Prather et al., 2004; Sathian, 2005). Furthermore, visual areas have been found to be activated during Braille reading in functional imaging studies (Sadato et al., 1996, 1998, 2002; Burton et al., 2002; Amedi et al., 2003). Sathian et al. (1997) were the first to demonstrate, via haemodynamic imaging, that discrimination of orientation of tactile gratings activates the same extrastriate areas as those observed active during visual orientation discrimination. This cross-modal functional recruitment of nominally visual cortices for tactile perceptual functions most likely results from cross-modal plasticity operating via the interplay between unisensory and multisensory neurons (Amedi et al., 2001; Kitada et al., 2006). More generally, there is now convergent and consistent evidence for visual cortex activation during tactile perception in both blind and sighted individuals (reviewed in Lacey and Sathian, 2014).

In addition to evidence pointing to the involvement of visual cortices in tactile discrimination, spatial functions can also be achieved in a modality-independent fashion, including based solely on tactile information. For example, studies of mental rotation where participants need to judge whether an image is portrayed in its normal or mirror-reversed form demonstrate a typical increase in reaction times (RTs) with increasing rotation of the image (Shepard and Metzler, 1971; Lacey et al., 2007a,b). Marmor and Zaback (1976) showed that the same mental rotation effect occurs with tactile stimuli. This and other findings have led to the belief that spatial properties can be encoded in a modality-independent format (Lacey and Campbell, 2006), and may thus engage a common spatial representational system (Lacey and Sathian, 2012; Lee Masson et al., 2016).

The discovery of modality-independence of spatial representations has opened a new avenue for vision rehabilitation, i.e., tactile-based sensory substitution. One particularly striking example here is the successful use of haptic stimulation of the tongue with the tongue-display unit (TDU) to retrain “tactile-visual” acuity (TDU, Chebat et al., 2007). The TDU is a sensory substitution device (SSD) that converts a visual stimulus into electro-tactile pulses delivered to the tongue via a grid of electrodes. Visually impaired individuals were able to discriminate various orientations of the letter E (i.e., the Snellen E test) based solely on stimulation with the TDU (Chebat et al., 2007). While such efforts are impressive, they risk remaining limited in their applications. However, this is at least partially addressed in new technologies for digitization of information, such as tablets digitally rendering tactile information (e.g., Xplore Touch1). This digitization of information has led to significant improvements in healthcare, including reduced costs and increased accessibility and reliability of treatments (Noffsinger and Chin, 2000; Dwivedi et al., 2002). Currently, visually impaired individuals require persistent training for the rehabilitation of visual functions that support basic everyday activities such as cooking, cleaning, and navigating one’s environment. This involves numerous hours of work together with therapists. Digitalizing the method of delivery of therapeutic procedures would likely allow visually impaired patients to be more independent and, so, successful, in their training. For one, the therapeutic programs could be created online and then easily downloaded onto a digital device. Second, patients would be able to practice and improve their tactile acuity as well as their form and object perception abilities without the constant presence of a therapist.

It is known that spatial operations such as mental rotation can be supported solely by tactile stimuli such as Plexiglas forms or wooden blocks (Marmor and Zaback, 1976; Carpenter and Eisenberg, 1978, for recent reviews see Prather and Sathian, 2002; Lacey et al., 2007a). By contrast, it is unknown whether individuals can create and manipulate mental representations of objects based solely on simulated haptic representations. If spatial functions can be rehabilitated with digital devices, this should substantially improve both the speed and the extent of the recovery as well as the independence of visually impaired patients. Haptic tablets thus promise to open up unprecedented possibilities for recovery of visual functions for blind and visually impaired individuals, due to the ease of delivery of digital information and of the transfer of the learnt information from tablet to veridical environments. Being able to mentally rotate digitally presented haptic objects would serve as an important proof-of-concept for the successful acquisition of a representation of a simulated haptic space.

To this end, the present study investigated whether participants would be able to successfully mentally rotate representations of letters in their normal and mirror-reversed forms, experienced solely via digitally-rendered haptic feedback. We focused on the distinction of letter forms (i.e., normal vs. mirror-reversed), because judgments of letter identity (for example the distinction between a letter and a number) do not necessarily implicate mental rotation (White, 1980). We hypothesized that normally-sighted participants should show the prototypical mental rotation effect, with steadily decreasing accuracy (and increasing RTs) with increasing angular disparity from the prototypical upright letter orientation, which would translate into a main effect of angle. Moreover, we expected that participants would show better performance with letters in their normal form compared to mirror-reversed letters, due to the well-investigated effect of stimulus familiarity on mental rotation (White, 1980; Bethell-Fox and Shepard, 1988; Prather and Sathian, 2002). We also expected a main effect of training, meaning that participants would perform better with letters which they had trained with, compared to letters that were untrained.



MATERIALS AND METHODS


Participants

All participants provided written informed consent to procedures approved by the cantonal ethics committee in accordance with the Declaration of Helsinki. We tested 17 adults (12 women and five men; age range 25–37 years, mean ± stdev: 28.9 ± 3.5 years), who volunteered for our experiment. Participants reported normal or corrected-to-normal vision. No participant had a history of or current neurological or psychiatric illnesses. Handedness was assessed via the Short Form of the Edinburgh Handedness Inventory (Oldfield, 1971). Two of our participants were left-handed, while the remainder were right-handed. We also asked our participants about their experience playing a musical instrument, due to evidence of increased cortical representation of the hands of musical instrument players (see e.g., Elbert et al., 1995). Nine participants were active instrument players (i.e., actively played instruments at the time of the testing session), five had formerly played instruments (i.e., during childhood, adolescence and early adulthood, however they were not actively practising at the time of testing), and three played no instruments.



Apparatus

Haptic stimulation was delivered via a tablet with a TFT capacitive 7-inch touchscreen with a resolution of 1,024 × 600 pixels. The screen of the tablet is controlled by a Raspberry Pi 3 based system, and the operating system is Raspbian (Linux). The processor of the tablet is a Broadcom ARMv7, quadcore 1.2 GHz and it has 1 Go RAM and Rev C WaveShare. The tablet comes with a haptic creation tool, which is a software that allows for user control of haptic textures. Several other APIs based on C++ or Java are installed, such as library tools that allow the implementation of haptics on other applications. Figures in jpeg format were re-coded in haptic format using a kit written in C++. For more technical details describing the rendering of the haptic feedback, see Vezzoli et al. (2016, 2017) and Rekik et al. (2017).



Stimuli

Stimuli consisted of four capital letters—L, P, F and G—created in Paint (see e.g., Carpenter and Eisenberg, 1978; see also Figure 1). We chose these capital letters as their mirror-image counterparts do not confuse, as compared to for example lower-case “d,” whose mirror image is “b” and “b,” whose mirror image is “d” (Corballis and McLaren, 1984). Moreover, these letters have previously been used in mental rotation tasks (Cohen and Polich, 1989; Rusiak et al., 2007; Weiss et al., 2009), including tasks with tactile objects (e.g., Carpenter and Eisenberg, 1978). The letters were resized to always be presented centrally on the screen of the haptic tablet, which has a pixel resolution smaller than that used to generate the images. Letters were then rotated to 0°, 90°, 180° and 270° and mirrored in Matlab. Letter size was 935 × 509 pixels. With regard to the image-to-haptic conversion, the letters appeared centrally on a white background. White pixels did not produce the feeling of a texture on a finger (i.e. “empty” pixels). All non-white pixels were then coded with the same haptic texture, which was created using the hap2u pre-installed Texture Editor software. The ultrasonic vibration was adjusted to have a square shape, as this offers the most intense and quick reduction of the friction of the screen under the finger, thus conferring a rather sharp and pointy sensation, in contrast to a sinusoidal-shaped wave, which would confer a rather smooth perception. The period of the window of one square ultrasonic signal was chosen to be 3,500 μm (which is considered a “coarse” texture, see Hollins and Risner, 2000), and the amplitude was set at 100%, meaning roughly 2 μm (as the friction reduction hits a plateau at this value, see e.g., Sednaoui et al., 2017).


[image: image]

FIGURE 1. (A) Stimuli used in the experiment. These images are based on reverse translation of the haptic “image.” The checkered portions refer to regions with no haptic texture. The letters were created to have the same proportions on the haptic tablet screen, and thus they appear slightly distorted. Normal stimuli and their mirror images were rotated at 90°, 180°, 270° and were individually presented to participants on the tablet. (B) Transformation of the stimuli into haptic renderings was possible via a pre-installed kit. The transformation takes a cell (8 × 8 pixels) from the picture file and codes the cells into textures with the help of a haptic library where different textures are defined. Participants were then able to feel the vibrations on the tablet screen only at those places where the cells were transformed. (C) Experimental setup. Participants had their eyes blindfolded and wore noise-canceling headphones in order to prevent any other external stimulation interfering with the haptic sensation. After exploring the letter on the tablet for 30 s with a single finger, they indicated if the letter was normal or mirrored via a computer mouse button-press with their non-dominant hand, which would then initiate the passage to the next trial.





Procedure and Task

Participants were tested in a sound-attenuated, darkened room (WhisperRoom MDL 102126E). Subjects were blindfolded and wore noise-canceling headphones (Bose model QuietComfort 2), in order to block any residual light and the sounds of the ultrasonic vibrations produced by the tablet. None of the participants had any prior visual or haptic exposure to the stimuli used in the paradigm, minimizing any cross-modal facilitation (Lacey et al., 2007a,b). The participant’s task was a two-alternative forced choice that required discrimination of normal and mirror-reversed letters via a mouse click (left mouse press for the normal form, right mouse press for the mirrored form; same for all participants). Participants were instructed to use a finger from their dominant hand for tablet exploration, and the non-dominant one for responses. The task was to feel the letter on the haptic tablet for 30 s, recognize the letter, and if needed, to mentally rotate the letter to the 0° form, in order to decide whether the normal or the mirror-reversed form had been presented. We used explicit instructions, since it has been reported that this is not a determinant of whether a mental rotation effect is observed (reviewed in Prather and Sathian, 2002). Stimuli were presented for a duration of 30 s. Next, participants had 20 s for responding, and were instructed to respond as quickly and as accurately as possible. After the response, the next trial was initiated and was preceded by an inter-trial interval randomly ranging between 500 and 1,000 ms. Each participant completed three blocks of training, each comprising 16 trials (two per condition; informed by a pilot study). Participants were trained on pairs of two letters—either L and P or F and G—that they were assigned in a counterbalanced manner across individuals. We grouped these letters given their perceptual closeness, which allowed a progressive learning procedure. We decided to focus the training on a particular letter pairing in order to investigate skill transfer to new, untrained stimuli. Participants were first trained to explore the tablet screen via lateral sweeps [(Stilla and Sathian, 2008), see e.g., (Lederman and Klatzky, 1993) for a discussion of which tactile exploration strategies are particularly appropriate to disclose specific object characteristics, and (Hollins and Risner, 2000) for a discussion of how dynamic vs. static exploration affects coarse (>100 μm) as compared to fine texture discrimination], using only one finger at a time. Subjects were allowed to change the finger they used for exploration, due to a common complaint about adaptation of their tactile sensation during the pilot experiments or during the training blocks. However, they were not allowed to change the hand used for exploration. Subjects were then taught how to discriminate horizontal from vertical lines, and finally, how to discriminate between the two letters that they were trained on. The experimenter gave subjects verbal instructions and feedback throughout the training session. The testing phase comprised four blocks of 32 trials, making 128 trials in total per participant (i.e., eight trials per each condition, in total 16 conditions). During the experiment, participants were allowed to take regular breaks between blocks of trials to maintain high concentration and prevent fatigue. Stimulus delivery and behavioral response collection were controlled by Psychopy software (Peirce, 2007).



Behavioral Analysis

Data were pre-processed in Matlab and analyzed in R (R Core Team, 2018) and SPSS (IBM Corp, 2017). First, we excluded all trials with RTs longer than 15 s (5% of trials), as well as missed trials (2.5% of trials), which were trials where a response was not given within 20 s. We then excluded any remaining outlier trials on a single subject basis (i.e., for each subject and condition), applying a mean ± 2 standard deviations criterion to their RTs (2.7% of trials, see Ratcliff, 1993; Field et al., 2012). Accuracy was then calculated. RT data were not further analyzed, since responses were only provided after stimulus offset followed by a subsequent cue. Data from three participants were excluded due to very low accuracy for the 0° condition (<50%). We compared Accuracy with a 2 × 2 × 4 repeated measures ANOVA with factors Training (trained/untrained), Condition (normal/mirror) and Angle (0°, 90°, 180°, 270°), after not having found a significant deviation from the Normal distribution and from homoscedasticity.




RESULTS

Mean accuracy rates are displayed in Figure 2. The 2 × 2 × 4 ANOVA with factors of Training (trained/untrained), Condition (normal/mirror) and Angle (0°, 90°, 180°, 270°) revealed a significant interaction and two main effects. The Angle × Trained interaction was significant (F(1,13) = 4.912; p < 0.05, [image: image] = 0.274), and there were main effects of Training (F(1,13) = 5.88; p = 0.03, [image: image] = 0.314), with generally higher accuracy scores for trained vs. untrained letters, and Condition (F(1,13) = 6.02; p = 0.02, [image: image] = 0.317), with generally higher accuracy scores for normal compared to mirrored stimuli. Given this significant interaction, we carried out separate 2 × 4 ANOVAs (Condition × Angle) for trained and untrained letters. Untrained letters revealed no interactions or main effects (F ≤ 0.6). By contrast, trained letters exhibited a main effect of Condition (F(1,13) = 11.46, p < 0.01, [image: image] = 0.470) and a main effect of Angle (F(3,13) = 6.625, p = 0.02, [image: image] = 0.338). Trained letters in their normal form had higher accuracy scores compared to trained letters in their mirrored form, and accuracy generally decreased with increasing angular disparity. Performance on untrained normal letters was more similar to performance on mirrored letters than to normal trained letters.
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FIGURE 2. Group-averaged (N = 14) accuracy data for normal and mirrored stimuli (SEM indicated). The left column displays results for normal stimuli, while the right displays results for mirrored stimuli. Red lines refer to trained stimuli, while the blue lines represent untrained stimuli.





DISCUSSION

We provide the first demonstration that digitally-rendered haptic stimuli can support the creation of mental representations of objects that can then be spatially manipulated. Participants’ accuracy scores decreased with greater angular disparity of the presented letters from upright, indicating a prototypical mental rotation effect for trained letters (Shepard and Metzler, 1971). Moreover, letters in their mirrored form were less accurately detected compared to letters in their normal form, consistent with the stimulus familiarity effect that has been previously found to influence mental rotation with real visual stimuli (White, 1980). Specifically, normally sighted participants performed significantly better when tested on previously trained compared to untrained letters. This effect was observed for letters presented in their canonical form, and less for letters in their mirrored form. In addition, our results show that a short training session of about 45 min on the haptic tablet was sufficient to significantly increase the ability to correctly identify the correct form of haptic letters. These results extend previous efforts to support rehabilitation of spatial functions using SSDs, and open new avenues for applications of digital haptic technology.

Mental rotation of objects created by haptic feedback successfully modulated accuracy of object recognition; increasing angular disparity away from the prototypical orientation linearly reduced recognition accuracy. As expected, performance was significantly higher for normal letters, compared to mirrored letters, and for trained letters, as compared to untrained letters. Accuracy for letters in their normal upright form decreased up to 180°, with a slight increase for stimuli rotated at 270°. Similar results have previously been found in mental rotation tasks with stimuli of different kinds (see e.g., Kosslyn et al., 1998; Hyun and Luck, 2007; Milivojevic et al., 2011; Zeugin et al., 2017), further corroborating that our experimental manipulation was effective and that mental rotation of our haptic letter stimuli indeed took place. The significant interaction between factors Condition and Angle illustrates the fact that mental rotation of familiar stimuli was more successful than for unfamiliar stimuli. To be precise, given that the stimuli were letters, they can generally be considered familiar stimuli, however only letters presented in their normal form can be considered overlearned (White, 1980), while letters in their mirrored form can be considered unfamiliar, as individuals are seldomly using mirrored letters in their everyday lives. In addition, the significant effect of the factor Training indicates that with only little training on the task and limited exposure to haptic stimulation before the testing, participants were able to improve their performance, which was not the case for untrained letters.

Our findings replicate and extend prior studies of mental rotation based on haptic information. Mental rotation has been studied with Plexiglas letters and objects (Carpenter and Eisenberg, 1978; Hunt et al., 1989), abstract Braille-like stimuli (Röder et al., 1997), as well as with haptic versions of the Shepard and Metzler (1971) stimuli (Robert and Chevrier, 2003). These and other similar works have likewise shown that performance worsens with increasing angular displacement from upright, independently of whether an explicit instruction was provided to use a strategy based on mental rotation (reviewed in Prather and Sathian, 2002). By contrast, evidence of mental rotation with tactile stimuli does appear to vary with task. Tasks requiring mirror-image discrimination yield mental rotation effects, whereas those requiring identification of isolated stimuli generally do not (Prather and Sathian, 2002). Our study required participants to discriminate whether each stimulus was normal vs. mirror-reversed, and we indeed observed a mental rotation effect for trained letters. Our accuracy rates are consistent with, albeit somewhat lower than, what has been reported in sighted participants presented with physical objects (~80%–90% in Marmor and Zaback, 1976; Röder et al., 1997; Robert and Chevrier, 2003). However, two important distinctions in our study are the use of digital haptics, and moreover, that participants could only use a single finger to explore the stimulus. Ongoing efforts are working to enhance the haptic perceptual qualia as well as to permit exploration by multiple fingers simultaneously. Such notwithstanding, this limitation may nonetheless help us hone in on specific exploration and haptic learning strategies. Minimally, our results demonstrate that mental representations of haptic objects and their discrimination can be ascertained using information acquired with a single digit.

To summarize, our results indicate that participants were able to mentally manipulate internal representations of familiar stimuli that they learned solely in a haptic manner, through interaction with a digitally created texture. While our results have potential applications in the simulation of tactile sensorial perceptions in virtual reality, we do not have the space to discuss these at length here. Instead, we would like to focus on the important implications that our results have for cognitive models of spatial functions, as well as on the implications for the rehabilitation thereof in patients suffering from impairments due to vision loss. In what follows, we will discuss these latter two points.


Implications for Models of Spatial Functions

Our results have implications for current models of cortical mechanisms that decode spatial characteristics of objects. Recently, evidence has been accumulating for a decoding mechanism that is modality-independent, with spatial features of objects and spaces being communicated through visual (Koenderink et al., 1992; Erens et al., 1993), haptic (Kappers and Koenderink, 1999; Prather et al., 2004; Snow et al., 2014; Lee Masson et al., 2018), and auditory (Amedi et al., 2007, 2002) information alone, as well as through multisensory information (Lacey et al., 2009; Sathian et al., 2011; Lacey and Sathian, 2014; Lee Masson et al., 2016, 2017). Moreover, it was demonstrated that multisensory regions, such as V1, IPS, and LOC, specifically encode spatial characteristics such as shape, but not object identity (Amedi et al., 2002). Our results further support such modality-independent models of spatial representations. In particular, it was possible for us to convey the shapes of haptic objects (i.e., letters) to participants through unisensory haptic stimuli. This indicates that spatial features of objects, and, specifically, of object shape, can be decoded from a variety of stimulus formats—be it visual, auditory, or somatosensory. However, sensory impressions coming from haptic and visual information are very different (Rose, 1994), and vision and touch use different metrics and geometries (Kappers and Koenderink, 1999). Nevertheless, there is substantial neuroimaging evidence showing that vision and touch are intimately connected even if there is no direct, one-to-one mapping (see Amedi et al., 2005; Sathian, 2005 for reviews). For one, cerebral cortical areas previously regarded as exclusively unisensory in nature are activated by sensory inputs in a task- and stimulus-specific manner (Lacey et al., 2007a). New evidence also supports high similarities between visual and haptic representations of object perceptual spaces (Cooke et al., 2007; Wallraven et al., 2014; Lee Masson et al., 2016). These results have been further complemented by neuroimaging studies, that helped in corroborating the result of high correlations between perceptual spaces reconstructed using tactile vs. visual information (Snow et al., 2014; Smith and Goodale, 2015). Indeed, clinical cortical lesion studies demonstrate that lesions of visual brain areas, such as the inferior occipito-temporal cortex, or the anterior intraparietal sulcus, are accompanied by tactile agnosia for objects, despite intact somatosensory cortical areas (Feinberg et al., 1986; James et al., 2002). Collectively, our results support a task-specificity, as compared to a stimulus-specificity, of spatial functions.



Implications for Rehabilitation of Spatial Functions

Our study further validates efforts of rehabilitation of spatial functions through SSDs. Cross-modal and multisensory integration are the drivers of neuroplasticity in visual areas (Kirkwood et al., 1996; Amedi et al., 2004; Merabet et al., 2005; Pascual-Leone et al., 2005; Murray et al., 2015), which promotes a task-selective and modality-independent re-specialization of these cortical structures. Besides the known applications of tactile sensory substitutions such as the Braille alphabet, white cane, or the TDU, our results open new avenues for mitigation of deficiencies of spatial functions in the blind and visually impaired. Indeed, it has been demonstrated numerous times that tactile information can support spatial functions in blind, visually impaired, and sighted subjects (Marmor and Zaback, 1976; Carpenter and Eisenberg, 1978; Grant et al., 2000; Ptito et al., 2005; Sathian, 2005; Chebat et al., 2007; Wan et al., 2010; Rovira et al., 2011; Vinter et al., 2012). However, the main innovation introduced by our study is the digital simulated nature of the tactile stimuli. As digital information is easily recoded and reproduced, our results open new exciting venues for increased accessibility of traditionally visual functions, such as reading, navigation, etc., to visually impaired people.

In addition, such tactile substitution and multisensory techniques can also be used to retrain spatial functions after sight restoration. Specifically, patients with long-lasting cataracts have deficient depth perception after cataract removal (Hartung, 1962; Gregory, 2003; McKyton et al., 2015), despite normal low-level visual perception. Thus, as auditory information is unable to confer spatial information (Amedi et al., 2002), one could imagine complementing rehabilitation programs with tactile spatial information, in order to confer distance relations in a multisensory manner. Another exciting endeavor for further research that we are now also pursuing in the laboratory is the extent to which simulated haptic information can support the encoding of entire familiar and new spaces. In short, simulated tactile information has critical implications for applications in rehabilitation regimes. Besides being specifically able to convey spatial relations, as opposed to auditory information, simulated tactile stimuli have the added value of accessibility. This benefit renders tactile tablets a promising solution for the mitigation of complete or partial loss of spatial abilities due to sensory loss or deprivation.




CONCLUSION

We trained normally-sighted participants on a haptic mirror-image discrimination task, using a new technology that digitally simulates texture. After only a short exposure and habituation to the new sensation, and relatively little training on the task, participants were able to mentally manipulate internal representations of the trained letters. This indicates that spatial functions and attributes such as object shape rely on a modality-independent mechanism, and that multiple sensory modalities are capable of supporting spatial computations. Furthermore, our results have important implications for research on virtual simulated sensorial perception, as well as for neural plasticity and visual rehabilitation, and highlight the merit of restoring visual functions through SSDs.
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We present an attention based visual analysis framework to compute grasp-relevant information which helps to guide grasp planning using a multi-fingered robotic hand. Our approach uses a computational visual attention model to locate regions of interest in a scene and employ a deep convolutional neural network to detect grasp type and grasp attention point for a sub-region of the object in a region of interest. We demonstrate the proposed framework with object grasping tasks, in which the information generated from the proposed framework is used as prior information to guide grasp planning. The effectiveness of the proposed approach is evaluated in both simulation experiments and real-world experiments. Experimental results show that the proposed framework can not only speed up grasp planning with more stable configurations, but also handle unknown objects. Furthermore, our framework can handle cluttered scenarios. A new Grasp Type Dataset (GTD) which includes six commonly used grasp types and covers 12 household objects is also presented.

Keywords: grasp planning, grasp type, visual attention, deep learning, multi-fingered robotic hand


1. INTRODUCTION

Imagine a toddler is in front of a table top with several objects, very likely he or she would interact with those objects by trying to pick up the red mug either by the handle or the rim, or trying to grasp the green ball. The ability to rapidly extract relevant information from visual input is an important mechanism and natural behavior for humans to conduct various activities. The majority of visual analysis approaches for grasp planning with multi-fingered robotic hands follow a pipeline containing object localization, recognition and representation (Schwarz et al., 2017). For most existing approaches, finding a target object in a scene is the first step for robotic grasping. However, reliable object detectors, such as deep-learning based approaches require vast amounts of training data, as well as good hardware to achieve a reasonable time performance for robotic applications, while handcrafted feature based approaches can not handle the dynamics in real life scenarios.

This paper proposes an attention based visual analysis framework which directly locates sub-regions of objects as regions of interest (ROIs), and generates grasp-relevant information from visual data inside the ROIs for grasp planning with a multi-fingered robotic hand. The proposed learning framework is inspired by psychological studies which demonstrated that humans combine early bottom-up processing with later top-down processing to visually analyze the scene (Theeuwes, 2010; Awh et al., 2012). The bottom-up process starts with sensor input data and is completely stimulus-driven, while the top-down process extracts relevant information, which may be influenced by prior experience and semantics. In particular, a computational attention model is used to process visual data and outputs a pixel-precise saliency map, from which salient regions are selected for further processing. Inside those salient regions, the grasp type and grasp attention point are predicted by a network. The grasp attention point indicates the location on the object surface where the robot plans the grasp. Finally, this information is used to guide grasp planning with a multi-fingered robotic hand.

Grasp type and grasp attention point convey useful information for planning the configuration of a robotic hand. In the computer vision community, most previous works sample human hand pose with a motion tracking system and use it to detect hand grasp types (Rogez et al., 2015; Cai et al., 2017). In the robotics community, there are few previous approaches that try to integrate grasp type detection into robotic grasp planning (Harada et al., 2008; Vahrenkamp et al., 2018). In those works, only two kinds of grasp types, i.e., power and precision (Napier, 1956), are considered, which is not sufficient for exploring the potential of multi-fingered robot hands. Moreover, the desired grasp type is determined manually for robotic hands. In terms of visual analysis, there are approaches which use visual analysis to define heuristics or constraints for grasp planning (Hsiao et al., 2010; Aleotti and Caselli, 2012; Vahrenkamp et al., 2018). In comparison to those approaches, there are three main differences: (1) our approach learns features directly from raw sensor data, while most of the previous approaches use handcrafted features; (2) six grasp types are considered while the previous approaches only consider two grasp types. (3) Most of the previous works only focus on visual analysis by using computer vision techniques. This work uses the results of the visual analysis for grasp planning with multi-fingered robotic hands. The effectiveness of the proposed framework is evaluated in a real-world object grasping experiment.

In this paper, we address the problem of visual analysis of natural scenes for grasping by multi-fingered robotic hands. The objective is to compute grasp-relevant information from visual data, which is used to guide grasp planning. A visual analysis framework which combines a computational visual attention model and a grasp type detection model is proposed. A new Grasp Type Dataset (GTD) which considers six commonly used grasp types and contains 12 household objects is also presented.

The rest of the paper is organized as follows: section 2 presents related work. Section 3 introduces the architecture and main components of the proposed visual analysis framework. Grasp planning is described in section 4. Experimental results are presented in section 5. Finally, the conclusion and future work are discussed in section 6.



2. RELATED WORK

Stable grasping is still a challenge for the robotic hands, espectically multi-fingered robotic hand, since it usually require to solve a complex non-conex optimization problem (Roa and Suárez, 2015; Zhang et al., 2018). Information extracted from visual analysis can be used to define heuristics or constraints for grasp planning. Previous grasp planning methods can be divided into geometric-based grasping and similarity-based grasping. In geometric-based grasping (Hsiao et al., 2010; Laga et al., 2013; Vahrenkamp et al., 2018), geometric information of the object is obtained from color or depth images, and it is used to define a set of heuristics to guide grasp planning. Hsiao et al. (2010) proposed a heuristic which maps partial shape information of objects to grasp configuration. The direct mapping from object geometric to candidate grasps is also used in Harada et al. (2008) and Vahrenkamp et al. (2018). Aleotti and Caselli (2012) proposed a 3D shape segmentation algorithm which firstly oversegments the target object, and candidate grasps are chosen based on the shape of the resulted segments (Laga et al., 2013). In similarity-based approaches (Dang and Allen, 2014; Herzog et al., 2014; Kopicki et al., 2016), the similarity measure is calculated between the target object and the corresponding object model from human demonstrations or simulation. The candidate grasp is then queried from datasets based on similarity measures. Herzog et al. (2014) defined an object shape template as the similarity measure. This template encodes heightmaps of the object observed from various viewpoints. The object properties can also be presented with semantic affordance maps (Dang and Allen, 2014) or probability models (Kroemer and Peters, 2014; Kopicki et al., 2016). Geometric-based approaches usually require a multiple-stage pipeline to gather handcrafted features through visual data analysis. Due to sensor noise, the performance of the geometric-based grasping is often unstable. Meanwhile, similarity-based methods are limited to known objects and can not handle unknown objects. In contrast to previous methods, our method increases grasp stability by extracting more reliable features from visual data using deep networks, meanwhile, it is able to handle unknown objects.

Many saliency approaches have been proposed in the last two decades. Traditional models are usually based on the feature integration theory (FIT) (Treisman and Gelade, 1980) to compute several handcrafted features which were fused to a saliency map, e.g., the iNVT (Itti et al., 1998; Walther and Koch, 2006) and the VOCUS system (Frintrop, 2006). Frintrop et al. (2015) proposed a simple and efficient system which computes multi-scale feature maps using Difference-of-Gaussian (DoG) filters for center-surround contrast and produces a pixel-precise saliency map. Deep learning based saliency detection mostly relies on high-level pre-trained features for object detection tasks. Those learning-based approaches require massive amounts of training data (Huang et al., 2015; Li et al., 2016; Liu and Han, 2016). Kümmerer et al. (2015) used an AlexNet (Krizhevsky et al., 2012) pretrained on Imagenet (Deng et al., 2009) for object recognition tasks. The resulting high-dimensional features are used for fixation prediction and saliency map generation. Since most of the deep-learning based approaches have a central photographer bias which is not desired in robotic applications, we choose to use a handcrafted feature based approach which gathers local visual attributes by combing low-level visual features (Frintrop et al., 2015).



3. ATTENTION BASED VISUAL ANALYSIS

The proposed framework contains two main components, a computational visual attention model which gathers low-level visual features and selects ROIs for further processing, and a grasp type detection model which learns higher level features and produces grasp-relevant information in the ROIs. Figure 1 illustrates an overview of the proposed attention based visual analysis framework.


[image: image]

FIGURE 1. The proposed attention based visual analysis framework. With an input RGB image, a ROI is selected using the saliency map produced by a Saliency detection model. Inside the ROI, grasp type and grasp attention point are computed based on the six probability maps produced by the Grasp type detection network. The obtained information containing grasp type and grasp attention point is then used as a prior to guiding grasp planning. The planned grasp is executed by a robotic hand to verify its quality.




3.1. Computational Visual Attention Model

The pixel-level saliency map is computed using the computational visual saliency method VOCUS2 (Frintrop et al., 2015). In principle, any saliency system which has a real-time capability and does not have a center-bias could be used. Center bias gives preference to the center of an image, which is not desired in robotics applications. Unfortunately, this excludes most deep-learning based approaches since they are usually trained on large datasets of Internet images, which mostly have a central photographer bias. Therefore, the VOCUS2 system was chosen, which belongs to the traditional saliency systems with good performance on several benchmarks. In VOCUS2, an RGB input image is converted into an opponent-color space including intensity, red-green and blue-yellow color channels. DoG contrasts are computed with twin pyramids, which consist of two Gaussian pyramids—one for the center and one for the surround of a region—which are subtracted to obtain the DoG contrast. Finally, the contrast maps are fused across multiple scales using the arithmetic means to produce the saliency map.

Given the produced saliency map, the pixels of the saliency map are clustered using Mean Shift (Comaniciu and Meer, 2002) to form saliency regions. The salient region with the highest average salient value is selected as the ROI, and it is passed to the next stage for further processing. Figure 2 shows an example of the saliency region detection. The visual attention model takes the RGB image shown in Figure 2A as input and produces the saliency map shown in Figure 2B. After clustering, the desired saliency region is determined, as shown in Figure 2C.


[image: image]

FIGURE 2. Saliency region detection with the visual attention model. (A) The input RGB image, (B) the pixel-level saliency map, (C) the result after clustering, (D) the output. The red rectangle denotes the selected ROI which has the highest average saliency value. The blue rectangles denote the candidate ROIs for objects. The numbers are indices for bounding boxes.





3.2. Grasp Type Detection

Grasp type is a way of representing how a hand handles objects. Typically, the robotic grasps are divided into power and precision grasp (Napier, 1956). Power grasp uses the fingers and palm to hold the object firmly, while precision grasp only uses fingertips to stabilize the object. However, this two-categories grasp taxonomy is not sufficient to convey information about hand configuration. Feix et al. (2016) introduced a GRASP taxonomy in which 33 different grasp types used by humans are presented. All the 33 different grasp types are classified into four groups: prismatic power, circular power, intermediate, prismatic precision, circular precision. Considering the kinematic limitations of the robotic hand as well as Feix's GRASP taxonomy, we extend the above two-categories grasp taxonomy into six commonly used grasp types: large wrap, small wrap, power, pinch, precision, and tripod. Figure 3 illustrates the proposed grasp taxonomy.


[image: image]

FIGURE 3. The proposed six commonly used grasp types.



In order to detect grasp types directly from visual data, we refer to the architecture proposed by Chen et al. (2018). This architecture is based on a deep convolutional neural network [VGG-16 (Simonyan and Zisserman, 2015)] and uses atrous convolution for signal down sampling. Since an object may support multiple feasible grasp types (Feix et al., 2016), the grasp type detection is a multi-label detection. Hence, we modify the output layer of the network and do not use the additional fully connected Conditional Random Field (CRF). Corresponding to the six grasp types, the modified network predicts six pixel-level probability maps with the same resolution as the input image. In order to train the modified network for grasp type detection, this paper introduces a grasp type detection (GTD) dataset, in which 12 household objects are used and all the instances are annotated following the proposed six grasp types. The details of the GTD dataset are provided in section 5.1. This work uses a cross-entropy function to define the loss function which is defined as

[image: image]

where [image: image] indicates if the pixel yi, j belongs to the grasp type s ∈ S or not. S = [1, 2, ··· , 6] is the index of the six grasp types. I denotes an RGB image with height h and width w. θ is the weight of the proposed detection model.In this work, the cross-entropy based on the sigmoid function is defined in Equation (2), where f is the trained network.

[image: image]

Given an RGB image I with height and width h × w as input, our network outputs pixel-level probability maps P(Y|I) for each grasp type s ∈ S, where [image: image]. The predicted probability of pixel {[i, j]i = 1:h, j = 1:w} belonging to the grasp type s is denoted by [image: image]. With the pixel-level probability maps, the probability P(Ys|O) is computed by summing the predicted probabilities of all the pixels inside the ROI O (defined in section 3.1), as shown in Equation (3). The grasp type with the highest probability is used as the final grasp type s*.

[image: image]

After determining the best grasp type s*, we need to localize the grasp attention point for the grasp type s* inside O. In order to find a stable grasp attention point p, subregions with higher predicted probabilities are clustered. Mean Shift (Comaniciu and Meer, 2002) is used to find a grasp attention point p in O. Multiple clusters with multiple centers are produced, and the cluster center with the highest probability is selected as the grasp attention point p. Finally, the grasp relevant information [image: image], i.e., ROI O, the grasp type s* and the grasp attention point po, are generated from the proposed visual analysis framework. Figure 4 illustrates the detection process of grasp type and grasp attention point.
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FIGURE 4. The detection process of grasp type and grasp attention point. Six pixel-level probability maps corresponding to the six grasp types are first computed from the grasp type detection network. Given the object location computed by the visual attention model, these probability maps are clustered. Then the predicted probability of each grasp type and the location of its grasp attention point are computed. Finally, the grasp type with the highest probability and its grasp attention points are determined.






4. GRASP PLANNING WITH GRASP-RELEVANT INFORMATION

The objective of grasp planning is to find the feasible grasp configuration for a stable grasping. Hence, grasp planning in this work is formulated as an optimization problem. A search based algorithm exploiting grasp-relevant information Ω generated from the proposed visual analysis framework is proposed to find the grasp configuration with high grasp quality. In this work, the search of the feasible grasp configuration is processed from two steps: (1) the formation of the initial grasp configuration based on the grasp-relevant information, (2) the determination of the feasible grasp configuration by the local transformation.

In the first step, we take advantage of the grasp-relevant information [image: image] to determine the initial grasp configuration and the number of the required finger. The initial grasp configuration of the robotic hand is defined as follows: (1) The number of needed fingers is selected according to the grasp type s* and the gripper; (2) The grasp center ph is set to be a point that deviate a initial offset dinit from the 3D grasp attention point [image: image] which is obtained from 2D grasp attention point p0 using frame transformation; (3) The hand palm is controlled to approach the grasp attention point. Using a multi-fingered robotic hand to grasp objects typically requires the relative pose between the object and the robotic hand, as well as the hand joint configuration. Due to the high dimensionality of the robotic hand and partially observability of objects, it is challenging to find the optimal contact points on the object surface to form a grasp configuration. In this work, we exploit the concept of Opposition introduced by De Souza et al. (2015) to execute the grasp configuration. The robotic hand is controlled to reach the target pose and close the two finger groups to grasp an object.

Next, A local search method is used to find the grasp configuration with the highest quality in a grasp search space. Due to the existence of uncertainties, the defined pre-grasp configuration may fail to grasp objects. Hence, a local search is used to find the grasp configuration with higher quality. During searching, the pre-grasp configuration is used as the initial grasp configuration. We sample a set of candidate grasps with coordinate transformation. The search space is a 4 dimensional space, S = {d, α, β, γ}, where d = dinit ± Δd is the offset of the 3D grasp attention point [image: image]. Δd is a pre-defined searching range. {α, β, γ} denote the searching ranges of the rotate angles in the X, Y and Z axes of the hand coordinate, respectively. During the search process, all the candidates are evaluated by using force-closure method (Suárez et al., 2006). The force-closure method has been widely used in grasp planning, which measures the grasp quality through the evaluation of certain geometric relations of the contact points. A grasp is force-closure if a hand can exert arbitrary force on the grasped object through a set of the contact point. After the grasp quality measure, the grasp configuration with the highest quality is chosen for object grasping. Finally, during executing candidate grasps, the fingers move to contact with the object surface and hold it. The robotic arm lifts the object to finish the grasping task.

Algorithm 1 shows the process of the grasp planning procedure.


Algorithm 1: Attention based visual analysis for grasp planning
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5. EXPERIMENTAL RESULTS


5.1. Dataset and Implementation

Existing datasets, such as the Yale human grasping datasets (Bullock et al., 2015) and the UT grasp dataset (Cai et al., 2015), are used for the analysis of human hand behavior. These datasets are not suitable for the grasp planning with robotic hands. Hence, we introduce a new grasp type detection (GTD) dataset specified for robot grasping. The GTD dataset contains RGB-D1 images and ground-truth grasp type labels. There are 11,000 annotated images with resolution 640 × 480. In this dataset, six commonly used grasp types were considered and 12 household objects with various shape attributes were chosen, as shown in Figure 5A. A MATLAB GUI is designed to manually annotate grasp types on collected data. According to the GRASP taxonomy defined in Feix et al. (2016), object parts in images were labeled with different grasp types which enable multi-label detection, as shown in Figures 5B,C. The GTD dataset was split randomly into a training set (90%) and a testing set (10%). The training parameters of the grasp type detection model are set as follows: the initial learning rate was 0.00001, and a step delay policy is used to lower the learning rate as the training progresses.Stochastic gradient descent (SGD) method with a momentum rate of 0.9 is used.


[image: image]

FIGURE 5. Illustration of GTD dataset. (A) Twelve household objects contained in the GTD. (B) The original image. (C) A labeled image with large wrap. (D) A labeled image with precision. Pixels that belong to a grasp type are marked with color and others are background.





5.2. Evaluation of Grasp Type Detection

We first evaluated the accuracy of the grasp type detection on the proposed GTD dataset. For comparison, another network based on the Segnet architecture introduced in Badrinarayanan et al. (2017) is trained and evaluated. Segnet has an encoder-decoder architecture and is widely used for image segmentation. For pixel-level multi-label detection, we modified the output layer of the Segnet network as introduced in subsection 3.2. The same training and testing procedures are used for both networks described in section 5.1. Table 1 shows the Intersection-over-union (IoU) of the two networks. Our approach achieves a higher average detection accuracy and outperforms the segnet-based network by 10%.



Table 1. Performance on GTD dataset (IoU).

[image: image]




A confusion matrix (Figure 6) is used to evaluate the overall quality of detected the grasp type. Since the network predicts six labels corresponding to six grasp types for each pixel, each row of the matrix shows the predicted probabilities of each grasp type for one ground truth label. It shows that the proposed method is able to predict correct grasp types with the highest probability since the diagonal elements have the highest values. It is worth mentioning that several off-diagonal elements also have rather high values. For example, the prediction results for Power type also show a high probability for Precision, which means those two grasp types are easily mislabeled by the proposed method. The reason is that those two types have a high correlation and share many similar characters. Hence, the confusion matrix can also help to discover the similarity among grasp types.


[image: image]

FIGURE 6. The confusion matrix of the six grasp types.





5.3. Grasp Planning in Simulator

The proposed visual analysis framework was further evaluated in object grasping tasks. We implemented a grasping simulation based on the V-REP2, which is a physical simulator that supports rapid verification, to conduct this experiment. The grasping experiments were performed on a Shadow Dexterous Hand3, a five-fingered robotic hand which is an approximation of a human hand. During simulations, the hand configuration and the contact force between the Shadow Dexterous Hand and objects were simulated in real-time, which were used for measuring the qualities of candidate grasps. In order to evaluate the performance of the visual analysis framework for grasp planning, we compared the proposed planning method with the method proposed by Veres et al. (2017). Veres et al. used a method which randomly samples a set of candidate grasps based on the normal of the object surface and then ranked all the candidates to find the best one. Since there is no grasp type provided in this method, we use the commonly used power type for the Shadow Dexterous Hand to grasp objects. In this comparison experiment, six objects were selected, as shown in Figure 7. Ten trials are tested for each object. For each trial, an object is placed on the table top and a depth sensor is used to capture the RGB-D image of the table scene. Then, the grasp configuration of the Shadow Dexterous Hand is planned in the simulator. The maximum number of search attempts for both methods is limited to 40. For each object, the success rate of object grasping and the average number of search attempts needed for finding a feasible grasp are shown in Table 2.


[image: image]

FIGURE 7. Examples of object grasping by the Shadow Dexterous Hand in the simulator.





Table 2. Performance of the proposed grasp planning.
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It can be seen that the proposed method obtained a higher success rate of grasping than the random search method. Moreover, the number of search attempts by the proposed planning method is only 17.0% of the search attempts by the random search method. It shows that the grasp-relevant information generated helps to reduce the search time needed for grasp planning and to more accurately find the feasible grasp configuration in the search space. It is worth mentioning that the random search method with a power type easily fails at grasping some small objects, such as the banana and the tuna fish can. This limitation does not occur in the proposed planning method since a feasible grasp type is predicted before grasping. Hence, for multi-finger robotic hands, objects with different shape attributes should be handled with different grasp types.

We also noticed that there are several failures of object grasps using the proposed planning method. The main reason for the failures is because the predicted grasp attention point on the object surface is too close to the table top. Since the environmental constraints are not considered in this work, the Shadow Dexterous Hand will collide with the table and fail to grasp the object. In the future, it will be beneficial also to consider the environment and task constraints.

In order to further evaluate the generalization of the proposed framework, we also tested our framework with a 3-fingered Barrett hand4 and a 2-fingered Baxter gripper5, Figure 8 shows some results of object grasping. In this experiment, the 2-fingered Baxter gripper only used the pinch type to grasp objects. On average, Barrett hand has 90% success rate with four search attempts while Baxter gripper has 100% success rate with 1.4 search attempts.


[image: image]

FIGURE 8. Examples of object grasping. (A) Objects grasped by the Barrett hand. (B) An object grasped by the Baxter gripper.



To further verify the effectiveness of the grasp planning with prior information, we compared with the work from Ciocarlie and Allen (2009). This work searches a grasp configuration for dexterous robotic hands in a hand posture subspace which is determined by using grasp synergies. In their work, the grasp planner only results in a power type, which means their grasp planner may fail to grasp small objects. Another limitation of their grasp planner is that it needs a long search time for finding a feasible solution, with over 70,000 attempts for each plan, and an average running time of 158 s (Ciocarlie and Allen, 2009). Compared with their work, our method requires fewer search attempts and enables the robotic hand to grasp objects with different grasp types.



5.4. Real-World Robotic Experiment

The robotic experiments were conducted using the six DOF UR5 robot6 and the three-fingered Robotiq gripper7. Figure 9 shows the experimental setup for the object grasping tasks. A Kinect sensor was used to capture the RGB-D image of the table scenes. Eight objects selected from YCB object set (Calli et al., 2015) were used for the evaluation, as shown in Figure 10. It contains six unknown objects comparing to our dataset (Figure 5). In the object grasping experiments, we adopted the following procedure. Multiple objects were randomly selected and placed on the table. The proposed visual analysis framework took the image captured by Kinect as input and outputted the grasp-relevant information. Then, the grasp configuration was planned by taking advantage of this computed information and sent to the UR5 robot for grasping. A video is provided as Supplementary Material.


[image: image]

FIGURE 9. Experimental setup with a UR5 arm and a three-fingered robotic hand.




[image: image]

FIGURE 10. Eight different objects for robotic experiments.



Figure 11 shows the process of attention based visual analysis. Given an input RGB image, the ROI denoted by a rectangle in the saliency map is firstly selected by the attention model. Meanwhile, six pixel-level probability maps are obtained from the grasp type detection model. The grasp attention point denoted by the cross in each probability map is obtained by clustering. Finally, the grasp type with the highest probability in the ROI is selected. As it is shown in Figure 11, our system is also able to produce grasp type and grasp attention point results on unknown objects.


[image: image]

FIGURE 11. Example of the visual analysis on various objects. The first column is the input RGB image. The second column is the pixel-level saliency map, in which the red rectangle denotes the selected ROI. The third column is six pixel-level probability maps which describe the results of grasp type detection. The six probability maps from top left to bottom right corresponds to the six grasp types (i.e., large wrap, small wrap, power, pinch, precision, and tripod). The cross in the probability maps denote the cluster centers which is considered as the grasp attention point. The last column is the output of the visual analysis.



The performance of the whole system is evaluated based on object grasping tasks. Four trails were tested for each object and a total of 32 trails were implemented. Because the robotic gripper only had three finger, we consider large wrap and small wrap equivalent, and consider precision and tripod equivalent. So the numbers of the used finger for precision and tripod were same. The experimental results were that 28 successful graspings out of 32 trails (87.5%). Basically, the proposed method enabled the robotic hand to find the feasible grasp configuration and successfully grasp it. Figure 12 shows some examples of the object grasping using the proposed framework. As we can see, the grasp-relevant information generated from the proposed framework was used as prior information to guide the grasp formation. For each frame, ROI localization takes 1.8 s, grasp type detection takes 6.5 s and the complete process takes 8.5 s on average. The proposed framework is implemented in python and runs on a 2.50 GHz Intel i5 CPU.


[image: image]

FIGURE 12. Examples of object grasping using the UR5 robot. In each subfigure, the left showed the analyzed results and the right showed the robot grasped the object. (A) Grasping of a chip can With Precision grasp type, (B) grasping of a coffee bottle with power grasp type, (C) grasping of a bottle with Tripod grasp type, (D) grasping of an apple with precision grasp type.



It is worth mentioning that several failures of object grasping have occurred. As in simulation experiments, when grasping the small object (e.g., an apple), the planned grasp pose was too close to the table, the UR5 robot failed to find a feasible kinematic solution. Another cause was that the proposed visual attention method sometimes only locate a small region of an object and a feasible grasp configuration cannot be found. This is caused by low color contrast between the object and its background. It also occurred that the object fell out of the gripper during lifting. It was caused by the uncertainty from the object weight. In the future, it will also be beneficial to incorporate grasp adaptation into the proposed framework.




6. CONCLUSION

This paper proposes an attention based visual analysis framework, which computes grasp-relevant information directly from visual data for multi-fingered robotic grasping. By using the visual framework, an ROI is firstly localized by a computational attention model. The grasp type and grasp attention point on object segment presented in the ROI is then computed using a grasp type detection model, which is used as prior information to guide grasp planning. We demonstrated that the proposed method is able to give a good prediction of grasp type and grasp attention point. Furthermore, the performance of the proposed visual analysis framework has been evaluated in object grasping tasks. Compared to previous methods without prior, the information generated from the visual analysis can significantly speed up grasp planning. Moreover, by using a feasible grasp type, the success rate of the grasping is also improved. Results show that the proposed framework helps the robotic systems to know how and where to grasp objects according to attributes of sub-regions of objects. Since our method does not rely on object detection, it can also handle unknown objects.

For future work, several aspects will be considered: first, the current framework is goal-driven, and it only learns how to grasp an object, so it will be interesting to extend the proposed framework into a task-driven framework, e.g., grasping in human-robot handover task. Second, currently the choice of grasp type and grasp attention point only depends on the attributes of sub-regions of objects. Since grasp planning is also affected by environment and task constraints, those constraints will be taken into consideration.



DATA AVAILABILITY

The datasets for this study can be found in the GTD dataset8.



AUTHOR CONTRIBUTIONS

ZD and GG designed the visual analysis framework. SF provided the visual attention model for saliency detection. ZD and GG designed the experiments and carried out the experiments. ZD analyzed the experimental results. ZD and GG wrote the manuscript. FS, CZ, and JZ assisted the manuscript writing.



FUNDING

This work was partly funded by the German Science Foundation (DFG) and National Science Foundation of China (NSFC) in project Crossmodal Learning under contract Son-derforschungsbereich Transregio 169. This work was also partly funded by Shenzhen Peacock Plan (Project No.: KQTD2016113010571019). This work is also partly funded by Horizon2020 project STEP2DYNA.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnbot.2019.00060/full#supplementary-material

Video S1. Attention based visual analysis for grasp planning.



FOOTNOTES

1We use only RGB data in this paper, and plan to exploit the depth data in the future.

2http://www.coppeliarobotics.com/

3https://www.shadowrobot.com/products/dexterous-hand/

4https://www.barrett.com/about-barrethand/

5https://www.rethinkrobotics.com/baxter/

6https://www.universal-robots.com/products/ur5-robot/

7https://robotiq.com/products/3-finger-adaptive-robot-gripper
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Blindness is an ideal condition to study the role of visual input on the development of spatial representation, as studies have shown how audio space representation reorganizes in blindness. However, how spatial reorganization works is still unclear. A limitation of the study on blindness is that it is a “stable” system and it does not allow for studying the mechanisms that subtend the progress of this reorganization. To overcome this problem here we study, for the first time, audio spatial reorganization in 18 adults with macular degeneration (MD) for which the loss of vision due to scotoma is an ongoing progressive process. Our results show that the loss of vision produces immediate changes in the processing of spatial audio signals. In individuals with MD, the lateral sounds are “attracted” toward the central scotoma position resulting in a strong bias in the spatial auditory percept. This result suggests that the reorganization of audio space representation is a fast and plastic process occurring also later in life, after vision loss.

Keywords: macular degeneration, multi-sensory integration, scotoma, audio-space representation, PRL


INTRODUCTION

In sighted individuals, the visual cortex responds mainly to visual inputs. Recent evidence shows that in some specific cases the visual cortex of blind individuals processes spatial information of audio and tactile signals (Rauschecker, 1995; Collignon et al., 2009, 2011, 2013; Voss and Zatorre, 2012). Moreover, sighted individuals are reported to show a reset in visual cortex driven by auditory phase shifts and this kind of cross modal changes is found extensively in visual cortex (Mercier et al., 2013; Keil and Senkowski, 2018). This result is in agreement with studies in sighted individuals showing multisensory interactions between sensory modalities in human primary cortices (Martuzzi et al., 2006; Romei et al., 2009). This cortical reorganization in blindness has been associated with the enhanced abilities of blind individuals in processing audio information such as sound localization in the azimuth location (Lessard et al., 1998; Voss et al., 2004; Röder et al., 2007). However, blind individuals are not always better in the audio processing than sighted individuals and in some cases they show strong impairments  in  audio  space  representation  tasks

such as in the spatial bisection task or in the dynamic sound localization (Gori et al., 2014; Finocchietti et al., 2015; Vercillo et al., 2015). To date, it is not clear why some skills are enhanced and some other impaired. More in general, an open question is the start of cortical and perceptual reorganization after the beginning of the visual impairment. A limit of the study of blindness is that it is a “stable” system and it does not allow for study of the mechanisms that subtend the progress of cross-sensory plastic changes. To overcome this problem we studied, for the first time, audio spatial reorganization in individuals with macular degeneration (MD) for which the loss of vision due to scotoma is an ongoing progressive process. MD is a retinal disorder that damages the retina and produces scotoma (blind spots) on the eye cutting inputs on corresponding visual cortical representations (Sunness et al., 1996; Hassan et al., 2002; Schuchard, 2005). MD is an ideal condition to study the mechanisms that subtend audio spatial reorganization. Depending upon the pathology, scotoma can be central or peripheral, hereditary (also called “juvenile” JMD), or age-related (AMD). More in general, retinal damage increases with time and thus the scotoma size. 18 MD individuals with central visual scotoma were involved in an audio spatial task. Auditory stimuli were presented at different points of the frontal surface consisting of a vertical matrix of speakers, considering spaces within (central), and outside (peripheral) the visual scotoma (see Figure 1 for details). Our hypothesis was that if the lack of vision has a direct and immediate effect on the cross-modal reorganization of spatial audio representation, this should provide a distortion of audio processing within the scotoma zone in MD but not in sighted individuals. Our results support our hypothesis showing that the loss of vision produces changes in the processing of spatial audio signals in MD patients. In individuals with MD, the lateral sounds are “attracted” toward the central scotoma position resulting in a strong bias in the spatial auditory percept. We discuss our results suggesting that the reorganization of audio space representation is a fast and plastic process occurring in a few years also later in life, starting after vision loss.
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FIGURE 1. The device and simulation of device.





MATERIALS AND METHODS


Subjects

A total of 18 MD participants (mean age: 66.28, standard deviation: 21.74) and 18 sighted subjects (mean age: 53.72, standard deviation: 19.55), unpaired t-test (t = 1.58, df = 33.55, p = 0.12), and participated in the study (see details in Table 1). We performed a power analysis based on data acquired in pilot studies and we estimated for the difference between groups, an effect size (measured with Cohen’s d) which were at least 0.96 (large according to Cohen’s classification). Based on the expect size, on a significance of 0.05 and a statistical power of 0.8, we retained as sufficient a minimum sample of approximately 18 subjects All MD participants were suffering from central vision loss due to scotoma caused by different diseases as reported in Table 1. Some of these participants were born with congenital retinal diseases (JMD, e.g., RP) leading to slow degeneration of the retina and development of central scotoma with growing age, while others were suffering from AMD; hence developing a scotoma in one or both eyes in later years of life. All these patients were recruited from “Istituto David Chiossone” based in Genoa, Italy. Since all these participants were suffering from central vision loss (central scotoma), they were part of a rehabilitation program where they were learning to fixate with their preferred retinal locus (PRL) instead of damaged fovea using certain rehabilitation training techniques. All necessary subject data (history, visual acuity, disease, dominant eye, PRL, fixation, and retinal maps) were obtained from the ophthalmologist and rehabilitators at “Istituto David Chiossone” as shown in Table 1 (visual acuities for P06, P16, P17, and P18 are not reported in the table, as the hospital was unable to provide a VA record for these participants). The dominant eye of sighted participants was determined prior to the experiment using the classic dominant eye test (Heiting, 2017).

TABLE 1. Characteristics of MD participants.
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Ethics Statement

All subjects involved in this study were adults (age above 16 years). This study was approved by the ethics committees of the local health services: Comitato Etico, ASL3 Genovese, Italy. Subjects (both patients and controls) signed the written informed consents prior to performing the experiment.



Stimuli and Procedure

A 5 × 5 matrix (dimension 50 cm × 50 cm) of 25 speakers (each speaker dimension 10 cm × 10 cm) was used for the experiment. Each speaker was covered by 16 haptic blocks, making the whole matrix touch-sensitive (see Figure 1). Sounds were produced using sound card of PC and controlled using Matlab R2013b® (MathWorks.Inc.).

Before starting the experiment, fixation stability and a retinal map of each patient were obtained using the Nidek MP-1 Retinal Microperimetry (NIDEK TECHNOLOGIES SRI) with the help of a rehabilitator at “Istituto David Chiossone.” The retinal images provided by microperimetry covered a visual angle of ±20 degrees (essentially where the central scotoma was present). Since all the MD participants had vision loss due to central scotoma, device matrix was virtually divided into central and peripheral parts as shown in Figure 1. The red highlighted part mimics the center of the eye (covering a visual angle of ±23.7 degrees) while the green highlighted part mimics the periphery (covering visual angle of ±47.47 degrees). None of the subjects were aware of the virtual division of the matrix. Subjects sat straight at a distance of 30 cm from the device with their eyes positioned in front of the fixation point in the center of matrix (see Figure 1). Position of device was adjusted according to height of subject.

The experiment was divided into two conditions; Monocular and blindfolded. All subjects (MD participants and sighted) performed the test in the Monocular condition, while only a sub-group of participants (9 MD participants and 8 sighted subjects) performed the experiment in blindfolded condition as well. This subgroup was estimated using power analysis based on pilot studies for the difference between groups in the blindfolded condition, an effect size (measured with Cohen’s d) which was at least 1.5 (large according to Cohen’s classification). Based on the expect size, on a significance of 0.05 and a statistical power of 0.8, we retained as sufficient a minimum sample of approximately 8 subjects. The blindfolded condition was tested on a sub-group of participants that performed the major study in order to check if there is a bias due to visual inputs or not. In the monocular condition, subjects were asked to fixate (with dominant eye) at the marked fixation point in the center of the device while listening to sounds produced from different speakers (white noise, duration 1 s). Participants were asked to touch, with the index finger of the dominant hand, the position from where they perceived sound was produced, hence localizing the sounds, while fixating at the center of the device. Here it is important to mention that MD participants were asked to fixate with their PRL, while controls were asked to fixate with their fovea. When the touch was registered by the tactile sensors, a feedback sound (“meow” of a cat) was reproduced from the central speaker to end the trial. Thus, the subject was allowed to bring his/her finger back to resting position. A pause of 3 s was inserted between trials. A total of 72 random trials were produced with each speaker producing sound 3 times randomly (central speaker marked as fixation point only produced feedback sound). The same experiment was repeated in the blindfolded condition while blindfolding both eyes and localizing sounds. A training session was also run until subject understood the task before starting of actual experiment.



Subject Responses

To determine the scotoma position, the fixation stability of subjects and the exact visual angle subtended by the scotoma, we collected retinal maps (Chen et al., 2009) for all the MD participants (see Figure 2 left for an example of retinal maps in two participants). Subject responses were recorded over the device matrix and are shown as a function of visual angles in relation with the fixation point on the device. As an example, in Figure 2 (central panel) are provided responses of the two MD participants (whose retinal maps are presented on the left) and for two sighted individuals. While for sighted individuals (Figure 2, blue dots) the responses for sound localization are equally distributed on the surface, the responses of the MD participants (Figure 2, red dots), were mainly localized on the central region, namely where the scotoma was present suggesting an “attraction” of sound toward the scotoma position.
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FIGURE 2. Subject responses. Left, example of retinal maps for two MD individuals (P1 and P2). The central red area indicates the damaged retina, yellow for partially damaged retina, and green for the leftover healthy part of the retina. Center, example of the responses of the same two MD individuals (P1 and P2) for sound localization. Sounds were equally distributed on the surface of the device, but their responses were mainly localized in the central region (in red) indicating the position of their scotoma. Right, example of the responses of two age sighted participants (C1 and C2) for sound localization. Responses are equally distributed on the surface.






RESULTS

To quantify the sensory precision and the bias in sound localization (i.e., the sound attraction toward the scotoma position), responses were subdivided as central responses (CR) and peripheral responses (PR), considering the central and peripheral portions of the device (Figure 1B), respectively.

A significant difference between CR and PR was found in MD participants with a higher number of responses in the CR than in the PR. A mixed model ANOVA (2 × 2) was performed with the group as between factor (two levels, sighted and MD), and position as within factor (two levels, CR and PR). A significant interaction was found between group and position [F(1,34) = 6.79, p = 0.02]. Post hoc t-tests revealed that MD individuals tend to touch the central speakers (CS) more compared to the sighted individuals (MD: mean = 45.56, SEM = 3.18, Controls: mean = 34.72, SEM = 2.67, un-paired t-test, t = 2.58, df = 33.01, p = 0.014), while sighted participants tend to touch the peripheral speakers more compared to the MD individuals (MD: mean = 26.45, SEM = 3.18, Controls: mean = 37.56, SEM = 2.72, un-paired t-test; t = −2.65, df = 33.19, p = 0.012). Also, MD individuals touched more the central rather than the peripheral speakers (CR: mean = 45.56, SEM = 3.18; PR: mean = 26.45, SEM = 3.18, paired t-test: t = 3.01, df = 17, p = 0.008). Sighted participants respond equally in the CR and PR (CR: mean = 34.72, SEM = 2.67; PR: mean = 37.56, SEM = 2.72, paired t-test: t = −0.53, df = 17, p = 0.61) as shown as a bar plot in Figure 3.
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FIGURE 3. Comparison between controls and MD considering CR and PR. Results show that the MD participants (right side) are more attracted toward the central speakers (red bars). This attraction is higher compared to the one showed by the sighted (left side) which provided responses equally distributed for central and peripheral regions. ∗Significance between groups; ∗∗Significance with-in group.



In order to get a detailed picture of how CR are comparable to PR, we implemented in R the methods developed by Rousselet et al. (2017). First, we extracted all the deciles and medians of distributions in each condition (CR and PR) and for each group (MD and controls) as shown in Figures 4A,B, respectively. The horizontal lines represent the nine deciles with a thicker line showing the median of each condition, the dots represent each participant.
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FIGURE 4. Differences in CR and PR for MD (A) and controls (B) groups. (A,B) Strip chart of two distributions. Each circle represents one participant, horizontal lines shows the deciles and thicker line show the median. The dotted line corresponds to zero.



Since the two conditions (CR and PR) are paired, the investigation was not merely limited to computation of marginal distributions; we also computed how responses are linked between center and periphery for MD (Figure 5A) and Controls (Figure 5B) group, respectively: paired observations of each subject are joined by a single line of a different color. Figure 5A show that a majority of lines are decreasing from CR to PR, suggesting a greater tendency for responding in the center compared to the periphery, while Figure 5B reveals the absence of any trend due to a huge variability among the slopes of subjects.


[image: image]

FIGURE 5. Differences in CR and PR for MD (left panel) and controls (right panel) groups. (A,B) Pairwise observations. Paired observations of each subject are joined by a single line of a different color. (C,D) Scatter plot. The diagonal black line shows reference with no effect; CR = PR (slope = 1, intercept = 0). Colored letters show the scattered data points and dashed line show quartiles for each condition. (E,F) Strip chart of difference responses. Each circle represents the difference between conditions for one participant. Deciles are shown by horizontal lines; the thicker line shows the median.



Figures 5C,D also show the link between two conditions in terms of decile differences, the thicker line represents the difference in medians for two conditions. The black diagonal shows line of no effect with slope one and intercept zero as reference line (CR = PR). Quartiles of two conditions are shown by the dashed lines. Here, it is important to mention that since the total number of trials is constant (i.e., 72), CR and PR are negatively related (CR = 72 – PR). This means that if a subject responds more in the center (CR), the value of PR automatically reduces and vice versa, hence a negative correlation between CR and PR. For the MD group, Figure 5C shows differences that are quite scattered from the center. Whereas for controls, Figure 5D shows that the differences are rather symmetrically grouped around the central line revealing that the probability of having subjects with positive or negative differences between conditions are similar.

Figures 5E,F illustrate the distribution of the differences between CR and PR. The horizontal lines show the deciles with the thicker black line showing the median of differences. Difference between marginal distributions of CR and PR is larger for MD than for control groups. In fact, for MD group, the median for CR is 42.5 and for PR it is 29.5. The difference between the two medians is −13 with a 95% confidence interval of (−68.6, 14.6) (Figure 5E). Figure 5F shows the differences between marginal distribution (CR: median = 36.5; PR: median = 35.5) for the control group as strip charts. The difference between the two medians is +1 with a 95% confidence interval of (−21.3, 38.3).

To systematically compare the distributions, shift function for dependent variables was also evaluated (Doksum, 1974; Wilcox and Erceg-Hurn, 2012), as shown for both groups in Figures 6A,B, respectively. The circles represent the decile differences and the vertical lines correspond to the 95% confidence interval which is computed using bootstrap technique (2000 bootstrap samples) (Rousselet et al., 2017). The vertical dashed line shows the mean. For each decile, confidence intervals which are not crossing zero correspond to significant difference. For the MD group (Figure 6A) only the first and the last decile differ significantly. Instead, for the controls group in Figure 6B, we see no significant difference for any decile.
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FIGURE 6. Differences between conditions. (A,B) Shift function with 95% confidence intervals. (C,D) Difference asymmetry function with 95% confidence intervals computed via bootstraps technique.



Then, we quantified distribution difference asymmetries using a new method called difference asymmetry function, proposed by Wilcox (Wilcox and Erceg-Hurn, 2012). The method computes the quantile sums = q + (1 – q) considering different quantile estimations by using Harrell-Davis estimator. The confidence intervals are derived using the percentile bootstrap technique. Figures 6C,D show the resulting difference asymmetry function for MD and Controls groups, respectively. Along x-axis, the starting point 0.05 shows the sum of quantile 0.05 + quantile 0.95; the next point 0.10 is for the sum of quantile 0.10 + quantile 0.90; and continues along the axis in similar fashion. MD group (Figure 6C) show negative sums at extreme quantiles (0.05 + 0.95) for all deciles. On the other hand, the controls group (Figure 6D) show that distributions do not differ because the confidence intervals difference asymmetry function is crossing zero line for all deciles.

Next, we compared the bias for each condition (CR and PR) between the two groups (MD and controls). Figures 7, 8 shows a detailed picture of comparison between MD and C (controls) group for CR (left Panel) and PR (right Panel), respectively.
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FIGURE 7. Differences between groups; MD and Controls for CR (left panel) and PR (right panel). (A,B) Strip charts for marginal distributions. Vertical lines mark the deciles for each group with a thicker line marking the median. Among distributions, the colored lines join the matching deciles (orange for positive decile differences and purple for negative values). (C,D) Shift function. Decile differences are shown with MD group deciles on x-axis and decile difference (MD-C) on y-axis. The vertical lines show the 95% bootstrap confidence interval. The first and the last deciles in both figures do not cross zero, hence they are considered significant.
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FIGURE 8. Comparison between groups. (A,B) Kernel density depiction of the distribution of all pairwise differences amongst the two groups. Deciles are marked by vertical lines with a thicker line for median. (C,D) Difference asymmetry function using 95% confidence intervals. The pair-wise error is controlled by altering the critical p-values with Hochberg’s method; the confidence intervals are not adjusted.



Figures 7A,B show the two marginal distributions in the form of a strip chart for each condition (CR and PR), respectively. The spread of the dots for each group (MD and C) is proportional to the local density of responses recorded for the said condition (CR or PR). The vertical lines show the deciles for each group with the thicker line showing the median of distributions. For instance, Figure 7A shows the distributions for two groups when the responses were recorded in the center (CR). For MD, the median of responses is 42.5 and for C median is equal to 36.5; hence the marginal difference is +6. As can be seen in Figure 7A, there is a shift between the distributions of the two groups: the deciles of MD are systematically greater compared to the C group. The difference in deciles is positive and is represented by orange lines joining corresponding deciles for each group. Decile values for first and ninth decile are +10.82 and +17.67, respectively as shown in Figure 7A. Similarly, Figure 7B shows the marginal distributions in the similar fashion as that of Figure 7A but for the PR condition. It is evident from Figure 7B that the shift between distributions is opposite in PR condition compared to CR condition, as expected because CR = 72 – PR. MD group is shifted to lower values (median = 29.5 and controls have higher values median = 35.5). The difference in the medians is −6 and the corresponding deciles are joined by purple lines showing a negative shift. This means that MD participants show dominance in CR condition compared to Controls and vice versa for PR condition.

Figures 7C,D shows the shift function for each condition, respectively. In both figures, on x axis we have deciles for MD which correspond to the gray shaded area in Figures 7A,B. Instead, on the y-axis we have the decile differences (MD – C). Hence, for each decile the shift function shows by how much one observation needs to be shifted to match another one. The vertical lines show the 95% bootstrap confidence interval. Only the first and the last deciles in both figures do not cross zero, hence they are considered significant.

In order to find the typical differences between the members of the two groups (MD and C), Figures 8A,B shows the kernel density representation (Han et al., 2004) of pairwise differences for each condition, respectively. The number of participants in each group is 18 (n = 18), so we get a total of 324 differences. In Figure 8A, the median of the differences is 9.49 i.e., far from zero with a 95% confidence interval at (2.39, 18.98). Hence, if we randomly select a sample from each group, it will differ significantly (Rousselet et al., 2017). These differences are distributed asymmetrically; negative values extend around −30 while positive values extend around −57. So, positive differences out-weigh negative differences in this case; revealing that the two differences differ. Similarly, Figure 8B shows this difference in case of PR condition. The median of differences is −9.57 with a 95% confidence interval at (−19.15, −3.23), which is – as expected – again far from zero. The asymmetry is also evident with negative values extending to −57 and positive values extending to +30, again showing an opposite behavior to CR condition with pairwise differences.

The difference asymmetry method introduced earlier for dependent conditions (Figures 6C,D) is also applied in this case for the two groups in each condition, respectively. Figures 8C,D shows the resulting difference asymmetry function for CR and PR, respectively. Along x-axis, the starting point 0.05 shows the sum of quantile 0.05 + quantile 0.95; the next point 0.10 is for the sum of quantile 0.10 + quantile 0.90; and continues along the axis in similar fashion. Condition CR (Figure 8C) shows always positive quantile sums (0.05 + 0.95). On the other hand PR (Figure 8D) shows again the opposite pattern with quantile sums below zero.

To disambiguate whether the effect was just a bias in response to the unseen area we tested the blindfolded condition. A sub-portion of individuals were taken from the groups of sighted and MD individuals (N = 8 and N = 9, respectively) as a control condition. Since the hypothesis of normality was not confirmed in this case, an ANOVA test is performed based on permutations by means of the R function aovp (Wheeler and Torchiano, 2010). The model (2 × 2 × 2) is provided by a between factor, group (MD and sighted), and two within factors: condition (monocular and blindfolded) and position (CR and PR). Only one significant interaction group ∗ position [F(1,59), p = 0.008)] is found, therefore, we performed Post hoc analysis with both paired and un-paired t-tests based on permutations as well (perm t test R function) (Fellows, 2012). Bonferroni correction is used for multiple comparisons. The only significant difference is found between the positions for MD participants (t = 3.71, df = 33.25, p = 0.003). The results show a higher tendency for MD individuals in touching the CS (coinciding with the position of the scotoma) compared to the group of the sighted even in blindfolded condition.

As a check that responses of both groups are a result of stimulus and not just random responses over the device, we calculated distance errors. Distance error is the distance between stimulus position and response position. We found that for central stimuli, the distance errors for MD and control groups are 9.86 and 9.74 cm, respectively, while in the periphery the distance errors are 15.8 and 14 cm, respectively. As mentioned in section “Materials and Methods” and shown in Figure 1, the distance between two speakers on the device is 10 cm. Hence, for both conditions the distance error is within 15 cm showing that responses correspond to stimuli and are not random. As evidence that subjects actually responded to the stimulus and didn’t make random responses on the device, a Hits and Misses matrix was computed for the two groups. Figure 9 shows the matrix computed to evaluate the percentage of responses. CS and PS represent the Central Stimulus and Peripheral Stimulus, respectively while CR and PR represent the CR and PR, respectively. The 2 × 2 matrix show the responses against the stimuli in terms of percentage. Percentage for CS (first column) is computed as the total number of responses when the sound was produced from CS divided by the total number of trials in the center (9 speakers × 3 trials each = 24). Similarly, the percentage value for PS (second column) is computed as the total number of responses when sound was produced in the periphery divided by total number of trials in the periphery (16 × 3 = 48). For instance, index (1,1) of the matrix shows the percentage of responses when both the stimulus and response were central, index (2,1) shows the percentage of responses when the stimulus was central but the response was peripheral, index (1,2) is the case when the stimulus was peripheral but the response was central and lastly, index (2,2) is the case when both stimulus and response were peripheral. Figure 9A represents that MD participants had a higher percentage to respond in center for central stimulus compared to Controls group (Figure 9B). The higher accuracy for the MD group can be explained in terms of results drawn from Figures 3–8. Since this group has a higher tendency to respond in the center, they have a higher probability to respond to central stimulus. This can also be explained in terms of peripheral stimuli. The percentage to respond correctly for peripheral stimuli is lower in MD compared to controls because MD group respond more frequently in the center. The same is true for incorrect responses as well. For the MD group, the percentage of correct responses in the center is almost double to the percentage of correct responses in periphery, which confirms the dominance to respond in the center. For controls group, the percentage of correct responses are almost equal, again as an evidence that they are not attracted toward any specific region, hence they are equally probable for correct and incorrect responses.
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FIGURE 9. Hits and misses chart. CS, central stimuli; PS, peripheral stimuli; CR, central stimuli; PR, peripheral stimuli. The values are represented as percentage; For CS, total number of responses corresponding to CS/Total number of trials for CS; For PS, total number of responses corresponding to PS/Total number of trials for PS. (A) MD group. (B) Control group.



To fully take advantage of MD as a model for audio-spatial representation and to provide more information about the mechanisms of multisensory recalibration we have analyzed the correlation between blindness duration and sound attraction. This correlation is analyzed by defining two parameters: Percentage of CR: which is calculated as CR/72 ∗ 100 (where 72 is the total number of trials); and the onset of scotoma that indicates when the scotoma was diagnosed in the first instance (Table 1); it is equal to the difference between the age and duration of the scotoma (for how long the subject has had the scotoma). A positive trend in correlation (Pearson’s coefficient r = 0.47, p = 0.051) is found between the Percentage of CR and the onset of the scotoma (Figure 10A). Results suggest that there is a trend in correlation between attraction toward the scotoma (CR) and clinical onset of the scotoma. Another correlation is computed between the Percentage of CR and duration of scotoma (r = 0.04, p = 0.88). As we have no significant correlation with the duration of disease, this shows that the effect remains consistent even when the duration increases (Figure 10B). The same result is confirmed by another correlation in which we considered the Percentage of CR against the age of MD individuals (Figure 10C) and the Percentage of CR against the age of typical participants (Figure 10D). A significant correlation between age and CR is evident only for MD individuals (Pearson’s coefficient (r = 0.53, p = 0.02) and not for typical (Pearson’s coefficient (r = 0.05, p = 0.94). The presence of an effect for the correlation of Age and CR for MD group and not for Controls group shows that MD participants are attracted more to the scotoma position with increasing age and that the correlation is present only when there is a “scotoma,” without scotoma (controls) we found no correlation.
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FIGURE 10. Pearson’s Correlations. The black dots represent data points; the black solid line represents regression line, the black dashed line shows 50% and the gray area show 95% confidence interval. (A) Correlation between onset age (age – duration) and percentage of CR (CR/72 ∗ 100). (B) Correlation between scotoma duration and percentage of CR. (C) Correlation between age of MD group and percentage of CR. (D) Correlation between age of controls group and percentage of CR.





DISCUSSION

Audio space reorganization was studied here for the first time in adults with central scotoma due to MD disease. Results suggest a robust attraction of sound toward the scotoma position in MD patients. Lateral sound positions were strongly biased and perceived as coming from the central scotoma region. The similar precisions in central and peripheral regions between MD and sighted participants (distance errors) suggest that the bias was not due to a less reliable spatial perception in MD individuals. Moreover, for MD participants the sound attraction toward the center is present even with eyes closed. On the contrary, there is no attraction toward a specific area of the device in controls both with eyes open or closed. This result indicates that the audio bias in MD individuals is not due to an attraction toward the unseen area supporting the idea of an ongoing multisensory recalibration process.

Results also support the idea that spatial reorganization of audio processing is an ongoing process that occurs after the loss of visual input in a plastic manner. The correlation that we observed between the attraction toward the center and onset of scotoma, indicates that the older the subject is at the onset of the scotoma, the more s/he is attracted toward the center. As expected, this result suggests that this multisensory recalibration process reflects the brain plasticity that is maximal in younger individuals and reduced at older ages (Lund, 1985; Kramer et al., 2004). This is even more interesting if we think that 12 of the 18 subjects tested were older than 70 years and the correlation effect between age and percentage of responses in the center was found only in the MD group and not in the control group. This suggests that central blind region has a minimal effect on audio–spatial reorganization of younger MD individuals, thanks to their cortical plasticity, and this effect due to scotoma increases in elderly population as cortical plasticity reduces with age (Erickson et al., 2007; Kramer and Erickson, 2007). Why do MD participants show an attraction of sound toward the central visual field, where they have the scotoma? Which is the mechanism associated with the bias we observed?

The ability to detect the spatial coordinates associated with neural signals from different sensory modalities is fundamental for a coherent perception. Given the superiority of visual over other sensory systems for space representation (Alais and Burr, 2004), the visual modality might offer a spatial background for remapping other sensory information. Supporting this idea, evidence suggests that eye-centered coordinates are used to align neural representations of space for different sensory modalities in the brain (Jay and Sparks, 1984; Cohen and Andersen, 2002; Pouget et al., 2002; King, 2009). When the visual information is not available, such as in blind individuals, the visual input starts to be activated by auditory stimuli and responses in these areas to auditory stimuli appear to be organized in a topographic manner (Rauschecker, 1995; Collignon et al., 2009, 2011, 2013; Voss and Zatorre, 2012; Abboud and Cohen, 2018; Harrar et al., 2018; Voss, 2018).

A possible explanation of our findings could be that the bias we observed is the result of the ongoing audio cortical reorganization due to the lack of visual input. This cortical reorganization is a fast process that starts immediately when the visual input is loss such as in MD individuals. The recruitment of the visual cortex from the auditory modality could produce the misperception of sound localization that we observed because audio and visual spatial maps require some time to realign. On the other hand, it is not clear which is the short term benefit of this audio reorganization. Indeed on one side, the attraction of sound is not useful to enhance audio spatial precision as it happens in blind individuals [as previously showed by Lessard et al. (1998)] since the audio precision we observed in this work is the same between sighted and MD participants. On the other side, it produces a strong misperception of sound, which is perceived as more central than the real position and this can be problematic for MD individuals.

Taking into consideration these two aspects mentioned above, a second possible explanation that we can consider is that the effect observed here is a result of multisensory integration process. Spatial audio and visual information are commonly integrated to create a unique percept when vision is available. In sighted individuals, given the higher reliability of the visual information for space, a visual dominance is reported as for example in the ventriloquist effect (as predicted by Bayesian Modeling e.g., see Alais and Burr, 2004). Considering this processing, our results could be also discussed in terms of reorganization of multisensory mechanisms. When the high reliability of visual input is decreasing, due to the loss of visual input such as in MD participants, the remaining visual spots are more weighted than predicted. This wrong weight may affect the spatial processing of multisensory information resulting in a capture of sound thus producing an “inverse ventriloquist effect.” This effect could be stronger in older than young participants who show less cortical plasticity and less multisensory integration skills (Lund, 1985; Kramer et al., 2004) which is in agreement with our correlation results.

Thirdly, a final possibility is that attention may have a role on the bias we observed. Santangelo and Macaluso (2012) have reviewed several behavioral and fMRI studies showing that attention can affect how audio and visual signals interact with each other in spatial domain (Santangelo and Macaluso, 2012; Stein, 2012). In this context, scotoma is indeed a “black hole” and with potential risks coming therefore, attentional resources can act as anchors by attracting audio signals in the invisible regions to increase the quantity of information, hence drawing attention of audio modality toward the non-visual zone. To disentangle which one of these three explanations is the correct, further investigations will be necessary considering cortical analysis, top down processing and multisensory modeling.

Two competing hypotheses have been proposed to explain the neural mechanisms of multisensory activation after visual deprivation (Amedi et al., 2007; Striem-Amit et al., 2012; Ortiz-Terán et al., 2017; Chebat et al., 2018): the “rewiring hypothesis” suggests that cross-modal brain responses are mediated by the formation of new pathways in the sensory deprived brain and the “unmasking hypothesis” suggests that the loss of a sensory input induces unmasking and/or strengthening of the existing neural pathways. Our results support the unmasking hypothesis suggesting that cortical reorganization is a fast process that supports changes of audio space perception after a short period of visual loss. These results may have a strong impact for rehabilitation purposes by using the audio input to improve spatial representation and to stimulate residual visual regions of patients having central scotoma due to Macular Degeneration.
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Learning and memorizing sequences of events is an important function of the human brain and the basis for forming expectations and making predictions. Learning is facilitated by repeating a sequence several times, causing rhythmic appearance of the individual sequence elements. This observation invites to consider the resulting multitude of rhythms as a spectral “fingerprint” which characterizes the respective sequence. Here we explore the implications of this perspective by developing a neurobiologically plausible computational model which captures this “fingerprint” by attuning an ensemble of neural oscillators. In our model, this attuning process is based on a number of oscillatory phenomena that have been observed in electrophysiological recordings of brain activity like synchronization, phase locking, and reset as well as cross-frequency coupling. We compare the learning properties of the model with behavioral results from a study in human participants and observe good agreement of the errors for different levels of complexity of the sequence to be memorized. Finally, we suggest an extension of the model for processing sequences that extend over several sensory modalities.
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1. INTRODUCTION

Oscillations are a ubiquitous phenomenon when brain activity is observed at a sufficiently high temporal resolution, e.g., using EEG/MEG (electro-/magneto-encephalography), or invasive methods. Great progress has been made toward understanding the functional role of oscillations in cognitive processes (Singer, 1999; Engel et al., 2001, 2013; Canolty and Knight, 2010; Giraud and Poeppel, 2012; Fries, 2015). Their rhythmic nature suggests that neuronal oscillations could be used by the brain for learning, recognizing and producing rhythmic patterns in the interaction with the environment, and corresponding mechanisms have been suggested and studied in computational models. In particular, oscillator-based models have replicated many of the properties of human memory for serial order (Brown et al., 2000). To this end, the two most relevant computational mechanisms are the encoding of arbitrary time intervals by an ensemble of oscillators with different periods and the dynamic adjustment of oscillation frequency and phase. The time representation by a single oscillator is limited by its period length and phase resolution. In a set of oscillators with different frequencies and phases however more rapid oscillations can provide temporal accuracy, while slower oscillations disambiguate cycles of the faster oscillations (Church and Broadbent, 1990). Basically the phases of the oscillators in the set provide a unique temporal context which can be associated with a sequence of events in the environment (Brown et al., 2000). This dynamic context has a number of desirable properties for learning sequences of events: First, despite the cyclic activity of the individual oscillators, the vector of the combined phases repeats over very long epochs if their frequency ratios are appropriately chosen. By associating items in a complex sequence (e.g., ABAC) with the dynamic learning context, repetitions of the same item can be disambiguated. Second, the learning context for adjacent time points, when only the phases of oscillators with higher frequencies made substantial progress, is more similar than between more distant points, when also the phases of the low-frequency rhythms progressed. This property makes the approach suitable for sequences that involve temporal hierarchies like, for example, spoken language. And third, the series of learning contexts can easily be replayed by resetting the oscillators to their initial phase and restarting the clocking. By modifying the scale of the time signal that drives the oscillators in the set, stored sequences can be replayed at rates that are different from the original one.

The dynamic adjustment of oscillation frequency and phase is another mechanism which is frequently employed in computational models. The main idea is that the phase of the input relative to the ongoing oscillations determines how the synchronization patterns between the neural populations change. Sudden changes of the phase of ongoing oscillations in response to a stimulation, so called phase resetting, can frequently be observed in signals recorded from human and animal brains, where this phenomenon is considered to underlie multisensory integration functions (Lakatos et al., 2012; van Atteveldt et al., 2014). The simultaneous tuning of phase and frequency is aptly modeled by a phase-locked loop (PLL), in which the phase difference between an external rhythm and the ongoing oscillation generates a signal that adjusts the PLL's frequency to minimize this phase difference. In PLL-based computational models of neuronal processing, memorized patterns are not equilibria or attractor states, like in conventional artificial neural networks, but synchronized oscillatory states with a certain phase relation (Hoppensteadt and Izhikevich, 2000). The dynamically stable oscillation patterns can flexibly bind and unbind neural populations by synchronization, which can be used to model cognitive processes in working memory for associating and dissociating elements, inference by binding objects to the variables of a predicate, or algebraic operations defined by the transition rules between oscillation patterns of the network (Pina et al., 2018).

In this article we introduce a new perspective on sequence learning and present a computational model which integrates the two mechanisms of information processing by oscillatory dynamics that were discussed above. This perspective rests on the observation that when humans learn sequences, they frequently do so by verbally or mentally repeating the sequence over and over again. For example, to memorize the number code 9392, one might repeat “9392 9392 9392…” a few times, e.g., by reading it off again from a note or mentally rehearsing it in short-term memory. This repetition can entrain a rhythm for each item. In the example, appearances of the digit “9” would entrain a high frequency rhythm, whereas the rhythms entrained by digits “3” and “2” would have lower frequencies and distinct phases. In addition to the periods that correspond to the temporal distance between any two repeating items, even slower rhythms can emerge when items in every other repetition are considered, whereas fast rhythms could cycle several times between two successive appearances of an item. All the different rhythms that are entrained by this sequence together constitute a characteristic entity that can be used to recognize correct instantiations of the sequence and detect deviations. Any incongruent item, e.g., the erroneous “2” at the end of “9392 932,” would disturb the rhythms that were entrained by digits “2” and “9” during the learning phase and would be easily detected. From this perspective, the rhythms of a sequence appear to be analogous to the polyphony of an orchestra in which the tempi of the individual instruments compose an integrated experience that is unique for the respective piece of music and that is easily impaired by one or several instruments getting out of tune.

In the following, we develop a model that implements this concept by an ensemble of oscillators with a learning rule which attunes them to a given sequence. We analyze the error detection accuracy of the model and compare it to those from a cohort of human participants who performed the same sequence learning task. Finally we explore an extension of the model that demonstrates learning of sequences that involve more than one sensory modality.



2. METHODS


2.1. Oscillator Ensemble Model

We start by developing the model equations for input from a single sensory modality. In each time step, the phase ϕ of every oscillator in the ensemble is updated according to the following equation:

[image: image]

The noise η models random fluctuations in the period of neuronal oscillations and is sampled from a normal distribution. The learning objective for the ensemble is to associate a set of target inputs Î = {Î1, Î2, …} with target phases [image: image]. This requires adjusting oscillation frequencies f to match the rhythm at which target inputs are presented.

2.1.1. Learning Algorithm for Tuning Individual Oscillators

We distinguish three states depending on the phase when an input is presented at time t to the oscillator: If the phase ϕ(t) is close to the target phase [image: image] of an input Îi, we call this oscillation locked to the rhythm of this input. This is the dynamically stable state for an oscillator, when no further adjustments to its phase or frequency are made by the learning algorithm. If the phase is in a given range around the target phase but not (yet) locked, we call this state locking. Oscillations in this state will have their phases set to the target phase of the respective input in the next time step, and the frequency will be adjusted to match the rhythm of the input. We will call any other phase in transit, which means that this oscillator will not be tuned in the current time step. These oscillators are either locking or locked to other target phases, or they constitute a pool of “free” oscillators which are available for synchronizing at a later time or when the input sequence changes. Using two corresponding thresholds θlocked and θlocking, the three states can be formally defined by:

1. Locked: [image: image]

2. Locking: [image: image]

3. In transit: [image: image]

Depending on phase state at a given time t, oscillators are updated as follows. The phase of oscillators in locked or transit state is changed according to Equation (1), and their frequency is not modified, i.e., f(t + 1) = f(t). Oscillators in the locking state however have their phases and frequencies adjusted depending on the input I. If I = Îi, the phase is set to the target phase [image: image] and the frequency is increased or decreased depending on whether the current phase is lagging or leading w.r.t. the target phase:

[image: image]

[image: image]

Delta T is the number of time steps since the last phase reset of the respective oscillator. It is used to scale the magnitude of the frequency change that is calculated from the phase difference to the magnitude of the oscillator's current frequency f(t).

If the input does not correspond to the phase to which an oscillator is locking, i.e., I ≠ Îi, then the phase is inverted and the period length is increased or decreased depending on whether the current phase is lagging or leading w.r.t. the target phase so that in the next cycle, the target phase is reached one sequence item later or earlier than it would have with the current period length:

[image: image]
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Note that this learning algorithm neither ensures that all rhythms composed by a sequence are picked up by the ensemble nor that the tuning process converges for each oscillator. It does ensure however that the number of locked oscillators monotonically increases over time. The number of rhythms that are picked up from the polyphony in the sequence by the ensemble is a function of the ensemble size, i.e., the number of oscillators.

2.1.2. Calculating the Error Signal

Initially, most oscillators will adjust their phases and frequencies until they match the rhythm of one of the items in the sequence. As the tuning progresses, fewer and fewer oscillators will be in the locking state at any time point. This suggests that the total number of locking oscillators is a measure for the attunement of the ensemble to the sequence. Now, if an item suddenly appears at the wrong position, the oscillators that were tuned to the original item at this position would restart tuning, hence the sudden increase in locking oscillators could be used to detect incongruent items.

One approach for this detection would be the definition of a threshold which would signal a sequence violation when exceeded. The two problems with this approach are that it is not obvious how such threshold could be defined in advance and that the error signal very likely is above the threshold not only for an incongruent item, but also during the initial learning phase. We therefore looked for a solution that does not require an additional parameter and that accounts for the tuning during the learning phase. What differentiates the learning phase from the re-tuning for an incongruent item is the time since the last phase reset: The initially random phase and frequency of an oscillator will be relatively far off the rhythms that are generated by the sequence; therefore, they will be adjusted several times until they match the rhythm of a particular item. In contrast, the oscillator probably has been attuned for some time before an incongruent item appears. Thus, the time since the last adjustment was made to the oscillator by the learning algorithm is an indicator whether or not this oscillator was in tune with any one rhythm in the sequence. This indicator yields a much stronger signal when an incongruent item perturbs an attuned ensemble than during the initial tuning process. Using the function δi(t) to indicate whether oscillator i in an ensemble of size N has a phase reset at time t (Equations 2, 4), we define the error signal by:

[image: image]

and the decision about the (in-)congruence of the current item is given by:

[image: image]
 


2.2. Accommodating Several Sensory Modalities

In the brain, signals from different sensory modalities are processed in different yet interacting cortical areas. We model these cortical areas by modules of oscillator ensembles which receive input from a single modality. Just tagging ensembles as “visual” or “auditory” obviously changes nothing in the dynamics of the corresponding oscillators; therefore, a non-trivial extension of the model toward multimodal sensory input requires introducing additional distinguishing features. Rather than assuming fundamentally different processing mechanisms in different sensory modalities, we consider it to be more appropriate to think of similar mechanisms that operate in different parameter regimes for each modality. For example, auditory processing in the human brain has a higher temporal resolution than visual processing (Fujisaki et al., 2012), but the anatomical structure of auditory and visual cortices does not seem to be fundamentally different (Rauschecker, 2015). This finding inspired us to use different base frequencies in different modules. Thus the multimodal model we investigate here consisted of a visual module and an auditory module in which the oscillator ensembles were initialized in a frequency band that was five times higher than that for the ensembles in the visual module. The admittedly arbitrary selection of this frequency ratio was inspired by the intent to demonstrate robustness of the model over a wide range of frequencies.



2.3. Numerical Simulation

To model the results from the human study, we generated the input from the pixel values of a sequence of images. Each oscillator in an ensemble received input from the same pixel in the images, and there was one ensemble per pixel. Stimulus images from the human study were downsampled to a resolution of 20 × 20 pixels. There was no topographic mapping of the input or any other spatial layout of the ensembles. The two target inputs (Î1 = black, Î2 = white) were associated with phases [image: image] and [image: image], respectively. There was also a background color in the images that provided no input (I = 0). The distribution for sampling the noise term in Equation (1) had zero mean and a standard deviation of 1 × 10−10. The thresholds for defining locked and locking oscillations were θlocked = π/60 and θlocking = π/6.

The properties of both models were determined by running repeatedly numerical simulations with randomized initial conditions. All the results we present below show the average of 100 runs. Initial frequencies for ensembles in the visual module were drawn from a uniform random distribution in the interval [0.01 1], whereas the interval for ensembles in the auditory module was [5 6]. Initial phases in both modules had a uniformly random distribution in the interval [0 2π].



2.4. Human Study

We performed a magnetoencephalography study in human participants to investigate the neural mechanisms of sequence learning. Results of analyzing the neurophysiological data will be published elsewhere. Here we use only the behavioral results to compare them to the model output.

Subjects observed different sequences of visual and auditory stimuli. Sequence repetition stopped after a random interval at which subjects were asked whether the last item they had seen or heard was a valid element of the sequence (congruent item) or whether it violated the sequence they had perceived so far (incongruent item). Two stimulation conditions were used: In one condition, visual and auditory stimuli were presented simultaneously, but subjects were asked to attend to the sequence only in one sensory modality and neglect the other. Therefore, we call this condition the unimodal condition. In the other condition, the items of the sequence were presented either as a visual or auditory stimulus, and subjects were requested to attend to an abstract, modality-independent feature of the stimulus and neglect the modality in which the stimulus was presented. We call this condition the crossmodal condition.

The sequences in the unimodal condition were composed of 5 items showing either a horizontally (H) or vertically (V) oriented Gabor patch (10° visual angle, 0.5 cycles per degree), resulting in a total of 32 different sequences. Each stimulus was displayed for 150 ms and followed by 550 ms of a uniform gray background (–). A sine wave tone was presented simultaneously with the image to both ears of the subject. The frequency was either high (2,000 Hz) or low (1,800 Hz). Its volume was adjusted to 30 dB above the hearing threshold of the subject. The association between pitch of the tone and orientation of the Gabor patch was fixed in all but the last item of the sequence for each subject and randomized across subjects. Figure 1A shows the sequence -V-H-V-V-V as an example.


[image: image]

FIGURE 1. (A) Example of an audiovisual sequence for the unimodal task. Sequences were composed of 5 items that were either horizontally (H) or vertically (V) oriented Gabor patches and simultaneously played high- and low-pitch beeps. The sequence -V-H-V-V-V is repeated from item 6 on. (B) Example of the sequences that were used in the crossmodal condition. Here, 4 items that were either a visual stimulus (V) or a beep (A) were presented, each representing a “high” (H) or “low” (L) stimulus. The example shows the sequence -VL-VH-AL-VL.The sequence is repeated from item 5 on.



For the crossmodal condition, each item in the sequence was a combination of 2 feature dimensions (height, intensity), 2 feature levels (high/low, strong/weak), and 2 modalities (visual, auditory). Visual “high” and “low” stimuli were gray discs (6° visual angle) above or below the horizontal midline, respectively. Auditory stimuli were the same like in the unimodal condition. Intensity was varied between two contrast levels of the disc in the visual stimuli and two volume levels of the beeps. Subjects were tested on random subsets from the space of sequences. The trivial sequences in which all items have the same feature level were excluded. In each block of the crossmodal condition, they were requested to attend to only one feature dimension (height or intensity) and neglect the other.

A green fixation cross (0.25° visual angle) was shown at the center of the screen, and subjects were asked to maintain fixation during the stimulation. Sequences were repeated until at least 8 and at most 20 items were presented in the unimodal condition. Within this range, a hazard rate of 0.377 was used to randomize the actual sequence length. Since learning crossmodal sequences was more difficult, at least 10 and at most 20 items were presented in this condition. Here, a hazard rate of 0.448 was used to randomize the actual sequence length. The fixation cross turned red 1,200 ms after the offset of the last image, indicating that the subjects should decide whether or not the last item seen was congruent with the sequence. Using the index or middle finger of the right hand, they hit one of two buttons on a response pad that had the responses “yes” (congruent) or “no” (incongruent) assigned. The ratio of congruent/incongruent test items was 0.5. The fixation cross turned green again after the subjects pressed a button, and after another 1,500 ms delay, the next trial began.

Sequences were presented in blocks of 32, followed by a short break. Blocks with the congruent/incongruent task were alternated with blocks in which subjects solved an n-back memory task. In this task, subjects had to decide whether the last item matched the nth previous one. In order to adjust the average performance across participants in the n-back memory task to that in the sequence prediction task, 20 of them performed a 1-back task and 9 a 2-back task. In contrast to the congruent/incongruent task, the memory task did not require subjects to learn the whole sequence, but only to remember the last two stimuli seen. In the crossmodal condition, a different control task was employed. Here subjects decided whether or not the last stimulus had appeared anywhere in the sequence before. Deviants were generated by jittering the vertical position of the disc or the pitch of the tone in the terminal stimulus. Each subject completed two sessions of 16 blocks each on separate days.

Twenty nine healthy volunteers (26.3 ± 4.2 years, 17 females) participated in the unimodal human study. Another 25 healthy volunteers (25.1 ± 3.5 years, 14 females) participated in the crossmodal human study. They gave written informed consent and received financial compensation. The study was approved by the ethics committee of the medical association of the city of Hamburg. The experiments were performed in accordance with the Declaration of Helsinki.

The computational models were studied with the same stimulus material, but the following simplifications were made: The unimodal model was stimulated with the sequence of images only, corresponding to the blocks in which the participants were requested to attend to the visual modality and neglect the auditory. For testing the multimodal model, we used the subset of stimuli that varied only in one feature dimension and that were constant in the other. The model works on a single feature dimension which may be height as well as intensity. Without loss of generality we selected height for the distinguishing feature. From the 256 possible sequences (2 feature levels, 2 modalities, 4 items), we excluded the 32 strictly unimodal ones and tested the model on all remaining 224 truly crossmodal sequences. Figure 1B shows an example sequence.




3. RESULTS


3.1. Unimodal Model

First we demonstrate the properties of the model for two oscillator ensembles which receive input from two representative locations in the images. At location 1 the gray level is different for the horizontal and vertical Gabor patches; at location 2 it is the same (see Figure 2). Hence the sequence -H-V-V-V-V, for example, drives the input of the ensemble at location 1 with 0B0W0W0W0W, whereas the input sequence at location 2 reads 0W0W0W0W0W (B-black, W-white, 0-no input).


[image: image]

FIGURE 2. Examples for image locations (marked by “+”) where the input to the oscillator ensembles is different for horizontal and vertical Gabor patches (1) and where it is the same (2).



The learning rule adjusts the phases and frequencies to the polyphony that is afforded by the sequence. This attunement process is slower for the more complex input pattern at location 1 than for the regular pattern at location 2, where the frequencies and phases basically converged after about 10 repetitions (Figure 3A vs. Figure 3B). This is also evident from the phase dynamics which shows frequent phase resets only in the beginning for the stable input (Figure 3D) but up to about 100 item repetitions for the alternating input (Figure 3C). The slow attunement in the case of alternating input results from the fact that in the example sequence -H-V-V-V-V, the H stimulus is seen only once per repetition of the sequence (relative frequency of 0.1), and hence more repetitions are needed to synchronize with this input rhythm than to the rhythm of a more frequently presented input. In the ensemble with the stable input, most oscillators tune to a frequency of 0.5 and the target phase for white pixels (Figure 3H). For the alternating input, however, the dominant frequency is 0.1, corresponding to the periodicity of the input at the full length of the sequence, and there are two phase clusters of oscillators which synchronize to the H and V items (black and white input), respectively (Figure 3G).


[image: image]

FIGURE 3. Temporal evolution of frequencies (A,B), phases (C,D), error signals (E,F), and phase-frequency distribution (G,H) of two ensembles, each consisting of 100 oscillators, with input that differs between items in the sequence (location 1–A,C,E,G) or is the same in all items (location 2–B,D,F,H). The sequence was composed of 20 repetitions of -H-V-V-V-V and an incongruent V test stimulus at the end. The phase-frequency distributions in panels g and h show a snapshot before the test stimulus was presented.



If the model is tested with a conflicting item after the sequence was learned, many oscillators in the ensemble undergo a phase reset, which causes a sharp increase of the error signal (Figures 3E,F). By detecting whether or not the last item caused a significant increase of the error signal, the model can classify the tested item as incongruent or congruent, respectively.

We analyzed the response accuracy of the model depending on how many times the sequence was repeated before testing an item (Figure 4A, black curve). After the initial presentation of the sequence, the model's response accuracy is at chance level (0.5). It starts to increase after the second repetition of the sequence (test item 16) and approaches 1 after about 30 repetitions (item 60).
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FIGURE 4. (A) Probability of correct model output when the item given on the x-axis is tested in the unimodal model. Green/red curves show the accuracy when the tested item is congruent/incongruent, respectively, black curve is the combined accuracy. All accuracies are averages across all 32 sequences generated from 5 items. (B) Average response accuracy of human participants in the unimodal condition. Errorbars show standard error.



We also analyzed the response accuracy for congruent and incongruent test items separately. Congruence of the tested item is correctly recognized after a few repetitions (Figure 4A, green curve). Incongruent items, however, seem to require much longer learning time (Figure 4A, red curve). An interesting observation is that response accuracy for incongruent test items does not increase monotonically with more repetitions, but that it clearly depends on the position of the item in the sequence: It is high when the item at the first position is tested and decreases for the following positions before this pattern is repeated at a higher accuracy level for the next repetition of the sequence. This property is reflected in the periodic modulation of the response accuracy for incongruent items, where the period length is given by the number of items in the sequence.

After demonstrating the properties of two individual oscillator ensembles, we investigated the dynamic relation between several ensembles. To this end we mapped low-resolution versions of the Gabor stimuli to a corresponding number of oscillator ensembles and analyzed the distribution of the phases and frequencies that developed in the ensembles. Ensembles which received the same input developed similar combinations of phases and frequencies. In Figure 5 we show the map of phase-frequency clusters that results from the sequence -H-V-V-V-V, for example. After attuning to this sequence, the ensembles developed five clusters with distinct phase-frequency combinations. Clusters of oscillators with the same phase-frequency combination reflect a spatial segmentation of the stimuli in the input sequence.
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FIGURE 5. Gray-level-coded map of clusters of oscillators that attune to similar combinations of phase and frequency and hence exhibit a functional coupling.



