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Organisms are equipped with value systems that signal the salience of environmental cues  to 
their nervous system, causing a change in the nervous system that results in modification of 
their behavior. These systems are necessary for an organism to adapt its behavior when  an 
important environmental event occurs. A value system constitutes a basic assumption of 
what is good and bad for an agent. These value systems have been effectively used in robotic 
systems to shape behavior. For example, many robots have used models of the dopaminergic 
system to reinforce behavior that leads to rewards. Other modulatory systems that shape 
behavior are acetylcholine’s effect on attention, norepinephrine’s effect on vigilance, and 
serotonin’s effect on impulsiveness, mood, and risk. Moreover, hormonal systems such as 
oxytocin and its effect on trust constitute as a value system. This book presents current 
research involving neurobiologically inspired robots whose behavior is: 1) Shaped by value 
and reward learning, 2) adapted through interaction with the environment, and 3) shaped by 
extracting value from the environment.
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Organisms are equipped with value systems that signal the
salience of environmental cues to their nervous system, causing a
change in the nervous system that results in modification of their
behavior. These systems are necessary for an organism to adapt
its behavior when an important environmental event occurs. A
value system constitutes a basic assumption of what is good and
bad for an agent. These value systems have been effectively used
in robotic systems to shape behavior. For example, many robots
have used models of the dopaminergic system to reinforce behav-
ior that leads to rewards. Other modulatory systems that shape
behavior are acetylcholine’s effect on attention, norepinephrine’s
effect on vigilance, and serotonin’s effect on impulsiveness, mood,
and risk. Moreover, hormonal systems such as oxytocin and its
effect on trust constitute as a value system. A recent Research
Topic in Frontiers of Neurorobotics explored value and reward
based learning. The topic comprised of nine papers on research
involving neurobiologically inspired robots whose behavior was
shaped by value and reward learning, adapted through interac-
tion with the environment, or shaped by extracting value from
the environment.

Value systems are often linked to reward systems in neurobiol-
ogy and in modeling. For example, Jayet Bray and her colleagues
developed a neurorobotic system that learned to categorize the
valence of speech through positive verbal encouragement, much
like a baby would (Jayet Bray et al., 2013). Their virtual robot,
which interacted with a human partner, was controlled by a large-
scale spiking neuron model of the visual cortex, premotor cortex,
and reward system. An important issue in both biological and
artificial reward systems is the credit assignment problem that
is, how can a distal cue be linked to a reward. In other words,
how can you extract the stimulus that predicts a future reward
from all the noisy stimuli that you are faced with? Soltoggio and
colleagues introduce the principle of rare correlations to resolve
this issue (Soltosggio et al., 2013). By using Rarely Correlating
Hebbian Plasticity, they demonstrated classical and operant con-
ditioning in a set of human-robot experiments with the iCub
robot.

The notion of value and reward has often been formalized in
reinforcement learning systems. For example, Li and colleagues
show that reinforcement learning, in the form of a dynamic actor-
critic model, can be used to tune central pattern generators in
a humanoid robot (Li et al., 2013). Through interaction with
the environment, this dynamical system developed biped loco-
motion on a NAO robot that could adapt its gaits to different

conditions. Elfwing and colleagues introduced a scaled version
of free-energy reinforcement learning (FERL) and applied it to
visual recognition and navigation tasks (Elfwing et al., 2013). This
novel algorithm was shown to be significantly better than stan-
dard FERL and feedforward neural network RL. Another related
method, Linearly solvable Markov Decision Process (LMDP) has
been shown to have advantages over RL in optimal control pol-
icy (Kinjo et al., 2013). Kinjo and colleagues demonstrated the
power of LMDP for robot control by applying the method to
a pole balancing task, and a visually guided navigation prob-
lem using their Spring Dog robot which has six degrees-of-
freedom.

Value does need not be reward-based; curiosity, harm, nov-
elty, and uncertainty can all carry a value signal. For example,
in a biomimetic model of the cortex, basal ganglia and phasic
dopamine, Bolado-Gomez and colleagues (Bolado-Gomez and
Gurney, 2013) showed that intrinsically motivated operant learn-
ing (i.e., action discovery) could replicate rodent experiments,
in a virtual robot. In this case, phasic dopaminergic neuromod-
ulation carried a novelty salience signal, rather than the more
conventional reward signal. In a model called CURIOUSity-
DRiven, Modular, Incremental Slow Feature Analysis (Curious
Dr. MISFA), Luciw and colleagues showed that curiosity could
shape the behavior of an iCub robot in a multi-context envi-
ronment (Luciw et al., 2013). Their model was inspired by
cortical regions of the brain involved in unsupervised learn-
ing, as well as neuromodulatory systems responsible for pro-
viding intrinsic rewards through dopamine and regulating levels
of attention through norepinephrine. Different neuromodula-
tory systems in the brain may be related to different aspects of
value (Krichmar, 2013). In a model of multiple neuromodu-
latory systems, Krichmar showed that interactions between the
dopaminergic (reward), serotoninergic (harm aversion), and the
cholinergic/noradrenergic (novelty) systems could lead to inter-
esting behavioral control in an autonomous robot. Finally, in an
interesting position paper, Friston, Adams, and Montague suggest
that value is evidence, specifically log Bayesian evidence (Friston
et al., 2012). They propose that reward or cost functions that
underlie value in conventional models of optimal control can be
cast as prior beliefs about future states, which is simply accu-
mulation of evidence through Bayesian updating of posterior
beliefs.

As can be gleaned from reading the papers in the Research
Topic, as well as the empirical evidence and studies they are built
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on, Value and Reward Based Learning is an active and broad area
of research. The application to neurorobotics is important for
several reasons: (1) It provides an embodied platform for testing
hypotheses regarding the neural correlates of value and reward,

(2) it provides a means to test more theoretical hypotheses on
the acquisition of value and its function for biological and artifi-
cial systems, and (3) it may lead to the development of improved
learning systems in robots and other autonomous agents.
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During development, animals can spontaneously discover action-outcome pairings
enabling subsequent achievement of their goals. We present a biologically plausible
embodied model addressing key aspects of this process. The biomimetic model core
comprises the basal ganglia and its loops through cortex and thalamus. We incorporate
reinforcement learning (RL) with phasic dopamine supplying a sensory prediction error,
signalling “surprising” outcomes. Phasic dopamine is used in a cortico-striatal learning
rule which is consistent with recent data. We also hypothesized that objects associated
with surprising outcomes acquire “novelty salience” contingent on the predicability of the
outcome. To test this idea we used a simple model of prediction governing the dynamics
of novelty salience and phasic dopamine. The task of the virtual robotic agent mimicked an
in vivo counterpart (Gancarz et al., 2011) and involved interaction with a target object which
caused a light flash, or a control object which did not. Learning took place according to
two schedules. In one, the phasic outcome was delivered after interaction with the target
in an unpredictable way which emulated the in vivo protocol. Without novelty salience,
the model was unable to account for the experimental data. In the other schedule, the
phasic outcome was reliably delivered and the agent showed a rapid increase in the
number of interactions with the target which then decreased over subsequent sessions.
We argue this is precisely the kind of change in behavior required to repeatedly present
representations of context, action and outcome, to neural networks responsible for
learning action-outcome contingency. The model also showed cortico-striatal plasticity
consistent with learning a new action in basal ganglia. We conclude that action learning is
underpinned by a complex interplay of plasticity and stimulus salience, and that our model
contains many of the elements for biological action discovery to take place.

Keywords: phasic dopamine, basal ganglia, reinforcement learning, synaptic plasticity, intrinsic motivation, action

selection, operant behavior

1. INTRODUCTION
How can animals acquire knowledge of their potential agency in
the world—that is, a repertoire of actions enabling the achieve-
ment of their goals? Moreover, how can this be done sponta-
neously without the animal being instructed, or without having
some overt, primary reward assigned to successful learning? In
this case we talk of action discovery, and call the learning intrin-
sically motivated (Oudeyer and Kaplan, 2007). It is typical of the
kind of action learning found in the young as they discover their
ability to influence their environment (Ryan and Deci, 2000). We
argue that an understanding of the biological solution to these
problems will lay foundations for a robust and extensible solution
to skill acquisition in artificial agents like robots. We now outline
the theoretical, behavioral and neuroscientific background to the
paper.

The relation between actions and outcomes is not a given—the
animal must use reinforcement learning (RL) to acquire inter-
nal models of action-outcome contingencies associating context,
action and outcome, and be able to deploy the relevant action
given a context and a desired outcome or goal. Consider, for
example, the act of switching on a particular room light. There

is a forward, prediction model: “if I am in front of this switch and
I press it, the light in the corner will come on.” There is also an
inverse model: “if I need the light in the corner to come on, I need
to press this switch here” (Gurney et al., 2013). The framework for
action-outcome acquisition we propose is shown in Figure 1A.

We suppose that the internal models of action-outcome are
encoded in associative neural networks. In order for these associa-
tions to be learned (possibly via some kind of Hebbian plasticity),
representations of the motor action, sensory context, and the sen-
sory outcome must be repeatedly activated in the relevant neural
systems. This requires a transient change in the action selection
propensities of the agent—its so-called selection policy—so that
the to-be-learned action occurs more often than other competing
actions. The repeated presentation of the representation of out-
come is taken care of by physics; if the switch is pressed the agent
doesn’t have to do any more work to make the light come on.

The process of repetition bias in policy must continue until
the new action-outcome has been learned, and then cease. We
therefore require that the agent’s policy is modulated by the pre-
dictions being developed in the forward model; as the outcome
is predicted, the repetition bias must be reduced and, ultimately,
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FIGURE 1 | (A) Scheme for learning action-outcome associations—see
text for details. (B) Loops through basal ganglia, thalamus, and cortex
performing action selection in the animal brain. Two competing action
channels are shown. The channel on the left encoding action 1 has a
higher salience than that for channel 2. It has “won” the competition

for behavioral expression in basal ganglia which has therefore released
inhibition on its thalamic channel target, thereby allowing the
corresponding thalamo-cortical loop to build up activity. Blue/red lines
show inhibition/excitation, respectively and the width of lines encodes
signal strength.

removed. In general, we propose that the intrinsically motivated
behavior is driven by novelty—the agent engages with the situa-
tion because the target object (e.g., the switch) is novel or that the
“surprise” of the outcome on first encountering the light cause
some plastic change in the policy engine.

In this paper, one of our aims is to understand the dynamics
of repetition bias. To proceed, we therefore turn to the machinery
for solving the problem of action selection, and policy encoding in
the animal brain. We and others (Mink and Thach, 1993; Doya,
1999; Redgrave et al., 1999; Houk et al., 2007) have argued that
a set of subcortical nuclei—the basal ganglia—are well placed to
help solve this problem, and act as the policy engine or “actor” in
the vertebrate brain.

The basal ganglia are connected in closed looped circuits
with cortex, via thalamus (Figure 1B). Their outputs are toni-
cally active and inhibitory, and selection is achieved by selectively
releasing inhibition on cortico-thalamic targets that encode spe-
cific actions (Deniau and Chevalier, 1985). We refer to the neural
representation of an action, and its anatomical instantiation, as
it runs through these loops as an action channel (Redgrave et al.,
1999). Release of inhibition on a thalamic channel allows activ-
ity in its corresponding thalamo-cortical loop to build up and
eventually reach a threshold which allows behavioral expression
of the action. More details of this architecture are given in the
section 2.

Within this framework we can identify two components of
a successfully established action encoding. First, within cortex,
there must be the correct specific patterning of contextual (sen-
sory, cognitive, and possibly homeostatic) and preparatory motor
features. We refer to this as the action request and the overall
level of activity in the action request is supposed to signal its
urgency or salience. Channels within basal ganglia are subject to

competitive processes therein and action requests with the highest
salience are those that are selected. Clearly, one mechanism then
for inducing repetition bias would be to enhance the salience of
requests for the action to be discovered (Redgrave et al., 2011).
A second component of action encoding occurs at the level of
the main basal ganglia input nucleus—the striatum. Here, the
cortical action request must selectively activate a subset of the
striatal projection neurons, or so-called medium spiny neurons
(MSNs). In this way, a striatal channel is established which can
“listen” to the action request (Redgrave et al., 2011). For a neuron
computing a weighted sum of inputs, this occurs by a process of
matching the pattern of synaptic efficiencies to the strengths of
action request components, resulting in a proportional encoding
of salience. Evidence for such an encoding of salience in striatum
has recently been provided by human fMRI studies (Zink et al.,
2006).

To establish channel selectivity in MSNs requires cortico-
striatal plasticity whose dynamics depend on the animal’s behav-
ior and resulting environmental feedback. The theory of RL
encompasses exactly this scenario (Sutton and Barto, 1998) and so
it is not surprising that cortico-striatal plasticity has been the sub-
ject of study using the classic algorithms of RL (such as temporal
difference learning) with reinforcement contingent on biologi-
cal reward. The reinforcement signal in this scenario is supposed
to be supplied by short-latency phasic dopamine bursts which
encode a reward prediction error (Schultz et al., 1997).

In contrast to this, we have recently argued that such sig-
nals are unlikely to be associated with primary reward as such,
because they occur too soon to be the result of a relatively lengthy
process of explicit evaluation in which the stimulus is assigned
rewarding, neutral or aversive status. Instead, we propose that
phasic dopamine primarily encodes a sensory prediction error
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which may be used to guide acquisition of goal-directed actions
(Redgrave and Gurney, 2006; Redgrave et al., 2008).

This interpretation does not preclude a role for reward in mod-
ulating the phasic dopamine signal, and these issues are explored
further in section 4.3 in the “Discussion.” However, under the sen-
sory prediction error hypothesis, action acquisition is supposed
to take place with the following sequence of events. An animal
performs an action which results in an unexpected outcome. The
phasic component of the outcome (not requiring computation
of value) causes midbrain dopamine neurons to fire (Comoli
et al., 2003) eliciting a phasic release of dopamine in striatum
(the mechanistic substrate for this is described in more detail
in section 2.5.4). This then acts to induce cortico-striatal plas-
ticity associated with recently active action-based representations
in cortex, and corresponding striatal responses. If repetition bias
is operative, this sequence of events is repeated and MSNs in
striatum can become selectively responsive to the action request
which is required to elicit the environmental event. It is also pos-
sible that this plasticity can itself contribute to repetition bias,
as each increment in the match between the patterns of synap-
tic strengths and action request should make the selection of the
action more likely. However, one of the questions we address here
is the extent to which this can be wholly responsible for transient
policy changes seen in vivo. Fortunately there is a recent behav-
ioral study (Gancarz et al., 2011) which provides data we can use
to constrain the possibilities here.

At the neuronal level, electrophysiological data from studies in
cortico-striatal plasticity have provided a complex and often con-
fusing picture. Both long term depression (LTD) and long term
potentiation (LTP) have been observed at glutamatergic (excita-
tory) cortical synapses on MSNs, and their expression is depen-
dent on dopamine (Reynolds and Wickens, 2002; Calabresi et al.,
2007). Further, this dependence is linked to specific dopamine
receptor types in different populations of MSNs (Pawlak and
Kerr, 2008) and has spike timing dependent characteristics (Fino
et al., 2005; Pawlak and Kerr, 2008). This phenomenological
complexity has hampered the development of a quantitative func-
tional understanding of cortico-striatal plasticity. In particular,
given the limitations of much in vitro data with regards to the class
of MSNs based on their dopamine receptors, we would expect
this data to display mean characteristics rather than those of one
class alone. This is then necessarily reflected in models (Thivierge
et al., 2007) which may account for spike timing and dopamin-
ergic effects, but rely on data which is agnostic about the MSN
classification.

Recently this impasse has been overcome in a study in stri-
atal slices by Shen et al. (2008), in which the different classes of
MSN could be reliably identified. In addition, this study deployed
a variety of techniques to investigate the effects of dopamine
depletion, thereby providing data at different levels of intrin-
sic dopamine. This study formed the basis of our recent spiking
model of cortico-striatal plasticity (Gurney et al., 2009) which we
adapt here for rate-coded neurons.

Within the framework described above, we seek to address in
this study, the following questions about action discovery. Having
proposed that action-outcome discovery depends on a repetition
bias in selection policy, what are the mechanisms responsible for

this? In particular what are the relative roles for enhanced corti-
cal salience (“louder action request”), and better cortico-striatal
transmission (“listening to the request”) induced by dopamine
modulated cortico-striatal plasticity? If increased cortical salience
is required, what is its origin? How should salience and plasticity
be moderated by the development of the prediction model? Is any
cortico-striatal plasticity observed in the model consistent with
the requirements of long term afferent/synaptic-strength pattern
matching? To ensure a biologically plausible solution, we take
advantage of recent behavioral data (Gancarz et al., 2011), made
possible with our embodied (robotic) approach, and recent in
vitro data (Shen et al., 2008) on cortico-striatal plasticity.

2. MATERIALS AND METHODS
2.1. In vivo EXPERIMENTAL COMPARISON
The robot task mimics an in vivo counterpart (Gancarz et al.,
2011) in which rats spontaneously poke their snouts into one of
two poke-holes in a small operant chamber (Figure 2A). Each
experiment was conducted over 16 days with the rat exposed
to a single 30 min session in the operant chamber each day.
Critically, the animals were not food or liquid deprived, and were
therefore not motivated by any extrinsic reward. The ambient
light condition was complete darkness, and the rats were free
to move around the chamber. In a first habituation phase (the
first 6 days), there were no consequences to the animal making
a snout entry into either poke hole. In a second response con-
tingent phase (subsequent 10 days) one of the snout holes was
designated the “active hole” and a snout entry here could cause
a phasic light stimulus to flash briefly (mechanistically, this was
achieved with two lights, one near the snout holes and one at
the back of the chamber). This light flash was the only source of
behavioral reinforcement and its occurrence was under control
of a variable interval (VI) schedule with mean of 2 min. That is,
there was a random interval (with mean 2 min) between potential
snout-entry/light-flash pairings; premature snout entry into the
active hole before completion of this interval caused no light flash.
Snout entry into the active hole was designated an active response
(with or without any consequent light flash) and entry into the
other hole, an inactive response. The labeling of the snout holes
in the response contingent phase is carried across to the habitu-
ation phase, although here it constitutes an arbitrary distinction.
Thus, “active responses” in the habituation phase are simply those
responses directed to the snout hole which becomes active during
response contingency.

Relevant results of this experiment are shown in Figure 3. In
that experiment, animals were divided in “low and high respon-
ders” according to a pre-experimental assay of overall levels of
motoric activity (Gancarz et al., 2011). Here, we have averaged
the data across the two groups. Figure 3A shows that there is no
significant difference in responding to the two snout holes dur-
ing the habituation phase. However, there is a clear difference
during the response contingent phase; the animals spent more
time engaging with the active snout hole. Other trends indicated
are a gradual development, and subsequent decline, in the pref-
erence for the active hole during the response contingent phase.
Figure 3B shows the mean behavior with each session during the
response continent phase. There is a clear initial high number of
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FIGURE 2 | In vivo experimental paradigm of Gancarz et al. (2011)

(panel A) and our embodied in silico counterpart (panel B).

(A) Shows the small test chamber used with rats undergoing
instrumental learning. One side of the chamber has two poke holes with
a light above them. Rat snout entry into the “active” poke hole may
cause the two lights to flash and the active hole may be either one (for

a particular rat). (B) Shows the virtual world created as a counterpart to
that in (A). A simulated Khepera I robot replaces the rat, and snout
holes are replaced by colored blocks. Only the red block is ever
designated the active one, and the white block corresponds to the
inactive poke hole. There is a point-light located at the top of the red
block which may flash if the robot bumps into the red block.

active and inactive responses, and a subsequent decline in both
during the session.

2.1.1. Fixed-ratio variant
While the VI schedule provides valuable data to constrain the
model, the action discovery paradigm, as encountered etholog-
ically, is likely to be governed by less random reinforcement. In
particular, if reinforcement is reliably given at every successful
interaction with the target object, we have fixed-ratio (FR) sched-
ule with ratio one (FR1). We therefore also ran simulations with
this schedule.

At the time of completing this work, the corresponding biolog-
ical data was not yet available and so the behavioral outcomes of
the simulated agent became predictions for a similar in vivo exper-
iment. However, during revision of this paper, we became aware
that the laboratory responsible for the study described above had
just published a followup which used an FR1 schedule (Lloyd
et al., 2012). Our predictions were therefore immediately put to
the test. The relevant data for the FR1 schedule from the study
in (Lloyd et al., 2012) are shown in Figures 3C,D. Only active
responses are shown in order to facilitate a comparison with the
VI data described above (inactive responses are similar to that for
the VI case). For FR1 training, the peak number of responses in
the response contingent phase occurs in the first day of that phase,
and shows a rapid decline thereafter (Figure 3C). In contrast, the
peak response for VI training occurs after the first day of response
contingency and shows a more gradual decline. Within a session,
the FR1 schedule shows a steeper decline than its VI counterpart
(Figure 3D).

2.2. SIMULATED ROBOT WORLD
We used simulation of a small autonomous robot in an arena
with stimulus objects to mimic the in vivo experiment of Gancarz
et al. (2011)—see Figure 2B. The robot was the K-Team Khepera

(Mondada et al., 1999) and simulation used the Webots (v6.3.2)
software environment (Cyberbotics, 2010a,b). The arena con-
sisted of a tiled ground-plane (60 cm × 60 cm) with blue walls
(two each of 10 cm and 20 cm height). The stimuli comprised two
static blocks (5.9 cm by 9.8 cm by 10 cm) colored red and white,
that played the role of the poke holes. Unlike the snout holes in
the experiment with rats, the blocks were spatially well separated
(opposite sides of the arena). For the rats, their use of local tac-
tile (whisker-based), rather than wide-field visual information,
means that the snout holes are well separated in the sensory space
of the animal. This is what we achieve in the visual modality
using the arrangement in Figure 2B. A light source that can flash
briefly was located above the red block (there was no need for
additional, rear-mounted lighting to cause sensor response in the
Khepera). This light is triggered by the robot bumping into the
red block (albeit possibly under VI-schedule control). The red
block is therefore a surrogate for the active snout hole in the
in vivo experiment of Gancarz et al. (2011).

The robot has a cylindrical body shape with height 3 cm and
diameter 5.6 cm. Each wheel can be separately controlled to go
forwards or backwards. There are eight infrared sensors in a
radial configuration that were used for proximity detection in an
“exploratory” behavior which also required avoiding contact with
objects. The two front sensors were also used to detect the light
flash. We used an RGB camera with 64(wide) × 1(high) pixel
array mounted on top of the Khepera’s central body to detect
the colored blocks, and a binary tactile sensor at the front to
detect bumping into objects. The supplementary material con-
tains a short video showing the actions available to the virtual
robot.

2.3. THE VIRTUAL ROBOT CONTROL ARCHITECTURE: OVERVIEW
The complete virtual embedded robot model is shown in
Figure 4. It comprises three principal components: the virtual
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FIGURE 3 | Behavioral data adapted from the in vivo studies of Gancarz

et al. (2011) (study 1) and Lloyd et al. (2012) (study 2). (A,B) For variable
interval (VI) training from study 1. (A) Shows the number of inactive and active
responses in each 2-day period (averaged over the two 30 min sessions
therein) with white and black symbols, respectively. The habituation and
response contingent phases (see text) are designated “H” and “RC,”
respectively, and the average response during the response contingent phase
is shown on the extreme right as “Avg.” (B) Shows the within-session
behavior during the response contingent phase. Results are averaged over all

10 days of this phase and means are reported for each epoch of 6 min duration
during the 30 min sessions. Error bars in both panels are the mean of the
standard errors for the low and high responding animals (as originally reported
in study 1). (C) Shows active responses (star-shaped data points) from a
fixed-ratio (FR1) schedule reported in study 2. Also shown for comparison are
the active response in (A) (black squares). Note, there were more days in the
habituation phase of study 2, and error bars in the habituation phase are not
shown. (D) Is a counterpart to (B) with FR1 data shown by stars, and the VI
data from (B), replicated for comparison (black squares).

robot—referencing its hardware, motor plant and peripheral sen-
sors; an embedding architecture, or engineered surround, and
the biomimetic core model. This partitioning scheme has been
described in our previous work (Prescott et al., 2006; Gurney,
2009; Gurney and Humphries, 2012). The idea is to sepa-
rate off the biomimetic model which is the primary subject
of study, from less biologically realistic, and somewhat “engi-
neered” components which are, nevertheless, required to produce
a complete, behaving agent. In this way, we package together
those elements of the architecture which are part of the model
proper, and which encapsulate our hypotheses about brain func-
tion, and separate them from elements which are predicated
on our hypothesis set. Thus, if we identify the cause of defi-
ciencies in behavioral outcome with issues in the embedding

architecture, we can be sure we are not falsifying hypotheses
embodied in the biomimetic core. It is not necessary for a
part of the biomimetic core to be a neural network; algorith-
mic elements are also candidates if they implement key model
functions.

The key for this approach to work is the signal interface
between surround and core. Thus, just as in modular software,
the signals must have the same interpretation for both compo-
nents either side of this interface. In our context, the embedding
architecture must supply signals to a “sensory cortical” area in the
biomimetic core that can interpret them as saliences for action
requests, as well as any internal state variables required to mod-
ulate them. Sensory indication of phasic events must be made
available to the dopamine system, and the motoric output of the
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FIGURE 4 | The virtual robot control architecture, and its interaction

with the robot and environment. The virtual Khepera robot is endowed a
range of sensors and the motor output is locomotion via a pair of wheels. The
architecture is split into embedding, and biomimetic core, components. The
embedding architecture contains three action-subsystems: two for
approaching-and-bumping into each of the red and white blocks (“interact red
block,” “interact white block”), and one (“explore”) for randomly roaming the

arena while avoiding object contact. Within each action subsystem the motor
command units are designated “motor comm.” The biomimetic core contains
a biologically plausible circuit (representing basal ganglia, and its connectivity
with cortex, thalamus, and brainstem), a phasic stimulus prediction
mechanism, a source of phasic dopamine, and the new learning rules for
basal ganglia plasticity. Other symbols and components are labeled as in the
main text.

biomimetic core must comprise a “selection signal” that can be
used to gate actions. This signal interface is precisely that shown
in Figure 4. We now go on to describe each major system in more
detail.

2.4. EMBEDDING ARCHITECTURE
The embedding architecture is based on that described by Prescott
et al. (2006). The agent is supposed to have a fixed repertoire of
behaviors or action-sequences, and the enactment of each one is
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encapsulated in an action subsystem. In the current model there
are three such behaviors:

Explore: move around the arena and avoid obstacles (blocks
and walls).
Interact with the red block: orient to the red block, approach
it, and perform a controlled “bump” into it. This latter com-
prises, in turn, the following sub-actions: bump once against
the red block, move backwards, stop, and then slowly approach
the red block again.
Interact with the white block: this is identical to its counter-
part for the red block, except actions are directed to the white
cube.

The block-interaction behaviors are surrogates for the snout
hole poking in the in vivo experiment of Gancarz et al. (2011).
The key difference in outcome between the two behaviors is
that interaction with the red block causes the light flash—
it comprises the active response—whereas interaction with the
white block has no consequences and comprises the inactive
response.

The granularity of behavior encoded in each action sub-system
is clearly quite coarse; we have already noted that they each com-
prise small action sequences. Thus, they have similarities with
the fixed action patterns (FAPs) of the ethologists (Lorenz, 1935;
Tinbergen, 1951) and the options used in hierarchical RL (Barto
et al., 2004). This is not a drawback in the current model as we
are primarily interested in the basic principles of adaptive aspects
of behavior with novel stimuli, and any consequent plasticity;
the precise semantics of each action are not important. Further,
the behaviors we encode are not as rigid as FAPs or options, as
our method of behavioral maintenance—an excitatory recurrent
connection within the motor cortex (see “Appendix”)—allows
the behaviors to be interrupted by “exploration” if this has suffi-
ciently high salience. We will revisit the issues surrounding action
granularity in the section 4.

Within each action-subsystem, the sequencing of primitive
actions into behaviors is accomplished in a motor command unit.
These units make use of sensory information to trigger various
events in the sequence. The “explore” behavior is governed by the
infra-red sensors which detect distance to objects in the robot’s
path, thereby allowing locomotion while avoiding objects. The
block-interaction behaviors use camera information to identify,
and orient to the blocks, and the bumper sensor to know when
contact has been made.

The motor output of each motor command unit is 2-vector
z = (zl, zr) whose components indicate the desired speed for each
robot wheel (left and right) to enact the current segment of
behavior. The motor command units are not neural networks but
conventional procedural code which use sensor information to
trigger the next action component in the sequence, and update
z at each time step. If the behavior in the action subsystem has
been selected by the biomimetic core, then the corresponding
speed-output vector is sent forward to be averaged with output
vectors from any other selected sub-systems. In this way, multiple
selected actions are blended together to produce a final behavior.
This forces a strong test of the action selection capability of the

biomimetic core model which must prevent over-expression of
such multiple action selection.

The selection criterion for an action subsystem i, is that the
corresponding brainstem output signal from the biomimetic core,
ybs

i should exceed some threshold φ. That is, H(ybs
i − φ) = 1,

where H() is the Heaviside function. In our simulations φ = 0.5.
The perceptual sub-system supplies sensory information for

generation of the salience of the action requests for the block
interaction behaviors. In the first instance, this is quite simple;
the perceptual subsystem detects the presence of the red/white
block in the visual field and triggers a salience for the red/white
block-interaction behavior. However, the salience of the blocks
is subject to a variety of additional processes driven by sensory
habituation and perceived novelty of the stimulus. These pro-
cesses are based on biological notions and so we reserve them
for the biomimetic core. They also depend on the status of the
block-interaction behaviors (completion of a block interaction
cause an habituation increment). Therefore, these two command
units also provide signals to an internal state monitoring unit that
indicate if their respective sequences have recently been com-
pleted. This unit also provides a representation of the motivation
to explore the arena, governing the selection of the “explore”
action sub-system. Finally, the perceptual subsystem also provides
a signal to the dopamine system about phasic events such as the
light flash.

2.5. THE BIOMIMETIC CORE
The biomimetic core comprises several functional blocks (see
Figure 4)—we now deal with each in turn.

2.5.1. Prediction of phasic stimuli
A key component in our model is the idea that the phasic outcome
of the interaction with the blocks (the light flash) is subject to
prediction via an internal model. This prediction is then used to
modify the salience of objects in the visual field at the time of the
light flash (the blocks) and also to form a sensory prediction error
which forms the basis for the phasic dopamine signal.

Prediction is believed to be a fundamental process at the heart
of perception and cognition (Bar, 2007; Bubic et al., 2010; Friston,
2010; Gurney et al., 2013) and is, in general, a complex neural pro-
cess requiring substantial model resources. However, formalizing
a phenomenological model of prediction of the phasic light flash
is straightforward if we assume that the latter is represented by
a single scalar feature yf (t) whose value is binary: a 1 signals the
detection of a light, and 0 its absence (no light flash). The pre-
diction is then a real-valued scalar between 0 and 1, where values
close to 1 or 0 are strong predictions that the light will flash on or
be absent, respectively.

To proceed further, consider the set of times {ti} when the light
flash might occur (during block-interactions), where i indexes
the block-interactions over the entire (multi-day) experiment. We
distinguish between the phasic manifestation of the prediction
y∗f (ti), at discrete time ti, and the internal latent representation

of the prediction y(∗)
f (t) which exists at all times t. The phasic

prediction is supposed to correspond to phasic neural activ-
ity, whereas its latent counterpart is encoded in the structure
(synaptic weights) of the internal model of prediction.
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The model we use is phenomenological and we use a similar
approach, based on exponential rise and decay as is used with
habituation (Marsland, 2009). Thus, if a phasic event (light flash)
occurs at ti, the prediction is increased according to the recursive
relation

y(∗)
f (ti + δt) = 1− k(1− y(∗)

f (ti)) where 0 < k < 1 (1)

This occurs within days and across day boundaries, because
we assume no day-to-day unlearning of the internal model for
prediction of phasic outcome. The definition is completed by

defining the effect of the first reinforcing event: y(∗)
f (t1 + δt) =

0.2. If, after a block-interaction, there is a non-zero prediction of
a phasic outcome which was not delivered (no light flash), then
the prediction is updated according to

y(∗)
f (ti + δt) = ky(∗)

f (ti) (2)

(both within and between days). Thus, latent prediction is con-
stant for the intervals ti < t ≤ ti+ 1. Then, when activated by
sensory cues, the model delivers the phasic prediction y∗f (ti) =
y(∗)

f (ti). For all our simulations, k = 0.95. Figure 5A shows a car-
toon of a typical sequence of events and the resulting predictions.

2.5.2. Salience generation
Salience for the block interaction behaviors is initiated by the per-
ceptual subsystem being activated by the presence of a colored
block in the field of view. This generates a nominal salience value
which is then subject to habituation, dishabituation, and possibly
a sensitization due to novelty. We refer to the nominal salience of
the colored blocks modulated by (dis)habituation as the intrin-
sic salience of the blocks. This may be augmented by a separate
novelty salience; both contributions are detailed below.

Habituation is defined as “a behavioral response decrement
that results from repeated stimulation and that does not involve
sensory adaptation/sensory fatigue or motor fatigue” (Rankin
et al., 2009). Evidence for habituation in the in vivo experiment of

FIGURE 5 | Prediction and its deployment for novelty salience and

sensory prediction error under a simple phenomenological model.

(A) The red markers indicate the presence or absence of phasic
outcome (light flash) during each interaction with the red (active) block.
The latent prediction, y(∗)

f (t), is shown as the solid line and the phasic
prediction, y∗f (ti ), by the open markers. (B) The translation of prediction
into novelty salience. (C) The time course of novelty salience

corresponding to the prediction in (A), obtained via the mapping in (B).
Open circles represent the salience perceived at each block interaction,
when the block is in view. These bouts of block-perception are longer
than the observation of the light flash, but we identify each interaction
with a point-time marker for simplicity. The continuous line is a formal
mapping of the latent prediction using Equation (3). (D) The sensory
error signal derived from (A).

Frontiers in Neurorobotics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Bolado-Gomez and Gurney Embodied model of action discovery

Gancarz et al. (2011) comes from close examination of the data in
Figure 3. There is clear evidence of a decline of inactive responses
within each session (day) of the response contingent phase. There
is also some indication of similar trends across days with in each
phase of the experiment. Thus, linear fits to the means of inac-
tive responses have a negative slope within each phase and, for
the habituation phase, this was a significant trend (Gancarz et al.,
2011). The inactive responses are least likely to be subject to any
contribution from novelty and represent (as far as possible) a
control stimulus. We therefore assume any behavioral changes
in inactive responses are a consequence of the dynamics of the
intrinsic salience of the stimuli. Thus, we incorporated salience
habituation processes, both across, and within days, resulting in
the decline of the intrinsic salience of both blocks on these two
time scales.

It might be thought that the decline within a session could be
due to a general “fatigue.” However, this can be ruled out for sev-
eral reasons. First, there is little effort in a snout poke response,
and it is part of the normal behavioral repertoire of the rat.
Second, there is ample use in behavioral studies of testing rats
for much longer than the 30 min sessions used here. Third, in
the study by Lloyd et al. (2012), animals confronted with a more
difficult (VI) learning schedule, showed more responses within
a session than those under a less demanding, fixed-ratio sched-
ule. We therefore conclude that decrements in response are due to
genuine adaptive neural processes.

Habituation is usually accompanied by a dishabituation pro-
cess whereby, presentation of alternative stimuli, or a “rest
period,” allows habituated behavioral responses to recover to pre-
viously observed levels (Groves and Thompson, 1970; Rankin
et al., 2009). These complementary processes may be modeled
using simple exponential forms (Marsland, 2009), and we used

this general approach in the following way. Thus, let S
i,j
int be

the intrinsic salience during the jth block-interaction on day i,
given the associated block is in the visual field. Within a ses-
sion, we do not update salience from moment to moment, but
rather after each complete interaction with the block. This is
consistent with recent ideas about habituation that include ref-
erence to response rate change in operant tasks (McSweeney
and Murphy, 2009; Rankin et al., 2009). Therefore at the start

of the (j+ 1)th interaction, S
i,j+ 1
int = γbS

i,j
int, with γb < 1. At

the start of the next day, there is a re-initialization Si+ 1,1
int =

γaSi,1
int, where γa < 1. Typically, as a result of this, there is

dishabituation between days (so that, if ĵ is the last interac-

tion on day i, S
i,ĵ
int < Si+ 1,1

int ). Parameters were S1,1
int = 0.45, γa =

γb = 0.95.
We now suppose there may be an additional salience contribu-

tion to the target block interaction associated with the surprising
phasic outcome (light flash). Thus, we make the hypothesis that
objects or features in the perceptual field when a surprising phasic
event occurs, acquire novelty salience by a process of “inheri-
tance” or generalization from the surprise of the simple phasic
outcome (e.g., light). This is an extension to neutral stimuli
of the observation that sensitization usually occurs during the
first few presentations of a (non-neutral) rewarding stimulus
(McSweeney and Murphy, 2009). It is also consistent with the fact

that habituation (the counterpart of sensitization) can engender
generalization to other stimuli (Rankin et al., 2009).

To quantify this idea we assume that the novelty salience is
maximum when the outcome of the interaction is least pre-
dictable or most uncertain; that is, when y∗f is at its intermediate
value of 0.5. For, at this point, there is no bias in the prediction
of the phasic stimulus occurring or being absent. We then assign
a novelty salience of zero to the “firm predictions” correspond-
ing to y∗f = ±1, and assume piecewise linearity elsewhere. This

mapping is shown in Figure 5B. Formally, if S
i,j
nov is the novelty

salience for interaction j on day i, at time ti,j,

S
i,j
nov = 0.5− |y∗f (ti,j)− 0.5| (3)

The ensuing novelty salience from the events in Figure 5A is
shown in Figure 5C. The total salience is given by

S
i,j
tot = S

i,j
int + S

i,j
nov (4)

Salience only occurs when the stimuli are perceived (at the
points indicated by the open circles in Figure 5C). However, it
is useful to indicate the causality of changes in novelty salience by
formally transforming the latent prediction using Equation (3)
so into novelty salience after each interaction is the salience that
would be seen if the stimulus comes into view.

The salience for the exploratory action is assumed to be driven
by an internal motivational process (like fear or foraging for food)
which is notionally a component of “internal state monitoring.” It
manifests itself in a salience for exploration drawn from a uniform
distribution with constant mean of 0.4, and standard deviation
of 0.23.

2.5.3. Basal ganglia and loops through cortex
The main neural circuit in the biomimetic core is based on
our previous work with models of basal ganglia (Gurney et al.,
2001a,b) and loops through cortex (Humphries and Gurney,
2002). Key concepts were outlined in the Introduction; details of
the particular form used here are shown in Figure 6. The model
uses discrete processing channels for each action so that, within
each nucleus, there is a localist representation of each channel as
a population of neurons instantiated in a leaky integrator neu-
ral unit. Formally, each neural unit has an activation variable a
governed by a first order ODE

τ
da

dt
= −a(t)+ I(t) (5)

where τ is the characteristic membrane time constant (here, τ =
40 ms) and I is the summed, weighted input. The normalized
firing rate y, of the neural unit is given by a piecewise linear
squashing function

y(a) = L(a, ε) =

⎧⎪⎨
⎪⎩

0 a ≤ ε

a− ε ε < a < 1+ ε

1 a > 1+ ε

(6)
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FIGURE 6 | Schematic diagram of the basal ganglia neural network

component of the biomimetic core. (A) Cortex, basal ganglia, brainstem,
and thalamic complex. The latter is comprised of the thalamic reticular
nucleus (TRN) and ventrolateral thalamus (VL). Note that action channels are
present but not explicitly shown here. (B) The basal ganglia circuit consisting
of: striatal projection neurons expressing D1 or D2 dopamine receptors;
subthalamic nucleus (STN); output nuclei—globus pallidus internal segment

(GPi) and substantia nigra pars reticulata (SNr); globus pallidus external
segment (GPe), and substantia nigra pars compacta (SNc). The three action
channels are shown in this panel, and a typical set of activities indicated in
cartoon form by the gray bars (the channel on the left is highly salient causing
suppression of basal ganglia output on that channel). The summation box
below STN is not anatomically present—it is graphic device to indicate that
each target of STN sums its inputs across channels from STN.

where, ε is a threshold below which y = 0, immediately above
which y depends linearly on a with unit slope, and there is
saturation at y = 1.

There are three channels in the current model—one for each
of the action-subsystems. The sensory cortex (Figure 6A) receives
input from the salience generators, and initiates activity in motor
cortex. This activity can potentially undergo amplification in the
recurrent loop with the thalamic system, but this is under basal
ganglia control. The motor cortex and the basal ganglia output
nuclei project directly to the reticular formation and pendun-
culopontine nucleus brainstem areas a (Takakusaki et al., 2004;
Jenkinson et al., 2009). If the increased drive from motor corti-
cal channel i to its corresponding brainstem population, as well
as the direct release of inhibition from that population, cause its
activity ybs

i to exceed the threshold φ, then the channel is selected
for behavioral expression (see Figure 4).

Within the basal ganglia, there are two interdigitated popu-
lations of projection neurons in the main input nucleus—the
striatum. These so-called MSNs are differentiated according to
their preferential expression of dopamine receptor type—D1 or
D2. We refer henceforth to these populations as D1-striatum and
D2-striatum. The subthalamic nucleus (STN) is the only source
of excitation in basal ganglia. The output nuclei of the basal gan-
glia are the globus pallidus internal segment (GPi) and substantia
nigra pars reticulata (SNr). The circuit comprising D1-striatum,

STN and GPi/SNr form a feedforward, off-center, on surround
network implementing an inter-channel competition; hence it is
dubbed the selection pathway . The “winning” channel in basal
ganglia competitive processes is that which has the lowest out-
put in GPi/SNr (inhibition to targets is released). This channel
will have received the largest inhibitory input fron D1-striatum,
which, in turn, will have been subject to the highest salience
input. The circuit comprising the globus pallidus external seg-
ment (GPe), STN and D2-striatum exercise a control function
acting on the selection pathway to ensure a good match between
overall excitation from STN, and striatal inhibition of the output
nuclei (Gurney et al., 2001a,b). The circuit through D2-striatum,
GPe and SNr also implements a NO–GO function, actively pre-
venting action selection (Frank et al., 2004). Parametric details of
the application of Eqs. (5) and (6) to the circuits in Figure 6 are
given in the “Appendix.”

The cortico-striatal synapses receive modulatory input from
dopamine axons which branch profusely throughout striatum
(Beckstead et al., 1979; Gauthier et al., 1999; Matsuda et al.,
2009). Dopamine terminals also seem to innervate striatum in
a dense, non-focal way within the neuropil of striatum (Moss
and Bolam, 2008), and dopamine also acts extra-synaptically via
volume transmission (Cragg and Rice, 2004). These data would
indicate a diffuse innervation of striatum by dopamine neurons
that cuts across channel boundaries.
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Tonic (background) dopamine levels are thought to influence
cortico-striatal transmission at D1 and D2 MSNs in opposite ways
with D1/D2 receptors facilitating/attenuating cortico-striatal
transmission (West and Grace, 2002). This is incorporated into
our model by including a constant tonic dopamine level λ, which
increases cortico-striatal D1-MSN weights by a multiplicative
factor 1+ λ, and decreases corresponding D2-MSN weights by
1− λ. More significantly for the current study are the dynamics
of phasic (transient) dopamine, which are critical for cortico-
striatal plasticity (Reynolds and Wickens, 2002), and to which we
now turn.

2.5.4. Phasic dopamine and sensory prediction error
The starting point for this component of the model is our
hypothesis that phasic dopamine signals a sensory prediction
error (Redgrave and Gurney, 2006; Redgrave et al., 2008). Using
the notation developed in section 2.5.1, the sensory predic-
tion error e(ti) is given by e(ti) = yf (ti)− y∗f (ti). The error
resulting from the sequence of events in Figure 5A is shown
in Figure 5D. In the rest of this section, we drop the tem-
poral argument and its indexing as it assumes a single block
interaction.

However, we also wish to relate this form for e to its biological
generation and realization in phasic dopamine. In particular, we
invoke the evidence that phasic dopamine is released in response
to neutral phasic stimuli and that this occurs via the recently dis-
covered tecto-nigral pathway (Coizet et al., 2003; Comoli et al.,
2003; Dommett et al., 2005). This is a direct (mono-synaptic)
pathway between the superior colliculus (SC) (optic tectum in
non-mammals) and midbrain dopamine neurons in substantia
nigra pars compacta (SNc). The SC plays a key role in gaze shifting
and orienting responses (Wurtz and Goldberg, 1972; Wurtz and
Albano, 1980) and is believed to act as a detector of novel, phasic
stimuli (Dean et al., 1989). In our terminology it detects yf . Phasic
responses in SC then excite SNc neurons and therefore potentially
cause phasic bursts of activity therein. However, as the stimulus
becomes predictable, this response in SNc disappears and, sig-
nificantly, if the predicted reward is omitted, there is a phasic
“dip” in the dopamine response below tonic level (Schultz et al.,
1997; Schultz, 2006). Taking these pieces of evidence together,
suggest that the null response in SNc under stimulus prediction
is a result of the excitatory influence of SC, and a similarly timed
inhibitory signal from another nucleus which we will call the
“canceling signal.” The lateral habenula may be a candidate for
such signals in dopamine neurons (Matsumoto and Hikosaka,
2007).

To model the SC, we assume that its response is not only con-
tingent on yf but also on any phasic prediction y∗f . This extends
the temporally adaptive response of colliculus at long time scales
under habituation (Drager and Hubel, 1975) to include phasic
prediction at shorter time scales. Thus, if ySC

f is the response of

SC to phasic feature f , we put ySC
f = [yf − y∗f ]+, where [x]+ =

max(0, x). Then, the canceling signal yC
f takes the form yC

f =
[y∗f − yf ]+ and the sensory prediction error is given by

e = ySC
f − yC

f = [yf − y∗f ]+ − [y∗f − yf ]+ = yf − y∗f (7)

Since the collicular and canceling signals are not derived from
prior inputs, we modeled their dynamics phenomenologically so
that each of ySC

f , yC
f are triangular pulses of width 0.2 s.

In translating this into dopamine activity in our model there
are several issues to contend with. First, we don’t know the rela-
tion between positive and negative excursions of e and phasic
dopamine bursts and dips—it could be that an error of+1 is sig-
nalled by a dopamine level many times that of tonic, but that an
error of −1 is signalled by sufficiently prolonged dip with mini-
mum of zero. We are therefore free to include parameters a+, a−
in forming the effective input to a dopamine neuron, ISNc, which
encodes prediction error

ISNc = a+ySC
f − a−yC

f (8)

These parameters were chosen for best model fit to the data of
Gancarz et al. (2011) giving a+ = 2, a− = 1. Further, we don’t
know a priori the relationship between the magnitude of e (which
lies in the interval [−1, 1]) and the corresponding level of simu-
lated dopamine, d, expressed in our plasticity rules. We therefore
use ISNc, to determine an effective SNc output, ySNc, which we can
then equate with d. Thus, we form the SNc activation aSNc in a
first order ODE like that in Equation (5) and use this, in turn, to
generate ySNc ≡ d via the function

ySNc =
{

0, aSNc ≤ −0.2

a+ 0.2, a > 0.2
(9)

The lack of normalization is a requirement for interpreting ySNc

as the simulated dopamine level d, used in the next section.

2.5.5. Cortico-striatal plasticity: the learning rule
The learning rule is based on our recent work on cortico-striatal
plasticity at the level of spikes (Gurney et al., 2009) which is, in
turn, grounded in a comprehensive in vitro study (Shen et al.,
2008). The latter was able to distinguish recordings between
D1 and D2-type MSNs, and yielded responses at different lev-
els of dopamine. The resulting learning rules are complex and
reflect the unavoidable complexity in the data. However, the
rules do provide an account of plasticity consistent with action
discovery and so we sought to incorporate them in the cur-
rent model. Fortunately Pfister and Gerstner (2006) have shown
how to relate spike timing dependent plasticity (STDP) to the
Bienenstock, Cooper, and Munro (BCM) rule for rate-coded
neurons (Bienenstock et al., 1982; Cooper et al., 2004) which
therefore allows us to proceed with this programme.

The work of Pfister and Gerstner (2006) dealt with STDP for
spike pairs and triplets. The transition to firing rates is done by
calculating the expected weight change 〈dw/dt〉. Let the pre- and
post-synaptic firing rates be x and y, respectively. If �t = tpost −
tpre is the time interval between post- and pre-synaptic spike pairs
then let τ+, τ− be time constants associated with processes for
�t > 0, �t < 0, respectively. The rate coded rule takes the form

〈
dw

dt

〉
= A3τ

+τyy(y − θBCM)x (10)
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θBCM = 〈y2〉CBCM

CBCM = −(A−τ− + A+τ+)

A3τ+τy

Here, τy is a time constant associated with spike triplets, and
A3 is a factor for the plasticity from triplet timing. This has no
direct counterpart in our spiking level model but we assume a
positive value.

More importantly, the terms A+, A− are derived from the
contributions to plasticity from positive and negative spike pair
timing [here they are signed quantities; in (Pfister and Gerstner,
2006) they are absolute magnitudes]. Further, we endow them
with dopamine dependence and specificity under the D1/D2
MSN dichotomy. Thus, following (Gurney et al., 2009) we
use the data of Shen et al. (2008) to determine these terms
for D1-MSNs at high levels of dopamine AD1(hi)

+ , AD1(hi)
− , at

low levels of dopamine AD1(lo)
+ , AD1(lo)

− , and for correspond-
ing quantities for D2-MSNs; we refer to these eight quanti-
ties as plasticity coefficients. For example, with positive spike-
pair timing in D1-MSNs at high levels of dopamine, the data
imply strong LTP, and for negative spike-pair timing, weak
LTD (Shen et al., 2008). This led to the assignment shown
in Figure 7A (see “D1(hi)” bar grouping). Other coefficient
assignments are shown in Figure 7A and compared with the
“classic” finding for STDP in hippocampus and cortex, in

which with LTP/LTD is associated with positive/negative �t
(Song et al., 2000). Notice that several of the coefficient pairs
give LTP/LTD assignments which are “non-classical”; for exam-
ple, D2-MSNs at low dopamine have uniform LTP for both
timings.

At levels of dopamine, d, intermediate between the “low” and

“high” extremes, we define AD1/D2
± (d) as a function of dopamine

by “blending” the relevant plasticity coefficients together using a
monotonic, saturating function α(d) (see Figure 7B)

α(d) = 4d

1+ 4d
(11)

For example, for D1-MSNs, AD1+ is given by

AD1+ (d) = α(d)AD1(hi)
+ + (1− α(d))AD1(lo)

+ (12)

with similar relations for AD1− (d), AD2+ (d), AD2− (d). This gives, in
turn, functional forms CBCM(d) derived from scalar factors CBCM

in Equation (10) (see Figures 7C,D).
Weights from both motor cortex and sensory cortex to stria-

tum (“motor weights” and “sensory weights,” respectively) are
subject to the learning rule described above. The motor weights
are supposed to endow the agent with the ability to perform the
three actions expressed in the action-subsystems. They are initial-
ized in such a way as to allow this to occur in the presence of the

FIGURE 7 | Construction of the learning rule. (A) The plasticity coefficients consistent with the data of Shen et al. (2008). (B) The dopamine mixing function
α(d) defined in Equation (11). (C,D) The dopamine-dependent versions of the factors CBCM in Equation (10) for D1 and D2-MSNs, respectively.
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exploration action, during an initial “weight calibration” learning
session. In contrast, the sensory weights are initialized to zero, and
any positive increments therein are thought of as supplying new
“biases” in the selection of the three given actions, derived from
contextual information. However, the uniform treatment of both
motor and sensory weights means their trajectories will mirror
each other in form (see for example, Figure 10).

3. RESULTS
3.1. CORTICO-STRIATAL PLASTICITY ALONE IS NOT SUFFICIENT TO

ACCOUNT FOR VARIABLE INTERVAL TRAINING DATA
Figure 8 shows the behavioral outcome for an agent with no
novelty salience (or its associated internal prediction model),
undergoing VI training in the block-bumping task. Results are
averaged over 10 repetitions with different initial random num-
ber seed, and the two panels show outcomes with and without
phasic dopamine enabled. This dichotomy will be a recurring
theme as we wish to explore the relative contributions of nov-
elty salience and phasic dopamine during learning. We will refer
to models with and without phasic dopamine enabled as “pDA,”
and “no-pDA” models, respectively. In the presence of phasic
dopamine, there is a statistically significant difference between
the number of interactions with the control (white) and target
(red) blocks. However, this difference is nowhere near as sub-
stantial as that shown in the data of Gancarz et al. (2011). We
conclude that other mechanisms must be at work and there-
fore invoked the notion of novelty salience as described in the
section 2.

3.2. NOVELTY SALIENCE CAN ACCOUNT FOR BEHAVIORAL TRENDS IN
VARIABLE INTERVAL LEARNING

Figure 9 shows the behavior for an agent in the presence
of novelty salience and an internal prediction model (see

section 2) undergoing VI learning (results are averaged over 10
repetitions). Both pDA and no-pDA models show qualitatively
similar behavior to that from the in vivo experiment in Figure 3.
That is, they show a substantial increase in active responses dur-
ing the response contingent phase which declines toward the
end of the experiment. In addition, the peak response does not
occur on the first day of training in the response contingent
phase. However, the no-pDA model shows markedly more active
responses during the response contingent phase than its pDA
counterpart. To quantify this, let rpeak, be the ratio (rounded
to nearest integer) of the peak number of active responses dur-
ing response contingency to the mean inactive response over
this time. Note that, while absolute numbers of responses in
the model are not directly comparable with those in vivo, we
might expect ratios of responses under different regimes to be
more so. For the in vivo experiment rpeak = 3, while for pDA
and no-pDA models rpeak = 7, 12, respectively. This feature is
therefore more realistically captured with the inclusion of phasic
dopamine.

The role of phasic dopamine in explaining these differences
in active responses is made apparent by reference to Figure 10,
which shows the dynamics of the cortico-striatal weights in
the active response (red-block-interaction) channel as learn-
ing progresses. For the no-pDA model there is (unsurprisingly)
little change in the weights in the response contingent phase
(for both D1 and D2-MSNs, and motor and sensory cortical
inputs). However, for the pDA model, there is a decrease in
D1-MSN weights and an increase in D2-MSN weights. This is
consistent with a decrease in the ability of the selection path-
way in basal ganglia to facilitate an active response, and an
increase in the potential of the NO–GO pathway to suppress it
(Frank et al., 2004) (see section 2.5.3). Phasic dopamine, and
the biologically plausible learning rule, are therefore directly

FIGURE 8 | Behavior of an agent with no novelty salience or internal

prediction model, performing the block-bumping experiment. (A,B)

For models with, and without, phasic dopamine, respectively (pDA,
no-pDA), and each plot is an average over 10 runs. These plots are
based on those of the in vivo data in Figure 3. Thus, each panel
shows the number of interactions with the block stimuli in each 15 min
session comprising a “virtual day” of learning, plotted against such

days. Error bars are 1 standard error of the mean. Open symbols are
for the white (control) block while solid symbols are for the red block,
which elicits a phasic outcome in the response contingent phase
(labeled “RC”). The habituation phase (when there is no environmental
phasic outcome) is designated “H.” The average of the interactions for
each block over the entire response contingent phase is shown in the
pair of data points on the extreme right of each panel.
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FIGURE 9 | Behavior of an agent with novelty salience and feature

prediction performing the block-bumping experiment with variable

interval training. (A,C) Have a similar interpretation to counterparts in Figure 8

and are for pDA and no-pDA models, respectively. (B,D) Show the behavior
within a virtual “day” (considered as three, 5 min epochs), averaged over the
response contingent phase; (B,D) are for pDA and no-pDA, respectively.

responsible for the relative, overall difference in active responses
in the pDA model, compared to its no-pDA counterpart
(Figure 9).

We can see, mechanistically, the reason for the weight changes
by examining the dynamics of the reinforcement signal (light
flash), the prediction model, and resulting dopamine signal.
These signals are shown in Figure 11. It is apparent that there
are many more dopamine “dips” (negative prediction errors)
than “bursts” (positive prediction errors) and so the factors
CBCM in the learning rule (Equation 10) are dominated by their
low dopamine values. For D1/D2-MSNs this is positive/negative,
respectively (Figure 7), which is also reflected in θBCM. In addi-
tion, the high novelty salience in cortex causes high activity
〈y2〉 in the MSNs, thereby amplifying θBCM and any consequent
effects on learning. These signs and magnitudes of θBCM lead to
LTD/LTP for D1/D2-MSNs being likely (as θBCM appears in the
factor (y− θBCM) in the learning rule). This pattern of learning
has computational and ethological consequences taken up in the
section 4.

3.3. PHASIC DOPAMINE PROMOTES PLASTICITY IN FIXED-RATIO
TRAINING CONSISTENT WITH ACTION LEARNING IN STRIATUM

Figure 12 shows the behavioral responses of the robot in the
fixed-ratio (FR) experiments. The results are qualitatively similar
to those for VI training but there are fewer active responses and,
unlike the VI behavior, the peak response occurs on the first day of
the response contingent phase. This prediction was borne out by
the study of Lloyd et al. (2012)—see Figure 3C. Within a session,
the number of active responses declines more steeply than the cor-
responding VI data. This is similar to the in vivo data (Figure 3C)
although the latter does not show such a tight clustering in the
first epoch, with some residual responding at the end of the
session.

The pDA and no-pDA models have similar behavior but the
former shows somewhat more active responses (especially on the
first response contingent day). This is quantified in the (rounded)
ratios rpeak which are 6 and 4, respectively. These are both smaller
than the values for the VI experiment, and have a different rank
order (that for pDA is larger for FR, but is smaller for VI).
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FIGURE 10 | Weight trajectories w*(t) for the active response channel, in

models with novelty salience and prediction, undergoing variable

interval training. Rows are for pDA and no-pDA models, columns for D1- and
D2-type MSNs. Weights from motor cortex and sensory cortex are labeled
“motor” and “sensory.” The trajectories are expressed as continuous

functions of time to show both within-day, and between-day dynamics, and
the onset of the response contingent phase (at the start of day 6) is indicated
at 75 min. These plots capture the statistics of the weights over a group of 10
models; the dark red line is the mean, and the red-shaded region
encompasses ±1 std dev.

The similarity in behavioral response over the pDA, no-pDA
variants is in stark contrast to the difference in weight trajectory
(Figure 13).

The pDA model shows a very large transient change in the
D1-MSN weights (both motor and sensory) with a substantial
final change compared to initial baseline. This plasticity is clearly
responsible for the extra activity in the response contingent phase
compared to that for no-pDA models. None of the other weight
trajectories show significant variation.

The clustering of active response in day 6 and the transient
weight change associated with this are explained by reference to
the prediction, novelty salience and dopamine signals shown in
Figure 14. Thus, there is a large increase in novelty salience in the
first part of the response contingent phase (panel A) but this is
short lived as the prediction becomes reliable. This is made pos-
sible, of course, by the reliable delivery of the reinforcement. The
phasic dopamine reflects this, and is almost always signalling pos-
itive reinforcement errors (the very few occasions for which this is
not the case, are caused by failure of the robot to bump properly
against the block). High levels of (phasic) dopamine occurring

during these events is associated with negative values of CBCM

for D1-MSNs in the learning rule [Equation (10), and Figure 7].
This implies θBCM < 0 too, so that there is a likelihood of LTP as
observed.

4. DISCUSSION
4.1. MAIN RESULTS AND THEIR INTERPRETATION
We have used the embodiment of a biologically plausible model
of intrinsically motivated operant learning (action discovery)
to explore the possible roles of cortical salience, cortico-striatal
plasticity in basal ganglia, and phasic dopamine therein. The
embodiment allowed us to use behavioral data (Gancarz et al.,
2011) to constrain the model, and our core model compo-
nent was sufficiently biologically plausible to take advantage of
a new framework for dopamine-dependent cortico-striatal plas-
ticity constrained by a comprehensive suite of physiological data
(Shen et al., 2008; Gurney et al., 2009).

In seeking an understanding of action discovery, we are
primarily interested in the ethological situation in which the
required action reliably produces the desired outcome; in the
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FIGURE 11 | Signals governing learning in pDA models with novelty

salience and prediction, undergoing variable interval training. (A) Shows
the novelty salience (solid green line) and prediction signal (dashed black line)
during the response contingent (RC) phase in a similar way to that used in

Figure 5, but here the symbols have been omitted. (B) Is similar to (A), but
for a smaller temporal window immediately after the onset of the RC phase.
(D) Shows the phasic dopamine signal corresponding to the events in (A).
(C) Is similar to (D) and relates to events in panel (B).

current context this is what has been referred to as the FR1
schedule. However, the data we have access to (Gancarz et al.,
2011) concern a VI schedule. We have shown that cortico-striatal
plasticity alone is insufficient to account for the increased active
response in this data. In order to successfully model the behav-
ioral data, we were therefore forced to consider the other possible
contribution to more prolific action selection—an increase in
the salience of the action request. Thus, we proposed that the
sensory contribution to the action request for block interaction
is enhanced by inheriting the novelty of any surprising pha-
sic outcome associated with the target block. To incorporate
this “novelty salience” we deployed a simple phenomenological
model of prediction of the phasic outcome and its influence on
the salience. We also used the prediction model to describe the
dynamics of the sensory prediction error signal manifest in phasic
dopamine.

With these components in place, the main trends in the behav-
ioral data of the in vivo experiment could be replicated. Moreover,
there was a somewhat counterintuitive result that there were fewer
active responses with phasic dopamine than without. Further,
the relative number of responses (active/inactive) in the data was
better approximated by the inclusion of phasic dopamine. This

difference could be explained by noting the preponderance of
phasic dopamine dips in the VI schedule, the consequent weight
dynamics, and their interpretation in the context of selection
(GO) and NO–GO pathways in basal ganglia.

The attenuation of activity by dopamine mediated plasticity
in the VI schedule is ethologically rational. The outcome in VI
training is highly unpredictable and it is therefore fruitless for
an intrinsically motivated agent to waste resources in attempt-
ing to build a model of agency. This notion has been formalized
by Schmidhuber (2009) who argues that agents seek to com-
press information about their world (equivalent to our internal
model building) and failure to see progress in this regard will
cause them to disengage with the situation. Attempts to persist
in doing so could lead to irrelevant and “superstitious” behavior
(Pear, 1985). The dopamine mediate plasticity appears to prevent
just this scenario. In addition, the failure of the D1-MSNs to show
strong LTP would mitigate against the possibility that these neu-
rons could learn to encode a match between their synapses and
cortical representations of the new action request.

We carried over the notion of novelty salience to the FR1
schedule; there is no reason to suppose that the mechanisms
for prediction and novelty salience generation suddenly become
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FIGURE 12 | Behavior of an agent with novelty salience and feature prediction performing the block-bumping experiment with fixed-ratio training. All
panels have the same significance as their counterparts for variable interval training in Figure 9. Thus, (A,B) are for pDA models, whereas (C,D) are for no-pDA models.

muted because the statistics of the stimulus are changed. The
result was a strong increase in active responses on the first day of
the response contingent phase. Overall activity during this time
was, however, less than that for the VI schedule. Both these pre-
dicted features were shown in a recent in vivo study (Lloyd et al.,
2012).

In contrast with the simulated VI result, phasic dopamine in
FR learning enhanced the activity level with respect to the no-
dopamine control. Further, much of the interaction occurred
early in the session (also broadly in line with the in vivo data) and
subsequent epochs within a session showed little interaction with
the blocks. Activity is refreshed somewhat at the start of each day,
which can be attributed to the dishabituation of block salience
between days.

The rapid increase in, and subsequent decline of, responding
with the novel situation is exactly what we would require with
our repetition bias hypothesis. The results suggest that, while the
behavioral repetition is due to a combination of novelty salience
and plasticity (there is more responding with phasic dopamine)
the bulk of this effect is caused by the novelty salience. We there-
fore predict that lesioning systems that may be responsible for

developing novelty salience should severely compromise action-
outcome learning (see discussion of novelty below).

We also predict a residual, persistent elevation of the num-
ber of active responses at the end of the response contingent
phase, compared to that at the end of the habituation phase.
There is some indication of this in the study of Lloyd et al.
(2012) but further experiments would help confirm or fal-
sify this outcome. In the event that it is true, this may be
interpreted as the “bumping-into-the-red-block” action having
acquired the status of a preferred action or affordance (Gibson,
1986; McGrenere and Ho, 2000). Thus, we suppose, along with
Cisek (2007), that affordances become what we have dubbed
“action requests,” subject to competitive selection by basal
ganglia.

The weights in FR learning show strong LTP in D1-MSNs
consistent with the encoding of the action in basal ganglia via
synaptic-afferent matching. There is a marked peak during the
early sessions of the response contingent phase (promoting rep-
etition bias) before a decline to an equilibrium level which is
elevated with respect to the initial value. It is only in the FR sched-
ule with phasic dopamine that we see such a substantial weight
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FIGURE 13 | Weight trajectories w*(t) for the active response channel, in models with novelty salience and prediction, undergoing fixed-ratio (FR-1)

training. All panels have the same significance as their counterparts for variable interval training in Figure 10. Note the different scale for D1 and D2-MSNs.

increase and so we deem these conditions to be necessary for
action learning.

4.2. RELATION TO OTHER WORK
There have been many attempts in disembodied models to
describe the role of phasic dopamine in animal learning. Most of
these use some kind of RL technique and, typically something like
the temporal difference (TD) algorithm (Sutton and Barto, 1998)
or variants therein—for a recent review see Samson et al. (2010).
These machine learning algorithms require an explicit representa-
tion of value as the expected sum of rewards over some predefined
trial or epoch. However, no such representation prevails in our
model. Further, in the TD-like schemes, there is usually a fine-
grained representation of time supporting a correspondingly rich
state-based description of the environment; we have no recourse
to such a description. Like TD, our model uses a prediction error.
However, this error has a quite different form from that in TD, is
used in a quite different way to update the weights, and the update
rule for the prediction is different.

Another hallmark of the general RL models is their empha-
sis on obtaining optimal behavior driven by explicit biological
reward. In contrast we have emphasized the concept of novelty

and sensory prediction as a primary source of reinforcement in
the learning rule. Novelty has been used in TD-learning models of
learning under phasic dopamine, appearing in the guise of “nov-
elty bonuses.” Kakade and Dayan (2002) show how such a model
may be used to enhance the explanatory power of the basic TD-
learning approach, but the very term “bonus,” is used advisedly
here to imply that novelty is an “add on,” and that optimality of
reward acquisition is the primary feature of the algorithms. We
revisit the issue of whether dopamine encodes reward or sensory
prediction errors in section 4.3 where we give a possible resolu-
tion of this apparent dichotomy. The model of Kakade and Dayan
(2002) is also unable to supply an explanation (even at an algo-
rithmic level) of the intrinsically motivated learning seen in the
study of Gancarz et al. (2011) because it does not address the
issues of novelty salience that we have found necessary in our
model.

