
EDITED BY :  Jesus Martin-Vaquero, Feliz Minhós, Juan L. G. Guirao and 

Bruce Alan Wade

PUBLISHED IN :  Frontiers in Applied Mathematics and Statistics and 

Frontiers in Physics

ANALYTICAL AND NUMERICAL 
METHODS FOR DIFFERENTIAL 
EQUATIONS AND APPLICATIONS

https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/physics


Frontiers in Physics 1 October 2021 | Methods for DEs and Applications

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88971-424-7 

DOI 10.3389/978-2-88971-424-7

https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/journals/physics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Physics 2 October 2021 | Methods for DEs and Applications

ANALYTICAL AND NUMERICAL 
METHODS FOR DIFFERENTIAL 
EQUATIONS AND APPLICATIONS

Topic Editors: 
Jesus Martin-Vaquero, University of Salamanca, Spain
Feliz Minhós, University of Evora, Portugal
Juan L. G. Guirao, Universidad Politécnica de Cartagena, Spain
Bruce Alan Wade, University of Louisiana at Lafayette, United States

Citation: Martin-Vaquero, J., Minhós, F., Guirao, J. L. G., Wade, B. A., eds. (2021). 
Analytical and Numerical Methods for Differential Equations and Applications. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88971-424-7

https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/journals/physics
http://doi.org/10.3389/978-2-88971-424-7


Frontiers in Physics 3 October 2021 | Methods for DEs and Applications

04 Editorial: Analytical and Numerical Methods for Differential Equations and 
Applications

Jesus Martin-Vaquero, Bruce Wade, Juan L. García Guirao and Feliz Minhós

06 Dark-Bright Optical Soliton and Conserved Vectors to the Biswas-Arshed 
Equation With Third-Order Dispersions in the Absence of Self-Phase 
Modulation

Aliyu Isa Aliyu, Mustafa Inc, Abdullahi Yusuf, Dumitru Baleanu and 
Mustafa Bayram

11 Fuzzy Type RK4 Solutions to Fuzzy Hybrid Retarded Delay Differential 
Equations

Prasantha Bharathi Dhandapani, Dumitru Baleanu, Jayakumar Thippan and 
Vinoth Sivakumar

17 Slip and Hall Effects on Peristaltic Rheology of Copper-Water 
Nanomaterial Through Generalized Complaint Walls With Variable 
Viscosity

Muhammad Awais, Poom Kumam, Nabeela Parveen, Aamir Ali, Zahir Shah 
and Phatiphat Thounthong

28 The Falling Body Problem in Quantum Calculus

Abdulaziz M. Alanazi, Abdelhalim Ebaid, Wadha M. Alhawiti and 
Ghulam Muhiuddin

33 Application of New Iterative Method to Time Fractional 
Whitham–Broer–Kaup Equations

Rashid Nawaz, Poom Kumam, Samreen Farid, Meshal Shutaywi, Zahir Shah 
and Wejdan Deebani

43 The Global Attractor of the Allen-Cahn Equation on the Sphere

David Medina and Pablo Padilla

55 Invariant Solutions and Conservation Laws of the Variable-Coefficient 
Heisenberg Ferromagnetic Spin Chain Equation

Na Liu

65 ESERK Methods to Numerically Solve Nonlinear Parabolic PDEs in 
Complex Geometries: Using Right Triangles

Jesús Martín-Vaquero

73 Numerical Solutions of Quantum Mechanical Eigenvalue Problems

Asif Mushtaq, Amna Noreen and Kåre Olaussen

83 A Vector Series Solution for a Class of Hyperbolic System of Caputo 
Time-Fractional Partial Differential Equations With Variable Coefficients

Ahmad El-Ajou and Zeyad Al-Zhour

Table of Contents

https://www.frontiersin.org/research-topics/9300/analytical-and-numerical-methods-for-differential-equations-and-applications
https://www.frontiersin.org/journals/physics


Editorial: Analytical and Numerical
Methods for Differential Equations and
Applications
Jesus Martin-Vaquero1*, Bruce Wade2, Juan L. García Guirao3 and Feliz Minhós4

1University of Salamanca, Salamanca, Spain, 2University of Louisiana at Lafayette, Lafayette, LA, United States, 3Universidad
Politécnica de Cartagena, Cartagena, Spain, 4University of Evora, Évora, Portugal

Keywords: ordinary diffeential equations, partial differential equations, delay differential equations, fractional PDEs,
applied mathematics

Editorial on the Research Topic

Analytical and Numerical Methods for Differential Equations and Applications

In the last few decades, new mathematical problems and models, described by differential equations,
have brought to light applications in many areas including Physics, Chemistry, Engineering,
Biomedicine, and Economics, among others.

This research topic shows the large amount of different types of differential equations, thus it
contains a selection of papers with recent advances in subjects as different as delay differential
equations, nonlinear partial differential equations (PDEs), studied analytically or numerically, or
because of their applications, fractional PDEs, and q-differential equations, etc. We would like to
thank all the contributors of this issue, and also the referees. They all worked hard to shed some
light on these topics for young researchers who would like to investigate some of these areas.
Thus, in this research topic, readers can find papers on varying numerical methods and
applications.

Delay differential equations (DDEs): During the last few years, there have been many studies on
DDEs. A very special type of retarded delay differential equations called fuzzy hybrid retarded
equations are studied in [1]. For these equations, numerical schemes based on Runge-Kutta schemes
are a good option to obtain accurate solutions.

Recent advances in stochastic or fractional ODEs and PDEs have been published in the last few
years. In this special issue, researchers can find two papers on a fractional PDEs model by [2] and [3],
solved numerically with different procedures.

Many scientific papers study PDEs, their applications, and also analytical procedures to
study their properties. Thus, an analytical solution of the Biswas-Arshed equation is obtained
in [4]. This is a non-linear PDE with important applications in physics. In a similar topic, the
variable-coefficient Heisenberg ferromagnetic spin chain (vcHFSC) equation is considered in
[5]. This equation is also a nonlinear PDEs method, and it can be solved with Lie-algebra
groups.

However, many other nonlinear PDEs are transformed into large systems of nonlinear
ordinary differential equations (ODEs), where efficient solvers are necessary. In some cases,
these PDEs need to be solved in complex geometries, a recent approach is described in [6], where
a new procedure to solve nonlinear parabolic PDEs in triangles is explained. But, in other cases,
research groups focus their works on the applications of these PDEs such as in [7]. For example,
many physical (such as the magneto-hydrodynamics [MHD] problem analyzed in [8]),
industrial, or complex economical situations can be modeled by nonlinear PDEs. Chemistry
is another very important area; in Awais-Kuman, the authors modelized the peristaltic flow
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dynamics of (Cu-H2O) nanofluid in a homogeneous porous
medium. They solved their model numerically in order to be
able to physically interpret how the different parameters that
appear in their equation affect the outcome. Another
important area of interest is mechanics, thus two papers in
this research topic are related with this field: In a study by
Alanazi et al. [9], a q-differential problem is solved with
applications in Newtonian mechanics and Mushtaq et al.

[10] describes a Python solver to solve some important
quantum mechanical eigenvalue PDE problems (such as the
Schroedinger) in one or more dimensions.
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The form-I version of the new celebrated Biswas-Arshed equation is studied in this

work with the aid of complex envelope ansatz method. The equation is considered

when self-phase is absent and velocity dispersion is negligibly small. New Dark-bright

optical soliton solution of the equation emerge from the integration. The acquired solution

combines the features of dark and bright solitons in one expression. The solution

obtained are not yet reported in the literature. Moreover, we showed that the equation

possess conservation laws (Cls).

Keywords: complex envelope ansatz, dark-bright optical soliton, Biswas-Arshed equation, conserved vectors,

multiplier, numerical simulations

1. INTRODUCTION

The study of dynamical systems in non-linear physical models plays an important role in optical
fibers, electrical transmission lines, plasma physics, mathematical biology, and many more [1].
This is motivated by the capacity to model the behavior of these systems and other under different
physical conditions [2]. These systems are represented by non-linear equations. Seeking the exact
solutions of non-linear evolution equations has been an interesting topic in mathematical physics,
and the solutions of corresponding models are the ways to well describe their dynamics. Several
results have been reported in the last few decades [3–24]. The main principle for the existence
of solitons in metamaterials, optical fibers, and crystals is the existence of a balance between
non-linearity and dispersion. It is obvious that some situations may lead to. Recently, Biswas and
Arshed [3] put forward a new model for soliton transmission in optical fibers in the event when
self-phase modulation is neglible in the absence of non-linearity.

The third-order model in the absence of self-phase modulation that will be studied in this paper
is given by [3, 4]:

iψt + αψxx + γψxt + i[σψxxx + δψxxt]− i[�(|ψ |2ψ)x + µ(|ψ |
2)xψ + θ |ψ |2ψx] = 0. (1)

The function ψ(x, t) representing the dependent involving t an x which denotes the temporal and
spatial components. The first term represents the temporal evolution of the wave, γ represents
the(STD) coefficient, α is the coefficient of GVD and σ is the coefficient of the third order

6
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dispersion, δ is the coefficient of spatio-temporal 3OD (ST-3OD),
� is the effect of self-steepening. Finally, µ and θ provide the
effect of non-linear dispersion. Dark, bright, combo and singular
soliton solutions of Equation (1) have been reported in Biswas
and Arshed [3] and Ekici and Sonmezoglu [4]. But to the best
of our knowledge, the dark-bright optical soliton and Cls of
the equation have not been reported. In this work, this special
solution combining the features of dark and bright optical soliton
in one expression will be recovered by applying a suitable ansatz.
The Cls of the equation will be derived using the multiplier
method [8, 9].

2. DARK-BRIGHT OPTICAL SOLITON

In order derive the dark-bright soliton solution of the equation,
we consider the ansatz solution given by Li et al. [5]:

ψ(x, t) = A(x, t)× ei9(x,t), (2)

with

9(x, t) = −kx+ ωt + ν. (3)

In Equation (2), 9 denotes the phase shift, k denotes the wave
number, ω represents the frequency and ν is the phase constant.
We now utilize the ansatz put forward from Li et al. [5]:

A(x, t) = iβ + λtanh[η(x− vt)]+ iρsech[η(x− vt)], (4)

where v represents the velocity and η is the pulse width. In the
even when λ → 0 or ρ → 0, the Equation (4) transforms to a
bright or dark soliton solution. The intensity of A(x, t) is given by

|A(x, t)| =

{

λ2 + β2 + 2βρsech[η(x− vt)]+ (ρ2 − λ2)sech2[η(x− vt)]

}
1
2

.

(5)

FIGURE 1 | 3D surface of solution Equation(24) by selecting the parameter

values of η = 0.1, λ = 0.1, θ = 1,� = 0.1.

The non-linear phase shift ψNL is represented by

ψNL = arctan

[

β + ρsech[η(x− vt)]

λtanh[η(x− vt)]

]

. (6)

Putting Equation (2) into Equation (1) leads to

− A
(

ω + k(k(α + kσ )− (γ + kδ)ω)+ k(θ + µ+�) |A|2 + 2i�AAx

)

−

i
(

(−1+ k(γ + kδ))At +
(

k(2α + 3kσ )− (γ + 2kδ)ω + (θ + µ+�) |A|2
)

Ax+

i
(

(γ + 2kδ)Axt + (α + 3kσ − δω)Axx + i (δAxxt + σAxxx)
))

= 0.