The distribution of phases and frequencies in each of the five clusters is shown in Figure 6. Since the image background did not yield any input, the corresponding oscillators retain the initial random distribution of phases and frequencies (cluster 1). Regions with white/black pixels in both stimuli drive the corresponding oscillators to the respective target phases of 3/2π or π/2, respectively (clusters 5 and 4). Most oscillators in these clusters tune to a frequency of 0.5, which reflects the interleaving presentation of an empty stimulus in the sequence. Nevertheless there are oscillators tuning to other frequencies which are compatible with this input rhythm, e.g., 1, 0.3 etc. For image regions where the input alternates between black and white along the sequence, the resulting phase-frequency landscape is more complex. Here the dominant frequency is 0.1, corresponding to the repetition of an item after all other items in the sequence were shown. The phases converged to the target phase of the respective gray level in the stimulus (cluster 3 - black, cluster 2- white). Whereas there is only one phase compatible with the occurrence of the rare stimulus (H in the example here), the frequent stimulus can entrain oscillations with different phases (corresponding to the repetition of the first, second etc. V in the sequence), which is expressed in the phase bins immediately above and below 3/2π and π/2 in clusters 3 and 2, respectively.
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FIGURE 6. Relative phase-frequency distribution for each of the five clusters shown in Figure 5. Color represents the number of oscillators with the indicated combination of phase and frequency relative to the bin with the maximum number.





3.2. Multimodal Model

In a similar manner like for the unimodal model, we investigated the relation between the response accuracy of the multimodal and the number of repetitions of the input sequence. With an increasing number of repetitions, the response accuracy improves (Figure 7A, black curve), and it is generally higher when congruent items are tested than for incongruent items (green and red curves, respectively). A comparison of the accuracies with the unimodal model (cf. Figure 4A) shows that the dependence on the sequence repetitions is very similar despite the fact that the multimodal model was tested with a larger variety of sequences (224 vs. 32) which were composed of only four rather than the five elements for the unimodal model.
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FIGURE 7. (A) Probability of correct model output when the item given on the x-axis is tested in the multimodal model. Green/red curves show the accuracy when the tested item is congruent/incongruent, respectively, black curve is the combined accuracy. All accuracies are averages across all 224 sequences generated from four items. (B) Average response accuracy of human participants in the crossmodal condition. Errorbars show standard error.



Finally we considered the distribution of phases and frequencies after a multimodal sequence had been learned (Figure 9). As expected, the majority of oscillators in the ensemble that was stimulated by the auditory signal tuned to the base frequency of the auditory modality (5) and adjusted their phase to the presentation of the auditory stimulus (3/2π). An interesting finding is that a sizable population of oscillators tuned to the neighboring frequency bins centered around 4.9 and 5.1 and phases of 0 and π, respectively. Closer inspection of these phase-frequency combinations revealed that these rhythms never hit the target phase of the auditory stimulus, i.e., they were always in transit when the auditory stimulus appeared, but that their phase nonetheless was compatible with the silent episodes during presentation of the visual stimuli. This pattern of phase-frequency distributions is repeated at the frequencies 4.5 and 5.5.

The ensembles that receive visual input (Figure 8) mostly tune to the target phase for bright input (3/2π) and a frequency of one half the base frequency of the visual modality, i.e., 0.5. In the ensemble that receives input from location 2, several oscillators also tune to the frequencies 0.4 and 0.6 and a phase of π/2. This activation of neighboring frequencies at a different phase resembles the observation we made for the auditory ensemble, which likely is a consequence of the fact that the VL stimulus appears at the same frequency in the example sequence as the AH stimulus.
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FIGURE 8. Examples for image locations (marked by “+”) in the visual part of the multimodal sequence which provide input only in VH (1), only in VL (2), or both (3) stimuli.
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FIGURE 9. Relative phase-frequency distribution after learning the multimodal sequence AH-VL-VH-VH in an ensemble which received auditory input and three ensembles which received visual input from the representative locations shown in Figure 8. Color represents the number of oscillators in the cluster that have the indicated combination of phase and frequency. Note the different frequency axes for auditory and visual ensembles.



Taken together, the phase-frequency analyses demonstrate that the learning rule tunes the oscillator ensembles to the various rhythms that are generated by repeating the sequence, and that the higher base frequency of the auditory ensemble affords a more complex polyphony to emerge.



3.3. Comparison With Behavioral Results From the Human Study

Response accuracy of the human participants seemed to increase with more repetitions of the sequence. This trend was more obvious in the unimodal study (Figure 4B) than in the crossmodal study (Figure 7B). In both studies, congruent items were more frequently identified correctly than when the tested item was incongruent with the sequence. In comparison with the response accuracies of the models, human performance was always better for a given sequence length and more similar for congruent and incongruent test items. With more sequence repetitions however, the response accuracies of the models increased to the level of the human participants and beyond, indicating that learning is slower in the models.

From the unimodal study, we also analyzed the response accuracies for each of the 32 sequences that the subjects were requested to learn. As expected, the two trivial sequences with only one pattern (always H or V, corresponding to a binary code of 0 and 31, respectively) were the easiest to learn, thus yielding the highest response accuracies (Figure 10). Next are the sequences in which one element differs from the other four (binary codes 1, 2, 4, 8, 15, 16, 23, 27, 29, 30). The remaining sequences were the most difficult to learn. It is interesting to observe that the response accuracies of the unimodal model largely follow this distribution (Pearson correlation r=0.81, p=2.2 × 10−8). The model also reproduces the response accuracies of the human participants when sequences are grouped by complexity quantified by their entropy (Figure 10, right panel).


[image: image]

FIGURE 10. Probabilities of correct response (hit rate) for each of the 32 unimodal sequences that the participants in the study learned (in blue) and response accuracies of the model (in red). Errorbars show the standard error. The sequence number is given by the binary representation of the sequence with the H stimulus corresponding to a 0 bit and V to 1. The right panel shows the average hit rate when sequences are grouped by their entropy.






4. DISCUSSION

The oscillator ensemble model is a new approach to sequence learning which exploits the rhythmic, “polyphonic” stimulation that results from repeating a sequence. The basic functional units in this model are oscillators which lock to a rhythm by resetting their phase and adapting their frequency. The results from the unimodal model show that the oscillator ensembles attune to the various rhythms that are generated by a sequence of images. Clusters of distinct combinations of phases and frequencies link image regions that correspond to a meaningful segmentation of the input. Hence clusters of similar phase-frequency distributions can be considered as functional units which link oscillator ensembles that receive input from corresponding regions in visual space. This is an interesting feature, because the segmentation is derived solely from the temporal coherence of image patterns and not from a topographical map of the input. Whereas the functional coupling between ensembles within a cluster is given by their tuning to the same frequency but different phases, such coupling between clusters can be established by oscillators sharing the same phase but having different harmonic frequencies. It has been suggested that such cross-frequency coupling is relevant for integrating functional systems across multiple spatiotemporal scales in the human brain, and it has developed to a well-established concept for understanding brain activity (Engel et al., 2013). In our model, cross-frequency coupling is not achieved by fitting the ensemble with a set of fixed frequencies; instead, it results from tuning frequencies and phases to the rhythms in the sequence. The multimodal version of the model demonstrates that the functional coupling also links neuronal populations which operate in different parameter ranges for processing sensory information from different modalities.

It seems also noteworthy that the model does not build or maintain an iconic internal representation of the stimuli. Yet it is capable of predicting whether or not an input is a valid continuation of a sequence. Any incongruent input perturbs the phases of those oscillators that hitherto were attuned to the rhythm of the item at the respective position in the sequence. In the model, this perturbation generates an error signal. The magnitude of this signal is much larger for perturbations of attuned oscillators than for the phase and frequency adjustments made during the initial phase of the learning process. The ability to correctly predict whether or not a given input is a valid continuation of the sequence improves with the number of its repetitions. Our analyses show that the model can correctly identify valid inputs after only a few repetitions, but that the recognition of incongruent inputs requires to repeat the sequence more often. This matches well with the observations from human sequence learning, albeit the models need a longer learning phase to reach the response accuracy of the human participants. Investigating the effect of the model parameters on the learning rate is beyond the scope of the current study. Another aspect that we did not investigate here is that the model could also be used to detect inaccuracies in the timing of the stimulus presentation. It is therefore general enough to cover aspects of predicting “what” and “when” at the same time. Considering also the timing of the error signal would allow us to compare the model dynamics with the reaction times of the human participants, which will be an interesting objective for the further development of the model.

In our model, item position is encoded in the phase relation of a multitude of rhythms which are entrained by the sequence. This corresponds well with concepts for sequence encoding in the hippocampus, derived from animal studies, in which the timing of spikes relative to the phase of ongoing extracellular theta oscillations is considered to encode position in a behavioral sequence. Even if the stimuli are separated by several seconds, their order information is compressed into a single theta cycle, providing a mechanism for short-term buffering and working memory (Jensen and Lisman, 2005). When the animal traverses a sequence of places, sequence items subsequently move toward the beginning of the theta cycle. This phase precession has been suggested to be the underlying mechanism for episodic memory (Jaramillo and Kempter, 2017). In the human brain, the phase relation between gamma and theta oscillations may constitute a similar mechanism (Heusser et al., 2016). Our model also relates to the multi-timescale, quasi-rhythmic properties of speech, where coordinated delta, theta and gamma oscillations have been suggested to hierarchically structure incoming information (Giraud and Poeppel, 2012). Further support for the relevance of frequency and phase adaptation comes from earlier studies which found single-cell oscillators in somatosensory cortex of awake monkeys that seemed to operate as a phase-locked loop (PLL) for processing of tactile information during texture discrimination (Ahissar and Vaadia, 1990). Phase and frequency adaptation has also been observed in thalamo-cortical loops in the brain of rats and guinea pigs, where the frequency of spontaneous oscillations shifted under rhythmic stimulation of a whisker to the stimulation frequency. This may be an essential function for actively decoding information from vibrissal touch (Ahissar et al., 1997).

The joint phase space of the oscillators in an ensemble constitutes a pacemaker system that could be used for the discrimination between intervals in the range of seconds, minutes and for circadian rhythm (Church and Broadbent, 1990). Even when the oscillation frequencies in the set are in the same range but have slightly different periods, the characteristic “beating,” i.e., the time after which the phases of several of these oscillators match, can be exploited to learn sequences of time intervals (Miall, 1992).

By comparing the properties of the model with results of humans in a sequence learning task, we contribute to a long line of approaches to understanding the properties of human sequence learning through the development of oscillator models that reproduce the structure of errors that humans make in sequence learning (see overview in Church and Broadbent, 1990; Brown et al., 2000). The main difference between these models and ours is how they explain what drives the oscillator ensemble. Whereas in our model the oscillator rhythms adjust to the sequence, those models work with sets of intrinsically driven, fixed-frequency oscillations. This internal pacemaker provides a dynamic learning context that can be associated with the occurrence of an event by Hebbian learning (for example Brown et al., 2000). It has been argued that models of association with intrinsic oscillation are more compatible with findings from experimental studies on the sequence and timing of events (Gallistel, 1990). However, the striking similarity in the structure of errors for congruent and incongruent test items as well as for varying levels of complexity of sequences between the oscillator ensemble model and the human participants in our study suggests that, at least in this dataset, entrained oscillations captured the relevant processes for solving the task. It seems worth therefore to explore the implications of a concept in which externally entrainable and intrinsically driven oscillations interact.
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Efficient multisensory integration is often influenced by other cognitive processes including, but not limited to, semantic congruency and focused endogenous attention. Semantic congruency can re-allocate processing resources to the location of a congruent stimulus, while attention can prioritize the integration of multi-sensory stimuli under focus. Here, we explore the robustness of this phenomenon in the context of three stimuli, two of which are in the focus of endogenous attention. Participants completed an endogenous attention task with a stimulus compound consisting of 3 different objects: (1) a visual object (V) in the foreground, (2) an auditory object (A), and (3) a visual background scene object (B). Three groups of participants focused their attention on either the visual object and auditory sound (Group VA, n = 30), the visual object and the background (VB, n = 27), or the auditory sound and the background (AB, n = 30), and judged the semantic congruency of the objects under focus. Congruency varied systematically across all 3 stimuli: All stimuli could be semantically incongruent (e.g., V, ambulance; A, church bell; and B, swimming-pool) or all could be congruent (e.g., V, lion; A, roar; and B, savannah), or two objects could be congruent with the remaining one incongruent to the other two (e.g., V, duck; A, quack; and B, phone booth). Participants exhibited a distinct pattern of errors: when participants attended two congruent objects (e.g., group VA: V, lion; A, roar), in the presence of an unattended, incongruent third object (e.g., B, bath room) they tended to make more errors than in any other stimulus combination. Drift diffusion modeling of the behavioral data revealed a significantly smaller drift rate in two-congruent-attended condition, indicating slower evidence accumulation, which was likely due to interference from the unattended, incongruent object. Interference with evidence accumulation occurred independently of which pair of objects was in the focus of attention, which suggests that the vulnerability of congruency judgments to incongruent unattended distractors is not affected by sensory modalities. A control analysis ruled out the simple explanation of a negative response bias. These findings implicate that our perceptual system is highly sensitive to semantic incongruencies even when they are not endogenously attended.

Keywords: cross-modal integration, semantic congruency, exogenous attention, endogenous attention, drift diffusion model


INTRODUCTION

Cross-modal, multi-sensory integration is one of the most remarkable achievements of perceptual processing as it enables the binding of information from different sensory modalities into a single coherent percept [see, e.g., (Senkowski et al., 2008) for a review]. Yet the efficiency of integration is influenced by several modulating factors including, but not limited to, spatial and temporal proximity (Meredith and Stein, 1986a, b), and semantic congruency (Taylor et al., 2006; Doehrmann and Naumer, 2008; Steinweg and Mast, 2017). By varying these modulating factors and observing their effects on multi-sensory integration, we can study how the brain accomplishes the requisite binding processes, along with the role of endogenous attention. To capture these dynamics requires a design that engages endogenous attention in selecting at least two objects for comparison, in the presence of at least one distractor, and controlling for modality.

Several studies point to the notion that attention is likely critical for the advantage that semantic congruence confers upon cognitive processes of cross-modal integration. For instance, recent accounts demonstrate a performance advantage for semantically congruent multisensory stimuli during visual search (Iordanescu et al., 2008, 2010), but only under low cognitive load (Matusz et al., 2015). Furthermore, semantic congruency of multi-modal stimuli facilitates perceptual processing of unrelated material at the same location of the congruent multisensory prime (Mastroberardino et al., 2015). The implication of this first line of research is that semantic congruency facilitates attentional selection at the location of the congruent stimuli and boosts perceptual processing and performance. This attentional focusing is not directly linked to the stimuli per se and therefore cannot be classified as “bottom-up” or “stimulus-driven” (Corbetta and Shulman, 2002; Koelewijn et al., 2010; Talsma et al., 2010). Rather, it is enhanced by the semantic congruency of the stimuli. The facilitation is therefore due to learned semantic associations and as such must be classed as a “top-down” process. Yet in these studies, the attentional engagement is exogenously controlled via semantic priming, and voluntary, endogenous attention was not investigated.

Contrasting with the previous literature, a more recent second line of research investigating the same cognitive processes arrived at a different conclusion. A recent study found that task performance involving two cross-modal objects diminished in the presence of a third modality if that task-irrelevant object was semantically congruent with one, but not both, of the two task-relevant objects, especially when the task-relevant objects were themselves incongruent (Misselhorn et al., 2016). A similar effect was observed in two other studies. When participants attended to one of two laterally presented visual streams of letters while performing a sequential matching task, their response times (RT) were significantly longer, when incongruent, task-irrelevant letter sounds were presented as well. The increase in RTs on these trials coincided with increased fMRI activation in the anterior cingulate cortex and over fronto-central EEG sensors (Zimmer et al., 2010a, b). These findings suggest that semantically incongruent stimuli induce a cognitive conflict between the components of a multi-modal stimulus and subsequently, likely exogenously, recruit executive attentional resources to resolve the conflict, thus reducing the efficiency of multi-sensory integration of semantically congruent stimuli. Thus, this line of research suggested that the voluntary allocation of attentional resources in processing semantically congruent stimuli can be disrupted by endogenously unattended, task-irrelevant semantically incongruent stimuli.

These two lines of research imply different mechanisms for the interaction of semantic congruency and attentional selection. While the former suggests that congruent stimuli at an attended location boosts performance, the latter implies that incongruent and unattended stimuli recruit exogenous attention, and so divert resources from processing the congruent stimuli in the attentional focus, which reduces behavioral performance.

Here, we aimed to address these conflicting findings by investigating the interaction of attentional focus and semantic congruency in greater detail. We systematically varied the semantic congruency of three objects (a visual object, an auditory sound, and a visual background scene) in single- and cross-modal combinations, under different attentional foci and under conditions of explicit semantic congruence processing. Participants in three different groups directed their attention to two of three objects in the stimuli and made semantic congruency judgments for two attended stimuli. This allowed us to observe behavioral performance under conditions that replicated and extended critical features of the two lines of research yielding conflicting evidence. We were able to evaluate whether performance for attended congruent stimuli is increased or diminished in the presence of a distracting unattended and incongruent stimulus.



MATERIALS AND METHODS


Participants

Participants (n = 87, mean age 25.53 years, SD 3.71, and 43 male) were recruited from the student population of the University Hamburg and participated for a small payment. They all had normal hearing and normal or corrected-to-normal vision. The study was approved by the ethics committee of the German Psychological Society (JG072015) and was conducted in accordance with the principles of the Declaration of Helsinki on human subject research.



Experimental Design and Stimuli

To investigate the interaction of semantic congruence and attentional focus on the processing of multi-sensory stimuli, we created 3-object-component stimuli consisting of a visual object in the foreground (V), and typical auditory object (A) associated with the visual object (V), and a visual background scene (B). Semantic congruence was designed as a within-subject factor and varied between stimulus components, giving rise to the following 5 experimental conditions1 (see also Table 1): (1) none of the components are semantically congruent (coded as III), (2) V and A are congruent (coded as CCI, 1st and 2nd components are congruence), (3) V and B are congruent (coded as CIC, 1st, and 3rd component are congruent), (4) A and B are congruent (coded as ICC, 2nd and 3rd components are congruence, and (5) all components are congruent (coded as CCC).

TABLE 1. Experimental conditions and example objects comprising the cross-modal stimuli conditions.
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Endogenous attention was manipulated as a between-subject factor in 3 groups: visual object and auditory sound (VA, n = 30, 16 males); visual object and background (VB, n = 27, 13 males); and auditory sound and background (AB, n = 30, 14 males). Participants in each group were instructed to focus their attention on the two object components of their group and judge these 2 components accordingly (see section “Experimental Task and Procedure” below).

Visual objects were pictures of animals and everyday items, auditory objects were typical sounds of these visual objects, and background scenes depicted typical contexts in which the visual or auditory object could be found (see Figure 1 for an example). Incongruent combinations were created by randomly pairing an indoor object with an outdoor background (or sound) and vice versa. Upright pictures of the visual objects were scaled to a height of 250 pixels (px) [7.6 degrees of visual angle (dva)], horizontal pictures were scaled to a width of 510 px (16.13 dva, mean height 252.82 px, SD 52.41 px, mean width 315.48 px, and SD 99.98 px). The background pictures were scaled to 768 × 1024 px (25.36 × 33.4 dva) and presented with a gray frame on a Samsung SyncMaster 2443DW screen. The sounds were presented via headphones with a volume of ∼65 DB. All stimulus aspects were presented simultaneously with the foreground picture centered on the background (see Figure 1 for an example).
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FIGURE 1. Experimental Task. Participants were presented with a 3-components stimulus compound consisting of a visual foreground object (V), an auditory sound (A) pertaining to the foreground object, and a visual background image (B). Each group of participants were instructed to focus their attention on 2 components and judge the semantic congruency of them (i.e., make plausibility judgment). In the example (presented to the AB group), the visual and auditory components are congruent, whereas the background is incongruent to the two foreground components. The displayed response (“not plausible”) is a correct response for participants in the AB group.





Experimental Task and Procedure

After obtaining informed consent from the subject the experimenter instructed the participants about the goals of the study, the 3-component nature of the stimuli, and the attentional focus that they should maintain throughout the experiment. Participants were instructed to evaluate the congruency of the two components in their attentional focus, which was framed as a judgment of plausibility. Initial pilot data suggested that participants understood the term “plausible” better than “congruent.” In the main experiment it was explained to the participants that their plausibility judgment referred to the semantic congruence of the two components in question. They were told to respond as quickly and as accurately as possible with either the left and right arrow key representing a “YES” or a “NO” answer. The assignment of the response to the two response keys was counterbalanced across participants who responded with their index and middle finger of their dominant hand. Prior to the main experiment each participant completed a few training trials from the CCC and III condition until they responded correctly in 5 consecutive trials. In the main experiment, participants completed 150 trials (30 in each condition). Each stimulus was presented for a variable duration (depending on the duration of the sound clip (mean duration 1.53 s). Participants had to respond within 4 s. Failure to response in this window resulted in a missing trial. Trials were separated by 1.4 s. The experiment lasted around 15 min.



Data Preprocessing

Response accuracy and RT were collected as experimental data. All missing trials were removed from the data. Outliers were defined as 2 SD above the mean of the square-root transformed RT data and also removed from the experimental data. Finally, the effect of stimulus duration was removed using a regression approach: RT data were log-transformed and regressed onto the stimulus duration (general linear model with stimulus duration and intercept as predictor variables). Duration-predicted RTs were removed by subtractions, and residuals from this regression were back projected into the original RT space and subjected to exponential transformation.



Statistical Analysis

Response accuracy and RT were analyzed with linear mixed-effects models using the nlme package in R. Specifically, we set up omnibus mixed-effects repeated measures ANOVAs with the within-subject factor Condition (III, CCI, CIC, ICC, and CCC) and the between subject-factor Focus (VA, VB, and AB) using the formula:

[image: image]

where DV is the dependent variable “percent error,” “RT (correct trials},” or “RT (incorrect trials).” Post hoc Bonferroni-adjusted contrasts were carried out using the multcomp package in R.



Cognitive Computational Modeling

Hierarchical Bayesian parameter estimation with the drift diffusion model (DDM) yielded group and individual participant estimates the drift rate (v), the boundary separation (a), and the non-accumulation time (t), also called the non-decision time (Ratcliff and McKoon, 2008). The DDM treats a binary decision as the result of an evidence accumulation process, in which the gathering of evidence for one or the other option is modeled as a Gaussian random walk that drifts at a certain rate toward one of two decision boundaries representing the two alternative options [see Ratcliff and McKoon (2008) for a schematic of the model]. Once one of these boundaries is crossed, a decision for this option is made. There are 4 primary free parameters in the DDM, whose optimized values are determined during model fitting: (1) the drift rate v governs the speed of evidence accumulation, corresponds to the slope of the random walk, and reflects choice difficulty, (2) the boundary separation a represents the distance between both decision boundaries and models how cautious a decision maker is with higher caution corresponding to a larger boundary separation, (3) the starting point z is the point between both decision boundaries at which the evidence accumulation starts. Although this parameter is unused in this study (i.e., is set to a/2) it can model general biases toward one or the other option, (4) the non-decision time t captures all aspects of the RT that are not related to evidence accumulation, i.e., stimulus-encoding, feature selection, action-planning, and action-execution time.

Model fitting with the HDDM package in Python (Wiecki et al., 2013) offered a Hierarchical Bayesian workflow using Markov Chain Monte Carlo (MCMC) techniques. In most cases this yields more stable results than traditional Maximum Likelihood estimation and includes measures of estimation uncertainty in the form of posterior distributions of parameters. In addition, subject-specific parameter values are sampled from an overarching group distribution, which is updated using the data from all participants. This usually leads to more stable optimized parameter solutions, while also allowing for individual variability in these estimates.

The package offers a model parameterization depending on the experimental factors, e.g., one could model different drift rates for all conditions or for all groups or any combination of them. We compared these different model variants using the deviance information criterion (DIC), a model comparison index similar to the Bayesian information criterion (BIC), but applicable for Bayesian analysis using MCMC sampling. A difference in DIC scores of 15 and above is considered meaningful (Spiegelhalter et al., 2002).

Each model variant was fit using the HDDM package (Wiecki et al., 2013) with 4 chains and 7000 samples following a burn-in phase of 500 samples to reduce the dependencies on initial values and to reach a steady state of the chain. Convergence was tested through visual inspection of the chains and by calculating the R̂ statistic (Gelman and Rubin, 1992), which compares within-chain and between-chain variance. The threshold for non-convergence was set at 1.05. We used the HDDM defaults as group-level priors, namely the drift rate was modeled as a group-level normal distribution [N (μ,σ2)], whose parameters μv and σv2 were modeled as N (2,3) and half-normal distribution HN (2) (2 being the variance parameter). The boundary separation was modeled as a Gamma (G) distribution, whose parameters μa and σa2 were modeled as G (1.5,0.75) and HN (0.1) distributions. Finally, the non-decision time was also modeled as a normal distribution, whose parameters μt and σt2 were modeled as N (2,3) and HN (1) distributions. We compared parameter estimates for the different levels of each factor by mean of the group posterior distribution.




RESULTS


Analysis of Errors and Response Times

We first inspected the percent errors in all 3 groups of subjects with different attentional foci across all 5 stimulus conditions. To be counted as an error, the participant would have to (a) respond “not plausible” to two congruent components in the attentional focus (e.g., in group VA visual: lion, auditory: roar, background: swimming pool) or (b) respond “plausible” to two incongruent components in the attentional focus (e.g., in group VA visual: fire truck, auditory: church bell, background: burning house). Overall, participants only made few errors on the task (overall percentage of errors: (group VA: 8.1% incorrect, 91.2% correct, 0.7% missing trials, group VB: 9.1% incorrect, 90.5% correct, 0.4% missing trials, group AB: 13.2% incorrect, 86.3% correct, and 0.5% missing trials). However, despite the overall low number of errors the different groups made substantially more errors in different, yet specific conditions in the task (see Figure 2): whenever the unattended component was incongruent to the two congruent components in the attentional focus (i.e., in group VA – CCI, in group VB – CIC, in group AB – ICC), the error rate was substantially higher, than in all other conditions.
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FIGURE 2. Mean percent errors and response times. Participants in all 3 attention groups committed substantially more errors when the unattended stimulus component was incongruent to the other (congruent) components in the attentional focus.



A mixed effects ANOVA with the within-subject factor Condition and between-subject factor Focus confirmed a significant main effect of Condition (F4,336 = 10.48, p < 0.0001) and a significant Condition × Focus interaction effect (F8,336 = 14.42, p < 0.0001). Subsequent, Bonferroni-adjusted contrasts between the different stimulus conditions revealed that the interaction effect was driven in each group by a significant difference between the critical condition (in group VA – CCI, in group VB – CIC, in group AB – ICC) and all conditions (all z-values > 3.9, p < 0.001).

Across all conditions a “NO” response (not plausible) was more frequently correct (for instance in conditions III, CIC, and ICC for the VA group) than a “YES” response (namely in condition CCI and CCC for the group VA). Thus, it is conceivable that participants learned about this subtle response bias and that they committed more errors in the critical conditions. The possibility of such a response bias is detectable, if the data are sorted according to the response itself instead of the response accuracy. If a response bias was present in the data, we would expect to see higher frequency of “NO” response across all conditions in all groups. Figure 3 demonstrates that this is not the case. In fact, the pattern found in this analysis mirrors the finding from Figure 2: in the critical conditions there were a significant number of “NO” responses (i.e., and incorrect decision), whereas in the non-critical condition there were mostly “NO” and “YES” responses (correct responses depending on the condition). Importantly, this figure reveals that there was no overall bias toward “NO” responses.
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FIGURE 3. Response bias in the data (proportion scale). Data are displayed according to the actual response of the participant (“YES” and “NO”) for all conditions in all groups. While in some conditions subject responded with “NO” more frequently, there was no overall evidence for a general response bias in the data.



In contrast, analyses of the RTs did not yield an equally systematic pattern of findings despite a significant effect for Condition (F4,331 = 7.11, p < 0.001) and for Condition x Focus (F8,331 = 5.53, p < 0.0001) for RT in correct trials and a significant effect for Condition (F4,170 = 2.78, p = 0.029) and a trend-level Condition × Focus interaction (F8,170 = 1.86, p = 0.069) for RT in error trials. Subsequent Bonferroni-adjusted post hoc contrasts revealed that for RTs in correct trials only, condition ICC in group AB was significantly longer than all other conditions (all z-values > 4.1, p < 0.001). In addition, for RTs in error trials, conditions III, and CCI in group VB were significantly larger than all other conditions (all z-values > 3.16, p < 0.05). There were no additional RT effects in any of the other groups.




CONCLUSION

In conclusion, participants made significantly more errors whenever the unattended stimulus was semantically incongruent with the two congruent stimuli in the focus of endogenous attention. However, a corresponding increase in RT on those error trials could not be found.


Computational Cognitive Modeling

In the next step we applied cognitive computational modeling to these data to gain additional insights into the cognitive processes governing the responses in this task. The drift diffusion model (DDM) (Ratcliff and McKoon, 2008) is particularly well-suited for modeling the decisions in this task. A decision in the DDM is the result of an evidence accumulation process, which “drifts” at a specific rate to one of two decision boundaries representing the two decision options. In our case we defined the two options as “correct” and “incorrect” responses as this form of data coding has provided fruitful insights into the speed-accuracy trade-off present in most behavioral decision-making paradigms (Ratcliff and Rouder, 1998; Steinweg and Mast, 2017).

We compare variants of the DDM with different configurations of free parameters. Each of the 3 selected parameters (drift rate v, boundary separation a, and non-decision time t) could be modeled as a single parameter across all stimulus conditions or as a single parameter across all groups. In contrast, each parameter could be also modeled separately for each stimulus condition and for each attention group. We systematically compared all possible variants of the DDM using their DIC score (see Figure 4).
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FIGURE 4. Model comparison. Top, deviance information criterion (DIC) for all model variants tested in this study sorted by size. DIC balances model fit (deviance, difference between fitted model and data), and model complexity (number of free parameters). Middle, indicator variable for the model variant. A black dot for a particular model variant indicates that the parameter listed in the row is modeled separately for each level of the factors Condition (5 levels) or Focus (3 levels corresponding to the three experimental groups). Bottom, number of parameters (color-coded) for each model variant indicating model complexity.



This model comparison analysis reveals that the model variants in which all three parameters are modeled separately for each condition provided the best model fit, but there are no meaningful differences between these regarding the group impact (DIC differences < 15). Nevertheless, model 1 (the model with the lowest DIC score) also provided separate parameter distributions for each group, which allowed us to compare parameter distribution for each condition in each group. Given that the critical condition corresponded to different stimulus configurations in each group, model 1 thus provides the granularity to detect the effect of critical conditions in the parameter distributions. We show the group posterior distributions for all parameters in Figure 5.
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FIGURE 5. Group posterior distribution for all parameters in each condition and attention group. The critical conditions are plotted with thick lines. Note that the variance parameter for the normal distribution shown here is always the same for a specific parameter (i.e., each condition in each group has the same variance parameter).



Interestingly, the drift rate parameter (Figure 5, top) for the critical condition is always smaller than all other conditions in each group. This resembles the patterns of errors seen in the behavioral analysis above: whenever the unattended stimulus component was incongruent to the two other components in the attentional focus, we observed a reduced drift rate parameter. Similarly, the boundary separation parameter for the critical condition is also the smallest compared with all other conditions, but this pattern is less clear than for the drift rate. Finally, no such pattern of the critical conditions was observed for the non-decision time.

Having selected the best-fitting model from within a family of model variants does not insure that the model actually fits the data. This can be tested using posterior predictive checks (PPC), in which the model generates new data using the fitted parameters. These data are then compared to the original data. Below, we show the PPC findings for our selected Model 4, which simulated 500 new data points for the same number of subjects in each attention group. The response accuracy and correct and error RTs were then compared to the original data (see Figure 2). Figure 6 shows the findings from this posterior predictive check.
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FIGURE 6. Posterior predictive checks. The simulated new data from Model 4 shows great accuracy in reproducing the choices (top), but it does not capture the slight differences in the RTs in correct, and incorrect trials (bottom).



The correct and incorrect responses of the PPC match the original data with high accuracy. However, the simulated RTs do not fit with the subtle differences in correct and incorrect RTs in the data. In fact, it seems that in the PCC simulations all conditions in all groups are modeled with essentially the same mean RT.




DISCUSSION

We found a specific effect of attentional focus on the processing of our multi-sensory stimuli. Whenever the unattended stimulus is incongruent with the two others in the attentional focus, participants made significantly more errors in semantic congruency judgments than in any other stimulus condition. This effect is paralleled by a significantly reduced drift rate parameter in these stimulus conditions as revealed in our drift diffusion modeling. RTs do not show a similar increase in RTs in error trials in these specific conditions. Rather, the pattern in error RTs seems to be driven by non-systematic increases in specific stimulus conditions, but unrelated to the attentional manipulation.

Our findings are in line with those studies demonstrating that semantically incongruent stimuli outside the focus of attention can capture those processing resources and disrupt the processing and evaluation of the attended stimuli (Zimmer et al., 2010a, b; Misselhorn et al., 2016). Indeed, it seems that in our data semantically incongruent stimuli induce a re-focusing of attention, such that the incongruency of the unattended stimulus is then considered leading to an incorrect (incongruent) judgment. If this was the case, then from the perspective of the participants, they would be making correct responses. This could be the reason why the RTs between correct and incorrect trials in these critical conditions are almost identical (see Figure 2 bottom, VA – CCI, VB – CIC, AB – ICC). Such an account would still be consistent with the neuroimaging findings from earlier studies demonstrating higher activations in anterior cingulate cortex (ACC) implying a processing of the conflict between semantically incongruent stimuli (Zimmer et al., 2010b). Other previous studies that also investigated sematic congruency in a multimodal context also observed higher ACC activations during the processing on incongruent stimuli (Weissman et al., 2004) reminiscent of the findings on conflict detection in the Stroop task (Fan et al., 2003). The brains in our subjects could be detecting the incongruency between the one of the previously attended congruent stimuli and the incongruent previously unattended, but now re-focused stimuli and yet still make an incongruent (but from their perspective correct) judgment. Of note, our primary finding of attentional capture of semantically incongruent stimuli occurs irrespective of the modality of the stimuli suggesting that we observed a general effect between attentional selection that is influence by sematic (in) congruency.

Nevertheless, previous studies investigating semantic congruency with multi-modal stimuli also observed modulation of brain activity in the primary uni-sensory areas. In general, activation in primary sensory cortices in boosted if the modality is task-relevant (Weissman et al., 2004) and (semantically) congruent with other modality in stimulus compound (van Atteveldt et al., 2004), although an active encoding task might alleviate the advantage for congruent stimulus compounds (van Atteveldt et al., 2007). In fact, other studies have also reported increased activity in higher activations for incongruent stimuli in primary sensory areas of the target modality (Weissman et al., 2004). These neural findings generally support the influence of endogenous and exogenous attention on the processing of multi-modal semantic congruency: as attention is directed toward a target modality (endogenous attention) the activation in those primary uni-sensory is increased, but if the target modality is incongruent with an unattended modality, processing resources are also recruited (exogenous attention) and activation in related brain regions is also increased. Our findings support the exogenous attention recruitment hypothesis: that is, participants committed significantly more errors whenever the unattended stimulus was incongruent to the two stimuli in the attentional focus, irrespective of the sensory modality of the stimuli. This points toward a general attentional bias for the processing of semantic incongruency.

In our study, the differences between the critical conditions mentioned above and the other conditions involving one incongruent stimulus is that in the critical conditions, the participants are initially primed to process a congruent stimulus combination because it is in the attentional focus. The incongruent stimulus then captures attentional resources leading to a refocusing of attention and prompting the participants to make more “incongruent” judgments, which are counted as “incorrect” here from the standpoint of an all-knowing observer, who knows what the participant should focus on. That is, in the critical condition the congruent stimulus pair comes first, whereas in the other conditions (e.g., for VA – CIC and ICC) the attention is already focused on an incongruent stimulus pair, which is in most cases correctly detected through an “incongruent” judgment. This could be a potential reason for the lack of a systematic response time difference between the conditions: participants make the identical “incongruent” judgment, which could take approximately the same amount of processing time, but in the critical condition these responses are counted as incorrect.

Our drift diffusion modeling revealed that the observed increases in error rate in the critical conditions involving an unattended incongruent stimulus were paralleled by a significantly lower drift rate (Figure 5). The drift rate in diffusion models describes the speed of evidence accumulation until a decision is reached, when the diffusion process hits one of the two decision boundaries (Ratcliff and McKoon, 2008). In terms of cognitive processing, a lower drift rate in the presence of constant boundary separation means that participants take longer to accumulate evidence over the same boundary. This is commonly an indicator of difficulty induced by task condition or some other variable. The situation in our critical conditions would qualify as increased difficulty of evidence accumulation if exogenous attention engaged by incongruent, task-irrelevant stimuli interfered with endogenous attention. This implication has further evidence in that our model fitting of the DDM resulted in a significantly reduced boundary separation parameter in the critical condition, meaning that the representation of the two task options of congruent vs. incongruent was less stably separate, likely due to interference from exogenous attention to the incongruent distractor. The combination of lower drift diffusion rates and reduced boundary separation is consistent with our observation that RTs were not reduced in the critical conditions, and with the increased error rates in decisions in the critical conditions. Thus, the cognitive computational modeling revealed cognitive dynamics that a more conventional analysis of RTs would have missed.

Our RT data (Figure 2) also revealed a small number of significant RT differences between correct and incorrect trials in some conditions in the VB and AB groups. However, there appears to be no systematic pattern in these differences that can be related to the experimental manipulation. A potential reason for these non-systematic effects could be that the overall error rate in the experiment is quite low leaving only a few error trials for computing an average error RT. It is therefore likely that some of these high error RTs are driven by outlying data points that were not detected in our preprocessing steps.

The low number and unsystematic occurrence of error trials is also the likely reason that the classic DDM failed to replicate the observed differences in RT in the posterior predictive check (Figure 6), while at the same time reproducing the pattern of errors quite accurately. In fact, the synthetic data generated from the fitted parameters of the classic DDM exhibited no difference in mean RTs for any condition in any group, which could be interpreted that the observed RT differences are unsystematic and cannot be accurately modeled by the classic DDM. One way of accounting for different RT distributions of correct and incorrect responses is to add parameters that model inter-trial variability of drift rate, starting point and non-decision time. We did not include these parameters, because our main interest was on the core DDM parameters such as drift rate and boundary separation, and estimating the latter can be compromised by adding the former (Boehm et al., 2018). However, this does not mean that the classic DDM is not suitable for modeling the data in our experiment. In fact, by tuning drift rate, boundary separation and non-decision time independently for each condition, the model is capable of reproducing the pattern of correct, and incorrect responses with a high degree of accuracy (Figure 6). This reinforces the interpretation from above that a lower drift rate in the critical condition indicates an increased processing demand due to the refocusing of the attentional focus to include the (formerly) unattended, incongruent stimulus.

Semantic congruency is a powerful amplifier of multi-sensory integration leading to higher brain activation (Doehrmann and Naumer, 2008) and better performance (Taylor et al., 2006; Steinweg and Mast, 2017). In addition, it can focus non-voluntary, “stimulus-driven” attention toward congruent stimuli and can boost perceptual processing resources at their location (Iordanescu et al., 2008, 2010). Moreover, semantic incongruency can disrupt the perceptual processing of stimuli in the attentional focus (Zimmer et al., 2010a, b). The findings of the present study are in line with these previous findings as we were able to show that semantic incongruency – independent of the stimulus modality – led to a re-focusing of attention to include the previous unattended (and incongruent) stimulus. It thus seems that our perceptual system is finely attuned to detect semantic incongruencies, even at a pre-attentive state. From a predictive coding perspective (Rao and Ballard, 1999; Friston, 2005), such incongruencies constitute prediction errors (violations of our expectations), which prompts the reallocation of processing resources via exogenous attention in implicitly attempting to resolve the incongruency of the percept. This would imply that the behavioral performance of our subjects in the critical condition is not erroneous, but rather adaptive to the needs for further cognitive processing independently of modality.
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FOOTNOTES

1 The three letters in the condition codes always refer to 1, visual; 2, auditory; 3, background in that order.
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Ventriloquism, the illusion that a voice appears to come from the moving mouth of a puppet rather than from the actual speaker, is one of the classic examples of multisensory processing. In the laboratory, this illusion can be reliably induced by presenting simple meaningless audiovisual stimuli with a spatial discrepancy between the auditory and visual components. Typically, the perceived location of the sound source is biased toward the location of the visual stimulus (the ventriloquism effect). The strength of the visual bias reflects the relative reliability of the visual and auditory inputs as well as prior expectations that the two stimuli originated from the same source. In addition to the ventriloquist illusion, exposure to spatially discrepant audiovisual stimuli results in a subsequent recalibration of unisensory auditory localization (the ventriloquism aftereffect). In the past years, the ventriloquism effect and aftereffect have seen a resurgence as an experimental tool to elucidate basic mechanisms of multisensory integration and learning. For example, recent studies have: (a) revealed top-down influences from the reward and motor systems on cross-modal binding; (b) dissociated recalibration processes operating at different time scales; and (c) identified brain networks involved in the neuronal computations underlying multisensory integration and learning. This mini review article provides a brief overview of established experimental paradigms to measure the ventriloquism effect and aftereffect before summarizing these pathbreaking new advancements. Finally, it is pointed out how the ventriloquism effect and aftereffect could be utilized to address some of the current open questions in the field of multisensory research.
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INTRODUCTION

Ventriloquism, literally meaning to speak with the stomach, has a long cultural history that dates back to the ancient Greeks (Connor, 2000). Modern-day ventriloquists entertain their audiences by exploiting the illusion that their voice, produced without overt lip movements, is perceived to originate from the moving lips of a puppet. This visual capture of the perceived auditory location has become one of the most frequently studied examples of multisensory processing in the scientific literature (Stratton, 1897; Klemm, 1909; Thomas, 1941; Jackson, 1953; Thurlow and Jack, 1973; Bertelson and Radeau, 1981; Bertelson and Aschersleben, 1998; Alais and Burr, 2004).

In a typical experimental procedure, participants are presented with a synchronous but spatially discrepant audiovisual stimulus. When asked to localize the sound source, participants usually perceive the auditory stimulus closer to the visual stimulus than it actually is (Bertelson and Radeau, 1981). Although this effect is often tested with simple meaningless stimuli such as tones and light flashes, it has become widely known as the ventriloquism effect (Howard and Templeton, 1966). The strength of the ventriloquism effect depends on the relative reliability of the auditory and visual stimuli (Alais and Burr, 2004) as well as on the prior (or expectation) that the two stimuli originated from the same event (Van Wanrooij et al., 2010). This flexible multisensory integration seen at the behavioral level is well-described by Bayesian causal inference models in which the spatial estimates obtained under the assumption of a common vs. separate causes are combined (Körding et al., 2007; Rohe and Noppeney, 2015b). Recent findings suggest that human observers tend to put overly high emphasis on the visual cue in this process (Arnold et al., 2019; Meijer et al., 2019). In addition to the immediate visual influence on auditory localization seen in the ventriloquism effect, exposure to audiovisual stimuli with a consistent audiovisual spatial disparity results in a subsequent recalibration of unisensory auditory spatial perception known as the ventriloquism aftereffect (Canon, 1970; Radeau and Bertelson, 1974; Recanzone, 1998). The aftereffect represents an instance of cross-modal learning that can be dissociated from multisensory integration seen in the ventriloquism effect (Bruns et al., 2011a; Zaidel et al., 2011).

The ventriloquism effect and aftereffect are both highly reliable effects that have been replicated in dozens of studies (see Table 1). Both effects are not specific for audiovisual processing but have been demonstrated for audio-tactile and visuo-tactile stimulus pairings as well (Pick et al., 1969; Caclin et al., 2002; Bruns and Röder, 2010; Bruns et al., 2011b; Samad and Shams, 2016, 2018). This robustness and versatility make them ideal experimental paradigms to study basic mechanisms of multisensory integration and learning. The extensive literature on the ventriloquism effect and aftereffect has been summarized in several excellent reviews (Bertelson and de Gelder, 2004; Woods and Recanzone, 2004; Recanzone, 2009; Chen and Vroomen, 2013). However, since the last comprehensive review by Chen and Vroomen (2013), several new lines of research have emerged that have helped clarifying the role of the reward and motor systems in cross-modal binding, the time scales involved in recalibration, and the neural mechanisms underlying multisensory integration and learning. The aim of the present review article is to provide an update on these exciting recent developments which are summarized in Table 1. In addition, the following section describes some of the standard procedures to measure the ventriloquism effect and aftereffect to encourage more researchers to utilize these effects in their quest to tackle the remaining open questions in multisensory research.


TABLE 1. Key studies on the ventriloquism effect and aftereffect published since 2013.
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MEASURING THE VENTRILOQUISM EFFECT AND AFTEREFFECT

The ventriloquism effect and aftereffect have been reliably obtained with a large variety of different localization tasks. These tasks can be categorized into absolute (or continuous) localization measures and relative (or dichotomous) localization measures. In absolute localization tasks, participants directly localize the stimuli with a hand pointer (Lewald, 2002; Bruns and Röder, 2015, 2017, 2019) or by performing a finger (Frissen et al., 2003, 2005, 2012), head (Recanzone, 1998; Van Wanrooij et al., 2010), or eye movement (Kopco et al., 2009; Pages and Groh, 2013) toward the perceived stimulus location. Some studies have used categorical responses (e.g., left, center, or right) instead (Bonath et al., 2007, 2014; Bruns and Röder, 2010; Bruns et al., 2011a; Rohe and Noppeney, 2015a, 2016; Zierul et al., 2017). While categorical responses are less sensitive than continuous measures, they are preferable in studies involving electrophysiological or neuroimaging recordings to reduce motor noise. An alternative are relative localization tasks, in which stimulus location is judged relative to central fixation (i.e., left vs. right) or relative to a reference stimulus in a two-alternative forced choice (2AFC) manner (Bertelson and Aschersleben, 1998; Recanzone, 1998; Bruns et al., 2011b; Berger and Ehrsson, 2018). Some authors have also advocated two-interval forced choice (2IFC) procedures because they are less susceptible to response strategies (Alais and Burr, 2004; Vroomen and Stekelenburg, 2014).

The study design differs slightly depending on whether the ventriloquism effect or the ventriloquism aftereffect (or both) are to be measured (see Figure 1). To measure the ventriloquism effect, it is critical that different degrees and directions of cross-modal spatial disparity are presented in a random order to avoid cumulative recalibration effects during the test block (Bertelson and Radeau, 1981; Bertelson and de Gelder, 2004). In addition, baseline localization can be assessed in unimodal trials, either intermixed with the bimodal trials or in a separate pretest block. Aside from the size of the localization bias in the bimodal trials, the ventriloquism effect has been conceptualized as the percentage of trials in which participants perceive the (spatially disparate) cross-modal stimuli as originating from a common cause or the same location (Chen and Spence, 2017). Localization bias and perception of unity are usually correlated (Hairston et al., 2003; Wallace et al., 2004) but measure different aspects of cross-modal integration (Bertelson and Radeau, 1981; Bosen et al., 2016; Chen and Spence, 2017).
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FIGURE 1. Typical experimental designs to measure the ventriloquism effect and aftereffect. Exemplarily, letters indicate unimodal auditory (A) trials and relative locations of auditory (A) and visual (V) stimuli in bimodal trials. In an actual experiment, absolute stimulus locations typically vary between trials. (A) Ventriloquism effect. Participants have to localize cross-modal stimuli with varying spatial discrepancies. Unisensory localization is assessed in an optional pretest block. Comparison of responses between equivalent left- and right-side discrepancies or between bimodal and unimodal stimuli reveal the size of the ventriloquism effect. (B) Immediate ventriloquism aftereffect. Intermixed presentation of bimodal and unimodal trials. Localization in unimodal trials is modulated by the cross-modal discrepancy in the directly preceding bimodal trial. (C) Cumulative ventriloquism aftereffect. Unisensory sound localization is measured before and after exposure to cross-modal stimuli with a consistent spatial discrepancy. (D) Design used in Bruns and Röder (2015) to measure the immediate and cumulative ventriloquism aftereffects concurrently. Tones of two different sound-frequencies (A1 and A2) are consistently paired with opposite directions of cross-modal spatial discrepancy. Differences in localization responses between unimodal trials preceded by audiovisual trials with leftward vs. rightward discrepancy reveal the immediate aftereffect, and differences between unisensory localization of A1 vs. A2 reveal the cumulative aftereffect (see text for details).



When assessing the ventriloquism aftereffect, a distinction needs to be made between immediate and cumulative recalibration effects (Bruns and Röder, 2015). In a study design in which unimodal trials are intermixed with bimodal trials (see Figure 1B), Wozny and Shams (2011) showed that localization responses in unimodal trials are systematically influenced by the cross-modal spatial disparity in the directly preceding bimodal trial, indicating an immediate or trial-by-trial recalibration effect. By contrast, the cumulative ventriloquism aftereffect requires exposure to a consistent cross-modal disparity (e.g., visual stimuli always 10° to the right of auditory stimuli). Typically, unisensory sound localization is measured before and after the exposure block (see Figure 1C), and the cumulative aftereffect is revealed by a shift in unisensory localization from pre- to post-test (Recanzone, 1998; Lewald, 2002; Frissen et al., 2003; Bruns and Röder, 2017).

Bruns and Röder (2015) recently introduced a procedure that allows assessing both immediate and cumulative aftereffects (as well as ventriloquism effects) at the same time (see Figure 1D). In this paradigm, auditory-only and audiovisual trials were intermixed. Crucially, tones of two different sound frequencies were used that were paired with opposite directions of audiovisual disparity (leftward vs. rightward). Sound localization responses in auditory-only trials (averaged across tone frequencies) were modulated by the direction of audiovisual disparity in the directly preceding audiovisual trial, indicating an immediate aftereffect. Additionally, sound localization responses differed between the two tone-frequencies, indicating a frequency-specific cumulative aftereffect induced by the consistent pairing of tone-frequency and direction of audiovisual disparity (but see Frissen et al., 2003, 2005; Bruns and Röder, 2017; for a discussion of the sound frequency specificity of the cumulative aftereffect).



RECENT FINDINGS


Top-Down Influences on Cross-Modal Binding and Learning

A long-standing debate in multisensory research is the extent to which multisensory processing is influenced by top-down factors (Röder and Büchel, 2009; Talsma et al., 2010). Contrary to earlier findings suggesting that the ventriloquism effect and aftereffect reflect largely automatic processes (Bertelson et al., 2000; Vroomen et al., 2001; Passamonti et al., 2009; Odegaard et al., 2016), several recent lines of evidence have identified top-down influences on the ventriloquism effect and aftereffect.

In a study by Bruns et al. (2014), participants could earn either a high or a low monetary reward for accurate sound localization performance, which put their motivational goal of maximizing the reward in conflict with the auditory spatial bias induced by the ventriloquism effect. As compared to stimuli associated with a low reward, the ventriloquism effect was significantly reduced for high reward stimuli. A similar reduction of the ventriloquism effect was observed when emotionally salient auditory stimuli (fearful voices) were presented prior to the audiovisual test phase (Maiworm et al., 2012). In both cases, the experimental manipulations did not affect unisensory auditory localization performance, suggesting that top-down influences from the emotion and reward systems specifically reduced cross-modal binding. A similar pattern of results was observed in a recent study in which participants either actively initiated audiovisual stimulus presentations with a button press or were passively exposed to the same stimuli. Contrary to the intuitive assumption that self-initiation would increase the prior expectation that auditory and visual stimuli had a common cause, a reduction of the size of the ventriloquism effect was observed for self-initiated stimuli, possibly due to an increased sensitivity to cross-modal spatial discrepancies in the self-initiation condition (Zierul et al., 2019).

A second line of research investigated the effects of feedback information about the stimulus location on cross-modal recalibration. In a visuo-vestibular version of the ventriloquism aftereffect, participants received a reward for correct localization responses which was contingent either on the visual or on the vestibular cue. This manipulation resulted in a yoked recalibration of both cues in the same direction (Zaidel et al., 2013), whereas passive exposure without feedback shifted both cues independently toward each other (Zaidel et al., 2011). The importance of feedback information was substantiated in the classic audiovisual ventriloquism aftereffect. Here, asynchronous stimuli in which the visual stimulus lagged the auditory stimulus and, thus, provided feedback about the auditory location were more effective in inducing an aftereffect than synchronous stimuli in which the visual stimulus was extinguished too quickly to provide feedback (Pages and Groh, 2013). Thus, feedback, which presumably exerts top-down influences on perception, might be an important but previously overlooked driver of cross-modal recalibration.

Finally, in a third line of research, Berger and Ehrsson (2013, 2014, 2018) showed that imagining a visual stimulus at a location discrepant to an auditory stimulus had the same effect on auditory localization as actually seeing a visual stimulus at that location. Both imagery-induced ventriloquism effects (Berger and Ehrsson, 2013, 2014) and aftereffects (Berger and Ehrsson, 2018) were obtained. Explicit mental images were, thus, integrated with auditory sensory input in a similar manner as actual visual input, providing strong evidence for top-down influences on multisensory processing. A somewhat opposite approach was taken by Delong et al. (2018), who used continuous flash suppression to render an actual visual stimulus invisible. They obtained a significant ventriloquism effect with the invisible stimuli, which was, however, reduced in size compared to visible stimuli. Taken together, these results show that the ventriloquism effect is influenced by both bottom-up and top-down processes.



Time Scales of Cross-Modal Recalibration

Cross-modal recalibration in the ventriloquism aftereffect has been described at two different time scales. Initial studies measured shifts in sound localization after exposure to several hundred audiovisual trials with a consistent spatial disparity (Radeau and Bertelson, 1974; Recanzone, 1998; Lewald, 2002), implicitly assuming that recalibration requires accumulated evidence of cross-modal mismatch. This assumption was challenged by findings demonstrating immediate effects on sound localization after a single audiovisual exposure stimulus (Wozny and Shams, 2011). Several recent studies have addressed the theoretically important question of how immediate and cumulative cross-modal recalibration are related.

A consistent finding is that the size of the ventriloquism aftereffect increases if several audiovisual exposure trials with a consistent spatial disparity precede the auditory test trials (Wozny and Shams, 2011; Bruns and Röder, 2015; Bosen et al., 2017, 2018), until the aftereffect reaches a maximum after about 180 exposure trials (Frissen et al., 2012). The last audiovisual stimulus, however, seems to have a particularly strong influence on subsequent sound localization (Mendonça et al., 2015). Theoretically, the immediate and cumulative portions of the ventriloquism aftereffect could be explained by the same underlying mechanism, a strong but rapidly decaying immediate aftereffect with a long tail that allows for accumulation across trials (Bosen et al., 2018). However, recent experimental evidence suggests dissociable mechanisms underlying immediate and cumulative recalibration (Bruns and Röder, 2015; Watson et al., 2019).

A controversial point is the longevity of the (cumulative) ventriloquism aftereffect after cessation of cross-modal discrepancy training. While some studies observed a rapid decay of the aftereffect if there was a delay between audiovisual exposure and auditory localization posttest (Bosen et al., 2017, 2018), others have found no significant decline of the aftereffect (Frissen et al., 2012). However, it was assumed that the aftereffect would last at most until new (spatially coincident) audiovisual evidence is encountered, as would naturally occur after leaving the experimental situation (Recanzone, 1998). Contrary to this assumption, a recent study showed that repeated exposure to audiovisual stimuli with a consistent spatial disparity enhanced the ventriloquism aftereffect over the course of several days, that is, aftereffects were still present after 24 h and accumulated with additional audiovisual discrepancy training (Bruns and Röder, 2019). This finding raises the possibility that cross-modal recalibration effects are context-specific (e.g., for the laboratory situation), making them more stable than previously thought.



Neural Mechanisms Underlying Cross-Modal Binding and Learning

Neuroimaging studies have shown that the ventriloquism effect is associated with a modulation of activity in space-sensitive regions of the planum temporale in auditory cortex (Bonath et al., 2007, 2014; Callan et al., 2015; Zierul et al., 2017). Behaviorally, the ventriloquism effect is reduced if audiovisual stimuli are presented asynchronously (Slutsky and Recanzone, 2001; Wallace et al., 2004). Interestingly, Bonath et al. (2014) showed that separate (but adjacent) regions of the planum temporale coded ventriloquist illusions to synchronous and asynchronous audiovisual stimuli, which might suggest an involvement of different multisensory temporal integration windows.

Adjustments of auditory spatial processing in the ventriloquism effect have been linked to feedback influences on auditory cortex activity (Bonath et al., 2007; Bruns and Röder, 2010). Recent EEG and functional magnetic resonance imaging (fMRI) evidence has indeed implicated multisensory association areas of the intraparietal sulcus in the generation of the ventriloquism effect. While primary sensory areas initially encoded the unisensory location estimates, posterior intraparietal sulcus activity reflected the integrated estimate which depends on the relative reliabilities of the auditory and visual estimates (Rohe and Noppeney, 2015a). The brain needs to weigh the unisensory estimate against the integrated estimate due to the inherent uncertainty about the true causal structure (Körding et al., 2007), and this weighing was reflected in anterior intraparietal sulcus activity emerging from 200 ms poststimulus onwards (Rohe and Noppeney, 2015a; Aller and Noppeney, 2019). Parietal representations were found to mediate both multisensory integration and the immediate recalibration of unisensory perception in the subsequent auditory trial (Park and Kayser, 2019). In a re-analysis of their data, Rohe and Noppeney (2016) further showed that parietal areas take into account top-down task relevance (i.e., which modality had to be reported), which might suggest a neural basis for other top-down influences discussed in the subsection “Top-Down Influences on Cross-Modal Binding and Learning.” EEG and MEG studies have revealed a crucial role of neural oscillations in orchestrating the interplay between stimulus-driven and top-down effects in multisensory processing (Senkowski et al., 2008; Keil and Senkowski, 2018). Based on the available evidence, neural network models of the ventriloquism effect have been developed (Magosso et al., 2012; Cuppini et al., 2017).

While the neural computations underlying multisensory spatial integration and immediate recalibration might critically depend on parietal areas, cross-modal recalibration in the cumulative ventriloquism aftereffect was found to result in an enduring change of spatial representations in the planum temporale and an increase of connectivity between the planum temporale and parietal areas (Zierul et al., 2017). This suggests that sustained changes in unisensory sound localization reflect altered bottom-up processing along the auditory “where” pathway (Bruns et al., 2011a).




FUTURE DIRECTIONS

The ventriloquism effect and aftereffect have generated an abundance of new insights into the mechanisms of multisensory processing in recent years. Future challenges include translating these new findings into a more general theoretical framework of multisensory processing in naturalistic environments as well as clarifying the developmental trajectory of multisensory spatial integration and learning.

In real-world scenarios, cross-modal stimuli are usually accompanied by a myriad of other continuously changing stimuli. This sensory context inevitably modulates how a particular stimulus is processed (Bruns and Röder, 2017; Bruns and Watanabe, 2019) and shapes priors for processing that stimulus during future encounters (Habets et al., 2017; Odegaard et al., 2017). In addition, the sensory evidence itself might be corrupted by varying amounts of noise. Interestingly, in a phenomenon referred to as cross-modal stochastic resonance, it has been found that intermediate levels of noise in one sensory modality can enhance (rather than impair) responses to weak stimuli in another sensory modality (Manjarrez et al., 2007; Mendez-Balbuena et al., 2018). Future studies should address how learned priors and sensory context interact with bottom-up sensory evidence in the brain. To address these questions, emerging technologies like augmented and virtual reality might help bringing the ventriloquism effect and aftereffect paradigm closer to more complex real-world scenarios (Sarlat et al., 2006;Kytö et al., 2015).

Multisensory spatial processing appears relatively stable over time during adulthood (Odegaard and Shams, 2016), but surprisingly few studies have tested its ontogenetic development in humans. Non-human animal studies have typically investigated visual calibration of auditory spatial representations over rather long time scales of weeks to months (King, 2009), but the developmental trajectory of short-term recalibration effects (as observed in the ventriloquism aftereffect) and its relation to optimal cross-modal integration (as measured in the ventriloquism effect) remains unknown. To assess developmental influences on multisensory spatial functions, retrospective studies in which the impact of sensory deprivation during sensitive periods of development (e.g., due to blindness) is tested in adult individuals are needed as well (Occelli et al., 2012).

With their long history, the ventriloquism effect and aftereffect are timeless experimental paradigms and invaluable tools for the field of multisensory research. Hopefully, this review article will stimulate further discoveries in the years to come.
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Activity patterns of cerebral cortical regions represent the current environment in which animals receive multi-modal inputs. These patterns are also shaped by the history of activity that reflects learned information on past multimodal exposures. We studied the long-term dynamics of cortical activity patterns during the formation of multimodal memories by analyzing in vivo high-resolution 2-photon mouse brain imaging data of Immediate Early Gene (IEG) expression, resolved by cortical layers. Strikingly, in superficial layers II/III, the patterns showed similar dynamics across structurally and functionally distinct cortical areas and the consistency of dynamic patterns lasted for one to several days. By contrast, in deep layer V, the activity dynamics varied across different areas, and the current activities were sensitive to the previous activities at different time points, depending on the cortical locations, indicating that the information stored in the cortex at different time points was distributed across different cortical areas. These results suggest different roles of superficial and deep layer neurons in the long-term multimodal representation of the environment.

Keywords: cortical dynamics, cortical layers, multimodal learning and memory, 2-photon imaging, mice


INTRODUCTION

The brain can represent, integrate, and remember information from more than one sensory modality (Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008; Bruns and Röder, 2019; Leon et al., 2019; Taesler et al., 2019). This cross-modal integration is structured such that items can be represented both as a whole as well as a set of cross-modal details. In a complex environment, the learning of these integrated representations is a difficult task requiring repeated exposures to the multi-sensory stimuli. Moreover, the learning mechanisms need to address plasticity-stability trade-offs, by forming relevant new cross-modal associations while ignoring and forgetting irrelevant associations and preserving prior memories. As a result, the formation of cross-modal memories becomes a long-term dynamic process. Understanding the long-term dynamics of cortical memory representation in multimodal environments is not only a worthwhile topic by itself in brain research but also significant for inspiring the enhancement of cross-modal learning abilities of artificial brains (Parisi et al., 2019).

The cerebral cortex of the mammalian brain, which is parcellated into a multitude of structurally and functionally specific, layered areas, is believed to be involved in higher-order brain functions, including multisensory perception (Ghazanfar and Schroeder, 2006). Substantial evidence suggests that the cerebral cortex has both area-specific and layer-specific functions in the processes of learning and memory. For example, Phoka et al. (2016) found increased neural activity and concomitant ensemble firing patterns in mouse somatosensory cortex, specifically layers IV and Vb, sustained for more than 20 min after multi-whisker, spatiotemporally rich stimulation of the vibrissae. Kitamura et al. (2017) pointed out that contextual fear memory can be quickly produced at the onset of learning in the prefrontal cortex (PFC). Xie et al. (2014) discovered memory trace neurons in layers II/III of various areas of the mouse cortex. Wang et al. (2019) demonstrated that the cross-modal integration of visual and somatosensory inputs evoked specific neural responses in particular cortical areas, such as the primary visual (VISp) cortex and the retrosplenial cortex (RSC). Sellers et al. (2013, 2015) demonstrated that anesthetics could selectively alter spontaneous activity as a function of the cortical layer and suppress both multimodal interactions in the VISp cortex and sensory responses in the PFC. Despite these extensive observations, however, it remains unclear whether and how the long-term dynamics of cortical memory representations are cortical area- and layer-specific.

In this study, we investigated the long-term dynamics of cortical area- and layer-distributed cellular activity patterns during the formation of cross-modal memories by analyzing in vivo high-resolution 2-photon imaging data from BAC-EGR-1-EGFP mouse brains in multimodal environments. On each day, animals were put into one type of environment, receiving multimodal inputs. Several cortical locations from various brain regions of each subject were monitored, and within each location the neural activity patterns were represented by the firing rates of 6,000–15,000 neurons, across multiple cortical layers. During memory formation, the activity patterns of a particular day could be related to those on previous days, as analyzed using a prediction algorithm by a gradient boosting decision tree implemented in the LightGBM Python-package (Ke et al., 2017). We show that the long-term memory-related cortical dynamics are significantly layer-specific. In layers II/III, the dynamic patterns are similar across different types of cortical areas and different hemispheres, and the neural activities show an unspecific memory effect, that is, they are more sensitive to the recent history of one to several days than to activity of a longer time lapse, even if the more recent memories belong to different environments from the present one. In layer V, the activity patterns vary among cortical locations as the information stored in this laminar compartment at different previous time points appears distributed nonuniformly across different cortical areas. Those results, therefore, suggest different roles of superficial and deep layer neurons in the multimodal representation of the environment.



MATERIALS AND METHODS


Animal Experiments

We analyzed data from four mice. The used mouse strain was BAC-EGR-1-EGFP (Tg(Egr1-EGFP)GO90Gsat/Mmucd from the Gensat project, distributed by Jackson Laboratories. Animal care was in accordance with the Institutional guidelines of Tsinghua University, and the entire experimental protocol was also approved by Tsinghua University. Imaging and data acquisition procedures were previously described by Xie et al. (2014). Specifically, mice were 3–5 months old, and received cranial window implantation; recording began 1 month later. To implant the cranial window, the animal was immobilized in custom-built stage-mounted ear bars and a nosepiece, similar to a stereotaxic apparatus. A 1.5 cm incision was made between the ears, and the scalp was reflected to expose the skull. One circular craniotomy (6–7 mm diameter) was made using a high-speed drill and a dissecting microscope for gross visualization. A glass-made coverslip was attached to the skull. For surgeries and observations, mice were anesthetized with 1.5% isoflurane. EGFP fluorescent intensity (FI) was imaged with an Olympus Fluoview 1200MPE with pre-chirp optics and a fast AOM mounted on an Olympus BX61WI upright microscope, coupled with a 2 mm working distance and a 25× water immersion lens (numerical aperture 1.05). The anesthetization was done 1 h after the animal explored a multisensory environment. Previous studies showed that, under these circumstances, anesthesia has very little effect on protein expression (Bunting et al., 2016) and that protein expression reflects the neural activities related to the environmental exploration very well (Xie et al., 2014).

We employed several types of environments for the animals. In principle, the environments were all multimodal environments, but of different complexity in terms of the sensory modalities. Home Cage was considered as the default, where, although the animals could see and touch the cage, as well as smell their own smells, they habituated to this environment and were closely familiar with the sensory inputs. Therefore, the visual, somatosensory and olfactory inputs in the Home Cage environment were all considered as weak, and this multimodal environment was considered as the simplest one compared to all others. An increased level of complexity was created by introducing stronger and specific inputs of certain modalities. To this end, we used another three boxes, labeled as contexts A, B, and C, which comprised different shapes, colors, materials of the floors, and combinations of different smells, so that animals received strong and specific visual, somatosensory, and olfactory inputs. In addition, we also employed strong light and sound stimuli in box C. When an animal was put into one of the boxes, it could experience three types of situations. Training A, B, or C meant that the animal received foot shocks that were strong enough to lead to freezing behavior, as part of conditioning for learning. At the same time, the foot shock could also be considered as a very strong and special somatosensory (nociceptive) input by itself. When the animal did not receive the foot shock, we labeled the boxes as Context A, B, or C if before training, or as Retrieval A, B, or C after training, respectively. In practice, the data used in this study do not include Context C or Retrieval C. Training C had the largest complexity in terms of sensory modalities when compared to the others, and interestingly, in the pre- and post-training phases, the animals displayed different behaviors, that is, freezing in Retrieval A, B, or C but not in Context A, B, or C (Xie et al., 2014), but we assumed that the provided sensory information was identical between the Context and Retrieval environments. Several other environments were also employed, which were more complex than the Home Cage, but simpler than those mentioned before. Enriched Environment and Tunnel were two boxes where animals could receive strong visual and somatosensory inputs. Another two simple environments were employed where the animals only received visual inputs of vertical or horizontal stripes.

Illustrations of the different environments are provided in Figure 1A and the sensory modalities encountered in the environments are summarized in Table 1. The respective environments that the four mice experienced are summarized in Table 2. The time of exploration in different environments varied from 5 min to 2 h, and the imaging was carried out about 1–1.5 h after the exploration, which was optimized to capture the neural activities of the animals in the explorations (Xie et al., 2014).


[image: image]

FIGURE 1. Example of a prediction of memory trace activities. (A) Illustration of different environments employed in this article. (B) One example slice of cortical location A1 (primary visual, VISp, left) of animal Ma and the manual annotations of the cortical layers, where x indicates the anterior-posterior direction and z indicates the superior-inferior direction. Panels (C,D) show slice examples of layers II/III and layer V (more specifically, Vb) of the same cortical location A1, where x indicates the anterior-posterior direction and y indicates the rostrocaudal direction. (E) The model was trained on layers II/III in this cortical location A1. Neural activities on Day 58 (context B) were used as the target, and the data for 12 previous days were used as the features. (F) Prediction powers of the 12 days in features. (G) Prediction performance of the model on other layers II/III neurons within the same location, and (H) prediction performance of the same model on all layer V neurons within the same location, where blue dots indicated the prediction from the original data [R2 = 0.82 in panel (G) and R2 = 0.81 in panel (H)] and red dots from the shuffled data [R2 = 0.61 in panel (G) and R2 = 0.48 in panel (H)].




TABLE 1. List of the used multimodal environments.
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Data Selection

For each mouse, 10–20 cortical locations were typically monitored, but we only selected the ones that could be scanned at least to a depth of layer Vb for all days of scanning. As a result, we selected 7, 8, 6, and 3 locations for those four mice, respectively, which covered motor, posterior parietal (PTLp), RSC, primary somatosensory (SSp), anterior medial visual (VISam), and VISp cortical areas on both the left and right hemispheres. The neuron positions in the images were automatically detected, as described in detail by Xie et al. (2014). If a neuron was missed in the detection for not more than 3 days, its missed activity values were filled as the median value of all the other neurons on that day. If, however, a neuron was missed in the detection for more than 3 days, the neuron would be excluded from the analysis. The area types and laminar compartments were manually annotated based on their cytoarchitecture by one expert (GW) and approved by all other experimental experts among the authors (HX, YH and J-SG). In practice, we first measured the relative position of each location with reference to the Bregma point and used the position to estimate the functional area type according to the atlas of the Allen Brain Institute (Lein et al., 2007; Oh et al., 2014). Subsequently, in the laminar compartment annotation, we mainly considered the depth, the neural density, and the morphology of the somata in terms of different sizes and shapes. In the functional area type annotation, we first discriminated motor/RSC from VISam/VISp/SSp/PTLp based on their distinct laminar structures and then further discriminated each area type based on their positions relative to the Bregma. Since the border between different functional regions is sometimes not very clear, some imaged locations are cross-functional regions, but these data were excluded from the analysis in this study. In this study, we focused our analysis on the activities in layers II/III and layer V. A summary of the data available for the analyzed four animals is provided in Table 2.


TABLE 2. Summary of the subjects.
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LightGBM Prediction Approach

We analyzed the long-term dynamics of cortical memory representations as a regression problem, by predicting the activity pattern on a certain day based on the history of activity patterns. Practically, we used the gradient boosting decision tree implemented in the LightGBM (Ke et al., 2017) Python-package.

For each prediction, we needed to select training, validation, and test data. Once the activities on a certain day were selected as the target, their values in the training and validation data sets were used as the labels. The values in the test data were not used in the prediction process but were used as ground truth to evaluate the prediction performance. Features included the activities on the previous days. The parameters used in the LightGBM prediction are shown in Table 3.


TABLE 3. Parameters for LightGBM prediction.
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Since we used “l2” for the parameter “metric” in the evaluation process (which means that the mean square error was the target to be optimized in the process of the regression), we calculated the mean square error δ between the prediction results and the ground truth as an accuracy estimate. To generate controls, we shuffled the data on the feature days for each neuron.



Cross-location Prediction

For each animal, we selected one specific laminar compartment Λ (Λ was either in layers II/III or layer V). One model was trained by using the training and validation data from one cortical location iΛ, and predictions were subsequently performed by using the test data from a different location jΛ in the same laminar compartment. At this stage, the target was always selected as the data on the last day when the animal’s brain was scanned, and the features were the data on all the previous days that were available, excluding Day 0, in total from 10 to 30 days (see Table 4). To make all pairs of predictions comparable, at this stage, for each animal we needed to select the data sizes of training, validation and test data, respectively, so as to have identical data for every model. To this end, for each mouse, we first identified the minimal number of neurons in every location in layers II/III or layer V in the data set, which turned out to be 311, 399, 116, and 342 neurons, respectively (Table 4). This number was the size of the test data for each mouse, and the size of training and validation data were 90% and 10% of these numbers, respectively, as seen in Table 4. With those fixed numbers, the data sampling was random, and the validation and the training data sets never had overlaps.


TABLE 4. Summary of cross-location prediction.
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To evaluate the prediction results, we not only calculated the square error δ(iΛ, jΛ), but also shuffled the data on the feature days in the test data sets 20 times for the comparison of each pair of training-test locations, and predicted the target each time, so as to obtain another 20 predicted results. The control square error δs(iΛ, jΛ) was calculated by using the average of the 20 predicted results from the shuffled data. The relative error was then calculated as δr(iΛ, jΛ) = δ(iΛ, jΛ)/δs(iΛ, jΛ). We defined the prediction quality measurement κ as κ(iΛ, jΛ) = exp[−δr(iΛ, jΛ)], and the matrix MκΛ, whose off-diagonal entry at the ith row and jth columns was κ(iΛ, jΛ) and diagonal elements were all empty. MκΛ was, therefore, able to reflect how the memory-dependent dynamics of the neural populations from the testing location were similar to the training location.

We repeated these predictions and evaluations 10 times so as to obtain 10 MκΛ. The differences in prediction performances for layers V and II/III could be demonstrated in two ways. In the first instance, we averaged all the 10 MκΛ for each layer compartment, to obtain [image: image], and calculated [image: image], and finally used the matrix Ms = (Mκ+ MκT)/2 to demonstrate the difference. If one entry was 0, it meant that the predictions for layer V and layers II/III had the same performance in the corresponding pair of locations, and the values larger (or smaller) than the 0 mean prediction in layers II/III (or layer V) performed better. In the second instance, we directly compared the difference of the 10 values between κ(iV, jV) and κ(iII/III, jII/III) to search for the significant difference (p < 0.01, t-test with Bonferroni correction).



Intra-location Prediction

Intra-location prediction was basically performed in the same way as cross-location prediction. The only difference was that, since the test data set came from the same population as the training and validation data sets, it was necessary to make sure that those data did not overlap. To this end, we divided the data equally across each location and laminar compartment into 10 groups. For each prediction, we sampled one group of neurons, and randomly sampled 50 neurons from this group as the validation data, sampled another two groups of neurons, and randomly sampled 100 neurons from these two groups as the test data, and randomly sampled 350 neurons from the left groups as the training data. Locations whose layers II/III or layer V did not contain at least 500 neurons were excluded from this part of analysis.



Prediction Power

Once a model Mod(r) was trained, and we signed the set of feature days as S(r), LightGBM returned the total gains of splits for each feature GD(r), where D indicates the feature day used in this model. We therefore directly used the gain normalized by their summation, i.e., [image: image] to indicate the prediction power of the feature day D in model Mod(r). Because the prediction power was the property within a model itself, insensitive to its performance with test data, and the measurement was a value normalized within the model, for each model we used a large part (90%) of the neurons within the population (80% as training data and 10% as validation data).



Repeat Environment Prediction

In this part of the study, we used four features to predict the target activities. Day 0 was always excluded from the analysis, and the data of the next three scanning time points (labeled as Day S1, Day S2, and Day S3) were always included in the features, in order to generate controls to evaluate the prediction performance. However, in order to eliminate the predictive effects from those 3 days that could be different among the situations which we were going to compare, we shuffled the neurons on each of those 3 days. For each animal, from Day S4 onwards, we looked for the next scanning day on which the mouse was put into a repeated environment for the first time, and included this pair of repeated environments into the analysis, except for that between those days, when the mouse used to be put into the same box, even though the environment was different. For instance, in the sequence consisting of Retrieval A (Day Sn), Home Cage (Day Sn + 1), and Retrieval A (Day Sn + 2), the pair of Day Sn and Day Sn + 2, which has the environment-repeat interval Inv = Sn + 2-Sn, would be included in the analysis, but in the sequence consisting of Retrieval A (Day Sn), Training A (Day Sn + 1), and Retrieval A (Day Sn + 2), the pair of Day Sn and Day Sn + 2 would be excluded. For each selected pair, we used the data of the previous day together with the aforementioned shuffled data on Day S1, Day S2, and Day S3 to predict the activities on the following day, which resulted in a mean square error δ(iΛ) in location (iΛ in layer compartment Λ), and we shuffled the days in the test data, resulting in δs(iΛ). Therefore, we eventually obtained δr(iΛ) = δ(iΛ,)/δs(iΛ), which measured the performance of this prediction, where smaller δr(iΛ) indicates better prediction. We repeated the prediction 100 times within each location iΛ, and obtained the averaged value <δr(iΛ)>, where <·> stands for the average over trials. Within each location iΛ, we still randomly divided the neurons into 10 groups, and for each prediction, we randomly selected four groups (40% of the data) as the training data, one group (10% of the data) as the validation data, and left the other five groups (50% of the data) as the test data.

We calculated the average of <δr(iΛ)> among all the locations of the mouse, to obtain the mean value [image: image] and the standard deviation σ(δr) so that we could analyze their dependence on the environment-repeat interval Inv, simply by using lining fitting [image: image] and σ(δr) = ρs · Inv + αs, respectively. To analyze their dependence on the multimodal environments, we selected the two most often repeated environments for each mouse (eventually 5–8 repeating times), and compared [image: image] and σ(δr) twice over all the repeats between those two environments. First, we made the comparison by using the original values, and afterward, in order to eliminate the influence of the different environment-repeat interval Inv as much as possible, we made the comparison again by using a kind of modified values, which equalled the original values minus Inv times the fitted slopes, namely [image: image], and [image: image], respectively.

Subject Mc was excluded from this part of the analysis because it only experienced very few environment repeats.



Supplementary Explanations of the Terminology Used in This Study

In this section, we provide supplementary explanations of the terminology used for various purposes in this study, in order to avoid misunderstandings of the terms.


•   Type of cortical area and cortical location: there are two concepts regarding the cortical imaging positions that may be potentially confused. Therefore, we used two distinct terms to distinguish them. Type of cortical area means the structural-functional cortical area, for example, VISp, VISam, motor, etc, whereas cortical location means one of several particular positions that was monitored in the research. To label the cortical locations of a mouse Mx (x stands for a, b, c, d), we used numbers following the capital form of x (for example, for mouse Ma, those cortical locations were labeled A1, A2, A3, etc). Different cortical locations might, therefore, belong to the same type of cortical area.

•   Environment and Environment repeat: in this work, environment describes the set of all the environmental conditions that could be perceived by any sensory modality, for example, the box or cage in which the animal was located, with particular walls, floors and even toys, the smells, the sounds, the foot-shocks, and any other external stimuli. Environment repeat means an animal experienced the same environment for another time.

•   Complexity: in this study, the complexity of the environment comprises the range, types, and strength of the stimuli provided in the different sensory modalities.

•   Model: throughout this article, model is only used in the sense of a machine learning model, and never refers to an animal model or any other kind of model.






RESULTS


Predictability

Activities of cortical neurons could be predicted by using a gradient-boosting decision tree, taking their past activities as features and already knowing some of the activities at the target day as the training labels. One example is shown in Figure 1, where a model was trained on layers II/III in a cortical location of mouse Ma, and the neural activities on Day 58 (context B) were used as the target, and the data on twelve previous days were used as the features (Figures 1E,F). The prediction from this model by using the original data produced much more similar results to the actual data than by using shuffled data (Figure 1G, where R2 = 0.82 for original data vs. R2 = 0.61 for shuffled data). Moreover, although prediction performance varied, a model trained in a laminar compartment of a cortical location was able to predict the neural activities in a different laminar compartment (Figure 1H) or in a different cortical location (Figures 2A–C).


[image: image]

FIGURE 2. Cross-location prediction performance [image: image] in layers II/III (A) and in layer V (B), and their relative difference Ms (C), by using the data from animal Ma. Diagonal elements do not have values. Prediction power distributions of layer II/III model (D) and layer V model (E) trained in cortical location A1 (left VISp), A4 (left primary somatosensory, SSp, and A7 (right VISp), when the neural activities on Day 130 (Tunnel) was used as the target and all previous days in the data set as the features. Panels (F,G) show the prediction power distributions of layer II/III model and layer V model, respectively, when the neural activities on Day 41 (Retrieval A) was used as the target and eight previous days in the data set as the features. Abbreviations: H, home cage; TA, training A; RA, retrieval A; CB, context B; TC, training C; EE, enriched environment and TU, tunnel.





Cross-location and Intra-location Predictions

The performance of cross-location prediction was significantly layer-specific. In layers II/III, any model trained from one cortical location could well predict the neural activities in other cortical locations, whether they belonged to the same type of cortical area or the same hemisphere (Figure 2A). By comparison, cross-location prediction performed much worse for layer V (Figures 2B,C and Table 4). Specifically, when we compared the different prediction performances in layer V to layers II/III of each pair of training-test locations, for all four animals among all the 134 pairs, we obtained 104 worse performances in layer V compared to layers II/III (in terms of the averaged value κ), out of which 54 were significant (p < 0.01, t-test with Bonferroni correction within each animal), whereas we had only 30 better performances in layer V, out of which only 11 were significant (Table 4).

Intra-location prediction showed the same bias, that is, it performed worse in layer V than in layers II/III, but the difference was much less significant than cross-location prediction (when Table 5 is compared to Table 4). Specifically, among all the 17 comparisons, there was only one result showing significant difference.


TABLE 5. Summary of intra-location prediction.

[image: image]


Furthermore, we found that in the cross-location prediction, the large differences in performance tended to appear for pairs of locations involving different types of cortical areas (see for example locations A1 and A4 in Figure 2C, which were in left VISp and left SSp, respectively) or different hemispheres (see for example locations A1 and A7 in Figure 2C, which were in left VISp and right VISp, respectively).

The analysis of the prediction powers of the days in history helped us obtain deeper insights into the differential performances of layer V and layers II/III predictions. Taking the models trained on A1 (left VISp), A4 (left SSp), and A7 (right VISp), for example, the distributions of the prediction powers for the models in layers II/III were very similar (Figure 2D). Specifically, most powerful predictors were those on the most recent days (such as Day 128 and Day 129 when the targets were on Day 130). In layer V, the prediction power had significantly different distributions for the models trained on those three locations (Figure 2E), where for A1 and A7, 3 days (Day 125, Day 128 and Day 129) with the same environment as the target day (Tunnel) had high prediction powers and only for A7, 1 day (Day 74) also had high prediction power, whereas for A4, 2 days (Day 24, Training A and Day 126, Tunnel) had significantly high prediction powers. Even if we used the data within a short duration in those three locations to train models, for example, Day 41 (Retrieval A) as the target day and all previous days as features, we can still find those different patterns of the prediction power distributions between layers II/III and layer V. In layers II/III, the distributions were still very similar (Figure 2F), but in layer V, the distributions were widely different (Figure 2G).



Repeat Environment Prediction

For each mouse, [image: image] in layers II/III was always more sensitive to environment-repeat interval Inv compared to layer V, reflected by the bigger slopes ρm, or bigger R2 values of the line fitting results, or both (the first column of Figure 3). σ(δr) did not have a very strong interrelation with Inv (the second column of Figure 3). In the comparisons of [image: image] and σ(δr) with the original values between the most often repeated environments, we only found one result which had statistical significance (p < 0.05), which was the σ(δr) in layer V of mouse Ma between Training C and Tunnel. After modifying the values, the significance did not change too much (p is still smaller than 0.1). Other comparisons that had small p values (<0.1) included [image: image] in layers II/III of mouse Mb between Context A and Retrieval B (p > 0.1 after the modification), σ(δr) on layers II/III of mouse Md between Enriched Environment and Home Cage (p > 0.1 after the modification), and σ(δr) on layers II/III of mouse Md between Enriched Environment and Home Cage (p < 0.05 after the modification). In addition, σ(δr) in layers II/III of mouse Ma between Training C and Tunnel did not have a small p-value (p > 0.1), but it became smaller than 0.1 after modification.


[image: image]

FIGURE 3. Results of the environment-repeat prediction. Rows from top to bottom are layers II/III of mouse Ma, layer V of mouse Ma, layers II/III of mouse Mb, layer V of mouse Mb, layers II/III of mouse Md, and layer V of mouse Md. The first column is the dependence of [image: image] on the environment-repeat interval Inv, where error bars in fact indicate the standard deviation σ(δr), and the red lines are the linear fitting results. The second column shows the dependence of σ(δr) on Inv. The third to the sixth columns show the comparisons of [image: image] and σ(δr) with the original and modified data, respectively, between the most often repeated environments that each mouse experienced. Colors in the figure are used to discriminate environment types. +p < 0.1 and *p < 0.05.






DISCUSSION


Interpretation of the Predictions

Although cortical activity patterns in the context of learning and memory appear very complex, they are not purely random. Rather, they are sensitive to outside stimuli as well as their own histories (Soon et al., 2008). The prediction approach employed in this study indeed followed such a hypothesis, that cortical neurons can represent long-term memories in multimodal environments, so as to have long-term memory-dependent dynamics. If a model trained within one neural population can also successfully predict the neural activities in another population, it means that within the considered history period, these two populations have similar memory-dependent dynamics. Moreover, the features with high prediction powers indicate the time point when the fresh information in the history that is useful for forming the current activity patterns starts to encode in the neural populations. However, the days of the features with very low prediction powers do not necessarily mean that their activities do not correlate with the activities on the target day. Another possibility may be that they do not encode additional useful information for predicting the neural activities on the target day, on top of the days of higher prediction powers.

As a result, we show that within the same cortical location and same laminar compartment, neurons indeed have similar long-term memory-dependent dynamics. Even across layers, or across areas, the neurons may still have certain similarities in these long-term memory-dependent dynamics, but the similarities vary from case to case.



Comparison Between Layers II/III and Layer V

Many parts of the neocortex are involved in learning and memory processes (McClelland et al., 1995). In this study, while aiming to explore the layer-specific long-term memory-dependent dynamics of cortical neural activities, we specifically selected layers II/III and layer V for a number of reasons. In particular, both layers II/III and deep cortical layers have been shown to play important roles in learning and memory in previous studies (Xie et al., 2014; Hayashi-Takagi et al., 2015; Gao et al., 2018; Wang et al., 2019) and the quality of the data under study is good in multiple locations scanned down to layer V (more specifically, to layer Vb). Thus, layers II, III, Va and Vb turned out to be the good candidates for this study. Ideally, we would have liked to study all these laminar compartments individually, but in practice, the approach was subject to some restrictions.

First, layer II and layer III are not easy to discriminate based on their cytoarchitecture as obtained in the protein expression data set (Li et al., 2019); thus, we had to analyze them as one joint laminar compartment. There may be some differences in terms of the long-term memory-dependent dynamics between these layers, but we have to leave this problem to future studies.

Likewise, layer Va cannot be analyzed individually because it is too thin and difficult to discriminate in the data set. In some locations, the boundaries between layers Va and IV or the boundaries between layers Va and Vb are vague. The thickness fluctuations are already larger than the thickness of layer Va itself. Analyses of the data from the individual layer compartment Va in this research would, therefore, comprise too much noise. Combining layers Va and Vb into a single laminar compartment layer V appeared, therefore, to be the best solution. However, it is worth mentioning here that, since layer Vb contains many more neurons than layer Va, the properties of layer V that we revealed in this work may in fact mainly reflect the properties of layer Vb. In line with this conclusion, results are qualitatively the same when we used data just for layer Vb instead of joint layer V (see the Supplementary Material). We acknowledge that in previous studies the response properties to external stimuli in layer Va was significantly different from layer Vb (de Kock et al., 2007), but due to the described technical limitations, the potential difference in the long-term memory-dependent dynamics of these laminar subcompartments has to be left as an open problem for future research.

In any case, the comparison between cross-location predictions in layers II/III and V already revealed differences between superficial and deep layer cortical neural activities in the long-term memory-dependent dynamics. These differences are not due to the relatively different data qualities at different scanning depths, as we show in the intra-location prediction that the difference between these two-layer compartments is much less significant.

In layers II/III, the prediction performances are always quite good in any pair of training-test locations (in the example shown in Figures 2A–C, and mainly distribute between 0.6 and 0.8; in comparison, in the intra-location prediction in layers II/III of this mouse, all approximate to 0.8, although technically they are not comparable due to the different sizes of training, validation and test data sets). This means that in layers II/III, the cortical memory representations have very similar long-term dynamics across cortical areas. This result is not equal to, but matches, the results of previous studies that memory trace neurons were found in layers II/III, irrespective of the cortical areas (Xie et al., 2014). In the present study, however, we did not specifically focus on memory trace cells, but the whole pattern of neural activities. Further analysis revealed that the neural activity patterns in layers II/III are always sensitive to the very recent activities in history, which implies ongoing dynamics in layers II/III with a time scale of one to several days. The functional role of these dynamics in learning and memory processes need to be investigated in future research.

In contrast, in layer V, cross-location predictions perform much worse (in the example shown in Figures 2A–C, some [image: image](i_II/III,j_II/III) can be as low as 0.2; in comparison, in the intra-location prediction in layer V of this mouse, most of [image: image](i_II/III,j_II/III) also approximate to 0.8, although, again, they cannot technically be comparable due to the different sizes of data sets), but between the locations that belong to the same types of cortical areas and same hemispheres, the performances are not too bad, which already implies the different functional roles of cortical areas in layer V in long-term learning and memory processes. Consistently, the cross-location predictions within the associative cortices, including PTLp and RSC (dorsal) show a much more similar performance between layers II/III and layer V, whereas the sensory cortices, including visual cortex and somatosensory cortex, show larger difference between those two-layer compartments. Results from a comparison between the different prediction power distributions further indicate that information encoded in the neural activities that is useful for the neural responses to the current environment is segregated and stored in layer V in different cortical locations. In other words, when the animal is located in a particular environment, its layer V neurons form the patterns as a result of both the response to external multi-modal inputs and the retrieval of previously stored information of different modalities, where the information stored at different previous time points is distributed across different cortical areas. However, one should mention that our approach used in this work did not enable us to localize the cortical areas for any particular feature of information, which will be an important task in future studies. In addition, the anatomical mechanisms underlying the layer-specific long-term dynamics of the neural activities are also an intriguing topic that needs to be investigated in future studies.



Repeat Environment Prediction

At the current stage, we could reasonably hypothesize that neural activities in layers II/III are more sensitive to temporal information, but relatively more insensitive to the complexity in terms of the sensory modality of the environments compared to layer V, whereas, when the environment becomes more complex, neural activities in layer V coordinate more strongly across cortical areas to represent the environment. This hypothesis motivated us to test the repeat environment prediction.

Since δr(iΛ) measures in location iΛ how well the present neural activities can predict the activities in a repeated environmental exposure in the future, it basically reflects how reliably an environment-specific cortical pattern can be reactivated. Therefore, the variable [image: image] reflects the overall reliability of a layer compartment for reactivating the environment-specific cortical patterns, and σ(δr) reflects the differences of these reliabilities across cortical locations/areas.

The results show that [image: image] is sensitive to the environment-repeat interval Inv, which is consistent with a decay process of memory. In comparison, for layers II/III, [image: image], is more sensitive to Inv than layer V, which verifies the first part of our hypothesis that layers II/III is more sensitive to temporal aspects of representing information than layer V.

Among all three pairs of environments that we compared, only Training C comprised more sensory modalities than Tunnel, so we expected that σ(δr) would be smaller in Training C than Tunnel in layer V, which turned out to be true (Figures 3Bd,Bf). This result, therefore, verifies the second part of our hypothesis, that layer V is more sensitive to the complexity of remembered contexts in terms of sensory modalities.

Even more interestingly, we know that in Context A and Retrieval B, the animal had significantly different behaviors, that is, it showed freezing in Retrieval B but not in Context A (Xie et al., 2014), but the environments Context A and Retrieval B comprise the same sensory modalities. In comparison, their σ(δr) in layer V or layers II/III did not show a significant difference (Figures 3Cd,Cf,Dd,Df). Therefore, the difference in the behaviors was not related to the same aspect of the cortical activities which relates to the sensory modalities of the environments. The only difference of [image: image] in layers II/III was in fact due to the different environment-repeat intervals (compared Figure 3Cc to Figure 3Ce).

The data of animal Md gave some unexpected results (the last two rows of Figure 3), but since the studied cortical locations of this animal were limited (only three locations from two cortical areas), it is difficult to interpret them in a convincing way.



Regarding the Methodology

LightGBM is a machine-learning package based on decision trees. Therefore, its prediction ability is derived from the correlations between the target and the features, given that the data are cut into leaves. Similar results could potentially be achieved by correlating the activities on different days. Given the massive number of data points, it is also possible that some deep learning methods might give better prediction results than LightGBM. However, a higher prediction accuracy was not our goal in this work, and deep learning methods usually cannot reveal the deeper mechanisms underlying the different dynamics, as revealed here, based on the prediction power distributions.




CONCLUSION

Activities of cortical neurons are sensitive to both the current environment in which the animals receive stimuli from various modalities as well as the history of activities reflecting the learned experience of various types of environments, forming long-term memory-dependent activation dynamics. These long-term dynamics are specific for different cortical layers. In layers II/III, they are similar across different cortical areas and different hemispheres, implying a distributed cortical memory system in layers II/III that integrates multisensory information into the memory. The layers II/III memory network shows ongoing dynamics with a time scale of one to several days. In layer V, such consistent memory signal dynamics across-time are lost and their patterns are varied among cortical locations. Between the locations that belong to different types of cortical areas, or belong to different hemispheres, the differences between the long-term memory-dependent dynamics tend to be bigger. Thus, information that has been stored at different previous time points is distributed across layer V of different cortical areas, which determines the present activity patterns, jointly with the current multimodal inputs from the environment. Different roles of superficial and deep layers neurons in cross-modal learning process are, therefore, suggested by the layer-specific long-term dynamics of cortical memory representations.
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The problem of generating structured Knowledge Graphs (KGs) is difficult and open but relevant to a range of tasks related to decision making and information augmentation. A promising approach is to study generating KGs as a relational representation of inputs (e.g., textual paragraphs or natural images), where nodes represent the entities and edges represent the relations. This procedure is naturally a mixture of two phases: extracting primary relations from input, and completing the KG with reasoning. In this paper, we propose a hybrid KG builder that combines these two phases in a unified framework and generates KGs from scratch. Specifically, we employ a neural relation extractor resolving primary relations from input and a differentiable inductive logic programming (ILP) model that iteratively completes the KG. We evaluate our framework in both textual and visual domains and achieve comparable performance on relation extraction datasets based on Wikidata and the Visual Genome. The framework surpasses neural baselines by a noticeable gap in reasoning out dense KGs and overall performs particularly well for rare relations.

Keywords: relation learning, relation prediction, information extraction, knowledge graphs, inductive logic programming


1. INTRODUCTION

For human infants, it is seemingly easy to learn to reason about the relation between any two objects. Infants show this capability because they learn to understand the world, and they acquire language by integrating cross-modal information. In particular, they do not only learn referents in language by statistically matching words with occurrences of objects in the environment, but also begin to understand the characteristics and affordances of the objects. AI systems, however, are usually developed based on single modalities or tasks with limited access to the context. Since a crucial aspect of current AI systems is to learn appropriate representations for designated tasks, it seems particularly important to reflect cross-modal learning also in learning these representations. For learning relational representations, let's consider the following example. In The Little Match Girl's dream, Hans Christian Andersen wrote:

On the table was spread a snow-white tablecloth; upon it was a splendid porcelain service, and the roast goose was steaming famously with its stuffing of apple and dried plums.

From either the text, or an image capturing the scene (Figure 1), it is effortless to conclude that Tablecloth is On the Table, while the Apple is Inside a Goose which is On a porcelain dish put on the Tablecloth. Now, let us ask another question: what is the relation between Apple and Table? Figure 2 indicates the reasoning chain.


[image: Figure 1]
FIGURE 1. The scene1.



[image: Figure 2]
FIGURE 2. Resulting semantic graph of the scene in Andersen's The Little Match Girl's dream.


For us human beings this requires little reasoning efforts, even infants can get the answer On. However, current computational architectures barely support it, not even for restricted purposes.

The process above can be more broadly described as relation extraction, which is to determine the relationship between objects (entities) that appear in a textual paragraph or in a visual scene. We focus on the problem of conditional relation extraction, which generates a graph regarding a specific paragraph or an image, with each edge representing a relation instance (subject, object, relation) such as (Apple,Table,On). We call the resulting graph “Semantic Graph” for textual paragraphs (Sorokin and Gurevych, 2017), and “Scene Graph” for visual images (Xu et al., 2017), respectively. By bringing together textual and visual relation extraction, we are particularly interested in dependencies between both modalities and how synergies lead to more robust representation learning. Relation extraction additionally has many potential applications, including question answering (Xu et al., 2016), fact checking (Vlachos and Riedel, 2014), word sense disambiguation (Okamoto and Ishizaki, 2007), and document summarization (Hachey, 2009).

In most recent literature (Sorokin and Gurevych, 2017; Xu et al., 2017), the generation of knowledge graphs (KGs) is decomposed into two phases: (1) detecting the entities (or objects) as nodes, and (2) extracting relations between entities as edges. The first phase can be reduced to a Named Entity Recognition for textual paragraphs (Lample et al., 2016) or Object Detection for images (Ren et al., 2015). Usually, the more challenging part receiving more attention is how to determine the relations between entities and is usually cast as a classification problem. A critical difference between relation extraction and typical classification problems [e.g., image classification (Krizhevsky et al., 2012) or natural language inference (Bowman et al., 2015)] lies in the existence of dependencies between relation instances. That is, two entities, even when separated spatially, may form a relation when they are both related to one or more other entities (in the above case, Apple and Table both interact with Tablecloth, Dish, etc.).

In order to deal with this challenge, we extend the second step—extracting relations between entities—by applying a set of differentiable logic rules to extract further relations based on the current KG. We note that the process of predicting unknown relations based on the current (incomplete) KG shares some commonalities with knowledge graph completion (KGC). The reasoning module of our model predicts unknown relations by applying first-order logic rules, which can be naturally replaced with previous KGC methods. However, most of the previous approaches for KGC make the completion by learning representations of entities and relations and viewing relations as translations between entities (Bordes et al., 2013; Wang et al., 2014; Ji et al., 2015; Lin et al., 2015). In contrast, we apply logical, rule-based reasoning in order to find unknown relations, similarly to Yang et al. (2017). However, while the model by Yang et al. (2017) works only for global KGC our approach finds unknown relations in a contextual manner.

Informally, given the set of entities, determining the relation between them can be viewed as a mixture of two sub-tasks: (1) extracting primary relations from the input and (2) completing the KG with reasoning. Primary relations are mostly literal ones such as, in the match girl's example (Tablecloth, Table, On). The completion of the KG, on the other hand, requires reasoning over these primary relations and resolving the dependencies or correlations.

In the past, methods based on neural networks have been shown to be successful on a large range of tasks in various fields (LeCun et al., 2015). Particular approaches try to resolve the dependencies between relation instances by modeling other relations as the “context” of specific pair entities. A number of researches have been done in this direction, such as attention-based encoding (Sorokin and Gurevych, 2017) or graph-based message passing (Xu et al., 2017). Figure 3, left, shows a general framework for neural network-based relation extractors. There are multiple drawbacks of such contextual encoders:

1. From a systematical point of view, although neural networks are Turing-complete (Siegelmann and Sontag, 1995), and can be wired to mimic any computer circuit, in practice, they are more suitable for processing associations rather than rules. For example, starting from (Fodor and Pylyshyn, 1988), there has been a long-lasting debate over the problem of systematicity (such as understanding recursive systems) in such connectionist models (Fodor and McLaughlin, 1990; Hadley, 1994; Jansen and Watter, 2012). In the case of relation extraction, reasoning is usually performed in a chained, or recursive way (e.g., consider the relation between Apple and Table in the match girl's example), which the contextual autoencoders do not reproduce.

2. From an implementational point of view, relation extraction requires the processing of high-order relational data and quantifiers. For example, to apply the transitivity: (Tablecloth, Table, On) ∧ (Porcelain, Tablecloth, On) ⇒ (Porcelain, Table, On), we need to consider the relation among a triple of symbols (Table, Tablecloth, Porcelain). This is beyond the scope of typical graph-structured neural networks (Kipf and Welling, 2016).

3. In most datasets, the distribution of relations is uneven and has a long tail of rarely occurring relations between specific objects. Approaches based purely on neural networks have problems to learn these rare object-relation triplets due to the limited number of occurrences in the training data and can often not generalize them to objects not seen during training. In contrast, by using inductive reasoning we can incorporate previous knowledge about the characteristics of relations into the KG generation process to help extract rare relations and to increase generalizability. Inductive reasoning can be especially powerful for transitive relations [e.g., geometric (left, right) or possessive (is-part-of) relations] which make up most of the relations in many datasets (Zellers et al., 2018). Many datasets actually miss labels for relations that occur in the data due to incomplete labeling (Wan et al., 2018), which means that models that are trained purely on the (labeled) data do not learn about these relations.

4. Recent work also indicates that purely neural approaches do not generalize learned relations (e.g., spatial ones), at least not in the vision domain (Kim et al., 2018; Bahdanau et al., 2019). This means that simple learned relations such as “left of” do not usually generalize to novel object combinations. Currently, the only way for these neural architectures to generalize is by using a perfect model architecture specifically tailored for the domain (dataset), such as optimally constructed Neural Module Networks (Andreas et al., 2016). This is challenging because we need perfect knowledge about the data and the relations for this, which is not possible for real-world datasets. Our hypothesis is that logical reasoning is implicitly better suited to handle the generalization of relations since it is a symbolic approach and models the relations independently of the objects they refer to.

5. Another challenge is that in the vision domain the processing is usually done with convolutional neural networks (CNNs), which only perform local pixel-level reasoning (Chen et al., 2018), making it difficult to extract relations between objects that are far apart. However, especially for transitive relations (which can be extracted with logic rules), large distances (in pixel-space) between objects are very common.


[image: Figure 3]
FIGURE 3. An illustration on the comparison between typical neural network-based relation extractors and the proposed hybrid relation extractor. (Left) A general framework for typical neural network-based relation extractors. Dependencies or correlations between relation instances are modeled by viewing other relations as the “context.” Dashed connections denote the cross-pair connections, which may involve an attention mechanism (Sorokin and Gurevych, 2017) or message passing (Xu et al., 2017). (Right) The proposed hybrid relation extractor (HRE) working in an iterative manner. With a pair selector collaborating with a predictor, it naturally resolves the dependencies or correlations between relation instances. The pair prediction module works with a relation induction model based on explanatory logical rules. See section 3 for details.


To address the above issues, in this paper we propose a hybrid KG builder that combines two procedures into a unified framework and generates KGs from scratch using visual or textual information. As described in section 3 in more detail, we employ (1) a neural relation extractor detecting primary relations from the input and (2) a differentiable inductive logic programming (Muggleton, 1991) model that iteratively completes the KG. We suggest the neural relation extractor as a key element because relations between entities are usually tightly interwoven within high dimensionality and neural networks are particularly good in learning distributed representations. The programmable logic induction system element, on the other hand, is especially strong in extracting the structure of facts from natural language and images. In this framework, relations between entities are detected by the joint effort of the neural module as well as the logic module.