In more biologically plausible (but still disembodied)
approaches, many models of RL in basal ganglia use the actor-
critic framework (Barto, 1995; Suri and Schultz, 1998, 1999).
However, the applicability of this framework to the study of
learning in basal ganglia has been questioned on the basis of its
biological plausibility (Joel et al., 2002). In contrast, our approach
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FIGURE 14 | Internal variables and phasic dopamine signals for a model with novelty salience and prediction undergoing fixed interval training. (A,B)

Show novelty salience and the prediction signal, and are counterparts to Figures 11B,C. (C,D) Show phasic dopamine and are counterparts to Figures 11A,D.

does not rely on the actor-critic scheme. Further, many of the RL
models that attempt to explain dopamine dynamics and learn-
ing in basal ganglia use the TD algorithm (Suri, 2002) which was
noted above to be quite different from our approach. In a recent
review, Frank (2011) notes several biologically plausible models
of dopamine modulated learning in basal ganglia (Brown et al.,
2004; Frank, 2005, 2006). However, these models do not address
the problems surrounding intrinsically motivated learning and
will therefore not seek to understand the automatically shaped,
phasic period of repetition bias under the control of surprise or
novelty, signalled by phasic dopamine. One recent model (Hazy
et al., 2010) does note the possible utility of encoding “novelty
value” in the phasic dopamine signal as well as reward, but this
model is at a somewhat abstract level without explicit reference to
basal ganglia components.

There are very few robotic models of operant learning that
seek to explain the role of phasic dopamine. The model by
Baldassarre et al. (2013) explores several of the issues in our gen-
eral framework but at higher level of abstraction. It has a less
physiologically constrained learning rule, several ad hoc mecha-
nisms in place to test general computational hypotheses (such as
repetition bias), the basal ganglia component is less well detailed,
no mention is made of novelty salience, and there is no behavioral
data against which it is constrained. Nevertheless, this model

does integrate many of the features in the general scheme out-
lined in the Introduction (Figure 1A) and show how they may
be deployed in concert with each other to achieve intrinsically
motivated learning of actions.

The model of Sporns and Alexander (2002) (see also
Alexander and Sporns, 2002) uses properties ascribed to the
animal dopaminergic system in its learning, but the model
architecture is rather abstract and has no reference to basal
ganglia and cortico-striatal connectivity. In contrast to our
own, this model also emphasizes the precise temporal repre-
sentation of reward prediction reminiscent of the TD learn-
ing algorithm. An explicit use of TD learning was invoked
by Pérez-Uribe (2001) but again, this model used a some-
what abstract actor-critic architecture. The model by Thompson
et al. (2010) emphasizes limbic loops through the basal gan-
glia which deal with genuine reward-related behavior rather
than intrinsically motivated behavior (hence no mention of nov-
elty salience) and, again, it uses a different approach to learn-
ing. Khamassi et al. (2011) have recently described a robot
model of learning with dopamine signalling prediction errors
based on salient phasic events but their emphasis is on plas-
ticity in cortico-cortical rather than cortico-striatal connections,
with the aim of storing action values in anterior cingulate
cortex (ACC).
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4.3. NOVELTY, DOPAMINE, AND REWARD
One of the key ideas in our general framework is that intrinsically
motivated action discovery is tightly bound up with the notion
of novelty; new and unexpected objects or situations cause an
agent to investigate them and discover operant contingencies. We
have invoked two kinds of novelty in the present model: stim-
ulus (object) novelty and surprise (phasic outcome). We have
identified the detection of the latter with the SC and have noted
the intimate link between the detection of surprise and release
of phasic dopamine (Comoli et al., 2003; Dommett et al., 2005).
However, the detection of novelty salience remains unresolved.
Several brain areas have implicated in the detection of novelty and
are candidates for this process including: lateral prefrontal cortex,
anterior insular and anterior temporal cortex, parahippocampal
cortices, and the hippocampal formation itself (Ranganath and
Rainer, 2003). In regards to the latter, Kumaran and Maguire
(2007) have proposed that the hippocampus acts as a compara-
tor between prediction and perception, while Lisman and Grace
(2005) have noted the link between hippocampus and midbrain
dopamine systems in novelty detection. Using fMRI studies in
humans, Bunzeck and Düzel (2006) have also demonstrated how
stimulus novelty can drive the activation of dopamine neurons.
However, when elicited by object novelty (rather than the sur-
prise of an outcome) phasic dopamine may be more potent
in facilitating learning in the structures which may encode the
prediction models—namely areas like the hippocampal complex
and prefrontal cortex (Lisman and Grace, 2005; Bunzeck and
Düzel, 2006)—rather than motor and associative territories of
striatum.

The preceding discussion has highlighted the ubiquity of pha-
sic dopamine as an encoder of novelty and, consistent with this, is
a recurrent theme in our work that dopamine is a sensory pre-
diction error. However, there is a substantial literature arguing
for its role in encoding reward (for recent review see Schultz,
2010). Thus, several studies (Fiorillo et al., 2003; Tobler et al.,
2005; Morris et al., 2006; Roesch et al., 2007) have shown that,
with well trained animals, size of reward or its probability of
delivery reward associated with unpredictable phasic cues pro-
duced phasic dopamine responses which reflected the expected
amount of reward. This is often cited as strong evidence that
phasic dopamine is signalling reward-prediction error. However,
one possible resolution of this apparent conflict is to suppose
that dopamine encodes a sensory prediction error which may
be modulated by reward value. This can occur because repeated
delivery of reward is known to sensitise primary sensory areas
including: visual cortex (Weil et al., 2010), somatosensory cor-
tex (Pleger et al., 2008), and SC (Ikeda and Hikosaka, 2003).
Thus, using an abbreviated form of our prior notation, let yf

and y∗f be representations of a sensory feature and its predic-
tion, respectively, and let SR be a reward sensitization of yf

under extensive training (as typically deployed experimentally).
We now hypothesise (Gurney et al., 2013) that phasic dopamine
encodes

e = SR(yf − y∗f ) (13)

Notice that e can still be thought of as a sensory prediction
error—there is no mention of a difference between observed or its

prediction, as such. The stimulus feature has been “tagged” with
additional value but the difference is fundamentally one between
sensory features and their prediction. This idea can accomodate
a recent theory by Bromberg-Martin et al. (2010) in which two
classes of dopamine neuron are identified. In one class, dopamine
neurons encode motivational value—the conventional idea that
dopamine signals prediction errors of rewarding/aversive stim-
uli with positive/negative-going responses, respectively. A sec-
ond class of neuron encode motivational salience with positive
responses irrespective of the rewarding/aversive significance of
the predicted stimulus. However, both classes of dopamine neu-
ron signal “alerting” or unpredicted sensory cues. This clas-
sification is consistent with Equation (13) if we allow two
cases in which SR is either a signed quantity, encoding reward-
ing/aversive value, or simply the absolute magnitude of this
quantity.

4.4. FUTURE DIRECTIONS
The action discovery used in our model is of the simplest kind; a
given “atomic” movement (bump a block) has been paired with
a context (the red block in this arena) to facilitate the predic-
tion of the outcome (light flash above the block). However, in
general we can imagine more complex combinations of action
components may need to be assembled with the context. For
example, the agent may not know how to perform a bumping
sequence (move forward, then back and slow down), in which
case it has to explore possible combinations of atomic move-
ments at a lower level of granularity and chunk them together to
make the new action. These lower level action components may
also have to occur simultaneously rather than sequentially (e.g.,
bumping may require extending an effector as well as moving
forward). Modeling the discovery of these more complex action
assemblies is an important next step.

One of the requirements of a multi-component action model
would be a true distributed representation of motoric commands.
Even with a single atomic movement this is most likely encoded in
a more plausible way a vector of command components. Further
work would test the learning rule with these higher dimensional
vector inputs. This was the approach taken in our spiking model
of plasticity (Gurney et al., 2009) and, indeed, one possible pro-
gression of the model would be to embed the spiking model of
MSNs into the larger basal ganglia model used here. This multi-
scale model would enable a closer examination of the finer details
of the learning rule as originally conceived. Finally, we aim to
test experimentally, predictions about the expected behavior of
animals in an FR learning schedule with dopamine lesions.
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APPENDIX
DETAILS OF BIOMIMETIC CORE MODEL
We give details here of the equations defining the biomimetic core
model which were not given in the main text. In most cases this
amounts to identifying the form of the net input I in Equation (5),
and parameterizing the output function (Equation 6). In what
follows, indices refer to action channels.

Basal ganglia
Sensory, and motor cortical output are denoted by yS

i , yM
i , respec-

tively. The tonic dopamine level λ = 0.2.

Striatum D1: ID1
i = (wS,D1

i yS
i + wM,D1

i yM
i )(1+ λ)

with initial weight values; wS,D1
i = 0,

wM,D1
i = 0.45

yD1
i = L(ID1

i , 0.1)

Striatum D2: ID2
i = (wS,D2

i yS
i + wM,D2

i yM
i )(1− λ)

with initial weight values; wS,D2
i = 0,

wM,D2
i = 0.45

yD2
i = L(ID2

i , 0.1)

STN: ISTN
i = 0.4(yS

i + yM
i )− 0.2yGPE

i

ySTN
i = L(ISTN

i ,−0.25)

GPe: IGPe
i = 0.3

3∑
i=1

ySTN
i − 0.9yD2

i

yGPe
i = L(IGPe

i ,−0.2)

GPi/SNr: IGPi
i = 0.3

3∑
i=1

ySTN
i − 0.7yD1

i − 0.4yGPe
i

yGPi
i = L(IGPi

i ,−0.12)

Thalamus and brainstem

TRN : ITRN
i = yM

i + yVL
i

yTRN
i = L(ITRN

i , 0)

VL Thalamus : IVL
i = 0.9yM

i − yGPi
i

− 0.01yTRN
i

⎛
⎝1− 0.11

∑
j �= i

yTRN
j

⎞
⎠

yVL = L(IVL
i , 0)

Brainstem: IBS
i = yM

i (1− 1.5yGPi
i )

yBS
i = L(IBS

i , 0)

The action is behaviorally enacted if yBS
i > φ (recall φ = 0.5).

Cortex
For the sensory cortex, the input ci is provided by the salience
generation process (section 2.5.2)

IS
i = ci

yS
i = L(IS

i , 0)

For motor cortex, we consider two classes of action representa-
tion. For the “explore” action, arbitrarily assigned as channel 1

IM
1 = 0.75yS

1 + 0.89yVL
1

yM
i = L(IM

i , 0)

For the block-interaction channels (i = 2, 3), we incorporated a
recurrent, self reinforcing connection if the action is currently
selected.

IM
i = 0.75yS

i + 0.89yVL
1 + 0.005yM

i H(yBS
i − φ)

yM
i = L(IM

i , 0)

where H() is the Heaviside step function and φ is the same thresh-
old used in selecting behavior in brainstem (see “Thalamus and
Brainstem,” above). The self-recurrence here plays a similar role
to the “busy signal” used by Prescott et al. (2006) to ensure
correct execution of fixed action patters (FAPs) which should
not time-out before their completion. This signal was driven
explicitly by an internal clock and knowledge of the FAP dura-
tion. In contrast, we have taken a slightly different approach,
which is more neurally plausible and does allow for interrup-
tion of the action by a very highly salient competitor. In this
way we have something more akin to a soft-action pattern (SAP)
process.

Frontiers in Neurorobotics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 29

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


ORIGINAL RESEARCH ARTICLE
published: 28 February 2013

doi: 10.3389/fnbot.2013.00003

Scaled free-energy based reinforcement learning for robust
and efficient learning in high-dimensional state spaces
Stefan Elfwing*, Eiji Uchibe and Kenji Doya

Neural Computation Unit, Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan

Edited by:

Jeffrey L. Krichmar, University of
California, Irvine, USA

Reviewed by:

Mehdi Khamassi, Centre National de
la Recherche Scientifique, France
Brandon Rohrer, Sandia National
Laboratories, USA

*Correspondence:

Stefan Elfwing, Neural Computation
Unit, Okinawa Institute of Science
and Technology, Graduate
University, 1919-1 Tancha,
Onna-son, Okinawa 904-0412,
Japan.
e-mail: elfwing@oist.jp

Free-energy based reinforcement learning (FERL) was proposed for learning in
high-dimensional state- and action spaces, which cannot be handled by standard function
approximation methods. In this study, we propose a scaled version of free-energy based
reinforcement learning to achieve more robust and more efficient learning performance.
The action-value function is approximated by the negative free-energy of a restricted
Boltzmann machine, divided by a constant scaling factor that is related to the size of the
Boltzmann machine (the square root of the number of state nodes in this study). Our
first task is a digit floor gridworld task, where the states are represented by images of
handwritten digits from the MNIST data set. The purpose of the task is to investigate
the proposed method’s ability, through the extraction of task-relevant features in the
hidden layer, to cluster images of the same digit and to cluster images of different digits
that corresponds to states with the same optimal action. We also test the method’s
robustness with respect to different exploration schedules, i.e., different settings of the
initial temperature and the temperature discount rate in softmax action selection. Our
second task is a robot visual navigation task, where the robot can learn its position by
the different colors of the lower part of four landmarks and it can infer the correct corner
goal area by the color of the upper part of the landmarks. The state space consists of
binarized camera images with, at most, nine different colors, which is equal to 6642 binary
states. For both tasks, the learning performance is compared with standard FERL and with
function approximation where the action-value function is approximated by a two-layered
feedforward neural network.

Keywords: reinforcement learning, free-energy, restricted Boltzmann machine, robot navigation, function

approximation

1. INTRODUCTION
Reinforcement learning (Sutton and Barto, 1998) has been proven
to be effective for a wide variety of delayed reward problems.
However, standard reinforcement learning algorithms cannot
handle high-dimensional state spaces. For standard action-value
function approximators, such as tile coding and radial basis func-
tion networks, the number of features of the function approxi-
mator grows exponentially with the dimension of the state- and
action spaces.

Sallans and Hinton (2004) proposed free-energy based rein-
forcement learning (FERL) to handle high-dimensional state-
and action spaces. In their method, the action-value function,
Q, is approximated as the negative free-energy of a restricted
Boltzmann machine (Smolensky, 1986; Freund and Haussler,
1992; Hinton, 2002). In this study, we propose a scaled version
of FERL to achieve more robust and more efficient learning. The
action-value function is approximated as the negative free-energy,
divided with a constant scaling factor that is related to the size of
the Boltzmann machine (the square root of the number of state
nodes in this study). The initialization of the network weights
and, thereby the initial Q-values, is a difficult problem in FERL.
Even if the network weights are randomly initialized using a dis-
tribution with zero mean, the magnitude of the initial free-energy

grows with the size of the network. The introduction of a scal-
ing factor can, therefore, reduce this problem by initializing the
Q-values to a more appropriate range. In addition, the scaling of
the free-energy reduces the effect of a change in the weight val-
ues (i.e., a learning update) on the approximated Q-values. This
makes it less likely that the learning diverges or get trapped in
suboptimal solutions.

To validate the scaled version of FERL, we compare the learn-
ing performance with standard FERL and learning with a two-
layered feedforward neural network. Our first experiment is a
digit floor gridworld task, where the states are represented by
images of handwritten digits from the MNIST data set. The pur-
pose of the task is to investigate our proposed method’s ability
to extract task-relevant features in the hidden layer, i.e., to clus-
ter images of the same digit and to cluster images of different
digits that correspond to states with the same optimal action.
We also test the method’s robustness with respect to different
exploration schedules, i.e., different settings of the initial tem-
perature and the temperature discount rate in softmax action
selection. Our second experiment is a robot visual navigation
task, where the goal is to reach the correct goal area, which can
be inferred by the color of the upper part of four landmarks.
The color of the lower part of each landmark is unique and
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identifies the landmark’s position, and can therefore be used for
localization.

Apart from Sallans’ and Hinton’s (Sallans and Hinton, 2004)
pioneering work, there have been few studies using a free-energy
approach to function approximation in reinforcement learning.
In our earlier study (Elfwing et al., 2010), we demonstrated the
feasibility to use FERL for on-line control with high-dimensional
state inputs in a visual navigation and battery capturing task
with similar experimental setup as the visual navigation task in
this study. We also demonstrated successful on-line learning in
a real robot for a simpler battery capturing task. In this study,
we compare the performance of scaled FERL with the standard
FERL approach that was used in our earlier study. Otsuka et al.
(2010) extended the FERL method to handle partially observable
Markov decision processes (POMDPs), by incorporating a recur-
rent neural network that learns a memory representation that
is sufficient for predicting future observations and rewards. The
incorporation of memory capability does not improve the learn-
ing performance of standard FERL for the MDP tasks considered
in this study.

2. METHOD
2.1. GRADIENT-DESCENT SARSA(λ)
The FERL method that we propose here is based on the on-
policy reinforcement learning algorithm (Sutton and Barto, 1998)
Sarsa(λ) (Rummery and Niranjan, 1994; Sutton, 1996), which
learns an estimate of the action-value function, Qπ, while the
agent follows policy π. If the approximated action value function,
Qt ≈ Qπ, is parameterized by the parameter vector θt , then the
gradient-descent update of the parameters is

θt+ 1 = θt + αδt et , (1)

where the TD-error, δt is

δt = rt + γQt(st+ 1, at+ 1)− Qt(st, at), (2)

and the eligibility trace vector, et , is

et = γλet − 1 + ∇θt Qt(st, at), e0 = 0. (3)

Here, st is the state at time t, at is the action selected at time t, rt

is the reward for taking action at in state st , α is the learning rate,
and γ is the discount factor of future rewards, λ is the trace-decay
rate, and ∇θt Qt is the vector of partial derivatives of the function
approximator with respect to each component of θt . In this study,
the action-value function is approximated by the negative free-
energy of a restricted Boltzmann machine.

2.2. FREE-ENERGY BASED FUNCTION APPROXIMATION
The use of a restricted Boltzmann machine (Smolensky, 1986;
Freund and Haussler, 1992; Hinton, 2002) as a function approx-
imator for reinforcement learning was proposed by Sallans and
Hinton (2004). A restricted Boltzmann machine (Figure 1) is
a bi-directional neural network which consists of binary state
nodes, s, binary action nodes a, and hidden nodes, h. The ith
state node, si, is connected to hidden node hk by the weight wik,

FIGURE 1 | Restricted Boltzmann machine.

and the jth action node, aj, is connected to hidden node hk by
the weight ujk. In addition, the state nodes, the action nodes,
and the hidden nodes are all connected to a constant bias input
with a value of 1, with connection weights bi, bj, and bk, respec-
tively. The free-energy, F, of the restricted Boltzmann machine is
given as

F(s, a) = −
K∑

k= 1

⎛
⎝ Ns∑

i= 1

wiksihk +
Na∑

j= 1

ujkajhk

⎞
⎠− Ns∑

i= 1

bisi

−
Na∑

j= 1

bjaj −
K∑

k= 1

bkhk +

+
K∑

k= 1

(
hk log hk + (1− hk) log(1− hk)

)
. (4)

Here, K is the number of hidden nodes, Ns is the number of state
nodes, and Na is the number of action nodes. The free-energy
of each action j is computed by setting the corresponding action
node, aj, to 1 and the rest of the action nodes to 0. hk is the
activation of the kth hidden node, given as

hk = σ

⎛
⎝ Ns∑

i= 1

wiksi +
Na∑

j= 1

ujkaj + bk

⎞
⎠ , (5)

where

σ(x) = 1

1+ e−x
. (6)

In Sallans’ and Hinton’s (Sallans and Hinton, 2004) original pro-
posal, the action-value function was approximated by the negative
free-energy, i.e., Qt = −Ft . In this study, we propose that the
performance and the robustness of free-energy based function
approximation can be improved by scaling the free-energy by
a constant scaling factor, Z, that is related to the size of the
Boltzmann machine, i.e., Qt = −Ft/Z. The update of the learning
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parameters (Equations 1–3) then becomes

θt+ 1 = θt + αδtet , (7)

δt = rt − γ
Ft(st+ 1, at+ 1)

Z
+ Ft(st , at)

Z
, (8)

et = γλet− 1 + 1

Z
∇θt (−Ft(st , at)). (9)

The derivatives of the negative free-energy, with respect to the
function approximator parameters (wik, ujk, bi, bj, and bk), can
be computed as

∇wik (−F(s, a)) = sihk,

∇ujk (−F(s, a)) = ajhk,

∇bi (−F(s, a)) = si,

∇bj (−F(s, a)) = aj,

∇bk (−F(s, a)) = hk. (10)

Since

θt+ 1 = θt + α

(
rt − γ

Ft(st+ 1, at+ 1)

Z
+ Ft(st , at)

Z

)
t∑

i= 1

γt − iλt− i

Z
∇θi(−Fi(si, ai)), (11)

= θt + α

Z2
(Zrt − γFt(st+ 1, at+ 1)+ Ft(st, at))

t∑
i= 1

γt − iλt− i∇θi(−Fi(si, ai)), (12)

the scaled version of FERL can be transformed to the original
formulation by re-scaling the learning rate (α′ = α/Z2) and the
magnitude of the reward function (r′t = Zrt).

2.3. ACTION SELECTION
In this study, we use softmax action selection with a Boltzmann
distribution, where the probability to select action a in state s is
defined as

P(a|s) = exp(Q(s, a)/τ)∑
b exp(Q(s, b)/τ)

. (13)

Here, τ is the temperature that controls the trade-off between
exploration and exploitation. In this study, we used hyper-
bolic discounting of the temperature and the temperature was
decreased every episode i:

τ(i) = τ0

1+ τki
. (14)

Here, τ0 is the initial temperature and τk controls the rate of
discounting.

To transform the scaled version to the original formulation
when using softmax action selection, the temperature has also to
be re-scaled (τ′ = Zτ).

2.4. DIGIT FLOOR GRIDWORLD TASK
Figure 2 shows the digit floor gridworld task. The thick purple
lines indicate the outer walls and the wall between state “1” and
state “4.” The yellow lines indicate zero reward state transitions.
The red lines indicate negative reward (−0.01) for premature state
transitions to the absorbing goal state (state “5”) from states “2,”
“6,” and “8.” The green line indicates positive reward (+1) for
successful completion of the task, i.e., state transition from state
“4” to state “5.” There were four actions that moved the agent one
step in the directions North, East, South, and West. If the agent
moved into a wall, then the agent remained in the current state
and received a zero reward. The agent started each episode at state
“1” and the goal of the task was to reach state “5” by moving coun-
terclockwise along a path through states “2,” “3,” “6,” “9,” “8,” “7,”
and “4.” Each state consisted of an image of a handwritten digit
from the MNIST data set (LeCun et al., 1998). The 28× 28 pixels
grayscale images were binarized by setting pixels with grayscale
values larger than or equal to 128 to 1 and pixels with values
smaller than or equal to 127 to 0. For each state, we used 20 differ-
ent digit images that were randomly selected from the first 1000
images in the MNIST data set. At the start of each episode, the
image for each state was randomly selected among the 20 possi-
ble images. An episode ended either when the agent moved to the
absorbing state (state “5”) or after a maximum number of steps
(set to 1000).

2.5. ROBOT VISUAL NAVIGATION TASK
For the robot navigation task we used a simulation environment
that was developed in MATLAB (2010) to mimic the proper-
ties of the Cyber Rodent robot (Doya and Uchibe, 2005). The
Cyber Rodent is a small mobile robot, 22 cm in length and
1.75 kg in weight. The robot has a variety of sensors, including an

FIGURE 2 | Digit floor gridworld task. The thick purple lines indicate the
outer walls and the wall between states “1” and “4.” The yellow lines
indicate zero reward state transitions. The red lines indicate negative
reward (−0.01) for premature state transitions to the absorbing goal state
(state “5”) from states “2,” “6,” and “8.” The green line indicates positive
reward (+1) for successful completion of the task, i.e., state transition from
state “4” to “5.”
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omnidirectional C-MOS camera, an infrared range sensor, seven
infrared proximity sensors, gyros, and accelerometers. It has two
wheels and a maximum speed of 1.3 ms−1. In addition to an
on-board CPU (SH-4), it has an FPGA for real-time color blob
detection.

The goal of the robot task (Figure 3) was to navigate to one of
the four goal areas in the corners of the 2.5× 2.5 m experimental
area [dashed quarter circles in Figure 3 (left panel)], by learning
to infer the correct goal area by the color of the upper part of four
landmarks (cyan color in Figure 3). The landmarks were located
outside the corners of the experimental area. The color of the
lower part of each landmark was unique and non-changing (red,
green, blue, and black colors in Figure 3), and could therefore
be used for localization. At the start of each episode, the correct
goal area was randomly changed, and, thereby, also the corre-
sponding color of the upper part of the landmarks. The robot
was randomly placed in one of the four starting areas [dotted
rectangles in Figure 3 (left panel)]. The initial position within
the starting area and the robot’s initial heading angle were also
randomly selected. We performed experiments with one goal area
(southwest), two goal areas (southwest and northeast), three goal
areas (southwest, southwest, and northeast), and all four goal
areas.

The robot’s simulated camera had a resolution of 738 (41×
18) pixels covering a horizontal field of view of ±75◦, with a
3.75◦ distance between the pixels. It could detect up to nine dif-
ferent colored objects: obstacles (purple in Figure 3), the lower
part of the four landmarks (red, green, blue, and black in
Figure 3), and one to four colors of the upper part of the land-
marks (cyan in Figure 3), depending on the number of goals in
the experiment. Within the field of view, the landmarks were
visible from all distances and the obstacles were visible up to
2 m. The size of an object in the camera image increased with
the inverse of the distance to the object. The state vector was

constructed by creating a binary image of equal size to the orig-
inal image for each color the robot could detect. The pixels
that detected a colored object was extracted from the original
image and the same pixels in the corresponding binary image
was set to 1. All other pixels were set to 0. In addition, the state
vector consisted of three normalized real-valued distance mea-
sures from the robot’s front proximity sensors, located at −30◦,
0◦, and +30◦ in relation to the robot’s heading direction. The
distance information was normalized to the interval [0, 1] and
higher values corresponded to shorter distances. The total length
of the state vector in the experiment with four goals was 6645
(41× 18× 9 + 3). The robot could execute five actions, pairs
of velocities (cm/s) of the left and the right wheels: rotate right
(20,−20), curve right (40, 20), go straight (30, 30), curve left
(20, 40), and rotate left (−20, 20). Gaussian noise was added
to each wheel velocity, with zero mean and a standard devia-
tion equal to 1% of the amplitude of the velocity. An episode
ended either when the robot moved its head inside the cor-
rect goal area or when the length of the episode exceeded a
fixed threshold of 2000 time steps. The robot received a +1
reward if it reached the correct goal area, otherwise the reward
was set to 0.

3. RESULTS
To evaluate the proposed scaled version of FERL, we compared
the performance with standard FERL and with function approx-
imation using a two-layered feedforward neural network (here-
after NNRL). The state nodes si of the neural network were
connected to K hidden nodes by weights wik. The hidden
nodes had sigmoid activation functions (Equation 6), δk =
σ(
∑

i wiksi). The hidden nodes were connected to Q-value
output nodes with linear activation by weights wka. The
approximated Q-values were computed as the linear com-
bination of the output weights and the hidden activation

FIGURE 3 | Overview of the experimental area for the visual

navigation tasks (left panel) and the camera image corresponding to

the robot’s position in the environment (right panel). In the left panel,
the dashed quarter circles at the corners indicate the four goal areas and
the dotted rectangles indicate the starting areas. The circles outside the
experimental area indicate the four landmarks. The color of the lower part

of each landmark was unique and non-changing. The color of the upper
part of all landmarks corresponded to the correct goal area and was
randomly changed at the start of each episode. Note that the difference in
radius between the lower and the upper part of the landmarks is only for
illustrative purposes. In the experiments, both parts of the landmarks had
the same radius.
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[Q(s, a) =∑k wkaδk], with derivatives with respect to the weight
parameters computed as

∇wik (Q(s, a)) = δk(1− δk)wkasi,

∇wka (Q(s, a)) = δk. (15)

For the scaled FERL, we concluded after a trial and error process
that a scaling factor equal to the square root of the number of state
nodes (Z = √Ns) was an appropriate value for the experiments
conducted in this study. For both tasks, the number of hidden
nodes (K) was set to 20 for all three methods. In the gridworld
task, we tested the robustness of the methods with the respect to
different exploration schedules by comparing the learning perfor-
mance for action selection with τ0 set to 0.5, 1, and 2 and τk set
to 0.01, 0.001, and 0.0005 (Equation 14). In the robot navigation
task, τ0 and τk were determined by searching for appropriate val-
ues in the experiment setting with two goal targets. τ0 was set to
0.5 for all three methods. τk was set to 0.01 for scaled FERL and
0.002 for FERL and NNRL. Table 1 shows the settings of α, γ, and

Table 1 | Meta-parameter settings for the experiments.

Gridworld task Robot task

Scaled FERL FERL NNRL Scaled FERL FERL NNRL

α 0.01× Z 0.001 0.001 0.01× Z 0.001 0.001

γ 0.96 0.96 0.96 0.98 0.98 0.98

λ 0.8 0.8 0.8 0.8 0.8 0.8

λ in the experiments. For all three methods, the weights were ran-
domly initialized using a Gaussian distribution with zero mean.
For the weights connecting the state nodes and the hidden nodes
the variance was equal to 0.001 and for weights connecting the
hidden nodes and the action nodes the variance was equal to 1.

3.1. DIGIT FLOOR GRIDWORLD TASK
For the gridworld task, we performed 20 simulations runs for
each method and each setting of τ0 and τk. Figure 4 shows the
average rewards computed over every 100 episodes. The result
clearly shows better and more robust learning performance for
scaled FERL (left panel in Figure 4). The learning converged
to average reward values exactly equal to, or close to equal to,
the maximum reward of 1 for 8 out of the 9 different set-
tings of τ0 and τk. The only exception was the experiment with
the largest initial temperature (τ0 = 2) and lowest discount rate
(τk = 0.0005) where the average reward was still increasing at the
end of learning (dotted blue line in the left panel in Figure 4). The
learning speed was, not surprisingly, determined by the explo-
ration schedule. Experiments with smaller initial temperatures
and higher discount rates converged faster. In the experiment with
the smallest initial temperature (τ0 = 0.5) and highest discount
rate (τk = 0.01), the average learning performance reached close
to 1 after about 2500 episodes (solid red line in the left panel in
Figure 4). The learning then converged after about 5250 episodes
with the average reward exactly equal to 1 with 0 variance. If
we define successful learning as a simulation run where, at the
end of learning, the greedy action [argmaxa Q(s, a)] was equal
to the optimal action for all 20 digit images for all states, then

FIGURE 4 | The average reward computed over every 100 episodes

and 20 simulation runs, for scaled FERL (left panel), FERL (middle

panel), and NNRL (right panel). The line colors correspond to the

settings of τk (red: 0.01, green: 0.001, and blue: 0.0005) and the line
types correspond to the setting of τ0 (solid: 0.5, dashed: 1, and
dotted: 2).
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scaled FERL was successful in 100% (20) of the simulation runs
for eight settings of τ0 and τk. The only exception was, again, the
experiment with τ0 = 2 and τk = 0.0005, where 90% (18) of the
simulation runs were successful.

The exploration schedule did also effect the learning of the
Q-values for optimal and non-optimal actions. Figure 5 shows
the average learned Q-values (circles) with standard deviations
(bars) in the experiments with τ0 = 0.01 and τk = 0.01 (left
panel), τ0 = 1 and τk = 0.001 (middle panel), and τ0 = 2 and
τk = 0.0005 (right panel), computed over all state images for all
states in all 20 simulation runs for scaled FERL. The different col-
ors show the values of the four different types of actions for the
states along path from the initial state “1” to the goal state “5”:
(1) red for optimal actions; (2) blue for actions that moved the
agent into a wall; (3) purple for actions that moved the agent
away from the goal; and (4) black for negative rewarded actions.
Since the goal reward was set to+1, the optimal Q-values (dashed
red lines) were equal to γt− 1, where t is the number of steps to
the goal. A move into a wall increased the steps to the goal by
one (optimal Q-values equal to γt , see dashed blue lines) and
actions that moved agent away from the goal increased the steps
to the goal by 2 (optimal Q-values equal to γt+ 1, see dashed pur-
ple lines). In the experiment with the smallest initial temperature
and highest discount rate (left panel in Figure 5), scaled FERL
learned almost perfect Q-values for the optimal actions. For the
non-optimal actions, the average Q-values differed significantly

FIGURE 5 | Average Q-values (circles) with standard deviation (bars)

computed over all 20 simulation runs using scaled FERL in the

experiments with τ0 = 0.01 and τk = 0.01 (left panel), τ0 = 1 and

τk = 0.001 (middle panel), and τ0 = 2 and τk = 0.0005 (right panel). The
figure shows the average learned Q-values, along the optimal path from
the initial state “1” to the goal state “5,” of the four types of actions:
(1) optimal actions (red); (2) actions that moved the agent into a wall (blue);
(3) actions that moved the agent away from the goal (purple); and (4)
negative rewarded actions (black).

from the optimal Q-values and for several states the learned
values were in the wrong order. This is explained by the fast con-
vergence of the learning. The average number of steps to goal
converged close to the optimal number of steps of 8 after about
5000 episodes and to exactly 8 steps after about 25,000 episodes.
After the initial learning phase, there was almost no exploration to
improve the estimates of the Q-values of the non-optimal actions,
only exploitation of the already learned optimal actions. In the
experiments with larger initial temperatures and lower discount
rates (middle and right panels in Figure 5), scaled FERL not only
learned estimates of the Q-values for the optimal actions, but of
the full action-value function. In both experiments, there were
clear separations between the average Q-values for all actions
in all states. At the end of learning, there was still considerable
exploration of the environment, even if the greedy actions were
equal to the optimal actions for all, or almost all, state images.
The average number of steps to the goal were 10.2 steps (τ0 = 1
and τk = 0.001) and 19.8 steps (τ0 = 2 and τk = 0.0005). The
results showed a trade-off between fast learning convergence,
which required fast decay of the temperature, and learning of
the full action-value function, which required slower decay of the
temperature and much longer learning time.

FERL and NNRL (middle and right panels in Figure 4)
required careful tuning of both τ0 and τk to converge to aver-
age reward values close to the maximum reward of 1 within the
learning time. FERL achieved this for only two settings of τ0 and
τk (dashed green and solid blue lines in Figure 4) and NNRL
achieved this for three settings (dashed green, dotted green, and
dashed blue lines in Figure 4). The low average learning perfor-
mance for many settings of τ0 and τk was caused by that the
learning completely failed in some simulation runs. The agent
either moved prematurely to the goal state (−0.01 reward), or
the agent remained in the gridworld until the maximum num-
ber of steps (1000) had passed. In general, NNRL learned faster
and had a higher rate of successful learning, compared with FERL.
For NNRL, the highest rate of successful learning was 100% of the
simulations runs (τ0 = 1 and τk = 0.001) and the average success
rate, computed over all nine settings of τ0 and τk, was 76%. For
FERL, the highest success rate was 70% (τ0 = 1 and τk = 0.001)
and the average success rate was only 30%.

To try to explain the difference in performance between the
scaled version of FERL and standard FERL, we looked at the pat-
terns of activation in the hidden nodes. Figure 6 shows typical
hidden activation patterns after successful learning, for all 20 digit
images for all states. The displayed activation patterns are grouped
according to state and optimal action, i.e., South for states “1,”
“2,” and “4,” East for states “3” and “6,” North for states “8”
and “9,” and West for state “7.” The difference in hidden activa-
tion patterns between the two methods is quite remarkable. FERL
learned a very sparse and strong action-coding with minimal
separation between images of the same digit and between states
with the same optimal action. The action-coding was achieved
with a few active hidden nodes and the majority of the nodes
were silent for all state inputs. In the hidden activation pattern
shown in Figure 6, the action-coding was achieved using almost
only hidden node 17. The actions were separated by differences
in the node’s activation level: 0.16± 0.04 for South, 0.44± 0.06
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for East, 0.92± 0.03 for North, and 0.65± 0.06 for West. In con-
trast, the coding learned by scaled FERL was much more complex
with no silent hidden nodes. The pattern of hidden activation did
not only separate states according to optimal action, there was
also clear differentiation between states and even individual state
images.

FIGURE 6 | Typical hidden activation patterns after successful learning

for FERL (left panel) and scaled FERL (right panel). The figures show the
activation of all 20 hidden nodes for all 20 digit images for all states.

3.2. ROBOT VISUAL NAVIGATION TASK
The result of robot navigation task is summarized in Figure 7.
The left panel shows the average number of steps to goal, com-
puted over every 100 episodes and 10 simulation runs for each
experiment. The right panel shows the average number of steps
to goal with standard deviation in the final 100 episodes. Scaled
FERL converged to similar average number of time steps to goal,
with low variance, in all simulation runs in each of the four
experiments. The learning converged faster and the final learn-
ing performance was significantly better (p < 0.001) in all four
experiments. The only exception was NNRL in the one goal exper-
iment, which performed very similar to scaled FERL, both with
respect to convergence speed and final learning performance. For
experiments with 2 and 3 goals, NNRL performed almost as well
as scaled FERL. The learning performance decreased significantly
in the experiment with four goals. NNRL failed to learn to nav-
igate to the goal for at least one starting area and one goal area
in 7 (out of 10) simulation runs. The final learning performance
of FERL was reasonably good in the experiments with one and
two goals. The learning only failed in one simulation run, in
the experiment with two goals. However, the convergence speed
was slow compared to the other two methods. In the experi-
ments with 3 and 4 goals, the learning performance decreased
significantly and the learning failed in 4 and 5 simulation runs,
respectively.

To try to explain the difference in learning performance
between standard FERL and scaled FERL, we looked at learned
trajectories and the corresponding hidden activation patterns.
Figure 8 shows typical trajectories learned by FERL (left panel)
and scaled FERL (right panel) for navigating to the northeast
(NE) goal and the southwest (SW) goal in the experiment with
two goals, starting from the center of the south starting area and
the north starting area, respectively, and facing the outer wall.

FIGURE 7 | The average number of time steps to goal for the whole

learning process (left panel) and in the final 100 episodes (right

panel), for the four experiments with 1, 2, 3, and 4 goal areas. The
average values were computed over every 100 episodes and 10 simulation
runs in each experiment. In the left panel, the line type indicates the

number of goals: dotted lines for 1 goal, dash-dotted lines for 2 goals,
dashed lines for 3 goals, and solid lines for 4 goals. The colored asterisks
in the right panel indicate experiments in which the final average
performance of scaled FERL was significantly better (p < 0.001) than
NNRL (black) or FERL (blue).
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The color coding indicates the selected actions: red for rotate right
(action 1), green for curve right (action 2), blue for go straight
(action 3), yellow for curve left (action 4), and cyan for rotate left
(action 5). Figure 9 shows the activation of the hidden nodes and
the selected actions along the learned trajectories.

FIGURE 8 | Typical trajectories learned by FERL (left panel) and scaled

FERL (right panel) for navigating to the northeast goal and the

southwest goal in the experiment with two goals. The color coding
indicates the selected actions: red for rotate right (action 1), green for curve
right (action 2), blue for go straight (action 3), yellow for curve left (action 4),
and cyan for rotate left (action 5).

The learned policies and the hidden activation patterns were
very different between the two methods. FERL learned a policy
which selected separate combinations of actions for navigation
to different goal areas. In the example shown in the left panel in
Figure 8, the robot only executed the curve right and the rotate
left actions to reach the NE goal, after the initial part of the tra-
jectory. To reach the SW goal, the robot executed either the curve
right and the curve left actions to pass obstacles, or the go straight
action to move toward the goal and the rotate right action for
course corrections. FERL learned, as in the gridworld task, a very
sparse and strong action-coding with little separation between
states corresponding to the same action (left panels in Figure 9).
Each action corresponded to the activation of one or few hidden
nodes, e.g., hidden node 6 coded action 5 (rotate left) and hidden
node 7 coded action 4 (curve left). Scaled FERL learned a policy
which selected similar actions in corresponding positions along
the trajectories to different goals, as shown in the right panel in
Figure 8. In contrast to FERL, there was clear differentiation in
the hidden activation patterns for different states (right panels
in Figure 9).

4. DISCUSSION
In this study, we proposed a scaled version of FERL, where the
action-value function is approximated as the negative free-energy
of a restricted Boltzmann machine, divided by a constant scaling

FIGURE 9 | Hidden activation patterns and selected actions for the states along the trajectories to the northeast goal (top panels) and southwest

goal (bottom panels) shown in Figure 8, for FERL (left panels) and scaled FERL (right panels).
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factor. The scaling factor was set to the square root of the number
of state nodes. To validate our proposed method, we compared
the learning performance with standard FERL and with NNRL
(function approximation using a two-layered feedforward neu-
ral network), for a digit floor gridworld task and a robot visual
navigation task. The learning with scaled FERL performed sig-
nificantly better than the other two methods for both tasks.
In the gridworld task, we also compared the robustness with
respect to different exploration schedules (i.e., settings of ini-
tial temperature and temperature discount rate in softmax action
selection). The learning with scaled FERL was very robust and
the results showed a trade-off between fast learning convergence,
which required fast decay of the temperature, and learning of
the full action-value function, which required slower decay of
the temperature and much longer learning time. In contrast, the
learning with FERL and NNRL could only converge to average
reward values close to the maximum reward for a narrow range
of initial temperatures and discount rates. Analysis of activation
patterns in the hidden nodes showed big differences between
FERL and scaled FERL. FERL learned a very sparse action-
coding with little separation between different states correspond-
ing to the same action. In contrast, scaled FERL learned a much
richer neural encoding with no silent hidden nodes and clear
separation between different states corresponding to the same
action.

Although quite arbitrary, the setting of the scaling factor to the
square root of the number of state nodes worked very well for the
tasks considered in this study. One reason was probably that we
used the same number of hidden nodes (20) in all experiments.
A more general setting of the scaling factor should probably also
include the number of hidden nodes, because the magnitude
of the initial negative free-energy increases with the number of
hidden nodes of the Boltzmann machine. For example, in the
gridworld task, the magnitude of the initial negative free-energy
is about 16 with 20 hidden nodes, about 80 with 100 hidden
nodes, and about 160 with 200 hidden nodes. An alternative
approach would be to include the scaling factor as a parame-
ter of the function approximator. The scaling factor, Z, would
then be updated according to ∇ZQt = Ft/Z2. We plan to inves-
tigate the setting of the scaling factor more thoroughly in future
work.

The introduction of the scaling factor can ensure that the
Q-values are initialized within a more appropriate range, e.g.,
between zero and one in the episodic delayed reward tasks with
a goal reward of +1 considered in this study. This could partly
explain why the learning with scaled FERL was more stable than
learning with FERL. However, it does not explain the much faster
convergence speed of scaled FERL and the remarkable difference
in activation patterns of the hidden nodes. These issues will also
be explored in future work.

In our earlier research, we have developed methods such as
multiple model-based reinforcement learning (MMRL) (Doya
et al., 2002) and competitive-cooperative-concurrent reinforce-
ment learning with importance sampling (CLIS) (Uchibe and
Doya, 2004) to improve the learning performance and the
learning speed of reinforcement learning. FERL and such
methods are complementary and suitable for different types

of learning tasks. Restricted Boltzmann machines are global
function approximators. They grow linearly with number of
nodes and they are, therefore, well suited for tasks with very
high-dimensional binary state inputs, such as binarized images.
FERL offers few, if any, benefits in tasks with low-dimensional
state spaces and real-valued state input. MMRL has proven to
work well for low-dimensional non-linear control problems, but
would, in our opinion, not scale well to tasks with very high-
dimensional state input. In addition, MMRL requires a contin-
uous reward function, because each module learns its policy in
separate parts of the state space and there is no sharing of values
between modules. In the two task in this study, it would there-
fore be impossible for a module to learn a policy for a part of the
trajectory to the goal, since the reward is zero for all state tran-
sitions except transitions to the absorbing goal state. CLIS was
developed for tasks with real-valued state input. CLIS selects an
appropriate policy out of a set of heterogeneous modules with
different levels of resolution in the state representation (i.e., sim-
pler modules with coarse discretization of the state input and
more complex modules with fine discretization of the state input).
The CLIS framework, therefore, offers no benefit for tasks with
binary state inputs. A common alternative approach to use an
advanced function approximator, such as FERL, is to use a hybrid
approach with a separate state abstraction module combined with
a simple reinforcement learning algorithm. In our experience,
a hybrid approach makes concurrent learning difficult, because
it in most cases requires pre-training of the state abstraction
module to achieve efficient learning. The experimental results in
this study show that scaled FERL can achieve both fast learning
convergence (with appropriate settings of τ0 and τk) and gener-
alization of the state space in the neural encoding in the hidden
layer.

In this study, we used a machine learning approach to visual
navigation in neurorobotics, where the neural encoding is an
emergent property of the function approximation used in the
learning algorithm. An alternative approach is to use biologically-
inspired computational modeling of the brain circuits involved in
navigation in real animals (Arleo and Gerstner, 2000; Krichmar
et al., 2005; Fleischer et al., 2007; Barrera and Weitzenfeld,
2008; Giovannangeli and Gaussier, 2008; Milford and Wyeth,
2010; Caluwaerts et al., 2012). Currently, the two approaches
are mostly complementary. In the former approach, the main
focus is to develop efficient and robust learning algorithms that
works well for a wide variety of learning tasks. In the lat-
ter approach, the main focus is to increase our understanding
of the underlying brain mechanisms of animal behavior. The
most important test is whether the robot’s behavior and the
activity of the simulated nervous system match empirical data
from experiments with real animals. A natural long-term goal
of neurorobotics would be to merge the two approaches to
achieve both efficient learning and biologically plausible neural
encoding.
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Why are you reading this abstract? In some sense, your answer will cast the exercise
as valuable—but what is value? In what follows, we suggest that value is evidence or,
more exactly, log Bayesian evidence. This implies that a sufficient explanation for valuable
behavior is the accumulation of evidence for internal models of our world. This contrasts
with normative models of optimal control and reinforcement learning, which assume the
existence of a value function that explains behavior, where (somewhat tautologically)
behavior maximizes value. In this paper, we consider an alternative formulation—active
inference—that replaces policies in normative models with prior beliefs about the (future)
states agents should occupy. This enables optimal behavior to be cast purely in terms
of inference: where agents sample their sensorium to maximize the evidence for their
generative model of hidden states in the world, and minimize their uncertainty about those
states. Crucially, this formulation resolves the tautology inherent in normative models and
allows one to consider how prior beliefs are themselves optimized in a hierarchical setting.
We illustrate these points by showing that any optimal policy can be specified with prior
beliefs in the context of Bayesian inference. We then show how these prior beliefs are
themselves prescribed by an imperative to minimize uncertainty. This formulation explains
the saccadic eye movements required to read this text and defines the value of the visual
sensations you are soliciting.

Keywords: free energy, active inference, value, evidence, surprise, self-organization, selection, Bayesian

INTRODUCTION
So, why are you reading this paper? According to what follows, the
answer is fairly simple: you are compelled to selectively sample
sensory input that conforms to your predictions and—a priori—
you believe that reading this text will reduce your uncertainty
about what we are going to say (you are going to see) next.
This may sound a rather trite explanation but it contains two
fundamental premises. Both of these premises can be motivated
from the basic principles of self-organization: namely, the imper-
ative to minimize surprise (maximize evidence) associated with
sensory states—by actively sampling the environment—and the
imperative to minimize uncertainty about the inferred causes of
that input—by making inferences about future or fictive states.
Together, these provide a complete account of optimal behavior,
in which value becomes log-evidence or negative surprise. This
paper tries to unpack these assertions using formal arguments and
simulations. In fact, the final simulation reproduces a simple form
of reading, in which an agent garners evidence for its beliefs using
saccadic eye movements (Rayner, 1978).

Implicit in this account of optimal behavior is a hierarchical
perspective on optimization, in which behavior is cast as active
Bayesian inference that is constrained by prior beliefs. Crucially,
these prior beliefs are themselves optimized at a higher hierarchal
level. This is important because it resolves the tautology inher-
ent in normative schemes based upon optimal control theory
and cost or reward functions. The tautology here is almost self-
evident: if behavior is optimal, then it maximizes value. But what

is value—other than an objective function that describes optimal
behavior. It is this descriptive (circular) aspect of conventional
formulations we associate with normative schemes. Put simply,
adopting a normative model subverts questions about the origin
and optimization of value functions per se. For example, it would
be difficult to specify a reward or value function that explains why
you are reading this text.

In the context of active inference, this issue is resolved by
appeal to hierarchical Bayesian inference, in which optimization
at one level is constrained by empirical priors from a higher
level. Optimization in this setting refers to maximizing Bayesian
model evidence (or minimizing surprise). In most real-world
examples—for example the Bayesian brain (Yuille and Kersten,
2006)—a hierarchical aspect to inference emerges naturally from
a separation of temporal scales. For example, inference about
the causes of some data is constrained by the parameters of a
generative model that are learned after all the data have been
seen. Similarly, the form of the model itself can be optimized
through model selection, after the parameters of competing mod-
els have been optimized. Neurobiologically, these optimization
or inference processes may be associated with synaptic activ-
ity, synaptic plasticity and synaptic regression—each operating
at successively slower timescales. Although the optimization pro-
cesses may differ (e.g., neuronal dynamics, associative learning,
and neurodevelopment), they are all fulfilling the same objective;
namely, to maximize the Bayesian model evidence averaged over
time. Clearly, one can develop this hierarchical perspective to an
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evolutionary level, where natural selection may play the role of
Bayesian model selection. In short, contextualizing optimization
processes at different temporal scales allows one to examine the
process theories (putative implementation) at each level and con-
sider them in relation to the level above. We will see an example
of this later, in terms of empirical prior beliefs that are updated
slowly after fast eye movements. Furthermore, formulating opti-
mal behavior in terms of active inference means that one can
associate value in normative schemes with probabilistic attributes
of sensory states. This is important because it provides a link
between normative models of optimal control and normative
models based upon information theory (Barlow, 1961; Linsker,
1990; Bialek et al., 2001; Zetzsche and Röhrbein, 2001)—such as
the principle of least action, the principle of maximum entropy,
the principle of minimum redundancy and the principle of maxi-
mum information transfer. This link rests on replacing reward or
cost functions in optimal control theory with prior beliefs in the
context of Bayes-optimal inference.

OVERVIEW
This paper comprises six sections. The first three focus on con-
ventional optimal control and reinforcement learning schemes
and their formulation in terms of active inference. In partic-
ular, they show how cost functions can be replaced by prior
beliefs under active inference. These sections use discrete time
formulations and summarises the material in Friston et al.
(2012b). The final three sections consider where prior beliefs
come and move from the abstract formulations of normative
models to biophysically realistic formulations. These sections use
continuous time and summarises the material in Friston et al.
(2012a).

The first section reviews the role of cost and value functions
in Markov decision processes (MDPs) and their extensions to
partially observable Markov decision processes (POMDPs). We
then revisit these formulations from the point of view of active
inference and demonstrate their formal relationships. In brief,
active inference separates inference about hidden states causing
observations from action. The motivation for this is pragmatic;
in that real agents cannot know how their action affects hidden
states (because hidden states have to be inferred). This means
that action must be based on a function of observed states,
as opposed to hidden states. Active inference assumes that this
function is the same variational free energy used in approxi-
mate Bayesian inference (Hinton and van Camp, 1993; Dayan
et al., 1995; MacKay, 1995; Neal and Hinton, 1998). In other
words, active inference extends the minimization of variational
free energy that underlies approximate Bayesian inference to
include action (Friston et al., 2010b). However, requiring action
to minimize variational free energy appears to contradict opti-
mal control theory, which requires action to minimize expected
cost. The purpose of the second section is to resolve this con-
flict. We will see that the cost functions that are used to guide
action in optimal control can be absorbed into prior beliefs in
active inference. Effectively, this means that agents expect their
state transitions to minimize cost, while action realizes these prior
beliefs by maximizing the marginal likelihood of observations.
This means one can use standard Bayesian inference schemes

to solve optimal control problems—see also McKinstry et al.
(2006). The third section illustrates this by showing how opti-
mal policies can be inferred under prior beliefs about future
(terminal) states using standard variational Bayesian procedures
(Beal, 2003). This section concludes with an example (the moun-
tain car problem) that illustrates how active inference furnishes
online nonlinear optimal control, with partially observed (hid-
den) states.

The fourth section turns to the nature and origin of prior
beliefs and shows how they can be derived from the basic imper-
atives of self-organization (Ashby, 1947; Tschacher and Haken,
2007). This section uses a general but rather abstract formu-
lation of agents—in terms of the states they can occupy—that
enables us to explain action, perception and control as corol-
laries of variational free energy minimization. The focus here is
on prior beliefs about control and how they relate to the princi-
ple of maximum mutual information and specific treatments of
visual attention such as Bayesian surprise (Itti and Baldi, 2009).
Having established the underlying theory, the fifth section con-
siders neurobiological implementations in terms of predictive
coding and recurrent message passing in the brain. This sec-
tion reprises a neural architecture we have described in previous
publications and extends it to include the encoding of prior
beliefs in terms of (place coded) saliency maps. The final sec-
tion provides an illustration of the basic ideas, using neuronally
plausible simulations of visual search and the control of saccadic
eye movements. This illustration allows us to understand Bayes-
optimal searches in terms of the accumulation of evidence during
perceptual synthesis.

MARKOVIAN FORMULATIONS OF VALUE AND OPTIMAL
CONTROL
In the following sections, we apply variational free energy min-
imization to a well-studied problem in optimal decision theory,
psychology and machine learning; namely MDPs. In brief, we
show that free energy minimization (active inference) and opti-
mal decision theory provide the same solutions when the policies
from optimal decision theory are replaced by prior beliefs about
transitions from one state to another. This is important because
specifying behavior in terms of prior beliefs finesses the diffi-
cult problem of optimizing behavior to access distal rewards.
Furthermore, it enables one to consider optimality in terms of
accessing particular states in the future. Bayes-optimal behav-
ior then depends upon a representation of future behaviors that
necessarily entails a model of agency.

This section considers discrete time (Markov) decision pro-
cesses of the sort found in optimal control theory, models of
behavior and decision making (Bellman, 1952; Watkins and
Dayan, 1992; Camerer, 2003; Daw and Doya, 2006; Todorov,
2006; Dayan and Daw, 2008). Its aim is to establish a link between
classical approaches to optimizing decisions, in terms of policy
optimization, and the variational free energy minimization that
underlies active inference (Beal, 2003; Friston et al., 2009). Here,
classical schemes are taken to imply that actions (and beliefs about
hidden states of the world) are chosen to maximize the expected
reward of future states. Conversely, in active inference, actions and
beliefs minimize a variational free energy bound on the (negative
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log) marginal likelihood of observed states—that is, they maximize
the marginal likelihood or Bayesian model evidence. Linking the
two formulations necessarily requires us to formulate free energy
minimization in discrete time and think about how reward or cost
functions are accommodated.

The key distinction between optimal control and active infer-
ence is that in optimal control, action optimizes the expected cost
associated with the hidden states a system or agent visits. In con-
trast, active inference requires action to optimize the marginal
likelihood (Bayesian model evidence) of observed states, under
a generative model. This introduces a distinction between cost-
based optimal control and Bayes-optimal control that eschews
cost. The two approaches are easily reconciled by ensuring the
generative model embodies prior beliefs about state transitions
that minimize expected cost. Our purpose is therefore not to
propose an alternative implementation of optimal control but
accommodate optimal control within the larger framework of
active inference.

MARKOV DECISION PROCESSES
First, we briefly consider Markov decision problems and their
solutions based upon cost or reward functions that are an integral
part of optimal control theory and reinforcement learning.

Notation and set up: We will use X for a finite set of states
and x ∈ X for particular values. A probability distribution will be
denoted by P(x) = Pr{X = x} using the usual conventions. The
tilde notation x̃ = (x0, . . . , xT) denotes a sequence of values at
time points t = 0, . . . , T.

Definition: A Markov decision process is the tuple (X, A, T, r),
where

• Hidden states X—a finite set of states.
• Action A—a finite set of actions.
• Transition probability T(x′|x, a) = Pr({xt+1 = x′|xt = x, at =

a})—the probability that the state x′ ∈ X at time t + 1 follows
action a ∈ A in state x ∈ X at time t.
• Reward r(x) ∈ R—some reward received at state x′ ∈ X.

Problem: The goal is to find a policy π : X→ A that maxi-
mizes cumulative rewards. This can be expressed in terms of the
sequence of actions ã := (a0, . . . , aT) that maximizes value or
negative cost-to-go:

V(x) = max
ã

{
r(x)+

T∑
i=1

∑
x′

Pr({xi = x′|x0 = x,

a0, . . . , ai})r(x′)
}

(1)

The solution to this equation is a policy or sequence of optimal
actions at := π(xt) that maximizes expected reward in the future,
given a probabilistic model of state transitions. In this setting,
(T, r) constitutes a model that comprises a transition matrix and
rewards defined on states. Equation (1) can be expressed as the
Bellman optimality equation by exploiting the Markovian nature

of the problem using recursive substitution (Bellman, 1952):

V(x) = max
a

{
r(x)+

∑
s′

T(x′|x, a)V(x′)
}

(2)

For simplicity, we have assumed a finite horizon problem,
in which the reward is maximized from t = 0 to t = T. This
allows us to eschew notions of discounting required in infi-
nite horizon problems. Solutions to MDPs can be divided into
reinforcement learning schemes that compute the value function
explicitly and direct policy searches that find the optimal policy
directly.

In direct policy searches (Williams, 1992; Baxter et al., 2001;
Gomez and Miikkulainen, 2001), a policy is optimized by map-
ping each state directly to an action, without reference to the value
of the state. Direct policy searches are useful when the value func-
tion is hard to learn but the policy is easy to find. In reinforcement
learning there are two general approaches: The first model based
schemes compute the value function using a model of state transi-
tions and is usually considered when the state space is sufficiently
small. This is also known as dynamic programming and involves
iterating the following two steps (Bellman, 1952):

π(x) = arg max
a

{
r(x)+

∑
s′

T(x′|x, a)V(x′)
}

V(x) = r(x)+
∑

s′
T(x′|x,π(x))V(x′)

(3)

This scheme is guaranteed to find the optimal solution, pro-
vided all states are visited. In value iteration or backwards induc-
tion, the policy is only calculated when needed. This gives the
combined step in (1). In policy iteration (Howard, 1960), the first
step is repeated until convergence, thereby providing a definite
stopping condition. If the transition probabilities or rewards are
unknown or the state space is large (precluding a visit to every
state), the problem is usually solved with model free reinforce-
ment learning. In these schemes the value function is itself learnt
(Rescorla and Wagner, 1972; Sutton and Barto, 1981; Watkins
and Dayan, 1992; Friston et al., 1994): This enables one to solve
Markov decision problems without learning the transition proba-
bilities, because the value function acts as a guidance function for
action.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
The formulation above assumes that the agent knows what state
it is in. This is often unrealistic because an agent cannot know
the exact state of the world, given noisy or partial observations
(Rao, 2010). This leads to an extension of the MDP framework
to accommodate partially observed states (Kaelbling et al., 1998);
namely a POMDP. Although it is possible to solve POMDPs
using direct policy searches (Gomez et al., 2009), one cannot
perform value iteration or reinforcement learning directly, as
they require the hidden states. However, a POMDP can be con-
verted to a MDP using beliefs about the current state that can
be computed recursively from the observations and actions using
Bayes rule. This enables one to convert the partially observed
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process to a (Belief) MDP by treating the beliefs as states and
replacing reward with its expected value under the current belief
state.

In summary, conventional approaches to MDPs rest on the
optimization of future rewards and specify an optimal policy in
terms of an action from any given state. Partially observed MDPs
make inference explicit by introducing a probabilistic mapping
between hidden states of the world and observations. In this set-
ting, the beliefs that the agent forms (by observing histories of
actions and states) can be exploited to optimize behavior.

OPTIMAL CONTROL AS INFERENCE
Our focus is on optimal decision making or control as an infer-
ence process: see Filatov and Unbehauen (2004) for a review of
early work in this area. Initial approaches were based on con-
verting control problems into inference problems—by replacing
reward with an auxiliary random variable conditioned on desired
observations. This makes maximizing reward equivalent to max-
imizing the likelihood of desired observations (Cooper, 1988;
Shachter, 1988). Subsequent work focused on efficient meth-
ods to solve the ensuing inference problem (Jensen et al., 1994;
Zhang, 1998). Later, Dayan and Hinton (1997) proposed an
Expectation Maximization algorithm for reinforcement learning
with immediate rewards, while Toussaint and Storkey (2006) cast
the problem of computing optimal policies as a likelihood max-
imization problem. This generalized the work of Cooper (1988)
and Shachter (1988) to the case of infinite horizons and cost func-
tions over future states. More recently, this approach has been
pursued by applying Bayesian procedures to problems of opti-
mal decision making in MDPs (Botvinick and An, 2008; Toussaint
et al., 2008; Hoffman et al., 2009).

Related work on stochastic optimal control (Kappen, 2005a,b;
van den Broek et al., 2008; Rawlik et al., 2010) exploits the reduc-
tion of control problems to inference problems by appealing to
variational techniques to provide efficient and computationally
tractable solutions. In particular, formulating the problem in
terms of Kullback–Leibler minimization (Kappen, 2005a,b) and
path integrals of cost functions (Theodorou et al., 2010; Braun
et al., 2011).

The variational formalism has also found a powerful appli-
cation in the setting of optimal control and the construction of
adaptive agents. For example, Ortega and Braun (2010), con-
sider the problem of optimizing active agents, where past actions
need to be treated as causal interventions. They show that that
the solution to this variational problem is given by a stochas-
tic controller called the Bayesian control rule, which implements
adaptive behavior as a mixture of experts. This work illustrates
the close connections between minimizing (relative) entropy and
the ensuing active Bayesian inference that we will appeal to the
later.

SUMMARY
In summary, current approaches to partially observed MDPs and
stochastic optimal control minimize cumulative cost using the
same procedures employed by maximum likelihood and approxi-
mate Bayesian inference schemes. Indeed, the formal equivalence
between optimal control and estimation was acknowledged by

Kalman at the inception of Bayesian filtering schemes (Todorov,
2008). In the next section, we revisit this equivalence and show
that any optimal control problem can be formulated as a Bayesian
inference problem, within the active inference framework. The
key aspect of this formulation is that action does not mini-
mize cumulative cost but maximizes the marginal likelihood of
observations, under a generative model that entails an optimal
policy.

ACTIVE INFERENCE
This section introduces active inference, in which the optimiza-
tion of action and beliefs about hidden states are treated as two
separate processes that both maximize Bayesian model evidence
or the marginal likelihood of observations. In active inference,
action elicits observations that are the most plausible under beliefs
about (future) states. This is in contrast to conventional formu-
lations, in which actions are chosen to elicit (valuable) states. We
will see that active inference can implement any optimal policy;
however, it does not solve the optimal control problem explic-
itly, because active inference does not minimize cost-to-go but
minimizes the surprise of observations (maximizes their marginal
likelihood). This follows from the fact that active inference is a
corollary of the free energy principle:

THE FREE-ENERGY PRINCIPLE
The free-energy principle (Friston et al., 2006) tries to explain
how agents occupy a small number of attracting states by mini-
mizing the Shannon entropy of the probability distribution over
their sensory states. Under ergodic assumptions, this entropy is
(almost surely) the long-term time average of self-information or
surprise (Birkhoff, 1931). Surprise, or more precisely surprisal,
is a (probability) measure − ln P(st |m) on the states that are
sampled by an agent.

Minimizing the long-term average Et [− ln P(st |m)] is assured
when agents minimize surprise at each time point. Crucially,
surprise is just the negative marginal likelihood or Bayesian
model evidence, which means minimizing surprise maximizes
Bayesian model evidence. Surprise is minimized—approximately
or exactly—if agents minimize a variational free energy bound
on surprise (Feynman, 1972; Hinton and van Camp, 1993), given
a generative model m of state transitions (Dayan et al., 1995;
Friston, 2010). We will return to the relationship between entropy,
surprise and Bayesian model evidence in Section “Bayes-optimal
control without cost functions,” when we examine the motivation
for free energy minimization in more detail. Here, we consider
the nature of active inference in terms of free energy minimiza-
tion, where free energy is defined in relation to the following
definitions:

Definition: Active inference rests on the tuple
(X, A, ϑ, P, Q, R, S) comprising:

• A finite set of hidden states X
• Real valued hidden parameters ϑ ∈ R

d

• A finite set of sensory states S
• A finite set of actions A
• Real valued internal states μ ∈ R

d that parameterize a condi-
tional density
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• A sampling probability R(s′|s, a) = Pr({st+1 = s′|st = s, at =
a}) that observation s′ ∈ S at time t + 1 follows action a ∈ A,
given observation s ∈ S at time t
• A generative probability P(s̃, x̃, θ|m) = Pr({s0, . . . , st} =

s̃, {x0, . . . , xT} = x̃, ϑ = θ) over observations to time t, states
at all times and parameters
• A conditional probability Q(x̃, θ|μ) = Pr({x0, . . . , xT} =

x̃,ϑ = θ) over a sequence of states and parameters, with
sufficient statistics μ ∈ R

d

Remarks: Here, m denotes the form of a generative model
or probability distribution over sensory and hidden states and
parameters: Pm(s̃, x̃, θ) := P(s̃, x̃, θ|m). For clarity, we will omit
the conditioning on m for all but prior terms in the generative
probability. The sufficient statistics of the conditional probabil-
ity Qμ(x̃, θ) := Q(x̃, θ|μ) encode a probability distribution over
a sequence of hidden states x̃ = {x0, . . . , xT} and the parame-
ters of the model θ ∈ ϑ. Crucially, the conditional probability
and its sufficient statistics encode hidden states in the future
and past, which themselves can change with time: for example,
μk = {μk

0, . . . , μk
T}, where μk

t is the probability over hidden states
at time t in the future or past, under the conditional probability
at the present time k.

The probabilities above (P, Q, R) underwrite the action and
perception of the agent—they correspond to its formal beliefs
about the sensory consequences of action (sampling probability)
and the hidden states causing observations (generative probabil-
ity). Because the true states generating observations are unknown
and unknowable from the point of view of the agent, they can
only be inferred in terms of an approximate posterior probability
(conditional probability).

There are three important distinctions between this setup and
that used by MDPs. As in partially observed MDPs, there is a dis-
tinction between states and observations. However, the transition
probability over hidden states no longer depends on action. In
other words, the agent does not need to know the effect of its
actions on the (hidden) state of the world. It is instead equipped
with a probabilistic mapping between its actions and their direct
sensory consequences—this is the sampling probability. This is a
central tenet of active inference, which separates knowledge about
the sensory consequences of action from beliefs about the causes
of those consequences. In other words, the agent knows that if
it moves it will sense movement (c.f. proprioception); however,
beliefs about hidden states in the world causing movement have
to be inferred. These hidden states may or may not include its
own action: the key distinction between the agency free and agency
based schemes considered below depends on whether the agent
represents its own action or not.

The second distinction is that hidden states include future and
past states. In other words, the agent represents a sequence or
trajectory over states. This enables inference about a particular
state in the future to change with time. This will become impor-
tant when we consider planning and agency. Finally, there are no
reward or cost functions. This reflects the fact that active inference
does not call upon the notion of reward to optimize behavior—
optimal behavior minimizes variational free energy, which is
a functional of observations and the conditional probability

distribution or its sufficient statistics. As we will see below, cost
functions are replaced by priors over hidden states and transi-
tions, such that costly states are surprising and are avoided by
action.

