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Editorial on the Research Topic

Topological Soft Matter

In recent years, topology has acquired more and more importance in hard-condensed matter
systems such as superconductors or photonic materials [1, 2]. Yet it also plays a central role in
soft, non-crystalline materials. The behavior of many soft materials relies on vector fields, such as
the nematic director in liquid crystals, velocity in fluids or in active particles, deformation in soft
solids, or the orientation of fibers. All these fields can host singularities, or topological defects [3],
which are crucial in determining the properties and behavior of soft systems [4]. The goal of this
Special Topic is to bring together perspective from soft matter scientists on the role of topological
defects in soft materials, focusing especially on metamaterials, liquid crystals, and active matter.

When thinking about topological materials, topological insulators immediately come to mind
[5]. Soft analogs of such materials are provided by topological mechanical networks, or phononic
metamaterials, where the propagation of mechanical deformations is suppressed in the bulk
material but allowed at the boundaries, thus creating edge modes similar to those found in
topological insulators. An example of such amaterial is described in the work by Ronellenfitsch and
Dunkel, which shows the emergence of chiral edge modes in mechanical networks. These systems
open new perspectives for the design of phononic metamaterials with exotic properties such as
negative Poisson’s ratio, negative effective mass, or gapped vibrational spectra.

Liquid crystals also offer fascinating perspectives in the design of photonic metamaterials, where
matter and light can interact in unusual ways. Liquid crystal defects are characterized by strong
elastic interactions and can therefore be used to direct the self-assembly of colloidal particles
into complex 3D-architectures, with an optical index that is modulated at the scale of the light
wavelength. Do et al. study defects in smectic-A liquid crystals, called oily streaks, to understand
how nanoparticles are trapped and assembled within the defect.

Topological defects exist in all vectorial fields, but can defects from different fields crosstalk
and interact? This crucial question has recently been addressed in different ways. Piccirillo et al.
present an example of crosstalk between singularities in liquid crystals and phase singularities in
optics, showing that the manipulation of liquid crystal defects can be a powerful tool to control
optical beams.

Beyond applications, liquid crystals also constitute real laboratories to test predictions on
topological defects and understand their behavior and interactions, since liquid crystal defects are
observable and controllable [6]. This collection shows two important examples of this fine control.
On the one hand, Pieranski and Godinho show a “defect collider” to study the annihilation between
“dowsons,” special topological defects in nematic liquid crystals whose dynamics resemble that
of vortices in superconductors. On the other hand, the work by Harth and Stannarius presents a
detailed study of the dynamics of defect interaction in smectic-C liquid crystal films, thus focusing
on a nearly 2-dimensional system.
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The ability to control liquid crystal defects comes from
the existence of experimental tools to manipulate defects and
from the development of predictive tools resulting from the
understanding of the liquid crystal free energy. The work by
Sussmann and Beller provides a detailed characterization of a new
simulation tool to minimize the Landau-deGennes free energy,
especially suited for capturing defects in confined nematic liquid
crystals and in liquid crystals with imposed surface alignment.

A new open question in soft matter is to understand the role
that topological defects have in the organization of active systems
and living matter [7]. Defects in living systems appear at several
length-scales, from lipid domains to cells, and at all length-scales
there is evidence that they drive self-organization. Sengupta
offers a perspective focusing on the micro-scale, highlighting the
role that defects have in the interaction between microbes and
their microenvironment.

Liquid crystal organization of biological material is also the
subject of the work by Khadem and Rey, which focuses on the
liquid crystalline behavior of tropocollagen, a polymer present
in cells’ extracellular matrix. This polymer forms rigid structures
that create liquid crystal assemblies and drive the orientation of
collagen fibers. The role of condensed liquid crystalline phases
both in the cell cytoskeleton and in the extracellular matrix is still
debated, and this paper sheds light on the energy of condensation
of tropocollagen in various micro-environments.

Although the organization of biofibers in the cell cytoskeleton
is responsible for the cell mechanical properties, complex cell
functions, such as motility or replication, require the presence
of force-generators, which bring the system out-of-equilibrium.

A bioinspired “active nematic” has recently been developed by

mixing microtubules with kinesin motors [8]. Here topological
defects behave as self-propelled particles that control the flows
in the material. In this out-of-equilibrium system, questions
such as defect-mediated self-assembly of colloidal particles need
to be reformulated. The work by Hardoüin et al. focuses
on the formation and the dynamics of a line defect around
a colloidal particle, paving the way for future research in
the field.

Through examples of the behavior of topological defects
in mechanical metamaterials, liquid crystals, and active
matter, we hope to raise more questions and interest in
the role that soft matter systems can play in understanding
both the mechanism of formation of topological defects
and their practical importance for materials technology
and biology.
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The collagen triple helix is a ubiquitous biomacromolecule used in acidic aqueous

solutions as precursor in the fabrication of artificial compact bone and cornea and

in tissue engineering. The primary architecture of these highly structured solid tissues

is formed during the cholesteric liquid-crystalline stage of their morphogenesis. The

theoretical platform that describes the coupled dynamics of phase-ordering and

mass transfer developed, implemented and validated here can be used for optimal

material design and plays a significant complementary role to future experimental

studies. Based on uniaxiality assumption, we have recently developed and validated

a theory for the free energy tailored for acidic collagenous dispersions. Here we

significantly expand and generalize our previous study, by including biaxiality since

cholesteric phases must have a degree of biaxiality. In this work, we first modify the

proposed interchain interaction and excluded-volume contribution by use of the addition

theorem for spherical harmonics. Then, the Euler-Lagrange minimization followed by

expansion around I/N∗ transition allows us to construct the free energy of ordering

in terms of the phenomenological Landau–de Gennes formulation. Finally, we use

the time-dependent Ginzburg-Landau equations to study the non-Fickian evolution

of a single two dimensional cholesteric tactoid through a shallow quench from the

isotropic to biphasic region of the phase diagram. Although equilibrium biaxiality is

considerably low for these long-pitch cholesterics, we found that during self-assembly

the biaxial order parameter achieves significant larger values than the equilibrium

value. Additionally, the relaxed director field becomes both onion-like and defect-less,

which is consistent with the twisted bipolar structure observed experimentally. The

self-assembly simulations demonstrate that the formulated theoretical platform is not

only consistent with previous theoretical and experimental studies but also able to be

used to explore new routes for non-equilibrium collagen self-assembly. Taken together,

this study deepens our understanding of cholesteric (chiral nematic N∗) mesophase in

acidic solutions of tropocollagen, and suggests a systematic spatio-temporal model that

is capable of being used to extract the engineering principles for processing of these

sought-after biomaterials.

Keywords: biaxiality, liquid-crystalline self-assembly, collagen-based bioinspired materials, cholesteric tactoids,

Landau–de Gennes model, time-dependent Ginzburg-Landau model, chiral nematic nucleation and growth, uphill

diffusion
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INTRODUCTION

Type I Collagen is composed of three left-handed polypeptide
helices (denoted by [α1 (I)]2 [α2 (I)]) twisted together to yield
a right-handed triple helix. This rod-shaped biomacromolecule,
also known as tropocollagen, commonly has a 1.5 nm bare
diameter and 300 nm height. The tropocollagen falls into the class
of fibrous proteins and is abundantly found in both soft and
hard human’s tissues, namely cornea, tendon, cortical bone, and
more [1]. Over the past two decades, biomimetic fabrication of
collagen-based biomaterials has received considerable attention
in view of the abundant critical applications such as artificial
bone [2–5] and cornea [6, 7] reconstruction. Moreover, for in-
vitro replication of these collagenous biological tissues, there is
fortunately no concern about supply because tropocollagen can
be readily accessible through mammalian and non-mammalian
resources [8]. Consequently, numerous promising applications
of biomimetic fabrication of collagenous biomaterials [9–11] in
conjunction with the availability of precursor play a central role
in the drive to create the bioinspired collagen-based materials.

The structural pattern of tropocollagen rods bestows great
structural-relation properties on collagenous biological materials
and biomaterials. Furthermore, their structures are analogous
with architecture of tropocollagen in liquid-crystalline states
[12], hence these materials are called “solid analogs.” This
correspondence establishes the role and impact of liquid-
crystalline morphogenesis [13–15] and singles out liquid-crystal-
based biomimetic material process engineering as a promising
route to enhance the quality of collagen-based biomaterials or
even to explore new ones [3, 16–19].

Normally, tropocollagen is immiscible in aqueous solutions

due to its hydrophobicity. To attain a stable aqueous isotropic

phase, which is the starting point of biomimetic fabrication,
hydrophobicity of tropocollagen must be reduced by being
dispersed in acidic solutions. Basically, numerous amine function

groups that are good proton receptors are found along the
tropocollagen backbone. Once these functional groups are
protonated, the intrachain repulsion causes that, the semi-flexible
(worm-like) backbones become uncoiled and essentially rigid
rods. The existing interchain repulsion also impedes aggregation,
in other words the rods have an effective diameter between two
or three times the bare one [20–22]. Finally, due to being charge-
carrier rigid rod-like molecules, tropocollagen is capable of
exhibiting lyotropic cholesteric phase organization. For example,
for an acetic acid concentration of [AC] ≈ 2, 900 mM, a phase
transition from isotropic to chiral nematic (N∗) takes places at
tropocollagen concentrations of [C] ≈ 88 mg/ml [21].

Although the primary architecture of these versatile
biomaterials are formed at the molecular level (i.e., mesophasic
stage), the focus has been at the tissue level [23] and studies
on molecular level are few [21, 22]. Furthermore, to the best
of authors’ knowledge, theoretic studies of cholesteric self-
assembly of aqueous acidic tropocollagen solutions have not
been carried out, which also reflects the case of chiral nematic
phase ordering in general [24–26]. To address this gap, we have
recently developed, implemented, and validated a theoretical
model tailored for self-assembly of tropocollagen dispersed in

acidic aqueous solutions [20]. This thermodynamic theory [20],
which is based on the uniaxiality assumption, has integrated
microscopic mechanisms of mixing entropy and enthalpy,
attraction, repulsion, twisting, excluded-volume, and chirality.
In the present study, we lift the uniaxiality assumption by
generalizing the free energy that includes biaxial effects. This is
crucial for cholesteric materials because chiral nematic phase is
described by two vectors: the director (n) and the chiral axis (h),
additionally cholesterogens are intrinsically biaxial as discussed
by Wulf [27] and Wright and Mermin [28]. Incorporation of
the biaxial order parameter into the cholesteric self-assembly
deserves consideration because biaxiality influences pattern-
formation even in nematic mesophase, such as interfacial
biaxiality under tangential director orientation [29–32], the
biaxial core of singular disclinations [31, 33], and sometimes
more pronounced biaxiality under time-dependent conditions
than under static equilibrium [34]. For the above reasons we first
include biaxiality in the model formulation stage and then focus
on its emergence in bulk, defect core, and interfacial regions;
which are of significant importance in all structured materials
[30, 33, 35–37].

In our previous validated work [20], we showed that our
thermodynamic model of acidic collagen solutions captures two
key features: (i) the expected chimney diagram predicted by
Flory and found experimentally for many lyotropic rod-like
liquid-crystalline polymers [38], and (ii) the parabolic bi-phasic
funnel in aqueous acidic collagenous solutions under increasing
pH, where cholesteric tactoids (drops) emerge from isotropic
phases. Study of cholesteric tactoids is important because of three
main reasons: (i) tactoid formation process must occur in to
chimney and funnel phase diagrams, which are the fingerprint
of rod-like macromolecules. Thus, these cholesteric drops are
a crucial element in the validation of thermodynamics of rod-
shaped rigid macromolecules; (ii) these stable but deformable
drops serve a sources of material properties information such as
bulk Frank-Oseen-Mermin elasticity [27], novel coupled gradient
contributions between nematic order parameter and collagen
concentration, and the cholesteric pitch; (iii) characterizing
and understanding the emergence, growth, annihilation, and
coalescence of tactoids are essential to future developments
of collagen-based material processing. To focus on collagen
tactoids, as shown in Figure 1, we then target the dynamic of self-
assembly through a shallow quench from isotropic phase into the
bi-phasic funnel of the previously obtained phase diagram [20].
In contrast to the better known single component monomeric
thermotropic tactoids, in the present case concentration is a
conserved transport variable that need to be included. For
this purpose, we formulate the coupled phase ordering/mass
transfer Model C [39, 40] in order to derive the governing
equations of collagen self-assembly. Afterward, we impose proper
auxiliary conditions (e.g., initial and boundary conditions for
the computational domain) on the obtained governing equations
to capture a thorough spatio-temporal evolution of a single
cholesteric tactoid—see Figure 2. This evolution has two steps:
(i) emergence of a cholesteric nucleus in a continuous isotropic
phase, (ii) followed by the formation of a stable chiral nematic
tactoid coexisting with the isotropic phase.
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FIGURE 1 | Phase diagram of tropocollagen in acidic aqueous solutions. The black solid lines are binodal curves and the black dashed line is phase transition

boundary. The quench point and the evolution path are shown by a red square and a blue solid line, respectively. This figure is adapted from Khadem and Rey [20].

The schematics denote the isotropic phase at low collagen concentrations, a typical micron-sized cholesteric drop in an isotropic bulk at intermediate concentrations,

and the chiral nematic (N*) or cholesteric phase at higher concentrations.

In this work we restrict simulations to a single collagen tactoid
with the aim of contributing to the evolving understanding of
chiral phase ordering [24, 25, 41]. The simulations are also
restricted to 2D. In principle, 3D spatio-temporal simulations
can give a full picture of tactoid formation stages. Yet, from
practical viewpoint, the present phase ordering/mass transfer
coupled non-linear model with nano-to-micron scales becomes
essentially intractable [42]. Furthermore, we have previously
shown [43–45] that 2D simulations can provide invaluable
predictions, and as discussed later on, in this study the important
metrics of size, shape, and structure are not lost when using our
2D simulation box. In particular, we capture bulk disclinations,

interfacial anchoring, interfacial biaxiality, growth modes, and
self-selected shapes. Hence, this 2D study gives a necessary
foundation for future 3D simulations.

The paper is organized as follows. Section Continuum
Methodology for Simulation of Liquid-Crystalline Self-assembly
of TropocollagenDispersed in Acidic Aqueous Solutions presents
the methodology used in the formulation of self-assembly,
including: (1) Formulation of the free energy for a system
consisting of charged cholesterogen dispersed in a mixture of
water solvent and mobile ions—see subsections Long-Range
Description of Molecular Alignment to Total Free Energy
Tailored for Tropocollagen Self-assembly in Acidic Aqueous
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FIGURE 2 | Schematic of the computational domain, in which a small chiral

nematic drop is initially seeded, and allowed to naturally grow in coexistence

with an isotropic phase.

Solutions. Subsection Long-Range Description of Molecular
Alignment defines the Q-tensor. In Free Energy Contributions
for Pure Charged Cholesterogens; Incorporation of Biaxial Order
Parameter, the free energy of pure charged cholesterogen is
developed taking into account the biaxial order parameter. In
Mixing Free Energy of Binary Dispersions Consisting a Charged
Cholesterogen and Small-Sized Solvent, the obtained free energy
is generalized for a mixture of charged cholesterogen and small-
sized solvent. In Total Free Energy Tailored for Tropocollagen
Self-assembly in Acidic Aqueous Solutions, we discuss and
incorporate other free energy contributions involved in the
evolution of mesophasic state, such as the elasticity of Frank-
Oseen-Mermin [28] and gradient contributions, and formation
of the I/N∗ interface. Thus, in Total Free Energy Tailored
for Tropocollagen Self-assembly in Acidic Aqueous Solutions,
the total free energy of system is formulated [2]. Formulation
of governing equations along with the appropriate auxiliary
conditions for simulation of liquid-crystalline self-assembly
in which a cholesteric nucleus of tropocollagen is initially
seeded and allowed to spontaneously growth in coexistence
with isotropic phase—see subsections Governing Equations for
Kinetics of Self-assembly; Orientational Relaxation, and Uphill
Diffusion to Computational Details. In Governing Equations for
Kinetics of Self-assembly; Orientational Relaxation, and Uphill
Diffusion, the governing transport equations (Model C) are
formulated. Finally, subsection Computational Details presents
the implementation of self-assembly simulation for nucleation
and growth of a single cholesteric tactoid coexisting with
an isotropic phase. Section Results and Discussions, presents

results of emergence and growth of a cholesteric tactoid. Lastly,
the conclusions and nomenclature are summarized in sections
Conclusions and Nomenclature, respectively.

CONTINUUM METHODOLOGY FOR

SIMULATION OF LIQUID-CRYSTALLINE

SELF-ASSEMBLY OF TROPOCOLLAGEN

DISPERSED IN ACIDIC AQUEOUS

SOLUTIONS

Long-Range Description of Molecular

Alignment
The long-range orientational order in a liquid-crystalline phase
is parameterized by a second-order symmetric traceless tensor
called Q-tensor [14, 15, 46].

Q = S (nn - δ/3) +
1

3
P (mm - ll) (1)

where δ is the Kronecker delta. The orientation of a mesogen is
characterized by the orthogonal director triad of (n,m, l). The
degree of alignment along the uniaxial director, n, and biaxial
director, m, are S and P, respectively. Due to the quadrupolar
symmetry ofQ-tensor, it possesses the salient feature of head-tail
invariance of molecular alignment (i.e., n ≡ −n, m ≡ −m, and
l ≡ −l). The largest absolute eigenvalue of Q-tensor equals to
2S/3 and the corresponding eigenvector is equivalent of uniaxial
director, n. The difference between the absolute medium and
smallest eigenvalues is 2P/3 and the eigenvector corresponds to
the second largest absolute eigenvalue is biaxial director,m. Thus,
in the isotropic and ordered phases, the Q-tensor becomes the 3
× 3 zeromatrix,Q= 0, and non-zeromatrix,Q 6= 0, respectively.

The uniaxial and biaxial order parameters are also defined
in terms of directors/Q-tensor or the normalized orientational
distribution function on the unit sphere, ψ (u), for any given
molecular orientation, u:

S =
w
P2 (cos (θ)) ψ (u) d� = 3n ·Q · n/2 (2)

P =
w

1(θ,φ)ψ (u) d� = 3 (m ·Q ·m− l ·Q · l)/2 (3)

d� = sin (θ) dθdϕ represents a solid angle, and θ and ϕ

are the polar and azimuthal angles. 1( θ ,ϕ) is defined as
3sin2 (θ) cos (2ϕ)/2. As explained below, P2 (cos (θ)) and1(θ,ϕ)
are representative of uniaxiality and biaxiality, respectively. In
addition, the normalized distribution function, employed in
Equations (2, 3), implies following constraint [47]:

w
ψ (u) d� = 1 (4)

Free Energy Contributions for Pure

Charged Cholesterogens; Incorporation of

Biaxial Order Parameter
The total dimensionless Helmholtz free energy per particle,
F̃, for a dispersion comprising NA charged cholesterogens is
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[20, 48, 49]:

F̃ =
βF

NA
= βµo (T)−1+ lncA+ σ (ψ (u)) + B2 (ψ (u))

+M (ψ (u)) (5)

where β, µo (T), and cA stand for thermal energy, standard
chemical potential and number density, respectively.
The last three terms in Equation (5) account for the
contribution of molecular orientation (i.e., uniaxiality and
biaxiality) in the mesophasic state. σ (ψ (u)) describes the
decrease of orientational entropy upon alignment of the
mesogenic molecules.

σ (ψ (u))=
w

ψ (u) ln (4πψ (u))d� (6)

Since we focus on rod-like rigid mesogen, the second virial
approximation is capable of accurately describing the excluded
volume effect, given by Odijk [49] and Drwenski et al. [50]:

B2 (ψ (u)) = cAυAAρ (ψ (u)) (7a)

ρ (ψ (u)) =
4

π

x
Ŵ (γ) ψ (u)ψ

(

u′
)

d�d�′ (7b)

Ŵ (γ) = |sin (γ)|

×
{

1+ h

[

−ln |sin (γ)| −ln (2) +
1

2

]}

(7c)

υAA is the average excluded volume defined as πDeffL
2/4

in which L and Deff denote contour length and effective
diameter of tropocollagen. Deff has a dependence on the bare
diameter, D = 1.5 nm, and concentration [20]. To take biaxiality
into consideration, in accordance with Drwenski [51, 52] and
Matsuyama and Crystals [53], we make use of the addition
theorem for spherical harmonics to express the angle between
two rods, γ, in terms of the polar, θ, and azimuthal, ϕ, angles in
spherical coordinate:

P2 (cos (γ)) = P2 (cos (θ))P2
(

cos
(

θ′
))

+ 1(θ,ϕ)1(θ′,ϕ′)/3 (8)

First term in Equation (8) is independent from azimuthal
angle and represents uniaxiality. Second term is related to
biaxial contribution and has the dependence on both polar and
azimuthal angles.

The intermolecular interaction and angle between rods
interchangeably affect each other because the electrostatic
repulsion and twisting favors perpendicular orientation while
the van der Waals attraction prefers the parallel alignment (i.e.,
nematic phase) [49, 50, 54]. Hence, based on our previous work
[20] and [51], we suggest the net interchain potential expressed by

βUi = β
(

U′elc−U′MS
)

υAP2 (cos (γ)) (9)

where υA is the volume of an individual rigid rod,

υA = πD2
eff
L/4. U′elc and U′MS are parameters of electrostatic

repulsion and a positive constant, respectively. The contribution

of intermolecular interaction, M (ψ (u)), is then obtained by
taking average over all possible rod configurations [20]:

M (ψ (u)) =
3

2
βUcAυ2

AQ:Q (10)

U = Uelc−UMS is called the potential of the orientation-
dependent intermolecular interactions where Uelc and UMS are
the strength of electrostatic repulsion and Maier-Saupe constant
that is a positive constant independent of temperature. Note
that Q :Q is related to uniaxial and biaxial order parameters by
2
(

S2+P2/3
)

/3.
We note that the effective diameter reflects the intermolecular

repulsion, or to put it another way, the effective thickness of the
attached ions on the backbone of tropocollagen. This effective
thickness is called double-layer thickness, ακ-1 [49, 50]:

Deff = D+ ακ-1 (11)

α and κ-1, which are defined as follows, are parameter of double-
layer thickness and Debye screening length, respectively:

α = lnA′+ γE+ ln (2) −
1

2

−
4

π

[

|sin (γ)|Ei
(

−
A′

|sin (γ)|

)]

i

(12a)

A′ = A
eκD

κD
, A = 2π32λBD (12b)

[

f
(

u,u′
)]

i
=

1

16π2

x
f
(

u,u′
)

d�d�′ (12c)

κ−1 = (8πλBNavoǫ)
−1/2 (12d)

ǫ =
1

2

∑

i

miZ
2
i (12e)

where λB, Navo, ǫ, m, Z, Ei (•), γE, and 3 are the
Bjerrum length, Avogadro’s number, ionic strength, molar
concentration, charge number, the exponential integral defined as
Ei (x)=−

r ∞
-x exp (-t)/t dt, Euler constant equals to 0.5772, and

linear charge density. A detailed account of parameters’ values,
their selection and physical significance and physical properties
for aqueous acidic collagen I solutions is given in Khadem and
Rey [20].

Mixing Free Energy of Binary Dispersions

Consisting a Charged Cholesterogen and

Small-Sized Solvent
The mixing free energy of the binary solution is given by
Matsuyama and Kato [48]

F = 1Fmixing(NA,NI) = Fs(NA,NI)−Fs(NA, 0)−Fs(0,NI) (13)

where Fs(NA,NI), F
s(NA, 0) and Fs(0,NI) are free energies of

solution, pure anisotropic component dispersed in isotropic state
and isotropic component, respectively. Thus, in this subsection,
we shall first derive the free energy of solution, and then
formulate the mixing free energy of a binary dispersion by use
of Equation (13).
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Substituting Equations (7, 10) into Equation (5) leads to
the free energy of pure charged chiral nematic rods. The free
energy for binary mixture of charged chiral mesogen and small-
sized solvent (water in our case)—denoted by subscript A and I,
respectively—is then formulated as

βFs = NAβµo
A + NIβµo

I − NA − NI + NAlncA + NIlncI + NAσ

(ψ (u)) + υAANAcAρ (ψ (u)) + 2υAINIcA + υIINIcI

+ NAβUcAυ2
A

(

S(ψ (u))2 +
1

3
P(ψ (u))2

)

(14)

Equation (14) is not usable unless the unknown normalized
distribution function, ψ (u), is known. To formulate the
normalized distribution function, the total free energy of system
subjected to the normalizing constraint, given by Equation (4),
is minimized using Euler-Lagrange method. This minimization
yields an irreducible algebraic integral equation expressed by

ln (4πψ (θ,ϕ)) = η′ − 2βUcAυ2
A

{

SP2 (cos (θ)) +
1

3
P1(θ,ϕ)

}

−
8

π
υAAcA

w
Ŵ (γ) ψ

(

θ′,ϕ
)

d�′ (15)

Simplicity of free energy expression is essential since our
ultimate objective is the self-assembly simulation which in itself
is computationally complex. A heavy computational load is
expected because the self-assembly process covers a wide range of
length scale (i.e., ranging from nano- to macro-scale) and it may
go through a variety of complex microscopic mechanisms [41,
55–59]. Thus, to improve tractability, we expand the functional
part of Equation (15), Ŵ (γ), in terms of the second Legendre
polynomial by use of Equation (8):

Ŵ (γ) ≈
π

4
−
5π

32

(

1−
11

8
h

)

{

P2 (cos (θ))P2
(

cos
(

θ′
))

+
1

3
1(θ,ϕ)1(θ′,ϕ′)

}

(16)

Having substituted Equation (16) into Equation (15), the
normalized distribution function is obtained:

ψ (θ,ϕ) =
exp

(

W
{

SP2 (cos (θ)) + P1(θ,ϕ)/3
})

I00
(17)

where the I00 is a definite integral defined as

I00 (S, P,W)=
1w

0

1w

0

exp
(

W
{

SP2 (x)+P1(x, y)/3
})

dxdy (18)

W is known as the net cholesteric potential, which is similar to
Khadem and Rey [20] and can be parameterized as

W = αwφA (19a)

αw =
5

4

(

1−
11

8
h

)

L

Deff
−

π

2
D2
effβUL (19b)

φA is the effective volume fraction and h = (κDeff)
−1. αW

is assumed to only be dependent on concentration of acid
throughout the evolution—a reasonable assumption because αW
is mainly affected by concentration of acid [20].

Next the mixing free energy, Equations (20a–c), is obtained
by use of Equations (13, 14, 17). Detailed account of such
algebraic derivation are given in Khadem and Rey [20] and
Odijk [48]. Note that hereafter, for convenience, we use φ to
represent the effective volume fraction of tropocollagen—it can
be related to the concentration of tropocollagen in units of mg
of tropocollagen pre ml of solution by C = φ/αc where αc is
a unit conversion factor. The dimensionless mixing free energy
density is:

f̃mxing = f̃iso+f̃h (20a)

f̃iso =
φln (φ)

n
+ (1− φ) ln (1− φ)+χφ (1− φ) (20b)

f̃h =
φ

n

[

3

4
WQ :Q−ln (I00 (W, S, P))

]

(20c)

where n stands for number of segments on tropocollagen

backbone. f̃iso and f̃h describe different physics; the former
explains the phase separation which is the well-known Flory-
Huggins equation and the latter controls the phase transition (i.e.,
homogenous contribution). In the absence of biaxiality, P = 0,
the obtained mixing free energy, Equations (20a–c), is reduced
to the validated free energy functional given in Khadem and Rey
[20] which was validated with experimental data of tropocollagen
and with previous theoretical studies. It is worth mentioning that
with further assumptions the obtained free energy density leads
to the formulation given in Matsuyama and Kato [48] as well as
the well-established theory of Onsager—see ESI of Khadem and
Rey [20] for further discussion. For numerical tractability, similar
to Matsuyama [51] and Matsuyama and Kato [48], we make use
of a Taylor expansion in vicinity of I/N∗ to expand Equation
(20c) in a power series of order parameters, SiPj–the resulting
polynomial is the phenomenological Landau-de Gennes (LdG)
theory [60]:

f̃h =
a

2
Tr
(

Q2
)

−
b

3
Tr
(

Q3
)

+
c

4

(

Tr
(

Q2
))2

(21a)

a (φ) =
3

2

αw

n

(

1−
αwφ

5

)

φ2 (21b)

b (φ) =
9

70

α3w

n
φ4 (21c)

c (φ) =
αw

10
bφ (21d)

Although self-assembly simulations by use of the Equations (21a–
d) is appreciably more tractable than with Equation (20c), it
should be noted that the used expansion may affect the accuracy
of simulations in the cases of deep quenches. However, this
study only focuses on the self-assembly of shallow quenches into
biphasic region which is a narrow region around I/N∗ boundary,
see Figure 1.

An order-disorder phase transition takes place if and only if
W = αWφ = αWαcC > 5 to make the coefficient of second
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invariant of Q-tensor, a, negative. The derived LdG coefficients
satisfy two general theoretical expectations; (1) the first-order
phase transition (i.e., B 6= 0), and (2) two minima correspond
to isotropic and ordered phases (i.e., A<0 and C>0) [46].
Furthermore, in the cholesteric phase, W can be about 10, and
under such conditions the proposed LdG coefficients becomes
similar to the well-established lyotropic LCP Doi’s model, were
b≈ c [14, 15, 61].

Total Free Energy Tailored for

Tropocollagen Self-Assembly in Acidic

Aqueous Solutions
In addition to f̃mxing which is capable of describing phase
separation and an order–disorder phase transition, for
constructing the total free energy of mesogenic solutions, the
contributions of gradients should be taken to account [62–64]:

F̃net =
w

Ṽ

(

f̃iso+f̃h + f̃e + f̃cg + f̃c

)

dṼ (22a)

f̃e =
1

2

(

ξ

h0

)2
[

[

∇̃ ×Q+ 4π

(

h0
p∞

)

Q

]2

+
(

L2

L1

)

[

∇̃ ·Q
]2
]

(22b)

f̃cg =
1

2
L̃φ

(

∇̃φ
)2

(22c)

f̃c = L̃φ−Q

(

∇̃φ
)

·
(

∇̃ ·Q
)

(22d)

ξ =
√

a3L1β is the coherence length in which a3 stands
for the volume of each lattice unit and Li are elastic constants.
∇̃ = h0∇ is dimensionless gradient in which h0 denotes a
macroscopic length scale and the spatial domain is scaled by
h0, L̃φ = Lφa

3β/h20 and L̃φ−Q = Lφ−Qa
3β/h20 where Lφ

is cost of interfacial formation and Lφ−Q represents coupling
constant. The total free energy as well as the evolution of chiral
nematic phase for tropocollagen aremesoscopic because it retains
both microscopic length scale, ξ, in a nanometer range and
macroscopic length scale, h0, in the range of micrometers.

Governing Equations for Kinetics of

Self-Assembly; Orientational Relaxation,

and Uphill Diffusion
Simulations of pattern-formation in fibrous composites,
including collagen-based tissues, were first carried out by De
Luca and Rey [61, 64, 65]. Their approaches were based on
diffusionless evolution of mesophase, and capable of predicting
macroscopic architecture of these materials to a great extent.
However, recent studies have revealed the imperative role of
diffusion in accurately capturing the growth of order-disorder
interface [43, 45]. Hence, for the purpose of realistic self-assembly
modeling, in this subsection, we formulate the spatio-temporal
evolution of tropocollagen in which the Q-tensor augmented
with a mass transfer equation.

The cholesteric micro-structures in collagenous biomaterials
are formed through the liquid-crystalline self-assembly stage.

Two simultaneous mesoscopic mechanisms govern this
thermodynamically driven assembly. First, mass transfer
mechanism allows tropocollagen macromolecules to diffuse
into cholesteric phase (i.e., tropocollagen-rich phase) from
isotopic phase (i.e., tropocollagen-lean phase). The mentioned
demixing is known as uphill or non-Fickian diffusion and
reduces the total free energy of system. Second, orientational
relaxation mechanism induces cholesteric architecture inside
the formed high-concentration domain. To describe these
two phenomena; two coupled fields are required. First, the
conserved scalar field of concentration, C, or equivalently
volume fraction, φ , governing the phase separation. Secondly,
the non-conserved tensorial field of Q-tensor by which the
orientation of tropocollagen biomacromolecules is primarily
specified. The spatio-temporal evolution of {Q, φ } is found using
the time-dependent Ginzburg–Landau (TDGL) formalism, also
known as model C in Hohenberg and Halperin classification
[39, 40]. The dimensionless form of model C adjusted for
self-assembly simulation reads [17, 61, 64, 66, 67]:

∂Q

∂ t̃
= −

1
(

1− 3Tr
(

Q2
)

/2
)2

(

δF̃net

δQ

)[s]

(23a)

∂φ

∂ t̃
= M̃φ∇̃ ·

(

[I+Q] · ∇̃
δF̃net

δφ

)

(23b)

δF̃net/δQ represents functional derivative. t̃ is dimensionless time
defined as t̃ = tMQ/

(

a3β
)

where t is time, M̃φ = Mφ/
(

MQh
2
0

)

in
which the mobilities of Q and φ are MQ and Mφ , respectively.
Additionally, the superscript [s] indicates that the functional
derivative must be symmetric traceless in order to be consistent
with the nature of Q-tensor—for any given second rank tensor
T[s] =

(

T+ Tt
)

/2 − Tr (T) δ/3 where superscript t
denotes transpose.

The system given in Equations (23a,b) is a set of six
coupled non-linear PDEs. Equation (23a) accounts for the spatio-
temporal evolutions of the orientational tensor order parameter.
This equation is the compact tensorial form of five independent
second-order PDEs. Furthermore, Equation (23b) is a fourth-
order PDE, known as the Cahn-Hilliard equation, to describe
the concentration field by which the chiral nematic and isotropic
phases gradually evolve through the uphill diffusion mechanism.

Computational Details
Here we elaborate on the simulation of nucleation and growth
of an isolated cholesteric tactoid in a continuous isotropic phase.
This simulation consists of a diffusional phenomenon coupled
with structural relaxation. The general schematic representation
of this implementation is illustrated in Figure 2.

As above mentioned, the biomimetic formation of collagen-
based tissues starts with dissolving tropocollagen in acidic
aqueous solutions to obtain the isotropic phase. In such
condition, a nucleus is thermodynamically allowed to grow,
providing its radius is greater than a critical value. In that case,
as a single tactoid grows, the tropocollagen rods diffuse from
collagen-lean phase to collagen-rich phase, in turn, the isotopic
and cholesteric phases become depleted from and enriched in
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tropocollagen, respectively. The diffusion of tropocollagen from
lean phase (isotropic phase) to rich phase (cholesteric phase)
continues till a point where the chemical potentials of two phases
become identical.

As illustrated in the Figure 2, we consider the bulk of system
as a square with [−0.5 0.5] × [−0.5 0.5] normalized by h0. Each
pair of sides are subjected to the periodic boundary condition.
Initially Q = 0 and the phase is isotropic. Afterwards, an initial
cholesteric tactoid is seeded by a circular Gaussian distribution
with FWHM (full width at half maximum of Gaussian function)
greater than the critical drop diameter. The seeding is expressed:

Q|t=0 =
[

Se (nene−δ/3)+
1

3
Pe (meme− lele)

]

× e
− 1

2

(

(

x−x0
σx

)2
+
(

y−y0
σy

)2
)

+ 4 (24a)

φ|t=0 = (φch − φiso) × e
− 1

2

(

(

x−x0
σx

)2
+
(

y−y0
σy

)2
)

+φiso + 4 (24b)

4 and4, that are, respectively, a second rank symmetric traceless
random tensor and scalar random number, are included in the
modeling to represent the fluctuations existing in a real system.
The subscript e indicates the equilibrium condition given by:

ne =
[

0 cos
(

2π
p∞

x
)

sin
(

2π
p∞

x
)]

(25a)

me =
[

0 −sin
(

2π
p∞

x
)

cos
(

2π
p∞

x
)]

(25b)

In accordance with l = n × m, le is computed as
[

0 0 1
]

.
Equations (24a,b, 25a,b) describe a nucleus whose center placed
at position (x0, y0) at a concentration equivalent to the effective
volume fraction of φch. For convenience, we choose the center
at (x = 0, y = 0). The concentration of tropocollagen from
the center, which is a cholesteric phase, gradually decreases
along the radius to the concentration of continuous isotropic
phase, φiso. This approach for simulating the initial nucleus
was adapted from Wincure and Rey [30, 31, 33]. In order to
make sure that the initial drop is sufficiently large, we choose
the σx = σy = σ and obtain σ in way that FWHM

equals two times the critical diameter: FWHM = 2
√
2 ln 2σ =

2Dc = 4Rc. Classical Nucleation theory [68] provides a rough
estimation of the critical radius of a drop as expressed by

Rc =
∣

∣

∣
2γi/

(

cA1µiso−Cho
)
∣

∣

∣
in which γiand 1µiso−Choare

the interfacial tension and the chemical potential difference
between isotropic and cholesteric phase [68, 69]. Additionally,
Equation (24b) yields the quenched concentration as φq =s
CD φ|t=0dxdy/

s
CD dxdy in which CD denotes the entire

system (computational domain). Consequently, φiso plays an
appreciable role in the size of tactoid because its value affects the
initial amount of tropocollagen existing in the system.

Furthermore, the total conservation of mass is imposed by:

d

dt

w

CD

φdxdy = 0 (26)

Simulation parameters used in this study are summarized in
Table 1—also readers are referred to the Khadem and Rey [20]
for detailed account of parameters selection in order to accurately
capture the available experimental data.

Although the L̃φ−Q, L̃φ , and L2/L1 have not been
documented for tropocollagen, we choose common values
which satisfy the energy transformation constraint [70–72]:

(

L̃φ−Q

)2

L̃φ × (L2/L1)
< 1 (27)

Equations (24a,b) in conjunction with the above-explained
conditions are solved with an adaptive finite elements technique
with biquadratic basis functions (General PDE solver of
COMSOL Multi-physics 5.3a). Furthermore, to acquire the
acceptable spatial resolution, we considered at least 50 elements
per pitch which resulted in nearly 104 triangular elements, and
temporal resolution was carried out by the Backward Euler
method. Convergence, accuracy, and stability were checked
using standard techniques—for further information on the
method and solution approach, please see the accompanying
Supplementary Material.

RESULTS AND DISCUSSIONS

In this section, the dynamics of mesophasic evolution and
the resulting equilibrium configuration for a shallow quench
from the isotropic phase into the cholesteric phase in the
presence of one small cholesteric seed are given and discussed
(see Figures 1, 2).

Figures 3a–d show snapshots of a growing tactoid
corresponding to dimensionless times 0, 900, 960, and 1,100,
respectively. Figure 3a shows the initial condition of a small
chiral nematic drop seeded in a large isotropic phase area. Note
that only a small section of the computational domain, in which
the self-assembly is supposed to take place, is shown in Figure 3.
The computational domain is actually chosen as a fairly large
square with length of h0 = 100µm in order to make sure that
the existing amount of tropocollagen in the system is sufficient
for formation of a single cholesteric tactoid with diameter of
the order of 30 µm—as experimentally observed [21]. The size
of initial seed must be greater than a critical value in order for
the drop to grow based on the mechanism of uphill diffusion,
otherwise downhill diffusion takes place and the initial drop is
dissolved in isotropic phase.

Although the initial configuration of rods is chosen as twisting
around x-axis, see Figure 3a1, the rods prefer to be aligned
in a concentric configuration, as shown in Figure 3b1. During
the early growth of the tactoid, rods attempt to radially twist—
the helicoidal axes are along the radii of the circular tactoid.
Yet, rods placed at the center of drop exhibit orientational
frustration. This frustration emerges in t̃ = 900, Figure 3b1,
and yields a τ+1 cholesteric defect. As the tactoid grows, the
central rods resolve the orientational frustration with an escaped
configuration (see Figure 3d1) known as a non-singular λ+1

cholesteric disclination. These important predictions may be
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TABLE 1 | The material properties and parameter values used in the present paper.

Parameters Values Parameters Values Parameters Values

n 10 [–] χ 1.4 [–] L2/L1 1[-]

L̃φ−Q −4.4×10−7[–] L̃φ 2.8 × 10−4 [-] M̃φ 1.1 × 10−5 [-]

Se 1[–] Pe 10−3[-] h0 100 [µm]

Cch 98 [mg/ml] Ciso 79 [mg/ml] p∞ 10 [µm]

The square-brackets next to the values indicate the corresponding unit, and [–] shows dimensionless. For those parameters which have not been documented for solutions of

tropocollagen, the common values are used instead. Readers are referred to Khadem and Rey [20], Gobeaux et al. [21], De Luca and Rey [61], Gurevich et al. [62], Das and Rey

[63], and De Luca and Rey [64] for details of parameter selection.

FIGURE 3 | The spatial distributions of order parameters, S and P, in conjunction with the director configuration at the early growth of cholesteric tactoid shown in

(a–d). In the first column, the uniaxial configuration, n, of tropocollagen macromolecules are represented by rods whose color (blue to red) shows the uniaxial order

parameter, S. To complete the understanding about the configuration of rods in xy-plane, in the second column, the z component of n is shown by use of a

monochromatic blue spectrum. In last column, the monochromatic cyan denotes the variation of biaxial order parameter during the time evolution. (e) Illustrating the

color bars for S, nz, and P, the used coordination of system and length-scale bar.

difficult to be captured experimentally due to intrinsic size length
scale resolutions when using optical methods [73–75].

Figures 3a2–d2 show the z component of uniaxial director, n.
The figures show that the central director regions evolves slower
and lags the radial helix formation that results in tangential

interfacial orientation experimentally observed for tropocollagen
tactoids [37]. The tangential orientationminimizes the interfacial
free energy at n.k = 0 where k is the interfacial normal
vector. This tangential configuration, n.k = 0, emerges when the
coupling coefficient, L̃φ−Q<0 [21, 71, 72, 76]. The structure of the
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FIGURE 4 | The equilibrium spatial distributions of (a1) uniaxial order parameter, S, and the relaxed uniaxial director, n, (b) z component of uniaxial director, (c)

concentration, and (d) biaxial order parameter, P. (a2) showing the magnified rotation of tropocollagen placed in the yellow dash-line box. (a3) indicating the

non-singular escaped λ+1 disclination emerges at the center of tactoid. (e) Representing the color bars for S, nz, P, and C, the used coordination of system and

length-scale bar.

2D tactoid is a radial helix, with tangential interface orientation
at the edge and non-singular escape orientation at its center.

Of particular interest to this study is incorporation and
analysis of biaxial order parameter during the evolution of the
cholesteric tactoid. In the third column of Figures 3a3–d3,
the spatial variation of biaxial order parameter, P, is shown
in the early stages of growth. The biaxial order parameter
becomes particularly noticeable at the interface and at the
defect core. Thus, we found that although the equilibrium
biaxiality for rod-like macromolecules is small [27, 51],
during the phase ordering it takes a larger value than
its equilibrium; the difference between dynamical and
equilibrium values for biaxiality may be up to three orders
of magnitude.