(7)

Now, putting Equation(4) into Equation(7), expanding the
result and equating the combination of coefficients of sech(τ )
and tanh(τ ), we acquire the independent parametric equations
represented by:

Constants:

− iβ
(

ω + k
(

−γω + k(α + kσ − δω)+
(

β2 + λ2
)

(θ + µ+�)
))

= 0, (8)

sech(τ ) :

− iρ
(

ω + k
(

−γω + k(α + kσ − δω)+
(

3β2 + λ2
)

(θ + µ+�)
))

= 0, (9)

sech2(τ ) :

i(v(−1+ k(γ + kδ))ηλ− 3k2ηλσ − ηλ

(−γω + (β2 + λ2)(θ + µ+�))+

k(−2αηλ+ 2δηλω + β(λ2 − 3ρ2)(θ + µ+�))) = 0,

(10)

sech3(τ ) :

iρ(−αη2 + v(γ + 2kδ)η2 − 2βηθλ+ kθλ2 − 2βηλµ

+kλ2µ− kθρ2 − kµρ2 − 3kη2σ +

δη2ω − 2βηλ�+ kλ2�− kρ2�) = 0,

(11)

sech4(τ ) :

iηλ
(

2η2(vδ − σ )+ (λ− ρ)(λ+ ρ)(θ + µ+�)
)

= 0,
(12)

tanh(τ ) :

− λ
(

ω + k
(

−γω + k(α + kσ − δω)+
(

β2 + λ2
)

(θ + µ+�)
))

= 0,

(13)

tanh(τ )sech(τ ) :

ρ(v(−1+ k(γ + kδ))η − 3k2ησ − 2k(αη − δηω

+βλ(θ + µ+�))− η(−γω +

λ2(θ + µ+�)+ β2(θ + µ+ 3�))) = 0, (14)
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tanh(τ )sech2(τ ) :

(−2αη2λ+ 2v(γ + 2kδ)η2λ+ kθλ3 + kλ3µ− 2βηθρ2

−kθλρ2 − 2βηµρ2 − kλµρ2 − 6kη2λσ

+2δη2λω +
(

λ2(2βη + kλ)− (6βη + kλ)ρ2)�
)

= 0,

(15)

tanh(τ )sech3(τ ) :

ηρ
(

5η2(vδ − σ )+ (λ− ρ)(λ+ ρ)(θ + µ+ 3�)
)

= 0,
(16)

tanh2(τ )sech(τ ) :

− iηρ(η(−α+v(γ +2kδ)−3kσ +δω)−2βλ�) = 0, (17)

tanh2(τ )sech2(τ ) :

− 2iηλ
(

2η2(vδ − σ )+ (λ− ρ)(λ+ ρ)�
)

= 0, (18)

tanh3(τ )sech(τ ) :

η3ρ(−vδ + σ ) = 0, (19)

where τ = η(x− vt). From the solution of Equations(8)–(19),we
observed that β = 0. but, for a dark-bright optical soliton to
exist, we require both ρ 6= 0 and λ 6= 0. For the sake of
compatibility, we considered the case when ρ = λ from the
solutions of Equations(8)–(19). We acquire the velocity as

v = −ρ2(θ + µ+�), (20)

the wave number is represented by

k = −
ω

ρ2(θ + µ+�)
. (21)

We also acquire the value of δ and α as

δ = −
σ

ρ2(θ + µ+�)
, (22)

α = −γρ2(θ + µ+�). (23)

The dark-bright optical soliton to the model reads:

ψ(x, t) =

{

iλsech[η(x+ tλ2(θ + µ+�))]+ λtanh[η(x+ tλ2(θ + µ+�))]

}

×e
i(θ+tω+ xω

λ2(θ+µ+�)
)
. (24)

FIGURE 3 | contour plot in spherical coordinates of solution Equation (24) by

selecting the parameter values of η = 0.1, λ = 0.1, θ = 1,� = 0.1.

FIGURE 2 | The contour surface of solution Equation (24) by selecting the parameter values of η = 0.1, λ = 0.1, θ = 1,� = 0.1.
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and the intensity gives

|ψ(x, t)|2 = λ2. (25)

The phase shift is represented by

ψNL = arctan

[

sech[η(x+ tλ2(θ + µ+�)]

tanh[η(x+ tλ2(θ + µ+�)]

]

. (26)

The dark-bright soliton Equation (24) represents a soliton
combining the features of dark and bright solitons in one
expression. The constant β = 0 implies a pronounced
“platform” underneath the soliton under non-zero boundary
conditions and its asymptotic value approaches λ as |t| → ∞.
To analyze the dynamics behavior of the soliton solution
Equation (24), we have made numerical evolutions for some
perturbations to show the evolution of the dark-bright optical
soliton solution. Figures 1-3 shows the profiles surfaces
of the dark-bright soliton Equation (24). The obtained
soliton Equation (24) possesses the structure of the physical
properties of dark and bright optical solitons in the same
expression. These solitons appear temporal solitons observed in
optical fibers.

3. CONSERVATION LAWS

In this part, we will utilize the multiplier to derive the Cls [8, 9].
To achieve this aim, we apply

ψ(x, t) = u(x, t)+ iυ(x, t), (27)

to transform Equation (1) to a system of PDEs. Putting Equation
(27) into Equation (1), we acquire:































−υt + 2(µ+�)uυux + (θ +�)u2υx + (θ + 2µ+ 3�)υ2υx

+γuxt + αuxx − δυxxt − συxxx = 0.

ut + (−θ − 2µ− 3�)u2ux + (−θ −�)υ2ux − 2(µ+�)uυυx

+γ υxt + αυxx + δuxxt + σuxxx = 0.

(28)

Applying the formula for determining equations in [9], we
acquires the multipliers of zeroth-order
31(x, t, u, υ),32(x, t, u, υ) for Equation (1)

31 = c1u,

32 = c1υ ,
(29)

where c1 is a constant.

1. If c1 = 1 in Equation(29), then we have the following
multipliers:

31 = u,32 = υ . (30)

Subsequently, we acquire the fluxes given by:

Tx =
−δ(uuxx−υυxx)

σ
,

Tt =
u3tut(3�+2µ+θ)+σ (uuxx+υυxx)

σ
.

(31)

4. CONCLUDING REMARKS

In this article, we have explored a suitable ansatz solution to
derive a dark-bright soliton solution of the new celebrated
Biswas-Arshed equation. observing the solutions derived in
Biswas and Arshed [3] and Ekici and Sonmezoglu [4], we
observed that the solution of the equation acquired in this
manuscript is new. The method used here has been proved to
be efficient in investigating the combined soliton solution of
non-linear models. We finally showed that the equation has
conservation laws and we reported the conserved vectors. We
hope to apply other techniques to extract additional new forms
of solutions of the new model in the future.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This study was Funded by Cankaya University.

REFERENCES

1. Whitham GB. Linear and Nonlinear Waves. New York, NY: John Whiley

(1974).

2. Agrawal GP. Nonlinear Fiber Optics. New York, NY: Academic Press (1995).

3. Biswas A, Arshed S. Optical solitons in presence of higher order

dispersions and absence of self-phase modulation. Optik. (2018) 174:452–9.

doi: 10.1016/j.ijleo.2018.08.037

4. Ekici M, Sonmezoglu A. Optical solitons with Biswas-Arshed

equation by extended trial function method. Optik. (2018) 177:13–20.

doi: 10.1016/j.ijleo.2018.09.134

5. Li Z, Li L, Tian H. New types of solitary wave solutions

for the higher order nonlinear Schrödinger equation, Phys

Rev Lett. (2000) 84:4096–9. doi: 10.1103/PhysRevLett.84.

4096

6. Zhou Q, Zhu Q. Combined optical solitons with parabolic law

nonlinearity and spatio-temporal dispersion. J Mod Opt. (2015) 62:483–6.

doi: 10.1080/09500340.2014.986549

7. Choudhuri A, Porsezian K. Dark-in-the-Bright solitary wave solution of

higher-order nonlinear Schrödinger equation with non-Kerr terms. Opt.

Commun. (2012) 285:364–7. doi: 10.1016/j.optcom.2011.09.043 .

8. Anco SC, Bluman G. Direct construction method for conservation laws of

partial differential equations Part II: general treatment. Eur J Appl Math.

(2002) 13:567–85. doi: 10.1017/S0956792501004661

9. Buhe E, Bluman GW. Symmetry reductions, exact solutions, and conservation

laws of the generalized Zakharov equations. J Math Phys. (2015) 56:101501.

doi: 10.1063/1.4931962

10. Jawad MA,Petkovic MD, Biswas A. Modified simple equation method for

nonlinear evolution equations. Appl Math Comput. (2010) 217:869–77.

doi: 10.1016/j.amc.2010.06.030

Frontiers in Physics | www.frontiersin.org 4 March 2019 | Volume 7 | Article 289

https://doi.org/10.1016/j.ijleo.2018.08.037
https://doi.org/10.1016/j.ijleo.2018.09.134
https://doi.org/10.1103/PhysRevLett.84.4096
https://doi.org/10.1080/09500340.2014.986549
https://doi.org/10.1016/j.optcom.2011.09.043
https://doi.org/10.1017/S0956792501004661
https://doi.org/10.1063/1.4931962
https://doi.org/10.1016/j.amc.2010.06.030
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Aliyu et al. Biswas-Arshed Equation With Third-Order Dispersions

11. Mirzazadeh M, Eslami M, Biswas A. Soliton solutions to KdV6 equation.

Nonlinear Dyn. (2015) 80:387–96. doi: 10.1007/s11071-014-1876-1

12. MirzazadehM,MahmoodMF,Majid FB, Biswas A, BelicM.Optical solitons in

birefringent fibers with riccati equation method. Optoelectron Adv Mat Rapid

Commun. (2015) 9:1032–6.

13. Inc M, Aliyu AI, Yusuf A. optical solitons to the nonlinear Schrödinger’s

equation with Spatio-temporal dispersion using complex amplitude ansatz.

J Mod Opt. (2017) 64:2273–80. doi: 10.1080/09500340.2017.1352047

14. Baleanu D, Inc M, Aliyu AI, Yusuf A. Dark optical solitons and conservation

laws to the resonance nonlinear Schrödinger equation with Kerr law

nonlinearity. Optik. (2017) 147:248–55. doi: 10.1016/j.ijleo.2017.08.080

15. Inc M, Aliyu AI, Yusuf A. Solitons and conservation laws to the resonance

nonlinear Schrödinger equation with both spatio-temporal and inter-modal

dispersions. Optik. (2017) 142:509–22. doi: 10.1016/j.ijleo.2017.06.010

16. Inc M, Hashemi MS, Aliyu AI. Exact solutions and conservation laws

of the Bogoyavlenskii equation, Acta Phys Polon A. (2018) 133:1133–7.

doi: 10.12693/APhysPolA.133.1133

17. Aliyu AI, Inc M, Yusuf A, Baleanu D. Symmetry analysis, explicit solutions,

and conservation laws of a sixth-order nonlinear ramani equation. Symmetry.