PERCEPTION AND ACTION
The free energy principle states that the sufficient statistics of the
conditional probability and action minimize free energy

μt = arg min
μ

F({s0, . . . , st}, μ)

at = arg min
a

∑
S

R(st+1|st, a)F({s0, . . . , st+1},μt)
(4)

This dual optimization is usually portrayed in terms of perception
and action, by associating the sufficient statistics with internal
states of the agent (such as neuronal activity) and associating
action with the state of effectors or the motor plant. Equation (4)
just says that internal states minimize the free energy of currently
observed states, while action selects the next observation that, on
average, has the smallest free energy. By factorizing the generative
probability P (s̃, x̃, θ|m) = P(s̃|x̃, θ)P(x̃, θ|m) into likelihood and
prior probabilities, one can express the free energy as follows:

F(s̃, μ) = EQ[− ln P(s̃, x̃, θ|m)] − EQ[− ln Q(x̃, θ|μ)]
= DKL[Q(x̃, θ|μ)||P(x̃, θ|s̃)] − ln P(s̃|m)

(5)

The first equality in Equation (5) expresses free energy as
a Gibbs energy (expected under the conditional distribution)
minus the entropy of the conditional distribution. The second
shows that free energy is an upper bound on surprise, because
the first (Kullback–Leibler divergence) term is nonnegative by
Gibbs inequality (Beal, 2003). This means that when free energy
is minimized, the conditional distribution approximates the pos-
terior distribution Q(x̃, θ|μ) ≈ P(x̃, θ|s̃) over hidden states and
parameters. This formalizes the notion of unconscious inference
in perception (Helmholtz, 1866/1962; Dayan et al., 1995; Dayan
and Hinton, 1997) and, under some simplifying assumptions,
corresponds to predictive coding (Rao and Ballard, 1999).

This formulation highlights the fact that action selects observ-
able states (not hidden states) that are the least surprising or have
the smallest free energy. The free energy is determined by the suf-
ficient statistics of the conditional distribution. The optimization
of these sufficient statistics or internal states—the first equality
in Equation (4)—rests upon the generative model and therefore
depends on prior beliefs. It is these beliefs that specify what is
surprising and reproduces the optimal policies considered above.
There are clearly many ways to specify the generative probability.
We will consider two forms, both of which respect the Markov
property of decision processes. The first reproduces the behavior
under the optimal policy for Markov decision problems and can
be regarded as the corresponding free energy formulation:

AN AGENCY FREE FORMULATION OF OPTIMAL POLICIES
The natural generative model for a partially observable Markov
decision process can be expressed in terms of a likelihood plus
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priors over states and parameters, with the following forms:

P (s̃, x̃, θ|m) = P(s̃|x̃, θ)P(x̃|θ)P(θ|m)

P ({s0, . . . , st}|x̃, θ) = P(s0|x0)P(s1|x1) . . . P(st |xt)

P (x̃|θ) = P(x0|m)

T−1∏
t=0

P(xt+1|xt, θ)

(6)

This implies that the current observation depends only on
the current hidden state (like a belief MDP), where the hidden
states are a Markov process, whose transition probabilities depend
upon the parameters (unlike a belief MDP). We will assume that
the priors over the parameters P(θ|m) = δ(θ− θπ) make the pri-
ors over state transitions equivalent to the optimal policy of the
previous section. In other words, we assume the priors have a
point mass over values that render the transition probabilities
P(xt+1|xt, θπ) = T(xt+1|xt ,π(xt)) optimal in the conventional
sense. The second equality in Equation (5) shows that mini-
mizing the free-energy, with respect to the sufficient statistics of
the conditional distribution, renders it the posterior over hidden
states and parameters. This means that the conditional distribu-
tion becomes the posterior distribution, where (noting that the
posterior and prior over parameters are the same Dirac delta
function)

Q(x̃, θ|μt) ≈ P(x̃|{s0, . . . , st}, θ)δ(θ− θπ) (7)

We have used an approximate equality here because we
are assuming approximate Bayesian inference. In this context,
free-energy minimization with respect to action becomes, from
Equations (4) and (5):

at = arg min
a

∑
S

R(st+1|st, a)F({s0, . . . , st+1}, μt)

= arg max
a

∑
S

R(st+1|st, a)EQ(xt+1)[ln P(st+1|xt+1)]

Q(xt+1) ≈
∑

X

P(xt+1|xt, π(xt))P(xt|{s0, . . . , st}) (8)

Note that the free energy of the new observation is just its
improbability, expected under posterior beliefs about the hid-
den states that cause it—these posterior beliefs correspond to the
marginal conditional distribution Q(st+ 1), over the next hidden
state.

It can be seen from Equation (8) that action under active infer-
ence is exactly the same as action under the optimal policy. This is
because action selects the observation that is most likely under the
(approximate) posterior distribution. In turn, this is the hidden
state that follows the currently inferred state, under the optimal
policy. This means that active inference can be considered as a
generalization of optimal control. This is because there are prior
beliefs that can reproduce an optimal policy to minimize expected
cost. However, there are prior beliefs that specify Bayes-optimal
control that cannot be expressed as minimizing value (Friston and
Ao, 2012). Put simply, although prior beliefs about a particular
trajectory through state space may be the solution to an optimal

control problem, there may be prior beliefs that are not. These
prior beliefs are particularly relevant in robotics and the contin-
uous time formulations considered later. In brief, any trajectory
specified by a prior belief can be decomposed into divergence
and curl free components (by the fundamental theorem of vec-
tor calculus or the Helmholtz decomposition). Crucially, only the
curl free (irrotational) component can be specified by a value
function. This is problematic because nearly every real-world
movement trajectory has divergence free components; such as the
rotational components of walking, reading and writing. These are
relatively easy to specify and simulate using appropriate priors—
see the handwriting simulations in Friston et al. (2011) or the
animate behaviors in Tani (2003)—but cannot be specified in
terms of a value function of states. See Friston and Ao (2012) for
a technical discussion and Friston (2011) for a discussion in the
setting of motor control.

SUMMARY
In summary, we have seen that is fairly straightforward to place
optimal decision or Markovian control theory schemes in an
active inference framework. This involves replacing optimal poli-
cies, defined by cost or reward functions, with prior beliefs about
transitions among hidden states. The advantage of doing this is
that we can formulate action and perception as jointly minimiz-
ing the same objective function that provides an upper bound on
surprise or negative log Bayesian evidence. This enables optimal
control to be cast as Bayesian inference, with a clear distinction
between action and inference about partially observed or hid-
den states. We will see later that formulating the optimal control
problem in terms of prior beliefs enables us to connect to other
normative theories about perception and entertain questions
about where these prior beliefs come from. For example, the prior
beliefs above depend upon the parameters of the generative model
(transition probabilities among hidden states) that can be learned
in a Bayes-optimal sense. See Friston et al. (2009) for an example.

The fact that one can replace cost functions with priors to pro-
duce the same behavior is related to the complete class theorem
(Brown, 1981). The complete class theorem states that any admis-
sible decision rule (behavior) is Bayes-optimal for at least one pair
of prior beliefs and cost function (Robert, 1992). However, this
pair is not necessarily unique: in other words, the same decisions
can be reproduced under different combinations of prior and cost
functions. In one sense, this duality is resolved by replacing the
cost functions of optimal control theory with prior beliefs about
state transitions. Casting Bayes-optimal decisions in this way sim-
ply means that the agent believes it will sample state space in a
way that minimizes future costs, while action fulfills these prior
beliefs. In the next section, we consider what would happen if the
agent inferred its own action:

BAYES-OPTIMAL CONTROL WITHOUT COST FUNCTIONS
In this section, we consider agency based optimization, in which
the hidden states are extended to include hidden (control), states
that model action. This is necessary, when inferring optimal state
transitions, because transitions depend upon action in the future
which is hidden from observation. In what follows, we focus on
policies that are specified by prior beliefs about specific states that
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will be occupied at specific times in the future. This corresponds
to a finite horizon control problem with terminal costs over states
and intermediate control costs that are specified through prior
beliefs about control.

AGENCY-BASED OPTIMIZATION
In what follows, we describe a scheme for POMDPs that optimizes
action in relation to prior beliefs about future states. This scheme
uses representations of hidden states in the future to optimize
a sequence of fictive actions before they are enacted. This calls
for a more sophisticated generative model—a model of agency or
control. In other words, the agent must infer its future actions
via Bayesian updates of posterior beliefs about the future. The
heuristic benefit of introducing hidden control states is that future
actions can be optimized, when choosing the best current action.
The ensuing solutions are optimal in relation to prior beliefs
about states that will be occupied. These are prior beliefs about
the final (desired) hidden state and can be expressed in terms of
the following generative model:

An agency based model: The generative probability used in
this section introduces (a finite set of) hidden control states u ∈ U
and can be expressed in terms of the following likelihood and
prior distributions:

P (s̃, x̃, ũ, θ|m) = P(s̃|x̃, θ)P(x̃, ũ|θ)P(θ|m)

P ({s0, . . . , st}|x̃, θ) = P(s0|x0, θ)P(s1|x1, θ) . . . P(st |xt, θ) (9)

P (x̃, ũ|θ) = P(xT |θ)
T∏

t=1

P (xt−1|xt, ut, θ)P(ut |θ)

Remarks: There are two important aspects of this generative
model: First, control states are not action—they are an inter-
nal representation of action that may or may not be related to
actions emitted by the agent. In the generative model, control
states affect the transitions among hidden states; in other words,
they only affect outcomes vicariously through hidden states. It is
these control states that represent agency, which may or may not
be a veridical representation of what the agent can actually do (or
is doing)—in this sense, they can be regarded as fictive action that
gives the generative model extra degrees of freedom to model state
transitions under prior beliefs. Recall that action only changes
observations and is selected on the basis of posterior beliefs about
the next observable state. Conversely, control states are modeled
as hidden states over time and are inferred. This means they only
exist in the mind (posterior beliefs) of the agent.

Second, the priors on the hidden states P(x̃, ũ|θ) are formu-
lated in a pullback sense; that is, they run backwards in time. This
preserves the Markov dependencies but allows us to specify the
prior over a sequence of states in terms of transition probabilities
and a prior distribution over the final (terminal) state. Put sim-
ply, the parameters of the (transition) model encode where I came
from, not where I am going. See Figure 1. This particular form
of prior belief is chosen for convenience, because it accommo-
dates beliefs about the desired final state—of the sort that would
be specified with a terminal cost function, r(xT).

The generative model in Equation (9) is fairly general and
makes no specific assumptions about the implicit cost of inferred

FIGURE 1 | Probabilistic graphical model illustrating the Markovian

dependencies among hidden states generating sensory data. These
hidden states (st , ut ) are represented explicitly, over all time points: t = 0,
. . ., T . This means there is a representation of the past and future that
includes hidden states mediating control. Note that the dependency of this
hidden Markov model runs backwards in time so that all preceding hidden
states are conditioned recursively on the final or terminal (goal) state.

control (it does not assume quadratic control costs) or allow-
able state transitions. In what follows, we illustrate inference or
model inversion using a particular parameterization and varia-
tional inversion scheme. This example is used to illustrate agency-
based inference, accepting that there are many different model
parameterizations and inversion schemes that could have been
used.

Generative probability: The generative model used below
comprises the following likelihood and prior distributions:

P (st |xt, θ) = A · xt

P(xt−1|xt, ut, θ) =
(∏

i

Buti
i

)
· xt

P(xT |θ) = c

P(ut|θ) =
∏

i

duti
i

(10)

The parameters θ = {A, B1, B2, . . . , c, d} of this model are

A = {aij} :
∑

j

aij = 1, ∀i

Bk = {bijk} :
∑

j

bijk = 1, ∀i, k

c = {ci} :
∑

i

ci = 1

d = {di} :
∑

i

di = 1

(11)
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The parameters in the matrices Bk encode transition prob-
abilities among hidden states that are engaged when the con-
trol state uk = 1, where the control states have a multinomial
distribution—only one can be “on” at any time. The hidden states
cause observed states through the mapping encoded by A. The
vectors c and d encode the prior distribution over the final hid-
den state and control states, respectively; these specify the goal
and prior costs on control.

Conditional probability: To exploit the Markovian form of
the generative model we will use an efficient approximate infer-
ence scheme afforded by variational Bayesian learning (Beal,
2003); for a tutorial see Fox and Roberts (2011). The efficiency
rests on replacing posterior dependencies among hidden states
(over time) with mean field effects on the marginal probabilities
at each time point. This is achieved using the following mean-field
assumption for the conditional distribution:

Q(s, u) =
T∏

t=1

Q(st)Q(ut)

Q(st |αt) =
∏

i

α
si
ti :
∑

i

αti = 1

Q(ut |βt) =
∏

i

β
ui
ti :

∑
i

βti = 1

(12)

Standard variational Bayesian learning now provides a
recipe for optimizing the sufficient statistics (αt , βt) of the
conditional probability over hidden and control states. The
ensuing variational updates for the sufficient statistics μk =
{αk

0, . . . ,α
k
T , βk

0, . . . , β
k
T} at successive times k are Friston et al.

(2012b):
for k = 1 to T

until · convergence:

for t = (T − 1) to (k+ 1)

α′t = exp([ln AT · st ] +
∑

j

βk
(t+1)j ln Bj

·αk
(t+1) +

∑
j

βk
tj ln BT

j · αk
(t−1))

αk+1
t = α′t∑

i α
′
ti

β′ti = exp(αkT
t−1 · ln Bi · αk

t + ln di)

βk+1
t = β′t∑

i β
′
ti

(13)

The square brackets in [ln AT · st ] indicate that this term is
used only when observations are available. This speaks to an
important aspect of these update schemes; namely, posterior
beliefs about the hidden states at all points during the sequence
are updated iteratively at each time point. At each time point, the
variational updates cycle over representations of future states to
update the sufficient statistics encoding posterior beliefs. These

update cycles are themselves repeated as time progresses, so
that there is convergence both within and between cycles. This
means the sufficient statistics change over two timescales; a fast
timescale that updates posterior beliefs about the future and
a slow timescale that updates posterior beliefs in the future.
Posterior beliefs about the trajectory, at both timescales, ensure
that the trajectory convergences on the final (desired) location,
where the anticipated trajectory is realized through action. It is
interesting to speculate about neurophysiologic implementations
of this sort of scheme, particularly in relation to nested elec-
trophysiological oscillations (Canolty et al., 2006). The notion
here is that the electrophysiological correlates of updating may
show nested oscillations, with fast (gamma) oscillations reflecting
updates in a fictive future and slower (theta) dynamics that reflect
updates in real time; with timescales of 25 and 250 ms respect,
respectively. To illustrate the nature of this optimal control, we
now apply it to a well-known problem in optimal control theory
that presents some special challenges.

THE MOUNTAIN CAR PROBLEM
In the mountain car problem, one has to park a mountain car
halfway up the side of a valley. However, the mountain car is not
strong enough to climb directly to the parking place, which means
the only way to assess the goal is to ascend the other side of the val-
ley to acquire sufficient momentum during the return trip. This
represents an interesting problem, when considered in the state
space of position and velocity: the agent has to move away from
its target location to attain the goal later. In other words, it has to
execute a circuitous trajectory through state space (as in avoiding
obstacles). We have used this problem previously to illustrate how
Bayes-optimal control can be learned in terms of the parameters
controlling prior beliefs about trajectories (Friston et al., 2009)
and using heuristic policies (Gigerenzer and Gaissmaier, 2011)
based on the destruction of costly fixed point attractors (Friston,
2010).

It should be noted that the mountain car problem is normally
cast as a learning problem—in which an optimal policy has to
be learned. However, here, we use it to illustrate optimal behav-
ior in terms of inference. In other words, we assume the agent
has already learned the constraints afforded by the world it oper-
ates in—and now has to infer an optimal policy within a single
trial. In this setting, the mountain car problem provides a chal-
lenging inference problem, particularly when we include random
fluctuations in both the states generating observations and the
observations themselves. The mountain car problem can be spec-
ified with the equations of motion in Figure 2. Here, we consider
a discrete state space and time formulation of this problem and
use it to illustrate agency based control.

To create a discrete version, we ensured that expected changes
in position and velocity match the equations of motion, when
integrated over discrete time intervals (here �t = 2s). The ensu-
ing pullback probabilities for each level of control satisfy (subject
to the constraint that only the states adjacent to the expected
position and velocity are non-zero).

∑
i

x(xi)Bijk = x(x̃j)− f (x(xj), a(uk))�t (14)
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FIGURE 2 | Schematic of the mountain car problem. The upper panel

(and associated equations) illustrate the landscape or potential energy
function that defines the motion of the car. This has a minima at
x = (− 0.5, 1). The mountain-car is shown at the desired parking position at
the top of the hill on the right x = (1, 0) (indicated with a red ball). The
equations of motion in the lower panel describe the forces exerted on the
car, which include σ(a), a sigmoid (hyperbolic tangent) function of action,
gravitational forces, and friction.

Here, x(xi) ∈ R
2 returns the continuous position and veloc-

ity associated with the i-th hidden state. Similarly, a(uk) ∈ R

returns the real valued action associated with the k-th control
state. In these simulations, we used five levels of control cor-
responding to a(uk) ∈ {−2,−1, 0, 1, 2}. This means the agent
assumes that strong or intermediate acceleration can be applied
in a right or leftward direction. To simulate random fluctuations
in the motion of the mountain car, we smoothed the parame-
ter matrix B to augment the uncertainty about the previous state
incurred by discretizing state space. The state space comprised 32
position (from −2 to 2) and velocity bins (from −3 to 3), giv-
ing 32× 23 = 1024 discrete states. For simplicity, we assumed a
one-to-one mapping between hidden and observed states; that is
A = I and placed uniform prior costs over control. Prior beliefs
about the final state specify the goal x = (1, 0)—namely, to main-
tain a position at the parking location with zero velocity; see
Figure 2. Finally, the action-dependent sampling probabilities

R(st+1|st, at) were the transposed versions of the pullback proba-
bilities in Equation (14). These sampling probabilities were used
to select action and to generate the next sensory input. Action
used the same five levels as the control states—however, as noted
above, there is no requirement that action and control be related
in this way.

Figure 3 shows the results of a simulation using T = 16 time
steps and a starting position of x = (0, 0). In these simulations
the variational updates were repeated eight times and then an
action was selected. The upper panel shows the trajectories (real
and anticipated) through state space, while the lower panels show
the inferred control states and selected action as a function of
time. The darker line in the upper panel connects the states visited
over the 16 time steps, while the gray lines report the antici-
pated trajectories from the beginning of the trial to the end. The
inferred trajectories are shown as the expected position and veloc-
ity, based on posterior beliefs over discrete states. One can see
that the actual trajectory fulfills, fairly faithfully, the anticipated
sequences and that there has been relatively little updating dur-
ing execution. As anticipated, the mountain car moves away from
its target to acquire sufficient momentum to access the goal on
the right. Note the similarity between the selected actions (right)
and the inferred control states (left). The interesting thing here
is that the agent was not always sure about which control state
was currently engaged. However, the control state with the highest
posterior probability, which corresponds to the action the agent
believes it will emit next, is always selected by active inference. In
other words, even under uncertainty about hidden and control
states, there is sufficient confidence in the next sensory state to
inform action.

SUMMARY
In summary, we have reviewed conventional approaches to (par-
tially observable) Markov decision problems and have cast reward
or cost functions in terms of prior beliefs about state tran-
sitions. This implicitly resolves the redundancy between cost
functions and priors that underlies the complete class theo-
rems. We then exploited this redundancy by specifying optimal
policies in terms of prior beliefs about future (terminal) states.
The ensuing scheme may provide a metaphor for model-based
decision-making in real agents that has an explicit planning or
anticipatory aspect. This solution was based upon approximate
(variational) Bayesian inference that respects the Markov nature
of decision processes.

The aim of this work was to unpack some of the implica-
tions of optimal control for its implementation in real-world
agents. The most important is the representation of hidden con-
trol states that are required for accessing distal rewards in the
future. This contrasts with the usual problem formulation of
MDPs, which is to define a normative model and a corresponding
notion of optimality. In optimal control theory, state transitions
are specified in terms of value functions that are solutions to
the appropriate Bellman optimality equations, given a cost func-
tion. The notion that the Bellman optimality principle “can be
derived as a limit case” from the variational principles that under-
lie active inference also emerges in recent information theoretic
formulations of bounded rationality (Braun et al., 2011): Braun
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FIGURE 3 | This figure shows the results of a simulated (agency based)

trajectory over T = 16 time steps starting at x = (0, 0) and ending at the

goal location x = (1, 0) (red ball) using active inference and explicit

representations of the future. The upper panel shows the trajectories in
the state space of position and velocity. The grey lines represent anticipated
trajectories accumulated during control, while the dark (dotted) lines show
the actual trajectory through state space. The anticipated trajectories are the
expected values based upon posterior expectations about past and future

states. They are therefore continuous functions of position and velocity. In
contrast, the actual trajectory is restricted to the 1024 discrete states that
can be occupied; these are shown as light grey dots. The lower panels show
the anticipated control and the actual actions selected under active inference
(in image format where lighter colors mean a higher probability). Note that
there is a high degree of correspondence; however, the posterior beliefs
about control and not always absolutely certain: these are the beliefs at the
times each action is selected.

et al. consider control costs in terms of the (cross) entropy of
choice probabilities and augment expected utility to produce a
free energy optimality criterion. This free utility captures bounded
rationality by ensuring the divergence between optimal and prior
choice probabilities is minimized. They show that minimizing
free utility includes both discrete and continuous stochastic opti-
mal control as special cases and can be derived “without invoking
the Hamilton–Jacobi–Bellman equation or the Bellman optimal-
ity equations”. See also Theodorou et al. (2010), who exploit
a similar formalism but with a more classical motivation. The

generalization of optimal control using free utility is compelling
and unifies approximate optimal control methods in both the
continuous and discrete domain. However, free utility is funda-
mentally different from variational free energy, because it is a
functional of choice probabilities over hidden states. In contrast,
variational free energy is a function of observed states. Crucially,
free utility depends on a cost function, while free energy does not.
This is because the free energy principle is based on the invariant
or ergodic solution P(s|m) to the Kolmogorov forward equation,
which specifies the value of an observed state V(s|m) = ln P(s|m)
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directly, without reference to cost—see next section and Friston
and Ao (2012). In other words, value is (log) evidence or nega-
tive surprise. Conversely, free utility is based on the Kolmogorov
backward equation, which can only be solved given terminal
costs.

In answer to the title of this paper, the value of an observed
state is then prescribed by a generative model in terms of the
probability a state will be occupied. It can be seen easily that min-
imizing the entropy of the invariant probability distribution over
observations maximizes expected value:

EP[− ln P(s|m)] = EP[V(s|m)] (15)

Minimizing the entropy of observed states is the raison d’être
for the free energy principle (see below), which invokes varia-
tional free energy to finesse the intractable problem of marginal-
izing over hidden states to evaluate value or negative surprise.
This complements the use of free utility to finesse the intractable
problem of solving Bellman optimality equations (Braun et al.,
2011). It can be seen from Equation (5) that free energy F(s,μ) ≥
− ln P(s|m) = −V(s|m) bounds surprise and can therefore be
minimized to maximize value.

In conclusion, we have described a variational free energy for-
mulation of (partially observable) Markov decision problems in
decision making under uncertainty. We have seen that optimal
control can be cast as active inference, in which both action and
posterior beliefs about hidden states minimize a free energy bound
on the value (log Bayesian model evidence) of observed states,
under a generative model. In this setting, reward or cost functions
are absorbed into prior beliefs about state transitions and termi-
nal states. This converts optimal control into a pure inference
problem, enabling the application of standard Bayesian filter-
ing techniques. Crucially, this entails modeling future states state
that endows the generative model with a sense of agency. This
leads to a distinction between models with and without inference
on future states—namely, agency free and agency based models,
respectively. In the next section, we ask: where do prior beliefs
about future states come from?

ACTION, PERCEPTION, AND CONTROL
The previous section suggested that value is simply the log-
evidence associated with sensory samples or evidence for an
internal model or hypothesis about the world. In this setting,
valuable behavior simply involves sampling the world to ensure
model predictions are fulfilled, where these predictions rest upon
(prior) beliefs about future states. In this section, we motivate the
imperative to maximize log-evidence from the basic principles
of self-organization. We go on to show that prior beliefs about
future states have a relatively simple form; namely, we believe
that our future states will minimize uncertainty about our current
beliefs.

If perception corresponds to hypothesis testing (Gregory,
1980); then sensory sampling might be correspond to experi-
ments that generate sensory data. In the next three sections, we
explore the idea that eye movements are optimal experiments,
in which data are gathered to test hypotheses or beliefs about
how those data are caused. This provides a plausible model of

visual search that can be motivated from the basic tenets of
self-organized behavior: namely, the imperative to minimize the
entropy of hidden states of the world and their sensory con-
sequences. Simulations of the resulting active inference scheme
reproduce sequential eye movements that are reminiscent of
empirically observed saccades and provide some counterintuitive
insights into the way that sensory evidence is accumulated or
assimilated into beliefs about the world.

If variational free energy minimization is applied to both
action and perception, action will fulfill predictions based upon
conditional beliefs about the state of the world. However, the
uncertainty associated with those conditional beliefs depends
upon the way data are sampled: for example, where we direct
our gaze or how we palpate a surface. The deployment of sensory
epithelia is itself a hidden state that has to be inferred. However,
these hidden states can be changed by action, which means there
is a subset of hidden states over which we have control. These
are the hidden control states of the previous section. Prior beliefs
about these hidden control states dictate how we engage actively
with the environment and lead to the notion of fictive or counter-
factual representations; in other words, what we would infer about
the world, if we sampled it in a particularly way. This leads nat-
urally to the internal representation of prior beliefs about future
sampling and the emergence of things like agency, intention, and
salience. We will illustrate these points using visual search and
the optimal control of saccadic eye movements (Grossberg et al.,
1997; Itti and Baldi, 2009; Srihasam et al., 2009); noting that
similar principles should apply to other sensory modalities. For
example, they should apply to motor control when making infer-
ences about objects causing somatosensory sensations (Gibson,
1979).

ACTIVE INFERENCE—A CONTINUOUS TIME FORMULATION
This section establishes the nature of Bayes-optimal inference
in the context of controlled sensory searches. It starts with the
basic premise that underlies free energy minimization; namely,
the imperative to minimize the dispersion of sensory states and
their hidden causes to ensure a homoeostasis of the external and
internal milieu (Ashby, 1947). It rehearses briefly how action and
perception follow from this imperative and highlights the impor-
tant role of prior beliefs about the sampling of sensory states.
At this point, we move away from the discrete formulations of
MDPs and turned to continuous formulations, where probability
distributions become densities and discrete time becomes contin-
uous. This shift is deliberate and allows the discrete formulations
of the previous sections to be compared and contrasted with
the equivalent continuous time formulations that predominate in
biologically realistic simulations.

Notation and set up: Here we use X : �× . . .→ R for real
valued random variables and x ∈ X for particular values. A
probability density will be denoted by p(x) = Pr{X = x} using
the usual conventions and its entropy H[p(x)] by H(X). From
now on, the tilde notation x̃ = (x, x′, x′′, . . .) denotes variables
in generalized coordinates of motion (Friston, 2008), where
each prime denotes a temporal derivative (using Lagrange’s
notation). For simplicity, constant terms will be omitted from
equalities.
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Definition: Active inference rests on the tuple
(�,�, S, A, R, q, p) that comprises the following:

• A sample space � or non-empty set from which random
fluctuations or outcomes ω ∈ � are drawn
• Hidden states � : � × A×�→ R—states of the world that

cause sensory states and depend on action
• Sensory states S : � × A×�→ R—the agent’s sensations

that constitute a probabilistic mapping from action and hidden
states
• Action A : S× R→ R—an agent’s action that depends on its

sensory and internal states
• Internal states R : R× S×�→ R—the states of the agent that

cause action and depend on sensory states
• Generative density p(s̃, ψ̃|m)—a probability density function

over sensory and hidden states under a generative model
denoted by m
• Conditional density q(ψ̃) := q(ψ̃|μ̃)—an arbitrary probability

density function over hidden states ψ̃ ∈ � that is parameter-
ized by internal states μ̃ ∈ R

We assume that the imperative for any biological system is
to minimize the dispersion of its sensory and hidden states,
with respect to action (Ashby, 1947; Nicolis and Prigogine, 1977;
Friston and Ao, 2012). We will refer to the sensory and hid-
den states collectively as external states S×� . As noted above,
the dispersion of external states corresponds to the (Shannon)
entropy of their probability density that, under ergodic assump-
tions, equals (almost surely) the long-term time average of a
Gibbs energy:

H(S,�) = Et[G(s̃(t), ψ̃(t))]
G = − ln p(s̃(t), ψ̃(t)|m)

(16)

Gibbs energy G(s̃, ψ̃) is defined in terms of the generative den-
sity or model. Clearly, agents cannot minimize this energy directly
because the hidden states are unknown. However, we can decom-
pose the entropy into the entropy of the sensory states (to which
the system has access) and the conditional entropy of hidden
states (to which the system does not have access). This second
term is also called the equivocation of the hidden states about the
sensory states:

H(S,�) = H(S)+H(�|S)

= Et[− ln p(s̃(t)|m)+ H(�|S = s̃(t))] (17)

This decomposition means that the entropy of the external
states can be minimized through action to minimize sensory sur-
prise− ln p(s̃(t)|m), under the assumption that the consequences
of action minimize the equivocation or average uncertainty about
hidden states:

a(t) = arg min
a∈A
{− ln p(s̃(t)|m)}

ũ(t) = arg min
ũ∈U

{H(�|S = s̃(t))} (18)

The consequences of action are expressed by changes in a
subset of hidden states U ⊂ �—the hidden control states or
hidden controls. When Equation (18) is satisfied, the variation of
entropy in Equation (16) with respect to action and its conse-
quences are zero, which means the entropy has been minimized
(at least locally). However, the hidden controls cannot be opti-
mized explicitly because they are hidden from the agent. To
resolve this problem, we first consider action and then return to
optimizing hidden control states.

ACTION AND PERCEPTION
Action cannot minimize sensory surprise directly because this
would involve an intractable marginalization over hidden states,
so—as in the discrete formulation—surprise is replaced with an
upper bound called variational free energy (Feynman, 1972).
However, replacing surprise with free energy means that internal
states also have to minimize free energy, because free energy is a
function of internal states:

a(t) = arg min
a∈A
{F(s̃(t), μ̃(t))}

μ̃(t) = arg min
μ̃∈R

{F(s̃(t), μ̃)} (19)

F = Eq[G(s̃, ψ̃)] −H[q(ψ̃|μ̃)]
= − ln p(s̃|m)+ D[q(ψ̃)||p(ψ̃|s̃, m)]
≥ − ln p(s̃|m)

This induces a dual minimization with respect to action
and the internal states that parameterize the conditional den-
sity. These minimizations correspond to action and perception,
respectively. In brief, the need for perception is induced by intro-
ducing free energy to finesse the evaluation of surprise; where free
energy can be evaluated by an agent fairly easily, given a genera-
tive model. The last equality says that free energy is always greater
than surprise because the second (Kullback–Leibler divergence)
term is non-negative. As in the discrete formulation, when free
energy is minimized with respect to the internal states, free energy
approximates surprise and the conditional density approximates
the posterior density over external states:

D[q(ψ̃)||p(ψ̃|s̃, m)] ≈ 0⇒
{

q(ψ̃) ≈ p(ψ̃|s̃, m)

H[q(ψ̃)] ≈ H(�|S = s̃)
(20)

Minimizing free energy also means that the entropy of the
conditional density approximates the equivocation of the hid-
den states. This allows us to revisit the optimization of hidden
controls, provided we know how they affect the conditional
density.

THE MAXIMUM ENTROPY PRINCIPLE AND THE LAPLACE
ASSUMPTION
If we admit an encoding of the conditional density up to second
order moments, then the maximum entropy principle (Jaynes,
1957) implicit in the definition of free energy (Equation 19)
requires q(ψ̃|μ̃) = N (μ̃, �) to be Gaussian. This is because a
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Gaussian density has the maximum entropy of all forms that can
be specified with two moments. Adopting a Gaussian form is
known as the Laplace assumption and enables us to express the
entropy of the conditional density in terms of its first moment
or expectation. This follows because we can minimize free energy
with respect to the conditional covariance as follows:

F = G(s̃, μ̃)+ 1
2 tr(� · ∂μ̃μ̃G)− 1

2 ln |�|
⇒ ∂�F = 1

2 ∂μ̃μ̃G− 1
2 �

∂�F = 0⇒ � = ∂μ̃μ̃G⇒ H(�|S = s̃)

≈ H[q(ψ̃)] = − 1
2 ln |∂μ̃μ̃G|

(21)

Here, the conditional precision �(s̃, μ̃) is the inverse of the
conditional covariance �(s̃, μ̃). In short, the entropy of the con-
ditional density and free energy are functions of the conditional
expectations and sensory states. Now that we have (an approxi-
mation to) the equivocation, we can return to its minimization
through prior beliefs.

BAYES-OPTIMAL CONTROL
We can now optimize the hidden controls vicariously through
prior expectations that are fulfilled by action. This can be
expressed in terms of prior expectations about hidden controls.

η̃u(t) = arg min
η̃u∈U

{H[q(ψ̃|μ̃x(t + τ), η̃u)]} (22)

This equation means the agent expects hidden control states
to minimize uncertainty about hidden states in the future—this
is the entropy of the conditional density in the future, which we
will call a counterfactual density. Interestingly, Equations (19) and
(22) say that conditional expectations (about hidden states) max-
imize conditional uncertainty, while prior expectations (about
hidden controls) minimize conditional uncertainty. This means
the posterior and prior beliefs are in opposition, trying to maxi-
mize and minimize uncertainty about hidden states, respectively.
The latter represent prior beliefs that hidden states are sampled
to maximize conditional confidence, while the former minimizes
conditional confidence to ensure the explanation for sensory data
does not depend on particular hidden states—in accord with the
maximum entropy principle (or Laplace’s principle of indiffer-
ence). In what follows, we will refer to the negative entropy of the
counterfactual density as salience; noting that salience is a mea-
sure of confidence about hidden states that depends on how they
are sampled. This means that the agent believes, a priori, that
salient features will be sampled.

SUMMARY AND RELATED PRINCIPLES
To recap, we started with the assumption that biological systems
minimize the dispersion or entropy of states in their external
milieu to ensure a sustainable and homoeostatic exchange with
their environment (Ashby, 1947). Clearly, these states are hidden
and therefore cannot be measured or changed directly. However,
if agents know how their action changes sensations (for example,
if they know contracting certain muscles will necessarily excite
primary sensory afferents from stretch receptors), then they can

minimize the dispersion of their sensory states by countering sur-
prising deviations from expected values. However, reducing the
dispersion of sensory states will only reduce the dispersion of hid-
den states, if the sensory states report the underlying hidden states
faithfully. This faithful reporting requires agents to minimize their
conditional uncertainty about hidden states, through prior beliefs
about the way sensory organs are deployed. This imperative—to
minimize conditional uncertainty—is remarkably consistent with
a number of other constructs, such as Bayesian surprise (Itti and
Baldi, 2009). It is fairly easy to show that maximizing salience is
the same as maximizing Bayesian surprise (Friston et al., 2012a).
This is important because it links salience in the context of
active inference with salience in the theoretical (Humphreys et al.,
2009) and empirical literature (Shen et al., 2011; Wardak et al.,
2011). Here, we will focus on the principle of maximum mutual
information.

Priors about hidden controls express the belief that conditional
uncertainty will be minimal. The long-term average of this con-
ditional uncertainty is the conditional entropy of hidden states,
which can be expressed as the entropy over hidden states minus
the mutual information between hidden and sensory states:

H(�|S) = Et[H(�|S = s̃(t))] = H(�)− I(�; S) (23)

In other words, minimizing conditional uncertainty is equiv-
alent to maximizing the mutual information between external
states and their sensory consequences. This is one instance of the
Infomax principle (Linsker, 1990). Previously, we have considered
the relationship between free energy minimization and the prin-
ciple of maximum mutual information, or minimum redundancy
(Barlow, 1961, 1974; Optican and Richmond, 1987; Oja, 1989;
Olshausen and Field, 1996; Bialek et al., 2001) in terms of the
mapping between hidden and internal states (Friston, 2010). In
this setting, one can show that “the infomax principle is a special
case of the free-energy principle that obtains when we discount
uncertainty and represent sensory data with point estimates of
their causes.” Here, we consider the mapping between external
and sensory states and find that prior beliefs about how sensory
states are sampled further endorse the Infomax principle. In what
follows, we consider the neurobiological implementation of these
principles.

NEUROBIOLOGICAL IMPLEMENTATIONS OF ACTIVE
INFERENCE
In this section, we take the general principles above and consider
how they might be implemented in a (simulated) brain. The equa-
tions in this section may appear a bit complicated; however, they
are based on just four assumptions.

• The brain minimizes the free energy of sensory inputs defined
by a generative model.
• This model includes prior expectations about hidden controls

that maximize salience.
• The generative model used by the brain is hierarchical, non-

linear, and dynamic.
• Neuronal firing rates encode the expected state of the world,

under this model.
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The first assumption is the free energy principle, which leads
to active inference in the embodied context of action. The sec-
ond assumption follows from the arguments of the previous
section. The third assumption is motivated easily by noting
that the world is both dynamic and non-linear and that hier-
archical causal structure emerges inevitably from a separation
of temporal scales (Ginzburg and Landau, 1950; Haken, 1983).
Finally, the fourth assumption is the Laplace assumption that, in
terms of neural codes, leads to the Laplace code that is arguably
the simplest and most flexible of all neural codes (Friston,
2009).

Given these assumptions, one can simulate a whole variety
of neuronal processes by specifying the particular equations that
constitute the brain’s generative model. The resulting perception
and action are specified completely by the above assumptions and
can be implemented in a biologically plausible way as described
below (see Table 1 for a list of previous applications of this
scheme). In brief, these simulations use differential equations that
minimize the free energy of sensory input using a generalized
gradient descent (Friston et al., 2010a).

˙̃μ(t) = Dμ̃(t)− ∂μ̃F(s̃, μ̃)

ȧ(t) = −∂aF(s̃, μ̃)
(24)

Table 1 | Processes and paradigms that have been modeled using the

generalized Bayesian filtering scheme in this paper.

Domain Process or paradigm

Perception Perceptual categorization (bird songs)
(Friston and Kiebel, 2009a,b)

Novelty and omission-related
responses (Friston and Kiebel, 2009a,b)

Perceptual inference (speech) (Kiebel
et al., 2009)

Sensory learning Perceptual learning (mismatch
negativity) (Friston and Kiebel, 2009a,b)

Attention Attention and the Posner paradigm
(Feldman and Friston, 2010)

Attention and biased competition
(Feldman and Friston, 2010)

Motor control Retinal stabilization and oculomotor
reflexes (Friston et al., 2010b)

Saccadic eye movements and cued
reaching (Friston et al., 2010b)

Motor trajectories and place cells
(Friston et al., 2011)

Sensorimotor integration Bayes-optimal sensorimotor integration
(Friston et al., 2010b)

Behavior Heuristics and dynamical systems
theory (Friston and Ao, 2012)

Goal-directed behavior (Friston et al.,
2009)

Action observation Action observation and mirror neurons
(Friston et al., 2011)

These coupled differential equations describe perception and
action, respectively, and just say that internal brain states and
action change in the direction that reduces free energy. The first
is known as generalized predictive coding and has the same form
as Bayesian (e.g., Kalman–Bucy) filters used in time series anal-
ysis; see also Rao and Ballard (1999). The first term in Equation
(24) is a prediction based upon a differential matrix operator D
that returns the generalized motion of the expectation, such that
Dμ̃ = [μ′, μ′′, μ′′′, . . .]T . The second term is usually expressed
as a mixture of prediction errors that ensures the changes in con-
ditional expectations are Bayes-optimal predictions about hidden
states of the world. The second differential equation says that
action also minimizes free energy. The differential equations
above are coupled because sensory input depends upon action,
which depends upon perception through the conditional expec-
tations. This circular dependency leads to a sampling of sensory
input that is both predicted and predictable, thereby minimizing
free energy and surprise.

To perform neuronal simulations under this scheme, it is only
necessary to integrate or solve Equation (24) to simulate the neu-
ronal dynamics that encode conditional expectations and ensuing
action. Conditional expectations depend upon the brain’s gen-
erative model of the world, which we assume has the following
hierarchical form.

s = g(1)(x(1), v(1), u(i))+ ω(1)
v

ẋ(1) = f (1)(x(1), v(1), u(i))+ ω(1)
x

...

v(i−1) = g(i)(x(i), v(i), u(i))+ ω(i)
v

ẋ(i) = f (i)(x(i), v(i), u(i))+ ω(i)
x

...

(25)

This equation is just a way of writing down a model that spec-
ifies a probability density over the sensory and hidden states,
where the hidden states � = X × V × U have been divided into
hidden dynamic, causal, and control states. Here, (g(i), f (i)) are
non-linear functions of hidden states that generate sensory inputs
at the first level. Hidden causes V ⊂ � can be regarded as func-
tions of hidden dynamic states; hereafter, hidden states X ⊂ � .

Random fluctuations (ω
(i)
x ,ω

(i)
v ) on the motion of hidden states

and causes are conditionally independent and enter each level
of the hierarchy. It is these that make the model probabilistic:
they play the role of sensory noise at the first level and induce
uncertainty about states at higher levels. The inverse amplitudes
of these random fluctuations are quantified by their precisions

(�
(i)
x , �

(i)
v ). Hidden causes link hierarchical levels, whereas hid-

den states link dynamics over time. Hidden states and causes are
abstract quantities (like the motion of an object in the field of
view) that the brain uses to explain or predict sensations. In hier-
archical models of this sort, the output of one level acts as an input
to the next. This input can produce complicated (generalized)
convolutions with deep (hierarchical) structure.

Frontiers in Neurorobotics www.frontiersin.org November 2012 | Volume 6 | Article 11 | 53

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Friston et al. Value and evidence

PERCEPTION AND PREDICTIVE CODING
Given the form of the generative model (Equation 25) we can now
write down the differential equations (Equation 24) describing
neuronal dynamics in terms of (precision-weighted) prediction
errors on the hidden causes and states. These errors represent the
difference between conditional expectations and predicted values,
under the generative model (using A · B := ATB and omitting
higher-order terms):

˙̃μ(i)
x = Dμ̃(i)

x +
∂ g̃(i)

∂μ̃
(i)
x

· ξ(i)
v +

∂ f̃ (i)

∂μ̃
(i)
x

· ξ(i)
x −DTξ(i)

x

˙̃μ(i)
v = Dμ̃(i)

v +
∂ g̃(i)

∂μ̃
(i)
v

· ξ(i)
v +

∂ f̃ (i)

∂μ̃
(i)
v

T

· ξ(i)
x − ξ(i+1)

v

˙̃μ(i)
u = Dμ̃(i)

u +
∂ g̃(i)

∂μ̃
(i)
u

· ξ(i)
v +

∂ f̃ (i)

∂μ̃
(i)
u

· ξ(i)
x − ξ(i+1)

u (26)

ξ(i)
x = �(i)

x (Dμ̃(i)
x − f̃ (i)(μ̃(i)

x , μ̃(i)
v , μ̃(i)

u ))

ξ(i)
v = �(i)

v (μ̃(i−1)
v − g̃(i)(μ̃(i)

x , μ̃(i)
v , μ̃(i)

u ))

ξ(i)
u = �(i)

u (μ̃(i−1)
u − η̃(i)

u )

Equation (26) can be derived fairly easily by computing the
free energy for the hierarchical model in Equation (25) and
inserting its gradients into Equation (24). This produces a rel-
atively simple update scheme, in which conditional expecta-
tions are driven by a mixture of prediction errors, where pre-
diction errors are defined by the equations of the generative
model.

It is difficult to overstate the generality and importance of
Equation (26): its solutions grandfather nearly every known sta-
tistical estimation scheme, under parametric assumptions about
additive or multiplicative noise (Friston, 2008). These range
from ordinary least squares to advanced variational deconvolu-
tion schemes. The resulting scheme is called generalized filtering
or predictive coding (Friston et al., 2010a). In neural network
terms, Equation (26) says that error-units receive predictions
from the same level and the level above. Conversely, conditional
expectations (encoded by the activity of state units) are driven
by prediction errors from the same level and the level below.
These constitute bottom–up and lateral messages that drive con-
ditional expectations toward a better prediction to reduce the
prediction error in the level below. This is the essence of recur-
rent message passing between hierarchical levels to optimize
free energy or suppress prediction error: see Friston and Kiebel
(2009a) for a more detailed discussion. In neurobiological imple-
mentations of this scheme, the sources of bottom–up prediction
errors are thought to be superficial pyramidal cells that send
forward connections to higher cortical areas. Conversely, pre-
dictions are conveyed from deep pyramidal cells, by backward
connections, to target (polysynaptically) the superficial pyra-
midal cells encoding prediction error (Mumford, 1992; Friston
and Kiebel, 2009a). Figure 4 provides a schematic of the pro-
posed message passing among hierarchically deployed cortical
areas.

ACTION
In active inference, conditional expectations elicit behavior by
sending top–down predictions down the hierarchy that are
unpacked into proprioceptive predictions at the level of the cra-
nial nerve nuclei and spinal-cord. These engage classical reflex
arcs to suppress proprioceptive prediction errors and produce the
predicted motor trajectory.

ȧ = − ∂

∂a
F = − ∂ s̃

∂a
· ξ(1)

v (27)

The reduction of action to classical reflexes follows because
the only way that action can minimize free energy is to change
sensory (proprioceptive) prediction errors by changing sen-
sory signals; cf., the equilibrium point formulation of motor
control (Feldman and Levin, 1995). In short, active inference
can be regarded as equipping a generalized predictive coding
scheme with classical reflex arcs: see Friston et al. (2009, 2010b)
for details. The actual movements produced clearly depend
upon top–down predictions that can have a rich and complex
structure.

COUNTERFACTUAL PROCESSING
To optimize prior expectations about hidden controls it is neces-
sary to identify those that maximize the salience. We will focus
on visual searches and assume that competing (counterfactual)
prior expectations are represented explicitly in a saliency map.
In other words, we assume that salience is encoded on a grid
corresponding to discrete values of competing prior expectations
associated with different hidden control states. The maximum of
this map defines the prior expectation with the greatest salience.
This prior expectation enters the predictive coding in Equation
(25). The salience of the j-th counterfactual prior expectation is,
from Equations (21) and (22),

η̃u(t) = arg max
η̃j

S(η̃j)

S(η̃j) = 1
2 ln |∂μ̃μ̃G(μ̃x(t + τ), μ̃v(t + τ), η̃j)|

(28)

Given that we will be simulating visual searches with saccadic
eye movements, we will consider the prior expectations to be
updated at discrete times to simulate successive saccades, where
the hidden control states correspond to locations in the visual
scene that attract visual fixation.

SUMMARY
In summary, we have derived equations for the dynamics of per-
ception and action using a free energy formulation of adaptive
(Bayes-optimal) exchanges with the world and a generative model
that is generic and biologically plausible. In what follows, we use
Equations (26), (27), and (28) to simulate neuronal and behav-
ioral responses. A technical treatment of the material above can
be found in Friston et al. (2010a), which provides the details of
the generalized Bayesian filtering scheme used to produce the
simulations in the next section. The only addition to previous
illustrations of this scheme is Equation (28), which maps con-
ditional expectations about hidden states to prior expectations
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FIGURE 4 | Schematic detailing the neuronal architecture that might

encode conditional expectations about the states of a hierarchical

model. This shows the speculative cells of origin of forward driving
connections that convey prediction error from a lower area to a higher area
and the backward connections that construct predictions (Mumford, 1992).
These predictions try to explain away prediction error in lower levels. In
this scheme, the sources of forward and backward connections are
superficial and deep pyramidal cells, respectively. The equations represent

a generalized descent on free-energy under the hierarchical models
described in the main text: see also Friston (2008). State-units are in black
and error-units in red. Here, neuronal populations are deployed
hierarchically within three cortical areas (or macro-columns). Within each
area, the cells are shown in relation to cortical layers: supra-granular (I–III),
granular (IV), and infra-granular (V and VI) layers. For simplicity, conditional
expectations about control states had been absorbed into conditional
expectations about hidden causes.

about hidden controls: it is this mapping that underwrites the
sampling of salient features and appeals to the existence of hidden
control states that action can change. Put simply, this formu-
lation says that action fulfills predictions and we predict that
the consequences of action (hidden control states) minimize our
uncertainty about predictions.

MODELING SACCADIC EYE MOVEMENTS
This section illustrates the theory of the previous section, using
simulations of sequential eye movements. Saccadic eye move-
ments are a useful vehicle to illustrate active inference because
they speak directly to visual search strategies and a wealth
of psychophysical, neurobiological, and theoretical study (e.g.,
Grossberg et al., 1997; Ferreira et al., 2008; Srihasam et al., 2009;
Bisley and Goldberg, 2010; Shires et al., 2010; Tatler et al., 2011;
Wurtz et al., 2011). We will focus on a fairly simple paradigm—
the categorization of faces—and therefore sidestep many of the
deeper challenges of understanding visual searches.

THE GENERATIVE PROCESS
That first thing that we need to do is to define the processes
generating sensory signals as a function of (hidden) states and
action:

sp = xp + ωv,p

sq = g(I, xp)+ ωv,q

gi = I(di,1 + xp,1, di,2 + xp,2) · hi (29)

ẋp = a− 1
16 xp + ωx,p

Note that these hidden states are true states that actually
produce sensory signals. These have been written in boldface
to distinguish them from the hidden states assumed by the
generative model (see below). In these simulations, the world
is actually very simple: sensory signals are generated in two
modalities—proprioception and vision. Proprioception, sp ∈ R

2
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reports the center of gaze or foveation as a displacement from
the origin of some extrinsic frame of reference. Inputs in the
visual modality comprise a list sq ∈ R

256 of values over an array
of sensory channels sampling a two-dimensional image or visual
scene I : R2 → R. This sampling uses a grid of 16× 16 channels
that samples a small part the image—representing a local high-
resolution (foveal) sampling that constitutes an attentional focus.
To make this sampling more biologically realistic, each channel
was equipped with a center-surround receptive field that samples
a local weighted average of the image. This provides an on-off
center-surround sampling. Furthermore, the signals are modu-
lated by a two-dimensional Hamming function—to model the
loss of precise visual information from the periphery of the visual
field.

The only hidden states in this generative process xp ∈ R
2 are

the center of oculomotor fixation, whose motion is driven by
action and decays with a suitably long time constant of 16 time
bins (were a time bin corresponds to 12 ms). In practice, the
visual scene corresponds to a large grayscale image, where the
i-th visual channel is sampled at location di + xp ∈ R

2. Here,
di ∈ R

2 specifies the displacement of the i-th channel from the
center of the sampling grid. The proprioceptive and visual sig-
nals were effectively noiseless, where there random fluctuations
had a log-precision of 16. The motion of the fixation point was
subject to low amplitude fluctuations with a log-precision of
eight. This completes our description of the process generating
proprioceptive and visual signals for any given action. We now
turn to the model of this process that generates predictions and
action.

THE GENERATIVE MODEL
The model of sensory signals used to specify variational free
energy and consequent action (visual sampling) is slightly more
complicated than the actual process generating data:

sp = xp + ωv,p

sq =
∑

i

exp(xq,i)g(Ii, xp)+ ωv,q

ẋp = 1
4 (u− xp)+ ωx,p

ẋq = 1−
∑

i

exp(xq,i)− 1
1024 xq + ωx,p

(30)

As above, proprioceptive signals are just a noisy mapping from
hidden proprioceptive states encoding the direction of gaze. The
visual input is modeled as a mixture of images sampled at a
location specified by the proprioceptive hidden state. This hid-
den state decays with a time constant of four time bins (48 ms)
toward a hidden control state. In other words, the hidden control
determines the location that attracts gaze.

The visual input depends on a number of hypotheses or inter-
nal images Ii : R2 → R : i ∈ {1, . . . N} that constitute the agent’s
prior beliefs about what could cause its visual input. In this paper,
we use N = 3 hypotheses. The input encountered at any partic-
ular time is a weighted mixture of these internal images, where

the weights correspond to hidden perceptual states. The dynam-
ics of these perceptual states (last equality above) implement a
form of dynamic softmax—in the sense that the solution of their
equations of motion ensures the weights sum (approximately) to
one:

ẋq = 0⇒
∑

i

exp(xq,i) ≈ 1 (31)

This means we can interpret exp(xq,i) as the (softmax) prob-
ability that the i-th internal image or hypothesis is the cause of
visual input. The decay term (with a time constant of 512 time
bins) just ensures that perceptual states decay slowly to the same
value, in the absence of perceptual fluctuations.

In summary, given hidden proprioceptive and perceptual
states the agent can predict its proprioceptive and visual input.
The generative model is specified by Equation (17) and the preci-
sion of the random fluctuations that determine the agent’s prior
certainty about sensory inputs and the motion of hidden states.
In the examples below, we used a log-precision of eight for pro-
prioceptive sensations and the motion of hidden states. We let the
agent believe its visual input was fairly noisy, with a log-precision
of four. In practice, this means it is more likely to change its (less
precise) posterior beliefs about the causes of visual input to reduce
prediction error, as opposing to adjusting its (precise) posterior
beliefs about where it is looking.

PRIORS AND SALIENCY
To simulate saccadic eye movements, we integrated the active
inference scheme for 16 time bins (196 ms) and then computed
a map of salience to reset the prior expectations about the hidden
control states that attract the center of gaze. Salience was com-
puted for 1024 = 32× 32 locations distributed uniformly over
the visual image or scene. The prior expectation of the hidden
control state was the location that maximized salience, according
to Equation (28). The ensuing salience over the 32× 32 locations
constitutes a salience map that drives the next saccade. Notice that
salience is a function of, and only of, fictive beliefs about the state
of the world and essentially tells the agent where to look next.

Figure 5 provides a simple illustration of salience based upon
the posterior beliefs or hypothesis that local (foveal) visual inputs
are caused by an image of Nefertiti. The left panels summaries the
classic results of the Yarbus (1967); in terms of a stimulus and the
eye movements it elicits. The right panels depict visual input after
sampling the image on the right with center-surround receptive
fields and the associated saliency map based on a local sampling
of 16× 16 pixels, using Equation (21). Note how the receptive
fields suppress absolute levels of luminance contrast and high-
light edges. It is these edges that inform posterior beliefs about
the content of the visual scene and where it is being sampled.
This information reduces conditional uncertainty and is there-
fore salient. The salient features of the image include the ear,
eye, and mouth. The location of these features and a number
of other salient locations appear to be consistent with the loca-
tions that attract saccadic eye movements (as shown on the right).
Crucially, the map of salience extends well beyond the field of
view (circle on the picture). This reflects the fact that salience is
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FIGURE 5 | This provides a simple illustration of salience based upon

the posterior beliefs or hypothesis that local (foveal) visual inputs

are caused by an image of Nefertiti. The left panels summaries the
classic results of the Yarbus; in terms of a stimulus and the eye
movements it elicits. The right panels depict visual input after sampling
the image on the right (using conventional center surround receptive
fields) and the associated saliency map based on a local sampling of

16× 16 pixels, using the generative model described in the main text.
The size of the resulting field of view, in relation to the visual scene, is
indicated with the circle on the left image. The key thing to note here is
that the salient features of the image include the ear, eye, and mouth.
The location of these features and other salient locations appear to be
consistent with the locations that attract saccadic eye movements (as
shown on the right).

not an attribute of what is seen, but what might be seen under a
particular hypothesis about the causes of sensations.

To make the simulations a bit more realistic, we added a fur-
ther prior implementing inhibition of return (Itti and Koch, 2001;
Wang and Klein, 2010). This involved suppressing the salience
of locations that have been recently foveated, using the following
scheme:

Sk = Sk − (Sk × Rk−1)

Rk = ρ(Sk)+ 1
2 Rk−1

(32)

Here, Sk = S(η̃j)−min(S(η̃j)) is the differential salience for
the k-th saccade and Rk is an inhibition of return map that
remembers recently foveated locations. This map reduces the
salience of previous locations if they were visited recently. The
function ρ(Sk) ∈ [0, 1] is a Gaussian function (with a standard
deviation of 1/16 of the image size) of the distance from the
location of maximum salience that attracts the k-th saccade. The
addition of inhibition of return ensures that a new location is
selected by each saccade and can be motivated ethologically by
prior beliefs that the visual scene will change and that previous
locations should be revisited.

FUNCTIONAL ANATOMY
Figure 6 provides an intuition as to how active inference under
salience priors might be implemented in the brain. This schematic
depicts a particular instance of the message passing scheme in
Figure 4, based on the generative model above. This model pre-
scribes a hierarchical form for generalized predictive coding;
shown here in terms of state and error units (black and red,
denoting deep and superficial pyramidal cell populations, respec-
tively) that have been assigned to different cortical or subcortical
regions. The insert on the left shows a visual scene (a picture
of Nefertiti) that can be sampled locally by foveating a partic-
ular point—the true hidden state of the world. The resulting
visual input arrives in primary visual cortex to elicit prediction

errors that are passed forward to “what” and “where” streams
(Ungerleider and Mishkin, 1982). State units in the “what” stream
respond by adjusting their representations to provide better pre-
dictions based upon a discrete number of internal images or
hypotheses. Crucially, the predictions of visual input depend
upon posterior beliefs about the direction of gaze, encoded by
the state units in the “where” stream (Bisley and Goldberg,
2010). These posterior expectations are themselves informed by
top–down prior beliefs about the direction of gaze that maxi-
mizes salience. The salience map shown in the center is updated
between saccades based upon conditional expectations about
the content of the visual scene. Conditional beliefs about the
direction of gaze provide proprioceptive predictions to the ocu-
lomotor system in the superior colliculus and pontine nuclei,
to elaborate a proprioceptive prediction error (Grossberg et al.,
1997; Shires et al., 2010; Shen et al., 2011). This prediction
error drives the oculomotor system to fulfill posterior beliefs
about where to look next. This can be regarded as an instance
of the classical reflects arc, whose set point is determined by
top–down proprioceptive predictions. The anatomical designa-
tions should not be taken seriously (for example, the salience
map may be assembled in the pulvinar or frontal cortex and
mapped to the deep layer of the superior colliculus). The impor-
tant thing to take from this schematic is the functional logic
implied by the anatomy that involves reciprocal message pass-
ing and nested loops in a hierarchical architecture that is not
dissimilar to circuits in the real brain. In particular, note that
representations of hidden perceptual states provide bilateral top–
down projections to early visual system is (to predict visual input)
and to the systems computing salience, which might involve the
pulvinar of the thalamus (Wardak et al., 2011; Wurtz et al.,
2011).

SIMULATING SACCADIC EYE MOVEMENTS
Figure 7 shows the results of a simulated visual search, in which
the agent had three internal images or hypotheses about the scene
it might sample (an upright face, an inverted face, and a rotated
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FIGURE 6 | This schematic depicts a particular instance of the message

passing scheme in Figure 4. This example follows from the generative
model of visual input described in the main text. The model prescribes a
particular hierarchical form for generalized predictive coding; shown here in
terms of state and error units (black and red, respectively) that have been
assigned to different cortical or subcortical regions. The insert on the left
shows a visual scene (a picture of Nefertiti) that can be sampled locally by
foveating a particular point—the true hidden state of the world. The
resulting visual input arrives in primary visual cortex to elicit prediction
errors that are passed forward to what and where streams. State units in
the “what” stream respond by adjusting their representations to provide
better predictions based upon a discrete number of internal images or
hypotheses. Crucially, the predictions of visual input depend upon posterior
beliefs about the direction of gaze encoded by state units in the “where”
stream. These conditional expectations are themselves informed by

top–down prior beliefs about the direction of gaze that maximizes salience.
The salience map shown in the center is updated between saccades
based upon posterior beliefs about the content of the visual scene.
Posterior beliefs about the content of the visual scene provide predictions
of visual input and future hidden states subtending salience. Posterior
beliefs about the direction of gaze are used to form predictions of visual
input and provide proprioceptive predictions to the oculomotor system in
the superior colliculus and pontine nuclei, to elaborate a proprioceptive
prediction error. This prediction error drives the oculomotor system to fulfill
posterior beliefs about where to look next. This can be regarded as an
instance of the classical reflects arc, whose set point is determined by
top–down proprioceptive predictions. The variables associated with each
region are described in detail in the text, while the arrows connecting
regions adopt same format as in Figure 4 (forward prediction error
afferents in red and backward predictions in black).

face). The agent was presented with an upright face and its poste-
rior expectations were evaluated over 16 (12 ms) time bins, after
which salience was evaluated. The agent then emitted a saccade by
foveating the most salient location during the subsequent 16 time
bins—from its starting location (the center of the visual field).
This was repeated for eight saccades. The upper row shows the
ensuing eye movements as red dots (in the extrinsic coordinates
of the true scene) at the fixation point of each saccade. The cor-
responding sequence of eye movements are shown in the insert
on the upper left, where the red circles correspond roughly to the
agent’s field of view. These saccades were driven by prior beliefs
about the direction of gaze based upon the salience maps in the
second row. Note that these maps change with successive saccades
as posterior beliefs about the hidden perceptual states become

progressively more confident. Note also that salience is depleted
in locations that were foveated in the previous saccade—this
reflects the inhibition of return. Posterior beliefs about hidden
states provide visual and proprioceptive predictions that suppress
visual prediction errors and drive eye movements, respectively.
Oculomotor responses are shown in the third row in terms of the
two hidden oculomotor states corresponding to vertical and hor-
izontal displacements. The portions of the image sampled (at the
end of each saccade) are shown in the fourth row (weighted by the
Hamming function above). The final two rows show the poste-
rior beliefs in terms of their sufficient statistics (penultimate row)
and the perceptual categories (last row), respectively. The poste-
rior beliefs are plotted here in terms of posterior expectations and
90% confidence interval about the true stimulus. The key thing
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FIGURE 7 | This figure shows the results of a simulation, in which a

face was presented to an agent, whose responses were simulated

using the optimal inference scheme described in the main text. In this
simulation, the agent had three internal images or hypotheses about the
stimuli it might sample (an upright face, an inverted face, and a rotated
face). The agent was presented with an upright face and its conditional
expectations were evaluated over 16 (12 ms) time bins until the next
saccade was emitted. This was repeated for eight saccades. The ensuing
eye movements are shown as red dots at the location (in extrinsic
coordinates) at the end of each saccade in the upper row. The
corresponding sequence of eye movements is shown in the insert on the
upper left, where the red circles correspond roughly to the proportion of
the image sampled. These saccades are driven by prior beliefs about the
direction of gaze based upon the saliency maps in the second row. Note
that these maps change with successive saccades as posterior beliefs
about the hidden states, including the stimulus, become progressively

more confident. Note also that salience is depleted in locations that were
foveated in the previous saccade. These posterior beliefs provide both
visual and proprioceptive predictions that suppress visual prediction errors
and drive eye movements, respectively. Oculomotor responses are shown
in the third row in terms of the two hidden oculomotor states
corresponding to vertical and horizontal displacements. The associated
portions of the image sampled (at the end of each saccade) are shown in
the fourth row. The final two rows show the posterior beliefs in terms of
their sufficient statistics and the stimulus categories, respectively. The
posterior beliefs are plotted here in terms of conditional expectations and
the 90% confidence interval about the true stimulus. The key thing to note
here is that the expectation about the true stimulus supervenes over its
competing expectations and, as a result, conditional confidence about the
stimulus category increases (the confidence intervals shrink to the
expectation). This illustrates the nature of evidence accumulation when
selecting a hypothesis or percept the best explains sensory data.

to note here is that the expectation about the true stimulus super-
venes over its competing representations and, as a result, posterior
confidence about the stimulus category increases (the posterior
confidence intervals shrink to the expectation): see Churchland
et al. (2011) for an empirical study of this sort phenomena. The

images in the lower row depict the hypothesis selected; their
intensity has been scaled to reflect conditional uncertainty, using
the entropy (average uncertainty) of the softmax probabilities.

This simulation illustrates a number of key points. First, it
illustrates the nature of evidence accumulation in selecting a
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hypothesis or percept the best explains sensory data. One can see
that this proceeds over two timescales; both within and between
saccades. Within-saccade accumulation is evident even during
the initial fixation, with further stepwise decreases in uncertainty
as salient information is sampled. The within-saccade accumu-
lation is formally related to evidence accumulation as described
in models of perceptual discrimination (Gold and Shadlen, 2003;
Churchland et al., 2011). This is reflected in the progressive eleva-
tion of the correct perceptual state above its competitors and the
consequent shrinking of the posterior confidence interval. The
transient changes in the posterior beliefs, shortly after each sac-
cade, reflect the fact that new data are being generated as the eye
sweeps toward its new target location. It is important to note that
the agent is not just predicting visual contrast, but also how con-
trast changes with eye movements—this induces an increase in
conditional uncertainty (in generalized coordinates of motion)
during the fast phase of the saccade. However, due to the veracity
of the posterior beliefs, the conditional confidence shrinks again
when the saccade reaches its target location. This shrinkage is
usually to a smaller level than in the previous saccade.

This illustrates the second key point; namely, the circular
causality that lies behind perception. Put simply, the only hypoth-
esis that can endure over successive saccades is the one that
correctly predicts the salient features that are sampled. This sam-
pling depends upon action or an embodied inference that speaks
directly to the notion of active vision or visual palpation (O’Regan
and Noë, 2001; Wurtz et al., 2011). This means that the hypoth-
esis prescribes its own verification and can only survive if it is a
correct representation of the world. If its salient features are not
discovered, it will be discarded in favor of a better hypothesis.
This provides a nice perspective on perception as hypothesis test-
ing, where the emphasis is on the selective processes that underlie
sequential testing. This is particularly pertinent when hypothe-
ses can make predictions that are more extensive than the data
available at any one time.

Finally, although the majority of saccades target the eyes and
nose, as one might expect, there is one saccade to the forehead.
This is somewhat paradoxical, because the forehead contains no
edges and cannot increase posterior confidence about a face.
However, this region is highly informative under the remaining
two hypotheses (corresponding to the location of the nose in the
inverted face and the left eye in the rotated face). This sublimi-
nal salience is revealed through inhibition of return and reflects
the fact that the two competing hypotheses have not been com-
pletely excluded. This illustrates the competitive nature of percep-
tual selection induced by inhibition of return and can regarded,
heuristically, as occasional checking of alternative hypotheses.
This is a bit like a scientist who tries to refute his hypothesis by
acquiring data that furnish efficient tests of his competing or null
hypotheses.

CONCLUSION
This ideas reviewed in this paper suggest that the reward or cost-
functions that underlie value in conventional (normative) models
of optimal control can be cast as prior beliefs about future states,
which are disclosed through active inference. In this setting, value
becomes the evidence for generative models of our world—and

valuable behavior is nothing more or less than accumulating evi-
dence for our embodied models, through Bayesian updating of
posterior beliefs. Subsequently, we saw that prior beliefs about
future states are simply those that minimize the uncertainty of
posterior beliefs. In this general formulation, we can understand
exploration of the sensorium in terms of optimality principles
based on ergodic or homoeostatic principles. In other words,
to maintain the constancy of our external milieu, it is sufficient
to expose ourselves to predicted and predictable stimuli. Being
able to predict current observations also enables us to predict fic-
tive sensations that we could experience from another viewpoint;
where the best viewpoint is the one that confirms our predic-
tions with the greatest precision or certainty. In short, action
fulfills our predictions, while we predict the consequences of
our actions will minimize uncertainty about those predictions.
This provides a principled way in which to sample the world;
for example, with visual searches using saccadic eye movements.
These theoretical considerations are remarkably consistent with
a number of compelling heuristics; most notably the Infomax
principle or the principle of minimum redundancy, signal detec-
tion theory and formulations of salience in terms of Bayesian
surprise.