In the course of time, the Q-tensor is relaxed, mass transfer
ceases and the structure equilibrates, as shown in Figure 4.
As depicted in Figures 4a1,b, the equilibrium configuration of
tropocollagen rods becomes concentric, also known as onion-
like. This defectless configuration, which has a non-singular λ+1

cholesteric disclination at its center, thoroughly matches with
the xy-cross-section of Twisted Bipolar Structure (TBS) given in
Sec et al. [77]. Moreover, the experimental POM image reported

in Gobeaux et al. [21] confirms TBS for the 3D tropocollagen
tactoids. Consequently, the resulting 2D configuration, shown
in Figures 3, 4, is consistent with experimental observation.
Figure 4a1 shows that the size of tactoid is also consistent
with experimental results given in Gobeaux et al. [21]. As can
be seen, the diameter of tactoid contains three pitches that
each of which has a length of 10µm. Therefore, the tactoid
shape becomes a nearly 30µm spherulite. Figure 4c represents
the equilibrium concentration field. Although a gradient of
concentration exists in the interface, the drop remains intact and
stable in the isotropic phase. This feature verifies that the growth
of cholesteric tactoid is according to the mechanism of uphill
diffusion. Figure 4d demonstrates that the equilibrium biaxial
order parameter P in the interface is nearly 0.04, however its
value sharply decreases to 10−4 confirmed by previous theoretical
studies [27, 51].

Through the entire evolution we find: (1) the interfacial
uniaxial order parameter is approximately Sc = 0.39 that
is quite close to the critical uniaxial order parameter
reported in Khadem and Rey [20] and Gobeaux et al.
[21]; (2) The biaxial order parameter at the tactoid’s
interface is at all times greater than in the interior. The
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FIGURE 5 | The dynamics of the averaged free energy contributions, given in Equation (28), through a shallow quench from an isotropic state into cholesteric

phase—the quench point and evolution path are shown in Figure 1. The solid lines correspond to the left y-axis and dash lines should be referred to the right y-axis.

only exception is during initial defect nucleation where
biaxiality pronouncedly appears at the core and edge of the
2D drop.

According to the principle of minimum free energy, the
kinetic of a spontaneous process follows a path over which
the free energy progressively decreases and ends up in a
minimum at equilibrium. Figure 5 illustrates the averaged free
energy contributions through the phase ordering process of
tropocollagen dispersed in the constant concentration of 2.9M
acetic acid. These spatial averages are defined as

F̄i
(

t̃
)

=
x

CD

f̃i · dxdy/
x

CD

dxdy; i ∈
{

iso, h, e, cg, c
}

(28)

The formation of the single cholesteric drop is the interplay
of five free energy contributions. The entropic and enthalpic
contributing factors in isotropic phase separation are described

by Flory-Huggins theory, f̃iso. The LdG theory, f̃h, also
accounts for the homogeneous effect of phase transition.
The spatial averages of these contributions are shown by
F̄iso and F̄h, respectively. The monotonic decrease in F̄iso
and F̄h shows that the phase separation and phase ordering
are energetically favorable. In addition, it emphasizes on
the lyotropic nature of phase ordering in acidic collagenous
dispersions; rods are spontaneously accumulated in cholesteric
phase, in turn, removed from the isotropic phase. Hence,
F̄net which is the summation of all contributions, is
considerably affected by contributions of phase separation and
phase ordering.

In spite of these energetically favorable contributions,
formation of I/N∗ interface and cholesteric configuration inside
the tactoid require energy costs which are reflected as penalty

terms in the net free energy; see Equations (22a–d). The green
solid line in Figure 5, F̄cg, depicts the cost of interface formation
(i.e., mass gradient zone shown in the Figure 4c). This cost
is nearly 40 percent of the energy reduction in either phase
separation, F̄iso, or phase ordering, F̄h, thus the interfacial
formation cost can be compensated. Furthermore, the black dash
line, F̄e, and the purple dash line, F̄c, stand for the average
costs for the onion-like configuration of rods inside the chiral
nematic tactoid and the tangential configuration in interface,
respectively. As seen, the formation cost of the interfacial
parallel anchoring, F̄c, is ∼2% of the interior cholesteric
energy, F̄e.

CONCLUSIONS

Building on our prior work [20], in this study, we have developed
and validated a theoretical framework to study the spatio-
temporal phase ordering of tropocollagen dispersed in acidic
aqueous solutions into 2D drops. By use of the addition theorem
for spherical harmonics (Equation 8), we first incorporated the
biaxial order parameter P (Equation 3) into the orientational
entropy (Equation 6), the second virial approximation Equations
7a–c), and the intermolecular interaction (Equation 10). We
then obtained the LdG coefficients (Equations 21a–d), and
formulated the net free energy of system, (Equations 21a–d).
To capture the kinetic of the emerging 2D tactoids size, shape,
and structure, we relied on the proposed net free energy and
phase ordering/mass transfer process (Model C) to establish the
governing equations, Equations (23a,b), which were numerically
solved under the mentioned auxiliary conditions elaborated in
subsection Computational Details.
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Figures 3a–d reveal two findings. First, the physical origin
for the non-singular escaped λ+1 disclination. Basically, in the
early evolution a τ+1 defect emerges at center of nucleus.
As time progresses, the central directors go through a defect
shedding stage and the τ+1 cholesteric defect evolves into
the escaped λ+1 disclination. Second, at the interface and
defect core region, the biaxial order parameter takes appreciably
large value in the early evolution. Furthermore, Figures 4a1–
a3,b demonstrate that the resulting equilibrium state of
collagen tactoid is an ∼30µm spherulite in which the rod-
shaped macromolecules are aligned in concentric configuration,
consistent with experimental observations [21]. Taken together,
these results contribute to the development of optimized
processing protocols for collagen-based materials and their
material property characterization.
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NOMENCLATURE

Symbol Units Description

a3 m3 Volume of each lattice unit

B2 (ψ (u)) [–] Second virial approximation to

represent the excluded-volume effect

cA m−3 Number density

C mg/ml Concentration of tropocollagen

Deff m Effective diameter

D m Bare diameter

d� Radian Solid angle

Ei [–] Exponential integral

f̃ [–] Dimensionless free energy density

Fs j Free energy of solution

F̄i [–] Average of total dimensionless free

energy contribution i

h [–] Magnitude of the twisting effect

ε Molar Ionic strength

kB m2.kg.s−2.K−1 Boltzmann constant, 1.38064852 ×
10−23

l [–] l = n×m

L m Contour length

L1 and L2 j/m Elastic constants

L̃φ−Q [–] Dimensionless coupling parameter

L̃φ [–] Dimensionless cost of interfacial

formation

m [–] Biaxial director

M (ψ (u)) [–] The orientation-dependent

intermolecular interactions

M̃φ [–] Dimensionless mass-transfer mobility

mi Molar Molar concentration of ith mobile ion

Navo mol−1 Avogadro’s number, 6.022140857 ×
1023

NA and NI [–] Number of chiral mesogens and

isotropic component

NT [–] Total number of lattice site

n [–] Number of segments in the backbone

of mesogen

n [–] Uniaxial director

P [–] Biaxial director

p∞ m Pitch

P2 (cos (γ )) [–] Second Legendre polynomial of angle

between the macromolecules

Q [–] Quadrupole moment tensor,

well-known as Q-tensor

S [–] Macroscopic uniaxial order parameter

U j.m−3 Potential of orientation-dependent

intermolecular interaction

Ui j The net one-body mean field potential

of ith rod

U′MS j.m−3 Positive constant independent of

temperature related to Maier-Saupe

parameter

Symbol Units Description

UMS j.m−3 Positive constant independent of

temperature, Maier-Saupe parameter

Uelc
i j One-body mean field potential of ith

rod for electrostatic interactions (i.e.,

repulsion and twisting) on the other

existing rods in the system

U′elc j.m−3 Strength of electrostatic potential (i.e.,

repulsion and twisting)

Uelc j.m−3 Strength of electrostatic interaction

among the rods (i.e., repulsion and

twisting)

u and u′ [–] The orientations of two rod-like

macromolecules

V m3 Volume of system

W [–] Net cholesteric potential

x m x-component of space

Zi [–] Charge number of ith mobile ion

α [–] Double-layer thickness parameter

αW [–] Dimensionless constant defined as

αW = 5/φ∗ where φ∗ is the effective

volume fraction of tropocollagen

αc ml/mg Unit conversion used for converting

the effective volume fraction to

concentration in unit of mg/ml

β j−1 Thermal energy

γ Radian Angle between rods

γE [–] Euler constant, 0.5772

δ [–] Kronecker delta

η [–] Constants determined by

normalization of distribution function

θ Radian Polar angle

κ−1 m Debye screening length

λB m Bjerrum length

3 Charge number

per meter

Linear charge density

µo j Standard particle chemical potential

ξ m Coherence length or correlation

length

σ (ψ (u)) [–] Effect of orientational entropy

υAA, υ IA, and υ II m3 Average excluded-volume between

mesogen-mesogen,

mesogen-isotropic component and

isotropic component—isotropic

component

υA and υI m3 Molecular volumes of mesogen and

isotropic component

ϕ radian Azimuthal angle

φ [–] Effective volume fraction of mesogen

χ [–] Isotropic Flory-Huggins parameter

ψ (u) [–] Single-rod orientational distribution

function
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When dispersed in thermotropic nematic liquid crystal oils, surfactant-ladden aqueous

droplets often lead to the formation of a equatorial ring disclination in the nearby

nematic matrix as a result of a balance between elasticity and interfacial energy. In

this experimental work, the aqueous phase contains an extract of cytoskeletal proteins

that self-assemble into an active quasi-two-dimensional shell featuring self-sustained

periodic flows. The ensuing hydrodynamic coupling drives the surrounding liquid crystal

and triggers oscillations in the disclinations. We describe the dynamic modes of the

disclinations under different driving conditions, and explore their pathway to collapse

under flow conditions.

Keywords: liquid crystals, nematic emulsions, active nematics, disclinations, nematic shells

1. INTRODUCTION

Nematic liquid crystals (NLCs) are liquids whose molecules organize with long-range orientational
order, which is locally characterized by a director field, n̂ [1]. The latter is typically controlled by
means of the boundary conditions on the confinement walls or through the action of electric or
magnetic fields. The equilibrium distribution of n̂ is established through the minimization of bulk
and interfacial energies compatible with topological constraints dictated by confinement, which
may lead to frustrated configurations and the appearance of defects [2]. Although technological
applications of these materials are based on their use in defect-free systems, significant current
research efforts in CondensedMatter Physics are centered in the preparation and control of tunable
defect assemblies, with potential use in the development of metamaterials [3].

A particular case of frustrated geometries in NLCs is obtained by preparing nematic colloidal
suspensions [4, 5]. These are systems in which the ordered mesophase, which is typically oriented
in a homogeneous fashion by means of the anchoring conditions on bounding plates (far field), is
disrupted by the presence of sub-millimeter solid [6–13] or liquid [14–16] inclusions. Realizations
include from spherical to more complex geometries such as fractal-like shapes, from sparse to
dense colloidal ensembles, from spontaneous to tailored self-assembly [9, 17–20]. Except from
the preparation of assemblies of driven colloidal particles [21] or defects [22], or the study of
defects formed under flow conditions [23], most research on nematic colloids has focused on stable,
equilibrium structures.

Recently, we brought a nematic emulsion out of equilibrium by dispersing aqueous droplets of
an active gel in a nematic liquid crystal [24]. The active gel, which is prepared from an in-vitro
reconstitution of cytoskeletal proteins develops, under suitable conditions, an active layer with
nematic order at the water/oil interface, denoted active nematic (AN) [25, 26]. At the inner side
of the spherical droplets, the resulting AN shell exhibits self-sustained flows that are transmitted
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hydrodynamically into the surrounding nematic matrix. As a
result, the ring disclination (Saturn ring, SR) that, in our case,
surrounds the dispersed droplets [27–29] is perturbed from
its (equilibrium) equatorial position, into different oscillations
modes. With the support of numerical simulations, our earlier
study revealed a feedback mechanism between the orientation
of the SR, determined by the nematic far field, and the spatial
arrangement of the AN shell, which led to sustained periodic
oscillations of the SR. However, such regimes were not the norm
in the experiments, and often driven SR became unstable and
collapsed into a dipolar configuration.

In this article, we provide a thorough revision of the different
dynamic modes of SR driven by the underlying AN shell,
the possible dynamic states, which involve both synchronous
and asynchronous oscillations, and the different pathways
that lead to the collapse of the SR into a dipolar point-like
defect configuration.

The article is structured as follows. After a succinct description
of the used materials and employed experimental methods, we
describe the main features of the emulsified droplets, including
the structure of the underlying AN shell. Then, we describe the
observed dynamic modes of the SR, both stable and unstable, and
their dependence on control parameters. Finally, we focus on the
long term behavior of the dynamic SR.

2. MATERIALS AND METHODS

2.1. Active Material
The active system we used consisted of an active gel formed
by an aqueous suspension of tubulin microtubules, dimeric
kinesin molecular motors, and the non-adsorbing depleting
agent polyethylene glycol (PEG), which concentrates the
microtubules into bundles, hundreds of micrometers long [25].
Precise details of the experimental procedures leading to the
preparation of all materials can be found elsewhere [24]. In
brief, microtubules were polymerized from tubulin purified
from bovine brain (a gift from Brandeis University Biological
Materials Facility) in the presence of 0.6 mM of Guanosine-5-
[(α,β)-methyleno]triphosphate (GMPCPP), which promotes the
formation of short microtubules, 1−2µm in length, required for
the formation of the active material. About 3% of the tubulin is
labeled with the fluorophore Alexa-647. Heavy chain kinesin-1
(K401-BCCP-6His) from Drosophila Melanogaster was in-house
purified from Escherichia coli that contained the plasmid WC2
from the Gelles Laboratory (Brandeis University, MA, USA).
The kinesin was biotinilated and incubated with streptatividin to
obtain dimeric clusters, which would act as cross-linkers when
mixed with the microtubule suspension. The active mixture was
completed with 20 kDa PEG that acted as a depleting agent,
Adenosine Triphosphate (ATP) that drove the activity of the
gel, anti-bleaching agents, and an enzymatic ATP-regenerating
system to maintain a constant activity in the mixture for hours.
In order to emulsify the active aqueous suspension in the liquid
crystal oil, suitable surfactants were added to the active mixture
to ensure a biocompatible water/oil interface and to determine
the anchoring conditions for the liquid crystal molecules in
contact with the droplets. To promote the desired homeotropic

(perpendicular) anchoring, PEGylated phospholipids were used
at a concentration 0.2 %w/v.

2.2. Liquid Crystal-Based Emulsions
As dispersing oil phase, we used 4-Cyano-4’-pentylbiphenyl
(5CB, Synthon chemicals), which features a nematic phase
at room temperature. In order to enhance the homeotropic
anchoring on the aqueous droplets surface, about 0.4 w/w% of
stearic acid was dissolved in the mesogen. The emulsion was
prepared by combining the active gel and the oil in a 1 mL
centrifuge tube at a ratio 1:30, and mixed by the action of a vortex
stirrer at room temperature.

2.3. Sample Preparation and
Characterization
Liquid crystal cells were assembled by gluing two parallel glass
plates together with a spacing of 140 µm set by double-sided
adhesive tape. The inner side of the plates was treated to promote
planar anchoring of the NLC by rubbing a previously spin-coated
and baked layer of poly-vinyl alcohol. After the cell is filled by
capillarity with the active emulsion, the openings are sealed using
UV-curing adhesive. Microscopy observation was performed
using a Nikon E400Pol multimode microscope. Fluorescence
was used to visualize the AN layer while brightfield was
employed to visualized the SR disclinations. The latter is typically
preferred to polarized microscopy, which we have occasionally
employed, since it results in a more homogeneous appearance
of the disclination along all its length. Time-lapse acquisition is
performed with an Andor Zyla 4.2 Plus camera controlled with
the open-source software ImageJ Micro-Manager [30], which is
also employed for further image processing and analysis.

3. RESULTS AND DISCUSSION

Dispersed in the mesogenic oil, spherical aqueous droplets
promote homeotropic anchoring of the NLC director on their
surface due to the employed surfactants (see section 2). This
results in a topological mismatch with the homogeneous planar
far-field imposed by the boundary conditions on the cell plates.
As a result, a ring disclination forms around the droplet’s equator,
perpendicularly to the NLC far-field direction (Figure 1A). As
discussed below, this configuration is metastable [28], and may
relax to a less energetic dipolar configuration where the SR
collapses as a point-like defect near the North or the South
pole of the droplet. Inside the aqueous droplets, the filament
bundles formed by fluorescent microtubules crosslinked with
kinesin clusters are pushed toward the water/oil interface by
the depleting action of PEG. This process is usually studied
on a flat interface, leading to the formation of an AN layer a
few microns thick, where the filaments are intrinsically prone
to buckling instabilities due to internal extensile active stresses.
This results in the unbinding of complementary pairs of semi-
integer defects, with the +1/2 defects creating flow while the
negative counterparts being simply advected [26]. In Figure 1B,
some defects present in the observation window of a flat AN, in
an independent experiment, are marked. In particular, the tip of
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FIGURE 1 | (A) Sketch of the nematic director field lines around a dispersed droplet of aqueous based active material that imposes homeotropic anchoring

conditions. The NLC has a homogeneous far field oriented in the vertical direction in this sketch. The confining plates are parallel to the plane of the sketch. The

droplet, which is visualized with fluorescence microscopy, has a diameter of 80 µm. The homeotropic anchoring conditions on the droplet surface lead to the

formation of a line disclination that wraps around the equator. (B) Structure of an Active Nematic layer forming at a flat water/oil interface, with the core of some

positive (red empty triangles) and negative (blue full circles) semi-integer defects being marked. The ruler is 20 µm long. (C) Approximate director field lines of the

Active Nematic shell observed in the droplet of (A). In red, the core of the two visible +1/2 defects is sketched. (D) Theoretical rendering of the four +1/2 defects that

organize the flows in active shells present in droplets of this size. Solid triangles correspond to visible defects while empty triangles correspond to hidden defects.

+1/2 defects is indicated with a red triangle that points in the
direction of the local defect trajectory.

The average distance between defects in the AN is
characterized by the so-called active length scale [31, 32],
which balances the active stresses and the elastic modulus of the
filaments [33, 34]. When topology demands the coexistence of a
given number of defects, this length scale determines the smallest
confinement compatible with the AN. This is important, for
instance, in the case of the soft confinement of AN in contact with
anisotropic interfaces patterned with disks [35], or in spherical
shells [24, 36], which is the relevant case for our purpose.

Wrapping of a two-dimensional nematic on a closed spherical
surface requires a net topological charge +2 of the defects present
in the director field [37, 38]. In the case of an AN shell, where
only semi-integer defects are possible, the simplest conformation
compatible with this topological constraint involves four +1/2
defects that will be placed at the vertices of an imaginary rotating
tetrahedron in the steady state [36, 39] (Figures 1C,D). Because
of the above-mentioned intrinsic active length scale, droplets that
are too small cannot accommodate the four defects required for a
stable active nematic shell, and droplets that are too large, enable
the unbinding of more than four defects, resulting in turbulent-
like flow regimes [26, 40]. For thematerial parameters used in our
active preparation, we have found optimal to restrict our studies
to droplets with diameters in the range 60–120 µm.

On the other hand, the distance between the disclination and
the droplet surface will be instrumental to the coupling between
the SR and the underlying active flow, with stronger coupling

presumably occurring for SRs that are closer to the droplet.
For strong anchoring conditions, this distance is proportional
to the droplet size [27, 28], and is determined by the balance
between NLC elasticity, represented by an elastic constant K, the
radius of curvature of the director field distortions around the
droplet, R, and the anchoring strength on the droplet surface,
W, through the dimensionless ratio WR/K [1, 2]. For weak
anchoring, the homeotropic surface alignment condition will not
be satisfied, which results in distortions with small curvature that
lead to the disclination stabilizing closer to the surface. In our
experiments, W is determined by the nature and concentration
of the employed surfactants. In earlier experiments [24], we
tested the use of surfactants that led to conical, rather than
homeotropic, anchoring, resulting in SR that were closer to the
droplet surface and did not exhibit the high energy oscillation
modes we report here. In the current study we have restricted to
the use phospholipid-based surfactants, which we have found to
offer a richer collection of dynamic SR regimes.

Interestingly, we have found a disparity of behaviors in
droplets of similar sizes within a single preparation. A
possible source for this dispersion is an heterogeneous droplet
composition during the emulsification process, which we have
assessed by preparing ensembles of droplets of nearly identical
size by means of a microfluidic droplet generation device
(Figure 2A). We observe disparities in the fluorescence intensity
from different droplets, which points to the heterogeneous
composition of the encapsulated active aqueous phase. In
the example shown in Figure 2A, the continuous phase is a
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FIGURE 2 | Sources of heterogeneity of the active emulsions.

(A) Heterogeneous composition of monodisperse active droplets prepared

using microfluidic techniques and dispersed in an isotropic oil. The ruler is 100

µm long. (B) Size distribution of droplets in a typical active nematic emulsion

prepared using traditional emulsification techniques. The field of view is

3mm wide.

fluorinated oil, which offers better chemical compatibility than
the NLC oil with the microfluidic device. For the purpose of the
present work, in which we study the behavior of isolated droplets,
we have resorted to more traditional emulsification methods,
leaving the assembly of lattices of identical active droplets in
NLC for future work in which coupling, synchronization, and
frustration in driven SR will be explored. In the emulsions
prepared by shaking the mixture, droplet sizes feature a broad
distribution (Figure 2B), but enough droplets of the suitable size
range are obtained for the qualitative study reported here.

In the presence of active stresses, the AN shell develops
periodic cortical flows [24, 36]. The latter propagate, through
hydrodynamic coupling, both into the aqueous and into the
NLC bulk phases. As a result, the SR is set into motion and
the steady influx of energy may lead to a wealth of dynamic
modes. The presence of the plate walls is likely to affect the flow
profile in the NLC. Because of the antagonistic NLC anchoring
conditions on the droplets and on the plates, homeotropic and
planar, respectively, elastic repulsion prevents the droplets from
fully sedimenting on the bottom plate [41]. When the continuous
phase is an isotropic oil [25], active droplets self-propel erratically
on the supporting surface. Such motion is not observed in
our case, presumably due to the elastic repulsion due to the
NLC matrix, although the higher viscosity of the NLC will also
contribute to hamper such self-propulsion. Moreover, the use

of cell gaps much larger than the droplets considered in our
study ensures that friction on the complementary plate can also
be neglected.

In Figure 3 we display the range of dynamical regimes
observed for the activated SR. For each case, a panel with an
experimental micrograph and one with a sketch highlighting
the main features of the corresponding regime is illustrated.
The experimental micrographs are obtained with brightfield
and parallel illumination to enhance the ring disclination. The
elastic energy in the NLC matrix increases with the length
of the SR, and this has an increasing trend from panel A
till panel E.

In Figures 3A–C, we report regimes in which the SR
distortion can be considered 1D, in the sense that it can be
described by a uni-valued function of the angular coordinate
around the droplet’s equator. Among these regimes, the first
two correspond to synchronized dynamics between the SR and
the underlying AN. This dynamics is better put into evidence
in the least energetic regime (Figure 3A), where SR oscillations
are characterized by a single distortion mode. These distorted
SRs lack rotational symmetry, which allows to observe slow
degenerate rotations of the dynamic SR about the North-South
droplet axis, thus changing the point-of-view, and thus the
perception of the oscillating SR and allowing to more clearly
assess its oscillation mode (Figure 4). The synchronization
between the oscillations of the AN and those of the driven SR
are clearly evidenced in fluorescence images. In Figure 5we show
three different fluorescence micrographs that span one half cycle
of the SR oscillation. We observe that the SR transits past its
equilibrium plane at the same time that the AN is aligned either
parallel or perpendicular to this plane, and the SR is farthest from
equilibrium when it is being driven by two +1/2 defects moving
in antiparallel directions in the underlying AN (Figure 5B). With
the help of numerical simulations, we recently demonstrated that
this tight coupling between the AN and SR oscillatory dynamics
is only possible if a feedbackmechanism orients the AN shell with
respect to the SR [24].

More energetic multi-mode oscillations can also be observed
(Figure 3B). On average, such configurations are found by
increasing the AN activity, which can be tuned by increasing
the ATP concentration. In Figure 6 we compare the dynamics
of two droplets that feature synchronous oscillations, found in
active nematic emulsions with [ATP] = 140 µM and 1,400
µM, respectively. In the analysis in Figure 6B we find that the
oscillations observed in Figure 6A feature a single mode with
frequency f ≃ 14 mHz. On the other hand, in Figure 6D we
see that the oscillations observed in Figure 6C are multimode,
with a leading frequency f ≃ 60 mHz and three of its harmonics
present in the spectrum. This change in leading frequency with
the corresponding change in ATP concentration is consistent
with the results obtained in an earlier detailed analysis performed
with flat AN layers, where the inverse of a intrinsic time scale of
the system was found to scale linearly with the activity parameter,
which is related in a non-linear way with the concentration of
ATP [42].

As the deformations of the SR become more energetic, the
synchronization with the underlying AN can be lost (Figure 3C),
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FIGURE 3 | Different dynamic structures of the perturbed Saturn Rings. Sketches on the left and micrographs on the right are included with each case. (A) Single

mode (m = 2) synchronous oscillations. (B) Multi-mode synchronous oscillations. (C) Multi-mode asynchronous oscillations. (D) Multi-valued single wrapping of the

SR. (E) Multi-valued multiple wrapping of the SR. (F) SR has fragmented into multiple disconnected disclinations and loops. (G) SR has collapsed into a point defect

to the South of the droplet. Scale bars, 20 µm.

resulting in severely distorted SRs. This regime is often unstable,
and it may either revert back to synchronous oscillations or,
more likely, develop into more complex asynchronous modes,
where the SR cannot be described by a single-valued function
of the spherical azimuthal coordinate (Figures 3D,E), as it can
be for the simpler geometries in (Figures 3A–C). In these more
complex modes, highly distorted SR may develop large folds but
still be wrapped just once around the droplet (Figure 3D), or
even be wrapped multiple times around the droplet (Figure 3E).
This latter configuration is reminiscent of the multi-wrapping
of SR due the helical twist of the director field in cholesteric
liquid crystal layers [43], where the equilibrium spacing between
consecutive turns is set by the cholesteric pitch. However, these

are two very different systems since, in the case of our active
nematic emulsions, the spacing between consecutive SR turns is
a non-equilibrium feature, and it never reaches a steady state.
As seen in Figure 7, the SR progressively increases its length
and wraps an increasing number of times around the droplet,
until the pitch between neighboring turns of the disclination
reaches a limit value. Such configuration is unstable, and the
SR can snap and link neighboring turns of the disclination,
forming a shrinking fold. Such process is dynamic, and can be
repeated numerous times. A possible subsequent outcome is a
fragmentation of the SR into disconnected disclination loops
(Figure 3F). In equilibrium, these would normally shrink and
annihilate but, because of the underlying AN flow, and because
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FIGURE 4 | Simulated perception of the Saturn Ring disclination. Different

single-mode oscillations are reconstructed at the highest amplitude of

deformation for two point-of-view observations, ϕ. Deformation modes are

m = 1 (A,B), m = 2 (C,D), m = 4 (E,F). (B,D,F) correspond to points of view

rotated 45◦ clockwise with respect to (A,C,E), respectively.

FIGURE 5 | Coordination between the SR and AN orientation during

synchronized oscillations. Fluorescence micrographs with three snapshots of

the AN oscillation. The SR is sketched as a red line. The dashed lines in

(A) and (C) represent the two complementary states of the active shell where

filaments are aligned, while panel (B) includes the distorted SR configuration.

The droplet has a diameter of 80 µm.

of surface impurities, the loops can remain for extended periods
of time.

A SR disclination is not the only distortion compatible
with homeotropic anchoring conditions on the droplet surface.
Indeed, another possibility is a hyperbolic point defect located
near either pole of the droplet (Figure 3G), called hedgehog
defect [5]. Upon preparation of the active nematic emulsions,
we observe that a similar number of droplets with either
type of defects coexist. As the emulsion ages, this distribution
changes, and progressively most droplets feature a point-
like defect. As a matter of fact, SRs appear less stable

FIGURE 6 | Effect of activity on the SR dynamics. (A) Polarizing micrograph of

a single mode oscillating SR driven by an AN shell with [ATP] = 140 µm, and

the corresponding power spectrum of the oscillations (B). (C) Polarizing

micrograph of a multimode oscillating SR driven by an AN shell with [ATP] =
1,400 µm, and the corresponding power spectrum of the oscillations.

(D) Scalebar, 50 µm. See also Video S1.

FIGURE 7 | Dynamics of the wrapped SR. (A–C) Progressive increase of the

number of turns around the droplet of a SR of increasing length. (D–F) Two

neighboring parts of the SR from ajdancent turns snap, and the resulting fold

in the disclination shrinks. Red arrow points to the tip of the shrinking fold.

Scalebar, 20 µm. See also Video S2.

and some of them are observed to eventually transit to
hedgehog-like defects [28]. The opposite transition, however,
is never observed. We explain this phenomenon by the
tendency of line disclinations to shrink in order to minimize
the elastic energy per unit length associated to director
field distortions.

Our experiments show that the kinetics of the collapse of
a SR to a point-like defect strongly depends on the dynamic
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FIGURE 8 | The different dynamic configurations of the system are sketched

and ordered in terms of the length of the SR, which determines the elastic

energy landscape. The shaded region represents regimes with stable SR

oscillations. Solid and dashed lines represent possible pathways in the

evolution of the SR, as described in the text. At long times (ATP running out),

the SR may either return to its equilibrium conformation or collapse into a

dipole.

regime of the SR. Synchronous oscillation regimes may never
develop into a point defect, while highly-wrapped, asynchronous
regimes, which may involve SRs that wrap several times around
the droplet, are invariably seen to collapse into a point-like defect.
Schematically, we can rationalize this scenario by considering
that an energy barrier must be overcome by the SR in order to
collapse into a point-like defect. In Figure 8, we have organized
the different observed SR configurations in increasing order
of elastic energy. As discussed, the equilibrium SR is not the
lowest energy level. Below it, we find a sequence of states in
which the SR moves from the equatorial position toward a pole,
progressively shrinking, i.e., decreasing the NLC elastic energy,
until it collapses into a point-like defect. Activated SRs have an
average energy above the equilibrium state. Since synchronous
oscillation regimes seldom destabilize, their energy levels allow
to qualitatively describe a band (shaded in Figure 8) that must be
overcome for the SR to evolve into the dipolar defect. Certainly,
during their oscillations, SR increase their average energy, which
reaches a steady state. Eventually, the fuel of the underlying
AN, ATP, encapsulated in the droplet, will run out, and the
average energy falls back to the equilibrium value as the SR
ceases to oscillate. Two trajectories with stable oscillations in this
schematic energy landscape are qualitatively traced in Figure 8.
For more energetic configurations, such as for the asynchronous
oscillation regime, the energy level may cross the edge of the
protected region, and the SR may irreversibly collapse to a point-
like defect (red trajectory in Figure 8). Finally, the fact that
highly distorted SR regimes are always unstable suggests that
their energies invariably reach levels above the stable band, and
SRs in these dynamic regimes will evolve into a point-like defect
well before activity vanishes due to ATP consumption in the
AN shell.

4. CONCLUSIONS

In this manuscript we have described experiments in which
Saturn ring disclinations, often encountered in colloids dispersed
in nematic liquid crystals, are brought far from equilibrium
by the encapsulation of droplets containing an aqueous active
suspension of cytoskeletal proteins. Under the used experimental
conditions, well-characterized in previous studies, this material
condenses as an active nematic shell with periodic self-sustained
flows that propagate into the passive nematic phase. As a
result, the Saturn ring is set into motion and the steady
influx of energy leads to a rich array of dynamic modes.
The latter span from simple synchronous oscillations in which
the disclination remains close to its equilibrium length, to
situations in which the length increases steadily, even wrapping
several times around the spherical inclusion. In such cases, the
metastable quadrupolar defect might eventually collapse into a
dipolar configuration.

The dynamic state of the driven Saturn ring depends on the
energy influx received from the underlying active nematic layer.
This energy depends on the activity and on the efficiency of
the coupling between the active and the passive fluids. While
the former can be tuned with the concentration of ATP in
the aqueous phase, the latter can be influenced by the nature
and concentration of the surfactants that decorate the water/oil
interface. We have found, however, that the emulsification
process leads to a dispersion in the droplet composition, resulting
in a disparity of behaviors.

In this manuscript, we have focused on the dynamics
of driven disclinations around individual droplets. Our work
should pave the way for the future study of collective
effects that should arise when multiple disclinations are
linked [44]. This would allow to explore the effects arising from
synchronization and topological frustration of knotted driven
Saturn ring disclinations.
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Mass-spring networks (MSNs) have long been used as approximate descriptions of

biological and engineered systems, from actomyosin networks to mechanical trusses.

In the last decade, MSNs have re-attracted theoretical interest as models for phononic

metamaterials with exotic properties such as negative Poisson’s ratio, negative effective

mass, or gapped vibrational spectra. A numerical advantage of MSNs is their tuneability,

which allows the inverse design of materials with pre-specified bandgaps. Building on

this fact, we demonstrate here that designed MSNs, when subjected to Coriolis forces,

can host topologically protected chiral edge modes at predetermined frequencies, thus

enabling robust unidirectional transmission of mechanical waves. Similar to other recently

discovered topological materials, the topological phases of MSNs can be classified by a

Chern invariant related to time-reversal symmetry breaking.

Keywords: mechanical networks, topological matter, Chern insulator, classical mechanics and quantum

mechanics, edge modes

1. INTRODUCTION

Topological mechanics [1] is a rapidly growing research field that studies classical analogs of
topological effects in quantum many-body physics [2]. A prime example are spectrally gapped
mechanical systems that can host topologically protected zero modes at their boundaries [3–5],
similar to localized electronic excitations in the quantum spin Hall effect [6]. Another important
class of examples are solid- or fluid-mechanical systems with broken time-reversal symmetry,
which can exhibit chiral edge modes at finite frequency [7–10], analogous to the (anomalous)
quantum Hall effect [11, 12]. Because these edge modes are topologically protected and robust
against the introduction of defects, they may provide a powerful tool for the resilient localized
transmission of sound signals in elastic materials [13].

Over the last 5 years, substantial progress has been made in the understanding of topological
phenomena in a wide variety of classical systems, ranging from mechanical systems with lattice
symmetry inspired by quantum analogs [14, 15] and amorphous networks [9, 16] to active
systems [7, 17, 18], electrical circuits [19–21], and even ocean waves [22]. Many of the recently
discovered mechanical topological insulators rely on a known underlying lattice structure [7, 14]
or curvature [22] to induce the required gaps in their excitation spectra. From a practical
perspective, it would be interesting to design and build more general structures with desired
topological properties.

Complementing recent work aimed at engineering continuum topological insulators [23],
we consider here the design of topological excitations in bandgap-optimized [24] mass-spring
networks (MSNs). Specifically, we will demonstrate that MSNs with an inversely designed
bandgap can host topologically protected finite-frequency edge modes, and convert non-robust
non-topological edge modes into robust topological edge modes when time-reversal symmetry is
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broken. While many traditional topological materials, including
those based on a hexagonal lattice like theHaldanemodel [25], do
not possess the mode conversion property, this desirable feature
is frequently encountered in our designed MSNs.

In the remainder, we focus on the dynamics of periodic
crystals of 2D mechanical balls-and-springs networks. In all
cases, the spring stiffnesses of these MSNs were numerically
tuned such that the excitation spectrum exhibits a band gap
(using the algorithm introduced in [24]). In formal analogy with
quantum Hall systems [11, 12], we will then break time reversal
symmetry by placing the MSN into a rotating frame, with the
Coriolis forces acting equivalently to an external magnetic field.
To study and characterize the topological phase transition and
the emerging protected chiral edge modes in detail, we will
(i) numerically calculate the non-zero Chern invariant associated
to the topological phase, (ii) demonstrate the dynamics of the
localized chiral edge excitations in numerical simulations, and
(iii) explicitly identify those dynamical edge modes that are
related to topological protection. The underlying inverse-design
framework [24] uses a generic linear response optimization
and is, therefore, broadly applicable. Promising candidates for
experimental implementations are mechanically coupled phase
oscillators under Coriolis acceleration, such as hydrodynamic
spin lattices of walking droplets [26] or gyroscopic mechanical
metamaterials [8, 10].

2. DYNAMICS OF MECHANICAL
NETWORKS

MSNs provide a generic modeling framework for many physical
systems. The potential energy of an MSN with E springs
is given by

V =
1

2

E
∑

e=1

ke

(

ℓe − ℓ(0)e

)2
,

where ke is the stiffness of spring e, ℓe is its current length and ℓ
(0)
e

is its preferred rest length. Here, we are interested in the dynamics
near the equilibrium configuration where all springs are at their

rest lengths, ℓe = ℓ
(0)
e , corresponding to the masses being at

positions x
(0)
i . Expanding in small deviations ui = xi − x

(0)
i and

neglecting frictional effects, we obtain the linearized equations
of motion,

mü+ Ku = 0, (1)

where K is the stiffness matrix of the network and m is the
mass of the balls (we assume identical masses throughout). The
vector u generally has dN components, where d is the dimension
of space and N is the number of masses. From now on, we
specialize to the case d = 2. The stiffness matrix can be further

decomposed as K = Qk̂Q⊤, where Q is the equilibrium matrix

encoding the network geometry and k̂ = diag(k1, k2, . . . , kE) is
the diagonal matrix of spring stiffnesses [27]. Neglecting thermal
fluctuations throughout, the subsequent discussion focuses on

macroscopic topological metamaterials, similar to those realized
experimentally in Chen et al. [28]. In principle, it is possible
to incorporate thermal or non-thermal noise [18] and/or more
general nonlinear potentials, such as in the elastic Lennard-
Jones model [29], provided these admit linearizations in the form
of Equation (1).

The MSN dynamics, specifically its harmonic response and its
phononic modes, are encoded in the eigenmodes

Kuj = mω2
j uj, (2)

where ωj are the eigenfrequencies. If the network is a crystal
consisting of Nc periodically repeated unit cells with lattice
vectors Rℓ, the dynamical problem can be simplified by
performing a lattice Fourier transform [27],

un(Rℓ) =
1

Nc

∑

k

e−ik·xiun(k)

un(k) =
∑

Rℓ

eik·xiun(Rℓ),

where we decompose the rest positions xi = Rℓ + vn. Here,
ℓ indexes the unit cell and n indexes the degree of freedom

within the unit cell. The wavevector k =
∑d

i=1
bi
Ni
Ki with bi ∈ Z

lies in the first Brillouin zone, Ni is the number of unit cells
in the ith dimension, and the reciprocal lattice vectors satisfy
Ki · Rj = 2πδij for the primitive lattice vectors Rj. The Fourier
transform decouples the eigen-problem Equation (2) for different
wavevectors k and leads to a phononic band structure ωn(k).

The band structure ωn(k) is of great interest both scientifically
and for engineering applications because it efficiently encodes
the elastic response of the infinite network. Specifically,
band structure engineering allows for explicit tuning of wave
propagation in acoustic materials and can be used to design,
for instance, waveguides, acoustic cloaks, or selective sound
suppression. Whereas in a generic band structure, the shape and
frequency of the acoustic modes depends strongly on the details
of the dynamics, topological modes are protected by an integer
invariant, which cannot change through continuous changes of
the interaction parameters.

Although the physical realizations of topological insulators are
vast already in the quantum case [2, 12], the possible invariants
and topological phases have been completely classified [30]. In
linear topological mechanics, a similar scheme exists as long as
the dynamical matrix is positive definite [1]. For our MSNs, this
condition is always satisfied. In the following, we shall focus on
one particular class of classical topological band structures for
two-dimensional systems.

3. PLANAR CHERN INSULATORS

Topological band structure is intimately related to the theory of
Berry phases, or geometrical phases [31]. While a full account
of the underlying theory is beyond the scope of this paper, the
fundamental result can be stated for a linear dynamical system
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FIGURE 1 | Bandgap tuned networks and topological band structures. (A) Tuned spring stiffnesses (indicated by line thickness) on the basis of triangular grids with

4× 4 unit cells were tuned to have band gaps. (B) The final band structures exhibit band shapes reminiscent of band inversion. (C,E) Tuned network on top of a

topology based on the Delaunay triangulation of a randomized point set. (D,F) The band structure again appears to exhibit band inversion. All three networks undergo

a topological phase transition as time-reversal symmetry is broken.

iψ̇ = H(r)ψ with Hermitian matrix H(r) which depends on
some parameter r. The band structure topology is then encoded
in the eigenstates of this effective ‘Hamiltonian’ H, and can be
characterized by calculating an integer topological invariant, the
Chern number. We now give a brief sketch of this calculation.

If the system is prepared in an instantaneous eigenstate

H(r)u(r) = λ(r)u(r) and the parameter r is varied adiabatically
along a closed curve C in parameter space, then the solution will
always remain in the instantaneous eigenstate. After traversing
the curve, the solution will pick up a phase factor eiγC with

γC =
∫

C

dr · A(r), A(r) = iu(r)H∇ru(r). (3)

This is the celebrated Berry phase withA(r) the Berry connection
(superscript H denotes the Hermitian transpose). While the
Berry connection changes under reparametrizations of the curve
(gauge transformations), the phase is invariant up to 2π , and
therefore in principle a physical observable. One particular
parameter space of interest is the Brillouin zone of a crystal. In
two dimensions, the BZ has the topology of a torus, such that any
curve connecting k and k + K is closed (because wavevectors k
and k + K are equivalent if K is a reciprocal lattice vector). By
Stokes’ theorem, Equation (3) can then be expressed as a surface
integral independent of the curve,

γC =
∫

BZ
dk�(k) ≡ χ , (4)

where

�(k) = ∂k1A2(k)− ∂k2A1(k)

is called the Berry curvature. Equation (4) defines the Chern
number χ , which is an integer modulo 2π , and characterizes the
eigenstates {u(k)}k∈BZ. Thus, because in a crystal each eigenstate
parametrized by the wavevector k corresponds to a band, it is
possible to assign a topological Chern number χn to each band n.
This Chern number does not change under perturbations of the
matrix H(k), unless bands cross. Then, the eigenstates are no
longer non-degenerate and the above analysis fails.

The Chern number defined by Equation (4) is nonzero only
if the dynamics are not time-reversal invariant. If the system has

time reversal invariance, �(k) is an odd function of k, and the
integral over the Brillouin zone vanishes.

For systems with many bands and a gap between bands n′

and n′ + 1, the key insight [32] is then that one can associate
an invariant to the gap itself, namely

C(n′) =
∑

n≤n′
χn,

which can only change if the gap closes due to a perturbation
of H(k). The gap-Chern number C characterizes the bulk of
a gapped crystal. Near a boundary to another gapped crystal
with a different C or to the vacuum, the topology of the system
must therefore change locally by closing the gap. This argument
implies the existence of modes that are localized to the boundary

between different topological phases and located in the bulk gap.
Because these modes are tied to the bulk topological invariants,
they are robust and must always exist, regardless of the specific
shape of the boundary. We note that while for historical reasons
the notion of adiabatic changes of parameters was invoked to
define the Chern number, no actual adiabatic processes are
necessary for it to exist, and it makes sense for any Fourier-
transformed Hamiltonian.

For numerical purposes, the above integrals can be discretized
while retaining their gauge-invariant characteristics [33]. This
way, Chern numbers can be computed robustly and quickly
with reasonably coarse discretizations of the Brillouin zone. In
addition, any Chern number numerically computed in this way
will automatically be an integer.

In the remainder, we demonstrate that such topologically
protected edge modes can indeed exist in mechanical networks
which have been tuned to exhibit bandgaps at specified
frequencies, opening up an inverse-design pathway toward
explicitly programmable topology.