(2018) 10:341. doi: 10.3390/sym10080341

18. Inc M, Aliyu AI, Yusuf A, Baleanu D. Novel optical solitary waves

and modulation instability analysis for the coupled nonlinear

Schrödinger equation in monomode step-index optical fibers.

Superlattices Microstruct. (2018) 113:745–53. doi: 10.1016/j.spmi.2017.

12.010

19. Inc M, Aliyu AI, Yusuf A, Baleanu D. Optical solitons, conservation laws

and modulation instability analysis for the modified nonlinear Schrödinger’s

equation for Davydov solitons. J Electromagn Waves Appl. (2018) 32:858–73.

doi: 10.1080/09205071.2017.1408499

20. Inc M, Aliyu AI, Yusuf A, Baleanu D. Optical solitary waves, conservation

laws and modulation instability analysis to the nonlinear Schrödinger’s

equation in compressional dispersive Alven waves. Optik. (2017) 155:257–66.

doi: 10.1016/j.ijleo.2017.10.109

21. Zhou Q, Mirzazadeh M, Ekici M, Sonmezoglu A. Analytical study of solitons

in non-Kerr nonlinear negative-index materials. Nonlinear Dyn. (2016)

86:623–38. doi: 10.1007/s11071-016-2911-1

22. Zhou Q. Analytical solutions and modulation instability analysis to the

perturbed nonlinear Schrödinger equation. J Mod Opt. (2014) 61:500–3.

doi: 10.1080/09500340.2014.897391

23. Taghizadeh N, Mirzazadeh M, Farahrooz F. Exact solutions of the nonlinear

Schrodinger equation by the first integral method. J Math Anal Appl. (2011)

374:549–53. doi: 10.1016/j.jmaa.2010.08.050

24. Inc M, Aliyu AI, Yusuf A, Baleanu D. Combined optical solitary

waves and conservation laws for nonlinear Chen-Lee-Liu equation

in optical fibers. Optik. (2018) 158:297–304. doi: 10.1016/j.ijleo.2017.

12.075

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Aliyu, Inc, Yusuf, Baleanu and Bayram. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 5 March 2019 | Volume 7 | Article 2810

https://doi.org/10.1007/s11071-014-1876-1
https://doi.org/10.1080/09500340.2017.1352047
https://doi.org/10.1016/j.ijleo.2017.08.080
https://doi.org/10.1016/j.ijleo.2017.06.010
https://doi.org/10.12693/APhysPolA.133.1133
https://doi.org/10.3390/sym10080341
https://doi.org/10.1016/j.spmi.2017.12.010
https://doi.org/10.1080/09205071.2017.1408499
https://doi.org/10.1016/j.ijleo.2017.10.109
https://doi.org/10.1007/s11071-016-2911-1
https://doi.org/10.1080/09500340.2014.897391
https://doi.org/10.1016/j.jmaa.2010.08.050
https://doi.org/10.1016/j.ijleo.2017.12.075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 25 October 2019

doi: 10.3389/fphy.2019.00168

Frontiers in Physics | www.frontiersin.org 1 October 2019 | Volume 7 | Article 168

Edited by:

Jesus Martin-Vaquero,

University of Salamanca, Spain

Reviewed by:

Haci Mehmet Baskonus,

Harran University, Turkey

Andreas Gustavsson,

University of Seoul, South Korea

*Correspondence:

Prasantha Bharathi Dhandapani

d.prasanthabharathi@gmail.com

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 24 September 2019

Accepted: 11 October 2019

Published: 25 October 2019

Citation:

Dhandapani PB, Baleanu D, Thippan J

and Sivakumar V (2019) Fuzzy Type

RK4 Solutions to Fuzzy Hybrid

Retarded Delay Differential Equations.

Front. Phys. 7:168.

doi: 10.3389/fphy.2019.00168

Fuzzy Type RK4 Solutions to Fuzzy
Hybrid Retarded Delay Differential
Equations
Prasantha Bharathi Dhandapani 1*, Dumitru Baleanu 2,3, Jayakumar Thippan 1 and

Vinoth Sivakumar 1

1Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India,
2Department of Mathematics, Cankaya University, Ankara, Turkey, 3 Institute of Space Sciences, Măgurele, Romania

This paper constructs the numerical solution of particular type of differential equations

called fuzzy hybrid retarded delay-differential equations using the method of Runge-Kutta

for fourth order. The concept of fuzzy number, hybrid-differential equations, and delay-

differential equations binds together to form our equations. An example following the

algorithm is presented to understand the Concept of fuzzy hybrid retarded delay-

differential equations and its accuracy is discussed in terms of decimal places for easy

understanding of laymen.

Keywords: hybrid, fuzzy, retarded delay, differential equations, numerical solutions, fourth order, Runge-Kutta

Method

1. INTRODUCTION

In this manuscript a system is modeled with the concept of retarded delay differential equation
and we study it using fuzzy numbers. Nowadays hybrid systems play a vital role in communication
systems and retard delay differential equation was considered to be unavoidable in modeling any
biological models. In this paper these two separate mathematical concepts were combined under
one roof called fuzzy. We call these system of differential equation as fuzzy hybrid retarded delay
differential equations (FHRDDE).

The basic properties of fuzzy sets, fuzzy differential equations, fuzzy mappings were studied
by various authors [1–7]. We recall that Pederson and Sambandham [8], Abbasbandy and
Allahviranloo [9], Al Rawi et al. [10], Bellan and Zennaro [11], and Jayakumar et al. [12]
have treated the hybrid, fuzzy, delay, fuzzy delay differential equation numerically, respectively.
Prasantha Bharathi et al., studied various types of fuzzy delay differential equations in Prasantha
Bharathi et al.[13, 14]. Different methods were used by some authors for solving Hybrid fuzzy
differential equations without delay like [15] and [16]. Besides, L.C. Barros regularly studied fuzzy
differential equations [15, 17–19]. In Pederson and Sambandham [8], the authors defined and
solved the problem of hybrid fuzzy IVP.We extended this hybrid fuzzy IVP to fuzzy hybrid retarded
delay IVP. In addition to that of hybrid term3(zH(t)), the retarded delay term zH(t−δ) is also used.
So, there occurs some changes in the Runge-Kutta method which can be seen by comparing section
3 with Pederson and Sambandham [8].

The organization of the manuscript is given below. The section 2 treats the fuzzy hybrid retarded
delay-differential systems. The section 3 shows the method of Runge-Kutta for fourth order (R-
K-4) for dealing a FHRDDE and the section 4 holds algorithm and numerical example to prove
the theory.

11
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2. FUZZY HYBRID RETARDED
DELAY-DIFFERENTIAL SYSTEMS

According to Al Rawi et al. [10] the retarded delay differential
equations are defined in the form of a0DzH(t) + b0zH(t) +

b1zH(t − δ) = f (t). When f (t) = 0, it becomes homogeneous
for every first order delay differential equation. Here we take
f (t) as hybrid term and it was termed as hybrid retarded delay
differential equations where the constants are given by a0 = 1,
b0 = −1, b1 = −1, f (t) = 3(zH(t)). Throughout the paper
any function of the form fH(t) represents the hybrid function
satisfying the properties of fuzzy set proposed by Zadeh as
followed by Pederson and Sambandham [8] defined over the
hybrid term 3(zH(t)) and delay term zH(t − δ).

Let us consider the following FHRDDE for α ∈ [0, 1]







DzH(t) = [f (t, zH(t),3(zH(t)), zH(t − δ))]α , t ≥ t0,
zH(t) = φ(t), −δ ≤ t ≤ t0,
zH(t0) = z0 = φ(t0),

(1)

where 3(zH(t)) is the hybrid function and zH(t − δ) is the
delay function involving the delay term δ. More over the Hybrid
function is the function involving two or more sub functions
acting differently in specific interval defined over the main
functions interval. i.e., The sub functions of main function
acts differently in the different sub intervals of main function’s
domain. In the numerical example below, we have taken the
hybrid function3(zH(t)) = m(t).3(z(t)) wherem(t) and3(z(t))
will vary for different values defined over the interval t ∈ [t0, tn].
The delay term δ varies in the interval (t0, tn]. zH(t) = φ(t) is
the initial function and zH(t0) = z0 = φ(t0) is the initial value
defined at t0. It is obvious that

DzH(t) = [f (t,φ(t),3(zH(t)), zH(t − δ))]α ,

− δ ≤ t ≤ t0, 0 ≤ α ≤ 1.

It follows that for [f (t, zH(t),3(zH(t)), z(t − δ))]α . Now we
can define the above fuzzy valued function DzH(t) i.e.,
[f (t, zH(t),3(zH(t)), zH(t − δ))]α as follows

[f (t, zH(t),3(zH(t)), zH(t − δ))]α

=















































min f (t, vH(t),3(vH(t)), vH(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),
3(vH(t)) ∈ (3(zH(t)

α),3(zH(t)
α)),

vH(t − δ) ∈ (zH(t − δ)α , zH(t − δ)α),
max f (t, vH(t),3(vH(t)), vH(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),
3(vH(t)) ∈ (3(zH(t)

α),3(zH(t)
α)),

vH(t − δ) ∈ (z(t − δ)α , zH(t − δ)α),

(2)

for zH ∈ E with α- level sets [zH]
α = [zαH , z

α
H], 0 ≤ α ≤ 1















































D(zαH)(t) = min(f (t, vH(t),3(vH(t)), v(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),3(vH(t))
∈ (3(zH(t)

α),3(zH(t)
α))

vH(t − δ) ∈ (zH(t − δ)α , zH(t − δ)α)),
D(zαH)(t) = max(f (t, vH(t),3(vH(t)), vH(t − δ)) :

vH(t) ∈ (zH(t)
α , zH(t)

α),3(vH(t))
∈ (3(zH(t)

α),3(zH(t)
α)),

vH(t − δ) ∈ (zH(t − δ)α , zH(t − δ)α)).

(3)

for t ∈ I and 0 ≤ α ≤ 1.

3. FOURTH-ORDER FUZZY TYPE
RUNGE-KUTTA METHOD (R-K-4)

We recall that the R-K-4 plays a vital role in solving differential
equations. Also, it holds good for any dynamical system involving
delay differential equations.We use the R-K-4 for a FHRDDE (1).
Here we use a new simplified form of R-K-4. We define

ztn+1;α
− ztn;α =

4
∑

j=1

wiK j(tn; zH(tn;α),

ztn+1;α − ztn;α =

4
∑

j=1

wiK j(tn; zH(tn;α)),

where w1,w2,w3, and w4 are simple constants and

Kj = (minRj, maxRj), j = 1, 2, 3, 4.

Rj = hf

(

t, vH(t),3(vH(t)), vH(t − δ),

)

, j = 1.

Rj = hf

(

t +
h

2
, vH(t),3(vH(t)), vH(t − δ),

)

, j = 2, 3.