Through extensive experiments in section 4, we compare our framework against strong relation extraction baselines in both textual and visual domains, on a Wikidata-based dataset and the Visual Genome dataset, respectively. Empirical results show the superiority and flexibility of our proposed method. Moreover, we show a significant gain over baselines and other prior works in a subset of the database that contains dense graphs2, i.e., a higher than average number of relations per entity pair. We discuss related works in section 2 and conclude in section 5.



2. RELATED WORK

Relation extraction is an important task and necessary to obtain a detailed understanding of texts or images. In the following we first describe current approaches for relation extraction from textual data, before continuing to describe relation extraction from images.


2.1. Relation Extraction From Texts

Relation extraction has been widely used to obtain structured knowledge from plain text. The resulting structured relational facts are crucial to understanding large-scale corpora and can be utilized to automatically complete missing facts in KGs. Early neural relation extraction methods generally attempted a supervised paradigm (Zeng et al., 2014; Nguyen and Grishman, 2015; Santos et al., 2015) and heavily rely on human-labeled datasets. However, the annotation of these datasets is labor-intensive and time-consuming. Recent relation extraction methods address the problem by creating large-scale training data via distant supervision. However, the assumption of distant supervision is very strong and often introduces noise. Much work has been invested in order to alleviate the wrong-labeling problem in distant supervision and to extract global relations between two entities from multiple supporting sentences (Riedel et al., 2010; Zeng et al., 2015; Lin et al., 2017; Feng et al., 2018; Qin et al., 2018). Recently many approaches also explore the extraction of relations between entities on the sentence level in rich context (Sorokin and Gurevych, 2017; Zeng et al., 2017; Christopoulou et al., 2019; Zhu et al., 2019).

Mintz et al. (2009) propose distant supervision to automatically generate a large-scale dataset for relation extraction by aligning plain text with knowledge graphs. The assumption of distant supervision is that all sentences containing an entity will express the corresponding relation in KGs. Zeng et al. (2015) further formulate distantly supervised relation extraction as a multi-instance learning problem, where instance bags consist of multiple sentences containing an entity pair, and take the uncertainty of instance label into consideration by selecting the most confident supporting instance for relation prediction. Lin et al. (2017) propose to obtain bag representations by semantic composition of instances, where instance weights are determined by selective attention. Feng et al. (2018) propose to filter false positive relation instances via reinforcement learning. Qin et al. (2018) propose an adversarial framework that jointly learns a generator and discriminator to distinguish false positive relation instances from distant supervision.

Sorokin and Gurevych (2017) identify sentence-level relation between entity pairs in a rich context. They predict relations between each entity pairs by considering all other possible entity pairs in the same sentence as context and modeling the correlation of relations via attention mechanism. Christopoulou et al. (2019) model the context of an entity pair by iteratively aggregating walk paths between the target entity pair on the graph, and achieve comparable results without using external linguistic tools. Zhu et al. (2019) model implicit reasoning via message passing among context entity pairs. In this work, we also focus on extracting sentence-level relations. A crucial difference is that we extract relations within a sentence or paragraph sequentially to explicitly model the relation reasoning structure. Zeng et al. (2017) explicitly use a special first-order logic rule to model the dependencies of relations within a sentence. A crucial distinction of our model is that we are capable of modeling general and also long reasoning chains by recursively applying rules.



2.2. Relation Extraction From Images

In order to understand and reason about the context of an image we need not only information about objects within the scene, but also about relations between these objects. Therefore, extracting the relations between objects (e.g., in/on/under, support, etc.) yields a better scene understanding compared to just recognizing objects and their individual properties (Elliott and de Vries, 2015). While relations can be predicted pair-wise (Chao et al., 2015; Ramanathan et al., 2015), most current work focuses on the generation of a directed graph generally referred to as scene graph (Johnson et al., 2015; Xu et al., 2017; Zhang et al., 2017). Scene graphs are a way of representing the context of an image in a structured way to improve the performance of tasks such as visual question answering or image retrieval. Existing scene graph generators usually extend an object detection framework that first detects bounding boxes for objects, then extracts visual features and classifies objects inside bounding boxes, and finally predicts relations between objects in a parallel manner. One of the challenges is that the number of possible relations grows exponentially with the number of objects in an image. This makes it computationally challenging to evaluate all possible relations. Therefore, many approaches work on ways to prune unlikely relations from the graph or to only focus on the most probable relations from the beginning.

Li et al. (2017) combine three tasks—object detection, scene graph generation, and region captioning—and show that learning all three tasks at once leads to an overall better performance since learned features can be shared across tasks. Xu et al. (2017) propose an end-to-end trainable approach for creating an image-grounded scene graph that consists of object categories, bounding boxes for the individual objects, and relationships between pairs of objects by iteratively refining its predictions. Liang et al. (2017) perform prediction together with a traversal of the graph, essentially in a sequential manner. However, it takes only the last two prediction results into account and thus is unable to perform general logic inductions based on a partial inference result.

Li and Gupta (2018) learn to transform 2D image representations into a graph representation where the nodes represent image regions and edges model similarity between these image regions while Chen et al. (2018) introduce a graph structure specifically to facilitate reasoning between regions that are far apart in the image. Yang et al. (2018) make the scene graph generation more tractable and efficient by using a relation proposal network that identifies likely edges in the scene graph and a Graph Convolutional Network to update objects and their relationships based on the objects' neighbors. Woo et al. (2018) propose a relational embedding module to jointly represent connections among all objects instead of focusing on objects in isolation.

Related to our approach, Wan et al. (2018) work on completing existing scene graphs given an image and a corresponding scene graph. However, they do not use logic reasoning, but instead, use a neural network to extract unidentified relations between existing nodes in the scene graph to obtain improved scene graphs with more accurate relations. The approach, however, is still completely data-driven and, as such, it is not clear how it handles the long tail of sparsely occurring relations and how it generalizes to novel object-relation triplets.

Zellers et al. (2018) observe that object labels are highly predictive of relation labels (but not vice versa) and use this insight to develop both a new baseline and a network that takes this into consideration by staging bounding box predictions, object identities (in the bounding boxes), and relations in a hierarchical manner. Chen et al. (2019) show that using the knowledge about correlations between objects and associated relations can be explicitly represented in a KG. A novel routing network then facilitates scene graph generation by using prior statistical knowledge about the interplay of objects and relations.

Gu et al. (2019) incorporate commonsense knowledge into the generation process of a scene graph by using an external KG while Qi et al. (2019) use linguistic knowledge to improve the performance on detecting semantic relations by using a semantic transformation module to map visual features and word embeddings into a common semantic space. So far, most work on extracting scene graphs from images is based purely on data-driven learning with neural networks. This creates challenges in scalability (especially for images with many objects) and suffers from the long tail of relations in the training data, which is difficult to learn for neural network-based approaches. Additionally, it is not clear whether these approaches are able to generalize learned relations to novel settings. In contrast, our approach combines data-driven neural networks with a differentiable model that applies logic rules for relation extraction. This enables us to insert prior knowledge about certain relations (e.g., transitivity) into our model which can help with generalizability (since relations are now decoupled from the objects), scalability (we can efficiently evaluate the learned rules), and the long tail of relations in the training data (once a rule encodes one of these relations we can easily apply it to other objects, too).




3. METHODS

We build our hybrid relation extractor (HRE) by combining a neural relation extractor detecting primary relations from inputs and an inductive logic-based model that iteratively completes the KG. Illustrated in Figure 3, right, the framework works in an iterative manner and detects the relations by the joint work of the neural module and the logic module. As discussed in the above section, there are two major challenges for modeling the relation reasoning:

1. Chaining or recursions. We resolve the dependencies among relations by iteratively detecting edges. Specifically, we propose to use a pair selector working jointly with the relation predictor.

2. High ordering and quantifiers. We model relation reasoning with a differentiable inductive logic programming (ILP) model (Muggleton, 1991). The model discovers probabilistic rules from examples by inductive reasoning.

In the rest of the paper we write (subject, object, relation) to denote a specific relational triplet, while rel(object, subject) is used to refer to the distribution over relations for an entity pair, and rel(object, subject)i is the probability of relation i to be true. We now begin the introduction of the model with an overview.


3.1. Overview of the Framework

We build our framework on the top of the extracted entities by either named entity recognition algorithms (Lample et al., 2016) or object detectors (Ren et al., 2015). Specifically, for each paragraph or image, we first use entity detectors to find all of the entities and localize them. In the textual paragraph case, we match all tokens and phrases in the paragraphs with the entities appeared in the Wikidata dataset. In the visual image case, we employ Faster-RCNN (Ren et al., 2015), a modern CNN-based object detector to find all entities and determine their class labels. For a detailed analysis of the dataset and the pre-processing, please refer to section 4.

After the pre-processing, the relation extractor takes all possible entity pairs as input, and assigns proper relations to each pair. As shown in Figure 3, the HRE contains two units, a pair selector and a relation predictor, and runs in an iterative way. At each time step, the pair selector takes a look at all pairs [image: image] of (subject, object) that have not been associated with a relation and chooses the next pair of entities p* = (s*, o*) whose relation is to be determined. The relation predictor utilizes the information contained in all pairs [image: image] whose relations have been determined and the contextual information (from raw texts or images) of the pair p* to make the prediction on the relation. The prediction result is then added to P+ and benefits future predictions.

The pair selector and relation predictor work jointly and focus on different sub-problems of the task. The predictor's objective is to make use of the relations that have already been determined in order to make a valid prediction for the next entity pair. The selector, on the other hand, works as the predictor's collaborator with the goal to figure out the next relation which should be determined. Ideally, the choice p* made by the selector should satisfy the condition that all relations that will affect the predictor's prediction on p* should be sent to the predictor ahead of p*.



3.2. Relation Predictor

The relation predictor is composed of two modules: a neural module predicting the relations [image: image] between entities based on the given context (i.e., a textual paragraph or a visual image) and a differentiable inductive logic module [image: image] performing reasoning on P+ (the set of pairs whose relations have already been determined). Both modules predict the relation between a pair of objects s* and o* individually as [image: image] and [image: image]. These predictions are classifications over a categorical distribution of all relations: [image: image] and [image: image]. The output prediction for the pair p* is a mixture3 of the two individual predictions:

[image: image]

The neural relation extractor relN is domain-specific. We leave the implementation of relN to the experiment section (section 4). In real-world applications, this module can be replaced by any compatible implementation. In the following, we present our model [image: image] for KG reasoning, which is a differentiable variant of inductive logic programming (Muggleton, 1991).

We design a programmable module for KG reasoning, which is highly motivated by previous works on inductive logic programming (ILP) (Muggleton, 1991) and its modern extensions (Kersting et al., 2000; Richardson and Domingos, 2006; Kimmig et al., 2012). ILP focuses on the problem of how to discover rules from known facts and applies them to deduce unknown facts.

To get an intuitive idea on how ILP works, we take The Little Match Girl's dream as an example. We want a model that is able to perform logic deduction:

[image: image]

This logic rule can be generally written as a definite clause:

[image: image]

where x, y, and z are variables that can be replaced (grounded) by any entities such as Tablecloth, Table, and Porcelain.

ILP is a general programming framework, which provides a higher level of abstraction on logic rules. For example, the above logic rule can be derived (instantiated) by the following meta-rule in ILP:

[image: image]

In the instantiation of the meta-rule, r1, r2, and r3 will be instantiated as (On, On, On). Another possible instantiation can be (Inside, On, On). Intuitively, the entity triple (s*, x, o*) essentially forms a “relation triangle,” and we use two of the edges which we already know — (s*, x) and (x, o*) — to determine the last edge (s*, o*).

Practically, the underlying logic is a probabilistic logic. That is, we will say

[image: image]

where confidence(r1, r2, r3) is the confidence (a floating number) associated with the applied rule. We implement the logic induction programming in a differentiable manner. Unless explicitly specified, all rules are derived from Equation (1) in this paper. During inference, relations between all entity pairs are predicted. Thus, a long reasoning chain (e.g., Table, Tablecloth, Dish, Goose in The Little Match Girl's dream) can be resolved by multiple primitive logic deduction steps. In this case, the simple “triangular” logic rule (Equation 1) is sufficient to resolve a long reasoning chain.

Given a set of rules [image: image] instantiated from a pre-programmed set of meta-rules, we enumerate all rules and compute the final prediction from inductive logic module [image: image] as:

[image: image]

The tensor confidence, as the representation of logic rules, is optimized through back-propagation during the training.

Given a set of relation instances, the aforementioned logic rule is just one choice to perform induction. In practice, one can design own rules based on the characteristic of the dataset or the underlying application. We show in the experiments section that the system is compatible with other rules and yields different results.



3.3. Pair Selector

The pair selector works together with the relation prediction module and chooses subject-object pairs for prediction. At each time step, the pair selector takes a look at all relation pairs in [image: image] whose relations have not been determined and outputs an index i ∈ [k−] = {0, 1, ⋯k−} as the index for the entity pair whose relation will be added to P+ by the predictor in this time step.

We implement the pair selector as a greedy selector which always chooses the entity pair from P− to be added to P+ as the entity pair of which the relation predictor is most confident in its prediction. The relation predictor's output probability Pr(r = rel(s*, o*)) (section 3.2) can be interpreted as its confidence for assigning the relation r to the pair (s*, o*):

[image: image]

Thus, in order to choose the pair of which the relation predictor is most confident, the pair selector chooses i such that:

[image: image]




4. EXPERIMENTS AND RESULTS

We evaluate our model on tasks for two modalities: textual and visual relation extraction. Our aim is to study how the hybrid relation extraction is affected by different encoding and how it scales for different complexity. Our experiments show that it outperforms other approaches by a noticeable gap when dealing with dense entity graphs.


4.1. Textual Relation Extraction
 
4.1.1. Entity Pair Encoding in Text

Recall that we need to predict a relation for each possible entity pair. For the textual relation extraction task, we encode the features of an entity pair following Sorokin and Gurevych (2017) as shown in Figure 4. First, we pre-process the sentence and run named-entity-recognition to find all relevant entities. We then add an extra embedding as a marker indicating all appearances of the given head (subject, with es) and tail (object, with eo) of the entity pair. All other context symbols are marked with ec. The embeddings {es, eo, ec} are initialized randomly and jointly optimized with the model.


[image: Figure 4]
FIGURE 4. Encoder for textual entity pairs. We use the concatenation of marker embedding and word embedding with an LSTM model (Hochreiter and Schmidhuber, 1997; Greff et al., 2016) to encode the feature.


The marker embedding is concatenated with the word embedding (Pennington et al., 2014) and passed to a bi-directional LSTM (Hochreiter and Schmidhuber, 1997; Graves and Schmidhuber, 2005; Greff et al., 2016). We use a standard bi-directional LSTM with one layer, 256 LSTM units, the TANH activation function, and 0.5 dropout rate Srivastava et al. (2014). The final outputs of the LSTM of both forward and backward passes are concatenated as the final encoding for this entity pair. We apply a two-layer multi-layer perceptron followed by a softmax layer on the feature for neural relation extraction: relN. This process is repeated for each possible entity pair in the sentence, i.e., n × (n−1) times for a sentence with n entity pairs.



4.1.2. Data Generation With Distant Supervision

We introduce a new dataset generated from Wikidata (Vrandečić and Krötzsch, 2014) to evaluate our framework on the task of textual relation extraction. Wikidata is a KG which stores knowledge as structured triplets, (e.g., Earth, Mount Everest, highest point). We align Wikidata with English Wikipedia articles via distant supervision (Mintz et al., 2009; Zeng et al., 2015; Sorokin and Gurevych, 2017). We select the 86 most frequent properties (relations) to form the property set.

We generate paragraphs by concatenating two sentences which are chosen from the same article. The selected sentences should share at least one common entity. This partially alleviates the sparsity of relations. For entity pairs without relation, we manually mark their relation as N/A (a special relation). We also filter out paragraphs that contain fewer than 2 positive relation instances. Following the setting of previous work (Lu et al., 2016; Xu et al., 2017), in our experiments, we randomly split the dataset into training and test sets, and tune the hyper-parameters of all models on the test set. We manually evaluate 500 sentences from the test set and find 83.2% of them are correctly labeled with distant supervision. Table 1 shows the statistics of our dataset.


Table 1. Statistics of the dataset generated from Wikidata.

[image: Table 1]

The dataset generated from Wikidata is very sparse with respect to relation instances: each sentence contains only 2.7 relation instances on average and the fraction of relation instances over the entity pairs is less than 0.12. To better focus on evaluating the reasoning ability of our model, we select a dense test set where semantic graphs can be deduced4. Within the dense subset reasoning chains are substantially more common which requires the model to perform both primary relation detection and relation reasoning. The dense test set covers ~ 2% of the whole dataset. We adopt the precision-recall curve, a widely used metric in textual relation extraction. The k-th point in the curve is computed by the precision and recall of the top k confident predictions. We also report the F1 score (Goutte and Gaussier, 2005), which is computed by the harmonic average of the precision and recall of the most confident predictions of each entity pair. The special relation N/A does not affect recall but only precision.

We train our model on the entire training set and evaluate the performance on the dense test set. In Figure 5 and Table 2, experimental results show that our model significantly outperforms baseline methods (with only relN) on the dense test set. To further zoom in, we compare the recall score of all frameworks under a moderate precision (e.g., 0.8) in Table 3. The strong baseline is identical to, and is a re-implementation of, the model used by Sorokin and Gurevych (2017).


[image: Figure 5]
FIGURE 5. Precision-recall on the dense test set.



Table 2. F1 scores on the dense test set.

[image: Table 2]


Table 3. Recall at different precision levels on the dense test set.

[image: Table 3]

We also show a comparable result on the entire test set (Figure 6 and Table 4). In this case, logic deduction seems to bring both accurate predictions and noise to the result (note the drop in precision, as the model will be penalized if it detects a false positive). The better way to incorporate logic rules in applications on large and sparse KGs is left for future work.


[image: Figure 6]
FIGURE 6. Precision-recall on the entire test set.



Table 4. F1 scores on the entire test set.

[image: Table 4]



Incorporating New Rules

We also try to incorporate new rules into the induction system. Specifically, we add the meta-rule: [image: image]. Intuitively, this models the logic that if an object s* has a relation r1 with another object x, then there is an increased probability for another relation r2 to any other object o*. For example, if a man is riding a horse, there is an increased probability that he is wearing a hat. More generally, when an object maintains one relation, it is more likely to maintain further relations. The experimental results showed a large increase in recall but a decrease in precision of the framework. This leads to the conclusion that the logic rules used by the system should be carefully designed based on the underlying application.




4.2. Visual Relation Extraction
 
4.2.1. Entity Pair Encoding in Images

Figure 7 illustrates the overall architecture of the visual entity pair encoder. Each object appears as a bounding box in a visual image. The detection, classification, and localization is done with the Faster-RCNN framework (Ren et al., 2015). We extend the method proposed by Lu et al. (2016) to extract the features [image: image] of the object pair (s, o). To obtain the neural relations relN we apply a two-layer perceptron followed by a softmax layer on the extracted features [image: image].


[image: Figure 7]
FIGURE 7. Encoder for visual entity pairs. We extend the union box encoder proposed by Lu et al. (2016) and add the entity's features (what is it) and its location (where is it) into the embedding vector.


To effectively encode features of an entity pair into distributed representations [image: image], we extract features of the subject, the object, and their interaction environment. We denote feat as the extracted features of the whole input image. These features are extracted with a VGG-16 network pre-trained on MS-COCO (Xu et al., 2017). The features of a given region specified by a bounding box are denoted as feat[box]. These features are obtained with the Region-Of-Interest (ROI) pooling operation introduced by Girshick (2015). feat[box{s, o}] then denotes the features of an individual entity (subject or object), extracted from the image features feat at the given bounding box location with the ROI pooling operation.

We model the interaction environment of an entity pair by the union box of their bounding boxes boxs, boxo. The features of the interaction environment are then denoted as feat[boxu]. Similar to the marker embedding in textual relation extraction, we specify the locations of subject and object in the interaction environment by adding a mask to the features after ROI pooling. The mask is a binary matrix in the same shape as the feature after ROI pooling of the union box. Each element of the feature after ROI pooling corresponds to a grid region in the original image. Each non-zero element of the mask then corresponds to the Intersection-over-Union (IoU) of the entity bounding box and the bounding box of the bin. Formally, the indices of non-zero elements Ind{s, o} are given by:

[image: image]

where Region(boxu)i, j is the corresponding region on the image of the grid located at row i and column j in the ROI Pooling window of boxu.

Formally, given the subject features feat[boxs], object features feat[boxo], and union features feat[boxu], the features F(s, o) of an entity pair are then calculated as follows:

[image: image]

where ⊗ is the feature concatenation operation and ⊙ is the element-wise multiplication.



4.2.2. Visual Genome

Visual Genome (Krishna et al., 2016) is a dataset consisting of 108, 077 images. On average, each image contains 21.2 objects and 17.7 relation instances. Due to the poor quality of annotations, we follow Xu et al. (2017) to manually clean up the dataset. We further remove the duplicate relations in each image. The final dataset contains 11.0 distinct objects and 6.0 relation instances per image on average. The average fraction of relations over entity pairs is ~ 6%. We also generate a dense test set which is a subset of the entire test set, where the fraction of relations over entity pairs is at least 15%. The dense test set contains 2, 361 images, with an average of 4.2 distinct objects and 5.3 relations per image.

Following (Lu et al., 2016; Xu et al., 2017) we use Recall@k (R@k) to evaluate models on the task of visual relation extraction. R@k measures the fraction of correct predictions in the top k confident predictions. We do not adopt AP (average precision, which can be viewed as the area under precision-recall curve) as our evaluation metric because relations are not exhaustively labeled, as analyzed in Lu et al. (2016).

As shown in Table 5, equipped with a logic deduction module, we gain a significant improvement over the baselines (only relN) as well as other existing methods. The baseline is identical to the baseline model used in Xu et al. (2017) except the feature extractor. The performance of our baseline model demonstrates the effectiveness of our entity pair embedding.


Table 5. Experimental results of visual relation extraction on the entire Visual Genome test set.

[image: Table 5]

Interestingly, we observe that our model achieves almost identical performance in terms of Recall@k metric on the dense and the entire test set. Since the Recall@k metric does not penalize false positive predictions of the relation, the noise brought by the induction module is significantly reduced compared to the text case.




4.3. Implementation Details

For visual relation extraction models, Fentity has 512 channels, and Funion has 256 channels. The window size of ROI Pooling is set to 7 × 7. All fully-connected layers except the ones used by attention model have 4,096 channels following the typical VGG-16 structure. We use a 512-dim vector to represent the attention vector ei.

For textual relation extraction models, we use GloVe50 (Pennington et al., 2014) as the word embedding and 256 as the value for the hidden size of LSTMs and of fully-connected layers.

We implemented the model based on the open-source package PyTorch (Paszke et al., 2017). We optimize the model, including the entity pair encoder and relation predictor, in an end-to-end manner with Adam (Kingma and Ba, 2014) and use cross-entropy loss for the relation classification. The average training time is 0.17 s for a single sentence, and 0.48 s for an image on a GeForce GTX 1080 Ti.




5. CONCLUSION AND FUTURE WORK

We proposed a novel sequential prediction model for conditional neural relation extraction, which explicitly takes the previously determined or known relations of entity pairs into consideration for better future relation prediction. We achieved this by an induction system based on explanatory logic rules. Experimental results show the superiority of the proposed model in both textual and visual relation prediction tasks. Our model outperforms other existing works when the entity graphs become denser.

An interesting observation of our experiments is that the prediction model shows a stable improvement of performance independent of whether using a textual or visual entity encoder. Since both encoders rely on a high dimensional representation space that inherently encodes the semantic closeness of entities (Lu et al., 2016; Sorokin and Gurevych, 2017), it seems that the relation predictor is in many cases able to derive a prediction for a data point that includes novel or uncommon entities. Similarly to infant learning, the encoders learned the characteristics of entities statistically from the data. As a consequence, this work does not only improve relation extractors but also builds a bridge between brain-inspired neural networks and logic induction systems as well as other KG completion models. For application purposes, the resulting framework is highly customizable and programmable, which opens a new path toward a better machine reasoning system.

Compared to most previous approaches our method can deal better with the long tail in the distribution over relations. Through the use of logic rules and the pair prediction module our approach is able to deal with rare relations and apply them correctly to previously unseen object pairs. This is a key advantage since dealing with the skewed distribution over relations and generalizing relations to unseen object pairs is a key requirement for successful relation extraction from text or images. Furthermore, through the use of differentiable inductive logic our model is trainable in an end-to-end manner, meaning only minimal human involvement and only few hand-crafted rules.

However, the addition of the pair selector increases the size of our model and the number of parameters. Additionally, the rules for the inductive logic still have to be handcrafted and we only evaluated the model with one meta-rule. Future work should, therefore, evaluate how well the approach works with multiple complex logic rules or if it is even possible to learn new, valid rules. Another limitation is that our approach currently only works on either textual or visual relation prediction. In future work, we want to combine textual and visual relation prediction. Our model easily allows to combine multimodal features, e.g., by feeding concatenated visual and textual features to the HRE input (Figure 3, right). This is relevant for human-robot interaction, where dialogue contains not only purely linguistic entities, but where references to entities in the surrounding scene are being made. Aligning textual input, e.g., from transcribed speech, with visual input will enable better linguistic understanding by an embedded agent that matches the verbally perceived relations to the scene, e.g., for disambiguation of an object among others.
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FOOTNOTES

1Image sources. Goose: pngimg.com/download/58532, license CC 4.0 BY-NC. Table: commons.wikimedia.org, author Tangopaso, released into public domain.

2Mathematically, given a graph G = (V, E), the density can be computed as |E|/|V|2.

3We normalize the distribution.

4A semantic graph can be deduced if it contains at least three connected entities, i.e., at least 1 reasoning chain.
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Expectation learning is a unsupervised learning process which uses multisensory bindings to enhance unisensory perception. For instance, as humans, we learn to associate a barking sound with the visual appearance of a dog, and we continuously fine-tune this association over time, as we learn, e.g., to associate high-pitched barking with small dogs. In this work, we address the problem of developing a computational model that addresses important properties of expectation learning, in particular focusing on the lack of explicit external supervision other than temporal co-occurrence. To this end, we present a novel hybrid neural model based on audio-visual autoencoders and a recurrent self-organizing network for multisensory bindings that facilitate stimulus reconstructions across different sensory modalities. We refer to this mechanism as stimulus prediction across modalities and demonstrate that the proposed model is capable of learning concept bindings by evaluating it on unisensory classification tasks for audio-visual stimuli using the 43,500 Youtube videos from the animal subset of the AudioSet corpus.

Keywords: multisensory binding, deep learning, autoencoder, unsupervised learning, online learning


1. INTRODUCTION

Multisensory binding is one of the most important processes that humans use to understand their environment. By using different sensory mechanisms, we are able to collect and process distinct information streams from the same experience, which leads to a complex association learning. This mechanism allows us to improve the perception of individual stimuli (Frassinetti et al., 2002), solve contextual, spatial and temporal conflicts (Diaconescu et al., 2011), and progressively acquire and integrate novel information (Dorst and Cross, 2001).

There are different mechanisms involved in learning multisensory binding. One of the most important is the ability to process and understand unisensory information robustly (Macaluso, 2006). When the perception of individual stimuli has failed, the multisensory binding mechanism is affected by what is referred to as a multisensory illusion effect (Biocca et al., 2001). This effect creates artifacts via the binding mechanism which can influence the perception of other sensory stimuli (Driver, 1996; Mishra et al., 2007) and the formation of novel multisensory experiences (Spence and Driver, 2000). Our brain adapts to the multisensory illusion with a bottom-up selective mechanism (Soto-Faraco and Alsius, 2007) which shifts the attention resources over to the different sensing pipelines (Talsma et al., 2010).

An important aspect of multisensory bindings is known as the expectation effect (Yanagisawa, 2016). When perceiving an event, we compare it to other events we have experienced before, and make certain assumptions based on our experience. For instance, when seeing a cat, we expect it to meow and not to bark. This effect modulates our multisensory association in terms of top-down expectation. In consequence, when a cat barks at us, we assume that our perception is inconsistent, and that either the unisensory perception failed, or that the spatial or temporal attention was misleading. If we see barking cats repeatedly, we create a new concept of the species of a barking cat. For each of these scenarios, our brain adapts to the situation and we update our multisensory knowledge. This learning process, referred to as learning by expectation (Ashby and Vucovich, 2016), strongly suggests the role of unsupervised learning for multisensory binding, and leads to an adaptive mechanism for learning novel concepts (Ellingsen et al., 2016).

Despite its importance for human cognition and learning, there exists currently no functional computational model that is capable of modeling the multisensory binding and expectation learning effect in an unsupervised manner (see section 2). Such a model, however, would benefit from expectation learning as a mechanism to generate stimulus predictions across different sensory modalities. These cross-modal predictions potentially improve the robustness in perception and classification of unisensory stimuli through the binding of multisensory stimuli. This paper addresses the mentioned issues above by formalizing the following research questions:

Q.1 How can we build a computational model that allows for unsupervised learning of multisensory bindings?

Q.2 Can we adapt the expectation learning from humans to this model and use it to generate expected unisensory visual stimuli from auditory stimuli and vice versa?

Q.3 Can we exploit the generated expected stimuli to improve unisensory classification?

Q.4 How can we measure the quality of the learned multisensory bindings?

We address Q.1 in section 3, where we employ autoencoders to learn auditory and visual representations, which allows for unsupervised learning. As a novelty and innovative core mechanism to address continuity, we propose to link the autoencoders with a recurrent Grow-When-Required (GWR) neural network that changes its size as demanded, thus allowing for the unsupervised learning of multisensory bindings.

We address Q.2 in section 4 by demonstrating that the recurrent GWR network learns prototypes of multisensory bindings, which allows us to reconstruct auditory information from visual stimuli and vice versa. For example, when perceiving the sound of a cat, we expect the model to reconstruct the image of a cat, while when a dog enters a scene, the sound of the dog will be reconstructed. By extending the GWR association mechanism, we expect the model to be able to create concept-level bindings. Specifically, we hypothesize that by activating the neural units that represent prototypical concepts such as cats, dogs, and horses, the model will reconstruct prototypical auditory and visual stimuli in the absence of any sensory input. Our novel method is inspired by the multisensory imagery effect (Spence and Deroy, 2013), i.e., the ability of humans to create concepts from underspecified stimuli, and to use the abstract concepts to reconstruct unisensory information to enhance the overall perception.

We address Q.3 in sections 5 and 6, where we demonstrate the expectation learning effect can be used to improve the classification performance and hypothesize that our approach improves unisensory classification by reconstructing unisensory stimuli based on multisensory bindings.

To the best of our knowledge, there exists no standard benchmark to evaluate audio-visual bindings. Therefore, we propose an ablation study that includes a series of binding and classification experiments to address Q.4, and to assess the binding mechanism by measuring if and to what extent the expectation learning mechanism improves unisensory classification (see section 5). Herein, we employ the Youtube AudioSet corpus (Gemmeke et al., 2017) which contains human-labeled samples of Youtube videos based on the audio information. We select the animal subset of the corpus consisting of 44k samples to train the multisensory bindings in an unsupervised manner and exploit the multisensory bindings by using them to train a classifier for 24 different animal classes. We then employ the classifier to recognize absent stimuli, i.e., to recognize auditory stimuli when visual stimuli are present and vice versa.

To confirm our hypotheses, we summarize the results of our experiments in section 6 and show that the expectation learning improves the multisensory bindings in order to enhance the recognition of unisensory stimuli1. We analyze the results in section 7, providing evidence that correlates our network behavior with the multisensory imagery effect. Furthermore, we discuss the capabilities and limitations of our model. We conclude in section 8 that the expectation learning mechanism improves the quality of the multisensory association by providing a better unisensory classification.



2. RELATED WORK

Most existing computational models for multisensory learning apply explicitly weighted connections, and the sensor information is integrated using early (Wei et al., 2010) or late (de Boer et al., 2016; Liu et al., 2016) fusion techniques. The weighted connections are usually tuned in a data-driven manner, whereby the data distribution directly affects the multisensory binding. Such existing methods have the drawback that they require supervision and that they are sensitive to the training data distribution when performing the multisensory integration. There exist computational models that are neurocognitively more accurate in the sense that they consider unisensory biases (Pouget et al., 2002; Rowland et al., 2007; Kayser and Shams, 2015). Such models, although similar to the brain's neural behavior, are usually not feasible to be used on real-world data, as they are mostly applied to simple stimuli scenarios, and do not scale well. There exist other complex models that implement attention mechanisms based on multisensory information, but the most recent focus in this area is on data-driven fusion models (Barros et al., 2017; Hori et al., 2017; Mortimer and Elliott, 2017). The introduction of expectation learning would give these models the ability to adapt better to novel situations and learn from their own errors in an online and continuous way.

Recent contributions build on data-driven learning for multisensory representations (Arandjelović and Zisserman, 2017a,b; Kim et al., 2018; Owens and Efros, 2018; Senocak et al., 2018). Such solutions employ transfer learning and attention mechanisms to improve unisensory recognition and localization. Although they provide solid results in these specific tasks, they rely on strongly labeled data points or have extensive training procedures that are not suitable for online learning. In particular, the work by Arandjelović and Zisserman (2017a) introduces a data-driven model for multisensory binding with bottom-up modulation for spatial attention. Their model uses the network's activity to spatially identify which part of an image a certain sound is related to. Although the model is data-driven, the authors claim that it learns real-world biasing on a multisensory description for unisensory retrieval by using a large amount of real-world training data. Their results show that the model can use multiple unisensory channels to compensate absent ones and identify congruent and incongruent stimuli.

A similar approach was presented by Zhou et al. (2017), who focus on audio generation. Their model relies on a sequence-to-sequence generator to associate audio events with visual information. The same generator is used to generate audio for newly presented video scenes. This requires an external teacher to identify congruent and incongruent stimuli which makes it impossible to be used in online learning scenarios.

All approaches that we summarized in this section depend on end-to-end learning that is not continuous. That is, the approaches cannot learn novel information without forgetting old information or extensively retraining the entire model. In the following, we discuss our GWR approach to address this issue.



3. MULTISENSORY TEMPORAL BINDING

We divide the conceptual design of our model into two tasks: first, we propose a hybrid neural network that learns, in a fully unsupervised manner, to associate co-occurrent multisensory stimuli through a novel expectation learning mechanism. Once this network is trained, and the multisensory bindings are learned, we evaluate the learned bindings using a supervised classifier. This is necessary to guarantee that (1) our model learns in an unsupervised manner, without interference of giving labels, and (2) we provide a comparable objective metric for performance evaluation.

In our first task, we focus on multisensory binding learning. Our novel model learns based on the co-occurrence association enhanced through the reconstruction of expected stimuli. To reconstruct auditory and visual stimuli, we develop neural autoencoder networks for each of the unisensory channels. These networks encode high-dimensional data into a latent representation and reconstruct real-world audio-visual information. The binding between auditory and visual information is realized by means of a recurrent GWR network. The GWR is a self-organizing network that learns to create conceptual prototypes of data distributions in an unsupervised, incremental manner that allows for continuous learning. To address the temporal aspects of coincident binding, we extend the Gamma-GWR (Parisi and Wermter, 2017) which endows prototype neurons with a number of temporal contexts to learn the spatiotemporal structure of the data distribution. An overview of our multisensory binding model is illustrated in Figure 1.


[image: Figure 1]
FIGURE 1. An overview of the proposed multisensory binding model with the audio/visual autoencoder structures and the recurrent self-organizing binding layer. The auditory autoencoder uses a CBHG network to reconstruct audio signals from the Mel Spectrum (Lee et al., 2017).


In the second task, we train and evaluate a supervised classifier to evaluate the bindings. Note that the classifier does not participate in the learning process of the multisensory bindings; the learning of the bindings in the first tasks remains unsupervised, and no learning feedback is sent from it to the proposed model. Therefore, the learned bindings represent the multisensory co-occurrence and are not biased by supervision.


3.1. Visual Channel

To process high-level information by the visual channel, we drew inspiration from a variational autoencoder (VAE) (Kingma and Welling, 2013) which enforces the encoded latent variables to follow a Gaussian distribution.

In our experimental setup, the VAE produced better results when recognizing the animals from the AudioSet dataset when compared with normal convolution autoencoders. Recent studies demonstrate that the VAE learns how to extract useful information for image classification better than other unsupervised approaches on complex backgrounds (Li et al., 2017). Also, the embedding learned by the VAE showed to be more robust against noisy information and multi-view variance (Huang et al., 2018).

We assume that in our scenario, the improvement achieved with the VAE is due to the great variance on the image quality, perspective and resolution of the visual information of the images from the AudioSet dataset. Most likely the VAE learns to represent the important characteristics of the animals through the latent vector sampling instead of learning to reconstruct the entire encoded image. To train the VAE, we implemented a composite loss function based on the image reconstruction error and the Kullback-Leibler (KL) divergence between the encoded representation and the Gaussian unit. This composite loss function is important to enforce that the encoded representations learn general concepts of the animals instead of reconstructing input images from memorized parameters.

Our model receives as input a color image with a resolution of 128 × 128 × 3. The input data is processed by our encoding architecture which is composed of a series of four convolution layers, with a stride of 2 × 2, and kernel sizes of the dimension 3 × 3. The first convolution layer has three channels and the subsequent three layers have 64 filters. The latent representation starts with a fully connected layer with 128 units. The VAE computes the standard deviation and mean of this layer's output, generates a Gaussian distribution from it and samples an input for another fully connected hidden layer with 128 units, which is the final latent representation. The decoding layer has the same structure as our encoding layer but in the opposite direction and applying transpose convolutions.

We optimized the VAE using a tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) in order to minimize the visual reconstruction error. Table 1 exhibits all the important parameters used to train our vision channel. We used the ADAM optimizer with an adaptive learning rate.


Table 1. Training parameters of the vision channel.

[image: Table 1]



3.2. Auditory Channel

For the auditory channel, we implement a recurrent autoencoder based on Gated Recurrent Units (GRU) (Cho et al., 2014). Different from the vision channel, the auditory channel processes temporal information. As we have demonstrated in previous work, the auditory processing with autoencoders based on GRUs (Eppe et al., 2018a) obtained better representations than the ones with VAEs. We assume that this happens due to recurrent units allowing us to process and to reconstruct audio with better quality than when using non-recurrent layers since auditory signals are sequential, and each audio frame depends highly on previous contextual information (Eppe et al., 2018b).

As input and output of the auditory autoencoder, we compute a Mel spectrum which we generate from the raw waveform. To reconstruct the audio from the output Mel spectrum, we employ a convolutional bottleneck CBHG network model (Lee et al., 2017) which consists of a 1-D convolutional bank, a highway network and a bi-directional GRU layer. This network receives as input the Mel spectrum, and outputs a linear frequency spectrum which is then transformed into waveform using the Griffin Lim algorithm (Griffin and Jae Lim, 1984). This approach of transforming Mel coefficients into a linear spectrum and then into waveform achieved better audio synthesis quality than performing Griffin Lim on the Mel spectrum directly (Wang et al., 2017; Eppe et al., 2018a), and it improves the audio data of our expectation learning approach.

We performed hyperparameter optimization for the autoencoder and found that an audio spectrum window length of 50 ms, a window shift of 12.5 ms with 80 Mel coefficients and 1,000 linear frequencies yield best reconstruction results. We also found that 80 units for the dense bottleneck layer and two GRU layers with 128 units each for both the encoder and decoder network are sufficient for achieving a high audio quality. An additional number of Mel coefficients, GRU layers, and neural units did not significantly improve the reconstruction quality. The number of bottleneck units is important for the multisensory binding as it determines the number of connections between the binding layer and the audio encoder and decoder.

Similarly to the vision channel, we optimize the auditory channel using a tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) in order to minimize the auditory reconstruction error. Table 2 exhibits the important parameters used to train our auditory channel. We follow the same training procedure as the vision channel, and also used the ADAM optimizer with an adaptive learning rate.


Table 2. Training parameters of the auditory channel.

[image: Table 2]



3.3. Self-Organizing Temporal Binding

To learn coincident bindings between audio and visual stimuli, we use an unsupervised binding layer. An unsupervised learning strategy allows us to learn an online manner, where the bindings are created based on the data distribution. Also, excluding an external teaching signal allows the bindings to learn how to best represent the co-incident multisensory stimuli. In this regard, Growing-When-Required (GWR) networks have been recently explored as continual learning mechanism (Parisi et al., 2019). Their capability to grow and shrink, adding and removing neurons while they are learning, made them experts on avoiding catastrophic forgetting (Soltoggio et al., 2018). Such networks, however, are experts on learning topological relations between the input data. To be able to process co-incident multisensory stimuli, we propose here the implementation of a recurrent GWR layer which receives as input the latent representations of our visual and auditory channels which are processed coincidentally, and learn how to create prototype neurons which represent the multisensory binding.

To synchronize the two data streams, we resample video and audio streams to a temporal resolution of 20 frames per second, i.e., each video frame is associated with 12.5 ms of auditory information. In contrast to traditional self-organizing models with winner-takes-all dynamics for the processing of spatial patterns, the Gamma-GWR (Parisi and Wermter, 2017) computes the winner neuron taking into account the activity of the network for the current input and a temporal context. Each neuron of the map consists of a weight vector wj and a number K of context descriptors [image: image] (with [image: image]). As a result, recurrent neurons in the map will encode prototype sequence-selective snapshots of the input. Given a set of N neurons, the best-matching unit (BMU), b, with respect to the input x(t) ∈ ℝn is computed as:

[image: image]

[image: image]

where αi and β∈(0;1) are constant values that modulate the influence of the current input with respect to previous neural activity, wI(t − 1) is the weight of the winner neuron at t − 1, and [image: image] is the global context of the network (Ck(t0) = 0).

New connections are created between the BMU and the second BMU for any given input. When a BMU is computed, all the neurons the BMU is connected to are referred to as its topological neighbors. Each neuron is equipped with a habituation counter hi ∈ [0, 1] expressing how frequently it has fired based on a simplified model of how the efficacy of a habituating synapse reduces over time. In the Gamma-GWR, the habituation rule is given by Δhi = τi·κ·(1 − hi) − τi, where κ and τi are constants that control the decreasing behavior of the habituation counter (Marsland et al., 2002). We say that a neuron is habituated, if its habituation counter hi is smaller than a given habituation threshold hT. The network is initialized with two neurons and, at each learning iteration, it inserts a new neuron whenever the activity of the network a(t) of a habituated neuron is smaller than a given threshold aT, i.e., a new neuron r is created if a(t) < aT and hb < hT. The training of the neurons is carried out by adapting the BMU b and its topological neurons n according to:

[image: image]
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where ϵi is a constant learning rate. The learning process of the Gamma-GWR is unsupervised and driven by bottom-up sensory observations, thereby either allocating new neurons or adapting existing ones in response to novel input. In this way, fine-grained multisensory representations can be acquired and fine-tuned through experience.

As an extension of the Gamma-GWR, we implement temporal connections for the purpose of predicting future frames from an onset frame. The temporal connections are implemented as sequence-selective synaptic links that are incremented between those two neurons that are consecutively activated. When the two neurons i and j are activated at time t − 1 and t, respectively, their synaptic link P(i, j) is strengthened. Thus, at each learning iteration, we set ΔP(I−1, b) = 1, where I − 1 and b are the indexes of the BMUs at time t − 1 and t, respectively. As a result, for each neuron i ∈ N, we can retrieve the next neuron v of a prototype sequence by selecting

[image: image]

This approach results in the learning of trajectories of neural activations that can be reconstructed in the absence of sensory input. We also optimized the parameters of the Gamma-GWR using a tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) minimizing the network's quantization error. Table 3 exhibits the parameters used to train our Gamma Growing-When-Required (Gamma-GWR) network. We use a small insertion threshold, which helps the network to maintain a limited number of neurons, reinforcing the generation of highly abstract clusters.


Table 3. Training parameters of the self-organizing temporal binding layer.
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3.4. Supervised Classifiers

The supervised classifiers were implemented to generate an objective performance metric of the unsupervised learning mechanism. In this regard, they are trained in a separated training step which does not influence the multisensory binding learning. We provide two classifiers, one for vision and one for audio, to measure the unisensory recognition capabilities of the learned multisensory bindings.

Each classifier receives as input the audio or visual part of the BMU, depending on which unisensory stimuli we want to classify, of the GWR which represents the perceived stimuli. Each classifier is composed of a dense layer with 128 units and an output softmax layer. Similarly to the autoencoders and the GWR, we optimized the classifiers to maximize the recognition accuracy using a tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) and use the optimal parameters through all of our experiments (see Table 3). An overview of the proposed multisensory binding model with the audio/visual autoencoder structures and the recurrent self-organizing binding layer. The auditory autoencoder uses a CBHG network to reconstruct audio signals from the Mel Spectrum.




4. EXPECTATION LEARNING

As the self-organizing layer is updated in an unsupervised Hebbian manner, it learns to associate audio-visual stimuli online. This implies that the binding process is entirely co-occurrent-driven, without the necessity of external supervision other than temporal co-occurrence. More specifically, after finding the BMU related to a unimodal perceived stimulus, the associated absent stimuli will be reconstructed based on the prototypical concept that this neuron learned. This is possible because each neuron in the self-organizing layer processes the union of the auditory and visual encodings at training time, where both signals are provided.

The reconstruction and expectation learning capability is the basis for our novel proposal of a expectation learning mechanism for the self-organizing layer. First, we pre-train our self-organizing binding to generate prototype neurons with strong audio-visual encodings. This allows the model to learn a prior association between auditory and visual concepts. Second, after the network has learned these associations, we use unseen data points to fine-tune the bindings with the expectation learning through the update of the learned associations using the reconstructed stimuli.

The network encodes a visual or auditory stimulus (s), and computes the BMU (bav) using only the associated auditory or visual weights as follows:

[image: image]

where [image: image] represents the audio or visual representation encoded on the neuron's weights. In this case, the global context of the network at any time step ([image: image]) is represented by the stimulus encoding; the same happens with the BMU context ([image: image]). We then use the auditory and vision parts of the multisensory representation stored on bav to reconstruct the auditory (a′) and visual (v′) information using the specific channel decoding Dv for vision and Da for audio:

[image: image]

When the model processes the perceived auditory and visual signals, it creates two extra pairs of multisensory stimuli by combining the perceived auditory and visual ones with the reconstructed auditory and visual stimuli. We bind the encoded information of the reconstructed audio-visual information to the originally perceived stimuli and re-train the self-organizing layer with the new pairs. By pairing the perceived and the reconstructed stimuli representations, we enforce the self-organizing layer to learn general concepts, and not specific instances of the animals. In consequence, animals which sound similar will be paired together, and connections of coincident stimuli will be learned with relatively small amounts of training data. Inconsistencies will cause the model to pair different audio-visual stimuli, thus creating new prototype neurons, but these will be forgotten quickly by the self-organizing layer as they occur less frequently.



5. EXPERIMENTAL SETUP

Our goal is to evaluate the performance of the model to reconstruct audio/visual stimuli based on unimodal perception, and to evaluate the conceptual relations learned by the network. Although there exist several datasets with multimodal information, the animal subset of the AudioSet corpus2 (Gemmeke et al., 2017) presents a unique advantage for our evaluation: It contains natural scenarios with different levels of conceptual binding, including broader prototype associations like images of cats linked to meowing, but also more fine-grained associations like high-pitched barking linked to small dogs.

Each video in the dataset has a duration of 10 s and it is possible that, e.g., there is both a cat and a dog present in the video. As there are no standard published results of this specific task for the AudioSet corpus, we run a series of baseline recognition experiments that serve as the main comparison to measure our model's performance. To obtain a precise measure of the contribution of the expectation learning, we decide to cluster some overlapping classes and use 16 single labels, one per video: Cats (“Cat” + “Meow” + “Purr”), Dogs (“Bark” + “Dog” + “Howl”), Pigs (“Oink” + “Pig”), Cows (“Moo” + “Cattle, bovinae”), Owls (“Owl” + “Coo”), Birds, Goats, Bee (“Bee, wasp, etc.”), Chickens (“Chicken, rooster”), Ducks (“Duck”), Pidgeons (“Pidgeon, dove”), Crows (“Crow”), Horses (“Horse”), Frogs (“Frogs”), Flies (“Fly, housefly”), Lions (“Roaring cats (lions, tigers)”). We use the unbalanced training subset consisting of approximately 43,500 videos to train our model and evaluated it with the test subset consisting of approximately 20,000 videos. The labels of this dataset are crowdsourced based on the video descriptions.

We perform two sets of experiments: one to evaluate the contribution of the expectation learning to the multisensory binding and one to compare the performance of our model with currently successful deep learning models for unisensory recognition.

The first set of experiments is divided into three steps. In EXP 1.1, we train the multisensory bindings of the GWR using half of the training subset in order to guarantee that the model learns strong audio-visual prior bindings. In EXP 1.2, we continue the training of the EXP 1.1 network using the other half of the training subset. This experiment serves as a baseline for learning bindings without expectation and as a main comparison point for the contribution of the expectation learning mechanism. Finally, in EXP 1.3, we repeat the continuation of the training of the EXP 1.1 network with the other half of the training subset but now using the expectation learning mechanism when creating the GWR associations.

To evaluate the performance contribution of each of our experimental steps on the association learning we use the implemented supervised classifiers for each of the channels (auditory and visual). To evaluate the capability of the model to learn meaningful associations, we always classify an absent stimulus, i.e., when perceiving an auditory stimulus, the network uses the associated visual stimulus as input to the classifier and vice versa. This means that, when perceiving 50ms of audio, we have an associated representation of 4 frames and vice versa. As the videos from the AudioSet dataset have a length of 10s, we use a simple voting scheme to obtain the final label. For every 50 ms of audio and every 4 frames per video, we produce one label and after having all the labels for a 10 s video, we select the one which appears most often.

Our second set of experiments is designed to evaluate how our proposed model compares with deep learning networks for auditory and visual stimuli recognition. In EXP 2.1, we compare our model with the Inception V3 network (Ioffe and Szegedy, 2015) for the visual stimuli, and in EXP 2.2 with the SoundNet (Aytar et al., 2016) for the auditory stimuli. These two models present competitive results on different audio-visual recognition tasks (Jansen et al., 2018; Jiang et al., 2018; Kiros et al., 2018; Kumar et al., 2018). For all experiments, we trained the models 10 times and determined the mean accuracy and standard deviation for each modality. We used the same 10% of the training subset as a validation set for each experiment, and used an early stopping mechanism based on the accuracy of the validation subset to prevent overfitting.



6. RESULTS

Our final results are depicted in Table 4. Our first experiment, EXP 1.1, demonstrates that training the model with half of the data, to create strong binding associations, is enough to obtain a baseline performance. Continuing to train the model using standard GWR associations (EXP 1.2) shows the expected improvement, i.e., an 8% gain in the recognition accuracy for audio and more than 17% of accuracy gain for vision when compared to EXP 1.1. The results of EXP 1.3 show that the expectation mechanism improves the recognition of unisensory stimuli, when compared to EXP 1.2. We obtained an improvement of more than 4% on audio and 3% on vision.


Table 4. Mean accuracy, in percentage, and standard deviation of our experiments.

[image: Table 4]

The performance of the network follows the general behavior of other models to recognize vision stimuli better than auditory stimuli. This effect is demonstrated by the results of the Inception-V3 (EXP 2.1) and the SoundNet (EXP 2.2) models. This is probably due to the dataset presenting challenging audio stimuli with much background noise.

When compared with Inception-V3 (EXP 2.1) and SoundNet (EXP 2.2), our expectation model (EXP 1.3) presents better auditory recognition, and slightly better vision recognition performance. The auditory stimulus is more affected, as it presents much more noisy information. In the latter case, the network relies more on the visual stimuli and creates neurons with strong visual encoding. This effect is represented by creating neurons with similar visual encoding associated with the auditory encoding. When training with expectation learning, the network creates an average of 5,400 neurons, while when training without the expectation, it creates 4,000 neurons.

The latent representations from the auditory and visual channels encode different characteristics of the stimulus and are then connected by our self-organizing layer. The expectation learning enforces the generation of robust bindings, especially for distinct animals. For example, the network eventually created specific neurons for cats and dogs and shared neurons for chickens and ducks. This explains the improvement of the recognition of the reconstructed stimuli of easily separable animals, as illustrated by the differences between the accuracy differences of the cats and horses categories in Figure 2.


[image: Figure 2]
FIGURE 2. Mean accuracy per class, in percentage, of the reconstructed absent stimuli. We compare audio and visual reconstruction with the results when training the network with all the samples of the training set.


This behavior can be easily observed when comparing the mean accuracy and standard deviation per class of our baseline experiments (SoundNet and Inception V3) with the detailed accuracy per class obtained by our expectation learning model (see Table 5). Animal classes which more distinct between each other presents a better accuracy and standard deviation.


Table 5. Mean accuracy, in percentage, and standard deviation of our experiments per classification class.

[image: Table 5]



7. DISCUSSION

As the self-organizing layer is updated in an unsupervised manner, it learns to associate audio-visual stimuli online. Moreover, by activating the BMU related to a specific perceived stimulus, the associated absent stimulus can be reconstructed based on the concept that this neuron learned. However, the reconstructed data is, of course, not identical to the original data. For example, when processing an image of a dog, the network will reconstruct an appropriate barking sound, but not exactly the sound that this specific dog would make. This mimics precisely the multisensory imagery effect (Spence and Deroy, 2013) of humans, who tend to simplify and cluster absent stimuli when asked to reconstruct them. For example, every time one sees a small yellow bird, the person will expect it to sound very similar to the ones she/he has seen before. This is an important effect that helps our model to reconstruct animal concepts instead of specific instances.

To provide an indication of this effect, and as an additional indicator for multisensory concept formation, we performed an additional overlapping analysis to estimate how well the model is binding and clustering audio-visual information. To this end, we first train the model with the expectation learning mechanism and then we classify every single neuron of the GWR using both audio and visual classifiers which generate two labels for each neuron: one for auditory and one for visual information. The total overlap between visual and auditory labels for each prototype neuron in our self-organizing layer is 93%, suggesting that our prototype neurons are very concise when storing audio-visual information. Performing the same experiment on the network training without the expectation mechanism gave us an overlap of 85% for the neurons.

Another effect that we investigate is multisensory correspondence (Spence and Driver, 2000). The effect causes humans not only to associate dogs with barking but also, more specifically, small dogs with high-pitched barking. The associations between the stimuli are continuously reinforced when perceptive stimuli are experienced. We observed this effect in some examples where the variety of animals was higher, such as dogs. We illustrate one of these examples in Figure 3. The figure depicts the reconstruction of visual information based on an auditory stimulus of different dogs barking. A high-pitched barking generates images related to a small dog. Furthermore, when the simultaneous barking of more than one dog is processed, the network generates an image of several dogs. We expect this effect to become more visible with larger datasets that contain more diverse samples.


[image: Figure 3]
FIGURE 3. Example of the reconstruction output. The left image displays the audio reconstruction when the visual stimulus is perceived. The right image displays the vision reconstruction when the audio stimulus is perceived.


The cognitive plausibility of our approach is underpinned by an important limitation: Both multisensory imagery and multisensory correspondence only occurs when both auditory and visual stimuli can be understood and represented as a simplified concept. This also holds for human cognition: For example, humans cannot reconstruct precisely the characteristics of how the voice of a person will sound when reading a text. Our experiments demonstrate that our model learns to associate high-level animal concepts, and even multisensory correspondences, but could not be applied to reconstruct information that demands a much higher precision, i.e., person identification.



8. CONCLUSION

Multisensory binding is a crucial aspect of how humans understand the world. Consequently, the development of computational systems able to adapt this aspect into information processing is important to many research fields. An extensive number of models has been proposed that incorporate different aspects of multisensory binding. However, our approach combines several novelties. It combines a Grow-When-Required (GWR) network with convolutional autoencoders to realize unsupervised expectation learning. In addition, we propose to exploit expectation learning by reconstructing stimuli that can be used as additional training data to generate a significant positive effect on perceptive tasks like classification. We, therefore, provide a novel proof of concept for a data augmentation mechanism to improve the accuracy and performance of unimodal classification methods.

An interesting future research direction is to also address spatial expectation, because this would provide a complementary component to integrate contextual, temporal, and spatial correspondence. Realizing the transfer of learned multisensory bindings is another unexplored research area that we plan to investigate as a follow-up to this work. To model the multisensory characteristics of the classification, in particular aspects regarding multisensory conflict resolution and fusion would be an interesting next step as well.



DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found here: https://research.google.com/audioset/.



AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.



FUNDING

This work was partially supported by the German Research Foundation (DFG) under project CML (TRR 169) and the NSFC (61621136008) and the China Scholarship Council. ME acknowledges support by the Volkswagen Stiftung.



ACKNOWLEDGMENTS

ME and SW acknowledge support by the Volkswagen Stiftung.



FOOTNOTES

1Note that our approach is different from multimodal classification where multiple sensory modalities are necessary to recognize the class of a stimulus.

2https://research.google.com/audioset/
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In an ever-changing environment, crossmodal recalibration is crucial to maintain precise and coherent spatial estimates across different sensory modalities. Accordingly, it has been found that perceived auditory space is recalibrated toward vision after consistent exposure to spatially misaligned audio-visual stimuli (VS). While this so-called ventriloquism aftereffect (VAE) yields internal consistency between vision and audition, it does not necessarily lead to consistency between the perceptual representation of space and the actual environment. For this purpose, feedback about the true state of the external world might be necessary. Here, we tested whether the size of the VAE is modulated by external feedback and reward. During adaptation audio-VS with a fixed spatial discrepancy were presented. Participants had to localize the sound and received feedback about the magnitude of their localization error. In half of the sessions the feedback was based on the position of the VS and in the other half it was based on the position of the auditory stimulus. An additional monetary reward was given if the localization error fell below a certain threshold that was based on participants’ performance in the pretest. As expected, when error feedback was based on the position of the VS, auditory localization during adaptation trials shifted toward the position of the VS. Conversely, feedback based on the position of the auditory stimuli reduced the visual influence on auditory localization (i.e., the ventriloquism effect) and improved sound localization accuracy. After adaptation with error feedback based on the VS position, a typical auditory VAE (but no visual aftereffect) was observed in subsequent unimodal localization tests. By contrast, when feedback was based on the position of the auditory stimuli during adaptation, no auditory VAE was observed in subsequent unimodal auditory trials. Importantly, in this situation no visual aftereffect was found either. As feedback did not change the physical attributes of the audio-visual stimulation during adaptation, the present findings suggest that crossmodal recalibration is subject to top–down influences. Such top–down influences might help prevent miscalibration of audition toward conflicting visual stimulation in situations in which external feedback indicates that visual information is inaccurate.
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INTRODUCTION

When spatially interacting with our environment, vision and audition communicate in multifaceted ways to guide attention (Driver and Spence, 1998), enhance spatial acuity (Bolognini et al., 2007), and form a coherent representation of our environment. In order to benefit from multiple sensory sources, the signals must be integrated across sensors. Spatial proximity is one of the main cues to decide whether or not two signals belonged to the same event (Holmes and Spence, 2005). In the case of audio-visual spatial perception, assessing spatial proximity is a strikingly complex task, as spatial representations in vision are directly provided by the retina (in eye-centered coordinates), whereas in audition spatial cues emerge from the interaction of the sound waves with the head (Mendonça, 2014) and have to be transformed into a (head-centered) spatial code. It has been argued that the perceptual system uses vision to calibrate auditory spatial perception due to its usually superior spatial resolution and, thereby, resolves misalignments between sensory representations (Radeau and Bertelson, 1974; Knudsen and Knudsen, 1989; Bertelson et al., 2006; King, 2009; Kopco et al., 2009). Misalignments between sensory representation typically arise during development due to changes in interocular and interaural distance and head size. However, multisensory calibration is not limited to development but rather a lifelong process (Gilbert et al., 2001).

A vivid example of crossmodal recalibration in adults is the ventriloquism aftereffect (VAE), in which exposure to audio-visual stimuli (VS) with a consistent spatial discrepancy induces a subsequent shift in unisensory auditory localization (Radeau and Bertelson, 1974). The VAE can be induced with various audio-visual exposure durations ranging from a single exposure (Wozny and Shams, 2011; Bruns and Röder, 2015) over an exposure lasting for several minutes (Recanzone, 1998; Lewald, 2002; Bruns et al., 2011) to several days (Zwiers et al., 2003). With longer adaptation times, the size of the aftereffect increases (Frissen et al., 2012). The size of the aftereffect is usually only a fraction of the original audio-visual discrepancy (10–50%) (Bertelson et al., 2006; Kopco et al., 2009; Frissen et al., 2012). More drastic interventions such as the use of prisms over days (Zwiers et al., 2003) to weeks (Bergan et al., 2005) while continuously interacting with the environment have been shown to result in a stronger and more complete realignment of audition with the new visual world.

In case of the VAE, the mere existence of an audio-visual discrepancy implies that at least one of the sensory estimates must be inaccurate. However, without external feedback, the perceptual system cannot infer which sensory estimate was inaccurate and, thus, which sensory representation should be recalibrated (Zaidel et al., 2013). While the VAE as a form of recalibration manifests in subsequent unisensory shifts, auditory localization is also biased toward vision during audio-visual stimulation, referred to as the ventriloquism effect (VE). Studies investigating such immediate effects as examples of multisensory integration have found that a unified multisensory percept is formed as a weighted average based on the precision of the individual cues, which is considered optimal since such a combination rule maximizes the precision of the multisensory percept (Ernst and Banks, 2002; Alais and Burr, 2004). It has been demonstrated that auditory localization accuracy is positively correlated with precision along the horizontal plane (Garcia et al., 2017). If accuracy is correlated with precision and precision is directly accessible to the perceptual system (Ernst and Di Luca, 2011), some authors have argued that it would be optimal if recalibration was based on the reliability of the individual cues, too (reliability-based adaptation, for examples see Ghahramani et al., 1997; van Beers et al., 2002; Burge et al., 2010; Makin et al., 2013). However, precision does not necessarily imply accuracy (Ernst and Di Luca, 2011). Thus, several authors have argued that the perceptual system forms prior beliefs about the accuracy of individual senses which are independent of precision (Block and Bastian, 2011; Ernst and Di Luca, 2011). Recalibration is then assumed to be based on the prior beliefs about accuracy rather than on current reliability. Accordingly, it has been proposed that sensory estimates are adapted according to a fixed ratio (fixed-ratio adaptation) which is relatively stable over time and independent of short-term variations in sensory precision (Zaidel et al., 2013). Crossmodal recalibration consistent with a fixed-ratio adaptation was indeed observed in visual-vestibular motion perception (Zaidel et al., 2011).

Regardless of whether recalibration is reliability-based or follows a fixed-ratio, it would lack external validation in a purely sensory context in which accuracy can only be inferred either from the same cues that are subject to recalibration, which would be circular, or from prior beliefs that can turn out to be wrong when the environment changes. Several authors have argued that this circularity can only be overcome by the use of external feedback which provides independent information about the state of the world (Di Luca et al., 2009; Zaidel et al., 2013). While it is known that unisensory and sensorimotor perceptual learning is susceptible to external feedback (Adams et al., 2010), to our knowledge only one study has investigated whether crossmodal recalibration is modulated by external feedback (Zaidel et al., 2013).

Zaidel et al. (2013) demonstrated that, unlike recalibration without external feedback (unsupervised recalibration), crossmodal recalibration depended on cue reliability when external feedback about the sensory accuracy was provided which was based on the spatial location of one of the two sensory cues (supervised recalibration). In a visual-vestibular motion VAE paradigm, Zaidel et al. (2013) manipulated visual reliability such that it was either set higher or lower than vestibular reliability. Feedback was either given based on motion implied by visual motion stimuli or based on vestibular motion stimuli which were presented simultaneously. Whereas unsupervised recalibration was independent of cue reliability (Zaidel et al., 2011), supervised recalibration was found to be based on the discrepancy between the multisensory (i.e., integrated) percept and the location indicated by feedback. As the multisensory percept in visual-vestibular motion perception is highly dependent on cue reliability (Gu et al., 2008; Fetsch et al., 2009) supervised recalibration therefore also depended on cue reliability. Zaidel et al. (2013) argued that both mechanisms together result in accurate, precise and consistent multisensory and unisensory representations of space. The idea is that unsupervised recalibration aligns sensory modalities, thereby providing a consistent representation of space, and supervised learning realigns this internally consistent representation with the external world.

However, in order to accept these ideas as a general rule, it has to be demonstrated that they hold for other combinations of sensory modalities such as for audio-visual stimulation. In fact, empirical results have suggested that audio-visual spatial recalibration in the VAE might be unaffected by top–down processes. For example, the VAE did not differ between audio-visual trials which included matching voices and faces or percussion sounds and a video of hands playing bongo, compared to trials in which the VS was simply a synchronously modulated diffuse light (Radeau and Bertelson, 1977, 1978). Furthermore, although attentional load was found to influence the spatial pattern of the VAE, the overall size of the VAE remained unaffected (Eramudugolla et al., 2011). These results were taken as evidence for the idea that the VAE is largely independent of top–down effects such as attention. In accordance with this proposal are findings that the VAE occurs even when participants are asked to ignore VS or become aware of the audio-visual discrepancy (Bertelson, 1999). However, it is not known whether the VAE is modulated by external feedback regarding the spatial accuracy of either the auditory or visual cue. In fact, such feedback would be a crucial prerequisite to guarantee external accuracy of perception, that is, a correct relation between sensory representations and the external world.

In order to test whether crossmodal recalibration is affected by external spatial feedback, we extended the classical VAE paradigm (Radeau and Bertelson, 1974; Recanzone, 1998) by introducing feedback similar to that employed by Zaidel et al. (2013). During an audio-visual block, participants had to localize audio-VS with a fixed spatial discrepancy. In contrast to previous studies, feedback about the localization error was provided. Each participant completed four sessions and in half of the sessions feedback in audio-visual blocks was calculated based on the discrepancy between the participant’s response and the true visual position, and in the other half of the sessions feedback was based on the discrepancy between the participant’s response and the true auditory position.

As there are a few reports of visual aftereffects in the ventriloquism paradigm (Radeau and Bertelson, 1976; Lewald, 2002) which could potentially be increased by feedback that is based on the auditory stimulus (AS) position, we tested both auditory and visual unimodal localization before and after the audio-visual block to assess both auditory and visual aftereffects. Based on the assumption that feedback would update the perceptual system’s beliefs about the accuracy of the involved sensory cues, we hypothesized that the VAE would decrease for the sensory modality that feedback was based on. The opposite effect was expected for the other modality for which feedback did not indicate the true stimulus location. Moreover, as accuracy was found to be correlated with precision in audition (Garcia et al., 2017) and precision modulated effects of feedback in visual-vestibular recalibration (Zaidel et al., 2013), we additionally tried to manipulate the reliability of the VS. In accordance with Zaidel et al. (2013), we hypothesized that recalibration in the presence of feedback is based on relative cue reliabilities. Hence, the VAE would be increased for the less reliable sensory modality.



MATERIALS AND METHODS


Participants

In order to counterbalance all control conditions (see section “Procedure” for details), we were restricted to multiples of 24 for our sample size. We aimed for a sample size of 24 participants, which has 80% power (at an α level of 0.05) to detect a medium-sized effect (dz = 0.52) for a directional difference between two within-subject conditions (corresponding to our main hypothesis that the VAE is reduced when feedback is based on the auditory position rather than on the visual position). The power analysis was conducted in G∗Power 3.1 (Faul et al., 2009).

A total of 37 healthy adult volunteers were recruited through an online subject pool of the University of Hamburg, because 13 datasets had to be removed from the initial sample due to technical issues which led to a wrong presentation of AS locations. All affected datasets were replaced such that complete datasets from 24 participants were acquired. At the analysis stage, six additional datasets had to be excluded from the 24 participants which completed all sessions. One participant reported visual field restrictions in one hemifield after completion of the experiment and had to be removed from the sample. Moreover, five participants had to be removed due to untypically inaccurate responses or poor performance in catch trials (see section “Data Analysis” for details).

The remaining 18 participants (4 males, 14 females) were from 19 to 39 years of age (mean: 24.4 years) and reported normal hearing and normal or corrected-to-normal vision. Participants received course credits as compensation. Additionally, participants received monetary rewards (mean = 25.56€, possible minimum = 0€, possible maximum = 46.80€, empirical minimum = 17.55€, empirical maximum = 39.60€) as part of the experiment. Written informed consent was obtained from all participants prior to taking part. The study was performed in accordance with the ethical standards laid down in the 2013 Declaration of Helsinki. The procedure was approved by the ethics commission of the Faculty of Psychology and Human Movement of the University of Hamburg.



Apparatus

Experiments were conducted in a sound-attenuated and darkened room. Participants were seated in the center of a semicircular frame (90 cm radius) on which six loudspeakers were mounted at ear level. Hence, all auditory stimuli were presented at the same height. Loudspeaker locations ranged horizontally from 22.5° left from straight-ahead (0°) to 22.5° right from straight-ahead in steps of 9° (−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°). Participants positioned their head on a chin rest to fix the head position across trials. An acoustically transparent curtain covered the loudspeakers. A schematic illustration of the apparatus is shown in Figure 1. Visual stimulation was provided via four laser pointers which projected a light point onto the curtain for 200 ms. Two laser beams were diffused resulting in circular red light blobs with approximately Gaussian luminance amplitude envelopes. The sizes (horizontal and vertical) of the VS, defined by the standard deviation of the luminance distribution, were 12.84° for the low reliable VS and 2.83° for the high reliable VS. The position of a VS was defined as the center of its luminance distribution. The center of the luminance distribution in the vertical dimension was always at the same height as the speakers. A third and fourth laser pointer were not diffused and purple and green in color. The laser pointers were mounted on a step motor with an angular resolution of 0.9° and a horizontal range of 180°. Auditory stimuli were narrow-band filtered (1/2 octave) pink noise bursts with four different center frequencies (250, 500, 1000, or 2000 Hz) and were presented for 200 ms including 5 ms on- and off-ramps. The stimulus intensity was randomly varied over a 4-dB range centered at 70 dB(A) to minimize potential differences in the loudspeaker transformation functions. Participants localized stimuli with a custom-build pointing stick which recorded azimuthal position with 1° resolution.


[image: image]

FIGURE 1. Illustration of the setup and an audio-visual trial. Six speaker positions from –22.5 to 22.5° in steps of 9° are represented by black boxes. The curtain covering the speakers is only transparent for illustration purposes and was visually opaque and only acoustically transparent. A chin rest used to fixate the head is not displayed. At first, a green laser dot appeared as fixation point and participants could start the trial by pointing to the fixation dot and pressing a button. The trial started when the pointing error was below ± 10°. During a second interval, a step motor adjusted a second laser used for stimulus presentation. Auditory (indicated by blue waves) and visual (red light cone) stimuli were presented for 200 ms in synchrony. Participants could respond immediately by pointing toward the perceived direction and pressing a button on the pointer. Corrective feedback followed instantaneously in form of a centrally presented arrow. The color of the arrow (green for reward, red for no reward) and a unique sound indicated whether a reward was obtained. After a varying interval (600–800 ms) the green laser dot reappeared, and the participant could start the next trial. Avatar image adapted from “Low Poly Character” by TehJoran (2011) (https://www.blendswap.com/blend/3408) licensed under CC BY.


To deliver feedback, an LED-panel (APA 102, Shiji Lighting, Shenzhen, China) measuring 32 cm in width and 8 cm in height with a pixel width of 0.5 cm and a spacing of 0.5 cm (2.54 ppi) was attached to the semi-circular frame between ± 10.2° azimuth and 2 cm below the lower edge of the loudspeakers. An Arduino Leonardo (Arduino SRL, Strambino, Italy) was used to interface between the experimental computer and the LED-panel.



Procedure

The study was split into four sessions which were conducted on separate (but not necessarily consecutive) days (see Figure 2A). Each session started with a unimodal pretest to measure baseline localization accuracy and precision for VS and auditory stimuli presented in isolation. Afterward, an audio-visual adaptation block (see below) was conducted to induce auditory and potentially visual VAEs. The adaptation block was followed by unimodal test blocks to assess the magnitude of the aftereffects. To ensure that aftereffects did not decay over unimodal test blocks, each test block was preceded by a short re-adaptation block. The general procedure of a session is illustrated in Figure 2B.
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FIGURE 2. Study design and session procedure. (A) The flow diagram shows the counterbalancing procedure. An exemplary procedure for one participant is depicted with bold black pointed lines. All possible assignments between the main conditions, session number, bimodal disparity, and auditory stimulus (AS) pair are depicted with light gray pointed lines. Assignments of main conditions to session number, bimodal disparity and AS pairs were mutually counterbalanced by orthogonal Latin squares. (B) The flow diagram visualizes the procedure of a single session. All four sessions were performed following the same procedure.


Two factors were varied between sessions, the reliability of the VS (manipulated by the size of the circular light cone) and the feedback modality. During adaptation blocks participants were asked to localize the AS and feedback about the magnitude and direction of their localization errors was provided. Error feedback was consistently calculated either based on the position (i.e., center of the luminance distribution) of the VS (vision feedback modality) or based on the position of the auditory stimuli (audition feedback modality) within each session. All participants completed all combinations of visual reliability (high vs. low) and feedback modality (vision vs. audition) across sessions. The auditory stimuli were grouped into four pairs (250 Hz/1000 Hz, 500 Hz/2000 Hz, 1000 Hz/250 Hz, 2000 Hz/500 Hz) with non-overlapping frequency spectra. The first stimulus of each pair was the adapted AS and was used during both unimodal blocks and audio-visual adaptation blocks. The second stimulus was only used during the unimodal blocks and served as a control stimulus (CS). Thereby, the CS allowed to test for a sound-frequency transfer of the aftereffect. Each session was conducted with a unique pair of auditory stimuli to avoid carry-over effects between session (Bruns and Röder, 2019a).

Moreover, to avoid that participants became aware of the audio-visual discrepancy during adaption blocks and, thus, might apply explicit response strategies, in half of the sessions the VS were consistently displaced to the left and in the other half to the right of the sound source. To avoid effects of session order, AS assignment or visual discrepancy direction on the feedback modality and reliability conditions, these factors were counterbalanced across participants using a mutual orthogonal Latin square design (Julian et al., 1996). For factors with four levels (discrepancy was dummy coded by taking each discrepancy twice) three mutual orthogonal 4 × 4 Latin squares exist, so that there were six possible ways of assigning Latin squares to the three factors (session order, AS assignment, visual discrepancy direction). As four participants are necessary to realize one Latin square, in total 24 participants were necessary for a balanced design that realizes all combinations of Latin squares. However, factors relevant for the data analysis (visual reliability and feedback modality) were measured within-subject and, thus, were counterbalanced irrespective of participant exclusion (see section “Data Analysis” for details).



Unimodal Blocks

Unimodal pre- and post-tests were identical, except that the post-test was split into several blocks. The two auditory stimuli (AS, CS) were presented from all six speakers (−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°). One VS was presented from the same six positions as the auditory stimuli. Either the low reliable VS or the high reliable VS was consistently used across the whole session according to the counterbalancing procedure. The VS was described to participants as a diffuse light cloud and they were instructed to localize the center of this light cloud. For each position and stimulus type (AS, CS, and VS) 10 trials were presented, yielding 180 trials in total. For the pretests, all 180 trials were presented in a random order. For the post-tests, the 180 trials were split into five blocks of 36 trials each. Two trials per position and stimulus type were presented in each block of the post-test. Each trial started with the presentation of a green fixation laser point at 0° azimuth. Participants were required to direct the pointing stick toward the fixation point and started the trial by a button press. The trial only started when the pointing direction deviated less than ± 10 from 0°. This procedure assured a constant starting position for all pointing movements. After a random delay between 400 and 600 ms the presentation of the VS was prepared: the step motor carrying the laser pointer was first moved to a random position between −50 and 50° and then moved to the target position. This was done to avoid that the duration of the sound evoked by the moving step motor provided a cue for the VS position. After another delay of 600 to 800 ms, the VS was presented. During AS and CS trials only a random delay between 1000 and 1400 ms was used after fixation, followed by the presentation of the stimuli. Responses were allowed immediately after stimulus onset. Participants were instructed to respond fast and accurately, but to prioritize accuracy over response speed. Moreover, participants were informed that all stimuli (during unimodal and audio-visual blocks) would be displayed at the same height and that they should focus on localizing stimuli accurately in the horizontal plane. No feedback or reward was provided during pre- and post-test trials. Between trials a random delay between 600 and 800 ms was introduced.



Audio-Visual Blocks

In order to induce the VAE, the AS and the VS were synchronously presented for 200 ms with a spatial displacement of the VS of either 13.5° to the left or 13.5° to the right of the sound location. The spatial discrepancy was constant during a session. In the initial audio-visual adaptation block, stimuli were presented 20 times at each of six positions (sound at −22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°). The four audio-visual re-adaptation blocks (prior to each of the following unimodal post-test blocks) only contained 10 trials per position and were conducted to counteract a potential decay of the aftereffect (for similar procedures, see Bruns et al., 2011; Zierul et al., 2017). Overall, each session included 360 audio-visual adaptation trials and 360 unimodal test trials (720 trials in total). Participants were instructed to localize the sound (i.e., to ignore the visual location) in audio-visual trials. Immediately after the response, feedback about the azimuthal localization error the was given. The localization error was either calculated as the deviation of the azimuthal pointing direction from the true azimuthal location of the AS or as the deviation of the azimuthal pointing direction from the true azimuthal location of the VS. The modality used for calculating the localization error was held constant within a session. Feedback consisted of a centrally presented arrow with the origin at 0° and heading in the direction participants had to correct their localization response to in order to reduce the error. The length of the arrow equaled the magnitude of the localization error in cm rounded to the next integer, with an upper bound of 16 cm (10.2°) and a lower bound of 4 cm (2.55°). Errors below 4 cm (2.55°) were indicated with a filled circle with a radius of 3 cm (1.9°). Furthermore, participants received a monetary reward (0.03€) when the error fell below an individual threshold which was set to the participant’s 30th percentile of the absolute localization error in the auditory trials of the pretest. A reward was indicated by a unique sound (400 ms custom rebuild of the Super Mario coin sound effect) and a green feedback arrow or circle. A localization error above the individual threshold was indicated by another unique sound (300 ms tone that changed pitch from 100 to 60 Hz after 150 ms) accompanied by a red feedback arrow. The whole sequence of an audio-visual trial is depicted in Figure 1. After each block participants were informed about the amount of reward they had collected during the block. The total amount of reward was disbursed at the end of the session.

In order to assure that participants attended to both visual and auditory stimuli, deviant trials were presented intermixed between regular trials with a probability of 0.1. In deviant trials, participants were instructed to localize a laser point as fast and accurately as possible that differed in color (purple) and was not accompanied by a sound. The laser point was presented until a response was given. When the reaction time fell below the 50th percentile of the reaction time in visual trials of the pretest and localization error was less than 5°, a reward (0.03€) was earned in these trials. The same visual and auditory feedback was used as for regular trials, except that always circular shapes were used.



Data Analysis

Data were acquired for 24 participants in order to counterbalance control conditions (session order, stimulus assignment, and audio-visual disparity). However, overall six participants had to be excluded from further analyses. One participant reported partial vision in one hemifield after the study was completed. Another two participants failed to respond properly to audio-visual deviant trials. The deviant trials required participants to respond fast and accurately (see section “Audio-Visual Blocks” for details) to receive a reward. Hence, not attending to the VS or closing the eyes during audio-visual blocks would lead to a low amount of rewards in deviant trials. These two participants consistently received rewards in less than 2% of the deviant trials across all sessions, whereas on average participants received rewards in 55% (minimum = 15%, maximum = 82%) of the deviant trials. Hence, we excluded their data from further analyses. For each of the remaining participants we fitted linear models between true azimuthal stimulus positions and azimuthal localization responses for each session and each stimulus (a slope of one and an intercept of zero indicate perfect localization). Three participants with either a slope or an intercept that differed three standard deviations from the mean of all participants were excluded as this indicated an extremely inaccurate localization behavior. All further data analyses were based on the data of the remaining 18 participants.

Importantly, all factors relevant for further data analyses (i.e., Feedback Modality and Visual Reliability) were still fully counterbalanced after exclusion of the participants. The reduction of the sample size only affected the counterbalancing of session order, assignment of sound pairs to sessions and assignment of audio-visual discrepancy directions to sessions. The final numbers of participants for each combination of these factors are summarized in Supplementary Tables 1–3.

To test whether participants changed their localization behavior in audio-visual adaptation trials according to the error feedback, we took the mean localization error in the first 10 adaptation trials of the initial adaptation block and compared this score with the mean localization error of the last 10 adaptation trials in the last re-adaptation block. We performed two separate t-tests for the conditions of feedback modality (audition or vision) comparing the mean of the first 10 trials to the mean of the last 10 trials.

Measurements for accuracy and reliability were derived from unimodal blocks and based on a common model of measurement error (Grubbs, 1973). Each trial is interpreted as a measurement yik for the true stimulus position xk where i is an index over the trial numbers and k over stimulus positions. The measurement model is then formalized as

[image: image]

were ak is a constant bias for the kth stimulus position and eik are independent mean zero random errors. As an estimator for accuracy we calculated the constant error [image: image] by averaging localization responses of all trials for each combination of stimulus position, condition and participant. For a given stimulus position this is a robust estimator of the bias term ak and thus accuracy. We will further refer to [image: image] as constant bias, which is an overall measure for the tendency to systematically mislocalize in one direction across all locations. Reliability is defined as the inverse of the variance of eik. Due to the direct relation between variance and reliability we assessed the variable error, a robust estimator of the variance (Levene, 1960), as a measure for reliability. The variable error is defined as the mean absolute deviation of the localization response from the mean localization response for a given stimulus position, that is, if [image: image] are the participant’s responses the variable error is defined as [image: image]. A high variable error indicates a low reliability and vice versa.

First, we tested whether we were successful in manipulating the reliability of the VS (high or low) and controlled that auditory reliabilities did not differ prior to adaptation. Therefore, variable errors calculated from all pretest trials were submitted to a repeated measures MANOVA (O’Brien and Kaiser, 1985) with factors Feedback Modality (audition or vision), Stimulus Type (AS, CS, and VS), Stimulus Position (−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°) and Visual Reliability (low or high). This approach is not affected by violations of the sphericity assumption and allows for post hoc interaction contrasts, which were conducted to further analyze significant MANOVA effects.

The VAE was measured as change in the constant bias between pre- and post-test blocks. For this purpose, data from the five post-test blocks were pooled. More specifically, the difference of post-test constant bias ([image: image]) and pretest constant bias ([image: image]) multiplied with the sign of the audio-visual discrepancy (Diff AV) was taken as a measure for the VAE, thus VAE = [image: image] (for a similar procedure see Bruns and Röder, 2019b). This procedure assured that aftereffects in the direction of the VS always had a positive sign irrespective of whether the VS was displaced to the left (−13.5°) or to the right (13.5°). The resulting values were submitted to a repeated measures MANOVA (O’Brien and Kaiser, 1985) with Feedback Modality (audition or vision), Stimulus Position (−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°) and Stimulus Type (AS, CS, and VS) as within-subject factors.



RESULTS


Unimodal Precision

Unimodal pretests were performed in order to assess localization biases and reliabilities for all stimulus types and positions. We evaluated whether we succeeded in manipulating the visual reliability and whether auditory reliability significantly differed across conditions at baseline. Therefore, variable errors at pretest (see section “Data Analysis” for a definition) were submitted to a repeated measures MANOVA (O’Brien and Kaiser, 1985) with factors Feedback Modality (audition or vision), Stimulus Type (AS, CS, and VS), Stimulus Position (−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°) and Visual Reliability (low vs. high). Only a main effect of Stimulus Type was found, F(1,17) = 35.22, p < 0.001, showing that visual reliability was higher than auditory reliability independent of the reliability manipulation (see Figure 3). Since no main effect of visual reliability was found (see Table 1 for full results), this factor was not further considered in the following analyses.


[image: image]

FIGURE 3. Mean variable errors in the pretest. Variable errors were defined as absolute trial-wise deviation from the mean localization response, averaged across stimulus positions and participants. (A) Results when audition was the feedback modality. (B) Results for vision as the feedback modality. Each panel shows the variable error separately for the different stimuli [adapted sound (AS), control sound (CS), and visual stimulus (VS)]. Moreover, results for the VS are shown separately for the VS with low reliability (Low Rel) and high reliability (High Rel). Individual data are shown with light-colored points and lines, whereas sample averages are indicated by dark-colored points and bold lines. Paired data points (i.e., individual data from a single participant) are connected via lines. Error bars represent standard error of the mean. Mean values are depicted on top of each bar.



TABLE 1. Repeated measures MANOVA on variable errors in the pretest.

[image: Table 1]Additionally, we performed pairwise contrasts to assess whether the variable error changed from pre- to post-test separately for all stimulus types (AS, CS, and VS). Results are summarized in Table 2. Importantly, the variable error did not decrease for auditory stimuli (AS and CS), but it decreased for the VS, both when audition was the feedback modality, F(1,17) = 16.75, p < 0.001, and when vision was the feedback modality, F(1,17) = 6.43, p = 0.021.


TABLE 2. Pairwise contrasts for auditory variable errors between pre- and post-test.

[image: Table 2]Moreover, a contrast was performed to test whether in the post-test blocks the variable error differed for the AS between the conditions audition feedback modality (M = 4.4°, SD = 1.3°) and vision feedback modality (M = 4.9°, SD = 1.9°). No significant difference was found, F(1,17) = 2.50, p = 0.132.



Audio-Visual Blocks

To test whether feedback altered auditory localization in bimodal trials during adaptation, we calculated the difference of the auditory localization response from the true auditory position. The VE was apparent in a shift of auditory localization toward the accompanying VS (Figure 4). Crucially, when feedback was given based on to the true auditory position, the VE decreased over the course of the adaptation trials. In contrast, feedback based on the visual position increased the VE. To statistically test the change of the VE size over the course of the audio-visual adaptation trials, we calculated the means of the first 10 trials and the means of the last 10 trials in the audio-visual blocks, multiplied with the sign of the audio-visual discrepancy (thus, a shift of auditory localization toward the VS was always positive). These values were compared with Bonferroni–Holm corrected paired-sample t-tests. Feedback based on to the auditory position significantly decreased the VE from the first 10 trials of the audio-visual block (M = 2.8°, SD = 4.5°) to the last 10 trials of the audio-visual block (M = −0.2°, SD = 1.5°), t(17) = 4.27, p < 0.001. When feedback was given based on the visual position, the bias significantly increased from the first 10 trials of the audio-visual block (M = 7.1°, SD = 3.7°) to the last 10 trials of the audio-visual block (M = 11.4°, SD = 2.9°), t(17) = 5.10, p < 0.001.


[image: image]

FIGURE 4. Mean localization deviations in audio-visual adaptation blocks. (A,B) Averages across participants and stimulus positions for each adaptation trial are displayed depending on whether audition (red) or vision (blue) was the feedback modality. Mean deviations were derived by averaging across all participants for one specific trial. The trial number reflects the order of the trials during audio-visual blocks. The position of the sound was used as reference (relative position of 0°). Sessions including an audio-visual discrepancy to the left (–13.5°) are depicted in (A), and sessions with a discrepancy to the right (13.5°) are depicted in (B). The actual data (solid line) were logarithmically interpolated (dashed line) to visualize the trend across trials. The relative position that was used to calculate error feedback is indicated by the dotted lines (rel. FB Position). In all conditions, participants adjusted their localization behavior in the direction implied by the error feedback. Participants started with an offset toward the visual position which reflects the well-known ventriloquism effect. The first and last 10 trials are highlighted by khaki rectangles. These trials were averaged per participant for statistical analyses. (C) Localization deviations averaged across the first 10 and the last 10 audio-visual adaptation trials. Individual data are shown with light-colored points and lines whereas sample averages are indicated by dark-colored bold lines. Paired data points (i.e., individual data from a single participant) are connected via lines. Error bars represent the standard error of the mean. The effect of feedback was very prominent already within the first 10 trials (A,B). As a consequence, localization responses already differed at baseline (i.e., over the first 10 trials) depending on whether audition or vision was the FB modality (C). Nevertheless, a comparison of the first 10 trials and the last 10 trials demonstrated a clear effect of FB modality (see text for details).


During audio-visual blocks participants received a monetary reward when the error fell below an individual threshold (see section “Audio-Visual Blocks for details). A summary of the received rewards is given in Table 3. A repeated measures MANOVA with factors Feedback Modality (audition or vision) and Visual Reliability (low or high) did neither reveal any significant main effects nor a significant interaction of Feedback Modality and Visual Reliability (see Table 4).


TABLE 3. Average reward per session received in audio-visual blocks.

[image: Table 3]

TABLE 4. Repeated measures MANOVA on reward in audio-visual blocks.

[image: Table 4]


Ventriloquism Aftereffect

We next examined whether the magnitude of the VAE depended on whether feedback was given based on the visual or based on the auditory position (see Figure 5). In contrast to the standard VAE for the auditory modality (VAE), we will refer to visual aftereffects as visual Ventriloquism Aftereffect (vVAE). A reliable VAE was observed for auditory stimuli when vision was the feedback modality. By contrast, no VAE was observed for auditory stimuli when audition was the feedback modality. In none of the two conditions a vVAE significantly different from zero was found. However, mean visual localization responses when vision was the feedback modality compared to when audition was the feedback modality differed significantly. A detailed depiction of mean auditory and visual localization behavior can be found in Supplementary Figures 1, 2. A repeated measures MANOVA (2 × 3 × 6) with factors Feedback Modality (audition or vision), Stimulus Type (AS, CS, and VS) and Stimulus Position (−22.5, −13.5, −4.5, 4.5, 13.5, and 22.5°) revealed a significant interaction of Feedback Modality and Stimulus Type, F(2,16) = 7.14, p = 0.006. Furthermore, a significant main effect of Stimulus Type was found, F(1,17) = 11.07, p = 0.001, as well as a significant interaction between Feedback Modality and Stimulus Position, F(5,13) = 4.84, p = 0.010.


[image: image]

FIGURE 5. Ventriloquism aftereffects. Aftereffects were collapsed over leftward and rightward audio-visual disparities for the adapted sound AS (A), the control sound CS (B), and the visual stimulus VS (C). Each panel shows aftereffects separately for the conditions Audition FB modality and Vision FB Modality. Individual data are shown with light-colored points and lines whereas sample averages are indicated by dark-colored bold lines. Paired data points (i.e., individual data from a single participant) are connected via lines. Values were calculated as differences between pre- and post-test localization error multiplied with the sign of the audio-visual discrepancy. Thus, shifts in the direction of the competing stimulus during adaptation are positive. Error bars represent the standard error of the mean.


Subsequent pairwise contrasts between the two levels of feedback modality separately calculated for the three levels of Stimulus Type (CS, AS, and VS) revealed that the VAE significantly differed for the AS, F(1,17) = 12.7, p < 0.001, and the VS, F(1,17) = 7.91, p = 0.024, such that the VAE for the AS increased when vision was the feedback modality and the vVAE increased when audition was the feedback modality. No effect of feedback modality was found for the CS, F(1,17) = 1.36, p = 0.259. We additionally performed Bonferroni–Holm corrected post hoc t-tests to test whether aftereffects were different from zero for each stimulus type and feedback modality. When vision was the feedback modality, significant aftereffects were found for the AS (M = 3.2°, SD = 2.4°), t(17) = 7.05, p < 0.001, and the CS (M = 2.1°, SD = 1.4°), t(17) = 6.21, p < 0.001, but not for the VS (M = −0.6°, SD = 1.1°), t(17) = −2.52, p = 0.088. No significant aftereffects were found when audition was the feedback modality (see Table 5 for all results).


TABLE 5. One-sample post hoc t tests comparing VAE and vVAE against zero.

[image: Table 5]In addition, we performed post hoc contrasts (Bonferroni–Holm corrected) separately for each pair of stimuli (CS, AS, and VS) when vision was the feedback modality, to test whether the VAE differed between stimuli. The VAE for the AS was larger than the VAE for the CS, F(1,17) = 12.89, p = 0.009, and larger than the vVAE for the VS, F(1,17) = 46.09, p < 0.001. The VAE for the CS was larger than the vVAE for the VS, F(1,17) = 32.84, p < 0.001.

In order to test whether the influence of the feedback modality was greater for the AS than for the CS, we performed an interaction contrast comparing the difference of the VAE between the conditions vision feedback modality and audition feedback modality for AS (M = 2.6°, SD = 3.4°) and CS (M = 1.0°, SD = 3.4°). The difference between VAEs was larger for the AS, F(1,17) = 6.65, p = 0.020. These results suggest that the effect of feedback modality generalized to the CS only partially.



DISCUSSION

The present study investigated whether crossmodal recalibration, as operationalized with the VAE, and multisensory integration, as operationalized with the VE, are top–down modulated by feedback. We adapted the standard VAE paradigm by adding feedback during audio-visual adaptation. By giving feedback either based on the position of the auditory stimuli or based on the position of the VS, we were able to assess whether feedback modulates the magnitude of the VE and the VAE. During adaptation, we found that the VE was reduced if feedback was based on the position of the AS. A significant VAE for auditory stimuli was only found when vision was the feedback modality, but not when audition was the feedback modality. Finally, we observed a generalization of the VAE to an untrained sound with a different frequency spectrum.


Ventriloquism Effect

The analysis of audio-visual trials during adaptation revealed a clear modulation of the VE by feedback. In the ongoing debate of whether the VE is a rather automatic perceptual process (Radeau, 1985; Bertelson and Aschersleben, 1998; Bertelson et al., 2000) or at least to some degree susceptible to top–down processes (Maiworm et al., 2012; Bruns et al., 2014), our results provide further evidence for the latter assumption. The results show similarities to the study of Bruns et al. (2014) in which it was demonstrated that reward can reduce the VE. In their VE paradigm participants received a monetary reward for precise and accurate auditory localization. Any visual bias induced by the VE was, thus, in conflict to the motivational goal of maximizing the reward. Importantly, the amount of reward depended on the hemifield in which the AS was presented. When audio-VS were presented in the hemifield associated with a high reward, the VE was reduced compared to when the audio-VS were presented in the hemifield associated with a low reward. Noteworthy, feedback in our study did not only comprise information about the localization error but also a monetary reward when the localization error fell below a threshold. Thus, our findings extend the results of Bruns et al. (2014) by showing that additional corrective feedback can not only reduce but even extinguish the VE when feedback is based on the AS position. By contrast, feedback and reward increased the VE when they were based on the VS position.

One explanation for the modulation of the VE might be that feedback and reward enhanced auditory processing when audition was the feedback modality. It has been shown that feedback can facilitate visual perceptual learning (Herzog and Fahle, 1997) and that reward can facilitate unisensory discrimination performance (Pleger et al., 2008, 2009). Similarly, feedback in our study might have led to an increase in auditory localization reliability. Given that the size of the VE depends on the relative reliabilities of vision and audition (Ernst and Banks, 2002; Alais and Burr, 2004) this would have resulted in a decreased VE. If this was the case, feedback would have modulated multisensory integration via changed bottom–up processing rather than top–down influences. However, we did not find any differences in unisensory auditory localization reliability (indicated by the variable error) between unimodal trials in the pretest and post-test blocks. Moreover, we did not find differences in localization reliability depending on which modality was feedback-relevant either. In fact, only visual reliability increased from pre- to post-test, regardless of whether audition or vision was feedback-relevant. Thus, changes in reliability-based bottom–up processing should have resulted in an increased VE regardless of which sensory modality was feedback-relevant. Hence, it is unlikely that the decrease or increase of the VE was simply due to altered auditory reliabilities and thus altered bottom–up processing.

Similar to the present findings, recent studies showing a top–down modulation of the VE did not find changes in unisensory processing. Therefore, the authors (Maiworm et al., 2012; Bruns et al., 2014) argued that it might be the process of crossmodal binding itself that is altered by top–down processing. Binding refers here to the problem of inferring whether two signals have a common or distinct source. For both scenarios different strategies are optimal: if the signals emerged from a common cause, a reliability-weighted average is the optimal estimate (Ernst and Banks, 2002; cue integration, see Alais and Burr, 2004). Otherwise, perceptual estimates should be derived separately from unisensory cues (cue segregation). In fact, the brain seems to form estimates for both scenarios at different stages of the cortical hierarchy (Rohe and Noppeney, 2015). In a further processing step, the probability of a common or distinct cause is estimated and a final multisensory percept is formed as a weighted average of the estimates derived by cue segregation and integration (Körding et al., 2007; Beierholm et al., 2010). Each estimate is weighted by the probability of the underlying model (Körding et al., 2007). This approach has proven to describe the VE well in a range of studies (Beierholm et al., 2010; Wozny et al., 2010; Rohe and Noppeney, 2015) and is referred to as “causal inference” (Körding et al., 2007).

In fact, decreasing the binding tendency and relying on unisensory estimates would have been a beneficial strategy in our paradigm. The shift in localization behavior during bimodal trials toward the feedback-relevant sensory modality indicates that participants picked up the relation between sensory modality and feedback. Thus, the feedback-relevant modality might have been identified as task-relevant. It is known that task relevance modulates auditory and visual weights in multisensory integration independently from bottom–up factors such as reliability (Rohe and Noppeney, 2016). This up- or down-weighing might be mediated by attentional shifts toward one modality (Mozolic et al., 2007; Padmala and Pessoa, 2011) or reallocation of cognitive control resources (Pessoa, 2009) to the feedback-relevant modality.

Although the VE seems to be independent from spatial attention, several examples exist in multisensory integration where attentional shifts to a specific modality (rather than to a specific location) lead to decreased integration of task-irrelevant stimuli presented in another modality (Johnson and Zatorre, 2005; see Keil and Senkowski, 2018 for a review). Recent studies have demonstrated that audio-visual integration occurs at different stages of the cortical hierarchy in parallel (Calvert and Thesen, 2004; Rohe and Noppeney, 2015) and that these different stages are associated with distinct computational principles (Rohe and Noppeney, 2015, 2016). It has been argued that multisensory integration associated with late processing stages might be prone to top–down modulation whereas integration associated with early stages might be more or less automatic (Koelewijn et al., 2010). Following this argument, feedback might have modulated late stages of the cortical hierarchy which are linked to audio-visual percepts based on causal inference (Rohe and Noppeney, 2015; Aller and Noppeney, 2019).

The importance of top–down processing seems to increase when tasks include motivational incentives, monetary reward (Rosenthal et al., 2009; Bruns et al., 2014), emotional valence (Maiworm et al., 2012) or avoiding harm (Shapiro et al., 1984). For instance, the sound-induced flash illusion was only susceptible to feedback when feedback was accompanied by a reward (Rosenthal et al., 2009). Similarly, explicit knowledge of a spatial discrepancy between audition and vision did not alter the VE (Bertelson and Aschersleben, 1998). However, here we show that corrective feedback paired with a monetary reward clearly increased or decreased the VE depending on whether audition or vision was feedback-relevant.



Ventriloquism Aftereffect

In order to maintain accuracy, the perceptual system must infer which sensory modality is inaccurate and to what extent. Ideally, each sensory modality should be recalibrated according to the magnitude of its inaccuracy. In the standard VAE paradigm audition is calibrated toward vision which can provide internal consistency (Radeau and Bertelson, 1974; Kopco et al., 2009; Zaidel et al., 2011; Pages and Groh, 2013). However, when audition is accurate, and vision is biased, recalibrating audition toward vision introduces inaccuracies in the perceptual system.

As predicted by the assumption that the maintenance of accurate sensory modalities is the primary objective of crossmodal recalibration (Di Luca et al., 2009; Block and Bastian, 2011; Zaidel et al., 2013), we found that feedback based on audition can suppress the VAE. Hence, the perceptual system did not recalibrate auditory spatial perception when feedback implied that audition was already accurate. By contrast, when vision was feedback-relevant a substantial VAE of 23.5% of the size of the audio-visual discrepancy (13.5°) was found. We did not provide direct sensory feedback (as often used in sensory-motor adaptation paradigms) about the true stimulus position which would have allowed the perceptual system to infer sensory prediction errors in a bottom–up manner (Izawa and Shadmehr, 2011). Instead, a centrally presented arrow indicated magnitude and direction of the localization error, requiring participants to consciously infer the semantic meaning of the feedback. Hence, feedback must have modulated crossmodal recalibration in a top–down manner.

In contrast to our assumption that external accuracy drives recalibration, one could argue that the VAE in our study followed the principles of reliability-based adaptation (Ghahramani et al., 1997; van Beers et al., 2002; Burge et al., 2010; Makin et al., 2013). Feedback might have facilitated unisensory auditory processing, as has been shown in unimodal experiments (Pleger et al., 2008, 2009), and, thereby, increased auditory reliability. Thus, according to this assumption audition would be weighted more in the recalibration process, leading to less recalibration. Analogously to our results for the VE, it is unlikely that changes in reliability could explain the results as we did not find an increase in auditory localization reliability between pretest and post-test and reliability in AS trials did not differ depending on which sensory modality was feedback-relevant.

Zaidel et al. (2013) proposed that external feedback invokes a second recalibration process which is superimposed on unsupervised crossmodal recalibration without external feedback and relies on cue reliabilities. Hence, both processes occur in parallel when feedback is present. According to Zaidel et al. (2013), feedback based on the less reliable sensory modality leads to increased supervised recalibration to an extent that outreaches the effect of unsupervised recalibration. Importantly, supervised and unsupervised recalibration result in shifts in opposite directions for the cue that feedback is based on. This results in an overall recalibration of the less reliable sensory modality away from the reliable sensory modality (negative aftereffect). In contrast to Zaidel et al. (2013), we did not find any significant negative aftereffects although audition was clearly less reliable than vision (Figure 3).

Interestingly, Pages and Groh (2013) argued that the VAE without external feedback might be a form of supervised learning itself, whereby vision functions as the supervisor for audition. In line with this assumption, they demonstrated that a VAE only occurred when the VS were presented long enough for participants to perform saccades toward them. When VS were extinguished before participants could accomplish saccades, no VAE occurred. Our results support the assumption that external feedback in audio-visual spatial recalibration needs to provide information about the magnitude and direction of the localization error in order to be effective.

We did not observe a recalibration of vision (a vVAE) in our study, neither when audition was feedback-relevant nor when vision was feedback-relevant. There are only a few reports of vVAEs (Radeau and Bertelson, 1976; Lewald, 2002), and even prism adaptation for several weeks usually does not result in visual aftereffects (Welch, 1978). Hence it is questionable whether it is possible to induce visual aftereffects through audio-visual adaptation at all (Welch, 1978; Lewald, 2002; Zaidel et al., 2011). Ernst and Di Luca (2011) have argued that in order to stay accurate, the perceptual system has to infer to which extent a sensory discrepancy can be attributed to individual inaccuracies of the contributing sensory modalities. As there is no direct information in the sensory cues allowing to assess accuracy, a way to resolve this assignment problem is to form prior beliefs about the probability of a sensory cue to be biased (bias prior). Sensory recalibration then only depends on the ratio of the bias priors. The lack of visual aftereffects could be explained by a remarkably small bias prior for vision. Our results indicate that it might not be possible to update this bias prior on the time scale and by the type of external feedback that was used in the present study (fixed prior, Van Wassenhove, 2013). It has been argued that vision, as the most reliable spatial sense, serves as a reference to calibrate the other senses (Radeau and Bertelson, 1974; Knudsen and Knudsen, 1989; Bertelson et al., 2006; Kopco et al., 2009). If the visual system serves as a reference for other sensory modalities, a fixed prior is beneficial to avoid unstable visual sensory estimates in an ever-changing multisensory environment.