4. INVERSE BANDGAP DESIGN

There are many mechanical systems that possess topological
gaps by virtue of their lattice structure. Here, we consider a
different approach by tuning a desired gap into the spectrum
of a mechanical network through numerical Linear Response
Optimization (LRO) [24]. Starting from a basic lattice topology
such as a triangular grid or a randomized unit cell topology
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definingmass points and springs (Figure 1), the spring stiffnesses
ke are numerically optimized to produce a gapped material
between two desired bands. Applying the numerical LRO
approach introduced and described in detail in Ronellenfitsch
et al. [24], we minimize the average response of the network at
frequency ω,

Rω(k̂) = Tr
(

Gω(k̂)
HGω(k̂)

)

, (5)

where Gω(k̂) =
(

mω2
1− Qk̂Q⊤

)−1
is the linear response

matrix to harmonic forcing with frequency ω and Tr(·) is
the matrix trace. Numerically minimizing Equation (5) over

the individual spring stiffnesses k̂ while fixing a certain
ωn < ω < ωn+1 for eigenmodes ωn is then equivalent to
maximizing a spectral gap between the nth and (n + 1)th
eigenvalue. Generalizing from spectral gaps to bandgaps, since
the Fourier transform is a linear map that block-diagonalizes

Gω(k̂), the trace in Equation (5) is replaced by a sum over
the traces over the responses at each individual wavevector k,

Gω(k̂, k). For practical purposes, this sum is truncated, and only
traces over a small number of wavevectors are actually used
in the numerical optimization. To avoid the spring stiffnesses
converging to either zero or infinity, we additionally impose
bound constraints 0.1 ≤ ke ≤ 1.0, and employ the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm [34] to
perform the numerical optimization. Particle masses are set to
unity (m = 1).

The above LRO approach generalizes to arbitrary network
topologies and dimensions [24]. Throughout this paper, we will
illustrate general ideas by focusing on three specific examples of
bandgap-tuned networks: One with a regular triangular grid unit
cell topology, and two different randomized unit cell topologies
(Figures 1A,C,E). All three networks were optimized to exhibit a
bandgap at some predetermined frequency. Despite some notable
differences between them, their band structures all show features
reminiscent of band inversion (Figures 1B,D,F), a characteristic
that is often (but not always) present in topological band
structures [35–37].

Adopting band inversion as an indicator for the potential
existence of a topological transition, all that remains to do
is to break time-reversal invariance of the system dynamics
by introducing a suitable interaction. In the case of electronic
systems, an externally applied magnetic field can provide
such a symmetry-breaking interaction [12]. A classical formal
counterpart considered in the remainder is the Coriolis force [38]
which breaks the time reversal symmetry of the MSN dynamics
when the mechanical network is placed in a rotating frame [14].

5. MECHANICAL NETWORKS IN
ROTATING FRAMES

To sketch the general procedure for formulating the MSN
dynamics in a rotating frame, we first consider a point mass in
a harmonic potential with stiffness K confined to the x–y plane,
and under the influence of a constant rotation perpendicular to

the plane, � = (0, 0,�). Let x be the position of the point mass
as measured from the rotational axis. Then, Newton’s equations
of motion in the rotating frame take the form

ẍ = −K(x− x0)− 2� ∧ ẋ− � ∧ (� ∧ x). (6)

The Coriolis force is

−2� ∧ ẋ = −2(0, 0,�) ∧ (ẋ, ẏ, 0) = 2�(Ŵẋ′, 0),

where

Ŵ =
(

0 1
−1 0

)

encodes the cross product and we introduced the 2D vector x′.
Similarly, the centrifugal force is−�∧(�∧x′) = �∧(�Ŵx′, 0) =
−�2(Ŵ2x′, 0) = �2(x′, 0). Clearly, the fictitious forces lie in the
plane of rotation, so that from now on we can analyze the system
in 2D. Dropping the primes, Equation (6) then yields the in-plane
equations of motion

ẍ = −K(x− x0)+ 2�Ŵẋ+ �2x. (7)

We can now generalize from a single particle to the full MSN
dynamics by collecting all the x coordinates of the point masses
in the network into the firstN components of the 2N-component
vector x, and all the y coordinates into the secondN components.
Then the matrix Ŵ takes the form

Ŵ =
(

0 1

−1 0

)

,

where 1 is the N × N identity matrix, and K now
denotes the stiffness matrix such that Equation (7) remains
formally unchanged.

We would like to express these equations in terms of small
displacements around an equilibrium configuration. In doing so,
we need to take into account that the equilibrium configuration is
changed by the rotation. To find the new equilibrium positions x∗

in the rotating frame, we set ẍ = ẋ = 0 and solve for x∗,

(K − �2
1)x∗ = −Kx0.

Thus, a steady state exists unless the rotation frequency
�2 resonantly matches one of the eigenfrequencies of the
stiffness matrix K. In the absence of resonance, we introduce
displacements u = x− x∗, and find their equations of motion,

ü = −K(u+ x∗ − x0)+ 2�Ŵu̇+ �2u+ �2x∗

= −(K − �2
1)u+ 2�Ŵu̇.

Here, the stiffness matrix was shifted due to the centrifugal force,
and a new Coriolis term has appeared.

In the following, we further assume slow rotations compared
to the smallest eigenmode of interest, typically the frequency of
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the gap, and neglect the term proportional to �2 ≪ 1. This leads
to the final equations of motion,

ü = −Ku+ 2�Ŵu̇. (8)

The Coriolis term proportional to u̇ is responsible for
breaking time-reversal symmetry in this classical system (the
transformation t 7→ −t maps u̇ to −u̇ but leaves all other
terms invariant), analogous to the Lorentz force in a quantum
electron gas [12]. Because the eigenmodes of Equation (8) cannot
be computed directly by inserting a harmonic ansatz, we must
resort to the equivalent first order system

ẏ = Dy, D =
(

0 1

−K 2�Ŵ

)

, (9)

where y = (u,w)⊤, w = u̇, and D is the dynamical matrix, the
eigenmodes of which can be readily computed.

Equation (9) can be brought into a formmanifestly equivalent
to the Schrödinger equation by introducing the change of

variables [1],

ψ =
(√

K 0
0 i1

)

y,

where the matrix square root
√
K is well-defined because K

is positive-semidefinite. Under this change of variables, the
dynamics becomes

iψ̇ = Hψ , H =
(

0
√
K√

K 2i�Ŵ

)

, (10)

where the “Hamiltonian” H is manifestly Hermitian. This form
makes explicit the connection between classical mechanical and
quantum systems, as now the machinery of quantum mechanics
is applicable to Equation (10).

Below, we illustrate and analyze the generic consequences of
time-reversal symmetry breaking via rotation for three distinct
mechanical networks based on the inversely designed unit cells
in Figure 1. We will see that the corresponding MSNs undergo a
topological phase transition when the rotation frequency exceeds
a critical value, resulting in topologically protected gapless modes
that are exponentially localized at the boundary of samples.

6. TOPOLOGICAL EXCITATIONS IN
ROTATED NETWORKS

The three mechanical networks from Figure 1 exemplify typical
phenomena encountered with mechanical Chern networks. For
each of them, a topological phase transition occurs at some finite
0 < |�c| < 0.1, independent of the sign of �. This is due to the
fact reversing the sign of the rotation frequency� is equivalent to
reversing time t 7→ −t, and therefore mirrors the band structure,
ω(k,�) = ω(−k,−�). In particular, this means that one can
use the sign of � to control the unidirectional propagation of
excitations: A wave packet will reverse direction when the sign
of � is flipped. In the topological phase |�| > �c, all of the

considered networks have a gap-Chern invariant C = ±1, which
we calculated using the numerical procedure outlined in Fukui
et al. [33].

Generally, edge bands can be visualized by taking an infinite
periodic crystal in 2D and restricting to a ribbon-like slice
that is finite in one direction with open boundary conditions
(Figure 2G). The resulting 1D crystal now possesses a one-
dimensional band structure in which localized edge modes
are directly visible. Mode localization can be measured by
the participation ratio λ = (

∑

n |un|4)/(
∑

n |un|2)2 of the
eigenvector u(k). The ratio λ is large if the mode is localized to
few elements of the vector, and small if it is spread over many
elements of the vector.

For all three example networks from Figure 1,
the corresponding 1D crystals exhibit two bands of
localized modes in the bulk gap in the topological phase
|�| > �c (Figures 2B,D,F). The two bands host wave
packets with opposite group velocity vg = dω/dk, and are
localized at opposite edges of the semi-infinite ribbon system.
They thus correspond to one single chiral edge excitation.
The match between the bulk gap-Chern number C = ±1
and the number of edge excitations (more precisely, the
difference between clockwise and counter-clockwise edge
modes) is a direct manifestation of the celebrated bulk-boundary
correspondence [32, 39].

We further note that although the existence of |C| protected
edge bands is guaranteed in the topological regime |�| > �c,
this does not preclude unprotected edge states in the trivial
phase |�| < �c. To illustrate this fact explicitly, consider the
example in Figures 2E,F. The band structure for � = 0 in
Figure 2E is topologically trivial (C = 0) but exhibits features two
localized edge bands, which are converted into the topologically
protected bands in Figure 2F as one crosses the phase transition
at finite |�| = �c > 0.

All three networks analyzed in Figures 1, 2 have in common
that they support only a single chiral edge mode, the direction
of which can be reversed by changing the sign of �. Additional
simulation scans suggest that this is typical of mechanical
networks designed with the LRO scheme: Among all bandgap-
designed networks that exhibited a topological transition, we
never observed a case with |C| > 1. This empirical finding
is consistent with results from previous studies which reported
that larger Chern numbers are typically associated with materials
that possess long-range interactions or with systems that are
periodically quenched or driven [40]. Mechanical networks
with long-range interactions could, in principle, be designed by
introducing additional bonds that connect beyond the nearest
neighbor unit cells. While certainly intriguing, such “non-local”
networks are beyond the scope of the present study.

The wave packets hosted by the topological edge bands
of our short-range MSNs can be excited dynamically by
forcing a semi-infinite or a finite network near the boundary
at a frequency inside the bulk gap. As a specific example
showcasing this generic effect, we consider the mechanical
network from Figure 1C and construct a finite realization
consisting of 12 × 12 unit cells. To demonstrate the
robustness of the topological modes, we remove three unit
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FIGURE 2 | Topologically protected edge bands. Considering the same networks as in Figure 1, we constructed ribbon-like 1D crystal realizations that are infinitely

periodic in one lattice direction, and of finite extent (12 unit cells wide) with open boundary conditions in the other direction; see example in (G), which corresponds to

12 horizontally concatenated units of the network in Figure 1E periodically continued along the vertical direction. (A–F) The resulting one-dimensional band structures

consist of bulk bands that are delocalized (dark blue) and localized edge bands (green and yellow). All bands are colored according to the how localized the

corresponding modes are, with the localization of a mode u(k) being measured by the participation ratio λ = (
∑

n |un|4)/(
∑

n |un|2)2 where index n runs over all vertices

in the unit cell of the ribbon. (A,B) Correspond to the optimized network topology in Figure 1A; (C,D) correspond to the network topology in Figure 1C; (E,F)

correspond to the network topology in Figure 1E. Generically, networks designed via LRO can and will have localized edge modes even in the topologically trivial

regime |�| < �c, see (A,C,E). However, when the topological phase transition is crossed at some nonzero rotation rate |�| = �c, topologically protected localized

bands appear as evident from (B,D,F). We note that the frequency of rotation is always smaller than the gap frequency �2 ≪ ω2
gap, justifying our approximation.

FIGURE 3 | Traveling excitation in a rotating mechanical Chern network. We simulated the dynamics of an MSN consisting of 12× 12 unit cells as shown in

Figure 1C and analyzed in Figures 2C,D. To create an edge defect, a number of unit cells was removed from the left boundary. Simulations of Equation (11) were

performed in the topological regime with � = 0.15; see also Supplemental Video 1. (A) Between t = 0 and t = 150, a single node in the bottom left corner is

harmonically forced with a frequency ω = 0.71 in the bulk gap; see Figure 2D. (B–E) Starting at t = 150, a localized excitation travels along the edge of the

mechanical Chern insulator, moving over a local perturbation of the boundary.

cells from the left side boundary to introduce a boundary
perturbation (Figure 3A). We then numerically simulate the
forced dynamics

ü+ Ku− 2�Ŵu̇ = f sin(ωt) h(t), (11)

where the forcing vector f = (1, 0, . . . , 0, 1, 0, . . . , 0)⊤ is zero
except for the x and y components of one single node near
the bottom left corner. We pick � = 0.15 such that the
network is in the topological phase, and ω = 0.71 inside the
bulk gap. The window function h(t) = sin(π t/150)2(150− t),
where 2(t) is the Heaviside Theta function, slowly turns
on the forcing at t = 0, and turns it off entirely at
t = 150. The forcing injects energy into the network at
the frequency ω, which preferentially excites edge modes and
creates a wave packet that travels unidirectionally along the
edge of the network (Figures 3B–E, Supplemental Video 1).
In particular, due to the topological protection of the edge
modes, the precise shape of the boundary does not matter
for the existence of these wave packets. Back-scattering

modes are suppressed, and the wave packet is able to travel
around the perturbation in the boundary (Figures 3B,C). As
anticipated at the beginning of this section, the chirality of

these wave packets is controlled by the sign of the rotation

rate � (Supplemental Video 2). If the network is put in the

topologically trivial regime, no edge modes exist and the energy

injected by forcing does not create a chiral traveling wave
packet (Supplemental Video 3).

The dynamical behavior described above is encoded in a
set of eigenmodes u with Du = iωu that are exponentially
localized to the boundaries of the system, and where ω lies

in the bulk gap. For the three networks shown in Figure 1,

we again constructed finite realizations consisting of many unit
cells in a square array, and computed the eigenmodes of the

finite dynamical matrix D from Equation (9). For all three

networks, we identified modes inside the bulk gap which were
then found to be localized at the boundary (Figures 4A–C).

To demonstrate exponential localization in each case, we
analyzed a slice of the eigenmodes in y direction. Plotting
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FIGURE 4 | Exponential localization of edge modes in rotating tuned mechanical Chern networks. We construct finite realizations consisting of (A) 12× 12 and (B,C)

14× 14 unit cells of the three networks from Figure 1, and plot a single eigenmode of the dynamical matrix D from Equation (9) with a frequency inside the bulk gap.

The values of � are � = 0.1 (A), � = 0.15 (B,C), in the topological regime. The sizes and colors of the circles are proportional to the magnitude of the local node

displacement u2i,x + u2i,y , where u = (ux ,uy ) is the eigenmode. Each network hosts topological modes entirely localized at the boundary. (D) We consider a small slice in

y direction of the networks from (A–C) and again plot the magnitude of the local node displacement. For all three networks, the magnitude decreases approximately

exponentially in the bulk, demonstrating localization of the modes to the boundary.

the logarithm of the average node displacement u2i,x + u2i,y
as a function of the x position of the node confirms an
exponential decay of the node displacement with distance from
the boundary (Figure 4D).

7. CONCLUSIONS

We have demonstrated the existence of topologically protected
chiral edge modes in the gaps of inversely designed mechanical
networks, and have characterized their dynamical properties.
For the network realizations considered here, we found
that band inversion near the gap was a robust predictor
for a topological phase transition induced by sample
rotation. The direction of rotation enables control over the
chirality of the edge excitation, and topological protection
of the edge excitations was confirmed in direct numerical
simulations and through calculations of an appropriate
Chern invariant.

We hope that the present work can serve as a stepping
stone toward the precise inverse programming of topological
features into discrete disordered metamaterials. Instead of
constructing gapped materials on the basis of known lattices
by using certain features of the band structure (e.g., band
inversion) as indicators of potential topological transitions,
we envision that Linear Response Optimization [24] may
eventually allow the direct tuning of such properties by

implementing the desired topological characteristics into the
optimization objectives.
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Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes

(LdG) theory provides detailed insights into the structure and energetics of the enormous

variety of possible topological defect configurations that may arise when the liquid

crystal is in contact with colloidal inclusions or structured boundaries. However, these

methods can be computationally expensive, making it challenging to predict (meta)stable

configurations involving several colloidal particles, and they are often restricted to system

sizes well below the experimental scale. Here we present an open-source software

package that exploits the embarrassingly parallel structure of the lattice discretization

of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows

users to accelerate simulations using both CPU and GPU resources in either single- or

multiple-core configurations. Wemake use of an efficient minimization algorithm, the Fast

Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization,

requiring little additional memory or computational cost while offering performance

competitive with other commonly used methods. In multi-core operation we are able

to scale simulations up to supra-micron length scales of experimental relevance, and in

single-core operation the simulation package includes a user-friendly GUI environment

for rapid prototyping of interfacial features and the multifarious defect states they can

promote. To demonstrate this software package, we examine in detail the competition

between curvilinear disclinations and point-like hedgehog defects as size scale, material

properties, and geometric features are varied. We also study the effects of an interface

patterned with an array of topological point-defects.

Keywords: Landau-de Gennes modeling, nematic, topological defect, numerical modeling, GPGPU

1. INTRODUCTION

Nematic liquid crystals’ combination of fluidity and orientational order both underlies nematics’
widespread technological applications and endows them with topological defects, localized
breakdowns in the orientational order stabilized by the medium’s broken symmetries. The
topological defects of nematics have been integral to the study of liquid crystals since the field’s
infancy [1].
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Besides their role as tabletop physical realizations of profound
topological ideas, nematic topological defects—including
disclination lines, point-like hedgehogs, and surface-bound
boojums—are of great interest for their importance in nematic
colloidal suspensions [2]. These composite materials, formed
by suspensions of colloidal particles or nanoparticles in
nematics, promise new routes to directed self-assembly and self-
organization. Nanoparticles in nematics are pushed by elastic
forces to assemble in pre-existing defect lines, meaning that
sculpted disclinations provide a path to controlled nanoparticle
assembly. Applications include plasmonic properties for
metamaterials [3, 4], molecular self-assembly [5], and quantum-
dot assembly in microshells [6, 7]. Even greater complexity
arises in the cases of colloidal particles in the size range of
tens of nanometers to several microns, which often have
companion topological defects and which interact through forces
mediated by nematic elasticity. Self-assembled structures of
colloidal particles with companion defects include bound pairs,
chains [2, 8] and triclinic 3D crystals [9]; with the aid of laser
tweezers, other configurations such as 3D crystals with tetragonal
symmetry [10] and sophisticated disclination knots [11–14] can
be stabilized. Tailored self-assembled colloidal structures hold
promise as optical metamaterials for photonics applications,
such as photonic bandgap crystals and microlasers [15–18].

Nematic defect configurations can also be controlled by non-
trivial boundary surfaces [19]. Substrate patterning strategies
include topographic variations such as “lock-and-key” docking
sites for colloidal particles [20–22] and chemical patterning
where the boundary condition shifts abruptly [23, 24]. Complex
director fields, including disclinations, can be prescribed on
a substrate by photoalignment [25] or by scribing with an
atomic force microscope [26]. Confinement in geometries such
as capillaries [27], droplets [28], shells [29], and thin films [30]
produces a wealth of point- and line-defect behaviors stabilized
by topology and energetics.

The rapidly expanding variety of experimentally created
nematic defect configurations has benefited greatly from the
understanding provided by robust modeling approaches. One set
of approaches is based on the Frank-Oseen elastic free energy,
which penalizes deformations of the nematic director n̂(x), and
which in its simplest form reads

F
(1)
FO =

K

2

∫

dV

3
∑

i,j=1

(∂inj)
2. (1)

The superscript (1) refers to the approximation of a single elastic
constant K in this expression. However, the n̂ = −n̂ symmetry
of nematics presents challenges for this model in the presence of
disclinations with half-integer winding number, especially if their
locations are not known beforehand.

This difficulty is resolved by the Landau-de Gennes (LdG)
model, the theoretical approach which is the focus of this work
and which we review in section 2. The LdG framework takes as its
order parameter the second-rank traceless nematic order tensor
Qij(x), and is well-suited to modeling arbitrary disclination
configurations, as well as biaxial nematics and the blue phases

[15, 31]. While little is known analytically about free energy
minimizers in LdG theory in any but the simplest geometries
[32, 33], numerical minimization of the LdG free energy has been
fruitfully applied over a wide range of systems [10–12, 15, 21, 34–
48]. Additionally, flow dynamics of nematics, including active
nematic systems, can be modeled by supplementing the LdG
free energy with hydrodynamical equations as formulated by
Beris and Edwards [49] or by Qian and Sheng [50] and solved
by methods such as lattice Boltzmann [51–55], multiparticle
collision dynamics and related off-lattice methods [56–58],
or finite difference and finite element approaches [59, 60].
Some methods incorporate a fast relaxation of the momentum
compared to the director, to account for the separation in time
scales for these relaxations in typical molecular liquid crystals
[52, 61].

The broad usefulness of the LdG theory goes hand in hand
with a significant limitation of scale: Resolving defects at a
priori unknown locations requires the simulation lattice spacing
to be comparable to or smaller than the size of the defect
core, the region in which nematic order breaks down, which
in thermotropic nematics is typically a few nanometers. This is
often thousands of times smaller than the individualmicron-scale
colloidal particles of interest. Therefore, a faithful rescaling of the
experimental system in numerics would require of order at least
109 lattice sites even for configurations involving only a small
number of such colloids.

Accessing such experimentally relevant lattice sizes presents
computational challenges not often seen in the simulations of
glassy and polymeric soft matter systems. The demands on
system memory quickly become prohibitive: simply maintaining
the five independent degrees of freedom at each lattice site
and storing the necessary change in those variables from one
minimization step to the next at 109 lattice sites requires
80 GB—more than on most current commodity desktops
and larger than the memory capacity of any CUDA-capable
GPU1. Additionally, there is a large direct computational cost
of even simple manipulations acting on so many degrees of
freedom; this contributes to the significant wall-time required for
most numerical energy minimizations and presents challenges
for efficient exploration of parameter spaces and colloidal
particle positions.

Consequently, LdG numerical modeling is typically applied
to systems significantly scaled down, with respect to a fixed
defect core size, as compared with the experiments that they
are intended to model. While important qualitative insights
about defects and director fields can often be obtained by
scaling down the experimental dimensions, the change in size
ratios makes quantitative prediction challenging. There can
also be major qualitative differences. The most well-known
of these is the form of the companion defect to a particle
with homeotropic (normal) anchoring: Micron-scale particles
typically have hyperbolic hedgehog companions (in the absence
of confinement or external fields) [2], whereas particles in the
few hundred nm or smaller size range have disclination loops
in the “Saturn ring” configuration [62, 63]. This constitutes

1As of July, 2019.
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a major challenge in modeling systems with multiple colloid-
hedgehog pairs. Experimental work on high-aspect ratio colloidal
particle shapes observes both hedgehogs and disclination loops,
but numerical modeling has been limited to the line defect case
[35, 38–43, 64, 65]. Adaptive mesh refinement in finite-element
simulations can help to avoid computational and memory
expense in regions not near defects [66] but typically does not
remove the need to scale down.

In this work we present an open-source finite difference-
based implementation of LdG free energy minimization with
non-trivial boundary conditions, “openQmin” [67], using a
combination of approaches designed to address the challenges
described above. It is written for heterogeneous CPU and GPU
operation to target two complementary research goals. First, it
offers a user-friendly GUI environment for rapid prototyping of
topological defect configurations as a function of liquid crystal
parameters, boundary geometry, and the presence of colloidal
inclusions. Simultaneously, it targets large-scale systems using
OpenMPI [68] to support parallelization across both CPU and
GPU resources to scale up to the supra-micron length scales
of experimental relevance. We employ efficient minimization
algorithms, such as the Fast Inertial Relaxation Engine (FIRE)
method, to maintain reasonable convergence times even for
large-scale parallelized calculations.

The remainder of the paper is structured as follows. We
begin with a review of the LdG theory in section 2. Section
3 lays out our numerical approach, first discretizing the LdG
theory for a finite-difference method, and then outlining our
use of minimization algorithms and OpenMPI parallelization.
In section 4 we present two sample studies demonstrating the
effectiveness of this approach. We first perform a classic analysis
of the companion defects to homeotropic spherical particles at
varying system sizes, and then examine the effects of a boundary
patterned with surface disclinations in a supra-micron-scale
system. Section 5 briefly describes the GUI version of openQmin
with an example of the rapid prototyping workflow it enables.
Finally, in section 6, we discuss both the range of use we foresee
for openQmin and some future directions for additional physics
that could be studied in this framework.

2. LANDAU DE-GENNES THEORY FOR
NEMATIC LIQUID CRYSTALS

Here we give a brief overview of those aspects of the LdG

theory used in our numerical approach. The theory is of
course well-established [69] and its use in a finite difference

numerical free energy minimization scheme is described in
several sources; the reader is directed to Ravnik and Žumer [47]
for a thorough explanation.

Uniaxial nematic liquid crystals are characterized by
orientational ordering of nematogens (molecules or suspended
anisotropic particles) along a director, n̂, which is a unit vector

with the identification n̂ = -n̂. To respect that symmetry
consistently, which is important at disclinations of half-integer

winding number, we take as order parameter not a director but a
second-rank tensor. This is the traceless, symmetric tensor field
Q(x), whose lattice discretization is the fundamental object of

the LdG modeling approach. Q is related to n̂ by [70]

Qαβ =
3

2
S

(

nαnβ −
1

3
δαβ

)

+
1

2
SB(mαmβ − lα lβ ). (2)

Here, S is the degree of uniaxial nematic order, and SB is the
degree of biaxial order distinguishing a preferred direction m̂ ≡
−m̂, perpendicular to n̂, from l̂ ≡ n̂ × m̂. The nematic director
can be recovered as the eigenvector corresponding to the largest
eigenvalue of Q, which equals S. Most nematics are unaxial,
so the equality SB = 0 is true in the absence of distortions
and represents a good approximation away from defects. In this
uniaxial limit, Equation (2) reduces to

Qαβ =
3

2
S

(

nαnβ −
1

3
δαβ

)

. (3)

2.1. Phenomenological Free Energy
Density
The LdG theory constructs a phenomenological free energy F as
a functional of Q(x). We can write this functional schematically
as [47, 70]:

F[Q] =
∫

V

(

fbulk + fdistortion + fexternal
)

dv+
∑

α

∫

Sα

(

f αboundary

)

ds

(4)
The first integral, over the volume of the nematic, has three
free energy density terms incorporating respectively the energetic
costs arising from deviations away from the thermodynamically
preferred degree of nematic order S = S0, from elastic
distortions, and from external fields. The second integral,
summing over all boundary surfaces Sα in contact with the
nematic, incorporates the anchoring energy associated with
each interface, including the surfaces of colloidal particles; its
form may be different for different surfaces. We address each
component in turn.

2.1.1. Bulk Free Energy

The first free energy density term in Equation (4) gives a Landau
free energy for the isotropic-nematic phase transition, written in
terms of rotational invariants of Q in a Taylor expansion about
the isotropic, Q = 0 state [71]:

fbulk =
A

2
tr

(

Q2
)

+
B

3
tr

(

Q3
)

+
C

4

(

tr
(

Q2
))2

. (5)

The parameter A ∝ (T − T∗
NI), where T

∗
NI is the temperature at

which the isotropic phase is destabilized. In the uniaxial limit fbulk
becomes a polynomial in the degree of order,

fbulk =
3

4
AS2 +

1

4
BS3 +

9

16
CS4, (6)

which is minimized either by S = 0 or by

S = S0 ≡
−B+

√
B2 − 24AC

6C
. (7)
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In the nematic phase, the absolute value of

f0 ≡ fbulk(S = S0) (8)

provides a free energy penalty per unit volume to themelted cores
of defects, where S → 0.

2.1.2. Distortion Free Energy

The distortion free energy density models the elasticity of the
nematic phase, and represents the LdG counterpart to the Frank-
Oseen free energy density. The latter, in full generality up to
second derivatives of n̂, is

fFO =
1

2

{

K1(∇ · n̂)2 + K2(n̂ · (∇ × n̂)+ q0)
2 + K3|(n̂ · ∇)n̂|2

+K24∇ · [(n̂ · ∇)n̂− n̂(∇ · n̂)]
}

. (9)

The parameters in this expression are the splay (K1), twist (K2),
bend (K3), and saddle-splay (K24) elastic constants, and the
spontaneous chiral wavenumber q0 which is non-zero in the
cholesteric and blue phases. Other common conventions for the
saddle-splay energy density replace K24 in Equation (9) by either
2K24 or 2(K2 + K24). Equation (9) reduces to Equation (1) under
the “one-constant approximation” K1 = K2 = K3 = K24 ≡ K
and q0 = 0. The one-constant approximation is a reasonable
simplification for many molecular liquid crystals, where K1, K2,
and K3 typically differ by less than a factor of 5 [72, 73].

The most general form of fdistortion that we employ, following
Poniewierski and Sluckin [74], Mori et al. [48], and Mottram and
Newton [70], includes all gradient terms of quadratic order in Q

allowed by symmetry, plus one term at cubic order:

fdistortion =
L1

2

∂Qij

∂xk

∂Qij

∂xk
+

L2

2

∂Qij

∂xj

∂Qik

∂xk
+

L3

2

∂Qik

∂xj

∂Qij

∂xk

+
L4

2
ǫlikQlj

∂Qij

∂xk
+

L6

2
Qlk

∂Qij

∂xl

∂Qij

∂xk
, (10)

where Einstein summation over repeated indices is implied, and
ǫ is the Levi-Civita tensor. Equation (10) corresponds in the
uniaxial limit to Equation (9) with the identifications [48]

L1 =
2

27S2
(K3 − K1 + 3K2) ,

L2 =
4

9S2
(K1 − K24) ,

L3 =
4

9S2
(K24 − K2) ,

L4 = −
8

9S2
q0K2,

L6 =
4

27S3
(K3 − K1).

The one-constant approximation in the absence of spontaneous
chiral ordering sets L2 = L3 = L4 = L6 = 0, leaving the much
simpler and more computationally efficient form

f
(1)
distortion

=
L1

2

∂Qij

∂xk

∂Qij

∂xk
, (11)

which corresponds in the uniaxial limit to Equation (1) with
L1 = 2/(9S2)K.

Taking this simpler form of the distortion energy density,
we estimate the defect core size by considering a distorted
uniaxial nematic configuration at S = S0 with n̂ varying with
typical gradient 1/ℓ. Roughly speaking, the energy well depth
f0 (Equation 8) gives the threshold value for fdistortion at which
distortions become so energetically costly that a local melting of
nematic order occurs instead. This length ℓ = ξN , the nematic
correlation length (or coherence length), sets the size of the
defect core:

ξN ∼
√

L1/|f0|. (12)

2.1.3. External Fields Free Energy

The response of the nematic to an external magnetic fieldH or an
external electric field E is modeled by the free energy density term

fexternal = − 1
3µ0Hi1χQijHj − 1

3ε0Ei1εQijEj (13)

where 1χ and 1ε are the anisotropic parts (difference in
principal values corresponding to n̂ and its perpendicular
directions) of the magnetic susceptibility tensor and dielectric
tensor, respectively [34], and µ0 and ε0 are respectively the
magnetic permeability and electric permittivity of free space. (We
omit here the terms for the isotropic parts of these tensors, as they
do not couple to Q). In the uniaxial limit, the right-hand side
becomes − 1

2Sµ01χ(H · n̂)2 − 1
2Sε01ε(E · n̂)2 (again dropping

isotropic terms with no coupling to n̂). Positive 1χ or 1ε will
favor alignment of n̂ withH or E.

2.1.4. Boundary Free Energy

Boundary surfaces, including the surfaces of embedded colloidal

particles, generally impose an anchoring surface energy density
fboundary representing the surface tension’s dependence on the

director at the surface. In terms of the director, a common
modeling choice for the anchoring energy is the Rapini-Papoular

form− 1
2W

α
RP(ν̂

α · n)2 where ν̂α is the surface normal vector and

|Wα| is the anchoring strength of surface α [75]. Homeotropic
(normal) anchoring follows from WRP > 0, whereas WRP < 0

creates degenerate planar anchoring, which equally favors every

direction perpendicular to ν̂α . The same anchoring functional
can favor a different anchoring direction, for example an in-

plane direction in the case of oriented planar anchoring, using
WRP > 0 with the replacement of ν̂α by the favored direction.

In LdG theory, for homeotropic or other oriented anchoring,
the Rapini-Papoular form is generalized as the Nobili-Durand
surface anchoring form [76],

f αboundary = Wα
NDtr

(

(Q−Q0)2
)

= Wα
ND(Qij − Qα

ij )(Qij − Qα
ij ),

(14)
where Wα

ND > 0 is the anchoring strength of surface α and
the surface-preferred Q-tensor, Qα , is usually taken to be Qα

ij =
3
2S0(n

α
i n

α
j − 1

3δij), with n̂α = ν̂α or some other surface-

preferred director.
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For degenerate planar anchoring, the Nobili-Durand form is
not suitable, and we use instead the following free energy due to
Fournier and Galatola [77]:

f αboundary = Wα
FG(Q̃ij − Q̃⊥

ij )(Q̃ij − Q̃⊥
ij ), (15)

where Q̃ij = Qij + S0δij/2 and Q̃⊥ is the projection onto ν̂α via

Q̃⊥
ij = PikQ̃kℓPℓj for Pij = δij − να

i να
j . Assuming Q is uniaxial

with S = S0, the Rapini-Papoular anchoring is recovered with
Wα

RP = 9S20W
α
ND,FG.

3. NUMERICAL APPROACH

3.1. Overview
The primary contribution of this work is the presentation of
an open-source numerical implementation that exploits the
embarrassingly parallel structure of the lattice discretization
of the above phenomenological theory. Our implementation,
combining CUDA/C++ [78] and OpenMPI [68], was written
with extreme flexibility in mind to allow users to accelerate
simulations large and small using combinations of available
CPU and GPU resources in either single- or multiple-
core configurations.

The foundation of the software package,
“dDimensionalSimulation,” is a set of generic classes meant
to execute simulations of N interacting units, each consisting of
d scalar degrees of freedom, using data structures appropriate
for efficient execution on either CPU or GPU resources.
These generic classes serve as the template for models which
instantiate the dN total degrees of freedom, forceswhich compute
interactions between degrees of freedom, updaters which can
change the degrees of freedom (e.g., by implementing equations
of motion), and simulations which tie objects of these various
types together. The present work focuses on implementing the
details of these classes to carry out lattice-based LdGmodeling to
find energy-minimized configurations of equilibrium nematics
in the presence of various boundary conditions. The general
structure we have employed was chosen to allow flexibility in
future development, for example to derive new model classes
which include not only theQ-tensor but also density and velocity
degrees of freedom, as would be appropriate for modeling active
nematic systems [53–55, 60].

In addition to writing efficient code to carry out the required
lattice-based minimizations of the Q-tensor field in a domain,
we also advocate the use of the graphical user interface (GUI)
we developed to rapidly prototype and explore the effects of
particular boundaries, colloidal inclusions, and external fields
that may be of experimental interest. The GUI allows a wide
variety of user operations—adding boundary objects at any stage
of the simulation, starting and stopping minimization, adding
or removing external fields at will—all while visualizing the
resulting defect structure and recording configurational details.
A snapshot of the GUI is shown in Figure 1, and more details
of the available features are given in section 5. We envision that
this capability will allow for rapid prototyping of experimental
geometries in the search for particular controllable defect states;
running on a single GPU allows real-time visualization of lattices

in the low-millions of total sites. We have also included several
example files that use the code in a non-GUImode; these can then
use OpenMPI to parallelize across either CPU or GPU resources
to scale up to lattices that represent supra-micron-scale liquid
crystal systems.

3.2. Lattice Discretization and Energy
Minimization
The finite difference lattice calculations employed in this work
use a regular cubic lattice discretization of space, with a Q-
tensor defined at each site Ex = {x, y, z}. The lattice spacing
1x can be related to physical quantities through a natural non-

dimensionalization of the free energy density, f̃ ≡ f /|A|, which
implies a non-dimensionalization of the elastic constants L̃i ≡
Li/(|A|1x2). In the one-constant approximation, we thus have
1x2 = L1/(L̃1|A|). In this work we set L̃1 = 2.32. To model
5CB, following Ravnik and Žumer [47] we take A = −0.172 ×
106 J/m3, B = −2.12 × 106 J/m3, C = 1.73 × 106 J/m3, and
K = L1 · 9S20/2 = 1 × 10−11N where S0 ≈ 0.53. These give a
lattice spacing of 1x ≈ 4.5 nm, which is at the few-nm scale of
the defect core in 5CB. Note that the non-dimensionalization of
all constants by an energy scale |A| and a length 1x is implicitly
made for all values in openQmin, including in the GUI.

The symmetry and tracelessness of Q leaves five
independent degrees of freedom, which we take to be
Eq ≡ {Qxx,Qxy,Qxz ,Qyy,Qyz} at each of the N lattice sites
in the simulation domain. We write the local free energy density
f (Ex) in terms of these five independent variables, so that the
symmetry and tracelessness of Q are automatic (rather than
being maintained by projection operations following update
steps [47]). We also label each site with an integer “type,”
indicating whether it is a bulk site, a boundary site, or a site
inside an object (for instance, the interior of a colloidal inclusion,
or part of a bounding surface), depending on the geometry of
the problem. Only bulk and boundary sites are “simulated sites,”
meaningQ is defined there.

We discretize the total free energy, F =
∑N

i=1 f (Exi), using a
finite-difference approach over the 5N independent variables. For
the distortion terms we allow the user to select either the more
general expression, Equation (10), or the more computationally
efficient expression of Equation (11). For the terms in fdistortion
which contain spatial first derivatives of Q, we consider first-
order forward and backward finite difference approximations,

(

∂Qij

∂xk

)

(Ex) ≈
{

Qij(Ex+ x̂k)− Qij(Ex) (forward)

Qij(Ex)− Qij(Ex− x̂k) (backward).
(16)

Here x̂k is the unit vector in the xk direction, and Ex is the site
where the calculation is taking place. The choice of a regular cubic
lattice makes these derivative approximations straightforward to
calculate. The forward and backward finite differences are each
compatible with the simulation domain only if (Ex+ x̂k), (Ex− x̂k),
respectively, are simulated (bulk or boundary) sites. We then
take, as the discretized expression of f , Equation (4) averaged over
all forward and backward finite difference expressions for each of
k = 1, 2, 3 that are allowed by the geometry of the simulation
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FIGURE 1 | Snapshot of the graphical user interface provided by openQmin, here shown simulating the defect structure near a pyramidal colloid above a

topographically non-trivial boundary, all with oriented anchoring along user-specified directions to approximately model homeotropic surfaces.

domain. A bulk site, therefore, has a local free energy averaged
over 23 such combinations, while a boundary site has fewer.
We use these averages over different expressions for the finite
differences, rather than using a single centered finite difference
formula (∂Qij/∂x)(Ex) ≈ 1

2 [Qij(Ex+x̂k)−Qij(Ex−x̂k)], because using
the latter form in Equation (11) produces no terms coupling
Qij(Ex) to its nearest neighbors, of the form Qij(Ex)Qij(Ex± x̂k). This
use of the centered first derivative expression would therefore
create an artificial (and undesirable) lattice doubling effect in our
approach, with even sites and odd sites evolving independently.
For curved boundaries such as on spherical colloidal particles,
well-known inaccuracies are introduced in the finite difference
calculations by the discretization of boundaries as sites in the
cubic lattice [79]. Specifically, errors of order O(1x) in Qij(Ex)
are introduced, leading to truncation errors of O(1) (which do
not diverge as the lattice spacing is refined) in the first derivative
approximations of Equation (16).

Finally, we minimize F as a cost function over the 5N
independent variables qi(Exj), i = 1, . . . , 5, j = 1, . . . ,N. The
gradient of F in this 5N-dimensional space is calculated by
explicitly differentiating the expression for F with respect to
each qi(Exj) degree of freedom. This explicit differentiation of a
cost function is an alternative to the approach of analytically
deriving local forces (molecular fields) from the Euler-Lagrange
equations, projecting to recover symmetry and tracelessness, and
then discretizing those expressions. While the Euler-Lagrange
equations have separate forms for the bulk and the boundaries, in
the approach used here forces are derived from the cost function
in formally the same way for bulk and boundary sites.

We emphasize that by discretizing space, we can directly map
the problem of solving the LdG partial differential equations
to finding the minima of a complex energy landscape (where

the Q-tensors on each lattice site are the degrees of freedom).
For instance, many PDE solvers implement steepest descent
relaxation, which can be directly interpreted as overdamped
molecular dynamics at zero temperature. This allows us to
turn to the wealth of existing algorithmic approaches from
the field of non-linear optimization, including minimization
techniques such as quasi-Newton methods (conjugate), gradient
descent, and momentum-based techniques such as Nesterov’s
accelerated gradient [80]. Since our aim is to be able to scale up
to large systems, we ignore minimizers which require second-
order derivatives of the cost function, and we find that even
limited-memory quasi-Newton methods such as L-BFGS impose
too-strong a memory requirement for many of our purposes.
Additionally, while conjugate gradient is appealing in having only
marginal extra memory requirements and beingmuch faster than
simple gradient descent, it involves frequent line searches that
require expensive repeated evaluations of the free energy density
and imposes additional parallelization costs.

Thus, although we have implemented many of the above-
named minimizers in openQmin, we focus our attention
on the use of the Fast Inertial Relaxation Engine (FIRE)
method of energy minimization [81]. FIRE falls into the class
of “gradient plus momentum”-style minimization algorithms,
and it additionally rescales the “velocity” (fictitious additional
variables introduced to make the analogy with molecular
dynamics even more complete and corresponding to the
velocities at which the Q-tensor components change) of the
degrees of freedom and adaptively changes the size of the
time step itself based on the behavior of the force and
velocity during the most recent update. For convex optimization
problems the addition of inertia can be proven to enhance
convergence [82], although for more complex energy landscapes
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Algorithm 1: Pseudocode for FIRE minimization [81].

InitializeQ-tensors at each lattice site, set velocities vi to
zero;
whileMinimization criteria not satisfied do

Update qi(Exj), force= −∇F , and vi using a velocity
Verlet step;
Calculate power, P, as the dot product of the force and
velocity vectors;
Rescale velocity by a parameter α which sets the inertia
of the degrees of freedom;
if P > 0 then

if P has been positive for more steps than a threshold,
Nmin then

Increase the time step size and increase α.
end

else
Decrease the time step size, reset velocities to zero,
reset α to initial value;

end

end

in general little can be proven. Thus, while it is a heuristic
approach, FIRE has been shown to be competitive with
(or even faster than) conjugate gradient minimization [81,
83, 84], all while maintaining an extremely light additional
memory footprint and being highly amenable to parallelization
across multiple cores or multiple GPU units. Note that FIRE
was originally developed with atomistic simulations in mind,
but it is increasingly being used more generally, including
in the solution of PDEs [85] and in machine learning
applications [86]. By the straightforward mapping mentioned
above we are able to directly apply the pseudocode presented
in Algorithm 1.

We first demonstrate this efficient minimization in Figure 2,
where we compare the system energy and average norm of
the force on the degrees of freedom during the minimization
of a lattice of N = 2503 sites in a cubic geometry with
periodic boundary conditions. To make a fair comparison,
we have performed both a FIRE and a gradient descent
(GD) minimization on the same system using separately
tuned minimization parameters for each algorithm. We use
the same hardware for each simulation, and report the
minimization progress in terms of the wall-clock time taken.
Although it is sometimes common to report efficiency in
such comparisons in units of function calls, for algorithms
with very different numbers of arithmetic operations (each
FIRE iteration requires more than twice the number of
arithmetic operations compared to GD) such comparisons are
often misleading.