Rj = hf

(

t + h, vH(t),3(vH(t)), vH(t − δ),

)

, j = 4.

Such that,

vH(t) ∈ [zH(tk,n;α), zH(tk,n;α)], j = 1.

vH(t) ∈ [N j−1,N j−1], j = 2, 3, 4.

vH(t − δ) ∈ [zH(tk,n − δ;α), zH(tk,n − δ;α)], j = 1.

vH(t − δ) ∈ [Nj−1,N j−1], j = 2, 3, 4.

vH(tl) ∈ [zH(tk,0;α), zH(tk,0;α)], j = 1, 2, 3, 4.

where,

Nj = z +
Kj

2
, j = 1, 2.

Nj = z + Kj, j = 3.

Nj ∈

(

Nj(tk,n, zH(tk,n;α)),N j(tk,n, z(tk,n;α))

)

,

Kj ∈

(

K j(tk,nzH(tk,n;α)),K j(tk,n, z(tk,n;α))

)

,
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Z ∈

(

zH(tk,n;α), z(tk,n;α)

)

.

Next we define the followings

P = K1(t, zH(t;α))+ 2K2(t, zH(t;α))+ 2K3(t, zH(t;α))

+ K4(t, zH(t;α)),

Q = K1(t, zH(t;α))+ 2K2(t, zH(t;α))+ 2K3(t, zH(t;α))

+ K4(t, zH(t;α)).

The exact solution at tn+1 is given by



















ZH(tn+1;α)=ZH(tn;α)+
P

6
,

ZH(tn+1;α)=ZH(tn;α)+
Q

6
.

(4)

The approximate solution has the following form



















zH(tn+1;α)≈zH(tn;α)+
P

6
,

zH(tn+1;α)≈zH(tn;α)+
Q

6
.

(5)

where P and Q are given by

P = P[(tn,ZH(tn;α),ZHn (t;α))]

and

Q = Q[(tn,ZH(tn;α),ZHn (t;α))],

respectively.

4. ALGORITHM AND THE NUMERICAL
EXAMPLE

This section consists of an algorithm followed by an example to
understand the proposed theory.

Algorithm (R-K-4):

Step:1 Fix N=10,

Step:2 Calculate h by h =
(tn−t0)
tn∗N

Step:3 Set ti = i ∗ h for i = 0, 1, ..., n and compute z(ti).
Step:4 Take t0 as initial point and z0 as the initial value.
Step:5 Compute K1,K2,K3,K4, z(ti) using Runge-Kutta method,
explained in previous section.
Step:6 Calculate the upcoming iterations using z(ti+1) = z(ti) as
described in previous section.
Step:7 Repeat the steps, Step:2, Step:4 and Step:5 for ti ≤ tn.
Step:8 Quit the process at ti > tn.

The Numerical Example
Consider the FHRDDE, extended from Pederson and
Sambandham [8], namely

{

DzH(t) = [zH(t)+ 3(zH(t))+ z(t − 1)]α , 0 ≤ t ≤ 3, 0 ≤ α ≤ 1,

zH(t) = [(
6

8
+

4α

8
)et , (

9

8
−

α

8
)et], −1 ≤ t ≤ 0.

(6)

The hybrid function is defined as 3(zH(t)) = m(t).3(z(t)) as
mentioned in section 2 where,

m(t) =
∣

∣sin(π .t)
∣

∣ , fort ∈ [0, 3].

3(ν(t)) =

{

0, for t = 0,
ν, for t ∈ (0, 3].

Then the above Equation (6)

{

DzH(t) = [zH(t)+m(t)3(z(t))+ z(t − 1)]α , 0 ≤ t ≤ 3, 0 ≤ α ≤ 1,

zH(t) = [(
6

8
+

4α

8
)et , (

9

8
−

α

8
)et], −1 ≤ t ≤ 0.

(7)

The exact solution of (7) is given by

ZH (t;α) =






























































































































[(

6
8 +

4α
8

)

et ,
(

9
8 +

α
8

)

et
]

, t ∈
[

− 1, 0
]

,
[(

6
8 +

4α
8

)

et−1 −
e cos

(

π t
)

π
− 1

e +
e
π
+ 1,

(

9
8 +

α
8

)

et−1 −
e cos

(

π t
)

π
− 1

e +
e
π
+ 1

]

, t ∈
[

0, 1
]

,
[(

6
8 +

4α
8

) (

− t
e +

et
π
+ t + et−2+

e sin
(

π t
)

π2 −
e cos

(

π t
)

π
− 1

e + 1
)

,
(

9
8 +

α
8

)(

− t
e +

et
π
+ t + et−2+

e sin
(

π t
)

π2 −
e cos

(

π t
)

π
− 1

e + 1
)]

, t ∈
[

1, 2
]

,
[(

6
8 +

4α
8

)

(

1
2

(

− t2

e + et2

π
+ t2 − 2et

π
+ 2et−3 +

2e sin
(

π t
)

π2

−
2e(π2−1) cos

(

π t
)

π3 − 4
e +

4e
π
− 2e

π3 + 4
))

,
(

9
8 +

α
8 )

(

1
2

(

− t2

e + et2

π
+ t2 − 2et

π
+ 2et−3 +

2e sin
(

π t
)

π2

−
2e(π2−1) cos

(

π t
)

π3 − 4
e +

4e
π
− 2e

π3 + 4
)]

, t ∈
[

2, 3
]

,

(8)

where ZH (t;α) = [ZH (t;α) ,ZH (t;α)].

Let zH (n;α) = [zH (n;α) , zH (n;α)] and,

A1 = c0

2n
∑

s=0

(e(−1+ sh
2 )), A2 = c0

2n
∑

s=0

(HSin(
shπ

2
)), B1 = c1

20
∑

s=1

(e(−1+ sh
2 )),

B2 = c2

2n
∑

s=20

e(−2+ sh
2 ), B3 = (

(n− 10)H

π
), B4 = c2

2n
∑

s=20

(
(HCos( shπ2 )

π
)),

B5 = c3

2n
∑

s=1

(HSin(
shπ

2
)), D1 = c1

20
∑

s=1

(e(−1+ sh
2 )), D2 = c4

40
∑

s=20

(e(−2+ sh
2 )),

D3 = c5

2n
∑

s=40

(e(−3+ sh
2 )), D4 = (

(30− n)H

π
), D5 = c2

2n
∑

s=20

(
(HCos( shπ2 )

π
)),
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TABLE 1 | Comparing the exact and the approximate solution.

Approximate Exact

α
′s zH (n; α) zH (n; α) ZH (t; α) ZH (t; α)

0 6.62032538253014 9.93048807379521 6.62032351488858 9.93048527233288

0.1 6.84100289528115 9.82014931741971 6.84100096538487 9.82014654708473

0.2 7.06168040803215 9.70981056104421 7.06167841588116 9.70980782183659

0.3 7.28235792078316 9.59947180466870 7.28235586637744 9.59946909658845

0.4 7.50303543353416 9.48913304829320 7.50303331687373 9.48913037134030

0.5 7.72371294628516 9.37879429191770 7.72371076737002 9.37879164609216

0.6 7.94439045903617 9.26845553554220 7.94438821786630 9.26845292084402

0.7 8.16506797178717 9.15811677916670 8.16506566836259 9.15811419559588

0.8 8.38574548453818 9.04777802279119 8.38574311885887 9.04777547034773

0.9 8.60642299728918 8.93743926641569 8.60642056935516 8.93743674509959

1 8.82710051004019 8.82710051004019 8.82709801985145 8.82709801985145

D6 = c3

2n
∑

s=1

(HSin(
shπ

2
)), D7 = c6

2n
∑

s=40

(
(HSin( shπ2 )

π2
)),

The approximate solution is given by

zH (n;α) =


























































































































[(

6
8 + 4α

8

)

,
(

9
8 + α

8

) ]

,
(

− 10 ≤ n ≤ 0
)

,
[(

6
8 + 4α

8

) (

z0 + h
(

A1 + A2

))

,
(

9
8 + α

8

)(

z0 + h
(

A1 + A2

))]

,
(

1 ≤ n ≤ 10
)

,
[(

6
8 + 4α

8

)

(

z0 + h
(

n− 10
)

− h
6e

(

6n− 1
)

+ h
(

5
∑

i=1
Bi

))

,
(

9
8 + α

8

)

(

z0 + h
(

n− 10
)

− h
6e

(

6n− 1
)

+ h
(

5
∑

i=1
Bi

))]

,
(

11 ≤ n ≤ 20
)

,

[(

6
8 + 4α

8

)

(z0 +
(

(h2
( n2−

(

400
)

2

))(

1− 1
e +

H
π

))

+h(10− 59
6e )+ h

7
∑

i=1

(

Di

))

,

(

9
8 + α

8

)

(z0 +
((

h2
( n2−

(

400
)

2

))(

1− 1
e +

H
π

))

+h
(

10− 59
6e

)

+ h
7

∑

i=1

(

Di

))]

,
(

21 ≤ n ≤ 30
)

,

(9)

where the coefficients are written as

c0 =











1/6, s = 0, 2n.

2/3, s = 1, 3, ..., 2n− 1.

1/3, s = 2, 4, ..., 2n− 2.

c1 =











1/6, s = 20.

2/3, s = 1, 3, ..., 19.

1/3, s = 2, 4, ..., 18.

c2 =











1/6, s = 20, 2n.

2/3, s = 21, 23, ..., 2n− 1.

1/3, s = 22, 24, ..., 2n− 2.

c3 =











1/6, s = 2n

2/3, s = 1, 3, ..., 2n− 1.

1/3, s = 2, 4, ..., 2n− 2.

c4 =











1/6, s = 20, 40.

2/3, s = 21, 23, ..., 39.

1/3, s = 22, 24, ..., 38.

c5 =











1/6, s = 40, 2n

2/3, s = 41, 43, ..., 2n− 1.

1/3, s = 42, 44, ..., 2n− 2.

c6 =











−1/6, s = 40, 2n.

−2/3, s = 41, 43, ..., 2n− 1.

−1/3, s = 42, 44, ..., 2n− 2.

FIGURE 1 | Comparing approximate solution with the exact solution (for

h = 0.1, α = 1 at t ∈ [0, 3]).

Consider another H = (1 + h + h2

2 + h3

6 ,
h4

24 )
10, t ∈

[t0, tn], i.e., t ∈ [0, 3], h = 0.1 Set n = 10t and
zH(10t) = zH(n).

5. CONCLUSION

We have used the R-K-4 method to find the numerical solution of
FHRDDE. We presented the Table 1 only for t = 3, h = 0.1 for
α ∈ [0, 1]. The values of zH for t ∈ [0, 3] are plotted in Figure 1

for α = 1 and in Figure 3 for α ∈ [0, 3]. The comparison
of the solutions represented in Figure 1 for non-fuzzy IVP and
the Figure 2 for fuzzy IVP prove the accuracy of R-K-4 with
that of the exact solution. From the Table 1 we can conclude
that the accuracy of the method proposed is about four decimal
places. Also if we increase the order of the Runge-Kutta method
the accuracy of our numerical solutions will increase. The
analytical and numerical results obtained by this paper ensures
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FIGURE 2 | Comparing the approximate solution with the exact solution (for

h = 0.1, α ∈ [0, 1] at t = 3).