To efficiently recalibrate, the perceptual system must infer whether the discrepancy between two sensory cues is due to sensory inaccuracies or whether the cues simply reflect distinct sources. Ideally, recalibration should only occur when a discrepancy can be attributed to sensory inaccuracies (Mahani et al., 2017). We argue that during bimodal trials the VE might have decreased when feedback was based on audition relative to when feedback was based on vision due to a decreased binding tendency which manifests in a reduced prior probability of a common cause (Körding et al., 2007). Hence the increased probability of distinct causes in bimodal trials might have also reduced recalibration. A recent fMRI study (Zierul et al., 2017) showed that the VAE is associated with activity changes in the planum temporale, a region which has also been associated with the VE (Bonath et al., 2007), suggesting that neural circuitries involved in the VE and VAE are overlapping (see also Park and Kayser, 2019). Thus, causal inference processes might affect the VAE via the same neural circuitry as the VE (Rohe and Noppeney, 2015).

In contrast to previous studies (Recanzone, 1998; Lewald, 2002; Bruns and Röder, 2015) we found a significant transfer of the VAE to an untrained AS (see Figure 5). However, there is an ongoing debate whether the VAE is sound frequency-specific (Recanzone, 1998; Lewald, 2002; Bruns and Röder, 2015) or generalizes across sound frequencies (Frissen et al., 2003, 2005), and generalization might depend on the sensory context in which audio-visual adaptation takes place (Bruns and Röder, 2019b). Although a significant VAE emerged for the CS, our results indicate that feedback had a specific effect on the AS used during adaptation (AS) as the difference of the VAE between the conditions vision feedback modality and audition feedback modality was significantly reduced for the auditory CS which was only presented during pre- and post-test.

In summary, the suppression of the VAE by feedback based on audition challenges the assumption that the VAE is an automatic process which is independent from top–down influences (Epstein, 1975; Radeau and Bertelson, 1978; Passamonti et al., 2009). Although the VAE readily occurs when top–down processing can be excluded (Passamonti et al., 2009), our findings demonstrate that the perceptual system can flexibly integrate external feedback into the process of crossmodal recalibration, highlighting the importance of external accuracy as a driving factor for crossmodal recalibration.
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Crossmodal interaction in situated language comprehension is important for effective and efficient communication. The relationship between linguistic and visual stimuli provides mutual benefit: While vision contributes, for instance, information to improve language understanding, language in turn plays a role in driving the focus of attention in the visual environment. However, language and vision are two different representational modalities, which accommodate different aspects and granularities of conceptualizations. To integrate them into a single, coherent system solution is still a challenge, which could profit from inspiration by human crossmodal processing. Based on fundamental psycholinguistic insights into the nature of situated language comprehension, we derive a set of performance characteristics facilitating the robustness of language understanding, such as crossmodal reference resolution, attention guidance, or predictive processing. Artificial systems for language comprehension should meet these characteristics in order to be able to perform in a natural and smooth manner. We discuss how empirical findings on the crossmodal support of language comprehension in humans can be applied in computational solutions for situated language comprehension and how they can help to mitigate the shortcomings of current approaches.

Keywords: language comprehension, crossmodality, psycholinguistics, incrementality, prediction, speaker intention


1. INTRODUCTION

Enabling artificial systems to engage in a natural and smooth spoken dialog with humans is a major scientific and technological challenge. To make this dream come true, developers have always sought inspiration from the only model available, the human. Compared to other means of communication, the expressiveness and flexibility of natural language to accommodate to vastly changing application needs is unparalleled. A closer look at the phenomenon shows that the language faculty is not an isolated capability of human cognition. Instead, it maintains close ties to other cognitive subsystems, like visual perception, from where it receives information about the surrounding environment and into which it feeds back. While the additional extra-linguistic information by and large provides an instrumental contribution to overcome comprehension difficulties, for instance in the areas of ambiguity or reference resolution, the linguistically conveyed information drives the attention of the listener toward the relevant areas of the visual stimulus that can maximize the information gain.

Such a closed feedback loop can be particularly productive if the relevant comprehension results are available early enough, so that they can exert their influence on the visual system. Only then can the visual percepts improve the ongoing linguistic processing by means of the specific information they contribute. Obviously, language comprehension and visual perception work together for common benefit in a closely time-locked manner, producing tentative results. Language comprehension not only amounts to a kind of understanding of what has been said, but also has to determine as early as possible the reference of linguistic expressions to entities in the world as well as the relationships these entities maintain among each other.

From a technical perspective, the use of visual cues for improving natural language processing can be studied as a problem of information fusion (Bloch, 2008). In contrast to, for instance, combining spatial information from a range of different cameras or laser range finders, here the integration has to happen on a conceptual level, because vision and speech do not usually share a common metrical space beyond the task of sound source localization. Linguistically described concepts and visually perceived entities have to be mapped by means of an abstract representation that allows the listener to achieve a coherent interpretation of the current state of affairs in spite of partially deviating contributions.

Consequently, the fusion metaphor of combining the output of two independent information sources will not be viable if we aim for the more ambitious goal of taking advantage of a closed feedback loop between language and vision. Both subsystems seem to be developed into separate components that are able to produce and receive contributions from one another while they are processing the input; hence, they interact with each other. This situation raises many questions on how the human mind organizes this interplay in detail and how certain aspects of it can be implemented in an artificial agent, thereby leading to systems that, rather than fuse both modalities, maintain separate, but interacting representations.

It is this interactive nature of the cooperation between two complementary modalities that we are mostly concerned with. We not only study language comprehension that is sensitive to the visual information from a task-oriented spatially embedded scenario, but also considers the guidance language comprehension can provide to drive the hearer's attention to the most relevant aspects of the visual scene which might contain more detailed information vital for the ongoing process of language comprehension.

We are mainly concerned with the mechanisms of meaning recovery, ambiguity resolution and visual grounding, focusing specifically on the syntactic and semantic processes at the lexical and sentential level. The impact of emotion, irony, metaphoric use etc. is not considered. Speaker-related information is reduced to the bare utterance she produced, ignoring any cues such as lip movements or gestures. We also do not cover problems or computational solutions for language generation, speech recognition, and visual perception. Visual stimuli are assumed to be static ones but subject to a kind of attention processing where visual comprehension also evolves over time.

To better understand the underlying mechanisms of such a highly complex behavior, we identify a range of performance characteristics that seem to contribute crucially to a generally highly successful and efficient processing architecture. Nevertheless, we set out to analyze these performance characteristics in a holistic way that sheds light into their intertwined nature. We also interpret them as challenges for computational systems designed to be capable of engaging themselves in a task-oriented dialog with a human interlocutor. To this end, we review important findings from psycholinguistic research and confront them with recent advances in building crossmodal natural language comprehension systems, trying to identify potential drawbacks of existing computational solutions and to learn from the human model to overcome them.

We adopt a fairly broad perspective on the language capabilities of artificial systems, which transcends limited command-and-control approaches. Instead of dealing with narrow-domain approaches, we envision a kind of mixed-initiative system that is capable of sharing information, discussing alternative options and negotiating action strategies toward a common goal with its human partner. The linguistic means, required to achieve such a level of communicative competence are shortly outlined in section 2. In subsequent sections we discuss how the visual input can help to resolve linguistic ambiguities (section 3), how the mapping between visually perceived entities and their linguistic descriptions can be established (section 4), how language can drive visual attention and support visual search (section 5), and how the two modalities can be combined to reach a maximum degree of synergy (section 6). We then turn to the temporal aspects of the interaction between language and vision, concluding that such a benefit can only be achieved if the mutual contributions are available early enough (section 7), possibly even before they actually are available in the discourse (section 8). Finally, we discuss some heuristics humans apply to speed up language comprehension (section 9).



2. SPEAKER INTENTION

In a task-oriented setting, it is of particular importance to determine the intention of the speaker, i.e., what she wants the listener to do: accept a message, answer an information request, carry out an action, etc. If visual information is involved in this process, it will be expected to contribute to successfully accomplishing this task.

To achieve feasible solutions, language-based human-machine communication traditionally restricts the interaction to only explicit commands that the machine is meant to comply with. In such a case, identifying the intention of the speaker amounts to

• selecting the desired action from those the machine can carry out (c.f. [1] in the example below), and

• unambiguously determining the referential objects involved in the action by means of additionally given information about their types [2], properties [3], and (spatial) relationships [4]:

“Bring[1] me the blue[3] mug[2] from the table[4].”

As shown by Gorniak and Roy (2005), automatic reference resolution in situated language processing benefits from taking speaker intention into account. Their system follows the instructions of the user in a role playing video game. To determine her intention, a probabilistic parser for context free grammars predicts which objects from the environment the user will talk about next. These objects, together with the actions that seem most likely in the current state of the user's plan, are interpreted as intention. The authors reported that combining language and vision with the intention of the speaker yielded the best reference resolution results (see Table 1). The tasks of intention detection, reference resolution, crossmodal information fusion and prediction are closely tied to each other rather than addressed separately by the system.


Table 1. The number of correctly resolved referents given different combinations of information sources in the role playing video game setting of Gorniak and Roy (2005).

[image: Table 1]

While the system of Gorniak and Roy (2005) is limited to command execution, the task becomes considerably more difficult in the case of collaborative problem solving, where dynamic effort from both parties is required. Collaborative problem solving usually happens in structurally rich visual environments like the one in Figure 1, which contains several windows, cabinets, boxes, pills, magazines, bottles etc., some of them even (partially) occluded from the viewer's perspective. Objects in such an environment can be referred to in quite different, sometimes underspecified manners, and their sheer number naturally creates a vastly larger space for reference resolution. Under these conditions, the optimal interplay between language, visual information and world knowledge is crucial.


[image: Figure 1]
FIGURE 1. An example image for a living room scenario.


Collaborative problem solving also requires the negotiation of common goals and a solution strategy to achieve them despite unexpected difficulties that may arise during problem solving. Thus, the intention of the speaker can no longer be restricted to the special case of giving commands, but has to be inferred from her utterance. Often, information needs to be requested and exchanged, for instance by means of direct or indirect inquiries, which both may come in various forms, such as:

[image: yes]

and assertions about:

[image: yes]

or even embedded states of affairs expressed, for instance, as:

[image: yes]

Negotiating a joint solution strategy for a given problem also requires means for establishing and maintaining consensus, for instance, making:

[image: yes]

establishing consent signaling:

[image: yes]

or rejecting a proposal:

[image: yes]

All these different kinds of communicative goals can be expressed by a very limited set of general utterance types, namely declarative (direct or indirect), interrogative and imperative sentences, which actually can be spelled out by means of an extremely rich inventory of syntactic variation. The same kind of sentence type or syntactic pattern can be used to express quite different intentions. Thus, determining the correct intention is not always straightforward.

Moreover, the hearer will be faced not only with a much broader spectrum of possible intentions and syntactic variation, but also with indirect utterances where the real intention (illocution) is hidden. Implicit commands like “Have you seen my book?” or “I left the book on the table.” or “I'd like to read.” require the hearer to reconstruct the underlying intention (“Bring the book here.”) (Clark et al., 1983; Kelleher and Costello, 2009; Gundel et al., 2012). Expressing this intention explicitly most often results in unwieldy utterances, whereas leaving part of it underspecified contributes substantially to the ease and economy of language communication. Reconstructing the intended purpose requires more or less complex inferences that rely on the available information about the immediate environment and the world in general.

On the other hand, overspecification is also frequent in natural language communication. Speakers usually use it when one of the properties of the target entity is salient but has no contrastive value (Engelhardt et al., 2006; Koolen et al., 2011; Rubio-Fernández, 2016). From the perspective of language comprehension, such a redundancy poses no serious problem, unless it creates an inconsistency that needs to be resolved. Even though the necessity to deal with unnecessarily long expressions could affect the response time, the additional processing effort may be compensated for by faster reference resolution in complex environments.



3. RESOLUTION OF LINGUISTIC AMBIGUITIES

One of the most prevalent difficulties in language comprehension is the number of ambiguities inherent in both lexical items and complex structures. Therefore, developing algorithmic approaches for disambiguation has always been a major concern when designing natural language understanding systems. These systems usually rest on combinatorial decision procedures combined with a powerful scoring mechanism as the basis for preferential reasoning. However, in restricted domains, the number of linguistic expressions with several completely different meanings is fairly low. In the living room scenario (see Figure 1), the alternative readings of polysemous words like chair or window can be easily excluded from consideration. Part-of-speech ambiguities of words like open (adjective vs. verb) or book (noun vs. verb) are more relevant in such a scenario. They may create spurious interpretations in the comprehension process and thus inflate the space of possible intermediate hypotheses. Similar processing problems are created by truly structural ambiguities like the famous case of prepositional phrase attachment (“…the lid of the box on the table.”). A fourth type of ambiguities arises from language-internal references, which can be established for example by means of different pronouns or definite noun phrases (“…but it is broken.”).

For all kinds of ambiguous constructions, crossmodal evidence may help to resolve the ambiguity by either re-ranking the possible interpretations or even excluding some of them according to their plausibility in the visual world. Especially when linguistic cues alone do not suffice to determine the actually intended interpretation, for instance because it contradicts both frequency of use and human preferences, crossmodal interaction will become indispensable to achieve an effective and timely disambiguation.

In general, ambiguities can be dealt with most efficiently if they are resolved locally. Otherwise, their combinatorics will overwhelm the comprehension system. Therefore, it is important to have the disambiguating information available early enough. Visually contributed information does exactly this: In many cases, it can be extracted from the visual environment long before it is actually needed. The linguistic channel, in contrast, provides its information sequentially. Thus, the comprehension system always needs to wait until the relevant contributions appear in the ongoing utterance. This may cause serious comprehension problems and processing delays.

Although humans use visual information for resolving structural ambiguities, they seem to acquire this ability at a fairly late stage in their linguistic development. While, by the age of five, children are already able to apply bottom-up lexical information supplied by the verb to correctly attach a prepositional phrase (Spivey-Knowlton and Sedivy, 1995), incorporating extra-linguistic top-down knowledge required to deal with long-range dependencies comes later (Atkinson et al., 2018). Obviously, the optimal combination of visual and linguistic cues is a capability that can and needs to be developed, reinforced by positive feedback.

The facilitating role of visual information has been demonstrated by Tanenhaus et al. (1995) using a task of incremental thematic role assignment. In their seminal study, participants were given sentences with a prepositional phrase (PP) attachment ambiguity, where different semantic interpretations are possible depending on how the linguistically encoded entities are assigned to the different thematic roles of the verb. In the example sentence, “Put the apple on the towel in the box.”, the PP on the towel can be interpreted as the goal point of the movement action in

“Put [the apple]THEME [on the towel [in the box]LOCATION]GOAL”

or as a modifier of an apple (namely the location of the apple)

“Put [the apple [on the towel]LOCATION]THEME [in the box]GOAL”

In the absence of visual information, both interpretations are possible, but linguistic attachment preferences will assign towel as a goal of the putting event immediately after hearing the PP on the towel. Then, after being exposed to the next PP in the box, re-evaluation of the already assigned thematic role from GOAL to a LOCATION role is required, and the box becomes the goal. If, on the other hand, the listener has access to a picture that shows a towel in a box, early reference resolution will happen without any need to revise the initial hypothesis.

Baumgärtner (2013) studied the problem of visually guided ambiguity resolution using an incremental, crossmodal parser. He was able to show that crossmodal interaction of language and vision indeed helps to resolve global as well as temporal ambiguities that were truly ambiguous without the contribution of the visual channel. He applies a broad-coverage, grammar-based syntactic parser for German extended by a component for thematic role assignment (McCrae and Menzel, 2007; McCrae, 2009; Beuck et al., 2013). The grammar is encoded by means of weighted constraints that license linguistically meaningful structures and provide for preferential reasoning capabilities even in case of conflicting linguistic preferences. Sentences are processed on a word-by-word basis, and partial analyses are extended and re-evaluated after each new word. Predictions are modeled explicitly by means of placeholders which can be incorporated into the analysis if this leads to a solution with a higher plausibility score based on linguistic well-formedness criteria.

The visual information was made available by Baumgärtner (2013) in the form of manual annotations of the most relevant relationships that could in principle be extracted from a picture. The mapping between linguistically and visually expressed entities, i.e., the crossmodal reference resolution, is achieved by means of additional constraints for linguistic structures that also have access to the visual input. Hence, language and vision interact in a bidirectional manner through the normal constraint solving mechanism, and visual information guides the parsing process. In turn, the intermediate parsing results guide the visual attention. The predictions are combined with low-level indicators of visual saliency, like saturation and contrast (Itti and Koch, 2000), to create a modified saliency landscape that correctly predicts the eye fixations of human subjects. If the visual channel is missing, parsing will be performed based on the linguistic input alone.

Since the constraints that establish the mapping between the two modalities are weighted, the mutual influence is based on preferences rather than hard consistency requirements, and the bias between the input channels can be adjusted, thereby reducing the influence of noisy and potentially contradicting input from the visual channel.

Baumgärtner (2013) uses the placeholders as referents for concepts that participate in a visually depicted action with a specific thematic role, and therefore are likely to occur with this role in the remainder of the sentence. These results indicate that, similar to the experiments on intention recognition, a system architecture that combines ambiguity resolution with reference resolution, crossmodal information fusion and prediction is able to deal with ambiguity more effectively and more rapidly, thus making the system more responsive.

Linguistic stimuli with (temporal or global) structural ambiguities are used intensively in psycholinguistic research, as they open an excellent observation window into the hidden processes of human language comprehension. They provide valuable insights into the time course of language comprehension in general and ambiguity resolution in particular, for example in combination with eye-tracking analyses. The relative amount of eye fixations on the different parts of a static visual environment is interpreted as a signal at which point in time reference has been successfully established, and what kind of information was required to achieve this. This approach has been named the visual world paradigm; see Huettig et al. (2011) for a review.



4. CROSSMODAL REFERENCE RESOLUTION

Crossmodal reference resolution can be understood as another kind of ambiguity resolution. It does not concern the reference to linguistically described entities of the world, but to those that can be inferred from the visual stimulus. In rich environments, a lexical expression can possibly refer to a number of entities: For instance, there are multiple books in the scenario depicted in Figure 1. Also, expressions can be related to entities in the environment that might be confused with other objects of similar appearance. Moreover, visual objects sometimes are partly occluded from the perspective of the listener, or are otherwise difficult to perceive. Again, the resulting combinatorics can be controlled best if the space of possible mappings can be constrained as early as possible. This creates a very strong incentive for an incremental (and predictive) processing mode, which facilitates the interaction between the two modalities as early as possible in order to exchange disambiguating information in both directions.

Even under ideal conditions, there is no exact mapping between the concepts contributed linguistically and the visually perceived information. The two modalities differ in their ability to accommodate different aspects and granularities of conceptualizations. Language, for example, is well-suited to describe entities with a very fine grained inventory of categories, which most often are difficult to distinguish visually: For example, it is possible to linguistically refer to the same entity by means of expressions like the book, the paperback, the thriller, or the Agatha Christie. The large degree of linguistic variability that is available to refer to entities is not limited to objects, but also extends to actions that can be lexicalized in quite different ways, such as to talk, to discuss, to negotiate, to chat, etc. The visual channel, on the other hand, is usually superior when spatial properties are involved. Incorporating the information from the visual channel, the reference for a relative expression like the mug on the left can easily be determined.

Generally, a simple combination of linguistic and visual information will not suffice to establish the mapping between the linguistic concepts and their visual correspondences. At least some kind of ontological knowledge will be indispensable to solve this problem satisfactorily (McCrae, 2009). Often, however, reference resolution will require considerably more complex inferences: For instance, the sentence “Bring me my grandma's book.” with respect to Figure 1 requires either a substantial amount of background knowledge about the relatives of the speaker and their visual appearance or even less reliable non-monotonic reasoning based on the absence of other people that could be used as referential entities. Moreover, the linguistically expressed ownership relation adds uncertainty because it cannot easily be derived from a visual stimulus in general.

From a neurophysiological perspective, the mapping of (situated) language to conceptual categories is facilitated by a common brain area, namely the hippocampal structure (Duff and Brown-Schmidt, 2012; Moscovitch et al., 2016). A recent study by Piai et al. (2016) also revealed that the mapping between the two modalities in the hippocampus is performed incrementally and enables the prediction of upcoming words.

Psycholinguistic studies into the nature of relating instances (visual entities) to the relevant conceptual category point toward a dynamic mapping process instead of a one-shot association (Altmann, 2017). It is assumed that, based on the similarity to an already existing abstract mental representation, an episodic representation for the perceived visual entity is generated incrementally based on the expectations about the incoming sentence parts and the visual event. In return, conceptual categories are updated, which results in abstract concepts that have lost the individual details of the original instance.

Concept mapping will become even more difficult if the entity referred to undergoes a change of state as a spoken utterance unfolds. Different versions of the same instance have to be created, mapped on to each other and updated according to the actions carried out. Given the simple story “The woman chopped an onion. Then, she fried it.”, the different states of the onion (1) intact and raw, (2) chopped and raw and finally (3) chopped and fried need to be maintained and bound together in order to understand the utterance (Hindy et al., 2012, 2013; Altmann, 2017). Mapping the current state of the entity to its past and possible future states has to keep track of the common features, namely the visual properties of the object, its spatial relationships with the other objects in the environment, as well as the properties of the conceptual category that it belongs to.

Kruijff et al. (2010) studied the problem of dynamically evolving worlds by means of a system for human-robot interaction, whose dialogue understanding capabilities significantly improved when visual information was taken into account. Its ability to keep track of instances whose state or semantic category changes over time allows the system to talk about entities that will cease or be transformed, such as the building materials a house is built from.

Whereas Baumgärtner (2013) used manually coded constraints to realize crossmodal reference resolution, Kitaev and Klein (2017) showed that the mapping between language and vision can be learned. Their study focuses on spatial descriptors, i.e., linguistic descriptions of relations between objects in images, and their localization. Employing a neural network based on an LSTM and pretrained word embeddings, the authors were able to demonstrate that this architecture can learn the grounding of spatial descriptors and the selection of the most plausible focus point given a set of possible target locations. The system achieved an accuracy of 62.5 % compared to 16.7 % for a randomized baseline and 85.8 % for human performance.

Besides learning the mapping from language to vision, the generation of linguistic expressions can be learned from visual entities, too. Zarrieß and Schlangen (2017b) provide an overview of different machine learning approaches to generate referential expressions from images (Lazaridou et al., 2014; Schlangen et al., 2016; Zarrieß and Schlangen, 2017a), a subtask of image captioning. In contrast to such explicit mappings, many of the systems discussed throughout this article apply end-to-end neural approaches, where the crossmodal reference resolution happens implicitly.



5. VISUAL GUIDANCE AND SEARCH

Apart from describing or referring to visually presented entities, language can also be used to guide the attention of the listener toward a certain area of the visual environment. This is also possible in artificial systems, as demonstrated, for instance, by Baumgärtner (2013). Such a shift of attention can be triggered by different means: Simply mentioning or describing an entity will cause listeners to fixate their gaze on the possible visual referents. In familiar environments or scenarios of low complexity, this happens almost involuntarily and with a very low latency. Also, the speaker can explicitly direct the visual attention of the listener by describing relevant parts of the visual environment, for example by talking about landmarks in the vicinity of an intended referent. Hearing a sentence like ”Next to the big table there is a white tennis bag.”, with respect to Figure 1, the listener will already look out for tables after hearing the initial prepositional phrase. She can select the larger one among them, and possibly start moving into that direction. After receiving the color attribute white, her visual attention can further zoom in on white objects, which are restricted to a tennis bag only a word later.

Visual attention can be guided not only by mentioning objects in the environment explicitly, but also by means of more indirect characteristics like the affordances they offer or the current state of the environment. For instance, processing the request ”Could you please close the window?” in the environment of Figure 1, the listener may already start the visual search for closable objects like a window, a box, or a drawer, as soon as she perceives the verb close. Since there is only one open item among the possible options, the window to the right can be identified as the intended target with a very small delay. This result can be produced so rapidly only through a combination of incremental processing with crossmodal interaction and the predictions derived from the selectional restrictions of the verb.

In cases where possible candidates are not immediately available for reference resolution, they have to be actively searched for in the visual environment. However, the time available for this purpose is limited by the ongoing comprehension process that is driven by the linguistic input. In principle, the search could terminate after the target object has been uniquely identified, but at this point in time, it is usually not clear whether the object found is the only fitting one (Hollingworth, 2012), and completely or partially occluded target objects have also to be taken into account. Psychophysical experiments indicate that humans implicitly utilize a threshold to stop visual search (Wolfe, 2012). This threshold is set based on the gist of the scene, which factors in the number of the targets searched for (if it is known), the properties of the target(s), the distinctiveness of the properties, as well as the complexity of the environment and the task at hand. Memory capacity, which is required to keep track of the items, is another factor, especially when there are many more instances that match the search criteria fully or partially. Revisiting the visual objects repeatedly is inhibited and humans are able to adapt the threshold to changing conditions very flexibly.



6. CROSSMODAL INTERACTION OF LANGUAGE AND VISION

A growing body of psycholinguistic evidence gives rise to the assumption that crossmodal integration is more than just a simple procedure of information selection or merging. Instead, it requires intense interactions between independent but closely cooperating processing components. But how, when and (in more recent research also) to what extent this crossmodal interaction occurs is still under investigation.

Crossmodal integration can occur at different levels, from multi-sensory fusion (e.g., audio-visual, audio-tactile or visio-tactile) to higher-level comprehension processes like language understanding. Usually processing is biased with one modality dominating the other one, e.g., the evolutionary acquired dominance of the visual modality over the auditory one for sound-source localization. However, this dominance can be neutralized or even reversed when the dominant modality is not reliable (Witten and Knudsen, 2005; King, 2009).

While perceptual phenomena have a noticeable influence, the integration of linguistic and visual information mostly happens on the conceptual level. Syntax-first approaches assume a privileged role of grammar that is applied in a modular fashion without external influence from other information sources. In case of a crossmodal conflict, the syntax-first approach assumes that only a structure which is licensed by the grammar is chosen (e.g., Frazier and Clifton, 2001, 2006). As a consequence, these theories predict a strict temporal order of processing steps with syntactic constraints being applied first and others later.

Constraint-based approaches (also known as interactive models) suggest a different view, namely that syntactic structures are activated in parallel, taking into account all the relevant information from the available modalities at the same time (e.g., Tanenhaus et al., 1995). From this point of view, all the available contributions can be understood as (contextual) constraints on the language comprehension process, and they exert their influence on the eventual outcome, a consolidated meaning representation, which evolves over time as the utterance unfolds. In constraint-based approaches, the role of extra-linguistic evidence, for example visual percepts, prior experiences or prototypical knowledge about the world, in principle does not differ from the genuine linguistic influence. Crossmodal language comprehension is considered a richly interactive cognitive process of constraint satisfaction that mediates between the different, possibly even conflicting requirements (Louwerse, 2008; Ferreira et al., 2013; Spivey and Huette, 2013). This high degree of openness seems to contribute much to the flexibility, economy and robustness of human sentence comprehension.

Data from several studies has revealed that the assumption that all the constraining information is available at once was too simplistic. Coco and Keller (2015) investigated which kinds of information affect different comprehension processes. In a set of three experiments, they manipulated only the visual saliency, only the linguistic saliency (by means of prosodic markers) and both of them together. The results revealed (1) that visual saliency narrows down the visual search space toward a target, but does not have a direct role on linguistic ambiguity resolution, (2) that intonational breaks add prominence to linguistic referents and favor one interpretation over the other, and (3) that no statistical effect between the two modalities has been found, although they complement each other and both contribute to the overall understanding of the sentence by playing a role in different aspects of language processing.

A more detailed view on the interplay of world knowledge, visual information and linguistic expressions was presented by Knoeferle and Crocker (2006). They showed that people indeed use world knowledge, for example, to assign thematic roles. In case this assignment contradicts the visual context, the information from the visual world will outweigh the lexical biases induced by world knowledge. Similarly, Mirković and Altmann (2019) showed that the visual information is used immediately, but constraints based on inferences from world knowledge come into play later on. Another recent study, targeting the task of meaning recovery from acoustically noisy speech comprehension in German, demonstrated how these two sources (general world knowledge and situation-specific cues) interact with each other while forming the interpretation (Alaçam, 2019). Typical object features and affordances (for example, tables have the affordance of putting things on top of it) can be learned by exposure to daily objects. Episodic affordances [such as being available (empty/occupied)], on the other hand, are closely tied to the situation at hand most of the time. The results of the study show that, in case of conflicting cues, the episodic affordances informed by the current situational information will kick in and influence the interpretation toward the less-expected one. The results also indicate that if there is a strong bias toward the default case (based on real-world contingencies), then situation-specific information may not always be strong enough to override it. From the design perspective of crossmodal natural language processing, this finding informs us that a situated language processing system should not only incorporate the prototypical affordances on the world-knowledge level, but also be able to filter them based on their situation-specific features to achieve a correct evaluation of the described situation.

Considering the benefits of crossmodal interaction in human situated language processing, such as mutual support or guidance, combining the data streams in an interactive manner instead of fusing them seems to be a promising approach. Actually, there is a broad range of possibilities for language and vision to interact, which have already been or could be tried. They can be classified along a number of different dimensions:

• Crossmodal integration can range from maintaining independent, but interacting representations for each modality to having a single, common representation. The latter is not interactive since any independence gets lost. We discuss such approaches here because they are an often used computational approach and reveal initial findings, for instance integrating two modalities improves system performance compared to using only one.

• Either crossmodal interaction takes place just once, or both modalities modulate each other repeatedly.

• The interaction can occur at any point, ranging from an early stage to a later one.

• Either only one modality influences the other or both modalities influence one another mutually.

• If the influence is mutual, it can be realized by means of a bidirectional mapping or with two separate mechanisms, one for each direction of influence.

Most systems discussed throughout this paper do not address all of these distinctions, and they sometimes apply simplifying assumptions, such as using manually annotated images as visual input. Also, not all approaches are designed solely for the general purpose of language understanding. Often, they deal with specific tasks that, among other things, require at least rudimentary language comprehension capabilities, for example sentiment analysis or question answering. It can be assumed that the use visual information in these systems, to a certain degree, compensates for the lack of genuine language understanding capabilities.

Yu and Jiang (2019) reported that using both modalities together is more effective than using them individually with respect to the task of Target-Oriented Sentiment Classification, which determines the sentiment over different individuals, for instance people or places. For this task, the authors propose a neural network that combines the BERT architecture (Devlin et al., 2019) with a target attention mechanism and self-attention layers to model intra- and inter-modality alignments. Table 2 shows that combining linguistic and visual information results in an improved system performance compared to using these modalities in isolation. This holds true for the two publicly available data sets Twitter-15 (Zhang et al., 2018) and Twitter-17 (Lu et al., 2018).


Table 2. Comparison of using linguistic and visual information individually or together for Target-Oriented Sentiment Classification, evaluated by Yu and Jiang (2019) on two publicly available data sets.
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While Yu and Jiang (2019) did not consider any acoustic input, in particular no prosodic information, the results will be contradictory if prosody is included as well. The benefit of prosodic information strongly depends on the task to be achieved. Table 3 compares two crossmodal approaches for sentiment detection that were both evaluated on the CMU-MOSI data set (Zadeh et al., 2016). In addition to the linguistic and visual input, this data set contains prosodic features as a third input modality. Zadeh et al. (2017) showed that combining all available modalities improved the overall system performance, compared to using any of the input modalities alone. The authors applied a Tensor Fusion Network, which is a neural network approach that results in a common, crossmodal representation based on a combination of features for unimodal, bimodal and trimodal interactions. The accuracy of the crossmodal classification improves by 2.3 percentage points compared to the purely linguistic model, by 10.3 percentage points compared to the visual one and by 12.0 percentage points compared to the acoustic one. Poria et al. (2017), who utilized an LSTM-based approach, reported that these improvements mainly result from combining linguistic and visual input. In contrast, adding prosodic features only yields an accuracy improvement of 0.1 percentage points, which suggests that prosody does not significantly contribute to the particular case of sentiment analysis.


Table 3. Comparison of three crossmodal sentiment analysis approaches evaluated on the CMU-MOSI data set, one being incremental (Liang et al., 2018) as opposed to two non-incremental ones.
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Whereas, sentiment analysis does not benefit from using prosody, Poria et al. (2017) found a strong influence when applying their system to the task of emotion recognition. Table 4 contains their recognition results for four typical emotions that were obtained on the IEMOCAP data set (Busso et al., 2008). Again, they achieved better results using crossmodal features. The accuracy increases by up to 2.5 percentage points compared to using the linguistic features alone, by 28.6 percentage points compared to using only the visual ones and by 27.6 percentage points compared to employing only the acoustic ones. In contrast to their sentiment analysis study, including prosody leads to better results. The accuracy improves from 0.8 (Angry) up to 1.7 percentage points (Neutral) compared to only combining language and vision. For Sad, either visual or prosodic information is required whereas the combination of all modalities does not further improve the accuracy. For Happy though, language alone is sufficient. Considering the contradictory findings for sentiment analysis and emotion recognition, we have to assume that prosody is able to improve system performance only for particular tasks. Since many recent language and vision data sets do not contain any prosodic annotations, this hypothesis is hard to verify at the moment.


Table 4. Comparison of two crossmodal emotion recognition approaches evaluated for four emotions of the IEMOCAP data set, one being incremental (Liang et al., 2018) as opposed to a non-incremental one (Poria et al., 2017).
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Not only the choice of input features but also how the modalities are integrated affects system performance. Tan and Bansal (2018) used crossmodal interaction by means of mutual attention mechanisms so that language and vision can exert their influence on one another. For the visual reasoning task of the NLVR data set (Suhr et al., 2017), the accuracy improved to 69.7 % for using mutual attention compared to 58.7 % for applying the neural network architecture without any interaction between the two modalities. Comparable results were achieved by Yao et al. (2018), who proposed a similar approach where the interaction occurs repeatedly. Although more evidence is required, these results suggest that separate representations for language and vision, which interact with and influence each other early on, are advantageous compared to the late fusion of unimodal representations without any prior interaction.

While the aforementioned approaches in this section do not consider the possibility that one of the modalities could sometimes not be available or accessible, McCrae (2009) and Crocker et al. (2010) studied this issue by enabling their systems to produce results based on the linguistic input alone. Also, Kiros et al. (2018) proposed a system architecture that can fall back to processing only the linguistic input in case of missing visual information. The authors perform a top-k image web search for each word, extract neural features from each image and combine them with pretrained word embeddings via a gating function that controls the influence of the two modalities. If, for example, the web search failed, the system will fall back on the word embeddings alone. Alternatively, Wang et al. (2018), who investigated how to deal with information that is either incomplete or missing entirely in one modality, suggested training a crossmodal system to account for such cases. They reconstructed the missing data based on intra- and inter-modal correlations, which are learned during training by means of a modality dropout simulating the information deficit in one channel.

For fundamental reasons, a learning system can only acquire the kind of desired synergy between linguistic and visual contributions if they are well represented in the training data. Unfortunately, a study by Shekhar et al. (2017) has shown that many existing multi-modal data sets for visual question answering (VQA), a particular version of visual reasoning, possess a certain linguistic bias. The authors found that some questions can already be answered correctly without taking the image into account at all. As a countermeasure, they designed a new unbiased data set that can only be processed successfully if language and vision are modeled in an unbiased manner. Since different state-of-the-art VQA systems performed poorly on this data set, the authors concluded that this indicates a lack of proper integration of language and vision in these approaches. Still, further investigations are required to find out what makes multi-modal data sets well-suited for the study of crossmodal interaction and how they can be compiled to not suffer from any implicit prior preference.

Although there are many different ways to combine language and vision with respect to the aforementioned classification criteria, no optimal solution that fits all the requirements does exist. A consistent finding across the different experiments has been that combining linguistic and visual information improves system performance and that this effect increases when both input channels mutually influence each other compared to them being integrated without interacting.



7. INCREMENTALITY

Human language processing occurs over time irrespective of its modes, be it written or spoken, or be it comprehended or produced. Incremental processing is one of the key factors that makes natural language conversation fluent and robust at the same time. It becomes a necessity because the length of the utterance to be dealt with is not known in advance and the state of affairs may change while the utterance unfolds. Being able to make sense of the initial parts of an utterance as early as possible allows the listener to respond to the incoming utterance in a timely manner, either by replying with an appropriate verbal response, such as producing a back-channel signal (like nodding, raising one's eye-brows, or looking at a possible object of reference), or by preparing and initiating an appropriate problem-related action; see Crocker (1999) for a review.

Incremental processing is particularly valuable for early reference resolution. Reliable hypotheses about suitable candidates in the visual environment reduce the space of possible alternative interpretations, which may save computational effort. Moreover, a closer inspection of the candidate and its visual surrounding may contribute additional information that supports the ongoing comprehension process, and therefore has the potential to create the feedback loop for mutual benefit between the linguistic and the visual channel. If strong enough evidence is contributed by another modality, it will even lead to early decisions on sentence structures and referential relationships without realizing that another (linguistic) interpretation would be possible (Tanenhaus et al., 1995; Christianson et al., 2001; Knoeferle et al., 2005; Altmann and Mirković, 2009).

Incrementality can be observed on all levels of linguistic granularity. Words are identified at a very early point in time as soon as the available phonetic and contextual information is sufficient to make a certain enough choice, usually during or shortly after the very first phoneme of the word (Marslen-Wilson and Welsh, 1978). Less obvious is the incremental nature of phonetic perception on the suprasegmental level. But even there, prosodic signals provide additional information to resolve ambiguities and predict the upcoming structure (Bailey and Ferreira, 2007; Snedeker and Yuan, 2008; Coco and Keller, 2015). These cues also allow the listener to estimate the distance to the next point in time when she can interrupt the speaker without risking to be unpolite. Moreover, changing the speech rate between the determiner and the noun during an indefinite noun phrase was shown to have an effect on perceiving the determiner (or ignoring it at all) and on understanding the noun phrase (Brown et al., 2012). Furthermore, contrastive intonation contours seem to be processed incrementally, and their processing is guided by the contextual cues during spoken language understanding (Weber et al., 2006; Kurumada et al., 2014). Not just phonetic cues but also visual information like facial expressions seems to have an immediate impact on sentence processing, facilitating early reference resolution in an incremental manner (Carminati and Knoeferle, 2013; Graham et al., 2017).

From a technical point of view, incremental (online) processing can be distinguished from batch mode (offline) processing. While a system in batch mode waits for the whole input being available before attempting to analyze it, an incremental analysis integrates partial input into a (coherent) processing result as soon as it becomes available. For an outside observer, batch mode processing is equivalent to ignoring the dynamic nature of the input data completely, and therefore this type of processing is not able to explain the dynamics of human language comprehension. We only mention it here to highlight the contrast between human behavior and traditional computational solutions. Incremental processing, on the other hand, reflects the dynamic characteristics of the input in its output: The results produced evolve over time like the input does. A language comprehension system, for instance, processes the input word-by-word constructing semantic relations (possibly even only partially instantiated ones) between linguistic and visual entities as soon as possible.

The dynamics of incremental decision taking ranges from greedy (monotonic) approaches that extend previous partial analyses without ever changing them to pseudo-incremental ones, ignoring all previous results and always analyzing the entire input up to the current increment anew. Truly incremental ones take previous solutions into account and revise them according to the new information just becoming available.

Forcing the language comprehension process to take its decisions as early as possible comes at the price of making intermediate interpretations less certain and more ambiguous because large portions of the linguistic input are not yet available at the point in time when the decision has to be taken. In effect, responsiveness is traded against reliability and in case of wrong decisions, a reanalysis has to be initiated. In the long run, the additional information that is made available from the visual channel by the closely time-locked interaction between the two input channels might overcompensate this effect. Evidence from the human model as well as from computational systems shows that committing to an initial interpretation early on and revising it whenever this becomes necessary is often the more successful strategy compared to a wait-and-see approach (Ferreira, 2003; Baumann et al., 2013).

For English, the phenomenon of temporal ambiguities caused by incremental processing has been investigated most often by means of reduced relative clause constructions. The two sentences “The pills brought no relief.” and “The pills brought by the nurse helped a lot.” share a common initial part; thus, they initially look the same but later diverge into two constructions that are preferred to different degrees. Despite this superficial similarity, the verb brought is actually part of two different kinds of verb groups, either in the active voice (brought no relief) or the passive voice (brought by the nurse), where the second one is part of a (reduced) relative clause. As a consequence, the pills are either the subject, i.e., in that particular case the AGENT of the verb to bring, or its direct object, i.e., the THEME. Since humans prefer the first reading, they have to revise their interpretation in the second case.

An early artificial approach that deals with partial input was proposed by Brick and Scheutz (2007). Their system, which they claimed to be psychologically plausible, is able to perform actions, like grasping, and provides feedback at an early point in time. Additionally, it can deal with ambiguous utterances as well as references. The system is built upon an incremental semantic module based on constraint propagation that integrates linguistic knowledge with perceptual information from the visual channel. After each increment, reference resolution is performed. If a unique referent is found, the system will start to react. In case of an ambiguity, it will continue with the most plausible interpretation until the unfolding information requires a revision.

One problem of processing sentences incrementally is caused by possible dependencies between incrementality and crossmodality, which have an impact on the system performance that is hard to assess. Liang et al. (2018) proposed a neural architecture (Recurrent Multistage Fusion Network) for incremental processing that, first, processes each modality individually to capture intra-modal dependencies at each time point. Then, all modalities are fused into a common, crossmodal representation. Finally, this inter-modal representation of time point t is fed back into the intra-modal representations of step t + 1 before the procedure is called again for that next step. The architecture is incremental since it processes the linguistic input word-by-word, with the other input streams segmented accordingly. It was applied to different tasks including sentiment analysis and emotion recognition. Compared to the non-incremental approach of Poria et al. (2017), the accuracy increased for all emotions by at least 5.5 percentage points (see Table 4), except the emotion class Neutral, which decreased by 0.4 percentage points. For sentiment analysis, the accuracy decreased by 1.9 percentage points compared to (Poria et al., 2017) (see Table 3). Although incrementality enables a system to react at an early point in time, there is a potential trade-off with respect to the overall system performance that one should be aware of when developing artificial solutions that are both crossmodal and incremental. The most influential factors that could explain these contradictory results still need to be determined.

Standard evaluation metrics for natural language processing systems do not take the dynamic nature of incremental results into account. They only evaluate the quality at a fixed point in time (usually after completion of the computation) and they are not able to describe the timeliness of a system. Therefore, Schlangen et al. (2009) proposed a number of novel measures to evaluate the intermediate results of incremental processing with respect to when a systems takes decisions and how often it changes them. Timeliness, for instance, refers to the delay of the system output, and non-monotonicity measures the portion of the intermediate results that will be part of the final result. Unfortunately, these metrics do not quantify the quality of the intermediate results. To overcome this deficiency, Beuck et al. (2013) suggested to use temporal quality profiles, which can be determined by a point-wise analysis of intermediate results in terms of accuracy. These profiles describe the reliability of attaching the n most recent words in a window left of the current point in time and usually show a fairly low reliability for the newest word, which increases the older the hypotheses are. A detailed description of these performance characteristics and a discussion of the inherent trade-offs of an incremental system can be found in Köhn (2018).



8. PREDICTION

While incremental comprehension aims at integrating all the already available pieces of input into a coherent tentative result, predictive processing takes a more radical approach by trying to produce output based on its expectations about the upcoming observations. Predictions can be checked against the visual evidence proactively and they can guide the visual attention toward the relevant entities in the environment, even though the referring expression is still missing or underspecified at that point in time. Thus, predictive processing amplifies the advantages of incrementality even further. It also minimizes the temporal delay between perceiving the initial part of an utterance and understanding it, effectively providing an additional gain in responsiveness at the price of taking more risky decisions and the need to possibly correct them later on. The quality of predictions can be calculated by precision and recall (Beuck et al., 2013).

Predictions are guided by an incomplete or unconnected structural interpretation of the already processed linguistic input. They may, for instance, concern the most plausible filler of a thematic role or they can help to create a fully connected, thereby more expressive meaning representation when a concept connecting two other ones is still missing. Having predictions available not only speeds up reference resolution, but also helps the listener to disambiguate the role assignment itself.

Expectations about the most likely thematic role fillers usually are introduced by a verb or a comparable lexical item (e.g., Trueswell et al., 1993; Altmann and Kamide, 1999; Chambers et al., 2004). These expectations can be used, for example, to determine the THEME of a particular action. Altmann and Kamide (1999) have found that listeners are able to predict the complements of a verb based on its selectional constraints and the affordances of the possible role fillers. When people hear the verb break, for instance, their attention is directed toward breakable objects in the scene. Similar to verbs, some non-verbs also generate expectations about what may follow (McRae et al., 2001).

A natural language understanding system whose comprehension and prediction capability improved by including predictions derived from affordances into the decision taking process was presented by Gorniak and Roy (2007). In their study, they employ a probabilistic, hierarchical approach for plan recognition and, thereby, integrate language, situation-specific knowledge from the visual channel and general world knowledge, namely action affordances. Their method requires predictive parsing, which they realize by means of a Combinatory Categorial Grammar in combination with affordance filters. After processing a noun, a subset of actions remains that can be applied to all past, present and future states. For instance, gate relates to opening, locking or walking through. In contrast, a verb restricts the set of possible objects: For example, open refers to objects that can be opened.

The other kind of prediction is used to create a connected structural description for the partial linguistic input. This becomes necessary in a situation where the attribute of an object is already available, but not yet the noun to which it refers: “I'll take the white…”. Here, the prediction helps to establish the semantic connection between the verb to take and the color attribute white by means of the still unknown, but already predictable object role.

Predictions can also be triggered by salient characteristics of the visual environment: The grouping of objects may help to anticipate possible completions of a coordinated structure (plates and…), or the display of a dominating action may help to predict the predicate together with all the restrictions for its arguments. If the environment is dynamic, one can also predict possible updates, like the probable outcome of an action that changes the state of an entity.

Knoeferle et al. (2005) demonstrated the predictive nature of sentence comprehension using German sentences with Subject-Object ambiguities that directly map to an ambiguous AGENT/PATIENT assignment. Each visual scene to which a sentence refers depicts two actions and three characters. Two different sentence patterns have been compared either in an unmarked word order (Subject-Verb-Object) or in a marked word order (Object-Verb-Subject). Due to the case ambiguity of German feminine nouns (nominative or accusative), it is not possible to decide whether the first noun phrase in the sentence is an AGENT or a PATIENT until the case-marker of the second noun phrase following the verb becomes available. Eye-tracking results showed that in case of the marked word order, the initial role assignment for the first noun phrase creates a conflict with the following assignment for the second one, and a reanalysis becomes necessary. Most interestingly, visual attention already started to move toward the target character before the associated post-verbal noun phrase actually appeared, i.e., while the verb was still being spoken. This clearly signals that reference resolution for the second noun phrase was not based on the observation of the phrase itself but on its prediction induced by the verb. A follow-up study on the same data set but using event-related brain potentials (ERPs) as a research methodology also confirmed this conclusion (Knoeferle et al., 2007).

Based on the aforementioned studies, Knoeferle and Crocker (2007) developed the Coordinated Interplay Account, a recurrent connectionist network, which models language-mediated visual attention and sentence interpretation. With a direct correspondence to the psycholinguistic findings, the model can successfully predict human behavior and neuro-imaging results described previously (Knoeferle et al., 2005; Knoeferle and Crocker, 2007). In particular, it can correctly resolve ambiguous thematic role assignments at the same point in time as people do (Crocker et al., 2010). The network assigns thematic roles incrementally in the unimodal as well as in the crossmodal one. It consists of three subparts: (1) unimodal sentence comprehension, (2) modulation of visual attention by the partial linguistic analyses and (3) the modulation of the sentence interpretation using the additional information gathered from the visual scene. All three subparts maintain independent representations, and crossmodal reference resolution is realized by means of co-indexation. The approach can deal with scenes that contain more entities than those referred to in the sentence. The model is also robust in the absence of visual input (Mayberry et al., 2009), since it can capture stereotypical associations between agents and their actions if they appear frequently enough in the training data. Integrating the visual information will improve the interpretation in case these associations are difficult to extract or irrelevant. It should be noted, though, that the system utilizes a model structure that is specifically tailored to predict the experimental data. Therefore, the system does not possess any kind of general language comprehension capability.

The objects or events that are not directly referred to in an utterance will attract an increased amount of attention if they are inferred either from what has been said so far or from the concurrent visual information (Dahan and Tanenhaus, 2005). Altmann and Kamide (2007) investigated this relationship by manipulating the tense of the main verb. The visual stimuli contained a cat (i. e. an animal that could kill), some mice (i.e., animals that can be killed by a cat, but are still alive), a pile of feathers (i.e., the remainder of a bird that has been killed) and some distractor objects. Two different versions of a spoken sentence were presented, either “The cat will kill all of the mice.” or “The cat has killed all of the birds.” While more fixations on the mice, after the onset of the auxiliary verb, have been observed in the former condition, more fixations on the feathers occurred in the latter case, although the feathers cannot be the target of a killing action, but still overlap with the conceptual requirements of the verb. Thus, the participants still anticipated feathers as the THEME using contextual information which the authors call real-world contingencies. In such cases, the mapping of language onto the scene becomes even more challenging but crucial for natural language processing solutions since the temporal structure of the events entailed by the sentence or change of state (namely objects that disappear or change their appearance such as things which have been eaten up or will be constructed) needs to be considered.

Even the objects that have no semantical relation to the spoken words are able to attract attention to themselves. To study to which degree the aforementioned findings (Knoeferle et al., 2005) are influenced by the visual complexity of the visual scene, Alaçam et al. (2019) followed the same experimental paradigm and used the same sentence patterns (unmarked and marked word orders). The visual stimuli differed from those used in Knoeferle et al. (2005) by a meaningfully structured background containing a substantial amount of distractors (c.f. Figure 1), additional background objects and an additional character acting on the ambiguous AGENT/PATIENT character. The results replicate the findings previously reported in Knoeferle et al. (2005) that participants are garden-pathed when they hear a sentence in Object-Verb-Subject order. Although none of the visual manipulations is directly related to the entities mentioned in the sentence, the amount of fixations on the target is still influenced by the visual clutter regarding the irrelevant entities in the scene. The overall fixation rate decreases when the complexity increases with a stronger effect caused by the additional character compared to additional background objects.



9. HEURISTIC DECISION TAKING

The studies on structural prediction and ambiguity resolution discussed above have been carried out within relatively simple visual and linguistic settings, where the relationships between events and entities can be extracted easily. More recently, the effect of visual complexity has increasingly attracted attention. As the complexity (either of the visual context or the task) grows, using the visual information to narrow down the space of possible linguistic interpretations becomes more difficult. In such cases, subjects either tend to choose a more passive strategy, such as waiting for more detailed information about the entities mentioned in the utterance instead of taking decisions based on risky anticipations (Ferreira et al., 2013). Alternatively, they can resort to simple heuristics, like choosing an interpretation which is in line with stereotypical semantic information or the visual world, even though this interpretation requires to accept grammatically unacceptable syntactic structures (MacWhinney et al., 1984; Christianson et al., 2001). In a Dutch noun phrase, the prenominal adjective(s) as well as the head noun are gender-marked, and the gender of the adjective(s) has to agree with the gender of the noun. Normally, the gender information of the preceding adjective is used to predict the target object before the corresponding noun has been uttered (Van Berkum et al., 2005). Instead, Brysbaert and Mitchell (2000) found that people sometimes are insensitive to this kind of morphological cue. In their study, subjects have chosen good enough representations with a better semantic fit, but ignored the disambiguating gender information that contradicts their interpretation.

Such kind of heuristic decision taking plays a crucial role in human cognition as comprehensively discussed in Gigerenzer (2000) and Gigerenzer (2008). In complex enough tasks, reaching a decision by considering all possible options is unrealistic due to temporal or memory-related resource limitations. Thus, there must be a cognitive mechanism that is able to abandon processing and to settle the issue as soon as a sufficiently high degree of confidence has been reached.

Ferreira (2003) argues that spoken sentence comprehension is an inherently demanding task that involves complex sequential decision taking and is affected by both uncertainty about the current input and a lack of knowledge about the upcoming material. Thus, enforcing consistency among the sequential decisions is not always feasible and people resort to fast and frugal heuristics, thereby producing good enough representations. The assumption of good enough representations also provides a valid explanation for the (partial) success of conversations in noisy environments. In such a scenario, instead of waiting for or requesting intelligible spoken input, combining the uncertain information from the linguistic and the visual channel would be a more effective comprehension strategy.

A computational approach discussed above that applies heuristics can be found in Baumgärtner (2013). Its constraints rely on attachment heuristics. Some attachments are preferred compared to others that are nonetheless plausible. For instance, low attachments occur more often in German than higher ones. Hence, the latter incur a small penalty. In case no alternative is possible, these mild constraint violations are accepted, though, and deemed as a good enough solution. Also, the constraint solving mechanism will stop after a predefined number of steps or if only minimal improvements are made. In such cases, the solution will also be viewed as good enough.

The Late Assignment of Syntax hypothesis (Townsend and Bever, 2001) addresses the role of heuristics on language comprehension from a theoretical perspective. According to this theory, sentence processing is performed in two steps. First, a pseudo-parser tries to obtain a very shallow interpretation based on syntactic frequencies and semantic associations, for example, a heuristic captures the tendency to treat the first argument in a sentence as AGENT, and the second argument as PATIENT. In the second step, a full-fledged and therefore more time-consuming parser is applied which is guided by the results of the shallow one. In case of resource limitations, the results of the shallow parser are taken, which could of course be wrong. Occasionally, the results of the two different parsers might not agree. Then the system needs to reconcile them and decide on the final, possibly still erroneous interpretation.



10. CONCLUSIONS

It is commonplace that language comprehension takes advantage of the availability of crossmodal information. Indeed, recent psycholinguistic research as well as the development of computational language comprehension systems have confirmed this assumption and contributed a number of valuable insights into how this added benefit comes about and what its prerequisites are:

• Language comprehension benefits from being sensitive to extra-linguistic information about the kind of entities in the surrounding world, their spatial relationships, the events they take part in, and the general or episodic affordances they offer. Because it is situation-specific, this information provides a welcome complement to the more static type of knowledge that can be extracted from large-scale linguistic data collections. It helps, for instance, to resolve ambiguous thematic role assignments, to correctly attach words and phrases, and eventually to determine the most likely intention of the speaker.

• The interplay between linguistic and visual processing components seems to be based on interaction rather than fusion. Interaction preserves the autonomy of the modalities while providing the possibility for information exchange and reconciliation from the very first moment. Avoiding a separate post-hoc component for information selection and combination, such an architecture improves the robustness against information deficits in one of the channels. This property might have contributed to the gains in output quality found in interactive computational solutions.

• Language processing can profit most from the available visual information if it proceeds in an incremental and predictive manner. Incrementality and prediction not only make a comprehension system more responsive, but can also guide the visual attention almost instantaneously to the relevant areas in the visual environment, facilitating early reference resolution and a rapid extraction of additional disambiguating cues from the visual channel. The sources that inform prediction are the same as the ones that are used for language comprehension in general. They range from purely language-internal ones, such as the lexically induced valency requirements of verbs, to the purely visual, which can also be used for ambiguity resolution.

Building visually informed language comprehension systems also requires a major effort to collect and annotate appropriate data. On the one hand, this data should be free of bias, since only then a training procedure will be able to extract the relevant associations between the modalities involved. On the other hand, it has to conform to the requirements of incremental and predictive processing, which in general is non-monotonic and often requires modifying already produced, tentative output in the light of additional input becoming available later. Ignoring these temporal aspects might mislead model training toward wrong crossmodal mappings. Thus, novel annotation schemes, suitable data transformation approaches and sophisticated training procedures will be needed.

While still falling short of what the human model can accomplish, artificial systems have made significant advances in many of the above-mentioned respects. Models and algorithms for incremental and predictive processing have been developed, and at least in restricted application scenarios a beneficial impact of crossmodal interaction has been found. Nevertheless, all the approaches we reviewed focus on selected aspects of crossmodal language comprehension, i.e.,

• addressing conceptual integration and structural disambiguation, but ignoring the inherent perceptual uncertainty of speech and vision,

• experimenting with crossmodal interaction without considering the dynamic nature of incremental processing, or

• aiming at shallow processing tasks, like sentiment detection or emotion recognition, avoiding any problems with reference resolution, meaning analysis and intention detection.

However, such an isolated consideration ignores the many dependencies which exist between the different aspects and which might have a significant impact on the overall performance of a system. The full potential of crossmodal language comprehension will only become available if these aspects are dealt with in an integrated manner. Visually guided sentence parsing, visually or lexically induced prediction of upcoming linguistic structures, continuous interaction between the modalities, linguistically guided visual attention, etc. all contribute in different but complementary ways to the ongoing process of language comprehension. None of them alone will be sufficient to achieve human-like natural language communication behavior. While the first successful attempts have been made to implement human-inspired processing mechanisms in artificial agents, their interplay is not well understood, neither in the human brain nor in silico. Only their combination in a single, well-balanced architecture where the modalities can interact with each other on small enough input increments will pave the way toward behavior that comes close to the language processing capabilities of the human model.
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The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.

Keywords: cross-modal processing, primary sensory cortices, prefrontal cortex, top-down, bottom-up, development


SENSORY-COGNITIVE INTERPLAY DURING CROSS-MODAL PROCESSING

The brain permanently receives sensory information addressing multiple modalities. Its capability to process diverse sensory inputs is mandatory to create a coherent perception of the environment, and ultimately to guide adaptive behavior. The diverse sensory components of a stimulus are processed and conveyed in a discrete manner by modality-specific pathways (Figure 1A), where each modality provides unique information about the stimulus. Complementing stimulus information reduces stimulus uncertainty and enhances behavioral responses, thus leading to faster and more accurate decision-making (Stein et al., 1988; Gleiss and Kayser, 2012; Siemann et al., 2014; Hammond-Kenny et al., 2017; Meijer et al., 2018). The process of sensory convergence, where inputs of different senses are combined without being able to easily dismantle them into independent unimodal components, is termed as cross-modal integration (Keil and Senkowski, 2018; Nikbakht et al., 2018). In order to evoke a coherent cross-modal perception, neural areas accounting for sensory and cognitive processing need to optimally interact with each other. This appears to be a challenging computation given the multidimensionality of neural activity and the fact that neural areas specialized in processing one component of a stimulus are located at distant parts in the brain (Harris and Mrsic-Flogel, 2013; Runyan et al., 2017; Stringer et al., 2019). In addition, the neural interactions of systems accounting for sensory and cognitive processing are highly dynamic, emerging at early age and developing over time (Goodman and Shatz, 1993; Siegel et al., 2012; Parisi et al., 2019). Comparable sensory systems and the ease of measuring behavioral effects motivated the use of large mammalian species as prime models to study the mechanisms of cross-modal processing and their emergence during development (Stein et al., 1993; Wallace and Stein, 1997; Calvert and Thesen, 2004). Here we focus on the interdependence of primary sensory cortices (S1, V1, A1) and PFC in rodents, aiming to critically review our current understanding of the mechanisms that enable the communication between remote brain areas dedicated to sensory and cognitive processing during cross-modal perception. In addition, we will review how bottom-up and top-down mechanisms underlying cross-modal processing emerge during development. Despite possible differences of neuronal processing when compared to larger mammals such as cats or monkeys, the use of rodent models bears several advantages for the study of cross-modal processing. Recent developments in rodent behavior and genetics, viral methods, and genetically encoded Ca2+ indicators offer the possibility to study causal relations in the brain, monitor neuronal activity over time, and explore the relationship between neural network properties and behavior underlying cross-modal processing (Fenno et al., 2011; Chen et al., 2013). Relying on these state-of-the-art methods, our understanding of the cellular and network mechanisms underlying cross-modal processing as well as their development should be fostered. Detailed insights on the neural computations are critical for the development of autonomous agents and their optimal interaction with the environment under conditions of sensory uncertainty. Thus, by providing knowledge of neuronal computations underlying cross-modal integration, this review aims to uncover general principles of neuronal processing and to inspire multidisciplinary research in the field of robotics.
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FIGURE 1. Bottom-up and top-down cross-modal processing. (A) Schematic drawing of a mouse receiving visual information (red arrow) about a behaviorally-irrelevant object (trees) and a behaviorally relevant object (approaching eagle) that is accompanied by tactile and auditory information (vibrations and sounds, green and blue arrows). (i) Schematic diagram showing how visual (ii), tactile (iii), and auditory (iv) information is transferred in the brain. (B) Schematic diagram of bottom-up sensory information flow from primary sensory cortices to PFC. The black arrows correspond to cross-modal processing from primary sensory cortices to PFC, whereas the gray arrows correspond to cross-modal processing within primary sensory cortices. (C) Schematic diagram of top-down prefrontal modulation of neuronal activity in primary sensory cortices. PFC has been proposed as the source of top-down attention signals that modulate cross-modal processing in primary sensory cortices in favor of the attended features. Studies have highlighted the effects of attention on neuronal responses in primary sensory cortices, such as an increase in neuronal discharges and a decrease in the variability of neuronal responses. The black arrows correspond to the direct connections from PFC to primary sensory cortices. The gray arrows correspond to the top-down modulation of sensory processing in primary sensory cortices during attention. (D) Neural mechanisms of bottom-up and top-down cross-modal processing. (i) Spike trains before and after stimulus. Neuronal firing is random pre-stimulus, whereas post-stimulus firing rate is enhanced and marked by a precisely timed onset. Stimulus is represented by the red arrow. (ii) Phase reset as a mechanism of bottom-up cross-modal processing. The phase of oscillatory activity is random pre-stimulus, but resets post-stimulus. Stimulus is represented by the red arrow. (iii) Phase locking as a mechanism of bottom-up and top-down sensory processing. Black lines on the peak of the ongoing oscillation indicate spikes. Effective communication occurs when spiking activity of area b arrives at the high excitatory phase of area c and induces spikes in area c. Ineffective communication occurs when spiking activity in area b arrives at the low excitation phase of the signal a and fails to induce spikes in area a. When spiking activity in area b arrives at the rising phase of area a, communication between effective and ineffective levels (indicated by crossed-out check mark) occurs. (iv) Communication between two areas using cross-frequency coupling (CFC). Signal b shows that green and gray high frequency rhythms “ride” on the black low frequency rhythm. CFC between signal a and b enables area a and b to communicate through high frequency rhythm (marked in green). CFC between signal b and c enables b and c to communicate through high frequency rhythm.



Bottom-Up Cross-Modal Processing in Primary Sensory Cortices

Sensory interactions have primarily been demonstrated in high-level association cortices, such as PFC or posterior parietal cortex (PPC) (Lippert et al., 2013; Yau et al., 2015; Song et al., 2017). However, cross-modal processing has been shown to take place already at early stages of sensory processing, such as in the brainstem (Aitkin et al., 1981; Jain and Shore, 2006; Koehler et al., 2011), thalamus (Komura et al., 2005; Allen et al., 2017; Bieler et al., 2018) or primary sensory cortices (Lakatos et al., 2007; Kayser et al., 2010; Sieben et al., 2013).

The superior colliculus (SC) of the midbrain received particular attention when investigating the principles of multisensory processing. The SC receives multiple ascending (Edwards et al., 1979; Mize, 1983) and descending (Clemo and Stein, 1984; Meredith and Clemo, 1989) unisensory afferent sources that converge onto individual neurons, making the SC a prime model to study mechanisms of cross-modal processing. Deep-layer multisensory neurons of the SC control sensory as well as motor responses. Cross-modal but not unimodal, or multiple unimodal stimuli of the same modality (Alvarado et al., 2007), cause an enhancement of neuronal firing (Meredith and Stein, 1983; Perrault et al., 2005), which consequently mediates orienting behavior (Stein et al., 1988; Gingras et al., 2009). It has been shown that the inputs from cortical association areas are critical to manifest cross-modal responses in the SC (Stein et al., 2002; Alvarado et al., 2009). While SC neurons in behaving animals continue to respond to multiple sensory modalities following cortical inactivation, multisensory responses are suppressed, and multisensory integration is eliminated (Jiang et al., 2002, 2007).

The described neuronal responses to cross-modal stimuli in first-order thalamic nuclei and primary sensory cortices occur at too short latency to result from processing feedback information. Thus, also low-level putatively unimodal brain areas integrate cross-modal information in a bottom-up manner. The bottom-up detection and discrimination of stimuli are fundamental stages of sensory processing, because they allow, on the one hand, for rapid detection of a stimulus, and on the other hand, for discrimination between similar stimuli based on fine details (Guo et al., 2017). The detection and discrimination of a stimulus are improved when it provides features from multiple modalities (Gleiss and Kayser, 2012; Sheppard et al., 2013; Siemann et al., 2014; Hollensteiner et al., 2015; Nikbakht et al., 2018).

Similar mechanisms of cross-modal processing first described in the cat SC have also been found in rodent SC (Gharaei et al., 2018) as well as in primary sensory cortices, thus challenging the strict hierarchical model of sensory processing (Foxe and Schroeder, 2005). For example, co-presentation of an auditory stimulus enhances orientation selectivity of V1 neurons (Ibrahim et al., 2016). This cross-modal enhancement of neuronal firing was strongest under low-contrast conditions, suggesting that cross-modal information is particularly beneficial for perceptually-guided behavior under ambiguous situations. In addition to cue-integration, cross-modal processing also depends on modality segregation, i.e. the suppression of neuronal activity in one modality-specific primary sensory cortex due to the concurrent presentation of a stimulus of a non-matching sensory modality (Iurilli et al., 2012; Song et al., 2017; Bieler et al., 2018; Gharaei et al., 2018). For example, Gharaei et al. (2018) demonstrated that unisensory stimulation enhances neuronal responses in the SC, whereas cross-modal stimulation rarely enhances but rather suppresses neuronal firing discharges. At the level of primary sensory cortex, Iurilli et al. (2012) showed that evoked activity in A1 enhances local inhibitory firing in deep layers of V1, which in turn decreases the activity of V1 supragranular pyramidal neurons. Consequently, at behavioral level, visually-conditioned responses were suppressed by acoustic stimulation. Experimental research examining the mechanisms of sensory convergence in low-level sensory regions emphasized the processing and relay of basic object feature information (Iurilli et al., 2012; Sieben et al., 2013; Bieler et al., 2018; Morrill and Hasenstaub, 2018). However, the formation, storage, and utilization of cross-modal object representations during behavior require an interaction of neuronal areas accounting for sensory and cognitive processing (Hindley et al., 2014; Reid et al., 2014; Jacklin et al., 2016). Thus, while both sensory integration and separation are part of bottom-up cross-modal processing in primary sensory cortices, the mechanisms underlying the functional communication between low- and high-level brain areas during cross-modal perception are still largely unknown.



Top-Down Modulation of Cross-Modal Processing in Primary Sensory Cortices

Creating a consistent mental representation of the multisensory environment depends on more than the convergence of sensory information in primary sensory cortices (Choi et al., 2018). Sensory processing in primary sensory cortices is modulated top-down to create a multisensory perception, and finally, behavioral action (Ernst and Newell, 2007; Gilbert and Li, 2013; Talsma, 2015; Bizley et al., 2016; Kunicki et al., 2019). In particular, top-down influences from high- to low-level brain areas allow for the preferential processing, and thereby the facilitation of specific sensory inputs in primary sensory cortices (Talsma et al., 2010). Such top-down information may be related to attention, expectation or perceptual demands (Paneri and Gregoriou, 2017; Choi et al., 2018). Attention is a core property of all perceptual and cognitive operations. Given the limited capacity to process competing environmental inputs, attentional mechanisms allow for the selection and modulation as well as for sustained focus on information most relevant for behavior (Chun et al., 2011). Attention modulates neuronal activity and improves the signal-to-noise ratio thereby increasing signal efficacy for attended stimuli and enhancing the representation of attended features (Noudoost et al., 2010). Attention facilitates the integration of multisensory inputs in a top-down manner (Fiebelkorn et al., 2010; Mühlberg and Soto-Faraco, 2019). Top-down modulation enables the flexible selection of information based on task goals, as well as providing an order for selectively modulating multiple stimuli within each modality if they are competing for processing resources (Alsius et al., 2005; Doty et al., 2006). For example, Terreros et al. (2016) showed that mice are able to selectively focus on a visual stimulus, ignoring distractive auditory stimuli during selective attention in a two-choice visual discrimination task (Terreros et al., 2016). Furthermore, top-down modulation reweights sensory information and facilitates the integration of cross-modal inputs (Alsius et al., 2005; Busse et al., 2005; Bresciani and Ernst, 2007; Talsma et al., 2007; Lakatos et al., 2009; Fiebelkorn et al., 2010; Muhlberg et al., 2014). Prior cross-modal exploration of task-relevant objects significantly facilitates the detection performance of a rat in a cross-modal object recognition task (Jacklin et al., 2016). Moreover, rats are able to recognize a visually presented object, which has been only explored by the tactile sense (Winters and Reid, 2010). Top-down task demands further modulate cross-modal processing in primary sensory cortices. For example, during the free exploration of novel objects in the dark (whisker-based tasks), V1 and S1 responses carried comparable amounts of information about object identity (Vasconcelos et al., 2011). However, during the execution of an aperture tactile discrimination task, which is based on top-down task demands, S1 showed faster and more robust tactile recruitment when compared to V1.

Several frontal and parietal cortical regions, such as PPC and PFC, have been proposed as the source of top-down modulatory signals (Noudoost et al., 2010; Winters and Reid, 2010; Jacklin et al., 2016; Paneri and Gregoriou, 2017; Mohan et al., 2018). For example, it has been shown that top-down modulation originating in PPC influences cross-modal processing in primary sensory cortices (Mohan et al., 2017; Kunicki et al., 2019), and damage to PPC leads to performance deficits in sensory discrimination tasks (Binkofski et al., 2001; Winters and Reid, 2010). Given the well-established role of PFC in cognitive control and executive function (Miller and Cohen, 2001), it has been hypothesized that it modulates sensory processing in primary sensory cortices as well (Buschman and Miller, 2007). Bichot et al. (2015) showed in non-human primates performing a visual search task, that feature-based attention adjusts the neural firing activity of prefrontal neurons representing an attended feature to quickly locate a target object (Bichot et al., 2015). Moreover, neural responses in PFC emerge earlier when compared to the responses in visual cortex during covert attention tasks (Gregoriou et al., 2009; Monosov et al., 2010; Zhou and Desimone, 2011; Lennert and Martinez-Trujillo, 2013; Bichot et al., 2015; Siegel et al., 2015). Pharmacological inactivation of PFC induced space-specific impairments in a covert visual search task, and was particularly prominent when a shift in attention was required (Monosov and Thompson, 2009). The PFC might provide top-down modulatory signals to primary sensory cortices through direct axonal projections. For example, Zhang et al. (2014) showed that activation of prefrontal local GABAergic circuits powerfully influences sensory processing in V1 through direct connectivity from PFC to V1 (Zhang et al., 2014). Moreover, prefrontal modulatory signals may reach primary sensory cortices via the sensory thalamus. Stimulating the PFC has been shown to increase tactile responses and alter basal activity in the ventrobasal region of the thalamus (Cao et al., 2008). In line with this, optogenetic manipulation of prefrontal activity perturbs the ability of mice to appropriately select between conflicting visual and auditory stimuli during a cross-modal divided-attention task that is known to depend on prefrontal-thalamic interactions (Wimmer et al., 2015).



Anatomical Substrate of Interactions Between Neuronal Networks Accounting for Sensory and Cognitive Processing

Direct bottom- up (Henschke et al., 2015; Mowery et al., 2016; Bieler et al., 2017b; Henschke et al., 2017) and top-down cortico-cortical (Zhang et al., 2014; Makino and Komiyama, 2015) as well as indirect cortico-thalamo-cortical pathways (Theyel et al., 2010; Roth et al., 2016) represent the anatomical substrate of the functional communication between low- and high-level brain areas during cross-modal processing (Figures 1B,C).

Short latency cross-modal interactions in low-level sensory cortices rely on direct long-range connections (Sieben et al., 2013; Stehberg et al., 2014; Henschke et al., 2015). For example, visual stimulation modulates S1 activity via direct cortico-cortical connections, while pharmacological inactivation of V1 diminishes cross-modal effects in S1 (Sieben et al., 2013). In addition, optogenetic stimulation of A1-V1 projection neurons sharpens the orientation selectivity of neurons in V1 (Ibrahim et al., 2016). Similarly, impairing the direct A1-V1 connectivity by cortico-cortical transections abolishes the sound-driven hyperpolarization of V1 (Iurilli et al., 2012). Compared to the described connectivity patterns between primary sensory cortices in rodents (Burkhalter, 1989; Wang and Burkhalter, 2007; Stehberg et al., 2014; Henschke et al., 2015), direct cortico-cortical projections are sparse in primate primary sensory areas, which has functional implications on cross-modal processing (Falchier et al., 2002; Clavagnier et al., 2004; Cappe and Barone, 2005). Single-cell recordings revealed only subthreshold neuronal responses in primate primary sensory areas (Molholm et al., 2002; Lakatos et al., 2007; Kayser et al., 2008), and suprathreshold multisensory neurons were restricted to higher cortical areas (Fu et al., 2003; Ghazanfar et al., 2005). In contrast to primate low-level areas where feedback cross-modal information only has a subthreshold influence on its postsynaptic targets (Allman et al., 2009), multisensory responses in rodent primary sensory cortices might rely on the direct cortico-cortical connections and less on feedback information from higher cortical association areas. This suggests that the presence or absence of multisensory suprathreshold effects might result from the number and strength of cross-modal inputs reaching rodent or primate primary sensory cortices respectively.

In contrast to the early cross-modal responses in primary sensory cortices, cross-modal effects occurring at longer poststimulus latency may be under the control of feedback information, which is sent via projection neurons from high- to low-level sensory areas (Smith et al., 2010; Banks et al., 2011). Recently, Morrill and Hasenstaub (2018) revealed that a minority of neurons in A1 responds at 40 ms after visual stimulus presentation, exceeding the time delay of monosynaptic information transmission. Inputs from higher sensory cortex, such as secondary visual cortex, might account for the occurrence of visual responses with a long latency in A1 (Bizley et al., 2007; Banks et al., 2011). Information between primary sensory cortices may also be transferred via a cortico-thalamic-cortical route (Hackett et al., 2007; Sherman, 2016). For example, Hackett et al. (2007) showed that thalamic nuclei (first-order medial geniculate complex and higher-order posterior nucleus of thalamus) share anatomical connections with somatosensory as well as with auditory cortex. This cortico-thalamo-cortical pathway might resemble the anatomical substrate of tactile information transfer from somatosensory to auditory cortex through first- as well as higher-order thalamus (Schroeder et al., 2001; Kayser et al., 2005).

Besides anatomical projections from higher sensory cortices, long-range prefrontal projection neurons have been proposed to modulate cross-modal responses in primary sensory cortices (Vaneden et al., 1992; Sellers et al., 2015; Zhang S.Y. et al., 2016). For example, Zhang S.Y. et al. (2016) identified retrogradely labeled neurons in the cingulate sulcus of PFC targeting V1. Furthermore, the anterior cingulate subdivision of PFC shares direct connections with V1, while primary and secondary motor cortices are connected to somatosensory and auditory cortex (Zhang S.Y. et al., 2016). The identified direct long-range projections between PFC and primary sensory cortices might act as anatomical substrate for the functional communication between low- and high-level areas during cross-modal processing. Future studies using virus-assisted circuit mapping and optogenetic manipulations shall unravel the contribution of top-down projections from PFC to primary sensory cortices during cross-modal processing.



Mechanisms of Bottom-Up Cross-Modal Processing in Primary Sensory Cortices

Encoding of information requires coordinated neuronal firing that selectively filters relevant from irrelevant environmental information (Parker and Newsome, 1998; Connor et al., 2004; Harris and Mrsic-Flogel, 2013). Two neural communication codes – rate coding (i.e., changes in the frequency of action potentials) and temporal coding (i.e., changes of spike timing in relationship to the phase of network oscillations) – have been described (Oram et al., 2002; Kayser et al., 2009; Meredith and Allman, 2015). These two coding strategies often occur concurrently (Biederlack et al., 2006; Kayser et al., 2009; Bieler et al., 2017b), and as a result, increase the coding capacity (Tiesinga et al., 2008; Kayser et al., 2009; Figure 1Di). It is hypothesized that rate changes in single neurons code for the discrete properties of a stimulus, whereas temporal coding marks the relatedness of neuronal firing among neurons eventually leading to a coherent perception of the stimulus (Singer, 2009). Studies in the SC have identified two major operating principles of cross-modal processing. First, the more spatially and temporally coincident cross-modal cues appear, the greater is the multisensory enhancement (i.e., an increased neuronal response after cross-modal when compared to unimodal stimulation) (Meredith and Stein, 1983; Wallace et al., 1998). Second, the strength of the unimodal cues defines the magnitude of the cross-modal effect, such that weaker individual sensory stimuli evoke stronger cross-modal effects (inverse effectiveness) (Perrault et al., 2005). These principles of cross-modal integration served as a general guideline for deciphering cross-modal processing mechanisms in low-level sensory areas at single-cell and network level (Bieler et al., 2017b; Bieler et al., 2018).

Oscillatory activity reflects the rhythmic excitability fluctuations of neuronal populations within particular frequency bands that correspond to specific spatial scales of brain operation. This rhythmic nature of neural activity creates time windows during which inputs are more effective in driving the neurons. By making use of anatomical connectivity between and within brain networks, neuronal network oscillations account for local-global neuronal interactions as well as for maintaining persistent activity (e.g., during behavioral state) (Buzsaki and Draguhn, 2004; Buzsaki, 2010; Buzsaki and Wang, 2012). Synchronization of neuronal network oscillations subserves neuronal communication and enables the integration of sensory information across distant locations of the brain (Senkowski et al., 2008). Selective communication among neural networks might be achieved by coherence of oscillatory firing patterns (sending neurons) and gain modulation (receiving neurons) (Fries, 2015). Thus, rhythmic synchronization generates sequences of excitation and inhibition which focus the spike output of firing neurons and sensitivity to synaptic inputs of receiving neurons to a short temporal window.

Synchrony of activity in distant neural networks ultimately leads to the binding of anatomically segregated functional networks (Fries, 2005; Canolty et al., 2010; Canolty and Knight, 2010). Since unisensory networks encode relationships between detected information by synchronizing their activity, it raises the likelihood that similar mechanisms are involved in cross-modal processing. For example, information processing by one modality can enhance the population synchrony in lower-order regions responsive to another modality, such as primary sensory cortices or subcortical regions, in reciprocal relationship with other brain regions (Kayser and Logothetis, 2007; Driver and Noesselt, 2008; Tyll et al., 2011). This cross-modal synchrony enhancement of neuronal activity has been described for evoked as well as for induced responses: the impact of an external stimulus sensed by one modality is strengthened by appropriately timed information about the event in another modality (Figure 1Di; Sieben et al., 2013). Furthermore, the phase reset of spontaneous neuronal oscillations might facilitate the communication of distant neural networks during cross-modal processing (Figure 1Dii). The re-alignment of phases of ongoing neuronal oscillations in one processing region in relation to a cue of another sensory modality allows inputs to arrive at a high excitability phase (Lakatos et al., 2007; Kayser et al., 2008; Iurilli et al., 2012; Sieben et al., 2013; Figure 1Diii). In addition, the interaction of oscillations in different frequency bands, termed cross-frequency coupling (CFC), has been proposed as another mechanism of how distant brain regions synchronize their activity to interact (Canolty and Knight, 2010; Figure 1Div). The question arises whether CFC acts as a mechanism for the interaction of multiple sensory areas, and thus the integration of cross-modal inputs in rodent sensory cortices (Canolty et al., 2006; Schroeder and Lakatos, 2009). Recently, we examined the oscillatory interactions underlying CFC in a thalamo-cortical circuit during cross-modal processing (Bieler et al., 2018). Our study revealed a significant increase in beta-gamma phase-amplitude CFC between first-order thalamus and primary somatosensory cortex during cross-modal but not unimodal processing. Thus, the phase of the beta rhythm controls the power of coupled gamma oscillations through synchronization of the gamma amplitude envelope with the beta phase during cross-modal processing in thalamo-cortical networks.

While cross-modal effects at functional and anatomical level are widespread in primary sensory cortices, the exact configuration of a cross-modal stimulus ultimately defines which processing strategy, i.e., enhancement or depression of neural responses, is applied (Meijer et al., 2017).



Mechanisms of Top-Down Modulation of Cross-Modal Processing in Primary Sensory Cortices

Several mechanisms of prefrontal top-down modulation of cross-modal processing in primary sensory cortices have been proposed (Tomita et al., 1999; Barceló et al., 2000; Monosov et al., 2011; Gilbert and Li, 2013; Teufel and Nanay, 2017). Temporal coding of neuronal excitability reflected by oscillatory activity in primary cortices might provide a temporal window for effective processing of top-down information (Figure 1Diii). Phase locking of oscillatory activity between PFC and primary sensory cortices was proposed to fulfill this role. In particular, oscillatory activity in primary sensory cortices creates temporal windows during which top-down PFC signals are more effective in driving neuronal activities in primary cortices during sensory processing. If this holds true, spikes from PFC arriving within temporal excitation windows of the sensory cortices might produce postsynaptic spikes in primary sensory cortices more effectively.

Several studies reported enhanced gamma synchronization between prefrontal and unisensory cortices during attention tasks. For example, Gregoriou et al. (2009) found a specific enhancement in gamma phase synchronization between frontal cortex and V4 during sustained attention in a covert spatial attention task (Gregoriou et al., 2009). Frontal locking of spikes to gamma activity in visual cortex encodes the attended location. Interestingly, frontal spike activity occurred ∼10 ms before the maximal excitability in visual cortex. This time delay might correspond to the transmission lag from frontal cortex to V4. Furthermore, the authors applied Granger causality analysis to study the directional coupling between PFC and V4. They showed that during the early stage of the task, when attention must to be shifted to a relevant location, frontal cortex initiated the oscillatory coupling across PFC and V4. Enhanced phase locking to gamma rhythm in V4 during the attention task was restricted to visual processing neurons, and did not include V4 neurons representing aspects such as visuo-movement or movement (Gregoriou et al., 2012). Of note, the gamma coherence between two distant brain regions may have an artifactual origin. It has been proposed that gamma coherence might reflect the coupling of two phase-locked network oscillations as well as the co-modulating effect of an upstream network common to both recorded networks (Buzsáki and Schomburg, 2015).

According to a largely accepted hypothesis, the PFC selectively facilitates the selection of task relevant information and enhances the representation of attended stimuli in primary sensory cortices (Baluch and Itti, 2011). To address this, Ardid et al. (2010) built a simulated model with weak coupling between two networks resembling a low-level sensory and a high-level brain area (Ardid et al., 2010). Enhanced gamma coupling between these two regions heavily influenced the synchronization between specific neurons encoding attended features across the areas. The results support the idea that inter-areal LFP coupling between PFC and primary sensory cortex selectively facilitates the communication between neurons encoding attention-related information. Several lines of evidence support the hypothesis that the top-down prefrontal signal effectively influences sensory processing in primary cortices. For instance, top-down attention affects V1 processing by enhancing the firing rate of neurons representing the attended stimulus (Treue and Trujillo, 1999; Bichot et al., 2005) and reducing the variability of inter-neuronal correlation (Cohen and Maunsell, 2009; Mitchell et al., 2009; Herrero et al., 2013). The reduced variability of correlation among neurons improves the signal-to-noise ratio for attention-relevant information and promotes efficient coding of attended features. Consequently, the signal-to-noise ratio improves (Cohen and Maunsell, 2009; Mitchell et al., 2009). Moreover, top-down attention modulates local oscillatory activity of primary sensory cortices in a frequency-specific manner (Gregoriou et al., 2015). For example, during attentional selection, neurons in visual and frontal areas encoding the attended location or feature synchronize their activity in gamma frequency (30–60 Hz) range (Tallon-Baudry et al., 2004; Bichot et al., 2005; Fries, 2005; Kreiter et al., 2005; Fries et al., 2008; Gregoriou et al., 2009). This might facilitate the propagation of information between these two areas (Salinas and Sejnowski, 2001; Azouz and Gray, 2003; Fries, 2005, 2009). In addition, reduced local alpha-beta oscillatory activity in V2 and V4 during an attention task (Thut et al., 2006; Fries et al., 2008; Siegel et al., 2008; Gregoriou et al., 2009; Buffalo et al., 2011) has been proposed to inhibit distracting inputs (Palva and Palva, 2007; Händel et al., 2011). Top-down attention also modulates the size and position of visual receptive fields, bursting activity, response latency as well as feature tuning of neurons (Murray and Wojciulik, 2004; David et al., 2008).

Investigation of local circuits and synaptic processes provide additional evidence for top-down modulation of cross-modal processing. Zhang et al. (2014) demonstrated that long-range glutamatergic projections from PFC modulate local circuits in V1 (Zhang et al., 2014). Optogenetic activation of prefrontal neurons led to enhanced responses of V1 neurons. Light stimulation of prefrontal axonal terminals in V1 induced center-surround modulation, which increased the response at the activation site, while suppressing the response at a nearby location. Three subtypes of interneurons in local visual circuits were targeted by top-down prefrontal modulation. First, somatostatin-positive interneurons (SOM+) were critical for surround suppression, since they inhibited the response of pyramidal neurons to the prefrontal input within a 200 μm radius. Second, vasoactive intestinal peptide-positive interneurons (VIP+) were crucial for center facilitation in V1 (Fu et al., 2014), mediating the disinhibition of pyramidal neurons. This disinhibition effect was mainly localized at the site of prefrontal axons in V1 and caused the increase of attention-inducing firing rate. Third, parvalbumin-positive (PV+) GABAergic interneurons were required for long distance inhibition, since their inactivation reduced prefrontal axon-induced inhibitory inputs at a distance of 400 μm. Thus, long-range prefrontal projections act through local microcircuits to exert top-down modulation of sensory processing.



THE EMERGENCE OF SENSORY-COGNITIVE INTERPLAY DURING CROSS-MODAL DEVELOPMENT

The brain’s ability to create a coherent perception of the environment by integrating information of various sensory modalities is not present immediately following birth. The development of cross-modal integrative capabilities is a protracted process both in rodents (Ghoshal et al., 2011; Mowery et al., 2016; Hattori and Hensch, 2017) as well as in humans (Scheier et al., 2003; Lewkowicz and Ghazanfar, 2009; Lewkowicz, 2010). This process depends on the alteration and refinement of neural circuitry following uni- and cross-modal sensory experiences.

Cross-modal abilities mature under the influence of intrinsic (i.e., genetic cues) and extrinsic (i.e., environment) factors (Rauschecker et al., 1992; Yu et al., 2010; Frangeul et al., 2016; Moreno-Juan et al., 2017). During embryonic development, molecular cues and genetic programs control the generation, migration, and differentiation of neurons as well as the formation of rudimentary connectivity (Toda et al., 2013; Diao et al., 2018; Telley et al., 2019). At later stages, but before the onset of sensory transduction, spontaneous electrical activity occurring in distinct spatial and temporal patterns refine rudimentary connectivity and facilitate the formation of sensory maps (Galli and Maffei, 1988; Dehorter et al., 2012; Luhmann et al., 2016; Anton-Bolanos et al., 2019). The patterns of spontaneous network activity are conserved across species, and their perturbation causes deficits in network refinement (Huberman et al., 2008). During defined developmental periods (i.e., critical/sensitive periods) the circuits, and later behavioral abilities, are particularly prone to being shaped by experience-dependent electrical activity (Chapman, 2000; Chang and Merzenich, 2003; Pfeiffenberger et al., 2006; Ghoshal et al., 2009; Khazipov et al., 2013). The patterns of electrical activity are similar in age-matched rodents and humans (Khazipov and Luhmann, 2006).


Development of the Tactile System

By using their highly sensitive whiskers, nocturnal rodents can acquire tactile information and build spatial representations of the environment (Petersen, 2007). Whisker-related inputs are processed in somatotopic maps where each whisker is represented by a discrete anatomical unit (“barrel”). Barrel-like cell aggregates form soon after birth (Jhaveri et al., 1991; Schlaggar and O’Leary, 1994). Early sensory experience is mandatory for the development of somatosensory processing. Neonatal whisker trimming from birth on impairs the dendritic complexity of neurons in the barrel cortex and behavioral performance in the gap-crossing task during adulthood (Carvell and Simons, 1996; Lee et al., 2009). Whisker-dependent exploratory behavior does not develop until the second postnatal week (Welker, 1964; Figures 2A,B). This suggests that prior to experience-dependent plasticity other mechanisms must contribute to the development of somatosensory perception. Transcription factors, such as Gbx2, Mash1, and Pax6 have been reported to be involved in pathfinding of axons from thalamus to S1 (Tuttle et al., 1999; Hevner et al., 2002). In addition, discontinuous electrical activity, which appears within the first two postnatal weeks, shapes the development of topographic organization in S1. Several patterns of neonatal electrical activity have been characterized, such as gamma oscillations, spindle bursts with frequencies in theta-beta range, and long-oscillations (Yang et al., 2009; Minlebaev et al., 2011; Yang et al., 2016). Peripheral inputs are not mandatory for the emergence of these early activity patterns. Gamma oscillations and spindle bursts remain after the peripheral pathways were lesioned (Khazipov et al., 2004; Minlebaev et al., 2011; Yang et al., 2013). Early activity patterns may act as a template for the emergence of cortical topography. For instance, the volume of synchronized neurons during spindle burst activity reflects the anatomical size of the future barrels (Yang et al., 2016). Long oscillations are assumed to synchronize large neuronal networks and boost the formation of functional neuronal ensembles (Yang et al., 2009). With ongoing maturation, rodents start to whisker and early tactile experience further refines the somatosensory circuits.
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FIGURE 2. Schematic diagram displaying the developmental milestones of sensory and limbic development in rodents. (A) Schematic illustration displaying the developmental timeline of sensory development from postnatal day (P) zero onward. (B) Schematic arrows showing the time points (marked by dotted line) of (i) the critical/sensitive period of somatosensory (green), auditory (blue), and visual (red) development, (ii) the onset of unisensory behavior, and (iii) the start of cross-modal modulation. Uni- and cross-modal inputs in the first days of life are hypothesized to drive the development of the limbic system in a bottom-up manner, while bottom-up as well as top-down interactions between the primary sensory cortices and limbic system are present at later stages of development (gray boxes, bottom). (C) Same as (B) for PFC. Time points shown in gray arrow mark developmental milestones of limbic system development.




Development of the Auditory System

Similar to tactile development, the maturation of auditory pathways containing orderly representations of frequency selectivity involves both molecular cues and spontaneous electrical activity. For example, neurotrophins such as BDNF and NT-3, ephrins (Ernfors et al., 1992; Hossain et al., 2008) and semaphorins (Gu et al., 2003; Webber and Raz, 2006) have been reported to guide auditory innervation. Spontaneous electrical activity further refines and maintains the tonotopic architecture set by molecular cues (Wang and Bergles, 2015). In rodents, the ability to respond to acoustic stimuli emerges around postnatal (P) day 12 (Uziel et al., 1981; Kelly, 1992; Figures 2A,B). Experience-dependent activity then promotes the fine-tuning of auditory networks (Friauf and Lohmann, 1999). Before this age, environmental factors regulate the maturation of auditory processes. For example, early interactions with the mother modulate the maturation of the auditory system in pups (Cárdenas et al., 2015). Auditory reflexes in pups were accelerated when the mothers were reared in an enriched environment during gestation. Moreover, exposure to frequency-enriched acoustic environments during the first 14 days after birth significantly decreased the threshold of auditory responses in a frequency-specific manner (Chang et al., 2018). Rearing in a disturbed acoustic environment impairs the development of the auditory system (Zhang et al., 2002; Chang and Merzenich, 2003; Nakahara et al., 2004; Speechley et al., 2007). Early noise exposure induced permanent structural changes in the rat auditory system (Ouda et al., 2016). Rat pups exposed to trains of 5 kHz pure tones showed larger regions of auditory cortex tuned to 5 kHz at adulthood (Han et al., 2007). Thus, over-representations of certain frequencies during early development likely reduces auditory discrimination.



Development of the Visual System

Rodents are born blind. The retina starts to be light-sensitive during the second postnatal week, and shortly after that, the eyelids open (Figures 2A,B; Sernagor, 2005). From birth on, axonal projections from the lateral geniculate nucleus (LGN) target cells in the granular layers of V1 leading to the initiation of cortical topographical organization. During early development, when the retina is light-insensitive, bursts of action potentials (i.e., retinal waves) emerge under the control of the cholinergic system (Brombas et al., 2017) and propagate across the retina (Wong et al., 1993). These retinal waves are transmitted via the optic nerve to the LGN and finally to V1, where they boost cortical spindle bursts (Hanganu et al., 2006). At each developmental stage of V1, retinal waves differ in their properties, thereby instructing the development of visual feature processing mechanisms (Huberman et al., 2008).

With the onset of light sensitivity, visual experience shapes the cortical topography (Smith and Trachtenberg, 2007). In cats, monocular visual deprivation led to a size reduction of columns corresponding to the sutured eye, whereas columns corresponding to the non-deprived eye expanded (Hubel et al., 1977; Le Vay et al., 1980). Visual deprivation during the sensitive period leads to alterations in thalamo-cortical connectivity (Fox and Wong, 2005; Hofer et al., 2008) and as a consequence alters the input organization from both eyes (Espinosa and Stryker, 2012). Experience has been shown to control the tuning of V1 neurons to stimulus orientation and direction (Hubel and Wiesel, 1962; Weliky et al., 1996). Thus, even though coarse orientation selectivity emerges under the influence of experience-independent neuronal activity (White et al., 2001), high-level orientation selectivity appears only in the presence of visual inputs (Chapman and Stryker, 1993). In contrast, neither molecular cues nor spontaneous activity, but visual experience seems to be required for tuning V1 neurons to stimulus direction (Li et al., 2006).



External Inputs Controlling the Development of Cross-Modal Processing in Rodent Primary Sensory Cortex

While a wealth of studies documented the relevance of early electrical activity for the maturation of topographic organization, few studies addressed the mechanisms of cross-modal development in primary sensory cortices. One key question is whether perturbing unisensory development – even prior to full responsiveness of all stimulus-related sensory modalities – has long-lasting consequences for the development of cross-modal processing. It appears that cross-modal development requires a certain level of unisensory maturity (Ghoshal et al., 2011; Sieben et al., 2015). For instance, Sieben et al. (2015) showed that tactile deprivation shortly after birth (P0-5) causes abnormal visual-tactile cross-modal processing later in life. Furthermore, it has been shown that the power and phase of neuronal activity were modulated by cross-modal stimuli of juvenile rats with only minimal cross-modal experience (i.e., closed eye lids, but light-sensitive retina and tactile sensation in P14-16 rats) (Bieler et al., 2017a). Thus, network interactions ensuring cross-modal processing emerge before cross-modal experience and refine during juvenile development (Figure 2B).



Development of the PFC

As previously mentioned, the PFC is involved in memory, attention, and decision-making (Miller, 2000; Vertes, 2006). In addition, it is considered to act as a hub of cross-modal processing (Fuster et al., 2000; Nieder, 2017). Overall, the PFC follows the developmental milestones described for primary sensory cortices. Early patterns of oscillatory activity are highly discontinuous and temporally fragmented (Brockmann et al., 2011), yet they emerge a few days later when compared with V1 or S1. Moreover, the maturation of the PFC is remarkably prolonged when compared to other cortical areas (Leipsic, 1901; van Eden and Uylings, 1985). The prefrontal cytoarchitecture and correspondingly, the executive and mnemonic abilities, are not fully developed until adolescence (van Eden and Uylings, 1985).

The functional development of PFC seems to be controlled by activity in the intermediate/ventral hippocampus (HP). Hippocampal theta bursts emerging a few days before prefrontal spindle bursts, drive the generation of neonatal prefrontal oscillations by phase-locking the neuronal firing via axonal pathways (Brockmann et al., 2011). Remarkably, the early entrainment of prefrontal-hippocampal networks is critical for the mnemonic ontogeny at juvenile stage (Krüger et al., 2012). During later development (∼P10), the oscillatory activity in both PFC and hippocampus switches from discontinuous bursts to continuous theta-gamma oscillations. This switch occurs almost simultaneously in the prefrontal and primary sensory cortices (Colonnese and Khazipov, 2010).



Sensory-Cognitive Interactions During Development

As outlined in sections “Development of the Tactile System,” “Development of the Auditory System,” and “Development of the Visual System,” early endogenous and sensory-driven activity patterns contribute to the development and refinement of neuronal networks (Hanganu et al., 2006; Minlebaev et al., 2009; Yang et al., 2009; Yang et al., 2013). Perturbing sensory inputs during critical/sensitive periods of development has profound effects on the neuronal activity and its underlying anatomical connectivity, and thus affects behavior (Fagiolini et al., 1994; Carvell and Simons, 1996; Erzurumlu and Gaspar, 2012; Levelt and Hubener, 2012; Kral, 2013).

Perturbation of a sensory input leads to anatomical and functional modifications in the remaining sensory systems. As a consequence, neurons adaptively reorganize to integrate the function of other sensory systems, in a process termed cross-modal plasticity (Bavelier and Neville, 2002; Lee and Whitt, 2015). Cross-modal plasticity alters perceptual abilities. For example, several studies have shown that bilateral lid suture or enucleation impairs orientation and direction selectivity of V1 neurons, but enhances the processing of auditory and somatosensory inputs in V1 (Rauschecker et al., 1992; Rauschecker and Kniepert, 1994; Yaka et al., 2000; Izraeli et al., 2002). Similar cross-modal activation patterns after sensory deprivation have been observed in other primary sensory cortices (Goel et al., 2006; Hunt et al., 2006; Lee and Whitt, 2015; Meng et al., 2015).

Recently, the effects of non-visual inputs on experience-dependent plasticity in V1 during early postnatal development have been investigated (Hattori and Hensch, 2017; Figure 2B). Concurrent visual-auditory inputs impaired the development of orientation selectivity of V1 neurons if they occurred before or after the critical period. However, the effect was dampened if cross-modal visual-auditory stimuli occurred during the critical period. The authors suggest that this effect is likely caused by a sound-driven balance of suppression and enhancement of V1 spiking activity, which is required for the tuning and consolidation of visual selectivity. Similarly, it has been shown that the onset of visual experience controls the development of auditory processing (Mowery et al., 2016). In particular, the critical period of auditory development was precociously closed by early eyelid opening and extended by delayed eyelid opening (Figure 2B).

Few experimental data have documented the impact of altering the functional anatomy and neuronal activity of primary sensory cortices on the development of PFC (Kolb and Gibb, 2015). It has been shown that sensory deprivation increases the density of interneurons in PFC (Ueno et al., 2015). This is in line with findings from primary visual cortex where the laminar distribution of PV+ neurons is altered following enucleation (Desgent et al., 2010). Overall, a mechanistic understanding of the effects of sensory deprivation on the bidirectional communication between primary sensory cortices and PFC is currently lacking.

As discussed in section “External Inputs Controlling the Development of Cross-Modal Processing in Rodent Primary Sensory Cortex,” perturbations of unisensory development prior to full maturation of all unisensory systems has long-lasting consequences for the development of cross-modal processing abilities (Ghoshal et al., 2011; Sieben et al., 2015). Notably, during the sensitive period of tactile development, the functional maturation of the PFC is boosted by the excitatory drive from the hippocampus (Brockmann et al., 2011; Bitzenhofer et al., 2017; Ahlbeck et al., 2018; Figure 2C). However, it is largely unknown how early sensory development affects the maturation of the limbic system. Several studies have shown that sensory experience is important for synaptic pruning during PFC development (Schanberg and Field, 1987; Richards et al., 2012). For example, raising rodents in a tactile-enriched environment from birth on increases the prefrontal spine density and improves the performance in PFC-dependent tasks at adulthood. The increased dendritic branching and spine density in PFC (Kolb et al., 2012; Kolb and Gibb, 2015) argue for significant plastic changes occurring when experiencing a sensory enriched environment. Thus, sensory-driven activity might directly impact the maturation of the limbic system.

Early electrical activity in sensory and limbic circuits may facilitate the network development required for their communication (Mohns and Blumberg, 2008). Neocortical spindle bursts are induced by proprioceptive feedback which is initiated by twitches of the distal limbs (Khazipov et al., 2004). These spindle bursts drive the activation of CA1 neurons and critically depend on neocortical-hippocampal interactions (Mohns and Blumberg, 2010). Since myoclonic movements induce bursts of activity in the medial entorhinal cortex, which in turn drives hippocampal responses, it has been suggested that entorhinal-hippocampal interactions are part of a large-scale bottom-up circuit activated during neonatal movements (Valeeva et al., 2019). While the impact of somatosensory processing on limbic system development began to be elucidated, it is currently unknown whether similar bottom-up interactions exist for other sensory systems. Similarly, the impact of top-down PFC activity on early sensory development and its importance for adult cross-modal processing capabilities are still unknown.



ANIMAL AND HUMAN RESEARCH AS BACKGROUND FOR BRAIN-INSPIRED INTELLIGENT ROBOTICS

Neuroscientific insights can be harnessed to build adaptive and intelligent machines. Given recent advances in calcium (Ca2+) imaging using genetically encoded Ca2+ indicators and in the use of optogenetic tools for causal manipulation of neural circuits (Fenno et al., 2011; Grienberger and Konnerth, 2012), current and future research can provide a plethora of insights into the neuronal computations of cross-modal processing. Based on brain-like neural architectures and biologically plausible learning mechanisms (Pitti et al., 2009), computer implementations can create robot perception and action (Floreano et al., 2014). The field of robotics is one of the most dynamic areas of technological development (Zhang B. et al., 2016), and robots performing very specific tasks are increasingly found in industry, service, and medicine. A growing field is also the interplay between robotics and neuroscience. For instance, equipping cognitive robots with the ability to process and integrate cross-modal information streams ensures that they will interact with the environment more efficiently, even under conditions of sensory uncertainty (Parisi et al., 2019). Similarly, developmental robotics, which is motivated by human cognitive and behavioral development, aims to provide a better understanding of the development of cognitive processes using robots with rich sensory and motor capabilities as testing platforms (Breazeal and Scassellati, 2002; Lungarella et al., 2003; Prince, 2008; Cangelosi and Schlesinger, 2015, 2018).

As outlined above, low-level sensory and high-level neural networks accounting for cognitive processing interact in a bottom-up and top-down manner to create a coherent perception of the multisensory environment. Similarly, bottom-up and top-down processing underlying the integration of multipleisensory information streams play a crucial role in the development of autonomous agents and cognitive robots. However, these two research streams often developed independently. Closer interactions between them appear mutually beneficial for several reasons. First, biological inspiration for the modeling of bottom-up cross-modal processing in robots is of crucial interest in order to endow agents with improved robustness, flexibility and performance, particularly in the case of uncertain, ambiguous or incongruent cross-modal inputs (Parisi et al., 2019). For example, biological inspiration has played a major role in the field of odor-guided navigation (Russell, 2001). Bailey et al. (2005) developed a robot with multisensory processing capabilities, and in particular stellar odor-tracking performance similar to that found in animals, in order to locate the source of chemical plumes (Bailey et al., 2005). Barsky et al. (2019) applied a deep learning method to combine disparate sensory inputs, such as auditory and visual information. Cross-modal processing facilitated the learning of a humanoid drumming robot to generate suitable motion sequences to match desired unseen audio or video sequences (Barsky et al., 2019). Axenie et al. (2016) proposed a novel audio-visual sensory processing architecture for robust multisensory fusion in robotic systems, which is inspired by the distributed macro-architecture of the mammalian cortex (Axenie et al., 2016).