As Figure 2 makes clear, even in the trivial case of finding
the uniform nematic ground state for a system with no
boundary terms from a system initialized with random Q-
tensors at each lattice site, FIRE provides orders of magnitude
improvement in the time taken to findminima. This performance
of our default minimizer is not restricted to simple, bulk
states of the liquid crystals. As we demonstrate in Figure 3

FIGURE 2 | (Red) Energy relative to the uniform texture with preferred nematic

order, F −Fmin, and (blue) the norm of the residual force vector,

|F| =
√
∇F · ∇F/N, for bulk nematic (lattice size is N = 2503), starting from a

randomly initialized configuration, as a function of wall-clock time. Solid lines

are minimizations using FIRE and dashed lines are those using gradient

descent. As described in the text, we have tuned the minimization parameters

(step size, etc.) for each algorithm separately and use identical hardware to

make a one-to-one comparison.

for a handful of simple (and well-studied) arrangements of
colloidal inclusions and boundaries, FIRE is very rapidly able
to find these more complex minima, too. As with any non-
convex optimization solver, though, no guarantees are made
by FIRE about avoiding particular local minima in favor
of a true global minimum. Where this is a concern, we
adopt the standard approach of minimizing from multiple
different random initializations. Particularly when coupled with
a GPU, the substantial acceleration of FIRE-based minimizations
enables the usefulness of the GUI, as the evolution of defect
structures in response to user-instigated changes can be seen in
real time.

Although numerical simulations of this size have been
commonly used to make contact with experiments, in single-
core operation it is impractical to simulate lattices much larger
than N ∼ 3003, with the limiting factor being the wall-
clock time required for CPUs and memory constraints for
GPUs. Given a simulation with N degrees of freedom and
spreading the work across P processing units (either GPUs or
CPUs), achieving ideal N/P scaling requires both low-latency
communication between processors and algorithms that are
themselves linear inN/P. Fortunately, lattice-based models with
only nearest- and next-nearest-neighbor interactions are trivial
to parallelize using a pattern common to, e.g., spin glasses
[87]. We use a standard spatial decomposition of the total
number of lattice sites into rectilinear sub-regions (typically
cubes, although other spatial partitions are easily implemented
and may be preferable for some simulation geometries). Each
processing unit is assigned to one of these subregions, and
is responsible for controlling and updating the lattice sites
in that subregion. It also maintains information about the
state of the “halo” of lattice sites that are neighbors, nearest-
neighbors, and next-nearest neighbors of lattice sites at the
boundary of the subregion it controls. Standard OpenMPI
protocols [68] are used during each simulation step to
communicate information about the state of these halo sites
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FIGURE 3 | (A) Energy relative to the minimized energy for three different geometries as a function of wall-clock time, in a lattice of size N = 2503 and starting from a

randomly initialized configuration. As in Figure 2, solid lines are minimizations using FIRE and dashed lines are those using gradient descent. As depicted in (B)

showing the minimized configurations, the three sets of lines correspond to (Blue) two spherical colloids between parallel plates, all with homeotropic anchoring, (Red)

the interior of a spherical droplet with homeotropic anchoring, and (Purple) a spherocylinder with homeotropic anchoring between parallel plates with degenerate

planar anchoring. These images were created using the “multirankImages.nb” Mathematica file included in the repository for making simple visualizations.

to and from each processing unit in optimized sequences of
uni-directional transfers.

We now assess how our method’s efficiency scales as the
problem size is increased. Although strong scaling (Amdahl’s
law)—in which the total problem size is kept fixed and P is
increased—is often important, it is well-established that the
structure of the near-neighbor lattice interactions we simulate is
embarrassingly parallel. Our real aim is to scale up the problem
size itself and use many processors to simulate lattices that
approach experimental scales. As such, weak scaling (Gustafson’s
law)—in which the amount of work per processing unit is kept
constant—is the relevant test.

One challenge to mention here is that when targeting
energy minima—as opposed to simply advancing a molecular
dynamics simulation for a fixed number of time steps—
the number of minimization steps itself grows with the
total system size. In general the convergence properties of
different minimizers in non-convex settings are highly non-
trivial. For simple geometries we are able to numerically
probe this scaling—for instance, we find that in the absence
of any boundary the number of minimization steps to
achieve a target small force tolerance scales with the linear
size of the system, whereas in the presence of a spherical
colloid it scales roughly with L3/2. In general, though, the
approximate scaling may be hard to ascertain (and may depend
on the target threshold for declaring a configuration to be
in a minimum).

Turning instead, then, to the per-minimization-step timings,
we present the weak scaling performance of openQmin in
Figure 4, where we compute the total number of lattice-site
updates (i.e.,N times the number of simulated time steps) during
a minimization in which we fix Np, the number of lattice sites
per processing unit, at several values and vary P. Consistent
with a globally cubic simulation, we parallelized across P =

FIGURE 4 | Weak scaling performance of openQmin on Comet, in total

number of lattice site updates [i.e., (time steps)×(ranks)×(Np)] per second vs.

the number of CPU processes, P, for a constant number of lattice sites per

process. The points from dark red to light blue correspond to

Np = 753, 1003, 1253, 1503, 2503 lattice sites per rank. The dashed gray

line corresponds to ideal ∝ P scaling.

13, 23, 33, 43, 53, 63, 73, 83, 93, 103 processors on the
Comet XSEDE cluster, and studied computational performance
for Np = 753, 1003, 1253, 1503, 2503. As expected, there
are systematic drops due to increased communication costs as
one goes from 1 core to multiple cores to multiple nodes, but
openQmin recovers ideal linear scaling of lattice updates with
P as P grows very large. Additionally, there is a systematic
degradation of performance for small Np, since in that case there
is a more unfavorable ratio of halo sites to controlled sites for
each processor.

Note that when we set the characteristic lattice spacing to
correspond to 4.5 nm, the largest system simulated in this study,
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Np × P = (2503) × 103, corresponds to a simulation domain of
volume 1,424 µm3.

4. SAMPLE STUDIES

4.1. Companion Defects to Homeotropic
Spherical Colloids
In this section we apply openQmin to the question of
whether a hyperbolic hedgehog or a Saturn ring disclination
loop provides the minimum-energy form of the topological
companion defect to a homeotropic spherical colloid. As
mentioned above, a larger colloid radius a favors the dipolar
configuration with a hedgehog, whereas smaller a favors the
quadrupolar configuration with a Saturn ring. As a result,
the common rescaling of experimental dimensions to smaller
a/ξN in numerical modeling risks obtaining qualitatively
different topological defect configurations. Besides increasing the
simulation box size, altering the modeled material constants
can restore qualitative agreement between experiment and
simulation. Here we explore the issue in detail, using openQmin
to systematically investigate the stability of hedgehogs relative to
Saturn rings over a range of sizes and material parameters.

The dipolar configuration with a hyperbolic hedgehog is the
ground state for homeotropic colloidal particles near or above
the micron scale [2]. Terentjev’s prediction of the alternative
quadrupolar director field configuration with a Saturn ring
disclination loop [62] can be stabilized for large particles by
confinement or external fields [88, 89]. Stark [63] demonstrated
numerically using the Frank-Oseen free energy that the Saturn
ring becomes metastable relative to the dipole for a . 720 nm,
with a defect core size rc = 10 nm. For a . 270 nm, the Saturn
ring becomes the global ground state.

While the elastic energies of the two configurations are
complicated to express, the Saturn ring is additionally penalized
by a simple core energy per unit length, or line tension, γ =
πK/8 [63, 69]. Because the Saturn ring maintains a radius rd just
slightly larger than that of the colloidal particle, rd ≈ 1.1a [63],
the total defect core energy penalty Ec = 2πrdγ ∝ Krd of the
Saturn ring grows linearly with the colloid radius. In contrast,
the hyperbolic hedgehog has no defect core dimension growing
in size with the colloidal particle, helping to stabilize the dipole
over the Saturn ring at larger colloid sizes.

In order to numerically model multi-particle configurations in
the dipolar size regime—if we cannot exploit crystal symmetries
to obtain a small unit cell [10, 45]—we must either scale up the
simulation volume to larger lattices, or stabilize the dipole at
smaller particle sizes. We can achieve the latter by altering the
materials-constant ratios B̃ ≡ B/A, C̃ ≡ C/A in Equation (5).
Together, these two ratios determine S0 via Equation (7), as well
as the non-dimensionalized free energy density of the nematic

ground state f̃0 ≡ f0/A with the energy well depth f0 defined as in
Equation (8).

By varying B̃ and C̃ such that S0 remains fixed, we alter
the energetic cost per unit volume of melted nematic order
in defect cores, |f0|. The defect core size rc varies with the
nematic correlation length ξN , which, from Equation (12), scales

as ∼
√

L1/|f0|. Thus, an increase in |f0| implies a decrease in the
defect core size, which means effectively that the ratio a/rc of the
particle size to the defect core size is increased without changing
the size of the simulation lattice. The dipolar configuration is
therefore expected to remain stable at smaller particle sizes. This
technique was used in Luo et al. [37] to model a dynamical
transition from Saturn ring to dipole as a colloidal particle
approaches an undulated boundary, at simulation box sizes up
to 50 times smaller than the experimental dimensions.

The results of this study are shown in Figure 5, which we
parameterize by varying B̃ at fixed S0 = 0.53 [i.e., setting
C̃ = (−2 − B̃S0)/(3S

2
0)], along with the size of the spherical

colloid and the lattice size. We test the stability of hyperbolic
hedgehogs by initializing the surrounding lattice sites in the
dipolar defect configuration suggested by Lubensky et al. [90],
performing an energy minimization, and testing whether the
resulting configuration has remained in the hedgehog state or
transitioned to a Saturn ring configuration (thus, testing the
meta-stability of the dipolar defect state as a function of system
parameterization). At the values B̃ ≈ 12, C̃ ≈ −10 commonly
used in modeling of 5CB [47], we find that the lower limit of
hedgehog meta-stability is a ≈ 74 lattice spacings, or about 330
nm. In this sample study we have imposed a large but finite
anchoring strength at the colloid’s surface. Weaker anchoring
strength will affect the results, with a “surface ring” configuration
replacing the dipole at low anchoring strength [63].

We have also tested the meta-stability of the quadrupolar
defect configuration by initializing the system in a Saturn
ring configuration and minimizing, but we have not observed
the spontaneous appearance of hedgehog defects from such
simulations, indicating at least the meta-stability (if not absolute
stability) of Saturn rings over the entire parameter range studied
here. In addition to the effect of defect core size mentioned
above, slight deviations in hedgehog meta-stability as a function
of lattice size at fixed B̃ and a seen in Figure 5 indicate the
importance of far-field distortion terms on the (meta-) stability
of defect configurations.

4.2. Patterned Boundary Conditions
To demonstrate the modeling of patterned boundaries in
openQmin, we examine a square array of alternating ±1
disclinations imprinted as a spatially varying anchoring direction
on a planar substrate. Such an array was created experimentally
by the authors of Murray et al. [26], by scribing lines into a
polyimide surface with an atomic force microscope. As in that
experiment, we give the opposing surface degenerate planar
anchoring. In openQmin, these boundary conditions are specified
at each boundary lattice site through a user-prepared text file (see
section 5 below). We employ periodic boundary conditions in
the horizontal directions, and the anchoring strength W at both
surfaces is set to make the extrapolation length K/W roughly
equal to the lattice spacing.

Figure 6A shows the result of minimizing a cell of thickness
h = 224 lattice spacings, corresponding to≈ 1 µm for 5CB, and
a spacing d between defects equal to h. We create an 8 × 8 array
of defects, so the total volume modeled is 64 µm3, larger than
the maximum size achievable with single core minimizations
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FIGURE 5 | Stability of dipolar defects around a spherical colloidal inclusion at fixed S0 = 0.53 as a function of dimensionless bulk free energy density constant B̃,

colloid size a, and linear system size L, with a and L in units of the lattice spacing. Regions of parameter space with (meta-)stable dipolar configurations are shown

with blue diamonds, stable quadrupolar configurations are shown with red circles. (Left) For fixed lattice size of N = 2753, we vary the dimensionless bulk free energy

density constant B̃ and the colloidal radius a. (Right) For fixed ratio of colloidal radius to linear system size, a = 0.22× L = 0.22× N1/3, we vary B̃ and L. Particularly

for the larger values of a, one can see dependence of hedgehog meta-stability on L, indicating the importance of far-field distortions and boundary conditions (here,

periodic).

on a typical CPU (≈ 10 − 20 µm3). Simulating several unit
cells of the substrate patterning in this way allows us to observe
a labyrinthine configuration of half-integer disclination lines
near the plane of the substrate, connecting neighboring surface-
defects. Meanwhile, some disclination lines are vertical, traveling
between the two surfaces and imprinting a + 1

2 or − 1
2 defect

profile on the top surface. The stopping condition for the
minimization here was a somewhat modest force tolerance,
allowing these large-system-size studies to be completed in less
than 24 hours. While clearly not completely equilibrated, the
horizontal disclination labyrinth is similar to a domain wall
texture observed experimentally in Murray et al. [26], which may
also be kinetically trapped. Absent from the texture in Figure 6A

is the ±1 non-singular escaped configuration, which did appear
in the experiments.

The energetic cost per unit length of disclination lines implies
that the vertical configuration is favored by smaller cell thickness
h. Indeed, as shown in Figure 6B, when we decrease h/d from
1 to 1

6 , only vertical disclinations appear, in pairs of + 1
2 or

− 1
2 disclinations from the “splitting” of the ±1 surface defects.

This defect splitting was sometimes observed in Murray et al.
[26] in place of the escaped configuration. Conversely, as shown
in Figure 6C, only horizontal disclinations appear when h/d is
increased to 2. Extensions to even larger defect arrays, to curved
boundaries, and to spatially non-uniform anchoring types can be
explored in the same manner in openQmin.

5. RAPID PROTOTYPING WITH GUI
INTERFACE

Figure 1 shows a screenshot of the graphical user interface in
action; the Supplemental Video and accompanying narrative
transcript of the video in Supplementary Data Sheet 1 shows
a representative demonstration of its use. Here we discuss

some of its current functionality. Initialization dialog boxes
allow the user to set the simulation size, the computational
resource to use (CPU or GPU, auto-detecting whether CUDA-
capable resources are available for use), and parameters for
the bulk and distortion free energy density. This generates
a random bulk configuration of Q-tensor lattice sites with
periodic boundary conditions. For the visualization pane the
user can specify the density and magnitude of directors to
draw (taken to be the direction of the largest eigenvector
of Q at each site), and can freely rotate and zoom in on
the configuration, as well as highlight in blue defects defined
locally by regions where the largest eigenvalue of Q falls below
some threshold.

In the top left are buttons allowing the user to specify
parameters from one of two energy minimization techniques
to use (FIRE and Nesterov’s Accelerated Gradient Descent);
the resulting dialog boxes are populated with values that we
typically find to be efficient for default parameter choices in
the bulk and distortion energies, although some amount of
tuning may be quite beneficial (particularly when changing
the distortion terms L2 through L6). The “Minimize”
button performs the requested energy minimization (either
until a target force tolerance is attained or the maximum
number of iterations is reached), with the option to visualize
the results only at the end or to watch the minimization
proceed. The “File” dialog box allows the currently visualized
state of the system to be saved for separate analysis
or processing.

Note that menu items allow any of the terms in the energy
functional governing the simulation, Equation (4), to be changed
on the fly. This allows, for example, the user to first minimize
a system with some values of the distortion constants and then
perform repeated minimizations as those values are changed,
observing the stability ormeta-stability of defect structures as this
is done.
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FIGURE 6 | Numerically computed disclination configurations near planar substrates patterned with square arrays of alternating ±1 surface disclinations. The

opposite planar boundary (transparent square) has degenerate planar anchoring. (A) An 8 × 8 array of surface disclinations with spacing equal to the cell thickness.

(B) A 2 × 2 array of surface disclinations with spacing equal to six times the cell thickness. (C) A 4 × 4 array of surface disclinations with spacing equal to half the cell

thickness. Configurations in (A–C) are partially energy-minimized. Disclinations are colored blue. Axes values are given in units of the lattice spacing. In each row, the

second panel shows a top view of the disclinations in bulk and the director field in the plane of the patterned substrate; the third panel shows a top view of the director

field on the opposite surface, along with the half-integer disclination points (if any) in that surface. These images were made using the “visualize.py” Python script

included in the repository for taking saved configurations and making simple visualizations from the command line.

Two buttons allow the user to introduce boundaries and
colloidal inclusions into the system. “Simple” objects are spheres
and flat walls with either normal homeotropic or degenerate

planar anchoring conditions. Arbitrarily complex boundary
conditions (taking any shape, with degenerate planar and
homeotropic anchoring conditions not restricted by the direction
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of the surface normal) can be added by preparing a simple text file
that the program can read in – an example script that generates
the custom boundary file used in Figure 1 is included in the
“/tools” directory of the project’s GitHub repository [67].

With boundaries and colloids (“objects”) in place, some
manipulations of these objects are accessible via drop-down
menus. The positions of these objects within the simulation
can be directly modified, so the user could place an ellipsoidal
particle, perform a minimization, change the position, re-
minimize the system, and record the different energy minima
attained. We include an option to automate this type of
operation (which can be used to build up the potential of
mean force from the liquid crystal and colloid interactions)
for convenience. A near-term addition will be allowing objects
to move according to the integrated stresses at their surface
(or according to the energetic results of various trial moves);
the user will then be able to separately “Minimize” just
the liquid crystal sites or “Evolve [the] system” by allowing
both liquid crystalline and colloidal degrees of freedom to
change simultaneously.

Finally, to facilitate moving from GUI prototyping to larger-
scale MPI studies, we have included the ability to record
system initialization and sequences of commands entered in
the graphical user interface, and then save this sequence of
commands as a new file that can be separately compiled and
executed in non-GUI operation. This file has its own set of
command line options, primarily so that it can be made to work
as anMPI executable and so that the system size of the simulation
it represents can be rescaled to a larger value. We highlight
this GUI-prototyping approach as a visual alternative to the
scripting-language approaches of molecular-dynamics packages
like LAMMPS [91] or HOOMD-blue [92] for specifying complex
sequences of system initialization, energy minimizations, and
the introduction of objects, fields, and boundary conditions.
We believe that this seamless visual-prototyping-to-MPI-scalable
pipeline will be beneficial to researchers interested in accessing
experimental-scale simulations.

6. DISCUSSION

As demonstrated in our sample study, openQmin utilizes
MPI to enable LdG modeling at typical size scales of
experimental relevance, at the ∼ 10 µm range, with
fast convergence enabled by the FIRE algorithm. Besides
the colloidal defect configurations and patterned boundaries
discussed here, another immediate use is for the study
of cholesterics, where typically fewer than ten pitches can
fit inside a simulation box using a single processor, but
using openQmin tens of pitches can be modeled. While
it may not be realistic at present to frequently conduct
simulations with 103 processors, using openQmin on computer
clusters will facilitate demonstration of how numerical results
scale with system size, allowing reasonable extrapolations to
experimental scales.

For modeling at the ∼ 1 µm range or smaller, openQmin’s
combination of FIRE with GPU computing offers a substantial

speedup, enabling users to manipulate the simulated
conditions in a GUI environment and observe the change
in energy-minimized configurations. The GUI is useful for
running “real-time” tests of proposed configurations which can
then be modeled at larger scales with MPI.

Likewise, the GUI will also be useful to experimentalists
in quickly identifying more optimal properties of nematics,
colloidal particles, boundaries, etc. in order to achieve
targeted topological or self-assembled configurations.
In general, numerical modeling can aid experimental
studies not only in developing theoretical understanding
of nematic structures and energy landscapes, but also in
performing high-throughput searches through these design
spaces. For example, geometric compatibility conditions
favoring lock-and-key assembly of particles and patterned
walls [21, 37], or particle design promoting assembly into
photonic crystals, can be optimized more efficiently in
numerics, to help guide the increasingly sophisticated uses
of fabrication techniques such as photolithography and two-
photon polymerization [93]. An ambitious but important
direction for future development is therefore to efficiently
explore design parameter spaces in numerical modeling,
possibly employing genetic algorithms and techniques from
machine learning.

There are some near-term directions for future development
of openQmin that we anticipate will increase the usefulness of this
open-source software to the liquid crystals research community.
An expanded library of Q-initialization options will facilitate
investigations of chiral liquid crystals, topologically entangled
or knotted defect configurations [11–14], and periodic defect
arrays [26, 94], for example. A major advance would be adding
a flow field coupled to Q by Beris-Edwards nematodynamics, for
investigations of microfluidic geometries and active nematics.

Incorporating motion of colloidal particles into the modeling
is another area for useful developments. In the experimental
system, energy is minimized not only over Q but also over
the positions and (if applicable) orientations of colloidal
particles. At present, openQmin takes these latter degrees of
freedom as input parameters, and a free energy landscape
can be mapped either informally using the GUI or more
systematically on a computer cluster. Thus one desired future
improvement is to allow overdamped translation and rotation
of colloidal particles within the program, downhill in the energy
landscape, based on trial moves or on estimated nematic elastic
stresses felt by the particle [46]. The trial move approach,
requiring several re-minimizations of Q at each time step, is
made less cumbersome by improved convergence speed of the
FIRE algorithm.

Finally, we hope that openQmin’s GUI interface will be
useful in physics education. Interacting with a fast and
“hands-on” version of the numerical modeling, students
at the undergraduate or beginning graduate level can
quickly gain experience and intuition for liquid crystals.
This will help to capitalize on the position of liquid crystals
as one of the most accessible, and visualizable, physical
realizations of abstract topological ideas relevant to many areas
of physics.
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Dowsons are ±2π point singularities of the unitary complex order parameter eiϕ

characterizing the so-called dowser texture in a thin nematic layer with homeotropic

boundary conditions. Dowsons are therefore similar to disclinations in freely-standing

smectic C films or to vortices in two-dimensional superfluids or superconductors. Using

especially tailored setups called dowsons’ colliders, pairs of dowsons of opposite signs

are generated and set into motion on counter-rotating trajectories leading to collisions.

In a first approximation, the velocity of dowsons is orthogonal and proportional to the

local phase gradient
−→∇ ϕ. The outcome of collisions, i.e., either annihilation or bypass,

depends on the distance of trajectories 1ϕ in terms of the phase: for 1ϕ < π a collision

of a pair of dowsons leads to their annihilation, while for1ϕ > π the dowsons are passing

by. This rule is valid only for quasi-static stationary wound up textures and can be easily

broken by application of a Poiseuille flow in an appropriate direction.

Keywords: nematic, topological defects, dowser texture, complex order parameter, collider, annihilation

1. DOWSONS: DEFECTS OF THE DOWSER TEXTURE

1.1. The Dowser Texture
As stressed by de Gennes in his pioneering paper on classification of topological defects [1],
superfluids (or superconductors) (Figure 1A) and smectics A (Figure 1B) are characterized by
complex order parameters |9|eiϕ . Later, smectics C (Figure 1C) have been added to this list. Beside
phases in the thermodynamic sense, the complex order parameter characterizes also textures of a
homeotropic nematic layer above the Freedericks transition (Figure 1D) as well as the so called
dowser texture in a nematic layer with homeotropic boundary conditions (Figure 1E).

The dowser texture, known as the quasi-planar texture for decades [3], was believed unduly to
be unstable, with respect to the homogeneous homeotropic texture, so that it has been scarcely
studied in past. Recent work [4] proved that in practice the quasi-planar texture is only metastable
and can be preserved indefinitely in certain conditions. Experiments with this persistent version
of the quasi-planar texture have unveiled its remarkable qualities such as its sensitivity to magnetic
[5], mechanical [6], or electric [7] perturbations. For this reason, as well because of the resemblance
with the wooden dowser tool, the persistent version of the quasi-planar texture was dubbed “the
dowser texture.”

1.2. Dowsons d+ and d−: the +2π and −2π Singularities of the
Phase Field ϕ(x, y, t) of the Dowser Texture
The dowser texture is fully characterized by the azimuthal angle ϕ of the unitary two-dimensional
dowser field d = (cosϕ, sinϕ) (Figure 1E) which is equivalent to the phase ϕ of the complex order
parameter eiϕ .
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FIGURE 1 | Topological defects in systems characterized by complex order parameters: (A) vortices in a superconductor [2], (B) dislocation in a BPI crystal, (C)

disclination in a smectic C free-standing film, (D) umbilic in a homeotropic nematic layer above the Freedericks transition, (E) dowson in the dowser texture.

Thanks to the birefringence of nematics, the phase ϕ(x, y, t)
of the dowser field d(x, y, t) is directly observable in polarized
light so that its +2π and −2π topological singularities are
easily identifiable [5]. Let us note that when considered in three
dimensions of the nematic layer, these singularities of the 2D
dowser field d(x, y) appear as nematic monopoles [8], that is to
say, point singularities of the 3D director field n(x, y, z, t).

In the present work, devoted to motions and collisions of
topological singularities of the dowser field we will call them
shortly “dowsons.” Moreover, for the sake of concision, we will
use notations “d+” and “d−” corresponding to the+2π and−2π
versions of dowsons.

Let us stress that in contradistinction with the dowser
texture, the phase ϕ(x, y) of the complex order parameter in
superconductors is not an observable quantity and only its +2π
and −2π singularities, that is to say vortices, can be imaged, for
example, with a squid-tip AFMbecause they carry in their normal
core the quanta of the magnetic flux h/(2e) [2].

1.3. Trajectories and Collisions of Dowsons
Previous experiments with dowsons [4, 5] have shown that
pairs of dowsons “d+” and “d−” can be easily generated, set
into motion and brought into collisions. In certain conditions
collision of pairs of dowsons (d+,d−) can result in their
annihilation. Here, we will explore these processes by means of
especially tailored setups called “dowsons’ colliders” (see section
2.1 and Figure 4).

The principal role of dowsons’ colliders consists in driving
motions of dowsons which is achieved by a controlled winding
of the phase of the dowser field. Indeed, like vortices in
superconductors which are set in motion by phase gradients (the

Lorentz force is exerted on a flux quantum by a transport current
proportional to the phase gradient), themotion of dowsons is also
driven by phase gradients.

1.4. Single Dowsons Inserted in a Wound
Up Dowser Field
This is explained on the first example shown in Figure 2 where
one dowson d+ is imbedded in a wound up dowser texture.
Before considering forces involved in the motion of this dowson
d+, let us emphasize that its structure depends on the phase

ϕi = ϕ(xi, yi) at the insertion point (xi, yi). Figures 2A–C show
that for ϕi = 0 the structure of the dowson d+ is radial with the
field d directed outward. For ϕi = π/2 the structure becomes
circular anticlockwise (see Figures 2D–F) and for ϕi = π it is
radial directed inward (see Figures 2G–I).

In Figure 2 the dowser field is wound up in the y direction

(
−→∇ ϕ//

−→y ) so that the phase ϕi = ϕ(xi, yi) does not depend
on the coordinate xi of the insertion point. Therefore, lines
defined by yi = const are isophasic and can be considered as
isophasic trajectories of the dowson. In the general case of an
arbitrarily wound up dowser field, one can still define isophasic
lines by equation

ϕ(xi, yi, t) = const (1)

When the dowson d+ is moving on such isophasic trajectories, its
structure (radial, circular, or spiral) remains the same. Therefore,
the isophasic trajectories can be alternatively called isoform. This
second denomination is more convenient in practice: when the
orientation of the cross-shaped isogyres of a dowson remains the
same, its trajectory is isophasic.
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FIGURE 2 | (A–I) Dowson +2π imbedded in a wound up dowser texture. (A,D,G) Radial, orthoradial, and antiradial configurations of the dowson d+ alone. The

orthoradial configuration has the lowest elastic energy [5]. (B,E,H) Phase field of the dowser texture wound up in y direction: ϕ = 2πy/λ. (C,F,I) The wound up phase

field with the dowson d+ imbedded respectively at y = 0 (C), y = λ/4 (F), and y=λ/2 (I). (J–O) Dowson -2π imbedded in a wound up dowser texture. (J,M)

Configurations of the dowson d− depend on the phase ϕi = ϕ(xi , yi ) at the insertion point (xi , yi ). They result from rotation by the angle ϕi . (K,N) Phase field of the

dowser texture wound up in y direction: ϕ = 2πy/λ. (L,O) The wound up phase field with the dowson d− imbedded respectively at y = 0 (L) and y=λ/4 (O).

Similar consideration on the insertion of one dowson d−
into a wound up dowser field (illustrated by Figures 2J–O)
leads to the conclusion that the “hyperbolic” structure of
the dowson d− rotates as a whole when ϕi varies. Such a
transformation of the dowson d− does not change its elastic
energy so that trajectories of the dowson d− are not submitted to
elastic constraints.

On the contrary, as stated above, the structure of the dowson
d+ varies with ϕi. Therefore, due to the elastic anisotropy, the
elastic energy of the dowson d+ depends on ϕi so that its
trajectories are submitted to an elastic constraint. As we will point
out below, dowsons d+ tend to follow isophasic trajectories.

In Figure 2C, the dowson d+ is located at the left extremity of
a 2π wall. The elastic energy stored in this wall is relaxed when
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the dowson d+ moves to the right because the wall is shortened
by this means.

Qualitatively, a wall of width λ exerts on the dowson d+ the
force which is of the order of the elastic energy per unit length
stored in it:

τel =
1

2
Keff h

∫ λ

0

(

∂ϕ

∂ξ

)2

dξ ≈ Keff
2π2h

λ
(2)

During the motion of the dowson with velocity v, the driving
force τel is opposed by another one τvisc resulting from the
viscous dissipation:

τvisc ≈ πγ1hv (3)

Therefore, the velocity of the dowson is given by:

v ≈ 2π
Keff

γ1

1

λ
(4)

In conclusion, the velocity of the dowson should be independent
of the local thickness but should decrease as 1/λ with the local
width λ of the wall.

When instead of the dowson d+, the dowson d− is imbedded
in the same wound un dowser field (see Figure 2J), it is
positioned at a right extremity of the 2π wall and therefore will
move to the left.

1.5. Pair of Dowsons (d+,d−) Inserted in a
Wound Up Dowser Field
Figure 3 represents the case of a pair of dowsons d+ and d−
inserted in the same wound up dowser field. Analytically, the
phase field of the wound up dowser texture with the pair of d+
and d− dowsons inserted respectively at points (x±, y±) can be
expressed as

ϕ(x, y) =
2π

λ
y+ arctan

(

y− y+
x− x+

)

+ arctan

(

−
y− y−
x− x−

)

(5)

When the two dowsons are far enough, i.e., when |x+ − x−| > λ,
they move on trajectories defined by y(t) = y+ and y(t) = y−.
We can thus define the distance of trajectories as

δ = y+ − y− (6)

in terms of the length or as

1ϕ = 2π
y+ − y−

λ
(7)

in terms of the phase. The set of seven pictures in Figures 3A–G

illustrates graphically this concept of the distance of trajectories
leading to collisions.

1.6. Aims of Experiments With Dowsons’
Colliders
One of aims of our experiments performed with dowsons’
colliders is to find conditions which determine the outcome of
collisions [9, 10]. When 1ϕ = 0 (see Figure 3A), the two
dowsons are located at extremities of the same 2π wall. It
seems therefore that annihilation of the (d+,d−) pair must occur.
Inversely, when 1ϕ > π (see Figure 3G), the two dowsons
are located at extremities of two distinct 2π walls so that the
annihilation of such a pair will be avoided. We will thus generate
experimentally numerous pair collisions with the aim to find the
annihilation cross section of dowsons.

Before that, we will focus on the primary aim of our
experiments which consists in observingmotions of dowsons and
measuring their velocities. Knowing that the elastic force driving
their motion is inversely proportional to the wave length λ of the
wound up texture, we have to wind up the dowser texturemore or
less expecting that the velocity of dowsons should increase when
the phase gradient grows.

2. DOWSONS’ COLLIDERS

2.1. Experimental Setups
2.1.1. The Double Dowsons’ Collider
The first setup shown in Figure 4A, called here “Double Dowson
Collider” or DDC, was developed during the study of the
rheotropism of the dower texture [6]. It consists mainly of a
convex lens (50 mm in diameter) and of a glass slide (25 × 75 ×
1mm) supported at one end by a translation stage as shown in
Figure 4A. The radius of curvature of the convex lens is 140
mm. A droplet of a nematic (5CB) is held by capillarity in the
gap between the lens and the slide. Typically the diameter of
the squeezed droplet is 10 mm and its thickness in the center
(regulated by means of the translation stage) is of the order of a
few µm. The glass slide is set into vibrations by the force exerted
on small magnets by the magnetic field of the coil. Due to the
mirror symmetry [with respect to the (x,z) plane] of this device,
only the flexural modes of vibration ζ = ζ (x, t) are excited in it.

As explained in Pieranski et al. [6], vibration of the slide
(in its flexural modes) results in two harmonic motions at the
drop center: 1—modulation of the gap thickness and 2—rotation
around the y axis. By this means, two Poiseuille flows, radial and
dipolar, shifted in phase by π /2, are driven simultaneously. The
resulting effective flows are elliptical: clockwise and anticlockwise
in the two halves of the droplet symmetrical with respect to the
mirror plane (x,z).

The rheotropic (weathercock-like) behavior of the dowser
field results in rotation of the dowser field d with the angular
velocity ω(x, y, t) = dϕ/dt depending on the (x,y) position
in the droplet. In the DDC, the torque Ŵ(x,y,t) exerted by the
elliptical Poiseuille flow on the dowser field can be approximated,
heuristically, by the function fDDC(r) cos(θ), with fDDC(r) =
re−r2 , r =

√

x2 + y2 and θ = arctan(y/x), plotted in Figure 4C.
A typical pattern of a wound up dowser texture observed in
experiments between crossed polarisers is shown in Figure 4E.
It is symmetrical with respect to the (x,z) plane.
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FIGURE 3 | Collision of a pair of dowsons d+ and d− imbedded in a wound up dowser texture. The distance of their trajectories in terms of the phase difference 1ϕ

varies between 0 to 3π from (A–G). The color code for the phase is given in (H).

2.1.2. The Circular Dowsons’ Collider
For the purpose of the present study of collisions of dowsons, we
developed a second setup (see Figure 4B) tailored for production
of a circularly wound up pattern. As we will see below, trajectories
of dowsons in this Circular Dowsons’ Collider are circular
and respectively clockwise and anticlockwise for the d+ and
d− defects.

In this second setup, the mirror symmetry is broken by its
structure. The magnet is now located at one extremity of an
additional glass slide (10 × 75 × 1mm) which is attached at its
second extremity to the principal glass slide. The force fexc exerted
by the coil on the magnet produces now also a torque fexc1y
which drives the torsional mode of the principal glass slide. As the
flexural and torsional modes have different eigenfrequencies, the
π/2 phase shift between them can be obtained by an appropriate
choice of the excitation frequency, which typically is of the order
of 360–440 Hz. In such a case, the motion of the principal glass
slide at the center of the drop is conical: the normal to it Eν
precesses on a cone centered on the z axis. The Poiseuille flow
in the droplet is now circular (orthonormal) with the amplitude
(and sense) depending on the distance r from the drop center.

In the first approximation, the torque Ŵ(x,y,t) exerted by the
elliptical Poiseuille flow on the dowser field can be represented,
heuristically, by the function fCDC(r) = d(fDDC/dr) which plotted
in Figure 4D.

2.2. Experiments With the Double
Dowsons’ Collider
2.2.1. Velocity of Single Dowsons on Straight

Trajectories
As shown in Figure 5E the isogyres’ pattern of the dowser
field wound up in the double dowsons’ collider is (almost)
symmetrical with respect to the mirror plane (x,z). Therefore,
when a single dowson is imbedded in the wound up dowser
field in the vicinity of this plane, the 2π wall to which it is
attached is parallel to the x axis as discussed in the Introduction
(see Figure 2). This is the case in the series of five pictures

in Figures 5A–E showing the motion of a single dowson d+
“pulled” by a 2π wall along the x axis.

These pictures are extracted from a video containing 55
pictures recorded at intervals of 20 s. Using all of them, we
measured the velocity v of the dowson and the width λ of the
2π wall to which it is attached. The result, v(λ), is plotted in
Figure 5F. Arrows labeled from a to e indicate measurement
points corresponding to the five picture above.

From the Equation (4) in the section 1.4 we expect that the
velocity of the dowson should grow as v ∼ λ−1 with the local
wave length λ of the wound up phase field. The dashed line in the
diagram of Figure 5F represents the best fit to this law. Clearly,
the slope of the measured variation v(λ) is slightly steeper. We
have therefore tempted to fit experimental results with a more
general power law v ∼ λα . The continuous line represents the fit
with α = −1.24 which clearly is better than the one with α = −1.

2.2.2. Dowsons’ Sprint
In the search for reasons of this discrepancy, we performed
another experiment which could be called “the dowsons sprint.”
It starts with a simultaneous generation of a row of (d+,d−) pairs
in a wound up dowser texture by means of a shear flow applied
in the y direction (see Figures 6A,B). (We postpone the detailed
discussion of this issue to another paper.) At t = 0 s, the dowsons
d+ “in statu nascendi” are aligned on a slightly curved line AB
while the dowsons d− are aligned on another line CD parallel to
AB. As expected, all dowsons d+ start to move to the left while
the dowsons d− move to the right.

For the purpose of the further discussion we will label seven
neighboring dowsons d+ on the start line AB with an integer
index i = 1,2,3,... (see Figure 6C).

At the very beginning of this race, the motion of dowsons
is driven exclusively by shortening of the 2π walls connected
to them, as discussed in the section 1.4. Therefore, they have
therefore the same velocity vi = const and conserve their
alignment on the curved line which is moving to the left as
a whole.
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FIGURE 4 | Dowsons’ colliders. (A) The first version developed during studies of the rheotropism of the dowser texture [6]. Here, we will call it the Double Dowson

Collider (DDC). (B) The second version tailored for production of circular trajectories of dowsons. We refer to it as the Circular Dowsons’ Collider (CDC). (C,D)

Approximative representations of the rheotropic torque Ŵ(x, y) in DDC and CDC. (E,F) Typical wound up dowser textures obtained with DDC and CDC.

However, soon after the departure, an instability occurs: the
set of all dowsons is split into two subsets defined by the
parity of the index i and, for example, dowsons with i odd (see
Figure 6D) begin to move more slowly than those with i even.
This retardation of odd dowsons (with i = 2n+1) is easy to
understand: the width λ2n+1 of the 2π walls to which they are
attached is twice larger then that of the even dowsons λ2n.

If the force fi pulling dowsons was determined only by the
width λi of the 2π walls to which they are attached, the ratio of
velocities v2n/v2n+1 should be 2. However, measurements of the
dowsons’ velocity have shown that v2n/v2n+1 ≈ 3.

Explanation of this apparent discrepancy involves a more
detailed evaluation of the elastic energy released during the
motion of dowsons. If the “lanes” left behind faster dowsons
stayed free of distortion, the force acting on them would
remain constant during the race. However, as shown in
Figure 6D, these lanes are filled by enlargement of the lanes of
slower dowsons. The corresponding amount of the
released elastic energy per unit length is equal to the
force f2n+1 pulling slower dowsons. In conclusion, the
elastic force f2n acting on faster dowsons is not two
but three times larger than f2n+1. A more detailed

Frontiers in Physics | www.frontiersin.org 6 January 2020 | Volume 7 | Article 23858

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pieranski and Godinho On Generation, Motions, and Collisions of Dowsons

FIGURE 5 | Motion of the dowson d+ in the phase gradient generated in the dowson collider DDC. The series of five pictures shows successive positions of the

dowson d+ at: (A) t = 0 s, (B) t = 380 s, (C) 520 s, (D) 620 s, and (E) 700 s. For a better visibility, small areas in vicinity of the dowson have been enlarged in pictures

(B–E). (F) Plot of the velocity of the dowson d+ vs. the local wave length of the wound up dowser texture. The continuous red line represents the fit to the power law

v = Aλα with α = −1.24. The dashed blue line corresponds to α = −1.
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FIGURE 6 | Dowsons race. (A) Central portion of the dowser texture wound up in the DDC. It can be seen as a stack of 2π walls. (B) Collective generation of (d+,d−)

pairs by application of a transient shear flow (in y direction) which “breaks” simultaneously all 2π walls. (C) At the beginning of the race, dowsons d+ (or d−) are

moving with the same velocity. (D) Odd-even instability: odd dowsons (i = 2n+1) stay behind even dowsons (i = 2n) because they become about three times slower.

(Collaboration with Elise Hadjefstatiou and Lisa-Marie Montagnat).

discussion of the dowsons’ race is postponed to
another article.

2.2.3. Are Trajectories of Dowsons Isophasic?
In experiments with dowsons’ colliders, the 2π walls can be
defined as bundles of four adjacent isogyres; when one crosses
one of such bundles, the phase varies by 2π .

In the vicinity of the mirror symmetry plane (x,z) of the
Double Dowson Collider, the 2π walls are parallel to the x
axis so that the dowsons d+ and d− are moving on straight
isophasic trajectories. However, as we know already from section
2.1 (see Figure 4C), the whole dowser texture, wound up in the
Double Dowsons’ Collider, can be seen as made of 2π walls
forming closed loops in the absence of defects. Let us suppose
that a pair (d+,d−) of dowsons has been generated by breaking
one of these 2π walls. Pulled in opposite directions by the broken
2π wall these dowsons will move apart. Will their trajectories
remain isophasic? If it was the case, they would remain connected
to the same 2π wall which would became shorter and shorter so
that, finally, the two dowsons would meet and annihilate. Such
a behavior was indeed observed in first experiments with the
dowser texture wound up by a rotating magnetic field [5].

As we will see below, experiments with dowsons’ colliders have
shown that trajectories of dowsons are not necessarily isophasic
so that they do not remain connected to the same 2π wall.
Therefore, when after a half turn of the wound up dowser texture
the two dowsons of the pair meet again, the distance of their

trajectories 1ϕ in terms of the phase is not necessarily zero so
that their annihilation is not granted.

2.2.4. The First Evidence for Non-isophasic

Trajectories of Dowsons
The issue of non isophasic trajectories of dowsons was raised for
the first time in experiments with the DDC. Let us consider a
typical experiment illustrated in the Figures 7A,B by a view of
one of the two target patterns of the wound up dowser texture.
We identify here four dowsons d+ and three dowsons d−. On
this background we represented by rows of circular markers
successive positions, recorded at intervals of 30 s, of dowsons d+
(Figure 7A) and d−(Figure 7B).

Several conclusions can be drawn from this figure:

1. Dowsons d+ and d−, pulled by 2π walls, circulate in opposite
directions, as expected.

2. The velocity of dowsons is correlated to the local width λ of
2π walls, as expected.

3. The trajectory of the dowson d+ is parallel to isogyres while
the one of the dowson d− is crossing isogyres. In other words,
the trajectory of the dowson d+ seems to be isophasic while
that of the dowson d− is not isophasic.

4. The non isophasic behavior of dowsons d− is even more
obvious when one considers the one labeled with a dashed
circle in Figure 7. It is located in the center of the target
pattern and this central position is dynamically stable during
the phase winding. Now, as during the phase winding, the
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FIGURE 7 | Trajectories of two dowsons, d+ and d−, in the DDC. Circular markers indicate successive positions of dowsons at time intervals of 30 s. Trajectories start

from larger markers labeled “S” and end at markers labeled “E.” (A) The dowson d+ circulates in the clockwise direction of the phase winding. (B) The dowson d−
circulates in the opposite, anticlockwise direction. Its trajectory starts in the vicinity of the center of the target pattern and ends at the periphery. Clearly such a

trajectory is not isophasic. (C) Segment of the trajectory inside the dashed frame displayed in (A). (D) Blue crosses: velocity of the dowson d+ from (A) plotted vs. the

width λ of the 2π wall pulling on it. Continuous blue line: the best fit to the power law with the exponent α = −1.14. Red crosses and the red line: reminder of the data

from Figure 5. The dashed black line corresponds to α = −1.

angular velocity ω = dϕ/dt is the largest here, this central
position is obviously not isophasic. Consequently, the maltese
cross (formed by four isogyres) of this dowson is rotating as a
whole with the angular velocity ω.