FIGURE 3 | Approximate solution by R-K-4 (for h = 0.1, α ∈ [0, 1] for

t ∈ [0, 3]).

the hybrid system with time lag (delay) can be solved. Thus, we
can solve properly any FHRDDE using the R-K-4 method. We
followed [10] to write the retarded delay differential equation
in regular homogeneous form and we added a hybrid term
to make it as non-homogenous equation which in turn makes

our governing Equation 1 as the hybrid fuzzy retarded delay
differential equation. Thus, our results differ from results on the
delay papers like [11, 12] or as in hybrid papers like [8, 20]. There
are differences between the traditional Runge-Kutta methods

presented in Pederson and Sambandham [8] and the reported
method because in our case the Runge-Kutta method involves
both hybrid and retarded delay term. The previously published
papers varies only the hybrid term in regular intervals. However,
we constructed a system in which both hybrid term 3(zH(t))
and delay term zH(t − δ) are subject to vary in some regular
intervals. We also generalized the numerical solution which will
provide very closer solution for any values in the given intervals.
In the above example, we have taken ( 68 + 4α

8 ) and ( 98 − α
8 ) as

our fuzzy numbers. But one can choose different fuzzy numbers
with in the interval α ∈ [0, 1]. In all the cases the non-member,
partial member and the full member of both approximate and
analytical solution will coincide as they are defined in [0 ≤ α ≤

1]. According to our knowledge the researchers working with
the numerical solutions of hybrid systems like [8, 20] did not
considered the system with time lag. In this paper we solved
the hybrid system with time lag and we open a gate for the
related future research in areas like communication systems and
signal processing.
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Current research is intended to examine the hydro-magnetic peristaltic flow of

copper-water nanofluid configured in a symmetric three-dimensional rotating channel

having generalized complaint boundaries incorporating second-order velocity slip

conditions and temperature-dependent viscosity effects. Strong magnetic field with Hall

properties, viscous dissipation, thermal radiations, and heat source/sink phenomenon

have been studied. Constitutive partial differential equations are modeled and then

simplified into a coupled system of ordinary differential equations by employing lubrication

approximation. Consequential governing model is tackled numerically, and the results for

flow quantities and Nusselt number are physically interpreted via graphs and bar charts

toward the assorted parameters. Interpreted numerical results indicate that velocity

components are accelerated with augmentation in first- and second-order velocity slip

parameters and variable viscosity parameter, while it is reduced with a rise in Grashof

number possessing dominant effects in the central region. Also, the temperature of the

fluid increases with an increase in temperature-dependent viscosity effect.

Keywords: nanofluid, peristalsis, rotation, slip conditions, hall effects, variable viscosity

INTRODUCTION

Peristalsis is a transport process of a decisive kind for moving fluids inside a conduit that occurs
due to its surface deformation. Analysis of peristalsis has gained plausible importance in the last
few years due to its wide applications in medical and chemical fields. Peristalsis comes from the
Greek word “Peristalsiskos,” which means spontaneous squeezing and grasping along the flexible
walls of tabular structures. It is a self-regulating and necessary procedure that is precisely useful
to move food in the digestive system, with commercial peristaltic pumping and blood pumping
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in the heart–lung machine, where it is essential to split the fluid
from the walls of the pumping device and move forward without
being infected due to the collision with the machinery. The
idea of peristalsis has been pioneered by Shapiro et al. [1] and
Latham [2], primarily. From then on, several researchers and
scientists have studied the peristaltic transport under different
aspects and assumptions. Representatively, mixed convection
and Joule heating effects on peristaltic transport of water-
based nanofluid by assuming convective boundary conditions
have been examined by Hayat et al. [3]. Eventually, magneto-
hydrodynamics (MHD) peristaltic transport of electrically
conducting fluids is paramount in the medical field. Abbas
et al. [4] have inspected peristalsis of blood transport carrying
nanoparticles with magnetic field effects through a non-uniform
channel, which is applicable in drug delivery. Further, magnetic
field effects on ciliary-induced peristaltic motion of nanofluid
with second law analysis have been investigated by Abrar et al.
[5]. For strong magnetic field and rarefied medium, electric
conductivity of the magnetic fluids becomes anisotropic due
to which Hall current appears prominently and this has been
initially presented by Hall [6]. Recently, Hall effects on peristaltic
transport of Carreau fluid through a channel were examined
by Hayat et al. [7]. The incompressible Eying–Powell fluid
is used to fill the channel. A distinctive description in this
regard is given in Hayat et al., Rashidi et al., Hasona and
Qureshi et al. [8–12].

Fluids have a major role in augmentation of heat transfer rate
in several physiological applications involving heat transfer in
connection with peristalsis such as oxygenation, hemodialysis,
photodynamic therapy, etc. In this regard, suspension of
nanoparticles including metal oxides, metals, and carbide/nitride
etc. are of the essence to boost up the thermal properties
of ordinary fluids like water, engine oil, ethylene glycol,
etc. and friction reduction, which enhances the bioactivity
and bioavailability of therapeutics. In biomedical processes,
nanotechnology is used as a substitute during envisioning
accurate medication of rheumatoid arthritis and it makes
selective targeting possible to damaged joints. Awais et al.
[13] examined analytically and numerically the boundary
layer Maxwell nanofluid transport over stretchable surface
presuming the impacts of heat generation/absorption. Awais
et al. [14] analyzed slippage phenomenon in the flow of non-
Newtonian nanofluid over a stretchable surface. Hayat et al.
[15] studied the nanofluid on the stretched surface. They
analyzed the flow in the presence of magneto-hydrodynamics
and chemical reactions. The generative/absorptive thermal
effects have been analyzed. Several attempts in this regime
have been made by investigators [16–20]. Recently, Shah
et al. [21, 22] studied thermally and electrically conducting
nanofluid and heat transfer in different geometries with
their applications.

In many physiological and medical procedures, since no-slip
boundary conditions do not remain authentic, slip effects are
important [23–25]. Moreover, variable viscosity is significant
when the physical properties of fluids vary significantly with
the distance and temperature and thus studied intensively
by researchers [26–29]. None of the above-cited attempts

include combined effects of variable viscosity and second-
order velocity slip through a channel with generalized wall
properties; therefore, it is the subject of research in this
study along with the peristaltic flow of nanofluid within a
rotating frame. Modeled system of partial differential equations
is a simplified lubrication approach and analyzed numerically
by employing NDSolve command in MATHEMATICA based
on the standard shooting method with fourth-order Runge-
Kutta integration procedure. Several graphical illustrations and
tables have been prepared to present the real insight of the
current investigation.

MATHEMATICAL FORMULATION OF
PROBLEM

Consider peristaltic flow dynamics of (Cu-H2O) nanofluid in
a homogeneous porous medium through complaint channel
walls sculptured as spring-backed plates having temperature of
upper/lower walls as T1/T0. The nanofluid and channel rotate
with uniform angular speed � parallel to the z-axis (Figure 1).
Flow occurs by expansion of waves having speed c, wavelength
λ, and amplitude a parallel to the walls placed at z = ±η having
the form:

z = ±η(x, t) = ±[d + a sin(
2π

λ
(x− ct))], (1)

in which t and d stand for time and half channel width,
respectively. Moreover, magnetic field B0 is applied along
the z-direction. In view of these facts, conservation laws of
mass, momentum, and energy in the presence of generalized
Hall properties, rotation, dissipative, radiative, internal
heat generation/absorption, and buoyancy effects are of the
form [30–33]:

∂u

∂x
+
∂w

∂z
= 0 (2)

FIGURE 1 | Physical interpretation of the problem.
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ρeff

[

du

dt
− 2�v

]

= −
∂
⌢

P

∂x
+ µeff

[

∂2u

∂x2
+
∂2u

∂z2

]

(3)

+
A1σfB

2
0

1+ (A1m)2
(−u+ A1mv)−

µeff u

k1

+ g(ρβ)eff (T − T0),

ρeff

[

dv

dt
+ 2�u

]

= −
∂
⌢

P

∂y
+ µeff

[

∂2v

∂x2
+
∂2v

∂z2

]

−
A1σfB

2
0

1+ (A1m)2
(v+ A1mu)−

µeff v

k1
, (4)

ρeff

[

dw

dt

]

= −
∂
⌢

P

∂z
+ µeff

[

∂2w

∂x2
+
∂2w

∂z2

]

, (5)

(ρCp)eff
dT

dt
= Keff

[

∂2T

∂x2
+
∂2T

∂z2

]

+ µeff

[

2

{

(

∂u

∂x

)2

+

(

∂w

∂z

)2
}

+

{

∂u

∂z
+
∂w

∂x

}2
]

+
16σ ∗T3

m

3k∗

[

∂2T

∂x2
+
∂2T

∂z2

]

+
µeff u

2

k1
+8, (6)

where modified pressure
⌢

P involving centrifugal effect is given by

P̂ = P −
1

2
ρ�2

(

x2 + y2
)

. (7)

Moreover u, v, and w symbolize the velocities in the respective
directions, while σf , k1, g, A1, m, σ ∗, k∗, T, Tm, and 8,
respectively, represent the electrical conductivity, permeability
of porous medium, gravitational force, effective thermal
conductivity, Hall effect, Stefan–Boltzmann constant, mean
absorption coefficient, fluid temperature, mean temperature
of nanofluid, and internal heat generation/absorption effects.
The relations for effective density ρeff , specific heat CPeff

,

thermal conductivity Keff , effective viscosity µeff with
α as variable viscosity parameter and thermal expansion
coefficient βeff for the dual phase flow model of the nanofluid
are [29]:

ρeff = (1− φ)ρf + φρp, (ρCp)eff = (1− φ)(ρCp)f + φ(ρCp)p,

Keff

Kf
=

Kp + 2kf − 2φ(Kf − Kp)

Kp + 2kf + φ(Kf − Kp)
, µeff =

µf exp[−α(T − Tm)]

(1− φ)2.5
,

(ρβ)eff = (1− φ)(ρβ)f + φ(ρβ)p. (8)

As the wall properties decompose the pressure as rigidity,
stiffness, and damping, thus expression for motion of generalized
complaint boundaries is [29, 30]:

L(η)=p− p0=

[

−τ
∂2

∂x2
+m′ ∂

2

∂t2
+ d

′ ∂

∂t
+ β ′

∂4

∂x4
+ k

]

η. (9)

FIGURE 2 | (A–D) Effects of M, Gr, m, and φ on u(z).
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In the above relation, L is the operator that symbolizes the
movement of elastic walls possessing viscous damping force, P0
represents the pressure outside the elastic walls due to muscular
tension, τ expresses the longitudinal tension per unit area, m′

is mass of the plate, d
′
is the wall damping coefficient, β ′ is

the flexural rigidity, and k is the stiffness effect. Utilizing the
generalized complaint wall-pressure relation in Equation (3) with
the assumption that P0 = 0, we get

∂L

∂x
=
∂p

∂x
(10)

=
µf exp[−α(T − Tm)]

(1− φ)2.5

[

∂2u

∂x2
+
∂2u

∂z2

]

+
A1σfB

2
0

1+ (A1m)2
(−u+ A1mv)−

µf exp[−α(T − Tm)]u

(1− φ)2.5k1

+ g(ρβ)eff (T − Tm)−
[

(1− φ)ρf + φρp
]

[

du

dt
− 2�v

]

. FIGURE 4 | Effects of α on u (z).