An interesting perspective on active inference and embodied
perception emerges from these considerations, in which percepts
are selected through a form of circular causality: in other words,
only the correct perceptual hypothesis can survive the cycle of
action and perception, when the percept is used to predict where
to look next. If the true state of the world and the current hypoth-
esis concur, then the percept can maintain itself by selectively
sampling evidence for its own existence. This provides an embod-
ied (enactivist) explanation for perception that fits comfortably
with the notion of visual sniffing or palpation (O’Regan and Noë,
2001; Wurtz et al., 2011). Furthermore, it resonates with neuro-
dynamic accounts of self-generated behavior in a robotics context
(Namikawa et al., 2011).

The arguments in this paper have been inspired by devel-
opments in theoretical neurobiology and machine learning.
However, it is interesting to consider parallel developments in
neurorobotics. Two decades ago most neurorobotics employed
simple architectures with sensory-motor mappings implemented
by perceptron-type networks and supervised learning; for exam-
ple, the supervised learning of driving skills in robot cars
(Pomerleau, 1991). In principle, active inference provides a for-
malism to revisit these sorts of problems using self-supervised
schemes based upon deep hierarchical models. The usefulness of
hierarchical schemes has been demonstrated by Morimoto and
Doya, who show how a robot can stand up using hierarchical rein-
forcement learning (Morimoto and Doya, 2001). Furthermore,
the idea of forward (predictive) modeling is now established in
neurorobotics: Schaal (1997) has shown how learning a predictive
forward model is beneficial in imitation learning, while Tani and
Nolfi (1999) show how prediction error can be used to recognize
self-generated behavior using a hierarchically organized mixture
of predictive expert networks. There are clear parallels here with
active inference under hierarchical generative (forward) mod-
els that suggest a theoretical convergence of neurobiology and
neurorobotics. One can imagine exploiting the fairly simple and
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principled optimization schemes provided by free energy mini-
mization to elaborate robots with deep hierarchical models, were
these models that generally entail a separation of temporal scales
and context sensitive behavior. On a more general note, active
inference may provide a formal framework that connects the
compelling work in neurorobotics on imitation and action obser-
vation to some of the highest level questions that currently pre-
occupy psychologists and cognitive neuroscientists—particularly
those people interested in psychopathology and its mechanistic
underpinnings.

The treatment of optimality in this paper has focused on the
nature of value and its relationship to evidence. There are many
other important issues that we have glossed over; such as the
acquisition or learning of models. For example, as noted by one
of our reviewers: “Many traditional (alternate) methods would be
capable of arriving at optimal policies despite limitations in the
model, owing to the properties of the approximation procedures.
In the authors’ proposal, the underlying generative model would
need to capture the necessary dynamics through the definition of
the priors and model structure (which the authors note may be
learnt separately at a higher level). Do we know that this internal
model can be learnt, in a tractable form given what can be known
about the task? Do we know if the solutions to the two cases will
be similar?”

In one sense, traditional methods are not necessarily alterna-
tive methods, because optimal policies can be cast as prior beliefs.
In other words, the current framework just allows one to con-
vert optimal control problems into pure inference problems. The
motivation for this is to understand where prior beliefs (opti-
mal policies) come from in a hierarchical setting. The hierarchical
aspect is important because this necessarily induces empirical
priors, which means that cost functions can themselves be opti-
mized in relation to model evidence. This is illustrated nicely
in the context of learning and model selection: a fuller treat-
ment would show that the parameters of any given model can be
learned in a Bayes optimal fashion by minimizing variational free
energy (Friston, 2008). Furthermore, the model itself can also be
optimized with respect to variational free energy, in exactly the
same way that Bayesian model selection operates in data analy-
sis. This hierarchical optimization may provide a nice metaphor
for understanding selection at a neurodevelopmental or evolu-
tionary timescale (Friston et al., 2006). Crucially, because we are
dealing with approximate Bayesian inference, the models selected
will necessarily be approximations and provide the simplest (most
parsimonious) explanations for sampled outcomes. In answer to
the reviewer’s questions, any extant phenotype is an existence
proof that its particular (approximate) model can be learnt. The
question about the uniqueness of models is a bit more subtle—
in the sense that (in active inference) models create their own
data. This means that each phenotype may be a uniquely optimal
model for its own sensorium but not that of another phenotype.
These are clearly very important issues, which motivate the work
reviewed in this paper.

The ideas described in this paper try to go beyond the for-
mal similarity between optimal control and Bayesian inference
schemes to suggest that optimal control is a special case of Bayes-
optimal inference and that inference is the hard problem. In this

setting, optimality reduces to sampling states prescribed by the
priors of a generative model that specifies state transitions. So
what are the practical advantages of casting optimal control as
inference? In Friston et al. (2012b) we summarized the advantages
of active inference as providing:

• A tractable approximate solution to any stochastic, non-
linear optimal control problem to the extent that stan-
dard (variational) Bayesian procedures exist. Variational or
approximate Bayesian inference is well-established in statis-
tics and data assimilation because it finesses many of
the computational problems associated with exact Bayesian
inference.
• The opportunity to learn and infer environmental constraints

in a Bayes-optimal fashion; particularly the parameters of
equations of motion and amplitudes of observation and hidden
state noise.
• The formalism to handle system or state noise: currently, opti-

mal control schemes are restricted to stochastic control (i.e.,
random fluctuations on control as opposed to hidden states).
One of the practical advantages of active inference is that
fluctuations in hidden states are modeled explicitly, rendering
control robust to exogenous perturbations.
• The specification of control costs in terms of priors on control,

with an arbitrary form: currently, most approximate stochas-
tic optimal control schemes are restricted to quadratic control
costs. In classical schemes that appeal to path integral solutions
there are additional constraints that require control costs to be
a function of the precision of control noise; e.g., Theodorou
et al. (2010) and Braun et al. (2011). These constraints are not
necessary in active inference.

The disadvantage of active inference is that one cannot pre-
scribe optimality in terms of cost functions, because (Bayes)
optimal behavior rests on a generative model that is speci-
fied by its likelihood and prior functions. Having said this, for
every Bayes-optimal policy there is an associated cost function
(Friston and Ao, 2012). Perhaps the most important advantage
of active inference—for practical applications—is its simplicity
and robustness. It simplicity stems from the fact that one only
has to specify desired movements or trajectories in terms of prior
beliefs (equations of motion in the generative model) as opposed
to desired endpoints of movement (which requires the solution of
a generally intractable optimal control problem). The robustness
follows from the context sensitivity of active inference schemes
and their ability to handle unpredicted (random) fluctuations or
indeed changes in the motor plant—see Friston et al. (2010b).
Finally, treating control problems as inference problems allows
one to exploit the advances made in approximate Bayesian infer-
ence and model selection. A nice example here would be the
hierarchal optimization of control architectures using Bayesian
model selection and free energy as an approximation to log model
evidence. This strategy is now used routinely to select among
thousands of models within a few seconds (Friston and Penny,
2011) but has only been applied in a data analysis setting. In prin-
ciple, these Bayesian procedures could also be used in a control
setting.
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In summary, we have tried to formalize the intuitive notion
that our interactions with the world are akin to sensory
experiments, by which we confirm our hypotheses about its
causal structure in an optimal and efficient fashion. This man-
dates prior beliefs that the deployment of sensory epithelia
and our physical relationship to the world will disclose its
secrets—beliefs that are fulfilled by action. The resulting active
or embodied inference means that not only can we regard

perception as hypothesis testing, but we could regard action
as performing experiments that confirm or disconfirm those
hypotheses.
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Reward-based learning can easily be applied to real life with a prevalence in children
teaching methods. It also allows machines and software agents to automatically
determine the ideal behavior from a simple reward feedback (e.g., encouragement) to
maximize their performance. Advancements in affective computing, especially emotional
speech processing (ESP) have allowed for more natural interaction between humans
and robots. Our research focuses on integrating a novel ESP system in a relevant
virtual neurorobotic (VNR) application. We created an emotional speech classifier that
successfully distinguished happy and utterances. The accuracy of the system was 95.3
and 98.7% during the offline mode (using an emotional speech database) and the
live mode (using live recordings), respectively. It was then integrated in a neurorobotic
scenario, where a virtual neurorobot had to learn a simple exercise through reward-based
learning. If the correct decision was made the robot received a spoken reward, which
in turn stimulated synapses (in our simulated model) undergoing spike-timing dependent
plasticity (STDP) and reinforced the corresponding neural pathways. Both our ESP and
neurorobotic systems allowed our neurorobot to successfully and consistently learn the
exercise. The integration of ESP in real-time computational neuroscience architecture is a
first step toward the combination of human emotions and virtual neurorobotics.

Keywords: emotional speech processing, reward-based learning, virtual neurorobotics, biological computational

model

1. INTRODUCTION
How does speech portray emotions? Many of our social cues
and communication skills rely on emotional speech, but it is
a challenging process to study. Affective computing, especially
emotional speech processing (ESP) has helped elucidate the
importance of human emotions. It is basically described as apply-
ing human like emotional effects to artificially produced speech.
Speech contains acoustic features that vary with the speaker’s
affective state, and the ability to interpret these communication
signals (e.g., emotions) affects social interaction (Warren et al.,
2006). Humans also perceive how emotional environmental cues
such as fear or anger indicate danger (Kanske and Hasting, 2010)
and keep them fit for survival.

At the physiological level, speech is processed in specialized
brain regions in the upper portion of the superior temporal sul-
cus, which is one of the voice-selective areas of the auditory cortex
(Grossmann et al., 2010). These areas in monkeys and humans
have been thought to provide social information to sensory sys-
tems. Recent studies on macaque monkeys have revealed they
have a region in the superior temporal plane selective to speech
similar to humans (Belin et al., 2000, 2004). These studies suggest
that recognition of speech within species is an evolutionarily con-
served brain function in primates and is independent of language
(Petkov et al., 2008, 2009). Therefore, language requires more
than simply linguistic information. Other studies in behavioral
biology, psychology, and speech and communication sciences

have suggested that many emotional states are communicated by
specific acoustic characteristics of the speaker. Evidence reveals
that listeners attend to changes in voice quality, articulation, pitch,
and loudness to understand the speaker’s emotion (Banse and
Scherer, 1996). Emotions that are the most distinct in humans
are anger, disgust, fear, joy, sadness, and surprise (El Ayadi et al.,
2011).

As part of emotional processing, emotional speech recognition
is a relatively recent research field, which is defined as extracting
the emotional state of a speaker from her or his speech (El Ayadi
et al., 2011). Automatic recognition of emotions from modalities
such as speech has acquired expanding interest within the area
of human-machine interaction research (Fu et al., 2010). Such
emotional speech recognition is essential for facilitating realistic
communication between robots and humans. Service robots are
being designed to help humans with difficult or time-consuming
tasks or help those with disabilities (Severinson-Eklundh et al.,
2003). Appropriate communication allows robots to share human
knowledge, and can potentially use human recognition capabili-
ties to complete complex tasks (Ghidary et al., 2002). Thus, it will
be important for future robotics to be able to understand emotion
in speech in order to complete such tasks.

Biological-inspired human-robot interactions have become
increasingly important as robots fascinate many researchers and
become more common in our daily activities. For the past couple
of years, we have worked on machine learning systems, and we
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developed a Virtual Neurorobotic (VNR) loop, which focuses on
the coupling of neural systems with some form of physical actua-
tion. This is based around the interoperability of a neural model,
a virtual robotic avatar and a human participant (Goodman
et al., 2007, 2008). Under all but the most basic scenarios this
interoperability is accomplished through an organized network
communication system (Thibeault et al., 2010b, 2012).

This paper provides an introduction to affective computing
and emotional speech processing combined with one application
of real-time virtual neurorobotics. We use our VNR to describe
how our emotional speech system can be successfully used to rein-
force learning and allow a neurorobot to make ideal choices based
on visual cues.

2. AFFECTIVE COMPUTING
The curious nature of human emotions has been the subject
of much research and philosophical debate. Why do humans
have emotions, and what role do they have in human cogni-
tion and behavior? During the cognitive revolution that began
in the second half of the twentieth century, the lingering influ-
ence of behaviorism helped downplay the role of emotion to little
more than a side effect from instinctual and learned behavior
(Hudlicka, 2003).

Recently, advancements in neuroscience and psychology have
helped elevate the importance of emotion; within the last decade
or so, research has shown that emotion plays a crucial role
in human intelligence, including planning and decision mak-
ing of all levels (Hudlicka, 2003; Picard, 2003). This renewed
interest in emotional research has led to the birth of a grow-
ing research field, affective computing. Rosalind Picard’s paper,
Affective Computing: Challenges gave the field its name (Picard,
2003). In her paper, Picard discusses the three main areas of
affective computing: emotional sensing and recognition, affect
modeling, and emotion expression.

Several researchers have attempted to create emotionally intel-
ligent robots. Perhaps the most famous is Kismet, an infant-like
robotic creature developed at MIT (Breazeal and Aryananda,
2002). Kismet responds to the emotional state (typically acted)
of its “caregiver” by analyzing the caregiver’s speech in real-time.
The system extracts statistics on the caregiver’s voice pitch and
energy, and classifies the underlying emotion using a Gaussian
mixture model classifier. The robot responds to the caregiver’s
emotional intent by changing its facial expression. Naive test sub-
jects were chosen to interact with the robot and many felt a strong
emotional response while interacting with it, especially when
Kismet showed sadness after being prohibited by the human.
Kismet successfully shows that robots can be designed to react to
human emotions, and in turn, elicit an emotional response from
the human as well.

Another empathetic android robot is BARTHOC, developed at
Bielefeld University, Germany (Hegel et al., 2006). BARTHOC can
be given several different appearances by changing the latex mask
that composes its face and head. For many experiments, the robot
is given the appearance of a small child via a latex mask, although
its appearance is decidedly less “cute” than Kismet, due to the dif-
ficulty in creating a realistic looking android face. Like Kismet,
BARTHOC mimics the emotion of the human interacting with

it by changing its facial expression. The emotion of the human is
determined using emotional speech processing. BARTHOC can
distinguish and portray six emotional states: neutral, happy, fear,
anger, disgust, surprise, and sad.

Both Kismet and BARTHOC can mimic human emotions
by recognizing the emotional content in a human’s speech. Our
system aims to further these advancements by using human
emotional content as a training mechanism for a virtual robot.

3. THEORY BEHIND EMOTIONAL SPEECH
PROCESSING (ESP)

ESP systems (also called emotional speech recognition systems)
attempt to determine the underlying emotion in human speech.
Unlike normal speech recognition systems, most ESP systems do
not extract lexical information, but instead classify the speaker’s
emotion without any regard to context. This is typically accom-
plished by extracting prosodic features for each word or phrase
uttered by the speaker, generating statistics on these features,
and classifying the feature vector using a supervised learning
algorithm.

Although the accuracy of ESP systems is typically lower than
other emotional classification methods involving facial imag-
ing and physiological features, their recognition rates are similar
to those of humans (Hudlicka, 2003). Furthermore, emotional
speech recognition is less computationally expensive and less
invasive than other methods, and remains a popular method for
emotion detection, especially in live environments.

3.1. FEATURES
There is currently little consensus on the best features for emo-
tional speech recognition, however statistics on prosodic features,
especially the fundamental frequency (pitch), are among the most
common (Scherer et al., 1991; Dellaert et al., 1996; Oudeyer, 2003;
Ververidis et al., 2004; Fu et al., 2010; Thibeault et al., 2010b;
Koolagudi et al., 2011; Tahon et al., 2011). Other prosodic features
used for ESP include energy and duration (Batliner et al., 2006).
In addition to prosody, other common features include spec-
tral features such as Mel-frequency cepstral coefficients (MFCCs),
and non-linear Teager energy based features. In order to form a
“good“ feature vector, ESP systems extract several statistical quan-
tities from each feature contour such as the “mean, median, stan-
dard deviation, maximum, minimum, range, linear regression
coefficients, 4th order Legendre parameters, vibrations, mean of
first difference, mean of the absolute of the first difference, jit-
ter, and ratio of the sample number of the up-slope to that of
the down-slope of the pitch contour” (El Ayadi et al., 2011). By
varying the number of features, and the statistics on each fea-
ture, ESP systems can have feature vectors of lengths ranging
from 12 (Breazeal and Aryananda, 2002) to 988 (Eyben et al.,
2009). To improve classification time and accuracy, several stud-
ies begin with large feature sets and then select the best features
using exhaustive, sequential, or random searches (Fu et al., 2010).

3.2. FUNDAMENTAL FREQUENCY DETECTION
The fundamental frequency (F0) of a voiced speech is typically
defined as the rate of vibration of the vocal folds (de Cheveigné
and Kawahara, 2002). Generally, the pitch humans perceive when
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someone is talking or singing is equivalent to the fundamental
frequency, and ranges from about 40 to 600 Hz (Huang et al.,
2001). We will therefore refer to the fundamental frequency sim-
ply as “pitch”, and methods to determine F0 as “pitch detection
algorithms.” Frequency-domain pitch detection approaches usu-
ally utilize the Fast Fourier Transform (FFT) to convert the signal
to the frequency spectrum. This allows for polyphonic detection.
Time-domain approaches, such as autocorrelation are typically
less computationally expensive, but may be prone to errors and
octave jumps, especially due to noise. As a method, robust algo-
rithm for pitch tracking (RAPT) (Talkin, 1995) is a pitch tracking
algorithm that attempts to return a smooth pitch contour, with-
out the undesirable octave jumps and false detection problems
present in the basic auto-correlation method. RAPT operates on
two versions of the input signal, one at the original sample rate,
and one at a significantly reduced rate. The algorithm first com-
putes the normalized cross-correlation (NCFF) of a low-sample
signal and records the locations of the local maxima. Next, NCFF
is performed on the higher sample-rate signal in the vicinity of
the peaks found in the previous step. This generates a list of
several F0 candidates for the input frame. Finally, dynamic pro-
gramming is used to select the best F0 candidates over the entire
window.

3.3. CLASSIFIERS
After a feature vector has been created, it must be classified
in order to determine its emotional class. A number of classi-
fiers have been used in ESP systems, including hidden Markov
models (HMM), Gaussian mixture models (GMM), k-nearest
neighbor (k-NN), support vector machines (SVM), artificial neu-
ral networks (ANN), and decision trees (El Ayadi et al., 2011).
Different classifiers can perform better in different situations,
which can have a significant effect of a system’s classification
accuracy (El Ayadi et al., 2011). Therefore, it is important for
the researcher to chose a classifier carefully, taking into account
accuracy as well as computational requirements.

3.4. DATABASES
It can be difficult to compare the classification accuracies reported
by different researchers due to the variety in emotional speech
databases used. The Berlin emotional speech database (Burkhardt
et al., 2005) contains recordings performed by professional actors
in a noise-free environment, while (Morrison et al., 2007) pro-
vides actual recordings from call centers. Naturally, both humans
and computers attain higher recognition accuracy on databases
containing low-noise, acted recordings.

4. VIRTUAL NEUROROBOTICS (VNR)
VNR aims to develop combinations of biologically realistic neu-
ral simulations with robotic agents and human participants in
closed-loop configurations (Thibeault et al., 2010b). As described
by our previous studies by Goodman et al. (2007, 2008), we define
VNR as follows: a computer-facilitated behavioral loop wherein a
human interacts with a projected robot that meets five criteria:
the robot is sufficiently embodied for the human to tentatively
accept the robot as a social partner; the loop operates in real time,
with no pre-specified parcellation into receptive and responsive

time windows; the cognitive control is a neuromorphic brain
emulation using our NeoCortical simulator (NCS) and incorpo-
rating realistic neuronal dynamics whose time constants reflect
synaptic activation, membrane and circuitry properties, and most
importantly learning; the neuromorphic architecture is expand-
able to progressively larger scale and complexity to track brain
development; and the neuromorphic architecture can potentially
provide circuitry underlying intrinsic motivation and intention-
ality, which physiologically is best described as emotional rather
than rule-based drive.

NCS (Drewes, 2005; Wilson et al., 2005; Brette et al., 2007;
Drewes et al., 2009; Jayet Bray et al., 2010) is a neural simulator
that can model integrate-and-fire neurons with conductance-
based synapses. It uses two clusters: four SUN 4600 machines
(16-processors each) connected via Infiniband with 192 GB RAM
per machine, 24 Terabytes of disk storage; and 208 Opteron cores,
416 GB RAM, and more than a Terabyte of disk storage. Note:
for more information on NCS equations and related publications,
please go to: www.cse.unr.edu/brain/publications.

As a part of our neurorobotics, learning can be based on many
different experiences including making correct decisions and con-
sequently being rewarded. As illustrated in Figure 1: (1) a human
participant presents the robot with one external cue at a time. The
robot sees and then processes the information (2), then a decision
followed by an action associated with the initial cue is made (3).
Then, there are two possible scenarios (4): If the decision/action is
incorrect, then the robot does not receive any reward. However, if
the decision is correct it does receive a reward (e.g., hears positive
speech) by the human. In our correct case, the reward stimu-
lates synapses (in our simulated model) that underwent spike-
timing dependent plasticity (STDP) described by several studies

FIGURE 1 | Simplified reward-based learning scheme during

human-robot interaction. (1) The external cue is presented by the human
to the robot; (2) The information is seen and processed by the robot; (3) The
decision and the related action are performed; (4) The robot chose the ball
correctly or incorrectly; (5) The spoken reward (if correct action) is received
by the robot (6) The reward reinforces Learning every time the decision is
correct.
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(Zhang et al., 1998; Song et al., 2000; Dan and Poo, 2004; Caporale
and Dan, 2008; Markram et al., 2011) as:

W(�t) =
⎧⎨
⎩

A+ exp
(

�t
τ+

)
if (�t) < 0

−A− exp
(
−�t
τ−

)
if (�t) ≥ 0

(1)

where A is the maximum amount of synaptic modification; �t is
the positive or the negative window; and τ is the positive or the
negative decay constant.

Every time the robot receives a spoken reward (5), the neural
pathway corresponding to the correct decision and the action is
reinforced (6) until completely learned.

The integration of ESP in real-time computational neuro-
science architecture is a first step toward the combination of
human emotions and virtual neurorobotics. It was first described
in our preliminary study by Thibeault et al. (2010b), and it is now
being improved and further implemented in one of our neuro-
robotic applications. The improvements consisted on making the
system a stand alone C++ application using a different classifica-
tion and an ameliorated feature extraction method as described
in Section 5.

5. METHODS
5.1. HUMAN EMOTIONAL SPEECH CLASSIFICATION
To provide a benchmark for our emotional speech classification
system, we conducted a human trial in which seven individuals
were asked to classify 40 random utterances (sentences) from the
Berlin emotional speech database from four emotional classes:
happy, sad, anger, and fear. An even amount of samples (10) was
randomly played for each of the four emotions. Therefore, a total
of 280 samples (70 for each emotion) were classified and displayed
in a confusion matrix (Table 1). All the samples in the database
were in German and the humans classifying the samples only
spoke English. This allowed the listeners to only base their clas-
sifications on the prosody only, rather than the meaning of the
words.

5.2. EMOTIONAL SPEECH RECOGNITION SYSTEM
Our emotional speech classification system operated in real-time
by extracting several prosodic features for each utterance, and
classifying them using the support vector machine library, lib-
SVM (Chang and Lin, 2011) with the Radial Basis Function (RBF)
kernel. This classifier was chosen because of its high accuracy for
emotional speech classification tasks (El Ayadi et al., 2011).

To form the prosodic feature vector for each utterance, the
pitch for each window was determined using RAPT (Talkin,
1995), as described in Section 3. The window size and overlap
were 3361 and 2880 frames long, respectively. These values were
suggested by the RAPT algorithm for our system’s particular sam-
ple rate of 16 KHz. In addition to the pitch, RAPT also returned
the signal energy for each window. If the energy was above a
dynamic threshold, RAPT assumed that the speaker was talking.
In this case, the energy and pitch for that window were saved. If
the energy was too low, the speaker assumed to be silent and the
window was discarded.

The system continued saving pitch and energy values for each
window until a two second break in speech was was detected.

This corresponded to the end of a utterance. After the end of
an utterance, the feature vector was formed by calculating the
mean, minimum, maximum, and range of the pitch values over
the utterance. In addition to these four values, the feature vector
also contained the mean speech energy during the voiced regions.
In testing mode, the feature vector was then scaled and classi-
fied using libSVM. Before the system could classify emotions, it
had to be trained (training mode). Features were extracted for
33% (offline) and 50% (live) of utterances, and they were given
the appropriate emotion class labels. When the desired number
of utterances was processed by the system, the feature vectors
were scaled and used to create a libSVM model. The model file
and scaling parameters were saved and used to classify the fea-
ture vectors in testing mode. To show the difference between
pitch and emotion, the average pitch over 23 utterances was
graphed comparing “happy” and “sad” emotion for both male
and female speakers (Figure 2). This illustrates how the different
pitch measurements change with respect to emotion and gender,
as supported by Ververidis and Kotropoulos (2006).

There were two different experiments conducted to evalu-
ate the classification accuracy of our system. The JACK Audio
Connection Kit (Davis, 2013) was used to connect audio to the
system, either from a separate audio player (offline mode) or
the microphone (live mode). In the offline mode, the same pre-
recorded samples (23 “happy” and “sad” utterances for both male
and female speakers) from the Berlin emotional speech database
were used, which gave a total of 92 samples. In the live mode,
four humans recorded samples at 16 KHz from a list of 10 neu-
tral phrase samples. The following samples were recorded: “Look
Jack, the ball is blue,” “The ball is red,” “You turned left toward
the library,” “Jack, you turned right toward the museum,” “You
pointed to the blue color,” “You pointed to the red color, Jack,”
“Jack, you went over there,” “Look what you’ve done,” “Jack gave
the rattle to his mom,” “Jack kept the rattle for himself.” Each
sample was recorded twice with both “happy” and “sad” utter-
ances giving a total of 160 phrase samples. For both experiments,

FIGURE 2 | Average pitch between two emotional utterances. The
average pitch (Hz) is shown over 14 data points for both “happy” (female
voice—green and male voice—red) and “sad” (female voice—black and
male voice—blue) utterances.
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the results were represented as confusion matrices distinguishing
“happy” and “sad” utterances from both female and male speak-
ers. These showed the accuracy of the system (in terms of % error)
for both live and offline modes (Tables 2, 3).

5.3. A VIRTUAL NEUROROBOTIC APPLICATION
Our virtual neurorobotic loop used a virtual neurorobot as a
remote agent, and the interaction between a camera and ESP. The
design used in this project as well as the basic software engineering
behind its implementation was further described in our previous
research by Thibeault et al. (2012).

As a scenario example described in Figure 3, we designed an
experiment using a spoken reward through ESP as reward-based
learning. (1) A human presented a card with either a printed
blue or red pattern to the neurorobot via the camera, which cap-
tured the image from the user and calculated the dominant color.
(2) The information was processed by the virtual neurorobot,
which was sent as the defined plain text statement (“saw red” or
“saw blue”) to NCSTools through the server interface (Thibeault
et al., 2012). (3a) The configuration of NCSTools stimulated the

appropriate regions of the remote NCS Model through the NCS
network interface (Jayet Bray et al., 2012). Images were then
processed and respective values were sent to simulated visual
pathways (Thibeault et al., 2010a). (3b) The NCSTools server
monitored the neurorobot and created the appropriate stimu-
lus to send to proprioceptive feedback and premotor movements.
The NCSTools software then received spiking information from
the premotor region of the neural simulation. Such activity in
the two premotor regions were monitored, and then compared
as the stimulation progressed. The appropriate command was
finally sent to the neurorobot once a configured threshold was
reached (Anumandla et al., 2011; Jayet Bray et al., 2012). (4) This
loop of events initiated the appropriate pointing motion/action
toward a colored ball. (5) After the robot has pointed to the cor-
rect or incorrect colored ball, the human participant responded
with a “happy” or “sad” spoken phrase. This was processed by
the ESP which determined whether the participant encouraged
or discouraged the action of the virtual neurorobot. (6) The
output of the ESP was fed through NCS Tools to the neural
model. This reward stimulus was injected into groups of neurons

FIGURE 3 | A scenario of the virtual neurorobotic loop. (1) The external
cue (red or blue card) is presented by the human to the neurorobot (via the
camera); (2) The Information is processed by the neurorobot and is sent to
NCSTools; (3a) NCSTools stimulates the appropriate regions of the modeled
visual cortex; (3b) NCSTools server monitores the neurorobot and creates the
appropriate stimulus to send to proprioceptive feedback and premotor
movements; (4) This loop of events initiates the appropriate pointing
motion/action toward a colored ball; (5) After the robot has pointed to the

correct or incorrect colored ball, the human participant responded with a
“happy” or “sad” spoken phrase. This was processed by the ESP which
determined whether the participant encouraged or discouraged the action of
the virtual neurorobot; (6) The output of the ESP was coupled with the neural
model via NCSTools. This reward stimulus was injected into groups of
neurons (VC1 and VC2) to stimulate the corresponding synapses (to PMC1
and PMC2) that underwent STDP, which reinforced or depressed learning
through time.
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(VC1 and VC2) to stimulate the corresponding synapses (to
PMC1 and PMC2) that underwent STDP, which reinforced learn-
ing through time.

The experiment started as follows. The human showed a col-
ored card randomly to the neurorobot (via the camera). On the
first few attempts, the neurorobot had an equal chance of answer-
ing correctly or incorrectly since it was not familiar with the
exercise. During this learning period, every time it chose the
correct (incorrect) colored ball the “happy” (“sad”) reward was
given. It took about 4 to 5 trials for the neurorobot to fully learn
the exercise. Once it was completely familiar with the drill, no
more rewards were necessary, but it continued to correctly point
to the right color for the rest of the experiment. Overall, as shown
in Figure 3 there were four possible scenarios: when the robot
was shown the red (blue) pattern and correctly pointed to the
red (blue) ball to its left (right), the human provided a happy
spoken response. However, if the neurorobot incorrectly pointed
right (left) to the blue (red) ball, a sad spoken response was given
to the neurorobot.

For this simple example the reward was provided by corre-
lated inputs between the previously activated visual column and
the correctly chosen premotor column as well as reward acti-
vated STDP. In this case the plasticity of the synaptic connections
was enabled during reward input. While the correlated firing
encouraged the facilitation of the synapses resulting in an overall
average increase in synaptic efficacy. It is important to emphasis
that this reward mechanism is independent of the ESP system.
The emotional classification can be used to activate any reward,
punishment or input stimulus to the neural model. More sophis-
ticated reward mechanisms such as those described in Florian
(2007); Izhikevich (2007); Frmaux et al. (2010); Friedrich et al.
(2011); O’Brien and Srinivasa (2013) will be explored in the
future.

6. RESULTS
The results of our emotional speech classification system and its
integration as a reward in a VNR scenario are presented below.

6.1. HUMAN EMOTIONAL SPEECH CLASSIFICATION PERFORMANCE
From the classification system, an English speaking human was
able to classify German speakers’ emotions (fear, anger, happy,
and sad) with an accuracy of 88.6%, as shown in the confu-
sion matrix in Table 1. The vertical category column represents
the actual class (Berlin emotional speech database recordings)
where the horizontal category row is the classification of the emo-
tion by the human subjects. For instance, Out of the 70 German
“happy” tones 56 were correctly classified and 14 were incorrectly

Table 1 | Human classification confusion matrix.

Category Anger Fear Happy Sad Error

Anger 62 3 5 0 11.4%

Fear 5 62 1 2 11.4%

Happy 5 8 56 1 20.0%

Sad 0 1 1 68 2.9%

Average error 11.4%

interpreted as either “fear” or “anger.” Additionally, the confusion
table showed that most of the error occurred when the listener
distinguished between “anger” and “happy,” when listening to
an angry emotion OR when the listener distinguished between
“happy” and “fear,” when listening to a happy utterance. This
occurred because the utterances between these two emotions had
similar features. This confusion can be expected between “anger”
or “fear,” and happy in similar systems. Therefore, the “happy”
and “sad” emotions were chosen for our neurorobotic application
below due to a classification accuracy of 98.6%.

6.2. EMOTIONAL SPEECH RECOGNITION SYSTEM PERFORMANCE
In Figure 2, the average pitch is represented for the two chosen
emotional classes (happy and sad) between the male and female
groups from the Berlin emotional speech database. The “happy”
utterance had a higher pitch frequency than the “sad” one, espe-
cially with female speakers. The “sad” male utterance had the
lowest average pitch frequency overall.

During the offline mode, 92 samples from the Berlin emo-
tional speech database (Burkhardt et al., 2005) were used to train
(31 samples) and test (61 samples) the system. As shown in
Table 2, 33 phrase samples of the 34 total happy samples (male
and female combined) were correctly classified as happy while
one was classified incorrectly as sad, giving an error of 5.6%. Out
of the 27 total sad phrase samples (male and female combined),
25 were classified correctly while two were incorrectly classified
as happy, giving an error of 13.3%. If we separate the male and
female results, all 16 of the happy male phrase samples were cor-
rectly classified as happy, giving a 0% error. All of the 12 sad
female samples were also correctly classified as sad, giving an error
of 0%. The overall average error for all 61 phrase samples was
4.7%, which corresponds to a system accuracy of 95.3%. Note:
Approximately 33% of the total 160 samples were used to train
the system.

During the live mode, 160 samples from live recordings were
used to train (83 samples) and test (77 samples) the system. As
shown in Table 3, 41 phrase samples of the 42 total happy samples

Table 2 | Offline Mode Recognition confusion matrix.

Category Happy-M Sad-M Happy-F Sad-F Error

Happy-M 16 0 0 0 0.0%

Sad-M 2 13 0 0 13.3%

Happy-F 0 0 17 1 5.6%

Sad-F 0 0 0 12 0.0%

Average error 4.7%

Table 3 | Live Mode Recognition confusion matrix.

Category Happy-M Sad-M Happy-F Sad-F Error

Happy-M 22 0 0 0 0.0%

Sad-M 0 16 0 0 0.0%

Happy-F 0 0 19 1 5.0%

Sad-F 0 0 0 19 0.0%

Average error 1.3%
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were correctly classified as happy while 1 was classified incorrectly
as sad, giving an error of 5%. Out of the 35 total sad phrase sam-
ples, none were classified incorrectly, giving an error of 0%. The
overall average error for all 77 phrase samples was 1.3%, which
corresponds to a system accuracy of 98.7%. Note: Approximately
50% of the total 160 samples were used to train the system.

6.3. VIRTUAL NEUROROBOTIC AND REWARD-BASED LEARNING
In our neurorobotic application, the simple spiking neuron
model used was an important aspect of the system, and it is
illustrated in Figure 4. Once the camera captured either red
or blue color, the visual information was processed and sent
to NCSTools, as described in Section 5. The information was
then converted and sent to NCS running on a remote comput-
ing cluster. The brain architecture was composed of two areas:
the visual cortex (VC) and the premotor cortex (PMC) divided
into four areas of 10 neurons: VC1, VC2, PMC1, and PMC2.
Each VC column was connected to both PMC columns with a
probability of connections of 50% and a connection strength of
0.006 μS. Only the connections from VC1 → PMC1 and VC2
→ PMC2 had reinforcement learning synapses (positive STDP)
where the other connections got depressed though time (neg-
ative STDP). Therefore, as the red pattern was presented VC1
activity increased, and consequently increased PMC1 firing. On
the other hand, when the blue pattern was presented VC2 activ-
ity increased, and consequently increased PMC2 firing. As the

simulation proceeded, the competing neural areas of visual and
motor processing were monitored by NCSTools. The resulting
activity was correlated with a pointing action to one of two
colored balls that matched the color presented. After the robot
pointed, a spoken reward was given to the robot if it pointed to
the correct colored ball. The reward, analogous to a dopaminergic
increase, resulted in an STDP dependent increase in synaptic effi-
cacy (Zou and Destexhe, 2007). STDP was defined in Section 4,
and in the model the maximum positive and negative amounts
of synaptic modification (A) were 20 and 10 respectively; the
positive and negative windows (�t) were 50 ms and 100 ms,
respectively; and the positive and negative decay constants (τ)
were both 5 ms.

The Graphical User Interface (GUI) is an option given to
users for visualizing aspects of the neural model in real-time.
The user can specify each tab with the information of either:
main window, stimulation input (VCs), and motor areas (PMCs).
As shown in Figures 5A,B the average synaptic weight over the
simulation time can be monitored. As an example for a 9 s sim-
ulation, Figure 5A shows both average synaptic weights increase
between VC1 (VC2) and PMC1 (PMC2), which shows evidence
that the neurorobot’s correct decisions were reinforced over time.
However, the average synaptic weights between “non-learning”
synapses (VC1 to PMC2 and VC2 to PMC1) show no increase
over time (Figure 5B). To support these results, the firing activ-
ity of both PMC1 and PMC2 is represented in (Figures 5C–F).

FIGURE 4 | Brain architecture in the virtual neurorobotic interface.

Simple spiking neuronal model composed of two areas: the visual
cortex (VC) and the premotor cortex (PMC). Each area is divided into
two columns VC1, VC2, and PMC1, PMC2 (10 neurons each),
respectively. Each VC area has feedforward connections to both PMC
regions (P = 50% and Max. conductance = 0.006 μS). The synaptic

connections from VC1 (VC2) to PMC1 (PMC2) use STDP as a learning
mechanism. As the red (blue) is presented to VC1 (VC2) the activity of
the corresponding column increases, which make PMC1 (PMC2) fire.
When the neurorobot points correctly to “red” (“blue”) a spoken
reward is given, which stimulates the corresponding synapses VC1 →
PMC1 (VC2 → PMC2).
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FIGURE 5 | Average synaptic weights and firing activities. The GUI
monitors the synaptic strengths over time as an average of all
synapses between different neuron groups. (A) VC1 → PMC1 and VC2
→ PMC2 synpases show an increase in their strengths due to STDP
reinforcement; (B) VC1 → PMC2 and VC2 → PMC1 synpases show no

increase in their strengths (note: the blue and red lines are
superimposed); (C and E) PMC1 and PMC2 firing rates increase as
learning occurs—the neurorobot makes correct choices; (D and F)
PMC1 and PMC2 firing rates do not increase when the neurorobot is
not rewarded—makes incorrect choices.

They increase as reinforcement occurs (Figures 5C,E) when the
neurorobot was rewarded, but they show no significant changes
when the neurorobot is not rewarded (Figures 5D,F). The PMC1
and PMC2 average firing rates increased from 4.21 to 9.63 Hz and
from 4.34 to 10.59 Hz, respectively (Figures 5C,E). However, the
average rate changed from 3.89 to 3.95 Hz in Figure 5D and from
3.91 to 4.02 Hz in Figure 5F.

7. DISCUSSION AND FUTURE WORK
Robotic applications seem to be the future of our society due
to a rapid evolution in advanced technologies. Many develop-
ers, researchers, and scientists have focused on physical robots
(Breazeal and Aryananda, 2002; Hegel et al., 2006) that mimic
human emotions by recognizing the emotional content in a
human’s speech. On the other hand, we have paid more attention
to how the brain and its related biological processes, and cogni-
tion, are involved in human-robot interactions. The development
of our VNR has emphasized the integration of ESP as a reward
into a virtual neurorobotic system.

During our human emotional speech classification perfor-
mance, seven English speaking humans were able to classify
German speakers’ emotions (fear, anger, happy, and sad) with
an accuracy of 88.6%, which provided a benchmark for our
emotional speech classification system. Since there was a 98.6%

accuracy between the “happy” and “sad” utterances, these were
chosen to be used as a spoken reward in our virtual neurorobotic
application.

Using the Berlin emotional speech database, the average pitch
(extracted from our system) between two emotional classes
(“happy” and “sad”) and groups of speakers (male and female)
was significantly different. This confirmed that RAPT was a suc-
cessful method for extracting the pitch out of every sample. Using
the libSVM model, our offline mode system performance had an
accuracy of 95.3% and our live recognition system performance
attained similar accuracy by classifying the different emotions
correctly 98.7% of the time.

Based on the system performances, we created a scenario
where natural speech was used as a reward during a simple
exercise. Our emotional speech processing system accurately dis-
tinguished between two classes of emotions, happy and sad, and
provided a more natural and efficient way for training a child-
like robot. ESP was translated to the presented VNR example
to encourage or discourage the neurorobot’s actions. The plas-
ticity of the synaptic connections was shown as an increase in
the synaptic strengths (between VC1 and PMC1, and VC2 and
PMC2) and in the firing rates of PMC1 and PMC2 when a
reward was given. On the other hand, the absence of reward
showed no significant synaptic strengths nor firing rates increase
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in the concerned regions. These results give a preliminary eval-
uation when a spoken reward was used as an external stimulus
into a neuromorphic brain architecture. In terms of applica-
tions, an emphasis was placed on robotic and automated agents.
However, our system is by no means limited to that specific
application.

Overall, we described how our spoken reward system was
successfully used as reinforcement learning and allow our neuro-
robot to learn a simple exercise and make ideal choices based on
visual cues. The ability to monitor and modify simulations in real-
time was incredibly useful, especially when we further improve to
spiking networks to a larger scale. More importantly, this could
demonstrate another step towards multi-scale visualization of
neural simulations in a virtual environment.

We are also currently working on the emotional classification
system to accurately determine between additional classes in a
live environment. Furthermore, the creation of additional virtual
robotic scenarios could allow varying degrees of rewards, such
as more emotions, and additional external cues, such as facial
recognition. Ultimately, we plan create a biologically-realistic
emotional classification system that extracts pitch features using
a spiking cochlear model, and classifies emotions using a more
biologically realistic neural network.
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Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in
which the Bellman’s equation can be converted into a linear equation by an exponential
transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal
value function and the corresponding control policy are obtained by solving an eigenvalue
problem in a discrete state space or an eigenfunction problem in a continuous state using
the knowledge of the system dynamics and the action, state, and terminal cost functions.
In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in
which the dynamics of the body and the environment have to be learned from experience.
We first perform a simulation study of a pole swing-up task to evaluate the effect of
the accuracy of the learned dynamics model on the derived the action policy. The result
shows that a crude linear approximation of the non-linear dynamics can still allow solution
of the task, despite with a higher total cost. We then perform real robot experiments of
a battery-catching task using our Spring Dog mobile robot platform. The state is given by
the position and the size of a battery in its camera view and two neck joint angles. The
action is the velocities of two wheels, while the neck joints were controlled by a visual
servo controller. We test linear and bilinear dynamic models in tasks with quadratic and
Guassian state cost functions. In the quadratic cost task, the LMDP controller derived
from a learned linear dynamics model performed equivalently with the optimal linear
quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear
dynamics model showed the best performance. The results demonstrate the usefulness
of the LMDP framework in real robot control even when simple linear models are used for
dynamics learning.

Keywords: optimal control, linearly solvable Markov decision process, model-based reinforcement learning, model

learning, robot navigation

1. INTRODUCTION
When we want to design an autonomous robot that can act
optimally in its environment, the robot should solve non-linear
optimization problems in continuous state and action spaces. If a
precise model of the environment is available, then both optimal
control (Todorov, 2006) and model-based reinforcement learn-
ing (Barto and Sutton, 1998) give a computational framework to
find an optimal control policy which minimizes cumulative costs
(or maximizes cumulative rewards). In recent years, reinforce-
ment learning algorithms have been applied to a wide range of
neuroscience data (Niv, 2009) and model-based approaches have
been receiving attention among researchers who are interested in
decision making (Daw et al., 2011; Doll et al., 2012).

However, a drawback is the difficulty to find an optimal
policy for continuous states and actions. Specifically, the non-
linear Hamilton-Jacobi-Bellman (HJB) equation must be solved
in order to derive an optimal policy. Dynamic programming
solves the Bellman equation, which is a discrete-time version
of the HJB equation, for discrete states and actions problems.

Linear Quadratic Regulator (LQR) is one of the well-known
optimal control methods for a linear dynamical system with
a quadratic cost function. It can handle continuous states and
actions, but it is not applicable to non-linear systems.

Recently, a new framework of linearly solvable Markov deci-
sion process (LMDP) has been proposed, in which a non-linear
Bellman’s equation for discrete and continuous systems is con-
verted into a linear equation under certain assumptions on the
action cost and the effect action on the state dynamics (Doya,
2009; Todorov, 2009b). In fact, the basis idea of linearization
of the HJB equation using logarithmic transformation has been
shown in the book written by Flemming and Soner and its con-
nection to risk sensitive control has been discussed in the field of
control theory (Fleming and Soner, 2006). Their study has been
receiving attention recently in the field of robotics and machine
learning fields (Theodorou and Todorov, 2012) because there
exist a number of interesting properties in the linearized Bellman
equation (Todorov, 2009b). There are two major approaches in
LMDP: the path integral approach (Kappen, 2005a,b) and the
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desirability function approach (Todorov, 2009b). They are closely
related and new theoretical findings are reported (Theodorou and
Todorov, 2012), but there are some differences in practice. In
the path integral approach, the linearized Bellman is computed
along paths starting from given initial states using sampling meth-
ods. The path integral approach has been successfully applied
to learning of stochastic policies for robots with large degrees
of freedom (Theodorou et al., 2010; Sugimoto and Morimoto,
2011; Stulp and Sigaud, 2012). The path integral approach is best
suited for optimization around stereotyped motion trajectories.
However, an additional learning is needed when a new initial
state or a new goal state is given. In the value-based approach,
an exponentially transformed state value function is defined as
the desirability function and it is derived from the linearized
Bellman’s equation by solving an eigenvalue problem (Todorov,
2007) or an eigenfunction problem (Todorov, 2009c; Zhong and
Todorov, 2011). One of the benefits of the desirability function
approach is its compositionality. Linearity of the Bellman equa-
tion enables deriving an optimal policy for a composite task
from previously learned optimal policies for basic tasks by lin-
ear weighting by the desirability functions (da Silva et al., 2009;
Todorov, 2009a). However, the desirability function approach has
so far been tested only in simulation. In this study, we test the
applicability of the desirability function approach to real robot
control.

In order to apply the LMDP framework to real robot applica-
tions, the environmental dynamics should be estimated through
the interaction with the environment. This paper proposes a
method which integrates model learning with the LMDP frame-
work and investigates how the accuracy of the learned model
affects that of the desirability function, the corresponding policy,
and the task performance. Although Burdelis and Ikeda proposed
a similar approach for the system with discrete states and actions
(Burdelis and Ikeda, 2011), it is not applicable to a continuous
domain. We test the proposed method in two tasks. The first
task is a well-known benchmark, the pole swing-up problem.
We use linear and non-linear models for approximation of the
environmental dynamics and investigate how the accuracy of the
dynamics model affects the estimated desirability function and
the corresponding policy. The second task is a visually guided
navigation problem using our Spring Dog robot which has six
degrees of freedom. The landmark with the LED is located in
the environment and the Spring Dog should approach the land-
mark. We compare linear and bilinear dynamics models with
quadratic and Gaussian state cost functions. Experimental results
showed that the LMDP framework with model learning is appli-
cable to real robot learning even when simple dynamics models
are used.

2. MATERIALS AND METHODS
2.1. LINEARLY SOLVABLE MARKOV DECISION PROCESS
At first, we show how a non-linear Bellman’s equation can be
made linear under the LMDP setting formulated by Todorov
(2009b). Let X ⊆ R

Nx and U ⊆ R
Nu be the continuous state and

continuous action spaces, where Nx and Nu are the dimension-
ality of the spaces, respectively. At time t, the robot observes
the environmental current state x(t) ∈ X and executes action

u(t) ∈ U . Consequently, the robot receives an immediate cost
c(x(t), u(t)) and the environment makes a state transition
according to the following continuous-time stochastic differential
equation,

d x = a(x)d t + B(x)(ud t + σd ω), (1)

where ω ∈ R
Nu and σ denote Brownian noise and a scaling

parameter for the noise, respectively. a(x) describes the passive
dynamics of the system while B(x) represents the input-gain
matrix. Note that Equation (1) is generally non-linear with
respect to the state x but linear with respect to the action u.
It is convenient to represent Equation (1) in discrete time. By
discretizing the time axis with step h, we obtain the following
transition probability,

puk(xk+ 1|xk) = N (xk+ 1|μ(xk, uk)+ xk, h�(x)), (2)

where N (x|μ,�) denotes a Gaussian distribution with mean μ

and covariance matrix �, and

μ(x, u) = h(a(x) + B(x)u), (3)

�(x) = σB(x)TB(x), (4)

where μ(x, u) can be regarded as a deterministic state
transition function. Note that xk = x(hk) and uk = u(hk).
It should be noted that a state transition probability is
defined as an uncontrolled probability when no control is
applied (u = 0), and otherwise, it is called a controlled
probability.

A control policy or controller π(u|x) is defined as a probability
of selecting the action u at state x. When the goal of the robot is
to find an optimal control policy π∗ that can lead the robot to the
desired state xg ∈ Xg ⊆ X , the objective function is formulated
as minimization of the expected value of cumulative costs,

vπ(x) = E

⎡
⎣Tg−1∑

k= 1

c(xk, π(xk))+ g(xg)

⎤
⎦ , (5)

where and c(x, u) and g(x), respectively denote the immediate
and terminal cost. Tg represents an arrival time. vπ(x) is known
as a cost-to-go or value function. The optimal value function is
the minimal expected cumulative cost defined by

v∗(x) = min
π

vπ(x). (6)

It is known that the optimal value function satisfies the following
Bellman’s equation

v∗(x) = min
u

(
c(x, u)+ Ex′∼pu(·|x)v

∗(x′)
)

(7)

v∗(xg) = g(xg), xg ∈ Xg .

Since Equation (7) is non-linear, it is difficult to solve the opti-
mal value function in general. However, the Bellman’s equation
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is simplified if it is assumed that the immediate cost function is
represented by

c(x, u) = hq(x)+ KL(pu(·|x)‖p0(·|x)), (8)

where q(x) is a non-negative state cost function and the second
term on the right hand side of Equation (8) is a control cost
given as the KL-divergence between controlled and uncontrolled
probability distributions. 1 In this case, the non-linear Bellman’s
equation is converted to the following linear equation

z(x) = exp(−hq(x))G[z](x) (9)

z(xg) = exp(−g(xg)), xg ∈ Xg,

where z(x) is the desirability function defined by

z(x) = exp(−v∗(x)). (10)

Hereafter, Equation (9) is called a linearized Bellman’s equation.
The operator G shown on the right hand side of the linearized
Bellman’s Equation (9) is the integral operator given by

G[f ](x) =
∫

p0(x′|x)f (x′)d x′. (11)

It should be noted that Equation (9) is always satisfied by the
trivial solution (z(x) ≡ 0 for all x) if no boundary conditions are
introduced.

2.2. LEARNING MODEL PARAMETERS
In the LMDP framework, the system dynamics (Equation 1) are
assumed to be known in advance. When they are unknown,
estimation of the dynamics is required from samples collected
by the passive dynamics. Many methods exist which can esti-
mate the system dynamics (Nguyen-Tuong and Peters, 2011;
Sigaud et al., 2011), we adopt a simple least squares method to
estimate a(x) and B(x) with basis functions. Specifically, we esti-
mate a deterministic state transition (Equation 3). It should be
noted that the scale parameter of noise σ is generally unknown,
but it is determined by the experimenters here since it can
be regarded as the parameter that controls exploration of the
environment.

Let us suppose that the deterministic state transition μ(x, u)

is approximated by the linear function with Nϕ basis functions
ϕi(x, u),

μ(x, u;W) =WTϕ(x, u). (12)

where W is a weight matrix and ϕ(x, u) is a vector con-
sisting of basis functions. Suppose that the training sam-
ples {x1, u1, . . . , xNs , uNs, xNs+1} are obtained by the passive

1The Kullback–Leibler (KL) divergence measures the difference between two
distributions. If two distributions are the same, the KL-divergence becomes 0.
In the LMDP, the control cost is defined by how certain control u affects on
state transition probability.

dynamics. The objective function of model learning is given by
the following sum-of-squares error function,

E = 1

2

∑
k= 1

{
�xk −WTϕ(xk, uk)

}2
, (13)

where �xk = xk+ 1 − xk. Setting ∂E/∂W = 0 yields

W = (�T�)−1�T�X, (14)

where �X is the matrix whose a row vector consisted of state
transition in each sample �xk and � is also the matrix whose
a column vector consisted of the basis functions in each sample
ϕ(xk, uk). The detail is as follow,

�X = [�x1 · · · �xNs

]T
, � = [ϕ(x1, u1) · · · ϕ(xNs, uNs)

]
.

2.3. LEARNING A DESIRABILITY FUNCTION
The desirability function is approximated by

z(x;w, θ) =
Nz∑

i= 1

wif (x, θi) = w	f (x, θ), (15)

where wi is a weight, w is the weight vector [w1, . . . , wNz ]T,
f (x, θi) is a basis function parameterized by θi, and f (x; θ) is the
vector consisting of basis functions [f (x; θ1), . . . , f (x; θNz )]T.
We adopt an unnormalized Gaussian function as Todorov sug-
gested (Todorov, 2009c):

f (x; θi) = exp

(
−1

2
(x−mi)

T Si (x−mi)

)
, θi = {mi, Si}

(16)

where mi and Si denote a center position and a precision matrix
of the i-th basis function, respectively. One advantage of using the
Gaussian function that the integral operator (Equation 11) can be
calculated analytically as follows:

G[fi](x) = |V i|− 1
2 exp

(
−1

2

(
y −mi

)T
Hi
(
y−mi

))
, (17)

where y(x) = x+ μ(x, 0), fi = f (x, θi) for brevity and

H i = Si − SiCV−1
i CTSi, V i = I + CTSiC,

C = σh1/2B.

It should be noted that y, Hi, V i, C are functions of x.
The desirability function (Equation 15) should satisfy the lin-

earized Bellman’s equation (9). Therefore, in order to optimize w
and θ we can construct the following objective function for given
collocation states {x1, . . . , xNc }:

e = ‖r(w, θ)‖2, r(w, θ) =
[

F(θ)− G(θ)

f (xg; θ)T

]
w −

[
0

exp(−g(xg))

]
,

(18)
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where F(θ) and G(θ) are Nc × Nz matrices and their (n, i)
components are defined by

[F(θ)]ni = fi(xn), (19)

[G(θ)]ni = exp(−hq(xn))G[fi](xn). (20)

The objective function (Equation 18) is a quadratic function with
respect to w and a non-linear function with respect to θ. See
Appendix A for optimization of w and θ.

2.4. OPTIMAL CONTROL POLICY
In the LMDP framework, the optimal control policy is given by

pu∗(x′|x) = p0(x′|x)z(x
′
)

G[z](x)
. (21)

Specifically, when the dynamics are represented in the form of
the stochastic differential equation (1) and the basis function
of the approximated desirability function is Gaussian, then the
optimal control policy is represented by

u∗(x) = σ

Nz∑
i= 1

wiG
[
fi(x)

]
∑Nz

k= 1 wkG
[
fk(x)

]di(x), (22)

di(x) = V−1
i CTSi (mi − x− ha(x)) .

See Todorov (2009c) in more detail.

2.5. EXPERIMENT
In this paper, we conduct two experiments to evaluate the LMDP
framework with model learning. One is a swing-up pole task in
simulation. The other is a visually-guided navigation task using a
real robot.

2.5.1. Swing-up pole
To verify that an appropriate control policy can be derived based
on estimated dynamics, we conducted a computer simulation of
the swing-up pole task. In the simulation, the one side of pole
was fixed and the pole could rotate in plane around the fixed
point as shown in Figure 1. The goal was to swing the pole to an
upward position and stop at this position. The state in this task
consisted of the vertical angle ϑ and the angular velocity ϑ̇, the
origin of the state space was set at the goal position. It should be
noted that ϑ was normalized to be in the range (−π, π] (rad)
while ϑ̇ was bounded: ϑ̇ ∈ [−4π, 4π] (rad /s). The control
input and noise affected the torque of the pole. Therefore,
the pole is assumed to obey the following stochastic state
equation,

d ϑ = ϑ̇d t (23)

d ϑ̇ =
(

m
g

l
sin(ϑ)− kϑ̇

)
d t + ud t + σd ω,

where l, m, g, and k denote the length of the pole, mass,
gravitational acceleration and coefficient of friction, respectively.

FIGURE 1 | Swing-up pole task.

The above state equation is represented in the form of
Equation (1) as follows;

a(x) =
[
ϑ̇, m g

l sin(ϑ)− kϑ̂
]T

, B = [0, 1
]T

.

It should be note that the passive dynamics a(x) is a non-linear
vector function of x while B is a constant vector. In this sim-
ulation, the physical parameters were l = 1 (m), m = 1 (kg),
g = 9.8 (kg/s2) and k = 0.05 (kg m2/s). The state equation was
discretized in time with a time step of h = 10 (ms) and the noise
scale was set to σ = 4. The state cost was defined so that it was
zero at the goal state, using the following unnormalized Gaussian
function,

q(x) =
(

1− exp
(

xT�−1
costx

))
, (24)

where diag (�cost) = [0.1, 1.6].
As written in section 2.2, the weight matrix was estimated

by Equation (14). In the sample acquisition phase we repeated
simulations sufficiently, each simulation started from differ-
ent initial states to avoid unevenly distributed samples. As a
result, N = 1000 samples were extracted randomly as a training
data set.

In this simulation, we prepared two types of basis functions
ϕ(x, u), as shown in Table 1, for approximation of the environ-
mental dynamics. The first was a simple linear model with respect
to x and u while the second model added the normalized radial
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Table 1 | Basis functions used in the swing-up pole simulation.

ϕ(x, u)

Linear model
[
xT uT]T

Linear-NRBF model
[
xT ψ1(x) ψ2(x) · · · ψM (x) uT]T

basis functions (NRBF) ψi(x, u) to the linear model,

ψi(x) =
exp

(
− 1

2 (x− μi)
T�−1

ψi
(x− μi)

)
∑

k exp
(
− 1

2 (x− μk)
T�−1

ψk
(x− μk)

) . (25)

The centers, μi, of the basis functions, ψi(x, u), were determined
by K-means clustering among the states of the training data. The
covariance matrices �ψi were determined experimentally and set
to diag(�ψi) = [π/4, π]. In the linear-NRBF model, Nψ = 25
basis functions were used.

The set of collocation states {x1, . . . , xNs}, which were
required to optimize the parameters of the desirability func-
tion, were uniformly distributed in the state space. The centers
mi of the basis functions fi(x) were initialized so as to dis-
tribute them uniformly in the state space. On the other hand,
the covariance matrices Si were determined empirically and set to
diag([16, 1]). The optimal control policy u∗(x) was derived from
Equation (22).

2.5.2. Visually-guided navigation task
To evaluate the performance of the optimal control policy derived
from the estimated dynamics and the desirability function, we
conducted a visual navigation task using a wheel type robot called
the Spring Dog. Figure 2 shows the Spring Dog and the battery
pack in the experimental field. The Spring Dog has six degrees
of freedom: two fore legs, two rear wheels, and a pan-tilt cam-
era head. There are several sensors such as a 3D accelerometer,
a combined 3D gyroscope, and a USB camera mounted on the
head, and so on. Three-color LED is attached to the top of the
battery pack.

Figure 3 shows the control diagram, where three control
policies were implemented in this experiment. The first one
was a visual servoing controller, which controlled the cam-
era head so as to keep tracking the battery pack continuously.
The second one was a navigation controller using the two
rear wheels, this was optimized by the LMDP framework. In
other words, the navigation controller controlled the left and
right wheels in order to move around in the environment. The
desired velocities of left and right wheels correspond to control
input u in Equation (1). The last one was a seeking behav-
ior, in which the Spring Dog explored the environment to find
the battery pack when the robot lost track of it. The navi-
gation controller learned by the LMDP framework while the
visual servoing and searching controllers were designed by the
experimenters.

To realize a visually-guided navigation task, image binarization
was applied to a captured image in order to separate the battery
pack with the green LED from background. Some image features
were calculated as shown in Figure 4. The state space consists of

FIGURE 2 | Spring Dog, wheel typed robot and the battery pack.

six variables described below: the center position of the battery
pack (extracted pixels) in the image plane (xcx, xcy), average of
absolute values around the center in horizontal and vertical axes
of the extracted pixels (xax, xay), and the current joint angles of
the neck controlled by the visual servoing controller. The state
and action were summarized as follows:

x = [xcx, xcy, xax, xay, xtilt, xpan]T, u = [uleft, uright]T.

It should be noted that each value was scaled as follow,

−1 ≤ xcx, xcy, xtilt, xpan ≤ 1,

0 ≤ xax, xay ≤ 1,

−1 ≤ uleft, uright ≤ 1.

The desired state, xg , was set to comprise of both a posture
and location which allowed the Spring Dog to successfully cap-
ture of the battery. The view feed from the USB camera allowed
recognition of the desired proximity and posture, as shown in
Figure 2.

Two types of state dependent cost functions q1(x) and q2(x)

were considered in the experiment. Each cost function was
defined to be zero at the goal state as follows,

q1(x) = α
(
x− xg

)T
�−1

cost

(
x− xg

)
(26)

q2(x) = α
(

1− exp
(
− (x− xg

)T
�−1

cost

(
x − xg

)))
, (27)

where α was a scaling constant.
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FIGURE 3 | Control diagram in the Spring Dog.

FIGURE 4 | Image binarization and image features. (A) Original captured
image. (B) Binarized image.

Next we explain the procedure for estimation of visual-motor
dynamics. At first, the Spring Dog moved around using the fixed
stochastic policy and obtained data. In the experiment, the con-
trol cycle was required to keep h = 300± 60 (ms), but it was
sometimes violated interference from other processes. To deal
with this problem in sampling, we rejected the corresponding
data. In addition, If the target became invisible, or the tilt or pan
angle reached by setting, its limitation, the corresponding data
was rejected from samples also. As a result, we obtained the data

set, D =
[[

xT
1 uT

1

]T
, . . . ,

[
xT

ND uT
ND

]T
]

. After normalizing this

data set, the environmental dynamics were estimated as described
in section 2.2.

In this experiment, we used two types of basis functions
ϕ(x, u), as shown in Table 2, to estimate visual-motor dynam-
ics. If we apply the linear model for visual-motor dynamics and
use a quadratic state cost function in Equation (26), the problem
setting is identical to that of Linear Quadratic Regulator (LQR).
Therefore, we can confirm that the LMDP finds the same optimal
policy as LQR.

Table 2 | Basis functions used in the robot experiment.

ϕ(x, u)

Linear model
[
(x− xg)T uT]T

Bilinear model
[
(x− xg)T uleft(x− xg)T uright(x− xg)T uT]T

Procedure 1 | Setting initial position of the centers of the basis

functions, Minit .

Input: The date set of state, Dx.

Output: The set of initial center positions, Minit

Minit ← ∅
while Dx 
= ∅ do

x = ChooseSample(Dx)

Dx ← XD − {x}
if ∀i fi (x;mi ) < τ or Minit = ∅ then

Minit ←Minit
⋃{x}

end if

end while

return Minit

As well as the swing-up pole task, collocation states
{x1, . . . , xNs} were uniformly distributed in the state space, and
the covariance matrices Si were determined by hand. Moreover,
only centers of basis functions of desirability were updated and
covariance matrices were fixed in the experiment. The optimal
control policy u∗(x) was derived from Equation (22). The ini-
tial position of the center mi in each basis function fi(x) was
taken from the data set of state, Dx =

[
x1, . . . , xND

]
, which was

extracted state data from the data set D. However, it was not
appropriate for the computational resources of the real robot to
use all of the data. For this reason, the set of initial positions of
the centers of the basis functions, Minit = [m1, . . . , mNz ], were
chosen from the data set of state Dx following Procedure 1. As a
result, at least one of the basis functions could return the value,
which was over the threshold, τ, for every samples.

As already explained, to verify that LMDP can be apply to non-
linear state transition system and non-quadratic cost function
and the obtained controller performs optimal. In the experiment
we tested the following four conditions:

Frontiers in Neurorobotics www.frontiersin.org April 2013 | Volume 7 | Article 7 | 80

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Kinjo et al. Evaluating LMDP with model learning

1. Linear model + quadratic state cost.
2. Bilinear model + quadratic state cost.
3. Linear model + Gaussian based state cost (non-quadratic).
4. Bilinear model + Gaussian based state cost (non-quadratic).

Note that LQR can be applicable in the first condition. Therefore,
LQR was also implemented to compare the result of the LMDP
framework to the ground truth obtained from LQR in the first
condition.

3. RESULTS
3.1. COMPUTER SIMULATION
As described in the section 2.5.1, we used the linear and the
linear-NRBF models to approximate the environmental dynam-
ics of the swing-up pole. To evaluate the accuracy of estima-
tion using these models, we measured the estimation errors.
We extracted N = 500 samples randomly as a test data set and
then calculated the estimates of the deterministic state transi-
tion μ(x, u;W) when two models were applied, respectively.
After that, we computed the mean squared error (MSE) of each
component,

MSE of the k-th component = 1

N

N∑
n= 1

(�xkn − wkϕ(xn, un))
2 ,

(28)

where wk denotes the elements of k-th row in the weight
matrix W .

Figure 5 shows the MSE of the angle and angular velocity
component. According to the this result, the estimation of the
angle component was quite accurate in both models because it
was deterministic transition. On the other hand, the estimation
of the angular velocity component was inaccurate as compared
with the angle component since it was a stochastic state tran-
sition. According to Equations 2, 3 and the parameter setting
of the time step, h = 10 (ms), the noise scale, σ = 4, and B =

FIGURE 5 | Mean squared error of the joint angle and angular velocity.

Each error bar represents the standard deviation.

[0, 1]T, the covariance matrix was derived diag (�) = [0, 0.04].
The covariance matrix affects to the MSE by square, the MSE
between real deterministic state transition and an observed tem-
poral state transition should be at least 1.6× 10−3. The MSE
of angular velocity component in the linear-NRBF model was
also 1.6× 10−3, it was suggested that most of the error was
caused by noise. Consequently, This result suggested that the
environmental dynamics were accurately approximated by the
linear-NRBF model. The estimated input gain matrices were
given by

Blinear =
[

0.0000
0.9965

]
, Blinear-NRBF =

[
0.0000
1.0113

]
.

they were very close to the true matrix B = [0, 1]T.
The desirability function was optimized using the estimated

dynamics and the control policy derived from the obtained desir-
ability function. Figure 6 displays the results where the left panels
show the desirability function z(x) and the right panels show the
learned policy u∗(x). The black line in the right panels shows a
typical trajectory of learned behaviors starting from x = [π, 0]T.
The top panels of Figure 6 display the results using the true
dynamics. It should be noted that the desirability function is
discontinuous around the central diagonal band since this sys-
tem is under-actuated. Simulation results using the linear and
linear-NRBF models are shown in the middle and bottom pan-
els of Figure 6, respectively. As compared with the result based on
the true dynamics, both of the linear and linear-NRBF models
could approximate the desirability function. However, the pol-
icy obtained by the linear model was worse than that by the
linear-NRBF model.

To evaluate the performance in more detail, we measured the
cumulative costs corresponding to each of the obtained policies.
In this test simulation, the initial state was set to x = [π, 0]T
which corresponds to the bottom position. Figure 7 shows mean
cumulative costs of 50 episodes, each episode was terminated
when the pole arrived at the goal state or the duration reached
was over 20 (s) (2000 step). Note that the immediate cost in each

step was calculated by c(x, u) = h
(

q(x)+ 1
2σ2 ‖u‖2

)
.

Figure 7 compares the cumulative costs among the three poli-
cies. Not surprisingly, the control policy derived from the true
dynamics achieved the best performance. It should be noted that
the control policy based on the dynamics estimated with the
linear-NRBF model produced a comparable performance, and it
was better than the performance of the linear model. As discussed
in the previous section, the linear-NRBF model gave more correct
estimation than the linear model. Consequently, these results sug-
gest that we can obtain the better control policy by forming more
accurate estimates.