Knowing that the circular markers in Figure 7 indicate successive
positions of dowsons at time intervals of 30 s, the velocity v of
dowsons has been determined. Simultaneously the local width λ

of the 2π walls pulling on dowsons has been measured in this
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Figure 7A. Results obtained with the dowson d+ are plotted with
blue crosses in Figure 7D. The best fit to the power law v ∼ λα

plotted with the blue plain line was obtained with α = −1.14. On
the same diagram of Figure 7D we have plotted once again (with
red crosses and a red line) results shown previously in Figure 5.

2.3. Experiments With the Circular
Dowsons’ Collider
The most recent experiments performed with the Circular
Dowsons’ Collider confirmed these conclusions but also unveiled
other remarkable properties of the dowsons dynamics. In
particular, we have found that the result of the phase
winding process in the Circular Dowsons’ Collider depends
on the initial state of the dowser field as well as on the
amplitude of the excitation. In general, for topological reasons

(homeotropic boundary conditions at the nematic/air interface of
the meniscus), the dowser field can contain only an odd number
2n+1 of dowsons d+ and an even number 2n of dowsons d−. We
will show below that two different dynamically stable states C-B1
or C-B2 can be reached when, respectively, n = 0 and n > 0.

2.3.1. Cladis-Brand Stationary State C-B1: One

Dowson d+ Orbiting Around the Target Pattern
In the simplest case of n = 0, one dowson d+ is located initially
at the center O of the drop and the dowser field has the radial
configuration imposed by the cuneitropisme [4] of the dowser
texture. This radial configuration also satisfies the homeotropic
boundary conditions at the nematic/air interface on the edge of
the droplet (see Figure 8A).

FIGURE 8 | Cladis-Brand state C-B1 obtained by winding of the dowser texture in the Circular Dowsons’ Collider. (A) Initial radial configuration of the dowser field. (B)

Beginning of the winding in the anticlockwise direction. The initial configuration is slightly perturbed by a -π/2 rotation in the center. (C) The first isogyre nucleated in

the center is growing. (D,E) Continuation of the winding. Remark: As for energetic reasons the dowson d+ cannot change easily its configuration, it conserves its

phase staying at the periphery of the growing target pattern. (F) Dynamically stable Cladis-Brand state C-B1. The continuing phase growth in the center of the target

pattern is absorbed by the orbiting dowson which acts as a phase sink.
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When the rheotropic driving torque due to the circular
Poiseuille flow is applied to the dowser field, it starts to rotate
with the angular velocity ω(r, t), varying with the distance r from
the center as shown in Figure 4D. Rotation of the dowser field
is thus clockwise in the center at r=0, then the angular velocity
ω(r, t) decreases and changes its sign at r = rc (dashed circle in
Figure 8B). As a result, the maltese cross formed by four isogyres
shown in Figure 8A is deformed: its four arms become spiral as
shown in Figure 8B. Later, the dowson d+ leaves the center O
and a target pattern of loop-like isogyres starts its growth from
the center O: one after another, new isogyres’ loops are nucleated
at the center O and their radii are growing (see Figure 8).

If ω(0, 0, t) is the phase growth rate at the center O, then
the rate of nucleation of 2π walls (each made of four isogyres)
is ω(0, 0, t)/(2π).

During this winding process, the dowson d+ is pushed
(elastically) by isogyres toward the periphery of the target pattern

as shown in Figure 8. By this means, its position inside the
evolving phase field ϕ(x, y, t) remains isophasic. This behavior
results from the elastic anisotropy of the nematic. Indeed, as
shown in Figure 2 the configuration of the dowson d+ depends
on the phase ϕi at the point of its insertion into the wound
up phase field. From Pieranski et al. [5] we know that the
elastic energy of the dowson d+ depends on its configuration.
As energetically the orthoradial configurations (clockwise or
anticlockwise) are the best ones, the dowson tends to conserve
its position at ϕ = π/2(modπ).

Simultaneously, pulled by the 2π wall to which it is attached,
the dowson d+ begins its orbiting motion with velocity v (see
Figure 8E) around the target pattern made of concentric 2π
walls. The orbiting dowson d+ can be seen as a “phase sink”:
after each whole turn around the target pattern, one 2π wall is
“swollen.” If T is the period of the orbit, then we can define the
phase sinking rate as 2π/T.

FIGURE 9 | Cladis-Brand [11] dynamically stable state C-B1 of the phase winding in the Circular Dowsons’ Collider. (A) Spatio-temporal cross section taken along

the dashed line defined in Figure 8F. Four new isogyres are nucleated at the center O during one period T of the orbiting motion of the dowson d+. (B) Blow up of the

rectangular domain defined with a dashed line in (A). λ is the width of a 2π wall composed of four oblique trajectories of isogyres. During one period T = 30 min, the

2π wall is shifted by λ to the right. (C) Successive positions of the dowson d+ recorded as colored dots at intervals of 10 s during three periods of its orbital motion.

The three colors of dots correspond to the three periods T of the orbital motion. (D) Blow up of the rectangular domain defined with dashed line in (C).
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During the winding process, the phase growth rate ω(r, t)
decreases because the rheotropic torque is opposed by the
growing elastic torque. Simultaneously, the sinking rate increases
because the orbiting dowson is moving faster pulled by the
narrowing 2π wall.

The dynamically stable (stationary) phase field ϕ(x, y, t)
is achieved when the phase growth rate at the center
equals the sinking rate due to the orbiting dowson d+ :
ω(0, 0, t) = 2π/T (see Figure 9). As Cladis and Brand have
formerly discovered in free standing smectic C films the same
configuration of a +2π defect orbiting around a target pattern
[11] we propose to call it “The Cladis-Brand state 1” or
shortly C-B1.

2.3.2. C-B2: Second Version of the Cladis-Brand

Stationary State
At first sight, upon the action of the rheotropic torque Ŵr(r),
the dowser field should rotate in the anticlockwise direction
for r > rc, rc being defined in Figure 4D. It seems
therefore that new isogyres could nucleate also in the annular
area near the second extremum of the torque Ŵr(r). In the
experiment discussed above and illustrated by the series of
six pictures in Figure 8, this is not the case: new isogyres
nucleate only at the first extremum of Ŵr(r) located in the center
O at r = 0.

Explanation of this experimental fact is very simple. Beside
the rheotropic torque driving the rotation of the dowser field,

FIGURE 10 | Generation of the second Cladis-Brand dynamically stable state by the phase winding in the Circular Dowsons’ Collider. (A) At the beginning of the

winding, the “residual” d+ dowson is close to the edge of the droplet. It is connected to the center O by a 2π wall. (B–D) Upon application of a strong excitation, the

phase is wound up simultaneously in clockwise direction for r < rc and anticlockwise direction for r > rc. (E,F) Emergence of the second Cladis-Brand dynamically

stable state with the dowson d+ orbiting around an extended double target pattern. The outer and inner target patterns are made of one spiral-shaped 2π wall

connecting the dowson d+ with the center of the droplet.
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there is also the cuneitropic torque Ŵc = (πK/h)g × d (see
[4]) tending to orient the dowser field d in the direction of
the thickness gradient g, that is to say in the radial direction
r of the sphere/plane geometry of the sample (this is the
case in Figure 8A). This cuneitropic torque vanishes at r=0
for symmetry reasons but is finite at r > rc. For a given
r, it reaches its maximum value Ŵcmax = (πK/h(r))|g(r)|
when d is orthogonal to g. In the experiment of Figure 8,
for r > rc the rheotropic torque is smaller than Ŵcmax so
that rotation of the dowser field is hindered there. In another
experiment illustrated by the series of six pictures in Figure 10,
the rheotropic torque was much larger so that nucleation of
new isogyres occurred also in the secondary extremum of the
rheotropic torque.

2.3.3. Triplet Stationary State: Two Dowsons d+

Orbiting Around One d− in the Center
Experiments with the Circular Dowsons’ Collider unveiled a
third stationary state (see Figure 11). To reach it, the winding
process has to be applied to the dowser field with n>0, that is
to say containing at least two dowsons d− and one dowson d+
when n = 1.

For reasons which so far have been not fully understood,
during the winding, the dowson d− is attracted to the center
O [maximum of ω(r, t)] and stays there while the two dowsons
d+, on the contrary, are pushed to the periphery of the growing
pattern. Let us emphasize that in this new configuration the
winding process does not require nucleation of new isogyres.
The phase growth in the center is now due to rotation of

FIGURE 11 | Generation of the dynamically stable “triplet” configuration of dowsons during the phase winding in the Circular Dowsons’ Collider. (A) First, the

Cladis-Brand configuration of one orbiting d+ dowson is generated as shown in Figure 8. (B) Application of a transitory shear flow to the Cladis-Brand state results in

generation of three additional dowsons pairs (d+,d−). One these pairs is labeled as “+” and “−.” (C) Annihilation of the (d+,d−) pair labeled in (B). The second (d+,d−)

pair is labeled as “+” and “−.” (D) Annihilation of the (d+,d−) pair labeled in (C). Only three dowsons are left. (E) Continuation of the winding process. (F) Dynamically

stable trio of three dowson: two dowsons d+ are orbiting around the dowson d− which stays in the center.
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the dowson d− located there. This mechanism is similar to
the Frank-Read model of crystal growth in which a spiral
step, attached to a dislocation emerging on a crystal facet,
is rotating.

When n is larger than 1, the (d+,d−) pairs in excess with
respect to n = 1 are eliminated by annihilation during the winding
process as shown in Figures 11B–D.

Like in the Cladis-Brand process, the stationary triplet state
is reached when the phase growth rate in the center, due

to the rotation of the dowson d−, is fully compensated by

the orbital motion of the two dowsons d+ acting as phase
sinks. In this stationary state, the two dowsons d+ are located
on the same orbit (see Figure 12D) and have therefore the
same angular velocity ωd+ . The total phase absorption rate
is therefore 2ωd+ . Therefore, if the d− dowson in the center
rotates with the angular velocity ωd− then in the stationary state

one has:

dϕ

dt
= ωd− + 2ωd+ = 0 (8)

so that

ωd− = −2ωd+ (9)

This equality is illustrated by in Figures 12A,B.

3. GENERATION, COLLISIONS, AND
ANNIHILATION OF DOWSONS’ PAIRS

The dynamically stable states of the Circular Dowsons’ Collider
are convenient for studies of generation of dowsons and of their
subsequent collisions which can lead to annihilation. Indeed,

FIGURE 12 | Dynamics of the stable triplet configuration of dowsons. (A,B) Two pictures of the wound up dowser texture taken at an interval of 5 min. In this interval,

the dowson d− in the center rotated by π/2, while the dowson d+ on their orbits made only 1/8th of the whole turn. (C) Spatio-temporal cross section taken along the

dashed line CS defined in (A). The inset shows that the orbiting dowson d+ acts as a phase sink: after each crossing of the line CS by one of orbiting dowsons d+,

four isogyres are suppressed. Simultaneously four new isogyres are emitted by the dowson d− rotating in the center O. (D) Successive positions of the two dowsons

d+ recorded at intervals of 10 s during one period of their orbital motions. The two inset show that velocities of the two dowsons d+ are the same. (E,F) To check that

the two dowsons d+ are isophasic, a divergent Poiseuille flow was applied to the wound up dowser field shown in (E).
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like positrons and electrons in a hadron collider, dowsons
d+ and d− are moving in the Circular Dowsons’ Collider
on respectively clockwise and anticlockwise trajectories so that
they can undergo collisions that can result in annihilation of
dowsons pairs.

By a collision we mean an event during which the linear
distance l+− between two dowsons, d+ and d−, decreases and
becomes of the order of the winding wave length λ.

3.1. Generation of One (d+,d−) Pair
For the purpose of clarity of the forthcoming discussion, let
us consider the example represented in Figure 13 which shows
in the Figure 13A, a view of the wound up dowser field
shortly after generation of just one dowsons pair. The process
of generation itself is illustrated by the series of five pictures
(Figures 13C–G). It is triggered by a rapid and short forth-
and-back motion of the oscillating glass slide applied to the
wound up texture visible in Figure 13C. During the motion,
the image of the isogyres’ pattern becomes fuzzy (Figure 13D)
but shortly after that, at the beginning of the relaxation
(Figure 13E), one can distinguish seven 2π walls thinned by
the perturbation.

As discussed in Pieranski et al. [6] thinning of 2π walls is
due to the rheotropism of the dowser texture, that-is-to-say, to
its sensitivity to Poiseuille flows. Anticipating a more detailed
discussion in section 3.5 we infer that at the beginning of the
relaxation a transitory Poiseuille flow 2π walls occurred.

An excessive thinning of one of the 2π walls leads to its
breaking shown in Figure 13E. Subsequently the two dowsons
generated by this means are moving in opposite directions on
initially isophasic trajectories.

3.2. Collision of a (d+,d−) Pair
As the isogyres pattern in the wound up Cladis-Brand state is
made of concentric rings, one could think that after a half turn
of their orbits (see Figure 13B), the freshly generated dowsons
should come to a collision on isophasic trajectories. The series of
five pictures (Figures 13H–I), shows clearly that this is not the
case: there is a 1ϕ ≈ 2π distance (see Figure 13H), in terms
of the phase, between trajectories of the two dowsons coming
to their collision. We postpone discussion of this paradox to
another paper.

In meantime, let us just say that the two dowsons coming to
collision are pulled by two distinct 2π walls so that annihilation
is avoided.

3.3. Rules for Collisions of (d+,d−) Pairs
When more than one pair of dowsons is generated
simultaneously, the subsequent collisions occur at variable
distances 1ϕ of trajectories. From observations of many of
such collisions with −2π < 1ϕ < +2π we inferred the
following rules:

1. Bypass: When |1ϕ| > π , the annihilation is avoided and the
dowsons are passing by (see Figures 14A–I).

FIGURE 13 | Generation and collision of a dowsons’ pair in the Circular Dowsons Colider. (A) Wound up dowser field with a pair of dowsons “in statu nascendi.” (B)

After a half turn of their orbits, the d+ and d− dowsons are coming to a collision. (C–G) Generation of the dowsons pair. (H–L) Collision of the pair without annihilation.
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2. Annihilation: When |1ϕ| < π , the annihilation occurs
(see Figures 14J–R).

3. Critical: When |1ϕ| = π , the outcome of the collision
is random.

3.4. Influence of Poiseuille Flows on
Collisions of Dowsons Pairs, Experiment
The rules formulated above apply to pairs of dowsons moving
inside a very slowly evolving stationary wound up dowser field.

Knowing from former experiments that the dowser
texture is very sensitive to Poiseuille flows [6] we used
this property, called rheotropism, to influence the outcome
of dowsons collisions. As an example we point out
in the series of 20 pictures in Figures 15A–T that the
annihilation, which should occur in terms of the collisions’
rules applied to the pair of dowsons in Figure 15A,
can be avoided by application of a Poiseuille flow in an
appropriate direction.

Indeed, at the beginning of the experiment (see Figures 15A–
D) dowsons d+ and d− coming to collision are almost isophasic

and are connected by a 2π wall which is shortening. The
outcome of the forthcoming collision seems unavoidable: an
annihilation. However, an application of the Poiseuille flow
−→v in the left direction [parallel to the dowser field in the
middle of the wall (d+,d−)], has a very striking effect well
visible in pictures Figures 15E–L: the wall connecting the
dowsons pair as well as the whole system of isogyres is split
in such a manner that the two dowsons are reconnected
to two new, different 2π walls. These walls, narrowed
by the Poiseuille flow, pull strongly on dowsons which
move rapidely on distinct trajectories separated now by
2π , in terms of the phase. After cessation of the flow
(Figures 15M–T) the system of isogyres relaxes: the trajectories
of the two dowsons become almost isophasic again but they
diverge now.

3.5. Influence of Poiseuille Flows on
Collisions of Dowsons Pairs, a Model
Theoretically, this experiment can be modeled as follows. At the
beginning of the experiment, the phase field can be is expressed

FIGURE 14 | Criterium for the outcome of collisions. (A–I) When |1ϕ| > π , annihilation is avoided. Here, |1ϕ| ≈ 3π/2. Pictures taken at intervals of 10 s. (J–R) When

|1ϕ| < π , annihilation occurs. Here, |1ϕ| ≈ π/2. Pictures taken at intervals of 5 s.
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as before (see Equation 5):

ϕo(x, y) =
2π

λ
y+arctan

(

y− y+
x− x+

)

+arctan

(

−
y− y−
x− x−

)

(10)

with (x+, y+) = (−5,−π/4) and (x−, y−) = (5,π/4) so that

1ϕ = 2π
y+ − y−

λ
=

π

2
(11)

This initial field is depicted in Figure 15U using the color code
defined in Figure 2A. Application of the Poiseuille flow of the
amplitude vmax in the -x direction perturbs the field ϕo(x, y).
The rheotropic torque exerted by this Poiseuille flow on the field

ϕ(x, y)o can be written as:

−→
Ŵ rt =

2α2

π
vmax sinϕo(x, y)

−→e z (12)

In the first approximation, the resulting elastic distortion is
proportional to this torque so that the perturbed phase field can
be written as:

ϕpert(x, y) ≈ ϕo(x, y)+ δϕ sin(ϕo(x, y)) (13)

with δϕ ∼ vo. The graphic representation of ϕpert(x, y) in
Figure 15V shows an agreement with the experimental picture
in Figure 15I.

FIGURE 15 | Influence of Poiseuille flows on collisions of dowsons. (A–T) Experiment. Evolution of the dowser field before, during and after application of a Poiseuille

flow. (U–W) Simulation. Pair of dowsons without flow (U) and in the presence of flows in left and right drections.
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Let us stress that when the Poiseuille flow is applied
in the inverse, +x direction, our model predicts that the
2π wall connecting the dowsons’ pair is no split but
narrowed as shown in Figure 15W so that the annihilation
is accelerated.

These simulations are in agreement with our experiments:
the outcome of the forthcoming collisions can be
chosen at will by application of Poiseuille flows in
appropriate directions.

4. CONCLUSIONS

The present paper is by no means exhaustive in the matter of
generation, motions, and collisions of dowsons. Nevertheless,
it raises new issues concerning (1) laws of motion of dowsons
driven by phase gradients and (2) laws ruling the outcome of
dowsons’ collisions.

In particular, there is a huge difference in the behavior of
dowsons d+ and d− during phase winding. The dowsons
d+ cannot rotate because of the elastic anisotropy so
that they tend to escape from the winding up phase
field and are going to areas where the phase growth
rate is zero. In the case of a unique dowson d+, this
leads to the Cladis-Brand stationary states in which the
orbiting dowson d+ absorbs the phase generated by the
dowsons’ collider.

The behavior of the dowson d− seems to be a contrary
one and much more enigmatic. Indeed, experiments showed
that during the winding process the dowsons d− is attracted
to the area in which the phase growth rate is maximal. By
this means another stationary state, with the dowson d− in
the center (acting as a phase source) and two dowsons d+
orbiting around it (acting as phase sinks), can be reached.
This gyrophilic behavior of the dowson d− remains to
be explained.

The law ruling translational motion of dowsons on their
orbits needs also further clarification. Theoretically, in the first
approximation, the velocity v of dowsons should be proportional
to the local phase gradient ∇ϕ = 2π/λ: v ∼ λα with
α = −1. Experiments have shown however that in practice the
exponent α is smaller than −1. This discrepancy is probably
due to interactions between moving dowsons which certainly

play the major role during the dowsons sprint discussed in
section 2.2.2.

From observations of dowsons pairs (d+d−) moving on
counter-rotating orbits, a rule for the outcome of their collisions,
i.e., either annihilation or bypass, was inferred. The distance of
trajectories 1ϕ in terms of the phase appeared as the pertinent
parameter: for 1ϕ < π a collision of a pair of dowsons leads to
their annihilation, while for 1ϕ > π the dowsons are passing by.
However, this rule is valid only for quasi-static stationary wound
up textures and can be easily broken by application of a Poiseuille
flow in an appropriate direction.
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Liquid Crystal (LC) topological defects have been shown to trap nanoparticles (NPs) in

the defect cores. The LC topological defects may thus be used as a matrix for new kinds

of NP organizations templated by the defect geometry. We here study composites of

LC smectic dislocations and gold NPs. Straight NP chains parallel to the dislocations

are obtained leading to highly anisotropic optical absorption of the NPs controlled by

light polarization. Combining Grazing Incidence Small Angle X-ray scattering (GISAXS),

Rutherford Back Scattering (RBS), Spectrophotometry and the development of a model

of interacting NPs, we explore the role of the Np size regarding the dislocation core

size. We use NPs of diameter D = 6 nm embedded in an array of different kinds of

dislocations. For dislocation core larger than the NP size, stable long chains are obtained

but made of poorly interacting NPs. For dislocation core smaller than the NP size, the

disorder is induced outside the dislocation cores and the NP chains are not equilibrium

structures. However we show that at least half of these small dislocations can be filled,

leading to chains with strongly enhanced electromagnetic coupling between the NPs.

These chains are more probably stabilized by the elastic distortions around the defect

cores, the distortion being enhanced by the presence of the grain boundary where the

dislocations are embedded.

Keywords: liquid crystals, nanoparticles, topological defects, smectic dislocations, gold, LSP resonance

1. INTRODUCTION

Composites made of liquid crystals (LCs) and nanoparticles (NPs) are studied a lot nowadays
[1–5]. One idea is to allow for controlled modification of the LC properties, which can be photonic
properties but also elasticity, conductivity, magnetic properties or phase transition of LC [6–10].
The other idea is to take advantage of the anisotropy of the LCmatrix or of its easy activation under
external parameters (temperature, electric field) to build original anisotropic NP organizations
[11, 12] or/and activable NP organizations [13]. ControlledNP organizations can allow for a control
of plasmonic resonance when metallic NPs are concerned through the control of the nanorod
orientation [14] or of the electromagnetic coupling between NPs for nanospheres and nanorods
[11, 15]. In such a context LCs with topological defects have attracted attention because they might
serve as templates for specific nanoparticle (NP) assemblies. Trapping of NPs within topological
defect cores indeed allows for the release of the defect energy and the stabilization of the composite
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systems [16–20]. As a result LC topological defects may be
used for new kinds of NP organizations templated by the defect
geometry [21–24]. In return the study of compositesmade of a LC
matrix with topological defects and NPs can bring information
on the topological defects themselves, in particular on the size,
structure and energy of the defect core [3, 25], still mainly
unknown [26].

In this article, we focus on smectic dislocations. Oriented
arrays of smectic dislocations are formed in the so-called smectic
oily streaks [27]. Composites made of smectic oily streaks and
gold NPs have been shown to lead to the formation of NP
chains, for gold nanospheres [11, 21] and end-to-end oriented
gold nanorods [15], trapped in the linear and oriented dislocation
cores. NP chains are interesting specific assemblies because of
their anisotropy but are not easy to obtain since under Van
der Waals interactions nanospheres form hexagonal networks,
whereas nanorods form side by side assemblies. In the case of
metallic NP chains, Localized Surface Plasmon (LSP) resonance
becomes highly anisotropic and controlled by light polarization
[11, 15, 21]. The trapping process by topological defect cores can
be not only generalized to different NP shapes (from NP spheres
to NP rods) but also to different NP natures. It has been shown
that semiconducting nanorods also are oriented along a single
direction in smectic oily streaks. The release of disorder core
energy does not depend on the shape and on the NP nature. It
thus allowed for the control of the polarization of semiconducting
single-photon emitters [12]. We now explore the role of the
NP size. The trapping efficiency by defect cores is expected to
decrease when the NP size becomes larger than the defect core
[28]. We study composites made of gold NPs of diameter D =
6 nm in smectic oily streaks composed of an array of different
kinds of dislocations in order to confront the respective roles
of NP size and dislocation core size. Using combined Grazing
Incidence Small Angle X-ray scattering (GISAXS), Rutherford
Back Scattering (RBS), Spectrophotometry and the development
of a model of interacting NPs, we compare the structure and
stability of NP chains formed in dislocations of different core
sizes. Different features are revealed depending on the respective
sizes of NPs and dislocation cores. For large dislocations, larger
than the NP size, long and stable NP chains are formed
but with poorly interacting NPs. For small dislocations, a
strong electromagnetic coupling between NPs occurs due to
the disorder induced outside the dislocation core. However
the NP chains maybe not an equilibrium state but instead a
metastable state stabilized by the large elastic distortion around
the dislocation core.

2. MATERIALS AND METHODS

2.1. NP Synthesis
1, 2, 3, 4-tetrahydronaphthalene (tetralin, 99% Aldrich),
Chlorotriphenylphosphine Au (I) (98%) and tert-butylamine
borane (97%) were obtained from STEM chemicals.
Dodecanethiol (DDT), oleylamine, HAuCl4 (98%), hexane,
were obtained from Sigma-Aldrich, Toluene (98%) from Riedel
de Haen. Ethanol (99.85%), chloroform (99.2%) from VWR. All
reagents were used as received without further purification. For

the NPs of diameterD= 6 nm the synthesis is based on reference
[29]. Fifty mg of HauCl4 are mixed in a three neck flask with
5mL of oleyalmine and 5mL of tetralin and degassed at room
temperature. The flask is dipped in an ice bath. The temperature
controller is put in the ice bath rather than in the three neck
flask. Meanwhile, 22mg of tertbutylborane is mixed with 0.5mL
of oleylamine and 0.5mL of tetratlin. The mixture is sonicated
until the full dissolution of the salt. The three neck flask is
put under Ar. The borane solution is injected promptly. The
solution changes color to brown and then to purple. Sonication
is continued for 36min. 0.5mL of DDT is added to stop the
reaction growth. The content of the flask is mixed with 5mL of
ethanol and then centrifuged. The formed pellet is redispersed
in toluene. NPs of diameter D = 6 nm and polydispersity 9%
were obtained as shown by SAXS measurements performed on
synchrotron Soleil.

2.2. Composite Film Preparation
The samples were created by depositing a droplet of a
mixture of 8CB (4-n-octyl-4′-cyanobiphenyl, smectic LC at room
temperature, c= 0.02M) and gold NPs in toluene (concentration
varying from 5.5× 1010 NPs µL−1 to 1.6× 1011 NPs µL−1) onto
a polyvinyl alcohol (PVA) polymer film, initially spin-coated and
rubbed on a glass substrate (1.8 cm2).

2.3. Optical Microscopy and
Micro-Spectroscopy Techniques
We measure the extinction properties of the samples using
a Maya 2000 pro spectrometer coupled to an upright optical
microscope (Leica DMRX) to probe 40 × 40 µm2 areas. The
signal was collected through an air objective (×50, NA = 0.85).
The composite films were excited with linearly polarized light
either along or perpendicular to the oily streaks. To extract the
wavelength associated with the LSPR, the normalized spectra
were fitted with a gaussian curve.

2.4. Dipole Coupling Model
The distance between the nanoparticles associated with a given
LSP resonance wavelength, λ was calculated using a dipole
coupling model in the quasistatic approximation (NPs diameter
D ≪ λ) [30]. In this approximation the multipolar interactions
between the nanoparticles as well as the retardance effect are not
considered, this latter assumption being obviously correct due to
the small size of the NPs. In this case the resonance condition is
characterized by [30]:

ǫ = ǫm

∑

+8
(

S
D + 1

)3

∑

−4
(

S
D + 1

)3
(1)

with ǫ the Au NP dielectric function, ǫm the dielectric function of
an homogeneous surrounding medium. S is the lattice sum of the
NPs assembly, the NPs being associated with punctual dipoles. S
depends on the geometry of the assembly and accounts for the
electromagnetic coupling between the NPs [31]. For an infinite
chain of NPs with a polarization parallel to the chains, the sum in
equation (1) is S≈ 4.8. For monolayers associated with an infinite
hexagonal network, the sum S is S≈ 5.5 [31, 32].
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The Au NP dielectric function was recalculated based on
Johnson and Christy data [33] to take into account the small
size effect and the influence of the chemical interface, leading to
broadening and blue-shifted LSPR of the isolated NPs in toluene
(Figure S1) [21, 34].

2.5. Finite Element Calculations
For the calculations based on finite elements we have used the
commercial software HFSS by ANSYS. Different chains of N
nanoparticles with a diameter D = 6 nm and separated by a gap
s were modeled. The number of particles was varied between
2 and 10 and the gap between 1 and 6 nm. The nanoparticles
were modeled as spheres with the optical constants of gold and
placed in the centre of a 400 × 400 × 400 nm3 box filled with
a medium with a constant refractive index of 1.51. Radiating
boundaries were applied to the box and a plane wave polarized
along the chain of nanoparticles was used as illumination. The
optical response was calculated between 460 and 660 nm then the
ohmic losses integrated over all the nanoparticles were computed
to determine the position of the plasmon resonance.

2.6. X-Ray Diffraction
X-ray diffraction measurements were carried out at the SIXS
beamline on the SOLEIL synchrotron facility. On SIXS beamline,
the photon energy was fixed to 18 keV and the X-ray beam size
to 300 × 300 µm2. The measurements were performed with the
substrate almost parallel to the X-ray beam, in GISAXS (Grazing
Incidence Small Angle X-ray Scattering) configuration [11].

2.7. Rutherford Backscattering
Spectroscopy
The Rutherford Backscattering Spectrometry measurements
were performed with the 2.2MV Van de Graaff accelerator of
the SAFIR platform of Sorbonne Université. RBS measurements
were performed by positioning the samples perpendicularly
to a beam of alpha particles with an energy of 1,800 keV, a
diameter of 0.5mm, a current of 40 nA and a charge of 4 µC.
The measurements were performed with the ion beam incident
normal to the sample surface and the backscattered ions were
detected by a surface-barrier detector placed at a scattering angle
of 165◦. The energy calibration and solid angle of the detector are
deduced from the measurement of a reference sample of 5.64 ×
1015 bismuth atoms cm−2 implanted into silicon.

3. SMECTIC OILY STREAKS

We have used arrays of oriented defects of 8CB (4′-octyl-4-
biphenylcarbonitrile) thin films deposited on rubbed poly(vinyl
alcohol) (PVA) surfaces, the so-called smectic oily streaks.
Due to hybrid anchoring at the two interfaces (air/8CB and
8CB/PVA, respectively), the smectic layers become curved in
flattened hemicylinders perpendicular to the anchoring on the
substrate, itself defined by the rubbing of the PVA substrate
(Figure 1) [35–37]. These flattened hemicylinders, with a typical
periodicity of several hundreds of nanometers, can be detected by
polarized optical microscopy between crossed polarizers, leading
to the observation of parallel stripes (Figure 1A). Their internal
structure has been determined using combined X-ray diffraction

and ellipsometry measurements [27]. It is characterized by the
presence of two rotating grain boundaries per hemicylinder,
buried within the smectic film, which profile has been precisely
established by X-ray diffraction (in red in Figure 1B) [27]. Along
each rotating grain boundary, three edge dislocations parallel to
the hemicylinder axis (i.e., oriented along the Ox direction—
Figure 1B) are expected (blue points in Figure 1B). This is due
to a different number of rotating and flat smectic layers from
each part of the grain boundary. They are of different Burgers
vector depending on their localization along the rotating grain
boundary. A first dislocation of Burgers vector, b with b/d = 2
(d is the intra-smectic layer spacing) is located in the first half of
the rotating grain boundary, the nearest to the substrate. The two
other dislocations lie close to the summit of the rotating grain
boundary (b/s ≈6). They are separated from each other by a
distance of∼50 nm and it has been shown that the rotating grain
boundary profile does not depend on the thickness of the smectic
film [27].

4. CHAIN FORMATION

Gold NPs of diameter D = 6 nm, covered by dodecanethiol
ligands, have been first deposited on rubbed PVA. As shown by
GISAXS measurements obtained on Soleil synchrotron facility
(SIXS beamline - see the section Materials and Methods) and in
agreement with electron microscopy measurements (Figure 2),
the NPs form an hexagonal network on the substrate. Three pairs
of rods are observed, (10), (10), (11), (11) and (20), (20), being in
the ratio 1,

√
3 and 2. They are the signature of the hexagonal

network. The position of the (10) rod at 0.92 nm−1 leads to
an inter-NP gap s = 1.93 ± 0.05 nm, in perfect agreement
with other measurements from the literature [38–40]. s is slightly
larger than the length of the straight dodecanethiol, 1.8 nm,
showing that within the NP network the ligands could be not
too distorted but at least they are strongly interdigitated. The
light extinction curve (Figure 2B) displays the LSP resonance of
the NPs organized in an hexagonal network at λ = 558 nm.
In comparison with the LSP resonance of gold NPs dispersed
in toluene (λo = 516 nm, Figure S1), a red-shift is evidenced,
in relation with the electromagnetic coupling between the NPs
in the hexagonal network. It can be used to extract the inter-
NP gap value in the dipolar approximation considering that the
hexagonal networks are large enough to be considered as infinite
for the LSP properties (see Materials and Methods) [41–43]. The
1.9 nm value consistent with X-ray results is recovered by using
an optical index of n = 1.51 indeed close to the one of disordered
dodecanethiol (n = 1.46). This is in agreement with an optical
index dominated by the grafted dodecanethiol ligands around the
NPs [11, 44].

In contrast with NPs deposited on rubbed PVA without
LC, when NPs are inserted in 8CB smectic oily streaks (see
section Materials and Methods), the light extinction becomes
anisotropic. Figure 3A shows a typical extinction spectrum
(probed area of 40 × 40µm2). For a polarization of the incident
light perpendicular to the oily streaks (black spectrum), the
extinction maximum is slightly shifted to a lower wavelength
compared to the one of NPs dispersed in toluene (λo = 516 nm,
Figure S1), with LSP resonance at λ⊥ ≈ 500 nm. In contrast,
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FIGURE 1 | (A) Polarized optical microscopy image of oily streaks observed from the top of a 150 nm-thick sample. Each stripe along OX corresponds to one

hemicylinder and two hemicylinders in perspective are represented (B) Detail in side-view [in the (Y, Z) plane] of the smectic layers stacked in one given flattened

hemicylinder for a typical thickness of 230 nm. Two rotating grain boundaries are shown in red, including dispersed edge dislocations (blue spots). A central grain

boundary is underlined in green [27].

FIGURE 2 | (A) GISAXS signal of the NPs without LC, revealing the rods associated with the NP hexagonal network. (B) Light extinction of a network of NPs

deposited on rubbed PVA substrate without LC. The LSP intensity varies depending on the measured area but not the wavelength resonance value (λ = 558 nm)

except for the smallest intensity associated with the smallest NP domains. This demonstrates that, for λ = 558 nm, the hexagonal networks are large enough to be

considered as infinite for the LSP properties. In inset is shown a Scanning Electron Microscopy (SEM) picture obtained with the same NPs when they were deposited

on a Si substrate covered by rubbed PVA, also showing formation of an hexagonal network of NPs.
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a clear red-shift of the LSP resonance is observed for a parallel
polarization, with λ‖ ≈ 550 nm. This indicates that a significant
coupling between NPs occurs only in the direction parallel to
the oily streaks, in relation with the formation of chains all
parallel from each other and parallel to the dislocations [11, 21].
The spectral positions of extinction maxima taken from different
zones of two samples are represented in red in the graph of λ‖ as
a function of λ⊥ (Figure 3B). It appears that while λ⊥ varies only
little from one area to another, λ‖ changes substantially, with a
maximum for λ‖ equal to 562 nm. This value for the chains is
larger than the value obtained for the 2D monolayer without LC,
λ‖ = λ⊥ = 558 nm. However for the same inter-NP gap and
the same optical index, we would expect a higher LSP resonance
wavelength for infinite NP hexagonal networks with respect to
infinite NP chains. This latter wavelength is itself higher than for
finite NP chains. The assumption of a same optical index in LC
andwithout LC is very likely to be valid for two reasons: firstly it is
known that the optical index is dominated by the grafted ligands
with respect to the environment beyond the ligands [11, 44].
Secondly the optical index n = 1.51 should not be modified by
the surrounding 8CB because the optical index expected in LC
for a parallel polarization is close to the ordinary index of 8CB,
no = 1.52, itself close to n = 1.51. The inter-NP gap in the NP
chains formed in oily streaks is consequently in average smaller
than without LC. There is a LC-induced shortening of the inter-
NP gap in the NP chains. This result is in contrast with the same
measurements made with smaller NPs of diameter D = 4 nm
[11]. Either an equal or a larger inter-NP gap, depending on the
preparation conditions, was obtained in the LC with respect to
the network formed on rubbed PVA without LC [11].

5. CHAIN MODEL

In order to interpret these results, we consider that NP chain
formation corresponds to a trapping of NPs in dislocations. The
strength and efficiency of the linear trapping by dislocation cores
has been previously highlighted by the fact that nanorods are

aligned parallel to 8CB oily streaks. They are thus perpendicular
to the nematic director but parallel to the defect cores, which
is a strong indication of trapping by the linear defect cores
[12, 15]. This is confirmed by the formation of NP chains,
either made of nanorods [15] or of nanospheres of diameter
D = 4 nm [11, 21]. We now observe the same phenomenon
with larger NPs of diameter D = 6 nm but with a LC-induced
shortening between NPs in contrast with NPs of diameter D =
4 nm. Trapping of NPs by dislocation cores may be kinetically
favored by the known gradient of elastic distortion that attracts
the NPs within the topological defect core [3, 19, 45]. However
are the NP chains formed in the dislocation cores stable? In order
to understand the structure and stability of NP chains, being
trapped in dislocations, in particular the induced inter-NP gap
that drives the electromagnetic coupling between the NPs, we
have built a simple model that considers interacting NPs in LC.
This model specifically takes into account the role of the LC
in presence of topological defects. It is a model that has been
built in order to understand the key parameters at the origin of
the observed phenomena: NP chain formation and LC-induced
shortening of the inter-NP gap. However since the interpretation
of the details of the observed phenomena is not required, we have
decided to only crudely consider the interaction of the NP chains
with the surrounding LC, considering only two components: the
favorable expulsion of disordered matter in the dislocation core;
the unfavorable disorder induced by the NPs in LC if the NP size
is larger than the dislocation core. We neglect in particular the
details of the LC order variation and of the LC distortion around
the defect core.

The energy of a NP chain made of N NPs separated by an
inter-NP gap s, each NP being covered by a monolayer of ligands
of length l (Figure 4A) can be estimated as follows: In a network
of NPs, the equilibrium distance between the NPs is primarily
controlled by the usual Van der Waals attraction between two
NPs, balanced by the steric repulsion, both beingmostlymanaged
by the ligands around the NPs [46, 47]. We also have to take
into account the mixing between the ligands leading to a model

FIGURE 3 | (A) Normalized light extinction spectrum obtained in 8CB oily streaks containing gold NPs of diameter D = 6 nm. Superimposed gaussian fits are shown

for the determination of the resonance wavelength. In black is the extinction for light polarization perpendicular to the 8CB oily streak stripes, in red for parallel

polarization. (B) The different obtained extinction resonance measurements for NP chains represented by the (λ⊥, λ‖) values, obtained for NPs with diameter D = 6

nm embedded in 8CB oily streaks.
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FIGURE 4 | (A) Model of the NPs with dodecanethiol ligands of length l and model of the NP chain with the disordered zone along the length δ shown beyond the

ligands, of surface S shown in green. The dislocation core is schematically shown in blue. (B) Comparison of the surfaces of NP chains and NP FCC cube facets.

of interacting soft spheres [48]. In the case of ligands swollen
by the solvent during the growth of the NP network, the usual
parabolic curve of the energy of two interacting NPs is obtained
as a function of s, the inter-NP gap [48]. If we consider toluene
as solvent and gold NPs of diameter D = 6 nm covered by
dodecanethiol, this leads to a well-marked equilibrium at s = 1.9
nm [38], in agreement with our combined X-ray and optical
absorption measurements (Figure 2). In the presence of LC, two
additional terms must be considered.

Firstly the energy related to the localization of the NP chain
within the dislocation core, EDef . This localization is favorable for
the NPs since it allows the release of the disordered LC molecules
of the core [16–18, 20]. As a result we expect the NPs to occupy
the largest space as possible in the dislocation core to save the
maximum of the dislocation core energy per unit of length, EDC
[11]. The length of the NP chain is ((N − 1)(s + D) + D + 2l)
(Figure 4A). If the NP chain is embedded in the dislocation core
of radius rc, the volume of disorderedmatter, VDC expelled by the
presence of the NP chain is:

VDC

=
{

((N − 1)(s+ D)+ D+ 2l)π(D/2+ l)2, if (D+ 2l) < 2rc
((N − 1)(s+ D)+ D+ 2l)πr2c , if (D+ 2l) > 2rc

We can write:

EDef

=
{

−((N − 1)(s+ D)+ D+ 2l) (D+2l)2

(2rc)2
EDC, if (D+ 2l) < 2rc

−((N − 1)(s+ D)+ D+ 2l)EDC, if (D+ 2l) > 2rc

Secondly, the energy term related to the disorder induced by the
NP within LC, EDis. It has already been shown that gold NPs
of diameter D = 4 nm, covered by dodecanethiol ligands, may
induce some disorder in a LC without topological defects. This
disorder in return leads to a shortening of the inter-NP gap, in
order to decrease in average the size of the LC disordered zone
[49]. This disorder may be at the origin of the easy aggregation
of NPs in LC, depending obviously on the nature of the ligands
around the NPs [3, 50–52]. When the NP chains are embedded
in the dislocation core, if the NP size (D + 2l) is strictly larger
than the defect core diameter 2rc, we expect that some disorder
may be created in the LC around the dislocation core. The
volume of the disordered zone created in the LC, beyond the
NP ligands is schematized on Figure 4A. The disorder may
extend along a distance δ in the LC beyond the ligands. The
disordered volume is thus equal to δ × Schain, with Schain, the
surface of the disorder zone (see Figure 4A). If we neglect the
surfaces at the extremities of the disordered cylinder since it
may mainly correspond to the surface of the dislocation core,
Schain = π(D + 2l)(N − 1)(D + s) + π(D + 2l)2. There is
an energy to pay for the creation of this disordered volume:
Edis = δ × edis × Schain, with edis the disorder energy per unit
of volume. Consequently:

Edis = δ × edis × (π(D+ 2l)(N − 1)(D+ s)+ π(D+ 2l)2). (2)

If (D + 2l) ≤ 2rc, there is no disorder induced in LC in
relation with NPs of size smaller or equal to the dislocation
core, Edis = 0. We only have to consider the overall energy
E(s) = (N − 1)e(s) + EDef , with e(s) the energy corresponding
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to the soft sphere model for a given inter-NP gap, s [38, 48].

dE/ds = 0 and dEDef /ds = −(N − 1) (D+2l)2

(2rc)2
EDC < 0 leading to

a decrease of de(s)/ds with respect to the equilibrium at s = 1.9
nm without LC. As a result, we expect an increase of s, the inter-
NP gap, the NPs occupying the largest possible space within the
dislocation core. This is the case of gold nanospheres covered by
dodecanethiol of diameter D= 4 nm [11].