FIGURE 3 | (A–D) Effects of K1, α1, α2, and T ′ on u(z).
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Scaling transformations utilized in the above equations are

x∗ =
x

λ
, y∗ =

y

λ
, z∗ =

z

d
, δ =

d

λ
, p =

d2
⌢

P

cµf λ
, t∗ =

ct

λ
,

u∗ =
u

c
, v∗ =

v

c
, w∗ =

w

c
, η∗ =

η

d
,

θ =
T − Tm

T1 − T0
, Tm =

T1 + T0

2
, α1

∗ =
α1

d
, α2

∗ =
α2

d
,

β1
∗ =

β1

d
, β2

∗ =
β2

d
. (11)

Here, α1, α2, β1, and β2, respectively, express first-order
velocity slip, second-order velocity slip, secondary velocity slip,

and thermal slip parameters (T1, T0) are upper and lower wall

temperatures while δ is wave number. Further, introducing

stream function ψ such that u =
∂ψ
∂z andw = −δ

∂ψ
∂x and

suppressing bar notations for ease, conservation laws with

the assumption of long wavelength and small inertial forces,
we reach:

−2T
′

[

(1− φ)+ φ
ρp

ρf

]

v = −
∂p

∂x
+

exp(−α(T − T0)

(1− φ)2.5

(

∂2u

∂z2

)

−
A1M

2

1+ (A1m)2

(

∂ψ

∂z
− A1mv

)

−
exp(−α(T − T0))

(1− φ)2.5K1

∂ψ

∂z

+ Gr(T − Tm), (12)

2T
′

[

(1− φ)+ φ
ρp

ρf

]

u = −
∂p

∂y
+

exp(−α(T − T0))

(1− φ)2.5
∂2v

∂z2

−
A1M

2

1+ (A1m)2

(

v+ A1m
∂ψ

∂z

)

−
exp(−α(T − T0))v

(1− φ)2.5K1

, (13)

(

A2 +
4

3
R

) (

∂2θ

∂z2

)

+
Br exp(−α(T − T0))

(1− φ)2.5K1

(

∂ψ

∂z

)2

+ ε1

+
Br exp(−α(T − T0))

(1− φ)2.5

(

∂2ψ

∂z2

)2

= 0. (14)

In the above equations, Re =
ρf cd

µf
denotes the Reynolds number,

δ = d
λ
represents wave number, T

′
= Re�d

c is the Taylor number,

FIGURE 5 | (A–D) Effects of M, m, φ, and K1 on v(z).
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M = B0d
√

σf

µf exp[−α(T−T0)]
is the Hartman number, R =

4σ ∗T3
m

k∗κf

is radiation parameter, K1 = k1
d2

is the permeability parameter,

Pr = µf exp[−α(T − T0)]
Cf

kf
is the Prandtl number, Br = EcPr

expresses the Brinkman number, Ec = c2

Cf (T1−T0)
stands for the

Eckert number, ε1 =
d28

kf (T1−T0)
shows heat generation/absorption

parameter,m =
σf B0
ene

is the Hall parameter, andGr = d2

cµf
g(ρβ)eff

is the Grashof number.Moreover, the nanofluidics parametersA1

and A2 are expressed as

A1 = 1+
3(
σp
σf

− 1)φ

(
σp

σf
+ 2)− (

σp

σf
− 1)φ

,A2 =
Kp + 2kf − 2φ(Kf − Kp)

Kp + 2Kf + φ(Kf − Kp)
.

(15)

The wall properties for η = 1 + εSin (2π (x− t)) with ε

representing amplitude ratio parameter becomes:

∂ψ

∂z
±

α1

(1− φ)2.5
∂2ψ

∂z2
±

α2

(1− φ)2.5
∂3ψ

∂z3
= 0, z = ±η, (16)

[

E1
∂3

∂x3
+ E2

∂3

∂x∂t2
+ E3

∂2

∂x∂t
+ E4

∂5

∂x5
+ E5

∂

∂x

]

η

=
exp(−α(T − T0))

(1− φ)2.5
∂3ψ

∂z3
+

d2

cµf
g(ρβ)nf (T − T0)

−
A1M

2

1+ (A1m)2

(

∂ψ

∂z
− A1mv

)

−
exp(−α(T − T0))

(1− φ)2.5K1

∂ψ

∂z

+ 2T
′

[

(1− φ)+ φ
ρp

ρf

]

v, at z = ±η, (17)

v±
β1

(1− φ)2.5
∂v

∂z
= 0, θ ± β2

∂θ

∂z
= ±

1

2
at z = ±η.

(18)

where (E1, E2, E3, E4, E5) exposed the dimensionless
wall parameters.

E1 = −
τd3

λ3µf exp[−α(T − T0)]c
, E2 =

m1cd
3

λ3µf exp[−α(T − T0)]c
,

E3 =
d
′
d3

λ2µf exp[−α(T − T0)]c
, E4 =

β ′d3

λ5µf c
, E5 =

kd3

λµf c
. (19)

FIGURE 6 | (A–C) Effects of β1, α, and T ′ on v(z).

Frontiers in Physics | www.frontiersin.org 6 January 2020 | Volume 7 | Article 24922

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Awais et al. Hall Effects on Peristaltic Nanofluids

NUMERICAL RESULTS AND DISCUSSION

A series of analysis is physically interpreted in this section
in order to understand behaviors of primary and secondary
velocities, temperature, and heat exchange rate against involving
parameters for x = 0.2, t = 0.1, ε = 0.3, φ = 0.01, E1 =

0.03, E2 = 0.02, E3 = 0.01, E4 = 0.03, E5 = 0.02.

Analysis of Axial Velocity
The physical behavior of the axial velocity component is exploited
in Figures 2–4 for various substantial parameters with the
numerical values α = 0.03, α1 = 0.01, α2 = −0.01, β1 =

β2 = 0.02,m = 1.0, M = 2.0, Gr = 3.0, Br = 0.01, T′ =

1.0, R = 0.1, ε1 = 0.3, K1 = 0.5. Figure 2A depicts the
consequence of applied magnetic field on velocity associated
with Hartmann number M. Enhancement in values of M
makes the impact of Lorentz force strong, which opposes the
body forces with dominant retarding effects, and therefore,
axial velocity is observed as a decreasing function of M. It
is described in Figure 2B that velocity at the boundaries of

channel shows almost a negligible variation against Gr, whereas
it is trimmed down in the center of the channel, which
clearly shows that thermal convection opposes the flow in an
important manner. Variational trend of velocity toward Hall
parameter m is noticed in Figure 2C. Effective viscosity of
copper nanoparticles abbreviates with rise in values of m, which

consequently reduces magnetic damping force, and thus, velocity
seems to be accelerating. Furthermore, an augmentation in

nanoparticle volume fraction (φ) offers more resistance to the
fluid transport, which drops the flow velocity. This trend is

represented in Figure 2D. Behavior of u (z) for non-identical
values of permeability parameter K1 is illustrated in Figure 3A.
Large values of porosity parameter lessen frictional effects as well
as lead to high permeability, which causes flow rate to accelerate.
The effect of hydrodynamic slip parameter α1 on velocity is
depicted physically in Figure 3B. One can notice that as the
values of slip parameter enlarge, fluid flows smoothly since it
indicates that fluid velocity is unaffected by surface motion and
that slippage reduces the resistive forces. A relevant behavior
of second slip parameter α2 is exposed in Figure 3C as well.

FIGURE 7 | (A–D) Effects of M, m, φ, and K1 on θ (z).
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An increase in α2 accelerates flow in the vicinity of the lower
half of the channel while a completely conflicting trend is seen
in the region of the upper half. It is depicted in Figure 3D

that velocity in axial direction is reduced for rising values of
rotation parameter T′. It validates physically that a flow in the
perpendicular direction is generated due to angular velocity with
consequences in axial flow abbreviation. Moreover, it can be seen
interestingly that velocity has its maximum values in absence of
rotation. The effect of variable viscosity parameter is shown in
Figure 4 in which velocity u (z) rises due to reducing frictional
forces with increment in α.

Secondary Velocity
Effect of rotating motion induces a velocity component
perpendicular to axial direction, which is known as secondary
velocity v(z). In order to understand physical insight of secondary
velocity against pertinent parameters for numerical values α =

0.03, α1 = 0.1, α2 = 0.1, β1 = β2 = 0.02, m= 1.0, M = 2.0,
Br = 0.1, Gr = 3.0, T′ = 1.0, R = 0.1, ε1 = 0.3, K1 = 0.5,
Figures 5, 6 are prepared. Figure 5A presents secondary velocity
v(z) as a decreasing function of M whereas Hall effects enhance

the secondary velocity as noticed in Figure 5B. Moreover,
inspection of other plots in Figures 5, 6 signifies that physical
behaviors of velocity v (z) for escalating values of φ, K1, β1, α,
and T′ as well as motivation behind such behaviors are similar
to those for axial velocity. Also, graphical estimation reveals that
maximum velocity occurs in the middle region of the channel.

Temperature Distribution
Variational trends of dimensionless temperature distribution
toward the influence of substantial parameters in case of
α = 0.02, α1 = 0.01, α2 = −0.01, β1 = β2 =

0.5, m = 2.0, M = 2.0, Gr = 3.0, Br=0.01, T′ =

1.0, R = 0.2, ε1 = 0.3, and K1 = 0.5 is plotted and
presented in Figures 7–9. As demonstrated in Figure 7A, the
temperature of the fluid decreases owing to the enhancing values
of Hartmann number. This happens because magnetic field
clustered the nanoparticles, thereby increasing viscous effects
that reduce average kinetic energy leading to temperature rise.
An increment in θ (z) corresponding to enlargement in Hall
parameter is seen in Figure 7B. It is of factual significance
that augmentation in m enhances electrical conductivity, i.e.,

FIGURE 8 | (A–D) Effects of β2, α, Rd , and Br on θ (z).
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FIGURE 9 | (A–E) Variation in −
κeff
κf
θ ′(0) against ε1, φ, α, Rd , and β2.
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TABLE 1 | Numerical values of thermal properties of copper and water.

Phase ρ(kg m−3) C( j kg−1 K−1) K(Wm−1K−1) β(K−1) × 10−6
σ (�m)−1

Water 997.1 4,179 0.613 210 0.05

Copper 8,933 385 401 16.65 5.96× 107

TABLE 2 | Comparison of results for −κeff/κf θ
′(0) with Tanveer et al. [27] when

α = α2 = E4 = E5 = ε1 = Gr = R = 0.