Second, biological inspiration for the modeling of top-down cross-modal processing in robots is mandatory for autonomous agents and cognitive robots to develop perception through active groping. Fujimoto et al. (2009) developed a robot being able to pick up dishes based on active groping. The robot roughly formulated a strategy for selecting dishes placed close to each other. Subsequently, by actively acquiring the geometric information of the dishes during the implementation of the strategy, the robot was able to efficiently complete the task (Fujimoto et al., 2009). Inoue (1971) developed a robot to search for a block by actively moving the hand along a predefined track and detecting contact with items using touch sensors (Inoue, 1971). Maekawa et al. (1992) developed a finger-shaped tactile sensor which could reconstruct the shape of an object by actively moving along a predefined grid and detecting the position and direction of contact by using sensors (Maekawa et al., 1992). These studies demonstrate that robots have the capability to progressively learn in an ever-changing multisensory environment by means of self-exploration and social interaction.

However, robots are still limited in their dynamic movements, emotional perception and adaptive interactions with humans, and this drawback limits their application (Wiese et al., 2017; Cross et al., 2019). To overcome this challenge, brain-inspired intelligent robotics may equip systems with advanced human-like cognitive abilities such as improved multisensory processing and learning capabilities by mimicking the structures and mechanisms underlying sensory-cognitive processing (section “Sensory-Cognitive Interplay During Cross-Modal Processing”). In fact, multisensory perception has been named as one of the key sensory-cognitive functions in order for cognitive robots to thrive in a complex and dynamic environment (Zhang B. et al., 2016). A lack of multisensory perceptive capabilities, makes it more sophisticated to acquire other cognitive computations and to function autonomously. Continuous learning of robotic systems is crucial, because internal models of the multisensory world must be acquired and adapted throughout development in order for multisensory processing capabilities to emerge (section “The Emergence of Sensory-Cognitive Interplay During Cross-Modal Development”) (Rohlf et al., 2017). Recent endeavors led to the creation of an open source humanoid called NICO (Neuro- Inspired COmpanion), which due to its flexible design and open and modular hardware and software framework can adapt to individual experimental set-ups and opens the door to multimodal human-robot interaction research with the aim of developing autonomous agents and cognitive robots (Kerzel et al., 2017).



CONCLUSION AND FUTURE LINES OF RESEARCH

It has been hypothesized that the bottom-up sensory drive contributes to establishing neuronal circuits in the limbic system during early development (Mohns and Blumberg, 2008). At adulthood, the interaction between low-level sensory and high-level limbic areas enables cross-modal perceptual decision-making. Cross-modal representations are transferred from primary sensory cortices to PFC in a bottom-up manner, and the representation of an attended stimulus in primary sensory cortices is selectively enhanced by top-down prefrontal modulation (Bizley et al., 2016). However, the interactions between primary sensory cortices and PFC during bottom-up/top-down cross-modal processing have been poorly characterized. To this end, techniques that specifically manipulate neuronal pathways between PFC and primary sensory cortices are necessary. Relying on recent advances in optogenetic terminal field excitation/inhibition, selectively illuminating axon terminals originating from PFC and targeting primary sensory cortices, would allow for the manipulation of the direct pathways between PFC and primary sensory cortices. This pathway-specific targeting will link function and connectivity underlying cross-modal processing within sensory-limbic circuits.
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Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.
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1. INTRODUCTION

“The art of being wise is knowing what to overlook.”

–William James, 1842-1910.

The real world is complex, uncertain and rich in dynamic ambiguous stimuli. Detecting sudden changes in the environment is significant for organisms to survive because these events need prompt identification and response (Todd and Van Gelder, 1979). Considering the limited capacity for processing information, selective attention is like a filter with the ability to remove unwanted or irrelevant information and thus optimizes a human's action to achieve the current goal (Desimone and Duncan, 1995). It is crucial as well for intelligent agents to integrate and utilize external and internal information efficiently and to reach a signal-to-noise ratio as high as humans can (signal detection theory, SDT) (Green and Swets, 1966; Swets, 2014).

Selective attention is involved in the majority of mental activities, and it is used to control our awareness of the internal mind and the outside world. Selective attention also helps to integrate information from multidimensional and multimodal inputs (Talsma et al., 2010). Empirical research shows that stimuli with multimodal properties are more salient than unimodal stimuli; therefore, selective attention is more easily captured by multimodal inputs to promote further processing (Van der Burg et al., 2008, 2009). Selective attention is predominantly categorized by psychologists and neuroscientists into “endogenous” and “exogenous” attention. Endogenous attention helps to allocate limited cognitive resources to the current task (Posner and Snyder, 1975; Corbetta and Shulman, 2002; Styles, 2006). The metaphor for this process is described as directing a spotlight in a dark room. Such a process helps us, for instance, to search for one specific email only by glimpsing the crammed email box. However, the action can sometimes be interrupted by attractive advertisements or breaking news on a website. This latter kind of orienting attention is called exogenous attention which is usually caused by an unexpected change in the environment. It is considered to be instinctive and spontaneous and often results in a reflexive saccade (Smith et al., 2004; Styles, 2006). Another point of view distinguishes between “covert” and “overt” orienting attention: covert attention can attend events or objects with the absence of eyes movement, while overt attention guides the fovea to the stimulus directly with eyes or head movements (Posner, 1980). This is because covert attention requires inhibition of saccades to sustain fixation, which is not needed during overt attention (Kulke et al., 2016). Analogously, covert and overt mechanisms exist in the auditory system. Since humans cannot move ears like eyes, the difference between these two mechanisms is that covert auditory attention can govern attention without any motion, while overt auditory attention attends to sound sources with head movements (Kondo et al., 2012; Morillon and Baillet, 2017). Head movements contribute to sound localization during overt auditory attention (Wallach, 1940; Perrett and Noble, 1997).

To understand the mechanisms underlying selective attention is helpful for computational models of selective attention for different purposes and requirements (Das et al., 2017). Attention models have been proposed and applied in computer science for decades, and attention mechanisms have achieved high performance in sequence modeling (Vaswani et al., 2017; Peng et al., 2019). Bio-inspired implementations of attention in computer science address the limited computation capacity of machines through assigning computational resources by priority (Xu et al., 2015). However, gaps exist between computational models and theories of human selective attention. Some theories are metaphysical and mystifying, especially for readers that lack experience in humans' behavioral and neural studies. Frintrop et al. (2010) published a survey about computational visual systems with an extensive description of the concepts, theories and neural pathways of visual attention mechanisms. It is stated that “the interdisciplinarity of the topic holds not only benefits but also difficulties: concepts of other fields are usually hard to access due to differences in vocabulary and lack of knowledge of the relevant literature” (p. 1). These interdisciplinary challenges are still unsolved thus far. Additionally, the development and application of technical measurements and methods like functional magnetic resonance imaging (fMRI), Magnetoencephalography (MEG), and state-of-the-art artificial neural networks (ANN) and deep learning (DL) open up a new window for studies on humans, primates, and robots. Such new findings should be valuated and integrated into the current framework.

Although there are several review articles on selective attention in the field of both psychology and computer science (Shinn-Cunningham, 2008; Frintrop et al., 2010; Lee and Choo, 2013), most of them only focus either on a single modality or on general crossmodal processing (Lahat et al., 2015; Ramachandram and Taylor, 2017). However, it is essential to combine and compare selective attention mechanisms from different modalities together to provide an integrated framework with similarities and differences among various modalities. In the current review, firstly, we aim to integrate selective attention concepts, theories, behavioral, and neural mechanisms studied by the unimodal and crossmodal experiment designs. Secondly, we aim to deepen the understanding of the interdisciplinary work in multisensory integration and crossmodal learning mechanisms in psychology and computer science. Thirdly, we aim to bridge the gap between humans' behavioral and neural patterns and intelligent system simulation to provide theoretical and practical benefits to both fields.

The current review is organized into the following parts. Section 2 is about the existing mainstream attention theories and models based on human experimental findings and attention mechanisms in computer science. Section 3 summarizes human visual selective attention studies and introduces the modeling work in computer science inspired by psychology. Section 4 describes results on less studied auditory selective attention and the corresponding modeling work. Section 5 reviews mechanisms and models about crossmodal selective attention and state-of-the-art approaches in intelligent systems. Here, to provide focus, we select the most representative phenomena and effects in psychology: Pop-out Effect (visual attention), Cocktail Party Effect (auditory attention), and audiovisual crossmodal integration and conflict resolution (crossmodal attention). Since these effects are also well-established and often simulated in computer science, we highlight the classic and latest work. Finally, we discuss the current limitations and the future trends of utilization and implications of human selective attention models in artificial intelligence.



2. DIFFERENT THEORIES AND MODELS OF SELECTIVE ATTENTION


2.1. Classic Bottom-Up and Top-Down Control vs. Priority Map Theory

The mainstream view of selective attention proposes that there exist two complementary pathways in the brain cortex, the dorsal and ventral systems. The former, which includes parts of the intraparietal sulcus (IPS) and frontal eye field (FEF), is in charge of the top-down process guided by goals or expectations. The latter, which involves the ventral frontal cortex (VFC) and right temporoparietal junction (TPJ), is in charge of the bottom-up process triggered by sensory inputs or salient and unexpected stimuli without any high-level feedback. When novelty is perceived, the connection between the TPJ and IPS plays the role of cutting off continuous top-down control (Corbetta and Shulman, 2002) (see Figure 1A). The classic bottom-up and top-down control theory can explain many cases in selective attention, and a lot of computational models are based on this simple theoretical structure (Fang et al., 2011; Mahdi et al., 2019). However, in some cases, stimuli that are not relevant to the current goal, and that do not have any salient physical features can also capture attention. For instance, Anderson et al. (2011) let participants do a visual search task in the training phase to determine the direction of a line segment inside of a target. One target is associated with a high reward compared with other targets. During the test phase, that target only appears as a shape without any reward property. Participants show significantly longer reaction times doing the visual search among conditions with this foregoing high-value distractor, suggesting their attention is still captured by these goal-irrelevant stimuli. Other research finds that emotional information can also increase the salience (Vuilleumier, 2005; Pessoa and Adolphs, 2010) to capture attention. Thus, beyond the classical theoretical dichotomy, the priority map theory remedies the explanatory gap between goal-driven attentional control and stimulus-driven selection by adding the past selection history to explain selection biases (Awh et al., 2012). Here, selection history means the attention bias to stimuli that have been shown in the previous context. This bias could be irrelevant or in conflict with the current goal, so selection history should be independent of top-down or goal-driven control. In general, these two theoretical frameworks are both helpful to explain most behavioral cases of selective attention.


[image: Figure 1]
FIGURE 1. (A) Neuroanatomical model of bottom-up and top-down attentional processing in the visual cortex. The dorsal system (green) executes the top-down attentional control. FEF, frontal eye field; IPS, intraparietal sulcus. The ventral system (red) executes the bottom-up processing. VFC, ventral frontal cortex; TPJ, temporoparietal junction (adapted from Corbetta and Shulman, 2002); (B) Cortical oscillation model of attentional control in visual and auditory sensory areas. The posterior medial frontal cortex (pMFC) modulates selective attention by the excitation of task-relevant processing and the inhibition of task-irrelevant processing. Theta oscillations facilitate the communication between the pMFC and lateral prefrontal cortex (LPFC) (purple arrow). Gamma oscillations and alpha oscillations are promoted in task-relevant and task-irrelevant cortical areas, respectively (gray arrows) (adapted from Clayton et al., 2015).




2.2. Functional Neural Networks Model

The Functional neural networks model separates attention into clear sub-components. Fan and Posner designed the Attentional Network Test (ANT) by combining the classic Flanker task and Posner cueing task to provide a quantitative measurement for studying the sub-components: alerting, orienting, and executive control (Fan et al., 2002, 2005; Fan and Posner, 2004). The component of the alerting network increases the focus on the potential stimuli of interest, and anatomical mechanisms of alerting are correlated with the thalamic, frontal, and parietal regions. The orienting function is responsible for selecting task-related or survival-related information from all the sensory inputs. The orienting network also determines an attention shift between exogenous attention engagement (bottom-up) and endogenous attention disengagement (top-down). Orienting is associated with the superior parietal lobe (SPL), TPJ, and frontal eye fields (FEF). The executive control component of attention plays a dominant role in planning, decision-making, conflict detection and resolution. The anterior cingulate cortex (ACC) and lateral prefrontal cortical regions are involved in the executive control component (Benes, 2000). During the ANT, participants are asked to determine the direction of the central arrow above or below the fixation. The central arrow is acommpanied by congruent or incongruent flankers. In neutral conditions, the central arrow has no flankers. There are four cue conditions: no cue, center cue, double cue, and spatial cue. Effects are calculated by subtracting participants' reaction time (RT) under two different conditions: the alerting effect = RT (no-cue) - RT (double-cue); the orienting effect = RT (center cue) - RT (spatial cue); the executive control effect = RT (incongruent flanking) - RT (congruent flanking) (Fan et al., 2002). Clinical studies using the ANT can explore specific differences of cognitive performance between patients and healthy participants (Urbanek et al., 2010; Togo et al., 2015). For example, Johnson et al. (2008) used the ANT to test children with attention deficit hyperactivity disorder (ADHD) and found that they show deficits in the alerting and executive control networks but not in the orienting network. The model and findings arising from the ANT could serve to provide useful interventions for clinical treatment.



2.3. Neural Oscillation Model

Neural oscillations characterize the electrical activity of a population of neurons (Musall et al., 2012). Synchronization of oscillations is the coordination of firing patterns of groups of neurons from different brain areas (Varela et al., 2001). In contrast, the desynchronization of oscillations is the inhibition of neuron activities with opposite phases. Attention is correlated with synchronization and desynchronization of specific cortical neural oscillations. Clayton et al. (2015) propose a gamma-theta power-phase coupling model of attention and point out that attention is selectively adjusted via the excitation of task-relevant processes and the inhibition of task-irrelevant processes (see Figure 1B). The excitation of task-relevant processes is controlled by frontomedial theta (fm-theta) power (4–8 Hz) from the posterior medial frontal cortex (pMFC) to the lateral prefrontal cortex (LPFC). Among the communication between LPFC and excited sensory areas, gamma power (>30 Hz) is associated with the excitation of the task-relevant processes. The inhibition of task-irrelevant processes is linked with alpha power (8–14 Hz). The pMFC deploys the crucial inhibition processing by controlling the default mode network [posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC)] via the alpha oscillation. The limitation of the model is that the results obtained and presented across different brain regions are mainly correlations and descriptive results rather than causal relationships. Besides, most of the empirical evidence for the model was obtained by visual tasks instead of other modalities. Nevertheless, this gamma-theta power-phase coupling model shows interpretative neural pathways of the neural oscillation of selective attention.



2.4. Free-Energy Model and Information Theory

The free-energy model explains attention from a hierarchical inference perspective (Friston, 2009; Feldman and Friston, 2010). The gist of the model is that the stimuli in the living environment can be viewed as sensory inputs, surprise or uncertainty which can increase the entropy of the human brain. Our brains have a tendency to maintain the information order to minimize the energy cost caused by surprise. In doing so, perception brings about the sensory inputs, and attention infers the consequence caused by the inputs to adjust action and control the entropy growth.

Corresponding to the free-energy model, Fan's review (Fan, 2014) tries to combine the information theory and experimental neural findings to explain the top-down mechanisms of humans' cognition control (the hub of the cognition capacity) and selective attention. Inspired by the free-energy view, Fan points out that cognitive control is a high-level uncertainty or entropy reduction mechanism instead of a low-level automatic information perception. According to Shannon's information theory (Shannon, 1948), uncertainty can be quantified by entropy, and the rate of entropy is used to calculate the time density of the information transmission through different channels. Performance costs appear during cognitive channel switching. The benefits of the information theory are that attention or other cognitive processes can be quantified, and situations (like incongruent or congruent conditions in conflict processing) can be computed as bits quantitatively. Fan assimilates stimulus types, time frequency of the stimulus presentation, and human reaction time from cognitive psychology experimental tasks into entropy, surprise, and channel capacity. In this theory, if we know the probability of an event or a stimulus condition, we can calculate the surprise value of that condition and infer the information processing rate. For example, studies found that visual attention can select 30–60 bits per glimpse (Verghese and Pelli, 1992) and the upper limit of human information processing is around 50 bps. Under this framework, the anterior insula (AI) and the anterior cingulate cortex (ACC) are associated with processing the uncertain inputs and the frontoparietal cortex plays a ubiquitous role in the active control.

Research from network neuroscience takes a similar viewpoint that the brain is designed to be functioning with the lowest cost (Bullmore and Sporns, 2012; Barbey, 2018). However, the free-energy model and information theory concentrate on top-down control pathways which may fail to explain some bottom-up phenomena. For instance, why can human attention be captured by the salient external stimuli involuntarily? It can cause the rise of the information entropy and be opposite to the hypothesis that the human brain instinctively resists the disorder. Besides, experimental evidence of processing channels is still lacking.



2.5. Attention Mechanisms in Computer Science

Previous models (1980s–2014) mainly use the saliency-based winner-take-all algorithm based on human datasets to mimic humanlike visual or auditory attention (Borji and Itti, 2012; Lee and Choo, 2013). Those models aim to extract the target information from the environment or noisy background. In recent years since 2014, attention mechanisms have been applied to Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long-short Term Memory (LSTM) for sequence modeling work. Attention mechanisms were firstly used in computer vision (Ba et al., 2014) and then became widely used across different domains according to the type of input data, such as object recognition (Hara et al., 2017), image description generation (Xu et al., 2015), speech recognition (Chorowski et al., 2015), machine translation (Luong et al., 2015), video caption generation (Gao L. et al., 2017), sentiment classification (Wang et al., 2016), visual question answering (Li et al., 2018), etc.

Attention mechanisms in computer science can be distinguished as soft and hard attention (Xu et al., 2015), or as global and local attention (Luong et al., 2015). Soft attention is the expectation of selected information in the input attention distribution. For example, there is a translation task to translate one German sentence “Ich komme aus Deutschland” into an English sentence “I come from Germany.” In machine translation, attention scores mean different weights assigned to words in the source sentence (German) according to each word in the target sentence (English). In this example, corresponding to “Germany,” “Deutschland” should be assigned more weights than other words in the source sentence. Soft attention focuses more broadly than hard attention. Hard attention only concentrates on information of the specific location by assigning zero weight to other information (Xu et al., 2015). The concepts of global and local attention vaguely correspond to soft and hard attention, respectively. Recently, an important application is the self-attention mechanism (Vaswani et al., 2017). Different from soft and hard attention, self-attention does not capture features of mapping between source and target but can learn the inherent structure both within the source and target text. In the above example, “from” is more likely to be followed by “Germany.” Self-attention can be applied in each decoder layer of neural networks to achieve distributed processing (Bahdanau et al., 2014). In this way, self-attention shows good performance and efficiency when the input sentence is too long as in machine translation (Luong et al., 2015) or the input image is too large as in computer vision (Peng et al., 2019).

In summary, we conclude in this section that human attention is a process to allocate cognitive resources with different weights according to the priority of the events. Similarly, in computer science, attention mechanisms in models are designed to be allocating different weights to relevant input information and ignore irrelevant information with low-valued weights. However, the connection between computer science models and psychology is still loose and broad. Especially for understanding crossmodal selective attention from a functional view, it is required to explore the human cognition processing from a computational perspective, which is also beneficial for confirming psychological and biological hypotheses in computer science.




3. VISUAL SELECTIVE ATTENTION—“POP-OUT” EFFECT


3.1. Behavioral and Neural Mechanisms of Human Visual Selective Attention

Many systematic reviews in the areas of primate vision and computer vision have introduced the concepts and research findings in visual selective attention (Frintrop et al., 2010; Borji and Itti, 2012; Lee and Choo, 2013). In our current review, we further concentrate in particular on mechanisms of the “pop-out” effect and computational models based on the saliency map. In general, the “pop-out” effect describes saliency processing. Considering that an object is not salient by itself (Itti and Baldi, 2009), the “pop-out” effect usually happens when an object has more salient physical features than other objects in the context, such as location, color, shape, orientation, brightness, etc. (VanRullen, 2003). Saliency can also be extended to affective and social domains, like familiarity, threat, etc. (Fan, 2014). Humans' attention can be immediately captured by salient objects, which can explain why the warning signs on streets are always red and apparent.

Nevertheless, controversy remains about the role of top-down control when a salient stimulus captures attention. Stimulus-driven theory (bottom-up saliency hypothesis) suggests that an abrupt-onset object can automatically capture humans' attention without any intention and be processed faster than other non-onset elements (Yantis and Jonides, 1984; Theeuwes, 1991). To the contrary, the goal-driven theory (Bacon and Egeth, 1994) and the contingent capture hypothesis (Folk et al., 1992) propose that the overlap dimension between stimulus properties and task setting goals is the crucial factor, since it can determine whether the salient stimulus can be captured or not. Experiments show that if the salient stimulus has no task-relevant feature, participants adopt a feature-search mode autonomously to suppress the distraction from the salient stimulus (Bacon and Egeth, 1994).

Hybrid theories attempt to integrate components of both stimulus-driven and goal-driven theories in attention capture. Findings from monkey studies showed that attention selection through biased competition occurred when the target and the distractor were both within the receptive field. Neurons responded primarily to the target, whereas the responses to the distractor were attenuated (Desimone and Duncan, 1995). Subsequently, Mounts (2000) discovered a phenomenon named “surround inhibition.” If a salient stimulus appears near the target, it can be inhibited by top-down control. Later, the signal suppression hypothesis proposed that the salient stimulus automatically generates a salience signal at first and then the signal can be subsequently suppressed, possibly resulting in no attention capture (Sawaki and Luck, 2010; Gaspelin et al., 2015, 2017) (the theories are summarized in Table 1).


Table 1. Main theories of visual selective attention based on various processing pathways.
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Neural findings of humans and primates contribute a lot to understand saliency processing in the primary cortex and subcortex. The saliency map theory (Li, 1999, 2002) suggests that neurons in the primary visual cortex (V1) play a crucial role for the input feature processing during the “pop-out” effect. V1 is the neural foundation of the preattentive process during visual search, and it only responds to stimuli located in the classical receptive fields (CRFs). In this saliency map theory, V1 is considered to define the saliency degree of visual inputs. Various features of the target and context enter into the V1 CRFs at the same time. When features of the target are more significant than the context, the target pops out. The saliency map computes the saliency value for all locations in the CRFs rather than only encoding the target location (Veale et al., 2017). In comparison to the classical feature integration model (Treisman and Gormican, 1988) and Itti's saliency model (Itti and Koch, 2000), the main property of the saliency map theory is that saliency processing is only based on a single general feature selection map rather than using a combination map to bind several individual feature maps together. Furthermore, dominant inputs from V1 convey signals to an evolutionarily old structure in the midbrain—the superior colliculus (SC). Superficial layers of the SC encode saliency representations through center-surround inhibition and transfer the inputs to deep layers to trigger priority selection mechanisms to guide attention and gaze (Stein et al., 2002; Veale et al., 2017; White et al., 2017). There is not only bottom-up processing in the primary visual cortex and SC, but also top-down processing. Within the primary visual cortex, the top-down mechanism is mediated by V2 and the interaction occurs in human V4 (Melloni et al., 2012). Moreover, deep layers of the SC represent goal-related behaviors independent of the visual stimuli (Hafed and Krauzlis, 2008; Hafed et al., 2008; Veale et al., 2017).

The large-scale human brain networks also play important roles in visual selective attention. The salience network (SN), composed of AI (anterior insula) and ACC (anterior cingulate cortex), is considered to be working as the salience filter to accept inputs from the sensory cortex and trigger cognitive control signals to the default mode network (DMN) and central-executive network (CEN). Functions of the SN are mainly about accomplishing the dynamic switch between externally and internally oriented attention (Uddin and Menon, 2009; Menon and Uddin, 2010; Uddin, 2015). Another taxonomic cingulo-opercular network shares a large overlap with the SN, containing the anterior insular/operculum, dorsal anterior cingulate cortex (dACC), and thalamus. The cingulo-opercular network has the highest cortical nicotinic acetylcholine receptor (nACHr) density, which is highly correlated with attention functions (Picard et al., 2013). However, conclusions about functions of the cingulo-opercular network are not consistent. For instance, Sadaghiani and D'Esposito (2014) revealed that the cingulo-opercular network plays a role in staying alert but not in selective attention during visual processing. In sum, the V1 and SC consist of primary cortex-subcortex pathways of saliency processing and attention orienting. The AI and ACC consist of large-scale functional networks of saliency processing, alertness and attention shifting. However, the correlation or interaction between these two pathways remains unclear.

Besides elementary physical salient features, scene regions that contain semantic meaning also proved to play a critical role in attentional guidance (Henderson and Hollingworth, 1999; Wolfe and Horowitz, 2017). Henderson and Hayes (2017) express the spatial distribution of meaning across scenes as meaning maps, which are obtained by participants' ratings of the meaningfulness of scene regions. They encode the meaning maps comparable to the image salience and operationalize the attention distribution to be duration-weighted fixation density. Their work demonstrates that both, salience and meaning, predict attention but only meaning guides attention while viewing real-world scenes. According to the cognitive-relevance theory of attentional guidance, the meaning maps contain more semantic information for the real context. Their updated findings appear to be particularly insightful and practical for artificial intelligence methods for labeling real-world images.



3.2. Computational Models Based on Human Visual Selective Attention

Based on human saccade and fixation research, a vast body of bio-inspired visual attention models has been developed and broadly applied in object segmentation (Gao G. et al., 2017), object recognition (Klein and Frintrop, 2011), image caption generation (Bai and An, 2018), and visual question answering (VQA) (Liu and Milanova, 2018). The visual attention model aims to predict the human eye fixation with minimal errors (Borji and Itti, 2012). Consistent with humans' visual processing pathways, models in visual attention are generally classified based on the bottom-up and top-down streams (Borji and Itti, 2012; Liu and Milanova, 2018). Bottom-up models are successful in modeling low-level and early processing stages (Khaligh-Razavi et al., 2017). The most classic saliency model, which uses features of color, orientation, edge, and intensity, allocates an attention weight to each pixel of the image (Itti et al., 1998; Itti and Koch, 2000) (see Figure 2A). The “winner-take-all” strategy is the core algorithm of saliency models. However, several criticisms on the saliency model cannot be ignored either. For instance, a salient feature is obtained by calculating the difference between input at one location and other input surrounding it so that any spatial discountinuities of features can be detected (Itti et al., 1998). This center-surround scheme is analogous to attention selection via bias competition within the visual receptive fields (Desimone and Duncan, 1995). However, the salient feature obtained by this scheme can only correspond to a small local region of an image scene with higher contrast but not to a whole object or an extended part of it (VanRullen, 2003; Lee and Choo, 2013) (also see Figure 2A).
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FIGURE 2. (A) Visual saliency model. Features are extracted from the input image. The center-surround mechanism and normalization are used to generate the individual feature saliency maps. Finally, the saliency map is generated by a linear combination of different individual saliency maps (adapted from Itti et al., 1998); (B) Auditory saliency model. The structure of the model is similar to the visual saliency model by converting sound inputs into a frequency “intensity image” (adapted from Kayser et al., 2005).


In contrast, high-level task-driven attention models remain to be explored and developed further. Some research predicts human eye fixation with free-viewing scenes based on end-to-end deep learning architectures (Jetley et al., 2016; Kruthiventi et al., 2017; Kummerer et al., 2017). Deep neural networks (DNNs) have sometimes been shown to have better performance than other known models by using top-down processing mechanisms. Especially, DNNs can successfully simulate human-like attention mechanisms (Hanson et al., 2018). Here task-driven components can not only be implemented as targets but also implemented as prior knowledge, motivation, and other types of cues. Furthermore, models like DeepFeat incorporating bottom-up and top-down saliency maps by combining low- and high-level visual factors surpass other individual bottom-up and top-down approaches (Mahdi et al., 2019). Nowadays, computer vision research intends to make models learn the semantic meaning rather than simply classify objects. For instance, image captioning requires models not only to detect objects but also extract relationships between objects (Hinz et al., 2019). Co-saliency tends to be a promising preprocessing step for many high-level visual tasks such as video foreground extraction, image retrieval, and object detection. Because co-saliency implies priorities based on human visual attention, it can detect the most important information among a set of images with a reduced computational demand (Yao et al., 2017). In future research, co-saliency approaches may be combined with the meaning maps of human attention for better image interpretation accuracy.

As the number of interdisciplinary studies keeps increasing, research from psychology and artificial intelligence complement each other deepening the understanding of human visual attention mechanisms and improving the performance of computational models. On the one hand, psychologists interpret humans' behavioral or neural patterns by comparing them with the performance of DNNs. For example, Eckstein et al. (2017) found that human participants often miss giant targets in scenes during visual search but computational models such as Faster R-CNN (Ren et al., 2015), R-FCN (Dai et al., 2016), and YOLO (Redmon and Farhadi, 2017) do not show any similar recognizing failures. Their results suggest that humans use “missing giant targets” as the response strategy to suppress potential distractors immediately. On the other hand, computer scientists interpret features of computational models by comparing their performance with simulations of humans' behaviors. For instance, Hanson et al. (2018) found that the Deep Learning (DL) network rather than the single hidden layer backpropagation neural network can replicate human category learning. This is because hidden layers of the DL network can selectively attend to relevant category features as humans do during category learning.




4. AUDITORY SELECTIVE ATTENTION—COCKTAIL PARTY EFFECT


4.1. Behavioral and Neural Mechanisms of Human Auditory Selective Attention

At a noisy party, a person can concentrate on the target conversation (a top-down process) and easily respond to someone calling his/her name (a bottom-up process). This capability (in a real-life scenario) is named “Cocktail Party Effect” (Cherry, 1953). Auditory information conveys both temporal and spatial features of objects. For instance, we can determine whether water in a kettle is boiling by the special sounds of different heating phases. Auditory scene analysis (ASA) allows the auditory system to perceive and organize sound information from the environment (Bregman, 1994). Since humans cannot close their ears spontaneously to avoid irrelevant information, selective attention is important to segregate the forefront auditory information from a complex background and distinguish meaningful information from noise. Besides, auditory selective attention allows humans to localize sound sources and filter out irrelevant sound information effectively.

In the Cocktail Party problem, energetic masking and informational masking cause ambiguity between the auditory target and noise in the environment. Energetic masking occurs when different sound sources have overlaps in frequency spectra at the same time. The perception and recognition of the target sound can be weakened physically by noise (e.g., the target speech overlaps with a white noise masker). Informational masking occurs when the target and masker voices sound similar (e.g., a target male is speaking while another nontarget male is speaking at the same time). The listener cannot discriminate them perceptually (Brungart, 2001; Lidestam et al., 2014). The neural mechanisms of these two causes are different. Scott et al. (2004) asked participants to listen to a target speaker with added noise (energetic masking) or added speech (informational masking). They found that informational masking was associated with the activation in the bilateral superior temporal gyri (STG) and energetic masking was associated with the activation in the frontoparietal cortex. The activation was correlated with explicit attentional mechanisms but not specifically to the auditory processing.

In accordance with the Gestalt framework, ASA is the solution to the Cocktail Party problem (Bee and Micheyl, 2008). Similar to visual processing, ASA can be separated into two components. The primitive analysis (bottom-up process) and the schema-based processing (top-down process) (Bregman, 1994). In the primitive analysis, auditory signals are separated into independent units and integrated into disparate auditory streams according to sound features and time-frequency. In the schema-based processing, prior knowledge such as language, music, other auditory memory, and endogenous attention helps to compare the auditory input signals with previous experience (Shinn-Cunningham, 2008) (see Figure 3A). In laboratory studies, psychologists adopt the dichotic listening paradigm to mimic the Cocktail Party problem. During the task, participants are asked to attend to the auditory materials presented to one ear and ignore the auditory materials presented to the other ear. Afterwards, participants are asked to report the information from the attended or unattended ear. Previous studies show that a higher working memory capacity (WMC) predicts a better attention focus (Conway et al., 2001; Colflesh and Conway, 2007), because a lower capacity cannot accomplish segregation and grouping of any auditory information well. Those findings are in accordance with the controlled attention theory of working memory (Baddeley et al., 1974).
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FIGURE 3. (A) Auditory selective attention model with interaction between bottom-up processing and top-down modulation. The compound sound enters the bottom-up processing in the form of segregated units and then the units are grouped into streams. After segregation and competition, foreground sound stands out from the background noise. The wider arrow represents the salient object with higher attentional weights. Top-down attention control can modulate processing on each stage (adapted from Bregman, 1994; Shinn-Cunningham, 2008). (B) The “where” and “what” cortical pathways of auditory attention processing. Within the dorsal “where” pathway, the superior frontal gyrus (SFG) and superior parietal (SP) areas activate during sound localization. Within the ventral “what” pathway, inferior frontal gyrus (IFG) and auditory cortex activate to recognize the object (adapted from Alain et al., 2001).


Event-related potential (ERP) N1-P2 components, alpha oscillations, and frequency-following responses (FFRs) disclose how the human brain copes with the Cocktail Party problem (Du et al., 2011; Strauß et al., 2014; Lewald and Getzmann, 2015). The ERP N1 component peaks between 80 and 120 ms after the onset of a stimulus. It is sensitive to the exogenous auditory stimuli features (Michie et al., 1990). N1 (equivalent in MEG is M100) is generated from the primary auditory cortex (A1) around the superior surface of the temporal lobes (Zouridakis et al., 1998). P2 is always observed as the following component of N1. It peaks at around 200 ms after receiving the external stimulus. These early components support the early selection model of auditory attention (Woldorff et al., 1993; Broadbent, 2013; Lee et al., 2014). Alpha oscillations occur in the parietal cortex and other auditory cortical regions during spatial attention. Selective attention modulates alpha power oscillations in temporal synchrony with the sensory input and enhances the neural activity related to attended stimuli. Wöstmann et al. (2016) conducted a MEG study with a dichotic task and revealed that alpha oscillations are synchronized with speech rates and can predict the listener's speech comprehension. Scalp-recorded frequency-following responses (FFRs) are part of auditory brainstem responses (ABR). They are evoked potentials generated from the brainstem area (Mai et al., 2019). FFRs are phase-locked to the envelope or waveform of the low-frequency periodic auditory stimuli (Zhang and Gong, 2019). In the Cocktail Party problem, FFRs encode important features of speech stimuli to enhance the ability to discriminate the target stimuli from the distracting stimuli (Du et al., 2011). In summary, to exert the auditory selective attention, N1-P2 components are involved in perceiving and detecting the auditory stimuli in the early control processing; alpha oscillations and FFRs are mainly modulated by the selective control to accentuate the target and suppressing noise.

Analogous to the specialized streams of visual selective attention, there are “what” and “where” pathways in the auditory cortex (see Figure 3B). The ventral “what” pathway, which involves the anterolateral Heschl' gyrus, anterior superior temporal gyrus, and posterior planum temporale, is in charge of identifying auditory objects. The dorsal “where” pathway, which involves the planum temporale and posterior superior temporal gyrus (pSTG), is in charge of spatially localizing auditory objects. Within the “what” pathway, the supratemporal plane-inferior parietal lobule (STP-IPL) network dynamically modulates auditory selective attention; within the “where” pathway, the medial pSTG shows a higher-level representation of auditory localization by integrating the sound-level and timing features of auditory stimuli (Higgins et al., 2017; Häkkinen and Rinne, 2018). In addition, the “where” pathway is observed to activate around 30ms earlier than the “what” pathway implying that top-down spatial information may modulate the auditory object perception (Alain et al., 2001; Ahveninen et al., 2006). However, current studies find that functional overlaps exist in brain areas under different processing pathways, suggesting that brain areas are not function-specific (Schadwinkel and Gutschalk, 2010; Yin et al., 2014). The observed brain activities are not only stimulus-dependent but also task-dependent (Häkkinen et al., 2015). Besides, a suggested “when” pathway for temporal perception (Lu et al., 2017) deserves to be studied further because the temporal coherence is crucial for binding and segregating features into speech and speaker recognition when attention is engaged. Apart from the paralleled pathways, the distributed processing under different structures may also provide feedback to facilitate the auditory attention (Bizley and Cohen, 2013).

For the Cocktail Party problem, previous neural findings show the attentional selective mechanism occurs in different phases of information processing. Ding and Simon (2012) found that the selective mechanism exists in both top-down modulation and bottom-up adaptation during the Cocktail Party problem. When the unattended speech signals were physically stronger, attended speech could still dominate the posterior auditory cortex responses by the top-down execution. Besides, when the intensity of the target was more than 8dB louder than the background, the bottom-up neural responses only adjusted to the target speaker rather than the background speaker. Golumbic et al. (2013) demonstrate that the selective mechanism happens only in the high-level cortices such as the inferior frontal cortex, anterior and inferior temporal cortex, and IPL. Here, only attended speech was selectively retained. However, in the low-level auditory cortices like the STG, both attended and unattended speech were represented. In addition, one study used functional near-infrared spectroscopy (fNIRS)-hyperscanning and found that the brain-to-brain interpersonal neural synchronization (INS) selectively enhances at the left TPJ only between the listener and the attended speaker but not between the listener and the unattended speaker. The listener's brain activity overtakes the speaker's showing a faster speech prediction by the listener. Besides, the INS increased only for the noisy naturalistic conversations with competing speech but not for the two-person conversation and was only associated with the speech content. Their findings implied that the prediction of the speaker's speech content might play an important role in the Cocktail Party Effect (Dai et al., 2018). In summary, the human brain's auditory processing during the Cocktail Party problem is not hierarchical but heterarchical, which is mainly a bottom-up process aided by top-down modulation (Bregman, 1994). This includes interactions between different pathways and adaptations to the environment (Shinn-Cunningham, 2008; Bizley and Cohen, 2013).



4.2. Computational Models for the Human Cocktail Party Problem Solution

In the future, we may have moving robots offering food and drinks in noisy restaurants by precisely localizing speaking customers. Steps to solve the Cocktail Party problem in computer science can be mainly separated into: speech separation, sound localization, speaker identification, and speech recognition. The aims of acoustic models for the Cocktail Party problem are: identifying multiple speakers and disentangling each speech stream from noisy background. Numerous classical acoustic models are data-driven and based on algorithms of signal processing (Dávila-Chacón et al., 2018). Those models are robust and with good accuracy but lack the prior knowledge, biological plausibility and rely on the large datasets. Currently, models inspired by the human auditory attention system rely on smaller datasets and have shown improved adaptation. In this section, we focus on the following bio-inspired models: (1) computational auditory scene analysis (CASA): neural oscillator models as examples; (2) saliency models; (3) top-down- and bottom-up-based models.

Based on the Gestalt framework (Rock and Palmer, 1990), the goal of most CASA models is to segregate sounds with similar patterns or connections and group them into independent streams from the mixed auditory scene. Stemming from CASA models, neural oscillator models show good adaptation in auditory segregation. Neural oscillator models perform stream segregation based on the oscillatory correlation. Attention interest is modeled as a Gaussian distribution across the attended frequency. The attentional leaky integrator (ALI) consists of the connection weights between oscillators and the attentional process. The synchronized oscillators activate the ALI to separate sounds into streams like the endogenous attention mechanism (Wrigley and Brown, 2004). Furthermore, to make use of the temporal proximity of sound sources, Wang and Chang (2008) propose a two-dimensional (time and frequency) network oscillator model with relaxation oscillators of local excitation and global inhibition (see Locally Excitatory, Globally Inhibitory Oscillator Network, LEGION; Wang and Terman, 1995) (see Figure 4). Analogous to humans' neural oscillations, the local excitation mechanism makes oscillators synchronize when they are stimulated by the same stimuli and the global inhibition has an effect on the whole network to make oscillators desynchronize by different stimuli (Dipoppa et al., 2016). In their model, they use alternating sequences of high- and low-frequency tones as inputs. Tones with similar patterns (e.g., close frequency, onset or offset time) tend to be grouped into the same stream. One stream corresponds to an assembly of synchronized neural oscillators. The oscillator models mimic the human selective attentional control and show good adaptation to separate the multi-tone streams.
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FIGURE 4. Locally Excitatory, Globally Inhibitory Oscillator Network (LEGION) (adapted from Wang and Terman, 1995).


The oscillator models try to mimic the endogenous attentional control while the saliency models try to mimic the exogenous attention. Similar to visual saliency models (see section 3.2), auditory saliency models are built by abstracting features (intensity, frequency contrast, and temporal contrast) from the sound “intensity image,” which is a visual conversion of auditory time-frequency spectrograms and normalized to be an integrated saliency map (Kayser et al., 2005; Kalinli and Narayanan, 2007) (see Figure 2B). Considering that humans and other primate animals can process the pure auditory signals without any visual conversion, Kaya and Elhilali (2012) modify the auditory saliency model by directly extracting the multi-dimensional temporal auditory signal features (envelope, frequency, rate, bandwidth, and pitch) of the auditory scene as input. Their model relies on the selection of parameters to reduce error rates of the saliency determination by fewer features. Several limits exist for developing the auditory saliency models. Firstly, unlike visual attention, acoustic signals are distributed across different frequency bands and time windows. This makes auditory models rely much on temporal features. There is no apparent physical marker for a person to locate sounds compared with eye gaze used in visual saliency models. Secondly, in some cases differences between the saliency of sound streams are not apparent enough for the auditory saliency models to discriminate (e.g., separating one girl's voice from a group of chatting girls). Therefore, more high-level features or top-down modulation could be helpful for a model to indicate the significant sound stream. To integrate both endogenous and exogenous attention in the model, Morissette and Chartier (2015) propose a model by extracting frequency, amplitude, and position as features and connecting them with the oscillator model LEGION. Segments with consistent features are bound into the saliency map according to the temporal correlation. Notably, a module of inhibition-of-return (IOR) is inserted to inhibit attention from fixing at the most salient scene for a long time. This mechanism can achieve the attentional shifting and orientation (Klein, 2000).

Prior knowledge (e.g., memory, prediction, and expectation) also plays a crucial role in human auditory perception, therefore several top-down- and bottom-up-based models integrate the prior knowledge into the data-driven models. Some of them extract acoustic features of the target sound and store them in memory-like modules to mimic humans' long-term memory function as top-down modulation. Oldoni et al. (2013) combine a self-organized map (SOM) of the acoustic features in the bottom-up processing to continuously learn the saliency and novelty of acoustic features. After training, each SOM unit matches up with a representative sound prototype. For the top-down processing, the IOR and LEGION mechanisms are introduced to shift and select attention, respectively. Xu et al. (2015) propose an Auditory Selection framework with Attention and Memory (ASAM). In this model, there is one speech perceptor extracting the voiceprint of speakers and accumulating the voiceprint in a lifelong-learning memory module during the training phase to be the prior knowledge for the model. Later, the learned voiceprint is used to attend and filter the target speech from the sound input to achieve the top-down and bottom-up interaction. The testing performance showed good robustness and adaptation for both top-down (follow a specific conversation) and bottom-up (capture the salient sound or speech) attention tasks.

Shi et al. (2018) propose the Top-Down Auditory model (TDAA) and use the prediction of the target speaker as the top-down modulation. Their model contributes to the auditory scene analysis with multiple unknown speakers. They adopt the Short-Time Fourier Transformation (STFT) and Bidirectional Long-Short Term Memory (BiLSTM) to predict the number of the speakers. Later, the classifier recurrent neural networks (RNN) separate the most salient speaker and iterate until no more speakers can be separated to avoid repeated prediction. Finally, an attention module is used to separate each speaker's spectrum from the spectrum mixture. Besides, binaural models are apt to make use of the spatial localization information to address the Cocktail Party problem. For instance, Ma et al. (2018) train DNNs to localize acoustic features in full 360° azimuth angles. After the training phase, the binaural localization with spectral features is used as prior knowledge in the top-down modulation of the model. Their model serves to predict the speech with different localizations under noisy situations with room reverberation. In summary, those top-down and bottom-up interaction models incorporate mechanisms of processing in the human auditory system. They selectively attend or shift attention to the target speech dynamically rather than only focusing on the stream separation, which can be more adaptive to those uncertain and complex auditory scenarios.




5. AUDIOVISUAL CROSSMODAL SELECTIVE ATTENTION


5.1. Behavioral and Neural Mechanisms of Human Crossmodal Selective Attention

In order to survive in an uncertain and multimodal world, humans develop the ability to integrate and discriminate simultaneous signals from multiple sensory modalities, such as vision, audition, tactile, and olfaction. For example, humans can make use of visual cues like lip movement and body gestures to recognize and localize sounds in noisy circumstances. The crossmodal integration ability is beneficial for humans to localize and perceive objects but can also cause ambiguity. Crossmodal conflicts arise when information from different modalities are incompatible with each other and can result in failures of the crossmodal integration and object recognition. To resolve conflicts, selective attention is required to focus on the task-relevant modality information and to ignore the interference from irrelevant modalities (Veen and Carter, 2006). For humans, the capacity for conflict adaptation plays a crucial role in learning and adapting to the environment. When human toddlers detect any conflict between the current environment and their prior knowledge, they will generate curiosity and be motivated to learn new knowledge or rules (Wu and Miao, 2013). Curiosity is also important for the trial and error learning of robots (Hafez et al., 2019). In this subsection, we mainly talk about behavioral and neural mechanisms of selective attention underlying audiovisual crossmodal integration and conflict resolution.

First, how and when does a crossmodal conflict occur? Previous studies proved that humans tend to integrate visual and auditory stimuli with spatial-temporal linkage into the same object (Senkowski et al., 2008). The “Unity assumption” proposes that when humans believe that the multisensory inputs they perceive are generated from the same source, crossmodal integration occurs (e.g., when students think the speech they hear in the lecture room matches the lip movements of the professor, they believe that the speech is from the professor) (Roseboom et al., 2013). Besides, prior knowledge and experience can generate expectation effects to facilitate object recognition during crossmodal integration. Therefore, when the stimuli from different modalities are spatially (e.g., ventriloquism effect; Choe et al., 1975) or temporally incongruent (e.g., double flash illusion; Roseboom et al., 2013) or contrary to our expectations (e.g., see a cat with a “bark” sound), humans perceive crossmodal conflicts. During the early integration stage, selective attention plays the role of capturing the salient visual and auditory stimuli by bottom-up processing. When conflicts are detected, selective attention executes a top-down modulation from higher-level semantic representations according to the internal goal and relevant modalities. The crossmodal information processing is not only a feed-forward process but also contains backward feedback and recurrent processes, which are important to facilitate the primary sensory processing (Talsma et al., 2010; see Figure 5A).


[image: Figure 5]
FIGURE 5. (A) Human crossmodal integration and attentional control. The black and gray arrows denote the feed-forward bottom-up stimulus saliency processing and the green arrows denote the top-down modulation of attention. The yellow dashed arrows represent the recurrent adjustment (adapted from Talsma et al., 2010); (B) Artificial neural networks of crossmodal integration. The crossmodal integration mechanisms are used to realign the input from visual and auditory modalities (adapted from Parisi et al., 2017, 2018).


Second, which modality dominates when humans are confronted with audiovisual conflicts? Lots of studies have examined the “ventriloquism effect,” which originally refers to the strong visual bias during the sound localization (Thurlow and Jack, 1973; Choe et al., 1975; Warren et al., 1981). Research findings show that this strong modality bias changes through the lifespan of a human (Sloutsky, 2003). Compared to toddlers, adults are more likely to have visual stimuli preferences (Sloutsky, 2003). Some researchers argue that the ventriloquism effect results from an optimal or suboptimal decision-making strategy, especially when unimodal stimuli are blurred. If the auditory stimuli are more reliable than the visual stimuli, an auditory bias occurs as well (Alais and Burr, 2004; Shams and Kim, 2010; Ma, 2012; Roseboom et al., 2013). To sum up, vision in general has a higher spatial resolution than audition, whereas audition has a higher temporal resolution than vision. As the modality appropriateness hypothesis points out, the information from one modality dominates according to the temporal or spatial features of the audiovisual event and the modality with the higher accuracy (Welch and Warren, 1980).

Third, how do humans resolve crossmodal conflicts? In the conflict-monitory theory, the module of conflict monitoring (CM) is activated when conflicts are detected and passes the signal to the executive control (EC) module to accomplish the task-related conflict resolution by the top-down attentional control (Botvinick et al., 2001). From the previous findings, to perceive crossmodal signals and detect crossmodal conflicts, selective attention plays the role of gating crossmodal coupling between sensory function areas in a modality-general fashion (Eimer and Driver, 2001; Mcdonald et al., 2003; Convento et al., 2018). However, to solve crossmodal conflicts, selective attention inclines toward processing in a modality-specific fashion (Yang et al., 2017; Mengotti et al., 2018).

Except for some specific vision and audition processing brain areas, the superior colliculus (SC) is a crucial brain area with multisensory convergence zones from visual and auditory primary cortices to higher-level multisensory areas. As it is mentioned in section 3.1, the SC also implements selective attention by orienting both covert and overt attention toward the salient stimulus and triggers corresponding motor outputs (e.g., eye movements, saccades) (Wallace et al., 1998; Meredith, 2002; Krauzlis et al., 2013). Besides, the superior temporal sulcus (STS), inferior parietal sulcus (IPS), frontal cortex (including premotor and ACC), and posterior insula are involved in the crossmodal processing (for review see Calvert, 2001; Stein and Stanford, 2008). Within the crossmodal brain functional network, the STS plays the role of linking unimodal representations (Hertz and Amedi, 2014). The parietal lobe is thought to process representations of visual, auditory, and crossmodal spatial attention (Farah et al., 1989). However, when audiovisual inputs are incongruent, crossmodal attenuations or deactivations occur (Kuchinsky et al., 2012). To resolve conflicts, as human fMRI studies have shown, the dorsal anterior cingulate cortex (dACC) is responsible for dealing with conflicts between the current goal and irrelevant distractors. The dACC is positively correlated with attention orientation and interference suppression (Weissman et al., 2004). Song et al. (2017) conducted a mice experiment by using a task with audiovisual conflicts, where audition was required to dominate vision. They found that when the conflict occurred, the co-activation of the primary visual and auditory cortices suppressed the response evoked by vision but maintained the response evoked by audition in the posterior parietal cortex (PPC).

Electrophysiological studies have shown the existence of cells that respond to stimulation in more than one modality to accomplish crossmodal integration and conflict resolution. Diehl and Romanski (2014) found that neurons in the ventrolateral prefrontal cortex (VLPFC) of Macaques were bimodal and nonlinear multisensory. When incongruent faces and vocalizations were presented, those neurons showed significant changes with an early suppression and a late enhancement during the stimulus displaying period. Other experimental evidence argues that coherent oscillations across different modality cortices are the key mechanism of the crossmodal interplay (Wang, 2010). An enhancement of the phase locking for the short-latency gamma-band activity (GBA) is found for the attended multisensory stimuli. The early GBA enhancement enables the amplification and integration of crossmodal task-relevant inputs (Senkowski et al., 2008). Incongruent crossmodal inputs cause a stronger gamma-band coherence than congruent inputs suggesting the involvement of gamma oscillations decoupling under crossmodal binding (Misselhorn et al., 2019). Attentional control during the crossmodal integration and conflict resolution is associated with alpha-band effects from the frontoparietal attention network rather than primary sensory cortices. Frontal alpha oscillations are involved in the top-down perceptual regulation; parietal oscillations are involved in the intersensory reorientation (Misselhorn et al., 2019). Reversed to the gamma oscillation patterns, incongruent conditions showed weaker alpha oscillation changes compared to congruent conditions. This gamma-alpha oscillation cycle pattern is proposed to be the information gating mechanism by inhibiting task-irrelevant regions and selectively routing the task-relevant regions (Jensen and Mazaheri, 2010; Bonnefond and Jensen, 2015). In sum, cortical areas that have multimodal convergence zones accomplish crossmodal integration of projections from visual and auditory primary cortices. Neural oscillations coordinate the temporal synchronization between the visual and auditory modality.



5.2. Computational Models Simulating Human Crossmodal Selective Attention

In robotics, crossmodal research focuses mainly on multisensory binding to make robots interact with the environment with higher robustness and accuracy. Compared with unimodal information, crossmodal information is more beneficial to model complex behaviors or achieve high-level functions on artificial systems, such as object detection (Li et al., 2019), scene understanding (Aytar et al., 2017), lip reading (Mroueh et al., 2015; Chung et al., 2017), etc. In psychology, crossmodal research focuses on how crossmodal information helps humans to recognize objects or events by integrating multimodal information and eliminating the crossmodal ambiguity (Calvert, 2001). In computer science, crossmodal research focused on recognizing one modality by using a multimodal dataset or making use of the data from one single modality and retrieve relevant data of other modalities (Skocaj et al., 2012; Wang et al., 2017). However, compared with unimodal, computational modelings based on crossmodal attention remains lacking. In this section, we particularly introduce the undeveloped computational modeling work on selective attention from the audiovisual crossmodal perspective.

Many studies focus on multimodal fusion (Ramachandram and Taylor, 2017), but research about crossmodal selective attention in computer science is limited. Parisi et al. conducted a series of audiovisual crossmodal conflict experiments to explore human selective attention mechanisms in complex scenarios (Parisi et al., 2017, 2018; Fu et al., 2018). During human behavioral tasks, visual and auditory stimuli were presented in an immersive environment. Four loudspeakers were set behind the corresponding positions on a 180-degree screen, where four human-like avatars with visual cues (lip movement or arm movement) were shown. The visual cue and the sound localization could be congruent or incongruent (e.g., the left-most sound with the right-most avatar's lip movement). During each trial, human participants were asked to determine where the sound was coming from. Participants had to pay attention to the sound localization and suppress the attentional capture by any visual stimuli. Analyses of human behavior results showed that even though arm moving was visually more salient than lip moving, humans had higher error rates of the sound localization when viewing lip movement. This suggests that lip moving might contain more speech or semantic information so it is more difficult to be ignored. Besides, the magnitude of the visual bias was also significant when the incongruent AV stimuli were coming from the two avatars at the extreme right and left sides of the screen. This indicated a wider integration window than other simplified scenes. Based on the bio-inspired cortico-collicular architecture, deep and self-organizing neural networks consisting of visual and auditory neuron layers and crossmodal neuron layers were used to learn crossmodal integration and selective attention (see Figure 5B). In this way, human-like responses were modeled and embedded in an iCub robot.

The work above shows that computational models can simulate human selective attention on audiovisual sound localization and semantic association. Due to the limited resources and sensory modules, the future exploration of modeling and simulating the attention module is desirable in crossmodal robotics. Besides, selective attention mechanisms can boost the applicability and accuracy of robots in real human-robot interaction scenarios. Robots can select more reliable modalities and reduce distraction and errors.




6. CONCLUDING REMARKS AND OUTSTANDING QUESTIONS

The current review summarizes experimental findings, theories, and model approaches of audiovisual unimodal and crossmodal selective attention from psychology, neuroscience, and computer science perspective. Currently, psychologists and neural scientists are working toward computational modeling, standardizing, and replication. In parallel, computer scientists are trying to design and make agent systems more intelligent with higher-level cognitive functions, meta-learning abilities, and lower learning costs. Some advantages, unresolved problems, and future directions of collaborative research in psychology, neuroscience, and computer science are summarized as follows:


6.1. How Psychology, Neuroscience, and Computer Science Benefit From Each Other

One the one hand, findings and methods from psychology and neuroscience can interpret and improve models' performance (Hohman et al., 2018). For instance, representational similarity analysis (RSA) is nowadays also used to compare the responses recorded in fMRIs and artificial systems like deep learning CNNs. RSA analyzes the similarity of fMRI responses and brain representations by a set of stimuli (Kriegeskorte et al., 2008). Dwivedi and Roig (2019) found that RSA shows good performance on transfer learning and task taxonomy by computing correlations between the models on certain tasks. On the other hand, the-state-of-the-art approaches offer tools to analyze big data of neural findings. For example, the SyConn framework used deep CNNs and random forest classifiers to accelerate data analyses on animal brains to compute the synaptic wiring of brain areas (Dorkenwald et al., 2017). Another application of computational modeling is examining theories and interpreting mechanisms in human behaviors or neural responses (O'Reilly, 2006). The key idea is to examine crucial cognitive function in hidden layers of the modal. Models can be built to simulate normal behaviors and then mimic the “damage” by changing parameters of sub-units. If the “damage” causes similar abnormal behaviors as psychiatric patients do, the changed units may be the corresponding mechanisms to the behaviors. For instance, Wang and Fan (2007) collected human behavioral data by the ANT and used leabra (local, error-driven, and associative, biologically realistic algorithm) model (O'Reilly, 1998) to explore the potential interaction between each functional network (alerting, orienting, and executive control). Their model successfully simulated healthy human behavior. After changing one parameter of the executive control module, their model could simulate the behavior of schizophrenic patients, suggesting the crucial role of executive control.



6.2. Limits Remain in Current Interdisciplinary Research

Even though we have reviewed and summarized a number of findings from psychology and computer science, lots of unsolved issues of attention processing remain to be disclosed. The simulation work of crossmodal attention and conflict processing is insufficient on robots. Besides, the problem of perceptual constancy has not been deeply addressed in computer science. For humans, it is easy to recognize one object from different perspectives, such as finding an open door in a dim room. Moreover, humans can transfer the intrinsic knowledge to learn and infer new objects or concepts with a small number of learning samples. However, artificial intelligent systems cannot reach humans' performance yet. For example, even though the scale-invariant feature transform (SIFT) algorithm (Lowe, 1999) can extract features from variant shapes of the same object, it cannot recognize the variant objects when only colors exist without any structural patterns. Current deep learning approaches like the VGG net (Simonyan and Zisserman, 2015) has shown better performance on object recognition than traditional approaches. However, such deep networks rely on the training dataset and need substantial computational resources.



6.3. Future Directions for Interdisciplinary Research

There is a lot of potential for psychologists and computer scientists to work together to investigate both human cognition and intelligent systems. On the one hand, psychologists can focus on designing paradigms to diagnose and remedy shortages of current models to improve the model accuracy. Besides, neural studies are still needed to understand human brain mechanisms better. It will be insightful to develop bio-inspired computational models with a better interpretability. On the other hand, for computer science, enhancing the complexity of models to increase the adaptivity and flexibility to the environment is required. At last, to balance the computational complexity and biological plausibility is also crucial, because humans' behavioral patterns are limited by their capacity and energy load, even though the properties of machines will keep improving. In summary, deepening the understanding of each processing mechanism rather than only describing phenomena is the direction for research from both sides to endeavor.
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In perceptual psychology, estimations of visual depth and size under different spatial layouts have been extensively studied. However, research evidence in virtual environments (VE) is relatively lacking. The emergence of human-computer interaction (HCI) and virtual reality (VR) has raised the question of how human operators perform actions based on the estimation of visual properties in VR, especially when the sensory cues associated with the same object are conflicting. We report on an experiment in which participants compared the size of a visual sphere to a haptic sphere, belonging to the same object in a VE. The sizes from the visual and haptic modalities were either identical or conflicting (with visual size being larger than haptic size, or vice versa). We used three standard haptic references (small, medium, and large sizes) and asked participants to compare the visual sizes with the given reference, by method of constant stimuli. Results show a dominant functional priority of the visual size perception. Moreover, observers demonstrated a central tendency effect: over-estimation for smaller haptic sizes but under-estimation for larger haptic sizes. The results are in-line with previous studies in real environments (RE). We discuss the current findings in the framework of adaptation level theory for haptic size reference. This work provides important implications for the optimal design of human-computer interactions when integrating 3D visual-haptic information in a VE.

Keywords: visual, haptic, size, force-feedback, perceptual estimation, peripersonal space, virtual reality


1. INTRODUCTION

During daily operation, haptic inputs (including force feedback) to the human body (e.g., hands), provide a genuine and instant sensory experience for human operators and streamline the intuitive and natural multisensory interaction. During the interaction, sensory information is transmitted and distributed between the sender (the operator) and the receiver (real world). With the recently emergent advances in virtual reality (VR), rich and immersive sensory experiences become possible, such as through our enhanced perception of audiovisual stimuli (Van der Meijden and Schijven, 2009). However, haptic feedback technology is still relatively under-developed in the quest to approximate the genuine sense of “reality.” Moreover, it is still a challenge to touch and manipulate various objects (even with force feedback) in VR as we do in the real world, and psychophysics measurements in this regard are lacking.

To address this problem, sophisticated haptic displays have been designed. A number of those displays (Dataglove, 3DS Touch, http://www.3dsystems.com) offer a convincing haptic sensation in some situations. Stylus-based haptic inputs, externally grounded shape displays (Follmer et al., 2013; Abtahi and Follmer, 2018), wearable (Katzakis et al., 2017), mid-air (McClelland et al., 2017), etc., have an advantage over other solutions in that they do not require the user to carry a heavy device or constantly hold a controller (like a joypad) in their hands. Typically, with the stylus, users can efficiently explore a virtual object through a single point (corresponding to a fingertip).

The potentially wide applications of haptic inputs in VR have been hindered by some practical constraints including higher cost, limited workspace bounds and most importantly, an insufficient understanding of the working principles of crossmodal correspondence between different sensory stimuli and the multisensory integration during the haptic-feedback based operation.

This work targets applications, such as immersive teleoperation (Van der Meijden and Schijven, 2009), in which the operator is wearing a head-mounted display (HMD) and uses the haptic device to teleoperate a robotic arm. The workspace of the haptic device is, from the user's perspective, different than the typical (remote) working space in which the operators reach their arms; It is therefore necessary to transform and map the sensory properties, such as visual sizes and haptic sizes, and this raises questions regarding gain between different sensory properties. To this end, demonstrating how humans perceive sizes, especially when they are conflicting from different sensory modalities in peripersonal space, is an important step that must be made in order to understand how virtual objects or remote objects should be displayed/rendered in during teleoperations.



2. RELATED WORK

There is a large body of work that has attempted to integrate haptics in Virtual Reality (Stone, 2001). Another body of work in virtual and augmented reality has used vision to guide/manipulate haptic sensations (Punpongsanon et al., 2015; Katzakis et al., 2017) and thus modulate and even modify the passively received haptic sensations. In summary, the interaction between visual stimuli and tactile inputs have been implemented in different application fields (desktop VR vs. walking with an HMD), different platforms (Augmented reality vs. Virtual reality) and different tactile properties (surface vs. stiffness). We detail some examples below.

Kokubun et al. (2014) conducted experiments to explore the effect of visuo-haptic interaction of normal and shearing forces with a rear-touch interface. Their study suggested the effectiveness of the setup: more than 80% of participants perceived greater stiffness with the deformed model than the model without deformation. Ban et al. (2014) proposed a visuo-haptic system to display various shapes which have curvature, edges, and inclined surfaces, by using a simple physical device for transmutation and by exploiting the effect of visuo-haptic interaction. In their study, they built a transmutative device, which the user could easily touch. The device does not undergo significant transformation, but its surface can be slightly modulated to be bumping in and out, and rendered various shapes (with various angles, length, and curvature). Their results suggest that displaying each primitive shape can help to render more complex objects with subtle transformation techniques (Ban et al., 2014).

Lecuyer and Burkhardt (2015) evaluated the influence of the control/display (C/D) ratio on the perception of mass of manipulated objects in virtual environments (VE). In two experiments, they asked the participants to identify the heaviest between two virtual balls. Participants could estimate the weight of each ball through a haptic interface and at the same time look at its synthetic display on the screen. Participants did not know in advance the two parameters between each trial: the difference of mass between the balls as well as the C/D ratio used in the visual display when weighing the comparison ball. They found that the control-display ratio influenced the result of the mass estimation task and sometimes even reversed it. The absence of gravity force largely increased this effect. These results suggest that if the apparent visual motion of a manipulated virtual object is amplified as compared to the motion of the user's limb (i.e., if the C/D ratio used is smaller than 1.0), the user feels that the mass of the object decreases. Thus, decreasing or amplifying the motions of the user in a VE can strongly modify the perception of haptic properties of objects that are being manipulated. In this way, designers of virtual environments could use these results to avoid potential perceptual aberrations when they implement the relevant tasks (Lecuyer and Burkhardt, 2015).

Following up from the work of Yokokohji et al. (1996), with a similar paradigm, Abtahi and Follmer (2018) explored angle redirection, resolution and speed change by modifying the Control-Display ratio. They demonstrated that it is possible to redirect up to 40° and scale up to 1.8 to increase the resolution of shape displays.

Matsumoto et al. (2017) proposed a visual and haptic display system that comprised of a portable passive haptic device and an HMD. They employed visuo-haptic integration to emulate a wide range of perceived stiffnesses while at the same time avoiding mechanical actuators that could make the device bulky and power-consuming. The user sees his or her own rendered hand via an HMD with its finger flexion appropriately modified in relation to presented virtual stiffness. They experimentally verified that the proposed system could display both a pinchable elastic ball and a rigid undeformable one (Matsumoto et al., 2017). The interaction between visual and haptic modalities has also been implemented in augmented reality (AR). In an interactive AR environment, Bianchi et al. (2006) explored the overlay of the computer-generated objects, by providing accurate haptic feedback from real and virtual deformable objects and introducing the landmark occlusion on tracking stability during user interaction.

Recently, Zhao and Follmer (2018) presented an algorithm for haptic retargeting. The work contributes a spatial warping approach that allows users of VR to remap objects of arbitrary shape onto haptic objects. This approach could potentially be used with force feedback, with haptic devices, such as the 3DS Touch family of devices. During the visuo-haptic interaction, there could be multiple semantic mappings. Blanch et al. (2004) designed two semantic metaphors (sizes): one size for motor space targeting the importance of manual manipulation and one size in visual space for the amount of information being given. Importantly, the decoupling between visual and motion size was implemented by changing the C/D ratio as a function of distance of the cursor to nearby targets. By taking advantage of the independent manipulation of motor and visual (widget) sizes, traditional graphic user interfaces (GUIs) have been redesigned.

Visuo-haptic interaction has been recently explored in more ecological scenarios. In addressing the practical difficulties in walking and tracking the surrounding environment by wearing head mounted displays, Nagao et al. (2017) presented “Infinite Stairs,” in which they simulated haptic feedback by providing small bumps (reflecting the edge of the steps in the VE) under the feet of the user, and the visual images of the stairs and shoes. This system has successfully enabled users to experience nearly all kinds of virtual stairs with vivid haptic feedback. The visuo-haptic interaction has been extended in the field of pedagogy. In teaching STEM (Science, Technology, Engineering, and Mathematics), learning about nanotechnology has gained popularity by implementing visuohaptic simulations of point charges and their interactions. Students in visuohaptic (VH) groups were more motivated and developed positive attitude toward learning than their peers in visual-only (V) groups (Park et al., 2010; Rubio, 2012; Rubio et al., 2018; Yen et al., 2018).

Finally, Ban et al. (2013) explored altering the shape of an object with a video-see-through HMD. For all the above cited visuo-haptic interaction studies in VE, to our best knowledge, there is no information about how the visuo-haptic mapping in sizes could be perceived and learned/transferred by using traditional force feedback haptic devices (3DS Touch family of devices). This line of research is important since the exploration of objects' edges and hence the inference of their sizes (including both visual size and haptic size) is common during peripersonal motor actions in our daily life. Moreover, depending on the complexity of the task at hand, users of VR systems could use haptic information to pick up objects with different mean (haptic) sizes when the objects are (partially) occluded. There is a gap in the literature concerning how human operators adapt to and resolve potentially conflicting information between visual size and haptic size and make appropriate perceptual decisions to execute the right action. The present study aims to bridge this gap.



3. EXPERIMENT

In this section we describe the material and methods used in our study.


3.1. Participants

Twenty-five volunteers (age 22–38 years old, M = 28.5, 11 females–14 males) participated in the experiment. Most of the participants were students or staff members from the local department. All participants had normal or corrected to normal vision, and they signed an informed consent form before taking part in this experiment. None of the participants suffered from a disorder of equilibrium. The study was approved by the Ethics committee of Hamburg University.



3.2. Apparatus

Participants sat on a height-adjustable chair and desk (Figure 1a). We used the adjustable chair to ensure that participants could maintain their eye level upon the central point of the screen. In addition, the height of the desk was adjusted so that the haptic device was gripped comfortably. They mounted an Oculus Rift Consumer Version 1 HMD (1,080 × 1,200 per eye @90 Hz) and gripped the stylus of a Geomagic Touch device with their dominant hand (Figure 1a) while keeping their thumb on the gray stylus button for submitting responses.


[image: Figure 1]
FIGURE 1. Experiment setup: (a) Participants mounted the Oculus Rift during the experiment, in which (b) virtual objects were rendered inside the haptic workspace of the haptic device (Geomagic Touch), adjacent to the original location of the haptic device. As illustrated in (c) during the homing phase of the task the user (typified as a cursor) was superimposed on the haptic stylus hinge center (haptic proxy point). The view through the head mounted display (HMD) is shown in (d) with a progress bar, a green cursor, a visual stimulus in red, and a response UI with hand cursor (for reference).




3.3. Stimuli and Task

The objective of the task was to compare the size of a visual sphere rendered by the Oculus Rift with a sphere rendered by the haptic device for “feeling” (Figure 1b). A green opaque spherical cursor was rendered superimposed on the haptic proxy point of the Geomagic Touch (Figure 1c). When the task started, a homing position was displayed in the form of a cyan sphere. Participants had to first dock their cursor into the home position; there was no time limit for this step. Upon reaching the home position, both the homing cursor and the user cursor disappeared and an auditory tone was given (c.f. Video figure). Simultaneously, the visual stimulus and the haptic stimulus to be compared were rendered (Visual, rendered in the Oculus Rift, haptic rendered in the Phantom Omni).

The home position was arranged so that upon stimulus onset, the stylus was resting on top of the visual and haptic sphere. i.e., since participants slightly relaxed their arm upon reaching the home position, they automatically rested on the surface of the haptic sphere and were ready to explore.

Upon stimulus onset, participants were instructed to glide the contact point of the haptic device on the surface of the haptic sphere and complete revolutions around it during a time period of 3 s (Figure 2). After 3 s, the visual and haptic stimuli disappeared and a user interface for making a choice popped up (Figure 1d). Participants then had to respond whether the visual stimulus they saw through the Oculus Rift was larger or smaller than the haptic stimulus they “felt.” Participants controlled a hand cursor using the stylus and pressed the stylus button to submit their response (Figure 2). The UI then disappeared, the cursor was rendered again at the stylus proxy point and the homing position appeared to guide the participant to the home position, in preparation for the next trial.


[image: Figure 2]
FIGURE 2. Illustration of the task: (A) At the start of a trial, participants were asked to return the cursor to the home position. (B) Once the home position was reached, the homing sphere and the user cursor vanished, an auditory tone was given to cue the appearance of the visual sphere and the haptic sphere. (C) Users were free to explore the haptic reference. They were instructed to slide the cursor on the surface and loop/explore around the sphere using the haptic device as many times as they could but should not beyond 3 s. (D) When the given time period was over, all visual and haptic objects disappeared and a user interface (UI) appeared to show the options for response (“Visual was smaller” or “Visual was larger”). Participants now controlled the X-Y position of a hand cursor that can be moved around to make the “Larger/Smaller” two alternative forced (2-AFC) choice.




3.4. Variables

The independent variables were haptic reference and gain. The haptic reference was controlled at three levels—4, 5, and 6 cm diameter. The gain is the ratio of the diameter of the haptic sphere relative to the visual sphere. A gain of 1.0 means that the red sphere seen through the HMD was identical in diameter to the haptic sphere. A gain of 2.0 means the visual sphere was twice as large as the haptic sphere etc.

We chose seven gain levels of 0.33, 0.55, 0.77, 1.0, 1.22, 1.44, and 1.66. These seven gain levels combined with the three haptic reference levels allow us to conduct a psychometric analysis with two alternative choice (2-AFC) task. We chose those levels by considering that the height of the phantom omni workspace is limited to 12 cm vertically. I.e., 6cm × 1.66 = 9.9cm. I.e., Had we made the gain or the haptic reference values larger, the resulting rendered sphere in the HMD would be larger than the haptic workspace of the tactile device and therefore impossible to render. Conversely, the smallest haptic reference level was 4 cm, multiplied by the smallest gain (0.33) results in a visual sphere of 1.32 cm diameter. Anything smaller than that would be impossible for participants to glide around and trace using the haptic stylus proxy point.

In total, participants received a test with 3 haptic reference levels × 7 gain values × 10 repetitions per level = 210 trials. All the trials were randomly presented. Before the formal experiment, participants were allowed to familiarize themselves with the device and did 15 practice trials. The experiment lasted ~25 min, including instruction and practice.




4. RESULTS

Data from six participants were discarded due to the random responses, which are far beyond the 2.5 standard deviations of the mean, and hence the low quality for the subsequent data fitting. Responses across seven visual gains, under three levels of haptic references, were fitted to the psychometric curve using a logistic function with default parameters (formula 1) (Treutwein and Strasburger, 1999; Wichmann and Hill, 2001).
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The transitional threshold, that is, the point of subjective equality (PSE) at which the participant was likely to report the visual size was larger than the haptic size, was calculated by estimating 50% of reporting of larger on the fitted curve. The just noticeable difference (JND), an indicator of the sensitivity of size discrimination, was calculated as half of the difference between the lower (25%) and upper (75%) bounds of the thresholds from the psychometric curve.

The mean PSEs for small, medium, and big haptic size references were 3.24 (SE = 0.15), 5.31 (SE = 0.15), and 6.86 (SE = 0.22) (Supplementary Table 1). Repeated measures of ANOVA showed a main effect of the reference haptic size, F(2, 36) = 201.47, p < 0.001, eta = 0.918. Bonferroni corrected comparisons showed significant differences among the three PSEs, p < 0.001. A one-sample T-test showed that for the medium reference (size = 5 cm), t(18) = 2.018, p = 0.059. However, participants over-estimated the visual size in small haptic size reference, t(18) = −5.118, p < 0.001. They under-estimated the visual sizes for the large haptic size reference, t(18) = 3.948, p = 0.001. The resulting pattern shows a central tendency effect (Figure 3). The mean PSEs for small, medium, and large references are listed in the following table (Table 1, plot in Figure 3).
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FIGURE 3. A plot of the psychometric curves.



Table 1. Listing of PSE per haptic sphere reference size.
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For the JNDs, mean JNDs for small, medium, and big haptic size references were 0.94 (SE = 0.11), 1.12 (SE = 0.08), and 1.15 (SE = 0.08), repeated measures of ANOVA showed a main effect of the “reference,” F(2, 36) = 3.612, p = 0.037, eta = 0.167.



5. DISCUSSION

In the present experiment, participants explored and compared the visual and haptic sizes in the peripersonal space with cues from the real world and the VE. The sizes from two modalities were either congruent or conflicting (but with different disparities). The difficulties of the tasks under three tactile size references were controlled well, since the JNDs were statistically the same for the given three conditions.

Results show a dominant functional priority of the visual size perception. In general, a one sample T-test showed that the obtained PSEs under three haptic conditions were smaller than the corresponding reference sizes (4, 5, and 6 cm, respectively, ps < 0.001). Therefore, participants tended to judge the visual sizes as larger than the haptic sizes, even though they were physically the same. This finding provides novel implications for the design of perceptually realistic visuo-haptic interactions in the peripersonal space.

Moreover, in the context of the general under-estimation perceptions, participants demonstrated a typical central tendency effect: over-estimation for the smaller haptic size but under-estimation for the larger haptic size (Watson, 1957; Thomas et al., 1974; Newlin et al., 1978; Mehrdad and Michael, 2010; Karaminis et al., 2016). Those results could be accounted for in a framework of adaptation level (theory) for haptic size reference during human-computer/machine interaction. Adaptation level theory states that the perceptual discrimination of the comparison properties (here we designated them as visual sizes) with the target properties (haptic sizes), is dependent both on the discrepancies between the two sensory stimuli, and the mean property (of standard stimuli) being introduced. Put in another way, for the given medium size of haptic reference (5 cm in diameter), human observers have consistently demonstrated the central tendency effect and under-estimation of the haptic sizes, compared with the physically same visual sizes. Experiments with a single mean reference are common in the literature. However, in the current study, the setup with two additional references (4 and 6 cm on both ends), has magnified the differences of perceived haptic sizes on the two ends compared to the 5 cm reference condition. Therefore, participants could, to some degree, change their perceptual discriminations by adapting to different levels of the mean properties (small, medium, and large sizes) of the standard stimuli (Helson, 1959, 1964; Eysenck, 1966). This effect has also been shown in other distance perception experiments in VR, in which under-estimation has been found for larger distances, whereas over-estimation has been found for shorter distances.

With that said, there are several potential limitations in this study. We did not collect baseline data, i.e., the judgments of visual sizes and haptic sizes separately across the individuals. Therefore, currently we are not able to implement a cue-combination Bayesian model to quantitatively account for the current findings, as previous studies have done, including Ernst and Banks (2002). For future studies, we could record the grip apertures when participants compared the sizes between the visual and haptic stimuli, to reveal the temporal dynamics when human operators implement goal-directed action in the presence of conflicting perceptual information.



6. CONCLUSION

We studied estimations between visual and haptic sizes when humans actively explore targets and execute certain actions (such as docking based on size information) in peripersonal space and in a virtual environment. Similar to previous studies, we observed spatial dominance of visual size over haptic size (with general over-estimation of visual sizes) when the information is conflicting. Moreover, across the spectrum of haptic sizes for references, human operators demonstrated a typical central tendency effect. We found that our participants over-estimate the visual size when the haptic reference is smaller but under-estimate the visual size when the object haptic reference is larger. This flexibility and adaptivity helps us optimize our actions during human-computer/machine interaction, especially when we primarily rely on different levels of mean sensory properties (including sizes) for perceptual decisions and subsequent action planning and execution.

These results provide interesting implications for the design of perceptually-inspired visuo-haptic interactions in fields related to redirected touching, haptic retargeting due to the changes of visual gain (with respect to haptic properties), as well as passive haptic feedback. For further empirical studies, we plan to simulate more complex scenarios which take into consideration of the combinations of multiple visual/haptic properties, such as size, depth and stiffness of the materials, and examine how the weightings of each dimension evolve during the teleoperation in a VE. In addition, in current settings, we did not investigate spatio-temporal bindings during operation. For potential further studies, we could purposely inject time delay (to mimic transmission latency) of given sensory events during the binding of visual and haptic properties across different visual eccentricities, and discover/measure the efficiency of human performance in VE.
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Similar to specific natural language instructions, intention-related natural language queries also play an essential role in our daily life communication. Inspired by the psychology term “affordance” and its applications in Human-Robot interaction, we propose an object affordance-based natural language visual grounding architecture to ground intention-related natural language queries. Formally, we first present an attention-based multi-visual features fusion network to detect object affordances from RGB images. While fusing deep visual features extracted from a pre-trained CNN model with deep texture features encoded by a deep texture encoding network, the presented object affordance detection network takes into account the interaction of the multi-visual features, and reserves the complementary nature of the different features by integrating attention weights learned from sparse representations of the multi-visual features. We train and validate the attention-based object affordance recognition network on a self-built dataset in which a large number of images originate from MSCOCO and ImageNet. Moreover, we introduce an intention semantic extraction module to extract intention semantics from intention-related natural language queries. Finally, we ground intention-related natural language queries by integrating the detected object affordances with the extracted intention semantics. We conduct extensive experiments to validate the performance of the object affordance detection network and the intention-related natural language queries grounding architecture.

Keywords: intention-related natural language grounding, object affordance detection, intention semantic extraction, multi-visual features, attention-based dynamic fusion


1. INTRODUCTION

Human beings live in a multi-modal environment, where natural language and vision are the dominant channels for communication and perception. Naturally, we would like to develop intelligent agents with the ability to communicate and perceive their working scenarios as humans do. Natural language processing, computer vision, and the interplay between them are involved in the tasks for grounding natural language queries in working scenarios.

We often refer to objects in the environment when we have a pragmatic interaction with others, and we have the ability to comprehend specific and intention-related natural language queries in a wide range of practical applications. For instance, we can locate the target object “remote controller” according to the given specific natural language instruction “give me the remote controller next to the TV,” and we also can infer the intended “drinkware” from the intention-related query “I am thirsty, I want to drink some water.”

Cognitive psychologist Don Norman discussed affordance from the design perspective so that the function of objects could be easily perceived. He argued that affordance refers to the fundamental properties of an object and determines how the object could possibly be used (Norman, 1988). According to Norman's viewpoint, drinks afford drinking, foods afford eating, and readings, such as text documents are for reading.

When new objects come into our sight in our daily life, we can infer their function according to multiple visual properties, such as shape, size, color, texture, and material. The capacity to infer functional aspects of objects or object affordance is crucial for us to describe and categorize objects more easily. Moreover, affordance is widely used in different tasks to boost their model's performance, such as Celikkanat et al. (2015) demonstrate affordance can improve the quality of natural human-robot interaction (HRI), Yu et al. (2015) integrate affordance to improve human intentions understanding in different time period, Thermos et al. (2017) fuse visual features and affordance to improve robustness for sensorimotor object recognition, Mi et al. (2019) utilize affordance to prompt a robot to understand human spoken instructions.

Following Norman's standpoint, we generalize 10 affordances [calling, drinking(I), drinking(II), eating(I), eating(II), playing, reading, writing, cleaning, and cooking] for objects that are commonly used in indoor environments. Although drinkware and drinks can be used for drinking, drinkware affords different function to drinks, i.e., the affordance of drinkware is different from drinks. The same situation also exists between foods and eating utensils. Therefore, we utilize drinking(I) for denoting the affordance of drinkware, drinking(II) for drinks, eating(I) for eating utensils, and eating(II) for foods, respectively.

Moreover, multiple features can improve model performance to recognize objects. The texture features can be Supplementary Information for the visual representation of partially occluded objects. And according to Song et al. (2015), the local texture features can enhance the object grasping estimation performance. Motivated by the complementary nature of the multiple features, we adopt multi-visual features, the deep visual features extracted from a pretrained CNN and the deep texture features encoded by a deep texture encoding network, to learn object affordances. The primary issue of fusing multi-visual features is that the fusion scheme should preserve the complementary nature of the features. Fusing different features through naive concatenation may fail to learn the relevance of multi-features, bring about redundancies and may lead to overfitting during the training period. Consequently, in order to reserve the complementary nature of multi-visual features in the process of affordance learning, we take advantage of the interaction information between the multi-visual features, and integrate an attention network with the interaction information to fuse the multi-visual features.

Besides, inspired by the role of affordance and its applications in HRI and in order to enable robots to understand intention-related natural language instructions, we attempt to ground intention-related natural language queries via object affordance. In this work, we decompose the intention-related natural language grounding into three subtasks: (1) detect affordance of objects in working scenarios; (2) extract intention semantics from intention-related natural language queries; (3) ground target objects by integrating the detected affordances with the extracted intention semantics. In other words, we ground intention-related natural language queries via object affordance detection and intention semantic extraction.

In summary, we propose an intention-related natural language grounding architecture which is composed of an object affordance detection network, an intention semantic extraction module, and a target object grounding module. Moreover, we conduct extensive experiments to validate the performance of the introduced object affordance detection network and the intention-related natural language grounding architecture. We also implement target object grounding and grasping experiments on a robotic platform to evaluate the introduced intention-related natural language grounding architecture.



2. RELATED WORK


2.1. Natural Language Grounding

Natural language grounding requires a comprehensive understanding of natural language expressions and images, and aims to locate the most related objects within images. Multiple approaches are proposed to address natural language grounding. Yu et al. (2016) introduce referring expression grounding which grounds referring expressions within given images via joint learning the region visual feature and the semantics embedded in referring expressions. Chen et al. (2017) present phrase grounding which aims to locate referred targets by corresponding phrases in natural language queries. These approaches need large datasets to train models to achieve natural language grounding.

Natural language grounding also attracts great interest in robotics. Thomason et al. (2017) apply opportunistic active learning to ground natural language in the home and office environment, and the presented model needs to ask human users “inquisitive” questions to locate target objects. Shridhar and Hsu (2018) employ expressions generated by a captioning model (Johnson et al., 2016), gestures, and a dialog system to ground targets. Ahn et al. (2018) utilize position maps generated by the hourglass network (Newell et al., 2016) and a question generation module to infer referred objects. Thomason et al. (2019) translate spoken language instructions into robot action commands and uses clarification conversations with human users to ground targets. However, conversation and dialog systems make HRI time-consuming and cumbersome.

Other work presents non-dialog methods to ground natural language queries. Bastianelli et al. (2016) utilize features extracted from semantic maps and spatial relationships between objects within the working environment to locate the targets for spoken language-based HRI. Alomari et al. (2017) locate target objects by learning to extract concepts of objects and building the mapping between the concepts and natural language commands. Paul et al. (2018) parse hierarchical abstract and concrete factors from natural language commands and adopts an approximate inference procedure to ground targets within working scenarios. Roesler et al. (2019) employ cross-situational learning to ground unknown synonymous objects and actions, and the introduced method utilizes different word representations to identify synonymous words and grounds targets according to the geometric characteristics of targets. These methods are proposed to ground natural language commands which embed specific target objects.

Different from the above mentioned approaches, we attempt to address intention-related natural language queries grounding without dialogs between human users and other auxiliary information. To this end, we draw support from object affordance to ground intention-related natural language instructions.



2.2. Object Affordance

Existing work utilizes multiple approaches to infer object affordances. Sun et al. (2014) predict object affordances through human demonstration, Kim and Sukhatme (2014) deduce affordance through extracted geometric features from point cloud segments, Zhu et al. (2014) reason affordance through querying the visual attributes, physical attributes, and categorical characteristics of objects in a pre-built knowledge base. Myers et al. (2015) perceive affordance from local shape and geometry primitives of objects. These methods adopted visual characteristics or geometric features to infer object affordances, so the scalability and flexibility of these approaches are limited.

Several recently published methods adopted deep learning-based approaches to detect object affordance. Dehban et al. (2016) propose a denoising auto-encoder to actively learn the affordances of objects and tools through observing the consequences of actions performed on objects and tools. Roy and Todorovic (2016) use a multi-scale CNN to extract mid-level visual features and combines them to segment affordances from RGB images. Unlike (Roy and Todorovic, 2016), Sawatzky et al. (2017) regard affordance perception as semantic image segmentation and adopts a deep CNN based architecture to segment affordances from weakly labeled images. Nguyen et al. (2016) extract deep features from a CNN model and apply an encoder-decoder architecture to detect affordances for object parts. Mi et al. (2019) utilize deep features extracted from different convolutional layers of pretrained CNN model to recognize object affordances, Nguyen et al. (2017) apply an object detector, CNN and dense conditional random fields to detect object affordance from RGB images.

The aforementioned work utilized geometric features or deep features extracted from a pretrained CNN to infer object affordance, and did not take into consideration that the features from another source can be applied to improve affordance recognition accuracy. Rendle (2010) propose Factorization Machines (FM), which can model interactions between different features via factorized parameters and has the capability to assess the interactions from sparse data. And (Bahdanau et al., 2015) initially present attention mechanisms to acquire different weights for different parts of input features, and can automatically search the most relevant parts to acquire better results from source features.

Inspired by Rendle (2010) and Bahdanau et al. (2015), we propose an attention-based architecture to fuse deep visual features with deep texture features through an attention network. The introduced fusion architecture takes sparse representations of the multi-visual features as input and achieves attention-based dynamic fusion for learning object affordances.




3. ARCHITECTURE OVERVIEW

Similar to specific natural language instructions, intention-related natural language queries are also a crucial component in our daily communication. Given an intention-related natural language command, such as “I am hungry, I want to eat something,” and a working scenario which is composed of multiple household objects, the objective of intention-related natural language grounding is to locate the most related object “food” within the working scenario.

In order to ground intention-related natural language queries, we propose an architecture as shown in Figure 1. In this work, we formulate the proposed intention-related natural language grounding architecture into three sub-modules: (1) an object affordance detection network detects object affordance from RGB images; (2) an intention semantic extraction module extracts semantic word from intention-related natural language instructions; (3) a target object grounding module locates intended target objects by integrating the detected object affordances with the extracted intention semantic words.


[image: Figure 1]
FIGURE 1. Architecture of the intention-related natural language grounding via object affordance detection and intention semantic extraction. The object affordance detection network detects object affordance from RGB images. The intention semantic extraction module calculates the different weights of each word in given natural language queries and extracts the intention semantic word. The grounding module locates target objects by combining the outputs of the object affordance detection network and the intention semantic extraction module.


We illustrate the details of the object affordance detection in section 4, we introduce the intention semantic extraction in section 5, and we describe the target object grounding module in section 6. Moreover, we give the details of the experiments conducted to validate the performance of the object affordance detection network and the intention-related natural language grounding architecture, and outline the acquired results in section 7.



4. OBJECT AFFORDANCE DETECTION

Following Norman's viewpoint, we generalize ten affordances for ordinary household objects, and we present an attention-based multi-visual features fusion architecture, which can be trained end-to-end, to learn the affordances. Figure 2 illustrates the details of the proposed multi-visual features fusion architecture. The presented architecture is composed of a Region of Interest (RoI) detection network (RetinaNet), a deep features extraction module, an attention network, an attention-based dynamic fusion module, and an MLP (Multi-Layer Perceptron). We adopt two different deep networks to extract multi-visual features, the attention network is employed to generate dynamic attention weights through the sparse representations of the extracted features, while the dynamic fusion module fuses the multi-visual features by integrating them with the generated attention weights, and the MLP is applied to learn the object affordances. In this section, we introduce the details of each component of the proposed architecture.


[image: Figure 2]
FIGURE 2. Architectural diagram of the object affordance detection via attention-based multi-visual features fusion. The RetinaNet is adopted to detect RoIs from raw images, and then for each detected RoI, the deep visual features and deep texture features are extracted by a pretrained CNN and a texture encoding network, respectively. In order to reserve the complementary nature of the different features and avoid causing redundancies during the multi-visual features fusion, an attention-based fusion mechanism is applied to fuse the multi-visual features. Through the attention-based fusion, the fused features are fed into an MLP to learn object affordances.



4.1. Deep Features Extraction
 
4.1.1. Deep Visual Feature Extraction

RetinaNet (Lin et al., 2020) acquires better detection accuracy on MSCOCO (Lin et al., 2014) than the all state-of-the-art two-stage detectors. Considering the performance of RetinaNet, we adopt RetinaNet to generate RoIs from raw images. The deep visual feature fv is extracted by a pretrained CNN for each RoI IR:

[image: image]

where fv ∈ ℝm×n×dv, m × n denotes the size of the extracted deep features, dv is the output dimension of the CNN layer. In order to improve learning dynamics and reducing training time, we use L2 normalization to process the extracted deep visual features.



4.1.2. Deep Texture Feature Extraction

Multiple presented texture recognition networks can be used to encode texture features, e.g., Cimpoi et al. (2015) generates texture features through Fisher Vector pooling of a pretrained CNN filter bank, Zhang et al. (2017) proposes a texture encoding network for material and texture recognition, the texture encoding network encodes the deep texture features through a texture encoding layer which is integrated on top of convolutional layers and is capable of transferring CNNs from object recognition to texture and material recognition. Furthermore, the texture encoding network achieves state-of-the-art performance on the material dataset MINC2500 (Bell et al., 2015). Due to the good performance of the texture encoding network introduced in Zhang et al. (2017), we select it to encode the texture feature for each detected RoI and convert the texture feature to vector vt:

[image: image]

where vt ∈ ℝ1×dt, dt is the output size of the texture encoding network.

We also apply L2 normalization to process each texture vector vt. For modeling convenience, we utilize a single perceptron which is comprised of a linear layer and a tanh layer to transform vT into a new vector:

[image: image]

where v^t ∈ ℝ1×dl, W is a weight matrix and b is a bias vector for the linear layer, and dl is the dimension of the linear layer. From Ben-Younes et al. (2017) and the experimental results, hyperbolic tangent produces slightly better results.

For fusing convenience, we adopt the tile operation to expand the texture vector [image: image]t to generate the deep texture representation ft which has the same dimension with the deep visual feature fv, i.e., the generated ft ∈ ℝm×n×dv.




4.2. Attention-Based Multi-Visual Features Dynamic Fusion

Factorization Machines (FM) were proposed for recommendation system (Rendle, 2010), and aimed at solving the problem of feature interactions under large-scale sparse data. Given a feature vector list, FM predicts the target through modeling all interactions between each pair of features:

[image: image]

where w0 ∈ ℝ is the global bias, xi and xj denote the i-th and j-th feature in the given feature list, wi ∈ ℝt represents the weight of the i-th feature, ŵij models the interaction between the i-th and j-th feature and is calculated by:

[image: image]

where vi, vj ∈ ℝs are the sparse representations of xi and xj, i.e., embedding vectors for the non-zero elements of xi and xj, s denotes the dimension of the embedding vectors.

In light of the FM, the ŵij comprises the interaction information of different features, and should be represented by the sparse non-zero elements of the different features. Formally, we extract the non-zero element set from fv and vt, and adopt an embedding layer to acquire the sparse representations ev for fv and et for vt, respectively. We calculate the interacting matrix kvt which embeds the interaction information between fv and vt by:

[image: image]

where kvt∈ ℝp×p, ev and et ∈ ℝ1×p, p denotes the output size of the embedding layer.

In order to avoid causing information redundancies during features fusion, we integrate the attention mechanism with kvt to complete feature fusion. By learning attention weights, the attention mechanism endows the model with the ability to emphasize the different weights of the multi-visual features during learning affordance. The attention weights can be parameterized by an attention network which is composed of an MLP and a softmax layer. The input of the attention network is the interacting matrix kvt, the generated weight encodes the interaction information between the different features. The attention weights τatt can be acquired by:

[image: image]

and

[image: image]

where τatt ∈ ℝ1×p, Watt, batt, and α are weight matrices, bias vector and model parameters for the attention network, respectively.

By means of the learned τatt, we fuse fv and ft to produce the fused feature ffuse to learn object affordances. The fused feature ffuse is generated by:

[image: image]

where ffuse ∈ ℝm×n×d, ⊕ denotes concatenation. Figure 3 shows the details of the attention-based multi-visual features fusion.


[image: Figure 3]
FIGURE 3. Attention-based multi-visual features fusion network. The feature embedding layers process the sparse representations of the deep visual feature and the deep texture feature, and the outputs of the feature embedding layers are applied to generate the interaction information of the multi-visual features. Subsequently, the interaction information is fed into the attention network to acquire the attention weights, which are adopted to complete attention based dynamic fusion.





5. INTENTION SEMANTIC EXTRACTION

Each word plays a different role in representing the semantic of natural language expressions, so we argue that each word should have different weights in natural language queries to ground target objects. In order to acquire the different weights, we propose a self-attentive network to calculate the weight of each word in natural language queries. We acquire the weights in three steps. First, given a natural language sentence S, we tokenize S into words by NLTK (Perkins, 2010) toolkit, i.e., S = s1, s2, …, sn, i ∈ (1, n), n denotes the word number of S. Moreover, the lexical category of each tokenized word si is generated by a POS-tagger (part of speech tagger) of NLTK.

Second, we adopt GloVe (Pennington et al., 2014) to transfer si into a 300-D vector ri as word representation, ri ∈ ℝ1×300. These word representation vectors are concatenated as the representation of the sentence, i.e., R = (r1, r2, …, rn), R ∈ ℝn × 300. We then feed the generated sentence representation R into the self-attentive network to calculate the weight of each word. The self-attentive network adopts an attention mechanism over the hidden vector of a BiLSTM to generate a weight score αi for si. The self-attentive network is defined as:

[image: image]

where ht represents the hidden vector of the BiLSTM, ui is the transformation vector generated by an MLP with learnable weight matrix W and bias vector b. In practice, we adopt the weight trained on the supervised data of the Stanford Natural Language Inference dataset (Conneau et al., 2017) to be the initial weight of the BiLSTM in the self-attentive network.

Finally, the sentence S is re-ordered according to the acquired αi, the verb with the largest weight is selected to present the semantic of intention-related instruction, and the selected verb is fed into the grounding module to complete target object grounding.



6. TARGET OBJECT GROUNDING

An essential step to achieve intention-related natural language grounding is to build the mapping between the detected affordances and the extracted intention semantic words. Inspired by the Latent Semantic Analysis (LSA) which is used to measure the similarity of words and text documents meaning, we propose a semantic metric measuring based approach to build the mapping between the detected affordances and the intention-related natural language queries.

We first transfer the extracted intention semantic word and the detected affordances into 300-D vectors by GloVe, and then calculate the word semantic similarity between them to achieve target grounding. Formally, we transform the extracted intention semantic word to vector vsem ∈ ℝ1×300, and also transfer the detected affordances into vectors vaff, i ∈ ℝ1×300, i ∈ (1, N), where N denotes the number of detected object affordances. We calculate the semantic similarity between them by:

[image: image]

where ||·||2 denotes L2 normalization operation.

The object with the largest semantic similarity value of the intention semantic-affordance pair is selected as target. Through the semantic similarity calculation, the extracted intention semantics are mapped into the corresponding human-centered object affordance.



7. EXPERIMENTS AND RESULTS


7.1. Object Affordance Detection
 
7.1.1. Dataset

In MSCOCO (Lin et al., 2014) and ImageNet (Russakovsky et al., 2015), there are only a few indoor scenes and few objects associated with the introduced ten affordances. Therefore, we create a dataset to train and evaluate the proposed object affordance recognition architecture. The proposed dataset1 is composed of images collected by a Kinect V2 sensor and indoor scenes from MSCOCO and ImageNet.

The dataset contains in total of 12,349 RGB images and 14,695 bounding box annotations for object affordance detection (in which 3,378 annotations are from MSCOCO and ImageNet). We randomly select 56.1% regions (8,250) from the dataset for training, 22.1% regions (3,253) for validation, and the remaining 21.8% regions (3,192) for testing. Figure 4 shows some example images from the proposed dataset.


[image: Figure 4]
FIGURE 4. Example images from the proposed dataset. (Top) Images from MSCOCO. (Middle) Images from ImageNet. (Bottom) Images taken by Kinect V2.


As mentioned above, we generalize ten affordances that are related to ordinary household objects. Figure 5 illustrates the affordance distribution in the presented dataset. There are few writing and cleaning objects included in the images in the MSCOCO and ImageNet dataset, so we collect a large portion of the two categories images by a Kinect sensor.


[image: Figure 5]
FIGURE 5. The affordance distribution in the presented dataset. Y-axis denotes the region number of each affordance.




7.1.2. Experimental Setup and Results

We utilize the available source2 which is an implementation of RetinaNet (Lin et al., 2020) and select ResNet 50 to be the backbone to detect RoIs from RGB images. We extract the deep visual features from the last pooling layer of VGG19 (Simonyan and Zisserman, 2014) trained on Imagenet (Russakovsky et al., 2015) for each detected RoI. To produce a length-uniformed feature map for RoIs with different size, we rescaled the detected RoIs to 224 × 224 pixels. Accordingly, the dimension of the extracted deep visual feature for each RoI is 7 × 7 × 512, i.e., fv ∈ ℝ7×7×512.

We adopt the deep texture encoding network (Zhang et al., 2017) trained on the material database MINC2500 to generate deep texture representations. We extract the texture features from the texture encoding layer for RoIs. The output size of the texture encoding layer is 32 × 128, so the dimension of vt is 1 × 4,096. We set the output size of the single perceptron dl = 512, therefore, the dimension of the transformed texture vector [image: image]t is 1 × 512. Through the tile operation, the dimension of the generated deep texture representation ft ∈ ℝ7 × 7 × 512.

For modeling convenience, we set the size of the embedding layer to p = 512, the generated sparse representation for the deep visual feature and the deep texture feature, ev and et, are vectors with the dimension of 1 × 512, and the dimension of produced interacted matrix kvt ∈ ℝ512×512. We tile the produced kvt and feed it into the attention network, so the size of the generated attention weights τatt ∈ ℝ1×512. Through the attention weights based dynamic fusion, the dimension of each produced fused feature ffuse is 7 ×7 ×1,024, i.e., ffuse ∈ ℝ7×7×1,024.

The fused features are fed into the MLP to learn affordances. The parameters of the MLP include: Cross Entropy loss function, Rectified Linear Unit (ReLU) activation function, and Adam optimizer. The structure of the MLP is 50176-4096-1024-10. In practice, we adopt the standard error back-propagation algorithm to train the model. We set the learning rate to 0.0001 and batch size to 32, and to prevent overfitting, we employ dropout to randomly drop 50% neurons during training.

We train the architecture in PyTorch. After 100 epochs training, the proposed network acquires 61.38% average accuracy on the test set. Figure 6 shows the confusion matrix of the acquired results by the presented network.


[image: Figure 6]
FIGURE 6. Generated confusion matrix of object affordance detection on the test set.


From Figure 6, the affordances writing, cleaning, and cooking have relative low accuracy compared to the other affordances. The shapes and textures of the selected objects in the three categories are significantly different from each other. Therefore, we deduce the primary cause that lead to the low accuracy of the three affordances is the great shape and texture differences, so that the similarities between the deep features in one category are difficult to generalize and learn. Figure 7 shows some acquired example results of object affordance detection on the test set.


[image: Figure 7]
FIGURE 7. Example results of object affordance detection on the test dataset. Raw images are collected from MSCOCO and ImageNet, used with permission.




7.1.3. Ablation Study and Comparison Experiments

Except validating the attention-based multi-visual features fusion network on the presented dataset, we also adopt different features fusion approach and utilize different networks to compare the detection accuracy.

VGG19 Deep Features: In order to verify the effectiveness of the multi-visual features fusion for object affordances learning, we compare the results generated by the attention-base fusion network with a model trained by the deep visual features extracted from VGG 19. In this case, the deep features with shape of 7 ×7 ×512 are fed into an MLP with structure of 25088-4096-1024-10 to learn the affordances. After 100 epochs training, the generated model acquires 55.54% on the test set.

Naive Concatenation: For validating the performance of attention-based fusion scheme, we adopt naive concatenation to concatenate the deep visual features and the deep texture features to generate the fused representations of the multi-visual features. The concatenated features are with the shape of 7 ×7 ×1,024 and are fed into the MLP which has the same structure in the multi-visual fusion architecture to recognize affordances. After 100 epochs, the generated model acquires 58.21% on the test set.

RetinaNet: We directly train the RetinaNet (Lin et al., 2020) (available source2[2]) on the proposed dataset. For a fair comparison, the backbone also utilizes ResNet 50. After 100 epochs training, the generated model obtains 58.92% average accuracy on the test set.

YOLO V3: We also adopt the original pretrained weights to train YOLO V3 (Redmon and Farhadi, 2018) (available code3) on the dataset. After 100 epochs training, the YOLO V3 model obtain 49.63% average accuracy on the test set. Table 1 lists the results acquired by these different networks, different deep features, and different feature fusion approach.


Table 1. Object affordance detection results acquired by different networks, deep features and feature fusion method.