3.2. REAL ROBOT EXPERIMENT
As described in section 2.5.2, we used the linear and bilinear
models for environmental dynamics approximation. After the
data acquisition phase, we obtained ND = 9509 samples and we
extracted N = 2500 samples for a test data set, the rest of samples
were used as a training data set. As well as the swing-up the pole
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FIGURE 6 | Results of the swing-up pole task. z(x) is on the left, u∗(x) on the right, true dynamics at the top, linear model in the middle, and linear and
NRBF model at the bottom. The black line shows a typical trajectory.

task, we obtained weight matrix using Equation (14) and then
calculated MSE in the test data set to evaluate the accuracy of
estimation.

Figure 8 shows the result. There was no significant difference
between linear and bilinilear models. It suggests these models
have almost the same quality for approximating environmen-
tal dynamics. Comparing to other components, xcx and xpan

derive larger MSE in both model. The reason is these compo-
nents change more significantly than other components. During
the sample acquisition phase, more movement in the rotatory
direction occurred than in the translation direction. As a result,
the variation of xcx, which was caused by movement of rotatory
direction, was large and the variation of xpan also became large
due to visual servoing to keep track of the battery in center of
visual field.

Figure 9 shows one typical example of the obtained desirabil-
ity function and the control policy when the cost function is
quadratic and the visual-dynamics is estimated using the linear
and bilinear models. The upper row corresponds to the LQR’s
case and the middle and bottom rows correspond to the LMDP
trained with the proposed method using linear and bilinear mod-
els, respectively. In all figures, the horizontal and the vertical axes
denote the pan and tile angle of the neck joint, respectively; the
rest of the state components are set to the desired state. Blue dots
plotted on middle and lower rows are mi, the center positions of
the basis functions for approximating the desirability function.
Although the peak of the desirability functions trained with the
proposed method is broader than that of the desirability of LQR
due to function approximation, obtained controllers show almost
same tendency.
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FIGURE 7 | Total costs collected by the obtained control policy. Each
error bar represents the standard deviation.

FIGURE 8 | Mean squared error of each state variable. Each error bar
represents the standard deviation.

Next, to evaluate performance of obtained controllers, we
tested the approaching behavior under the each controller. In
the test, the initial position of the robot was set at a distance
of 1.5 (m) left the target. The initial direction for each episode
was selected randomly a set of three directions; target is placed
directly in front of the robot, at a 15◦ offset to the right of
the robot’s line of motion or at a 15◦ offset to the left side,
as shown in Figure 10. Figure 11 shows the mean total costs of
30 episodes, the maximum period in one learning episode was
15 (s) (50 steps). For comparison, Figure 11 shows only quadratic
cost function case. Note that the immediate cost in each step

was regarded as c(x, u) = h
(

q1(x)+ 1
2σ2 ‖u‖2

)
, and was ignored

when the target is not visible in the visual field.
Comparing the total cost among the three controllers using

quadratic cost as shown in Figure 11, the controller using the
linear model resulted in the almost same performance to the
result using LQR controller. This result is reasonable because

these controllers solve the same problem. The trajectories were
very similar shown in Figure 12.

On the other hand, the controller using a bilinear model
acquired marginally worse result as compared with the other
controllers. One possible reason is that over fitting occurred in
bilinear model.

In comparing performance among all obtained controllers, we
cannot use the total cost because of the difference on state costs.
For this reasons we calculated L-1 norm2 between the current state
and the goal state as quantity of controller performance which
can be comparable in all controllers. Figure 13 shows this. All of
controllers brought the Spring Dog to almost the goal state in 10 s.
Particularly, the controllers using the non-quadratic cost func-
tion brought the Spring Dog closer to the battery pack than other
controllers. The reason can be considered that the non-quadratic
cost function gave a lower cost in more narrow region than the
quadratic cost.

4. DISCUSSION
Although it has been reported that the framework of LMDP
can find an optimal policy faster than conventional reinforce-
ment learning algorithms, the LMDP requires the knowledge of
state transition probabilities in advance. In this paper, we demon-
strated that the LMDP framework can be successfully used with
the environmental dynamics estimated by model learning. In
addition, our study is the first attempt to apply the LMDP frame-
work to real robot tasks. Our method can be regarded as a of
model-based reinforcement learning algorithms. Although many
model-based methods includes model learning (Deisenroth et al.,
2009; Hester et al., 2010) have been proposed in this field, they
compute an optimal state value function which is a solution of
a non-linear Bellman’s equation. Experimental results show that
our method is applicable to real robot behavior learning which is
generally stochastic and including non-linear state transition. In
our proposed method, a cost function is not estimated. However,
it is possible to extend to estimate a cost function as well as sys-
tem dynamics simultaneously, because it is usually formulated as
a standard supervised learning problem. In addition, it is not so
difficult to assume that a cost function is given in the real robot
application, because the robot usually compute the reward by
itself in many application.

In the swing-up pole task, the linear and linear-NRBF models
were tested to approximate the pole dynamics. The policy derived
from the linear model achieved the task of bringing the pole to
the desired position even though it cannot represent the dynam-
ics correctly. In the visually-guided navigation task, we compared
the desirability function and control policy of LMDP with those
of LQR if the environmental dynamics and the cost function
were approximated by the linear model and the quadratic func-
tion, respectively. In this setting, the optimal state value function
and the control policy were calculated analytically by LQR, and
therefore, we obtained the optimal desirability function. The
obtained desirability function and control policy were not exactly
the same as those of LQR. However, we confirmed that the

2The L-1 norm of a vector x = (x1, . . . , xn)T is the sum of the absolute value
of the coordinate of x, computed by ‖x‖1 =∑i|xi|.
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FIGURE 9 | Results of the robot navigation task. LQR with the linear model is at the top, LMDP with the linear model in the middle, LMDP with the bilinear
model at the bottom, z(x) on the left, u∗left(x) on the center, u∗right(x) on the right. Black dots represent the centers of the basis functions ϕ(x, u).

FIGURE 10 | Initial position of the Spring Dog and battery in the test

phase. Three possible positions of the battery pack are considered.

performance using the obtained control policy was comparable to
the performance using LQR. Both models prepared in this exper-
iment failed to approximate a part of state transition such as xcx

and xpan. This means that the Spring Dog could not predict the
future position of the battery pack precisely when turned left or
right. Nevertheless, the robot could approach the battery pack
appropriately. This result suggests that LMDP with model learn-
ing is promising even though the estimated model was not so
accurate. Fortunately, the control policy which brings the robot

FIGURE 11 | Average of total cost using the quadratic state cost

function. Each error bar represents the standard deviation.

to the desired position can be obtained with simple linear model
in both experiments. We plan to evaluate the proposed method
to non-linear control tasks such as learning walking and running
behaviors.
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FIGURE 12 | Trajectories of the pan angle xtilt and the immediate state

cost under the quadratic state cost.

FIGURE 13 | Trajectories of the L-1 norm between the current and

goal states.

As discussed in section 3, the quality of obtained control policy
depends on the accuracy of the estimated environmental model.
For instance, the bilinear model used in the robot experiment did
not improve the approximation accuracy, as shown in Figure 8,

even though its computational complexity is a rather than the
linear model. In addition, a part of the conditional mean μ(x, u)

was estimated by the least squares method in the current imple-
mentation but it would be more informative to estimate the state
transition probability distribution puk(xk+1|xk) itself. There exist
several methods for estimating a probability distribution from
samples. For example, Gaussian process is widely used to estimate
environmental dynamics (Deisenroth et al., 2009; Deisenroth and
Rasmussen, 2011). Sugiyama et al. (2010) proposed the method
to estimate a conditional density distribution efficiently in the
manner of density ratio estimation and applied it to state tran-
sition estimation in simulated environments. One advantage of
their method is that it can estimate a multi-modal distribution by
the least squares method. In this case, it is no longer tractable ana-
lytically to compute the integral operator even if Gaussian basis
functions are used for approximation, and it should be replaced
by the Monte Carlo estimates. Integration of sophisticated model
learning methods with the LMDP framework is our future work.

The other extension is to develop a model free approach
of learning desirability functions, in which the environmen-
tal dynamics is not estimated explicitly. Z learning is a typical
model-free reinforcement learning method which can learn a
desirability function for discrete states and actions, and it was
shown that the learning speed of Z learning was faster than
that of Q-learning in grid-world maze problems (Todorov, 2007,
2009b). Application of least squares-based reinforcement learn-
ing algorithms (Boyan, 2002; Lagoudakis and Parr, 2003) is
promising direction. However, in the continuous state case, as
mentioned in section 2.1, the optimality equation derive a trivial
solution without boundary conditions. In addition, the desir-
ability function should satisfy the inequality 0 ≤ z(x) ≤ 1 in
order to recover a correct value function by v(x) = − log(z(x)).
Furthermore, values of the desirability “function tend to be
too small” because of the exponential transformation. For
these reasons boundary conditions must be carefully considered.
Consequently, the constrained optimization methods should be
solved to find the optimal desirability function while learning
of the value function is considered as unconstrained optimiza-
tion. For the extension of model-free learning, this issue have to
be solved.
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APPENDIX
AOPTIMIZATION OF FUNCTION APPROXIMATION PARAMETERS
When the cost function is non-negative, the value function v(x)

is also non-negative, and therefore, the inequality 0 ≤ z(x) ≤
1 holds at any x by the definition of the desirability func-
tion (Equation 10). In order to satisfy this inequality, the con-
straint wi ≥ 0 for all i is required since we assume that the
basis function is a non-normalized Gaussian function. This con-
strained optimization on w is efficiently solved by the following
quadratic programming

min
w

e, s.t. wi ≥ 0, ∀i. (29)

To optimize θ, it is possible to apply the Levenberg–
Marquardt algorithm to minimize the square error (Equation 18).
However, it was reported that the desirability function become

z(xn;w, θ) ≈ 0 during the minimization process because the cen-
ter position of the basis functions mi move away from collocation
states xn (Todorov, 2009b). To avoid the trivial solution z(x) = 0,
the following constraint is introduced,

1TF(θ)w =
∑
n= 1

ẑ(xn;w, θ) = const. (30)

This constrained problem is optimized by the Levenberg–
Marquardt algorithm. When we define J = ∂r/∂θ and g =
∂(1TF(θ)w)/∂θ, then the objective function is given by

min
δ

1

2
δT(JTJ + γI)δ+ δTJTr s.t. gTδ = 0, (31)

where δ and γ denote the gradient direction of the update rule
and the parameter between 0 and 1, respectively. This is solved by
the Lagrange multiplier methods.
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The vertebrate neuromodulatory systems are critical for appropriate value-laden responses
to environmental challenges. Whereas changes in the overall level of dopamine (DA) have
an effect on the organism’s reward or curiosity-seeking behavior, changes in the level
of serotonin (5-HT) can affect its level of anxiety or harm aversion. Moreover, top-down
signals from frontal cortex can exert cognitive control on these neuromodulatory systems.
The cholinergic (ACh) and noradrenergic (NE) systems affect the ability to filter out noise
and irrelevant events. We introduce a neural network for action selection that is based on
these principles of neuromodulatory systems. The algorithm tested the hypothesis that
high levels of serotonin lead to withdrawn behavior by suppressing DA action and that high
levels of DA or low levels of 5-HT lead to curious, exploratory behavior. Furthermore, the
algorithm tested the idea that top-down signals from the frontal cortex to neuromodulatory
areas are critical for an organism to cope with both stressful and novel events. The neural
network was implemented on an autonomous robot and tested in an open-field paradigm.
The open-field test is often used to test for models anxiety or exploratory behavior in the
rodent and allows for qualitative comparisons with the neurorobot’s behavior. The present
neurorobotic experiments can lead to a better understanding of how neuromodulatory
signaling affects the balance between anxious and curious behavior. Therefore, this
experimental paradigm may also be informative in exploring a wide range of neurological
diseases such as anxiety, autism, attention deficit disorders, and obsessive-compulsive
disorders.

Keywords: neuromodulation, anxiety, computer simulation, robotics, dopamine, serotonin, acetylcholine,

norepinephrine

INTRODUCTION
The vertebrate neuromodulatory systems are critical for appro-
priate value-laden responses to environmental challenges
(Krichmar, 2008). Whereas changes in the overall level of
dopamine (DA) have an effect on the organism’s reward or
curiosity-seeking behavior (Schultz et al., 1997; Berridge, 2004),
changes in the level of serotonin (5-HT) can affect its level of
anxiety or harm aversion (Millan, 2003; Cools et al., 2008). The
cholinergic (ACh) and noradrenergic (NE) systems affect the
ability to filter out noise and irrelevant events (Vankov et al.,
1995; Bucci et al., 1998; Aston-Jones and Cohen, 2005; Yu and
Dayan, 2005). These neuromodulatory systems have broad and
extensive projections to the central nervous system causing shifts
in behavior and learning.

The frontal cortex, which projects to all the neuromodula-
tory systems (Briand et al., 2007), may be carrying a level of
cognitive control through modulating the neuromodulators. For
example, the medial prefrontal cortex (mPFC) can control the
stress response by its interaction with the raphe nucleus, the
main source of 5-HT in the central nervous system (Jasinska
et al., 2012), and the orbitofrontal cortex (OFC) may exert con-
trol on the DA reward system (Frank and Claus, 2006). Empirical

evidence and theoretical modeling have suggested that the mPFC,
the anterior cingulate cortex, and the OFC control decision-
making in the face of reward-cost tradeoffs (Rudebeck et al., 2006;
Rushworth et al., 2007; Chelian et al., 2012). That is, the OFC’s
interaction with the DA system is monitoring the expected reward
of an action, and the mPFC’s interaction with the 5-HT system is
monitoring the expected cost of an action (Zaldivar et al., 2010;
Asher et al., 2012).

Previously, a general-purpose algorithm, based on principles
of the brain’s neuromodulatory systems, was presented for action
selection in robots (Krichmar, 2012). Rather than presenting
a neurobiologically detailed model of how the nervous system
achieves this function through neuromodulation [see for exam-
ple (Cox and Krichmar, 2009)], a general-purpose, but minimal
model of neuromodulatory function was developed, which could
be applied to robot control. Similar to classic robot control algo-
rithms, such as subsumption architecture (Brooks, 1991) and
behavior-based schemas (Arkin, 1998), the algorithm automati-
cally arbitrated between actions based on current sensory input.
The algorithm demonstrated the ability to adapt to changes in
the environment by: (1) increasing sensitivity to sensory inputs,
(2) responding to unexpected or rare events, and (3) habituating
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or ignoring uninteresting events. The algorithm showed several
important features for autonomous robot control in general,
such as, fluid switching of behavior, gating in important sensory
events, and separating signal from noise.

The present paper extends this algorithm in several key ways
to make it more neurobiologically realistic, and more adaptable.
First, a frontal cortex layer, which loosely corresponds to the OFC
and mPFC and projects to the DA and 5-HT systems, respectively,
is added to the model. This provides a degree of top-down con-
trol on the neuromodulatory systems that handle sensory events.
Second, an inhibitory projection from the 5-HT system to the
DA system was added based on evidence that these systems are
somewhat in opposition (Tops et al., 2009; Boureau and Dayan,
2011). From a behavioral standpoint, the 5-HT system causes the
organism to be withdrawn and risk-averse, and the DA system
causes the organism to be invigorated and risk-taking. From the
algorithm’s standpoint, this allowed sensory events to be shared
with the appropriate action taken based on the current levels of
DA and 5-HT. Lastly, a variable was added to model the tonic
levels of DA and 5-HT. The previous model only considered pha-
sic neuromodulatory responses, which resulted in decisive action.
The tonic levels in the present model can set the agent’s behav-
ioral context or state and make the agent more likely to select a
particular set of actions.

The present algorithm tested the hypothesis that high lev-
els of 5-HT lead to withdrawn behavior by suppressing DA
action and that high levels of DA or low levels of 5-HT lead to
curious, exploratory behavior. It has been suggested that sero-
tonin opposes activating or invigorating neuromodulators such as
dopamine (Tops et al., 2009). Specifically, projections from raphe
serotonin cells to DA areas may oppose the action of DA and
mediate avoidance of threats (Deakin, 2003). Furthermore, the

algorithm tested the idea that top-down signals from the frontal
cortex to neuromodulatory areas are critical for an organism to
cope with both stressful and novel events. A recent review sug-
gested that the mPFC inhibited the serotonergic raphe nucleus
after handling a stressful event (Jasinska et al., 2012). This feed-
back loop prevented the raphe from being overly active after the
stressor had been handled. The present algorithm further sug-
gests that projections from the OFC to the dopaminergic ventral
tegmental area (VTA) have a similar function when responding to
a positive valence event.

The algorithm was implemented in a neural network that con-
trolled the behavior of an autonomous robot and tested in the
open-field paradigm. The open-field test is often used for animal
models anxiety or exploratory behavior and allows for qualitative
comparisons with the neurorobot’s behavior (Heisler et al., 1998;
Lacroix et al., 2000; Lipkind et al., 2004; Fonio et al., 2009).

METHODS
ROBOT CONTROL
Experiments were run on an iRobot Create equipped with
an URG-04-LX laser range finder (Hokuyo Automatic Co.
LTD.) and a System 76 netbook running the Ubuntu Linux
operating system for computation (see Figure 1). The Matlab
Toolbox for iRobot Create (http://www.usna.edu/Users/weapsys/
esposito/roomba.matlab/) was used to interface with the
robot. The neural simulation and robot control algorithm
for iRobot Create was written in Matlab (MathWorks) and
can be downloaded at: http: // www.socsci.uci.edu/∼jkrichma/
krichmar_frontiers2012_carl_roomba.m

Robot control was achieved through processing events and
states. States were pre-canned behaviors and events were driven
by sensory signals. An event could cause a switching of behavior

FIGURE 1 | Setup for neurorobotic experiments. Experiments were run
on an iRobot Create equipped with an URG-04-LX laser range finder
(Hokuyo Automatic Co. LTD.) and a System 76 netbook running the Ubuntu
Linux operating system for computation. (A) Environment was a 3.7 m2

arena enclosed with plywood. The picture in the middle was a novel object
for the robot to explore. (B) Wall following behavior. Wall following was

achieved using the Create’s “Mouse” demo. (C) Find home behavior.
Finding the docking station was achieved using the Create’s “Cover and
Dock” demo. (D) Open-field behavior. The robot moved toward open
spaces in the environment based on laser range finder readings.
(E) Explore object. The robot approached narrow objects based on laser
range finder readings.
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states. The neural simulation, which is described below, arbitrated
between incoming events and decided when to switch states.
A simulation cycle, t, occurred approximately once per second,
which was roughly the time needed to read CarlRoomba’s sen-
sors, update the neural simulation, and send a motor command to
CarlRoomba. The main limitation for cycle duration was Matlab
handling of I/O. Future versions of the software will be written in
C/C++ to speed up I/O and shorten simulation cycles.

In the present experiments, the robot, which is called
CarlRoomba, handled three events: (1) Object Detected. This
event was triggered if the laser detected an object between 12 and
30 degrees wide and closer than one meter. (2) Light detected. This
event was triggered if the average pixel brightness in the grayscale
image was greater than 50%. The netbook’s built-in camera was
used to detect light levels. (3) Bump detected. This event was trig-
gered by iRobot Create’s bump sensors or if the laser detected an
object closer than 20 cm.

CarlRoomba switched between four behavior states: (1)
Wall Follow (Figure 1B). Wall following was achieved by call-
ing the iRobot Create’s mouse demo routine. This caused
CarlRoomba to follow the wall to its right. (2) Find Home
(Figure 1C). Find home was achieved by calling the iRobot
Create’s cover and dock demo routine. This caused CarlRoomba
to move in a random pattern until it detected the Roomba
docking station via an IR beam that had a range of roughly
500 cm. (3) Open-Field (Figure 1D). CarlRoomba would drive
toward the most open area of the environment, as judged
by the laser range finder. If a collision with an object was
detected, CarlRoomba would rotate clockwise. (4). Explore
Object (Figure 1E). CarlRoomba would move toward the object
found by the laser. If a collision with an object was detected,
CarlRoomba would rotate clockwise.

NEURAL SIMULATION
Neuromodulatory systems receive sensory information and drive
behavior by innervating downstream neural systems. The gen-
eral framework of the present architecture is that sensory events
can trigger neuromodulatory systems, which in turn drive behav-
ior states (see Figure 2). Frontal areas (see OFC and mPFC in
Figure 2) trigger action selection and exert cognitive control on
the neuromodulatory areas (see DA and 5-HT in Figure 2) via
inhibitory projections. The ACh and NE systems (see AChNE in
Figure 2) act as an attentional filter allowing novel and unex-
pected events to gate through to the frontal cortex. Specifically,
AChNE modulates connections from DA and 5-HT to cortical
neurons and inhibitory connections between cortical neurons
(see blue arrows and ellipses in Figure 2). It has been sug-
gested that ACh and NE neuromodulation gates in sensory inputs
and increases competition among frontal cortex neurons by up-
regulating GABAergic currents, but not glutamatergic connec-
tions (Hasselmo and McGaughy, 2004; Aston-Jones and Cohen,
2005). Although the architecture given in Figure 2 is specific to
the present problem space, the general framework could poten-
tially be used to arbitrate any combination of sensory events and
behavioral states.

In the present paper, the neural simulation consisted of three
event neurons, each of which corresponded to one of the sensory

FIGURE 2 | Neural architecture to control robot behavior. Sensory
events were handled by three binary neurons. These neurons projected to
the attentional filter neurons (AchNE) and the dopaminergic and
serotonergic neurons (DA and 5-HT). The DA and 5-HT neurons projected to
the OFC and mPFC neurons. The most active OFC or mPFC neuron
dictated the robot’s behavioral state. The AChNE neurons had a modulatory
effect on the projection from the DA and 5-HT to OFC and mPFC (see blue
ellipse and arrows). OFC and mPFC projected to 5-HT and DA neurons with
inhibitory connections. Excitatory and inhibitory connections within and
between OFC and mPFC neurons were all-to-all. See text for details.

events described above, four state neurons, each of which cor-
responded to one of the behavioral states described above, and
neuromodulatory neurons. There was one DA neuron, one 5-HT,
and three ACh/NE neurons, each of which corresponded to
one of the sensory events described above. Figure 2 shows the
architecture and connectivity of the network.

Initial simulations were carried out to set the weights and
parameters given in the equations below. Weights were chosen
such that the network demonstrated stable activity, and such that
a phasic burst of neuromodulatory activity could efficiently drive
action selection. Each OFC and mPFC neuron was connected
to every other OFC and mPFC neuron with both excitatory
(weight = +1.0) and inhibitory (weight = −1.0) connections.
OFC neurons for OpenField and ExploreObject projected to the
DA neuron with a weight equal to −1.0, and mPFC neurons
for WallFollow and FindHome projected to the 5-HT neuron
with a weight equal to −1.0. Neuromodulatory neurons selec-
tively connected to OFC and mPFC neurons with weights set at
5, event neurons selectively connected to neuromodulatory neu-
rons with weights set at 0.5, and event neurons connected to the
corresponding ACh/NE neurons with weights set at 1.

In the present simulation, detecting an object with the laser
signaled novelty or something potentially rewarding in the envi-
ronment and worth taking a risk to investigate. Therefore,
these events triggered dopaminergic neurons (Object→DA in
Figure 2). A bright light signaled a potential danger, and
thus triggered serotonergic neurons (Light→5-HT in Figure 2).
A bump could signal either something interesting or nox-
ious in the environment. Therefore, the bump event trig-
gered both dopaminergic and serotonergic neurons (Bump→DA
and Bump→5-HT in Figure 2). To model, serotonergic and
dopaminergic opponency, 5-HT projected to DA with a weight
set at−1.0.
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Event neurons were binary and set to 1 when an event
occurred and 0 otherwise. All other neurons were governed by the
following activation function, which kept neural activity between
0 and 1:

n(t) = 1

1+ e−gI(t)
(1)

where g was the gain of the function and I was the input to the
neuron. The initial weights, gains, and the baseline input, given
in Equation 2, were set such that the range of synaptic input
to the neuron would cover the full range of the sigmoid curve.
Therefore, the gain was set to 2 for frontal cortex and neuromodu-
latory neurons, and 10 for ACh/NE neurons. Input to the neuron
was based on pre-synaptic neural activity, nj(t), previous neural
activity, ni(t − 1), and neuromodulation:

Ii(t) = b+
∑

j

nj(t)wji(t)+ pni(t − 1)+ tonicnm(t) (2)

where b was the baseline input set to−1.0 for DA and 5-HT,−0.5
for ACh/NE, and a random number that was drawn uniformly
between negative one and zero for OFC and mPFC neurons. The
baseline input was set such that the full range of the sigmoid curve
(0 to 1 in Equation 1) was covered, and the random number value
for b, which was drawn every time step for OFC and mPFC, added
some stochasticity to cortical neural activity. p was the persistence
set to 0.25 for frontal cortex, 0.5 for ACh/NE neurons, and zero
for DA and 5-HT neurons. Synaptic input into neuromodula-
tory neurons had an additional term for tonic neuromodulation
(tonicnm). For all other neurons, tonicnm was set to zero.

In our previous model, the ACh and NE system was introduced
as an attentional filter (Krichmar, 2012). When the ACh/NE sys-
tem was impaired in the algorithm, the robot lost its ability to
filter out noise and responded to any incoming sensory event.
This attentional filter, which is shown pictorially in Figure 2 (see
blue ellipse and arrows), was achieved by adding the following
term to the synaptic input into OFC and mPFC neurons.

Ii(t) = Ii(t)+
∑

j

AChNE(t − 1)n_fctxj(t−1)w_inhji(t−1)

+
∑

k

AChNE(t−1)n_nmk(t−1)w_nmki(t−1) (3)

where AChNE is the sum of all neural activity in the ACh and NE
areas, n_fctxj(t) is the activity from other frontal cortex neurons,
n_nmk(t) is the neuromodulatory input into a frontal neuron,
w_inhji(t) is the weight of lateral inhibition from frontal cortex
neuron j to frontal cortex neuron i, and w_nmki(t) is the weight of
the connection from neuromodulatory neuron k to frontal cortex
neuron i.

AChNE neurons acted as an attentional filter for events by
adjusting weights from event neurons to AChNE neurons through
the following update rule:

wji(t) =
{

p∗wji(t − 1) if ej = 1

wji(t − 1)+ 1−wji(t− 1)

τ
otherwise

(4)

where j is the index of the event neuron, i is the index of the
ACh/NE neuron, p is the amount of change in response to an
event, and τ, which was set to 25, was a time constant that gov-
erned the rate at which weights returned to their original value.
Weights from event neurons to ACh/NE neurons were depressing,
meaning that each event caused the weight to decrease (p = 0.25).

Tonic activity in the DA and serotonergic neurons was mod-
eled by having a facilitating response to sensory events gated in by
the AChNE neurons:

tonici(t) =
{

p∗tonici(t − 1) if AChNEj > 0.5

tonici(t − 1)+ 1−tonici(t−1)
τ

otherwise

(5)
where i is the index of the neuromodulatory neuron, j is the index
of the ACh/NE neuron, p is the amount of change in response to
an event. The tonic levels rose every time there was a salient sen-
sory event by setting p = 1.25. The time constant, τ, was related
to neurotransmitter re-uptake, that is, how long a neuromodu-
lator acted on its target neurons. For example, a larger value of
τ meant that the re-uptake of a neuromodulator was slower and
therefore the neuromodulator had a longer lasting effect. Initially,
tonic5HT was set to 2.0 and tonicDA was set to 1.0, which caused
CarlRoomba to have higher levels of 5-HT at the start of an
experimental trial.

These rates and parameters were set based on the expected
occurrence of events during a four-minute session of running
CarlRoomba. For example, in the control condition, the param-
eters p and τ were chosen such that salient events would trigger
a long lasting increase in tonic neuromodulation. Multiple events
should cause a change in the neurorobot’s contextual state (e.g.,
become withdrawn) and a long interval between events would
result in the neurorobot settling into a neutral state. In other con-
ditions, parameter τ was set to demonstrate how low and high
levels of tonic neuromodulation, relative to the control condition,
might affect behavior.

Action selection occurred after the neural activities and weight
updates were calculated. The maximally active state neuron was
chosen as the new behavioral state if it had activity greater than
0.67. This threshold was set such that new actions would be
selected roughly 4–5 times per minute. If no state neuron was
above this threshold, the previous behavioral state continued.

EXPERIMENTAL PARADIGM
Experiments were run in an open-field arena, which was a 3.7 m2

region blocked off by plywood (see Figure 1A). A cardboard col-
umn and picture that was detectable by the laser was placed in
the center of the arena. The Roomba docking station was placed
in one corner of the arena. Experiments were run in the dark for
240 s. At approximately 120 s into an experiment, which allowed
CarlRoomba to acclimate to the environment, the lights were
turned on for 10 s and then turned off again. CarlRoomba always
started the experiment in the corner of the arena where the dock-
ing station was located, and always faced the center of the arena.
Each parameter setting was run 5 times on CarlRoomba, each
with different random number generator seeds.

The experimental setup was designed to mimic a rodent open-
field experiment and CarlRoomba’s ability to handle a stressful
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event. When placed in a new environment, rodents typically stay
near their nest (i.e., the docking station) or follow closely along
the walls of an environment (Fonio et al., 2009). As they become
more comfortable in the environment, they will venture out into
the open area of the arena or explore a novel object placed in the
arena. This paradigm is often used to test animal models of anx-
iety (Simon et al., 1994; Heisler et al., 1998; Lipkind et al., 2004).
The present experiments were designed to test how dopaminergic
and serotonergic neuromodulation influence the ability to cope
with a stressful event. In Fonio’s experimental paradigm, the mov-
ing of a mouse to a novel environment is presumably a stressful
event. However, this prior context would be difficult to mimic
with the neurorobot CarlRoomba. Therefore, a light flash was
used to mimic a stressful event in the open-field test, since rodents
typically prefer the dark.

RESULTS
COGNITIVE CONTROL OF INTERESTING AND STRESSFUL EVENTS
CarlRoomba responded appropriately to sensory events in its
environment. Novel objects resulted in it exploring the environ-
ment, stressful events, such as bright lighting caused it to seek
safety. Figure 3A shows a representative trial from a CarlRoomba
where there were balanced tonic levels of neuromodulation
(τDA = τ5HT = 50 in Equation 5). In Figure 3A and subsequent
representative trial figures, the x-axis denotes time in seconds
from the start of the trial until the end, which was approximately
240 s. The upper chart shows CarlRoomba’s behavioral state over
the course of the trial. The second through fifth charts show the
neural activity of the State, Event, ACh/NE, and Neurmodulatory
neurons, respectively, over the course of a trial where dark blue
signifies no activity and bright red signifies maximal activity. The
bottom chart denotes the level of tonic neuromodulation (see
Equation 5). Note how initially when CarlRoomba was unfamiliar
with the environment, serotonergic activity dominated, resulting
in anxious behavior, such as WallFollow and FindHome actions.
However, as CarlRoomba became more familiar and comfortable
in its environment (approximately 60 s into the trial), DA levels
were higher and there was more curious or exploratory behav-
ior. Note that the AChNE neurons only gated through interesting
and rare events. This was achieved through AChNE modulation
of projections from neuromodulatory neurons to OFC and mPFC
and through AChNE modulation of intrinsic inhibitory projec-
tions between frontal cortex neurons (see Equations 3 and 4 and
Figure 2). For example, constant bump events were habituated
(compare Bump event neuron activity with Bump AChNE activ-
ity in Figure 3A). At approximately 120 s into the trial, there
was an unexpected Light event, which resulted in a phasic 5-HT
response and a longer tonic increase in 5-HT (see Equations 2
and 5). This caused CarlRoomba to respond with withdrawn or
anxious behavior until approximately 210 s into the trial when
a pair of object events triggered exploration of the center of the
environment (see Figure 3A). Specifically, tonic levels of 5-HT
had decayed and the object events caused an increase in DA levels
triggering a change in behavioral state.

Figure 3B shows the proportion of curious behavior
(OpenField and ExploreObject) and anxious behavior
(FindHome and WallFollow) for five experimental trials. In

Figure 3B and subsequent figures summarizing five trials,
histograms were calculated with 10 s bins over the course of the
trial. Each bar was the average proportion of time spent in either
curious (green bars) or anxious behavior (red bars) in a 10 s
period of the trial. The error bar denoted the standard error. Note
that on different trials, the timing of the light event varied (as
early as 118 s and as late as 130 s). Thus, the increase in “Anxious”
behavior at 110 s (see Figure 3B) is not due to a prediction of
the stressful event, but rather trial variation. Because the initial
state of CarlRoomba is not necessarily anxious or curious, and
CarlRoomba pointed toward the center of the arena at the start of
every trial, it is hard to quantify CarlRoomba’s behavior over the
first half of each trial. However, CarlRoomba’s initial behavior
appeared to be anxious, and then more curious as it became
more familiar with the environment.

To resolve potential issues with comparing across conditions
that result from trial and initial state variation, Figure 3C and
subsequent population figures shows the behavior time-locked
to the light event. The light event, which occurred at approxi-
mately the halfway point in the trial, was introduced to cause
a stress response in CarlRoomba (see Figure 3). The ability of
CarlRoomba to handle this stressful event was compared across
all conditions. After the light event, the neurorobots’ behavior
rapidly switched to anxious behavior until roughly 200 s when it
became curious again (see Figure 3C). Variation occurred due to
different times of the light event, and random variations in other
sensory events.

The neurorobots’ behavior after a stressful event was quali-
tatively similar to a rodent’s behavior when placed in a novel
environment. For example, in Fonio et al.’s experiments (Fonio
et al., 2009), mice progressed from staying near a nest (1–4 in their
developmental sequence in Fonio et al., 2009, Figure 1), making
circuits along the border of the environment (5–9 in Fonio et al.,
2009, Figure 1), and then crossing the center of the environment
(10–11 in Fonio et al., 2009, Figure 1). All their mice followed this
behavioral pattern. In a similar way, CarlRoomba followed this
pattern. In all five trials for the first 50 s following the light flash,
CarlRoomba stayed near its docking station and the walls of the
arena. By 100 s after the light flash, CarlRoomba spent over half its
time either crossing the center of the environment or investigat-
ing a novel object in the center of the environment. These control
experiments show that when CarlRoomba has an intact nervous
system, it is able to respond appropriately to a stressor, and then
resume exploratory behavior when the stressor has passed.

SEROTONIN AND THE ABILITY TO COPE WITH STRESSFUL EVENTS
It has been suggested that degradation of serotonin re-uptake
can have detrimental effects on the ability to cope with stres-
sors (Jasinska et al., 2012). To mechanistically test this notion,
the time constant for tonic serotonin was increased (τDA = 50,
and τ5HT = 150 in Equation 5). This had the effect of serotonin
staying in the system longer after a stressful event.

A stressful event, such as a bright light, still caused
CarlRoomba to select anxious behaviors, but the increase in sero-
tonin levels resulted in CarlRoomba never breaking out of this
stressful behavior. Figure 4A shows a representative trial where
τ5HT was longer. Compared to Figure 3A, serotonin levels remain
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FIGURE 3 | Behavioral and neural responses in the intact model. The
time constants τDA and τ5−HT were both set at 50. (A) Behavioral and
neural responses in a representative trial. The x-axis for all charts shows
the time of the trial in seconds. The chart labeled “Behavioral State”
denotes the state of the robot at a given time. The charts labeled “State
Neurons,” “Events,” “ACh/NE,” and “Neuromodulatory Neurons” show the
neural activity over the trial, where dark blue equates to no activity and

bright red equates to maximal activity. Note that Event neurons were
binary. The chart labeled “Tonic Neuromodulation” denotes the level of
tonic activation contributing to DA and 5-HT neurons. (B) The proportion of
Curious (ExploreObject and OpenField) and Anxious (FindHome and
WallFollow) behavior averaged over 5 trials. The error bars denote the
standard error. The histogram binned the behavior in 10 s windows. (C)

Similar to (B) except the behaviors were time-locked to the Light event.
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FIGURE 4 | Behavioral and neural responses with high serotonin levels.

The time constant τDA was set to 50 and the time constant τ5−HT was set to 150.
(A) Behavioral and neural responses in a representative trial. Axes, labels, and

color are the same as in Figure 3A. (B) The proportion of Curious (ExploreObject
and OpenField) and Anxious (FindHome and WallFollow) behavior averaged
over 5 trials. Axes, labels, and time locking is the same as in Figure 3C.

high and the resulting behavior is almost entirely wall following
and finding home. Figure 4B shows the population behavior of
five trials time locked to the light event. As in the control case,
there is a strong response to the light. However, unlike the control
behavior shown in Figure 3C, CarlRoomba with high serotonin
levels never recovers from this stressful event, and demonstrates
anxious behavior throughout the remainder of the trial. These
results are qualitatively similar to that shown by Heisler and
colleagues where genetically mice that were lacking in 5HT1A
receptors spent less time in the center of the open-field arena
(Heisler et al., 1998). 5-HT1A receptors located on serotonergic
neurons act as autoreceptors and suppress serotonergic neuronal

activity. Therefore, mice lacking in 5HT1A would have increased
levels of serotonin in the nervous system. In the open-field test,
these mice showed reduced time in the center of the arena, and
were less likely to approach a novel object.

To test how lowering levels of serotonin affect behavior, the
time constant for tonic serotonin was lowered with respect to
control levels (τDA = 50, and τ5HT = 1 in Equation 5). This dras-
tically reduced the tonic levels of serotonin in the model, but the
serotonergic system still responded phasically to sensory events
(see Figure 5A). For example, there was a serotonergic response
to the light event at 120 s into the trial. However, the object
sensory event at 150 s and the bump event at 160 s resulted in
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FIGURE 5 | Behavioral and neural responses with low serotonin levels.

The time constant τDA was set to 50 and the time constant τ5−HT was set to 1.
(A) Behavioral and neural responses in a representative trial. Axes, labels, and

color are the same as in Figure 3A. (B) The proportion of Curious (ExploreObject
and OpenField) and Anxious (FindHome and WallFollow) behavior averaged
over 5 trials. Axes, labels, and time locking is the same as in Figure 3C.

CarlRoomba taking exploratory behavior. Figure 5B shows the
population behavior of five trials time locked to the light event.
There is still some response to the light with anxious behavior, but
CarlRoomba quickly switches to more curiosity seeking behav-
ior, much more so than in the control experiments (compare
Figure 3C with Figure 5B), by moving to the open part of the
arena and exploring the object in the center.

Lowering serotonin levels through Acute Tryptophan
Depletion (ATD) has been shown to reduce harm aversion and
increase risk taking in humans (Crockett et al., 2008; Robinson
et al., 2010). This is qualitatively similar to CarlRoomba’s
increased tendency to explore after a stressful event. Interestingly,
ATD increased anxious behavior in the open-field test with

rats (Blokland et al., 2002). In their discussion, they state that
ATD only moderately lowers serotonin levels in rats (40%), but
has a stronger effect in humans (80–90%). This may explain
the difference between CarlRoomba’s behavior and Blokland
and colleagues’ experiments. Future experiments with only a
moderate change to τ5HT may resolve this difference.

DOPAMINE AND RISK TAKING
Increasing the levels of DA by adjusting the tonic time constant
(τDA = 150, and τ5HT = 50 in Equation 5), resulted in more
curiosity and risk taking, but did not abolish the stress response
(see Figure 6B). For example, in the representative trial shown
in Figure 6A, the light event did cause a strong increase in 5-HT
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FIGURE 6 | Behavioral and neural responses with high dopamine levels.

The time constant τDA was set to 150 and the time constant τ5−HT was set to 50.
(A) Behavioral and neural responses in a representative trial. Axes, labels, and

color are the same as in Figure 3A. (B) The proportion of Curious (ExploreObject
and OpenField) and Anxious (FindHome and WallFollow) behavior averaged
over 5 trials. Axes, labels, and time locking is the same as in Figure 3C.

activity, which in turn inhibited DA activity. However, the next
sensory events, which were gated through by the AChNE atten-
tional filter at approximately 180, 200, and 220 s, resulted in
strong DA activation and curiosity seeking behavior. The pop-
ulation data reflected this interplay between the DA and 5-HT
system. CarlRoomba responded to the stressful event, but was
much more curious than controls. In effect, CarlRoomba was
taking more risks by venturing into the middle of the environ-
ment during or right after the stressful light event. Similarly,
cocaine, which increases levels of DA in the nervous system, has
been shown to increase activity in the open-field test with rats,
as well as increase the exploration of novel objects (Carey et al.,
2008).

Decreasing the levels of DA by adjusting the tonic time con-
stant (τDA = 1, and τ5HT = 50 in Equation 5) resulted in less
curiosity, and more withdrawn behavior (see Figure 7). Object
events did sometimes results in curious behavior (see 180 s
into the trial shown in Figure 7A). But, in general, without
much DA in the system, the 5-HT system dominated action
selection leading to anxious behavior, such as following walls
and searching for its home (i.e., docking station). For exam-
ple, the bump event at 200 s into the trial in Figure 7A, trig-
gered an anxious FindHome response by CarlRoomba. Overall,
CarlRoomba’s behavior was considerably more anxious when
comparing the low DA condition (Figure 7B) to the control
condition (Figure 3C).

Frontiers in Neurorobotics www.frontiersin.org February 2013 | Volume 7 | Article 1 | 96

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Krichmar Influence of neuromodulatory signaling on neurorobot behavior

FIGURE 7 | Behavioral and neural responses with low dopamine levels.

The time constant τDA was set to 1 and the time constant τ5−HT was set to 50.
(A) Behavioral and neural responses in a representative trial. Axes, labels, and

color are the same as in Figure 3A. (B) The proportion of Curious (ExploreObject
and OpenField) and Anxious (FindHome and WallFollow) behavior averaged
over 5 trials. Axes, labels, and time locking is the same as in Figure 3C.

FRONTAL CORTEX AND COGNITIVE CONTROL
The OFC and mPFC areas of the model exert cognitive con-
trol on CarlRoomba’s behavior by inhibiting the DA and 5-HT
systems, respectively (see Figure 2). Activity in these areas initi-
ated behavior selection, but also inhibited the neuromodulatory
systems. This inhibition kept the appropriate neuromodulatory
system in check and exerted cognitive control by signaling to
the neuromodulatory system that the sensory event had been
handled.

When the projections from mPFC to 5-HT were lesioned in the
model, the serotonergic system was overactive and CarlRoomba
acted anxious almost entirely (see Figure 8A). In all mPFC lesion

cases, the light response triggered anxious behavior that persisted
throughout the remainder of the trial (see Figure 8B).

When the projections from OFC to DA were lesioned in the
model, DA levels dominated and more exploratory behavior was
observed (see Figure 9). Although CarlRoomba showed more
curious behavior, anxious behavior was not abolished (compare
Figure 8B with Figure 9B). The asymmetry between these lesion
experiments may be due to the opponency between the sero-
tonergic and DA systems. The serotonergic system, through its
inhibition of the DA system, can still trigger anxious behav-
ior in response to a stressful event and may keep DA levels
in check.
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FIGURE 8 | Behavioral and neural responses with lesion to projection

from mPFC to 5-HT. The time constants τDA and τ5−HT were both set at 50.
(A) Behavioral and neural responses in a representative trial. Axes, labels, and

color are the same as in Figure 3A. (B) The proportion of Curious (ExploreObject
and OpenField) and Anxious (FindHome and WallFollow) behavior averaged
over 5 trials. Axes, labels, and time locking is the same as in Figure 3C.

DISCUSSION
The main purposes of the present neurorobotic study were to
demonstrate that (1) high levels of serotonin lead to withdrawn
behavior, and that (2) top-down signals from the frontal cor-
tex to neuromodulatory areas are critical for coping with both
stressful and novel events. Firstly, it has been suggested that sero-
tonin opposes activating or invigorating neuromodulators such
as dopamine (Tops et al., 2009). When the simulated nervous

system was intact, the neurorobot appropriately responded to
a stressful event with an increase in 5-HT activity. This led to
withdrawn behavior by activating the mPFC and suppressing DA
activity. Secondly, a recent review suggested that the mPFC inhib-
ited the serotonergic raphe nucleus after handling a stressful event
(Jasinska et al., 2012). In the present model, this feedback loop
prevented the raphe from being overly active after the stressor had
been handled. Over time, this allowed the DA system to become

Frontiers in Neurorobotics www.frontiersin.org February 2013 | Volume 7 | Article 1 | 98

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Krichmar Influence of neuromodulatory signaling on neurorobot behavior

FIGURE 9 | Behavioral and neural responses with lesion to projection

from OFC to DA. The time constants τDA and τ5−HT were both set at 50.
(A) Behavioral and neural responses in a representative trial. Axes, labels, and

color are the same as in Figure 3A. (B) The proportion of Curious (ExploreObject
and OpenField) and Anxious (FindHome and WallFollow) behavior averaged
over 5 trials. Axes, labels, and time locking is the same as in Figure 3C.

active leading to exploratory behavior. The present algorithm fur-
ther suggested that projections from the OFC to the DA function
have a similar function when responding to positive novel events.
Lastly, the introduction of the attentional filter in the ACh and NE
systems allowed the neurorobot to respond to novel events and
habituate to irrelevant events. As was shown in Krichmar (2012),
when the ACh/NE system was compromised, the neurorobot was
distracted by irrelevant events and switched behaviors constantly.

The behavior of the robot was similar to that observed in
rodents under similar conditions. Specifically, the neurorobot,

CarlRoomba, and the rodent are initially anxious or wary,
resulting in staying near their nest or the walls of the arena (Fonio
et al., 2009). After becoming familiar with the environment,
both the rodent and CarlRoomba made forays into the middle
of the arena. Figure 3 summarizes this behavior in the neuro-
robot. Because CarlRoomba started each trial pointed directly
at the object in the middle of the environment, there was some
selection of OpenField and ExploreObject behaviors early on.
In Fonio’s experimental paradigm, the moving of a mouse to a
novel environment is presumably a stressful event. However, this
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prior context would be difficult to mimic with the CarlRoomba.
Therefore, a light flash was used to mimic a stressful event. In
this case, CarlRoomba’s behavior was qualitatively similar to the
rodent. CarlRoomba tended to stay near its docking station or the
walls of the arena. By 100 s after the light flash (see Figure 3C),
CarlRoomba spent over half its time either crossing the center of
the environment or investigating a novel object in the center of
the environment.

Opponency between the serotonergic system and the DA sys-
tem has been proposed behaviorally and in theoretical models
(Daw et al., 2002; Tops et al., 2009). However, whether the
anatomy supports uni-directional or bi-directional inhibition is
an open issue (Boureau and Dayan, 2011). But there is evidence
that projections from raphe serotonin cells to DA areas oppose
the action of DA and mediate avoidance of threats (Deakin,
2003). Therefore, opponency in the present neurorobotic frame-
work was modeled by inhibition from the raphe nucleus to
the ventral tegmental area (shown as 5-HT→DA in Figure 2).
There were also practical reasons for this projection. First, there
was a need to arbitrate between sensory events that might trig-
ger both DA and 5-HT, such as a bump event. Second, by
having 5-HT inhibit DA, a bump event would cause anxious
behavior early in a trial (Fonio et al., 2009) and after a stres-
sor (Jasinska et al., 2012). This matches behavioral data and
suggests that the serotonergic system may be actively oppos-
ing the dopaminergic system, and that dopaminergic system
exerts its influence if serotonin levels are sufficiently low. Lastly,
it may be advantageous, from a robot control perspective, to
be initially conservative, but transition from conservative to
riskier action over time if environmental conditions warrant such
action.

SEROTONIN AND RISK-AVERSE BEHAVIOR
The serotonergic system is involved in the control of anxious
states (Millan, 2003). For instance, a variation of an upstream
promoter region of the serotonin transporter gene (5-HTTLPR)
has been shown to influence both behavioral measures of social
anxiety and amygdala response to social threats in humans (Hariri
et al., 2002; Caspi et al., 2003, 2010). Lowering serotonin lev-
els, through a dietary manipulation called ATD, has been shown
to decrease cooperation and lower harm-aversion (Wood et al.,
2006; Crockett et al., 2008). Moreover, manipulations of 5-HT
receptor genes have an impact on stress and anxiety in mice
(Heisler et al., 1998; Weisstaub et al., 2006; Holmes, 2008).

These serotonin-dependent traits and responses were shown
in the present robot experiments. Increasing serotonin levels
by lengthening the time constant for tonic 5-HT had a similar
effect to the short allele variant of 5-HTTLPR. The robot showed
stronger and long-lasting responses to a stressful event, that is,
a bright light (see Figure 4). Indeed, these open-field responses
are in agreement with mouse behavior, where manipulations to
5-HT1A and 5-HT2A receptors resulted in elevated anxiety in the
open-field test as measured by center locomotion, overall distance
traveled, rearing, and response to a novel object (Heisler et al.,
1998; Weisstaub et al., 2006).

Similar to the decrease in harm aversion shown due to ATD
(Wood et al., 2006; Crockett et al., 2008), decreasing serotonin

levels in the model, through shortening the 5-HT time con-
stant, had the effect of making the robot more risk taking (see
Figure 5). The robot made more forays into the center of the
environment, and more explorations of the object in the center
of the environment.

DOPAMINE AND RISK-TAKING BEHAVIOR
The DA system has been implicated in the prediction of rewards
and incentive salience or “wanting” (Schultz et al., 1997; Berridge,
2004), as well as novelty-seeking (Redgrave and Gurney, 2006;
Bromberg-Martin et al., 2010). Variations in the DA system
have been shown to affect risk-taking during gambling, the abil-
ity to filter out noise, and cognitive flexibility (Winterer and
Weinberger, 2004; Roussos et al., 2008). A blockade of DA
resulted in rats not making an extra effort of climbing over a
barricade to get a high reward (Denk et al., 2005). This might
be interpreted as low DA levels lead to less risk taking for poten-
tial rewards. Similarly, a human study has shown that individuals
with a COMT polymorphism, which lowered levels of DA in
the prefrontal cortex, tended to take fewer risks in a gambling
task (Roussos et al., 2008). Moreover, individuals with this poly-
morphism persisted in accordance with prior instructions despite
evidence that the rules had changed (Doll et al., 2011). Genetic
variation in the DA system also has an effect on impulsivity.
Polymorphisms in DA-related genes, including variable number
tandem repeat (VNTR) polymorphisms in DRD4 and DAT1,
have been associated with poor “action restraint” and “action
cancellation” (Congdon et al., 2008; Munafo et al., 2008).

These DA-dependent behaviors and responses were observed
in the robot’s behavior and simulated nervous system. Similar to
the Denk and Roussos findings, lowering tonic levels of DA led to
a lack of risk-taking and more withdrawn behavior (Denk et al.,
2005; Roussos et al., 2008). This was mainly due to the serotoner-
gic system dominating and driving harm aversive behaviors, such
as finding home or wall following (see Figure 7). It also led to
behavior that could be regarded as impulsive since CarlRoomba
perseverated with these behaviors. However, when the DA lev-
els were elevated, the robot tended toward curious behavior (see
Figure 6). It is interesting that in this condition, compared to
others, the change in behavior is not as dramatic. It makes the
prediction that the “anxious” behavior system (i.e., mPFC←→5-
HT) may keep the “curiousity-seeking” behavior system (i.e.,
OFC←→DA) somewhat in check.

FRONTAL CORTEX AND COGNITIVE CONTROL
Recent experiments suggest that the reward and cost of actions
are also partially represented in OFC and mPFC, respectively.
In general, OFC appears to be involved in decision-making and
planning with respect to rewards and preferences, and the mPFC
appears to be involved in decision-making and planning having
to do with effort, cost, and social valuation (Rushworth et al.,
2007). Rudebeck et al., for example, trained rats to choose maze
arms that yielded more food pellets either after a delay or after
scaling a barrier (Rudebeck et al., 2006). When the OFC was
lesioned, the rat was more likely to choose the lower (immedi-
ate) reward than the higher (deferred) reward. However, mPFC
lesions, specifically the anterior cingulate cortex, caused rats to
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more often pick lower (less effortful) rewards than higher (more
effortful) rewards. Moreover, unit recordings in the rat anterior
cingulate cortex have shown that many of these neurons respond
to effort during goal-directed actions (Cowen et al., 2012).

In the model, when CarlRoomba responded to a stressful event
(e.g., bright light), there was first a phasic response in the 5-HT
system, causing activity in the appropriate mPFC state neurons,
resulting in the selection of a stress reducing behavior, and then
the mPFC inhibited the 5-HT system, since it had dealt with the
stressor. However, lesioning the connections from mPFC to the
5-HT system had a dramatic effect on behavior; anxious behavior
completely dominated because cognitive control of the seroton-
ergic systems was absent. CarlRoomba became withdrawn since
the cognitive control of the serotonergic system was removed (see
Figure 8).

Evidence suggests that mPFC mediates the cognitive control of
stress by regulating the raphe nucleus (i.e., serotonergic system)
(Maier and Watkins, 2010). In a study where rats were subjected
to tailshocks, inactivation of the mPFC resulted in the elimina-
tion of the ability to control the stressor through regulation of
raphe nucleus serotonin levels (Amat et al., 2005). Interestingly,
Lacroix and colleagues found that lesions of the mPFC did not
increase anxiety in rats during unconditioned fear paradigms,
such as the open-field test, but increased anxiety during condi-
tioning paradigms (Lacroix et al., 2000). The present model does
not have the type of learning to support conditioning. Future
models of CarlRoomba may need to investigate this dissociation
with the addition of biologically plausible learning rules.

In a similar fashion to the model of mPFC’s control of
stress, CarlRoomba’s OFC exerted control on incentive salience
or reward-seeking. When CarlRoomba responded to a potentially
interesting event, such as an object or a bump, there was first a
phasic response in the DA system, causing activity in OFC state
neurons, resulting in the choice of a reward-seeking behavior
(e.g., OpenField or ExploreObject) and then the OFC inhibited
the DA system, since it had responded to the event of interest.
However, when the OFC was lesioned, the robot perseverated
in its curious behavior (see Figure 9). In about 50% of the tri-
als, CarlRoomba did not respond to the stressful light event and
continued with its “Curious” behavior.

It has been suggested that the OFC is crucial for adaptation
when reward values or contextual cues change (Rolls, 2004), and
that the OFC is important for developing stimulus to reward asso-
ciations, prediction, and expectancies (Schoenbaum et al., 2009).
A recent rodent study showed that, depending on the condi-
tions, the OFC is important for both of these roles (Riceberg and
Shapiro, 2012). OFC lesions impaired reversal learning when the
reversals occurred at low frequencies. However, when the contin-
gencies changed at a high frequency, OFC lesions rats followed
a Lose-Shift strategy. The authors suggest that OFC is com-
puting reward expectancies based on reward history. Although
CarlRoomba does not contain the learning machinery to cal-
culate reward expectancies, it does show perseverative behavior
when from the OFC to the DA system are lesioned. The OFC
lesioned CarlRoomba also showed a lack of ability to assess the
potential rewards for a given event (i.e., all events became highly
rewarding). It will be of interest to add predictive reward learning

(e.g., TD learning) to the model and test the system in a reversal
learning task.

RELATED WORK
While there have been many models of action selection, the
present work addresses how principles of neuromodulation and
frontal cortex control could control autonomous robot behavior.
It should be noted that other neural systems support action selec-
tion and behavioral switching. For example, the basal ganglia
and its interaction with thalamocortical loops have been pro-
posed as an action selection system (Prescott et al., 2006). This
model, which was tested on a neurorobot, demonstrated behav-
ioral switching in an open environment during a foraging task
where the robot switched between wall-seeking, wall-following,
approaching and placing objects. Similar to the present model,
this basal ganglia model was able to choose between multiple,
conflicting choices based on its context and motivation.

The present model was specifically designed to test how the
opponency between the serotonergic and dopaminergic system,
combined with top-down control from frontal cortex, could repli-
cate rodent behavior. Moreover, it was able to show how altering
the balance between these systems could influence anxious and
exploratory behavior. These results can be compared to rodent
studies under similar condition as described above (Heisler et al.,
1998; Lacroix et al., 2000; Blokland et al., 2002; Lipkind et al.,
2004; Bouwknecht et al., 2007). Future experiments may fur-
ther delineate the role of these neuromodulators in balancing
exploratory and anxious behavior. Moreover, the present neu-
rorobotic experiments tests the feasibility of the architecture
proposed by Jasinska and colleagues, where there is interaction
between the mPFC and the raphe nucleus, for handling stressful
events (Jasinska et al., 2012). CarlRoomba’s neural architecture
further suggests that there is a similar architecture between the
OFC and DA system for handling positive valence stimuli.

Theoretical models have been proposed on neuromodulation,
but they typically have not considered all of the neuromodulatory
systems and their interactions with cortical and subcortical areas.
The phasic response of the DA system has been proposed to sig-
nal temporal difference error (Schultz et al., 1997). Following this
idea, the phasic response of DA has been modeled to shape behav-
ior and action selection with reinforcement learning (Krichmar
and Edelman, 2002; Sporns and Alexander, 2002; Arleo et al.,
2004; Iida et al., 2004; Doya and Uchibe, 2005; Stone et al., 2005;
Guenter et al., 2007; Nakamura et al., 2007).

Several neurorobot and computational neuroscience
studies have investigated the interaction between multiple
neuromodulatory systems. Our previous model took into
consideration the phasic aspects of dopaminergic and sero-
tonergic neuromodulation (Cox and Krichmar, 2009). This
model postulated, similar to a model of noradrenergic neu-
romodulation (Aston-Jones and Cohen, 2005), that phasic
neuromodulation causes an organism to be more decisive,
whereas a lack of phasic response would result in more arbitrary
action selection. A recent neurorobot study combined DA
reinforcement learning with an exploration parameter related
to the noradrenergic system (Khamassi et al., 2011). These
simulated neuromodulatory systems interacted with an anterior
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cingulate cortex and prefrontal cortex. On two different robot
platforms, they demonstrated that their model could deal with
both expected and unexpected uncertainties in the real world.
Our group has recently investigated the possible role of multi-
ple neuromodulators in a resource allocation task (Chelian et al.,
2012), and reversal learning on an autonomous robot (Oros and
Krichmar, 2012).

However, few researchers have developed a model that includes
the ACh, DA, NE, and 5-HT systems simultaneously. One excep-
tion was a theory proposed by Kenji Doya (Doya, 2002, 2008).
In this theory, Doya subscribed a different functional role for
each neuromodulatory system on different parameters of the tem-
poral difference learning rule. Although this idea has not been
implemented in a behaving robot, their group is actively explor-
ing elements of this theory experimentally (Tanaka et al., 2007;
Schweighofer et al., 2008). Our previous model showed how the
combination of these neuromodulatory systems could produce
effective action selection in robots (Krichmar, 2012).

The present model extends this prior work and takes into
consideration the notion that the dopaminergic and seroton-
ergic systems are in opposition. Specifically, the serotoner-
gic system is inhibiting the dopaminergic system. One model
that investigated these opponent interactions, suggested that
tonic serotonin tracked the average reward rate and that tonic
dopamine tracked the average punishment rate in a similar
context, and speculated that a phasic serotonin signal might
report an ongoing prediction error for future punishment (Daw
et al., 2002). However, it has been difficult to find empirical
evidence supporting these roles for tonic and phasic neuromod-
ulation. Our prior modeling has shown that direct opponency

between these systems is not necessary to achieve behavioral
opponency (Asher et al., 2010, 2012; Zaldivar et al., 2010).
In many cases there is an environmental tradeoff between the
expected rewards and costs, and this can lead to opponency
between active reward-seeking and withdrawn behavior. Indeed,
by having different neuromodulatory systems handle different
sensory events, this type of opponency emerged in the present
model.

CONCLUSIONS
The neurorobotic experiments presented here demonstrate
that the opposition of the serotoninergic system with the
dopaminergic system can lead to the type of anxious and curi-
ous behavior observed in animals. Whereas high levels of 5-HT
led to withdrawn, anxious behavior by suppressing DA action,
high levels of DA or low levels of 5-HT led to curious, exploratory
behavior. Moreover, it was shown that top-down signals from the
frontal cortex to these neuromodulatory areas were critical for
handling both stressful and positive valence events. The action
of the neuromodulatory system and its interaction with areas
important for action selection and planning are in a fine balance.
It was shown that if any of these systems become out of balance,
due to lesions or changes to the efficiency of neuromodulatory
signaling, aberrant behavior occurs. This may have implications
for understanding mood disorders, obsessive-compulsive disor-
ders, and anxiety.
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The identification of learning mechanisms for locomotion has been the subject of much
research for some time but many challenges remain. Dynamic systems theory (DST) offers
a novel approach to humanoid learning through environmental interaction. Reinforcement
learning (RL) has offered a promising method to adaptively link the dynamic system to the
environment it interacts with via a reward-based value system. In this paper, we propose
a model that integrates the above perspectives and applies it to the case of a humanoid
(NAO) robot learning to walk the ability of which emerges from its value-based interaction
with the environment. In the model, a simplified central pattern generator (CPG) architec-
ture inspired by neuroscientific research and DST is integrated with an actor-critic approach
to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference
based learning converges to the optimal solution quickly by using natural gradient learn-
ing and balancing exploration and exploitation. Futhermore, rather than using a traditional
(designer-specified) reward it uses a dynamic value function as a stability indicator that
adapts to the environment. The results obtained are analyzed using a novel DST-based
embodied cognition approach. Learning to walk, from this perspective, is a process of
integrating levels of sensorimotor activity and value.

Keywords: reinforcement learning, humanoid walking, central pattern generators, actor-critic, dynamical systems
theory, embodied cognition, value system

1. INTRODUCTION
In recent years, with increasingly reforming ideas about how loco-
motion should be understood in a way that it is a result of the
interaction of dynamical systems, bio-inspired approaches are
attracting a lot of attention. Scientists claim that locomotion
including its development or adaptivity emerges when the neural
structure or the body with proper morphology interacts with the
environment under the laws of physics (Pfeifer and Bongard, 2006;
Ijspeert, 2008). Hence, the focus of investigating locomotive capa-
bilities of artificial or biological agents should be shifted from
how each body part moves in a kinematic chain to a generic
view pertaining to how controllers (or neural systems), body, and
environment interact as a complete dynamic system.

Recently, cutting-edge work in robotics shows the importance
of the abovementioned ideas. According to Ijspeert, Central Pat-
tern Generators (CPGs), the bio-inspired neural structures discov-
ered in the middle of the last century (Hooper, 2001), work as a link
connecting the sensori-motor level to the Mesencephalic Loco-
motor Region (MLR) in the brainstem which controls vertebrate
locomotion. Thus, many robots under control of CPGs show their
own adaptive behaviors when interacting with the environment
(Fumiya et al., 2002; Pfeifer and Bongard, 2006; Degallier et al.,
2011). A CPG network is a neural controller which can show adap-
tive network behaviors given sensory feedback. On the other hand,
body flexibility, namely the so-called soft robotics, has been high-
lighted recently as a critical element for adaptive motor capabilities
(Pfeifer and Bongard,2006). However, there is no systematic way of
evaluating flexibilities of different morphologies for locomotion.

On this basis, learning locomotion becomes more open
and challenging in terms of integrating interactive information
amongst the three parts: controllers, body, and context. Based on
the dynamic systems approach proposed by Thelen in the 1990s
from the perspective of development of cognition and action,
locomotion is a consequence of self-organization and there is no
“essence” for locomotive systems. Learning to walk is a formation
process of a gait attractor dependent on the exploration of the state
space in a dynamical system that consists of sensori-motor cou-
pling of agent and environment. The attractor is a behavioral mode
and state space is an abstract construct of space whose coordinates
define the degrees of freedom of the system’s behavior (Thelen
and Smith, 1996). However, the learning mechanism which causes
the formation of an attractor out of the state space in artificial
systems still remains unclear in spite of Thelen’s embodied the-
oretical stance. Adolph et al. (2012) posits that infants learn to
walk through thousands of time-distributed, variable attempts
including missteps and falls. She emphasizes the importance of
the temporal-difference in the learning process. From the cogni-
tive perspective, Schore (2012) indicates affective modulation is
important for infants learning to walk. Particularly, the main care-
giver plays a role as an “emotion system” outside assisting infants
to evaluate their behaviors and scaffolding their affective systems.
Pfeifer and Bongard (2006) explains locomotion learning from a
robotics angle suggesting there is a “value” system in our body
to evaluate the comfort of locomotion behaviors. Therefore, we
assume there is an agent-centered mechanism related to learn-
ing how to walk and it has to comprise these properties: (1). It
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is an interactive-affective system. (2) It is capable of finding an
optimized solution by exploring the state space through interac-
tion with the environment in a time-sensitive manner. (3) The
learning process is under control of the supervisor’s “scaffolding.”
We suggest, closely pertinent to the above three points, that reinforce-
ment learning is an appropriate choice for the implementation of
learning to walk.

Reinforcement learning (RL) has, in recent years, evolved con-
siderably especially in dealing with problems of continuous and
high-dimensional state space (Doya, 2000b; Wiering and van
Otterlo, 2012). Biologically, it sketches an interactive process of
dopamine systems and the basal ganglia which is emotion-related
(Schultz, 1998; Doya, 2000a; Graybiel Ann, 2005; Khamassi et al.,
2005; Frank and Claus, 2006; Joel et al., 2012). Grillner et al. (2005)
elucidate the functions of dopamine systems (striatum) and the
basal ganglia (pallidum) with biological grounds on motor adap-
tation and selection. Moreover, RL proffers a computational for-
mulation of learning, via the interaction of body, neural systems,
and environment, to execute behaviors that deliver satisfying con-
sequences. Grillner et al. (2007) also propose a layered architecture
including basal ganglia, CPG network, and sensory feedback which
may imply the interactive bond between CPGs and RL. In this
article, by using RL, a meaning of “scaffolding” is given by manipu-
lating the value function and update rules. Meanwhile, for the pur-
pose of endowing a humanoid with a capability of learning to walk
efficiently, the RL algorithm has to guarantee fast convergence.

Based on the above ideas and theories we propose a new archi-
tecture combining Natural Actor-Critic (NAC) and a CPG network
to achieve a “learning to walk” task on a humanoid. This is the
so-called Natural CPG-Actor-Critic. The natural actor-critic has
been proposed by Kakade (2002) and further improved and used
by Peters in the field of supervised motor learning (Peters and
Schaal, 2006, 2008). This particular RL algorithm uses natural pol-
icy gradient methods which may achieve very efficient exploration
and fast convergence of learning. Based on their ideas, Nakamura
et al. (2007) proposed a natural CPG-Actor-Critic approach and
implemented it with a 2D1-simulated stick walker in MATLAB.
At the present time, the natural CPG-Actor-Critic has not been
implemented on a humanoid platform. The reasons are clear:
firstly, there exists no functional 3D CPG walking model that
does not depend on inverse kinematics even though the motion
of roll direction is of importance to walking (Collins et al., 2001).
Nakamura’s work fully adopted Taga’s model (Taga, 1998) which
similarly works on a 2D-simulated stick walker. Secondly, Taga’s
model is very complicated involving a very high-dimensional
and difficult-to-reduce state space. This is why state value esti-
mates take a long time to converge. Finally, the stick walker
contacts the ground in an entirely different way to humanoids
with foot interaction so that the body dynamics also differ. This
is a morphology-related reason. Thus, in this article, we try to
use another sensor-driven CPG architecture to avoid the prob-
lems faced by Nakamura and colleagues (For the comparison to
Nakamura’s model, please refer to Discussion A.1).

1The 2D or 3D means a coordination system fixed on the torso of a robot. It
has three axes: X (Pitch: pointing to front), Y(Roll: pointing to right), Z(Vertical:
pointing upwards).