φ M m K1 Present results Tanveer et al. [27]

0.0 1.0 1.0 0.8 0.352189 0.352191

0.02 0.381989 0.381991

0.04 0.413208 0.413211

0.1 0.0 0.516370 0.516373

0.5 0.516282 0.516284

1.0 0.516065 0.516068

1.0 0.0 0.515520 0.515523

0.2 0.515060 0.515063

0.4 0.514906 0.514908

1.0 1.0 0.516113 0.516115

2.0 0.516979 0.516981

3.0 0.517233 0.517235

number of free electrons to conduct electric current increases
and correspondingly rising conduction rate leads to temperature
increase. Figure 7C exposed a reduction in temperature for rise
in φ due to increasing thermal exchange rate. More to the point,
an increase in porosity parameter increases the permeability
of channel walls and corresponds to larger time relaxation,
which enhances resistive effects and, hence, temperature dropoff.
This fact can be observed in Figure 7D. A corresponding
enhancement in temperature profile vs. gradually mounting
values of thermal slip parameter is observed in Figure 8A. This
behavior is consistent with the physics of the problem that a rise
in β2 leads to a reduction in retarding effects and dominates
the temperature difference between fluid and boundaries of
the channel due to which temperature rises accordingly. The
purpose of Figure 8B is to explore the impact of the non-
uniform viscosity parameter on θ (z), which serves to boost the
temperature markedly due to the fact that α is inversely related
to viscous forces and its growing values reduce such forces.
Obstinately, Figure 8C signifies a contour of the variation in θ (z)
for increasing values of Rd evolving. It is known that an increase
in Rd values corresponds to a drop in mean absorption parameter
prominently and in so doing refers to less energy absorption and
temperature decreases accordingly. Further, Figure 8D portrays
the variation in θ (z) toward Br. It is seen that temperature
absolutely grows for the increase in Br due to increasing thermal
energy generated by internal friction of fluid.

Deviation in a few of the emerging parameters for heat
transfer rate is probed as well. For this purpose, bar charts
are structured and exhibited in Figures 9A–E. An increment
in rate of heat exchange for increasing values of ε1 and φ is

expressed in Figures 9A,B due to internal heat production and
ever-increasing thermal conduction, accordingly. Figures 9C,D,
respectively, depict a decreasing trend in heat transfer rate as
the values of α and Rd become larger while an acceleration
is reported for β2 as demonstrated in Figure 9E. Additionally,
experimental numerical values of thermal properties are
articulated in Table 1. A comparative analysis has been carried
out and results are displayed in Table 2. A very good
agreement is observed between existing results and those of
Hayat et al. [27].

CONCLUDING REMARKS

Peristaltic flow dynamics of Cu-H2O nanofluid through channel
with complaint walls having porous medium in a rotating frame
is investigated in the presence of Hall current along with some
physical factors. Major outcomes are recapped as:

➢ Enhancement in slip parameters α1, α2, and β1 has
consequences in axial and secondary velocity acceleration
while the impact of Gr shows a decrease in axial velocity.

➢ Variation inM and T′ corresponds to a decrease in velocities
as well as temperature but the profiles show a conflicting
trend towardm.

➢ Increase in values of K1 enhances velocities and drops fluid
temperature, whereas consequences of φ depict a dropoff in
velocities as well as temperature.

➢ Comparatively, both the axial and secondary velocities
correspond to a similar variational trend.

➢ Dimensionless temperature distribution increases toward a
rise in β2, Br, α, and ε1, whereas a conflicting variation is
noticed for Rd.

➢ Heat transfer rate is maximum in the vicinity of the surface
of the channel for boosting values of ε1, φ, and α, but it
decreases for radiation and thermal slip parameters.

➢ Both velocity and temperature fields exhibit their maximum
values in the central region of complaint walled channel.
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The Falling Body Problem in
Quantum Calculus
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Department of Mathematics, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia

The quantum calculus, q-calculus, is a relatively new branch in which the derivative

of a real function can be calculated without limits. In this paper, the falling body

problem in a resisting medium is revisited in view of the q-calculus to the first time.

The q-differential equations describing the vertical velocity and distance of the body are

obtained. Accordingly, exact expressions for the vertical velocity and the vertical distance

are provided. The solutions are expressed in terms of the small q-exponential function

which is an elementary function in the q-calculus. The dimensionality of the obtained

formulae of the velocity and the distance are also analyzed. In addition, the present exact

solutions reduce to the corresponding solutions in classical Newtonian mechanics when

the quantum parameter q tends to one.

Keywords: q-calculus, q-series, exact solution, falling body problem, q-differential equation

2010 Mathematics Subject Classification:35A24, 49K15

1. INTRODUCTION

Basically, the regular calculus uses limits in calculating the derivatives of real functions. However,
the calculus without limits is nowadays known as quantum calculus or q-calculus. Historically, in
the eighteenth century, Euler obtained the basic formulae in q-calculus. However, Jackson [1] may
have been the first to introduce the notion of the definite q-derivative and q-integral. Currently,
there is a significant interest in implementing the q-calculus due to its applications in several areas,
such as mathematics, number theory, and combinatorics [2]. Ernst [3, 4] pointed out that the
majority of scientists who use q-calculus are physicists. Baxter [5] introduced the exact solutions
of several models in Statistical Mechanics. Bettaibi and Mezlini [6] solved some q-heat and q-wave
equations. Many interesting results in such area of research were also introduced by several authors
in the literature [7–12].

In this paper, we aim to extend the applications of the q-calculus to study the falling body
problem in a resisting medium. This problem and also the full projectile motion have been
investigated by several authors [13–17] using various definitions in fractional calculus. However,
the present paper may be the first to analyze the falling body problem in view of the q-calculus.

The basic formulae in q-calculus will be used to analyze themotion of a falling body in a resisting
medium. Moreover, it will be shown that the exact solutions for the vertical velocity and distance
reduce to the classical ones as q → 1. The paper is organized as follows. Section 2 presents the main
aspects of the q-calculus. Sections 3 discusses the application of the q-calculus on the falling body
problem. Section 4 includes an additional analysis. Finally, section 5 outlines the conclusions.
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2. THE MAIN ASPECTS OF THE
q-CALCULUS

Let q ∈ R and n ∈ N, then [n]q is defined as (first chapter in [18])

[n]q =
1− qn

1− q
, (1)

and as q → 1, we have

lim
q→1

[n]q = n. (2)

The q-factorial [n]q! of a positive integer n is given by

[n]q! = [1]q × [2]q × [3]q × · · · × [n]q. (3)

The definition of q-differential is dqf (t) = f (t) − f (qt) and the
q-derivative of a function f (t) is defined by [18]

Dqf (t) : =
dqf (t)

dqt
=

f (t)− f (qt)

(1− q)t
, t 6= 0, (4)

such that

lim
q→1

Dqf (t) = f ′(t), (5)

if f is differentiable at t, and we have at t = 0 that

Dqf (0) = lim
t→0

Dqf (t). (6)

According to (4) we have

Dqt
n = [n]q t

n−1. (7)

The small q-analog of the exponential function et denoted by
eq(t) (also called the small q-exponential function) is given as

eq(t) =

∞
∑

j=0

tj

[j]q!
. (8)

The definite Jackson q-integral is defined by

∫ x

0
f (t) dqt = (1− q)x

∞
∑

j=0

qjf (qjx), (9)

and according to (4) and (9), we have

∫ x

0
Dqf (t) dqt = f (x)− f (0). (10)

The indefinite Jackson q-integral of the small q-exponential
function eq(αt) is given as [18]

∫

eq(αt) dqt =
1

α
eq(αt)+ c, (11)

where c is a real constant. The correctness of dimensionality of
the physical quantities is actually guaranteed by the definition (4).

3. THE FALLING BODY PROBLEM

Consider the falling of an object of mass m in the Earth
gravitational field through the air from a height h with initial
velocity v0. The classical equation of motion for the particle is
given by [15, 16]

m
dv

dt
= −mg −mkv, (12)

where k is a positive constant and its dimensionality is the inverse
of seconds, i.e., [k] = s−1. The initial conditions are given as

v(0) = v0, z(0) = h, (13)

where z(t) is the vertical distance of the particle at arbitrary time

t and dz(t)
dt

= v(t). The equation of motion (12) in view of the
quantum calculus becomes

dqv

dqt
: = −g − kv, q ∈ (0, 1]. (14)

In order to solve Equation (14), we assume the solution in the
series form:

v(t) =

∞
∑

n=0

ant
n, (15)

and therefore

dqv

dqt
=

∞
∑

n=0

[n]qant
n−1,

=

∞
∑

n=1

[n]qant
n−1, where [0]q = 0,

=

∞
∑

n=0

[n+ 1]qan+1t
n. (16)

Substituting (15) and (16) into (14), yields

∞
∑

n=0

[n+ 1]qan+1t
n = −g − k

∞
∑

n=0

ant
n, (17)

or

[1]qa1 +

∞
∑

n=1

[n+ 1]qan+1t
n = −g − ka0 − k

∞
∑

n=1

ant
n, (18)

which gives

a1 =
−g − ka0

[1]q
,

an+1 =
−kan

[n+ 1]q
, n ≥ 1, (19)
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From (19), we have

a2 =
−ka1

[2]q
=

(−1)2kg + (−k)2a0

[1]q[2]q
,

a3 =
−ka2

[3]q
=

(−1)3k2g + (−k)3a0

[1]q[2]q[3]q
,

a4 =
−ka3

[4]q
=

(−1)4k3g + (−k)4a0

[1]q[2]q[3]q[4]q
,

.

.

an =
(−1)nkn−1g + (−k)na0

[1]q[2]q[3]q . . . [n]q
, n ≥ 1. (20)

This n-term coefficient can expressed in terms of the q-factorial
[n]q! as

an =
(−1)nkn−1g + (−k)na0

[n]q!
, n ≥ 1. (21)

The instantaneous velocity is obtained as

v(t) = a0 +

∞
∑

n=1

ant
n,

= a0 +

∞
∑

n=1

[

(−1)nkn−1g + (−k)na0

[n]q!

]

tn.

= a0 +

∞
∑

n=1

[

(g/k)(−kt)n + (−kt)na0

[n]q!

]

,

(22)

which can be written as

v(t) = a0 +
( g

k
+ a0

)

∞
∑

n=1

(−kt)n

[n]q!
. (23)

In terms of the small exponential function eq(−kt), we have

v(t) = a0 +
( g

k
+ a0

)

[

eq(−kt)− 1
]

. (24)

Applying the first initial condition in (13) on (24), we obtain
a0 = v0 and therefore v(t) becomes

v(t) = v0 +
( g

k
+ v0

)

[

eq(−kt)− 1
]

, (25)

which can be simplified as

v(t) = −
g

k
+

( g

k
+ v0

)

eq(−kt). (26)

The vertical distance z(t) in quantum calculus is governed by,

Dqz(t) = −
g

k
+

( g

k
+ v0

)

eq(−kt), (27)

where v(t) = Dqz(t). Integrating (27), it then follows;

∫ t

0
Dqz(τ ) dqτ =

∫ t

0

(

−
g

k

)

dqτ +

( g

k
+ v0

)

∫ t

0
eq(−kτ ) dqτ ,

(28)
and hence,

z(t)− z(0) = −
g

k

[

τ

[1]q

]t

0

+

( g

k
+ v0

)

[

−
eq(−kτ )

k

]t

0

, (29)

or

z(t) = h−
g

k

(

t

[1]q

)

+

( g

k
+ v0

)

(

−
eq(−kt)

k
+

1

k

)

, (30)

i.e.,

z(t) = h−
gt

k
+

1

k

( g

k
+ v0

)

(

1− eq(−kt)
)

, (31)

where [1]q = 1. The exact solutions (26) and (31) should be
reduced to the corresponding solutions in classical Newtonian
mechanics when q → 1. In addition, if the acceleration due
to gravity is measured in ms−2, then the vertical velocity in
(26) must has dimension ms−1 and the vertical distance in
(31) must has dimension m. These issues are addressed in the
following section.