If (D + 2l) > 2rc, the NP size is larger than the dislocation
core size, disorder is induced outside the core. The equilibrium

established without NPs becomes differently modified in LC.
If d/ds(EDef + Edis) = (N − 1)(π(D + 2l)δedis − EDC)
< 0, s is increased; if π(D + 2l)δedis − EDC > 0, s is
decreased. With NPs of diameter D = 6 nm, we find a
decrease of s with respect to NP networks formed without LC
in contrast with NPs pf diameter D = 4 nm. This brings
two conclusions:

- In smectic oily streaks there are dislocations of core size
intermediate between the NP sizes associated with gold
diameters D= 4 nm and D= 6 nm.

- The corresponding dislocation core energy per unit of length,
EDC < π(D + 2l)δedis, with D = 6 nm and l the length of the
dodecanethiol in LC.

A second issue is: Are the NP chains equilibrium structures?
If (D + 2l) ≤ 2rc, they are obviously equilibrium

structures. The energy of N NPs potentially inducing
disorder in LC is reduced when they are embedded in the
dislocation core.

If (D + 2l) > 2rc, this is not obvious. As shown by
Figure 4B, the surface of the disordered zone induced by a
FCC cube of edge made of N NPs is clearly smaller than
the one of N2 chains made of N NPs. This should favor
aggregation of NPs instead of formation of NP chains trapped
in dislocation cores, except if the dislocation core energy per
unit of length, EDC is large enough to compensate the disorder
induced by a chain outside the defect core. To obtain formation
of stable chains, we expect for N2 chains made of N NPs,
neglecting the variation of entropy between N2 chains and a
single FCC cube:

N2(Schain×edis×δ−((N−1)(s+D)+D+2l)×EDC) < SFCC×edis×δ.
(3)

In other words:

N2((π(D+ 2l)(N − 1)(D+ s)+ π(D+ 2l)2)edisδ

−((N − 1)(s+ D)+ D+ 2l)EDC) < SFCC × edis × δ

(4)

SFCC being the surface of a FCC cube made of N3 NPs. This
suggests that:

N2((n− 1)(s+ D)+ D+ 2l)EDC > (N2(π(D

+2l)(N − 1)(D+ s)+ π(D+ 2l)2)− SFCC)edisδ (5)

The calculation of the surface of a FCC cube thus leads to:

π(D+ 2l)δedis − EDC < δedis
N2(D+ s)2(3/2+ 2

√
3)+ N((

√
3+ 1)(s+ D)π(D+ 2l)− 2(D+ s)2(3/2+ 2

√
3))

N3(s+ D)+ N2(2l− s)+ 2(s+ D)

+ δedis
(D+ s)2(3/2+ 2

√
3)− (

√
3+ 1)(s+ D)π(D+ 2l)+ 2π(D+ 2l)2

N3(s+ D)+ N2(2l− s)+ 2(s+ D)

(6)

If N is large enough this transforms into:

π(D+ 2l)δedis − EDC < δedis(
(D+ s)(3/2+ 2

√
3)

N

+
(
√
3+ 1)π(D+ 2l)− 3(D+ s)(3/2+ 2

√
3)

N2
) (7)

With the other inequality obtained above, we finally have:

0 < π(D+ 2l)δedis − EDC < δedis(
(D+ s)(3/2+ 2

√
3)

N

+
(
√
3+ 1)π(D+ 2l)− 3(D+ s)(3/2+ 2

√
3)

N2
) (8)

This result shows that it is not possible to create very long chains
(N close to infinity) being equilibrium structures. The decreasing
of the inter-NP gap in the NP chains observed in the smectic oily
streaks is indeed driven by the value of π(D + 2l)δedis − EDC
that can not be strictly zero. To create equilibrium long chains (N
large), the dislocation core energy per unit of length, EDC must
be close to edisδπ(D+ 2l). In order to satisfy both inequalities edis
and EDC must be large enough.

6. DISCUSSION

Smectic oily streaks are composed of 2 similar dislocations at the
summit of the rotating grain boundary (Burgers vector b, b/d ≈
6, with d the inter-smectic layer spacing, d = 3.16 nm in 8CB),
coexisting with another dislocation, of smaller Burgers vector
(Burgers vector b, b/d ≈ 2) nearer to the substrate (Figure 1B).
The diameter of the dislocation cores, 2rc is generally expected
to be close to the dislocation Burgers vector [53, 54]. With a
Burgers vector b/d = 1, 2rc has indeed been shown to be very
close to d for smectic C edge dislocations [55] and for smectic A
screw dislocations [56]. If the NPs would induce disorder outside
the defect core for the three dislocations of the oily streaks, this
would imply that all the dislocation core radii would be smaller
than the half of the NP size D + 2l with l the dodecanethiol
length in 8CB. The dodecanethiol length in 8CB is not known but
can be considered as ranging between 1 nm, its highly stretched
value [46] and 1.8 nm its extended value. (D + 2l) ≈ 8–10 nm
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is not more than 3 times d, the 8CB inter-smectic layer spacing.
This is largely too small to account for two times the core radius
of a dislocation of Burgers vector b such that b/d ≈ 6. This
demonstrates that the hypothesis of only one kind of dislocation
inducing disorder outside the core is highly more probable. It
must be the smallest one, the dislocation of Burgers vector b, with
b/d ≈ 2 and we finally obtain an estimation of the corresponding
dislocation core radius, rc. 2rc may range between the NP size
associated with the gold diameter D= 4 nm and the NP size with
the diameter D= 6 nm. Considering the dodecanethiol length as
ranging between 1 and 1.8 nm, this leads to 6 nm< 2rc < 9.6 nm.
The fact that similar LC-induced decrease in the inter-NP gap has
been observed for NP diameters D = 5 nm (see Figure S2) even
allows to decrease the inequality to 6 nm < 2rc < 8.6 nm. This is
in very good agreement with the presence of dislocations of core
radius, rc such that 2rc ≈ 2d = 6.3 nm, in smectic oily streaks,
associated with a Burgers vector b, with b/d = 2.

As a result, the preferred dislocations for NP trapping are
the largest dislocations where the largest amount of disorder
energy is saved in the presence of NPs and no disorder is induced
outside the defect core. They are equilibrium structures for
NPs of diameter D = 6 nm. The smallest dislocations may be
filled by NPs at high NP concentration only when the largest
dislocations may be already significantly filled. A large number
of NPs is thus required to explain the observed decrease of
inter-NP gap revealed by the λ‖ measurements of the NP chains
shown in Figure 3B. We have used Rutherford Backscattering
Spectroscopy (RBS) experiments (see Materials and Methods)
to obtain the average number of gold atoms in the smectic oily
streaks. We have found in average 1300 NPs µm−2 for one of
the two samples presented in Figure 3B. Assuming an inter-
NP distance of D + 1.4 = 7.4 nm, 1.4 nm being the average
inter-NP gap in the chains (see below), it can be calculated that
a linear defect of length 1 µm contains up to approximately
140 NPs. As a result, for the LC thickness of 170 nm found
for the corresponding composite oily streak sample, the period
of oily streaks being of the order of 550 nm [27], the critical
concentration necessary to entirely fill the 6 dislocations of
one hemicylinder (Figure 1B) is 1530 NPs µm−2. 1300 NPs
µm−2 corresponds to 85% of the 6 linear dislocations shown
in Figure 1B being fully filled by NPs confirming a significant
filling of the small dislocations in addition to the large ones. If we
consider the large dislocations as being almost fully filled by NPs,
this leads to a half filling on average for the small dislocations.

Despite the larger NP filling in large dislocations, the average
LSP measurements of highest λ‖ presented in Figure 3 are
expected to be dominated by the NP chains in the small
dislocations. These latter chains are the only ones subjected to
strong electromagnetic coupling between NPs. λ‖ = 550 nm is
the LSP resonance value calculated in the dipolar approximation
with infinite chains of inter-NP gap s = 1.9 nm andwith a dipolar
index n = 1.51, 1.9 nm corresponding to the equilibrium inter-
NP gap without LC. The expected increase of the inter-NP gap in
the large dislocations without induced disorder outside the defect
core should lead to λ‖ significantly smaller than λ‖ = 550 nm.
In agreement with coexisting NP chains of large inter-NP gaps in
large dislocations together with NP chains of small inter-NP gaps

in small dislocations, all extinction data are enlarged toward the
low wavelength values (Figure 3A), the low wavelength values
being associated with the NP chains in the large dislocations.
In contrast the maximum λ‖ shown in Figure 3B, λ‖ = 562
nm may be dominated by the NP chains trapped in the small
dislocations. λ‖ ranging between 540 and 562 nm as shown on
Figure 3B may be associated with different local concentrations
of NPs in the small dislocations. This may be associated with
different lengths of NP chains in the small dislocations for a same
sample of average filling of the dislocations of 85%.

The average length of the NP chains in the small dislocations
is not known. In order to use the maximum λ‖ of 562 nm to
extract an inter-NP gap value and use it for an estimation of
the energy per unit of length of the small dislocations, EDC,
with the assumption that they form equilibrium structures, we
have considered different possible average lengths for the NP
chains. If the chains are long enough to be considered as infinite
for LSP properties [41–43], the dipolar approximation with a
dipolar index n = 1.51 leads to s = 1.4 nm. For numbers of
NPs in the chains, N, which can not be considered as infinite,
the wavelengths of the LSP resonances of chains of gold NPs
were calculated with finite element methods (see Materials and
Methods). The variations1λ of the position of the LSP resonance
of the NP chains with respect to the position for isolated NPs λo
were then fitted to a plasmon ruler [57]:

1λ = λoβe
−

(

2s
D(n−1)

)ν

τ (9)

where the decay rate τ = 0.324 the exponent ν = 0.55 and
the scaling parameter β = 0.16 were adjustable parameters.
Figure S3 gives the variations of the calculated 1λ in nm as a
function of 2s

D(n−1)
together with the plasmon ruler.

We obtain s = 1.3 nm for N = 10. It is hard to account
for an inter-NP gap smaller than s = 0.6 nm, the value that
has been found without topological defects in cholesteric films
with NPs of diameter D = 4 nm. This latter case, s = 0.6 nm,
corresponds to N = 5. We can then use the previously calculated
energy curve of interacting NPs without LC, e(s), as a function
of the inter-NP gap, s, for gold NPs of diameter D = 6 nm with
grafted dodecanethiol in toluene [38]. It leads to the observed
equilibrium inter-NP gap of s = 1.9 nm without LC but also
gives the evolution of e(s) in case of departure of s with respect
to s = 1.9 nm. Using in LC the fact that:

d(e(s))

ds
= −(π(D+ 2l)δedis − EDC) (10)

allows to obtain:

If N = 10 and s = 1.3 nm [38], π(D + 2l)δedis − EDC =
16kTnm−1

If N = 5 and s = 0.6 nm [38], π(D+2l)δedis−EDC = 42kTnm−1

If the NP chains in the small dislocations are equilibrium
structures they must also respect inequality (8), leading (with
l = 1.8 nm) to:
{

π(D+ 2l)δedis > 145kTnm−1,EDC > 129kTnm−1, if N = 10

π(D+ 2l)δedis > 160kTnm−1,EDC > 118kTnm−1, if N = 5.

Frontiers in Physics | www.frontiersin.org 8 February 2020 | Volume 7 | Article 23479

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Do et al. Topological Defects and Nanoparticles

edis and EDC necessary to obtain equilibrium NP chains
consistent with the measured optical absorption in the
composites oily streaks/gold NPs, λ‖ = 562 nm, finally
only poorly depend on the NP chain length. They appear
very large. With the rough assumption that the zone around the
dislocation core is transformed into a nematic zone, in agreement
with recent results obtained with a screw dislocation [56] and
neglecting the elastic nematic distortion within this zone, edis
is the Landau-de Gennes penalty: edis = 0.73 kT nm−3, for 8CB
at 25◦C [58]. Taking l as 1.8 nm, we need δ ≈ 6nm to reach
π(D+ 2l)δedis > 145kT nm−1 which is two times the intra-layer
spacing. Measurements of the core energy of dislocations are
still scarce. The total energy of dislocations, including the core
energy, has been measured as a function of the Burgers vector in
8CB free standing films. It confirmed that it is proportional to
the Burgers vector [59]. For a Burgers vector b/d = 1 the energy
per unit of length is 5 kT nm−1 [59]. Here we find EDC at least
16 times larger for a Burgers vector only two times larger. Such
a large value may be due to the complex structure of oily streak
dislocations associated with a large disorientation of the smectic
layers from each part of the dislocation (Figure 1). Another
assumption is that the NP chains in the small dislocations are not
an equilibrium structure in relation with the induced disorder
outside the core. They could be only kinetically favored by the
attraction toward the defect core occurring due to the elastic
distortion around the dislocations [3, 19, 45]. The fact that the
dislocations are embedded in rotating grain boundaries may
strongly enhance this phenomenon, through the presence of
additional elastic distortion.

7. CONCLUSION

Combining GISAXS, spectrophotometry, RBS measurements
and the development of a model of interacting NPs, we present
a comprehensive description of composites made of gold NPs
with a given diameter D = 6 nm in an array of different kinds
of smectic dislocations (with different Burgers vectors). If the
NP concentration is small, only the large dislocations are filled
and long chains may be formed. They are favorable equilibrium
structures because no disorder is induced outside the defect
core but they consist of only poorly interacting NPs. If the NP
concentration is large enough, the small dislocations can also be
filled and we demonstrate up to 85 % of the dislocations being
filled without any aggregation outside the core. We demonstrate
that such high filling of the dislocations by the NPs leads to the
coexistence of different NP chains in the smectic film, long NP
chains with large inter-NP gap coexisting with smaller chains
with a shortened inter-NP gap that can become as small as
1.4 nm. As a result the plasmonic properties of the composite

are dominated by the small chains due to the LC-induced
enhanced electromagnetic coupling between the NPs in the
small dislocations. Using a model that takes into account the
modifications of the interactions between NPs associated with
their localization in the smectic dislocations, we confirm the
presence of dislocations of Burgers vector b, b/d = 2, the “small”
dislocations. We also demonstrate that the NP chains formed
in the “small” dislocations are most probably not equilibrium
structures. This is due to the disorder outside the defect core
which is responsible for the observed LC-induced shortening
inter-NP gap. However these NP chains might remain stable
over time due to the elastic distortion around the rotating grain
boundary that might play the role of the energy barrier for the
trapped NPs.
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We demonstrate the possibility of creating optical beams with phase singularities

engraved into exotic intensity landscapes imitating the shapes of a large variety of diverse

plane curves. To achieve this aim, we have developed a method for directly encoding the

geometric properties of a selected curve into a single azimuthal phase factor without

passing through indirect encryption methods involving lengthy numerical procedures.

The outcome is utilized to mold the optic axis distribution of a liquid-crystal-based

inhomogeneous waveplate. The latter is finally used to sculpt the wavefront of an input

optical gaussian beam via the Pancharatnam-Berry phase.
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1. INTRODUCTION

Light sculpting has gained increasing importance in both fundamental and applied optics [1].
Engraving singularities in optical beams, in particular, has paved the way for multiple applications
in both classical and quantum optics, most of which relate to the angular momentum of
light. Singular Optics has gradually become an independent research field and now aspires to
become a fundamental cornerstone of modern photonics. Optical singular beams have proven
to be invaluable for non-contact manipulation over micro- and nanoscale [2, 3], which has
enormous implications for modern nanophysics, crystal growth, and metamaterials, to give just
a few examples. Furthermore, the infinite dimensionality of the orbital angular momentum
(OAM) space has paved the way for increasing the data capacity of both free-space and fiber-
optic communications [4] and for developing novel efficient protocols for classical [5] as well
as quantum information processing [6–8]. No less important, optical singularities have been
successfully utilized for super-resolution imaging [9, 10], on-chip optical switching [11–13],
advanced microscopy [14, 15], and material machining [16–18].

Needless to say, the great potential of singular optics—and, more generally, of sculpted light—
has been progressively unlocked over time, through the development of increasingly efficient and
versatile tools for shaping the optical wavefronts. The most prominent technologies currently
available for shaping spatial modes are computer-generated holograms (CGHs) displayed on spatial
light modulators (SLMs)—based on dynamic phase control—and Pancharatnam-Berry phase (or
geometric phase) Optical Elements (PBOEs). Indeed, several methods are nowadays available to
fabricate geometric-phase optical elements for wavefront shaping, ranging from subwavelength
metal stripe space-variant gratings [19] to multilayer plasmonic metasurfaces [20] and Spatially
Varying Axis Plates (SVAPs) based on liquid crystals [21–26].

In the present paper, we introduce a method for designing SVAPs enabling the generation of
scalar optical beams with non-linear azimuthal phase structures, giving birth to phase singularities
engraved within non-cylindrically symmetric intensity profiles. Indeed, the cylindrical symmetry
typical of the intensity profile of helical beams springs from their linear azimuthal phase profile,
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ei ℓφ . Helical beams have helical wavefronts —hence the
name—and carry an OAM of h̄ℓ per photon, ℓ being an
integer, and φ the azimuthal polar angle around the beam
propagation direction.There are multiple families of helical
beams, which differ in their radial dependencies. Well-known
examples are Laguerre-Gaussian (LG) beams [27, 28], Bessel
and Bessel-Gaussian (BG) beams [29], and the wider class of
Hypergeometric-Gaussian (HyG) beams [30], to name just a
few. A helical beam with an azimuthal index ℓ has an ℓ-
fold rotational symmetry, and its OAM spectrum accordingly
includes only the component ℓ. With the light beam wavevector
denoted as k, the azimuthal component of the linear momentum
is h̄kφ per photon: it does not depend on φ but only on
the distance from the beam axis. The energy flux is therefore
rotationally invariant around the beam axis, yielding the well-
known cylindrically symmetric doughnut-shaped profile. An
azimuthally non-uniform kφ , in contrast, will break such
symmetry and will give birth to an optical wavefront with a non-
uniform helical phase structure, which will result, in its turn, in a
non-cylindrically symmetric intensity profile. AnOAM spectrum
will broaden as a consequence of such symmetry breaking.

To impart a non-linear azimuthal structure, we have
developed a phase design method aimed at encoding the
geometric properties of a plane curve in order to create
an intensity profile imitating the shape of the curve. We
presently demonstrate that such an approach enables the direct
determination of the phase profile required to reshape the
intensity profile of a light beam as well as its OAM spectrum
according to one’s wishes. Here, in fact, we avoid passing through
indirect methods for encoding the amplitude and phase of the
target field into a single phase function [31], though the price
to be paid is that only some features of the intensity profile
and of the OAM spectrum will be precisely determined. Despite
these apparent limitations, our method spontaneously leads us
to introduce the concept of dark hollow beams with tailored
intensity profiles or “Free-Form Dark-Hollow” (FFDH) Beams.
A detailed study of the optical properties of FFDH beams will
be reported elsewhere. Here, we focus on the generation of
such beams by using the aforementioned SVAPs, of which q-
plates [32] are probably the most famous examples. Liquid
crystal-based SVAPs combine high conversion efficiency with
exceptional manageability for overall high performance. Our
SVAPs were fabricated by adopting a “direct-write approach,"
as defined in Kim et al. [21]. However, we would like to
emphasize that our focus is presently on the method developed
to determine the transmittance phase function. Specifically,
an arbitrary superposition of azimuthal modes amounts to a
complex function of φ with both an amplitude and a phase, i.e.,

∑

ℓ

cℓe
iℓφ = A(φ)ei9(φ). (1)

Several approaches, mostly based on the Gerchberg-Saxton
algorithm, are usually adopted to obtain a pure phase function
providing an acceptable approximation for Equation (1) [33]. In
what follows, we describe a method to directly generate a dark
hollow beam in which the shape of the dark zone is basically

inherited from the shape of a selected plane curve. This is
achieved without resorting to inverse algorithms such as those
mentioned above. They can be proved to be promising devices of
potential interest for multiple applications ranging from super-
resolution microscopy to directional selective trapping [34],
as well as material processing and optical coronagraphy,
not to mention the applications in classical and quantum
communications [35, 36]. As an example, we consider the case
of Stimulated Emission Depletion (STED) microscopy, in which
super resolution is achieved by the selective deactivation of
fluorophores through an excitation beam filling the internal
zone of a doughnut-shaped de-excitation spot. Replacing the
doughnut with an FFDH beam, the illumination area would
acquire a non-circular shape, suitable for optimally sending
photons to zones where they are really required and/or to prevent
them from damaging the surrounding areas.

2. FREE-FORM AZIMUTHAL PHASE
SHAPING

The question arises of to what extent the transverse intensity
profiles or the OAM spectrum of a light beam can be molded
by manipulating a purely azimuthal phase factor eiψ(φ), ψ(φ)
being an arbitrary function of the azimuthal coordinate φ. Such a
phase factor does not enable the exploration of all the possible
field distributions, even approximately, since ψ is assumed to
be independent of the distance r from the beam axis [31, 37].
As above mentioned, in this work, we aim at introducing a toy
method based on geometric intuition to determine the most
appropriate azimuthal phase factor eiψ(φ) required to generate
dark hollow beams with arbitrary shapes or, as we have baptized
them, FFDH beams. To this purpose, we need a “dough cutter”
for partitioning the plane around the beam axis into a number
of sectors—“slicing the doughnut.” One can then distribute the
transverse intensity of light among the several sectors according
to one’s wishes and necessities. Molding the intensity of light
within each sector is necessary for tailoring the boundaries
of the dark region around the axis—“shaping the hole of the
doughnut.” The portions of light within different sectors can
be disconnected from each other or not. Metaphors aside, our
“dough cutter” is the azimuthal component h̄kφ(φ) of the photon
linear momentum as a function of φ, i.e.,

kφ(φ) =
1

r

dψ(φ)

dφ
. (2)

Assuming ψ(φ) is proportional to the orientation angle 2(φ) of
the unit normal to some plane curve γ described by φ-dependent
parametric equations, then all the relevant features of kφ(φ) can
be gathered from the rotational symmetry properties of γ and
from the local radius of curvature—the latter being related to
both kφ and its derivative. Such a geometric approach has the
advantage that 2(φ)—and therefore the plane curve it comes
from—needs not to be determined, on a case-by-case basis, as a
solution of an inverse problem. Rather, it can be helpful to use a
representation of the curve in polar coordinates, with some free
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parameters that can be tuned to match as much as possible the
target intensity profile.

2.1. Curve Selection
Multiple choices are available. Good options are Lamé curves
or their generalizations. A Lamé Curve, also known as a
superellipse [38], is a closed curve retaining the geometric
properties of semi-major axis and semi-minor axis, typical of
an ellipse, but with a different shape. In polar coordinates it is
described by the equation

(a cosφ)
n

n−1 +
(

b sinφ
)

n
n−1 = ρ(φ)

n
n−1 , (3)

where a, b, and n are positive reals.
In 2003, J. Gielis introduced a single parametric equation—

dubbed the “superformula”—describing multiple plane curves
of the most varied kinds to study forms in plants and other
living organisms [39]. The mathematical expression of the
superformula, in polar coordinates, is

ρ(φ) =
(
∣

∣

∣

∣

∣

cos mφ
4

a

∣

∣

∣

∣

∣

n2

+

∣

∣

∣

∣

∣

sin mφ
4

b

∣

∣

∣

∣

∣

n3)− 1
n1

, (4)

where ρ is the distance of a point of the curve γ from the origin
of the coordinate system as a function of the azimuthal angle φ,
m is an integer, n1, n2, and n3 are three integers controlling its
local radius of curvature, and, finally, the positive real numbers
a and b parameterize the radii of the circumferences respectively
inscribed and circumscribed to the curve γ . For even m = 2 k,
Equation (4) describes a curve γ2 k closing over the interval
[0, 2π). γ2 k is rotationally symmetric by an angle 2π/k. For odd
m = 2 k + 1, γ2 k+1 closes over the interval [0, 4π). When a = b
and n1 = n2, γm exhibits an m-fold rotational symmetry Cm. As
all the free parameters in Equation (4) can vary, the generated
curves can be deeply diverse. No doubt the curves could be
grouped according to a criterion based on the order of the their
rotational symmetry. For m = 4, a = b, and n2 = n3 > 2,
for instance, the superformula simply returns the superellipses
first introduced by G. Lamé in 1818 [38]. For fixed values of
m, a, and b, however, the signs and the absolute values of n1,
n2, and n3 can dramatically change the topological properties
of the curves. Besides, a peculiar feature of the superformula
is the fact that, independently of m, when n2 = n3 = 2, it
always degenerates into a circumference when a = b or into an
ellipse otherwise. Here, we are not interested in the mathematical
peculiarities of the superformula but rather in taking advantage
of its “shape-shifter” capabilities.

Encrypting the geometrical properties of the selected curves
into the optical phase. Assume γ (a, b,m, n1, n2, n3) is the curve
described by the superformula for some values of the free
parameters. The normal unit vector n =

(

nx, ny
)

of the curve
is given by

(

nx + i ny
)2 =

ρ(φ)− i ρ̇(φ)

ρ(φ)+ i ρ̇(φ)
e2 iφ , (5)

where ρ̇ is the derivative of ρ with respect to φ. Denoting as2(φ)
the angle that n forms with the x−axis, we set the optical phase
ψ(φ) to be

ψ(φ) = 22(φ; a, b,m, n1, n2, n3). (6)

Consequently, by varying the free parameters in Equation (4),
multiple phase profiles can be designed and FFDHs accordingly
generated. The realized phase profiles exhibit a modulation
with the same symmetry properties as the curve γ . In the
following, we show that the m-fold symmetry characterizing
the phase modulation also affects the intensity profile of the
generated beam. Light intensity, indeed, is expected to be
equally partitioned among the m equally spaced sectors of the
phase profile.

In Figure 1, this geometry-to-phase transfer procedure is
sketched in the case a = b = 1,m = 5, n1 = 1/2, and n2 = n3 =
4/3. The rippled helical wavefront arising from Equation (6) is
shown in Figure 2B for the same values of the parameters and
is compared to the smooth helical wavefront corresponding to a
doughnut beam with ℓ = 2 (Figure 2A). The latter can be easily
shown to come from a circumference.

This structure primarily affects the OAM spectrum, which
includes only the components (ℓ − m) ± km, with k being an
integer (Figure 3) and ℓ being the OAM index corresponding to
the background helical mode. Specifically, in Figure 3, the OAM
power spectrum |cl|2 of the generated FFDH is presented. In
classical optics, the quantity |cl|2 is the fraction of the total power
of the optical field component carrying an OAM proportional
to l. In quantum optics, it is the probability that a photon in
the beam carries an OAM of h̄l. The actual values of |cl|2,
as reported in Figure 3, have been determined numerically, by
Fourier expansion of the azimuthal phase factor reported in
Equation (5). The skew rays follow the paths dictated by kφ .

FIGURE 1 | Schematic of the encryption procedure of the symmetry

properties of a plane curve into the azimuthal phase of a light beam. In (A), as

an example, we show t and n, i.e., the tangent and the normal unit vectors to

the curve at the point P, respectively. n forms an angle 2(φ) with the horizontal

axis. In (B), we show the transverse phase profile

ψ (φ) = 22(φ;1, 1, 5, 1/2, 4/3, 4/3) (Equation 6). The latter can be regarded as

the superposition of the phase modulation 212m(φ) (C) and the helical phase

profile 2φ (D).
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FIGURE 2 | Helical wavefronts corresponding to a circumference (A) and to

the curve represented in Figure 1A(B).

FIGURE 3 | OAM power spectrum arising from the azimuthal phase profile

corresponding to the parameter values a = b = 1, m = 5, n1 = 1/2, and

n2 = n3 = 4/3.

3. FREE-FORM AZIMUTHAL (FFA) SVAPS

We now focus on the experimental methods for generating
optical beams with the phase structure prescribed by
Equation (6). To reshape a TEM00 laser beam according to our
wishes, we opted for a properly tailored SVAP. The latter is a half-
wave retardation plate in which the direction-angle of 2̄(r,φ) of
the optic axis is spatially variant [23, 24, 26]. When a circularly
polarized input beam passes through the plate, it acquires a

geometric phase factor e±i22̄(r,φ). The sign in the exponent
depends on the handedness of the incident beam polarization
C± =

(

x± iy
)

/
√
2, which is reversed by the SVAP [25]. For

a comprehensive view of the mechanism underlying wavefront
reshaping via the Geometric or Pancharatnam-Berry Phase, we
address the reader to Piccirillo et al. [25]. In essence, molding
the phase of a SVAP amounts to patterning the optic-axis so that
its direction-angle is locally equal to half the prescribed optical
phase. In order to fabricate a liquid-crystal SVAP for generating
FFDH beams, the optic-axis angular distribution must be set to

2̄(r,φ) =
ψ(φ)

2
= 2(φ; a, b,m, n1, n2, n3). (7)

FIGURE 4 | Optic axis patterns deduced from Equation (7) for the parameter

values a = b = 1, m = 5, n1 = 1/2, and n2 = n3 = 4/3. (A) Optic axis pattern

for a SVAP imparting to an input beam the geometric phase 2φ + 212m(φ)

(Figure 1B). (B) Optic axis pattern for a SVAP imparting the geometric phase

212m(φ) (Figure 1C).

In Figure 4, we show the optic-axis pattern of a SVAP
corresponding to 2(φ; a = 1, b = 1,m = 5, n1 =
1/2, n2 = 4/3, n3 = 4/3) (Figure 4A) and, for comparison,
the contribution to such a pattern of the modulation only
(Figure 4B). Figure 5A shows a microscope image of the
SVAP under crossed polarizers, with a birefringent λ-
compensator inserted between the SVAP and the analyzer.
The λ-compensator has a path difference of 550 nm and
therefore introduces a π retardation at that wavelength.
The fast axis forms a 45◦ angle to the axis of the analyzer.
When the compensator is put in, the sample changes its
color depending on its orientation. The changes in color are
based on optical interference. This method fully unveils the
optic axis pattern underlying the SVAP (Figure 4A) because,
differently from the simple crossed-polarizers method, it
enables the orthogonal orientations of the optic axis to be
distinguished between.

Though pure-phase holograms displayed on SLM could be
used to create FFDH beams, fabricating optical devices based
on Geometric Phase has proved to be not only the best-
performing choice but also the most natural, since the unit
normal distribution deduced from a generating curve is directly
translated into an optic axis pattern. As an example, we have here
chosen curves generated via the superformula to take advantage
of a large variety of shapes grouped under the same equation. A
similar method, however, can be applied to any other curve or
family of curves.

4. INTENSITY PROFILES

As mentioned above, by adding a periodical azimuthal phase
modulation to the phase of a helical beam, the cylindrical
symmetry typical of the intensity profile of a doughnut is broken.
In fact, each photon at distance r from the beam axis suffers
a change in its azimuthal linear momentum kφ that depends
periodically on the orientation of the meridional plane it starts
from. As kφ has the same period as ρ(φ) in Equation (4), the
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FIGURE 5 | Experimental observation of the optic axis distribution of the SVAP

(a = b = 1, m = 5, n1 = 1/2, and n2 = n3 = 4/3). (A) Microscope image of

the SVAP between crossed polarizers + birefringent compensator plate at 45◦.

This image reveals the optic axis pattern underlying the SVAP (Figure 4A),

which is displayed in the image overlay. The image was recorded when

illuminating the sample with white light, sandwiched between crossed

polarizers, and inserting, between the sample and the analyzer, a birefringent

λ-compensator (λ = 550 nm) with the optic axis rotated by 45◦. The arrows in

the lower left corner sketch the axes orientations of the input linear polarizer

(black arrow), the output analyzer (red arrow), and the λ-compensator (blue

arrow). (B) Optical transverse phase profile associated with the optic axis

pattern in (A)—the same as in Figure 1B—here replicated for the sake of

comparison.

FIGURE 6 | Comparison between the experimental (A) and theoretical (B)

intensity profiles of the beam generated through the SVAP with the optic axis

pattern shown in Figure 4A at distance z = 1 m, for the values a = b = 1,

m = 5, n1 = 1/2, and n2 = n3 = 4/3 of the curve parameters and for an input

gaussian beam with a plane wavefront and radius w0 = (1.50± 0.04) mm.

resulting transverse intensity profile becomes periodic as well.
What’s more, the details of the profile of kφ are inherited from
the azimuthal rate of change of the unit vector normal to the
curve, also meaning that the inflections of the intensity profiles
will be inherited from the local curvature of the generating curve.
This enables a one-to-one correspondence to be set between the
geometric properties of the generating curve and the transverse
intensity profile of the beam, especially as far as the dark region
is concerned. In Figure 6A, we show the intensity profile of the
beam experimentally generated for the parameter values a = b =
1, m = 5, n1 = 1/2, and n2 = n3 = 4/3 at distance z = 1 m
from the SVAP for a circularly polarized input TEM00 Gaussian
mode with a plane wavefront and radius w0 = (1.50± 0.04) mm.
For comparison, Figure 6B shows the theoretical intensity profile

predicted by calculating the Fresnel transform of the optical field

E0 e
− x2+y2

w20

+2 i2(φ;1,1,5,1/2,4/3,4/3)
, (8)

for the same parameter values. The faint striped structure
surrounding the core profile originates by diffraction from the
abrupt azimuthal changes in the transverse phase profile shown
in Figure 5B.

5. CONCLUDING REMARKS

We have shown the possibility of generating dark hollow
beams with a large variety of intensity landscapes by using a
single azimuthal phase factor without passing through numerical
methods for optical field encryption. The method is based on
a geometric approach in which the intensity profile around the
beam axis is supposed to imitate the shape of a selected closed
curve. Also, the OAM spectrum is affected by the shape of the
generating curve. If the generating curve has m-fold rotational
symmetry, the OAM spectrum will include only components
with multiple of m within a global shift determined by the OAM
index of the unperturbed helical mode. Liquid-crystal SVAPs
turn out to be the most natural choice for implementing such
a method, since the unit vector normal to the generating curve
comes to be copied over the axis pattern. Applications of FFA
SVAPs can be easily devised, in particular, for manipulating
non-spherical objects trapped by optical tweezers—as unwanted
rotations of micro-objects could then be avoided—as well as for
increasing contrast in optical coronagraphy—as properly tailored
dark-hollow beams with line singularities along radial directions
could be exploited to split the intensity distribution around the
optical axis.
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We review the interactions and dynamics of topological defects in liquid crystals (LCs)

in quasi-two-dimensional (2D) geometries. Such spatial restrictions can be realized in

thin freely suspended smectic C films, in thin sandwich cells filled with nematic LCs,

and under specific boundary conditions in LC shells embedded in aqueous solutions.

Random defect patterns can be created by thermal quenching of the samples from lower

ordered into higher ordered phases. On the other hand, well-defined isolated defect

configurations for the study of elementary interaction steps can be prepared by using

simple mechanical techniques. Observation by polarizing microscopy is straightforward.

Spatial dimensions of the experimental systems as well as time scales are convenient

for observation. The continuum theory of LCs is well-developed so that, in addition to

the experimental characterization, an analytical or numerical description is feasible. From

interactions and dynamic features observed in these LC systems, general conclusions

on defect dynamics can be drawn.

Keywords: defects, disclinations, liquid crystals, two-dimensional systems, continuum theory, freely suspended

films, fluid mechanics, phase transitions

1. INTRODUCTION

Topological defects occur in a wide variety of physical systems, ranging from soft matter [1–
6] to quantum systems [7–10], superfluid liquids [11–14], and thin magnetic films [15–17] to
cosmology [18–22]. Often, the coarsening of defect patterns that form after symmetry-breaking
phase transitions determines the establishment of long-range order in the system. The dynamical
properties of such patterns are far from being trivial. A promising concept to find a universal
description is to look for general features of defect patterns and their interactions in different
systems [20–25]. For that purpose, a system in which universal features of defects can be studied
relatively easily and in a quantitative way is of great advantage. Some liquid crystal (LC) phases
are promising candidates by virtue of their easy handling, straightforward observation, convenient
relaxation time scales, and diversity of structures. They allow for studying defect interactions
and coarsening dynamics of topological defect patterns with conventional optical polarizing
microscopy. Ensembles of very different kinds of defects in LC phases have been described (e.g.,
[1–5, 26–33]). The observation of pattern coarsening by mutual annihilations of topological point
defects in such systems allows for the direct study of “scaling solutions,” providing models for
the evolution of monopoles, multipoles, and textures. Isolated defect pairs can be created to
study their mutual interactions as the elementary steps of pattern coarsening. Beyond such defect
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interactions, mixed structures of defects and inclusions of various
shapes and sizes or influences of container boundaries can add
further levels of complexity. It is possible to add a mass (of
attached inclusions) to defects, to set spatial restrictions, and to
exploit defects for structural stabilization of two-dimensional or
three-dimensional colloids.

A considerable simplification for the analysis of basic features
of defect dynamics is the restriction to quasi-two-dimensional
(2D) systems, i.e., samples in which the extension in the third
dimension is negligible with respect to the typical defect distances
and core sizes and samples that can be considered uniform
in the third dimension. We focus here on defects in this
category of 2D systems, even though this excludes the rich
variety of three-dimensional defect structures found in colloidal
systems with nematic hosts in flat cells [3, 4, 34, 35] or other
geometrical restrictions [36–39]. We also disregard dislocations,
which are 3D defect structures formed by smectic phases, but
restrict ourselves to disclinations. Finally, we have limited this
review to conventional, “passive” LC materials and disregard
active nematics (e.g., [41, 42]). The focus of this review is
on smectic LCs in thin-film geometry, but we also discuss
some quasi-2D nematic systems in sandwich cells, where the
character of the director field is sufficiently 2D. Examples of
optical images of topological defects in LC films are seen in
Figure 1. Topologically, they are classified by the defect strength
or topological charge S, which is equal to the number of full
rotations of the liquid-crystal director on a closed path around
the defect core. Defects of a given strength S may be further
distinguished by a phase θ1 (Figure 2). An advantage of smectic

FIGURE 1 | (A) Snapshot of a non-equilibrium arrangement of nine defects in a SmC freely suspended film, all with topological strength +1. The defects repel each

other, and the pattern rapidly expands, with eight defects moving radially outward and one remaining in the center. The defect cores are labeled by small circles (see

text). Figure adapted from Stannarius and Harth [32]. (B) Pair of two defects of opposite topological strengths, −1 (left) and +1 (right) in a SmC freely suspended film.

The defects attract each other and finally annihilate, leaving a defect-free uniform texture. Figure adapted from Missaoui et al. [43]. Both images were recorded with

crossed polarizers and a diagonally inserted wave plate. (C) Depolarized reflected microscope images of islands in a SmC freely suspended film. The islands contain

tangential clockwise (L) and counterclockwise (R) c-director fields and central +1 defects, each island has an accompanying outer −1 defect. Reproduced from

Silvestre et al. [29] with permission, copyright American Physical Society. (D) Coarsening of umbilical defect patterns in a nematic cell with homeotropic anchoring and

an electric field normal to the cell plane. The director of the material with negative 1ε is driven into the cell plane, forming numerous umbilic ±1 disclinations.

Reproduced with permission from Dierking et al. [44], copyright American Physical Society.

freely suspended films over nematics is that experiments with
nematics in sandwich cells are not easy to interpret because of
the three-dimensionality of the geometric problem. Defects, even
if they are well-localized in the cell midplane, usually extend from
one glass plate to the other. Interactions with the boundaries,
such as pinning, and a preferential alignment or 3D director
field distortions near the cell walls have to be taken into account.
No-slip boundary conditions for material flow will make the
dynamics much more complex than in freely suspended films,
for which we can neglect coupling to a surrounding fluid in most
cases. The same applies if the defects are located at a confining
boundary; their geometry will, in this case, be more 3D in nature.
Smectic C mesogens, on the other hand, can form stable, quasi-
two-dimensional (2D) freely suspended films (FSFs) similar to
soap films when they are stretched across a solid frame [45]. Since
their first detailed description by Young et al. [46], they have
proven very useful in manifold investigations. Stable films can be
as thin as two molecular layers.

2. FUNDAMENTALS

2.1. Liquid Crystal Phases and Their
Continuum Description
Since there are excellent textbooks that describe the physics of
liquid crystals, we recollect here only a few basic features that
are necessary to understand the nature, structure and dynamics
of defects in LC phases. For a deeper introduction into the
properties and theoretical description of LCs, the reader is
referred to standard books (e.g., [47, 48]).
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FIGURE 2 | Sketches of topological defects with strengths ±1 and ±1/2 with different phases θ1. The phase of +1 defects changes their structure qualitatively (see

top row images), left: “radial,” right: “tangential” configuration. For all defects of strengths S 6= 1, a non-zero phase θ1 is equivalent to a simple rotation of the defect by

an angle θ1/(1− S). The half-integer defects are prohibited in vector fields such as the Ec director field of smectic C phases.

The relevant thermotropic LC phases in the context of this
review are nematic (N), smectic C (SmC), and smectic C∗ (SmC∗)
liquid crystals. Nematics have a molecular arrangement without
long-range positional order, and the local preferential orientation
of the molecular long axes (the optical axis) is characterized by
the director field n̂(x, y, z). Conventional nematic phases are non-
polar, belong to the symmetry group D∞h, and the directions
n̂ and −n̂ are equivalent. The ground state of a conventional
non-chiral, infinitely extended nematic sample is a spatially
uniform alignment of n̂. Spatial distortions of the director lead
to contributions to the elastic free energy density w in the form

w =
1

2
K11(∇ · n̂)2 +

1

2
K22(n̂ · ∇ × n̂)2 +

1

2
K33(n̂×∇ × n̂)2 (1)

with the elastic constants for splay, K11, twist, K22, and bend,
K33, of the order of a few pN. Such distortions can be caused,
for example, by the boundary conditions in finite samples, by the
existence of topological defects, by application of electromagnetic
fields, or by shear flow.

At solid or liquid boundaries, or at free surfaces, the
director may adopt preferential orientations. Those are described
by boundary conditions, which may be strong (analogous to
Dirichlet type boundary conditions), fixing the orientation of
the director, or weak (analogous to Robin boundary conditions),
fixing a certain relation between the director and its spatial
derivatives. For weak anchoring, the director can deviate from
its preferred orientation at the cost of an increased elastic energy.

Additional terms may occur in chiral or polar phases.
Another term with the saddle-splay elastic constant K24 can be

transformed into a surface integral of the free energy, it is thus
only dependent on the director orientation at boundaries and
can be neglected when the director is rigidly anchored. It may
play a role in the vicinity of defect cores. Except near singular
points of this director field, one can assume that |n̂| = 1. In
2D geometry, with n̂ = (cos θ , sin θ , 0), the free energy density
equation reduces to

w =
K11

2
(∇ · n̂)2 +

K33

2
(∇ × n̂)2 (2)

=
K11

2

(

− sin θ
∂θ

∂x
+ cos θ

∂θ

∂y

)2

+
K33

2

(

sin θ
∂θ

∂y
+ cos θ

∂θ

∂x

)2

.

In one-constant approximation, where the elastic constants are
set equal to K11 = K33 = K,

w =
K

2

(

(

∂θ

∂x

)2

+
(

∂θ

∂y

)2
)

, (3)

and the minimum of the free energy can be found from the
solutions of the Laplace equation 1θ = 0. Singular points of
the director field mark defects. In their vicinity, the nematic
order parameter goes down and the continuum model requires
the introduction of a tensor order parameter [49–53]. We
will not consider the nanoscopic structure of the defect cores
here. In many situations, it is practical to make the reasonable
approximation that the director is pinned at the boundary of a
circle with radius rc around the defect core, and the actual core
region is omitted.
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FIGURE 3 | C-director and optical appearance when the planar film is

observed with crossed polarizers (top) and with crossed polarizers and

diagonally inserted phase plate (bottom).