The main contribution of this article is to present a complete
natural CPG-Actor-Critic architecture and implement it on a 3D-
simulated humanoid by utilizing a state-of-the-art natural policy
gradient in a relatively high-dimensional state space. In this work,
it is shown not only how episodic NAC (eNAC) converges to opti-
mal solutions by exploration-exploitation batch learning but also
how eNAC helps a humanoid under control of CPGs learn to
walk by searching appropriate posture and integrating sensory
feedback. Meanwhile, by adopting a dynamic system perspective
with respect to cognitive development, RL can be understood in
a new light of state value estimates. Experiments introduced in
this article consist of two parts. The first part will focus on the
emergence of proper walking posture and integration of sensory
feedback. The second part shows how the robot learns to walk on
a slope and the relation between slope and posture change. The
aim of this work is to glean how CPGs in a natural actor-critic
architecture adapt to the environmental change in walking by bal-
ancing realization of body morphology and acquisition of sensory
feedback.

2. MATERIALS AND METHODS
In order to fully comprehend how CPG networks work with the
NAC architecture, a description of relevant theories applicable to
the proposed architecture is offered in this section. With the cpg-
actor-critic model, it is able to clearly show how the humanoid’s
body, the physical world, and neural controllers interactively cause
the emergence of an appropriate walking gait. In order to learn
walking, a proper upright standing posture is necessary. Scien-
tific research shows that human infants learn to walk after they
have learned to be able to maintain an upright posture (Kail and
Cavanaugh, 1996; Adolph et al., 2012). After learning a standing
posture, they can start to explore the world in an allocentric way.
Through exploration, infants improve their walking behaviors
(Clearfield, 2011). However, the exploration in a physical world
consists of infinite possibilities increasing the difficulties in mod-
eling this process. Thus, a limited but continuous state space has
to be constructed for the purpose of learning to walk by exploring
only in the state space of neural structure which is related to pos-
ture control and sensory feedback. Then walking can be considered
as a Partially Observable Markov Decision Process (POMDP). In
this article, we use a NAC architecture which appears as one good
solution to bridge continuous state space and action space in a fast-
learning way. We show that it can not only show the emergence
of proper walking posture but also adaptation to environmental
changes.

2.1. CENTRAL PATTERN GENERATORS
Modeling walking on a humanoid robot is a complicated task
related to designing an autonomous control mechanism for a
high degree-of-freedom (DOF) body. So the main challenge for
developing modern control strategies concerns avoiding the prob-
lem of the “curse of dimensionality” which closely pertains to a
large number of DOFs. Using CPGs, it is possible to transfer and
restrict extremely high-DOF walking in Cartesian space to a low-
dimensional sensory space of neural structure with neurophysi-
ological theories and assumptions (Geng et al., 2006; Takamitsu
et al., 2007; Endo et al., 2008).
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CPGs, as a group of presumed neurons existing in vertebrates’
spinal cord (Latash, 2008), are the neural circuits generating rhyth-
mic movement. With sensory feedback, the body or the robot
under control of CPGs interacts with the environment in an
adaptive way in which case the body dynamics are interactively
entrained into a limit cycle. This limit cycle implies the following:
firstly, structural-stability is imperative to a CPG architecture. This
means CPG architectures should be able to shift to another limit
cycle by adapting to contextual change and then recovering the
original limit cycle without external disturbance (Righetti, 2008;
Li et al., 2011). Secondly, the adaptive change of the limit cycle
that CPGs converge to is generally done by updating the output
or connection weights of CPGs. A lot of work has been done to
emphasize the importance of these two points (Inada and Ishii,
2004; Ijspeert, 2008; Li et al., 2011, 2012).

Compared to a lot of work done with engineering models based
on Zero Momentum Point (ZMP) (Lim et al., 2002; Strom et al.,
2009) to model walking, CPGs also have many advantages (Naka-
mura et al., 2007). In terms of adaptive capabilities, as engineering
models (including an accurate model of the controlled system and
the environment) need to calculate the trajectories of motion with
respect to very specific models, these models need to be recalcu-
lated or even remodeled when the context or the body changes. But,
as for CPGs, it is just a matter of updating parameters to new adap-
tation capabilities. On the other hand, CPGs are proven to be more
energy-efficient (Li et al., 2011) than those methods which need
huge computer power to calculate complicated accurate models in
each computation period.

From the perspective of the dynamic systems approach, just
because of the excellent adaptivity of a CPG or its network, CPGs
can be considered as an interface between the environment and
high-level cognitive functionalities. As abovementioned, the shift
and change of limit cycles could be viewed as results of CPGs
interfacing to the high-level control system, like the RL system in
this work.

2.1.1. Layered CPG structure
CPG structures have been explored by researchers for some time
(Orlovskii et al., 1999; Amrollah and Henaff, 2010) but the inte-
gration of sensory feedback remains an unresolved open question
to the research of CPGs without a conclusive structure. Recently, a
proper layered CPG architecture has been proposed in Rybak et al.
(2006) based on biological evidence (Amrollah and Henaff, 2010;
Figure 1).

The layered CPG concept illustrates clearly not only the func-
tions for each layer but also principles for the influence of afferent
feedback in each layer. For instance, the rhythm generator (RG)
layer is in charge of rhythm or frequency resetting depending
on feedback. The PF layer functions like a network to keep syn-
chronization of motorneuron activities as well as phase transition
without altering the RG layer according to afferent feedback. The
motorneuron level is an integrator where downward outputs and
sensory feedback are fused together (details in Figure 1).

Based on this CPG structure, we propose a layered CPG archi-
tecture in our work which fulfills functions of each layer (Figure 2).
In the structure, the four-cell recurrent network based on symmet-
ric group theory (Golubitsky and Stewart, 2004) has the capability

to be structurally stable (Righetti, 2008). It is of importance that
this network can model the dynamics of different locomotion gaits
(including walking, trotting, running, and crawling) by altering its
connection weights and properties of each cell (Righetti, 2008).
Crawling and walking on different humanoids have been imple-
mented (Righetti and Ijspeert, 2006; Lee et al., 2011; Li et al., 2011).
With this network, it keeps the synchronization of each oscilla-
tor cell within a specific phase difference by using typical negative
neural connection (ipsilateral) and positive connection (contralat-
eral) to keep ipsilateral oscillation out of phase and contralateral
oscillation in phase. Each cell of the four-cell network is modeled
with a Hopf oscillator (Equation 1–3) which is different from the
one used in Nakamura’s model (details in Discussion A.1).

żi = a
(
m − z2

i + s2
i

)
zi − ωi si (1)

ṡi = a
(
m − z2

i + s2
i

)
si + ωizi +

∑
j

aij sj (2)

wi = 2× π

(
ωup

1+ e−100si
+

ωdown

1+ e100si

)
(3)

where the zi is the output of the Hopf Oscillator and si is the
internal state. m is the amplitude and a is the convergence rate.
ωi is the internal weight in this coupled oscillator. It is usually set
to 1. sj is the output of the other cells except cell i and αij is the
external weight (from cell j) of the four-cell network. Meanwhile,
ωi also represents the frequency of this oscillator. Interestingly,
by changing values of ωup and ωdown, you can change the dura-
tion of increase and decrease rate of the oscillator. For example,
in our work ωup= 5ωdown, the oscillation increases 5 times faster
than decreases. This relation is derived from the experimental data
by Hallemans et al. (2006) about joint kinematic trajectories of
walking children. m and a are set to be 1 and 5 in our experiment.

If we assume the motorneurons work to integrate the inter-
nal oscillation and external sensory feedback, the whole physical
system including the neural controller can be expressed like this:

ẋ = F (x , τ) (4)

where x denotes the state of the physical system, whose compo-
nents are, for example, sensory angles of joints, and the dot (·)
denotes the time derivative. τ denotes the control signal (torque
or trajectory) from the controller, and F(x,τ) represents the vec-
tor field of the system dynamics. Then the motorneuron can be
modeled by the firing neural structure (Buono and Palacios, 2004;
Endo et al., 2008; Li et al., 2012), the dynamics of which can be
given by:

ςẏEi = −yEi + IEi

τEi = GE
(
yEi
)

(5)

ςẏFi = −yFi + IFi

τFi = GF
(
yFi
)

(6)

where yEi and yFi, IEi and IFi, ζ,τEi and τFi represent the state, input,
damping constants (equal to 10 in our work), and the output of
ith extensor and flexor motorneuron, respectively (if no exception,
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FIGURE 1 | Schematic illustration of the three-level central pattern
generator (CPG) concept:The locomotor CPG consists of a
half-center rhythm generator (RG), a pattern formation (PF)
network and a motorneuron layer. Rhythmic generator layer (yellow
area): this layer contains oscillators which generate rhythmic signals as
the input to the PF layer. PF layer (red area: only three neurons are
drawn with others neglected): The PF network contains interneuron
populations, each of which provides excitation to multiple synergistic

motorneuron pools (diamonds) and is connected with other PF
populations via a network of inhibitory connections. It mediates
rhythmic input from the RG to motorneurons and distributes it among
the motorneuron pools. The network also synchronizes the oscillatory
output of each interneuron. The motorneuron layer: It integrates the
muscle sensory feedback and activation of PF network outputs. The
extensor and flexor motorneurons together determine the output to
the muscles (Rybak et al., 2006).

all the E and F in the lowerscripts represent extensor and flexor in
this article). GE and GF are both activation functions, for example
the sigmoid function. The input IEi and IFi are given by:

IEi =
∑

j

VEij zj +
∑

k

WEik XEk (7)

IFi =
∑

j

VFij zj +
∑

k

WFik XFk (8)

where zj is the jth output of PF layer (the four-cell network). VEij

and VFij are the connection weights from PF layer to motorneu-
ron layer. XEk and XFk are the kth sensory feedback from sensory
neurons in vector XE and XF weighted by the connection weight
WEik and WFik. Then the final output of the controller is given by:

τi = TEiτEi + TFiτFi +Wpi Xpi (9)

where τi is the ith output of CPGs and TEi, TFi are the connection
weight. Xpi is the ith term in posture control vector Xp weighted
by connection weight Wpi.

2.1.2. Sensor neurons
The sensor neuron mechanism representing local reflex of mus-
cles is very important for motorneurons (Latash, 2008). It has been
proved to be biologically existent (Endo et al., 2008) and useful for
robotic walking applications (Endo et al., 2008; Nassour et al.,
2011). The general sensor neuron model is given by a sigmoid
function:

ρsn =
1

1 = ea(θthreshold−θinput )
(10)

where ρsn is the output of a sensor neuron. a is the sensitivity of a
sensor neuron. θthreshold and θinput are the threshold and the input
of a sensor neuron. The input can be raw or postprocessed sensor
data and the threshold can be zero or a certain value depending
on types of sensor neurons. The idea of using sensor neurons is to
normalize the input of all the sensors and use them with different
purposes (details see Appendix A).

According to existing robotic applications of CPGs, each CPG
is used to control one joint of a robot. Each sensory connec-
tion weight (like WEik and WFik) of each CPG is determined
by the corresponding joint it controls and its specific sensory
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input. In the layered structure implemented on the physical robot
NAO (Li et al., 2012), the 4-cell network is applied to a layered
CPG architecture with manually tuned weights and it represents
cognitive-related prior knowledge about the fundamental proper-
ties of walking. For example, as one property this network owns,
the anti-phase contralateral leg movement is useful for walking.
There is evidence suggesting that this typical movement is formed
over many months of early infancy before infants learn to walk
(Kail and Cavanaugh, 1996; Thelen and Smith, 1996). The main
focus for learning to walk is shifted from learning very basic walk-
ing prerequisites to learning how each joint is coordinated with
the whole-body and adaptively reacts to environmental change.
Then RL proffers a very nice blueprint.

2.2. NAC MODEL
Actor-critic is a very typical but popular RL method broadly used
in recent years (Kimura and Kobayashi, 1998; Sato and Ishii, 1998;
Orlovskii et al., 1999; Sutton et al., 2000). In a typical implementa-
tion, an actor is a controller which emits actions or action-related
control signals to a physical system. According to a certain policy, it
observes the states of a physical system and determines the control
signals on the basis of the states. A critic is a functional part which
evaluates the states of a physical system and updates the controller
and control policies. As a typical RL learning mechanism, it can

Zi

X

V

W

Motorneurons

Xp

TiETiF

Wp

FIGURE 2 | CPG controller (Top: the four-cell network) and its layered
structure. Yellow circles represent a coupled RG group corresponding to
yellow area in Figure 1. The round-headed and sharp-headed arrows
represent negative (−1) and positive (+1) connection weights (for details,
please refer to text.) The four-cell network (purple-framed area) fulfills the
function of the PF layer. The two diamonds represent the motorneuron layer
which integrates sensory feedback and upper-layer outputs. V, W, Wp are
weight vectors which integrate PF-layer outputs, sensory feedback and
posture control terms respectively. TEi and TFi are the strength weights of
extensor and flexor.

be adapted by using some other updating rules. For example, the
convergence of an actor-critic model based normal policy gradient
approach is achieved in (Konda and Tsitsiklis, 2003) and a math-
ematical convergence of actor-critic is proved in (Dotan et al.,
2008). The convergence of the actor-critic model with the nat-
ural policy gradient has been proved by Peters and Schaal (2008).
Moreover, it has been proved to be faster than the normal “vanilla”
policy gradient (Peters, 2007).

2.2.1. Natural CPG-actor-critic model
Natural CPG-Actor-Critic is an autonomous RL learning frame-
work used for CPG network based on Actor-Critic learning with
the natural policy gradient. It was proposed by Nakamura in 2007
and successfully implemented on Taga’s stick walker in Matlab
simulation (Taga, 1998; Nakamura et al., 2007). We adopted his
approach but with an entirely different CPG architecture, learning
schema, and basic RL algorithm (for details, refer to discussion).
Since the output of our CPG model is based on the input of PF
layer and the states of sensory feedback and posture control terms,
a CPG is an adaptive controller whose output is dependent on
all these inputs. As a matter of fact, the layered architecture pro-
posed in our work can be viewed as a feed-forward neural network
(Figure 3) where the posture control works as a bias. As a normal
gradient approach used for the feed-forward neural network, the
backpropagation approach is not suitable for our work. Firstly, the
backpropagation normal gradient is too slow and cannot avoid the
“plateau”problem (Peters and Schaal,2008). Secondly, it needs a lot
of computation and large storage for precedent states. Therefore,
the natural gradient approach is adopted as it has been proved
to be more efficient than the backpropagation for feed-forward
neural networks by Amari (1998) who proposed natural gradient.

Compared to Nakamura’s model, our model is naturally sep-
arated into two parts: the basic CPG and the actor part (details
in Figure 3 and Discussion A.1). This is similar to Nakamura’s
separation of his CPG model. The basic CPG part composed of
an oscillatory network is to keep the phase relation and oscilla-
tion of the whole CPG as a core. The actor outputs the control
signals based on its input. It covers two important functions of

Zi

Vi

X

Wi

Xp

Wpi

Zi

Vi

X

Wi

Xp

Wpi

basic

actor

FIGURE 3 |The feed-forward two-layer neural network as the core of
the CPG network. The yellow area is the basic CPG part with fixed
connection weights and the green area functions for the output integration
of sensor neurons and posture control.
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a CPG: sensory feedback fusion and posture control (Orlovskii
et al., 1999). The RL updating rule can be applied to this part to
change the weights, leading to involvement of the adaptive change
of the CPG controller based on interaction when a robot walks. RL
state space is given as X, a vector including all the sensory feedback
and posture control terms. The action space is given by U which
comprises all the control signals. The input and output of the CPG
can be adapted to:

X ∼
{

XE , XF , Xp
}

, U ∼
{

UE , UF , Up
}

IEi = Ibasic
Ei + Iactor

Ei (11)

IFi = Ibasic
Fi + Iactor

Fi (12)

UEi = Iactor
Ei =

∑
k

WEik XEk (13)

UEi = Iactor
Fi =

∑
k

WFi XFi (14)

Upi =WpiXpi (15)

W ∼ {WE , WF , WP }

where Ibasic
Ei and Ibasic

Fi are the ith pair of the output of fixed basic
CPG. UE and UF are vectors containing control signals emitted
by the actor to the controller. Upi is the ith element of a vector
Up including posture control terms. UEi and UFi are the ith terms
in UE and UF. W is a vector for all the connection weights. WE,
WF, and Wp are vectors of connection weights for sensory feed-
back and posture control terms. Then the RL problem could be
expressed as:

U ∼ π (U, X) (16)

where π is the stationary policy of the RL algorithm. Clearly, all
the states X include two parts. XE and XF are called observable
states. Xp is called unobservable states. They are assistive states
which are provided to help the robot learn a proper posture. As
our idea is to learn through interaction and to sense the body
through peripheral systems, there is no full observability for the
whole-body states. This condition is different from Nakamura et al.
(2007) application. Hence, the whole control system is regarded
as a POMDP. It is indicated that the actor determines the control
signals sent to CPGs according to a static policy and CPGs act
with the physical system. Then the critic evaluates the locomotion
under control of CPGs changed by the actor and update the policy
in the actor. This is the so-called CPG-Actor-Critic. Used with the
natural policy gradient, it is called natural CPG-Actor-Critic. As
a proper architecture for RL learning, we need to avoid a prob-
lem of RL “the curse of dimensionality.” In order to reduce the
dimensionality of the CPG controller, internal weights of the 4-
cell network and VEij, VFij (1,−1) are all fixed as primitive inputs of
CPGs. This is different from Nakamura et al. (2007) idea of using
an internal connection from the basic CPG (). The reason for not
having internal connection weights is our flexible 4-cell network
has already been endowed with prior knowledge or capabilities
to keep synchronization and to reshape the output of oscillators.
However, this prior knowledge must be learned in Nakamura’s

work. Meanwhile, using a sensory-driven CPG means there can-
not be so much sensory feedback as the number of sensors on a
given humanoid is always limited. Nakamura has full observability
in state space of the accurate Taga walker but he only uses a subset
of the available sensors. Since the aim of our work is to implement
this architecture on a real humanoid to understand mechanisms
of posture control and sensory feedback integration, a trial-and-
error learning mechanism based on batch RL is needed (details in
Discussion A.1).

2.2.2. Learning algorithm
The policy gradient (PG) approach is very useful for parameter-
ized motor modeling. Peters summarizes and compares different
PG approaches, including finite difference, likelihood ratio meth-
ods, and REINFORCE (Peters, 2007). It is concluded that the aim
of the gradient approach is to find the correct updating direction of
policy parameters in order to maximize expected reward. Assum-
ing the stationary policy is πθ(x, u) which can determine action
space u based on state space x with a static distribution dπ(x), the
immediate reward is r(x, u), and then the expected reward J (θ)
can be written as:

J (θ) =

∫
x

dπ (x)

∫
u
πθ (u|x) r (x, u) dxdu (17)

where the policy πθ(x, u) is derivable at the policy parameters θ,
namely 5θπ

θ exists. For maximizing expected reward J (θ) with
respect to θ, policy gradient will find the steepest increase direc-
tion 5θJ = J (θ+5θ)− J (θ) to update the search policy πθ(x, u)
until it converges. For this purpose, the update rule of the policy
gradient can be expressed as:

θn+1 = θn + α∇θJ |θ=θn (18)

where n represents the nth step of update and α is the learning rate
(equal to 0.01). If we directly take the 1st derivative of J (θ) with
respect to θ, the gradient is given by:

∇θJ (θ) =

∫
x

dπ (x)

∫
u
∇θπ

θ (u|x) r (x, u) dxdu (19)

=

∫
x

dπ (x)

∫
u
πθ (u|x)∇θ log

(
πθ (u|x)

)
r (x, u) dxdu

(20)

where 5θ is the 1st derivative. This is the so-called normal gra-
dient. If we use this gradient to update the policy, it is very slow
to find the best policy for the maximization of expected reward.
Therefore, the steepest gradient (natural policy gradient) is applied
to our model. The adaptation of Equation 20 is at the core of the
natural PG method. According to Peters’ (2007) proof, the natural
gradient is given by:

θn+1 = θn + αF−1
θ ∇θJ |θ=θn (21)

Fθ =

∫
T

πθ
∇θ log πθ

∇θ log πθdθ (22)

where F is the Fisher Matrix (FM). Multiplied by FM, the nor-
mal policy gradient is changed to the steepest one (here, all the
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x,u are neglected for simplification reason). On the basis of policy
gradient theorem (Peters, 2007), the PG could also be modified to:

∇θJ (θ) =

∫
x

dπ (x)

∫
u
∇θπ

θ (u|x)
(
Qπ (x, u)− b (x)

)
dxdu

(23)
where Q(x,u) is the action-state function and b(x) is a baseline
which is a regularized term used to avoid large variance of gra-
dient. With the theory of compatible function approximation,
it is possible to apply basis functions 5θlog T(πθ(u|x)) to lin-
early approximate Qπ(x, u)− b(x), then the above Equation 23
is adapted to:

∇θJ (θ) =

∫
x

dπ (x)

∫
x
πθ (u|x)∇θ log

(
πθ (u|x)

)
×∇θlogT

(
πθ (u|x)

)
wdxdu = Fθw (24)

where w is a weight vector of the linear approximation. Then
clearly, by replacing 5θJ(θ) in (21) with (24), the natural PG
becomes:

θn + 1 = θn + αw (25)

The RL problem is transitioned from searching the steepest
policy gradient to a normal regression problem about finding
the best approximation of Qπ(x, u)− b(x) with basis functions.
Because Qπ (x, u) = b (x) + log

(
πθ (u|x)

)
w and Qπ (x, u) =

r (x, u) + λ
∫

x’ p
(
x ′|x , u

)
V
(
x ′
)

dx ′ (where λ is the discounting
factor, x′ is the next state, p(x′|x,u) is the probability of state tran-
sition.), assume the value function is V (x)= b(x) and can be
approximated by ψT(x)v (where v is the weight vector and ψ is
the vector of basis function related to the value function; Baird,
1994). Therefore, the approximation can be re-written:

logT
(
πθ (ut |xt )

)
w +ψT (xt ) v = r (xt , ut )+ λψT (xt+1) v

+ ∈ (xt , xt+1, ut ) (26)

This is the equation for LSTD-Q(λ) at time t. Then for the
episodic learning, by summing up equation (26) with t = 1,2. . .H,
it is given by:

1

H

H∑
t=1

logT
(
πθ (ut |xt )

)
w + J =

1

H

H∑
t=1

r (xt , ut ) (27)

where J is the value-function related term considered as a constant
baseline. By means of the least square learning rule, the natural PG
w can be obtained for each episode:(

w
J

)
=

(
φφT

)−1
φR.

φt =

[
1

H

H∑
t=1

logT
(
πθ (ut |xt )

)
w,1

]
(28)

R =
1

H

H∑
t=1

r (xt , ut ) (29)

In our work, we use a monte-carlo like approach called episodic
NAC (eNAC) (Peters, 2007) to make the robot repeat the walking
episodes until it achieves final optimal performance. The eNAC is
shown in Schema 1 with pseudocode.

Schema 1

Repeat : n = 1,2 …M trials

input : policy parameterization θn

π(U|X) determines Up before starting each trial

Start the trial : obtain X0:H , left U0:H ,r 0:H for each trial from π (U|X)

Obtain the sufficient statistics

policy derivatives: φk = ∇θ log πθ (Ut |Xt )

Fisher matrix Fθ =

〈(∑H
k=0 φk

) (∑H
l=0 φl

)T
〉

Vanilla gradient g =
〈(∑H

k=0 φk

) (∑H
l=0 αl rl

)〉
Eligibility ψ =

〈(∑H
k=0 φk

)〉
General reward r̄ =

〈(∑H
l=0 αl rl

)〉
, where αl is the discount factor

Obtain natural gradient by computing

baseline b = Q
(
r̄ −ψT F−1

θ g
)

withQ = M−1
(
1+ψT (MFθ −ψψT )−1

ψ
)

When updating rule is
satisfied:

θn+1 = θn + αg

until the convergence of algorithm

where 〈·〉 means sum-up of all the previous values and current
values.

2.3. EXPERIMENTAL SETTINGS
There are 2 main experiments presented in this article. The first
one is to indicate that the proposed learning architecture can assist
the robot learning to walk from the initial standing posture. The
aim of this experiment is to prove the robot can adjust its posture
and integrate sensory feedback simultaneously in the process of
learning. The second experiment is to change the plane on which
the robot stands to different angles to see how the learning archi-
tecture adaptively seeks out proper postures and walking gaits.
By changing angles from −5˚ to +5˚, this experiment also shows
the relation between slope angles and posture change under the
influence of gravity alternation.

2.3.1. Robotic platform and the neural controller
Figure 4 shows the robot and the neural network used to imple-
ment learning. We use the popular commercialized robot NAO.
The advantages of using the NAO robot are summarized as: (1)
There are locomotion-relevant sensors mounted on the NAO
robot, such as gyro sensors which can detect acceleration of the
body center in 3D space, joint sensors which can measure angle
values, and foot pressure sensors which can sense ground contact
of feet. All these sensors are useful for learning a proper walking
gait. (2) Nao has a good firmware called Naoqi which is convenient
for users to program and organize modules working together.
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FIGURE 4 | Left:The complete architecture of cpg-actor-critic
network. The integration with specific joint names represents the
functions of motorneurons for each joint. The architecture abstractly
represents the neurophysiological structure of the brainstem where the
basal ganglia is in charge of RL, and the spinal cord is where the CPGs
are located and motorneurons. Each layer of the three-layered
architecture corresponds to different parts. The actor-critic learning

mechanism works with basal ganglia as a RL functionality. Sensor
neurons are different types of neurons which get information from
different sensors of the robot (middle). Middle: The NAO robot. Arrows
indicate the connection between the controller and the robot. Right: the
software architecture. Naoqi is working as a middleware to handle the
communication of three modules. The communicative information
between every two modules are listed above the arrow.

The layered CPG network (Figure 4 left) is used to con-
trol the NAO robot. Each output sends out position trajecto-
ries to each corresponding joint of NAO. Simultaneously, all
the CPG neurons receive inputs from different kinds of sen-
sor neurons based on the concept of sensor-driven CPG. There
are three main sensor neurons with similar sigmoid form (refer
to Appendix A): Proprioceptive (PP) sensor neurons for hips
(joint sensors), anterior extremity (AE) sensor neurons for knees
(joint sensors), and exteroceptive (ET) ankle sensor neurons
(mixture of gyro sensors and pressure sensors). The motion
of pitch direction is controlled by the CPG neural network
while the roll motion (hips and ankles) is sensor-driven by the
pitch motion (hips and ankles), respectively (Li et al., 2012;
Appendix A).

2.3.2. Software
In this work, we use a simulated environment in the Webots simu-
lator. Webots is an ODE (Open Dynamics Engine) based simulator
in which users can not only simulate physics close to the real world
but also move robots or objects and even change the environment.
This is why there is a typical feature of Webots for simulating batch
learning processes (Michel, 2004).

There are three main modules working together in the Naoqi
of Webots. The supervisor module is in charge of restarting the
simulation every episode by putting the robot in the initial posi-
tion, changing the angle of the ground, measuring the distance
the robot walks for each episode. The learning module is the main
process where the CPG architecture and the learning algorithm
are implemented. The stability indicator is a module working only
for obtaining necessary sensory information from the supervisor
module and the robot as well as calculating the immediate reward.
It is an implementation of a basal ganglia like function. It sends a
reward to the main process when activated by the learning module
(Figure 4).

3. RESULTS
3.1. EXPERIMENT 1: WALKING ON THE FLAT GROUND
3.1.1. Prerequisites
In this experiment, the robot starts to walk from the same ini-
tial default standing posture and repeats the episode which lasts
about 30 s until the algorithm converges. At the beginning of each
episode, the policy gives two posture control signals for the knee
and ankle parts as the posture change is very sensitive and should
be explored as a basis for motion. Within each episode, the pol-
icy gives the other control signals related to sensory feedback every
1.5 ms. The policy used for balancing exploration and exploitation
is given:

πθ (U, X) = N
(

U, Ū,σ
)

=
2π

σ
exp

((
U − Ū

) (
U − Ū

)T

σ2

)

where U is the output vector of the policy and Ū is the input
vector based on state space X. σ is the exploration rate which
determines the variance of U from Ū. The value of σ cannot be
so big (>0.1) that the system involves a lot of noise and it cannot
be too small (<0.01) as the system will become very insensitive
and diverges. In this experiment, for the posture control part Up,
σ= 0.05. Otherwise σ= 0.02. As 0.02 is too small for the posture
terms, a slightly bigger exploration rate is adopted. After having
the continuous control signals sent to each joint, the robot needs
to have the capability of evaluating different appearing walking
gaits. The immediate fitness of a walking gait is acquired every
1.5 ms via the reward function which indicates the gait robustness,
also called stability indicator. The stability of a walking gait should
be considered in two directions: vertically, the SI is able to detect
falling; horizontally, SI also considers the distance the robot moves.
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In this way, SI reflects a trade-off between vertical and horizontal
stability. Thus, the SI is given:

r = rheight + racc + rdistance (30)

where rheight = e25(H−Hinil ), H is the height of gravity center and
the NAO robot can detect the height based on the gyro sensor.
Hinit is the height of gravity center of the initial standing posture.
Thus, this equation detects a dynamic change of height of the body
when the robot is walking. When the robot falls, it is close to 0.
racc = 2 cos

( accX
10

)
+2 cos

( accY
22

)
, if |accX | < 25 and |accY | < 50.

Otherwise, the robot is stopped and the episode is restarted. accX
and accY are the acceleration of the robot’s X axis (Pitch) and Y
axis (Roll) of gravity center detected from the gyro sensor. For both
directions, the gyro sensor is able to detect the acceleration from
−70 to 70 which corresponds to −9.8 to +9.8 m/s2. This part is
implemented based on the inspiration of a vestibular system in the
inner-ear mechanism for keeping body balance. It senses “falling”
of the body by detecting the accelerations in 3D space (Thomas
et al., 2009). Here, as we aim to study walking on the ground, the
perpendicular acceleration is ignored. Twenty-five and 50 are the
boundary values for the robot to fall. The even cos function is used
to indicate this oscillatory motion of the walking in negative and
positive directions of each axis. rdistance= 2S and S is the walking
distance detected by the supervisor module in Webots.

After each episode, two kinds of average reward are acquired.

One is the average reward (AR) for each episode equal to
H∑

l=0
al rl

and the other is the general average reward (GAR) equal to〈
H∑

l=0
al rl

〉
M . If AR>GAR, the updating rule is satisfied. Otherwise,

the episode is regarded as a failure. The algorithm converges when
the learning process cannot find any episode which can satisfy the
update rule.

3.1.2. Experiment 1 results
For each experiment, the algorithm starts with initialized θ= 0
except that θ5= θ6= 3 as 3 is the weight value making ankle sen-
sor neurons sensitive to external disturbance. 10 independent runs
(different random seeds) were evaluated and 5 “good” results with
top-five average reward are chosen for visualization in Figure 5
(left column). We chose the one with highest average reward (run
5) to show how cpg-actor-critic finds the optimal learning gra-
dient. Actually, the key feature of cpg-actor-critic is that it can
find the best update directions of parameters quickly via balanc-
ing the exploration and exploitation. It is clearly observed that in
the very first 10 episodes, the update directions of all the para-
meters are not stable, even opposite of right directions. However,
after 10 update episodes, cpg-actor-critic can quickly find good
and smooth update paths. Interestingly, Figures 5B–E shows the
convergence of posture related parameters. In Figure 5B, θp1 and
θp2 shows the posture change of the knee and the ankle. The knee
posture is extending (θp1 turns negative) a lot to move the cen-
ter of gravity toward the middle while the ankle position is only
slightly changed to keep the balance with the knee posture. Mean-
while, θ2 is increasing to 1 in order to limit the extension of the

hip part and strengthen the flexion of the hip motion. The posture
change of a chained-up three joints (ankle, knee, and hip) drives
the robot to walk more robustly and for a longer distance. The final
convergence of proper posture for walking is a consequence of the
interaction of the morphology of NAO, the neural controller and
the sensory feedback. For example, it is logical that NAO’s ankle
cannot be changed a lot as it is disproportionately big. The cpg-
actor-critic realizes this obviously by the slight adjustment of the
ankle posture with interaction.

As for the connection weights of AE and ankle sensor neu-
rons, they only show the curves without flat convergence. The
reason is that, in eNAC, the Q function is actually theoretically
approximated by a linear combination of basis functions. However,
practically it is only possible to averagely approximate without
exact accurate convergence. This is also the reason we need to set
up a specific convergence rule.

Finally, a specific walking gait is converged to by the interac-
tive learning process and parameters are converged to θ= [0.4290,
1.0131, −11.7874, 21.6984, 3.2394, 3.8179, −0.6147, 0.1758,
−12.8070].

3.2. EXPERIMENT 2: WALKING ON THE SLOPE
3.2.1. Prerequisites
The aim of experiment 2 is to test if the learning architecture can
still function when there is different non-linear influence of the
gravity for walking up and down the slope. Meanwhile, it is inter-
esting to observe how the robot adaptively reacts to environmental
change by achieving a trade-off between adaptation and learning.
Finally, a conclusive relation between adaptive adjustment of CPG
parameters and slope is explained.

In this experiment, we fully adopt the architecture in Figure 4.
Since results in experiment 1 do not show any qualitative difference
of walking gaits, each run in experiment 2 uses the parameter set
developed in an arbitrarily selected good solution from experiment
1. The NAO, in each evaluation, is thus able to walk on a flat slope
before attempting an upward or downward slope, depending on
the condition. The good solution obtained for flat-ground walk-
ing consists of the following parameter set: θ= [1.3391, 0.4717,
3.1593,−0.6291, 3.4483, 3.1432,−0.6640, 0.2293, 0.4365] used as
the set of values at the start of each experiment 2 run. In each
experiment 2 run, the architecture is tested to learn to walk on the
slopes from −0.08–0.08 rad (about −5–5˚) by changing 0.01 rad
each test. For each slope, there are 5 runs carried out for each con-
dition where the aforementioned angles (8 in total) are gradually
varied (get steeper) over the course of each simulation. Therefore,
there is a total of 8 ∗ 5 upslope and 8 ∗ 5 downslope angles from
which data points are derived (see Figure 7).

3.2.2. Experiment 2 results
Walking up and down the slope are two different cases with dis-
tinct gravitational effects. Figure 6 shows how the walking posture
and sensory feedback are autonomously changed by learning in
those two situations (average data). From negative slope to posi-
tive slope, the change of gravity exerted on the robot is a non-linear
alternation. So the posture change is required to cancel the influ-
ence of gravity in the moving direction (upslope and downslope:
extra negative and positive force respectively). If we assume the
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FIGURE 5 | Left column:The results of the runs with top-five reward
on flat ground. (A) shows the maximization of average reward for the
five runs. (B–E) show the results of the run with highest average reward
(Exp 5) regarding how connection weights are updated in each CPG by
learning process with respect to the contributions of each term
respectively. Right colunm: The results of a run on 3˚ critical slope.

(F) shows the “struggling” maximization of expected reward. The green
dash line shows a quadratic fitting of the increasing learning curve.
(G–J) show how connection weights of CPGs are adaptively updated on
the critical slope. For details of explanation, please refer to main text. All
the “Episodes” mean updating episodes which exclude the episodes
unable to satisfy updating rule.
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slope is β, then the gravity exerted in the walking direction is given
by f=mgsinβ, where m is the mass of the robot and g is the grav-
ity constant. Therefore, Figure 6A shows a non-linear change of
knee posture. When the robot walks up the slope, the gravity is
a resistance force. When β is very small, mgsinβ≈mgβ shows a

linear-like relation in which there is only small error. When the
errors are accumulated until the resistance force f starts to prevent
the robot moving forward, then the non-linear change has to be
canceled. This is why there is an abrupt change when the robot
walks up on the 3˚ slope (0.05 rad) which is called “critical” slope.
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FIGURE 6 | (A) Posture change of ankle and knee joint with respect to slope
(−0.08∼0.08). (B) shows how the hip joint is adjusted to adapt to slope
changes. (C,D) show how the knee and ankle reflex change with respect to

slope based on the strength of sensory feedback. (E) shows the different
walking gaits on flat ground and slope (−0.08 and +0.08 rad). Please refer to
video (Cai, 2013).
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Then when the slope is slightly steeper than 0.05 rad, Figure 6A
shows a new linear change of the knee posture. The same phe-
nomenon happens to be the case that the robot walks down the
slope (slope −0.04 is a turning point). Figures 5E–J show the
updating of parameters for the “critical” slope. It is clearly visual-
ized that a smooth parameter adjustment of the 3˚-slope walking
is achieved after the optimal update direction has been found by
the learning process of previous slope walking. Interestingly, the
posture alternation of the ankle part shows a nearly perfect linear
change with respect to alternative slopes. The possible reason may
be led by the sensory feedback (refer to the terms XE3 and XF3 in
Appendix A) adaptively changing the ankle posture according to
the inclination angle (detected by the gyro sensor) of the robot.
This sensory feedback shows the natural adaptation of the CPG
architecture which compensates accumulated errors (a non-linear
weight change of ankle sensor neurons compensates the gravity in
Figure 6D). As the key to maintaining stable walking is how to hold
up the walking posture as upright as possible, the change of one
joint in a kinematic chain of the leg leads to a posture alternation
in other joints. Therefore, when the slope is turned from−0.08 to
0.08 rad, with nearly symmetric knee posture change and decreas-
ing ankle change, the hip motion naturally flexes more on the
upslope (pushing the body upward) and extends more (flexes less)
on the downslope (using the gravity of the body). In Figure 6B,
the alternation of θ1 of downslope walking is larger than that of
upslope walking indicates that the robot needs more hip flexion
for walking on the upslope than the downslope. Figures 6A,B
insinuates a maintenance of upright walking posture on different
slopes.

As for the sensory feedback integration, the knee reflex
has a symmetric tendency of upslope and downslope walking
(Figure 6C). The ankle reflex changes non-linearly to compen-
sate the effect of non-linear gravity change on the ankle joint
(Figure 6D). Therefore, with an appropriate posture control and
decent sensory information, the robot converges to different walk-
ing gaits on flat ground, upslope, and downslope (Figure 6E).
The main difference between the gaits on flat ground and slope
except posture is that the amplitude of roll motion is automatically
reduced in slope walking in which case that slope walking needs
more prudent gaits.

3.2.3. Data analysis
The distribution of experimental data is shown in Table 1. Based
on the reward, the data is categorized into three groups in accor-
dance with Figure 7A and the number of results are grouped into
these three categories. It is shown both in Figure 7A and Table 1
that most of learning results converge to the reward above 4.3
and 81.3% converged walking gaits are obtained with the reward
above 4.4 which are dubbed as good results. In Figure 7A, the
data shows two linearly increasing relations between the stability
and walking distance, proving that the RL learning tries to opti-
mize both of two key factors important for a good walking gait
(According to Equation 30, the reward function is equal to the
sum of stability and walking distance). Figure 7B indicates an
interesting boost for the stability at the “critical” slope (0.04 rad)
observed in the last section. Two stability clusters are observed in
Figure 7B (upper). The learning algorithm maintains the stability

Table 1 |The Distribution of Experimental Data.

Reward Upslope walking Downslope walking

<4.3 1 0

4.3–4.4 9 5

>4.4 30 35

on two levels separated by the “critical” slope and tries to imporve
the walking distance as much as possible (Figure 7B (down)).
Similarly, the same boost occurs for downslope walking with the
separation of |slope|= 0.04. However, the stability of downslope
walking is more than upslope walking as an acceleration in the
forwarding direction is demanded in order to walk upward (In
our work, stability is negatively proportional to the acceleration
of the robot’s pitch and roll directions). Therefore, with less force
exerted on the body (less acceleration) and the same walking dis-
tance, downslope walking is easier compared to upslope walking
in our experiments.

3.3. CONCLUSION
With the two experiments, the natural cpg-actor-critic architecture
successfully learns different gaits through interaction according
to environmental change. It also learns the correlation of posture
changes amongst ankles, knees, and hips based on the NAO robot’s
morphology and the adaptability of neural controller. Meanwhile,
it also achieves the implementation of CPG adjusting posture and
integrating sensory feedback at the same time.

4. DISCUSSION
4.1. COMPARISON OF OUR WORK WITH RELATED WORK
4.1.1. Comparison to Nakamura’s model
In order to explain the features of the proposed natural cpg-actor-
critic in this article, the comparison of our model to Nakamura’s
is helpful to generally comprehend this complicated architecture.

4.1.1.1. Similarity. Based on the NAC, Nakamura’s model and
ours are both natural cpg-actor-critic architecture for learning
walking gaits in different environments. The two architectures
both layer into basic connections and training connections. The
advantage of layering is to reduce the dimensionality of parame-
ter space to avoid the typical problem for reinforcement learning
(RL), curse of dimensionality.

4.1.1.2. Differences.

1. The use of a robot platform is different. Apparently, Naka-
mura’s model only works on Taga’s stick walker in Matlab. The
work shown in this article covers an implementation on a real
robot in a simulated physical world. The interaction of mor-
phology, environment, and sensory feedback is closer to the
physical world. This is the first implementation of natural cpg-
actor-critic on a real robotic platform according to the authors’
knowledge. The NAO robot is a robot which moves in 3D space
and is more complicated than the 2D stick walker.

2. The type and use of CPG are both different. Nakamura’s model
is based on Matsuoka oscillators while Hopf oscillators are used
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FIGURE 7 | (A) shows distribution points of stability vs walking distance
for both upslope and downslope walking (80 data points). The dashed
lines split the region into two regions: the left-upper cluster represents the
results whose reward are above 4.4 and the right-down cluster represents the
results whose reward are between 4.3 and 4.4 except one dot whose reward
is below 4.3. Both of these two clusters are distributed around two

hand-drawn lines. (B,C) show the distribution points of stability vs reward and
walking distance vs reward for upslope and downslope walking respectively.
The red-triangle dots represent the results for the cases in which
|slope|<0.04 rad and the blue-plus dots represent the results for
|slope|>0.04 rad. Note that the walking distance is measured always for the
same period and it also reflects the speed of walking.
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in our work. The main difference of these two oscillators is that
a Hopf oscillator can change its pattern simply by adjusting ωi

to preserve the basic characteristics (longer descending phase
than ascending phase and anti-phase of the two legs) of walking
behaviors but a Matsuoka oscillator cannot (Righetti, 2008). In
this article, our CPG architecture is inspired not only by the
layered biological structure but also by a sensor-driven mech-
anism. Sensor neurons are very useful to endow CPGs with
preliminary adaptation.

3. The learning mechanism is distinct. As abovementioned, our
model reduces more computation load and dimensions by
grounding basic properties of walking in the PF layer. On the
other hand, by using baseline b in eNAC is helpful in stabilizing
the RL algorithm. This is why our model learns much faster
and is more stable (not easily get diverged) than Nakamura’s.

Generally speaking, the two natural cpg-actor-critic models
are distinctly implemented in different bodies in heterogeneous
physical worlds with dissimilar use of CPGs.

4.1.2. Features of our work
Except for the characteristics compared to Nakamura’s model, our
work also generally presents several novel features/perspectives
compared to related work (Matsubara et al., 2006; Manoonpong
et al., 2007; Endo et al., 2008; Nassour et al., 2013):

1. Morphology logic: the traditional inverse kinematics (IK)
model is not used in our model. IK provides a mapping from
cartesian space to joint space as long as a trajectory of the end-
effector is known. However, walking does not necessarily need
IK (McGeer, 1990; Manoonpong et al., 2007; Nassour et al.,
2013). Even though IK is coined as a morphological logic for
a rigid-body robot (Pfeifer and Bongard, 2006), our work may
imply that IK is not the only logic and the interactive mem-
ory (Eligibility ψ for natural gradient) can also form a logic to
help robot adjust the body posture adapting to environmen-
tal change. In Endo et al’s. (2008) work, a walking CPG model
(only on flat ground) based on IK is presented and the trajectory
the foot follows is presumed to be a predefined ellipsoidal path.
In our work, the posture is adjusted according to the gradi-
ent update interactively focusing on body stability and walking
distance instead of recalculating the foot trajectory on differ-
ent terrains (slope or flat ground). In Nassour et al’s. (2013)
work, the posture control is only implemented on the ankle
part and it is manually tuned. However, our CPG model not
only learns the weights of posture control term for the ankle
part but also form an adaptive morphological logic by adapt-
ing posture alternation to different slopes. As for the work in
Manoonpong et al. (2007); Matsubara et al. (2006), a simpli-
fied leggy walker without ankle joints is utilized, which seems
to make it easier for the robot to walk.

In a nutshell, in most of the work, an initial posture is manu-
ally chosen to be a basis/center which CPGs oscillate around but
the evaluation of the posture remains unknown. In our work,
we involve a posture control mechanism so that the posture is
also adaptively changable to alternative terrains on the basis of
past experience.

2. Learning mechanism: our work is the first implementation of
natural cpg-actor-critic on a complete humanoid. “Natural”
means the gradient approach applied in our model is the steep-
est and exploration-efficient in light of using natural gradient
(Peters and Schaal, 2008). The RL learning presented in the
work (Endo et al., 2008; Matsubara et al., 2006) is based on non-
natural gradient which may not effectively avoid the “plateau”
problem that the small gradient update causes learning to be
stuck in a local optima without final convergence. On the other
hand, in terms of dimensions of parameter space,our model has
the ability to learn by adapting 9 parameters together. In Nas-
sour et al’s. (2013) work, there are only two parameters tuned
and all the other connection weights are manually defined,
including the posture change parameters for ankle parts. In
Endo et al’s. (2008) work, it is based on a speed-up normal
gradient with three parameters to optimize. Therefore, our
model seems to be able to work in a relatively high-dimensional
parameter space.

However, there are still unsolved problems remaining in our
work and they are summarized as follows:

1. Lack of memory: In our work, we demonstrate a CPG architec-
ture leading the humanoid to learn to walk on different slopes.
However, we acquire different adapted values of parameters
with the same configuration of the parameter set. In order
to adapt to the environmental change, this architecture needs
spatio-temporal memory to memorize the relation between
learned parameters and environmental variables. For example,
in our work, contextual variables (the angle of the body) can
be detected by gyro sensor. With the spatio-temporal mem-
ory, the robot can perform adaptive walking without learning
when encountering the contextual changes it has experienced
and learned before. The contextual transition may be solved
by context-related transition based on bifurcations (Asa et al.,
2009) or a context-switching mechanism with topological map
(Caluwaerts et al., 2012).

2. Transferability: Even though most of related work demon-
strates the results in a simulated robot (Matsubara et al., 2006;
Manoonpong et al., 2007; Endo et al., 2008), whether our work
is transferable to the physical robot still remains uncertain. In
future work, we have to test different results on the physical
robot.

4.1.3. Insights into RL approach selection
For the POMDP we concern in this article, function approxima-
tion is a very useful solution for solving problems in continuous
action space (Orlovskii et al., 1999). Discretizing the state space
with feature input of an agent is commonly used approach in
actor-critic to representing the states of an agent under the condi-
tion that the state space is infinitely large (Orlovskii et al., 1999).
Therefore, the value function can be approximated in a lot of
ways. For example, it could be approximated based on state pre-
dictors (Doya et al., 2002; Gianluca, 2002; Khamassi et al., 2006),
artificial neural network (ANN) (van Hasselt, 2011; Farkaš et al.,
2012), and basis functions (Doya, 2000b; Peters and Schaal, 2006;
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Nakamura et al., 2007; van Hasselt and Wiering, 2007). Regard-
ing to the approximation based on state predictors, they mainly
work for multi-model model dependent applications so it is not
easy to compare the performance among them. It seems Cacla
proposed by Hasselt can be adapted with ANN very easily for
both actor and critic for the value-function approximation and
action selection (van Hasselt, 2011). In our work, we mainly use
episodic NAC to achieve steepest policy update. However, Has-
selt et al compare NAC and Calca on cart-pole tasks, finding
that Calca outperforms NAC (Orlovskii et al., 1999). The main
difference between NAC and Calca is that the former optimizes
the policy which maps state space to action space and the lat-
ter can search optimal solutions in action space directly. This
is why Calca can update the action and approximate the value
function separately with two sets of parameters and the action
parameters are only updated with positive temporal difference
(TD) (van Hasselt and Wiering, 2007). Normal NAC has to update
also with negative-TD causing the action space to jump into
an unknow space which may distablize and fail NAC. Inspired
from Calca, in our work, we use the positive-TD update rule
(AR>GAR) to avoid the suffering of negative-TD update for
NAC. With initial trials for using Calca on cpg-actor-critic, it
seems Calca cannot converge even after 300 episodes as it updates
slowly.

4.2. DYNAMIC SYSTEMS APPROACH
Walking, in dynamic systems theory (DST), is regarded as a flex-
ible limit-cycle behavior. Learning to walk entails finding out a
proper limit cycle of the body motion in a certain environment
through interaction. The cpg-actor-critic, as the architecture based
on this theory, also covers a lot of aspects of the dynamic sys-
tems approach. According to Thelen, a dynamic system could be
viewed as an equation q=N (q, parameters, noise) where q is a vec-
tor representing all the subcomponents or states of the system and
parameters are key factors to which the collective converged behav-
ior is sensitive and that shift the system through different states.
N is a non-linear function which determines q which reflects an
attractor (Thelen and Smith, 1996). Similarly, the cpg-actor-critic
could be written as cpg =N (cpgstates, θ, noise) where cpg is the
vector of all the output of CPGs, cpg states are X and θ is a vector
containing policy parameters. N represents the RL functionality
which can find an attractor of CPGs. The noise is compressed with
proper exploration rate of policies. The whole system is wrapped
for a non-linear process of searching for attractors. In a dynamic
system, q and parameters could be very high-dimensional. This is
also the drawback of RL where a lot of work is done to reduce
the dimensions of state space and parameters. Interestingly, the
instability is observed at the beginning of learning (Figure 5)
then stability emerges from instability. Clearfield argues that new
motor capabilities of infants emerge from instabilities (Clearfield,
2004, 2011; Clearfield et al., 2008). In Thelen’s theory, instabil-
ity, including non-linearities, or phase shift or phase transition,
is considered as the very source of new forms. In our implemen-
tation, the instabilities caused by exploration of an RL algorithm
exactly leads to the final generation of a stable gradient. From the
perspective of RL, instabilities in DST or infant learning may be
the effects of preliminary exploration in order to seek the right

direction of developmental tendency. Since the human body is
an extremely sophisticated dynamic system which includes differ-
ent levels (from microscopic to macroscopic) of high-dimensional
parameter and state space, it takes more time and gets through
more instabilities to finally converge to new behaviors. From
the point of view of robotics, it also should be necessary to
think about how a robot is able to learn in high-dimensional
space with more intelligence. In this sense, cpg-actor-critic prof-
fers a way to explore this open question of RL in a continuous
space.

Interaction is of importance in locomotion learning. Inspired
by infants learning to walk, the authors tested the use of assistive
states (Xp) in cpg-actor-critic architecture. Since “Parental scaf-
folding” is a necessary factor helping infant to stand up and learn
to walk through a repeated process (Adolph et al., 2012), the pro-
posed architecture also shows possibilities of external assistance
in learning to walk. Firstly, the assistive states which are directly
related to the posture of ankles and knees could be interpreted as
external force or bias. Hence, these states could be representations
of outer assistance, e.g., from parents’ help. Secondly, infants start
to learn to walk without mature value or emotion systems to eval-
uate their behaviors, parents play roles as infants’ emotion systems
telling them which is good or not thereby causing the maturation
of their affective systems (Schore, 2012). In RL, different rules of
learning (like update rules and avoidance of falling) are adopted
to place a “scaffolding” function primarily in a learning process.
However, it lacks a general and evolvable value system for different
types of locomotion learning. In this article, the value function is
fixed and task-oriented working as a stability indicator for walk-
ing. In modern RL approaches, except dealing with more complex
high-dimensional learning tasks, a generic reward system which
can be adaptive to dissimilar situations is also a challenge. This
is why a mature emotion system is demanded in a lot of robotic
learning applications (Breazeal and Scassellati, 1999).

4.3. CONCLUSION AND FUTURE WORK
In a nutshell, the work presented in this article simply shows the
typical features of dynamic systems pertaining to instabilities, non-
linearities, and adaptability to the environment. However, there is
still a big difference in performance between an artificial, and a
biological (human) adaptive dynamic system which solves more
general problems in development and learning. Dynamic systems
theory focuses on the development of systems in which new behav-
iors or attractors can emerge, disappear, and be memorized. In
terms of this, RL, as a solver of general learning and developmental
problems, needs further research.

In future work, we would like to test the results or the learn-
ing process on the physical NAO robot. Moreover, in order to
testify the generality of our work and extend the adaptation of
our model, experiments on different morphologies, and walk-
ing path planning (emphasized by Laumond; Arechavaleta, 2008;
Mombaur et al., 2010) are also necessary.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2013.
00005/abstract
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APPENDIX
A. THE DETAILS OF CPG-ACTOR-CRITIC IN THE

IMPLEMENTATION
A.1. DIRECTIONS OF FLEXOR AND EXTENSOR FOR EACH JOINT
In the pitch motion, there are two kinds of moving directions for
each joint of NAO: forward (F) and backward (B). The directions
of extensor and flexor are given: (1) Hip: Flexor (B+) and Extensor
(F−). (2) Knee: Flexor (F+) and Extensor (B−). (3) Ankle: Flexor
(B+) and Extensor (F−). The “−” and “+” represent the decrease
and increase of joint values.

A.2. DETAILS IN RL AND CPGs
In the RL, the policy parameters θ ∼

[
θ1:6, θp12, θ9

]
are the weights

W in CPGs (θ9 is not shown in the main text as it is not related
to CPGs). The state space is X ∼

{
XE , XF ,Xp

}
, where XE =

{XE1, XE2, XE3} , XF = {XF1, XF2, XF3} , Xp = {1,1} . All the XE

and XF are sensory feedback on sensor neurons with the functions
given by: ρsn = sigmoid

(
θthreshold , θinput , a

)
=

1

1+e
a
(
θthreshold−θinput

) .

Then the Ū of RL policy could be written in details:

ŪE1 = θ1XE1, ŪF1 = θ2XF1 (A1)

ŪE2 = θ3XE2, ŪF2 = θ4XF2 (A2)

ŪE3 = θ5XE3, ŪF3 = θ6XF3 (A3)

Ūp1 = θp1Xp1, Ūp2 = θp2Xp2 (A4)

where for hip pitch motion XF1= sigmoid (Psh, Ph, 0.5) and
XE1= sigmoid (Psh, P, −0.5) are the proprioceptive (PP) sensor
neurons, the Psh and Ph are the initial value of hip joint of stand-
ing posture and the value of the joint sensor. These two not only
adjust the posture of hip but also can increase or limit the motion
of the flexor or extensor. For the knee part, XF2= sigmoid (Psk,
Pk, 16) and XE2= sigmoid (Psk, Pk, 16) are the same anterior
extremity sensors. The Psk and Pk are the basic posture of knee

and the joint value of knee, respectively. 16 indicate a quick reflex
when the knee joint reaches the extremity. As for the ankle part,
XF3=Ξsigmoid (0, Pg, 8) and XE3=Ξsigmoid (0, Pg, −8) are
ankle sensor neurons. Ξ is a function which is equal to 1 when the
foot contacts the ground and 0 when there is no contact. Pg is the
angle of upright body based on the gyro sensor. These neurons are
used to adjust the motion of ankle joint adaptively to the inclina-
tion angle of the body and work like a simple vestibular system.
Therefore, the final output of CPGs is: (1) Hip: τ1= τE1− τF1. (2)
Knee: τ2= τE2+ τF2+Wp1X p1, where Wp1 is equal to converged
θp1. (3)Ankle: τ1= τE3− τF3+Wp2X p2, where Wp2 is equal to
converged θp2. The control signals U = Ū + δ, where δ is a vec-
tor containing exploration values generated by RL policy. All the
abovementioned equations are implemented on one leg and the
same is used on the other leg because of the symmetry.

The roll motion adopts sensor-driven CPGs. For the hip
roll: τhl= sigmoid(Pshl, Phl, 28)− sigmoid(Pshr, Phr, 28) and
τhr= sigmoid(Pshr, Phr, 28)-sigmoid(Pshl, Phl, 28) are the output
of roll CPGs to left and right hip roll joints, where Pshl, Pshr are
the standing posture of left and right hip pitch joints and Phl,
Phr are the values of joint sensors for left and right hip pitch
joints. The same mechanism is for ankle roll: τal= sigmoid(Psal,
Pal, 28)− sigmoid(Psar, Par, 28) and τar= sigmoid(Psar, Par,
28)− sigmoid(Psal, Pal, 28) are the output of roll CPGs to left and
right ankle roll joints, where Psal, Psar are the standing posture of
left and right ankle pitch joints and Pal, Par are the values of joint
sensors for left and right ankle pitch joints.

In order to better and stably approximate Q function in RL,
we use another value-function related basis function ψ= 0.1F to
increase the stability of RL, where F is the joint value of hip. Since
the Equation 27 J =V π(xH+1)−V π(x0), where V π(xH+1) is
the prediction of future value function dependent on state xH. So
by using θ9ψ to approximate V π(xH+1) can increase the stability
of RL. V π(x0) is the value function of the initial state which is a
constant approximated by baseline.

Frontiers in Neurorobotics www.frontiersin.org April 2013 | Volume 7 | Article 5 | 123

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


ORIGINAL RESEARCH ARTICLE
published: 30 May 2013

doi: 10.3389/fnbot.2013.00009

An intrinsic value system for developing multiple invariant
representations with incremental slowness learning
Matthew Luciw*†, Varun Kompella*†, Sohrob Kazerounian and Juergen Schmidhuber

IDSIA/SUPSI/USI, Lugano-Manno, Switzerland

Edited by:

Florian Röhrbein, Technische
Universität München, Germany

Reviewed by:

Subramanian Ramamoorthy, The
University of Edinburgh, UK
Minoru Asada, Osaka University,
Japan

*Correspondence:

Matthew Luciw and Varun Kompella,
IDSIA, Galleria 2, Lugano-Manno
6928, Switzerland
e-mail: luciwmat@gmail.com;
varun@idsia.ch
†Joint First Authors.

Curiosity Driven Modular Incremental Slow Feature Analysis (CD-MISFA; Kompella et al.,
2012a) is a recently introduced model of intrinsically-motivated invariance learning. Artificial
curiosity enables the orderly formation of multiple stable sensory representations to
simplify the agent’s complex sensory input. We discuss computational properties of the
CD-MISFA model itself as well as neurophysiological analogs fulfilling similar functional
roles. CD-MISFA combines 1. unsupervised representation learning through the slowness
principle, 2. generation of an intrinsic reward signal through learning progress of the
developing features, and 3. balancing of exploration and exploitation to maximize learning
progress and quickly learn multiple feature sets for perceptual simplification. Experimental
results on synthetic observations and on the iCub robot show that the intrinsic value
system is essential for representation learning. Representations are typically explored and
learned in order from least to most costly, as predicted by the theory of curiosity.

Keywords: slow feature analysis, intrinsic motivation systems, norepinephrine, neuromodulation, exploration-

exploitation

1. INTRODUCTION
We describe a model called CURIOUSity-DRiven, Modular,
Incremental Slow Feature Analysis (Curious Dr. MISFA),
which autonomously explores various action contexts, learn-
ing low-dimensional encodings from the high-dimensional sen-
sory inputs (i.e., video) that result from each such context.
Autonomous behavior in this regard requires the coordinated
interaction between a number of subsystems which enable an
agent to balance exploration-exploitation, to engage in useful
contexts while disengaging from others, and to organize repre-
sentations such that newly learned representations do not over-
write previously learned ones. Ultimately, an agent making use
of Curiosity Driven Modular Incremental Slow Feature Analysis
(CD-MISFA) learns to seek out and engage contexts wherein it
expects to make the quickest progress, learns an appropriate com-
pact, context-dependent representation, and upon fully learning
such a representation, disengages from that context to enable fur-
ther exploration of the environment, and learning of subsequent
representations. The goal of such an agent is to maximize intrinsic
reward accumulation, and as a byproduct learn all such repre-
sentations that are learnable given the contexts available to it.
We not only show why the interacting subsystems of CD-MISFA
are necessary for the kind of unsupervised learning it under-
takes, but moreover, we show how the subsystems that enable the
model to autonomously explore and acquire new sensory repre-
sentations, mirror the functional roles of some of the underlying
cortical and neuromodulatory systems responsible for unsuper-
vised learning, intrinsic motivation, task engagement, and task
switching.

Although difficult, attempts to integrate such disparate func-
tional subsystems are not only helpful in understanding the brain,
but are increasingly necessary for building autonomous artificial
and robotic systems. It does not suffice, for example, to know

the cortical mechanisms responsible for unsupervised learning
of sensory representations, if these mechanisms aren’t linked to
the systems responsible for exploring one’s environment. In the
absence of external rewards, how should an agent decide which
actions and contexts to explore, in order to determine which
representations are relevant and learnable? If a sensory represen-
tation is deemed overly complex or even unlearnable, what are
the mechanisms by which the agent can disengage from explor-
ing its current context, in order to allow it to explore others?
Although CD-MISFA is an algorithmic approach to developmen-
tal robotics, and does not explicitly model the neural mechanisms
by which these functions are realized in the brain, it is notable that
the functional roles of the various subsystems in CD-MISFA find
counterparts in neurophysiology.

In the following, we first discuss background on CD-MISFA,
Artificial Curiosity, and developmental learning, then provide
a detailed computational description of how the various sub-
systems in CD-MISFA operate and interact, followed by a descrip-
tion of the neurophysiological correlates whose functional roles
mirror those of CD-MISFA; namely, the interactions between
the neuromodulatory systems involved in intrinsic motiva-
tion, task engagement, task switching, and value approximation.
CD-MISFA is implemented in two situations: an environment
composed of synthetic high-dimensional visual contexts, and a
real-world environment, with an actively exploring humanoid
iCub robot. A method for measuring the learning cost in the
different contexts is introduced, and it is shown that the model
is most likely to engage within the context where it can learn
an as yet unlearned representation, where the cost is least
among all possible contexts; this type of behavior is predicted
by the theory of curiosity, and may be a general principle of
development. The second result shows that IM-based explo-
ration enables the embodied agent to learn interesting sensory
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representations, again in the predicted order, all while operating
on high-dimensional video streams as sensory input.

2. CURIOUS Dr. MISFA
2.1. BACKGROUND
2.1.1. Artificial curiosity
Consider a setting in which an agent operates without a teacher
or any other type of external motivation, such as external reward.
In this case, an agent needs to be self-motivated, or curious. The
Formal Theory of Fun and Creativity (Schmidhuber, 2006, 1991,
2010) mathematically formalizes driving forces behind curious
and creative behaviors. This theory requires that a curious agent
have two learning components: an adaptive predictor/compressor
of the agent’s growing history of perceptions and actions, and
a reinforcement learner (Sutton and Barto, 1998). The learning
progress or expected improvement of the compressor becomes
an intrinsic reward for the reinforcement learner. To maximize
intrinsic reward accumulation, the reinforcement learner is moti-
vated to create new experiences such that the compressor makes
quick progress.

2.1.2. Curiosity and development
Such a creative agent produces a sequence of self-generated tasks
and their solutions, each task still unsolvable before learning, yet
becoming solvable after learning. Further, there is an expected
order in task-learning. Since the value function of the intrinsic
reward contains the cost of learning, in the sense of an estima-
tion of what type of progress it can expect, a task with the lowest
cost of learning is preferentially learned next, among all possible
tasks.

An orderly acquisition of competence can be seen as a devel-
opmental process. An important aspect to development is the
gradual emergence of more and more types of skills, knowl-
edge, etc (Schmidhuber, 1997, 2002; Prince et al., 2005). Such
emergence, referred to as developmental stages, can observed
through behavioral competence (Lee et al., 2007). More specifi-
cally, by developmental stages we mean that certain competencies
are always seen to precede later ones, although the earlier com-
petencies are not necessarily prerequisites for those learned later
(which would be the case in continual learning Ring, 1994).

It has been shown in an n-armed bandit scenario that a sys-
tem based on Artificial Curiosity undergoes developmental stages
(Ngo et al., 2011). Further, when the goal is to maximize expected
improvement of the predictor or other world model, it was shown
that it is optimal to concentrate on the current easiest to learn task
that has not yet been learned Lopes and Oudeyer (2012) (also in
a bandit scenario).

However, the bandit setting involves initial knowledge of the
number of possible tasks, in which case the learner can initially
reserve learning resources for each task. This is unrealistic for
open-ended autonomous development, in which the number of
different tasks is initially unknown. What is learned in one part of
the environment could apply to another part of the environment.
To enable open-ended learning, CD-MISFA learns one module at
a time, and if it finds a context that is represented well by one
of its already stored modules, it will not need to assign learning
resources or time to that context.

2.1.3. Developmental robotics
Developmental Robotics aims to discover and implement mech-
anisms that can lead to emergence of mind in a embodied
agent (Lungarella et al., 2003). The underlying developmental
program has several general requirements:

• Not Task Specific. The task(s) that the robot will handle, i.e., the
skills that it can learn, are not explicitly coded in the program.
In CD-MISFA, we have such a situation, as the perceptual
representations that emerge are dependent on the statistics
of the image sequences that are generated from autonomous
exploration of the different contexts.
• Environmental Openness. Can the system handle a wide vari-

ety of possibly uncontrolled environments that the designers
might not have explicitly thought of? Currently, CD-MISFA
specifically requires a designer to define the environment con-
texts that the robot can explore over, and so this is a drawback
of the system.
• Raw Information Processing. Learning is on raw (low-level)

information, such as pixels and motor activation values. CD-
MISFA slow features are updated directly from pixels, not
symbolic inputs or hand-designed feature outputs. On the
motor end, the active joints are extremely constrained, but this
aspect is low-level as well.
• Online Learning. Batch data collection is avoided com-

pletely through the incremental slow feature analysis
(IncSFA) technique, IncSFA (Kompella et al., 2012b),
with which a perceptual representation is updated after each
image.
• Continual Learning Ring (1994). For scaling up the machine’s

intelligent capabilities, it is necessary that learned skills lead to
(or are combined to create) more complex skills. CD-MISFA
has not yet demonstrated this, but skill development (albeit
in a limited sense) has been shown (Kompella et al., 2012a)
to be enabled by its representation learning (i.e., exploiting
the learned representations for external reward). Potentially, a
framework for continual learning can be built in here; this is to
be explored in future work.

With respect to development, a main contribution of this paper is
to show how non-task-specific and low-level visuomotor interac-
tions can give rise to emergent behaviors, which are at a higher
(but not yet conceptual) level. In a set-up environmental con-
text, an agent’s randomly moving effectors (motor babbling) lead
to observable consequences involving interactions with the envi-
ronment not directly controllable by the agent. Slowness learning
leads to the emergent “higher-level” representations, since the
learning is forced to pay attention to the events that occur on the
slower time-scale instead of the regular, but more quickly chang-
ing parts of the sensorimotor data stream. For example, a robot
that watches its arm can learn causality between its joint controls
and the images quite quickly, since there is an abundance of data
in babbling — in a sense, this is highly salient. But for the robot to
learn about something external to it (i.e., an object), that it inter-
acts with more infrequently, without human supervision, is more
difficult, but nonetheless enabled by slowness learning.
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2.1.4. Unsupervised visuomotor representation learning
There are many works on representation learning, but we are
specifically interested in representation learning from high-
dimensional image sequences where the sequence results from
an agent’s actions. Slow Feature Analysis (SFA; Wiskott and
Sejnowski, 2002), is well-suited to this case. SFA applies to image
sequences, and it provides invariant representations, unlike e.g.,
Principal Components Analysis (PCA; Jolliffe, 2005), which pro-
vides a compressed representation, but not invariance. SFA is
also an appearance-based approach (Turk and Pentland, 1991;
Murase and Nayar, 1995). Appearance-based approaches learn
analog world properties (object identity, person identity, pose esti-
mation, etc.) from a set of views. In the setting of a developmental
embodied agent, SFA provides emergent invariant representa-
tions that resemble symbolic world knowledge; IncSFA provides
this autonomously. When an agent is placed in the loop, such that
its input sequence is caused by its selected actions, the emergent
slow features have been shown to be useful decompositions of the
environment (Mahadevan and Maggioni, 2007; Sprekeler, 2011),
specifically for reinforcement learning (Sutton and Barto, 1998).