[image: Table 1]

From the experimental results, it is clear that the attention-based multi-visual features fusion network acquires the higher accuracy than the VGG deep features and naive concatenation approach. Although the RetinaNet obtains 58.92% average accuracy, our attention-based fusion network acquires the best detection accuracy on five affordance categories and the best average accuracy on the test set. The results demonstrate the performance of the multi-visual features and attention-based fusion network for learning object affordances.




7.2. Intention-Related Natural Language Queries Grounding

In order to validate the performance of the intention-related natural language grounding architecture, we select 100 images from the introduced test dataset. To ensure the diversity of the intention-related queries, we collect 150 instructions by showing 10 participant different scenarios and ask them to give one or two queries for each image. We use the intention semantic extraction module to extract semantic words from these natural language sentences, the presented extraction module acquires 90.67% accuracy (136 correct samples in total 150 sentences).

We utilize the collected images and queries to test the effectiveness of the grounding architecture. Figure 8 lists some example results of intention-related natural language queries grounding. Through analyzing the failure target groundings, we found that the performance of the grounding architecture is greatly influenced by the affordance detection.


[image: Figure 8]
FIGURE 8. Example results of intention-related natural language query grounding. The first row lists example results of object affordance detection. The bar charts in the second row show the different weights of each word in given natural language instructions acquired by the intention semantic extraction module. <s> and </s> represent the beginning of sentence token and the end of sentence token, respectively. The third row includes the natural language queries, and the extracted intention semantic words are covered with the corresponding color of the detected affordances.




7.3. Robotic Applications

We also conduct several spoken intention-related instruction grounding and target object grasping experiments on a UR5 robotic arm and a Robotiq 3-finger adaptive robot gripper platform. We first train an online speech recognizer under Kaldi (Povey et al., 2011) and translate the spoken instructions into text by the online speech recognizer, we then ground spoken intention-related queries via the introduced grounding architecture.

In order to complete target object grasping, we combine bounding box values of the grounded target objects with depth data acquired by a Kinect V2 camera to locate the targets in 3D environments. Furthermore, we adopt the model from our previous work (Liang et al., 2019) to learn the best grasping poses. Figure 9 shows some example results of spoken instructions grounding, target objects point cloud segmentation, and learned target object grasping poses. The robotic applications video can be found in the link: https://www.youtube.com/watch?v=rchZeoAagxM.


[image: Figure 9]
FIGURE 9. Example results of spoken natural language query groundings, point cloud segmentation, and learned target object grasping poses. The rectangles in the first row list the natural language queries, and the extracted intention semantic words are covered with corresponding color. The second row shows the results of the target object groundings. The images in the third row are point cloud segmentation by combining the bounding box values of grounded targets and the depth data acquired by a Kinect camera, and the red point clouds are the segmentations of the grounded target objects. The images in the fourth row show the grasping scenarios in MoveIt, the red grippers represent the learned best grasping poses.





8. CONCLUSION AND FUTURE WORK

We proposed an architecture that integrates an object affordance detection network with an intention-semantic extraction module to ground intention-related natural language queries. Contrary to the existing affordance detection frameworks, the proposed affordance detection network fuses deep visual features and deep texture features to recognize object affordances from RGB images. We fused the multi-visual features via an attention-based dynamic fusion architecture, which takes into account the interaction of the multi-visual features, preserves the complementary nature of the multi-visual features extracted from different networks, and avoids producing information redundancies during feature fusion. We trained the object affordance detection network on a self-built dataset, and we conducted extensive experiments to validate the performance of the attention-base multi-visual features fusion for learning object affordances.

Moreover, we presented an intention-related natural language grounding architecture via fusing the object affordance detection with intention-semantic extraction. We evaluated the performance of the intention-related natural language grounding architecture, and the experimental results demonstrate the performance of the natural language grounding architecture. We also integrated the intention-related natural language grounding architecture with an online speech recognizer to ground spoken intention-related natural language instructions and implemented target object grasping experiments on a robotic platform.

Currently, the introduced affordance detection network learns ten affordances through fusing the deep visual features and the deep texture features. In the future, we will apply meta-learning to learn more affordances from a smaller amount of annotated images, and develop a network-based framework to learn the different contributions of the different features for object affordances learning. Additionally, we will integrate the image captioning methodology with affordance to generate affordance-aware expression for each detected region within working scenarios.



DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.



AUTHOR CONTRIBUTIONS

JM designed the study, wrote the initial draft of the manuscript, trained the object affordance detection network, completed the intention-related natural language grounding architecture, implemented and designed the validation experiments. HL completed the point cloud segmentation and grasping trajectories generation. JM and HL conducted the spoken instruction grounding experiments on the robotic platform. ST and QL provided critical revise advices for the manuscript. All authors contributed to the final paper revision.



FUNDING

This work was partly funded by the German Research Foundation (DFG) and National Science Foundation (NSFC) in project Crossmodal Learning under contract Sonderforschungsbereich Transregio 169, the DAAD German Academic Exchange Service under CASY project, and the National Natural Science Foundation of China (61773083).



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnbot.2020.00026/full#supplementary-material

Supplementary Video 1. Robotic applications based on the proposed intention-related natural language grounding architecture.



FOOTNOTES

1https://tams.informatik.uni-hamburg.de/research/datasets/index.php

2https://github.com/fizyr/keras-retinanet

3https://github.com/qqwweee/keras-yolo3



REFERENCES

 Ahn, H., Choi, S., Kim, N., Cha, G., and Oh, S. (2018). Interactive text2pickup networks for natural language-based human-robot collaboration. IEEE Robot. Autom. Lett. 3, 3308–3315. doi: 10.1109/LRA.2018.2852786

 Alomari, M., Duckworth, P., Hawasly, M., Hogg, D. C., and Cohn, A. G. (2017). “Natural language grounding and grammar induction for robotic manipulation commands,” in Proceedings of the First Workshop on Language Grounding for Robotics (Vancouver, BC), 35–43. doi: 10.18653/v1/W17-2805

 Bahdanau, D., Cho, K., and Bengio, Y. (2015). “Neural machine translation by jointly learning to align and translate,” in International Conference on learning and Representation (ICLR) (San Diego, CA).

 Bastianelli, E., Croce, D., Vanzo, A., Basili, R., and Nardi, D. (2016). “A discriminative approach to grounded spoken language understanding in interactive robotics,” in International Joint Conferences on Artificial Intelligence (IJCAI) (New York, NY), 2747–2753.

 Bell, S., Upchurch, P., Snavely, N., and Bala, K. (2015). “Material recognition in the wild with the materials in context database,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, MA), 3479–3487. doi: 10.1109/CVPR.2015.7298970

 Ben-Younes, H., Cadene, R., Cord, M., and Thome, N. (2017). “Mutan: multimodal tucker fusion for visual question answering,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV) (Venice), 2612–2620. doi: 10.1109/ICCV.2017.285

 Celikkanat, H., Orhan, G., and Kalkan, S. (2015). A probabilistic concept web on a humanoid robot. IEEE Trans. Auton. Mental Dev. 7, 92–106. doi: 10.1109/TAMD.2015.2418678

 Chen, K., Kovvuri, R., and Nevatia, R. (2017). “Query-guided regression network with context policy for phrase grounding,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), (Venice) 824–832. doi: 10.1109/ICCV.2017.95

 Cimpoi, M., Maji, S., and Vedaldi, A. (2015). “Deep filter banks for texture recognition and segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, MA), 3828–3836. doi: 10.1109/CVPR.2015.7299007

 Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). “Supervised learning of universal sentence representations from natural language inference data,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP) (Copenhagen), 670–680. doi: 10.18653/v1/D17-1070

 Dehban, A., Jamone, L., Kampff, A. R., and Santos-Victor, J. (2016). “Denoising auto-encoders for learning of objects and tools affordances in continuous space,” in 2016 IEEE International Conference on Robotics and Automation (ICRA) (Stockholm), 4866–4871. doi: 10.1109/ICRA.2016.7487691

 Johnson, J., Karpathy, A., and Fei-Fei, L. (2016). “Densecap: fully convolutional localization networks for dense captioning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV), 4565–4574. doi: 10.1109/CVPR.2016.494

 Kim, D. I., and Sukhatme, G. S. (2014). “Semantic labeling of 3d point clouds with object affordance for robot manipulation,” in 2014 IEEE International Conference on Robotics and Automation (ICRA) (Hong Kong), 5578–5584. doi: 10.1109/ICRA.2014.6907679

 Liang, H., Ma, X., Li, S., Görner, M., Tang, S., Fang, B., et al. (2019). “Pointnetgpd:1 detecting grasp configurations from point sets,” in International Conference on Robotics and Automation (ICRA) (Montreal, QC), 3629–3635. doi: 10.1109/ICRA.2019.8794435

 Lin, T., Goyal, P., Girshick, R., He, K., and Dollár, P. (2020). Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327. doi: 10.1109/ICCV.2017.324

 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). “Microsoft coco: common objects in context,” in European Conference on Computer Vision (ECCV) (Zurich), 740–755. doi: 10.1007/978-3-319-10602-1_48

 Mi, J., Tang, S., Deng, Z., Goerner, M., and Zhang, J. (2019). Object affordance based multimodal fusion for natural human-robot interaction. Cogn. Syst. Res. 54, 128–137. doi: 10.1016/j.cogsys.2018.12.010

 Myers, A., Teo, C. L., Fermüller, C., and Aloimonos, Y. (2015). “Affordance detection of tool parts from geometric features,” in 2015 IEEE International Conference on Robotics and Automation (ICRA) (Seattle, WA), 1374–1381. doi: 10.1109/ICRA.2015.7139369

 Newell, A., Yang, K., and Deng, J. (2016). “Stacked hourglass networks for human pose estimation,” in European Conference on Computer Vision (ECCV) (Amsterdam), 483–499. doi: 10.1007/978-3-319-46484-8_29

 Nguyen, A., Kanoulas, D., Caldwell, D. G., and Tsagarakis, N. G. (2016). “Detecting object affordances with convolutional neural networks,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Daejeon), 2765–2770. doi: 10.1109/IROS.2016.7759429

 Nguyen, A., Kanoulas, D., Caldwell, D. G., and Tsagarakis, N. G. (2017). “Object-based affordances detection with convolutional neural networks and dense conditional random fields,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Vancouver, BC), 5908–5915. doi: 10.1109/IROS.2017.8206484

 Norman, D. (1988). The Design of Everyday Things. New York, NY: Basic Books.

 Paul, R., Arkin, J., Aksaray, D., Roy, N., and Howard, T. M. (2018). Efficient grounding of abstract spatial concepts for natural language interaction with robot platforms. Int. J. Robot. Res. 37, 1269–1299. doi: 10.1177/0278364918777627

 Pennington, J., Socher, R., and Manning, C. (2014). “Glove: global vectors for word representation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (Doha), 1532–1543. doi: 10.3115/v1/D14-1162

 Perkins, J. (2010). Python Text Processing With NLTK 2.0 Cookbook. Birmingham: Packt Publishing Ltd.

 Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011). “The kaldi speech recognition toolkit,” in IEEE 2011 Workshop on Automatic Speech Recognition and Understanding.

 Redmon, J., and Farhadi, A. (2018). Yolov3: an incremental improvement. arXiv 1804.02767.

 Rendle, S. (2010). “Factorization machines,” in IEEE International Conference on Data Mining (ICDM) (Sydney, NSW), 995–1000. doi: 10.1109/ICDM.2010.127

 Roesler, O., Aly, A., Taniguchi, T., and Hayashi, Y. (2019). “Evaluation of word representations in grounding natural language instructions through computational human-robot interaction,” in 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (Daegu), 307–316. doi: 10.1109/HRI.2019.8673121

 Roy, A., and Todorovic, S. (2016). “A multi-scale cnn for affordance segmentation in RGB images,” in European Conference on Computer Vision (ECCV) (Amsterdam), 186–201. doi: 10.1007/978-3-319-46493-0_12

 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252. doi: 10.1007/s11263-015-0816-y

 Sawatzky, J., Srikantha, A., and Gall, J. (2017). “Weakly supervised affordance detection,” 1in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5197–5206. doi: 10.1109/CVPR.2017.552

 Shridhar, M., and Hsu, D. (2018). “Interactive visual grounding of referring expressions for human-robot interaction,” in Proceedings of Robotics: Science & Systems (RSS) (Pittsburgh, PA). doi: 10.15607/RSS.2018.XIV.028

 Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv abs/1409.1556.

 Song, H. O., Fritz, M., Goehring, D., and Darrell, T. (2015). Learning to detect visual grasp affordance. IEEE Trans. Autom. Sci. Eng. 13, 1–12. doi: 10.1109/TASE.2015.2396014

 Sun, Y., Ren, S., and Lin, Y. (2014). Object-object interaction affordance learning. Robot. Auton. Syst. 62, 487–496. doi: 10.1016/j.robot.2013.12.005

 Thermos, S., Papadopoulos, G. T., Daras, P., and Potamianos, G. (2017). “Deep affordance-grounded sensorimotor object recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 49–57. doi: 10.1109/CVPR.2017.13

 Thomason, J., Padmakumar, A., Sinapov, J., Hart, J., Stone, P., and Mooney, R. J. (2017). “Opportunistic active learning for grounding natural language descriptions,” in Conference on Robot Learning (Mountain View, CA), 67–76.

 Thomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., et al. (2019). “Improving grounded natural language understanding through human-robot dialog,” in IEEE International Conference on Robotics and Automation (ICRA) (Montreal, QC), 6934–6941. doi: 10.1109/ICRA.2019.8794287

 Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L. (2016). “Modeling context in referring expressions,” in European Conference on Computer Vision (ECCV) (Amsterdam), 69–85. doi: 10.1007/978-3-319-46475-6_5

 Yu, Z., Sangwook, K., Mallipeddi, R., and Lee, M. (2015). “Human intention understanding based on object affordance and action classification,” in International Joint Conference on Neural Networks (IJCNN) (Killarney: IEEE). doi: 10.1109/IJCNN.2015.7280587

 Zhang, H., Xue, J., and Dana, K. (2017). “Deep ten: texture encoding network,” in Proceedings 1of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2896–2905. doi: 10.1109/CVPR.2017.309

 Zhu, Y., Fathi, A., and Fei-Fei, L. (2014). “Reasoning about object affordances in a knowledge base representation,” in European Conference on Computer Vision (ECCV) (Zurich), 408–424. doi: 10.1007/978-3-319-10605-2_27

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Mi, Liang, Katsakis, Tang, Li, Zhang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	ORIGINAL RESEARCH
published: 09 June 2020
doi: 10.3389/fnbot.2020.00028






[image: image2]

Teaching NICO How to Grasp: An Empirical Study on Crossmodal Social Interaction as a Key Factor for Robots Learning From Humans

Matthias Kerzel*, Theresa Pekarek-Rosin, Erik Strahl, Stefan Heinrich and Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg, Hamburg, Germany

Edited by:
Mehdi Khamassi, Centre National de la Recherche Scientifique (CNRS), France

Reviewed by:
Alex Pitti, Université de Cergy-Pontoise, France
 Hatice Kose, Istanbul Technical University, Turkey

*Correspondence: Matthias Kerzel, kerzel@informatik.uni-hamburg.de

Received: 29 October 2019
 Accepted: 17 April 2020
 Published: 09 June 2020

Citation: Kerzel M, Pekarek-Rosin T, Strahl E, Heinrich S and Wermter S (2020) Teaching NICO How to Grasp: An Empirical Study on Crossmodal Social Interaction as a Key Factor for Robots Learning From Humans. Front. Neurorobot. 14:28. doi: 10.3389/fnbot.2020.00028



To overcome novel challenges in complex domestic environments, humanoid robots can learn from human teachers. We propose that the capability for social interaction should be a key factor in this teaching process and benefits both the subjective experience of the human user and the learning process itself. To support our hypothesis, we present a Human-Robot Interaction study on human-assisted visuomotor learning with the robot NICO, the Neuro-Inspired COmpanion, a child-sized humanoid. NICO is a flexible, social platform with sensing and manipulation abilities. We give a detailed description of NICO's design and a comprehensive overview of studies that use or evaluate NICO. To engage in social interaction, NICO can express stylized facial expressions and utter speech via an Embodied Dialogue System. NICO is characterized in particular by combining these social interaction capabilities with the abilities for human-like object manipulation and crossmodal perception. In the presented study, NICO acquires visuomotor grasping skills by interacting with its environment. In contrast to methods like motor babbling, the learning process is, in part, supported by a human teacher. To begin the learning process, an object is placed into NICO's hand, and if this object is accidentally dropped, the human assistant has to recover it. The study is conducted with 24 participants with little or no prior experience with robots. In the robot-guided experimental condition, assistance is actively requested by NICO via the Embodied Dialogue System. In the human-guided condition, instructions are given by a human experimenter, while NICO remains silent. Evaluation using established questionnaires like Godspeed, Mind Perception, and Uncanny Valley Indices, along with a structured interview and video analysis of the interaction, show that the robot's active requests for assistance foster the participant's engagement and benefit the learning process. This result supports the hypothesis that the ability for social interaction is a key factor for companion robots that learn with the help of non-expert teachers, as these robots become capable of communicating active requests or questions that are vital to their learning process. We also show how the design of NICO both enables and is driven by this approach.

Keywords: crossmodal learning, developmental robotics, neurocognitive models, human-robot interaction, visuomotor learning


1. INTRODUCTION

In the future, robots may perform complex visuomotor tasks in domestic environments as human assistants and companions. Today, this is still a challenge due to the complexity of the dynamic, non-standardized environments and tasks involved. A promising approach for coping with this complexity is to take inspiration from biological systems and develop neurocognitive learning models embodied in developmental robots (Cangelosi and Schlesinger, 2015) that learn, similar to a human child or infant, from interaction with the environment and imitation of, or teaching by, adult experts. A spectrum of such learning approaches exists in the literature, ranging from relying entirely on the imitation of a human teacher to nearly autodidactic approaches without any human assistance. Imitation approaches often face challenges when the robotic anatomy diverges from that of the human demonstrator: though anthropomorphically designed, robotic hands usually do not match the degrees of freedom (DoF) of the human hand sufficiently to allow a direct mapping (Gupta et al., 2016). Furthermore, external tracking approaches for hands and objects are often constrained to laboratory settings. On the other hand, deep reinforcement learning promises human-level control (Mnih et al., 2015) through autonomous interaction with the environment. The agent learns through trial and error to achieve a given goal. However, most robot platforms and environments are not suited to the large number of interactions in the real world or the possibility of harmful actions. Therefore, many intermediate approaches have been developed that combine autonomous learning with human expert knowledge in the form of instructions (Cruz et al., 2016), or imitation (Gupta et al., 2016). The presented research follows the concept of developmental robotics, which aims to leverage efficient learning strategies inspired by nature. We adopt the principle of scaffolding, a teaching approach based on collaborative interaction between the learner and an expert (Newson, 1979), which plays a crucial role in early human development, for a robot.

We hypothesize that there are two requirements of the robotic learner to enable successful scaffolding:(1) Sensory and motoric similarity: human and robot need to have a substantial overlap in their motor and sensory abilities to enable the robot to profit from human demonstration and to enable the human to affect the learning of the robot positively. Especially, non-expert users rely on their intuitive ability for human-to-human teaching to convey their skills. Different sensory modalities, body forms, and degrees of freedom can hinder this transfer. Therefore, a robotic companion needs to mimic human sensory and motor abilities to a certain degree. As an example, the way a human grasps or handles an object might not be applicable to a robot with a non-hand-like end-effector. Also, the robot's size is essential; while smaller robots might be easier to construct and require less powerful motors or materials, a robot must have a sufficient size to operate efficiently in a domestic environment.(2) Approachability and social interaction: the robot's physical design and behavior need to encourage users to engage in teaching interactions. Not only are safety issues a concern when it comes to physical human-robot interactions; perceived safety and approachability are important because they encourage especially non-expert users to engage in (physical) interactions to improve the learning outcome, for example, reaching into the robot's workspace while the robot is performing a manual task. Furthermore, the robot should encourage an intuitive, natural teaching interaction that relies on natural language and social cues.

Through meeting these criteria, we expect the Neuro-Inspired COmpanion robot, NICO (see Figure 1), an open-source developmental robot platform developed by the Knowledge Technology group1, to be able to acquire visuomotor skills with the assistance of non-expert users. We present an update to the NICO platform with a focus on the properties that are relevant for this study and a review of related studies; we examine the assumption that social interaction and human-like sensorimotor abilities are a key to robots learning from humans by conducting a Human-Robot Interaction study with 24 participants in which we evaluate the effect of an active role of a humanoid in a grasp-learning experiment. In a novel comparative crossmodal, visuomotor learning study, NICO is supported by a non-expert participant in a visuomotor learning task. This study, for the first time, evaluates the interplay between NICO's social interaction and visuomotor learning abilities. NICO learns to grasp by repeatedly placing and re-grasping an object at different positions in its workspace. During this semi-autonomous grasp learning, NICO requires the aid of human assistants to initialize the learning process and to provide aid in case NICO loses the object. Two experimental conditions are evaluated, in which NICO either takes a passive or an active role in the learning process: in the baseline human-guided condition, all instructions toward the participant are given by the experimenter; in the active learning condition, the robot uses a crossmodal Embodied Dialogue System to actively guide a non-expert participant through the learning process and to request assistance when needed. The experimenter is present during this time but does not communicate with the participant. We show that the active, communicative, and emotional engagement of the robot in a teaching situation leads not only to a subjectively better rating of the robot using a set of established measures for HRI research but also to an increase in the engagement of the human, non-expert teachers, which in turn can lead to better visuomotor learning results.


[image: Figure 1]
FIGURE 1. NICO, the Neuro-Inspired COmpanion, is being taught how to grasp a training object by a human assistant and is giving positive feedback with its facial emotion display.


We would also like to address the methodological gap between machine learning in robotics and neurorobotics. The embodiment of state-of-the-art machine neural machine-learning in a physical platform allows training and evaluation that is hardly possible in simulation, e.g., physical interaction between a robot's hand and a soft, deformable object. More importantly, we argue that research communities for machine learning in robotics and developmental robotics are growing closer together. While classical roboticists focus on human-in-the-loop approaches that rely on imitation learning and demonstration, developmental roboticists have been researching scaffolding by caregivers to learn complex cognitive and visuomotor skills. The underlying idea is the same: leveraging human competence can be an essential part of robotic learning. This competence can be supplied by trained experts as well as non-expert users. In the latter case, one of the main goals is to enable these non-expert users to use their intuitive teaching abilities in a robotic scenario, which in turn relies on an intuitive and natural communication with the robot.

Our main claim is that non-expert users can teach visuomotor skills to a developmental robot; however, the more these non-experts are engaged in the teaching experience, the more they tend to use intuitive teaching approaches that in the end lead to more efficient teaching. This effect requires a humanoid platform that enables intuitive and engaging social interaction and, at the same time, has sufficient sensing and motor abilities for the learned action. In section 2, we report on different robot platforms and robotic visuomotor learning approaches. In section 3.1, we present the updated NICO and a comprehensive review of studies on its sensory, motor, and HRI abilities. We show how its design both enables and is driven by the interplay of social interaction and sensorimotor learning by summarizing previous studies that often focused either on social interaction or on crossmodal and visuomotor learning. We bring these aspects together in section 4, where we detail the grasp-learning approach, the Embodied Dialogue System, and the setup for the HRI experiment, which couples social interaction and visuomotor learning, and we show, in section 5, how an engaging social interaction can enhance the quality of robotic visuomotor learning. We conclude with a discussion of the results and examine their implications as a contribution to the future development of learning companion robots in section 6, finding that the ability of a balanced robotic platform to engage non-expert users can benefit the learning of non-social tasks. The social aspect not only enhances the user's subjective experience but also to enables non-experts to apply intuitive teaching approaches.



2. RELATED WORK


2.1. Humanoid Platforms

Today, a wide range of robots is available, though not all of them fulfill the above-mentioned criteria of possessing a sensory and motoric similarity to humans in addition to an approachable design and social interaction abilities: a humanoid is expected to have two arms with a human-like range of motion and hand-like end-effectors to use tools and manipulate objects in domestic environments. Often, the hands' fingers have tactile sensors to enhance grasping, tool use, and in-hand manipulation but also to create shared, embodied sensory concepts with human interaction partners regarding haptic properties like softness or texture. The locomotion of a humanoid is usually bipedal. Though complex to realize, walking allows the navigation of domestic environments, for instance, a cluttered floor. However, for better stability and easier handling, many platforms use a wheeled base instead. A humanoid also has a head with eyes. Though other sensing setups might be more efficient for specialized tasks, such as 360° laser scanners for mapping, eye-like cameras can enable shared attention with human interaction partners and thus also fulfill a critical communicative role. Many humanoids feature some form of emotional expression on their face, ranging from color changes of status LEDs to stylized and animated facial expressions and mouth movements. An alternative to an actual face is a monitor or tablet that displays a virtual avatar or face. Another important criterion for research platforms is an open design that allows customization of the platform toward novel experimental setups, easy maintainability of the platform, and compatibility with common software standards.

One way to categorize humanoids is by their size. Small, infant-sized humanoids are affordable, easy to handle, and secure. For example, the NAO from Aldebaran is well-used in research on developmental robots, while the DARwIn-OP from Robotis was a popular walking platform for the RoboCup competitions (Ha et al., 2011). However, these small platforms cannot interact with most domestic environments, cannot use tools, and are not able to manipulate everyday objects.

Child-sized robots overcome this challenge while still being relatively easy to handle in terms of weight and size. The iCub resembles a 3.5-years-old child (Metta et al., 2010). The iCub has many relevant features for developmental robot research and HRI: 53 human-like DoF, five-fingered hands, eyes with mechanical gaze shift, an LED-based display for stylized emotion expression, and optional tactile sensing skin. However, its holistic design impedes individual modifications. More modular are the NimbRo-OP (Schwarz et al., 2013) and its slightly larger, novel design Nimbro-OP2X (Ficht et al., 2018) from the AIS (Autonomous Intelligent Agents) group of the University of Bonn. These platforms are designed for the RoboCup TeenSize and AdultSize league and, as such, prioritize walking over manipulation ability: the arms have non-actuated end-effectors and serve primarily for balance and getting up from a prone position. The Poppy robot (Lapeyre et al., 2014) is a 3D-printable open-source robot developed in 2014 by a research group at the French Institute for Research in Computer Science and Automation (INRIA). The objective of the robot is to be a robot base for scientists, students, and artists originally aiming to study the role of morphology in sensorimotor control. The software API of the Poppy robot is based on Pypot2, a framework for modeling controllers for custom robots, which is used by the NICO robot as well. The Reachy robot is a commercial robot torso developed by Pollen robotics3 in 2017. The robot has 7-DOF arms and can lift up to 500 g (Mick et al., 2019). The software of Reachy is Python-based. The strengths of the robot seem to be in the field of manipulation, as the capabilities of the arm are sophisticated for a robot of this size category. The Pepper by Softbank (formerly Aldebaran) (Pandey and Gelin, 2018) is mainly designed for Human-Robot Interaction. Its human-like torso is fitted onto a wheeled platform. Pepper has 20 DoF and human-like arms with five-fingered hands; however, its arms and fingers are mainly designed as a means for making gestures.

Soft-skin platforms offer a more realistic human-like appearance. The CB2 (Child with Biomimetic Body) from Osaka University (Minato et al., 2007) is a 130-cm tall platform for cognitive developmental robotics and features soft skin and flexible pneumatic actuators; it has a total of 63 degrees of freedom. Its face has actuators for eyeballs, eyelids, eyebrows, cheeks, and mouth to display emotions. In addition to cameras and microphones, skin tactile sensors in the skin can mediate haptic interaction. It is designed with a view to social interaction with a human caregiver. Affetto (Ishihara and Asada, 2015) has a similar design. It is an upper-body platform that has the proportions of an 80-cm tall child and has 22 degrees of freedom. It is designed to appear human-like, including in terms of its visual and tactile impression. Among the adult-sized robots, the high-performance biped Talos from PAL robotics (Stasse et al., 2017) is a further development of their REEM robot and offers a platform for research in complex industrial environments. It is well-suited for physical manipulation tasks and can traverse rough terrain but is not designed for social interaction. The PR2 from Willow Garage, a wheeled robot with two 7-DoF arms endowed with grippers with tactile sensors, has a similar function. Like the Talos, it has no means for emotion-expression and is instead designed for physical tasks rather than HRI. Finally, the InMoov (Langevin, 2014) is an open, 3D-printable robot with a human-like design and tendon-operated five-fingered hands. Instead of displaying emotions, it can move its jaw to emulate talking.

In summary, many robotic platforms are available, though currently, no single platform offers a combination of object manipulation, sensing, and HRI qualities in an affordable and open design. This gap in the state of the art is addressed with the NICO robot (Kerzel et al., 2017c), whose design will be summarized below.



2.2. End-to-End Visuomotor Learning

Visuomotor skills map raw sensory input to motor actions. Modular approaches divide this task; they process sensory information into explicit internal representations like coordinates that are then used as input for modules like inverse kinematics solvers. However, these approaches often have difficulties adjusting to novel challenges due to their lack of inherent learning ability. A complementary approach is to learn visuomotor skills through interaction with the environment (Cangelosi and Schlesinger, 2015). Deep reinforcement approaches employ trial and error learning. Based on initial random exploration, rewards for successful actions drive the learning of visuomotor policies. Lillicrap et al. (2016) introduced the Deep Deterministic Policy Gradient algorithm (DDPG) to solve a series of visuomotor tasks in a simulated two-dimensional environment. This approach is based on early direct motor model learning, where motor skills are learned in the target space only based on minimizing the error from observations Rolf et al. (2009); Nguyen-Tuong and Peters (2011). However, adapting these algorithms to physical robots is challenging. The trial and error exploration can be harmful to the robot or its environment; a large number of required trials can cause material stress and might be too time-consuming. Therefore, extensions to the DDPG algorithm and related algorithms have been suggested to enhance the sample efficiency and reduce the required training episodes. These approaches leverage the principles of intrinsic curiosity (Hafez et al., 2019), imagination (Andrychowicz et al., 2017), and task simplification (Kerzel et al., 2018). However, the basic problem of reinforcement learning of possibly unproductive and harmful exploratory actions remains.

This issue can be addressed in several ways. Nair et al. (2018) combine imitation and reinforcement learning. Instead of random explorations, the learner first learns to mimic the actions of a human teacher. The learner then refines its policy for exploration once a sufficient level of performance is reached to avoid unproductive or harmful actions. The basic idea behind this approach is to give the learner a set of good samples to bootstrap the learning process. A variation of this strategy is not to use an external teacher to imitate but to design the learning setup such in a way that the learner can generate these good learning samples autonomously. In the Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), imagination is used after the execution of an action to, in hindsight, imagine the optimal goal for the previously executed action. This imagined training sample is then used to update neural policy models. However, though the creation of imagined samples works well in simulated environments, it can prove difficult in real environments. A related strategy is to let the learner generate good samples through physical actions. This strategy is employed by Levine et al. (2016), who utilize the known forward kinematic of the PR2 robot. Samples are generated by having one of the robot's hands move a target object while the other hand tries to grasp the object. Kerzel and Wermter (2017b) introduced a related approach where a robot generates samples for grasp learning by repeatedly placing and re-grasping an object at a random location. This approach has the advantage that the kinematics of the robot do not need to be known. However, human assistance is needed to initialize the process and to interfere in the case of re-grasping errors. A second approach, adopting a strategy from human learning, is to have an expert observe the reinforcement learning process and interfere in critical situations by giving advice and warnings to the learner in case of harmful actions (Cruz et al., 2018a). In summary, human teachers play an essential role in making reinforcement learning more sample-efficient, be it as models for imitation, physical assistants, or advisers.



2.3. Natural Teaching of Robot Learners

To ease the transfer of humanoid social robots from laboratories to the cluttered surroundings of domestic life, they need to be able to adapt their behavior dynamically and learn new skills through the instructions of non-expert human users. Humanoid social robots have the advantage that they generally foster a human-like interaction with the user, allowing users to easily anthropomorphize the artificial agent (Epley et al., 2007). Social interaction through spoken dialogue is the most intuitive way to enable such communication since it does not require additional knowledge and training from the non-expert user. The robot has to be a transparent learner, with its observable behavior and spoken feedback motivating the user to teach it further.

In a study by Thomaz et al. (2006) examining the way people teach a virtual agent in a reinforcement learning simulation, evidence was found for people's willingness to view their interaction and teaching of the agent as a collaboration. The human teacher guides and adjusts the training behavior of the agent, with a tendency toward positive feedback. Even without any specific amplifying behavior by the artificial agent, there seems to exist a clear concept of partnership in human-robot teaching scenarios. However, in comparison to a virtual agent, a physical robot has to be much more transparent about its intentions and internal states to ease the cooperation between human and robot.

A typical teaching cycle usually consists of the teacher demonstrating the desired skill for the student, followed by a series of supervised repetitions by the student. During these repetitions, the teacher might offer spoken feedback, display corrective behavior, or provide additional demonstrations to further improve the performance of the student (Nicolescu and Mataric, 2003). To enable teaching behavior that feels natural to the teacher while being effective for the robot learner, one must consider the design and behavior of the artificial agent. A childlike design, according to the baby schema (Lorenz, 1943), with round eyes set low in a comparatively big head, can help in facilitating intrinsic teaching methods like scaffolding.

Scaffolding is a form of assistive teaching regularly and often unknowingly displayed by human adults when interacting with children or infants (Breazeal, 2002). While infants are not capable of actually requesting assistance, they display a form of proto-social response that resembles an adult's behavior closely enough that the caregiver can assign meaning to them and act accordingly. By reinforcing the infant's interaction with the environment, the caregiver can encourage and assist the learning of new abilities (Newson, 1979). The adult handles the parts that are beyond the infant's or, in our case, the robot's capabilities, allowing them to focus on solving the simpler parts of the problem first. The learning process is supported by the adult giving affective feedback, reducing distractions, and simplifying the problem in a way that allows the learner to recognize the solution to a problem before being able to implement it (Breazeal, 2002).

Designing the robot as an approachable, transparent interaction partner allows the human-robot team to show better performance and the learner to reach a higher level of competence. In a study by Srinivasan and Takayama (2016) examining how the behavior of the robot during the interaction influences people's willingness to help it, one seemingly obvious conclusion could be drawn: robots that get assistance from people tend to accomplish more.




3. NICO, THE NEURO-INSPIRED COMPANION


3.1. NICO Robot Platform

To create a robotic research platform for embodied neurocognitive models based on human-like sensory and motor capabilities that is at the same time well-suited for HRI studies, the Knowledge Technology group at the University of Hamburg designed the NICO humanoid (Kerzel et al., 2017c)4.

The first version of NICO was developed based on the NimbRo-OP, which was discussed in section 2.1. It is constructed mainly from 3D-printed parts and Robotis Dynamixel servomotors, endowing it with simple maintenance and high flexibility. This flexibility was used to gradually improve NICO, driven by experience from experimental setups and research. The designers followed a modular approach: each new functionality of the robot was first evaluated and iteratively improved before it was integrated with other functionalities. Following this scheme, a description of the sensory, motor, and HRI capabilities of NICO are given below alongside a review of scientific studies where these capabilities have been used. Figure 2 shows NICO with optional clothing and a close-up of its robotic hand with embedded tactile sensors.
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FIGURE 2. (A) NICO humanoid robot sitting on child-sized furniture. (B) NICO can wear regular clothing without being hindered in its motor abilities. (C) NICO's three-fingered hand with tactile sensors. (D) Schematic depiction of the mechanical design of NICO's upper body.



3.1.1. Physical Form and Appearance

NICO stands 101 cm tall and has a weight of 7 kg, with its body proportions and degrees of freedom resembling those of a child between the ages of three to four. NICO's face is adapted from the open iCub design, giving it a stylized, child-like appearance. In its standard design, NICO has no outer shell, i.e., it is possible to see through the frame of the robot. To alleviate this, a 3D-printed cover is being developed. Furthermore, its child-like anatomy allows the robot to wear off-the-shelf clothing.



3.1.2. Motor Capabilities

NICO has 30 DoF, which are distributed as follows. Two DoF perform yaw and pitch movements of the head, which has an important signaling function in human-robot interaction, in addition to supporting joint attention and addressing communication partners. The arms have 6 DoF, with the shoulder forming a cluster of three motors that mimic the physiology of the human shoulder ball joint. An additional DoF allows bending of the elbows, and the final two DoF for wrist rotation and wrist flexion are provided by the Seed Robotics SR-DH4D articulated hands. These three-fingered hands are tendon operated; two motors contract the two linked index fingers and the opposed thumb. The tendon operation emulates hand synergies during grasping (Mason et al., 2001) to simplify the control during this complex process: only two DoF for closing the hand can securely grasp a wide range of different objects. Figure 2D shows a schematic depiction of the mechanical design of NICO's upper body. For locomotion, each of NICO's legs has three DoF in the hip joint, one DoF in the knee, and two DoF in the foot.



3.1.3. Sensory Capabilities

NICO's head features two parallel See3CAM CU135 cameras with 4K resolution (4,096 × 2,160). The cameras have an opening angle of 202°. Via the API, the camera can be configured to transmit only parts of the image and thus constrain the field of view to a human opening angle of 70°. This results in a reduced amount of data and the possibility of realizing virtual gaze shifts. NICO's head is endowed with two Soundman OKM II binaural microphones embedded in realistically shaped and 3D-printed pinnae, which allows human-like binaural hearing for vertical and horizontal sound source localization. The location of the microphones and the dampening factor of the head and also of the pinnae have been designed to mimic human-child anatomy for providing a realistic distortion of the sounds. To reduce ego-noise and improve speech recognition, NICO's head was designed without internal fans, mechanics, or motors. Haptic sensing subsumes proprioception and tactile sensing. While proprioception provides information about body posture, movement, and forces, the tactile modality registers deformation, vibration, and temperature. Both sub-modalities are realized in NICO: information about motor position and torque provide a proprioceptive sense for all DoF. To allow faster and more precise measurement of forces in motors even during movements and under load, the energy supply to all motors has been redesigned to exclude artifacts from power spikes due to energy-intensive motions. For tactile sensing, OPTOFORCE OMD-10-SE-10N7 force sensors were installed in all three fingertips of each hand. These dome-shaped sensors are slightly deformable and measure forces of up to 10 N in three dimensions at up to 400 Hz, making them well-suited to picking up vibration.



3.1.4. Interaction Capabilities

NICO's head is fitted with three LED arrays in the mouth and eye areas that can display stylized facial expressions. The areas behind the eyes consist of 8 × 8 LEDs; the array in the mouth area consists of 16 × 8 LEDs. The thickness of the 3D-printed head is reduced in the respective areas and optimized to allow the LEDs to shine through the material while blurring individual lights. A set of fixed emotions can be displayed, as well as freely programmable patterns; thus, emotional expressions can also be learned over time or be adjusted to individual interaction partners. Figure 3 shows examples of expressions for happiness, sadness, surprise, anger, and a neutral mood. These facial displays can give intuitive feedback to the user about the state of NICO in the context of a task. In addition to this specialized facial display, NICO, like many robotic platforms, has an internal speaker for uttering spoken messages and can express non-verbal social cues like gestures, poses, and head movements.
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FIGURE 3. NICO's facial emotion display showing different expressions: (A) neutral, (B) happiness, (C) sadness, (D) surprise, and (E) anger.




3.1.5. API and Virtual Model

The NICO API supports direct control via Python and the robot operating system ROS. Python allows easy integration into the most common frameworks for GPU processing and deep learning like Tensorflow (Abadi et al., 2016). This gives scientists an easy way to embody neurocognitive models into the robot. NICO's full functionality can also be accessed via ROS (Quigley et al., 2009), the de facto standard in the robotics community, to allow easy sharing of software modules. The low-level motor control of the API is based on PyPot (Lapeyre et al., 2014), which was extended to support NICO's hands. The use of Python makes it possible to utilize existing libraries for control and preprocessing of sensory information, such as OpenCV for camera and PyAudio for microphone recordings. A set of predefined facial expressions is provided for the Arduino-controlled facial emotion display. As virtual environments are often used in robotics research for allowing extended and controlled experiments without strain to the robotic hardware, a virtual realization of NICO for the V-REP robotics simulator (Rohmer et al., 2013) is provided. V-REP supports simulated physical interactions, including forces and friction between different objects. Additionally, the robot model is provided in the established Unified Robot Description Format (URDF) for use in other simulation environments. The URDF description contains information about the kinematics of the robot, its collision model, and visual representation. The API allows seamless switching between real and simulated environments.




3.2. NICO Evaluation and Studies

Following the design strategy to iteratively evaluate and improve each functionality of the robot before integrating it in larger experiments, a set of studies has been conducted involving NICO's motor, sensory, and human-robot interaction capabilities5. In some studies, the main scientific focus was not on the robot itself but on the neurocognitive models embodied within it. However, these studies are especially valuable for NICO's ongoing design process, as they provide feedback under realistic research conditions.


3.2.1. Embodied Sensing Evaluation

Embodied Visual Perception. Compared to the typical applications of computer vision approaches, there are no differences in a robotic vision system. Therefore, the performance of state-of-the-art approaches for object detection, e.g., RetinaNet (Lin et al., 2017) can be utilized without limitations on NICO. However, a robot offers the ability to combine vision with active object manipulation: the robot can move and turn an object to learn a more elaborate visual representation. Additionally, object manipulation can also be used to train and evaluate models for object tracking under deformation and occlusion. Heinrich et al. (2019) recorded the NICO-object interaction dataset featuring sixty object-hand interactions, including different push, pull, grasp, and lift actions on a broad range of toy objects that show diverse behaviors, such as rolling, bouncing, or deformation. The exploration procedures were inspired by typical child-like behavior that could be realized on a humanoid. The dataset was used to evaluate the HIOB framework, an adaptive convolutional object tracker based on an incremental update mechanism. Josifovski et al. (2018) applied a convolutional neural network for object detection and pose estimation trained with 3D-models of NICO's hand. Though the pose of the hand can be computed via forward kinematics, such models can contribute to developmental approaches in which the kinematics of the robot are learned. Furthermore, the work demonstrates the transfer of models trained on the simulated model to the real world.

Embodied Audio Perception. Like computer vision, audio processing on a robotic platform does not differ greatly from any non-robotic audio task. However, the robot's ego-noise during operation and its ability to actively manipulate objects to elicit audio information have to be considered. Humanoids can perform common audio exploratory procedures like shaking an opaque container to gain insight into its content. Eppe et al. (2018) and Strahl et al. (2018) recorded an audio dataset with 1,080 samples of active audio exploration of 30 capsules filled with different materials, which NICO could shake with its hand, to train a recurrent neural network classifier. High classification accuracy of 91% was achieved due to the low ego-noise of the robot in the head area.

Embodied Haptic Perception. In contrast to audio and vision approaches, haptic perception is inherently based on active exploration to gain information about handled objects and materials. Compressing or squeezing an object can give information about the compliance of the material, while forces along the movement direction during lateral motions reveal static and slip friction as well as texture information. NICO's haptic sensory setup enables the use of human-like haptic exploratory procedures: in two studies, the use of lateral motion across surfaces to gain texture information and the use of squeezing objects to gain information about their compliance and shape was evaluated. Kerzel et al. (2017a) collected a 3200-sample dataset of lateral motions over a set of 32 samples of common household materials ranging from metal to different fabrics or cardboard. High classification accuracy of 99% could be achieved with a neural model. The study could also positively evaluate the robustness of the sensors; in over 5,000 trials, no wear and tear to the sensor occurred. Kerzel et al. (2019b) collected a dataset of human-inspired active haptic exploration of 16 different toys by enclosing and squeezing the objects in the robot's hand. These objects range from foam dice to different plush and plastic figures. The dataset contains 100 active exploration trials for each of the 16 objects; in each trial, seven haptic sensory channels were recorded for 52 time steps. A neural model that integrates the different haptic sensory channels over time achieved a 66.6% classification accuracy. Both studies showed that a key to recognizing haptic properties is the integration of motoric, proprioceptive, and tactile information. To this end, the NICO API is designed to synchronize motor commands and different sensory streams.



3.2.2. Motor Learning Evaluation

Several approaches for grasp learning have been evaluated on NICO: Hafez et al. (2017, 2019) successfully evaluated curiosity-driven reinforcement learning both on a simulated and on a physical NICO. For the physical experiments, full training of the deep RL approach was conducted without human supervision for over 50 h during which NICO performed arm movements and grasp actions. This uptime attests to the robustness of NICO's hardware. Cruz et al. (2016, 2018a,b) used a virtual model of NICO to develop and evaluate interactive reinforcement learning by allowing NICO to receive parent-like advice during a simulated cleaning task. Vocal commands and hand gestures were supplied during training and could be shown to enhance the training efficiency. These studies show the effectiveness of intuitive supervision by non-expert users during domestic tasks that are enabled by an interactive humanoid. Kerzel and Wermter (2017a,b) developed an end-to-end learning approach for object grasping based on a semi-autonomous self-learning cycle, which is described in more detail in section 4.1. Eppe et al. (2017) extended the approach with a modular, attention-based vision approach to grasp a diverse set of small objects in a cluttered scene. Kerzel et al. (2019a) further refined the approach by unifying the visuomotor architecture with a pyramidal convolutional network for identifying, localizing, and grasping a goal object in a complex scene.



3.2.3. Datasets

A series of mono and crossmodal datasets from the above-described active sensing studies that have been recorded with NICO have been published for further use by the scientific community. Kerzel et al. (2019b) provide a haptic dataset of tactile and proprioceptive information during active haptic exploration of objects. Heinrich et al. (2019) provide a vision dataset of 60 object-hand interactions. Heinrich et al. (2018, 2020) recorded the EMIL dataset on embodied multi-modal interaction for language learning. The dataset focuses on low-level crossmodal perception during the environmental interactions from a body-rational perspective. The robot explored a set of toy objects through different actions like shoving, pulling, lifting, and scooting the object across the table. For each action, continuous recording from the robots' cameras, microphones, and proprioception, as well as from an external RGB and depth camera, is provided. Additionally, each sample is annotated with multiple natural language descriptions of the action.



3.2.4. Human-Robot Interaction Evaluation

A wide range of HRI research questions has been addressed using the NICO platform. Initial studies focused on the reception of NICO and its emotional display. Churamani et al. (2017b) evaluated the seven abstracted facial expressions of NICO. Twenty participants (seven female, 13 male, aged between 19 and 49 years, English at a conversational level or better) from eleven different countries from Europe, Asia, South America, and the Middle East took part in the study. The participants could identify a subset of five expressions (neutral, happiness, sadness, surprise, and anger) with an accuracy of ≥75%. Furthermore, the effect of emotion-display on the subjective user rating was evaluated: users completed the Godspeed questionnaire (Bartneck et al., 2009) before and after having seen NICO's facial emotion display; the results showed a significant increase in ratings for the anthropomorphism, animacy, and likeability of the robot.

The use of emotion recognition and expression is aimed at the overall goal of creating natural and engaging interactions. This idea was further explored by personalizing the interaction with individual interaction partners and also by evaluating different “personalities” or interaction strategies for NICO.

In summary, these studies utilize NICO's ability for crossmodal sensing, motion, and social interaction to extend existing neurocognitive models, e.g., for emotion recognition, which were previously trained on prerecorded datasets (e.g., Barros et al., 2018), to live interactions. This allows the evaluation of the model's ability to adapt to individual users and, more importantly, it allows the effect of different HRI strategies on subjective user rating under realistic conditions to be studied. In the following section, we will further extend this research by evaluating how these more engaging interactions can benefit the learning of neurocognitive visuomotor models.





4. METHODOLOGY

In the presented HRI experiment, non-expert users perform a training procedure for a visuomotor task with the developmental humanoid robot NICO. Two conditions are compared: in the robot-guided condition, the robot takes an active role as a learner and guides the user through the process using an Embodied Dialogue System; in the human-guided condition a human experimenter gives all instructions to the participant and controls the robot. We evaluate both the effect on the subjective user rating of the robot and the effect on the learning process. The visuomotor learning task is based on an end-to-end approach for visuomotor learning by Kerzel and Wermter (2017b) and will be described in detail in section 4.1. To enable the bio-inspired development of grasping abilities from interaction with a physical environment, the robot repeatedly places and re-grasps an object on a table. This semi-autonomous learning cycle requires human assistance for initialization and also in the case of a failed re-grasping attempt.


4.1. Neural Architecture and Self-Learning Cycle for End-to-End Grasp Learning

To circumvent the long and possibly damaging trial-and-error-learning periods required for reinforcement learning, Kerzel and Wermter (2017b) presented an approach for transforming the learning task into supervised learning with a neural architecture. A neural architecture can link a visual input image of an object in the robot's field of view to a joint configuration to reach for the object. This regression can be performed by a convolutional neural network (CNN). Figure 4 (top) shows the neural architecture. Given an input RGB image of 80 × 60 pixels, the two convolutional and two dense layers of the network predict a joint configuration for grasping. The two convolutional layers consist of 16 filters, each with a size of 3 × 3 and a ReLu activation function; the dense layers have 900 neurons each and, like the output layer with six neurons, one for each joint in NICO's arm, use a sigmoid activation function. The output is a joint position for reaching for the object, normalized to the interval [0, 1]. The architectural parameters were initially informed by successful approaches for learning visuomotor skills (e.g., Mnih et al., 2015), and empirically optimized (see Kerzel and Wermter, 2017a for details).
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FIGURE 4. (Top) The neural architecture for grasp learning, adapted from Kerzel and Wermter (2017b), maps a visual input to a six-DoF joint configuration to reach for the object in NICO's field of view. (Bottom) NICO's self-learning cycle: (A) an object is put into NICO's hand. (B) NICO places the object at a random position on the table and records its joint configuration. (C) NICO releases the object, removes the hand, and records an image. (D) Using the recorded joint configuration, NICO re-grasps the object and repeats the self-learning cycle.


The neural architecture can associate an image of an object on the table with a joint configuration to reach for the object. For the supervised training of the network, annotated samples are needed that link said images to joint configurations. As it would be too time-consuming to manually create these samples, e.g., by guiding NICO's hand toward the object, the learning task was transformed: instead of grasping, NICO performs the far easier task of placing the object. Starting in an initial pose with the object in its hand, NICO places it at a random position on the table. It stores its current joint configuration, releases the object, removes the hand, and records an image. The resulting image-configuration pair will later be used to train the neural architecture. To complete the learning-cycle, NICO uses the stored joint configuration to re-grasp the object. Once the object is in its hand, NICO starts from the beginning and places the object at another random location on the table. Figure 5 (bottom) shows this semi-autonomous learning cycle.
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FIGURE 5. Results of the visuomotor learning from Kerzel and Wermter (2017b), based on the number of training samples, averaged over ten trials. With 400 training samples, 85.5% of all grasp trials are successful.


Kerzel and Wermter (2017b) evaluated the architecture with training sets of different sizes (10, 25, 50, 100, 200, and 400 samples). All experiments were conducted for 2,000 epochs with stochastic gradient descent with Nesterov momentum (learning rate = 0.01, momentum = 0.9). The batch size was 40, except for the experiments with fewer samples, where a batch size of 10 for the 10-sample condition and a batch size of 20 for the 25-sample condition were used. Mean squared error was used as loss. Each condition was repeated ten times with Glorot uniform initialization and evaluated with 50 random test samples. Figure 6 shows results for different training set sizes. A grasp success rate of 85.7% was achieved with 400 samples of a single object. In a related study, Eppe et al. (2017) report an average accuracy of 76.4% using a total of 535 samples of six different objects. The later model was used for the demonstration phase during the HRI experiment. The success rates represent complete and successful physical grasp actions. A large portion of the non-successful grasps results from objects slipping from the robot's hand during the closure of the fingers or lifting of the hand.
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FIGURE 6. Diagram of the Embodied Dialogue System: depending on the task, NICO guides the user through the grasp training until a fixed amount of samples is successfully collected or demonstrates its grasp abilities to the participant.


However, two challenges arise: First, NICO needs to learn to place objects on the table. For this, initial motor training needs to be performed, during which NICO's hand is moved randomly over the table surface by a human assistant for a few seconds. Second, a human assistant is also required to place the training object into the robot's hand at the beginning of the learning process or when a re-grasping attempt fails. Using its proprioception, NICO can detect such a failure. It then stops the learning cycle, deletes the last collected sample, and moves back into its initial pose, waiting for a human assistant to place the object into its hand so that it can resume. The learning-cycle is semi-autonomous, as it can run for extended periods unattended. In the study by Kerzel and Wermter (2017b), errors occurred in about one out of thirty attempts; however, the number of consecutive error-free cycles fluctuated between 2 and 106. To allow human assistants to focus on other tasks while NICO is learning, the setup was further modified to not just halt the learning-cycle upon detection of failure but to also alert the experimenter, utilizing NICO's inbuilt communication abilities and the Embodied Dialogue System.



4.2. Embodied Dialogue System

The Embodied Dialogue System (Kerzel et al., 2017b) is designed as a control center connecting the six main components needed to accomplish visuomotor grasping tasks, namely Motion, Vision, Emotion, Computation, Knowledge, and Natural Language Generation (NLG). Motion controls the sensorimotor functions of the robot, while Vision uses the cameras in NICO's head to capture the stereo images necessary for the computation of joint values. The data for the task is stored and made available in the Knowledge component, while the Computation component handles the loading of the trained model to the neural network and the computation of the joint values for grasping. Communication with the user happens mainly through the Emotion component, which displays stylized facial expressions with embedded LED lights, and the Natural Language Generation (NLG), which outputs the situationally appropriate response or request through text-to-speech synthesis. The Embodied Dialogue System is implemented as an agenda-driven system, with the agenda being the training of object grasping skills or the testing and demonstration of the acquired ability. The Dialogue System implements the joint-task agenda approach (Piwek, 2017) in which tasks are accomplished via human-robot collaboration. NICO performs visuomotor actions and communicates its progress and the possible need for help, while the user hands the learning object to the robot and provides assistance when requested.

The Embodied Dialogue System is realized in a structured dialogue model (Schlangen, 2005) with atomic and finite states. Figure 6 shows the underlying state machine: states represent actions of the robot that are carried out with different combinations of components. The Embodied Dialogue System decides which action to perform next based on internal knowledge, external commands, or perception with visual or tactile sensors. If, for example, the learning to grasp task is selected, the system will initialize the learning process and ask for assistance from the user, it will execute the grasp-learning cycle until it reaches the desired number of successful samples or until NICO fails at a grasp attempt in which case assistance is required again. The NLG function is executed concurrently with other functions to report progress without interfering with the action currently being executed.



4.3. Experimental Design
 
4.3.1. Participants

The recruitment of participants occurred through various sources (internet advertising, flyers, academic offices) to attract participants with no or little prior experience with humanoid robots, to avoid a so-called “convenience” sample (Baxter et al., 2016). The only requirement was a basic knowledge of conversational English. As an incentive, all participants were able to participate in a draw for gift certificates. Of the 24 participants (12 female and 12 male), an overwhelming majority (83.3%) reported no or little experience with humanoid robots prior to the experiment. Even though the participants were distributed randomly between the two conditions, the gender ratio remained equal in both. The overall average age of the participants was 27, with a range of 17–60. The majority (62.5%) identified as atheist or of no religion, 33.3% was Christian, and 4.16% as ‘other.' In terms of English proficiency, 45.83% self-assessed themselves as advanced, 41.6% as intermediate, and 12.5% as beginner. The study was approved by the Ethics Commission of the University of Hamburg. Written informed consent was acquired from every participant before the start of the experiment.



4.3.2. Experimental Setup and Process

In the experimental setup, NICO is seated at a table with appropriate dimensions for a child-sized robot, as depicted in Figure 7. This experimental setup was initially introduced by Kerzel and Wermter (2017b) and subsequently adapted for various studies related to visuomotor learning and crossmodal object interaction (e.g., Eppe et al., 2017; Kerzel et al., 2017b, 2019b; Heinrich et al., 2018, 2020). Therefore, the experimental setup recreates a realistic neurorobotic learning scenario. The human participant is sitting face-to-face with the robot. The participant and the robot are enclosed by a semi-circular screen. A ceiling-mounted camera captures the interaction between participant and robot. The experimenter is positioned at an extra table to the side, where the interaction phase is started, observed and, depending on the experimental condition, narrated from. A separate adult-sized table was provided for filling out the questionnaires and the consent form.


[image: Figure 7]
FIGURE 7. Experimental setup. Photo (A) and schematic depiction (B) of the experimental setup. The participant is seated face-to-face with NICO, while the experimenter is standing at a separate table and, depending on the experimental condition, guides the participant through the experiment and visibly operates the robot (human-guided condition) or remains silent (robot-guided condition). A ceiling-mounted camera records the interaction.


Figure 8 shows the experimental process. To measure the effect of the Embodied Dialogue System on the effectiveness of the training process and the user's perception of the agent, independent measures were used. The participants were randomly assigned to either a human-guided condition (HG), in which the human experimenter guides them through the grasp-learning task, or a robot-guided condition (RG), in which NICO itself narrates the process and asks for help if needed. Before the experiment, a short introduction to the process and to NICO itself was given to the participants. The camera above the table was shown to them, and the purposes of both audio and video recording were explained. The participants had the opportunity to ask questions before written consent for their participation in the experiment was obtained.


[image: Figure 8]
FIGURE 8. The experimental process. After an introduction, participants were asked to fill in a first questionnaire (Uncanny Valley Indices) based on their initial impression of NICO. Participants were then randomly assigned to the robot-guided or human-guided condition. In both conditions, participants performed a training phase with NICO, followed by a demonstration by NICO. After the demonstration, participants filled in two more questionnaires (Goodspeed and Mind Perception) and took part in a structured interview using the USUS framework.


Before the interaction, the participants were seated opposite an unmoving NICO and were asked to evaluate their immediate impression of NICO by filling out the first questionnaire, based on the refined version of the Uncanny Valley indices by Ho and MacDorman (2017), measuring perceived humanness, eeriness, separated into eerie and spine-tingling, and attractiveness. Since perceived humanness measures a similar concept to the anthropomorphism and animacy indices of the Godspeed questionnaires (Ho and MacDorman, 2010), this serves as a basis for the comparison of the change of the participants' impressions of the robot after the interaction.

The interaction was divided into two phases: A training phase and a demonstration phase. The training phase was limited to 10 min to allow a comparison of the number of collected samples in both conditions. To start the training process, the participant placed the object into NICO's hand. For an increase in interactivity, an intentional grasping error was included in the training. The error occurred randomly every two to five grasping attempts. (For comparison, without the intentional error, failed grasp attempts occurred on average only after more than 30 trials in the study by Kerzel and Wermter (2017b).

In the human-guided condition, the human experimenter instructed the participant when and how to initiate the training and narrated the process. NICO remained silent in this condition and only displayed facial expressions dependent on the success or failure of the grasping attempt. The human experimenter informed the participant if the robot was in need of assistance. In the robot-guided condition, NICO took over the role of the instructor, combining the display of emotions with verbal expressions of happiness or distress, and requesting the assistance of the participant if needed. The script for the training phase can be viewed in Table 1.


Table 1. Script for a training cycle in the first phase of the interaction.

[image: Table 1]

The demonstration phase consisted of the participant placing the object on the table in front of NICO three times, and the robot trying to pick it up. If the attempt was successful, the robot handed the object back to its interaction partner and, depending on the condition, voiced its happiness in addition to displaying an appropriate facial expression. The participants were given no instruction on where to place the object exactly. This allowed the participants to witness the effects of the prior training phase, even though a previously trained neural network was used. For the sake of transparency, the participants were informed about this fact beforehand. Equivalent to phase one, depending on the condition, either the human expert or the humanoid itself guided the participants through the process (see Table 2).


Table 2. Script for the grasping attempt in the second phase of the interaction.

[image: Table 2]

After the interaction, the participants were asked to return to the interview table to fill in the second questionnaire, based on the Godspeed questionnaires by Bartneck et al. (2009) and the Mind Perception questionnaire by Gray et al. (2007), with some additional questions collecting demographic information about the participants. The Godspeed questionnaires measure anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety. While they are known to be very dependent on the environment of the experiment and the experimental design (Weiss and Bartneck, 2015), more so than on the robot itself, they remain a popular evaluation tool and were included here for comparison's sake. The Mind Perception survey questions measure the amount of mind participants attribute to the evaluation subject, in two dimensions: Experience and Agency. While Experience is about how much the subject feels or senses, Agency describes the robot's capacity to act, plan, and exert self-control. As before, the participants were asked to evaluate NICO based on their personal impressions alone. The interview that followed was conducted in a semi-structured manner, with the questions based on the USUS evaluation framework of Weiss and Bartneck (2015), with a combination of obligatory and additional questions for the categories Usability, Social Acceptance, and User Experience. The interview was audio-recorded, about which the participants had been informed before the start of the experiment.





5. RESULTS


5.1. Subjective Effect of an Active Role in Learning on the Participants
 
5.1.1. Humanoid Evaluation

Initial evaluation. The Uncanny Valley indices were used to evaluate the participants' first impression of a silent, motionless NICO. The mean scores are M = 2.32(SD = 0.66) for humanness, M = 3.01(SD = 0.56) for eeriness, M = 3.13(SD = 0.53) for spine-tingling, and M = 3.79(SD = 0.72) for attractiveness. A visualization of the results can be viewed in Figure 9. These results establish a baseline against which we can make comparisons after the robot interaction in the two experimental conditions.


[image: Figure 9]
FIGURE 9. Initial evaluation to establish the participants' first impression of a silent, motionless NICO as a baseline for later comparison. Mean scores and standard error for the Uncanny Valley indices.


Evaluation of the two experimental conditions. As Figure 10 shows, the mean scores of the Godspeed questionnaires are slightly higher in the robot-guided condition for anthropomorphism, animacy, and perceived safety. In the human-guided condition, NICO ranked higher on likeability and perceived intelligence. The mean scores and standard deviations can be viewed in Table 3. To test the statistical significance of the different scores in both conditions, a two-sided Mann-Whitney test was performed. The evaluation of the differences between the two groups produced no significant results (p>0.05).


[image: Figure 10]
FIGURE 10. (A) Shows the mean scores and standard error for the categories of the Godspeed questionnaires. The active NICO scored higher in regard to Perceived Safety, Animacy, and Anthropomorphism. (B) Shows the mean scores and standard error for Experience and Agency in the Mind Perception survey questions. Blue signifies the robot-guided condition and red signifies the human-guided condition.



Table 3. Mean scores and standard deviations for the Godspeed questionnaires for both conditions.

[image: Table 3]

As for the results of the evaluation of the Mind Perception survey, NICO scored higher in regards to both Experience (M = 2.65, SD = 0.63) and Agency (M = 3.12, SD = 0.54) in the human-guided condition (Figure 10). The scores in the robot-guided condition were M = 2.34 (SD = 0.83) for Experience and M = 2.84 (SD = 0.93) for Agency. However, a two-sided Mann-Whitney test showed no statistical significance to the difference between the conditions (p>0.05).

Evaluation after the interaction compared to the baseline. To evaluate a possible change in perceived humanness during the interaction in relation to the established baseline, a Wilcoxon signed-rank test was performed, under the assumption that humanness measures the same concept as anthropomorphism, animacy, and likeability. As suggested by Ho and MacDorman (2010) in their analysis of the Godspeed questionnaires, a high correlation between anthropomorphism and animacy (rs = 0.71, p < 0.01) and a medium correlation between animacy and likeability (rs = 0.46, p = 0.03) was found. The small correlation between anthropomorphism and likeability (rs = 0.35, p = 0.09) was not statistically significant.

The comparison of pre-interaction humanness and post-interaction anthropomorphism did not yield a significant result, with p = 0.11 (Z = 93.5). The p-value of the test within the human-guided condition is p = 0.7203 (Z = 34.5), and p = 0.11 (Z = 18.5) within the robot-guided condition. The comparison between humanness and animacy produced a significant result overall, with p < 0.01 (Z = 55.5), as well as within the robot-guided condition, with p < 0.05 (Z = 14). The test within the human-guided condition shows no significant difference (p = 0.17, Z = 21.5). The comparison between humanness and likeability produced a significant result overall, with p < 0.01 (Z = 4), as well as within the robot-guided condition, with p < 0.01 (Z = 2), and the human-guided condition, with p < 0.01 (Z = 0).



5.1.2. Interaction Evaluation

The evaluation by interview reinforces and clarifies some of the conclusions of the statistical analysis; it also uncovers additional information by giving the participants the space to talk about their experience. The interview questions were based on the indicators of the USUS evaluation framework by Weiss and Bartneck (2015), and the interview was conducted in a semi-structured way. On average, the interviews took between 7 and 8 min per participant.

The effectiveness of the training process was perceived more favorably in the robot-guided condition, with a majority of participants believing in the accomplishment of a goal (60%) and experiencing a high level of satisfaction regarding NICO's progress (79.9%). In the human-guided condition, only 33.3% of the people reported a feeling of accomplishment, and only 16.6% were satisfied with the achieved performance.

All of the participants in the robot-guided condition rated the communication as satisfactory for them, and a majority (66.6%) felt that they would be confident enough to interact with NICO again in the future without the presence of an expert. The most commonly mentioned reason for their confidence was the fact that NICO had previously told them what to do. The remaining 33.4% who were unsure about future interactions mentioned insecurity regarding the expected extent of their help toward NICO. In the human-guided condition, the split was approximately even, with 58.3% of participants admitting the need for further help by a human assistant in a future interaction with NICO and 41.7% being confident in the simplicity of the task and in NICO's ability to conduct the training process without any mistakes. The majority of participants (60%) in the robot-guided condition reported a lack of anxiety due to the dialogue system and NICO's instruction. The remaining 40% expressed anxiety with regard to their own failings, but with the underlying theme being a concern for NICO and its learning process.

In the robot-guided condition, 73.3% of the participants felt that they played a more active role in the interaction, and 80% felt more integral to the success of the learning process. Meanwhile, people in the human-guided condition perceived themselves more frequently as passive observers or in a subordinate role, which is mirrored in the fact that they felt less important to the success of NICO's training. The Embodied Dialogue System also influenced how involved the participants felt in the whole interaction. Since NICO was not equipped with any additional functionalities that facilitate personal involvement, like face-tracking, the emotion display and dialogue system had to fill that role. As mirrored by the participants' perceived lack of importance to the training process in the human-guided condition, only 16.6% felt directly involved. Meanwhile, in the robot-guided condition, 73.3% felt a sense of personal involvement and continuous engagement, which was amplified by NICO addressing them and looking at them directly.

The interaction with NICO was perceived as enjoyable by both groups, with NICO's observable improvement and the feeling of teaching a child being the two most frequently mentioned reasons. But when asked about the type of roles NICO could fill in the future, dangerous, repetitive, or monotonous work featured more prominently in the answers of the participants in the human-guided condition. People in the robot-guided condition placed NICO mostly in elderly care or as a social companion robot. Additionally, 41.6.% of people in the human-guided condition cited NICO's lack of social interaction and emotional understanding as the main reasons for their refusal to accept NICO into their social circle. Meanwhile, 66.6% of people in the robot-guided condition could imagine welcoming NICO into their family, with the remaining 33.3% mentioning roles like “family pet” or “colleague at work.”

To summarize: the Embodied Dialogue System had a noticeable influence on the way people talked about and described NICO. In the robot-guided condition, user satisfaction was overall higher because the participants felt more integral to and engaged in the learning process. This was primarily attributed to NICO's vocal expressions, which made the participants overall confident enough to imagine a possible unsupervised interaction. In contrast, the people in the human-guided condition who experienced a higher level of confidence largely attributed it to the simplicity of the task. This overall detachment from the process and NICO itself can also be found in their active refusal to imagine NICO as more than a utility. This shows that in order to facilitate an environment that allows non-expert users to confidently supervise and actively assist the training process, the robot needs to be able to generate and keep the engagement of the user.




5.2. Objective Effect of an Active Role in Learning on the Learning Process

To ensure comparability between the two conditions, the first phase of the interaction was limited to a time frame of 10 min, during which the participant assisted NICO with the collection of samples. The number of collected samples during this training phase was on average higher in the human-guided condition (M = 9.08, SD = 2.63) than in the robot-guided condition (M = 6.5, SD = 2.53). This difference can, in large part, be attributed to the time the audio output of the dialogue system required.

However, in only the robot-guided condition, an interesting pattern could be observed: people were more inclined to engage themselves in the training process in a positive way, contributing to a smaller number of errors in the observed cases. By correcting the orientation and position of the object after NICO had placed it on the table, they made the subsequent repeated grasping less error-prone, leading to a larger number of uninterrupted iterations of the training process. This went as far as them actively putting the object back into NICO's hand after a predetermined failed grasp in the third or fifth iteration.

In order to quantify this effect, the video recordings of the training phase were analyzed: out of 24 participants, 23 agreed to a video recording and a qualitative analysis of their interaction behavior. Therefore, 230 min of video were annotated for physical interactions between participant and NICO or participant and learning object. We defined any action in which the participant touches the training object or the robot as a physical interaction during the learning phase. Physical interactions were categorized as being either requested or participant-initiated. Depending on the experimental condition, the request for interaction could either come from the robot or from the experimenter. Interactions are requested for two reasons: first, to start the training process, the human participant is asked to put the training object into NICO's hand; second, if, during the learning process, NICO fails to grasp the object, which was artificially caused on each third to fifth trial, NICO moves back into its starting position, and the participant is asked to place the learning object into NICO's hand again. While there were no explicit reasons given for participant-initiated interactions, the fact remains that these interactions overwhelmingly occurred in the robot-guided condition, which can be linked back to the overall higher confidence in NICO's capabilities, as discussed in section 5.1.2, and a higher Perceived Safety score. The examination of the video material shows that participant-initiated interactions occurred if the robot lost its initial grip on the object before or while placing it on the table, in which case the participants picked it up and placed it where they assumed the robot had intended to place the object. The participants also corrected the position of the object after the robot released it, with a possible trigger for that interaction being that the participants observed the object moving during the release. The majority of participant-initiated interactions were small corrections to the object's position during an ongoing grasp attempt. It can be assumed that the participants predicted the end position of NICO's hand based on the observed trajectory and positioned the learning object accordingly. As shown in Figure 11, this also happened in physical contact with the robot6.


[image: Figure 11]
FIGURE 11. Participants correcting the object position during the training phase, after NICO put it on the table (A,B) and during a grasping attempt (C,D).


Table 4 shows the average requested and participant-initiated interactions per training phase. There is a visible increase in the number of participant-initiated interactions in the robot-guided condition (MR = 1.08 compared to MH = 0.18), even though half of them did not initiate any interactions at all. The prerequisites that could have enabled this behavior are discussed in section 5.1.2: participants have little fear of contact with the robot; they feel more engaged in the learning situation and more actively care about the learning outcome. The second observation, namely there being fewer requested interactions in the robot-guided condition (MR = 2.67 compared to MH = 2.91), can also be linked back to this. A possible interpretation of these combined results is that fewer requested interactions were necessary because the participants anticipated and prevented situations that would cause an unsuccessful grasp through participant-initiated interactions. While these results show no statistical significance for α = 0.05, there is a trend to be observed here: participants in the robot-guided condition showed more engagement and proactive behavior, which can have an effect on the actual neural learning processes of the robot.


Table 4. Requested and participant-initiated physical interactions during the learning phase, mean and standard deviations.

[image: Table 4]




6. CONCLUSION


6.1. Discussion of Results on Human-Robot Interaction

The participants reported a high rate of identification with active teaching or supporting roles and continued to refer to NICO as childlike. This indicates that the desired relationship dynamic of a teacher-learner team was achieved. The fact that the participants ascribed the reasons for their enjoyment to the feeling of teaching a child suggests that the collaborative learning approach further facilitated the student-teacher relationship dynamic. The results of the Godspeed questionnaires showed higher scores for anthropomorphism, animacy, and perceived safety in the robot-guided condition. Although the difference in ratings between the groups showed no statistical significance, the results of the interviews were able to confirm them to a degree. The participants attributed human characteristics to NICO in both conditions, but an examination of how they imagined NICO to react to their mistakes showed a tendency toward more human-like behavioral patterns in the robot-guided condition. Following the theory that a high anthropomorphism score could serve as an indicator of social acceptance, as suggested by Weiss and Bartneck (2015) in their meta-analysis of the Godspeed questionnaires, a greater disposition toward accepting NICO as part of their family or social circle could be observed among the participants in the robot-guided condition. Emotional support and elderly or health care appeared more frequently as imagined tasks for the active NICO in a domestic or work environment, which supports the higher anthropomorphism score.

Under the assumption, made in section 4.3.2, that humanness and anthropomorphism, animacy, and likeability measure a similar concept, a significant improvement of perceived humanness after the interaction with an active NICO could be observed. The effect was distinctly lower in the human-guided condition, suggesting that the Embodied Dialogue System was the influencing factor. Participants in the robot-guided condition reported a higher level of perceived involvement after interacting with NICO, although in both groups, the feeling of reciprocity peaked in the demonstration phase. This shows that the Embodied Dialogue System could help with keeping user involvement high throughout an interaction.

The number of collected samples and successful grasping attempts had no measurable influence on the perceived intelligence rating. A reason for this could be a missing basis of comparison for the users, amplified by the fact that the majority had no previous experience with humanoid robots. This is reflected in the fact that NICO's performance did not have any influence on the participants' sense of achievement. People in the robot-guided condition were on average more forgiving of NICO's mistakes, reporting an accomplished goal even with a low number of collected samples. In the human-guided condition, participants were much more ready to dismiss the learning process, even though a high number of samples indicated a fast training phase.

Although people in both conditions were equally afraid of making mistakes during NICO's training phase, the higher perceived safety score in the robot-guided condition indicates that participants overall felt more secure during this interaction. This is endorsed by the fact that the participants were more confident in their capability of interacting with NICO unsupervised, basing this confidence on NICO's clear instructions. This confidence is also mirrored in the fact that in the robot-guided condition, the participants more actively intervened in the grasp learning process by, e.g., correcting object positions (Figure 11). These results support the hypothesis that the Embodied Dialogue System enables non-expert users to supervise the learning process with confidence and efficiency.



6.2. Discussion of Results on Robotic Visuomotor Learning

The presented study shows that the Embodied Dialogue System can realize a successful visuomotor learning scenario between a non-expert user and NICO. Though the scenario was carried out in controlled laboratory conditions, the results indicate that the robot-guided learning interaction could also take place ad hoc in a domestic environment, e.g., when the robot encounters a novel visuomotor task and requires some form of human aid. This assistance can take different forms like demonstration (Gupta et al., 2016), advice, and instruction (Cruz et al., 2016) or physical assistance (Kerzel and Wermter, 2017b).

The positive subjective rating of the participants that was achieved in the robot-guided condition is an important factor for the use of humanoid robots as learning companions in everyday tasks. However, it is equally important to consider the quality of the learning outcome. Our results show that while using the Embodied Dialogue System to communicate its internal states and intentions took more time, resulting in less collected samples, it also led to a number of participants actively collaborating with NICO in its training and thus improving the learning process. The participants physically intervened in the learning process on their own initiative and prevented, e.g., unsuccessful grasps by correcting the position of the object. This behavior, in turn, enhances the quality of the collected samples. Moreover, in an actual learning scenario in the wild, learning based on the supervision of a human expert defeats the purpose of a semi-autonomous learning companion robot.

In summary, though fewer samples were collected in the robot-guided condition, the participants rated the robot-guided interaction more positively, indicating that they might be willing to spend more time teaching the robot, which could compensate for the slower speed of sample collection in this condition. Furthermore, participant-initiated interactions improved the quality of the collected samples. Finally, results from the interviews conducted indicate that the participants would put more trust in the abilities that result from NICO's training and are more willing to accept NICO as a companion in their home.



6.3. Discussion on Social Humanoid Robots

The presented study shows how a robot's ability to socially interact is a key factor for learning from and with humans. Considering the challenging nature of many real-world robotic tasks, the ability and willingness of non-expert users to aid in the necessary learning process is an important resource. The presented results are in line with the concept of developmental robotics (Cangelosi and Schlesinger, 2015): when looking at early human development, social interaction, especially scaffolding provided by caretakers, is critical for the development of cognitive abilities.

The results give evidence to support the proposition that successful scaffolding of a robotic learner in interaction with non-expert users is fostered by sensory and motoric similarity, approachability, and social interaction abilities. We show that this idea is reflected in the design of NICO (section 3.1) and by the previous studies carried out on NICO (section 3.2) evaluating it as a platform for social interaction, human-inspired active visual, auditory, and haptic perception, and developmental grasp-learning. The studies show in multiple cases that human strategies, e.g., active audio exploration (Eppe et al., 2018) and can be adapted to NICO. In turn, this also implies that non-expert users can apply their common sense and expertise as teachers in the NICO scenario. Multiple studies on Human-Robot Interaction demonstrate that NICO can engage in different Human-Robot Interaction scenarios and is rated positively by participants and that features like its facial emotion display have a positive effect on subjective user ratings (Churamani et al., 2017b). These properties of NICO are reflected in the questionnaire and interview responses of the presented study, and it can be assumed that they contributed to the positive learning outcome. The presented HRI study brings together, for the first time, human-robot interaction and visuomotor learning on NICO and shows that social interaction can be a key factor for enabling human teachers. The presented learning setup can be adapted to other platforms as a contribution to both the robotic machine learning as well as the developmental robotics community7.



6.4. Future Work

If a state-based Embodied Dialogue System is able to greatly improve the user experience of non-expert participants while teaching NICO, it might be possible to further amplify that behavior by designing a system that focuses on user comfort, not just to improve the experience of the human interacting with the robot but also to increase the training success of the robot learner. A natural learning process, with clearly communicated intentions, that is accessible to non-expert humans, will ultimately benefit both user and robot.

Valuable lessons can be drawn from the structured interviews for improving NICO's design and social interaction capabilities: NICO's three-fingered hands will be upgraded to four-fingered hands with a movable thumb, giving NICO a more human-like appearance. More importantly, the design will enable different types of grasps that can be selected according to object affordances. This more anthropomorphic design is intended to contribute to grasp learning with the aid of non-expert human teachers by enabling a more intuitive understanding of NICO's kinematics. To enhance NICO's overall appearance, NICO will be upgraded to allow concealed cable routing inside its limbs and also be fitted with an optional outer shell.

For the interaction scenario, suggestions by the participants will be implemented and evaluated: A module for face tracking and gaze shifts will be integrated into the API, as the missing eye-contact during the training phase was the most commonly mentioned grievance because it disconnected the user from the process. Also, a new text-to-speech module will be developed, as NICO's voice was also repeatedly remarked upon, either as being unfitting for a young child or causing confusion about NICO's perceived gender. At the moment, the evaluated Embodied Dialogue System only covers the instructions and assertions necessary for a smooth training process. A wish for a more detailed introduction to or narration of the process was mentioned, which could be a way to keep user involvement high even during longer phases without eye-contact and create a more satisfying user experience. In future studies, we will also more tightly control the participant's initiative in the interaction as an evaluation tool. With regard to crossmodal neurocognitive models, the suggested extensions will support a tighter integration of semi-autonomous reinforcement learning and multiple forms of learning from humans, like advice, physical aid, learning from demonstration, and human feedback as reward signal.
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FOOTNOTES

1Visit http://nico.knowledge-technology.info for further information, the open NICO API, NICO CAD files, and released datasets.

2https://github.com/poppy-project/pypot

3https://www.pollen-robotics.com

4Further technical details, including CAD files for 3D-printed parts, a construction guide, video material, and the NICO API can be found at https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html.

5An overview video of selected studies carried out on NICO can be found at https://www2.informatik.uni-hamburg.de/wtm/videos/NICO_papers_2017-2020.mp4.

6Redundant safety features limit the closing force of the robotic hands: the mechanical design of the robotic hand is based on magnet connectors for the fingers that give away in case of excess load; furthermore, both software and firmware limitations for all motors are implemented. Therefore, the physical interaction between the participants and the robot was safe at all times.

7The NICO API and code examples, including a pre-trained neural grasping model, can be found at https://github.com/knowledgetechnologyuhh/NICO-software.
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Natural language provides an intuitive and effective interaction interface between human beings and robots. Currently, multiple approaches are presented to address natural language visual grounding for human-robot interaction. However, most of the existing approaches handle the ambiguity of natural language queries and achieve target objects grounding via dialogue systems, which make the interactions cumbersome and time-consuming. In contrast, we address interactive natural language grounding without auxiliary information. Specifically, we first propose a referring expression comprehension network to ground natural referring expressions. The referring expression comprehension network excavates the visual semantics via a visual semantic-aware network, and exploits the rich linguistic contexts in expressions by a language attention network. Furthermore, we combine the referring expression comprehension network with scene graph parsing to achieve unrestricted and complicated natural language grounding. Finally, we validate the performance of the referring expression comprehension network on three public datasets, and we also evaluate the effectiveness of the interactive natural language grounding architecture by conducting extensive natural language query groundings in different household scenarios.

Keywords: interactive natural language grounding, referring expression comprehension, scene graph, visual and textual semantics, human-robot interaction


1. INTRODUCTION

Natural language grounding aims to locate target objects within images given natural language queries, and grounding natural language queries in visual scenes can create a natural communication channel between human beings, physical environments, and intelligent agents. Moreover, natural language grounding is widely used in image retrieval (Gordo et al., 2016), visual question answering (Li et al., 2018), and robotics (Paul et al., 2018; Mi et al., 2019).

With applications of robots becoming omnipresent in varied human environments such as factories, hospitals, and homes, the demand for natural and effective human-robot interaction (HRI) has become urgent. Natural language grounding-based HRI is also attracting considerable attention, and multiple approaches have been proposed (Schiffer et al., 2012; Steels et al., 2012; Twiefel et al., 2016; Ahn et al., 2018; Hatori et al., 2018; Paul et al., 2018; Shridhar and Hsu, 2018; Mi et al., 2019; Patki et al., 2019).

Natural language grounding-based HRI requires a comprehensive understanding of natural language instructions and working scenarios, and the pivotal issue of is to locate the referred objects in working scenarios according to given instructions. Although the existing models achieve promising results, some of them either do not take the inherent ambiguity of natural language into consideration (Paul et al., 2018; Katsumata et al., 2019; Mi et al., 2019; Patki et al., 2019), or alleviate the ambiguity via drawing support from auxiliary information, such as dialogue system (Ahn et al., 2018; Hatori et al., 2018; Shridhar and Hsu, 2018) and gestures (Shridhar and Hsu, 2018). However, the dialogue-based disambiguation systems entail time cost and cumbersome interactions.

Tasks that utilize textual descriptions or questions to help human beings to understand or depict images and scenes are in agreement with the human desire to understand visual contents at a high semantic level. Examples of these tasks include dense captioning (Johnson et al., 2016), visual question answering (Antol et al., 2015), referring expression comprehension (Yu et al., 2016), etc. Referring expression comprehension imitates the role of a listener to locate target objects within images given referring expressions. Compared to other tasks, referring expression comprehension focuses on objects in visual images and locates specific targets via modeling the relationship between objects and referring expressions.

Inspired by the role of referring expression comprehension, we propose an interactive natural language grounding architecture based on referring expression comprehension. Specifically, we propose a semantic-aware network for referring expression comprehension task. The proposed semantic-aware network is composed of a visual semantic-aware network, a language attention network, and a target localization module. The visual semantic-aware network highlights the visual semantics of regions by fully utilizing the characteristics of deep features extracted from a pretrained CNN (Convolutional Neural Network). The language attention network learns to assign different weights to each word in expressions and parse expressions into phrases that embed information of target candidate, relation between objects, and spatial location, respectively. And the target localization module combines the visual and textual representations to locate target objects. We train the proposed network on three popular referring expression datasets: RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016), and RefCOCOg (Mao et al., 2016).

In real applications, natural language queries are complicated and ambiguous. While the expressions in the referring expression datasets are simple sentences and only indicate one target, so the complicated queries can not be grounded only by the trained referring expression comprehension model. Inspired by the role of scene graph which describes objects within visual images and the relationship between objects, we integrate the referring expression comprehension network with scene graph parsing (Johnson et al., 2015) to ground unconstrained and complicated natural language queries.

Moreover, we conduct extensive experiments on test sets of the three referring expression datasets to validate the proposed referring expression comprehension network. In order to evaluate the performance of the interactive natural language grounding architecture, we collect plenty of indoor working scenarios and diverse natural language queries. Experimental results demonstrate that the presented natural language grounding architecture can ground complicated queries without the support from auxiliary information.

To sum up, our major contributions are two-fold. First, we propose a semantic-aware network for referring expression comprehension, in which we take full advantage of the characteristics of the deep features and exploit the rich contexts of referring expressions. Second, we present a novel interactive natural language grounding architecture by combining the referring expression comprehension network with scene graph parsing to ground complicated natural language queries.



2. RELATED WORK


2.1. Natural Language Grounding for HRI

Multiple approaches have been proposed to address natural language grounding for HRI. Schiffer et al. (2012) adopted decision-theoretic planning to interpret spoken language commands for natural language-based HRI in domestic service robotic applications. Steels et al. (2012) presented Fluid Construction Grammar (FCG) to understand natural language sentences, and FCG was suitable for real robot requires because of its robustness and flexibility. Fasola and Matarić (2014) proposed a probabilistic method for service robots to interpret spatial language instructions.

Twiefel et al. (2016) combined an object classification network, a language understanding module with a knowledge base to understand spoken commands. Paul et al. (2018) proposed a probabilistic model named adaptive distributed correspondence graph to understand abstract spatial concepts, and an approximate inference procedure to realize concrete constituents grounding. Patki et al. (2019) utilized distributed correspondence graph to infer the environment representation in a task-specific approach. Katsumata et al. (2019) introduced a statistical semantic mapping method that enables the robot to connect multiple words embedded in spoken utterance to a place in a semantic mapping processing. However, these models did not take into account the inherent vagueness of natural language. Our previous work (Mi et al., 2019) first presented an object affordances detection model, and then integrated the object affordances detection with a semantic extraction module for grounding intention-related spoken language instructions. This model, however, was subject to limited categories of affordances, so it can not ground unconstrained natural language.

Shridhar and Hsu (2018) adopted a pretrained captioning model, DenseCap (Johnson et al., 2016), to generate expressions for detected regions in uncluttered working scenarios, and through conducting K-means clustering to identify the relativeness of input instructions and the generated expressions. The expressions generated by DenseCap (Johnson et al., 2016) do not include the interaction information between objects, such as the relationship between objects. Therefore, the authors of work (Shridhar and Hsu, 2018) employed gestures and a dialogue system to disambiguate spoken instructions. Hatori et al. (2018) drew support from a referring expression comprehension model (Yu et al., 2017) to identify the target candidates, and tackled with the ambiguity of spoken instructions via conversation between human users and robots. Ahn et al. (2018) first employed hourglass network (Newell et al., 2016) to generate position heatmap for working scenarios, and combined the generated heatmap with a question generation module to locate targets according to the answers for the generated questions. Thomason et al. (2019) translated the spoken instructions into discrete robot actions and improved objects grounding through clarification conversations with human users. Nevertheless, dialogue systems usually make HRI cumbersome and time-consuming.

Thomason et al. (2016) took into account visual, haptic, auditory, and proprioceptive data to predict the target objects, and the natural language grounding supervised by an interactive game. However, this model needs to gather language labels for objects to learn lexical semantics. Magassouba et al. (2018) presented a multi-modal classifier generative adversarial network to enable robots to implement carry-and-place tasks, and disambiguates the natural language commands by utilizing the contexts of working environments and the states of the robots.

By contrast, we disambiguate natural language queries by a referring expression comprehension network and achieve interactive natural language grounding without auxiliary information. To alleviate the ambiguity of natural language queries, we take into consideration the relations, the region visual appearance difference, and the spatial location information during the referring expression comprehension network training. Besides, we integrate the trained referring expression comprehension model with scene graph parsing to achieve unrestricted and complicated interactive natural language grounding.



2.2. Referring Expression Comprehension

Referring expression comprehension aims to locate the most related objects in images according to given referring expressions. Compared with image captioning and visual question answering, referring expression comprehension is widely used in image retrieval (Chen k. et al., 2017), video question answering (Gao et al., 2017), and natural language based HRI (Hatori et al., 2018; Shridhar and Hsu, 2018).

In terms of representations of image regions and natural language referring expressions, existing approaches for referring expression comprehension can be generalized into two categories: (1) visual representations un-enriched models, which directly extract deep features from a pretrained CNN as the visual representations of detected image regions (Mao et al., 2016; Yu et al., 2016, 2017; Hu et al., 2017; Deng et al., 2018; Zhang et al., 2018; Zhuang et al., 2018). (2) visual representations enriched models, which enhance the visual representations by adding external visual information for regions (Liu et al., 2017; Yu et al., 2018a,b). Liu et al. (2017) leveraged external knowledge acquired by an attributes learning model to enrich the information of regions. Yu et al. (2018b) trained an object detector on the Visual Genome dataset (Krishna et al., 2017) to generate diversified and discriminative proposals. Yu et al. (2018a) extracted deep features from two different convolutional layers to predict region attribute cues. However, these mentioned approaches neglected the rich information embedded in the extracted deep features.

Attention mechanism was introduced for image captioning (Xu et al., 2015) and become an indispensable component in deep models to acquire superior results (Anderson et al., 2018; Yu et al., 2018a). Due to the excellent performance of attention mechanisms, they have also been utilized in referring expression comprehension (Hu et al., 2017; Deng et al., 2018; Yu et al., 2018a; Zhuang et al., 2018). Hu et al. (2017) parsed the referring expressions into a triplet (subject, relationship, object) by an external language parser, and computes the weight of each part of parsed expressions with soft attention. Deng et al. (2018) introduced an accumulated attention network that accumulated the attention information in image, objects, and referring expression to infer targets. Zhuang et al. (2018) argued that the image representation should be region-wise, and adopted a parallel attention network to ground target objects recurrently. Notwithstanding, these models processed expressions as holistic and ignored the rich context of expressions. Wang et al. (2019) introduced a graph-based attention mechanism to address the target candidates and the relationships between objects within images, while the visual semantic in images was neglected.

Unlike the above mentioned approaches, we address the visual semantics of regions by taking advantage of the inherent semantic attributes of deep features, i.e., channel-wise and spatial characteristics of extracted deep features. Additionally, we explore the textual semantics by adopting BERT to generate word representations and employ a language attention network to learn to decompose expressions into phrases to ground target objects.




3. ARCHITECTURE OVERVIEW

Natural language provides a more intuitive interface to achieve natural and effective HRI. For grounding unrestricted and complicated interactive natural language queries, we propose a novel architecture, as shown in Figure 1. We decompose the interactive natural language grounding into two subtasks: (1) parse the complicated natural language queries into scene graph legends by scene graph parsing. The scene graph legend is a data structure consisting of nodes that denote objects with attributes and edges that indicate the relations between objects; (2) ground the parsed natural language queries by the referring expression comprehension network.


[image: Figure 1]
FIGURE 1. The architectural diagram of the proposed interactive natural language grounding. We first parse the interactive natural language queries into scene graph legends by the scene graph parsing. We then ground the generated scene graph legends via the referring expression comprehension network. The mark rectangle in bottom encompasses the scene graph parsing result for the input natural language query. The rounded rectangles with black dashed lines denote the parsed scene graph legends, color shaded rectangles represent referents, no color shaded rectangle is an object, ovals indicate objects attributes, rounded rectangles act for edges which indicate relations between target and other objects. The same color of the bounding boxes in the output image and the referents in the generated scene graph legends denotes a grounding.


In this work, we aim to locate the most related referents in working scenarios given interactive natural language expressions without auxiliary information. The inputs consist of a working scenario given as an RGB image and an interactive natural language instruction given as text, and the outputs are the bounding boxes of target objects. We parse the input natural language instructions into scene graph legends by scene graph parsing, and then we ground the acquired scene graph legends via the referring expression comprehension network.

We elaborate the details of the referring expression comprehension network in section 4, and we describe the scene graph parsing in section 5. Following this, we outline the experiments conducted to evaluate the referring expression comprehension network and the interactive natural language grounding architecture in section 6.



4. REFERRING EXPRESSION COMPREHENSION VIA SEMANTIC-AWARE NETWORK

Given a referring expression r with M words r = [image: image] and an image I with N region of interests (RoIs) I = [image: image], we model the relation between wi and oj to locate the target object. In this study, we propose a referring expression comprehension network comprises: (1) a language attention network learns to assign different weights to each word in expressions, and parse the expressions into phrases that denote target candidate, relation between target candidate and other objects, and location information; (2) a visual semantic-aware network generates semantic-aware visual representation, which is acquired by the channel-wise and the region-based spatial attention; (3) a target localization module achieves targets grounding by combining the outputs of the language attention network, the output of the visual semantic-aware network with the components of the target localization module. Figure 2 illustrates the details of the proposed semantic-aware network for referring expression comprehension.


[image: Figure 2]
FIGURE 2. Semantic-Aware network for referring expression comprehension. We adopt the language attention network to compute the different weights for each word in expressions, and learn to parse the expressions into phrases that embed the information of target candidate, relation, and spatial location, respectively. We conduct both channel-wise and region-based spatial attention to generate semantic-aware region visual representation. We further combine the outputs of the visual semantic-aware network, the language attention network, and the relation and location representations to locate the target objects. In the figure, [image: image] denotes the projected deep features, VC represents the channel-wise weighted deep feature, VS is the spatial weighted feature, [image: image] is the generated semantic-aware visual representation by concatenating [image: image] and VS, the details are described in section 4.2. The relation representation urel, the location representation uloc, and the details of the target candidate module, the relation module, and the location module are introduced in section 4.3. Ψ denotes a channel-wise multiplication for [image: image] and the generated channel-wise attention weight σ, Φ represents element-wise multiplication for VC and the acquired spatial attention weight γ (Best viewed in color).



4.1. Language Attention Network

We propose a language attention network to learn the different weights of each word in referring expressions, and also to learn to parse the expressions into target candidate embedding rtar, relation embedding rrel, and spatial location embedding rloc, respectively.

For an expression r, we employ BERT (Devlin et al., 2019) to tokenize and encode r into contextualized word embeddings Er = [e1, e2,., eM], where ei ∈ ℝ1 × 1024. We then feed Er into an one-layer BiLSTM:

[image: image]

where Lout is the output of the BiLSTM.

To acquire the different weight of each word, we compute attention distribution over the expressions by:

[image: image]

where αl denotes the calculated attention weight, and [image: image] = 1. In the implementation, [image: image] is modeled by two convolution layers. The generated expression representation L ∈ ℝd × 2048, d is length of expressions in different dataset.

Expressions like “cup with printed red flowers,” some words should be parsed to a phrase to represent specific information, e.g., “with printed red flowers.” To this end, we employ a single perceptron layer and a softmax layer to learn to parse the expression into three module embeddings:

[image: image]

where φ is a non-linear activation function, in this paper, we use hyperbolic tangent. Wt is a trainable weight matrix and bt represents a bias vector. wtar, wloc, wrel represent weights guided by target embedding rtar, relation embedding rrel, and spatial location embedding rloc, respectively.



4.2. Visual Semantic-Aware Network

We take full advantage of the characteristics of deep features extracted from a pretrained CNN model, and we conduct channel-wise and region-based spatial attention to generate semantic-aware visual representation for each detected region. This process can be deemed as visual representation enrichment for the detected regions.


4.2.1. RoI Features

Given an image, we adopt Faster R-CNN (Ren et al., 2015) to generate RoIs, and we extract deep feature fv ∈ ℝ7 × 7 × 2048 for each oj from the last convolutional layer of the 4th-stage of ResNet101 (He et al., 2016), where 7 × 7 denotes the size of the extracted deep feature, 2048 is the output dimension of the convolutional layer, i.e., the number of channels. We then project the deep feature fv into a 512-dimension subspace by a convolution operator with 1 × 1 kernel, i.e., the projected deep feature [image: image] ∈ ℝ7 × 7 × 512.



4.2.2. Channel-Wise Attention

Essentially, deep features extracted from CNN are spatial, channel-wise, and multi-layer. Each channel of a deep feature correlates with a convolutional filter which performs as a pattern detector (Chen L. et al., 2017). For example, the filters in lower layers detect visual clues such as color and edge, while the filters in higher layers capture abstract content such as object component or semantic attributes. Accordingly, performing channel-wise attention on higher-layer features can be deemed as a process of semantic attributes selection.

We first reshape the projected RoI deep feature fv′ to V=[v1, v2, ., vdv], where vi ∈ ℝ7 × 7 is the i-th channel of the deep feature fv′, dv=512. We then perform average pooling on each channel to generate the channel-wise vector V = [v1, v2, ..., vdv], where V ∈ ℝ1 × 512, vi represents the i-th pooled channel feature.

After the feature pooling, we first utilize L2-normalization to process channel-wise vector V and expression representation L to generate more robust representations, we then perform channel-wise attention by a channel-wise attention network which is composed of an MLP (multi-layer perceptron) and a softmax layer. For the detected image region, the input of the attention network is average-pooled feature V and the weighted expression representation L. The channel-wise attention weight is acquired by:

[image: image]

where Wv, c and Wt, c are learnable weight matrices, bv, c and bt, c are bias vectors, Wv, c and bv, c are the parameters of the MLP for visual representation, while Wt, c and bt, c for textual representation. ⊗ denotes outer product, σ ∈ ℝ1 × 512 is the learned channel-wise attention weight which encodes the semantic attributes of regions. In the following, Wv, . and bv, . represent the weight matrix and bias vector for visual representation, while Wt, . and bt, . denote the trainable parameters for textual representation.



4.2.3. Region-Based Spatial Attention

The channel-wise attention attempts to address the semantic attributes of regions, while the region-based spatial attention is employed to attach more importance to the referring expressions related regions. To acquire region-based spatial attention weights, we first combine the learned channel-wise attention weight σ with the projected deep feature [image: image] to generate channel-wise weighted deep feature VC.

[image: image]

where Ψ is a channel-wise multiplication for deep feature channel and the corresponding channel weights, VC ∈ ℝ49 × 512.

We put the weighted channel-wise deep features VC and the weighted expressions into an attention network similar to the channel-wise attention to calculate the spatial attention γ:

[image: image]

The acquired γ ∈ ℝ49 × 1 denotes the weight of each region related to the expressions. We further fuse the γ with channel-wise weighted feature VC to obtain spatial weighted deep feature VS:

[image: image]

where Φ denotes element-wise multiplication for generated VC and the corresponding γ.

Spatial weighted deep feature VS ∈ ℝ7 × 7 × 512 comprises the semantics guided by the channel-wise attention as well as the spatial weight of each region. Therefore, we define VS as semantic-aware deep feature. Finally, we concatenate VS with projected feature [image: image] to obtain semantic-aware visual representation for each region, i.e., [image: image] = [[image: image] ; VS], [image: image] ∈ ℝ7 × 7 × 1024, [· ; ·] denotes the concatenate operation.




4.3. Target Localization Module

In order to locate target objects for given expressions, we need to sort out the relevant candidates, the spatial location, and the appearance difference between the candidate and other objects. For instance, to understand the expression “the cow directly to the right of the largest cow,” we need to understand the spatial location “the right of,” and the appearance difference “largest” between the cows to identify the target “cow.” To this end, we deal with the relevant candidates, the relation and spatial location through a target candidate module, a relation module, and a spatial location module, respectively.


4.3.1. Target Candidate Module

We compute the target candidate phrase matching score by the target candidate module. For a given region semantic-aware representation [image: image] and target candidate phrase guided expression embedding rtar, we process [image: image] and rtar by L2-normalization and linear transform to compute the attention weights on each region:

[image: image]

where β denotes the learned region-based attention weight.

We fuse β and [image: image] to obtain the target candidate phrase attended region visual representation utar, and we further compute the target candidate matching score star by:

[image: image]

where [image: image](·, ·) represents the consine distance measurement.



4.3.2. Relation Module

We adopt a relation module to obtain the matching score of a pair of candidates and relation embedding rrel. We use the average-pooled channel vector V as the appearance representation for each candidate. To tackle with the appearance difference between candidates, e.g., “the largest cow,” we calculate the visual appearance difference representation δvi=[image: image][image: image] as (Yu et al., 2016), where n is the number of candidates chosen for caparison (in our implementation n = 5). We concatenate V and δvi as the candidates visual relation representation urel, i.e., urel = [V ; δvi]. We calculate the relation matching score by:

[image: image]
 

4.3.3. Spatial Location Module

We calculate the location matching score through the location module. To deal with the spatial relation of candidates in images, following (Yu et al., 2016), we adopt a 5-dimensional spatial vector ul = [[image: image], [image: image], [image: image], [image: image], [image: image]] to encode the top left position, bottom right position, and the relative size of the candidates in images. In order to address the relative position expression like “the right of,” “in the middle,” we adopt the relative location vector Δuij = [[image: image], [image: image], [image: image], [image: image], [image: image]] which is obtained by comparing with five surrounding objects and concatenate with ul to generate candidate location representation uloc = [ul ; Δuij].

Similar to the target candidate module, we process uloc and location phrase rloc, and then combine the transformed uloc and rloc to generate the location matching score sloc:

[image: image]
 


4.4. Learning Objective

Given a referring expression r and an image I with multiple RoIs pair, we calculate the target candidate score, the relation score, and the location score, through the three above introduced modules. We locate the target object by the final grounding score:

[image: image]

In the implementation, we adopt a combined max-margin loss as the objective function:

[image: image]

where θ denotes the parameters of the model to be optimized, ξ is the margin between positive and negative samples. During training, we set ξ = 0.1. For each positive target and expression pair (oi, ri), we randomly select negative pairs (oi, rj) and (ok, ri), where rj is the expression for other objects, ok is the other object in the same image.




5. SCENE GRAPH PARSING

The introduced referring expression comprehension network is trained on RefCOCO, RefCOCO+, and RefCOCOg. The referring expressions in RefCOCO and RefCOCO+ were collected by an interactive manner (Kazemzadeh et al., 2014), and the average length of expressions in RefCOCO is 3.61, and the average number of words in RefCOCO+ expressions is 3.53. While RefCOCOg expressions were collected in a non-interactive way, therefore produces longer expressions and the average length is 8.43. From the perspective of expression length distribution, 97.16% expressions in RefCOCO contain less than 9 words, the proportion in RefCOCO+ is 97.06%, while 56.0% expressions in RefCOCOg comprise less than 9 words. Moreover, the expressions in the three datasets only indicate one referent, so the trained model cannot ground natural language instructions with multiple target objects.

Considering the richness and diversity of natural language, and the relatively simple expressions in the three datasets, the trained referring expression comprehension model can not achieve complex natural language grounding. To this end, we combine scene graph with the referring expression comprehension network to ground unconstrained and sophisticated natural language.

Scene graph was introduced in Johnson et al. (2015), in which the scene graph is used to describe the contents of a scene. Compared with dependency parsing, scene graph parsing generates less linguistic constituents. Given a natural language sentence, scene graph parsing aims to parse the natural language sentence into scene graph legends, which consist of nodes comprise objects with attributes and edges express the relations between target and objects. For instance, for the sentence “red apple next to the bottle,” the generated scene graph legend contains node (“red apple”) and node (“bottle”), and edge (“next to”).