Another important property of nematics is their electric and
magnetic anisotropy. In the simplest case of uniaxial nematics,
the dielectric permittivity adopts the form

ε̂ =





ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖



 .

In the case 1ε = ε‖ − ε⊥ > 0, the electric torque drives the
director toward a parallel or antiparallel orientation respective
to the electric field; in the opposite case, the director is pushed
toward a perpendicular orientation. Similarly, the diamagnetic
susceptibility χ̂ is a tensor that governs the reorientation of
the director in an external magnetic field. Finally, the uniaxial
nematic phase is birefringent, with different ordinary and
extraordinary refractive indices. This allows optical studies with
polarizing microscopy (see section 2.3 below).

Thin SmC films can be treated with the same concept, where
a unit vector along the projection of n̂ onto the film plane takes
over the role of the nematic director. This is appropriate as long as
the director orientation is uniform along the film normal, which
is fulfilled in micrometer or sub-micrometer thin SmC films and
in SmC∗ films that are much thinner than their helical pitch. We
now consider the projection En0 = (nx, ny, 0) of n̂ onto the film
plane, with variable length depending on the tilt angle β (see
Figure 3). The free energy expansion in the film is [54, 55]

w = A|En0|2 + C|En0|4 + K11(∇ · En0)2

+
[

K22(n̂− En0)2 + K33 En20
]

(∇ × En0)2, (4)

where the Landau parameters A < 0 and C > 0 set the
equilibrium length of En0, viz. the equilibrium tilt angle β0 =
arcsin

√

−A/(2C) of n̂ respective to the layer normal. Their
magnitude describes the resistance against changes of β . At non-
zero tilt, one can define a unit vector Ec = En0/|En0|, the c-director
(Figure 3), which is a true vector 1. Approaching the core of a
defect in the c-director field, |En0| drops to zero, i.e., the material
in the core is locally in the smectic A (SmA) phase (β → 0). Note
that there are only splay and bend of Ec in the 2D system. With

1For simplicity, we will use the term director in smectic films synonymously to

denote the c-director.

the new constants KS = sin2 βK11, KB = K22 sin
2 β cos2 β +

K33 sin
4 β , and Ec = (cos θ , sin θ , 0) one obtains

wC =
KS

2
(divEc)2 +

KB

2
(rotEc)2 =

KS

2

(

− sin θ
∂θ

∂x
+ cos θ

∂θ

∂y

)2

+
KB

2

(

sin θ
∂θ

∂y
+ cos θ

∂θ

∂x

)2

. (5)

This free energy density is similar to Equation (2). In one-
constant approximation, KS = KB = K, the SmC free energy
density has the same form as in the nematic case (Equation 3).

2.2. Geometries
The conventional geometry to study nematics is that of thin
sandwich cells, with cell gaps between few µm and several
hundred µm. The director can be anchored homeotropically at
both cell plates, or planarly at one plate, homeotropically at the
other (hybrid anchoring), or anchored planarly at both plates.
The planar anchoring can have a preferential direction in the
plane, or it can be azimuthally degenerate. Two examples are
depicted in Figure 4A.

There are various methods to produce defects in nematic cells.
The easiest one is a rapid phase transition from the isotropic
into the nematic phase across the clearing point, either by a
temperature quench or by application of high pressure to trigger
this transition [20, 21]. It is advantageous in such experiments
to have either homeotropic anchoring conditions at the cell
plates (director normal to the surfaces) or planar, azimuthally
degenerate anchoring. A rich pattern of string defects occurs
after the disorder–order transition. These are three-dimensional
and of complex geometry. The problem in this experiment is to
achieve a well-defined temperature quench. In Chuang’s studies
[20, 21], no particular surface treatment was reported. Pargellis
et al. [56] improved the experiment by well-defined surface
treatment of the sapphire windows to ensure homeotropic
boundary conditions of the director in the nematic phase. The
temperature was quenched by cooling one of the plates below the
clearing point and keeping the second one above that point so
that a phase boundary between isotropic and nematic states was
established and kept in the middle between the cell plates. After
this temperature quench, the director adopted degenerate planar
boundary conditions at the nematic-isotropic (N-I) interface.
Defects that form spontaneously in the nematic move to the N-
I interface. Owing to broken mirror symmetry of the anchoring
conditions on both interfaces, the 3D director field includes tilt,
and only integer-strength defects can form.

This experimental technique was further improved by Nagaya
et al. [57, 58] and later employed by Dierking et al. [44, 59].
Their experiments were performed under isothermal conditions
in a homeotropic cell within the nematic phase. The authors used
materials with negative dielectric anisotropy 1ε = ε‖ − ε⊥ < 0
and applied an electric field along the cell normal. The director
remained anchored homeotropically at the cell plates but was
driven out of the field direction in the cell center. The maximum
director deflection toward the planar orientation was then in the
cell midplane. It was not necessary to fix temperature gradients in
a sophisticated way to keep the phase boundary in the cell center
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FIGURE 4 | (A) Geometry of nematic cells with planar (top) and hybrid (bottom) anchoring. The mesogens are sketched as ellipsoids. (B) Geometry of a planar freely

suspended SmC film in air. The front edge of the solid film support has been omitted for visualization of the layered film structure.

as in Pargellis et al. [56]. The geometry of the umbilics that form
was such that only integer-strength disclinations were possible
(Figure 1D). We note that umbilics are, strictly speaking, not
defects because they do not contain singularities of the director
field. In a 2D projection, however, they behave in many respects
like point defects and show similar interactions.

In all these types of nematic sandwich cells, one has to
consider the peculiar boundary conditions for the nematic at
the glass plates. The director field is therefore in general three-
dimensional. Not only is the director anchored at the plates,
but the flow field also has 3D character because of its no-
slip boundary conditions. Even though many studies of defect

dynamics have been performed in nematic cells (e.g., [20, 21, 44,
59–67]), these limitations must be clearly recognized [62, 68, 69].
A different geometry for nematics is that of spherical shells of
few µm thickness and diameters of the order of 100 µm, which
are filled with, and suspended in, surfactant solutions [40, 70].
There, one can adjust planar, degenerate, or hybrid boundary
conditions to create defect structures of the director field. The
spherical geometry requires a total topological charge of +2 in
the director field at any surface with planar components of n̂. The
closed nature of the nematic layer imposes special restrictions
to the arrangements of topological defects [71–77]. In smectic
shells with homeotropic anchoring, layers arrange in an onion-
like structure. The layer arrangement is usually more complex for
hybrid or planar anchoring of n̂ [40, 73]. This special geometry of
LC shells will not be considered in the following because of its
many peculiarities that are unrelated to defect behavior in the flat
2D geometry.

Smectic C phases offer several advantages over nematics
when one is interested in a quantitative determination of
defect interactions, dynamics, and annihilation processes. These
materials can form FSFs with huge aspect rations, either as planar
films (Figure 4B) or bubbles. These films are ideal model systems
to study defect dynamics: they can be prepared with thicknesses
that are uniform on a molecular scale. The local orientation
is well-described by a continuum theory of a 2D unit vector
field Ec(x, y). Film thicknesses are between a few nanometers and
several micrometers depending on the preparation conditions.
Since all relevant forces scale linearly with the film thickness,
the dynamics of the point disclinations are independent of film

thickness as long as air drag can be neglected. Lateral widths of
the films can be chosen in the millimeter and centimeter ranges
so that influences of the boundaries on the local defect dynamics
can be controlled. Spatial dimensions of defect patterns in the
micrometer range and time scales of annihilation experiments of
few seconds offer convenient observation conditions.

The spatially uniform alignment of the c-director is the
ground state. Boundary conditions at the film holder may impose
certain c-director distortions or even require the necessity of a
defect in the film. If the film is disturbed, e.g., by quenching it into
a lower symmetry phase [78–81], by a sudden air blow causing
complex shear flow patterns in the film plane [82–84], or by rapid

changes of the film geometry in presence of inhomogeneous
director fields [32, 43, 85], point disclinations can be generated.

Pargellis et al. [78] performed experiments in SmC FSF.
Defects were created by temperature quenches from SmA into
SmC. Some of the disadvantages of this technique are difficulties
to avoid spatial temperature inhomogeneities during the quench,
which may evoke Marangoni effects, and advection of the film
with airflow. In order to avoid these complications, Muzny [80]
studied defects produced with a mechanically induced phase
transition from SmA to SmC. Films were spanned across a
circular frame and could be deflected by an overpressure of a
few Pascal to SmC sphere caps. Upon sudden release of the
overpressure, the caps collapsed to flat films, thereby reducing
their surface. The consequence was a rapid transition from SmC
to the SmA phase. Upon reducing the mesogen tilt angle β very
quickly to zero, the film thickened and partially compensated for
surface area reductions. Within few milliseconds after collapse,
the SmC phase was re-established, and a c-director texture
with multiple defects appeared. Wachs [81] performed similar
experiments with the same technique in very thin (two-layer)
SmC films.

An alternative is the preparation of islands (circular thicker
film regions), which can be achieved by air flushes [84] or by a
reduction of the film area of very thin films [86, 87]. Since the c-
director is anchored at the island borders, each island necessarily
contains a+1 defect in equilibrium. A compensating−1 defect is
formed in the film surrounding the island. Defects can also form
spontaneously, starting from a periodically distorted director
structure in filmmenisci [88–91]. Such defects can migrate into a
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FIGURE 5 | Arrays of +1 point defects pinned at layer steps of free-standing SmC films: (A) A continuous director distortion extends from a stripe pattern in a band of

decreasing thickness (white arc in a), connected to the meniscus at the film holder, across a plateau of homogeneous thickness (striped region in the middle of a), and

ending in several +1 point defects at a thickness step toward the thinner film seen in black on the right. The region near the stripe ends is enlarged in (c). Image size of

(c) 455× 367 µm2. Figure reproduced from Maclennan [88], copyright IOP Publishing. (B) Defects trapped around a circular film thickness step (yellow dashes), with

its connection to the meniscus (below the black dashed line). Crossed polarizers parallel to the edges, with wave plate at 45◦, scale bar 50 µm. Adapted from

Harth [91]. (C) Stripe array with 12 trapped +1 defects in the central region, left: in equilibrium (the thinner region enclosed by the film thickness step is not resolved);

right: after the film is slightly expanded, the 12 individual defects are visible. Because of KS > KB, they are all tangential. Black and white circles mark +1 with opposite

sense of rotation of Ec, yellow dashes indicate the main layer step trapping the defects. Crossed polarizers parallel to the edges, image dimensions 72× 72 µm2.

Microscopy images taken from Stannarius and Harth [32], copyright American Physical Society, annotations from Harth [91].

uniform film region (see Figure 5A). Multiple +1 defects can be
pinned in small thinner regions (“holes”) of an otherwise uniform
film [32], as in Figures 5B,C.

A simple technique to produce defect pairs is to touch the films
with a thin fiber [43]. At the contact spot, the fiber circumference
may enforce a preferential tangential or radial anchoring of the
c-director and a compensating nearby −1 defect. If one moves
the fiber far enough away from the latter defect before the film is
released, a conjugated pair remains.

A very peculiar exception are materials that exhibit a sign
change of one of the elastic constants, for example, the bend
elastic constant. In such a material, the uniform ground state is
no longer energetically favored, a film with uniform texture will
spontaneously develop defect pairs connected by inversion walls
[93]. A similar spontaneous formation of defects in a uniform
film was described by Dolganov et al. [94] and attributed to a
spontaneous bend term in a chiral smectic C∗ material.

2.3. Observation Techniques
The optical anisotropy in the film plane is determined by the
orientation of the c-director, which reflects the tilt azimuth. This
allows optical observation of the c-director field by means of
polarizing microscopy in transmission or reflection. Figure 3
sketches the c-director and the optical appearance of a SmC
film when observed with crossed polarizers (top), or crossed
polarizers and a diagonal λ wave plate (bottom). Without the

phase plate, the texture is fourfold degenerate, and with the phase
plate it is two-fold.

The c-director field is extracted from transmission images
under crossed polarizers as in Figure 5C, or with an additional
diagonally inserted full wave plate (550 nm, slow axis from top
right to bottom left), as in the examples shown in Figures 1A,B,
5B. With the phase plate, the films appear bluish where the c-
director is diagonal bottom-left to top-right or vice versa, and
they appear orange where the c-director is oriented diagonal
from bottom-right to top-left or vice versa. It is impossible to
distinguish the directions Ec and −Ec at normal incidence. When
the c-director field corresponding to a certain texture is plotted
in the following, the sense of direction of Ec was chosen arbitrarily
in each experiment. This is no problem as long as this selection is
consistently maintained within each experiment, because the free
energy, force, and torque equations do not depend upon the sign
of Ec. An alternative is Depolarized Reflected Light Microscopy
(DRLM), with the same limitations (see images in Figure 1C).

In nematic cells, the situation is in principle similar, but the
director is usually not uniform along the cell normal. The optical
axis may thus have spatially varying polar and azimuthal angles.
The optical intensity in transmission depends in a more complex
fashion on n̂(x, y, z). In a crude approximation, one may usually
presuppose that textures under crossed polarizers reflect the
orientation of the in-plane components of n̂. This is fulfilled when
the director field is uniform along the cell normal.
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FIGURE 6 | (A) Two defects with matching director fields, i.e., they can be written as a simple superposition of the solutions for two single conjugate defects. (B) Two

defects whose phases do not match: the director changes along the straight line connecting the two cores.

Then, textures and defects have appearances very similar to
those of the c-director given in Figure 3, with the c-director
replaced by the director projection: Dark regions indicate that the
projection of the nematic director onto the cell plane is along one
of the polarizers. Bright regions reflect diagonal projections. If
n̂(x, y, z) is perpendicular to the cell plane everywhere, the texture
under crossed polarizers is uniformly black.

A more elaborate analysis reveals that the transmitted
intensity does not only vary with the phase lag between ordinary
and extraordinary wave in the cell and the polarizer orientations.
One also has to take into account that in-plane variations of
n̂ modulate the spatial refractive index profile. In contrast to
thin smectic films, this may generate refraction and intensity
modulations of transmitted light even in absence of polarizers so
that defects may be visible even in unpolarized light.

3. THEORETICAL MODELS

3.1. Quasi-Equilibrium Configurations and
Forces of Defect Pairs
Continuum models of the nematic and smectic C phases form
the theoretical basis of the description of defect dynamics. The
simplest assumption made in many models is that the motion
of the defects is overdamped and adiabatic. There is no inertia
related to the director reorientation or defect core motion.
Defects move with a velocity determined by the balance of
elastic forces that arise from the gradients in the potential and
counteracting viscous forces caused by director reorientations
and possible coupling to flow. Each snapshot of the director field
can be assumed to represent a free energy minimum under the
condition of fixed defect core positions (sometimes including a
given flow field). Such interaction forces can be generated, e.g.,
by fixed anchoring conditions of the director at a boundary near
the defect. In a pair of defects of equal or opposite topological
charges, their elastic interaction forces drive mutual attraction
or repulsion.

The interaction between two disclinations was first calculated
under the simplifying assumption of equal splay and bend elastic
constants, i.e., KS = KB = K, in the absence of material flow.
The director field is taken as a linear superposition of the single-
defect solutions of the director field [95]. For individual defects

with topological charge Si positioned at the origin (0, 0), these
individual solutions have the form

θ(Er) = Siϕ(Er)+ θi, (6)

where ϕ is the angle between Er and the x axis, and θi is the phase
of the defect. For two defects of topological charges S1 and S2 at
positions ER1 = (x1, y1) and ER2 = (x2, y2), this yields

θ(Er) = S1 arctan

(

y− y1

x− x1

)

+ S2 arctan

(

y− y2

x− x2

)

+ θ∞. (7)

The two arctan functions yield the angles of the position vectors
(Er − ER1) and (Er − ER2) with the x axis. This solution is sketched in
Figure 6A for S1 = +1 (left), S2 = −1 (right) and θ∞ = −π/2
(the c-director angle in infinity). The problem with this type of
solutions is that it produces only defect pairs whose phasesmatch,
i.e., the c-director along a straight line connecting the defects
is constant, since the arguments of the two arctan functions in
Equation (7) remain constant on the straight line connecting the
defect cores. This is only a specific subset of the solutions of the
general problem, where defects can have any phases.

For two such specific defects with strengths S1 and S2,
separated by a distance R, the mutual attractive or repulsive force
per film thickness is [96, 97]

Fe = 2πS1S2
K

R
. (8)

It acts along the separation vector ER = ER2 − ER1, where ERi
are the positions of the two cores. Thus, the two defects are
expected to approach or move away from each other on straight
paths. In nematics, the defect strengths can have integer or half-
integer values. In SmC films, owing to the polar character of
the c-director, point defects can only have integer strengths.
Disclinations of the same sign repel, those of opposite signs
attract each other, with forces inversely proportional to the
distance R.

Equations (7), (8) describe defect pairs with “ideal”
orientations respective to each other, and with “ideal”
orientation of ER to the far director field. The basic models
that led to Equation (7) assume that the superposition of two
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FIGURE 7 | Temporal evolution of a pair of mutually repelling +1/2 defects (A–C) and mutually attracting ±1/2 defects (D–F), simulated with Neumann boundary

conditions, and an initial separation of the defects of 1/3 of the computed region. Red arrows indicate the “tilt,” a quantity introduced to describe the defect

orientations. Even though the interconnection vector is initially horizontal in the images, the defect trajectories are curved, and the direction of defect motion noticeably

differs from that vector. The image was reproduced from Vromans and Giomi [99], with permission of the Royal Society of Chemistry.

interacting defects is the only director field deformation present.
This is correct only if the orientations “match,” i.e., the θ is
constant along the line connecting the two cores, as sketched in
Figure 6A. These models cannot describe the effects of mutual
orientation mismatches (with regard to the phase angles θ1,2 of
both defects) such as those sketched in Figure 6B. In practice,
one has to take into account that phases of interacting defects in
general do not match. The effects of these mutual orientations
were first discussed by Vromans and Giomi [99]. They argued
that half-integer defects have a generic orientation (“tilt”), which
affects their interactions qualitatively. It changes the trajectories
of mutually attracting or repelling pairs so that their motion is
no longer along the interconnecting line (Figure 7).

Tang and Selinger [100] extended this idea and generalized
it to arbitrary defect strengths. They introduced tensors of rank
n|1 − S| to characterize the orientation of defects of strength S
in n-atic phases (phases with an orientational order parameter of
n-fold symmetry). In the non-polar nematic phase, S = +1/2
defects are described by a vector, −1/2 defects by a tensor of
rank 3. In polar nematics and SmC, the +1 defect is a scalar,
the −1 defect is a tensor of rank 2. Tang and Selinger derived
explicit expressions for the director field around defect pairs with
different orientations and for the elastic energy depending on
the defect orientation parameters. The analytical solutions were
found using a conformal mapping technique [100], which works
only under the condition of elastic isotropy (KS = KB).

We use their concept to discuss effects of defect orientations
on interactions of conjugated pairs, S1 = −S2 = S. The

equilibrium solutions are [100]

θ(Er) = S arctan

(

y− y1

x− x1

)

− S arctan

(

y− y2

x− x2

)

+
δθ

2

[

1+
ln(|Er − ER1|)− ln(|Er − ER2|)

ln(R)− ln(rc)

]

+ θ0,

δθ = θ2 − θ1 − 2SϕD − Sπ ,

θ0 = θ1 + S(ϕD + π), (9)

where the angle ϕD defines the direction of ER respective to the x

axis (Figure 6B), and rc is the defect core radius. It is assumed
that rc is very small compared to R. The director field at circles
with radius rc around the cores is described by equations of the
form of Equation (6). The terms−Sπ and+Sπ in the definitions
of δθ and θ0 arise from the correct choice of the quadrants of the
arctan functions used in Tang and Selinger [100]. The first line
of Equation (9) plus θ0 reproduces the solution for pairs with
mutually matching orientations (Equation 7). The second line
with the parameter δθ/2 is a solution of the Laplace equation with
fixed boundary conditions θ = 0 at the core of the S1 defect and
θ = δθ at the core of the S2 defect.

These equilibrium solutions are exact, but they lead to a
boundary condition of the director field at infinity θ∞ = δθ/2+
θ0 = (θ1 + θ2 + Sπ)/2 that depends upon the phase angles of
the two defects. This is no problem unless one wants to describe
realistic experimental systems where the director far from the
conjugated pair is usually homogeneous and independent of the
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FIGURE 8 | Static director fields around matching and mismatching defect pairs obtained by Equation (9) (top) with δθ = (π/2, 0,−π/2) from left to right in a

homogeneous external director field indicated by the pink arrow below the plots. The red dot marks the +1 defect and the blue dot the −1 defect. The bottom row

shows their appearance between crossed polarizers with diagonal phase plate. The image was reproduced from Missaoui et al. [43].

defect positions and orientations. In order to realize such fixed
boundary conditions, we rotated the solutions of Equation (9) to
fix θ∞. Without loss of generality, we chose θ ′∞ = 0 [primed
angles refer to the rotated system (x′, y′)]. In the primed system
rotated by−θ∞, the defect phases become

θ ′1 =
S+ 1

2
θ1 +

S− 1

2
θ2 +

S− 1

2
Sπ ,

θ ′2 = −
S+ 1

2
θ1 −

S− 1

2
θ2 −

S+ 1

2
Sπ . (10)

Some representative solutions are visualized in Figure 8 for ±1
defect pairs and more in Missaoui et al. [43]. In the special case
S = 1, the equations simplify to θ ′1 = θ1 and θ ′2 = −θ1 − π ,
the phase angle of the scalar +1 defect is preserved. One can
easily verify that θ ′1 + θ ′2 + Sπ = 0 gives the correct boundary
condition θ ′∞ = 0 in all cases. The phase mismatch δθ , i.e.,
the angle by which the director reorients on the straight line
connecting the two cores, remains invariant under rotations of
the coordinates. It is one of the two essential parameters for the
pair orientation. The second important parameter describing the
defect pair is the orientation of the connection vector ER with
respect to the far director.Wewill refer to ϕ′

D as themisalignment
angle. It becomes

ϕ′
D = −

δθ

2S
−

1

S
θ ′1 − π . (11)

It is useful to introduce the misalignment parameter δφ =
ϕ′
D + θ ′1/S + π . The most important result of this analysis

is that according to Equation (11), the mismatch δθ and
the misalignment δφ are not independent of each other in
equilibrium. The mutual phases of the conjugated defects and
the orientation of the defect pair in the external director field
are strictly related. Defect pairs in equilibrium adopt a mismatch
angle in accordance with their positions in a given external
director field.

The elastic free energy of a film of thickness h, associated with
the distorted configurations of a defect pair, is [100]

Wpair = 2πKhS2 ln

(

R

2rc

)

+
πKhδθ2

2

ln(R/(2rrc ))

[ln(R/rc)]2
(12)

where the first term represents the usual elastic energy for
matching defects with topological charges ±S. The second term
is the effect of mismatch, which generates a torque. Again, the
equilibrium also fixes ϕ′

D, the orientation of the topological dipole
in the surrounding director field, thus the rotation of the −1
defect and the orbit of both defects around the annihilation
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center cannot be separated in this model. At defect separations
that are large compared to rc, the torque is

T = −
πKh

ln(R/rc)
δθ . (13)

The previous derivation presupposed one-constant
approximation. Two aspects have to be considered: Already
Chandrasekhar [101] noticed that an elastic anisotropy causes
a torque if the predominant elastic deformation between the
defects is unfavorable. This holds true even if this pair is aligned
and has matching phases. Second, defects with topological charge
S = +1 have a peculiarity: the director field in the vicinity of
the core can either be pure splay for θ1 = {0,±π}, or pure
bend for θ1 = ±π/2. Since the deformation energy diverges
near the core, the director will be pinned there, either radially or
tangentially. All other types of defects are less affected by elastic
anisotropy. The director field structure slightly changes when
KS 6= KB, but the energy of isolated defects does not depend
on their phase angle θi. Because of their symmetry, director
fields near the S = +1 defect core are unaffected by elastic
anisotropy, but all other types contain splayed and bent regions
in their vicinity. Regions related to the smaller elastic constant
are compressed, while those related to the larger elastic constant
expand to minimize the elastic energy. The director field around
an isolated S = −1 defect in presence of an elastic anisotropy
α = (KS − KB)/(KS + KB) changes to [102]

ϕ(θ) = q

∫ θ

0

√

1+ α cos(2x)

1+ αq2 cos(2x)
dx, (14)

with a prefactor q determined by (S− 1)ϕ[π , q] = −2ϕ[π , q] =
π . We note here that the combination of defect phase match and
alignment concepts with elastic anisotropy, with material flow
and with finite system size is currently almost unexplored. This
requires further theoretical effort. Gartland et al. [98] derived a
general energy-based framework to determine the force acting
on point defects in nematics. They noted that the static director
fields considered above will, in general, not be identical to the
dynamic director field configurations during defect annihilation,
particularly not in presence of backflow (see next section). Tang
and Selinger [103] exemplarily calculated a correction term
describing the director field change due to a motion of ±1/2
defects at constant velocity in presence of material flow. Thus,
simply deducing the annihilation dynamics from the energy
landscapes of static solutions for the director field may not
be adequate.

3.2. Defect Dynamics
After having obtained the equilibrium director configurations
for defect pairs in given distances and orientations, we now
discuss their dynamics: It is a widely used concept to assume
that interacting defects moving in the LC system pass equilibrium
configurations of the director fields in an adiabatic way. The
specific drag force (per film thickness) on a defect of topological
strength Smoving with velocity v in a film at rest is [104]

Fdrag = πγ1S
2v ln(L/rc), (15)

L is a characteristic system size. Flow is neglected here, the one-
constant approximation is used, and γ1 is the rotational viscosity.
Pleiner [105] derived an equivalent equation for a defect moving
in a SmC film, with γ1 as the rotational viscosity of the c-director.
The problem with this equation is its logarithmic divergence with
L, which requires setting some long-distance cut-off. Ryskin and
Kremenetsky [106] proposed a correction that leads to

Fdrag = πγ1S
2v ln(3.6/Er), (16)

with the Ericksen number Er = γ1vrc/K. Note that, since
the defect is an immaterial object, it does not involve material
transport in this approximation. Thus, shear viscosities do not
enter the drag force equation.

The balance of the elastic force Fe and the drag forces Fdrag on
both defects yields the velocity

v = ±
K

γ1 ln(3.6/Er)R
= ±

D1

R
(17)

for each defect. According to Equation (17), two disclinations of
opposite charge approach each other with velocities essentially
inversely proportional to the separating distance R (disregarding
the velocity dependence of Er). With Ṙ = 2v, one obtains

R(t) =
√

4D1(t0 − t), (18)

where t0 is the annihilation time.
A more accurate model has to incorporate several aspects:

first, the approximation that a moving defect has the same
director configuration as a defect at rest needs to be checked
[107]. Second, the defect velocities are influenced by the elastic
anisotropy α = (KS − KB)/(KS + KB) 6= 0 [6, 55]. Third,
backflow effects cannot be neglected in most situations (except
in Langmuir films where the subphase effectively inhibits such

material transport).
An elastic anisotropy α 6= 0 will cause a difference in the

velocities of the defects of the pair, even when the film material
is at rest. Because of their symmetry, +1 defects are unaffected.
The altered director configuration around a −1 disclination
(Equation 14), however, influences the specific drag force in
Equation (15). Brugues et al. [6] obtained for ±1 defects moving
with velocity v in a restricted domain with radius Rd

F
(+)
drag

≃ πγ1v ln
Rd

rc
,

F
(−)
drag

≃
1

2
γ1v ln

Rd

rc

∫ 2π

0



1+
1

q

√

1+ αq2 cos(2θ)

1+ α cos(2θ)





2

dϕ,

(19)

respectively, independent of the direction of motion. This effect
was already observed in simulations by Svenšek and Žumer [55]:
The+1 defect will move faster toward the annihilation point than
the−1 defect, irrespective of the sign of the elastic anisotropy α.

However, the differences in defect velocities caused by elastic
anisotropy are small compared to flow-coupling effects in SmC
FSFs or effectively 2D nematic films. In particular, as the defects
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FIGURE 9 | Effect of elastic anisotropy (left) and flow parameters (right) on defect annihilation of a (+1/ − 1) pair. (A) no flow, (a) α = 0, (b) α = 1/3, (c) α = 3/5, (d)

α = 7/9 (e) α = 15/17, (f) same as (d) in right image, for comparison. (B) (a) θ1 = 0,α = 0, (b) θ1 = π/2,α = 0, (c) without flow, α = 0, (d) θ1 = 0,α = 0 with rotational

viscosity γ1 doubled, (e) θ1 = 0,α = 2/3, (f) θ1 = π/2,α = −2/3. Images reproduced from Svenšek and Žumer [55], copyright American Physical Society.

move, coupling between the inhomogeneously changing director
field and the velocity field (so-called backflow) plays a significant
role. Defects of different strength couple to the flow field in
different ways. Using a tensor order parameter description,
simulations of Toth et al. [51] showed that, in a 2D nematic, the
+1/2 defect moves faster than its−1/2 counterpart.

The coupled problem of director reorientation and flow is
described by the Ericksen-Leslie equations, see, for example,
Stewart [108] for a comprehensive discussion. These equations
have to be treated numerically in general. Few analytical results
exist [109–111] regarding the asymmetry of the motion of the
defects in a conjugated pair [109, 111] and the qualitative
structure of the backflow field [110]. The sign of the velocity
field at the defect position depends on the topological charge:
the fastest flow occurs in front of the positive defect toward
and behind the negative defect away from the partner [110].
Coupling director reorientation and flow can speed up the
relaxation significantly and it induces vortices in the flow
field accompanying the moving defects, as first predicted by
Denniston et al. [52]. The qualitative effect of backflow on
the defect velocities is similar for defect lines and umbilics
in nematics and point defects in SmC FSFs: while backflow
increases the velocity of the positively charged defect, motion
of the negative defect is hardly affected by backflow, often even
reduced [51, 53, 55, 112, 113]. Due to the structure of the
equations, the scaling of the defect separation R ∝

√
t0 − t with

time to annihilation is preserved until the defects approach so
closely that their core regions start overlapping. Svenšek and
Žumer [55] studied the influence of the Ericksen-Leslie viscosities
and elastic anisotropy on ±1 defect pair annihilation in a SmC
film numerically on a short spatial scale of initial separations.

Qualitative results are summarized in Figure 9B. Compared
to the reference case without flow [Figure 9A, graph (a), and
Figure 9B, graph (c)], both elastic anisotropy and flow slow down
the −1 defect and accelerate the +1 defect. The annihilation
points are shifted toward the initial position of the −1 defect. In

general, symmetric terms of the stress tensors, e.g., the complete
elastic stress tensor in one elastic constant approximation, affect
motion of both defects in the same way, thus they do not
contribute to an asymmetric annihilation process [55]. The γ1
term in the viscous stress tensor is antisymmetric. It dominates
the flow coupling during annihilation: the generated flow carries
both defects with the same velocity in the same direction [55].
This enhances flow near the +1 defect while reducing flow near
the −1 defect. The efficiency of backflow increases with the
ratio of γ1 to the isotropic viscosity α4. The flow driven by
the above terms does not depend on the phase θ1 of the +1
defect (Equation 6). The viscosity coefficient γ2 = α2 + α3

becomes relevant when the phase of the +1 defect is varied:
a tangential +1 defect annihilates faster than a radial one
with its partner (compare curves e and f in Figure 9B). For
general phase angles θ1, the induced flow field even breaks the
symmetry respective to the axis connecting the defects [53]. The
situation is qualitatively the same for annihilating ±1/2 lines
in 2D nematics [53]. The coarsening of defect patterns is only
slightly accelerated by hydrodynamic effects, and the R(t) scaling
behavior is unchanged [114], at least when R ≫ rc. It is also
common to 2D nematics and SmC models that initialization
of the simulation with an equilibrium director field of given
defect positions causes significant transient deviations from the
expected scaling behavior [53, 55].

An alternative, coarse-grained approach to describe defect
dynamics is based on Rayleigh dissipation functions, as outlined
by Vertogen [115], Sonnet and Virga [116], and Tang and
Selinger [103]. Tang and Selinger [103] recently employed this
technique to predict the motion of disclinations, including their
reorientation, treating the defects as effective “particles”. The
authors considered passive nematics where the drag on ±1/2
disclinations is shown to depend upon the orientation of the
defects relative to the surrounding director field (a feature that
is closely connected with the mismatch and misalignment angles
discussed above). The study describes a coupling of translations
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and rotations in the defect dynamics. In addition, an extension of
the model to active nematics was developed by introduction of an
activity coefficient.

The influence of an in-plane aligning electric field on the
annihilation of±1/2 disclinations was described for 2D nematics
with weak degenerate planar anchoring [63, 117]. The director
distortion in-between the pair is compressed to a wall of relatively
constant width along the connecting axis. This leads to a
different scaling regime where the energy decreases linearly with
decreasing wall length, and the defects approach each other at
constant velocity [63]. Speed anisotropy between the defects is
caused mainly by backflow and not by elastic anisotropy.

Umbilic distortions in nematics with negative 1ε in
homeotropically aligned cells with an electric field normal to the
cell are in many respects similar to SmC defects. However, in the
former, one always has to consider 3D effects due to the finite
cell gap, evoked by boundary conditions on the director and
flow fields [59]. The dynamics also depend on the electric field
strength, which sets the core size of the umbilic structure [59].
When bend is favored to splay in the nematic, the elastic
anisotropy speeds up the −1 umbilic [59]. Remarkably, this is
opposite to the behavior of ±1/2 disclinations in nematic cells
and±1 disclination pairs in SmC FSFs.

When the elementary process is known, one may draw
conclusions from pair annihilations to the coarsening of random
patterns with multiple defects. For that purpose, a distribution of
defects with a given density ρ(t) per unit area is considered, and
its scaling with time is analyzed statistically. In a given film area,
ρ ∝ ℓ−2 depends upon some characteristic length ℓ related to
the average defect distance. Coarsening proceeds as a sequence of
individual annihilation steps of neighboring conjugated strings
or point defects. From scaling arguments, considering the energy
dissipation rate and the defect energy of a network of string
defects in a nematic, a decay of the defect density with ρ(t) ∝ t−1

was predicted [20] in 2D. The typical length scale in such a system
increases with t1/2.

4. EXPERIMENTAL RESULTS

A number of 2D experiments were performed in nematic cells
under different anchoring conditions (e.g., [20, 21, 44, 56–59,
62, 63, 118, 119]), mainly focused on pair annihilation and on
coarsening statistics. Irrespective of the apparent simplicity of the
experimental realization, only a few experimental studies have
examined point defects and their interactions in smectic C FSFs
(e.g., [32, 78–81, 86, 120]) to test the above described theoretical
models and predictions. However, there has been considerable
work on inclusions in SmC FSFs where self-organization caused
by topological interactions has been investigated. We refer the
reader to a recent review by Dolganov et al. [33] and to the review
by Bohley and Stannarius [121].

Finally, there are a few publications on defects in Langmuir
films (e.g., [6, 122]), which share many properties with thin
smectic films, viz. their quasi-2D geometry and homogeneity
in normal direction. The c-director can rotate freely at the
interfaces. On the other hand, the coupling to the subphase

inhibits flow. We have grouped the experiments in this section
by the arrangement of defects instead of the mesophase in which
they are formed.

4.1. Single Disclinations
Structure and dynamics of single disclinations in nematic and
smectic phases have been studied by several techniques. While
with polarizing microscopy the core structures of conventional
nematics are not accessible, transmission electron microscopy
(TEM) can visualize such structures after they were frozen
quickly into a crystalline state [123–127]. Often, this technique
is employed with polymeric liquid crystals where the structure
transfer to the solid phase is easier to achieve. Recently,
experiments were also reported for chromonic liquid crystals
[127]. Since the long-range interactions of defects are hardly
affected by the inner core, we have disregarded this aspect in
the following section. At greater distances, the director structure
can either be determined with polarizing microscopy or by
decoration of the distortions with inclusions [26, 128].

In thin SmC films surrounded by a uniform meniscus,
topology requires a total topological charge +1 within a flat
smectic film. An energetically favorable state is a single+1 defect
near the film center. This holds similarly for defects enclosed in
smectic islands or holes (Figure 1C).

4.1.1. Structure of Single Disclinations

The+1 disclinations in LCs have a peculiarity: they are invariant
to rotations, irrespective of an elastic anisotropy. In case of α 6=
0, they choose the configuration with lower energy, which in
nematics can be either splay or bend depending upon thematerial
parameters K11 and K33. In smectic C, non-polar materials have
KB < KS because the bend constant contains contributions
from n̂ director twist (see line above Equation 5), which are
less energy costly. This may be opposite in strongly polar SmC∗

materials where the spontaneous polarization tends to avoid
splay. When this polarization is perpendicular to Ec, it increases
the effective bend constant [129]. However, even though radial
and tangential configurations represent the equilibrium states,
a strong enough torque exerted by the external director field
may distort the defect and may even cause the c-director to
flip θ1 by ±π at the defect core. For such a jump over the
potential wall, a sufficiently strong distortion is needed. This can
be realized by spinning the c-director in a circular film with
strong anchoring at the outer meniscus by means of electric or
magnetic fields [130, 131]. When the field is switched off, the
+1 defect that is necessarily present in the film because of the
boundary conditions moves to the center. The phase difference
between the defect core and the film boundary (seen as a spiral
pattern, Figure 10) can only relax if the c-director reorients at
the meniscus or at the defect core. The spiral contracts toward
the center and increases the torque near the core until the
barrier is surmounted and the phase mismatch is relieved by
π . Note the strong deformation near the core in the second
image of Figure 10, immediately before the flip. In practically all
other experimental situations where SmC defect pair or pattern
dynamics are considered, such strong distortions are absent;
thus the c-director remains pinned tangentially at the +1 core,
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FIGURE 10 | Central +1 defect in a radially distorted director field within a SmC FSF. Images taken during relaxation in 4 s steps. The phase of the defect relative to

the film border is initially 2π , it slips to π in the last image. Dark and bright green regions reflect horizontal and vertical c-director orientations, respectively, in these

pictures. The relief on the right shows the time dependence of the radial phase profile in the film center. Image adapted from Eremin et al. [131].

either clockwise or counterclockwise. In Figures 1A, 5C, the
clockwise (CW) and counterclockwise (CCW) tangential defects
are marked with black/white circles. Since the sign of Ec cannot be
distinguished in reflection microscopy at normal incident light,
the assignment is not unequivocal. The black circle may mark a
CCW defect and white circles CW defects or vice versa.

4.1.2. Diffusion of Single Defects

The position of disclinations in FSFs is subject to Brownian
diffusion in a potential given by the elastic energy landscape
which is defined by the boundary conditions. Diffusive motion is
counteracted by viscous drag due to director reorientations [79,
80, 105]. A single +1 defect in the center of a circular film
shows normal diffusion with a linearly time-dependent mean
square displacement (MSD) as long as this displacement is small
compared to the film radius. Diffusion coefficients are of the
order of 10−11m2/s [80]. At longer times, the confining potential
of the film boundaries takes effect, and the MSD saturates.
Central defects within islands experience particularly strong
confinement. Wachs [81] showed that the diffusion constant
for extremely thin films significantly increases under reduced
ambient pressure, while the elastic constant remains roughly
unaltered. This evidences that the material flow driven by
inhomogeneous director reorientations in the film couples to
flow of the ambient gas. This coupling mechanism is similar
to that of the subphase of Langmuir films, yet the effect is
much weaker. Similar film thickness dependent effects on the
mobility of inclusions in quasi 2D membranes [132, 133] can
be described within the Saffman-Delbrück/Hughes-Pailthorpe-
White theory [134]. If this conclusion is correct, then Equations
(15, 16) underestimate the drag forces on defects under normal
atmosphere substantially, at least in thin FSFs.

4.2. Defect Pairs
When one analyzes the published studies of pair annihilation in
nematics, it is striking that most pairs are in mutually matching
orientations, which is most probably no coincidence. We do not
exclude, however, the possibility that these particularly simple
configurations had been intuitively selected by the experimenters.
We are going to discuss the matching, aligned pairs first before
returning to the mismatch problem afterwards in section 4.2.2.

4.2.1. Annihilation Dynamics

When external disturbances are negligible, the defect
separation R obeys the square root law (Equation 18), in
good approximation both in nematics [44, 62, 68] and in
uniformly thick SmC FSFs [43, 80, 81]. However, when either
strong planar anchoring with a preferential alignment is present
in a cell [62], or when an aligning external electric field [59, 63]
breaks the azimuthal symmetry in the cell plane, R scales linearly
with (t0− t). The distortion connecting the defects is compressed
to a narrow wall and reducing the wall length is the dominant
source of energy reduction.

In very thick SmC FSFs, arrays of layer dislocations can play
the role of an external field [78]. Pargellis et al. studied 10–40 µm
thick films that were most probably not uniform in thickness.
In such films, dislocation arrays tend to force the c-director in
a preferential orientation parallel to layer steps, i.e., normal to the
thickness gradient. Distortions are squeezed into narrow walls
[135]. The square-root law (Equation 18), describes only pairs
which are separated by less than the wall widths.

Regardless of the existence of a field, the positively charged
defects always move faster than the negatively charged ones, in
accordance with theory. The dominance of backflow over elastic
anisotropy in this asymmetry was demonstrated for umbilics in
a cholesteric material [68]. The asymmetry of umbilic velocities
in external fields is set by visco-elastic parameters of the material,
not by field-induced structural changes [59].

Annihilation of ±1/2 disclination pairs was also analyzed in
lyotropic nematics within a rather thick (100 µm) glass capillary
with planar anchoring [118, 119]. Interestingly, averaging
numerous experiments produced a scaling R ∝ (t − t0)

0.4±0.01.
The reasons for the deviations can be manifold, e.g., fluctuations
in the lyotropic [118, 119] or more complex defect interactions,
such as mismatching mutual orientations in defect pairs (next
paragraph) or inhomogeneous surrounding director fields. The
defect separation was of the order of the cell thickness in these
experiments, and the geometry is thus rather 3D. Defect velocities
fluctuate more strongly than in thermotropic LCs, with evidence
of long-range correlations [119].

Smectic C FSFs appear to be well-suited to study annihilation
with full backflow coupling. Nevertheless, a quantitative analysis
of annihilation dynamics and comparison to viscous and
elastic material parameters to test existing models [55] is still
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missing. The few existing studies have confined themselves to
the qualitative confirmation of the scaling law. In Missaoui
et al. [43], a velocity ratio of +1 and −1 defect of about 1.8
was reported in qualitative agreement with theory. In extremely
thin films, deviations from the t1/2 scaling were found at small
separations [81].

Material flow is inhibited in Langmuir films [6, 122].
This allows to quantify the velocity asymmetry caused by
elastic anisotropy. In small circular islands, defect interactions
and annihilation were observed after island coalescence.
Qualitatively, the results agree with predictions [6, 55].

4.2.2. Defect Matching and Alignment

As the theoretical models in section 3.1 predicted, the defect
orientation and the alignment of the pair in the far director field
are important parameters for the quasi-equilibrium states. The
previous section showed that the concept of defect pairs passing
different quasi-equilibria is useful for pairs that are perfectly
oriented with respect to each other. The hypothesis that the
angular mismatchmight play a role in the dynamics was probably
first uttered byWachs [81]. In practically all experimental studies,
the problem of orientation matching was disregarded, but one
can discover examples in published papers: In Pargellis’ 1992
experiments ([78], Figures 10, 12 in there), the annihilation of
several pairs definitely does not follow straight paths. A wall
connecting the pair rotates in the film plane. Similar mismatch
can be identified in Dierking et al. [44], Figure 3B, even though
this aspect was not mentioned in those papers.