2.1.5. Related works
Related to CD-MISFA in terms of having similar motivations
and being based in developmental principles (Weng et al., 2001)
are the biologically-constrained intrinsic motivation model, and
robotic implementation, of Baldassarre et al. (2012)1, and the
Qualitative Learner of Action and Perception (QLAP; Mugan and
Kuipers, 2012). Powerplay (Schmidhuber, 2011; Srivastava et al.,
2013) was also important in terms of motivating CD-MISFA.

The QLAP is a developmental robotics system designed to
learn simplified predictable knowledge (potentially useful for
skills) from autonomous and curiosity-driven exploration. It
discretizes low-level sensorimotor experience through defining
landmarks in the variables and observing contingencies between
landmarks. It builds predictive models on the low-level experi-
ence, which it can use to generate plans of action later. It either
selects its actions randomly or such that it expects to make fast
progress in the performance of the predictive models (a form of
artificial curiosity). A major difference between this system and
ours is that we operate upon the raw pixels directly, rather than
assuming the existence of a low-level sensory model. In QLAP, for
example, the sensory channels are preprocessed so that the input
variables track the positions of the objects in the scene. Through
IncSFA, features emerge for raw visual processing, and this fea-
ture development is tightly coupled with the curiosity-driven
learning.

The recently formulated PowerPlay can be viewed as a greedy
variant of the Formal Theory of Creativity. In PowerPlay, an
increasingly general problem solver is improved by searching
for the easiest to solve, still not yet known, task, while ensur-
ing all previously solved tasks remain solved. By its formulation,
PowerPlay has no problems with forgetting, which can easily occur
in an open-ended learning setup (Schaal and Atkeson, 1998; Pape
et al., 2011). In CD-MISFA, when each new representation is

1A detailed comparison with the model of Baldassarre et al is presented in
Section 4.3.

learned well enough to be internally predictable (low error), it is
frozen and added to a long-term memory storage, and therefore
there will be no destruction of already learned representations.
Further, CD-MISFA searches for the context corresponding to
the easiest to encode new representation, thereby acting in a
PowerPlay-esque manner.

2.2. CD-MISFA OVERVIEW
CD-MISFA (Kompella et al., 2012a) combines representation
learning with curiosity-driven exploration.

The agent autonomously explores among m contexts, and
builds a representation library, denoted as

�L = {�L
1 ,�L

2 , . . . ,�L
n }. (1)

There are, lets say n(≤ m) different representations to learn in the
environment (but the agent does not know n). So, one represen-
tation can suit more than one context. Learning resources are not
assigned to each context individually. Instead, the agent learns one
representation at a time.

Each representation �L
i is composed of two subsequent map-

pings. The first takes a sensory input vector (e.g., pixels) x(t)
(where t indicates discrete time), and encodes it via slow features.
A straightforward example is linear SFA, which projects x from
I to J dimensions (J << I) via matrix W = (w1, . . . , wJ

)
, com-

posed of J column vectors which are the slow features. In this case,
for the i-th representation,

yi(t) = xT(t)Wi. (2)

The second mapping produces internal state si from slow fea-
ture output yi. To this end, it has a set of cluster centers C =(

c1, . . . , cξ

)
in the slow feature output space, and assigns the cur-

rent state as the one with the smallest error from the current
output:

si(t) = arg min
j
‖yi(t)− ci

j‖. (3)

These mappings provide a simplification of the raw sensory data
expected to be perceived when the agent is within the context.
The first provides invariance, suppressing irrelevant informa-
tion. The second provides specificity in the remaining (relevant)
information.

2.2.1. Contexts
The agent explores different contexts, by switching between them.
Example contexts are rooms to explore, objects to interact with,
or types of videos to perceive. As a specific example context, see
Figure 1. We do not specifically define context, but note the fol-
lowing. (1) For convenience, a context can be thought of as having
some state and action space, that is known to the agent. Thus,
each context involves a set of states, a set of actions, and transi-
tion probabilities, from one state to another, given some action.
(2) There is some exploration policy, internal to the context, by
which the agent interacts with this environment. Exploration
policies define how the randomized exploration (i.e., motor bab-
bling) will occur on the given states and actions, e.g., Brownian
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FIGURE 1 | Setup of an environmental context, in which the robot

randomly moves its right arm (via single joint babbling). The robot is
not equipped with an object detection module, so it does not initially
“know” about the object in its field of view. In each episode, the arm
reliably displaces the object, and through training on this image data, a slow
feature representation emerges that provides information about the state
of the object (perturbed or not), invariant to what the robot already “knows”
about (its shoulder joint settings).

motion on a mobile robot’s wheel velocities with an innate reflex
to turn away from obstacles sensed through the distance sen-
sors (Franzius et al., 2007). (3) There is a potentially unobservable
world state that defines the high-dimensional observations that
will be the input to IncSFA. In Figure 1 is defined an example of
a robot perched over an object. Here, a state space is a discretiza-
tion of the right arm shoulder joint angles to 20 states, while the
actions are (1) increase or (2) decrease the joint angle enough to
move to an adjacent state. The world state includes the condition
of the object, which is not known to the agent initially. But this
becomes “known” through the slow feature encoding, after it is
learned. Another example context is a simple grid world (Sutton
and Barto, 1998) where the agent explores via random selection
of one of four actions (up, down, left, and right). Its state space is
given by the grid with observations of high-dimensional images
showing the grid and the agent as viewed from above (Lange and
Riedmiller, 2010; Luciw and Schmidhuber, 2012).

Each interaction with a context is an episode. There is a start
condition to the episode, and an ending condition, which must
occur at some point in the random exploration. After the ending

condition, the agent must decide whether to continue exploration
of this context, or to move to another2.

The agent uses curiosity to explore among multiple contexts.
Rewards and motivation are intrinsic to the agent, and this intrin-
sic reward is calculated from representation learning progress.
The agent can choose to remain engaged in its current context
(exploitation), or seek to engage in another context (exploration).
These decisions are due to utility judgements, where the utility is
an estimate of expected learning progress of remaining engaged
in the current context versus the expected learning progress of
another contexts. If the former is higher, remaining engaged
within the current context is most valuable, and, if the latter is
higher, disengagement and switching is the more valuable choice.

Figure 2 shows the architecture of CD-MISFA. The “adap-
tive module” encompasses the unsupervised learning part, which
involves a combination of IncSFA and Robust Online Clustering
(ROC). The representation library is shown by the “trained
modules.” Estimation errors are denoted by ε, while intrinsic
reward is denoted by ε̇. The intrinsic reward signal feeds into
the value function estimation module. The possible environmen-
tal contexts are shown at the bottom, the current context is the
“state” (with respect to the higher-level value function), while
the “action” is either to remain engaged in that context, or to
disengage and go to another.

Next, in Section 2.3, we discuss learning of a single represen-
tation. Specifically, we use IncSFA and the ROC method, respec-
tively. Some details of these algorithms are described below, but
more thorough descriptions can be found elsewhere (Guedalia
et al., 1999; Weng et al., 2003; Peng and Yi, 2006; Zhang et al.,
2005; Kompella et al., 2012b).

2.3. UNSUPERVISED REPRESENTATION LEARNING: IncSFA
SFA is concerned with the following optimization problem:

Given an I-dimensional input signal x(t) =
[x1(t), . . . , xI(t)]T , find a set of J instantaneous real-valued
functions g(x) = [g1(x), . . . , gJ(x)]T , which together generate
a J-dimensional output signal y(t) = [y1(t), . . . , yJ(t)]T with
yj(t) := gj(x(t)), such that for each j ∈ {1, . . . , J}

�j := �(yj) := 〈ẏ2
j 〉 is minimal− (4)

under the constraints

〈yj〉 = 0 (zero mean), (5)

〈y2
j 〉 = 1 (unit variance), (6)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (7)

with 〈·〉 and ẏ indicating temporal averaging and the derivative of
y, respectively.

2We note that there are some similarities with the options framework Sutton
et al. (1999) here. One could link the start condition idea to an initiation state,
and the end condition would correspond to having a termination probability
of one at some state, and zero elsewhere. Indeed, one can view the problem of
representation learning as analogous to abstraction learning in options, which
remains an important open problem. However, we do not need to formalize
contexts as options in this paper.
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FIGURE 2 | Architecture of CD-MISFA.

The goal is to find instantaneous functions gj generating dif-
ferent output signals that are as slowly varying as possible. The
decorrelation constraint (7) ensures that different functions gj do
not code for the same features. The other constraints (5) and (6)
avoid trivial constant output solutions.

In a linear sense, the optimization problem can be solved
through an eigenvector approach, involving two uses of principal
component analysis (PCA)—first, of the covariance matrix of the
inputs (for whitening) and, second, of the covariance matrix of
the whitened approximate derivative measurements (Wiskott and
Sejnowski, 2002). IncSFA uses incremental algorithms for the two
required PCAs. For the first, Candid Covariance-Free Incremental
PCA (Zhang and Weng, 2001; Weng et al., 2003), is used, which
can also reduce the dimensionality by only computing the K high-
est eigenvectors. For the second, Minor Components Analysis
(MCA; Oja, 1992; Peng and Yi, 2006; Peng et al., 2007 ) updates
the J slowest features.

The overall framework of IncSFA is shown in Algorithm 1.
IncSFA needs to update the signal mean (learned incrementally
by simple online average estimation), the K principal compo-
nents, and the J slow features. In general K < I and J < K — and
K and J are parameters of the algorithm. The learning methods
use “amnesic” learning rate schedule, so they are potentially

suited to non-stationary input sequences. IncSFA uses Hebbian
(CCIPCA) and anti-Hebbian (CIMCA) update rules Dayan and
Abbott (2001) to compute slow-features from a time-varying
input signal.

CCIPCA updates estimates of eigenvalues and eigenvectors
from each centered observation. CCIPCA combines a statisti-
cally efficient Hebbian update with the residual method (Kreyszig,
1988; Sanger, 1989) to generate observations in a complemen-
tary space in order to update components besides the first,
dealing with the requirement that any component must also
be orthogonal to all higher-order components. The CCIPCA
algorithm is presented in Algorithm 2. The principal com-
ponent estimates are used to construct a whitening matrix.
After whitening, the signal is (approximately) normalized and
decorrelated.

Minor Components Analysis preferentially learns the least sig-
nificant principal components. The update for each slow-feature
vector wi from 1 to J, is

wi ← (1− ηMCA)wi − ηMCA

⎛
⎝(ż · wi) ż+ γ

i− 1∑
j

(wj · wi)wj

⎞
⎠
(8)
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Algorithm 1: IncSFA(J, K, θ)

//Incremental update of J slow features from

samples x ∈RI

// V : K columns: PCs of x

// W : J columns: SFs

// vγ : First PC in ż-space

// x̄ : Mean of x

1 {V, W, vγ, x̄}← INITIALIZE ()

2 for t← 1 to∞ do
3 x̆← SENSE(worldstate)

4 {ηPCA
t ,ηMCA

t }← LRNRATESCHEDULE (θ, t)

5 x← (1− ηPCA
t ) x̄+ηPCA

t x //Update mean

6 u← (x− x̄) //Centering

//Candid Covariance-Free Incremental PCA

7 V← CCIPCA-UPDATE (V, K, u,ηPCA
t )

8 S← CONSTRUCTWHITENINGMATRIX (V)

9 If t > 1 then (zprev← zcurr) //Store prev.

//Whitening and dim. reduction

10 zcurr← ST u

11 if t > 1 then

12 Pz← (
zcurr − zprev

)
//Approx. derivative

//For seq. addition (γ)

13 vγ← CCIPCA-UPDATE (vγ, 1,Pz, ηPCA
t )

14 γ← vγ/‖vγ‖
//Covariance-free Incremental MCA

15 W← CIMCA-UPDATE (W, J, ż, γ, ηMCA
t )

16 end

17 y← zT
currW //Slow feature output

18 end

Algorithm 2: CCIPCA-Update (V,K,u,η)

//Candid Covariance-Free Incremental PCA

1 u1← u
2 for i← 1 to K do

//Principal component update

3 vi← (1− η) vi + η

[
ui · vi

‖vi‖ ui

]
//Residual

4 ui+1 = ui −
(

uT
i

vi

‖vi‖
)

vi

‖vi‖
5 end
6 return V

where ηMCA is a learning rate. This update is based on anti-
Hebbian learning with an additional Gram–Schmidt term inside
the summation that enforces different features to be orthogonal.
After updating, a feature is normalized for stability.

The feature output is an instantaneous function,

y(t) = z(t)T w(t). (9)

2.4. ADAPTING THE STATES WITH ROC
In a context’s pre-defined state space, each state has its own
instance of an online clustering algorithm. Clustering is done in
an associative space that combines this pre-defined state space with
the slow feature output space. These clusters, once learned, act
as augmented internal states, potentially providing information
about invariants captured with IncSFA.

As an example, consider again the robot viewing its arm move
eventually toppling an object in the scene. The state space here
is a quantization of the joint angles of the shoulder into 20
bins, thereby providing 20 states, leading to 20 instances of the
clustering algorithm. A developed slow feature output here is a
step function, e.g., when the object is not toppled, the feature
output equals zero, and when the object is toppled the feature
output equals one. Upon convergence of, first, IncSFA and, sec-
ond, the clustering, each joint-angle state will be replaced by
two internal states, which inform whether the object is or is not
toppled.

Learning these clusters is not as straightforward as the above
example makes it seem, since the signal is highly non-stationary
during the early learning phases, due to its input being a function
of adapting slow features. The slow feature outputs can change
rapidly during the training phase. The estimator therefore has to
be able to change its estimates to this non-stationary input, while
converging to a good estimate when the input becomes stable. To
this end, we use a clustering algorithm to specifically handle non-
stationary data, called ROC (Guedalia et al., 1999; Zhang et al.,
2005).

ROC is similar to an incremental K-means algorithm—a set of
cluster centers is maintained, and with each new input, the most
similar cluster center (the winner) is adapted to become more
like the input. Unlike k-means, with each input, it follows the
adaptation step by merging the two most similar cluster centers,
and creating a new cluster center at the latest input. In this way,
ROC can quickly adjust to non-stationary input distributions by
directly adding a new cluster for the newest input sample, which
may mark the beginning of a new input process.

But is this plasticity at the cost of stability? No. In order
to enforce stability, clusters maintain a weight, which increases
faster for more similar (to the cluster center) inputs. A
large weight prevents a cluster center from changing that
much. When two clusters are merged, their weights are also
combined.

A sketch of the ROC per-sample update is in Algorithm 3. The
ROC algorithm repeatedly iterates through the following steps.
For every input sample, the algorithm finds the closest cluster
winner and updates the center cwinner toward it, also increasing
the weighting parameter awinner . Next, the closest two clusters are
merged into one cluster. Then, a new cluster is created around
sample y. Finally, all clusters weights decrease slightly. Parameters
required are ξ , the maximum number of clusters, an amnesic
parameter φ to prevent convergence, and the response function
for similarity measurement.

Frontiers in Neurorobotics www.frontiersin.org May 2013 | Volume 7 | Article 9 | 129

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Luciw et al. Curious Dr. MISFA

Algorithm 3: ROC-Amnesic(y, s, ξ, φ)

// Cluster SFA-encoded samples y ∈RJ

// y : Slow feature encoded input

// s : Context state

// ξ > 1 : Maximum number of clusters

// 0 ≤ φ ≤ 1 : Amnesic parameter

//Determine which set of clusters to use

// C : Set of cluster centers

// a : Set of cluster weights

1 {C, a} ← GETCLUSTERINGINSTANCE (s)

2 if |C| < ξ then
// Cluster center is y, weight is 0

3 {C, a} ← ADDNEWCLUSTER (y, C, a)
4 else
5 winner← arg max

i
RESPONSE(y, ci)

6 cwinner← cwinner + y− cwinner

awinner + 1
7 awinner← awinner + RESPONSE(y, cwinner)

// Merge the two closest

8 {γ, δ} ← arg max
γ,δ,γ 
=δ

RESPONSE(cγ, cδ)

9 cγ← cγaγ + cδaδ

aγ + aδ

10 aγ← aγ + aδ

// Latest input becomes new cluster

11 cδ← y
12 aδ← 0

// Forgetting (leak)

13 for i← 1 to ξ do
14 ai ← ai(1− φ)

15 end
16 end

2.5. INTRINSIC REWARD
The intrinsic reward is expected learning progress. Learning
progress is approximated as the decrease in context-specific
cumulative estimation error. Each context state i has an associ-
ated error εi

est . These errors are updated whenever the agent visits
that state—

εi
est(t) = min

j
||y(t)− cj|| (10)

where y(t) is the slow-feature output vector and cj is the j-th
cluster center associated with this state. The context’s current
estimation error is the sum of stored errors, over all M context
states,

εest(t) =
M∑

i= 1

εi
est(t), (11)

and the intrinsic reward is the derivative of the total estimation
error ε̇est = εest(t)− εest(t − 1). Figure 3 shows an example with
a 20-state estimator.

2.6. MODULE STORAGE AND GATING
Once the slow feature outputs stabilize, the estimator clusters
converge and the error will become very low. Next, estimator
clusters with small weights ai are eliminated, to avoid having spu-
rious internal states. Finally, this overall representation module is
frozen, considered learned, and placed in long-term memory.

The already trained set of modules are the abstraction library
�L (Equation 1). If one of these module’s estimation error within
a context is below a threshold, that context is assigned that mod-
ule’s representation and the adaptive training module will be
prevented from learning, by this gating signal. There will no
intrinsic reward in this case. On the other hand, if the estimation
error of all the trained modules for the incoming data is above
the threshold, the gating signal enables the single adaptive mod-
ule to be trained on the input data. Hence the training module
will encode only data from input streams that were not encoded
earlier.

2.7. ENGAGE/DISENGAGE MECHANISM
Every time the agent exits a context, the agent needs to make
a decision. To this end, the agent can take two internal-actions,
Ao = {engage, disengage}. The internal-action engage allows the
agent to stay in the same context (starting over), while disengage
causes the agent to switch to another context. For the purposes
of our model, we do not allow the agent to select the con-
text it will switch to, instead having it randomly selected. Thus,
the transition-probability model P of the internal environment
(modeling transition probabilities between all pairs of contexts i
and j, conditioned on the two internal-actions) is given by:

P
engage
ij =

{
1, if i = j

0, if i 
= j
(12)

P
disengage
ij =

{
0, if i = j

1
N−1 , if i 
= j

(13)

∀i, j ∈ [1, . . . , N].
2.8. REWARD AND VALUE FUNCTION
The agent maintains an estimated reward function, which is the
expected change in estimation error when transitioning from
context o to context o′ (and o = o′ is possible). The agent’s reward
function is updated at every engage-disengage decision, from the
intrinsic rewards, as a sample average:

Ro,o′
a := (1− η) Ro,o′

a + η

t+T∑
t

−ε̇est(t) (14)

where 0 < η < 1 is a learning rate, T was the duration of the
previous context until its termination, (o, o′) ∈ {O1, . . . , On} and
a ∈ {engage, disengage}.

Using the current updated model of the reward function R
and the internal-state transition-probability model P, the agent’s
policy (O ×Ao → [0, 1]) is updated.

It is important that the policy adapts quickly enough to adapt
to the quickly changing reward function. Intrinsic rewards can
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FIGURE 3 | Intrinsic reward is calculated from reduction of

context-specific cumulative estimation error. (A) The change in
estimation error over time in a context with 20 states (M). With more

experience, the features stabilize and estimator errors decrease. (B) The
sum of estimation errors. The subsequent difference is the intrinsic
reward.

change quickly as learning progresses, and the RL must adapt
quicker than the underlying representation learner. We used
model-based Least Squares Policy Iteration (Lagoudakis and Parr,
2003), which is an efficient value-estimation technique, although
in principle the more biologically-plausible temporal-difference
(TD) methods could also work.

2.8.1. Epsilon-greedy
The agent cannot take the value-maximizing decision from the
very beginning, since it needs time to build its value estimates
to a more accurate level. Early on, it can make decisions more
or less randomly so that it can gather experience in the different
contexts, and to learn good estimates of value over all contexts.
Given good value estimates, it can choose to engage within the
context where it should learn quickly, in other words, make the
fastest learning progress, and to lead to a quick learning of the
next representation. To this end, the model augments its internal
action selection with decaying ε-greedy exploration.

3. NEURAL CORRELATES TO CD-MISFA
3.1. SFA AND COMPETITIVE LEARNING—ENTORHINAL CORTEX AND

HIPPOCAMPUS
Slow Feature Analysis variants have been used to simulate rep-
resentation learning in a number of biological scenarios. Based
on the general principle that underlying driving forces manifest
through slow changes in sensory observations, the features that
emerge from SFA often encode important invariants. Hierarchical
SFA has been shown to develop grid cells from high-dimensional
visual input streams (Franzius et al., 2007). Grid cells, found
in entorhinal cortex (EC) (Hafting et al., 2005), have a pattern
of firing that effectively represent hexagonal codes of any two-
dimensional environment. As such, grid cells are effective general
representations for spatial navigation in typical environments.

A competitive learning layer, over the top-layer of slow fea-
tures, leads to features acting as place cells or head-direction cells,
depending on what changes more slowly from the observation
sequences. A place cell will fire when the animal is in a specific

location in the environment, typically invariant to its heading
direction. Head-direction cells fire when the animal faces a cer-
tain direction, no matter what coordinate position it is in. Place
cells and head-direction cells are found in hippocampus (O’Keefe
and Dostrovsky, 1971; Taube et al., 1990), which has input from
EC. It’s been hypothesized that hippocampus acts as a rela-
tively fast encoder of specific, episodic information, on top of
cortex, which learns general structure from lots of data over a
long period (Cohen and O’ Reilly, 1996)—“It has been pro-
posed that this universal spatial representation might be recoded
onto a context-specific code in hippocampal networks, and that
this interplay might be crucial for successful storage of episodic
memories (Fyhn et al., 2007).”

SFA’s biological plausibility was furthered by IncSFA, which
avoids batch processing and has Hebbian and anti-Hebbian
updating equations. Hierarchical SFA (Franzius et al., 2007) and
IncSFA (Luciw et al., 2012), with competitive learning on top,
was shown to develop place and head-direction cell representa-
tions. For the representations learned in CD-MISFA, we use the
basic structure suggested by these results: A slow feature learner
(possibly hierarchical) for global features (IncSFA), inputs into a
competitive learner for development of local features (ROC).

3.2. NEUROMODULATORY SUBSYSTEMS FOR INTRINSIC REWARD
AND CONTEXT SWITCHING

3.2.1. Intrinsic rewards: dopamine and learning progress
Dopaminergic projections originate from the ventral tegmental
area (VTA). Dopamine has been implicated in reward predic-
tion (Schultz et al., 1997), leading to plausible relation to the
theory of reinforcement learning (Sutton and Barto, 1998)—
specifically, dopamine may be acting as a TD error signal.
However, this account remains controversial (Redgrave et al.,
1999; Kakade and Dayan, 2002). A major deviation from the
dopamine as TD-error theory comes from data implicating
dopamine in responding to novel salient stimuli (Schultz, 1998;
Redgrave and Gurney, 2006), even for stimuli that are not pre-
dictive of reward. Dopaminergic responses to such stimuli fade
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over subsequent trials. It has been proposed that this charac-
teristic serves the purpose of a “novelty bonus”—e.g., a reward
addendum serving as a “optimistic initialization.”

These data present intriguing correlations to the curiosity
theory. Dopamine release in response to novel stimuli could
potentially signal a predicted intrinsic reward—an expectation
of learning progress. Could DA in some situations signal the
intrinsic reward? Dopamine’s potential role in intrinsic moti-
vation has been discussed before (Redgrave and Gurney, 2006;
Kaplan and Oudeyer, 2007), but not with respect to the for-
mal theory of curiosity Schmidhuber (2010), which predicts
that intrinsic reward should be proportional to compression
progress. Computational models in neuroscience often treat
intrinsic reward as resulting from the novelty of a stimulus. If
intrinsic reward really does result from novelty, we would expect
persistent high levels of dopamine in response to unpredictable
noisy stimuli (as it remains novel from moment to moment). On
the other hand, if intrinsic rewards encode compression progress,
we would expect decreases in the level of dopamine as the pre-
dictive model becomes unable to learn anything more about the
structure of the noise3.

3.2.2. Engagement and disengagement (and switching):
norepinephrine

Neurons of the locus coeruleus (LC), in the brainstem, are the sole
source of norepinephrine (NE). NE is linked to arousal, uncer-
tainty, vigilance, attention, motivation, and task-engagement.
The LC-NE system is more traditionally thought to affect levels
of arousal, but more recently has been implicated in optimization
of behavioral performance (Usher et al., 1999; Aston-Jones and
Cohen, 2005; Sara, 2009).

In that context, the activity of the LC-NE system can be under-
stood as modulation of exploration-exploitation. The tonic dif-
ferences in LC-NE response are associated with levels of arousal.
Tonic NE response is correlated with task performance lev-
els (Usher et al., 1999). Low tonic activity coincides with low
attentiveness and alertness (Aston-Jones et al., 1991), while high
tonic activity coincides with agitation and distractibility (Aston-
Jones and Cohen, 2005). Good task performance coincides with
an intermediate tonic level during which phasic bursts of activity
are observed, while poor task performance due to distraction is
associated with high tonic activity. In phasic mode during peri-
ods of intermediate tonic NE activity, NE is released in response
to task-relevant events (Dayan and Yu, 2006). As suggested by
Usher et al. and others (Usher et al., 1999; Aston-Jones and
Cohen, 2005), the phasic modes might correspond to exploita-
tion, whereas high tonic states of NE activity might correspond to
exploration.

When it is beneficial for the agent to remain engaged in the
current task, the tonic NE level stays moderate, and only relevant
task stimuli will be salient. However, when it is not beneficial to
remain engaged in the current task, the NE level raises and task-
irrelevant stimuli become more salient. This drives the agent to
distractibility, and task performance suffers. Attending to some
distractor stimuli could have the effect of causing the agent to

3To our knowledge, this has not been tested yet.

switch to another task in which this distractor becomes rele-
vant, ostensibly with the purpose of exploring among available
tasks (i.e., it “throws the ball in the air so another team can take
it” Aston-Jones and Cohen, 2005).

In CD-MISFA, the agent’s two internal-actions, (engage or
disengage), and the reasons they are taken, links to the NE-
driven task engagement/disengagement model. Boredom (low
NE) indicates that a good representation already has been learned,
leading to low estimation error, and thereby low potential intrin-
sic reward. Distractibility (high NE) indicates that the errors
are too high, not decreasing quickly enough, or they cannot be
reduced. In this case, it becomes valuable to disengage and find
some other context, where learning may progress faster (or at all).
When the agent has found a good context, the estimation errors
decrease regularly, providing intrinsic reward that leads to a high
value estimate (and a desire to remain engaged in that context).

3.3. FRONTAL CORTEX: VALUE FUNCTION AND REPRESENTATION
SELECTION

The NE and DA neuromodulatory systems each have recip-
rocal connectivity with the prefrontal cortex—executive areas,
which deal with cognitive aspects such as decision making, and
top-down control of other functions, such as selective atten-
tion (Miller, 2000). If the LC-NE system is handling task-
engagement and disengagement based on some value judgement,
then this system needs to be controlled by another system that
is estimating these values. The prefrontal cortex (PFC) plausibly
plays a role in value estimation, and might use the utility infor-
mation to provide top-down regulation of the activities of the LC
neurons (Ishii et al., 2002).

PFC and nearby structures, specifically the anterior cingulate
cortex (ACC) and the orbital frontal cortex (OFC), are impli-
cated in value-based judgements. The ACC is involved in error
detection (i.e., recognizing a prediction error) and estimating the
costs of these errors (Bush et al., 2002). OFC is thought to be of
import in motivational control of goal-directed behaviors (Rolls
et al., 1996)—OFC damage leads to responses to objects which
are no longer rewarding (Rolls et al., 1994; Meunier et al., 1997).
The dorsolateral pre-frontal cortex (DLPF) is implicated in value-
based working memory (Rao et al., 1997). Thus, these structures
could possibly work together to estimate a value function, in the
RL sense (Ishii et al., 2002).

Another important property of PFC is to maintain an appro-
priate task representation, i.e., imposing internal representations
that guide subsequent performance, and switching these for
another when it is no longer appropriate (Miller, 2000; Cohen
et al., 2004). This property requires mechanisms to keep goal-
relevant information (i.e., what should be considered salient and
what should be considered a distractor) enabled in resonance with
lower structures. Further, it requires a mechanism to maintain
a context despite bottom-up disturbances, and a mechanism to
switch the context. The PFC has connections from and to higher-
order associative cortices, so it is in a good position to impose
task-relevant representations from the top-down. Such “execu-
tive attention” enables memory representations to be “maintained
in a highly accessible state in the presence of interference, and
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these representation may reflect action plans, goal states or task-
relevant stimuli in the environment (Kane and Engle, 2002).”

4. EXPERIMENTS AND RESULTS
4.1. SYNTHETIC SIGNALS
In other works, we have studied the types of representations
uncovered by IncSFA, and their applicability (Kompella et al.,
2012b; Luciw and Schmidhuber, 2012). The experiments here
will focus moreso on the curiosity-driven behavior, especially in
comparison to what the formal theory of curiosity predicts. We
also explore the potential link of CD-MISFA to neuromodula-
tory task-switching—what quantities in our experimental results
might be analogous to associated neuromodulators dopamine
and norepinephrine?

CD-MISFA’s typical behavior involves cycles of exploration,
exploitation, and module storage. Exploration involves context
switching, enabling accumulation of learning progress estimates
about each context. The exploitation period has it settle into a
single context where progress is easiest, until the representation
is stored in long-term memory. Based on the formal theory of
curiosity, we expect CD-MISFA to learn the representations in
inverse order of their learning difficulty. Further, it will not waste
time on anything unlearnable, corresponding to noise—which we
note is novel and surprising in the traditional sense of Shannon
et al. (1949), however, uninteresting since no learning progress
can be made.

To this end, the first experiment involves a synthetic learning
environment, with four types of sources—also known as driving
forces Wiskott (2003). The simple driving forces are the funda-
mental “causes” of the complex observations. For example, an
observation sequence given by an onboard camera of a mobile
robot is “caused” by the robot’s position, orientation, and camera
angle. One cannot reconstruct the observations from the driving
forces alone, of course, but tasks and rewarding conditions are
often associated with the driving forces, and knowledge of the
driving forces leads to useful (potentially rewarding) predictive
power.

At any time the agent is experiencing one of five contexts. Two
contexts are generated based on the same driving force, while the
other three each have a different driving force. In Figure 4A, the
2× 1000 (dimension by time steps) signal sources can be seen
(S-A, S-B, S-C, S-D), ordered via learning difficulty, with the eas-
iest signal at the top. The blue curve shows the first dimension,
while the red dotted curve shows the second dimension. At the
bottom, we have a highly non-stationary source, which changes
irregularly, so as to be unlearnable to IncSFA. We want to hide
each of these sources within a different high-dimensional pro-
cess, albeit linearly, so that linear IncSFA will be able to extract
them and it will take enough effort to do so. A high-dimensional
observation is generated from a source by multiplication with one
of four 400× 2 matrices, which are randomly generated before
each experiment. The 400 resulting values are rearranged into a
20× 20 and value-normalized from zero to one to be pixel values
for each image. Each input observation x(t) is an image of 20× 20
pixels. In Figure 4B, one can see a few sample observations. The
task for CD-MISFA is to extract all three learnable driving force
signals from a single stream of high-dimensional observations.

Figure 4C shows the CD-MISFA agent’s environment, which
contains the five contexts (C1–C5; which can be considered states
in the RL sense), and has two actions—stay (engage) or switch
(disengage). Each time a context is entered, 100 steps of observa-
tions are fed to IncSFA. Each context has a local clock, so that the
local time step will pick up where it left off if the agent returns
from another. At the end of the 1000 time steps, the local time
step resets4.

4.1.1. Measuring learning difficulty
In order to test predictions of the Formal Theory of Curiosity,
we need to analytically establish a definition of learning cost for
slow features, by which we will measure the relative complexity
of the signals within each context. We introduce here a measure
denoted as �, to quantify the learning progress of IncSFA.

�(x) =
[

1− ηmca(λn−1 − λn)

1− ηmca − ηmcaλn

]
(15)

where λn, and λn−1 are the eigenvalues corresponding to the
lowest-order and second lowest-order (respectively) principal
components in the whitened derivative space. We will discuss the
origins of � further in Section 4.4, with full derivation.

In this experiment, the three learnable signals are quantified
as �A = 0.9933 (for S-A), �B = 0.9988 (for S-B), and �C =
0.9997 (for S-C). They are quite close due to the similarities
of the last and second to last eigenvalues in each distribu-
tion, however, there is a non-linear relationship between � and
learning time. For S-A, about 2–3 epochs are needed. For S-B,
about 15 epochs are needed. For S-C, about 40 epochs are
needed.

4.1.2. Experiment setup
The experiment setup is as follows. Since there are 1000 differ-
ent time-steps, we use 1000 states for the clustering. Thus, there
will be 1000 different clusterers, each with maximum number of
clusters set as 2. The estimator error is measured as an average
of the estimation errors after each episode—an interaction with
a single context of 100 time steps. The intrinsic reward estimates
and policy are updated after each episode. Once the estimation
error gets below the threshold 0.3, the module is frozen, and a
new module created. The initial setting for ε-greedy is 0.6, which
decreases via multiplication with 0.995 after every episode, and
is reset when a new module is created. The learning rates for
IncSFA: for CCIPCA, a 1/t learning rate is used, with amnesic
parameter l = 2 (Weng et al., 2003), the MCA learning rate is
a constant ηMCA = 0.05. We collected results over 25 different
runs. Each run has a different initializations of all aspects, wherein
CD-MISFA operates for time 3.5× 105.

We note here some implementation details about the gating
system. The gating system prevents corruption of the adapting
IncSFA with samples from an already known/learned representa-
tion. This is implemented as a buffer that fills during each episode,

4We use “time step” in a local sense—it refers to one of 1000 steps that make
up each context. We will use “time” to refer to global time (over all contexts).
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FIGURE 4 | Experimental setup and results of Curious Dr. MISFA with synthetic data. See text for details.

at the end of which the 100 observations are sent to all feature sets,
from which the output is calculated. That output is then sent to
the clusters in each SF output space, enabling error calculation
for all modules. If the minimum module error is less than 0.3,
the previous 100 samples are not used for learning, and a negative
reward of −100 given. Otherwise, the samples are fed to IncSFA

for learning. In this case, the intrinsic reward is calculated as the
difference between the current estimation error of the adaptive
learner and the same context’s previously measured estimation
error. The negative reward serves only to speed up the learning
process. If it were removed, each run would simply take longer to
complete.
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4.1.3. Behavior
In all 25 runs behavior of CD-MISFA involved alternating phases
of mostly exploration among all contexts, and exploitation once
it settles on a context where it expects to make the most
progress. We will call this exploitation-exploration process a cycle.
Exploration is caused by the initial high amount of change in
the adapting slow features, so that the estimator, which is on
top of the slow features, cannot make progress. Once CD-MISFA
remains within a context for enough time, the features become
predictable enough so that an advantageous intrinsic reward can
result. Due to ε-greedy, it continues to switch between contexts,
allowing it to accumulate good estimates for all (the previous
intrinsic reward accumulations are captured in the reward func-
tion). As ε decays, the policy converges to the simple but optimal
strategy to disengage from all contexts except the easiest to learn
new context.

4.1.4. Results
Results are shown in Figures 4D–G.

Part (D) shows the average cumulative estimator error (a single
run is also plotted for perspective). In each cycle, the error starts
high, then trends down as representations are learned; finally a
module is created. Within each run, this is a rather noisy signal,
as the agent jumps from context to context. The end of each run
has only the unlearnable context remaining, so the error cannot
reduce enough to store another module.

Part (E) shows the run-averaged and temporally-averaged (for
smoothness) intrinsic reward. Each cycle (notably except the first)
involves a rise and fall. Relatively low intrinsic reward that trends
higher is associated with disengagement behavior. Relatively high
intrinsic reward that trends lower is associated with engagement
behavior. The high punishment for boring experiences within a
learned context tends to drag the values down, moreso later in
each run, when more representations have been learned. The first
cycle seems to lack the typical rise, which we posit is due to the
simplicity of the signal.

Part (F) shows average learning times and standard deviations
for the three learnable signals. The ordering tends to be as pre-
dicted, but not always: A module for S-A emerges first all 25 times,
S-B’s module occurs second 18 times, and third 7 times, while S-
A’s module is mostly third (18/25). Due to the 7 runs when S-B
and S-C were learned opposite as expected, the average learn-
ing time for S-B is higher than the average time when the second
module is typically learned (as can be seen in Figure 4D), and the
average learning time for S-C is lower than when the third module
is learned.

Part (G) illustrates the reward function for run number 15,
which is a fairly typical run. C1 and C2 are associated with ini-
tial rising reward. Once the shared source (S-A) is learned, both
have their expectations of reward drop. We see C3 subsequently
rise, followed by C4, then C5 (unlearnable).

4.1.5. On invariance
There are two independent dimensions to each source, which
together generate the observations. The corresponding represen-
tation thereby also contains two parts. One part of the driving
force is (trivially) invariant to the other part, and, after learning,

the invariance property is observable at the representation out-
puts. For example, if (after learning) the first dimension of our
source is held constant but the second allowed to change, then
the observations will change, but the output of the first feature of
the corresponding component will be constant, while the second
changes. Figure 5 illustrates this concept. As a real world exam-
ple, consider place cells and head-direction cells. The output of
the place cells are invariant to changes in orientation, and vice
versa.

4.1.6. On neuromodulators
The estimation error profile observed in Figure 4D and associ-
ated behavior mirrors the findings regarding the LC-NE system
and the “inverted U.” High levels of estimation error correspond
with predominantly disengagement and switching (“agitation”),
while low levels of estimation error correspond with switch-
ing (“boredom”). There is a “sweet spot” of error, where the
agent mostly engages in a single context. In this sweet spot, the
intrinsic reward, representing learning progress, is at its rela-
tive peak. The intrinsic reward signal could link to dopamine,
although, as we mentioned, there is no conclusive evidence
about this.

4.2. EMERGENT REPRESENTATION FROM SENSORIMOTOR
LOOPS—AN iCub EXPERIMENT

This experiment uses an embodied agent (iCub) with real high-
dimensional images (grayscale 75× 100), from the robot’s eyes.
There are two contexts here. In each, the iCub explores via ran-
dom movement of its shoulder joint, causing the outstretched
hand to eventually displace the single object in its field of view.
It then observes the outcome while the hand continues to move.
It is not given any prior knowledge about the objects, itself, or
any concepts at all. It merely observes the pixel values, and uses
CD-MISFA for learning and decision making. In one context,
the object is a cup, which topples over upon contact with very
predictable outcome. In the other, the object will roll in different

A B C

D E F

FIGURE 5 | An illustrative example of invariance, in the context of our

synthetic signal experiment. A two dimensional driving force (A)

generates high-dimensional observations (B), from which IncSFA learns
features that extract the original driving force. (C) The output of the first,
slowest, feature. After learning, the second part of the driving force is
replaced by noise (D), causing different images (E). However, the
previously learned first feature output does not change (F).
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directions. About 70 episodes of image sequences were collected
for each context. The eventual slow features, emergent from the
holistic images, will code for the state of the objects.

Three example images from each of the two contexts are shown
in Figure 6A. Each episode involves random exploration and
an object-robot interaction event, and has between 50 and 250
images. We can say the “topple” context is easier to learn than the
other, since the � value for the “topple” images is 0.9982, and the
� value for the “push” images is 0.9988.

For the desired encoding to emerge requires careful setup,
since IncSFA (and SFA, generally), applied to images with no pre-
processing, is an appearance based vision technique (Turk and
Pentland, 1991). To enable learning, we need to keep certain
aspects of the images consistent. First, the robot’s head is kept
stable, so the image background doesn’t noticeably shift. If the
image shifts, it is possible the features would code for head posi-
tion. Second, at the beginning of the episode, the object is always
placed in the same position.

4.2.1. Setup
The joint angles were quantized into 20 distinct bins, yield-
ing 20 states for each context, leading to 20 different clustering

algorithms operating. Each clustering implementation had its
maximum number of clusters set to 3. The estimation error
threshold, below which the current module is saved and a new
module is created, was set to 2.3. The initial ε-greedy value was
0.6, with a 0.93 decay multiplier. CCIPCA used learning rate 1/t
with amnesic parameter 0.4, while the MCA learning rate was
0.01. CCIPCA did variable size dimension reduction by calcu-
lating how many eigenvalues would be needed to keep 98% of
the input variance — typically this was between 10 and 15—
so the 7500 pixels could be effectively reduced to only about 10
dimensions.

Unlike in the synthetic signals experiment, the slowest feature
here encodes the context identity, which is to be expected when
the input signals from widely different clusters; in a sense this
is similar to a multiple rooms case (Mahadevan and Maggioni,
2007), where the features code for room ID. In order to prevent
learning progress from continual switching, the following rule
was implemented: when the agent decided to remain in its cur-
rent context, it experienced two subsequent episodes, but when it
decided to switch to the other, it only experienced one. In other
words, the agent is given more time to learn by staying rather than
by switching.

A

B C D

FIGURE 6 | This experiment uses image sequences from our iCub’s cameras, while it moves its arm and interacts with objects. See text for details.
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4.2.2. Results
Fifteen experimental runs were performed. Figures 6B–D show
results. Part (B) shows the average estimation error during the
first module’s learning, while part (C) shows average estima-
tion error for the second. Part (B) has a higher error, with
more fluctuation than part (C), which mostly involves learn-
ing in a single context, since it will learn to quickly disengage
away from the already learned context due to boredom pun-
ishment. In part (D), one can see the easier representation was
indeed mostly learned first (in 14 of the 15 runs, this was
the case).

Examples of the context-specific representations over time
are shown in Figure 7. Both representations eventually encode
whether the object is displaced or not. Most of the information
in the image sequences can be broken down into three com-
ponents: a baseline (the background), the object, and the arm.
The object changes slower than the arm, so it is preferentially
extracted by SFA. Moreover, the object-based features are invari-
ant to the arm’s position. Generalization is also possible, in a
limited sense. If the arm were replaced by some other object (e.g.,
a stick), the feature output would not be perturbed. For more
robust generalization, a better pre-processing is probably needed,
as is typical with appearance-based vision techniques (Cui and
Weng, 2000).

Once the features are learned, the feature output space cre-
ates a reduced-dimension state space for reinforcement learning
techniques, if an external reward is in play. For examples, see our
illustrative video of state-space simplification 5 Kompella et al.

5http://www.idsia.ch/~luciw/videos/IncSFAArm.mp4

(2012a,b) for an example of using RL to maximize external reward
upon the previously learned features.

4.2.3. On concepts
How do the learned representations relate to concepts? CD-
MISFA could be the basis for something more substantial in the
direction of concept learning, but, by itself, it is limited.

The representations learned by CD-MISFA correspond to
compressed descriptions of image feeds, emerging from an eigen-
decomposition of the covariance of temporally subsequent image
differences. In some cases the resulting representations loosely
resemble concepts, as when the slowest feature is shown to invari-
antly capture the state of some object in the images. But we are
hesitant to explicitly refer to these representations as concepts,
for a number of reasons. First, the notion of concept is itself
up for debate. Arguments about what constitutes a concept will
necessarily jump disciplinary boundaries, including philosophy,
linguistics, and artificial intelligence. We do not wish to wade
into this debate however, and we instead concern ourselves with
the manner in which an agent or robot, starting with little prior
knowledge, might direct its own behavior so as to increase what
it knows about the world around it. Second, the types of repre-
sentations learned by CD-MISFA are generally too low-level to be
considered conceptual. For example, if CD-MISFA used intrinsic
rewards to guide it to areas which enabled it to develop low-level
feature detectors, such as edge detectors (which SFA can learn
from a moving fovea Berkes and Wiskott, 2002), would we want
refer to the edge detectors or the edges themselves as concepts?
Likely not, despite the fact that it could develop from the same
learning mechanisms that led to a representation for a toppling
event.

FIGURE 7 | Example emergence of object-centric slow features for both contexts. The final result encodes two states of each object—upright or displaced.
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4.3. COMPARISON
Baldassarre et al. (2012) recently presented a biologically-
constrained model of IM, which is also applicable to develop-
mental robotics. Although the Baldassarre model (TBM) is more
closely tied to neuroanatomical function than CD-MISFA, we
argue that a number of functional and theoretical drawbacks of
TBM make CD-MISFA a superior choice.

TBM was implemented on an iCub robot, and tested in an
environment motivated by psychological studies, which includes
a box with 3 buttons, 3 doors, and a series of lights. The robot
can take 6 oculomotor actions (eyes fixating at either of the 3
buttons or 3 boxes) and 3 arm-motor actions (“reach and press,”
“reach and point,” “reach and wave”). The IM reward function
is modeled based on illumination change, considered as an auto-
matically extracted salient event, and is a value that decays with
recurrence of the salient event. In a learning phase, the model is
allowed to explore by selecting any of its oculomotor/arm-motor
actions, and observing the result (i.e., the opening of a door). In a
test phase, external rewards are “hidden” inside one of the doors,
and the goal of the agent becomes: press the correct button to
retrieve the reward.

A primary drawback of TBM and its experimental validation
is, although it makes use of IM, it is not clear to what extent (if
any) IM is necessary for appropriate learning to occur. The model
is not tested without an IM reward function, and in principle,
the task undertaken would be learnable simply through random
exploration without any IM reward whatsoever. Conversely, the
role of IM in CD-MISFA and its associated experiments is essen-
tial, since if CD-MISFA is not presented with intrinsic reward, the
model will not stay in any particular context long enough to learn
the underlying representations. If CD-MISFA simply explores its
environments in a random fashion, it is incapable of learning any
meaningful representation.

A major advantage of CD-MISFA over TBM is the former’s
grounding in the Formal Theory of Fun and Creativity. Whereas
the decay of the intrinsic reward value in TBM arbitrarily depends
on the number of times the agent repeats a given action, CD-
MISFA makes use of the more appropriate learning progress
measure. In CD-MISFA, information ceases to be intrinsically
rewarding as a function of how and when those visits lose infor-
mational value.

Lastly (and perhaps most importantly), TBM does not operate
on realistic sensory/motor spaces. Whereas CD-MISFA explicitly
shows how IM can operate in a model learning from high-
dimensional input streams, and how action selection can operate
on low-level motor outputs, TBM only shows how a model of
IM can learn a small subset of predefined actions, operating on
abstract representations of visual input.

4.4. QUANTIFYING THE LEARNING COST
We discuss here the measure denoted as �, which is used to quan-
tify the learning cost of various types of signals for IncSFA. For
simplicity, we consider here signals with similar input-variance
but that have a different temporal structure. This assumption
allows CCIPCA to approximately have a similar progress for the
signals. Therefore, our focus remains here only on the progress of
the CIMCA algorithm.

In an approach similar to the proof provided by Peng et al.
(2007) for the convergence of MCA, we present here an analysis
on quantifying the learning progress of the CIMCA algorithm.
For the sake of simplicity, we just consider here only the first
output component, but this can trivially be extended for higher
output components.

The weight-update rule of CIMCA is given by:

wmca(k) = (1− ηmca) wmca(k− 1) (16)

−ηmca (x(k) · wmca(k− 1)) x(k)

wmca(k) = wmca(k)/‖wmca(k)‖ (17)

To analyze the “average” dynamics of Equation 16, we reformu-
late it to a deterministic discrete time (DDT) system by taking the
conditional expected value

E[wmca(k+ 1)|wmca(0), x(i), i < k] (18)

at each iteration:

wmca(k) = (1− ηmca) wmca(k− 1) (19)

−ηmca E[x(k)x(k)T]wmca(k− 1)

Here, E[xxT] is the correlation matrix (R) of the input data
(x ∈ Rn). The weight vector wmca(k) is shown to converge to
minor component of input data Peng et al. (2007), if the following
conditions are satisfied:

ηmcaλ1 < 0.5, ||wmca(0)||2 = 1,

0 < ηmca ≤ 0.5, wmca(0)Twmca∗ 
= 0 (20)

where λ1 is the largest eigenvalue of R, wmca(0) is the initial weight
vector and wmca∗ is the eigenvector with the smallest eigenvalue
of R. Since the correlation matrix R is a symmetric non-negative
definite matrix, it can be factorized into QDQ−1, where Q is
the eigenvector matrix (columns representing unit-eigenvectors
vi) and D is a diagonal matrix with corresponding eigenvalues
(λi). In addition, the eigenvectors {vi|i = 1, 2, . . . , n} form an
orthonormal basis spanning Rn. The weight vector wmca can then
be represented as

wmca(k) =
n∑

i= 1

ai(k)vi (21)

where ai(k) are some constant coefficients.

Definition 1. Given a stationary input distribution x ∈ Rn and its
eigendecomposition: {vi, λi}, ∀i ∈ {1, . . . , n}, where v denotes the
set of eigenvectors and λ their corresponding eigenvalues (such that
λ1 > · · · > λn ≥ 0). Then, we define �(x) as a measure to indicate
the learning progress of CIMCA for the input distribution x.

The following lemmas are useful to derive an analytical expression
for �. Note that for all the following lemmas to hold true, the
convergence conditions in (20) have to be satisfied.
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Lemma 1. Let Vi be denoted as

Vi =
[
1− ηmca − ηmcaλi

]
(22)

then,

ai(k) = Vk
i ai(0)√∑n

j V2k
j a2

j (0)
,∀i ∈ {1, 2, . . . , n} (23)

Proof: We prove the result by mathematical induction.
k = 1: Substituting (21) in (19) for k = 0, we get

ai(1) = Viai(0), ∀i ∈ {1, 2, . . . , n}

At each update, the weight vector wmca(k) is normalized according
to (17).

ai(1) = Viai(0)√∑n
j V2

j a2
j (0)

, ∀i ∈ {1, 2, . . . , n} (24)

Therefore, (23) is true for k=1.
k = m: Assuming the result to be true for some k = m > 1

ai(m) = Vm
i ai(0)√∑n

j V2m
j a2

j (0)
, ∀i ∈ {1, 2, . . . , n}

let P denote

P =
√√√√ n∑

j

V2m
j a2

j (0)

k = m+ 1: Substituting (21) in (19) for k = m, we get

ai(m+ 1) = Viai(m) = Vm+ 1
i ai(0)

P
(25)

Upon normalizing,

ai(m+ 1) =
Vm+1

i ai(0)

P√∑n
j

V2m+ 2
j a2

j (0)

P2

= Vm+ 1
i ai(0)√∑n

j V2m+ 2
j a2

j (0)
, ∀i ∈ {1, 2, . . . , n}

which is same as substituting k = m+ 1 in (23). Therefore, by the
principle of mathematical induction the result (23) is true for any
k > 1.

Lemma 2. Let σi be denoted as

σi =
[

1− ηmca(λi − λn)

1− ηmca − ηmcaλn

]
(26)

then,

0 < σ1 < · · · < σn−1 < 1 (27)

Proof: If we show that

0 <
ηmca(λi − λn)

1− ηmca − ηmcaλn
< 1 (28)

then the condition (27) is straightforward.
We first prove the left inequality. Clearly, since λ1 > · · · >

λn ≥ 0 and 0 < ηmca ≤ 0.5, the numerator

ηmca(λi − λn) > 0, ∀i ∈ {1, . . . , n− 1} (29)

and the denominator

1− ηmca − ηmcaλn > 1− ηmca − ηmcaλ1

> 0.5− ηmcaλ1, ∵ ηmca < 0.5

> 0, ∵ ηmcaλ1 < 0.5 (30)

To prove the right inequality, it holds

iff, ηmca(λi − λn) < 1− ηmca − ηmcaλn

iff, ηmca(λ1 − λn) < 1− ηmca − ηmcaλn

iff, ηmcaλ1 < 1− ηmca

iff, 0.5 < 1− ηmca, which is true

Lemma 3. Let Ci =
[

ai(0)
an(0)

]
then,

ai(k) = Ciσ
k
i an(k), ∀i ∈ {1, . . . , n− 1} (31)

an(k) = 1√∑n−1
j σ2k

j C2
j + 1

(32)

Proof: Using Equation (23) and the condition (30), we get

ai(k+ 1)

an(k+ 1)
=
[

1− ηmca − ηmcaλi

1− ηmca − ηmcaλn

]
·
[

ai(k)

an(k)

]
,

∀i ∈ {1, . . . , n− 1} =
[

1− ηmca(λi − λn)

1− ηmca − ηmcaλn

]
·
[

ai(k)

an(k)

]

= σi ·
[

ai(k)

an(k)

]

= σk+1
i ·

[
ai(0)

an(0)

]

This implies,

ai(k) = Ciσ
k
i an(k), ∀i ∈ {1, . . . , n− 1}
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Using the result from Lemma 1 and substituting for i= n,
we get

an(k) = Vk
nan(0)√∑n

j V2k
j a2

j (0)

= 1√∑n−1
j

( Vj

Vn

)2k( aj(0)

an(0)

)2 + 1

= 1√∑n−1
j σ2k

j C2
j + 1

Lemma 3 gives an expression for each of the coeffi-
cients. Since an(k) is bounded (0 < an(k) < 1), ai(k)’s
(∀i ∈ {1, · · · , n− 1}) belong to a family of exponential-decay
functions: Cian(k)e−kln(1/σi). Therefore,

lim
k→∞

ai(k) = 0, ∀i ∈ 1, . . . , n− 1 (33)

lim
k→∞

an(k) = 1 (34)

Therefore, from (21) wmca(k) converges to the minor-component
vector vn.

Theorem 1. Let τ
1/2
i denote the half-life period of ai(k), then the

following inequality holds:

τ
1/2
1 < · · · < τ

1/2
n−1 (35)

Proof: Since an(k) is bounded (0 < an(k) < 1), ai(k)’s (∀i ∈
{1, . . . , n− 1}) belong to a family of exponential-decay func-

tions: Cian(k)e−kln(1/σi). Half-life period τ
1/2
i is the time when the

value ai(k) becomes equal to half its initial value. Therefore,

Cian(k)σk
i = Cian(0)/2

Using Lemma 3 and simplifying we get,

k = − ln(2)

lnσi
+ 0.5

lnσi
×
∑n−1

j σ2k
j C2

j + 1∑n−1
j C2

j + 1
(36)

Let us denote the term

∑n−1
j σ2k

j C2
j + 1∑n−1

j C2
j + 1

as ξ . It is clearly evident

by using Lemma 2 that for k > 0, 0 < ξ < 1 and ξ is a mono-
tonically decreasing function w.r.t k. However, for larger values
of k and for consecutive σi’s, ξ can be assumed to be a constant.
Substituting the term ξ in Equation (36), we get

τ
1/2
i = − ln(2)− 0.5 ∗ ln(ξ )

lnσi

= ln(2)− 0.5 ∗ ln(ξ )

ln(1/σi)
(37)

Therefore, from Equation (37) and Lemma 2 we have,

τ
1/2
j−1 < τ

1/2
j , ∀j ∈ {2, . . . , n− 1} (38)

Theorem 1 gives the order in which the individual components
ai(k) decay over time.

Theorem 2. Given two input distributions x1, x2 ∈ Rn and the
eigendecomposition of their corresponding expected correlation-
matrix: {v1

i , λ
1
i }, {v2

i , λ2
i }, ∀i ∈ {1, . . . , n}, where v denotes the set

of eigenvectors and λ their corresponding eigen-values (λ1 > · · · >
λn ≥ 0). For an ηmca that satisfies,

ηmcaλ1
1 < 0.5 , ηmcaλ2

1 < 0.5 (39)

Then, the signal with a lower σn−1 will have quicker convergence
and therefore quicker learning progress.

Proof: From Theorem 1, it is clear that, the weight-vector wmca(k)
converges to the minor component vn when the penultimate coef-
ficient an−1(k) tends to 0. Therefore, a signal with lower σn−1 will

have a lower half-life period τ
1/2
n−1 and hence the weight-vector

wmca(k) converges quicker.

Definition 2. We therefore define �(x) as a measure to indicate
the learning progress of CIMCA for an input-distribution x equal to
σth

n−1 value, that is,

�(x) =
[

1− ηmca(λn−1 − λn)

1− ηmca − ηmcaλn

]
(40)

5. CONCLUSIONS
A CD-MISFA agent autonomously explores multi-context envi-
ronments. Compact context representations are learned from
high-dimensional inputs through incremental slow feature anal-
ysis. Intrinsic rewards for measurable learning progress tell the
agent which context is temporarily “interesting,” and when to
actively engage in/disengage from a context or task. Such mech-
anisms are necessary from a computational perspective, and
biological systems have evolved methods of achieving similar
functional roles. In particular, while cortical regions of the brain
are involved in unsupervised learning from sensory data (among
other things), neuromodulatory systems are responsible for pro-
viding intrinsic rewards through dopamine, and regulating levels
of attention to allow for task engagement and disengagement
through norepinephrine. As artificial and robotic agents become
increasingly sophisticated, they will not only look to biological
solutions for inspiration, but may begin to resemble those solu-
tions simply through the pressure of computational constraints.

ACKNOWLEDGMENTS
We thank the IDSIAni for many stimulating discussions. This
work was funded through the 7th framework program of the
EU under grants #231722 (IM-CLeVeR project) and #270247
(NeuralDynamics project), and through SNF grant #138219
(Theory and Practice of Reinforcement Learning II).

Frontiers in Neurorobotics www.frontiersin.org May 2013 | Volume 7 | Article 9 | 140

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Luciw et al. Curious Dr. MISFA

REFERENCES
Aston-Jones, G., Chiang, C., and

Alexinsky, T. (1991). Discharge
of noradrenergic locus coeruleus
neurons in behaving rats and
monkeys suggests a role in
vigilance. Prog. Brain Res. 88,
501–520.

Aston-Jones, G., and Cohen, J. (2005).
An integrative theory of locus
coeruleus-norepinephrine func-
tion: adaptive gain and optimal
performance. Annu. Rev. Neurosci.
28, 403–450. doi: 10.1146/annurev.
neuro.28.061604.135709

Baldassarre, G., Mannella, F.,
Fiore, V., Redgrave, P., Gurney,
K., and Mirolli, M. (2012).
Intrinsically motivated action-
outcome learning and goal-based
action recall: a system-level bio-
constrained computational model.
Neural Netw. 41, 168–187. doi:
10.1016/j.neunet.2012.09.015

Berkes, P., and Wiskott, L. (2002).
“Applying slow feature analy-
sis to image sequences yields
a rich repertoire of complex
cell properties,” in Procedings
12th International Conference
on Artificial Neural Networks
(ICANN), Madrid: Springer. doi:
10.1007/3-540-46084-5-14

Bush, G., Vogt, B., Holmes, J., Dale,
A., Greve, D., Jenike, M., et al.
(2002). Dorsal anterior cingulate
cortex: a role in reward-based
decision making. Proc. Natl.
Acad. Sci. 99, 523–528. doi:
10.1073/pnas.012470999

Cohen, J., Aston-Jones, G., and
Gilzenrat, M. (2004). “A systems-
level perspective on attention and
cognitive control: guided acti-
vation, adaptive gating, conflict
monitoring, and exploitation
vs. exploration, chapter 6,” in
Cognitive, ed M. I. Posner (New
York, NY: Guilford Press), 71–90.

Cohen, J., and O’ Reilly, R. (1996).
“A preliminary theory of the
interactions between prefrontal
cortex and hippocampus that con-
tribute to planning and prospective
memory,” Prospective Memory:
Theory and Applications, eds M.
Brandimonte, G. O. Einstein, and
M. A. McDaniel (New Jersey, NJ:
Erlbaum), 267–295.

Cui, Y., and Weng, J. (2000).
Appearance-based hand sign
recognition from intensity image
sequences. Comput. Vis. Image
Underst. 78, 157–176. doi: 10.1006/
cviu.2000.0837

Dayan, P., and Abbott, L. (2001).
Theoretical Neuroscience: Computa-
tional and Mathematical Modeling of
Neural Systems. MIT press.

Dayan, P., and Yu, A. (2006). Phasic
norepinephrine: a neural inter-
rupt signal for unexpected
events. Network 17, 335–350.
doi: 10.1080/09548980601004024

Franzius, M., Sprekeler, H., and
Wiskott, L. (2007). Slowness and
sparseness lead to place, head-
direction, and spatial-view cells.
PLoS Comput. Biol. 3:e166. doi:
10.1371/journal.pcbi.0030166

Fyhn, M., Hafting, T., Treves, A.,
Moser, M., and Moser, E. (2007).
Hippocampal remapping and grid
realignment in entorhinal cortex.
Nature 446, 190–194. doi: 10.1038/
nature05601

Guedalia, I., London, M., and Werman,
M. (1999). An on-line agglomera-
tive clustering method for nonsta-
tionary data. Neural Comput. 11,
521–540. doi: 10.1162/089976699
300016755

Hafting, T., Fyhn, M., Molden, S.,
Moser, M., and Moser, E. (2005).
Microstructure of a spatial map in
the entorhinal cortex. Nature 801.
doi: 10.1038/nature03721 /margin-
parQ: Volume

Ishii, S., Yoshida, W., and Yoshimoto,
J. (2002). Control of exploitation–
exploration meta-parameter in
reinforcement learning. Neural
Netw. 15, 665–687. doi: 10.1016/
S0893-6080(02)00056-4

Jolliffe, I. (2005). Principal Component
Analysis. New York, NY: Wiley
Online Library.

Kakade, S., and Dayan, P. (2002).
Dopamine: generalization and
bonuses. Neural Netw. 15, 549–559.
doi: 10.1016/S0893-6080(02)
00048-5

Kane, M., and Engle, R. (2002). The
role of prefrontal cortex in working-
memory capacity, executive atten-
tion, and general fluid intelligence:
an individual-differences perspec-
tive. Psychon. Bull. Rev. 9, 637–671.
doi: 10.3758/BF03196323

Kaplan, F., and Oudeyer, P. (2007).
In search of the neural cir-
cuits of intrinsic motivation.
Front. Neurosci. 1:225. doi:
10.3389/neuro.01.1.1.017.2007

Kompella, V., Luciw, M., Stollenga,
M., Pape, L., and Schmidhuber,
J. (2012a). “Autonomous learning
of abstractions using curiosity-
driven modular incremental slow
feature analysis,” in Proceedings.
Joint International Conference
Development and Learning and
Epigenetic Robotics (ICDL-
EPIROB-2012), San Diego,
CA. doi: 10.1109/DevLrn.2012.
6400829

Kompella, V. R., Luciw, M. D.,
and Schmidhuber, J. (2012b).

Incremental slow feature anal-
ysis: adaptive low-complexity
slow feature updating from high-
dimensional input streams. Neural
Comput. 24, 2994–3024. doi:
10.1162/NECO_a_00344

Kreyszig, E. (1988). Advanced
Engineering Mathematics. New
York, NY: Wiley.

Lagoudakis, M., and Parr, R. (2003).
Least-squares policy itera-
tion. J. Mach. Learn. Res. 4,
1107–1149.

Lange, S., and Riedmiller, M. (2010).
“Deep learning of visual control
policies,” in European Symposium
on Artificial Neural Networks,
Computational Intelligence and
Machine Learning (ESANN),
(Bruges, Belgium).

Lee, M., Meng, Q., and Chao, F.
(2007). Staged competence learn-
ing in developmental robotics.
Adapt. Behav. 15, 241–255. doi:
10.1177/1059712307082085

Lopes, M., and Oudeyer, P. (2012).
“The strategic student approach
for life-long exploration and learn-
ing,” in Proceedings of the 2012
IEEE Conference on Development
and Learning and Epigenetic Robotics
(ICDL-EPIROB-2012), San Diego.

Luciw, M., Kompella, V. R.,
and Schmidhuber, J. (2012).
“Hierarchical incremental slow
feature analysis,” in Workshop on
Deep Hierarchies in Vision, Vienna.

Luciw, M., and Schmidhuber, J. (2012).
“Low complexity proto-value func-
tion learning from sensory obser-
vations with incremental slow fea-
ture analysis,” in Proceedings of the
22nd International Conference on
Artificial Neural Networks (ICANN),
Lausanne. doi: 10.1007/978-3-642-
33266-1_35

Lungarella, M., Metta, G., Pfeifer,
R., and Sandini, G. (2003).
Developmental robotics: a sur-
vey. Connect. Sci. 15, 151–190. doi:
10.1080/09540090310001655110

Mahadevan, S., and Maggioni, M.
(2007). Proto-value functions: a
laplacian framework for learning
representation and control in
markov decision processes. J. Mach.
Learn. Res. 8, 2169–2231.

Meunier, M., Bachevalier, J., and
Mishkin, M. (1997). Effects of
orbital frontal and anterior cingu-
late lesions on object and spatial
memory in rhesus monkeys.
Neuropsychologia. 35, 999–1015.
doi: 10.1016/S0028-3932(97)
00027-4

Miller, E. (2000). The prefrontal
cortex and cognitive control.
Nat. Rev. Neurosci. 1, 59–66. doi:
10.1038/35036228

Mugan, J., and Kuipers, B. (2012).
Autonomous learning of high-level
states and actions in continuous
environments. IEEE Trans. Auton.
Mental Dev. 4, 70–86.

Murase, H., and Nayar, S. (1995).
Visual learning and recognition of
3-d objects from appearance. Int.
J. Comput. Vis. 14, 5–24. doi:
10.1007/BF01421486

Ngo, H., Ring, M., and Schmidhuber,
J. (2011). “Compression progress-
based curiosity drive for
developmental learning,” in
Proceedings of the 2011 IEEE
Conference on Development and
Learning and Epigenetic Robotics
(ICDL-EPIROB-2011), Frankfurt.
doi: 10.3389/conf.fncom.2011.52.
00003

Oja, E. (1992). Principal compo-
nents, minor components,
and linear neural networks.
Neural Netw. 5, 927–935. doi:
10.1016/S0893-6080(05)80089-9

O’Keefe, J., and Dostrovsky, J. (1971).
The hippocampus as a spatial
map: preliminary evidence from
unit activity in the freely-moving
rat. Brain Res. 34, 171–175. doi:
10.3410/f.13284975.14644075

Pape, L., Gomez, F., Ring, M., and
Schmidhuber, J. (2011). “Modular
deep belief networks that do not
forget,” in Proceedings of the 2011
International Joint Conference
on Neural Networks (IJCNN),
(San Jose, CA), 1191–1198. doi:
10.1109/IJCNN.2011.6033359

Peng, D., and Yi, Z. (2006). A new algo-
rithm for sequential minor compo-
nent analysis. Int. J. Comput. Intell.
Res. 2, 207–215.