Formally, a scene graph legend is defined as a tuple [image: image] = ([image: image], [image: image]), where [image: image] = {N1(S), N2(S), ., Nn(S)} is a set of nodes that encode objects with attributes, and [image: image] = {E1(S), E2(S), ., Em(S)} is a set of edges that express the relations between objects. Specifically, a node Ni(S) ⊆ ni × [image: image] represents attribute [image: image] of an object ni (e.g., red apple). An edge Ei(S) ⊆ (no × R × ns) denotes the relation R between a subject no and an object ns, (e.g., next to).

In general, a scene graph parser can be constructed on a corpus consisting of paired node-edge labels. However, no such dataset is released for interactive natural language grounding. In order to ensure the natural language is parsed correctly, we adopt a simple yet reliable rule, i.e., word-by-word match, to achieve scene graph alignment. Specifically, for a generated scene graph, we check the syntactic categories of each word in a node and an edge by part of speech. A parsed node should consist of a noun or an adjective, and an edge contains an adjective or an adverb. In practice, we adopt the language scene graph (Schuster et al., 2015) and the natural language toolkit (Perkins, 2010) to complete scene graph generation and alignment.



6. EXPERIMENTS AND RESULTS


6.1. Referring Expression Comprehension Benchmark
 
6.1.1. Datasets

We train and validate the referring expression comprehension network on RefCOCO, RefCOCO+, and RefCOCOg. The images of the three datasets were collected from MSCOCO dataset (Lin et al., 2014).

RefCOCO comprises 142,210 expressions for 50,000 referents in 19,994 images. We adopt the same split with (Yu et al., 2016). The dataset is divided into training, validation, and test, respectively. The training set contains 120,624 expressions for 42,404 objects in 16,994 images, the validation set has 10,834 expressions for 3,811 objects in 1,500 images. The testing partition comprises two splits, testA and testB. TestA includes 5,657 expressions for 1,975 objects in 750 person-centric images, while testB owns 5,095 object-centric expressions for 1,810 objects in 750 images.

RefCOCO+ consists 141,564 expressions for 49,856 referents in 19,992 images. The split we use is same as (Yu et al., 2016). The training set consists of 120,191 expressions for 42,278 objects in 16,992 images, the validation partition contains 10,758 expressions for 3,805 objects in 1,500 images. TestA comprises 5,726 expressions for 1,975 objects in 750 images, and testB encompasses 4,889 expression for 1,798 objects in 750 images. Compared to RefCOCO, RefCOCO+ discards absolute location words and attaches more importance to appearance differentiators.

RefCOCOg contains 95,010 expressions for 49,822 referents in 25,799 images. As they are collected in a non-interactive pattern, the length of referring expressions in RefCOCOg are longer than RefCOCO and RefCOCO+. RefCOCOg has two types of data splitting, (Mao et al., 2016) splits the dataset into train and validation, and no test set is published. Another data partition (Nagaraja et al., 2016) split the dataset as training, validation, and test sets. We run experiments on the second division, in which the training set contains 80,512 expressions for 42,226 objects in 21,899 images, the validation split includes 4,896 expressions for 2,573 objects in 1,300 images, and the test partition has 9,602 expressions for 5,023 objects in 2,600 images.



6.1.2. Experimental Setup

In practice, we set the length of the sentences to 10 for the expressions in RefCOCO and RefCOCO+, and pad with “pad” symbol to the expressions whose length is smaller than 10. We set the length of the sentences to 20 and adopt the same manner to process the expressions in RefCOCOg.

We employ “bert-large-uncased” model1 to generate contextualized word embedding Er. According to Devlin et al. (2019), the word embedding from the sum of the last four layers acquire better results than the embedding extracted from the last layer. We select the embedding of the sum of the last four layers of BERT as Er. Therefore, the obtained expression representation q ∈ ℝ10 × 1024 for RefCOCO and RefCOCO+, and q ∈ ℝ20 × 1024 for RefCOCOg.

Given an image and referring expression pair, we utilize the final ground score defined in Equation 12 to compute the matching score for each object in the image, and pick the one with the highest matching score as the correct one. We calculate IoU (Intersection over Unit) between the selected region and the ground truth bounding box, and select the IoU value larger than 0.5 as the correct visual grounding.

We train our model with Adam optimizer with β1 = 0.9 and β2 = 0.999, we set the initial learning rate 0.0004 and decay every 5,000 iterations with weight decay 0.0001, and the total number of iterations is up to 30,000.



6.1.3. Ablation Analysis

We adopt different combinations to validate the performance of each module, the results are shown in Table 1. According to (Yu et al., 2018b) and (Yu et al., 2018a), the models trained by the deep features extracted from VGG16 (Simonyan and Zisserman, 2014) generates lower accuracy than the features generated by ResNet101, so we do not train our model use VGG features.


Table 1. Ablation studies of our model using different module combinations.

[image: Table 1]

First, we validate the performance of our model from the visual perspective. We concatenate the project feature fv′ and location representation uloc as the visual representation for each region, and adopt the output of the BiLSTM as the representation for expressions. We set this combination as the baseline, and the results are listed in Line 1. We then add relation representation urel to evaluate the benefits of the relation module, and the results are listed in Line 2.

Second, we test the effectiveness of the visual semantic-aware network. We adopt the semantic-aware visual representation [image: image] combined with the location and relation representation, respectively. Compared to Line 1 and Line 2, the results listed in Line 3 and Line 4 show the benefits of the visual semantic-aware network, and the accuracies are improved by nearly 2%.

Third, We employ two manners to evaluate the performance of the language attention network. We first select fv′ as the visual representation for the target candidate, and combine the language attention network with the target localization module. It is clear that the results outperform than the results listed in Line 2. An interesting finding is that the results listed in Line 4 are close to Line 5, which also demonstrates the benefits of the visual semantic-aware network. We then adopt [image: image] to represent the target candidate, and coalesce the language attention network with the other two modules. This combination acquires the best accuracies on the three datasets.

Fourth, we compare the influence of different word embeddings. We extract the embeddings from the last layer of BERT as the contextual representation for expressions and feed them into the language attention network, we denote this word embedding as LangAtten(I). Line 7 illustrates the obtained results. Compared with Line 6, the results show the advantage of the embeddings generated from the sum of the last four layers of BERT.

Finally, we list some example results acquired by the referring expression comprehension network in Figure 3. According to the experimental results, the presented model is able to locate the target objects for complex referring expressions, as shown in the experiments on RefCOCOg. As shown in Table 1, compared with the results on RefCOCO+ and RefCOCOg, our model acquires better results on RefCOCO. We found the expressions in RefCOCO frequently utilize the attributes and location information to describe objects, while the expressions in RefCOCO+ abandon the location descriptions while utilize more appearance difference to depict objects. In addition, the expressions in RefCOCOg involve the descriptions of neighborhood objects of referents and frequently use the relation between objects to define the target objects.


[image: Figure 3]
FIGURE 3. Example results of referring expression comprehension on test sets of RefCOCO, RefCOCO+, and RefCOCOg. Referring expressions are listed under the related images. In each image, the red box represents the correct grounding, and the green bounding box denotes the ground truth.




6.1.4. Comparison With State-of-the-Art

Table 2 lists the results acquired by the proposed model and the state-of-the-art models. The table is split into two parts over the rows: the first part lists the approaches without introducing the attention mechanism. The second illustrates the results acquired by attention integrated models.


Table 2. Comparison with the state-of-the-art approaches.
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First, the proposed model outperforms the other approaches and acquire competitive results with the current state-of-the-art approach (Wang et al., 2019). (Wang et al., 2019) built the relationships between objects via a directed graph constructed over the detected objects within images. Based on the directed graph, this work identified the relevant target candidates by a node attention component and addressed the object relationships embedded in referring expressions via an edge attention module. This work focused on exploiting the rich linguistic compositions in referring expressions, while neglected the semantics embedded in visual images. In our proposed network, we address both the linguistic context in referring expressions and visual semantic in images.

Second, through the experiments on the three datasets, the introduced model acquires better results on RefCOCO compared with the results on RefCOCO+ and RefCOCOg. The expressions in RefCOCO frequently utilize the location or other details to describe target objects, the expressions in RefCOCO+ abandon the location descriptions and adopt more appearance difference. While the expressions in RefCOCOg attach more importance to the relation between the target candidates and their neighborhood objects to depict the target objects.

Finally, we show some failure cases on the three datasets in Figure 4. For complex expression, similar to “small table next to the chair,” our model generates closest weights for “table” and “chair.” Moreover, to locate the object with vague visual features, such as the target for “black sleeves” in the first left image and “guy leg out” in the third image of the second row, our model frequently generates wrong predictions. For the long expression and image with the complex background, such as the two images in RefCOCOg, our model fails to generate correct predictions.


[image: Figure 4]
FIGURE 4. Examples of incorrect predictions. The red boxes show wrong visual groundings, and the green boxes denote the ground truth bounding boxes.





6.2. Interactive Natural Language Grounding

We evaluate the effectiveness of the presented interactive natural language grounding architecture in two different manners. First, we collect 133 indoor scenarios from the test datasets of RefCOCO, RefCOCO+, and RefCOCOg, and collect 187 expressions that contain 2 referents for the selected images. These collected scenarios consist of the household objects that can be manipulated by robots. The average length of the expressions for MSCOCO images is 10.75. Second, we use a Kinect V2 camera to collect 30 images which are composed of the commonly used household objects and can be manipulated by robots. We collect 228 expressions, which contain 132 expressions with 2 referents and 96 expressions with 3 targets. The average number of words in these expressions is 14.31.

In order to collect diverse expressions for the collected images, we recruit 10 participants and show them different scenarios. For the MSCOCO images, we ask the participants to give expressions to depict two specific targets for each scenario, such as “the bottom row second donut from the left and the bottom rightmost mug.” For the self-collected scenarios, we ask the participants to give expressions with two or three referents for each image, for example, “move the red apple outside the box into the box and take the second water bottle from the right.” The collected working scenarios and expressions can be downloaded from the following link: https://drive.google.com/open?id=1k4WgpHTGaYsIE9mMmDgE_kiloWnYSPAr.

In order to validate the performance of the proposed interactive natural language grounding architecture, we conduct grounding experiments on the collected indoor scenarios and natural language queries. We adopt the available scene graph parser source2 introduced (Schuster et al., 2015) to parse the complicated queries into scene graph legends (e.g., the parsing results listed in the rounded rectangles in the second row in Figure 5), and the trained referring expression comprehension model to locate target objects within given scenarios.


[image: Figure 5]
FIGURE 5. Example results of interactive natural language grounding on MSCOCO images. The input natural language instructions are listed in the third row with rectangle, the scene graph parsing results are shown in the second row with rounded rectangle.


Figure 5 lists some grounding results on the collected MSCOCO images. We adopt the referring expression comprehension network trained on the three datasets to ground the collected expressions, respectively. The accuracies of the collected expressions grounding for MSCOCO images acquired by the three models are RefCOCO 86.63%, RefCOCO+ 79.41%, and RefCOCOg 80.48%. Figure 6 shows the grounding example results on the self-collected scenarios. The grounding accuracies attained by the three models are RefCOCO 91.63%, RefCOCO+ 87.45%, and RefCOCOg 88.44%. From these experimental grounding results, it is clear that the trained referring expression comprehension models have superior robustness.


[image: Figure 6]
FIGURE 6. Example results of interactive natural language grounding on self-collected scenarios. The input natural language are listed in the rectangles, and the parsed scene graph legends are covered with related colors.


Because of the properties of referring expressions in the RefCOCO, RefCOCO+, and RefCOCOg, the model trained on RefCOCO acquired the best results on the self-collected working scenarios. Instead of discarding spatial location words in expressions provided by RefCOCO+ expressions, and highlighting relationships between objects in RefCOCOg expressions, the collected expressions are more similar to the expressions in RefCOCO. Specifically, we take into consideration of descriptions of target attributes, spatial location of targets within images, and the relation between targets and their neighborhood objects in the collected natural language queries.

We also analyze the failure target object grounded working scenarios and related expressions, we found that the expressions with more “and” cannot be parsed correctly. For instance, the expression “take the apple between the bottle and the glass and the red cup” will be parsed into four nodes “apple,” “bottle,” “glass,” and “red apple,” while the relation between “apple,” “bottle,” and “glass” is lost, which leads to a failure grounding.




7. CONCLUSION

We proposed an interactive natural language grounding architecture to ground unrestricted and complicated natural language queries. Unlike the existing methods for interactive natural language grounding, our approach achieved natural language grounding and queries disambiguation without the support from auxiliary information. Specifically, we first presented a semantic-aware network for referring expression comprehension which is trained on three commonly used datasets in referring expressions. Considering the rich semantics in images and natural referring expressions, we addressed both visual semantic and textual contexts in the presented referring expression comprehension network. Moreover, we conducted multiple experiments on the three datasets to evaluate the performance of the proposed referring expression comprehension network.

Furthermore, we integrated the referring expression comprehension network with scene graph parsing to ground complicated natural language queries. Specifically, we first parsed the complicated queries into scene graph legends, and then we fed the parsed scene graph legends into the trained referring expression comprehension network to achieve target objects grounding. We validated the performance of the presented interactive natural language grounding architecture by implementing extensive experiments on self-collected indoor working scenarios and natural language queries.

Compared to the existing work for interactive natural language grounding, the proposed architecture is akin to an end-to-end approach to ground complicated natural language queries, instead of drawing support from auxiliary information. And the proposed architecture does not entail time cost as the dialogue-based disambiguation approaches. Afterward, we will improve the performance of the introduced referring expression comprehension network by exploiting the rich linguistic compositions in natural referring expressions and exploring more semantics from visual images. Moreover, the scene graph parsing module performs poorly when parsing complex natural language queries, such as sentences with more “and,” we will focus on improve the performance of the scene graph parsing. Additionally, we will exploit more effective methods to ground more complicated natural language queries and conduct target manipulation experiments on a robotic platform.
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Extracting information from noisy signals is of fundamental importance for both biological and artificial perceptual systems. To provide tractable solutions to this challenge, the fields of human perception and machine signal processing (SP) have developed powerful computational models, including Bayesian probabilistic models. However, little true integration between these fields exists in their applications of the probabilistic models for solving analogous problems, such as noise reduction, signal enhancement, and source separation. In this mini review, we briefly introduce and compare selective applications of probabilistic models in machine SP and human psychophysics. We focus on audio and audio-visual processing, using examples of speech enhancement, automatic speech recognition, audio-visual cue integration, source separation, and causal inference to illustrate the basic principles of the probabilistic approach. Our goal is to identify commonalities between probabilistic models addressing brain processes and those aiming at building intelligent machines. These commonalities could constitute the closest points for interdisciplinary convergence.

Keywords: signal processing, multisensory perception, audiovisual integration, optimal cue integration, causal inference, speech enhancement, automatic speech recognition, human psychophysics


INTRODUCTION

Human perception and machine signal processing (SP) both face the fundamental challenge of handling uncertainty. Probabilistic models provide powerful tools for representing and resolving uncertainty (Rao et al., 2002). For example, a simple probabilistic model for estimating a speech signal from a noisy audio recording can be constructed as follows: The stimulus parameter of interest (e.g., the phoneme) is represented as a latent variable S. The existing information or expectation regarding S prior to the data observation is represented by the prior probability distribution, p(S) (“prior”). The perceptual system's responses (often referred to as measurements) are usually stochastic: they fluctuate from trial to trial even when the stimulus remains constant. The conditional probability density function (PDF) of obtaining the measurements X given S is described by the likelihood function of S, p(X| S) (“likelihood”). Probabilistic models commonly use the framework of Bayesian inference, which specifies how belief is optimally updated in light of new evidence. Computationally, this is achieved by applying the Bayes' theorem (Pouget et al., 2013; Ghahramani, 2015) to combine the likelihood and the prior to calculate the posterior probability distribution (“posterior”), p(S |X):

[image: image]

Signal reconstruction often requires a point-estimator for S. Three methods are commonly used. The maximum likelihood estimator (MLE) is the S value that maximizes the likelihood (Equation 2) or equivalently the log-likelihood, implying a uniform (flat) prior. The maximum a-posteriori (MAP) estimator can be seen as maximizing the likelihood after factoring in an informative prior (Equation 3) and is equal to the posterior mode. The minimum mean square error (MMSE) estimator is the a-posteriori expected value for S (Equation 4) and is equal to the posterior mean (Yuille and Bülthoff, 1996; Maloney, 2002).
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Similar probabilistic approaches are applied in sensory perception and machine SP for solving analogous problems, such as robust perception. However, although recent reviews have separately summarized probabilistic models in each of these disciplines (Kolossa and Häb-Umbach, 2011; Ma, 2012; Hendriks et al., 2013; Ursino et al., 2014), reviews that draw parallels between the models across the disciplines are lacking. Here, we will introduce and compare selective applications of probabilistic models in psychology, neuroscience, and machine SP, focusing on audio and audio-visual processing. We use the topics of speech enhancement, automatic speech recognition, audio-visual cue integration, and source separation as examples, because probabilistic models have played a particularly important role in advancing these research areas. We emphasize two important aspects of resolving uncertainty: noise reduction and source separation. While in recent years machine learning approaches have had a great impact in SP (Deng and Li, 2013; Padmanabhan and Premkumar, 2015), neuroscience (Yamins and DiCarlo, 2016), and cognitive science (Lake et al., 2017), here we highlight the commonalities between basic probabilistic models for machine and perceptual SP.



NOISE REDUCTION AND SPEECH ENHANCEMENT

Statistical approaches in speech enhancement for reducing background noise usually deal with single-channel signals, e.g., from a single microphone. The variance of a signal is generally understood as the power of the signal, and the PDFs characterize the coefficients of the digitized signals. Traditionally, the complex Fourier coefficients of the speech and noise components are modeled with a zero-mean Gaussian distribution [but later research suggests that super-Gaussian PDFs are more appropriate; see Lotter and Vary (2005); Martin (2005), and (Rehr and Gerkmann, 2018)], and the frequency bands are assumed to be statistically independent (Ephraim and Malah, 1984, 1985; Porter and Boll, 1984). The variances (i.e., the power) of the speech and noise coefficients are time-variant; therefore, the parameters must be continuously updated using adaptive power estimators. A common way to derive the estimators is by computing the MMSE between the true speech coefficients and the estimated coefficients, which leads to a linear filter known as the Wiener filter (Ephraim and Malah, 1984; Martin, 2001; Gerkmann and Hendriks, 2012). The Wiener filter has been adapted for multi-channel (e.g., multi-microphone array) processing (Krawczyk-Becker and Gerkmann, 2016), which additionally allows exploiting the spatial properties of sound (Kay, 1993; Balan and Rosca, 2002; Doclo et al., 2015). For multi-channel noise reduction, a well-known concept is the minimum-variance distortionless response (MVDR) beamformer. This beamformer minimizes the power of the output signal while ensuring that the sounds from the target speaker are not distorted or suppressed. The MVDR beamformer can be derived as the MLE of the speech coefficients if the background noise is assumed to follow a multivariate complex Gaussian distribution (Kay, 1993; Balan and Rosca, 2002).

Another classical probabilistic approach for estimating speech and noise coefficients is to use mixture models, most commonly Gaussian mixture models (GMMs) and hidden Markov models (HMMs) (Rabiner, 1989), with machine-learning methods (Ephraim, 1992; Burshtein and Gannot, 2002; Zhao and Kleijn, 2007; Chazan et al., 2016). The time-varying speech components are characterized by a sequence of discrete states related to the phonemes uttered by a speaker. Each state is described by a PDF linking it to the statistics of the observations. GMMs explicitly quantify the joint contributions of different states, whereas HMMs treat the states as latent variables that are related through Markov processes. The resulting estimator is a mixture of clean speech estimates from all possible combinations of available states; the states that best explain the observations have the strongest influence on the overall estimate. The advantage of a mixture estimator is that it takes into account all possible states and is more robust than basic MLEs.

Auditory systems of animals maintain robust neuronal representation of relevant sounds in noisy environments (Mesgarani et al., 2014). The dominant model for characterizing auditory neuronal responses is the spectrotemporal receptive field (STRF) (Zhao and Zhaoping, 2011; David, 2018; King et al., 2018). STRF is a linear filter that approximates the neuronal response at a given time as a linear weighted sum of the stimulus power at recent time points in different spectral channels (King et al., 2018). The weights can be viewed as a discrete-time version of the Wiener filter if they are estimated via the MMSE between the model output and the measured neuronal response, assuming Gaussian response noise with constant variance (Meyer et al., 2017). STRF is usually applied as part of a linear-nonlinear (LN) model—linear input followed by static nonlinear response generation (Chichilnisky, 2001; Paninski, 2003; Sharpee et al., 2004). However, standard STRF and LN models do not incorporate the highly nonlinear and dynamic neural processes which are important for noise robustness (for reviews, see Meyer et al., 2017; King et al., 2018). For example, auditory neurons adapt to stimulus statistics, such as the mean level and the contrast (i.e., the sound level variance) of recent sounds, and adjust their sensitivity accordingly; this adaptation enables efficient and robust neural coding (Fritz et al., 2003; David et al., 2012; Rabinowitz et al., 2013; Willmore et al., 2014, 2016; Lohse et al., 2020). STRF models extended with adaptive kernels (Rabinowitz et al., 2012) and other nonlinear features, such as input nonlinearity (Ahrens et al., 2008), synaptic depression (Mesgarani et al., 2014), gain normalization (Mesgarani et al., 2014), or top-down influence, such as feedback (Calabrese et al., 2011) and selective attention (Mesgarani and Chang, 2012), have been shown to better account for noise robustness. In addition, mixture-model approaches from SP (e.g., GMM) can be used to scale these models to higher-dimensional stimuli (Theis et al., 2013). In machine SP, machine-learning algorithms inspired by the nonlinear, adaptive, and/or top-down features of auditory neurons are being developed to improve speech enhancement (Ephraim, 1992; Hendriks et al., 2013; Lee and Theunissen, 2015; Rehr and Gerkmann, 2018, 2019). Future research could aim at building brain-inspired robust and flexible models to cope with various noise types, cluttered real-world data, and adversarial data.



AUDIO-VISUAL INTEGRATION MODELS IN A SINGLE-SOURCE SETUP

Probabilistic approaches have been extensively used for automatic speech recognition (ASR): the translation of audio signals into written text. Identifying the spoken words based only on the acoustic input signal can be challenging, especially if noise is present. Incorporating visual information (e.g., mouth shape, lip movement) can substantially improve ASR performance (Hennecke et al., 1996) in noisy environments, because visual features provide contextual and complementary (but additionally redundant) information about the audio scene and are insensitive to the acoustic background noise (Nefian et al., 2002). This approach is known as audio-visual speech recognition (AVSR). AVSR systems require dynamic models for optimal audio-visual (AV) integration. The performance of conventional HMMs, although being time-flexible, is limited by their strong restrictive assumptions, e.g., that the signal-generating system is a single process with few states and an extremely limited state memory (Brand et al., 1997). Nevertheless, a variety of HMM extensions have been proposed to better solve the AV fusion problem (Potamianos et al., 2003). One approach is to use a combination of feature fusion and decision fusion (Neti et al., 2000; Potamianos et al., 2003). Feature fusion applies fusion on the feature level; it trains a single HMM classifier on the concatenated vector of audio and visual features (Adjoudani and Benoît, 1996). Decision fusion applies fusion on the classifier output level; it linearly combines the likelihoods of audio-only and visual-only streams into a joint AV likelihood, using weights that capture the reliability of each sensory modality (Jain et al., 2000; Neti et al., 2000). Measures of reliability include the inverse variance (Hershey et al., 2004), signal-to-noise ratio (Adjoudani and Benoît, 1996; Hennecke et al., 1996), harmonics-to-noise ratio (Yumoto et al., 1982), or an equivalent index (Neti et al., 2000).

Two other extensions of HMMs are coupled HMMs (Brand et al., 1997; Abdelaziz et al., 2015) and factorial HMMs (Ghahramani and Jordan, 1997). These models have several advantages over conventional HMMs for AVSR: (1) they allow state asynchrony between the audio and visual components while preserving their natural correlation over time (Nefian et al., 2002; Abdelaziz et al., 2015), (2) they can model multiple interacting processes without violating the Markov condition (Brand et al., 1997), (3) the distributed state representations employed by these models allow automatic decomposition of superposed states (Ghahramani and Jordan, 1997), and (4) they are less sensitive to the initial conditions of parameters (Brand et al., 1997).

AVSR models are inspired by the human ability of using visual information to reduce auditory ambiguity (Schwartz et al., 2004). In human perception, a research topic related to AV fusion is generally known as cue integration. A cue is a sensory signal that bears information about the state of some stimulus property, e.g., identity or position. Psychophysical and neurophysiological studies have shown that the brain combines multiple cues both within and across sensory modalities to reduce uncertainty (for a review, see Fetsch et al., 2013). Computationally, to reduce uncertainty means to minimize the variance of perceptual estimates. One of the most well-known computational models for cue integration in psychophysics is the forced fusion model (Figure 1A), also known as the optimal cue integration model or the MLE model. This model proposes that a minimum-variance estimate for the target stimulus attribute S given multiple cues can be computed as the weighted linear sum of the MLEs for individual cues, and the weights are determined by each cue's relative reliability (Alais and Burr, 2004; Ernst and Bülthof, 2004; Rohde et al., 2015). A cue's reliability is defined as its inverse variance, [image: image], which is akin to how reliability is defined in a MVDR beamformer (Kay, 1993; Balan and Rosca, 2002). The forced fusion model assumes that the cues are redundant, i.e., they are regarding a single stimulus attribute and therefore should be completely integrated. Under the simplifying assumptions of a uniform prior p(S) and independent Gaussian noises, the posterior p(S | X1, X2, …, Xn) is also a Gaussian, with its mean given by weighted summation:

[image: image]

where Ŝopt is the optimal combined estimate, Ŝi is the MLE for an individual cue i, and wi is the weight determined by the relative reliability of cue i. These weights (wi) minimize the variance of the combined estimate, and thus Ŝopt is a minimum-variance unbiased estimator for S [for a mathematical proof, see Colonius and Diederich (2018)]. This forced fusion model is analogous to the aforementioned fusion models used in multi-stream HMM for AVSR (Neti et al., 2000). The reliability-based weighting is similar to the stream weights that are determined by the inverse variance (Hershey et al., 2004). However, in the forced fusion model the weights are fixed, while in AVSR it has been shown that dynamic stream weights resulted in better performance (Meutzner et al., 2017). Furthermore, even in the seemingly simple case of fusing information from multiple microphones, the noise captured by individual microphones is typically correlated, especially in low frequencies. As a consequence, the minimum-variance estimate typically takes into account the full correlation matrices of the noise (Doclo et al., 2015).


[image: Figure 1]
FIGURE 1. Three probabilistic models for audio-visual cue integration in human psychophysics. Gray nodes depict the latent stimulus attribute S (e.g., identity or position) or the latent causal structure C. White notes depict the sensory measurements X in response to the sensory cues (a: auditory, v: visual). Left panel: The generative models and the underlying structures. The likelihood functions are derived under the assumptions that the auditory and visual cues are corrupted by independent Gaussian noise. Black arrows represent the direction of generative process, and gray arrows represent the direction of inference. Middle panel: A-priori knowledge. Right panel: Optimal estimates by Bayesian inference (adapted from Ursino et al., 2014 Box 1, copyright © 2014 Elsevier Ltd, and Shams and Beierholm, 2010 Figure 1, copyright © 2010 Elsevier Ltd; reused with permission). (A) Forced fusion model. The auditory and visual cues are assumed to have a common cause. The prior is usually assumed to be uniform, in which case this model is equivalent to an MLE. The optimal estimate is a linear weighted summation of unimodal MLEs, and the weights are the relative cue reliabilities (precision). This model describes complete cue integration (fusion). (B) Interaction prior model. The joint prior distribution p(Sa, Sv) reflects the prior knowledge about the audio-visual correspondence in the environment. A common choice is a 2D Gaussian or Gaussian-mixture function with higher probabilities along the identity line Sa = Sv. The estimates could be linear or non-linear functions (ga, gv) depending on the specific interaction prior. This model can describe complete fusion, partial integration, or segregation of cues. (C) Causal inference model. The latent variable C determines the causal structure that generates the cues and mediates cue integration: cues are integrated if they have a common cause (C = 1) and processed separately if they have independent causes (C = 2). The model infers the probability of the unknown causal structure p(C |Xv, Xa) and weights the estimates Ŝa and Ŝv accordingly using some decision strategy (Wozny et al., 2010). The estimates are nonlinear combinations of the cues and usually require Monte Carlo simulation to obtain (Körding et al., 2007). This model can be recast as the coupling prior model (B) by integrating out the latent variable C, in which case it will no longer explicitly represent the causal structure.


Recent psychophysical research has suggested that the MLE-type complete fusion is not a general property of human multisensory perception (e.g., Battaglia et al., 2003; Arnold et al., 2019; Meijer et al., 2019). To capture the full spectrum of cue interaction spanning from complete fusion to partial integration to segregation, extensions of the forced fusion model have been proposed. Among them, the coupling prior model (Figure 1B), also known as the interaction prior model, extends the forced fusion model (Figure 1A) by adding a joint prior distribution to represent the correlation or co-occurrence statistics between the cues (Shams et al., 2005; Rowland et al., 2007; Ernst, 2012; Parise et al., 2014). For example, in a speech recognition task with auditory and visual cues, a coupling prior model could use a bivariate prior p(Sa, Sv) to describe the joint probability distribution for the auditory (Sa) and visual (Sv) representations of the stimulus attribute (e.g., syllables). The coupling prior can be conveniently modeled using a 2D Gaussian p(Sa, Sv) = [image: image], with the mean [image: image] being the expected stimulus value, and the covariance matrix Σ consisting of variances along the principle axes (e.g., Ernst, 2007). The p(Sa, Sv) distribution is sharper if the AV coupling is relatively constant (due to statistical regularities in the environment or acquired through adaptation or learning). The forced fusion model is a special case of the coupling prior model where p(Sa, Sv) = 0 for all Sa ≠ Sv. Another method for characterizing the coupling prior is to use a GMM to represent the correlated and the uncorrelated components (e.g., Roach et al., 2006; Sato et al., 2007); the resulting mixture estimator is more general and robust than MLE.

The coupling prior model for cue integration is analogous to a GMM for AVSR, where the AV coherence (i.e., dependency between the auditory and visual modalities) is expressed as a joint AV PDF (Rivet et al., 2014). It can be viewed as loosely similar to the basic concept of coupled HMMs for AVSR, too. However, unlike coupled HMMs, the coupling prior model is not dynamic and does not describe time-variant signals. Moreover, the coupling prior model explicitly constrains the joint prior distribution of the cues, whereas coupled HMMs implicitly learn the hidden states that generate the cues.



SOURCE SEPARATION AND CAUSAL INFERENCE

In machine SP, the most common scenario of source separation is blind source separation (BSS): separating two or more source signals given mixture observations (Jutten and Herault, 1991; Castella et al., 2010). A fundamental challenge in BSS is the label permutation problem: to track which speech signal belongs to which speaker/source (Hershey et al., 2016). To achieve this, a model needs to jointly solve two problems: isolating a single speech signal from a dynamic mixture of sounds from multiple speakers and the background noise, and assigning the speech signal to the corresponding speaker (Ephrat et al., 2018). A Bayesian approach to solve BSS is applying GMMs and HMMs that either constrain or learn the unobservable source structure underlying the mixture signals (Roweis, 2001, 2003; Hershey and Casey, 2002; Yilmaz and Rickard, 2004). Inspired by human perception, recent machine SP models have been exploiting the intrinsic AV coherence to improve BSS performance (Rivet et al., 2014). Full joint AV models based on maximizing the AV likelihood can successfully extract source signals from underdetermined mixtures (Sodoyer et al., 2002). However, such models are limited to instantaneous mixtures, where multiple source signals contribute to the mixtures without delay at a given time point. Similarly in human perception, most existing mixture models for cue integration consider only instantaneous mixtures (e.g., Magnotti and Beauchamp, 2017). If multiple source signals contribute to the mixtures with different levels of delay—known as convolutive mixtures—alternative techniques are required to resolve the added ambiguities in BSS (e.g., Rivet et al., 2007; Liu et al., 2012. For a review, see Rivet et al., 2014).

In natural environments, the structure of the source(s) giving rise to the signals is often ambiguous or unobservable; therefore, to properly associate a signal with its source, the observer needs to infer cause-effect relationships based on the noisy data. This is an example of the so-called inverse problem in information processing: inferring the cause given the effect (Ghahramani, 2015). Humans are remarkably apt at solving this problem, being able to focus on a target speaker while filtering out interfering sounds and background noise, as exemplified by the well-known cocktail party effect (Cherry, 1953). However, the causal inference problem is challenging for machine SP, especially in AVSR, as it is difficult to determine which signals in the mixture data came from the same source and thus should be fused.

Machine SP could draw inspiration from the causal inference model in human psychophysics (Figure 1C), which explicitly characterizes the hidden causal structure of the source signal(s) (Körding et al., 2007; Shams and Beierholm, 2010; Magnotti and Beauchamp, 2017). This model proposes that humans estimate the hidden causal structure based on statistical regularities of the environment and use this estimate to arbitrate between grouping or segregating sensory cues (Noppeney and Lee, 2018). The basic structure of this model has two hierarchies. In the higher hierarchy is a binary latent variable representing whether the multiple cues share a common cause, denoted as C (short for “cause”). C = 1 means the cues have a common cause, and C = 2 means the cues have two separate causes. The a-priori belief for C is the causal prior, and it influences whether and to which degree cues are integrated: cues are integrated only if they have a common cause, in which case the model is equivalent to a forced-fusion MLE model (Figure 1A); in contrast, the cues are processed separately if they originate from different causes. The causal structure is unknown, so the model needs to infer C by combining bottom-up sensory data with top-town causal priors and calculating the posterior p(C|Xa, Xv) for different C values. The model additionally computes the PDF for the task-relevant estimate p(Ŝ|Xa, Xv, C) under the assumption of common or separate causes, respectively. A final estimate for the stimulus attribute is obtained by combining these estimates according to some decision strategy. For example, if a model-averaging decision strategy is applied, which is based on the use of MMSE, then the resulting final estimate is the weighted average of the estimates obtained under C = 1 and C = 2, respectively, with the weights being the corresponding posterior probabilities for C = 1 and C = 2 (Körding et al., 2007; Wozny et al., 2010).



SUMMARY AND OUTLOOK

Here we reviewed a selection of probabilistic models of audio- and AV-processing applied in machine SP and in human perception, focusing on speech enhancement, speech recognition, cue integration, and causal inference (Table 1). In their cores, these models are stimulus-response functions: they describe a probability distribution of responses given a stimulus and parameters, and the parameters can be estimated from experimental data or machine learning methods. Basic probabilistic models are often linear filters with Gaussian PDFs (e.g., Wiener filter, classic STRF), which can be extended with nonlinear, adaptive, and/or top-down features (e.g., super-Gaussian prior, gain control, selective attention). In addition, the use of mixture models (e.g., GMM, HMM) simultaneously accounts for multiple possible states and permits more robust parameter estimation. Furthermore, basic probabilistic models can be adapted to characterize multiple input channels or streams (e.g., MVDR beamformer). If multiple inputs are combined (e.g., cue integration, AVSR), fusion models with reliability-based weighting and MLE are typically applied. However, forced fusion is not always appropriate. Therefore, to capture the large spectrum of input interactions, some models incorporate the correlation between the inputs (e.g., coupling prior model, coupled or factorial HMM) instead of assuming fusion. Moreover, causal inference models estimate the hidden source or causal structure of the inputs, by factoring in causality which is important for determining input integration or source separation. More advanced models, such as those in machine learning, are beyond the scope of this mini review. In short, this brief tutorial linked the analogous counterparts among probabilistic models developed in artificial and natural systems and identified the closest points of potential overlap between these models.


Table 1. An overview of selective probabilistic models of audio- and audio-visual (AV) processing in machines and human perception.
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Although it has been demonstrated that edge-based information is more important than surface-based information in incidental category learning, it remains unclear how the two types of information play different roles in incidental category learning. To address this issue, the present study combined behavioral and event-related potential (ERP) techniques in an incidental category learning task in which the categories were defined by either edge- or surface-based features. The results from Experiment 1 showed that participants could simultaneously learn both edge- and surface-based information in incidental category learning, and importantly, there was a larger learning effect for the edge-based category than for the surface-based category. The behavioral results from Experiment 2 replicated those from Experiment 1, and the ERP results further revealed that the stimuli from the edge-based category elicited larger anterior and posterior P2 components than those from the surface-based category, whereas the stimuli from the surface-based category elicited larger anterior N1 and P3 components than those from the edge-based category. Taken together, the results suggest that, although surface-based information might attract more attention during feature detection, edge-based information plays more important roles in evaluating the relevance of information in making a decision in categorization.

Keywords: edge-based information, surface-based information, cross-modal category learning, incidental category learning, event-related potentials


INTRODUCTION

A fundamental question in category learning is how the category knowledge is extracted and represented in the human brain. The prototype theory posits that people form a summary representation in the form of prototypes in category learning (Knowlton and Squire, 1993; Reber et al., 1998a,b; Reed et al., 1999; Smith and Minda, 2002; Smith, 2002; Bozoki et al., 2006; Homa et al., 2011). The exemplar theory posits that people store categorical members as individuated memory representations in category learning (e.g., Nosofsky and Zaki, 2002; Zaki and Nosofsky, 2004, 2007; Tunney and Fernie, 2012). The rule-based theory, however, contends that people extract verbal rules of prominent features as the category representations in category learning (Maddox et al., 2003; Maddox and Ashby, 2004; Ashby and Maddox, 2005, 2011; Carpenter et al., 2016; Ashby and Valentin, 2017). The above theories differ in the exact content of the category representation; all of them focus on what type of category structure is formed in category learning but ignore the issue of whether the category representation includes primarily edge- or surface-based features.

Edge-based features (e.g., line, shape, and contour) often appear at boundaries to separate an object from its background, whereas surface-based characteristics (e.g., color, brightness, and texture) always define the physical description of a stimulus (Tanaka et al., 2001; Hagen et al., 2014). It has been demonstrated that the representation mediating initial object recognition contains edge-based information such as an object’s shape but not surface-based information such as its color or texture (Biederman, 1987; Biederman and Ju, 1988; Elder and Velisavljević, 2009; Rokszin et al., 2015). It has been also found that surface-based information such as color facilitates recognition only when a stimulus is presented for a relatively long period of time (Laws and Hunter, 2006; Fu et al., 2016) or when objects belong to structurally similar categories with a high color diagnostic (Tanaka and Presnell, 1999; Nagai and Yokosawa, 2003; Bramão et al., 2011, 2012). Importantly, although color photographs include both edge- and surface-based information, while line drawings include only edge-based information, the neural activation in response to line drawings is similar to that for color photographs, indicating that the information included in the line drawings might be equivalent to the original objects or scenes they depict (Sayim and Cavanagh, 2011; Walther et al., 2011; Fu et al., 2016).

If object representation consists primarily of edge-based information, it can be expected that edge-based information might play a more crucial role than surface-based information in category learning, as both include the processing of current stimuli and the comparison between the current stimuli and their internal representations. Indeed, it has been demonstrated that people perform much better when the category is defined by the edge-based features than by the surface-based features, indicating that the two types of information play different roles in category learning (Zhou et al., 2019). However, it remains unclear how the two types of information play different roles in category learning.

Object categorization has been described as a two-stage process (Vanrullen and Thorpe, 2001; Palmeri and Gauthier, 2004; Ungerleider and Bell, 2011; Taminato et al., 2014; Serre, 2016). During the first stage, visual features such as color, motion, and texture are processed, and the proximal representation of the current stimulus is formed in the primary visual cortex and the extrastriata visual cortex (Riesenhuber and Poggio, 2000; DiCarlo et al., 2012). The extraction of visual features is often reflected by early event-related potential (ERP) components including the posterior P1 and N1 and the anterior N1 and P2 prior to about 200-ms poststimulus onset (Freedman et al., 2003; Scholl et al., 2014). The posterior P1 component indexes early sensory processing and is sensitive to attention allocation (Anllo-Vento and Hillyard, 1996; Luck et al., 2000; Fabre-Thorpe et al., 2001; Martínez et al., 2006), whereas the posterior N1 component reflects a discrimination process and also indicates a benefit of exogenous (i.e., bottom–up) attention (Vogel and Luck, 2000; Curran et al., 2002; Chen et al., 2006; Marzecová et al., 2018). The anterior N1 component is observed with a peak latency approximately halfway between the posterior P1 and N1 latencies (Luck and Kappenman, 2012) and reflects the top–down (i.e., voluntary, endogenous) control needed for focusing attention on stimuli (He et al., 2004, 2008; Marzecová et al., 2018). For example, there is a larger anterior N1 component when the cue and the target are presented at the same location than at different locations (He et al., 2004, 2008). In addition, the anterior P2 component has been linked to the detection and analyses of target visual features (Hillyard and Münte, 1984; Luck and Hillyard, 1994; Luck, 2012). For example, there is a larger anterior P2 component for stimuli containing target features compared to stimuli missing several features (Federmeier et al., 2005; Chen et al., 2006; Gratton et al., 2009).

During the second stage, the information of the current stimuli is compared with internal categorical representations to make a decision (Ungerleider and Bell, 2011; Taminato et al., 2014). The evaluation of information relevance in making a decision is more likely to be reflected by relatively late ERP components including the posterior P2, the anterior P3a, and the posterior P3b after about 200 ms of the stimulus onset (Scholl et al., 2014). The posterior P2 might be engaged in more complex encoding processes including the reactivation of stored information and evaluative processes that occur when a visual input is compared with an internal representation (Dunn et al., 1998). It has been found that there is a shorter posterior P2 latency for easily categorizable stimuli (letters or geometrical figures) than hardly categorizable stimuli (structured textures and Asiatic characters; Pernet et al., 2003). The anterior P3a component displays maximum amplitude over frontal/central electrode sites and might reflect a mixture of category selection and categorization uncertainty with enhanced responses to stimuli at the category boundary (Scholl et al., 2014). The P3b components are typically highest on the scalp over parietal brain areas and are related to task demanding and cognitive resources (Polich, 2007). In addition, noncategory members elicit larger posterior P3b components than categorical members (Folstein et al., 2008).

In the current study, to investigate how edge- and surface-based information play different roles in category learning, we adopted behavioral and ERP techniques in an incidental category learning paradigm in which the categories were defined by either edge- or surface-based features. The purpose of Experiment 1 was to explore whether participants could simultaneously acquire the representations of categories defined by edge- and surface-based features and whether edge-based information plays a more important role than surface-based information in incidental category leaning. If edge-based information plays a more primary role than surface-based information in category learning, we would expect that the learning effect would be higher for the category defined by edge-based features than those defined by surface-based features as in Zhou et al. (2019). In Experiment 2, the ERPs technique was used to investigate how the two types of information would play different roles in category learning. If the category representation consists of primarily edge-based information, the categorization based on edge- and surface-based features would differ in early and later ERP components.



EXPERIMENT 1

We adapted the stimuli from Gorlick and Maddox (2013) in which cartoon animals were constructed from 10 binary dimensions and each dimension has two features. For example, the shape of the horn can be like a comb or the moon, and the shape of the head can be acutilingual or lamellirostral. To compare the roles of edge- and surfaced-based features in category learning, we maintained five edge-based dimensions including the shapes of the horn, head, body, tail, and leg and added five corresponding surface-based dimensions including the color of the horn, head, tail, and the texture of the body and leg. As a result, the current stimuli varied along 10 binary dimensions, with five edge- and five surface-based dimensions (see Figure 1A). It has been demonstrated that when the category is defined by a four-feature-based rule, participants perform better when the category is defined by edge-based features than by surface-based features (Zhou et al., 2019). Thus, in the present study, the two categories were defined by a four-feature-based rule of either edge- or surface-based features. To investigate whether participants could simultaneously acquire the two categories and express a learning advantage for the category defined by the edge-based features, the stimuli from both categories were presented in the training phase, and unbeknownst to participants, the stimuli of each category were always accompanied by the same type of sound. Participants were asked to rate how likeable the cartoon animal and the sound were on each trial in the training phase.
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FIGURE 1. Stimulus examples. (A) Two stimulus examples that varied on the features of 10 dimensions. (B) Examples of categorical members for each category.




Methods


Participants

Twenty-five university students (14 female, mean age = 22.16 years, SD = 1.95) voluntarily participated in the experiment. They were paid for their attendance. All of them reported normal or corrected to normal vision. The experiment was approved by the Institutional Review Board of the Institute of Psychology, Chinese Academy of Sciences. Data from two participants were excluded from further analysis because their accuracy for both categories was below chance (0.5), and data from one participant were excluded because his accuracy for the surface-based category was above 2 standard deviations from the mean accuracy.



Materials

The visual stimuli were cartoon animals that varied along 10 binary dimensions, with five edge-based dimensions including the shape of the horn, head, body, tail, and leg, and five surface-based dimensions including the color of the horn, head, tail, and the texture of the body and leg. Each dimension has two features. Each category was defined by a four-feature-based rule of different types of features. For the edge-based category, the category members were defined by the shape of the horn, tail, leg, and head; correspondingly, for the surface-based category, the category members were defined by the color of the horn and tail, the texture of the leg, and the color of the head (see Figure 1B). Specifically, for the edge-based category, category members were those with a comb horn, a paw-shaped leg, a short and round tail, and a bent head; for the surface-based category, category members were those with a violet horn, a cuspidal leg, a green tail, and a blue head. The features of the four defined dimensions were fixed, while the features of the other six dimensions could change randomly. Thus, there were a total of 64 members in each category. Because four category members could be classified to both categories, they were excluded in the training phase. For each category, 20 category members were presented in the training phase, and the other 40 were presented in the test phase. The four stimuli that belonged to both categories were presented twice in the test phase.

The auditory stimuli were two types of instrument sounds: one was guitar sound, and the other was sand hammer sound. They were produced by the software GarageBand and presented with the same volume (80 db).



Procedure

There was a training phase, a test phase, a probability rating phase, and an importance rating phase (see Figure 2) for each participant.
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FIGURE 2. The trial procedure of different phases in Experiment 1.




Training Phase

The stimuli were presented on a 17-inch cathode-ray tube (CRT) monitor and subtended a visual angle of <12° (see Nosofsky et al., 2012). Each trial began with a fixation cross at the center for 800 ms, and then, a visual stimulus and a sound were presented for 5,000 ms. Participants were instructed to observe the visual stimulus and listen to the sound carefully during their presentation. After the stimuli disappeared, they were asked to rate how likeable the cartoon animal and the sound were from 1 (very unlikeable) to 4 (very likeable). The intertrial interval was 500 ms. Unbeknownst to the participants, the stimuli of each category were always accompanied by the same type of sound. The combination of the category and the sound was counterbalanced between participants. There were 20 trials for each category, for a total of 40 trials in the training phase. All the trials appeared in a random sequence.



Test Phase

After the training phase, participants were informed that the visual stimuli they had rated could be divided into two categories (i.e., “category with guitar” or “category with sand hammer”) according to the sound they were accompanied with during the training phase. Then, they were asked to classify some novel visual stimuli according to the category knowledge they acquired in the training phase. On each trial, a visual stimulus appeared and remained on the screen until participants made classification by pressing one of the two keys with labels “guitar” or “sand hammer” on the keyboard. After the response, the next trial was initiated following a 1,000-ms intertrial interval. There were 88 test trials, of which 40 belonged to the edge-based category, 40 belonged to the surface-based category, and eight belonged to both categories.



Probability Rating Phase

During this phase, each defined dimension with different features such as comb-like horn in blue was presented, and participants were asked to report when a stimulus included the features displayed, what was the probability it belonged to the category accompanied with guitar, and the category accompanied with sand hammer separately. Participants were asked to indicate the probability on a continuous sliding scale from 0 to 100, where 0 = definitely no, 50 = equally likely to be yes or no, and 100 = definitely yes. Each defined dimension of the two categories was presented two times, and thus, there were 16 trials in the probability rating phase.



Importance Rating Phase

Finally, the names of the 10 dimensions including five edge-based dimensions and five surface-based dimensions were listed in a questionnaire, and participants were asked to rate how important each dimension was when they classified the stimuli on a continuous scale from 0 to 100, where 0 = not important at all, 50 = moderately important, and 100 = very important.


Results


Accuracy in the Test Phase

The responses for the eight stimuli that belonged to both categories were excluded from this analysis because they could not be divided into correct and incorrect ones. Figure 3A shows the accuracy for each category in Experiment 1. To examine whether participants could simultaneously learn the two categories incidentally, a one-sample t-test was used to compare the performance with chance (0.50) for each category. The accuracy for both categories were significantly above chance (edge-based: M = 0.69, SD = 0.14, t(21) = 6.36, p < 0.001, Cohen’s dz = 1.36; surface-based: M = 0.61, SD = 0.10, t(21) = 5.01, p < 0.001, Cohen’s dz = 1.07), indicating that participants learned the two categories incidentally at the same time. To explore the role of different features in category learning, we conducted a paired-samples t-test, which revealed that the accuracy for the edge-based category was significantly higher than that for the surface-based category [t(21) = 2.68, p < 0.05, Cohen’s dz = 0.57]. Thus, consistent with the previous research (Zhou et al., 2019), the results suggested that participants performed better when the category was defined by edge-based features than by surface-based features.
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FIGURE 3. Accuracy and ratings in Experiment 1. (A) The accuracy for the edge- and surface-based categories in the test phase. (B) The probability rating differences of the defined dimensions between the edge- and surface-based category. (C) The importance ratings for the defined dimensions of the edge- and surface-based categories. Error bars depict standard errors. *p < 0.05, **p < 0.01.





Probability Ratings

To explore whether participants could be aware of the relation between the defined features and the category membership, we first calculated the average rating when the defined dimension had or did not have the defined features separately and then obtained the difference ratings between them (see Figure 3B). If the difference rating was significantly above zero, it would indicate that participants might be aware of the relation between the defined features and the category membership, and vice versa. A one-sample t-test revealed that for the edge-based category, the difference ratings of the tail and head shapes were significantly above zero (tail shape: t(21) = 4.04, p < 0.01, Cohen’s dz = 0.86; head shape: t(21) = 3.08, p < 0.05, Cohen’s dz = 0.66); for the surface-based category, the difference ratings of the tail and head colors were significantly above zero (tail color: t(21) = 3.40, p < 0.01, Cohen’s dz = 0.72; head color: t(21) = 2.37, p < 0.05, Cohen’s dz = 0.51). The results indicated that participants were partially aware of the relation between the defined features and the category membership.

To explore whether participants could be more aware of the relation between the defined features and the categorical membership for one category than the other one, a 2 (category: edge- vs. surface-based) × 2 (significant defined dimensions: tail vs. head) within-subject ANOVA on the significant difference ratings was conducted. The results revealed that the main effect of defined dimensions was significant (F(1, 21) = 2.96, p = 0.10) and the interaction effect (F(1, 21) = 0.01, p = 0.92) were not significant. Importantly, the main effect of category was not significant (F(1, 21) = 1.53, p = 0.23). Nothing at all follows from a nonsignificant result in itself, but a Bayes factor (B) can indicate substantial evidence for the null hypothesis (B < 1/3), that the data are insensitive (1/3 < B < 3), or substantial evidence for the alternative (B > 3; Dienes, 2011, 2014; Fu et al., 2016). Therefore, we calculated the Bayes factor B for the difference ratings between the two categories, using the free online calculator on the website from Dienes (2008). The mean difference of the difference ratings between the two categories was 8.52; the standard error of the difference was 6.89. Using the uniform range (0, 100) to represent the alternative (where 100 was the extreme situation when participants acquired completely explicit knowledge for the edge-based category, but they did not acquire any explicit knowledge for the surface-based category, i.e., the difference was 100, while 0 was the extreme situation when participants acquire similar explicit knowledge for the edge- and the surface-based category, i.e., the difference was 0), it yields B = 0.32, providing strong evidence that there was no difference in explicit knowledge between the two categories.



Importance Ratings

To explore whether participants were more reliant on edge- or surface-based features in classification, we calculated the mean importance ratings for the four edge- or surface-based defined dimensions, when participants classified the stimuli to the two categories separately (see Figure 3C). A 2 (dimensions: edge- vs. surface-based) × 2 (category: edge- vs. surface-based) within-subjects ANOVA revealed only a significant effect of dimensions (F(1, 21) = 8.04, p < 0.05, [image: image] = 0.28). The main effect of category (F(1, 21) = 0.26, p = 0.61) and the interaction (F(1, 21) = 0.18, p = 0.68) did not reach significance. Similarity, we calculated the Bayes factor B for the importance rating difference between the two categories. The mean importance rating difference between the two categories was 1.47, and the standard error was 2.85. Using the uniform range (0, 100) to represent the alternative (where 100 was the extreme situation when the defined dimensions were rated with 100 for the edge-based category but the defined dimensions were rated with 0 for the surface-based category, i.e., the difference was 100, while 0 was the extreme situation when the defined dimensions were rated with similar importance ratings for the edge- and surface-based categories, i.e., the difference was 0), it yields B = 0.06, providing strong evidence that there was no importance rating difference between the two categories. The results suggested that participants always thought that the edge-based dimensions were more important than the surfaced-based dimensions although they could classify the stimuli based on either edge-based or surface-based features.


Discussion

The results of Experiment 1 showed that participants could simultaneously learn the categories defined by edge- and surface-based features, and importantly, there was a larger learning effect for the category defined by edge-based category than by surface-based features. Consistently, participants reported that edge-based dimensions were more important than surface-based dimensions although they could classify the stimuli based on either edge-based or surface-based features, providing convergent evidence that edge-based features matter more than surface-based features. Nonetheless, there were no differences for the two categories in the acquisition of explicit knowledge about the relation between the defined features and the category membership, indicating that the higher accuracy of the edge-based category might be due to the difference in implicit knowledge between the two categories, which means that edge-based features play a more important role than surface-based features in implicit category learning.









EXPERIMENT 2

Based on results from Experiment 1, Experiment 2 was aimed to further investigate how the two types of information played different roles in category learning by using the ERP technique. The experimental design was identical to that in Experiment 1.


Methods


Participants

Twenty-three university students (11 female, mean age = 20.42 years, SD = 1.36) voluntarily participated in the experiment. They were paid for their attendance. All of them reported normal or correct to normal vision. None of them had any history of neurological or psychiatric diseases. All of them were given the written informed consent. The experiment was approved by the Institutional Review Board of the Institute of Psychology, Chinese Academy of Sciences. Data from four participants were excluded from further analysis because their accuracy of both categories was below chance (0.5), and data from one participant was excluded because his accuracy was beyond 2 SDs from the mean accuracy.



Materials and Procedure

The stimuli and procedure were identical to Experiment 1, with exceptions that the four stimuli belonging to both categories were excluded in the training and test phases and each trial began with the fixation cross at the center for 650–950 ms at random.



EEG Recording and Analysis

The EEG was recorded from 64 scalp sites using Ag–AgCl electrodes in an elastic cap according to the International 10-20 system. The vertical and horizontal electrooculograms (EOGs) were recorded with two pairs of electrodes placed 1 cm above and below one eye and 1 cm lateral from the outer canthus of both eyes. The left mastoid was used as an online reference, and the algebraic average of the left and right mastoids was used as an offline re-reference. The impedance of the reference and right mastoids electrodes were maintained below 5 kΩ, and the impedance of other electrodes were maintained below 10 kΩ. The eye-movement-induced artifact was excluded by the “Ocular Artifact Reduction” module of the NeuroScan system. The EEG signals were amplified by a NeuroScan Synamps amplifier with a band pass of 0.05–100 Hz at a sampling rate of 1,000 Hz. EEG data were low-pass filtered with a cutoff frequency at 30 Hz and averaged offline for epochs of 800 ms, starting 100 ms prior to the stimulus onset in the test phase and ending 700 ms afterward. A baseline correction was performed for each epoch with respect to the 100-ms prestimulus interval. Trials with artifacts that were determined by a criterion of 50 μV were rejected offline, which amounted to only 2.9% of the trials. On average, there were 54 and 48 correct trials for the edge- and surface-based categories, respectively.

The ERPs were first averaged separately across correct and incorrect trials for the edge- and surface-based categories for each participant. In the statistical analyses of the ERP data, we focused on early components including the peak amplitudes of the posterior P1 (60–130 ms) and N1 (100–140 ms), the mean amplitudes of anterior N1 (80–130 ms) and P2 (140–180 ms), and later components including the mean amplitudes of the posterior P2 (200–240 ms) and anterior P3a (300–450 ms). On the basis of previous studies (Vogel and Luck, 2000; Chen et al., 2006; Freunberger et al., 2007; Folstein and Van Petten, 2011; Marzecová et al., 2018) and the topography of each component, a group of posterior electrodes (P3, Pz, P4, PO3, POz, PO4, O1, Oz, and O2) were selected for the posterior P1, N1, and P2; a group of anterior electrodes (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) were selected for the anterior N1, P2, and P3a. To investigate whether the stimuli from the edge- and surface-based categories would produce different waveforms, the analyses were focused on the correct trials from the two categories. A 2 (category) × 9 (electrodes) within-subject ANOVA was conducted. Greenhouse–Geisser corrections were adopted when the sphericity assumption was violated (Greenhouse and Geisser, 1959).


Results


Behavioral Results


Accuracy in the Test Phase

Figure 4A shows accuracy for each category in Experiment 2. As in Experiment 1, a one-sample t-test was used to examine weather participants could learn the two categories. It revealed that participants performed significantly above chance (0.50) for both categories (edge-based: M = 0.70, SD = 0.16, t(17) = 5.16, p < 0.001, Cohen’s dz = 1.22; surface-based: M = 0.61, SD = 0.14, t(17) = 3.44, p < 0.01, Cohen’s dz = 0.81), respectively, indicating that they learned how to classify the stimuli of the two categories incidentally. To explore the role of different features in incidental category learning, we conducted a one-tailed paired-samples t-test, which revealed that the accuracy for the edge-based category was significantly higher than that for the surface-based category, t(17) = 1.86, p < 0.05, Cohen’s dz = 0.44. Thus, consistent with Experiment 1, the results confirmed that participants performed better for the category defined by edge- than by surface-based features.
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FIGURE 4. Accuracy and ratings in Experiment 2. (A) The accuracy for the edge- and surface-based categories in the test phase. (B) The probability rating difference of the defined dimensions for the edge- and the surface-based categories. (C) The importance rating for the defined dimensions of the edge- and surface-based categories. Error bars depict standard errors. *p < 0.05, **p < 0.01.





Probability Rating

As in Experiment 1, we calculated the difference rating for each defined dimension (see Figure 4B). The one-sample t-test revealed that only the difference rating of tail shape for the edge-based category was significantly above zero (tail shape: t(17) = 3.75, p < 0.01, Cohen’s dz = 0.88). The results indicated that participants were partially aware of the relation between the tail shape and the category membership only for the category defined by edge-based features. As the tail shape is one defined dimension for the edge-based category, the tail color is the corresponding defined dimension for the surface-based category. To explore whether participants could be more aware of the relation between the defined features and the categorical membership for one category than the other one, a paired-samples t-test was conducted on the significant difference ratings for tail. The results showed that the difference ratings for tail shape in the edge-based category was significantly higher than the difference ratings for tail color in the surface-based category (t(17) = 3.01, p < 0.01, Cohen’s dz = 0.71), indicating that participants acquired more explicit knowledge for the edge-based category than for the surface-based category.

Furthermore, to explore whether the higher accuracy for the edge-based category was caused by the difference in explicit knowledge between the two categories, the accuracy differences between the edge- and surface-based categories was regressed on the difference between significant rating differences of tail shape and tail color. The results demonstrated that the rating difference for tail could not predict the accuracy difference in the test phase (F(1, 16) = 1.80, p = 0.20), indicating that the higher accuracy for the edge-based category might be caused by the difference in implicit knowledge rather than the difference in explicit knowledge.



Importance Ratings

As in Experiment 1, we calculated the mean importance ratings for the four defined dimensions when participants classified the stimuli as belonging to the edge- or surface-based category separately (see Figure 4C). A 2 (dimensions: edge- vs. surface-based) × 2 (category: edge- vs. surface-based) within-subjects ANOVA revealed only a significant effect of dimensions (F(1, 17) = 10.26, p < 0.01, [image: image] = 0.38). The main effect of category and the interaction did not reach significance (F(1, 17) = 0.57, p = 0.46; F(1, 17) = 1.82, p = 0.20). As in Experiment 1, the Bayes factor B for the importance rating difference between the two categories was calculated. The mean importance rating difference between the two categories was 1.01, and the standard error of the difference was 1.35. Using the uniform range (0, 100) to represent the alternative, it yields B = 0.03. The results confirmed that participants always thought that the edge-based dimensions were more important than the surfaced-based dimensions although they could classify the stimuli based on either edge-based or surface-based features.


ERP Results

Figure 5 shows the ERP data of correct trials for the edge- and surface-based categories at each of the anterior electrodes (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) and posterior electrodes (P3, PZ, P4, PO3, POZ, PO4, O1, Oz, and O2). Figure 6A shows the grand-average ERP waveforms of correct trials for the two categories averaged across nine posterior electrodes and nine anterior electrodes, respectively. Figure 6B shows the scalp topography of the anterior N1, P2, P3a, and posterior P2.
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FIGURE 5. Grand-average event-related potential (ERP) waveforms of correct trials for the edge- and the surface-based categories at anterior and posterior electrodes separately. The color zone around the waveforms depicts standard errors.
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FIGURE 6. (A) Grand-average ERP waveforms of correct trials for the edge-based category and the surface-based category averaged across nine posterior electrodes and nine anterior electrodes, respectively. The color zone around the waveforms depicts standard errors. (B) The scalp topography of the anterior N1, P2, P3, and posterior P2, correct trials of the edge-based category minus correct trials of the surface-based category.




ERP Effects in the Early Categorization Stage

To explore the role of edge- vs. surface-based features in the early categorization stage, a 2 (category) × 9 (posterior or anterior electrodes) within-subject ANOVA was conducted on the peak amplitudes of posterior P1 and N1, as well as the mean amplitudes of anterior N1 and P2.

For the peak amplitudes of posterior P1, it revealed only a significant effect of electrodes (F(4.41, 74.98) = 7.99, p < 0.001, [image: image] = 0.32). The main effect of category (F(1, 17) = 0.06, p = 0.81) and the interaction (F(3.34, 56.77) = 1.55, p = 0.21) were not significant. For the peak amplitudes of posterior N1, it revealed that neither the main effects (category: F(1, 17) = 0.86, p = 0.37; electrodes: F(3.72, 63.26) = 1.70, p = 0.17) nor the interaction (F(4.05, 68.84) = 1.46, p = 0.22) was significant.

For the mean amplitudes of anterior N1, it revealed only a significant effect of category (F(1, 17) = 7.83, p < 0.05, [image: image] = 0.32), indicating that stimuli from surface-based category elicited larger anterior N1 than those from edge-based category. The main effect of electrodes (F(3.17, 53.91) = 1.55, p = 0.21) and the interaction (F(3.54, 60.17) = 1.44, p = 0.24) did not reach significance.

For the mean amplitudes of anterior P2, it revealed a significant effect of category (F(1, 17) = 5.53, p < 0.05, [image: image] = 0.25), indicating that stimuli from edge-based category elicited larger anterior P2 than those from surface-based category. There was a significant effect of electrodes (F(2.57, 43.69) = 8.96, p < 0.001, [image: image] = 0.35). However, the interaction did not reach significance (F(2.99, 50.78) = 0.32, p = 0.81).



ERP Effects in the Late Categorization Stage

To explore the role of edge- and surface-based features in the late categorization stage, a 2 (category) × 9 (posterior or anterior electrodes) within-subject ANOVA was conducted on the mean amplitudes of posterior P2 and anterior P3a.

For the mean amplitudes of posterior P2, it revealed that a significant effect of category (F(1, 17) = 4.82, p < 0.05, [image: image] = 0.22), indicating that stimuli from the edge-based category elicited larger posterior P2 than those from the surface-based category. The main effect of electrodes was significant (F(3.16, 53.68) = 8.34, p < 0.001, [image: image] = 0.33). The interaction (F(2.91, 49.49) = 1.13, p = 0.35) did not reach significance.

For the mean amplitudes of anterior P3a, it revealed that the main effect of category was significant (F(1, 17) = 5.85, p < 0.05, [image: image] = 0.26), suggesting that stimuli from the surface-based category led to larger anterior P3a than those from the edge-based category. The main effect of electrodes reached significance (F(2.69, 45.76) = 9.06, p < 0.001, [image: image] = 0.35). The interaction did not reach significance (F(3.16, 53.79) = 1.57, p = 0.21).



The Relation Between Behavioral Data and ERP Data

To examine the relation between ERPs and behavioral performance, we calculated the accuracy difference between the edge- and the surface-based categories and the mean amplitude differences for anterior N1, P2, P3, and posterior P2. Then, the accuracy differences between the two categories were regressed on the mean amplitude differences for anterior N1, P2, P3, and posterior P2. The stepwise regression showed that only the mean amplitude differences of anterior P3a could significantly predict the accuracy differences between the edge- and surface-based category in the test phase (F(1, 17) = 4.82, p < 0.05) with an adjusted R2 of 0.18.










DISCUSSION

The behavioral results of Experiment 2 replicated the main findings in Experiment 1, indicating that participants learned better for the edge-based category than for the surface-based category, confirming that edge-based features play a more crucial role than surface-based features in incidental category learning. Importantly, the ERP results revealed that there were larger anterior N1 but smaller anterior P2 for the surface-based category than for the edge-based category, indicating that stimuli from the surface-based category might attract more attention but less feature analysis was done for them compared with those from the edge-based category at the early categorization stage. Moreover, there were smaller posterior P2 but larger anterior P3a for the surface-based category than for the edge-based category, suggesting that edge-based information plays more important roles in evaluating information relevance in making a decision at the late categorization stage.



GENERAL DISCUSSION

The behavioral results showed that knowledge for both edge- and surface-based categories could be simultaneously acquired in incidental category learning, and importantly, there was a larger learning effect for the edge-based category than for the surface-based category. Consistently, participants reported that edge-based dimensions were more important than surface-based dimensions although they could classify the stimuli based on either edge-based category or surface-based features. The ERP results revealed that the stimuli from the edge-based category elicited larger anterior P2 and posterior P2 than those from the surface-based category, while stimuli from the surface-based category elicited larger anterior N1 and P3a than those from the surface-based category. The results provided new behavioral and ERP evidence that edge- and surface-based features play different roles in incidental category learning. That is, although surface-based information might attract more attention during feature detection, edge-based information plays more important roles in evaluating the relevance of information in making a decision in categorization.

Participants were asked to observe each cartoon animal and listen to the sound carefully and then rate how likeable they were in the training phase. They were not asked to learn the category directly, and no trial-by-trial feedback was provided in both the training phase and the test phase. This guaranteed that the learning process occurred incidentally. Under these circumstances, participants performed above chance for both categories, indicating that they could incidentally combine the sound and the defined features to form the category knowledge and use it in the test phase. Otherwise, the accuracy for one category would be at chance level. Importantly, there was a larger learning effect for the edge- than for the surface-based category, and the larger learning effect was caused by the difference in implicit knowledge between the two categories rather than the difference in explicit knowledge, confirming that edge-based features play a more crucial role than surface-based features in implicit category learning.

The edge-based theory, such as Biederman’s recognition-by-components model, posits that objects are recognized based on their shape properties (Biederman, 1987; Biederman and Ju, 1988). Consistently, several studies have further demonstrated that edge-based information is a principal discriminative cue and its influence emerges earlier than texture and color (Elder and Velisavljević, 2009; Rokszin et al., 2015). For example, when extracting an average orientation from a set of objects, performance has been found to be better when the orientation is carried by the boundary features of the objects, relative to when it is carried by the surface features of the objects (Choo et al., 2012). Thus, the behavioral results of our two experiments provide new evidence for the edge-based theory and extend the application of this theory from object recognition to category learning.

Our ERP results revealed that the amplitude of anterior N1 was larger for the surface- than for the edge-based category, indicating that the stimuli from the surface-based category might attract more attention compared with the stimuli from the edge-based category. As stimuli from both edge- and surface-based categories include five edge-based features and five surface-based features, there should be no difference on feature saliency between the two categories. That is, this attention effect might not be due to a stimulus-driven attentional capture (e.g., Cave, 1999; Turatto and Galfano, 2000; Müller et al., 2009). This is consistent with the finding that the posterior P1 and N1 are not significantly different between stimuli from the two categories. Thus, the attention effect might be modulated by a top–down mechanism (Connor et al., 2004; Theeuwes, 2010). The information of the stimulus can be rapidly projected from early visual areas directly to the prefrontal cortex resulting in a coarse representation, which is subsequently used to activate predictions about the most likely interpretations of the stimulus (Bar et al., 2006; Schettino et al., 2011). If the category representation consists of mainly edge-based features, the coarse representation of stimuli for the edge-based category can be formed more easily than that for the surface-based category. Therefore, more top–down attention is needed for stimuli from the surface-based category than for the edge-based category, as reflected by a larger anterior N1 for the surface-based category than for the edge-based category. These results are also consistent with a previous study during which participants needed to decide if the probe stimulus share the same category membership of the previous two stimuli (Bigman and Pratt, 2004), and which revealed that a larger N1 could be recorded in response to the first stimulus when the knowledge of the target feature was unknown and the attention was needed for all features during processing of it compared with the second stimuli and the probe.

However, the ERP results revealed that the amplitude of anterior P2 was larger for the edge-based category than for the surface-based category. Relative to the condition under which participants are instructed to discriminate between old and new objects, the enhanced anterior P2 has been found in the condition under which they need to decide additionally whether old objects are larger or smaller since the more extensive evaluation of specific perceptual attributes is engaged (Ranganath and Paller, 2000). It has also been found for word targets from which target visual features can be more efficiently extracted when they are congruent with the context (Federmeier et al., 2005). These studies suggest that the anterior P2 reflects the detection of visual features with feature-based attention (Luck and Hillyard, 1994; Dunn et al., 1998; Luck, 2012). Because the anterior P2 is larger for the edge-based category than for the surface-based category, the anterior P2 component might reflect that the edge-based features could be detected and analyzed more efficiently than the surface-based features.

From the view of bottom–up visual processing, after processing the presented object, the perceptual information is matched to the representation in memory to make decisions (Ungerleider and Bell, 2011; Taminato et al., 2014). It has been found that the older adults with working memory encoding decrements have lower posterior P2 amplitude than young adults in a modified Sternberg recognition task (Finnigan et al., 2011), and correct trials elicit larger posterior P2 than incorrect trials in a digit span backward task (Lefebvre et al., 2005). The results suggest that the posterior P2 reflects the cognitive matching process. Consistent with this, our research shows that stimuli from edge-based category elicit larger posterior P2 than that from surface-based category, suggesting that edge-based information from the current stimulus can be better evaluated and compared with the stored inner categorical representation.

The P3a component has been proposed as an index of stimulus categorization (Johnson and Donchin, 1980; Dien et al., 2004). Folstein and Van Petten have separated that categorization into a dual system: a relatively fast process if the category is defined by a single- or two-feature conjunctions as indexed by the posterior P3b, and a slower process engaged when the number of relevant features exceeds two as indexed by the P3a, which are late positive potentials at frontal scalp sites (Folstein and Van Petten, 2004, 2011). As the category in the present study is defined by four features and the surface- and edge-based categories differ in the P3a, the results provide supportive evidence for the two dual category systems (Folstein and Van Petten, 2004, 2011). The larger P3a for the surface-based category than for the edge-based category is also consistent with previous studies showing that the anterior P3a might reflect a mixture of category selectivity and categorization uncertainty with enhanced responses to uncertain stimuli (Scholl et al., 2014). Because the difference in the P3a amplitudes between the two categories could predict the accuracy difference, the relatively poor accuracy for the surface-based category might be due to the difficulty in evaluating the surface-based features with internal representations.

In summary, the current study suggests that the edge-based features play a more important role than surface-based features. Furthermore, although the surface-based features attract more attention at the early stage of classification, it is the edge-based features that play a more crucial role in retrieving internal representations and evaluating the relevant information in decision making at the late stage of classification.
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Visual reasoning is a critical stage in visual question answering (Antol et al., 2015), but most of the state-of-the-art methods categorized the VQA tasks as a classification problem without taking the reasoning process into account. Various approaches are proposed to solve this multi-modal task that requires both abilities of comprehension and reasoning. The recently proposed neural module network (Andreas et al., 2016b), which assembles the model with a few primitive modules, is capable of performing a spatial or arithmetical reasoning over the input image to answer the questions. Nevertheless, its performance is not satisfying especially in the real-world datasets (e.g., VQA 1.0& 2.0) due to its limited primitive modules and suboptimal layout. To address these issues, we propose a novel method of Dual-Path Neural Module Network which can implement complex visual reasoning by forming a more flexible layout regularized by the pairwise loss. Specifically, we first use the region proposal network to generate both visual and spatial information, which helps it perform spatial reasoning. Then, we advocate to process a pair of different images along with the same question simultaneously, named as a “complementary pair,” which encourages the model to learn a more reasonable layout by suppressing the overfitting to the language priors. The model can jointly learn the parameters in the primitive module and the layout generation policy, which is further boosted by introducing a novel pairwise reward. Extensive experiments show that our approach significantly improves the performance of neural module networks especially on the real-world datasets.

Keywords: machine learning, visual reasoning, visual question answering, neural module networks, complementary pairs


1. INTRODUCTION

Visual Reasoning tasks require both abilities of scene understanding and semantic reasoning of AI models to perform well. Among various visual reasoning tasks, visual question answering (VQA) is such an excellent testbed to evaluate the reasoning capability of an AI model so that it attracts more and more attention from the whole AI community for its complexity and practicability. The VQA task targets to answer language questions based on given images, so that it binds both natural language processing and visual scene understanding. Consequently, cross-modal learning ability is of vital importance for AI models to perform well on VQA tasks, where precise answers cannot be produced without a combined comprehension of both visual and semantic inputs. Some challenging questions even require human-level reasoning intelligence for answer prediction. For instance, in order to correctly answer the question “What is sitting beside the chair?” as in Figure 1, a model has to not only detect chair in the input image, but also seek for objects that lie beside the detected chair. Such capability to fully comprehend the image and question and subsequently perform complicated reasoning process is key to answer questions precisely.


[image: Figure 1]
FIGURE 1. A brief illustration of our Dual-Path Neural Module Network. We input a pair of complementary images to the network along with the same question simultaneously. We propose to generate more flexible layout by regularizing the loss function with the pairwise reward. Our approach can therefore conduct more complex visual reasoning by composing the linguistic structure along with the visual and spatial information provided by the attached region proposal network (RPN).


Currently, VQA models apply deep neural networks to generate a combined feature representation of both visual and textual inputs. The VQA task is thereafter formalized as a classification problem where an optimized classifier is able to select for each combined feature representation a best answer from a set of candidates. Those data-driven models have achieved reasonable performances on various VQA datasets. However, as is known, VQA datasets are biased for the unavoidable correlation between questions and answers (Goyal et al., 2017), so that data-driven methods may easily overfit to language priors, and encourages VQA models to ignore input images and predict answers merely based on input questions. This flaw severely damages the learning quality of multi-modal joint embedding, which is supposed to be essential for VQA models. The problem of data bias is widely discovered and studied, as in Hudson and Manning (2019), Agrawal et al. (2016), Kafle and Kanan (2017), and Agrawal et al. (2018). To address this problem, the VQA v2.0 dataset is designed to contain complementary pairs that contain a same question and two similar images that have different answers to the assigned question. As a consequence, any VQA model that digs deep into the language bias will naturally fail on at least 50% samples in VQA v2.0 as it can't distinguish the two paired samples from each other.

Most state-of-the-art VQA methods are formulated as answer classification problem based on the joint embedding of textual and visual features. There is little relationship modeling between the question modality and image modality, so that it looks more like a black box without interpretable process. Some recent works (Fukui et al., 2016; Lu et al., 2016; Noh et al., 2016; Xu and Saenko, 2016; Ben-Younes et al., 2017; Kazemi and Elqursh, 2017; Yu et al., 2017; Anderson et al., 2018; Kim et al., 2018; Patro and Namboodiri, 2018) introduce the attention mechanism into VQA models to attend questions to salient regions of input images, so that the joint embedding of attended regions and questions carries more accurate information for question answering. With model ensemble, attention based VQA models can achieve over 72% prediction accuracy (Jiang et al., 2018) on the test set of the VQA v2.0 dataset (Goyal et al., 2017). Performance keeps rising yet an important problem remains unsolved. The lack of reasoning capability prevents human-level understanding of the decision process, and restricts the applications which require reasoning process. Besides, attention-based methods form a joint feature representation by simply fusing visual and semantic features, without considering their different roles in this multi-modal task.

Recently, Neural Module Networks (Andreas et al., 2016b; Hu et al., 2017, 2018; Johnson et al., 2017b; Mascharka et al., 2018) address the incapability of visual reasoning for traditional VQA models, and leap ahead by automatically assembling a collection of composable neural modules into an end-to-end learnable framework. To achieve this, a network layout is generated for each input question that represents the inner reasoning process from input to output. Primal neural modules are subsequently composed together according to the layout, forming a neural module network that takes input images as input and produce answer predictions as output. Neural module networks treat the two fundamental modes of the VQA task differently, where visual features provide sufficient information for predicting the answer, and semantic features define the specific transformation procedure from input attributes to output answer predictions. Considering the different roles of different modes of input data is of vital importance for cross-modal learning tasks that only in this way can the human understanding of multi-modal data be added naturally into the AI model. The neural module network framework provides answer explanations for human users in the form of the network layout, and achieves reasonable performance on synthetic VQA datasets like SHAPES (Andreas et al., 2016b) and CLEVR (Johnson et al., 2017a), while suffers from unsatisfied performance on large-scale real-world datasets like the VQA v2.0 dataset.

This imbalanced performance is due to three major reasons. First, computer rendered images has extremely limited number of objects compared with real-world photos. Incremental difficulty in detecting objects naturally adds difficulty in answering questions. Second, objects in real-world datasets have more complicated relationships with each other compared with generated images, where only spatial relationships are considered. Third, questions in real-world datasets represent more complicated reasoning process since they are annotated by human users aiming at challenging intelligence systems, while questions generated by a rule-based system have limited variations. Consequently, it's much harder to comprehend images in real-world datasets than in computer generated datasets. Specially, when integrating with attention mechanism, neural module networks should be further improved for the ability to generate precise network layouts representing input questions to achieve better performance.

To address above flaws of neural module networks, this paper proposes Dual-Path Neural Module Network (DP-NMN), which applies a novel pairwise learning schema to boost its visual reasoning capability on real-world datasets. A brief overview of our model is given in Figure 1. The basic insight is that complementary pairs in the VQA v2.0 dataset not only balance the dataset for language priors, but also have the potential to regularize and guide the training of VQA models. To achieve this goal, we introduce two novel components into the neural module networks. First, we reformulate the network layout generation process as a reinforcement learning problem where a policy network builds up the layout sequence step-by-step and receives a reward after the network has been assembled according to the generated layout. We make full use of the complementary pairs annotation by giving an additional pairwise reward to the policy network if the generated layout applies well for both images. This fits human intuition that layouts generated by a robust neural module network shall represent reasoning processes determined by input questions well and work on any input image. Second, we apply a region proposal network (RPN) on the input image to obtain salient object regions in the image, which carries sufficient visual and spatial features of detected candidate objects. This approach makes it possible for primitive modules to take both visual and spatial features as input, which naturally helps answer space related questions. We re-implemented the structures of primitive modules to ensure that the encoded information are sufficiently adopted to help perform reasoning. With the help of the region proposal network, our DP-NMN model deals with the two subtasks of low-level feature extraction and high-level reasoning separately to seek for better performance while still being interpretable. Our main contributions are three points:

• We propose a novel Dual-Path Neural Module Network (DP-NMN) model that processes input images with a region proposal network and applies a policy network to generate reasoning layout sequences;

• We present a novel pairwise learning schema that makes full use of the complementary pairs available or easily getatable in datasets to further improve performance;

• We demonstrate significant performance improvement for visual question reasoning on VQA datasets with the proposed DP-NMN.



2. RELATED WORKS


2.1. Visual Question Answering

Visual question answering requires comprehensive understanding both input questions and images for answer prediction. Recent few years have seen many newly formed datasets including hand-crafted datasets with computer generated images, like SHAPES (Andreas et al., 2016b), CLEVR (Johnson et al., 2017a), and large-scale real-world datasets like VQA (Antol et al., 2015) and VQA v2.0 (Goyal et al., 2017). Visual reasoning is of vital importance to perform this task well, for questions are designed to contain complicated reasoning process. For example, questions in CLEVR tend to query about relationships between objects, which require VQA models to comprehend the complex relationships between detected objects. The visual attention mechanism has been widely applied to form joint representations of input questions and images, which are subsequently handled by a classifier to produce answer predictions. Recent years have seen significant improvement in terms of performance, by either enhancing the visual attention module (Xu and Saenko, 2016; Yang et al., 2016; Kazemi and Elqursh, 2017; Anderson et al., 2018; Patro and Namboodiri, 2018), or improving quality of the joint embedding (Fukui et al., 2016; Lu et al., 2016; Noh et al., 2016; Ben-Younes et al., 2017; Yu et al., 2017). With model ensemble, the current state-of-the-art model has achieved over 72% accuracy (Jiang et al., 2018) on the VQA v2.0 test set.

However, VQA models based on the visual attention mechanism are not able to provide a thorough explanation of the reasoning process from input to output. Consequently, it remains unclear whether the model truly has the ability to understand the multi-modal input to make complicated reasoning, or the model just simply overfits the dataset. The language bias problem is discovered and discussed in Goyal et al. (2017), which reveals that data-driven models may easily overfit to the unavoidable language priors between questions and answers. In contrast, the neural module network architecture takes a step ahead in visual reasoning that the generated network layout for each input question is by itself a well defined explanation of the inner reasoning process. But the performance of neural module networks on real-world VQA datasets is unsatisfied, which severely damages its practicability.




3. NEURAL MODULE NETWORKS

Neural module networks (NMN) (Andreas et al., 2016b; Hu et al., 2017, 2018; Johnson et al., 2017b; Mascharka et al., 2018; Vedantam et al., 2019) provide a general idea of composing a new deep network with neural modules for each given input. Specifically for the VQA task, a structure layout for neural modules is generated based on semantic analysis on the input question, which represents the reasoning process from input image-question pair to output question answers. Subsequently, composable modules that each represents a unit step of visual reasoning are assembled together according to the generated layout, yielding a neural module network that is able to process images and predict answers. Those primitive modules have hand-crafted structures designed by human experts.

Recently, Hu et al. (2017) present the End-to-End Module Network which seeks for optimal layouts by predicting coarse functional expressions given input questions which describe desired network layouts. The layout generation problem is formulated as a sequence-to-sequence learning problem, and can be trained end-to-end with gradient backpropagation. This framework achieved reasonable results on simple VQA datasets like the SHAPES dataset, but suffered from relatively low accuracy on large-scale real-world VQA v2.0 dataset. Yet neural module networks still have demonstrated the advantages in interpretability of the visual reasoning process. Therefore, it remains an important direction to boost the performance for neural module networks and close the performance gap to state-of-the-art VQA methods.



4. METHODS

In this paper, we propose Dual-Path Neural Module Network which processes pairwise data samples in parallel, and is trained with a novel pairwise learning schema. An overview of our model is provided in section 3.1. The implementation details of our model are described in section 3.2. Optimization methods applied for training our model are described in section 3.3. Our model contains several types of composable primitive modules, which are introduced in section 3.4.


4.1. Overview

VQA datasets contain triplet samples si = (Q, I, A) where Q denotes the input question, I denotes the input image and A denotes the ground truth answer to the question. Like previous neural module networks, our model first generates a network layout Lq based on the input question Q, and assembles a neural module network with primitive modules according to Lq. Those primitive modules are parameterized by θN. Then the assembled network is capable of making answer predictions given input images.

However, VQA models that works merely on singular samples tend to easily overfit to the language priors in the dataset, focusing on the strong relationship between questions and images. The VQA v2.0 dataset contains complementary pairs to address this problem, where two paired samples have a same question but different images and answers, which can be denoted as si and sj, where [image: image] has the same question Q as si.

In order to minimize the impact of language priors in VQA datasets and generate comprehensive network layouts, our Dual-Path Neural Module Network applies a novel pairwise learning schema that makes full use of complementary pairs. Input to our model are paired samples si and sj instead of singular samples. Since the relationship between network layout and answer prediction is non-differentiable, we apply a policy network to produce layouts given input questions, which is trained under a reinforcement learning environment. During training, a reward R(Lq, θN|s) is given to the policy network if the predicted answers fits the ground truth answers for each sample s.

Our goal is to find optimal Lq and θN that not only make most accurate answer predictions, but also produce more comprehensive layouts. Intuitively, comprehensive network layouts shall work well on both complementary samples si and sj, making precise answer predictions for both images. Therefore, a pairwise reward Ω(Lq, θN|si, sj) is defined on each pair that gives the model additional reward if the predictions are correct on both paired images to encourage robust layouts. During training, we jointly optimize the task reward for answer accuracy and the pairwise reward for regularization. Hence the optimization objective of our model can be formalized as:

[image: image]

where network layout Lq and module parameters θN are jointly optimized to achieve highest reward. The network layout Lq is determined by two factors: types of primitive modules and connections between those modules. In practice, Lq is generated via the layout generator, which is optimized jointly with module parameters θN using this equation. Suppose that function g builds a network structure with a sequence l containing type information of all modules and a matrix Ψ that describes connections between them:

[image: image]

Hence given a sequence l of all type information of modules and matrix Ψ denoting the connections between them, a network layout Lq can be determined by function g. An overview of our model is shown in Figure 2. Details of the model architecture and the training method will be discussed in later sections.


[image: Figure 2]
FIGURE 2. An overview of our model. The input question is fed into the layout generation module which selects one module from all possible primitive modules at each time step to assemble a neural module network, and the paired input images are fed into the dual-path neural module network which processes them in parallel. A pairwise reward is calculated for each pair and given to the layout generation module to encourage layouts that work for both images.




4.2. Model Architecture

Our model composes a neural module network and predicts an answer (Â) out of a set of candidate answers for each given input pair of image (I) and question (Q):

[image: image]

where rI are region proposals that consist of visual features and corresponding bounding boxes of all candidate objects detected in the input image I. In this paper, we detect top 36 salient regions in I as candidate objects, each corresponds with a 2, 048 dimension visual feature vector and a 6 dimension spatial feature vector. Hence dimension for rI is (36 ∗ 2048 + 6). Textual feature of input question is also extracted, denoted as fq which is a 2, 048 dimension vector:

[image: image]

where RPN denotes the pre-trained region proposal network that extracts visual and spatial features of salient regions and RNN denotes a recurrent neural network (Bahdanau et al., 2014) that extracts textual features from the input question. The probability of any candidate answer given input question and image is divided into two parts. Firstly, a network layout Lq is generated based on the input question. Then composable primitive modules can be assembled together to form a neural module network, which is able to output answer predictions given input images.

Recall that in order to determine a layout Lq, the type information of all modules l and the connections between those modules Ψ shall be settled. The layout sequence l = l1, l2, …, lT is generated based on textual feature of the input question, fq. For each t, the corresponding element lt in the layout sequence represents a module type among all types of primitive modules. Our model generates the layout sequence l step-by-step according to a policy network πθ, where θ denotes its parameters. At each time step t, the policy network produces a probability distribution πθ(lt|l1, …, lt−1, fq) for all possible types of neural modules based on textual feature of the input question and previous generated modules. The most possible module is selected to be the t-th neural module lt to form the whole layout sequence l, where each lt is generated by the policy network:

[image: image]

This makes it possible to apply beam search during both training and testing to form an optimal l with highest probability. As in Hu et al. (2017), the layout sequence is mapped into a network layout with possible tree structure using Reverse Polish Notation, which is equivalent to Ψ. Hence after the layout sequence l is confirmed, we are able to apply Equation (2) to form a network layout Lq and subsequently assemble neural modules according to Lq. Each neural module is a function that takes 0, 1, or 2 attention maps and optional visual and textual feature as input, and outputs either an attention map or a probability distribution for all candidate answers. It's safe to assume that the first T − 1 neural modules work together to output an attention map a, which is taken as input by the last module to form the final answer prediction. The overall function of the first T − 1 modules may be summed up as one function m1…T − 1, and the last module as mT. Then the answer prediction process can be formalized as:

[image: image]

[image: image]

where θN denotes parameters of primitive modules, and ◦ denotes element-wise multiplication between attention weights and visual features. In conclusion, upon each input pair of question and image, our model first assembles a neural module network step-by-step conditioned on the question. Subsequently, the assembled neural module network is able to take images as input and predict answer probabilities.



4.3. Model Optimization

The prediction accuracy of neural module networks is directly related to two separated parts of model: layout generation and neural modules. Here we apply a E-M method to train the two parts alternately. That is, we first initialize layouts with a rule-based system as in Hu et al. (2017), and train the neural modules with simple backpropagation, resulting in optimal parameters θN. Then we fix the neural modules and train the layout generation module with policy gradient, leading to an optimal layout Lq. This process can be repeated until we reach the joint optimum of θN and Lq.

During training, we feed pairwise inputs si = (Q, I, A) and [image: image] together into the Dual-Path Neural Module Network, which processes the two data samples in parallel. The network layout Lq has a non-differential relationship with the prediction accuracy, therefore the policy network πθ cannot be trained directly with back propagation. However, when the whole layout is generated, which means the predicted answers Â and Â′ become accessible by feeding the input images I and I′ into the assembled network, we are able to compare the predicted answers with ground truth answers A and A′. We can define a reward function representing the result of this comparison. Optimizing this reward is thus beneficial to improving prediction accuracy. The reward function on pairwise data samples can be defined as:

[image: image]

[image: image]

where Â and Â′ are predicted answers for I and I′ correspondingly. Note that here both answer predictions Â and Â′ are generated by the neural module network that is assembled according to layout Lq. 1[Â = A] is the indicator function that equals 1 if and only if the condition Â = A is satisfied. That is,

[image: image]

And same equation stands for 1[Â′ = A′]. Those indicator functions compare predicted answers with ground truth answers, ensuring that optimizing this task reward is beneficial to the prediction accuracy of the model. But as we have claimed, models trained with merely task reward may easily overfit to language priors in the dataset. For neural module networks, this means that layouts generated for input questions may be under-qualified to process visual reasoning on input images, but instead fit the correlations between questions and answers. To address this problem, our Dual-Path Neural Module Network applies a novel pairwise reward Ω(Lq, θN|si, sj) for pairwise input samples as additional regularization during the training process. The pairwise reward is designed to encourage comprehensive layouts that work well on both paired inputs:

[image: image]

where si and sj are paired inputs that share a same question. It's intuitive that this pairwise reward is given to the model only when it's capable of answering the question Q correctly on both complementary images I and I′. Therefore, optimizing this pairwise reward efficiently avoids overfitting to language priors, for a VQA model must be able to distinguish the two complementary samples si and sj to get this pairwise reward, which is nearly impossible for overfitted models that predict answers based on questions only. During training, we combine task rewards and the pairwise reward to form a total reward:

[image: image]

where λ serves as a weight factor, which is set to 0.1 in this paper. Optimizing this total reward not only improves prediction accuracies on singular data samples, but also avoids overfitting to language priors. Note that at this step, θN is set to be fixed, so that it can be omitted from the reward function. Therefore, we optimize the total expected reward over θ to seek for optimal parameters of the policy network:

[image: image]

It's clear that optimal layout Lq is equivalent to optimal θ. However, there is no close-form solution for this optimization problem since the reward is non-differentiable with regard to the layout Lq. To simplify the optimization, we use Monte-Carlo sampling to calculate an unbiased estimation of the expected reward:

[image: image]

where N denotes the number of samples drawn, and [image: image] denotes the i-th sampled layout. Each sampling process requires the policy network πθ to produce all module types to form a complete layout [image: image]. Then the gradients for training can be computed using policy gradient method, where we sum up the gradients at each time step:

[image: image]

Then we are able to train the policy network with gradient backpropagation. After the policy network is trained, which indicates that we've already reached optimal Lq under current module parameters θN, we can fix πθ and alternate the training process to train the parameters of composable primitive modules:

[image: image]

where Lq is set to be fixed during this process, hence the reward function is equivalent to a simple loss function that is differentiable with regard to θN, and can be directly optimized with backpropagation. In this paper, we apply one iteration of this E-M process to search for the joint optimum of Lq and θN.



4.4. Primitive Modules

As is claimed before, with the help of the region proposal network, we are able to design several new types of neural modules that take not only visual features as input, but also take spatial features into consideration. We list all types of primitive neural modules in Table 1. Note that some of those modules are declared in previous works, but are not applied for VQA v2.0.


Table 1. Definitions of composable neural modules.

[image: Table 1]

It's also worth noting that since we adopt a region proposal network to extract candidate objects and corresponding bounding boxes of them, not only noisy redundant information are filtered, but also additional information is provided to the composed neural module network. Neural modules are now able to take spatial information as input, in addition to visual and textual features. For example, being able to take rI as input, which encodes both visual and spatial information, directly helps the relocate module to solve space-related questions like “to the left of,” “inside,” and “bigger than,” which contributes to the performance improvement. Previous works adopt rule-based systems to parse each question sequence in the training set to automatically generate layouts for initialization during training. Since our model contains several new types of neural modules, we modify the question parser to generate more suitable layouts, especially for space related questions. As a consequence, the neural module network will generate more comprehensive layouts on those questions and achieve higher accuracy during testing.




5. EXPERIMENTS

We evaluate the proposed method on the test sets of VQA v2.0 (Goyal et al., 2017) and CLEVR (Johnson et al., 2017a). Similarly to previous works, we pre-process the question sentences using pre-trained GloVe (Pennington et al., 2014) vectors with 300 dimensions. The GloVe representations are fed into a bi-layer LSTM with hidden dimensions set as 1,000. The input image is pre-processed with a ResNet (He et al., 2016) which outputs 2,048-dimension feature representations of input images. Our model is implemented using TensorFlow (Abadi et al., 2016), and is trained with Adam Optimizer (Kinga and Adam, 2015), with learning rate set as 1 × 10−4 and β set as 0.99. We compare performances of our DP-NMN with the baseline model End-to-End Neural Module Network (N2NMN) (Hu et al., 2017), and also several attention-based models. We also give qualitative analyses of generated network layouts. During training, batches of size 64 are fed into the model for 80, 000 iterations. The training process will terminate when the validation performance stays unimproved for 5, 000 iterations.


5.1. Datasets
 
5.1.1. VQA v2.0

VQA v2.0 is a VQA dataset that minimizes the impact of language bias with pairwise data samples, containing over 1.1 M human annotated questions and 0.4M MSCOCO (Lin et al., 2014) images. Faster-RCNN (Ren et al., 2015) is applied as the region proposal network that detects candidate objects, which uses a ResNet (He et al., 2016) CNN trained on ImageNet (Russakovsky et al., 2015) as visual feature extractor. We directly adopt the pre-trained Faster-RCNN available in Anderson et al. (2018). As in Hu et al. (2017), the layouts are firstly initialized with pre-generated layouts in Andreas et al. (2016a). Then we use the policy gradient method described in section 3.3 to search for better layouts. Accuracies on VQA v2.0 are reported by EvalAI (VQA, 2016).



5.1.2. CLEVR

The CLEVR (Johnson et al., 2017a) dataset focuses on relational reasoning, and contains 700K, 150K, and 150K automatically generated questions for training, validation and testing. We fine-tune a VGG-Net (Simonyan and Zisserman, 2014) to provide visual features. No complementary annotations are directly available to train our DP-NMN, which makes it impossible to adopt our pairwise learning schema out of the box. Fortunately, since questions in CLEVR have limited grammar structures, we may pre-process questions in the training set such that words representing a same concept are replaced with a same placeholder. For example, all words describing colors are replaced with placeholder “{color}.” Similar replacements are applied for all words describing sizes, shapes, materials, and directions.

After pre-processing, we are able to extract complementary pairs. Two identical questions after the replacement indicate that they represent a same reasoning process, although specific semantic meanings of the two questions may differ. For example, “What color is the cube to the right of the yellow sphere?” and “What color is the sphere to the left of the red cylinder?” refer to different colors, directions and shapes, but the layout structure generated by NMN shall be identical. Therefore these two questions are assigned pair with each other. Practically, we are able to extract 258,329 complementary pairs (516,658 data samples) this way, covering 74% of the training set. After that, all unpaired questions are assigned pair with themselves. We are hereafter able to train our DP-NMN with pairwise learning.




5.2. Layout Complexity Analysis

The ability to perform complex reasoning process of neural module networks can be measured with the complexity of the generated layouts. Table 2 shows the average size of generated layouts of our model and N2NMN (Hu et al., 2017) on the test-dev set of VQA v2.0. The size of a reasoning layout is measured by the number of primitive modules it contains. For example, size of the layout find→describe is 2 for it contains two modules. It's shown that layouts generated by our model are 12% larger in size than those generated by N2NMN. Longer layouts indicate that when solving a same question, our model is able to perform more complicated reasoning process on the input image, which naturally leads to performance improvement.


Table 2. Average size of generated layouts, measured by number of modules, on the test-dev set of the VQA v2.0 dataset.

[image: Table 2]

We also give a few examples of network layouts generated by our model together with the corresponding input questions and images to further demonstrate that our model produces more comprehensive layouts than former neural module networks like N2NMN. The results are shown in Figure 3. The presented questions and images are selected from the test set of VQA v2.0. It can be seen that our model answers more accurately, either by applying specific modules to solve particular questions, or by assembling more complex layouts to get a better understanding of the scene. In Figure 4, we give three more examples of the generated layouts by our DP-NMN. When given simple questions requiring either spatial or logical reasoning, our DP-NMN is capable of generate proper layouts of neural module networks that precisely represent the inner reasoning process. However, there are also cases observed that when the input question seems too complicated, the corresponding layout has complex structure and no clear meaning can be obtained. This may indicate that the reasoning capability of such neural module networks is still limited.


[image: Figure 3]
FIGURE 3. An qualitative comparison between our Dual-Path Neural Module Network and End-to-End Neural Module Network. Our policy network generates more comprehensive layouts that represent the visual reasoning process more precisely.



[image: Figure 4]
FIGURE 4. Several examples of the generated layouts by our DP-NMN. First two examples show that our DP-NMN is capable of performing spatial reasoning with the transform module, and logical reasoning with the or module. In the third example, our DP-NMN generates a complicated layout without clear meaning and outputs a wrong answer, which may indicates that the question is beyond its capability.




5.3. Benchmark Results

We report benchmark performance of our model on the test sets of VQA v2.0 and CLEVR in Table 3. Compared with the baseline model End-to-End Neural Module Network (N2NMN), it's shown that our model outperforms it by a large margin on both VQA v2.0 and CLEVR. We also compare single model performances of our model with several attention based models, including Bottom-Up and Top-Down Attention (BUTD) (Anderson et al., 2018) which took the lead in VQA Challenge 2017 (VQA, 2016). Our model outperforms BUTD on VQA v2.0, while providing better interpretability for human users. With model ensemble, our DP-NMN is able to achieve over 70% prediction accuracy. The ensemble is done by independently train 9 models at once, where they have same settings except with different random seeds. The ensemble output is given by major vote.


Table 3. Prediction accuracies on test sets of VQA v2.0 and CLEVR.

[image: Table 3]

This reveals that the neural module network architecture is fully capable of achieving reasonable performance on large-scale real-world datasets. It can be seen that there still remains performance gap between well-designed attention-based VQA models [like BAN (Kim et al., 2018) and LXMERT (Tan and Bansal, 2019)] and neural module networks, probably showing the widely-discovered trade-off between interpretability and performance. It's also worth noting that neural module networks have the advantage over attention based models that they provide better explanations to human users when answering questions, thus being more interpretable.

We also propose experiments where randomly assigned pairs are used to train our DP-NMN, namely Random Pairs in Table 3, aiming to validate the effectiveness of the pairwise learning schema. It's clearly shown that when complementary pairs are randomly assigned, performance of DP-NMN drops by a small margin, proving that the proposed pairwise learning schema only works with well designed complementary pairs.

As shown in Table 3, the DP-NMN (λ = 0) model processes pairwise data samples but without receiving the pairwise reward. It's clearly visible that its performance drops by a large margin compared to the DP-NMN, which indicates that the pairwise reward affects the model's performance positively. Compared to the Random Pairs setting, DP-NMN (λ = 0) achieves slightly better performance. This performance gap may be related to the structure of training batches, where pairwise samples are always shown to the model simultaneously.

The selection of the parameter λ is find challenging for DP-NMN. Big values of lambda affect the training loss too much that negative influence on performance are discovered. Small values of lambda make the benefits of the proposed pairwise learning schema less viable. Therefore, we finally choose 0.1 as the most proper value of lambda. The detailed sensitivity analysis results of λ is shown in Table 4.


Table 4. Sensitivity analysis results of λ.

[image: Table 4]




6. CONCLUSION

In this paper, we propose Dual-Path Neural Module Network that aims at better visual question reasoning on large-scale real-world datasets by introducing a novel pairwise learning schema. Our model processes the complementary images in parallel to produce a pairwise reward during the training process, which encourages to generate more comprehensive layouts of reasoning modules. Besides, we adopt a region proposal network to detect visual and spatial features of candidate objects in the input image, which provides useful spatial information for the assembled neural module network. Experimental results show that our model significantly outperforms previous neural module networks on real-world datasets, and also generalizes well on other datasets. The pairwise learning schema can be applied only when proper annotations of complementary samples are given along with the dataset, or can be easily extracted, which becomes a limitation of the framework. However, we believe that the idea of adopting those kind of complementary information to serve as additional guidance during the training process of neural networks is promising, and we expect further studies from the deep learning community.
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Given the features of a video, recurrent neural networks can be used to automatically generate a caption for the video. Existing methods for video captioning have at least three limitations. First, semantic information has been widely applied to boost the performance of video captioning models, but existing networks often fail to provide meaningful semantic features. Second, the Teacher Forcing algorithm is often utilized to optimize video captioning models, but during training and inference, different strategies are applied to guide word generation, leading to poor performance. Third, current video captioning models are prone to generate relatively short captions that express video contents inappropriately. Toward resolving these three problems, we suggest three corresponding improvements. First of all, we propose a metric to compare the quality of semantic features, and utilize appropriate features as input for a semantic detection network (SDN) with adequate complexity in order to generate meaningful semantic features for videos. Then, we apply a scheduled sampling strategy that gradually transfers the training phase from a teacher-guided manner toward a more self-teaching manner. Finally, the ordinary logarithm probability loss function is leveraged by sentence length so that the inclination of generating short sentences is alleviated. Our model achieves better results than previous models on the YouTube2Text dataset and is competitive with the previous best model on the MSR-VTT dataset.

Keywords: video captioning, sentence-length-leveraged loss, semantic assistance, RNN, scheduled sampling


1. INTRODUCTION

Video captioning aims to automatically generate a concise and accurate description for a video. It requires techniques both from computer vision (CV) and natural language processing (NLP). Deep learning (DL) methods for sequence-to-sequence learning are able to learn the map from discrete color arrays to dense vectors, which is utilized to generate natural language sequences without the interference of humans. These methods produced impressive results on this task compared with the results yielded by manually crafted features.