A systematic experimental study of defect pairs in different
mutual orientations and different positions respective to the far
field was performed by Missaoui et al. [43]: essentially, defect
pairs always adopt an orientation with respect to each other that
is related to their alignment with the far field. Misalignment
causes curved trajectories, and, on the way to annihilation, the
defects move on either clockwise or counterclockwise bent paths
depending upon the sign of δθ ≈ −δφ (Figure 11). This differs
quantitatively from the theoretical prediction δφ = −δθ/2.
Possible reasons are that either the one-constant approximation
α = 0 used in Equation (9) is a too strong simplification for the
material used (α ≈ 0.4), the assumption of an adiabatic approach
is incorrect, or the finite film size affects the pair orientation.

The static equilibrium solutions are certainly not exact when
flow is present [55]. We note that in realistic coarsening
scenarios, the director field surrounding adjacent pairs is
influenced by all neighbors. Then, misalignment effects may be
averaged out to a certain extent, while the mismatch between the
partners remains an important parameter.

4.3. Multidefect Arrays
A previous investigation [32] of repulsive interactions of defects
of identical topological charges S = +1 has shown some
limitations of the classical defect interaction models in liquid
crystals [61, 95, 97] but a good agreement of the predicted square-
root law of the time dependence of the characteristic quantities.
Defects were collected initially in a small spot of a smectic C film:
the film contained a circular area of reduced film thickness, a

so-called “hole” comprising defects with total topological charge
N. In this hole, N defects of charge +1 each were located along
the boundary. The situation is shown in Figure 5C. In different
experiments, N was varied between 4 and 12. The defects repel
each other but cannot enter the surrounding thicker film regions
because their elastic energy increases linearly with film thickness.
On the other hand, they prevent the hole from shrinking and
extinction because they counteract a reduction of the hole radius.
By manually destroying the hole [32], the defects are freed and
they explode in a regular pattern (Figure 1A) on straight radial
trajectories. It was found that the velocities are well-described
by a square-root law R ∝ t1/2 with R being the distance from
the central spot that contained the defects and t the time after
extinction of the hole. It was further observed that because of
the pinning of the c-director at +1 defect cores, interactions to
farther away defects are partially screened by nearer ones. Finally,
it was demonstrated that multiple +1 defects with tangential
anchoring cannot be described as a superposition of solutions
of single defects. They necessarily include additional distortions
of the surrounding director field that are not considered in
the classical interaction models. The latter two features are not
relevant in systems with elastic isotropy, where +1 defects can
adjust θ1 without barriers. They are, however, characteristic for
any systems that require strictly tangential or radial vector fields
around their+1 defects.

4.4. Coarsening of Complex Patterns
In an attempt to mimic cosmic string dynamics and the
coarsening of complex string defect patterns, Chuang et al.

[20, 21] studied nematics between sapphire plates. Rapid phase
transitions from the isotropic phase were triggered either by a
temperature quench or high pressure. The boundary conditions
at the surfaces were not specified. They were presumably planar
degenerate. In the nematic phase, a rich pattern of string defects
occurred after the disorder-order transition. These defects were
three-dimensional and of complex geometry. Nevertheless, the
authors analyzed the 2D images and considered the mean
density ρ of defects per area. They confirmed a coarsening
ρ(t) ∝ t−1, as predicted by scaling arguments within an
approximate model. In the late stages of coarsening, there were
clear deviations from the t−1 scaling law, and ρ(t) dropped even
faster than the t−2 scaling predicted for 3D systems. Comparable
experiments by Pargellis et al. [56] were performed under well-
defined boundary conditions. Defects of strength ±1 emerged
at an isotropic-nematic interface in the cell midplane. The
authors were able to obtain accurate quantitative data of the
2D defect density ρ(t). Approximately 1 min after the quench,
this density followed the predicted t−1 decay. In an improved
experimental geometry, Nagaya et al. [58] and Dierking et al. [44,
59] studied coarsening of defect patterns under isothermal
conditions. Umbilics were formed in a material with 1ε < 0
exposed to an electric field along the cell normal. In a 2D view, the
authors consider the umbilics as defect patterns. These structures
can be regarded as integer-strength defects (see Figure 1). The
ρ ∝ 1/t coarsening law was confirmed. Similar coarsening
experiments in SmC FSFs were reported by Pargellis et al. [78].
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FIGURE 11 | (A–C) Matching defect pair, δθ = 0, in perfect alignment, δφ = 0. Times refer to the annihilation event, white circles in (C) mark the positions where (A,B)

were recorded. (D–F) Same for mismatching, misaligned pair with initial angles δθ = +65◦, δφ = −36◦, (G–I) mismatching, misaligned pair with initial angles

δθ = −50◦, δφ = +79◦. The white bar in (A) marks 50 µm, in (D,G) 100 µm. Black arrows indicate the orientation of the far director. Images reprinted from Missaoui

et al. [43].
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The films were comparably thick (of the order of 103 layers).
Defects were created by temperature quenches. The texture
between defect pairs showed an unusual appearance: instead
of structures comparable to those found by other authors, the
director distortions were localized in narrow inversion walls. This
changes the defect dynamics qualitatively. The likely explanation
of this discrepancy was given in section 4.2.1. One consequence
was that the coarsening statistics changed qualitatively, the
decay of ρ(t) became exponential. Since a reproducible thickness
profile is difficult to control in very thick films, it is preferable
to study defect pattern coarsening in submicrometer thin,
uniform films.

Muzny [80] studied defect pattern coarsening in
homogeneously thick FSFs with a purely mechanical preparation
technique that does not involve temperature changes. The decay
of the defect density ρ(t) ∝ t−1 in random many-defect patterns
was confirmed in these experiments. The fact that the coarsening
dynamics is rather similar in all these experiments, irrespective
of the sample geometries, defect preparation methods and
types of defects seem to indicate that the ρ ∝ t−1 scaling is a
robust result that is independent of details of the elementary
annihilation steps.

5. SUMMARY

Models and experiments of 2D nematic and SmC defect
interactions and dynamics were compiled in this review. The
nematodynamic equations require that the defect separation R
of an isolated conjugated pair scales as R(t) ∝

√
t0 − t with the

time to annihilation, irrespective of the presence of flow. This
holds true as long as no other length scales enter the description,
such as lateral confinement, the vicinity of defect cores, the
Saffman length of advected air layers, or widths of inversion
walls generated by external electric fields. The square-root scaling
was confirmed in many experiments with smectic films and
nematics in sandwich cells. Material flow accelerates the motion
of the positively charged defect and decelerates the negative
counterpart; the annihilation point is thus shifted toward the
negatively charged defect. The dominating term is related to
the ratio γ1/α4. Elastic anisotropy has a similar effect, which
is usually much weaker than flow coupling. Both predictions
qualitatively agree with experiments. Nematics confined to
sandwich cells often suffer from a more or less 3D character of
the director field. Real quasi-2D systems can be realized using
free-standing smectic C films or Langmuir films. The former
display full flow coupling, as the surrounding fluid is often
negligible, whereas the latter eliminate flow in the film plane
through coupling to the bulk water phase.

Most of the existing models of defect dynamics disregard the
mutual orientation of the defects and the pair’s orientation in
the far director field. They also do not account for the special
fixed configurations of +1 defects (preferentially tangential or
radial), which influence the relaxation dynamics qualitatively.

Recent studies have brought this problem into focus [43,
99, 100]. The theory predicts curved defect trajectories and
rotations of the defects on the way to annihilation. Quantitatively,
there are some discrepancies between model and experiments,
suggesting that a single-elastic constant approach without flow
oversimplifies the physical situation. Pinning of the phase of
+1 defects in general requires additional director distortions
in configurations of multiple defects, altering the repulsion
dynamics [32]. The influence of lateral confinement as well as a
possible coupling to thermal fluctuations or a surrounding low-
viscosity fluid still need to be incorporated in the models of
thin films.

Defect diffusion has been studied in FSF [79–81]. In thick
films, normal diffusion with coefficients of the order of a few
µm2/s was observed, while in very thin films of only few
molecular layers, coupling of flow to the ambient air seems to
attenuate the diffusive motion.

This review has focused on systems where defect dynamics is
driven by interactions with the surrounding director field and
flow driven by the director dynamics. An interesting extension
with promising perspectives is the study of systems where defects
are generated, moved, and recombined by flow fields of external
origin, such as active nematics [41, 136], andmicrofluidic systems
where external flow can tune the topology of the samples [137].
In addition, the vast field of disclinations interacting with solid
or liquid inclusions in liquid crystals has been completely left
open here. Comprehensive reviews of static arrangements of
solid or liquid inclusions in combination with defects can be
found in Dolganov et al. [33] and Stannarius and Harth [92].
The dynamics of such symbiotic structures deserve considerable
interest in future studies. Another promising perspective to
consider when preparing self-assembled structures is the well-
controlled creation of defect patterns with proper surface
structuring of nematic cells [138]. Such structures can be
switched electrically, and diffraction properties of nematic cells
can be influenced by means of electric fields.
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Topology transcends boundaries that conventionally delineate physical, biological,

and engineering sciences. Our ability to mathematically describe topology, combined

with recent access to precision tracking and manipulation approaches, has triggered

a fresh appreciation of topological ramifications in biological systems. Microbial

ecosystems, a classic example of living matter, offer a rich test bed for exploring

the role of topological defects in shaping community compositions, structure, and

functions spanning orders in length and time scales. Microbial activity—characteristic of

such structured, out-of-equilibrium systems—triggers emergent processes that endow

evolutionary and ecological benefits to microbial communities. The scene stealer of this

developing cross-disciplinary field of research is the topological defects: singularities that

nucleate due to spontaneous symmetry breaking within the microbial system or within

the surrounding material field. The interplay of geometry, order, and topology elicit novel,

if not unexpected dynamics that are at the heart of active and emergent processes in

such living systems. In this short review, I have put together a summary of the key recent

advances that highlight the interface of active liquid crystal physics and the physical

ecology of microbes; and combined it with original data from experiments on sessile

species as a case to demonstrate how this interface offers a biophysical framework that

could help to decode and harness active microbial processes in true ecological settings.

Topology and its functional manifestations—a crucial and well-timed topic—offer a rich

opportunity for both experimentalists and theoreticians willing to take up an exciting

journey across scales and disciplines.

Keywords: activematter, microbial ecology,microscale biophysics, liquid crystals, anisotropy, topological defects,

feedback, emergence

INTRODUCTION

Microbes mediate and dictate a broad range of processes in ecology, medicine, and industry.
The urgent need for devising better antibiotics, the development of bioremediation approaches
for anthropogenic disasters such as oil spills, application of microbes toward sustainable
ecosystems, and the need to coherently assess how microbes govern the dynamics of soil,
plant, marine, and human ecosystems—all require an articulate understanding of the vital
functions that microbes carry out. Microbial activity spans multiple scales [1–3]: from
community dynamics playing over millimeter to meter scales, down to sub-cellular organelles

108

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00184
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00184&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anupam.sengupta@uni.lu
https://doi.org/10.3389/fphy.2020.00184
https://www.frontiersin.org/articles/10.3389/fphy.2020.00184/full
http://loop.frontiersin.org/people/205718/overview


Sengupta Topological Feedback in Microbial Systems

with characteristic lengths of hundreds of nanometers
(Figure 1). A significant proportion of these microbes—from
prokaryotic bacteria making up different biotopes, to eukaryotic
phytoplankton in flow—occupy highly dynamic natural habitats,
where a combination of periodic and stochastic variations in
their micro-environments shape the species fitness, succession,
and selection [4, 5]. Since Pasteur formalized the nexus between
microbiology and materials (in this case, food materials) [6], the
scientific and industrial pursuit of biotechnology at the interface
of microbes and materials has continued unhindered. This
lasting advancement was realized in part due to the discovery
of diverse microbial taxonomies within different contexts [7–9],
and elucidation of the intricate community structures therein,
also known as the microbiota, or more commonly, microbiome
[10, 11]. Alongside, a close understanding of the biophysical
attributes of the environment has enabled valuable insights into
microbial behavior and physiology in a dynamic environment. At
the scale of amicroorganism, the local micro-environment can be
generalized as a spatially structured complex soft material, with
internal energies spanning equilibrium thermal energies (kBT,
the product of the Boltzmann constant, kB, and the temperature,
T) [12–14], to out-of-equilibrium active environments [1, 15, 16].
Ranging from 1 nm to 100µm—five orders of length scale—
micro-structural complexity coexists with microbial complexity
in vast majority of natural and nature-inspired microbial
ecosystems. Key microorganisms, or the core microbiota, from
a range of applied microbial settings, have yielded plethora of
information on optimal physiology and fitness, relevant from
a fundamental microbial perspective [17]. Together with the
rapid progress in sequencing and omics tools, this has led to a
systematic and high throughput analysis of microbial metabolism
and response pathways [18]. Yet microbiology and microscale
physics have rarely been considered as an ensemble—a single
composite biophysical system—that underpins the natural and
synthetic microbial processes. Bulk of the existing studies—both
experimental and modeling—have considered one or the other,
and thus, relatively little is known about the active biophysics
that govern the microbiome dynamics in general, and the
microbe-environment interactions in particular. Specifically,
by analyzing microbial ecosystems through the lens of active
matter physics, two distinct uncharted biophysical themes
emerge: (1) Activity and emergence in microbial consortia: how
emergent properties are triggered (or hindered) in communities
of multiple players (species) with distinct biophysical traits;
and (2) Microbial behavior and physiology in relation to the
dynamic micro-environments they are part of. In other words,
can we harness environmental dynamics to tune microbial
activity and emergent properties? Both the themes, interfacing
microbial ecology and active matter physics, went unexplored
this far, despite their relevance and potential impact. The holy
grail will be to develop a mechanistic framework that could
decouple the two scenarios and reveal the relative influence
of consortium species vis-a-vis the environmental attributes.
In an integrative approach, the species in a consortium could
be considered a part of the microbial environment itself.
Nonetheless, an unambiguous understanding of each species

in a microbial community, and their relation to the micro-
environment, will be crucial in assessing their contribution to the
environmental variables.

In a biophysical context, microbes can be generalized as
microscale biological active matter that expends energy to
perform tasks and processes information to execute physiological
functions, ultimately enabling them to maintain biological
fitness. Microbes have thus been considered as model systems,
based on which theories for active matter systems have
been developed [19–23]. Broadly classified under prokaryotes
(unicellular organisms without membrane-bound nucleus)
and eukaryotes (uni- or multicellular organisms possessing
membrane-bound nucleus), microbes can be planktonic (motile),
or sessile (non-motile), inhabiting different ecosystems. Motility
imparts cells the ability to actively propel, aided by plethora
of propulsion mechanisms [24]. On the other hand, non-
motile microbes could be surface attached, or rely on passive
mechanisms for locomotion. Over the recent years, there has
been a growing interest to understand the dynamics of microbial
systems with higher complexities: coexisting motile and non-
motile species [25–27], microbes in complex fluids [28–30],
and active response and feedback between microbes and their
micro-environments [1, 16, 19, 31]. Despite the unprecedented
progress over the last decade, the field of microbial biophysics
faces conceptual challenges on the way, specifically in linking the
physics of active matter to the biology of microbial ecosystems
in natural or nature-inspired ecosystems. A close scrutiny would
reveal that microbes, as they exist today in their natural habitats,
have emerged from eons evolution, guided by the interplay of
physics and genetics [32]. Thus, for a consequential application of
the theory in true biological settings, an appreciation of the role
of the environmental variations and the underlying molecular
pathways, in addition to the material and mechanical attributes
of the cells, will be vital. Engaging biomolecular approaches
in tandem with microbial biophysics will trigger an iterative
feedback where the knowledge of biological pathways will inform
new and update existing theory, and vice versa; ultimately
enabling predictive approaches for microbial biophysics [33, 34].
Furthermore, bridging theory with the biophysical experiments
has been hindered by the multiplicity of microbial traits and
processes that act simultaneously, affecting both the consortia
members and the micro-environment [34]. Our ability to
move from experiment-specific theory to general principles of
microbial biophysics could garner much wider attention from
both aisles of the scientific community, ultimately offering an
integrative framework for microbial ecology. These challenges
have offered untapped opportunities for the active matter
community, which could allow existing theories to be validated
and iteratively updated to capture true biological systems. The
objective of this article is 3-fold: (1) to summarize key recent
works on microbial active matter, with a focus on the role of
geometric and topological features; (2) present selected original
results that capture the topological facets in microbial systems, in
particular sessile bacteria; and (3) conclude with a perspective on
the topological framework, and its promise in future studies on
microbial systems.
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FIGURE 1 | Microbial active matter. Microbial active matter spans multiple scales: from communities comprising populations of multiple species (A), to microbial

populations of single species (B), down to individual cells (C) Out-of-equilibrium physics underpins biophysical processes at sub-cellular scales, regulating phase

separation, organelle compartmentalization, and microbial shape-shifting (D) and directional molecular transport by the cytoskeletal elements (E). The scale bar in

green represents the decreasing system length scales on moving from the microbial community to the cytoskeletal elements. (F) Microbial shape and its modulation

are critical determinants of behavior and physiology, shown here for phytoplankton that can carry out rapid morphological transformation from asymmetric (left) to

symmetric (right) shape as a response to hydrodynamic cues. Such transformations are mediated by the active reorganization of the cytoskeleton. Chloroplasts

surrounding the cell membrane of photosynthetic phytoplankton species appear as blobs (false colored in green), imaged here using chlorophyll autofluorescence. (G)

Microbial shape in a monoclonal culture can be intrinsically heterogeneous, as captured in an expanding colony of rod shaped bacteria. The growth conditions play a

key role in tuning the aspect ratio of cells, a metric of microbial shape. (H) Cell aspect ratio determines the size of self-organized nematic microdomains in a growing

bacterial colony. The colors denote local cell orientations, as per scheme shown in the color wheel. (I) Topological defects in an expanding bacterial colony. (+) sign

indicates +1/2 integer defects and (•) indicates −1/2 topological defects, which appear at the intersection of nematic microdomains. (D,H are adapted from the

author’s work [1, 2], and E from Jin et al. [3], with permissions from the Nature Publishing Group, Creative Commons CCBY license and John Wiley and Sons,

respectively).

MICROBIAL ECOLOGY: A TOPOLOGICAL

PERSPECTIVE

Microbes occupy every part of our biosphere, often as a part of
complex community structures, interacting closely with dynamic

micro-environments via physico-chemical cues. The ability of
microbes to respond and adjust to environmental changes
spanning vastly different scales (individual to community
scales; from generational to evolutionary time scales), is a
conundrum that has long intrigued biologists and physicists
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alike. Consequently, understanding how microbes interface,
exchange, and communicate with their local surroundings is
central to the grand quest for a theory of microbial ecology.
On the timeline of microbial ecology, it is rather recent
that cellular and sub-cellular biophysics has started to emerge
as a key player, propelling our understanding of microbial
lifestyles and strategies under biotic and abiotic variations in
their environment. Recent advances in molecular and imaging
techniques have started to uncover the functional role of active
biophysics in microbial ecosystems, specifically in the context of
topological defects [35–37], yet we lack a mechanistic framework
that could explain, generalize, and predict microbial fate
under environmental fluctuations. Microbiology and microscale
biophysics work in tandem in everyday ecological settings,
though they have rarely been considered as an ensemble
parameter for analyzing microbial ecology. Of particular
significance to microbe-environment interactions is phenotypic
plasticity [38]—the ability of microbes to dynamically tune
biophysical attributes, namely, morphology, cell size, motility,
or surface-association, without altering the genotype (i.e., the
genetic makeup remains same). Variations in phenotypes, the
composite of observable characteristics or traits in an organism,
arise due to differential expressions of the genetic code due to
interactions with the environment [39–42]. Its fundamental role
in establishing a link between organisms and their environment
has been reported in all forms of life: from simple unicellular
bacteria [42] and photosynthetic phytoplankton [1, 3], to highly
organized multicellular eukaryotes [43].

At a functional level, phenotypic plasticity imparts individual
cells, or populations, the capacity to cope with physiological
requirements (for instance, necessitated by cellular age),
or changes in the environmental conditions (e.g., response
and adaptation). In the context of active matter physics,
plasticity of phenotypes is analogous to tunable activity
spanning different timescales—either at individual or collective
levels. Figure 1 presents the relative scales of organization in
aquatic phytoplankton. An example of phenotypic plasticity—
asymmetric and symmetric morphotypes—that emerge rapidly
in motile phytoplankton exposed to turbulent hydrodynamic
cues is shown in Figure 1F [1]. The transition from an
asymmetric to a symmetric cell shape depends on the properties
of the external cue and the physiological state of the cells,
which as depicted in Figure 1E, is potentially mediated
by the intracellular cytoskeletal matrix. The nature of the
cytoskeletal element, in combination with the orientational
order of the cytoskeletal network, determine the cell geometry,
playing a fundamental role in sensing and transmission
mechanical perturbations [44, 45]. Physiologically, cytoskeletal
organization and its dynamics mediate crucial functions in
marine microorganisms [46–49]. Recent reports have suggested
that cytoskeletal organization regulates biomineralization [46],
and shapes mineralized [47] and labile [48, 49] forms. The
secretion of biomineralized elements is tuned—in contrasting
manners—by the disruption of the actin and microtubule
networks. However, if and to which extent cytoskeletal order
and emergent topological constraints, contribute to the transport
processes involved, are yet to be explored. This could be

particularly interesting in light of anisotropic diffusion in
intra-cellular environments, known to facilitate the encounter
and interaction of spindle-associated proteins [50]. Linking
cytoskeletal order and organization to cellular physiology and
functions will enable an integrative understanding of microbial
behavior and lifestyles, while furthering our comprehension
of multiscale complexities in nature for potential material
science applications.

Phenotypic variations are commonplace among prokaryotes
too, both at single cell and population scales. In absence
of changes in their micro-environment, individual cells in
a microbial population can exhibit intrinsic phenotypic
heterogeneity [2, 51]. As shown in Figure 1G, within an
expanding colony of bacteria under steady conditions (nutrients
and temperature), cells can exhibit intrinsic differences in
the cell aspect ratio, i.e., the ratio of length to width of the
cell. Additionally, phenotypic heterogeneities can emerge as a
consequence of the ecological constraints, with different cell
morphologies competing for limited resources. Recent results
suggest that microbial populations comprising morphologically
distinct shapes can undergo spatial structuring [52], with
potential ramifications on the cell lineage and fitness. Additional
heterogeneities in phenotypes can co-exist, or co-emerge,
including different cell structures (e.g., size and number of
flagella), motility, surface attributes (e.g., adhesive properties),
and growth rates. Taken together, phenotypic traits and
variations therein, lead to a rich biophysical landscape where the
interplay of microbial activity, geometry, and local order trigger
emergent behavior and functions.

For surface-associated bacterial colonies, the generation and
propagation of growth-induced active stress is determined by the
activity (cell division rate) and the cell geometry, characterized
by the ratio of cell length over width, or the aspect ratio
(Figure 1H) [2]. The emergence of microdomains is mediated by
two competing forces: the steric forces between neighboring cells
and the extensile stresses due to cell growth, which, respectively,
tend to favor cell alignment and disrupt the local orientational
order of the system. The aspect ratio of cells in a colony
determines the overall size (area) and spatial distribution of
emergent nematic microdomains. Thus, for a given number of
bacterial cells, an increase in the aspect ratio results in fewer
number of nematic microdomains, each of which is however
larger in size. The interplay of growth stresses and the steric
interactions results in an exponential distribution of the domain
areas, with a characteristic length scale proportional to the
square root of the ratio between the orientational stiffness of
the system and the magnitude of the extensile active stress. For
a given size of the colony, the tradeoff between the size of the
bacterial cells and that of the nematic microdomains determine
the total number of topological defects. The defects nucleate
at the intersection of three (or occasionally, four) distinctly
oriented nematic microdomains, as shown in Figure 1I, where
the +1/2 and −1/2 topological defects are indicated by the (+)
and (•) signs. The position and nature of the defects can be
determined using a two-step analysis involving identification
of the microdomain intersections (step 1), and then evaluating
the angular rotation of bacterial cells around this intersection

Frontiers in Physics | www.frontiersin.org 4 June 2020 | Volume 8 | Article 184111

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sengupta Topological Feedback in Microbial Systems

FIGURE 2 | Topological feedback in microbe-matrix ensemble. Close packing of microbes with anisotropic shape trigger spontaneous formation of topological

defects. (A) Time lapse snapshots of a growing bacterial colony of non-motile E. coli strain (NCM 3722 delta-motA), where G refers to the generation time (i.e., the

number of cell doubling events). Here the cells divide every ∼45min. As the colony expands, topological defects emerge spontaneously, either at the periphery or

within the bulk of the colony. The defects nucleate at the intersection of 3 or more distinctly oriented microdomains, which are indicated here by (+) and (•) signs, for

+1/2 integer and −1/2 integer topological strengths, respectively. (B) The total number of topological defects (sum of +1/2 and −1/2 integer defects) increases close

to exponentially with time (represented here by the generation number, G), and near linearly to the corresponding cell number in the colony. The corresponding

bacterial cell numbers are plotted on a log scale, in the inset. (C) As the cells keep dividing, the growth-induced mechanical stresses reorganize the topological

defects within the colony, triggering active cell flows within the colony, revealing a patchy flow landscape with counter-rotating vortical regions. The relative strength of

the active flows is indicated by the heat map scale bar. (D) The local active flow field, with the arrow-heads indicating the direction of the emergent flow, color coded

according to the flow speed. Stronger flows are observed in regions with higher density of topological defects. (E) Topological defects overlaying active flow field

couple with and the surrounding matrix (F). The degree of order in the surrounding matrix, shown here for four distinct cases (clockwise)—nematic (N), cholesteric (C),

and lyotropic liquid crystal materials (L), and a complex anisotropic substrate with topographical features (liquid crystal elastomers, T)—underpin the strength of the

topological coupling. Stronger microbe-matrix coupling leads to higher feedback stability. Topological defect coupling, in combination with the growth induced

mechanical stresses, introduce a novel biomechanical framework to analyze microbial physiology and behavior, both of which could be potentially tuned by the

topology of the local micro-environment.
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over a physical rotation of 2π around the same point (step
2). Figures 2A,B, respectively, track the nucleation and the
number of topological defects emerging in an expanding bacterial
colony over multiple generations (indicated by G). Using time
lapse imaging technique (imaging the colony at regular time
intervals), the growth rate and dynamics of the defects can
be studied over multiple generations. The total number of
topological defects (sum of +1/2 and −1/2 integer defects)
increases non-linearly over time, with a rate proportionate to
the exponential growth of the colony (shown in the inset of
Figure 2B).

The constellation of topological defects and their dynamics
within colonies of different bacterial morphologies have been
described as two and three dimensional active nematic systems
[51, 53–55]. Theoretically, the shape of growing bacterial
colonies was explained using continuum approach wherein
cells were treated as active gel growing in an isotropic liquid
[53]. Friction, between cells and with the underlying substrate,
was found to be a key determinant of the defect dynamics,
which ultimately regulated the colony morphology. Growth of
bacterial monolayers under soft agarose surfaces demonstrated
that topological defects were created at a constant rate, with
the motility of +1/2 defects biased toward the colony periphery
[54]. More recently, studies on bacterial monolayers were
extended to analyze multilayer morphologies, capturing the
early developmental stages of bacterial biofilms [51, 55, 56].
Analytical modeling and numerical simulations have revealed
that the transition from mono to multilayered morphology
(in bacterial colonies of rod-shaped cells) is triggered by
a competition between the growth-induced in-plane active
stresses and vertical restoring forces due to the cell-substrate
interactions [51]. Although the transition is localized and
mechanically deterministic for small colony sizes, asynchronous
cell division renders the process stochastic in larger colonies.
In the limit of high cell numbers, the occurrence of the first
division in the colony can be approximated as a Poisson
process, the rate of which gives the order parameter of the
transition, revealing the mixed deterministic-stochastic nature
of the process. For bacterial colonies of chain-shaped cells, the
multilayered structure emerged due to an interplay of mechanical
stress accumulation and friction, resulting in buckling and
edge instabilities [55]. The buckling sites were characterized by
nucleation of topological defects that initiated the formation of
three-dimensional sporulation points.

ACTIVE MICROBIAL FLOWS: DYNAMICS

OF TOPOLOGICAL DEFECTS

The spontaneous formation of nematic microdomains in an
expanding bacterial colony nucleates topological defects in the
local orientational field. In passive liquid crystals, the coupling
between the hydrodynamic and nematic fields determines the
dynamics of the topological defects and their influence on the
viscoelastic properties of the fluid [57]. This often leads to exotic
hydrodynamic ramifications: charge-dependent defect speeds,
low Reynolds number cavitation phenomenon and coupling

between singularities across disparate fields [58–60]. Topological
defects in active nematic systems differ fundamentally from their
passive counterparts, on the following two fronts [61]: (i) defects
in active nematic systems act as motile self-propelled particles
with their motility (speed) proportional to the activity; and
(ii) defects in active nematic systems can nucleate continuously
due to the local energy input. Consequently, the total number
of topological defects (or defect pairs) keeps increasing with
time. As defect tracking experiments have revealed [54, 62, 63],
−1/2 and +1/2 topological defects possess different intrinsic
motilities: while −1/2 defects are observed to be advected with
the expansion of the colony, the +1/2 defects have a sustained
biased motility, the direction of which is determined by the
extensile nature of the active stresses.

As the cells divide, the growth-induced active stresses
reorganize the topological defects within the colony, triggering
active vortical flows within the colony. In experiments, the local
nematic director and the position of the topological defects can be
captured using time lapse imaging. The image data are analyzed
using particle image velocimetry technique, and the emergent
flows are visualized using a heat map that captures the flow
magnitudes as shown in Figure 2C. The relative strength of the
active flow domains is indicated by the accompanying color scale.
The patchy flow landscape spatially correlates with the position
of the topological defects, following the numerical predictions
[2, 64], with the average patch size correlated with the mean
separation of the topological defects. A closer look at the flow
domains reveals the presence of counter-rotating vortical regions
(Figure 2D), that emerge due to spontaneous disruption of the
local orientational order. The regeneration and transformation of
the topological defects allows sustained elastic and hydrodynamic
interactions. In general, such flow fields can be broken down into
radial and tangential components, through continuum modeling
of the experimental data. Along the radial direction, the flow is
predominantly expansive owing to the cell growth, whereas no
net circulation is captured along the tangential direction [2].

Recent experimental and theoretical studies in a range of
living systems have shown that local order and topology can
underpin biological functions at cellular and sub-cellular scales
[35–37, 50, 65, 66]. The dynamics of phenotypic plasticity can
be analyzed in the framework of liquid crystallinity, where local
anisotropy, order, and topology underpins emergent mechanics
at population, individual and sub-cellular scales. Despite the
lasting evidence that liquid crystals are ubiquitous in, and
intrinsic to, almost all biological structures [67], their potential
role in mediating phenotypic plasticity is largely unexplored,
thus, leaving open a major gap in our efforts to understand
the physics of life. Material topology, a salient attribute of
liquid crystalline systems, goes beyond geometric shape, and
can fundamentally impact the biophysics in microbial systems
including mechanical pliability of colonies, transmission of
mechanical stresses, and transport of molecules and particles
(e.g., bacteriophages), all of which are crucial determinants of a
cell’s physiological state and fitness. A majority of current models
of biologically active systems are based on particles possessing
single, time-independent phenotypic traits: accounting for time-
dependent phenotypes, observed frequently in natural and
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synthetic microbial systems, should allow development of new
models that are not only richer in physics, but also a step closer
to realmicrobial systems.

TOPOLOGICAL FEEDBACK: CROSS-TALK

BETWEEN MICROBE AND ITS

MICRO-ENVIRONMENT

Microbes inhabit highly diverse ecosystems where periodic and
stochastic variations in the environmental parameters determine
cellular fitness, survival, and succession. Light availability,
ambient temperature, fluid flow, and material compliance are
typical abiotic factors that define the conditions of microbial
environments (or the matrix). Unlike laboratory settings, where
environmental factors are well-defined, controllable and tractable
over time, natural parameters seldom represent steady state
conditions. To bring out the functional role of active matter
physics in microbial ecology, microorganisms need to be studied
in relation to their environments, accounting for the spatial
and temporal dynamics of the matrix attributes. From a
biophysical standpoint, a vast majority of microbial matrices is
composed of biopolymers, amphiphilic lipids, cytoskeletal and
muscle proteins, collagens and proteoglycans, and liquid crystal
phases (primarily, lyotropic, or cholesteric phases) [68]. These
building blocks for microbial matrices are inherently anisotropic,
possessing long-range order with concomitant fluidity. The
structured, out-of-equilibrium settings, combined with the
inherent fluidity, render them akin to liquid crystal materials.
More generally, variations in the environmental parameters
can trigger topological transformations in the microbial matrix
itself, thus initiating a topological feedback—an active cross-
talk of underlying topological features of the microbial matter
and the micro-environment. Conceptually, the framework for
topological feedback was proposed recently in nematic micro-
flows, where singularities across different fields interacted in a
coexisting setting [59]. Similar dynamics is expected to be at play
in microbial ecosystems, wherein topological singularities are
coupled across the microbial system and its surrounding matrix,
leading to feedbacks that could regulate microbial behavior
and physiology.

Recent experiments along this line have been conducted
with motile bacteria dispersed in liquid crystalline medium
[69, 70]. The results have demonstrated that microbial activity
(motility in this case) couples with the topology of the local
environment, ultimately biasing microbial migration. Depending
upon the local topological characteristics, the cells were found
to accumulate in the vicinity of +1/2 topological defects,
and escape regions of topological −1/2 defect. The ability to
regulate bacterial motion by imposing topological constraints
in the surrounding environment offers a novel route to trap
or transport natural and synthetic swimmers in anisotropic
liquids. Consequently, patterns of topological defects could be
further designed to tune the emergent order of surface-associated
bacterial colonies or of dense populations of motile swimmers, to
give rise to a novel class of active matter system.

Beyond the exciting premise of engineering model active
matter systems that can be tuned by matrix topology, or
hydrodynamics or both, the coupling between microbial activity
and matrix properties can have more fundamental implications.
The dynamic feedback between the material and microbes
can regulate the behavior and physiology of microbes in a
population or community, offering fitness benefits based on
microbial phenotypes. As depicted in Figures 2E,F preliminary
results by the author [71] indicate that the organization of
topological defects in the surrounding matrix influences the
spatial and temporal dynamics of the topological defects in
the microbial colony. Since a growing colony of non-motile
bacteria spontaneously forms a network of topological defects,
the dynamics and organization of the defects is modified by
the constraints posed by the surrounding matrix. Dynamic
landscapes of topological defects in a microbial colony can
cross-talk with the network of topological defects—imposed or
spontaneously formed—in the surrounding matrix, influencing
the active cell flow properties and molecular transport regimes. A
number of liquid crystalline materials can be used as potential
testbeds for microbe-matrix interaction studies, which when
combined with micro-fabricated templating, could provide a rich
diversity of topological and topographical landscapes on which
microbial dynamics can be studied (Figure 2F).

CONCLUSIONS AND PROSPECTS

The advent of cross-disciplinary multi-scale experimental
approaches has enabled simultaneous characterization of
microbial behavior, physiology and their habitats spanning
multiple length and time scales. We are able to investigate
and analyze living materials undergoing a major makeover—
thanks to the physics of liquid crystals—that has propelled
a growing exploration of topology-mediated physics in both
fundamental studies and potential applications aimed at tailoring
material attributes down to the molecular scale. Our ability to
zoom into the micro-scale dynamics will help reveal how
microbial environment—both structural and topological—shape
the non-equilibrium dynamics, and over longer timescales,
equilibrium microbial landscapes for single species or microbial
consortia. Crucially, in a converse setting, we are on the verge
of uncovering if (and how) micro-scale structural attributes
in a given matrix—both topological and topographical—
mediate microbial phenotypes, physiology, and population
fitness. A further boost in this direction could be provided by
incorporating machine learning approaches to study microbe-
material interfaces, including deep neural networks for feature
recognition and tracking; or recurrent nets and random forests
for analysis of time series. As highlighted in a recent Review [72],
the promise and prospects of machine learning in active matter
research is still in its infancy, however there is a growing interest
in exploring this avenue, which has proved valuable in a number
of other areas of research. By looking at the ensemble of microbes
and their surrounding matrix, active topological feedback can be
revealed, with potentially far-reaching implication in the fields of
medical, food, and environmental biotechnology. Taken together,
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the topological framework discussed here represents a rich and
dynamic parameter space for material-microbe interactions, still
awaiting exploration.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

AS conceptualized the research, conducted experiments,
analyzed the data, and wrote the paper.

FUNDING

This work was supported by the ATTRACT Investigator Grant
(A17/MS/11572821/MBRACE) of the Luxembourg National
Research Fund.

ACKNOWLEDGMENTS

AS was grateful for the valuable discussions with L. Giomi, J. M.
Yeomans, M. G. Mazza, W. C. K. Poon, M. M. Telo da Gama, F.
Cichos, K. Kroy, C. Wagner, N. Araújo, J. Najafi, M. Ackermann,
K. Drescher, J. Dunkel, and members of the Physics of Living
Matter Group, Luxembourg.

REFERENCES

1. Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their

migration strategy in response to turbulent cues. Nature. (2017) 543:555–

8. doi: 10.1038/nature21415

2. You Z, Pearce DJG, Sengupta A, Giomi L. Geometry and mechanics

of microdomains in growing bacterial colonies. Phys Rev X. (2018)

8:031065. doi: 10.1103/PhysRevX.8.031065

3. Jin Q, Scherp P, Heimann K, Hasenstein KH. Auxin and

cytoskeletal organization in algae. Cell Biol Int. (2008) 32:542–

5. doi: 10.1016/j.cellbi.2007.11.005

4. Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al.

Fundamentals of microbial community resistance and resilience. Front

Microbiol. (2012) 3:417. doi: 10.3389/fmicb.2012.00417

5. Bengtsson-Palme J, Kristiansson E, Joakim Larsson DG. Environmental

factors influencing the development and spread of antibiotic resistance. FEMS

Microbiol Rev. (2018) 42:68–80. doi: 10.1093/femsre/fux053

6. Pasteur L, Seances Nouvelles CR. Experiences pour démontrer que le germe

de la levure qui fait le vin provient de 1’extérieur des grains de raisin. Acad Sci

Paris. (1872) 75:781.

7. Hungate RE. Evolution of a microbial ecologist. Ann Rev Microbiol. (1979)

33:1–20. doi: 10.1146/annurev.mi.33.100179.000245

8. Adler A, Dücker E. When pasteurian science went to sea: the birth of marine

microbiology. J His Biol. (2018) 51:107–33. doi: 10.1007/s10739-017-9477-8

9. De Wit R, Bouvier T. Everything is everywhere, but, the environment selects’

what did Baas Becking and Beijerinck really say? Environ Microbiol. (2006)

8:755–8. doi: 10.1111/j.1462-2920.2006.01017.x

10. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The

NIH human microbiome project: NIH HMP working group. Genome Res.

(2009) 19:2317–23. doi: 10.1101/gr.096651.109

11. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI.

The human microbiome project: exploring the microbial part of ourselves

in a changing world. Nature. (2007) 449:804–10. doi: 10.1038/nature

06244

12. Mezzenga R, Schurtenberger P, Burbidge A, Michel M. Understanding foods

as soft materials. Nat Mat. (2005) 4:729–40. doi: 10.1038/nmat1496

13. Jansson JK. Soil microbiomes and climate change. Nat Rev Microbiol. (2019)

18:35–46. doi: 10.1038/s41579-019-0265-7

14. Kim Y-K, Noh JH, Nayani K, Abbott NL. Soft matter from liquid crystals. Soft

Matter. (2019) 15:6913–29. doi: 10.1039/C9SM01424A

15. Ramanana R, Kim B-H, Cho D-H, Kim H-S. Algae-bacteria interactions:

evolution, ecology and emerging applications. Biotech Adv. (2016) 34:14–

29. doi: 10.1016/j.biotechadv.2015.12.003

16. Sommer T, Danza F, Berg J, Sengupta A, Constantinescu G, Tokyay T,

et al. Bacteria induced mixing in natural waters. Geophys Res Lett. (2017)

44:9424–32. doi: 10.1002/2017GL074868

17. Tshikantwa TS. Ullah MW, He F, Yang G. Current trends and potential

applications of microbial interactions for human welfare. Front Microbiol.

(2018) 9:1156. doi: 10.3389/fmicb.2018.01156

18. Lederberg J. Ome sweet ’omics-a genealogical treasury of words. Scientist.

(2001) 15:8.

19. Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G.

Active particles in complex and crowded environments. Rev Mod Phys. (2016)

88:045006-1–50. doi: 10.1103/RevModPhys.88.045006

20. Fodor E, Marchetti C. The statistical physics of active matter: from self-

catalytic colloids to living cells. Physica A Stat Mech App. (2018) 504:106–

20. doi: 10.1016/j.physa.2017.12.137

21. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao

M, et al. Hydrodynamics of soft active matter. Rev Mod Phys. (2013)

85:114320. doi: 10.1103/RevModPhys.85.1143

22. Cates ME, Tailleur J. Motility-induced phase separation. Ann Rev Cond Matt

Phys. (2015) 6:219–44. doi: 10.1146/annurev-conmatphys-031214-014710

23. Klamser JU. Kapfer SC, Krauth W. Thermodynamic phases

in two-dimensional active matter. Nat Commun. (2018)

9:5045. doi: 10.1038/s41467-018-07491-5

24. Lauga E. Bacterial hydrodynamics. Ann Rev Fluid Mech. (2016) 48:105–

30. doi: 10.1146/annurev-fluid-122414-034606

25. Coelho RCV, Araújo NAM, Telo da Gama MM. Propagation of active

nematic-isotropic interfaces on substrates. Soft Matter. (2020) 16:4256–

66. doi: 10.1039/C9SM02306B

26. Patteson AE, Gopinath A, Arratia PE. The propagation of active-

passive interfaces in bacterial swarms. Nat Commun. (2018)

9:5373. doi: 10.1038/s41467-018-07781-y

27. Xu H, Dauparas J, Das D, Lauga E, Wu Y. Self-organization of swimmers

drives long-range fluid transport in bacterial colonies. Nat Commun. (2019)

10:1792. doi: 10.1038/s41467-019-09818-2

28. Riley EE, Lauga E. Enhanced active swimming in viscoelastic fluids. Europhys

Lett. (2014) 108:34003. doi: 10.1209/0295-5075/108/34003

29. Zöttl A, Yeomans JM. Enhanced bacterial swimming speeds in

macromolecular polymer solutions. Nat Phys. (2019) 15:554–

8. doi: 10.1038/s41567-019-0454-3

30. Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G. Enhanced propagation

of motile bacteria on surfaces due to forward scattering. Nat Commun. (2019)

10:4110. doi: 10.1038/s41467-019-12010-1

31. Kranz WT, Gelimson A, Zhao K, Wong GCL, Golestanian R. Effective

dynamics of microorganisms that interact with their own trail. Phys Rev Lett.

(2016) 117:038101. doi: 10.1103/PhysRevLett.117.038101

32. Sackmann E. Activities and future challenges of soft matter and biological

physics education. Soft Matter. (2013) 9:5512–5. doi: 10.1039/c3sm90026f

33. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W,

Dakos V, et al. Anticipating critical transitions. Science. (2012)

338:344–8. doi: 10.1126/science.1225244
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