Peng, D., Yi, Z., and Luo, W. (2007).
Convergence analysis of a simple
minor component analysis algo-
rithm. Neural Netw. 20, 842–850.
doi: 10.1016/j.neunet.2007.07.001

Prince, C., Helder, N., and Hollich, G.
(2005). “Ongoing emergence: a core
concept in epigenetic robotics,” in
Proceedings of the 5th International
Workshop on Epigenetic Robotics:
Modeling Cognitive Development in
Robotic Systems. Nara, Japan: Lund
University Cognitive Studies.

Rao, S., Rainer, G., and Miller, E.
(1997). Integration of what and
where in the primate prefrontal
cortex. Science 276, 821–824. doi:
10.1126/science.276.5313.821

Redgrave, P., and Gurney, K. (2006).
The short-latency dopamine signal:
a role in discovering novel actions?
Nat. Rev. Neurosci. 7, 967–975. doi:
10.1038/nrn2022

Redgrave, P., Prescott, T., and Gurney,
K. (1999). Is the short-latency
dopamine response too short

Frontiers in Neurorobotics www.frontiersin.org May 2013 | Volume 7 | Article 9 | 141

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Luciw et al. Curious Dr. MISFA

to signal reward error? Trends
Neurosci. 22, 146–151.

Ring, M. (1994). Continual Learning
in Reinforcement Environments.
PhD thesis, University of Texas at
Austin.

Rolls, E., Everitt, B., Roberts, A.,
Rolls, E., Everitt, B., and Roberts,
A. (1996). The orbitofrontal cor-
tex [and discussion]. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 351,
1433–1444. doi: 10.1098/rstb.1996.
0128

Rolls, E., Hornak, J., Wade, D., and
McGrath, J. (1994). Emotion-
related learning in patients with
social and emotional changes asso-
ciated with frontal lobe damage. J.
Neurol. Neurosurg. Psychiatry, 57,
1518–1524. doi: 10.1136/jnnp.57.
12.1518

Sanger, T. (1989). Optimal unsuper-
vised learning in a single-layer linear
feedforward neural network. Neural
Netw. 2, 459–473.

Sara, S. (2009). The locus coeruleus
and noradrenergic modulation of
cognition. Nat. Rev. Neurosci. 10,
211–223. doi: 10.1038/nrn2573

Schaal, S., and Atkeson, C. (1998).
Constructive incremental learn-
ing from only local information.
Neural Comput. 10, 2047–2084. doi:
10.1162/089976698300016963

Schmidhuber, J. (1991). “Curious
model-building control systems,” in
Proceedings of the International Joint
Conference on Neural Networks,
Singapore, Vol. 2. (Seattle, WA:
IEEE press), 1458–1463. doi:
10.1109/IJCNN.1991.170605

Schmidhuber, J. (1997). What’s
interesting? Technical Report
IDSIA-35-97, IDSIA. Available
online at: ftp://ftp.idsia.ch/pub/
juergen/interest.ps.gz; extended
abstract in Proc. Snowbird’98,

Utah, 1998; see also Schmidhuber
(2002).

Schmidhuber, J. (2002). “Exploring
the predictable,” in Advances
in Evolutionary Computing,
eds A. Ghosh and S. Tsuitsui
(Springer), 579–612. doi:
10.1007/978-3-642-18965-4_23

Schmidhuber, J. (2006). Developmental
robotics, optimal artificial curios-
ity, creativity, music, and the fine
arts. Connect. Sci. 18, 173–187. doi:
10.1080/09540090600768658

Schmidhuber, J. (2010). Formal theory
of creativity, fun, and intrinsic moti-
vation (1990–2010). IEEE Trans.
Auton. Mental Dev. 2, 230–247. doi:
10.1109/TAMD.2010.2056368

Schmidhuber, J. (2011). Powerplay:
training an increasingly general
problem solver by continually
searching for the simplest still
unsolvable problem. arXiv:1112.
5309v1 [cs.AI].

Schultz, W. (1998). Predictive reward
signal of dopamine neurons. J.
Neurophysiol. 80, 1–27.

Schultz, W., Dayan, P., and Montague,
P. (1997). A neural substrate
of prediction and reward.
Science 275, 1593–1599. doi:
10.1126/science.275.5306.1593

Shannon, C., Weaver, W., Blahut,
R., and Hajek, B. (1949).
The Mathematical Theory of
Communication, Vol. 117. Urbana:
University of Illinois press.

Sprekeler, H. (2011). On the rela-
tion of slow feature analysis
and laplacian eigenmaps. Neural
Comput. 23, 3287–3302. doi:
10.1162/NECO_a_00214

Srivastava, R. K., Steunebrink, B. R.,
and Schmidhuber, J. (2013). First
Experiments with POWERPLAY.
Neural Netw. 41, 130–136. doi:
10.1016/j.neunet.2013.01.022

Sutton, R., and Barto, A. (1998).
Reinforcement Learning: An
Introduction. Cambridge, UK:
MIT Press.

Sutton, R., Precup, D., and Singh, S.
(1999). Between mdps and semi-
mdps: a framework for temporal
abstraction in reinforcement learn-
ing. Artif. Intell. 112, 181–211. doi:
10.1016/S0004-3702(99)00052-1

Taube, J., Muller, R., and Ranck,
J. (1990). Head-direction cells
recorded from the postsubiculum
in freely moving rats. i. descrip-
tion and quantitative analysis. J.
Neurosci. 10, 420.

Turk, M., and Pentland, A. (1991).
“Face recognition using eigen-
faces,” in Proceedings IEEE
Computer Society Conference on
Computer Vision and Pattern
Recognition (CVPR), (Cambridge,
MA: MIT press), 586–591. doi:
10.1109/CVPR.1991.139758

Usher, M., Cohen, J., Servan-Schreiber,
D., Rajkowski, J., and Aston-
Jones, G. (1999). The role of
locus coeruleus in the regula-
tion of cognitive performance.
Science 283, 549–554. doi:
10.1126/science.283.5401.549

Weng, J., McClelland, J., Pentland, A.,
Sporns, O., Stockman, I., Sur, M.,
et al. (2001). Autonomous men-
tal development by robots and ani-
mals. Science 291, 599–600. doi:
10.1126/science.291.5504.599

Weng, J., Zhang, Y., and Hwang,
W. (2003). Candid covariance-free
incremental principal component
analysis. IEEE Trans. Pattern Anal.
Mach. Intell. 25, 1034–1040. doi:
10.1109/TPAMI.2003.1217609

Wiskott, L. (2003). Estimating driv-
ing forces of nonstationary time
series with slow feature analysis.
arXiv.org 1–8. Available online

at: http://arxiv.org/abs/cond-mat/
0312317

Wiskott, L., and Sejnowski, T. (2002).
Slow feature analysis: unsuper-
vised learning of invariances.
Neural Comput. 14, 715–770. doi:
10.1162/089976602317318938

Zhang, D., Zhang, D., Chen, S., Tan,
K., and Tan, K. (2005). Improving
the robustness of online agglom-
erative clustering method based
on kernel-induce distance measures.
Neural Process. Lett. 21, 45–51. doi:
10.1007/s11063-004-2793-y

Zhang, Y., and Weng, J. (2001).
Convergence analysis of complemen-
tary candid incremental principal
component analysis. East Lansing,
MI: Michigan State University.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 02 December 2012; accepted:
08 May 2013; published online: 30 May
2013.
Citation: Luciw M, Kompella V,
Kazerounian S and Schmidhuber J
(2013) An intrinsic value system for
developing multiple invariant repre-
sentations with incremental slowness
learning. Front. Neurorobot. 7:9. doi:
10.3389/fnbot.2013.00009
Copyright © 2013 Luciw, Kompella,
Kazerounian and Schmidhuber. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Neurorobotics www.frontiersin.org May 2013 | Volume 7 | Article 9 | 142

ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz
ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz
http://arxiv.org/abs/cond-mat/0312317
http://arxiv.org/abs/cond-mat/0312317
http://dx.doi.org/10.3389/fnbot.2013.00009
http://dx.doi.org/10.3389/fnbot.2013.00009
http://dx.doi.org/10.3389/fnbot.2013.00009
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


NEUROROBOTICS
ORIGINAL RESEARCH ARTICLE

published: 02 April 2013
doi: 10.3389/fnbot.2013.00006

Rare neural correlations implement robotic conditioning
with delayed rewards and disturbances
Andrea Soltoggio*, Andre Lemme, Felix Reinhart and Jochen J. Steil

Faculty of Technology, Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Bielefeld, Germany

Edited by:
Jeffrey L. Krichmar, University of
California Irvine, USA

Reviewed by:
Denis Sheynikhovich, Universite
Pierre et Marie Curie, France
Eiji Uchibe, Okinawa Institute of
Science and Technology, Japan

*Correspondence:
Andrea Soltoggio, Faculty of
Technology, Research Institute for
Cognition and Robotics (CoR-Lab),
Bielefeld University, Universitaet
Strasse 25, 33615 Bielefeld, Germany.
e-mail: andrea@soltoggio.net

Neural conditioning associates cues and actions with following rewards.The environments
in which robots operate, however, are pervaded by a variety of disturbing stimuli and
uncertain timing. In particular, variable reward delays make it difficult to reconstruct which
previous actions are responsible for following rewards. Such an uncertainty is handled
by biological neural networks, but represents a challenge for computational models, sug-
gesting the lack of a satisfactory theory for robotic neural conditioning. The present study
demonstrates the use of rare neural correlations in making correct associations between
rewards and previous cues or actions. Rare correlations are functional in selecting sparse
synapses to be eligible for later weight updates if a reward occurs. The repetition of this
process singles out the associating and reward-triggering pathways, and thereby copes
with distal rewards. The neural network displays macro-level classical and operant con-
ditioning, which is demonstrated in an interactive real-life human-robot interaction. The
proposed mechanism models realistic conditioning in humans and animals and implements
similar behaviors in neuro-robotic platforms.

Keywords: classical conditioning, instrumental conditioning, distal reward, robotics, neuromodulation

1. INTRODUCTION
In reward learning, the results of actions, manifested as rewards
or punishments, occur often seconds after the actions that caused
them. For this reason, it is not always easy to determine which
previous stimuli and actions are causally associated with follow-
ing rewards. This problem was named distal reward problem (Hull,
1943), or credit assignment problem (Sutton and Barto, 1998).
This problem and the ability of animals to solve it emerged orig-
inally in behavioral psychology (Thorndike, 1911; Pavlov, 1927;
Skinner, 1953). More generally, the distal reward problem can be
seen as a particular instance of the broader ontological problem
of discovering apparent cause-effect relationships in the external
world. The ability of determining such relationships is distinctive
of human and animal intelligence.

Such abilities were observed for example by Pavlov (1927), who
induced a dog to believe that the ringing of a bell predicted the
arrival of food. After conditioning, the ringing of the bell alone
triggered salivation. Thorndike (1911) was also the first to describe
how animals learn from experience which course of actions leads
to best outcomes. Even organisms with relatively simple neural sys-
tems, like the marine mollusk Aplysia, are capable of associating
neutral stimuli with following noxious stimuli in classical (Kan-
del and Tauc, 1965; Carew et al., 1981) and operant conditioning
(Brembs et al., 2002). The capability of discovering relationships
among stimuli, actions, and rewards in the world is therefore not
a prerogative of human cognition, but it is also largely exploited
in animal intelligence. Such a notion implies that relatively basic
neural dynamics, as those of the Aplysia, can associate stimuli,
actions, and reward across time and lead to what can be seen as
a primordial version of temporal inductive inference (Osherson
et al., 1990).

An important topic in neural computation is the understand-
ing of how small neural networks discover relationships among
events, even in the presence of interfering stimuli, or considerable
time delays between cues, actions, and outcomes. One hypothesis
that has gathered consensus in the last decade is that of synaptic
tagging (Frey and Morris, 1997; Redondo and Morris, 2011) or
eligibility traces (Wang et al., 2000; Sarkisov and Wang, 2008). The
idea is that particular neural events, deriving for example from
performing an action or perceiving a cue, leave slowly decaying
traces in the network. The traces expire for unrelated and disturb-
ing stimuli, but get promoted to long term synaptic changes when
a reward follows. The utility of synaptic tags in the solution of the
distal reward problem was shown in simulation in Päpper et al.
(2011).

Conditioning occurs with the delivery of rewards or pun-
ishments in the form of pleasant or noxious stimuli. Reward
signals were found to be mediated both in vertebrate and inver-
tebrate organisms by neuromodulation (Carew et al., 1981; Ham-
mer, 1993; Schultz et al., 1993; Menzel and Müller, 1996). The
increasing evidence of the important role of neuromodulation in
reward-driven learning led to the formulation of models of mod-
ulated plasticity with rate-based neurons (e.g., Montague et al.,
1996; Alexander and Sporns, 2002; Sporns and Alexander, 2002;
Ziemke and Thieme, 2002; Soltoggio et al., 2008; Soltoggio and
Stanley, 2012), and with spiking neurons and modulated spike-
timing-dependent-plasticity (STDP) (Soula et al., 2005; Farries
and Fairhall, 2007; Florian, 2007; Legenstein et al., 2008; Potjans
et al., 2009, 2011; Vasilaki et al., 2009). This evidence suggests that
neuromodulation is both a biological (Schultz et al., 1993, 1997;
Hasselmo, 1995) and a computational (Montague et al., 1996;
Porr and Wörgötter, 2007) effective medium to convey reward
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information to a neural substrate. Neuromodulation, however,
involves a variety of modulatory chemicals, which are observed
to regulate a spectrum of neural functions, from arousal to atten-
tion, exploration, exploitation, memory consolidation, and other
(Hasselmo, 1995; Marder and Thirumalai, 2002; Aston-Jones and
Cohen, 2005). The implementation of such functions is investi-
gated in a number of computational models (Fellous and Linster,
1998; Doya, 1999, 2002) and neural robotic controllers (Krich-
mar, 2008; Cox and Krichmar, 2009), in particular with focus on
the role of neuromodulation in attention (Avery et al., 2012).

Relatively few studies focus on the particular neural mecha-
nisms that bridge the temporal gap between sequences of cues,
actions, and rewards (Izhikevich, 2007; Päpper et al., 2011; Soltog-
gio and Steil, 2013). In Izhikevich (2007), the precise spike-timing
of neurons was indicated as the essential feature to perform classi-
cal and operant conditioning with modulated STDP. This position
was challenged in a recent study (Soltoggio and Steil, 2013) in
which the rarity of both correlating neural activity and eligibility
traces was identified as the main feature that allowed for the solu-
tion of the distal reward problem also in rate-based models. The
rarity of correlations was shown in simulation to be responsible
for selecting rare neural events. Such events are then propagated
further in time and enable weight updates if rewards occur.

The identification of the neural principles that solve the distal
reward problem is fundamental in understanding how biological
networks find relationships among stimuli and improve behav-
ioral responses over time. Robots provide a realistic means for
testing computational models that deal with similar timing and
complexity of sensory information as those of living organisms.
Cognitive developmental robotics (Asada et al., 2001), for exam-
ple, is an area in which human feedback is used during learning.
In such contexts, the asynchrony of flows of inputs and outputs
implies that a learning neural network must cope with imprecise
timing and unreliability of signals and actions. When people pro-
vide cues and feedback in a human-robot interaction, different
operators, errors, and disturbances create a complex input-output
pattern from which to extract correct relationships among stimuli
and actions.

The principle of rare correlations, first introduced in Soltoggio
and Steil (2013), is tested in the current study precisely in robotic
scenarios in which learning is guided by human feedback. Clas-
sical and operant conditioning are tested in a setting in which a
neural network serves as controller. Inputs from the robot cam-
eras (the eyes) and tactile sensors (on the hands) are processed
by a neural network, which in turn controls robotic actions like
displaying a smiling expression, recognizing the tutor and learn-
ing to identify the correct color of objects. The learning is guided
by the rewards given by the human participants, specifically the
tutor, who interacts with the robot in a natural and spontaneous
way, thereby affecting the robot perception with uncertain tim-
ing, delayed reward and disturbances. The successful achievement
of conditioning and of behavior reversal proves the validity of
the method to simulate realistic conditioning with the proposed
neural model.

This paper is organized as follows. The principle of rare corre-
lations and the plasticity mechanism are explained in Section 2.
The robotic experimental settings, the conditioning problems and

the details of the learning networks are illustrated in Section 3. The
results, including both robotic runs and simulations, are presented
in Section 4 and discussed in more detail in Section 5. The paper
ends with concluding remarks in Section 6. An appendix provides
further implementation details.

2. USING RARE CORRELATIONS TO SOLVE THE DISTAL
REWARD PROBLEM

When a reward occurs, several previous cues and actions are, in
general, equally likely to be the cause. One trial is therefore not
enough to understand the correct relationship. When more trials
are attempted with variable conditions, the responsible cues and
actions will be invariant and always present, whereas the disturb-
ing and unrelated cues and actions may change from trial to trial.
How can a neural network discern, over multiple trials, which
stimuli and actions lead to rewards, and which are instead unre-
lated? Secondly, how can the network make the association despite
the temporal gap, or delay, between stimuli, actions, and rewards?

Eligibility traces (Wang et al., 2000; Sarkisov and Wang, 2008)
or synaptic tags (Frey and Morris, 1997; Redondo and Morris,
2011) are synapse-specific values with relatively slow dynamics
believed to express the eligibility of a specific synapse for later
changes. The duration of traces must be at least as long as the
delays between cues, actions, and rewards. A reward is generally
conveyed by means of a modulatory signal (Montague et al., 1996;
Farries and Fairhall, 2007; Florian,2007; Porr and Wörgötter,2007;
Soltoggio et al., 2008; Pfeiffer et al., 2010). However, when rewards
are delayed, the neural activity that caused such reward is not
present anymore. When rewards are delayed, modulation cannot
act on the current neural activity, because that may not be related
to the present reward. In such cases, it makes sense that mod-
ulation multiplies the eligibility traces to give a weight update.
Such a modulatory signal changes the synaptic weights of those
synapses that are eligible, and leaves the other synapses unchanged
(Izhikevich, 2007; Päpper et al., 2011; Soltoggio and Steil, 2013).
One fundamental and open question in this approach is what rule
promotes or downgrades synapses to be eligible or ineligible at
any time. Izhikevich (2007) uses the precise spike-timing to cre-
ate traces according to a traditional STDP rule. Alternatively, the
principle of rare correlations (Soltoggio and Steil, 2013), also used
in the present study, prescribes that spiking neurons are not nec-
essary so long as traces express correlating events and are created
parsimoniously. The fundamental aspects in the creation of traces
is the maintenance of a low balance of traces with respect to the
overall number of synapses. Those rare traces allow the network
to isolate the reward-triggering synapses in a few trials. The decay
time of traces is related to their production rate, in a way that
longer-lasting traces can be maintained if the rate of production is
further decreased. By means of this balance, rewards with longer
delays can be correctly associated with previous cues and actions.

The principle is illustrated by the following example. Assume
that in a relatively small network with 100,000 synapses, high activ-
ity across one single synapse σ triggers a reward. Such a reward,
however, is delivered with a delay between 1 and 3 s. Assume that
correlations between connected neurons across the whole network
are 1%/s of the total number of synapses. Those correlations gen-
erate eligibility traces at the specific synapses. If the traces have a
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time constant of 1 s, they decay exponentially and are negligible
after 3 s. Therefore, at any time, approximately 3,000 synapses are
eligible (i.e., 3% of the total). When correlating activity across σ
triggers a reward, which is conveyed as a modulatory signal to the
whole network, the reward episode reinforces approximately 3,000
synapses (the eligible synapses). In other words, the synapse σ
caused a reward, but because the network is not silent and because
the reward is delayed, thousand of other synapses also carried
correlating activity before the reward delivery. If σ carries corre-
lating activity more times, and more rewards are delivered, each
time approximately 3,000 random synapses are reinforced. Onlyσ ,
because is the reward-triggering synapse, is reinforced consistently.
Other synapses that are reinforced consecutively by chance become
fewer and fewer at each reward episode. The number of synapses
that are reinforced twice consecutively is the 3% of 3%, i.e., 0.09%,
or 90 synapses from a total of 100,000. After only four reward
episodes, 0.034

= 0.0027%, i.e., three or fewer synapses have been
reinforced consecutively. By the fifth reward episode, σ is likely
to be the only synapse that was reinforced consistently. Thus, the
use of rare correlations allows for a logarithmic-like search among
noisy and spontaneous network activity where one single synapse
among hundred of thousand triggers a reward. For more detail of
this experiment, see (Soltoggio and Steil, 2013).

If correlations are not rare, e.g., 10%/s of the total or more,
too many synapses are reinforced at each reward episode, caus-
ing some synapses to reach high values even when they are not
triggering a reward. The rarer the correlations, the fewer are the
unrelated synapses that are reinforced, and therefore the learning
is more precisely targeted to the reward-triggering synapses. On
the other hand, extremely rare correlations results in a network
that selects synapses for reinforcement on a very sporadic basis,
thereby resulting in a robust but slower learning.

The principle of rare correlations leads to the question of what
rule can be used to extract them from the neural activity. The
rarely correlating Hebbian plasticity (RCHP) was proposed in
Soltoggio and Steil (2013) to address this question. This mech-
anism, described in detail in the next section, is employed for the
first time in this study with a neuro-robotic experiment to learn
associations of stimuli, actions, and rewards.

2.1. RARELY CORRELATING HEBBIAN PLASTICITY
The Rarely Correlating Hebbian Plasticity (RCHP) (Soltoggio and
Steil, 2013) is a type of Hebbian plasticity that filters out the major-
ity of correlations and produces non-zero values only for a small
percentage of synapses. Rate-based neurons can use a Hebbian
rule augmented with two thresholds to extract low percentages of
correlations and decorrelations. The RCHP rule is expressed by

RCHPji (t ) =


+α if vj

(
t − tpt

)
· vi (t ) > θhi

+β if vj
(
t − tpt

)
· vi (t ) < θlo

0 otherwise

(1)

where j and i are a presynaptic and a postsynaptic neuron,α and β
two positive learning rates (in this study set to 0.1) for correlating
and decorrelating synapses respectively, v(t ) is the neural output,
tpt is the propagation time of the signal from the presynaptic to

the postsynaptic neuron, and θhi and θ lo are the thresholds that
detect highly correlating and highly decorrelating activities.

The rule expressed by equation (1) has two main features. The
first is that the majority of neural activity does not correlate. Only
a small percentage of synapses, determined by the thresholds θhi

and θ lo, has correlating values different from zero. This feature
makes the RCHP different from a classical Hebbian rule in which
all activity correlates along a continuous spectrum of values. A
neural model that modulates classical Hebbian plasticity changes
all synapses to a various extent because all synapses that carry
non-zero activity are expected to correlate. Such an overall weight
change can potentially wipe existing neural connections without
reinforcing sufficiently those synapses that are responsible for a
reward. On the contrary, the RCHP rule extracts a small per-
centage of synapses to be eligible for a weight update, leaving
the majority of synapses unchanged and stable. A second feature
of the RCHP rule is that detected correlations attempt to capture
the cause-effect relationship of signal propagation across synapses.
Similarly to STDP, when a high presynaptic activity value leads to
a high postsynaptic activity value, the event is captured by the
RCHP rule. In fact, the activity of the presynaptic neuron at time
t is multiplied by the activity of the postsynaptic neuron at time
t + tpt, which is the time when the signal from the presynaptic
neuron reaches the postsynaptic neuron. It is later explained that
the propagation time and sampling time can be equivalent. In this
way, the time window for detecting a correlation is effectively one
time step.

The thresholds θhi and θ lo are estimated online to target an aver-
age rateµ of approximately 0.5%/s of rare correlations. θhi and θ lo

are assigned initially arbitrary values of 0.1 and−0.1 respectively.
A first-in first-out queue of correlations cq(t ) holds the number
of correlations registered at each step during the recent past (in
this implementation for the last 10 s). If the number of measured
correlations during the last 10 s is higher than 5 times the targetµ,
i.e., higher than 2.5%, θhi is increased of a small step η= 0.002/s.
If the correlations are too few, i.e., less than 1/5µ (0.1%), the
threshold is decreased of the same small step. The same proce-
dure is applied to estimate θ lo. It is important to note that such
a procedure is an heuristic devised to implement a rudimentary
homeostatic mechanism to extract rare correlations. The precise
parameters used to implement the homeostasis are not particu-
larly crucial as long as correlations are rare on average. In fact,
the instantaneous rate of correlations and the long term dynamics
vary considerably according to fluctuations of the neural activity,
various input regimes, and weight changes. The self-tuning of the
thresholds, as it is used in the present algorithm, is not meant to
be a precise rule, but it is devised to ensure that, on average, only
rare correlations are detected throughout the neural network. The
large majority of synapses carry activity across neurons that do
not correlate. A summary of the algorithm above is provided in
the Appendix 6.

2.2. A NEURAL MODEL WITH ELIGIBILITY TRACES AND MODULATION
The RCHP rule acts on eligibility traces cji on each synapse between
a presynaptic neuron j and a postsynaptic neuron i. A modulatory
signal m, which is governed by a fast decay and by the exogenous
input reward r(t ), converts eligibility traces to weight changes. The
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changes of the eligibility traces cij, weights wij, and modulation m
are governed by

ċji = −cji/τc + RCHPji (t ) (2)

ẇji (t ) = m (t ) · cji (t ) (3)

ṁ (t ) = −m (t ) /τm + λ · r (t )+ b. (4)

where a reward episode at time t sets r(t )= 1, which increases the
value of m(t ) proportionally to a constant λ. A baseline mod-
ulation b can be set to a small value and has the function of
maintaining a small level of plasticity. The modulatory signal
decays relatively quickly with a time constant τm= 1 s, while traces
have τ c= 4 s. The neural state ui and output vi of a neuron i are
computed with a rate-based model expressed by

ui(t ) =
∑

j

(
wji · vj(t ) · κj

)
(5)

vi (t +1t ) =

{
tanh (γ · ui (t ))+ ξi(t ) if ui ≥ 0

ξi(t ) if ui < 0
(6)

where wji is the connection weight from a presynaptic neuron j
to a postsynaptic neuron i; κ j is +1 and −5 for excitatory and
inhibitory neurons respectively to reflect the stronger effect of less
numerous inhibitory neurons; γ is a gain parameter; ξ i(t ) is a uni-
form noise source drawn in the interval [−0.1,0.1]. The sampling
time is set to 200 ms, which is also assumed to be the propaga-
tion time tpt [equation (1)] of signals among neurons. The values
of all parameters are specified in Appendix 6. The architecture of
the network with the inputs and outputs is outlined in the next
section.

3. CONDITIONING IN A HUMAN-ROBOT INTERACTION
The principle of rare correlations is applied to a network model to
perform classical and operant conditioning with the robotic plat-
form iCub. The robot iCub and the hardware set-up are described
in the following section. The classical and operant conditioning
scenarios are illustrated in Sections 3.2 and 3.3. The learning
networks with the inputs and outputs are described in Section 3.4.

3.1. THE ROBOTIC PLATFORM
The iCub is a child-sized humanoid robot of 90 cm of height,
weighing 23 kg, and comprising 53˚ of freedom (Tsakarakis et al.,
2007). Figure 1 shows a rendered photo of the iCub interacting
with people in the experimental environment. The robot facili-
tates human-robot interaction by means of haptic sensors in the
hands, cameras, and its capability to display facial expressions.
Expressions are produced by means of light-emitting diode arrays
below the shell of the head. The position of the eye lids also add
expressivity. In the current study, the facial expressions are lim-
ited to neutral, happy, and sad. Synthesized speech is produced via
speakers mounted at the robot rack and it is used in the current
scenario to provide additional feedback.

Cameras in the artificial eyes provide visual information of
the surroundings. The visual input is used to detect people and
objects in the room. In particular, markers are attached to people
to make them easily identifiable (Figure 1). Additionally, object

FIGURE 1 |The humanoid robot iCub in the experimental environment.
The robot detects people in its field of view with the help of markers. Haptic
sensing delivers rewarding or punishing signals to the learning networks.
Gazing by means of head movements, speech output, and facial
expressions provide feedback to the human participants.

trackers signal the appearance of colored balls in the visual field
of iCub. Additional details on the type and meaning of the inputs
and outputs are explained in the following sections.

3.2. LEARNING WHO IS THE TUTOR (CLASSICAL CONDITIONING)
This experimental scenario aims at testing the capability of the
proposed network model to perform classical conditioning in a
realistic human-robot interaction.

The robot monitors the environment moving his head and
shifting its gaze over the room. This movement has the purpose
of enlarging the field of view and endowing the iCub with a natu-
rally looking behavior. The iCub is capable of recognizing different
people identified by markers. Of all the people taking part in the
experiment, one particular person is designated to be the tutor.
The tutor is a person who takes care of the iCub, and signals that
by conveying an haptic input with the touch of the iCub’s hand.
This signal represents an unconditioned stimulus that triggers an
innate, i.e., pre-wired and fixed, positive reaction. Such a reaction
corresponds also to a burst of modulatory activity as described in
following sections. The haptic input can be interpreted as the deliv-
ery of food to Pavlov’s dog. The iCub reacts to the unconditioned
stimulus displaying a smiling face expression and saying positive
sentences like “Thanks,” or “I like it.” The expression of a positive
state, which follows an unconditioned stimulus, is always related to
a burst of modulatory activity. While the iCub is constantly aware
of a number of people in the room (as shown in Figure 1), from
time to time the tutor enters the room and touches the hand of
the iCub, thereby causing a positive smiling reaction.

In classical conditioning, if a stimulus predicts consistently the
delivery of a reward, the learning process leads the agent (in this
case the robot) to react immediately when the tutor enters the
room,before any actual reward is given. The experiment in this sce-
nario tests the learning capability of the proposed network model
to associate a conditioned stimulus (CS) to a reward, also in the
presence of a number of other disturbing stimuli.
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3.3. LEARNING THE COLORS (OPERANT CONDITIONING)
A second scenario aims at testing operant conditioning, an exper-
iment in which the iCub learns by trial and error to pronounce
the correct word corresponding to the color of objects. The oper-
ant conditioning phase follows the classical conditioning only for
practical reasons. When the iCub has learnt to recognize a tutor,
it can easily follow his/her position and track colored objects.
When the iCub detects a color object, it pronounces the name
of a color. Initially, such an action is random because the iCub
has no knowledge of which color corresponds to which name. If
the color is correct, the tutor awards the iCub with a touch to the
right hand, which delivers a reward to the network. If the iCub
guesses the wrong color, the tutor ignores the answer and tries
again after a few seconds. The cue (i.e., the colored object) and the
action (i.e., the enunciation of a color) are not present anymore
when the tutor gives the feedback. Thus, the neural mechanism
that associates past actions with present rewards is tested in this
scenario.

A scheme of the inputs and outputs in the robotic scenario
is shown in Figure 2. The details of the learning network are
explained in the next section.

3.4. THE LEARNING NETWORKS
The central controller comprises two neural networks, one for clas-
sical, and one for operant conditioning. The networks do not differ
qualitatively because the modulated RCHP is capable of both oper-
ant and classical conditioning. However, due to the diverse type of
inputs and outputs in the two tasks, the two networks represent
effectively two separate areas of a neural system.

Each network has 800 excitatory neurons and 200 inhibitory
neurons whose activity and outputs are governed by equations
(2) and (3). Each neuron is connected to another neuron with
probability 0.1. All excitatory neurons have plastic afferent con-
nections that vary in the interval [0, 1] according to equation (3).
Inhibitory neurons have fixed afferent connections. The network
has therefore a random connectivity and random initial weights.

Figure 3 is a graphical representation of the two networks
with the inputs and outputs. Each person-stimulus (S1..S9) is
conveyed to the network by increasing the neuron state u by 10
for each neuron in a group of 60 randomly selected excitatory

neurons (GS1..GS9). The activity of one group of neurons (GA0),
composed of 60 randomly selected excitatory neurons, triggers the
conditioned response, i.e., it becomes active when the tutor is rec-
ognized after conditioning. The activity of a group is computed
as the sum of the output of all neurons in the group, normalized
by their number. Both networks receive a modulatory signal when
the unconditioned stimulus is given by touching the iCub’s hand.
The haptic sensor conveys a modulatory signal that acts in the
network as the signal m in equation (3).

Neurons in input groups do not receive connections from the
rest of the network. Such a topology is devised in the current
study to cope with real-world persistent and simultaneous input
signals. In fact, as opposed to Izhikevich (2007) and Soltoggio
and Steil (2013), in which stimuli were brief and impulse-like
in nature, the network in the current experiments may receive
continuous stimuli for long periods and simultaneously. Such
input regimes, combined with Hebbian-driven growth of recur-
rent loops, might induce self-sustained activity, an unwanted
regime in which neural dynamics do not respond to input any-
more. This topology assumption prevents such a problem and is
compatible with the role of input neurons.

The color trackers send inputs to the operant conditioning net-
work. These binary signals are injected raw and unprocessed in the
network through the groups of neurons GS10..S14. As opposed to
the classical conditioning network, which has only one output, the
operant conditioning network has eight different outputs, corre-
sponding to eight possible actions, i.e., the enunciation of the name
of eight different colors. Neurons in the output groups do not
project recurrent connections to the network. Such a topology is
important to prevent that high neural activity generated by actions
is feed unnecessarily back to the network. When a color-stimulus
is present, the activity levels of the output groups are monitored
for 1 s. If none of the groups reaches 30% of the maximum activity
at the end of the waiting period of 1 s, many groups might have
nearly equivalent levels of activity. In other words, when weights
are low, the network may not be able to express a clear decision
on what action to perform. To overcome this situation, the group
with the highest activity, even by a small margin, triggers the action,
which in turn increases the activity of its group and lower those
of the other groups (u is increased/decreased by 10). This change

FIGURE 2 |The robotic software and hardware architectures used to
interface the environment with the learning neural network. Inputs are
captured via cameras and haptic sensors and processed to provide a

vectorized representation to the network. The control network triggers facial
expressions, gazing behavior, and speech output depending on the neural
activity.
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FIGURE 3 | Graphical representation of the control networks (expansion
of central part of Figure 2). Two networks of 1,000 neurons each represent
two distinct neural areas to perform classical and operant conditioning. The
two networks differ only in the inputs and outputs, and in the initial random
connectivity. The binary stimuli S1..S9 indicate the presence of different
people in the visual field of the iCub and are delivered to their respective

groups of random neurons GS1..GS9. The binary stimuli S10..S14 indicate the
presence of objects of five different colors (all five colors were tested in
simulation, only two, S10 and S11, with the real robot). The actions A1..A8
correspond to the enunciation of one particular color. The haptic sensor
delivers a reward that represents the unconditioned stimulus (US). Both the
US and high activity of GA0 cause the robot to smile.

in the neural activity is in effect an action-to-network feedback
meant to inform the network of which action was performed.
These dynamics are similar to winner-take-all policies (Kaski and
Kohonen, 1994). In this way, the network can correlate correctly
the input group with the action group that corresponds to the
action performed.

The two networks are independent and can be tested indepen-
dently. Nevertheless, the conditioned stimulus in classical condi-
tioning, i.e., the tutor, is used to start the second learning phase
that tests operant conditioning. When the group GA0 responds
with high activity, signaling the presence of the tutor, the robot
switches to operant conditioning with a probability 0.1/s. This
behavioral sequence is not a central feature of the experiments but
creates a natural interactive sequence of actions, which allows the
participants and the tutor to observe both classical and operant
conditioning taking place.

4. EXPERIMENTAL RESULTS
The experiments in this section test the learning capabilities of the
control network both with the iCub robot and in simulation. The
control network is simulated with the Matlab scripts provided
as support material. The experiments were also video recorded.
Both Matlab scripts and the illustrative video can be downloaded
at the author’s associate website http://andrea.soltoggio.net/icub.
The robotic experiments require a real robot, or a robot simu-
lator. The Matlab code can be also used as a stand-alone script
with simulated input/output flow. The simulation without a real

robot is used to test precisely controlled input-output regimes and
timing which are difficult to achieve in a real-life human-robot
interaction.

4.1. CLASSICAL CONDITIONING
The experiments in this section test the classical conditioning sce-
nario previously described in Section 3.2. The experiments are
conducted with the iCub. Further tests in simulation are also
presented.

4.1.1. Real robot conditioning
The experiment was conducted by instructing nine people to
approach the iCub and remain in its visual field for a random
amount of time between a few seconds and approximately 1 min1.
The participants did not follow a particular pattern in coming and
leaving, and simply approached the robot, like visitors could do
in an open exhibition, fair, or museum. Each person was uniquely
identified by a marker as in Figure 1 and corresponded to one
stimulus in the range S1..S9. The participants could freely move
in front of the robot and were not instructed to perform particular
actions. The tutor also entered and left the robot’s field of view at
random times. As opposed to other people, the tutor also touched
the iCub’s hand each time he approached the robot, thereby deliv-
ering a reward. Such rewards were delivered at random times

1In effect, it is not easy to impose an exact time to people entering and exiting the
iCub’s field of view. The variability of such timing and overlapping of stimuli are
characteristics of human-robot interactions.
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by the tutor without a precise pattern. Other people, beside the
tutor, could be present at the time of reward, making it diffi-
cult to establish the correct association between the tutor and the
reward.

Over time, the pathway that connected GS∗ (the neuron group
that receives stimuli when the tutor is present) to the group GA0

grew consistently stronger. The pathways connecting the other
groups GSx grew only marginally and not consistently as shown
in Figure 4A. The growth of the pathway GS∗ to GA0 led to an
increased response of the group GA0 to the stimulus S∗ as shown
Figure 4B. While the stimulus S∗ initially did not elicit a par-
ticular response, with time and more rewarding episodes, the
network started responding with significant peaks in the activ-
ity when the stimulus S∗ was perceived. Between the 7th and the
9th reward episode, and approximately after 20 min, the activity
of GA0 presents distinct peaks in response to S∗. When the activity
of the output group reached a preset threshold of 0.5, it caused a
conditioned response. The response consisted in a smiling expres-
sion and a phrase like “Hello, it’s nice to see you again,” or “Hello,
you are my friend.” These sentences were so structured to man-
ifest the conditioned response, representing effectively a reward
prediction. As with the unconditioned response, the iCub smiled.
The robot was also pre-programmed to follow the tutor’s position
with head movements to express clearly that the recognition had
occurred.

Repeated experiments showed that the learning is manifested
in three phases. An initial phase in which the tutor is not being
recognized, an intermediate phase in which the tutor is recognized
at times, or with a delay, and a final phase in which the tutor is
recognized consistently and without delay. The intermediate phase

is caused by the noisy fluctuations in the neural activity. When the
pathway from GS∗ to GA0 is not yet strong, such fluctuations result
in inconsistent or delayed responses.

The activity of GA0, after learning takes place, becomes a
predictor of a reward delivery. The conditioning occurs despite
two potential obstacles that derive from the real-life robotic sce-
nario, and namely, (1) the noisy and unreliable perception of
cues, and (2) the presence of many cues at the same time. In
particular, the detection of markers is not 100% reliable for a
number of reasons. Affecting the reliability of the detection are
varying light conditions, different orientation of the markers
due to the free movement and orientation of the participants,
the obstruction of markers and noise in the camera. The slow
decay of eligibility traces however ensures that the presence of
a stimulus, in the present or in the immediate past, is repre-
sented at the synaptic level by the traces themselves. As a result,
imprecise, unreliable, and noisy perception does not compro-
mise the neural learning dynamics. The simultaneous presence
of the reward-predicting stimulus and other disturbing stimuli
is a potential obstacle in learning. Figure 4C shows that many
stimuli are often present simultaneously. This situation induces
occasional reinforcement of disturbing stimuli, as can be observed
in Figure 4A. Nevertheless, the network reinforces consistently
only the reward-predicting stimulus. Figure 4D shows the time
of arrival of all nine stimuli and the correspondence of S* with
the intense network responses in Figure 4C. The experimental
results in this section show that the control network, embedded
within the robotic platform and exposed to human-robot inter-
action, modifies the connection weights to implement classical
conditioning.

FIGURE 4 | Classical conditioning with disturbing stimuli. (A) The
average strength of all weights connecting neurons in the groups S1..S9
to neurons in the output group GA0 are shown. The pathway S∗→GA0

grows to reach the saturation value. The other pathways remain at low
values with only occasional increments. (B) The activity of the output
group GA0 is characterized by increasingly high peaks. Those peaks are the

learnt responses to the stimulus S∗. (C) Number of simultaneous stimuli
present at any time. The plot shows that at times the network receives
many stimuli simultaneously, making it difficult to detect which stimulus is
causing a reward. (D) The presence of all the stimuli S1..S9 and S∗ is
plotted to show the correspondence of the arrival of S∗ with the peaks of
the neural activity (B).
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4.1.2. Simulated input/output flow
The previous experiment can be run as a stand-alone script in Mat-
lab without the interface with the robot. In the simulated version,
the signals representing the people are generated by means of a
Poisson process that ensures random patterns in the sequence of
stimuli. Thus, the experiments in this section eliminate possible
bias in the pattern of appearance of people and tests rigorously
the neural learning. The stand-alone experiments offer the possi-
bility of reproducing the results with the provided Matlab scripts
without a robot.

Each stimulus (representing one person) has a probability
0.15%/s of appearing, i.e., all stimuli are independent and may
be present at any time. Once present, one stimulus lasts for a
variable interval in the range [3, 30] s. As before, one particular
stimulus S∗ ∈ (S1..S9) is designated to be the rewarding stimulus.
When S∗ is present, it causes a reward to be delivered in a ran-
dom interval [0, 5] s. The simulation was run extensively for 2 h to
test the stability of the learning, and to observe in particular that
the pathways from the disturbing stimuli remained low. To assess
further the robustness of learning, 10 independent runs were exe-
cuted. Figure 5A, shows the statistical analysis of the pathways
of all 10 independent runs. Figures 5B–D show respectively the
weight changes, the number of stimuli and the network activity
for one particular run. The results are qualitatively similar to the
robotic experiment that was conducted with human subjects inter-
acting with the robot. This indicates that differences in timing of
the reward, duration, and frequency of stimuli between robot and

simulation are not affecting the learning dynamics. It can be con-
cluded that, as hypothesized, uncertain timing of the stimuli and
variable delays are successfully processed by the neural network to
discover the correct cue-reward sequence.

4.1.3. Delayed rewards after stimuli occurrence
In the previous experiments, the delivery of the reward occurs
with a variable delay up to 5 s, but the causing stimulus S∗ is likely
to be present at the moment of reward delivery, except for the
flickering and view obstruction of the marker. This fact derives
from the intrinsic nature of the scenario in which a person is vis-
ible to the robot while pressing its hand (Figure 1). However, the
capability of solving the distal reward problem is demonstrated
when the reward occurs with a delay after the stimulus has ceased.
This is the scenario in which, for example, a brief noise or sound
predicts the delivery of the reward seconds later (e.g., the bell in
Pavlov’s experiment). To simulate this condition, in a variation of
the original experiment, each stimulus remains present only for
1–2 s. The network receives a reward with a delay up to 5 s after
the responsible stimulus has ceased. This experiment was run only
in simulation. The equivalent version with the robot involves, for
example, the recognition of a distinctive noise that predicts the
arrival of each different participant.

Also in this scenario, the network learns to respond to the CS
S∗ despite S∗ is not present anymore at the moment of reward
delivery, and other disturbing stimuli may be present instead.
Similarly to the previous experiment, throughout the simulation

FIGURE 5 | Classical conditioning with disturbing stimuli and
simulated input sequence. (A) The connection strengths of the
pathways from the input groups GS1..S9 to the output group GA0 are shown
here. The statistics include a set of 10 experiments and are represented
by box plots indicating the median (central point), 25th and 75th
percentiles (thick lines), most extreme data points (thin lines), and
outliers (circles) (McGill et al., 1978). The box plots are computed and
drawn over 3-min intervals. The strength of the pathway GS∗ → GA0 (10

lines from 10 runs) grows consistently during the learning process and
across all independent runs. The pathways from disturbing stimuli (box
plots from eight lines for each run, i.e., 80 lines) remain at low values.
(B) The strength of the pathways as in (A) are shown in one particular
run. (C) Number of stimuli present at any time during one particular run.
(D) The activity of the output group GA0 during one particular run. The
network increases its responses as the stimulus S∗ becomes
progressively associated with the reward.
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the response of the output group GA0 grows stronger. Figure 6A
shows that the strength of the pathways from S∗ to GA0 grows
consistently in all the 10 independent simulations.

To observe the network behavior during a specific occurrence
of the conditioned stimulus, Figure 6B shows the response of the
output group to stimulus S∗ before and after learning. The graphs
show that a reward is delivered when the stimulus S∗ is no longer
present, and that disturbing stimuli may occur in between S∗ and
the reward delivery. While S∗ initially does not elicit a response
in the network, after learning, the neural activity of the neurons
in the group GA0 is significantly higher than average. The peaks
of activity in the right plot are a consequence of S∗ and occur
before the reward is actually delivered (right plots). Note that the
activity alternates between high and low values due to the effect of
inhibitory neurons.

4.1.4. The role of rare correlations and traces
The results in the previous sections showed robust learning
dynamics in the classical conditioning scenario. How do rare
correlations, eligibility traces, and delayed reward cooperate in
the learning algorithm to achieve such a result?

This section looks at the small time-scale in which the weight
changes occur. In particular, the neural dynamics are monitored

and analyzed during a single cue-reward sequence. Figure 7 shows
the arrival of a stimulus S1 (first row). Such an event is registered
by the network with an increase of correlating activity (second
row). Such correlations are concentrated mainly on connections
from the group GS1 and generate a significant increase of the
eligibility traces of those synapses (third row). Those eligibility
traces then decay with a time constant of 4 s. When a reward is
delivered a few seconds later, it multiplies the traces to produce
a net weight increment. Note that the presence of traces causes a
very small decrement of the pathway (bottom plot) before the
reward is delivered. This decrement is due to the small nega-
tive baseline modulation given by the term b in equation (4).
This setting causes a pathway to decrease its strength if repeated
stimuli are never followed by a reward. It is important to note
that all synapses in the network are active and transmit signals
at all times. Nevertheless, because correlations are rare, other
synapses in the network are affected by minor changes, resulting
in negligible variations of the weights. The robustness to dis-
turbances is ensured by the principle that on average only the
reward-predicting stimulus consistently creates traces that are later
converted to weight changes. Other stimuli cause also correlations
and generate traces, but their values are not converted to weight
changes.

FIGURE 6 | Classical conditioning with delayed rewards after stimuli
occurrence. (A) The strengths of the pathways are shown with box plots over
a set of 10 independent runs. Similarly to Figure 5A, the pathway from the
conditioned stimulus to the output group increases consistently, while the
other pathways from the other stimuli remain at low values. (B) A close-up

over a brief simulation interval during a particular run. The stimuli (top row),
activity of group GA0 (middle row) and the modulatory signal (bottom row) are
plotted before (left) and after (right) learning. While S∗ does not elicit a
response before learning, after learning S∗ causes a clear increase of the
activity of the output group before the reward is delivered.
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FIGURE 7 | Effect of a stimulus followed by a reward. The sequence of
stimulus, rare correlations, eligibility traces, reward and weight increase is
shown during a 30 s interval. The network preserve a memory of a recent
stimulus by selectively creating eligibility traces along the pathways that
transmit signals. The traces are later converted to weight increase if a
reward is delivered. The strength of the pathway is represented as the
average weight.

4.2. OPERANT CONDITIONING
Operant learning is triggered with probability 0.1/s when the iCub
recognizes the tutor as a conditioned stimulus (CS) (after the robot
was conditioned to recognize one person). At this point, the tutor
presented different objects of different colors. Red and yellow col-
ored objects were used with the robot. Up to five input colors were
tested in simulation. Both real robot and simulation had eight
actions available, i.e., eight output groups (A1..A8) triggered the
enunciation of eight colors.

Once the iCub detected a colored object, it enunciated the name
of a color. If the color pronounced by the iCub correspond to that
of the object, the tutor touched the right hand of the iCub, thereby
providing positive feedback. If the iCub answered by enunciating
another color, the tutor ignored the answer and waited for the
next trial. Between each trial, the tutor waited a random amount
of time, generally varying between 5 and 20 s. On an average trial,
between a correct answer and the time the tutor touched the hand,
a time between 1 and 3 s elapsed.

Initially the robot displayed an exploratory behavior. The
exploration is due to neural noise and to the fact that none of
the pathways is significantly stronger than the others. During the
exploratory phase, the iCub answered with different colors each
time the same object was presented, occasionally repeating the
same color. The robot switched to choosing the correct answer

after a few correct guesses. A higher level of reward, or a longer
touch to the iCub’s hand, could be used to achieve a one-shot
learning in which one single positive reward episode led to the
repetition of that action, i.e., no further exploration. Figure 8A
shows the strengths of the pathways from the two inputs S10
and S11 (representing two colors) to the actions (representing
the enunciation of those colors). Each reward episode was caused
by pressure on the iCub’s arm causing r(t ) to be 1 during the
touch.

In a variation of this experiment, the tutor could induce a
small negative reward [r(t )=−0.5] by touching the left hand
of the robot whenever a wrong answer was given. When that
happened, the corresponding pathway registered a reduction in
strength. At the next trial, the previous erroneous choice was
therefore less likely to be selected, because the other pathways
were stronger. These dynamics resulted in a faster exploration
in which colors were not randomly selected: colors that resulted
in negative reward were less likely to be named subsequently.
The data from this experiment is not shown, but the simu-
lated version described following adopts a similar rewarding
policy.

The experiment with the iCub was extended in simulation
to include five different colored objects (S10..S14). The auto-
mated process produced one stimulus (corresponding to one
colored object) every 20 s. Every stimulus was presented sequen-
tially and circularly, i.e., in the sequence 1, 2, 3, 4, 5, 1, 2, . . .,
etc. If the answer was correct, a reward r(t )= 5 was given with
a delay in the interval [0, 5] s, otherwise a small negative reward
[r(t )=−0.5)]was given. The weights of the pathways, statistically
analyzed over 10 independent runs, are presented in Figure 8B.
The plot indicates that within 30 min of simulated time, all objects
during all runs were correctly associated with their respective
colors.

It is important to note that the amount of weight increase
depends on how much time elapses between the action and the
reward. In the current study, exponentially decaying traces [equa-
tion (2)] were employed, making the trace decay over time as e−t .
Because the modulation m(t ) multiplies the traces to achieve a
weight increment [equation (3)], the weight increase is also related
to such a decay.

Interestingly, several tests showed that the answers became
reliable when one pathway became approximately 20% stronger
than the other pathways (measure only visually estimated). For
smaller differences, stronger pathways were still more likely to
drive the output, but the neural noise and random fluctua-
tions in the neural activity meant that weaker pathways could
at times prevail. When one pathway became at least 20% stronger
than the others, the answer became reliable. Any further increase
of such a pathway did not appear to manifest in a behavioral
change. However, each increase in the rewarded pathways rep-
resents in effect a further consolidation of a behavior, which
can be seen as a belief that stimulus S10, for example, is the
color “red.” It can be inferred that in the phase of exploita-
tion, the strength of the strongest pathway is an index of how
sure or confident the robot is that the answer is the correct one.
Although two or three correct and rewarded answers were suf-
ficient to establish an immediate correct behavior, further trials
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FIGURE 8 | Operant conditioning: learning stimulus-action associations.
(A) Example of one run with the robot learning two colors. The weights of the
rewarding pathways (GS10→GA1 and GS11→GA2) and from the same inputs to
all outputs are shown. After a period of exploration, the robot discovered the
rewarding actions and repeated them consistently, causing the corresponding
pathways to grow, while the other pathways remained at low values.
(B) Weight dynamics during the simulated learning of five colors. The

statistical analysis includes 10 independent runs. All correct associations (five
colors for each of the 10 runs) were discovered within 30 min. All pathways
that did not lead to a reward, i.e., the incorrect associations, remained at low
values. (C) Modulation while learning five colors. Initially the modulation
signal is negative due to negative rewards, a consequence of wrong answers.
With time, each of the five color is associated with the correct response.
When all answers are correct, all rewarding episodes become positive.

provided confirmation, resulting in what can be named as belief
consolidation. The effect of the weight strengths on behavioral
properties such as exploration, exploitation, and belief consol-
idation is further investigated in the next section on behavior
reversal.

As it is mentioned above, the operant conditioning phase was
started conventionally by the recognition of the tutor. Neverthe-
less, the pathways in the network to the right of Figure 3, i.e.,
those that learn the colors, are learnt independently of the clas-
sical conditioning experiment. Once the colors are learnt, a new
person may be introduced to the iCub as a new tutor. The iCub
will be able to answer correctly to the new person because the
recognition of the tutor is independent from the object-color
associations.

4.3. BEHAVIOR REVERSAL
In the previous section it was mentioned that the tutor could
provide a negative reward touching the left hand of the robot. In
effect, a negative reward (negative modulation signal) can be inter-
preted as a punishment. In this section, the use of punishment to
implement behavioral reversal is tested.

In this new experiment, the tutor conditioned the iCub to learn
one association between one color and the name of a color, as it
was also done in the previous experiment. After the association
was established, the tutor attempted to reverse this association by
providing negative feedback. Each time the iCub was presented
with the yellow object, and responded “yellow,” the tutor gave a
punishment touching the left hand. A punishment was set to be
equivalent to a reward but with opposite sign. The purpose of the

tutor was to remove the previous association in favor of a new
one. In this particular case, a whimsical tutor attempted to can-
cel the correct association “yellow” in favor of the enunciation
“orange.”

Figure 9 shows the pathways from the group GS10 to the action
groups. The graph shows the same initial phases of exploration
and exploitation as in Figure 8. When the tutor starts giving nega-
tive feedback (marked in the graph with policy switch), the weights
of the yellow-pathway decrease progressively. The reversal of the
previously acquired behavior is gradual. The amount of negative
modulation was in effect equal to the amount of positive modu-
lation. Each punishment resulted in a decrement of the pathway
comparable to the increment that was previously obtained by one
rewarding episode. If the robot was previously rewarded many
times and had established a strong association between a cue and
one action, it was consequently more adamant to changes. As antic-
ipated, it can be said that the strength of a pathway reflects a level
of belief. A strong pathway, reflecting a strong belief, also resulted
in a robust behavior in front of false or misleading, but occasional,
input cues. Even if the robot received a punishment from a cor-
rect answer, for example due to an error or a whim of the tutor,
the single episode did not reverse the robot belief unless the tutor
insisted on the new policy.

The repeated punishments led the network to reduce progres-
sively the difference in weights among the pathways. When all
pathways reached similar values, the answers started to vary among
colors, i.e., the robot resumed an exploratory phase. A new asso-
ciation was now possible. When the robot, seeing a yellow object,
pronounced the correct color (orange, according to the new tutor’s
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FIGURE 9 | Operant conditioning and behavior reversal. The pathways
from the input group GS10 to the action groups GA1..GA9 are shown. As in the
previous experiment, the robot attempts to guess the color during an initial
exploratory phase. When the robot guesses the color correctly, and the tutor
rewards it, the correct stimulus-to-action pathway is reinforced. Subsequently,

the tutor changes his policy and gives a punishment if the robot perseverates
with the previous answer. This leads to a convergence of all weights and to
forgetting the previous association. A new exploratory phase then starts,
which results in a new exploitation once the new correct color is guessed and
the tutor rewards the robot.

policy), the tutor gave rewards and led the robot to build the
new association, as reflected by the growth shown in Figure 9
at the end of the experiment. The length of time that is neces-
sary to achieve the behavior reversal depends on the strength of
the pathway (also indicating the strength of the belief) and the
plasticity rate. Strong pathways and slow plasticity rates result in
robust and slow-changing behaviors, while weak pathways and fast
plasticity rate result in quick behavior reversal.

5. DISCUSSION
The human-robot interactions presented in this study allowed
human operators to explore the dynamics of learning in a nat-
ural scenario. The tests revealed a number of significant aspects of
the neural model that can be compared to biological counterparts.

The generation of eligibility traces by means of rare correlations
is a mechanism that selects synapses that may reflect relationships
between stimuli or stimuli/actions. The event of a subsequent
reward reinforces synapses that are even more likely related to
a reward. The presence of disturbing stimuli and delays means
that one reward episode is not sufficient to determine uniquely
the stimulus that predicts a reward, or the action that causes it.
Accordingly, the plasticity rule increases significantly the weights
only over many consecutive rewards episodes, suggesting that a
correct rate of learning is fundamental in conditioning experi-
ments. A comparison of different learning rates was not rigorously
conducted in the present study. Nevertheless, preliminary exper-
iments confirmed the intuitive notion that fast plasticity rates
result in a belief being established in fewer episodes. Fast plastic-
ity rates, also possible in the proposed algorithm2, can be used to

2More plastic weights can be implemented in the current model with higher modu-
lation, higher parametersα andβ of the RCHP, or higher percentages of correlations.
These factors are sometimes referred to in the literatures as “learning rate.”

observe the accidental response-contingency hypothesis of Skin-
ner (1948). Thus, superstitious behavior can be reproduced with
the current model if weights are highly plastic, confirming that
high learning rates may results sometimes in establishing wrong
associations. However, while this position is a common assump-
tion in machine learning, the proposed neural model attributes the
causes of erroneous wrong associations to precise weight dynam-
ics. The process of selecting synapses for weight update must
be highly selective and the update must be moderate to endow
the network with the necessary prudence before establishing an
association. Further research in biology could ascertain whether,
similarly to the present computational model, traces, and modu-
latory episodes in biological brains could be regulated parsimo-
niously to prevent runaway synapses (Hasselmo, 1994), forgetting
(Wixted, 2004), or preserve learning capabilities (Anlezark et al.,
1973; Hasselmo, 1999; Bailey et al., 2000; Reynolds and Wickens,
2002).

The decay rate of traces determines how long the network
remembers a stimulus. Assume for example that the tutor shows
the iCub a yellow object, to which the robot erroneously answers
“blue.” The tutor ignores the incorrect response, but immedi-
ately, i.e., 1 or 2 s later, presents a red object to the robot that
answers “red.” If now the tutor gives a reward, such a reward rein-
forces the association of the red stimulus to the red enunciation,
but it reinforces to a small extent also the immediately preced-
ing wrong association of the previous trial. If tutoring is enforced
with insufficient time between trials, a correct learning is disturbed
by interference with previous episodes. Interestingly, this interfer-
ence is dealt with by the learning rule the same way as disturbing
stimuli are, i.e., over the long term they are not reinforced as the
reward-causing action. Such a consideration leads once more to
the rate of learning: with slower learning rates, the learning is
more robust to interferences. Unfortunately, even if in the long
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term slow learning rates guarantee better results, this behavior
is generally not appreciated by the human tutor who might not
display sufficient patience or perseverance toward a slow learning
robot.

The test on behavior reversal showed that the weight dynam-
ics in this experiment follow the reconfigure-and-saturate rule
in Soltoggio and Stanley (2012), which describes the alternation
of exploration and exploitation as a consequence of noisy anti-
Hebbian plasticity (due to negative modulation and noise) and
Hebbian growth (due to positive modulation). In that study, the
strength of pathways also represented the probabilities of perform-
ing certain action. The growth and decrease of weights was not a
consequence of weight tuning or memory decay, but, similarly to
the present study, represented the consolidation or forgetting of
behaviors. Whilst in Soltoggio and Stanley (2012) the reward was
simultaneous with the actions, in the experiments of the current
study the alternation of exploration and exploitation emerges
from delayed negative and positive modulation. This confirms that
the reconfigure-and-saturate dynamics in Soltoggio and Stanley
(2012) can be reproduced also with delayed rewards as in the real-
istic robotic scenarios presented in this paper. In particular, the
feedback-driven alternation of exploring and exploiting behaviors
can be observed even with time gaps between causally related cues,
actions, and rewards.

A behavior reversal can be induced, as in the presented case, by
applying a negative reward, or punishment. However, the absence
of a reward (or unconditioned stimulus) may also induce the
extinction of actions (Gallistel, 1993). The absence of a reward
is particularly relevant when there is an expectation after con-
ditioning, e.g., food comes after pressing a lever. In the current
experiments, expected reward is not modeled and the reward
signal is used without pre-processing. A form of extinction is
present in the current experiments because a small negative base-
line modulation is present at all times [parameter b in equation
(4)]. When a strong stimulus propagates through the network,
it generates eligibility traces which make those pathways sensi-
tive to modulatory signals for weight update. If no reward occurs
in the following interval, the small baseline negative modulation
causes also a small decrement of those synapses with high posi-
tive traces. Thus, extinction occurs if cues and actions are never
followed by rewards. A fully fledged model of behavior extinc-
tion, including the modeling of an expected reward, was not the
focus of the current study. A number of aspects must be clari-
fied to introduce the notion of unexpected reward, or surprise. In
particular, for each stimulus, an average value associated with pre-
vious rewards must be memorized in the network. Subsequently,
a difference between expected and actual reward must be com-
puted. However, if the timing of the reward is uncertain, it is
also unclear when such a difference is to be computed. More-
over, the learning of a correct association may not require further
reinforcement later on. In summary, the questions that emerge
in scenarios with both delayed rewards and expected rewards
make the topic a promising venue for extensions of the current
model.

The current model does not implement blocking (Kamin,
1969). Blocking is a phenomenon in which, once a conditioned

stimulus CS1 is associated with an unconditioned stimulus, a sec-
ond conditioned stimulus CS2, occurring simultaneously to CS1,
is not associated anymore. Simulations (not shown) indicated that
a second stimulus (CS2) is also paired to the US. This characteris-
tic, although different from some observations in animal learning
(Kamin, 1969), shows the ability of the model of continuous learn-
ing and to discover new associations even after initial associations
are established.

Finally, it is worth noting that the success in bridging temporal
gaps emerges from the balanced equilibrium between the pro-
duction rate of traces (by means of rare correlations) and their
duration. In the current study, a time constant of 4 s for the eligi-
bility traces was used. With such a constant, associations between
cues and rewards can be discovered if a reward is delayed by a max-
imum of 10–12 s. Longer delays mean that the responsible stimuli
and actions are forgotten. Making traces more durable, i.e., hav-
ing a slower decay, is a way to empower a network to bridge even
more distal rewards. To preserve the selectivity of the RCHP rule,
longer-lasting traces must be compensated with a lower rate of pro-
duction, i.e., they must be generated even more parsimoniously.
Such a position suggests that long gaps between cues, actions, and
rewards can be handled by a learning neural network only if the
creation and destruction of traces is particularly rare (Soltoggio
and Steil, 2013). For biological brains, which are notoriously sub-
ject to a considerably higher level of inputs and outputs, the current
model predicts that particularly selective mechanisms could be
responsible for filtering relevant information to be integrated later
in time upon reward delivery.

6. CONCLUSION
This study demonstrates neural robotic conditioning in human-
robot interactive scenarios with delayed rewards, disturbing stim-
uli, and uncertain timing. The neural dynamics employ rare neural
correlations, eligibility traces, and delayed modulation to learn
solutions in conditioning problems with realistic timing. The plas-
ticity rule extracts rare correlations, generates eligibility traces, and
uses them with Hebbian and anti-Hebbian plasticity according
to environmental cues and human feedback. The result is robust
classical and operant conditioning with delayed rewards and dis-
turbances. The robotic experimentation proves the robustness and
suitability of the proposed neural mechanism in learning with
uncertain timing, unreliable inputs, delayed rewards, and variable
human-robot reaction times and feedback.

This study also further promotes the idea that differences in
the strength of neural pathways may reflect the tendency toward
exploration or exploitation. Smaller differences cause the neural
dynamics to be driven mainly by neural noise,which leads to explo-
ration. Greater differences cause the network to exploit particular
behaviors that were previously reinforced.

Finally, decaying eligibility traces model important learning
dynamics with potential implications and predictions in biol-
ogy. The model lends itself to predictions on how long and how
many past events can be traced by a small network. Addition-
ally, the plasticity rate and the strength of the pathways repre-
sent the rapidity with which a behavior (or a belief) is estab-
lished, and the strength and robustness of such behaviors. Once a
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behavior is established, further confirmations and rewards con-
tinuously reinforce the involved pathways, thereby imprinting
such a behavior that becomes later more difficult to eradicate.
Such types of simulated behaviors are of interest in cognitive
developmental robotics, an area in which delayed rewards and
human interaction are used in learning processes. In conclusion,
the proposed neuro-robotic model displays strongly bio-inspired
synaptic and behavioral dynamics that are therefore relevant
not only for robotics, but also for biology, neuroscience, and
psychology.
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APPENDIX
DETAILS OF THE NEURAL MODEL
The plasticity rule (RCHP) described by equations (1, 2) and (4)
is fully specified by the parameters in Table A1 in Appendix. The
neural model described by equations (2–4) is fully specified by
the values in Table A2 in Appendix. The integration of equations
(2) and (4) with a sampling time 1t of 200 ms is implemented
step-wise by

cji (t +1t ) = cji (t ) · e
−1t
τc + RCHPji (t ) (A1)

m (t +1t ) = m (t ) · e
−1t
τm + λr (t )+ b (A2)

The measured rates of correlations ρc(t ) and decorrelations
ρd(t ) are computed over a sliding time window of 10 s summing
all correlations and decorrelations buffered in cq(t ) and dq(t )

ρc (t ) = 1t

t−10∑
0

cq (t )

10
, (A3)

and similarly for ρd(t ). The adaptive thresholds θhi and θ lo in
equation (1) are estimated as follows.

θhi (t +1t ) =


θhi + η ·1t ifρc (t ) > 5µ

θhi − η ·1t ifρc (t ) < µ/5

θhi(t ) otherwise

(A4)

and

θlo(t +1t ) =


θlo − η ·1t ifρd(t ) > 5µ

θlo + η ·1t ifρd(t ) < µ/5

θlo(t ) otherwise

(A5)

with η= 0.002. If correlations are lower than a fifth of the target or
are greater than five times the target, the thresholds are adapted to
the new increased or reduced activity. This heuristic has the pur-
pose of maintaining the thresholds relatively constant and perform
adaptation only when correlations are too high or too low for a
long period of time.

Table A1 | Parameters of the plasticity rule (RCHP) and modulation.

Time constant of eligibility traces [τ c, equation (2)] 4 s

α [Equation (1)] 0.1

β [Equation (1)] 0.1

λ [Equation (4)] 0.05 (0.07*)

b [Equation (4)] −0.002/s

Target rate of rare correlations µ 0.5%

(*)The higher value 0.07 is effectively a slight increase in the learning rate that was

used in the classical conditioning experiment with brief stimuli (Section 4.1.3): this

experiment set-up resulted in fewer rewarding episodes and so the higher value

of λ led to convergence within the 2 h of simulated time.

Table A2 | Parameters of the neural model.

Excitatory neurons 800

Inhibitory neurons 200

Connection probability 0.1

Weight range [0, 1]

Inhibitory weights Fixed in [0, 1]

Excitatory weights Plastic

Noise on neural transmission [ξ i(t ), equation (6)] Uniform [−0.1, 0.1]

Target rate of rare correlations µ 0.5%

Sampling time step [1t, equation (6)] 200 ms

Time constant of modulation [τm, equation (4)] 1 s

Neural gain [γ , equation (6)] 0.25

The reward signal r(t ) was impulse-like in nature for the sim-
ulated classical and operant conditioning experiments, i.e., lasting
one computational step (200 ms). In the robotic experiments, the
duration of the touch to the iCub’s hand/arm effectively deter-
mined the magnitude of the reward episode simply by making this
signal last longer. The magnitude of r(t ), in this study set in the
range [1, 5], can be used to achieve different learning rates (data
not shown).

The complete scripts for reproducing the experiment in sim-
ulation can be downloaded from the author’s associate website
http://andrea.soltoggio.net/icub
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