It has gained increasing attention in video captioning that the semantic meaning of a video is critical and beneficial for an RNN to generate annotations (Pan et al., 2016; Gan et al., 2017). Keeping semantic consistency between video content and video description helps to refine a generated sentence in semantic richness (Gao et al., 2017). But few researches have explored methods to obtain video semantic features, metrics to measure their quality and the relation between video captioning performance and meaningfulness of semantic features.

Several training strategies have been used to optimize video captioning models, such as the Teacher Forcing algorithm and CIDEnt-RL (Pasunuru and Bansal, 2017b). The Teacher Forcing algorithm is a simple and intuitive way to train RNNs. But it suffers from the discrepancy between training, which utilizes ground truth to guide word generation at each step, and inference, which samples from the model itself at each step. Reinforcement learning (RL) techniques have also been adopted to improve the training process of video captioning. CIDEnt-RL is one of the best RL algorithms, but it is extremely time-consuming to calculate metrics for every batch. In addition, the improvement on different metrics is unbalanced. In other words, the improvements on other metrics are not as large as that on the specific metrics optimized directly.

The commonly used loss function for video captioning is comprised of the logarithm of probabilities of target correct words (Donahue et al., 2015; Venugopalan et al., 2015). A long sentence tends to bring high loss to the model, as each additional word reduces the joint probability by roughly at least one order of magnitude. In contrast, a short sentence with few words has a relatively low loss. Thus, a video captioning model is prone to generate short sentences after being optimized by a log likelihood loss function. Excessively short annotations may neither be able to describe a video accurately nor express the content of a video in a rich language.

We propose to improve solutions to the video captioning task in three aspects. Firstly, we use mean average precision (mAP) as the metric to evaluate the quality of semantic information. By virtue of the evaluation metric, we build our semantic detection network (SDN) with a proper scale and the best inputs that brings the best performance, and, consequently, SDN is able to produce meaningful and accurate semantic features for a video. Secondly, we take advantage of a scheduled sampling method to train our video captioning model, which searches extreme points in the RNN state space more extensively as well as bridges the gap between training process and inference (Bengio et al., 2015). Thirdly, we optimize our model by a sentence-length-modulated loss function, which encourages the model to generate longer captions with more detail.

Our implementation, available on GitHub1, is based on the TensorFlow deep learning framework.



2. RELATED WORKS


2.1. Image Captioning

The encoder-decoder paradigm has been widely applied by researchers in image captioning since it was introduced to machine translation (Cho et al., 2014). It has become a mainstream method in both image captioning and machine translation (Mao et al., 2014; Vinyals et al., 2015). Inspired by successful attempts to employ attention in machine translation (Bahdanau et al., 2015) and object detection (Ba et al., 2015), models that are able to attend to key elements in an image are investigated for the purpose of generating high-quality image annotations. Semantic features (You et al., 2016) and object features (Anderson et al., 2018) are incorporated into attention mechanisms as heuristic information to guide selective and dynamic attendance of salient segments in images. RL techniques, which optimize specific metrics of a model directly, are also adopted to enhance the performance of image captioning models (Rennie et al., 2017). Graph Convolutional Networks (GCNs) have been introduced to cooperate with RNN to integrate both semantic and spatial information into image encoders in order to generate efficient representations of an image (Yao et al., 2018). Stimulated by the success of the Transformer model in machine translation, researchers extend it to a multimodal model for image captioning (Yu et al., 2019), which utilizes multi-view visual features to further improve the performance. Multi-level relationships between image regions are learnt and both low- and high-level features are exploited at the decoding stage in the Meshed Transformer with memory for image captioning (Cornia et al., 2019).



2.2. Video Captioning

Though both image captioning and video captioning are multi-modal tasks, video captioning is probably harder than the former one, as videos show not only spatial features but also temporal correlations.

Following the successful adoption of the encoder-decoder paradigm in image captioning, multimodal features of videos are fed into a sequence-to-sequence model to generate video descriptions with the assistance of pretrained models in image classification (Donahue et al., 2015; Venugopalan et al., 2015). In order to alleviate the semantic inconsistency between the video content and the generated caption, visual features and semantic features of a video are mapped to a common embedding space so that semantic consistency may be achieved by minimizing the Euclidean distance between these two embedded features (Pan et al., 2016). A model named POS generates video captions with Part-of-Speech (POS) information and multiple representations of video clips (Wang et al., 2019a). MARN exploits a memory structure to explore the relation between a word and its various visual contexts across the training data (Pei et al., 2019). JSRL-VCT manages to generate video descriptions by corporating visual representations and syntax representations (Hou et al., 2019). GRU-EVE captures rich temporal dynamics in video features by Short Fourier Transform, and extracts semantic information from an object detector (Aafaq et al., 2019). Zheng et al. (2020) propose a Syntax-Aware Action Targeting (SAAT) component to learn an action and its subjects that exist in a video for better semantic consistency in captioning.

RNN, especially LSTM, can be extended by integrating high-level tags or attributes of video with visual features of the video through embedding and element-wise addition/multiplication operations (Gan et al., 2017). Yu et al. (2016) exploit a sentence generator that is built upon an RNN module to model language, a multimodal layer to integrate different modal information, and an attention module to dynamically select salient features from the input. The output of a sentence generator is fed into a paragraph generator for describing a relatively long video with several sentences.

Following the attention mechanism introduced by Xu et al. (2015), Gao et al. (2017) capture the salient structure of video with the help of visual features of the video and context information provided by LSTM. Although bottom-up (Anderson et al., 2018) and top-down attention (Ramanishka et al., 2017) have been proposed for image captioning, selectively focusing on salient regions in an image is, to some extent, similar to picking key frames in a video (Chen et al., 2018). Wang et al. (2018) explore crossmodal attention at different granularity levels and capture global temporal structures as well as local temporal structures implied in multimodal features to assist the generation of video captions.

Due to the lack of labeled video data and the abundance of unlabeled video data, Pasunuru and Bansal (2017a) and Sun et al. (2019) propose to improve video captioning with self-supervised learning tasks or unsupervised learning tasks, such as unsupervised video prediction, entailment generation and text-to-video generation. Pasunuru and Bansal (2017a) demonstrate that multi-task training contributes to sharing knowledge across different domains, and each task, including video captioning, benefits from the training of other irrelevant tasks. Sun et al. (2019) take advantage of the abundance of unlabeled videos on YouTube and train the BERT model introduced in Devlin et al. (2018) on comparably large-scale videos, which is then used as a feature extractor for video captioning. A large amount of pre-training data is critical to BERT models both in video captioning and machine translation (Devlin et al., 2018; Sun et al., 2019). By aggregating different experts on different known activities, Wang et al. (2019b) take advantage of external textual corpora and transfer knowledge to unseen data for zero-shot video captioning. A spatio-temporal graph model is built to find object interactions and knowledge distillation mechanism is proposed to increase stability of performance (Pan et al., 2020).



2.3. RNN Training Strategy

The traditional method to train an RNN is the Teacher Forcing algorithm (Williams and Zipser, 1989), which feeds human annotations to the RNN as input at each step to guide the token generation during training and samples a token from the model itself as input during inference. The different sources of input tokens during training and inference lead to the inability of the model to generate high-quality tokens in inference, as errors may accumulate along the sequence generation.

Bengio et al. (2015) propose to switch gradually from guiding generation by true tokens to feeding sampled tokens during training, which helps RNN models adapt to the inference scheme in advance. It has been applied to image captioning and speech recognition. Inspired by Huszar (2015), who mathematically proves that both the Teacher Forcing algorithm and Curriculum Learning have a tendency to learn a biased model, Goyal et al. (2016) solve the problem by adopting an adversarial domain method to align the dynamics of the RNN during training and inference. Zhang et al. (2020) propose an object relational graph (ORG) to encode interaction features and design a teacher-recommended learning (TRL) method to utilize linguistic knowledge.

Inspired by the successful application of RL methods in image captioning (Rennie et al., 2017; Pasunuru and Bansal, 2017b) propose a modified reward that compensates for the logical contradiction in phrase-matching metrics as the direct optimization target in video captioning. The gradient of the non-differentiable RL loss function is computed and back-propagated by the REINFORCEMENT algorithm (Williams, 1992). But calculation of the reward for each training batch adds a non-negligible computation cost to the training process and slows down the optimization progress. In addition, the improvements of RL methods on various metrics are not comparable with the improvement on the specific metric used as RL reward.




3. THE PROPOSED APPROACHES

We consider the video captioning task as a supervised task. The training set is annotated as N pairs of [image: image], where Xi denotes a video and [image: image] represents the corresponding target caption. Suppose there are M frames from a video and a caption consisting of Li words, then we have:

[image: image]

where each x denotes a single frame and each y denotes a word belonging to a fixed known dictionary.

A pretrained model is used to produce word embeddings, and we obtain a low-dimension embedding of the caption [image: image]:

[image: image]

where Dw is the dimension of the word embedding space.


3.1. Encoder-Decoder Paradigm
 
3.1.1. Encoder

Our encoder is composed of a 3D ConvNet, a 2D ConvNet and a semantic detection network (SDN). The 3D ConvNet is utilized to produce the spatio-temporal feature [image: image] for the ith video. The 2D ConvNet is supposed to find the static visual feature [image: image] for the ith video. The visual spatio-temporal representation of the ith video can then be obtained by concatenating both features together as follows:

[image: image]

where Dv = De + Dr.

For semantic detection, we manually select the K most common and meaningful words, which consists of the most frequent nouns, verbs or adjectives, from both the training set and the validation set as candidate tags for all videos (Gan et al., 2017). The semantic detection task is treated as a multi-label classification task with vi as the representation of the ith video and [image: image] as the ground truth. If the jth tag exists in the annotations of the ith video, then [image: image]i,j = 1; otherwise, [image: image]i,j = 0. Suppose si is the semantic feature of the ith video. Then, we have [image: image], where f (·) is a non-linear mapping and σ(·) a sigmoid activation function. Mean average precision is applied to evaluate the quality of semantic features. A multi-layer perceptron (MLP) of adequate scale is exploited to learn semantic representations from the samples. The set of input features is determined by the experimental results for each dataset. The SDN is trained by minimizing the loss function:

[image: image]

A probability distribution of tags si is produced by the SDN to represent the semantic content of the ith video in the training set, the validation set or the test set.



3.1.2. Decoder

Standard RNNs (Elman, 1990) are capable of learning temporal patterns from input sequences. But they suffer from the gradient vanishing/explosion problem, which results in their inability to generalize to long sequences. LSTM (Hochreiter and Schmidhuber, 1997) is a prevailing variant of RNN that alleviates the long-term dependency problem by using gates to update the cell state, but it ignores the semantic information of the input sequence. We use SCN(Semantic Compositional Network) (Gan et al., 2017), a variant of LSTM, as our decoder, because it not only avoids the long-term dependency problem but also takes advantage of semantic information of the input video. Suppose we have a video feature v, a semantic feature s, an input vector xt at time step t and a hidden state ht−1 at time step t − 1. The SCN integrates semantic information s into v, xt, and ht−1, respectively, and obtains the semantics-related video feature [image: image], the semantics-related input [image: image] and the semantics-related hidden state [image: image] as follows:

[image: image]

where c, i, f and o denote the cell state, the input gate, the forget gate and the output gate, respectively.

Then input gate it, forget gate ft and output gate ot at time step t are calculated, respectively, in a way similar to the standard LSTM:

[image: image]

where σ denotes the logic sigmoid function [image: image] and b is a bias term for each gate.

The raw cell state at the current step t can be computed as follows:

[image: image]

where tanh denotes the hyperbolic function [image: image] and bc is the bias term for the cell state. The input gate it is supposed to control the throughput of the semantic-related input [image: image], and the forget gate ft is designed to determine the preservation of the previous cell state ct−1. Thus, we have the final cell state ct at time step:

[image: image]

The output gate controls the throughput ratio of the cell state ct so that the cell output ht can be determined by:

[image: image]

The semantics-related variables [image: image], [image: image], [image: image], and [image: image] are dependent on semantic feature s so that the SCN takes semantic information of the video into account implicitly. The forget gate ft is a key component in updating ct−1 to ct, which, to some degree, avoids the long-term dependency problem. The overview of the SCN unit is showed in Figure 1.


[image: Figure 1]
FIGURE 1. The figure of SCN unit. σ, ϕ, semantic fusion (f) denotes a sigmoid function, a tanh function and Equation (5), respectively. ⊙ and ⊕ in a circle denote element-wise product and element-wise addition, respectively.





3.2. Training Method

In the context of the RNN trained with the Teacher Forcing algorithm, the logarithmic probability P(Yi|Xi; Θ) of a given triplet of input/output/label (Xi, Yi, Ŷi) and given model parameters Θ can be calculated as:

[image: image]

where Li is the length of output.

In the case of SCN, the joint logarithmic probability can be computed as:

[image: image]

where hi,t, ci,t, and si are the output state, the cell state and the semantic feature of the ith video, respectively.

To some extent, hi,t and ci,t can be viewed as the aggregation of all the previous information. We can compute them using the recurrence relation:

[image: image]

where hi,−1 = 0, ci,−1 = 0. In inference, we need to replace [image: image]i,t with yi,t, which may lead to the accumulation of prediction errors.

In order to bridge the gap between training and testing in the Teacher Forcing algorithm, we train our video captioning model with scheduled sampling. Scheduled sampling transfers the training process gradually from using ground truth words Ŷi for guiding to using sampled words Yi for guiding at each recurrent step. The commonly used strategy to sample a word from the output distribution is argmax. But the search scope is limited to a relatively small part of the search space, since it always selects the word with the largest probability. For the sake of enlarging the search scope, we draw a word randomly from the output distribution as a part of the input for the next recurrent step. In this way, words with higher probabilities are more likely to be chosen. The randomness of the sampling procedure will enable the recurrent network to explore a relatively large range of the network state space. In addition, the network is less likely to get stuck in a local minimum. In the perspective of training machine learning models, the multinomial sampling strategy reduces overfitting of the network; in other words, it acts like a regularizer.

Our method to optimize the language model consists of two parts: the outer loop schedule the sampling probability at each recurrent step (Algorithm 1), while the algorithm inside the RNN (Algorithm 2) specifies the procedure to sample from the output of a model with a given possibility as a part of the input for the next step of the RNN.


Algorithm 1. Scheduling Algorithm: schedule the ϵ across epochs.

[image: Algorithm 1]


Algorithm 2. Random Sampling Algorithm: specific procedures in RNN.

[image: Algorithm 2]



3.3. Sentence-Length-Related Loss Function

What is a good description for a video? A good description should be both accurate and concise. In order to achieve this goal, we design a sentence-length-modulated loss function for our model as follows:

[image: image]

where bs is the batch size and β >= 0 is a hyper-parameter that is used to keep a balance between the conciseness and the accuracy of the generated captions. If β = 0, it is a loss function commonly used in video captioning tasks:

[image: image]

In this loss function, a long sentence has greater loss than a short sentence. Thus, after minimizing the loss, the RNN is inclined to generate relatively short annotations that may be incomplete in semantics or sentence structure. If β = 1, all words in the generated captions are treated equally in the loss function as well as in the process of optimization, which may lead to redundancy or duplicate words in the process of generating captions.

Thus, we have the following optimization problem:

[image: image]

where N is the size of the training data and Θ is the parameter of our model.

GNMT, Google's Neural Machine Translation system, employs a similar length-normalization technique in the beam search during test, but not during training (Wu et al., 2016). In contrast, our model abandons beam search in the decoder, and the model parameters are optimized by the sentence-length-modulated loss function (13). Note that beam search makes the decoding process slower.

The overall structure of our model is visualized in Figure 2. Our SDN and visual feature extractors in the encoder component share the same 2D ConvNet and 3D ConvNet in practice.


[image: Figure 2]
FIGURE 2. Overall framework of our model. A 3D ConvNet, a 2D ConvNet and a Semantic Detection Net (SDN) constitute the encoder component of our model. S-LSTM stands for a semantics-assisted variant of LSTM which takes a semantic feature, a visual feature and a word embedding as inputs at each step. The word fed as the input to the decoder is sampled from human annotations or the model itself randomly, and then is embeded with the pretrained weights.





4. EXPERIMENTS

We evaluate our model on two popular video captioning datasets to show the performance of our approach. We compare our results to other existing methods.


4.1. Datasets
 
4.1.1. YouTube2Text

The YouTube2Text or MSVD (Chen and Dolan, 2011; Guadarrama et al., 2013) dataset, published in 2013, contains 1970 short YouTube video clips. The average length of them is about 10 seconds. We get roughly 40 descriptions for each video. We follow the dataset split setting used in prior studies (Pan et al., 2016; Yu et al., 2016; Gan et al., 2017), in which the training dataset contains 1200 clips, the validation dataset contains 100 clips, and the rest of them belong to the test dataset. We tokenize the captions from the training and validation datasets and obtain approximately 14,000 unique words. Twelve thousand five hundred and ninety-two of them are utilized for prediction, and the remaining words are replaced by < unk >. We add the token < eos > to signal the end of a sentence.



4.1.2. MSR-VTT

MSR-Video to Text (MSR-VTT) (Pan et al., 2016; Xu et al., 2016) is a large-scale video benchmark, first presented in 2016. In its first version, MSR-VTT provided 10k short video segments with 200k descriptions in total. Each video segment was described by about 20 independent English sentences. In its second version, which was published in 2017, MSR-VTT provides additional 3k short clips as a testing set, and video clips in the first version can be used as training and validation sets. Because of lacking human annotations for the test set in the second version, we perform experiments on the first version. We tokenize and obtain 14,071 unique words that appear in the training set and validation set of MSR-VTT 1.0 more than once. Thirteen thousand seven hundred and ninety-four of them are indexed with integer numbers starting at 0, and the rest are substituted by < unk >. < eos >, which signifies the end of a sentence, is added to the vocabulary of MSR-VTT.




4.2. Overall Score

Based on the widely used BLEU, METEOR, ROUGE-L, and CIDEr metrics, we propose an overall score to evaluate the performance of a language model:

[image: image]

where B-4 denotes BLEU-4, C denotes CIDEr, M denotes METEOR, R represents ROUGE-L and top1(·) denotes the best numeric value of the specific metric. We presume that BLEU-4, CIDEr, METEOR, and ROUGE-L reflect one particular aspect of the performance of a model respectively. First, we normalize each metric value of a model, and then we take the mean value of them as an overall measurement for that model (16). If the result of a model on each metric is closer to the best result of all models, the overall score will be close to 1. If and only if a model has the state-of-the-art performance on all metrics, the overall score is 1. If a model is much lower than the state-of-the-art result on each metric, the overall score of the model will be close to 0.



4.3. Training Details

Our visual feature consists of two parts: a static visual feature and a dynamic visual feature. ResNeXt (Xie et al., 2017), which is pretrained on the ImageNet ILSVRC2012 dataset, is utilized as the static visual feature extractor in the encoder of our model. The ECO (Zolfaghari et al., 2018), which is pretrained on the Kinetics-400 dataset, is utilized as the dynamic visual feature extractor for the encoder in our model. More specifically, 32 frames are extracted from each video clip evenly. For each video, we feed 32 frames as input to ResNeXt, take the conv5/block3 output, and apply average pooling to these outputs along the time axis. The newly obtained 2048-dim feature vector is taken as the 2D representation of that video. What's more, we take the 1536-way feature of the global pool in ECO as the 3D representation of each video. Global Vectors for Word Representations (GloVe) (Pennington et al., 2014) is used as the pretrained word embedding model in our experiments. And it is fixed during our training processes.

We set the initial learning rate to 2 × 10−4 for the YouTube2Text dataset and 4 × 10−4 for the MSR-VTT dataset. In addition, we drop the learning rate by 0.316 every 20,350 steps for the MSR-VTT dataset. Batch size is set to 64, and the Adam algorithm is applied to optimize the model for both datasets. The hyper-parameter β1 is set to 0.9, β2 is set to 0.999, and ϵ is set to 1 × 10−8 for the Adam algorithm. Each model is trained for 50 epochs, in which the hyper parameter sample probability ϵ is set as ep × 0.008 for the epth epoch. We fine-tune the hyper-parameters of our model on the validation sets and select the best checkpoint for testing according to the overall score of the evaluation on the validation set.



4.4. Comparison With Existing Models

Empirically, we evaluate our method on the YouTube2Text/MSVD (Guadarrama et al., 2013) and MSR-VTT (Xu et al., 2016) datasets. We report the results of our model along with a number of existing models in Tables 1, 2.


Table 1. Result comparison with existing models on the YouTube2Text dataset.

[image: Table 1]


Table 2. Result comparison with existing models on the MSR-VTT dataset.

[image: Table 2]


4.4.1. Comparison on the YouTube2Text Dataset

Table 1 displays the performance of several models on YouTube2Text. We compare our model with existing methods, including LSTM-E (Pan et al., 2016), h-RNN (Yu et al., 2016), aLSTMs (Gao et al., 2017), SCN (Gan et al., 2017), MTVC (Pasunuru and Bansal, 2017a), ECO (Zolfaghari et al., 2018), SibNet (Liu et al., 2018), POS (Wang et al., 2019a), MARN (Pei et al., 2019), JSRL-VCT (Hou et al., 2019), GRU-EVE (Aafaq et al., 2019), STG-KD (Pan et al., 2020), SAAT (Zheng et al., 2020), and ORG-TRL (Zhang et al., 2020). Our method outperforms all the other methods on all the metrics by a large margin. Note that many of them were published after our initial submission of the present work in the end of May in 2019. Specifically, compared with ORG-TRL (Zhang et al., 2020), the previous state-of-the-art model on this dataset, BLEU-4, CIDEr, METEOR, and ROUGE-L are improved relatively by 14.9, 15.2, 7.1, and 4.2%, respectively. Our model has the highest overall score as defined in (16).



4.4.2. Comparison on the MSR-VTT Dataset

Table 2 displays the evaluation results of several video captioning models on the MSR-VTT. In this table, we compare our model with existing models, including MTVC (Pasunuru and Bansal, 2017a), CIDEnt-RL (Pasunuru and Bansal, 2017b), SibNet (Liu et al., 2018), HACA (Wang et al., 2018), TAMoE (Wang et al., 2019b), POS (Wang et al., 2019a), MARN (Pei et al., 2019), JSRL-VCT (Hou et al., 2019), GRU-EVE (Aafaq et al., 2019), STG-KD (Pan et al., 2020), SAAT (Zheng et al., 2020), ORG-TRL (Zhang et al., 2020). According to the overall score defined in (16), ORG-TRL is the best among existing models. Our model achieves higher values on all metrics than this model. Two models POS and JSRL-VCT achieve slightly higher CIDEr value and METEOR values than our model, respectively, but their other metric values are clearly lower than our results.

Our model achieves better results on both the YouTube2Text dataset and the MSR-VTT dataset. Note that our model is only trained on a single dataset without an attention mechanism, and it is tested without ensemble or beam search.





5. MODEL ANALYSIS

In this section, we discuss the utility of the three improvements on our model.


5.1. Analysis on Semantic Features

Semantic features are the output of a multi-label classification task. Mean average precision (mAP) is often used to evaluate the results of multi-label classification tasks (Tsoumakas and Katakis, 2007). Here, we apply it to evaluate the quality of semantic features.


5.1.1. Semantic Features Predicted With Different Sets of Input Features

Figures 3, 4 demonstrate the quality of semantic features, using different sets of feature maps as inputs, with respect to the training epochs. Figure 3 shows that, on the YouTube2Text dataset, the mAP values are proportional to training epochs. With the same number of training epochs, the qualities of semantic features are in the order: ECO-ResNeXt > ResNeXt > ECO, where ECO-ResNeXt, ResNeXt, and ECO denote the models trained with visual features from ECO-ResNeXt, ResNeXt, or ECO, respectively. Figure 4 demonstrates that, on the MSR-VTT dataset, both mAP values of semantic information decline after the models are trained for more than 800 epochs with ResNeXt feature maps or ECO-ResNeXt feature maps as inputs. With ECO feature maps as inputs, the performance of the semantic detection model is still proportional to the training epochs.


[image: Figure 3]
FIGURE 3. The quality of semantic features predicted with different sets of input features evaluated by mAP on the YouTube2Text. “ResNeXt,” “ECO,” and “ECO-ResNeXt” denote that the semantic models are trained and the semantic features are predicted with visual features produced by ResNeXt, ECO, both ECO and ResNeXt, respectively.



[image: Figure 4]
FIGURE 4. The quality of semantic features predicted with different sets of input features evaluated by mAP on the MSR-VTT dataset.




5.1.2. Models Trained With Different Semantic Features

Tables 3, 4 list the performance of our model trained by scheduled multinomial sampling with different semantic features on the YouTube2Text and MSR-VTT datasets, respectively. The results clearly show that a better multi-label classification enables a better video captioning model. Semantic features with higher mAP provide more appropriate potential attributes of a video for the model. Thus, the model is able to generate better video annotations by comprehensively considering semantic features, spatio-temporal features, and contextual information.


Table 3. Results of scheduled sampling methods (multinomial sampling) on the YouTube2Text dataset with different sets of semantic features.

[image: Table 3]


Table 4. Results of scheduled sampling methods (multinomial sampling) on MSR-VTT data with different sets of semantic features.

[image: Table 4]




5.2. Analysis on the Scheduled Sampling

Tables 5, 6 show the comparison among the Teacher Forcing algorithm, scheduled sampling with the argmax strategy and scheduled sampling with the multinomial strategy on YouTube2Text and MSR-VTT datasets, respectively. Teacher Forcing utilizes human annotations to guide the generation of words during training and samples from the word distribution of the output of the model to direct the generation during inference. The argmax strategy switches gradually from the Teacher Forcing way to sample words with the largest possibility from the model itself during training. The Multinomial strategy is similar to the argmax strategy but samples words randomly from the distribution of the model at each step. As we can infer from Tables 3, 4, the scheduled sampling with the multinomial strategy yields a better performance than the other two methods on the YouTube2Text dataset and the one with the argmax strategy yields the best performance on the MSR-VTT dataset. Our method explores a larger range of RNN state space and thus is likely to find a better solution during training.


Table 5. Results of different training strategies on YouTube2Text data with the best semantic features.

[image: Table 5]


Table 6. Results of different training strategies on MSR-VTT data with the best semantic features.

[image: Table 6]



5.3. Analysis on the Length Normalization of the Loss Function

As demonstrated in Table 7, the average length of human annotations is larger than those generated by models with β = {0, 0.7, 1} (13), respectively. But Figure 5 displays the tendency of redundancy in captions generated by the β = 1 model, which deteriorates the overall quality of model-generated sentences. The average caption length of the model with β = 0.7 is greater than that of the model with β = 0, whereas it is smaller than that from the model with β = 1. The model with β = 0.7 generates relatively long annotations for videos without suffering from redundancy or duplication of words, and we therefore consider it the optimal choice.


Table 7. Average length of the captions in the test set.

[image: Table 7]


[image: Figure 5]
FIGURE 5. Examples of machine-generated captions and human annotations (GT).





6. CONCLUSION

We suggest three improvements for solving the video captioning task. First, mAP is applied to evaluate the quality of semantic information, and a SDN with adequate computation complexity and input features is used to extract high-quality semantic features from videos, which contributes to the success of our semantics-assisted model. Second, we employ a scheduled sampling training strategy. Third, a sentence-length-modulated loss function is proposed to keep the model in a balance between language redundancy and conciseness. Our method achieves results that are superior to the state-of-the-art on the YouTube2Text dataset. The performance of our model is comparable to the state-of-the-art on the MSR-VTT dataset. In the future, we may obtain further improvements in video captioning by integrating spatio-temporal attention mechanisms with visual-semantics features.
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Human infants are able to acquire natural language seemingly easily at an early age. Their language learning seems to occur simultaneously with learning other cognitive functions as well as with playful interactions with the environment and caregivers. From a neuroscientific perspective, natural language is embodied, grounded in most, if not all, sensory and sensorimotor modalities, and acquired by means of crossmodal integration. However, characterizing the underlying mechanisms in the brain is difficult and explaining the grounding of language in crossmodal perception and action remains challenging. In this paper, we present a neurocognitive model for language grounding which reflects bio-inspired mechanisms such as an implicit adaptation of timescales as well as end-to-end multimodal abstraction. It addresses developmental robotic interaction and extends its learning capabilities using larger-scale knowledge-based data. In our scenario, we utilize the humanoid robot NICO in obtaining the EMIL data collection, in which the cognitive robot interacts with objects in a children's playground environment while receiving linguistic labels from a caregiver. The model analysis shows that crossmodally integrated representations are sufficient for acquiring language merely from sensory input through interaction with objects in an environment. The representations self-organize hierarchically and embed temporal and spatial information through composition and decomposition. This model can also provide the basis for further crossmodal integration of perceptually grounded cognitive representations.

Keywords: language grounding, developmental robotics, multiple timescales, recurrent neural networks, embodied cognition, multimodal learning, crossmodal integration, multimodal interaction dataset


1. INTRODUCTION

While research in natural language processing has advanced in specific disciplines such as parsing and classifying large amounts of text, human-computer communication is still a major challenge, due to multiple aspects: speech recognition is limited to good signal-to-noise conditions or well-adapted models, dialogue systems depend on a well-defined context, and language elements are difficult to reconcile with the environmental situation. Consequently, interactive robots that match human communication performance are not yet available. One reason for this is the fact that the crossmodal binding between language, actions, and visual events is not yet fully understood and was thus not realized in technical systems that have to interact with humans (Hagoort, 2017).

Imaging techniques such as Functional Magnetic Resonance Imaging (fMRI) have provided a better understanding of which areas in the cortex are involved in natural language processing and that these areas include somatosensory regions. Language studies have shown that there is a tight involvement of crossmodal sensation and action in speech processing and production as well as in language comprehension (Friederici and Singer, 2015). Thus, there is increasing evidence that human language is embodied. This means that it is grounded in most sensory and sensorimotor modalities and that the human brain architecture favors the acquisition of language by means of crossmodal integration (Pulvermüller, 2018).

As a consequence, research on cognitive modeling and developmental robotics is working toward developing models for natural language processing that reflect our understanding of distributed processing and embodied grounding of language in the brain. This way, the overall goal of studying the problem of language grounding in crossmodal perception and action can get approached. A particularly important aim is to develop a model for language grounding which reflects bio-inspired mechanisms and minimized difficult assumptions for the computational mechanisms.

In this paper, we present an embodied neurocognitive model for crossmodal language grounding that is trained in an end-to-end fashion. Additionally, we explore the concepts of varying multiple timescales in processing as well as distributed cell assemblies in representation learning. Based on the proposed model, we aim to investigate the characteristics of the learned crossmodally integrated representations.


1.1. Related Work

In order to bridge the gap between formal linguistics and bio-inspired systems, several valuable computational models have been developed that bring together language and an agent's multimodal perception and action. In their seminal Cross-channel Early Lexical Learning (CELL) model, Roy and Pentland (2002) demonstrate word learning from real sound and vision input. Each of these inputs is processed into a fixed-length vector, then lexical items arise by associations between vectors that represent the corresponding speech and an object's shape. Roy (2005) also highlights the importance of combining physical actions and speech in order to interpret words and basic speech acts in terms of schemas, which are grounded through a causal-predictive cycle of action and perception. Several works use self-organizing maps (SOMs), e.g., to form joint neural representations of simulated robot actions and abstract language input to encode the corresponding sensory-motor schemata (Wermter et al., 2005). This model addresses mirror neurons found in the motor cortical region F5, which link actor and observer by activating when performing a corresponding action or even just seeing or hearing it performed by someone else (Rizzolatti and Arbib, 1998). Vavrečka and Farkaš (2014) use a RecSOM (Voegtlin, 2002) which has a recurrent architecture with recursive updates to handle sequential input. Using a RecSOM and multiple SOMs, arranged in parallel for linguistic and visual input, and hierarchically for the integration of modalities, the model grounds spatial phrases within the corresponding image information.

Recent works often make reference to biological findings that support grounded language processing. Friederici and Singer (2015) provide evidence that linguistic and other cognitive functions are based on similar neuronal mechanisms, for example, single neurons react similarly to seeing a picture of a person's face or reading the person's name. More generally, Pulvermüller et al. (2014) propose a cognitive theory of distributed neuronal assemblies or thought circuits, integrating brain mechanisms of perception, action, language, attention, memory, decision, and conceptual thought. Rather than by SOMs, these neuroscience findings are better accounted for by distributed neural firing models. For example, in a multi-area model of cortical processing (Garagnani and Pulvermüller, 2016), some neurons become category-general while others are in category-specific semantic areas.

Among recurrent neural models, the multiple timescale recurrent neural network (MTRNN) (Yamashita and Tani, 2008) allows the emergence of a functional hierarchy with reusable sequence primitives. Heinrich and Wermter (2018) ground the generation of language in visual and motor proprioceptive signals, showing that an MTRNN can self-organize latent representations that feature hierarchical concept abstraction and concept decomposition. Zhong et al. (2019) address the generalization ability of MTRNNs by making use of semantic compositionality of simple verb-object sentences. They train an iCub robot to produce action sequences following a simple verb-object sentence comprising a selection of 9 verbs and 9 objects, where the network generalizes to all combinations despite being trained only on a subset. Yamada et al. (2017) investigate the handling of logic words in sentences from which an Long Short-Term Memory (LSTM) network generates corresponding robot actions. They show that, for example, the word “and” works like a universal quantifier, while the word “or” creates an unstable space in the LSTM dynamics.

While these models are used unidirectionally, bidirectional models have been proposed that can map both perceived language commands to actions and perceived actions to language descriptions. For this task, Yamada et al. (2018) train two paired recurrent autoencoders, one encoding the textual description sequence, the other encoding the action sequence. The autoencoders are paired by a joint loss function term that drives the two autoencoders' center-layer representations, which both have the same dimensionality, to be similar. As a result, a textual description leads to a representation that is suitable to generate an action sequence, and vice versa. For interactivity, the action sequence autoencoder receives additional image input in both encoder and decoder, while producing only the joint angle sequences as output. In each autoencoder, the direction of information flow between layers is fixed from input toward the output. In contrast, Antunes et al. (2018) implement a model of truly bidirectional information flow between three recurrent MTRNN layers of fast, medium, and slow timescale units. A subset of the fast units acts as input (or output) to a robot action sequence, and a subset of the slow layer's units acts as output (or input) to the language description. However, it needs to be investigated whether neural groups emerge that are solely devoted to information transmission into one of the directions, or, rather, whether shared bidirectional functionality emerges.

Another line of recent works shows that enriching linguistic data with other modalities can lead to better-performing systems. For example, continuous word representations like word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014) have become popular, since they span some semantically meaningful low-dimensional space leading to robustness and to the possibility to track relations between words. Additionally, the original words can be recovered from the representations even when they are corrupted or altered by noise. These embeddings can become even more powerful when involving multiple modalities. Hill and Korhonen (2014) train a word2vec-like model on the ESPGame dataset, which annotates images with a list of lexical concepts, and on the CSLB Property Norms dataset which contains concepts for which human annotators produced several semantic properties. Lazaridou et al. (2015) train a similar model on text from Wikipedia and add visual information from the ImageNet database to a subset of the words, which is processed into an abstract vector by a pre-trained Convolutional Neural Network (CNN). Wang et al. (2018b) use GloVe vectors pre-trained on the Common Crawl dataset together with CNN-based visual vectors pre-trained on ImageNet. Auditory features extracted from a CNN network pre-trained on Google's AudioSet data are included in Wang et al. (2018a). The results of these models show that multimodal embeddings outperform unimodal embeddings. Furthermore, suitable images can be generated not only for concrete words but also for some abstract words by selecting the nearest neighbor image for a generated image vector (Wang et al., 2018a). For reinforcement learning interactive game agents, it was shown that augmenting environmental information with language descriptions (Narasimhan et al., 2018) or instructions (Chaplot et al., 2018) leads to better generalization and transfer capabilities.

There is also a recent focus on tasks like image captioning, Visual Question Answering (VQA), and phrase grounding in images. In these tasks, sequentially processed language refers to elements of images and the availability of corresponding large datasets for supervised learning has driven model development. VQA research, for example, led to neural architectures that facilitate reasoning steps, e.g. by affine transformations within the visual processing stream based on conditioning information from the question (Perez et al., 2018), by novel recurrent Memory, Attention, and Composition (MAC) cells (Hudson and Manning, 2018), or by more explicitly using graphs for reasoning (Hudson and Manning, 2019). Yet, these models do not cover the production of language, since VQA tasks are cast as classification problems where the network produces only the label to the correct answer among a given set of answers. Instead, they are tailored toward reasoning, but often fail in generalization, if their architecture is not primed for the task (Santoro et al., 2017). A potential reason for the lack of generalization can be in the poor integration of language and image representations by these models, since they are not embodied in interactive agents, which Burgard et al. (2017) suggest.

Overall this shows the need for an embodied neurocognitive model that can help to explain language processing in the brain and at the same time proves to be effective in generalization. To this end, we need to more closely look into components of both temporal decomposition and composition and at the same time realize an inherent multimodal abstraction on both sensory as well as conceptual level. It seems crucial that temporal decomposition and composition directly emerges in a model based on the context or the data, while multimodal abstraction needs to take place on sensory up to an overall contextual level.



1.2. Contribution

In this paper, we develop a neurocognitive model that grounds language production into embodied crossmodal perception. In particular, our model aims to map the auditory, sensorimotor, and visual perceptions onto the production of verbal utterances during the interaction of a learner with objects in its environment.

As a core characteristic, the model allows for the implicit adaptation of timescales based on the temporal characteristics of both perception and language production. Furthermore, the model tests multimodal abstraction in an end-to-end fashion with limited constraints on the preprocessing of the sensory input. The model is analyzed in depth based on a developmental robotics data recording that mimics natural interactions of an infant with said objects. This Embodied Multi-modal Interaction in Language learning (EMIL) data collection challenges the model by introducing a wider range of variability of the temporally dynamic sensory features, in order to exhibit effects on language learning and latent representation formation concerning findings for the human brain.

Therefore, the contribution of this paper is three-fold1:

• We present a neurocognitive model for language grounding which reflects bio-inspired mechanisms such as an implicit adaptation of timescales as well as end-to-end multimodal abstraction. It addresses developmental robotic interaction and extends its learning capabilities using larger-scale knowledge-based data.

• We demonstrate the effectiveness of our model on the novel EMIL data collection, in which the cognitive robot interacts with objects in a children's playground environment while receiving linguistic labels from a caregiver.

• We conduct an in-depth analysis of the model on the real-world multimodal data and draw several important conclusions. For example, crossmodally integrated representations are sufficient for acquiring language merely from sensory input through interaction with objects in an environment.




2. EMBODIED NEUROCOGNITIVE MODEL

In order to add insight to related computational models, we aim to develop a model that satisfies a number of constraints. First, we seek to minimize difficult assumptions for computational mechanisms. In particular, we avoid building on top of mechanisms that are appealing for machine learning but not yet proven or not plausible for the processing in the brain such as neural gating, dropout regularization, or residual connections. In fact, we aim at building on top of the most simple computational architecture that still allows studying our proposed mechanisms. Second, we work with a minimal level of assumptions regarding language grounding. Here, we avoid using an oversimplified language such as modeling on word-level only. Additionally, we do not use natural speech but rather a simpler phonetic representation as the desired output. We will build our computational model with a distinct focus on the following biological mechanisms.


2.1. Biological Inspiration

It has been suggested that the human cognition is particularly strong because the human brain is good at both information composition and decomposition (Murray et al., 2014). Furthermore, it seems that many processes in the brain are reused in or coupled to a range of cognitive functions. In the brain, the decomposition and composition are governed by neural oscillations, multiple timescales in hierarchical processing streams, and a complex interplay of neural populations and local integration by mode coupling (Buzsáki and Draguhn, 2004; Badre et al., 2010; Engel et al., 2013). Additional evidence suggests that in higher stages of the spatial or temporal hierarchy neurons are organized in cell assemblies (Damasio, 1989; Palm, 1990; Levelt, 2001). These sparsely connected webs of neurons are distributed over different cortical areas and both hemispheres and form consistently during development for concepts on higher or lower levels.

In language grounding, both multiple timescales and cell assemblies seem to be reused. Multiple timescales in processing have been reported across the brain from lower auditory processing up to higher processing of perception (Ulanovsky et al., 2004; Smith and Kohn, 2008; Himberger et al., 2018) and cell assemblies are suggested to activate for both word processing as well as the overall thought processes (van der Velde, 2015; Tomasello et al., 2019). As a consequence, in our computational model, we further study the mechanisms of multiple timescales in information processing as well as crossmodal fusion by and sequence activation from cell assemblies.



2.2. Computational Model

We base our computational model on the Continuous Time Recurrent Neural Networks (CTRNN) architecture because of its universality in modeling sequential signals. Although we can derive the CTRNN from the leaky integrate-and-fire model and thus from a simplification of the Hodgkin-Huxley model from 1952, the network architecture was suggested independently by Hopfield and Tank (1986) as a nonlinear graded-response neural network and by Doya and Yoshizawa (1989) as an adaptive neural oscillator. Specifically, the CTRNN can be understood as a generalization of the Hopfield Network (Hopfield, 1982) with continuous firing rates and arbitrary leakage in terms of time constants. Compared to the Simple Recurrent Network (SRN, or Elman Network), the timescale τ is an additional hyperparameter of asymptotically not leaking, thus, a neuron can maintain part of its information for a longer period of time.

The activation y of CTRNN units is defined as follows:
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for inputs x, previous internal states zt−Δt, input weights W, recurrent weights V, bias b, and an activation function f. The timescale can be a pre-determined common parameter τ for all neurons or a vector τ of individual constants. In tasks with discrete numbers of time steps, the CTRNN can be employed as a discrete model, e.g., by setting Δt = 1.

With respect to modeling multiple timescales in information processing, the timescale parameter τ provides an interesting mechanism to capture sequential aspects on different timescales or periodicities and is particularly crucial for the hierarchical abstraction capability of the Multiple Timescale Recurrent Neural Network (MTRNN, compare Yamashita and Tani, 2008). Our model, therefore, integrates this predefined hierarchical abstraction. In particular, a fixed number of layers is defined a priori, e.g., having three adjacent layers called Input-Output (IO, τ = 2), Context-fast (Cf, τ = 5), and Context-slow (Cs, τ = 70), in order to force the architecture to hierarchically compose or decompose information.

In order to achieve decomposition and composition in the MTRNN, the overall context of a sequence is learned by or stored into some of the units in the slowest layers, called Context-controlling (Csc) units. Consequently, such an MTRNN can be defined in two forms, providing a decoder and an encoder component.

• MTRNN with Context Bias: the Csc units operate as a parametric bias during production and thus the Csc values are learned backwards during gradient descent training (compare Awano et al., 2010). Since the network weights are trained in parallel to the Csc units, the MTRNN with context bias learns to decompose a temporally dynamic sequence from a static initial bias.

• MTRNN with Context Abstraction: the Csc units operate as abstracting a static output during sensory processing similar to one-point classification (compare Heinrich and Wermter, 2018). Due to the increasingly larger timescales in the layers, the network learns to compose a static overall context from a temporally dynamic sequence.

When an MTRNN with context bias is coupled with an MTRNN with context abstraction in an end-to-end architecture, the Csc values of both networks are updated iteratively and form latent representations similar to a sparse auto-encoder on sequences.

In the MTRNNs, however, the τ needs to be carefully chosen as a hyperparameter, based on a priori known temporal characteristics of the data. This is usually done in coarse approximation on layer or module level. In contrast, time constants in the brain are subject to change during development and are hypothesized to be directly related to temporal structures (He, 2014). In previous work we developed a mechanism to obtain an adaptive timescale τA for each unit (Heinrich et al., 2018a). The timescales are governed by learnable weights U that work like a bias on the timescale instead of on the activation:
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where the exponential function ensures timescales in (1, ∞), and the vector τ0 can be initialized with sensible values for the timescales while the weights U get initialized to values close to zero. As a rule of thumb, we can initialize τ0 either at random between 1 and a reasonably large number, i.e., to the length of the expected longest sequence (or a logarithm thereof) (Heinrich et al., 2015), or with timescales that are known to work well for MTRNNs in similar tasks.

In our computational model we, therefore, utilize adaptive MTRNNs with context abstraction for sensory inputs from multiple modalities and an adaptive MTRNN with context bias for verbalizing the observed sensation in natural language. Through this, the architecture provides a composition of a sensation into an overall meaning for that sensation as well as a decomposition of a meaning into a verbal description. The Csc units of all MTRNNs are coupled in cell assemblies from which, supposedly, a sparse latent representation for the meaning can emerge through iterative learning. Specifically, we integrate up to three MTRNNs for the abstraction of temporal dynamic auditory (au), sensorimotor (sm), and visual (vi) perception as well as an MTRNN which uses this context for language production in terms of verbal utterances describing the perception. The overall architecture is illustrated in Figure 1, further details on the scenario are provided in section 3.


[image: Figure 1]
FIGURE 1. Computational model: Adaptive MTRNNs with context abstraction for each input modality are coupled with an adaptive MTRNN with context bias via cell assemblies. Example timescales visualize the logarithmic leakage of information in the neurons.




2.3. Developmental Robot Scenario for Language Grounding

To investigate language grounding, we couple multi-modal sensations and a verbal description in order to train our model in an end-to-end fashion. Although supervised, this is related to models that investigate language grounding by mapping perception and action through Hebbian learning and studying the emergence and consolidation of connection patterns (e.g., Garagnani and Pulvermüller, 2016). Our aim is to further scale to a temporally dynamic scenario from real-word observations with the aim of studying both the emergence of timescales as well as connection patterns in terms of cell assemblies.

For this, our set-up is borrowed from a developmental robot scenario, where a humanoid robot, such as the Neuro-Inspired COmpanion (NICO, Kerzel et al., 2017), represents an infant learner who explores the environment by interacting with objects on a table and perceives verbal descriptions from a caregiver for particular object manipulations (see Figure 2). We conducted a data collection of the EMIL data set2 (Heinrich et al., 2018b), that includes parallel multi-modal recordings from the robot's body-rational view as well as visual observations from a teacher perspective. The robot performs an action from a set of four predefined motions on a set of 30 distinct objects which exhibit different shape, color, texture, weight, friction, and sound characteristics when moved. The interaction is captured by microphones in the robot's ears for 48 kHz auditory sensation, by proprioception in the arm (motor position and current from eight motors, with 30 read-outs per second) for sensorimotor perception, and by a 90 degree field-of-view and 30 fps camera for visual perception. In addition, a textual description was recorded that describes the interaction with the object.


[image: Figure 2]
FIGURE 2. Developmental robot scenario of the EMIL data collection (Heinrich et al., 2018b): NICO is interacting with objects and perceives the interaction on auditory, sensorimotor, and visual modalities. A teacher provides a description for the interaction. (A) Scenario, (B) Example descriptions, (C) Teacher perspective.


To study the model on this scenario, we prepared two data sets from the EMIL version 1 collection:

• EMILv1 Data: 240 sensation-description pairs with up to 740 time steps for the perception streams and a simple holo-phrase with up to four words for the description. The descriptions were created from a vocabulary of 68 words and 4 symbols for punctuation, where a word is represented with one to nine phonemes.

• EMILv1 + Teacher Data: in order to mimic the situation of a caregiver providing additional descriptions to foster the infant's learning, we extended the data with additional teacher input. In particular, we appended data points where we replaced the nouns and verbs with synonyms and added slight Gaussian noise to the perception (σ = 0.01) in order to obtain 2,880 unique pairs. This is motivated by infants learning language better through scaffolding and guidance from their parents (Tomasello, 2003). The process can also be viewed as data augmentation from linguistic knowledge, which results in increased diversity and scale of crossmodal data for language learning, and is shown to lead to better generalization ability of neural models (Zhang et al., 2015). In order to ensure the quality of the teacher data, synonyms are obtained from WordNet (Miller, 1995), a high-quality lexical knowledge base according to the sense of the replaced word.

The EMILv1 data exhibits a couple of interesting characteristics. On the one hand, with the particularly long and noisy sequences (especially in the sensorimotor modality) the training is challenging for RNNs. On the other hand, in most sequences, the visual modality is most informative for the presented action + object pair. Compared to previous developmental robotic data sets, e.g. in Heinrich and Wermter (2018) the data does not imply a necessity for superadditivity (i.e., that more information is gained from multiple modalities only) but rather selectivity (meaning that one modality might be strongly favored in certain situations).



2.4. Representation and Training

For the verbal descriptions we prepared two different language representations:

• Phonetic: we transformed the utterances into phonetic sequences based on the ARPAbet and dictionary provided by CMU3 and represented these sequences as simple one-hot vectors. This is different from previous related research (Hinoshita et al., 2011; Heinrich and Wermter, 2018) where a single phoneme was stretched backwards and forward in time and thus learned much easier by using teacher forcing.

• Word embedding: in order to study the model on both fine-grained phonetic-level and coarse-grained word-level we utilize the GloVe-6B embeddings provided by the Stanford NLP group (Pennington et al., 2014).

We expect that the phonetic representation is more challenging and provides the necessity for the emergence of temporal composition in the MTRNN for verbal descriptions. The word embeddings, on the other hand, are more informative for studying the multi-modal fusion since the word embeddings already reflect semantic relatedness.

For the multi-modal sensation, we perform some simple preprocessing in order to provide input streams of comparable dimensions and low-level feature abstraction. For the auditory input, we transform the signals using Mel-Frequency Cepstral Coefficients (MFCC) analysis into 13 dimensions with a frame size of 33 ms and input window 60 ms. This is acceptable in terms of biological inspiration as the cochlea is doing a Fourier transformation of auditory signals that are roughly similar. The sensorimotor input was taken as is, but normalized, to result in 16 dimensions. The visual input in terms of a video stream was processed by a VGG16 neural network (Simonyan and Zisserman, 2015) (we took the output of the first dense layer after the convolution and pooling layers) and further condensed to 19 dimensions by Principal Component Analysis (PCA) in order to provide visual features. The VGG architecture was chosen since it is a powerful CNN architecture that was developed based on biological inspiration but does not yet incorporate implausible mechanisms such as arbitrary residual connections (Krüger et al., 2013; Hu et al., 2019). In our model, we used VGG layers that were pre-trained on ImageNet and thus provide reasonable features for objects. The reduction with PCA is not supposed to mimic any specific cortical processing but is an easy step in systematically reducing complexity in the model, which alternatively could be realized by neural unsupervised learning as well.

Since all network parameters are fully differentiable (Heinrich et al., 2018a), the architecture can be trained end-to-end using gradient descent. Although for the brain theories are in favor of Hebbian learning during development instead of backpropagation, we argue that for our research aim of studying the emergence of multiple timescales and the emergence of crossmodally fused representations for language grounding a supervised error signal is feasible (Dayan and Abbott, 2005; Lillicrap and Santoro, 2019).




3. EVALUATION AND ANALYSIS

In order to analyse our model for how compositional language is grounded in multimodal sensations and how multimodal abstraction emerges through learning, we trained different variants of our model on different variants on the EMIL data sets.

For all experiments, we optimized the hyperparameters, i.e., the architecture size, optimization algorithm, learning rate, and batch size. We started with the model architecture from baseline CTRNNs, which are configured with equal timescales τ = 1 for all neurons. Once good hyperparameters were found, we used the same hyperparameters for all MTRNNs while separately optimizing their timescales. These timescales, in turn, are used as initial timescale values of the adaptive MTRNNs (AMTRNNs). All models were trained for at most 5, 000 epochs and a validation set was used for early stopping. We performed a 10-random sub-sampling validation, i.e., we repeated each run ten times with a different and independent split of training, test, and validation data (75, 12.5, 12.5%) as well as different and independent weights-initialization, based on a different random seed. The best results were found with RMSprop (Tieleman and Hinton, 2012), a learning rate of 0.01, and a batch size of 30. The exact architectural parameters are noted in Figure 1. In the following, for the argmax on the output, we report the mean accuracy over the cross-validation for each setup.


3.1. Generalization on Developmental Interaction Data

As a first step, we are interested in how well the architecture can actually learn verbal descriptions for the different sequential inputs. In order to inspect the generalization, we compare the accuracy on the test sets for both data sets, both verbal utterance representations, and three different model variants. In particular, we compare the baseline CTRNNs with the optimized MTRNNs and AMTRNNs.

The accuracy results (including standard errors) are presented in Table 1. We observe that the generalization is difficult for all models and that utterances which were described entirely correct are rare. For the phonetic representation, the model produces descriptions with a range of small errors such as pauses that are too long or producing incorrect phonemes at the end of words (rare) or of the utterance (more common). In many of those cases, the model shows tendencies to produce wrong descriptions from the first incorrect phoneme onward. For the word embedding representation, the descriptions are overall better, but in some cases, words are mixed up that are not necessarily semantically related.


Table 1. Test accuracy (%) for different CTRNN architectures on phonetic vs. word representation.
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Nevertheless, we observe strong differences between the models with different timescale characteristics on both the EMILv1 data and the data extended with additional teacher input (significant different performance between baseline CTRNNs and both other models, with p < 0.05). The baseline CTRNN model is not able to derive any description completely correct for the phonetic representation. In fact, we found that the CTRNN fails after the first few phonemes and afterwards just produces the phoneme that is most common in the data (usually the pause symbol SIL). For the word embedding, the performance is better, indicating that the CTRNN can handle the short utterances describing the sequence (only up to five words, compared to up to 25 phonemes in the phonetic representation). This also means that the CTRNN is able to capture the meaning of the input sequences (with up to 740 time steps) in terms of the presented action + object. The model based on an MTRNN with optimized timescales shows a large improvement on the phonetic representation. The model using adaptive MTRNNs performs even better (but not significant, with p > 0.05). Here, the errors in production are distributed over the utterance and a mostly incorrect description is characterized by the production of semantically wrong words, although the words were spelt correctly. Both the MTRNN- and AMTRNN-based models show improvements on the word embedding representation but notably differ in their mistakes. The incorrect words for the CTRNN seem arbitrary, especially if the words are at the end of the utterance. For the MTRNN and AMTRNN, we notice that incorrectly produced words were in many cases semantically related, e.g., mixing up “light” with “hard” or “red” and “pink.”

Overall it seems that the correct description is strongly dependent on whether the latent distributed representation (the cell assemblies) in the Csc units is able to abstract the sensory input and, thus, if the composition in the sensory CTRNN/MTRNN/AMTRNN correctly captures the temporally distributed information. In the following, we will, therefore, analyse the temporal aspect as well as the latent representations.



3.2. The Role of Adaptive Timescales

In order to inspect how the individual timescales contribute to sensory abstraction and utterance production, we compare the developed timescales as well as the activations within the AMTRNNs during processing the data. In Figure 3, we show a representative example for an interaction labeled “scoot heavy green car.” This sample is not producing the description (entirely) correct but shows characteristics that we found regularly in many cases. In Figures 3A–C, we compare the neural activation in all neurons with the raw input data, for auditory input shown as a spectrogram in the frequency domain, for sensorimotor as the plain measurements, and for visual as selected frames during the interaction (Figure 3F).


[image: Figure 3]
FIGURE 3. Impact of adaptive timescales in processing crossmodal input and phonetic output sequences on a representative example: “scoot heavy green car.” Hidden activations of all AMTRNN layers (stacked for each modality and sorted by timescale value) are shown together with the respective input or production. For the visual input, six frames are shown for selected time steps. (A) Auditory adaptive MTRNN and input. (B) Sensorimotor adaptive MTRNN and input. (C) Visual adaptive MTRNN. (D) Phonetic production adaptive MTRNN. (E) Timescale development during training. (F) Visual input (exemplary frames).


For both sensorimotor and visual activation we observe an increasing activity in the neurons with the highest timescales (in the graphs around a timescale of 660), showing that information is accumulated for the neurons that are part of the cell assemblies. For the auditory activation, this occurs on a much weaker level. We can also see that in the sensorimotor activation, neurons activate after some remarkable events, such as the spikes in the motor current around the first and second third of the sequence. This shows that, across the spectrum of timescales, neurons begin to reverberate when the current input seems different from sensory input in other interactions. Interestingly, in both sensorimotor and visual activations, neurons on timescales between 4 and 25 maintain their activation until the end of the sequence once positively or negatively activated. For the auditory activations, we can not easily spot a similar behavior but rather observe strong fluctuations for the neurons with small timescales until 80% of the sequence. Semantically plausible reverberations are rare, thus it seems the auditory information is much noisier and less decisive compared to the other modalities.

In the production of verbal utterances (Figure 3D) we spot patterns that are typical for MTRNNs: some neurons on lower timescale fluctuate according to specific phonetic output and neurons around timescales 4−6 activate and maintain their activation for some time spans. In notable cases, these activations coincide with the production of words representing semantically meaningful phoneme chains. The neurons with lower timescales of around 42, however, keep their activations over time with some leakage. These timescales correspond to the IO, Cf, and Cs layers and indicate a hierarchical decomposition. Notable is that the correspondence of activity in the Cf layer, with a produced word, is less pronounced than expected, while the activations of specific phonemes fade quickly. Correct phonemes are still produced, but at some point only SILs are activated. This clearly shows that this model has not ideally learned the production of the utterance, although the network structure induces the mentioned decomposition.

Regarding the learning of individual timescales, we see in Figure 3E that all AMTRNNs tend toward more fine-grained timescales in all layers. For the sensory input AMTRNNs, these changes are most notable for the neurons in the Cs layers, as they tend to result in smaller timescales (around 650) instead of the layer-wise optimized value of 700 of the MTRNN model. For the production AMTRNN, individual timescales also result in smaller values in some cases and a strong differentiation of the neurons in all layers. This indicates that, in addition to the predefined hierarchical structure, the AMTRNNs further adapted to the specific scales of relevant events in the sequences.

Overall it is notable that the timescale mechanism, w.r.t. the leakage of information, has its limit for covering events that occur on different timescales but are not particularly regular. In many cases, the multi-sensory perception is abstracted in terms of neurons accumulating information relatively independent of the timescales. The input data from the EMIL data set does not consist of chains of events that need to be composed, but they do show key events, such as grasping the objects or perceiving a difference in inertia through different current values in cases of rapidly moving an object. These key events seem to be captured, but neurons activate as a memory rather than a shortly active detector of features on a mid-level timescale. The production of verbal utterances, in many cases, illustrates shortcomings toward the end of the utterances, with the tendency of producing the overall most frequent phoneme (SIL).



3.3. Latent Representations in Cell Assemblies

Finally, we are interested in how cell assemblies form, based on the sensory input and description output. Specifically, we aim to inspect whether latent representations in the Csc spaces reflect the meaning of the utterances. We hypothesize that in cases of “good” models, the semantic components (action and object characteristics) that are exactly identical (e.g., the same action) or similar (e.g., a rectangular toy shape and a rectangular tissue shape) are represented similarly as well.

To analyse this, we compare setups where we trained AMTRNNs with all three modalities (auditory, sensorimotor, and visual), combinations of two modalities, or only on a single modality as input. The overview of the performance (accuracy results and standard errors) for these setups is presented in Table 2. For the trained networks we obtained the neural activations of the Csc units for the respective input AMTRNN and verbal description output AMTRNN and reduced the dimensionality of the representation to two Principal Components (PC) using PCA. For typical results and selected combinations of modalities, the reduced representations are plotted in Figure 4. Since the Csc from the sensory inputs map to the Csc for the verbal description we would expect that the plots for the verbal utterances show similarities most clearly. Note, however, that although two PCs usually explain >60% of the variability, they are only one perspective on the representation among others. Nevertheless, we selected cases that are representative for our observations across the results and avoided using t-Distributed Stochastic Neighbor Embedding (t-SNE) instead of PCA in order to not introduce additional biases.


Table 2. Test accuracy (%) for training on restricted sensory input.
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FIGURE 4. Learned representations in the cell assemblies for training on different modalities (reduced by PCA to first the two principal components PC1 and PC2). (A) Perception via auditory, sensorimotor, and visual modalities. (B) Perception via auditory and sensorimotor modalities. (C) Perception via auditory and visual modalities. (D) Perception via auditory modality. (E) Perception via visual modality.


Surprisingly, the results indicate that the setup that only uses visual input data performs best, compared to setups that process multimodal input data (notable but not significant, with p > 0.05). Overall, the setups that have access to the visual modality perform better (significant for all combinations, with p < 0.05), whereas the auditory modality leads to worse results (significant for combinations with an auditory input vs a visual input, with p < 0.05). When inspecting representations of the cell assemblies we can identify an explanation in the emerging representations. The semantic components are best distributed in the visual modality, indicating clusters for most of the characteristics, e.g., the object shape and action. To see this, compare all panels for the visual modality in Figure 4. Even though we do not visualize this here, we found similar clusterings for the color semantic component. In the sensorimotor modality the clusters are particularly obvious for action but strongly overlap for the shape component (not shown: it also overlaps for color components as well as weight and softness). In the auditory modality, all semantic components overlap for the case of full multimodal input (Figure 4A) and unimodal input (Figure 4D). However, in case of the auditory representation being presented together with sensorimotor or visual information only, we found a slight tendency of clustering toward the clusters that emerged within the other input modality (compare Figure 4B for auditory and sensorimotor and Figure 4C for auditory and visual). In most cases, the representation in the Csc of the verbal utterance production showed a mixture of the representations in the input Csc.

Overall it seems that (a) the characteristics of the raw data have a large influence, and (b) the end-to-end learning slightly favors a merging of the input modalities that is not directly beneficial. For (a), inspecting the raw data confirms our observation and expectation. In our raw data, we observe that the input streams are usually both quite noisy but also distinctive for some aspects. For example, the proprioception information from the motors (motor current) shows large deviations but for the human inspector it is easy to discriminate the different actions, while distinguishing between heavy and light objects (stronger vs. lower current) or hard and soft objects (stronger squishing and thus different finger motions) is extremely hard. In the auditory recordings, it is not possible to discriminate most object characteristics except for different friction sounds of heavy and light objects. However, distinguishing the actions by the motor sound is sometimes possible. For (b), we hypothesize that the amount of data in the EMILv1 data set is insufficient w.r.t. the complexity of the architecture, whereas the larger number of examples in the EMILv1 + Teacher set leads to a slightly different convergence. When comparing both data sets in Table 2 we find a tendency of modality selection for the smaller data set and a tendency of superadditivity for the larger one.




4. DISCUSSION

In this paper, we investigated an embodied neurocognitive model to better understand the effects of adaptive multiple timescales as well as multi-sensory fusion mechanisms in grounding a temporal dynamic verbal description into temporal dynamic perceptions. For the model, we adopt that the human brain is reusing composition and decomposition as well as multiple sensory modalities in grounding natural language (compare section 2.1). Furthermore, in the model, we realize the merging of senses in a higher stage and inherently assume that the multiple timescales are in fact necessary (compare section 2.2). In our results, we found that adaptive timescales help in abstracting the information from temporally long and complex perceptions. Preparing the layers in these AMTRNNs with context abstractions toward an implicit hierarchy of multiple timescales forces a composition of an overall meaning from the crossmodal perception.

However, the concept of leakage in the AMTRNN specifically and in the MTRNN generally seems to reach its limit here. In previous studies, sequences were usually limited to < 50 time steps and, as a consequence, easily learned. In our experiments, perception inputs have ≈ 700 time steps for which MTRNNs hardly converge, even if a large hierarchy of carefully optimized timescales is tested. Consequently, meaningful abstractions emerge to some extent but compared to other mechanisms in machine learning, like gating or time-windowed CNNs, the resulting representations and performance are limited (Chang et al., 2017). Thus, although the decomposition through neural processes, which operate on different timescales, seems to contribute to the human abilities of language grounding, it does not explain how we cope with the complexity of our daily sensory input.

We also found that using end-to-end learning cell assemblies, i.e., pairs of temporally static abstracted modal information and production biases, show a tendency to organize w.r.t. similarities of the semantic components (i.e., an action, object shape, object softness, and so on). This is in line with previous studies and general observations on gradient descent machine learning. However, for our more natural and noisy interaction data, it shows that a choice between superadditivity and modality-specificity does not necessarily simply emerge but might involve additional cognitive processes.

In the past, language acquisition and grounding models were usually tested on synthetic toy examples or very constrained and carefully designed scenarios (Cangelosi and Schlesinger, 2015). Crucially, aspects of language were omitted or robotic interactions were designed particularly systematic. In contrast, our current study uses the EMIL data collection which challenges the model by introducing a wide range of variability in terms of sensory noise, object characteristics, and skewed distributions thereof. It seems, however, that by reducing these constraints and capturing truly multimodal and natural interaction scenarios we can reveal novel, potentially incompatible, effects.



5. CONCLUSIONS

Overall, our embodied neurocognitive model shows that in an end-to-end learning architecture with hierarchical concept abstraction and concept decomposition, language grounding can emerge and generalize. Adaptive multiple timescales and multi-sensory fusion on concept level are, among others, effective components. Of similar importance are the scenario characteristics of our more complex and natural EMIL data collection, which introduces a larger range of variability and noise. Through using more complex data we observe novel effects such as limits in temporal abstraction and contradicting observations concerning superadditivity vs. modality-specificity.

For future research, when aiming to explain complex cognitive functions, we need to take into account the full complexity of the environmental context as well as of the computational conditions. For language acquisition and grounding it seems particularly crucial to capture the full details of the language learning events, such as learners' prior body of experiences, the sensory richness of the context, and the input and thus influence of caregivers that teach the language. In addition, future research could further investigate the timescale mechanism with respect to hierarchically organized multiple timescales on mathematically more defined tasks, like predicting temporally noisy Lissajous curves with probabilistic transitions (compare Murata et al., 2014) and consider time dilation or time gating, instead of leakage (Chang et al., 2017). Increased understanding and better control of temporal hierarchical composition in neural models, as well as the development of more naturalistic training data and schedules, are promising paths toward models of more human-like language acquisition and learning.
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FOOTNOTES

1The source code of the model and experiment details can be found on https://github.com/heinrichst/adaptive-mtrnn-grounding.git.

2More details on the collection are provided in the Appendix. We plan to obtain several versions of the EMIL data set with increasing scenario complexity and amount of data. The version 1 is publically available via https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html.

3ARPAbet is an American English phonetic transcription set, transcribed in ASCII symbols, http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
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APPENDIX: EMIL COLLECTION

The Embodied Multi-modal Interaction in Language learning (EMIL) data collection is an ongoing series of data sets for studying human cognitive functions on developmental robots and was first introduced by us during the ICDL-Epirob'2018 workshop on active vision, attention, and learning (Heinrich et al., 2018b). The main motivation is the theory that humans develop cognitive functions from a body-rational perspective. Particularly, infants develop representations through sensorimotor environmental interactions and goal-directed actions (Heinrich and Wermter, 2018). This embodiment plays a major role in modeling cognitive functions from active perception to natural language learning. Using the developmental robotics paradigm, we can investigate specific hypotheses for a range of research questions in-depth, since developmental robotics allows to simulate human development scenarios in a fairly simplified and reproducible way (Cangelosi and Schlesinger, 2015). Thus, data sets that provide low-level multi-modal perception during the environmental interactions are interesting and needed.

With the EMIL data collections, we approach continuous and multi-modal recordings from developmental robot scenarios that specifically focus on robot-object-interaction tasks. Since we aim to utilize resources in tight collaboration with the research community, we propose the first data set on object manipulation in the context of natural language acquisition for closing a gap in current related data sets and fostering discussions on future directions and needs within the community. For the future, we plan to obtain several versions of the EMIL data set with increasing scenario complexity and amount of data. EMIL version 1 is publicly available via:

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/corpora.html


Related Data Sets

In the last years, several labs put considerable efforts into providing data sets on human development scenarios, particularly using the developmental robotics approach. The provided data sets are focusing on different research goals while taking technical limitations into account (see Table A1).


Table A1. Related multimodal and/or developmental data sets.

[image: Table ]

As a first example, data sets cover the sensation during human-environment interaction by measuring (mostly adult) humans directly during performing specific tasks, such as the KIT Motion-Language set for descriptions of whole-body poses (Plappert et al., 2016), the Multimodal-HHRI set for personality characterization (Celiktutan et al., 2017), and the EASE set for precise motion capturing (Meier et al., 2018). Secondly, data sets mimic the human perspective by holding objects in front of a perception device, such as a camera, to capture the diverse and complex but general characteristics of an environment setting, e.g., Core50 (Lomonaco and Maltoni, 2017), EMMI (Wang et al., 2017), and HOD-40 (Sun et al., 2018). And thirdly, humanoid robots are employed for establishing a data set, where multiple modalities are recorded in covering human-like action, i.e., including sensorimotor information, such as the MOD165 set (Nakamura and Nagai, 2017) and the Multimodal-HRI set (Azagra et al., 2017), or where multiple modalities are gathered from both robot and human in turn-table actions, like in the HARMONIC data set (Newman et al., 2018).

However, it is usually difficult to capture true continuous multi-modal perception for interaction cases that are supposed to mimic infant experiences or to capture interaction scenarios from human infant learner perspectives. As a consequence, with the EMIL data set collection, we aim to link such continuous multi-modal recordings with body-rationale of a reproducible developmental robot.



Dataset Characteristics

In this first set, the developmental robot NICO is mimicking an infant that interacts with objects and receives a linguistic label after an interaction. The interaction follows usual interaction schemes of 12–24 month-old infants on toy-like objects.


Developmental Robot Setup

In developmental robotics, the goal is to study human cognitive functions in conditions of human infants interacting in natural environments (Cangelosi and Schlesinger, 2015). These conditions include embodied interaction with natural motor and sensing capabilities of an infant and multi-modal sensations within active perception (Tani, 2016). For our data recording, we developed a child-like humanoid robot and utilize it in scenarios that resemble natural infant environments, such as in playing with objects at a table while acquiring natural language from a caregiver.



Interactive Robot NICO

Our developmental robot is the Neuro-Inspired COmpanion NICO (Kerzel et al., 2017, 2020), created by the Knowledge Technology group of the University of Hamburg. NICO is a research platform that is developed toward research on crossmodal perception, visuomotor learning, and multi-modal human-robot interaction through the embodiment of neurocognitive models. NICO stands about one meter tall with a weight of less than 20 kg. Its proportions follow those of a 3.5-year-old child. Its head is adapted from the open design of the iCub and resembles an abstracted child-like face. Overall, NICO has 30 degrees of freedom that are distributed as follows: each of the legs and arms have six acuted joints. In the arms, three motors in the shoulder area mimic a human ball joint, one motor actuates the elbow, and two motors rotate and flex the hand. Two additional motors in each of NICO's three-fingered, tendon-driven SeedRrobotics hands bend the two linked index fingers and the thumb. The hands allow grasping child-appropriate objects as the tendon-mechanism enables the three-jointed fingers to curl around various shapes without the need for additional control. Finally, two motors enable jaw and pitch motions of the head. For multi-modal sensing, NICO is equipped with two parallel HD RGB cameras and two embedded microphones in its pinnae for stereo auditory perception. Furthermore, the position and current, which is proportional to the applied torque of all motors, can be recorded, which mimics human proprioception. In summary, NICO mimics many of the interaction abilities of a 3.5-year-old child. NICO can handle and explore physical objects with the imprecision and self-occlusion in a way our infants show.



Recording

In our experiment, NICO is seated in a child-sized chair at a table, interacting with the right hand and the head facing downwards during the experiment, while a human places a small object on the table at a fixed position (see Figure 2A). For EMILv1, a predefined action is carried out on the object: pushing, pulling, lifting it or scooting it across the table. The 30 objects contain toys from an infant environment: balls, toy cars, sponges and tissues, fruits, small animals, and toy bricks, of which some differ in softness during squeezing, weight, size, and color. During the robot's actions, a continuous multi-modal recording encompasses continuous streams of visual information from the left and right robot camera as well as from the external experimenter, stereo audio information from microphones in the robot's head, and proprioceptive information from the robot's body, specifically position and current from eight motors (for an example compare the input streams in Figure 3). Finally, the experimenter provides a linguistic label.



Preprocessing

To provide the data in suitable formats for various research questions, we added preprocessed versions of the raw data as follows. For the auditory signals, we added streams of Mel-Frequency Cepstral Coefficients (MFCC) transformation with 13 dimensions, a frame size of 33 ms, and input window 60 ms. Using filters with Mel-scale is considered biologically-inspired as this mimics the humans' perception of frequencies and the sensitivity of the cochlea, which can be seen as kind of a Fourier transformation of auditory signals. The frame size is motivated in the technical characteristics of the motor sensors and the cameras and is supposed to allow for obtaining an aligned frame rate. The MFCCs overlap with 50% because the Fourier transformation creates border effects, which the window size of 60 ms is acceptable since we mostly record environmental noise. Because of the volatile nature of the position and current sensors in the motor we produced smoothed sensorimotor streams based on 3, 5, 7, and 9 measurement points. We also normalized all sensorimotor streams w.r.t. the minimal and maximal position and current values per joint. For the visual streams, we offer compressed videos with a cropped field of view (e.g., only the table or only the interesting part of the table) for convenience.



Labeling for Object Tracking

For supporting research questions related to object tracking we added a complete ground-truth labeling for all visual streams from the perspective of NICO's right eye. The object labeling describes the position of the interacted object in all frames with accurate bounding boxes despite strong transformations and occlusions.



Labeling for Language Learning

All interactions are labeled textually with words describing the action and the object type, as well as particularly deviating object characteristics (color, weight, softness, size). Depending on the research question with relation to natural language processing, different textual utterances or descriptions can be generated. For instance, EMILv1 is provided with labels in the form of holo-phrases with up to four words as well as additional labels containing synonyms for the actions and object characteristics (compare section 2.3).




Impact and Research Opportunities

Our continuous, multi-modal, and particularly body-rational data allows for studying a large range of algorithms on fundamental classification or prediction tasks. This includes object recognition and tracking, action recognition, and question answering. Moreover, the data set is aimed at research on a range of state-of-the-art research topics.


Active Perception

The different actions and objects allow to build up a training scheme within a model by selecting to experience a certain interaction because the model estimates that this provides the highest information gain or reduces uncertainty. In humans, we find the tendencies that a perception choice or a specific action is voluntary (Oudeyer, 2018). Thus, the data set is suited for developing models that aim to explain how the sensory input gathered from an object with different, multi-modal sensors changes based on the robot's actions.



Imitation Learning

Robotic visuomotor learning via interaction with the environment often requires a large amount of training data and, therefore, physical interactions (Lillicrap et al., 2016), which are not feasible for most robotic platforms. However, one way of accelerating the learning process is to utilize demonstrations to speed up the initial learning phase. While the demonstrations are usually provided by humans (Gupta et al., 2016), the precise motor data in the EMIL data set can be utilized for this purpose as well with the added benefit that this data is free of artifacts or noise from an external recording setup.



Cross-Modal Representation Learning

Since the different recorded modalities include information about the same object and interaction quite differently, the data set is suited to study algorithms on multi-modal and cross-channel representation learning. For some objects and actions the data contains salient features in a certain modality, while for others, all modalities are necessary for disambiguation. This allows studying mechanisms on sensor fusion, superadditivity, and hierarchical composition in addition to embodied representation formation on the cortex-level (Bauer et al., 2015).



Developmental Language Acquisition

A research question related to representation learning is natural language acquisition since representations for language production and language perception in the human brain seem to form embodied and cross-modally integrated (Cangelosi and Schlesinger, 2015; Heinrich and Wermter, 2018). The data set is therefore particularly suited for research on the grounding of language in sensorimotor perception because the recording diligently followed the developmental robot approach (Lyon et al., 2016). Mechanisms for representation formation and bidirectional hierarchical composition and decomposition can get tested in the biologically plausible setting.

As a second step, this allows extending this data set by much larger parts of abstract and ungrounded linguistic input, in a fashion that parents would provide verbally or with the aid of a storybook to their infant (Heinrich et al., 2016). Here, language acquisition models can get studied for how they integrate additional knowledge into their grounded representations, but also how a teaching application can provide suitable teaching content.



Lifelong Learning

The data set is suited to provide evaluation data for (neural) lifelong learning approaches (Parisi et al., 2018). An initial subset of the training data can be selected that is limited to a few types of objects, actions or just a low number of samples. Over the course of time, lifelong learning experiences can be simulated by adding more and more parts of the data-set to the learning.
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Data set

CORe50
(Lomonaco and Maltoni, 2017)
EASE
(Meier et al., 2018)
EMMI
(Wang et al., 2017)
EMRE
(Krishnaswarmy and Pustejovsky, 2019)
HARMONIC
(Newrman et al,, 2018)
HOD-40
(Sunetal, 2018)
KIT ML
(Plappert et al., 2016)
MHHRI
(Celiktutan et al., 2017)
MHRI
(Azagra et al,, 2017)
MOD165
(Nakamura and Nagai, 2017)

Modalities

RGB-D vision

Vision, audio, motion,
EEG, EMG, eye tracker
Vision

Vision, audio

Stereo vision, motion,
both robot and human
RGB-D vision

Human motion
natural language
Vision, audio, EDA,
skin temp., 3D-accel.
RGB-D vision, audio

RGB-D vision, audio,
tactile

Acqu

tion

Hand-held

Human

Hand-held

Simulation

Tumn-table

Hand-held

Human

Human

Robot

Robot

#samples/ classes*

50/10

100/-

360/12

1500/~

480/~

160/40

3911/-

748/~

300/22

165/~

Purpose

Continuous object recognition

Studying everyday actvities
for improving robot performance
Smal sample learning;

hand object scene interaction
Multimodal referring expressions

Intention prediction; human mental
state modeling; shared autonomy
Hand-held object recognition;
one-shot learning

Semantic actiity representation

Studying personality
and engagement
Incremental object learning from HRI

Studying human-like concepts
(ensemble-of-concept model)

*classes identify distinct object or action categories, if specified.





OPS/images/fnbot-14-00052/fnbot-14-00052-t002.jpg
Sensory input au+sm + vi au+sm au+vi sm+vi
EMILv1 data 43.327 £ 1.025 35.700 + 1.004 41.831+0.958 44.252 +£0.979
EMILv1 + Teacher 35.506 £ 0.461 33.672 £ 0.540 34,974 £0.376 34.557 +0.326
Sensory input au sm vi
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Optimized MTRNNs
AMTRNNs

Phonetic
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42,087 £0.868
43327 +1.025

EMILv1 data

Word embedding

56.115 £ 2.412
63.309 £ 1.260
64.029 + 1.975

EMILv1 + Teacher data

Phonetic ‘Word embedding
18.476 £0.118 37.991£0.226
34,655 £0.418 51.896 £ 1.604
35.506 4+ 0.461 54.691 4+ 0.502
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Stimulus-driven Theory (1992)

Goal-driven Theory (1992)

Contingent Capture Hypothesis (1992)
Attention Selection Bias Competition (1995)
Signal Suppression Hypothesis (2010)

Viewpoint

Singletons automatically capture visual attention

Individuals' intentions determine attentional capture

Contingent on attentional control settings induced by task demands
Response to distractors around the target is inhibited

Salience signal automatically generated by singletons can be suppressed

Processing

Bottom-up.

Top-down

Top-down

Bottom-up & Top-down
Bottom-up & Top-down
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Machine speech
enhancement

Auditory neural processing

Machine ASR

Human AV integration

Machine source separation

Human AV integration

Problem

Estimation of speech
coefficients

Meaintaining robust

Model

Main features and advantages

Noise reduction and speech enhancement

Wiener filter with simple
Gaussian PDFs

MVDR beamformer

GMM

HMM

Spectrotemporal receptive

neuronal representation of  field (STRF)

relevant sounds

ASR

AVSR

Optimal AV cue
combination

Accounting for AV
correlation

Source separation, label
permutation problem

Causal inference

GMM/HMM

Coupled HMM, factorial
HMM

Forced fusion (MLE) model

Coupling prior model, can
use GMM

Linear, low computational cost, easy
to implement

Suitable for multi-channel noise
reduction

Dynamics of speech and noise
captured by states of a mixture
model. Mixture estimator
Improves modeling of temporal
behavior by including state
transitions. Mixture estimator

Computational simplicity, analytic
tractabilty, interpretabilty

Audio-visual (AV) integration and speech recognition

Gaptures the dynamics of speech

Improves AV fusion over conventional
HMM for AVSR

Reliabilty-weighting,
minimum-variance unbiased
estimator

Joint AV prior distribution. Can
capture the full range of AV integration

Source separation and causal inference

Blind source separation
techniques with GMM,
HMM, etc.

Causal inference mode!

Does not need a-priori information
about causal structure; works for
instantaneous mixtures and
convolutive mixtures

Explicitly represents the underlying
causal structure; more general than
forced-fusion and coupling prior
models

Limitations

Gaussian PDFs not appropriate for
modeling speech Fourier coefficients.
Super-Gaussian is better

Typically restricted to a small number
of classes; limited robustness in
reverberant conditions

Strong restrictive assumptions,
intolerant to state asynchrony in AV
combined streams, sensitive to initial
parameter values

Does not capture the highly nonlinear
and dynamic features of auditory
neurons

Other modalities cannot be easily
included

Complete fusion only; does not
account for cue coherence or causal
structure

Cannot infer causal relationships

Can be computationally expensive
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Model Micro F1

P R F1
Baseline 0.75 0.56 0.640
Citx Attention 0.77 0.62 0.621
HRE 0.72 0.63 0.675

The best results are highlighted in bold.
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#Sent #Fact #Avg ent. #Avg pos. rel.

Train 124212 70,598 5.51 247
Test 31,054 29,148 5.56 233

#Avg ent. stands for the average number of entities per paragraph, while #Avg pos. rel.
refers to the average number of positive relations per paragraph.
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Baseline

R@0.60 0.741
R@0.70 0.633
R@0.80 0.488

The best results are highlighted in bold.

Ctx Attention

0.674
0.574
0.444

HRE

0.740
0.661
0.505
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caling
drinkingl
eatingll
playing
reading
writing
cleaning
drinkingll
eating!
cooking

Average

Attention multi-visual
features fusion

0.9036
0.8991
0.7943
0.5676
0.5148
0.2995
0.1875
0.7838
0.8162
0.3719

0.6138

VGG deep features

0.9096
0.7785
0.7658
0.4791
0.4938
0.2028
0.1625
0.7627
0.7103
0.2893

0.5554

The bold value of each row is the acquired best accuracy of each affordance.

Naive concatenation

0.8723
0.8195
0.7569
0.5305
0.6297
0.286
0.175
0.7248
0.7049
0.4214

0.5821

RetinaNet

0.7747
0.7806
0.6829
0.8305
0.6424
0.2628

0.375
0.6128
0.6738
0.2562

0.5892

YoLovs

0.6783
04771
0.5696
0.7871
0.652
0.2028
0.3327
0.5824
0.4837
0.2968

0.4963
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A 1 0.5 0.1 0.01 0.001 0
57.27 64.39 65.21 63.84 63.42 63.40

Valid accuracy (%)

Reported are validation accuracies on VQA v2.0 for different values of 5. The impact of
can be clearly shown in the table that the tradie-off between optimizing task reward and
pairwise reward shall be balanced to achieve best performance on the validation spli.
According to the sensitivity analysis, we finally set 4 as 0.1.

The bold values indicate the parameters or results that belong to our model DP-NMN.
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Model VoAV CLEVR

Overall Yes/No Number Others

Attention based models:

MCB (Fukui et al., 2016) 62.27 78.82 38.28 53.36 51.4
BUTD (Anderson et al., 2018) 66.40 79.32 39.77 52.59 945
BAN-12 (Kim et al., 2018) 69.62 86.31 50.93 60.26 =
LXMERT (Tan and Bansal, 2019) 725 882 542 63.1 -
Neural module networks:

N2NMN (Hu et al., 2017) 63.30 80.89 39.82 53.50 83.7
DP-NMN (Ours, Random Pairs) 66.21 83.34 43.00 56.89 90.1
DP-NMN (Ours, 2 =0) 66.37 83.43 43.81 56.95 =
DP-NMN (Ours) 67.15 84.37 44.83 57.50 22,0
DP-NMN (Ours, 9 ensemble) 70.10 87.24 51.53 61.09 941

Our model significantly improves performnce on VQA v2.0 compared with former neural module networks, and has comperable performance with attention based models. On CLEVR,
our pairwise learning schema also shows positive impact on accuracy.
The bold values indicate the parameters or results that belong to our model DP-NMN.
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Model Average size of layouts

N2NMN (Hu et al., 2017) 279
DP-NMN (Ours) 3.4

The bold values indicate the parameters or results that belong to our model DP-NMN.
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Module name  Inputs Output  Implementation

find fon att ao = conv(W,n © Wefy)
relocate aforn att a0 = conviv © Wats)

and aiaz att a, = minfar, az)

or ai,az att a, = max(ai, az)

describe afqn ans ans = WI(Wv © Wetg)
compare as,a, 1,1 ans ans = W] (Wilvs; va] © Wfy)

Note that with the help of the region proposal network, we are able to provide ¥, as
input for primitive modules which encodes both visual and spatial features. Among
implementations, [p: q] denotes concatenation of two vectors p and q, and © denotes
element-wise multiplication. Veectors v, v1, and v are attended visual features that are
weighted sum of the region proposal r;, weighted by a and ay, respectively. That is,
vi = 5,80, and v, = X&), where &l denotes the i-th component of the input
attention map, and tf) denotes the i-th row of the visuel feature encoded in r;. Note that
model parameters Wa, Wy, Wy, Wa are not shared among diferent modules, which are
parameters related to textual features, region proposals, visual features, and attention
maps, respectively.
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Require: EPOCH: max epoch number, STEPS_PER_EPOCH:

1:

steps per epoch, feature: necessary features
elist < generate_epsilon() {Generate epsilon for each epoch
by a predeterminate strategy.}

: output < 0
: for i = 0 to EPOCH do

for j = 0 to STEPS_PER_EPOCH do
output;; < function(feature; , list[i]) {Run RNN}
optimize the network with an optimizer
extend output with output;;

end for

: end for
: return output






OPS/images/fnbot-13-00093/inline_8.gif
rel; (s",0") = Prlrel,(s",0") =i]





OPS/images/fnbot-14-00043/crossmark.jpg
©

2

i

|





OPS/images/frobt-07-475767/frobt-07-475767-t007.jpg
Model p=0 p=07 B= Ground truth
mLent 5.12 5.18 580 701
mLen2 6.27 669 699 932

mLen1 stands for the mean length of YouTube2Text, and mLen2 stands for the mean
length of MSR-VTT. Ground Truth denotes the human annotations for the test set.
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Physical Interaction Robot-guided Human-guided

Mean sD Mean sD
Requested 267 0.98 2.91 1.30
Participant-initiated 1.08 1.83

0.18 0.40
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Training method B-4 c M R

Teacher Forcing 45.05 50.25 29.12 62.72
argmax 45.83 53.16 29.28 63.64
Multinomial 44.94 51.77 2882 63.12

The boldness denotes the best value in the corresponding column.

Overall

09771
1.0000
0.9826
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Anthropomorphism
Animacy

Likeabity

Perceived intelligence
Perceived safety

Robot-guided

Mean

2.62
282
4.19
3.17
3.64

SD

1.01
1.07
0.86
1.01
0.88

Human-guided

Mean

265
278
4.23
3.37
3.61

SD

110
1.01
0.72
0.78
1.02
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Training method B-4 c M

R
Teacher Forcing 61.83 108.56 38.96 76.75
argmax 62.16 109.31 38.98 76.81
Multinomial 62.35 109.71 39.04 77.04

The boldness denotes the best value in the corresponding column.

Overall

0.9942
0.9972
1.0000
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Visible robotic action

NICO moves into the starting position;
NICO displays a neutral facial expression

No visible action (NICO records a picture)

No visible action

No visible action

NICO reaches for the object

NICO grasps the object, s it up and

presents it to the participant; NICO
displays a happy facial expression

NICO does ot grasp the object; NICO
displays a sad facial expression and
moves back nto the starting position

Human-guided dialogue

NICO is now ready to look, please put the
object in front of NICO on the table.

NICO is now looking at the object.

NICO is buiding the network and loading it
from fie.

The network is loaded and is now
connecting to NICO.

NICO is now ready to grasp.

(SUCCESS)
NICO managed to grasp the object. Here
you go, this s for you.

(FAILURE)

Since NICO failed to grasp the object, we.
will try again.

Robot-guided dialogue
Ready to look! Please put the
grasp-learning object onto the
table.

Iam looking at the object.

Let me think about this very
carefully. Building network.
Loading network from fie.
Network loaded, connecting to
myself.

Output oint values. Ready to
grasp.

I grasped the object. Here you
go, this s for you.

Oh, no | failed to grasp the
object. | wil try again.
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Semantic feature (MAP) B-4 c ™M

0.2072 405 46.8 272
0.2013 44.0 50.7 289
0.3827 449 518 288

The boldness denotes the best value in the corresponding column.

R

62.7
626
63.12

Overall

0.9202
0.9878
0.9996
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Visible robotic action

NICO moves into the starting position;
NICO displays a neutral facial expression

NICO opens its right hand

NICO places the object at a random
position on the table

NICO moves the hand away (and records
a picture)

NICO attempts to grasp the object again

NICO displays a happy facial expression;
repeat from beginning

NICO displays a sad facial expression

NICO moves back into starting position

Human-guided dialogue
NICO is ready to train.

Please put the object in NICO's right hand.
NICO s choosing a location for the object.

NICO is remembering the location of the
object.
NICO will now try to grasp the object.
(SUCCESS)
NICO is choosing a new location for the
object.
(FAILURE)
NICO failed to grasp the object.

NICO deleted the last recorded fie.

Robot-guided dialogue
Its training timel.

Please put the training object
in my right hand.
Let's put the object here.

1am remembering the location
of the object.

1willtry to grasp the object.

Let's put the object here.

Oh, no | failed to grasp the
object.

I deleted the last recorded file. |
am done training.
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Semantic features (mAP)  B-4 c Y] R Overall

0.3295 539 90.5 35.8 734 0.8896
0.5977 60.5 1027 38.0 759 0.9863
0.7414 624 1097 390 770  1.0000

Alarger mAP implies a better representation of semantic meanings. The boldness denotes
the best value in the corresponding column.
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Model

MTVC (-4) (Pasunuru and Bansal, 20172)
CIDEnt-RL (-4) (Pasunuru and Bansal, 2017b)
SibNet (1-3) (Liu et al., 2018)

HACA (R-152+4) (Wang et al., 2018)

TAMOE (13D) (Wang et al., 2019b)

POS (IR+13D) (Wang et al., 20192)

MARN (R-101+R8D) (Pei et al., 2019)
JSRL-VCT (IR+C8D) (Hou et al., 2019)
GRU-EVE (IR+C8D) (Aafaq et al., 2019)
STG-KD (R-101+4I3D) (Pan et al., 2020)

SAAT (IR+C3D+Ca) (Zheng et al., 2020)
ORG-TRL (R+C3D) (Zhang et al., 2020)

Our model

A and Ca denote audio and category features, respectively. The boldness denotes the best value in the corresponding column.

B-4

40.8
405
409
434
422
2“3
40.4
423
383
405
39.9
436

45.8

Al
517
475
49.7
489
53.4
474
49.1
481
474
51.0
50.9

532

288
28.4
275
295
29.4
28.7
28.1
29.7
28.4
283
277
288

29.3

60.2
61.4
60.2
61.8
62.0
62.1
60.7
62.8
60.7
60.9
61.2
62.1

63.6

Overall

0.9223
0.9435
09137
0.9608
0.95056
0.9611
09162
0.9576
09119
09192
0.9303
0.9628

0.9957
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Model B-4 Cc M R Overall (16)

LSTM-E (V+C3D) (Pan et al., 2016) 453 31.0
h-RNN (V+C3D) (Yu et al., 2016) 49.9 65.8 326
aLSTMs (-3) (Gao et al., 2017) 50.8 748 333
SON (R-152+G3D) (Gan et ., 2017) 514 777 335
MTVG (1-4) (Pasunuru and Bansal, 20172) 545 924 36.0 728 08961
ECO (R-152+E) (Zolfaghari et al,, 2018) 535 858 350
SibNet (1) (Liu et al., 2018) 542 832 348 77 08740
POS (IR+13D) (Wang et al., 20192) 53.9 91.0 349 72.4 08811
MARN (R-101+R3D) (Pei et al., 2019) 48.6 922 35.1 79 0.8633
JSRL-VCT (IR+C3D) (Hou et al, 2019) 52.8 87.8 36.1 718 08762
GRU-EVE (IR+C3D) (Aafaq et al., 2019) 47.9 781 35.0 75 0.8264
STG-KD (R-101+13D) (Pan et al., 2020) 522 930 369 739 08975
SAAT (IR+C8D) (Zheng et al., 2020) 465 81.0 385 69.4 08110
ORG-TRL (IR+C8D) (Zhang et al., 2020) 543 952 36.4 739 09078
Our model 62.4 100.7 39.0 770 1.0000

V, C3D, I-n, R-n, E, IR, I3D and R3D denote VGG19, C3D, n-version Inception, n-layer ResNet, ECO, Inception-ResNet-v2, 13D and 3D-ResNeXt features, respectively. The boldness
denotes the best value in the corresponding column.
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R@50

UnionBox 0279
MsgPass 0.448
Baseline 0.489
HRE 0502

R@100

0.350
0.531

0.570
0.577

We compare our model with UnionBox (Lu et al,, 2016) and MsgPass (Xu et al., 2017).

The best results are highlighted in bold.
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Model Micro F1

P R F1
Baseline 0.64 0.61 0.634
Citx Attention 0.72 0.56 0.637
HRE 0.60 0.67 0.634

The best results are highlighted in bold.
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Animal class

Cats
Dogs
Pigs
Cows
Owls
Birds
Goats
Bee
Chickens
Ducks
Pidgeons
Crows
Horses
Frogs
Flies
Lions

SoundNet

20232
925 (4.1)
80.7 3.7)
83.8(3.5)
718(1.4)
62.7(22)
60.2(3.9)
63.1(1.1)
50.8(3.0)
68.7(4.1)
76.8(2.6)
67.9(1.8)
4363.7)
57.8(1.4)
53.1(1.9)
63.5(3.4)

Audio

Without

Expectation

87.6(3.2)
89.5(3.6)
84.6(3.2)
859 (4.1)
71.83.7)
60.1(2.6)
50.2(1.6)
53.7 2.7)
63.8(1.9)
66.9(1.9)
83.6(4.7)
62.1(1.9)
32.8(26)
51.8(3.7)
57.8(3.0)
60.3(2.9)

With

Expectation

93.8(2.1)
94.4(2.9)
86.5(3.7)
867 (2.7)
749 (2.9)
63.7(1.9)
60.7(3.7)
62.1(3.9)
60.7 (2.1)
705 (2.8)
83.8(2.6)
683 (2.2)
416(3.9)
59.4(2.7)
58.3(2.5)
685 (2.6)

Inception
v3

94.8(2.4)
967 (2.5)
95.6(3.4)
94.8(1.7)
87.8(1.0)
90,6 (3.6)
95.8(2.1)
91.2(4.7)
85.1 (1.7)
96.8(2.3)
925 3.1)
91.3(2.7)
69.8 (4.1)
79.8(2.5)
89.8(1.9)
945 (2.5)

Vision
Without
Expectation

93.8(1.9)
94.6(2.2)
875 (1.4)
90.4(1.6)
80.7(1.8)
86.7 (4.7)
90.4(2.8)
895 (2.7)
938(1.7)
795 (1.6)
9256 2.7)
90.12.0
63.73.1)
80.6(2.7)
84.9(1.6)
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With
Expectation
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93.4(2.8)
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89.7(3.7)
93.2(1.9)
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Exp.

EXP 1.1
EXP 1.2
EXP 1.3
EXP2.1
EXP2.2

Model

Prior binding association
Without expectation

With expectation

Inception V3 (loffe and Szegedy, 2015)
SoundNet (Aytar et al., 2016)

Audio

585 (3.1)
66.4 (2.4)
708(32)

685 (2.4)

Vision

69.0(39)
86.8(32)
89.8(1.9)
89.4(19)
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Parameter

Epochs
Insertion threshold
Context size

Initial Gamma Weights
Bo

Value

50
001
4
0.64391426, 023688282, 0.08714432, 0.0320586
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Parameter

Epochs
Batch size
Optimizer

Initial learning rate
ADAM betat
ADAM beta2

Value

250
32
ADAM
0.01
09
0.999
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Parameter

Epochs
Batch size
Optimizer

Initial learning rate
ADAM betat
ADAM beta2

Value

200

ADAM
0.05
09
0.999
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visdif (Yu et al., 2016)

MMI (Mao et al., 2016)
attrsMMisvisdif (Liu et al,, 2017)
Speaker (Yu et al,, 2017)

Listener (Yu et al., 2017)

VC (zhang et al., 2018)
DDPN+VGG16 (Yu et al., 20185)
DDPN+ResNet101 (Yu et al., 2018b)
CMN (Hu etal, 2017)

AccuAtten (Deng et al., 2018)
PLAN (Zhuang et al., 2018)
MARNet+VGG16 (Yu et al,, 20182)
LGRANS (Wang et al., 2019)
VisSemanAware+LanAtien

val(%)

79.56
78.36
769
80.1

81.27
81.67
80.94

82.0
83.51

RefCOCO

testA(%)

67.57
63.15
78.85
78.95
77.97
78.98
67.5
724
81.17
80.81
79.99
81.2
83.74

The bold values show the best grounding accuracy on each dataset split.

testB(%)

71.19
64.21
78.07
80.22
79.86
82.36
73.4

76.8

80.01
81.32
82.30
84.0

83.18

val(%)

62.26
61.33

67.0
705

65.56
64.18
63.07
66.6
68.16

RefCOCO+

testA(%)

52.44
48.73
61.47
64.60
63.10
62.56
50.2

54.1

68.76
66.31
65.04
67.6
69.96

testB(%)

47.51
42.13
57.22
59.62
58.19
62.90
60.1
64.8
60.63
61.46
61.77
65.5
64.66

val*(%)

59.25
55.16
69.83
72,63
72.02
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69.30
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val(%)
1 sub(ProjFeat)+loc 79.28
2 sublProjFeatj+locsrel 79.99
3 subSemanAware)+loc 80.59
4 sub{SemanAware)+locsrel 81.24
5 sublProjFeatj+locsrel+LangAtten 81.83
6 sub{SemanAware)+loc+rel+LangAtten 83.51
7 sub{SemanAware) +loc+rel+LangAtten()) 83.25

RefCOCO

testA(%)

79.57
80.24
80.61
81.42
82.10
83.74
82.55

testB(%)

80.37
80.82
81.73
82.20
82.20
83.18
82.55

val(%)

64.77
64.89
64.20
65.11
66.42
68.16
67.77

RefCOCO+

testA(%)

65.29
66.00
65.89
66.03
67.46
69.66
69.70

testB(%)

62.41
63.57
63.47
63.76
63.84
64.66
64.00

RefCOCOg
vall%)  test(%)
69.63 69.28
70.14 69.96
72.94 7272
72.98 72.76
73.33 72.81
76.00 7481
74.53 73.61

The bold values show the best grounding accuracy on each dataset split acquired by the proposed network.
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Require:

video feature, s;: semantic feature, x;: input array, e:
sampling probability, STEP: max time step

Ensure: h;: output state, ¢;: cell state

hig <0
: o < 0
: hy < 0

Ci <0
embed « x;o
for t = 1to STEP do
hjy, ciy < recurrent_step(his_1, ¢i¢—1, Vi, Si, embed)
extend h; with h;,
extend ¢; with ¢y
prob < random(0,1)
if prob < € then
prob_dist;, < word_dist_map(h;;) {Map output state
to word probability.}
word_index < multinomial(prob_dist; ) {Sample from
the word distribution.}
embed <«  lookup_embed(word_index) {Use an
embedding vector to represent the word.}
else
embed < x;;
end if
t<—t+1
end for

: return h;,¢;
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Prosody

Language + Vision
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Vision + Prosody

Language + Vision + Prosody

Zadeh et al.
(2017)

74.8%
66.8%
65.1%

714%

Accuracy

Poria et al.
(2017)

78.1%
55.8%
60.3%
80.2%
79.3%
622%
80.3%

Liang etal.
(2018)
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Accuracy

Modality Twitter-15 Twitter-17
Language 74.3% 68.9%
Vision 59.9% 58.6%
Language + Vision® 77.2% 70.5%

Different configurations of the neural network architecture were used for each test data
set.
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Here and in allother tables, numbers in bold indicate the resuits with the highest accuracy
for each approach.
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Liang et al.
(2018)
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Language + Prosody
Vision + Prosody
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Language + Vision + Prosody

Angry

76.1%
53.2%
58.4%
77.2%

77.2%
68.2%
78.0%

85.1%

Aceuracy

Happy
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58.2%
60.5%
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72.0%
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87.5%
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Stimulus FB-modality
AS Audition

AS Vision

CSs Audition

CSs Vision

VS Audition

'S Vision

Mean

0.53
3.17
1.16
2.1
0.65
—0.62

SD

2.36
1.90
2.62
1.44
1.63
1.06

t

0.95
7.05
1.89
6.21
1.68
—2.52

Df

17
17
17
17
17
17

P

0.355
<0.001
0.230
<0.001
0.230
0.088

All p-values are Bonferroni—-Holm corrected. The VAE for the AS and CS as well as
the VWAE for the VS were tested against zero depending on whether feedback was
based on the position of the auditory or visual stimuli during audio-visual blocks.
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Effect Num Df Den Df Pillaitest Approximately F p
statistic

Intercept 1 17 0.94 279.26 <0.001

Feedback 1 17 0.02 0.29 0.60

modality

Visual reliability 1 17 0.02 0.37 0.55

Feedback 1 17 0.01 0.14 0.72

modality: visual
reliability
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Reliability FB- Absolute SD  Minimum Maximum Rel.

modality mean reward
Visual Rel. Audition 6.27 1.86 3.21 10.11 0.58
low
Visual Rel. Audition 6.31 1.92 2.49 10.08 0.58
high
Visual Rel. Vision 6.30 2.34 2.34 10.53 0.58
low
Visual Rel. Vision 6.66 2.39 1.29 10.17 0.62
high

The absolute reward is given in €. The last column (Rel. Reward) depicts the reward
relative to the maximally possible reward.
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Contrast Stimulus FB-modality Mean variable Mean difference Pillai test Approximately F Num Df Den Df p

error at pretest statistic
Post - pre AS Audition 4.51 —-0.14 0.011 0.20 1 17 0.663
Post - pre AS Vision 4.92 —0.02 <0.001 <0.01 1 17 0.942
Post - pre Cs Audition 4.51 0.16 0.028 0.51 1 17 0.487
Post - pre CS Vision 4.70 0.47 0.20 4.33 1 17 0.053
Post - pre 'S Audition 2.93 —0.49 0.80 16.75 1 17 <0.001
Post—pre VS Vision 2.86 —-0.25 0.27 6.43 1 17 0.021

All p-values are uncorrected.
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Effect Num Df Den Df Pillai test Approximately p
statistic F

Intercept 1 17 0.93 249.66 <0.001

Feedback 1 17 0.04 0.11 0.43

modality

Visual 1 17 0.01 0.03 0.74

reliability

Stimulus type 1 16 0.81 27.49 <0.001

Feedback 1 17 0.06 0.54 028

modality:

visual

reliability

Feedback 1 16 0.10 1.47 0.43

modality:

stimulus type

Reliability: 1 16 0.21 1.92 0.14

stimulus type

Feedback 1 16 0.04 0.39 0.70

modality:

reliability:

stimulus type
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