4. ANALYSIS AND APPLICATIONS

First of all, we investigate the solutions (26) and (31) when q → 1.
In this case, the small exponential function eq(−kt) reduces to the

standard exponential function e−kt in classical calculus. Hence,
(26) becomes

v(t) = −
g

k
+

(

v0 +
g

k

)

e−kt , (32)

which is the analytic expression for velocity in the case of the
classical Newtonian mechanics (see Equation 16 in reference
[15]). Besides, the vertical distance in (31) reduces to

z(t) = h−
gt

k
+

1

k

( g

k
+ v0

) (

1− e−kt
)

, (33)

which is also the analytic expression for the vertical distance
in the classical Newtonian mechanics (see Equation 17 in
reference [15]).

In addition, in the case of no air resistance, i.e., the parameter
k vanishes, we obtain from (32) that

v(t)|k→0 = lim
k→0

[

v0e
−kt + g

(

e−kt − 1

k

)]

,

= v0 + g lim
k→0

(

e−kt − 1

k

)

,

= v0 + g lim
k→0

(

−te−kt

1

)

,

= v0 − gt. (34)
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Also, the vertical distance in (33) in the absence of air
resistance becomes

z(t)|k→0 = h+ lim
k→0

[

−gtk+ (g + kv0)(1− e−kt)

k2

]

,

= h+ lim
k→0

[

v0 − gt +
[

(g + kv0)t − v0
]

e−kt

2k

]

,

= h+ lim
k→0

[

−
[

(g + kv0)t − v0
]

te−kt + v0te
−kt

2

]

,

= h+

(

−
(

gt − v0
)

t + v0t

2

)

,

= h+ v0t −
1

2
gt2. (35)

Here, it should be noted that L’Hôpital’s rule was applied to
calculate the above limits. The Equations (34) and (35) are the
same of the corresponding equations for the vertical velocity
and vertical distance in Newtonian mechanics in the absence of
air resistance.

Regarding the dimensions of the q-forms of v(t) and z(t)
in (26) and (31), respectively, it should be first to specify the
dimensions of the quantities eq(−kt) and (1 − eq(−kt)) as
indicated below:

[

kt
]

= [k]× [s] = s−1 × s = Scalar,
[

eq(−kt)
]

= Scalar, (36)
[

1− eq(−kt)
]

= Scalar.

By this, eq(−kt) and (1 − eq(−kt)) are dimensionless quantities,
i.e., eq(−kt) and (1− eq(−kt)) are scalar quantities. Accordingly,
v(t) in (26) always has dimension ms−1 for all values of the
quantum parameter q. Also z(t) in (31) always has dimension
m ∀q ∈ (0, 1]. The correctness of dimensions of the q-
vertical velocity and the q-height was actually guaranteed by the
definition (4) without any need to involve an auxiliary parameter
as in the literature [15, 16].

Although the present model of the falling body problem seems
simple, the authors believe that the current work is worthy of

exploration. This is because the present solution was provided
to the first time for the falling problem in view of q-calculus.
In addition, it was shown in this paper the way of obtaining the
solutions in exact forms and also how to check the dimensions of
the physical quantities in terms of q-parameter. Furthermore, the
obtained solutions can be verified by direct substitutions into the
governing equations. Therefore, the present work is a first step
for further studies in future to explore various physical models in
applied mathematics implementing the q-calculus.

5. CONCLUSION

In this paper, the quantum calculus was applied to solve
the falling body problem. The exact solutions for the q-
vertical velocity and the q-distance have been obtained. The
obtained exact solutions were expressed in terms of the small
q-exponential function. The correctness of dimensionality of
the obtained formulae of the velocity and the distance was
proved. Moreover, The present exact solutions reduced to the
corresponding solutions in classical Newtonian mechanics when
the quantum parameter q tends to one. The present work
can be further extended to explore the physical properties of
the projectile motion in two and three dimensions in view of
the q-calculus.
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This article presents the fractional Laplace transformwith the help of new iterative method

(NIM) is extended for an estimated solution of coupled system of fractional order PDEs.

The time fractional Whitham–Broer–Kaup system is taken as a test example where

derivatives are given in the Caputo sense. Numerical results found by the proposed

method are compared with that of ADM, VIM, and OHAM. Numerical consequences

display that the proposed method is reliable and operative for solution of fractional order

coupled system of PDEs. The proposed method shows better accuracy in even two

iterations compared to the methods given above.

Keywords: fractional Whitham–Broer–Kaup equations, coupled system of time fractional PDEs, new iterative

method, fractional calculus (FC), Whitham–Broer–Kaup system, Caputo sense, ADM, VIM and OHAM

INTRODUCTION

As we know that many technical and engineering issues that arises in day-by-day existence are
modeled via mathematical tools form fractional calculus (FC), i.e., fractional calculus can be used
to simulate various real phenomena involving long memory, e.g., using fractional derivative, one
can model HIV/AIDS model based on the effect of screening of unaware infectives [1]. Maximum
problems that arise are non-linear, and it is not usually probable to locate systematic results of
such problems since some researchers introduced new approaches for finding the exact solution of
FPDEs [2]. However, these methods also have some drawbacks, and we cannot use it for any type
of problems. To fulfill these need, researchers introduced many semi analytical techniques such as
HPM [3], HPTM [4], HAM [5], FDM [6], RPSM [7], etc.

NIM was introduced by Daftardar-Gejji and Jafari in 2006 and is also known as the DJ method
for the solution of non-linear equations. This method is the modification of ADM in which the
complex Adomian polynomials are replaced by Jafari polynomials. Therefore, we have no need to
compute tedious Adomian’s polynomial in each iteration.

In this presentation, we have extended the applications of the DJmethod to a solution of coupled
WBK equations of fractional order using the fractional Laplace Transform. Using the Laplace
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transform for fractional PDEs is effortless compared to the
Riemann Liouvelle integral operator for fractional PDEs as well
as a system of fractional PDEs.

The fractional-orderWBK equations describe the propagation
of shallowwater waves [8] with different dispersion relations. The
WBK equations are of the form:

Dα
t u+ uux + vx + buxx = 0

Dα
t v+ (uv)x + auxxx − bvxx = 0,

where u(x, t) denotes the horizontal velocity, v(x, t) is the height
that deviates from the equilibrium position, a, b are real constants
that are represented in different diffusion powers, and Dα

t 0 <

α ≤ 1 is the Caputo derivative operator. For α = 1, we get the
usual WBK equations. It is also essential to show that when a = 1
and b = 0, we have fractional order modified Boussinesq (MB)
equation, and when a = 0, b = 1�2 , we get the fractional order
approximate long wave (ALW) equation. These equations took
the attention of many researchers in recent decades [9–11].

The present paper is divided into five sections. The
Fundamental Theory of Proposed Method section is devoted to
the analysis of the DJ method as well as the implementation
of the Laplace transform for fractional PDEs are given. In the
Application of Laplace Transform with DJ method to Fractional
Whitham-Broer-Kaup Equations section, the application of
Laplace transform to FPDEs are given. In the Results and
Discussion section, the results of the proposed method are
compared with VIM, ADM, and OHAM solutions for time-
fractional WBK, time fractional MB, and time-fractional ALW
equations, while in the Conclusion section, the conclusion of the
work is given.

FUNDAMENTAL THEORY OF PROPOSED
METHOD

New Iterative Method [12–16]
Daftardar-Gejji and Jafari consider the following equation [12]:

Consider the equations of the form:

νi = fi + ςi (ν1, ν2) + ξi (ν1, ν2) , i = 1, 2. (1)

wherefi are known functions, ςi, ξi are linear and non-linear
functions of νi. Assuming that equation (1) have a solution of the
series form:

νi =

∞
∑

j=0

νi,j, i = 1, 2. (2)

Since ςi is linear, so we write it as:

ςi





∞
∑

j=0

(

ν1,j, ν2,j
)



 =

∞
∑

j=0

ςi
(

ν1,j, ν2,j
)

, (3)

Decomposition of non-linear operators is as follows:

ξi





∞
∑

j=0

νi,j



 = ξi
(

ν1,0, ν2,0
)

+

∞
∑

j=1







ξi





j
∑

k=0

ν1,k,

j
∑

k=0

ν2,k



− ξi





j−1
∑

k=0

ν1,k,

j−1
∑

k=0

ν2,k











,

=

∞
∑

j=0

Gi,j. (4)

where Gi,0 = ξi
(

ν1,0, ν2,0
)

and Gi,j = ξi

(

j
∑

k=0

ν1,k,
j
∑

k=0

ν2,k

)

−

ξi

(

j−1
∑

k=0

ν1,k,
j−1
∑

k=0

ν2,k

)

, j ≥ 1. i = 1, 2.

Hence, equation (1) is equivalent to:

∞
∑

j=0

νi,j = fi +

∞
∑

j=0

ςi
(

ν1,j, ν1,j
)

+

∞
∑

j=0

Gi,j. (5)

Further, the recurrence relation is defined as follows:

νi,0 = fi,

vi,1 = ςi
(

ν1,0, ν2,0
)

+ Gi,0,

vi,2 = ςi
(

ν1,1, ν2,1
)

+ Gi,1,
.....

vi,m+1 = ςi
(

ν1,m, ν2,m
)

+ Gi,m, m = 1, 2, .....

(6)

The kth-order approximation is given by:

νi =

k−1
∑

j=0

νi,j.

For convergence analysis, we refer to Daftardar-Gejji and Jafari
[13] where explanatory example is solved.

Laplace Transform and Fractional Partial
Differential Equations [4]
Consider the following equations:

Dα
t vi(x, t)+ ςvi(x, t)+ ξvi(x, t) = 0, (7)

0 < α ≤ 1,
with ICs.

vi(x, 0) = fi(x). (8)

where ς is the linear operator, ξ is the non-linear operator, and
Dα
t vi(x, t) is the Caputo fractional derivative of a function vi(x, t),

which is defined as:
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Dα
t vi(x, t) =

1

Ŵ(n− α)

t
∫

0

(
vi
n(x, γ )

(t − γ )α+1−n
)dγ , (9)

(n− 1 < α ≤ n, n ∈ N).
Using the property of Laplace transform for Caputo fractional

derivatives is:

L[Dα
t vi] = sαL[vi(x, t)]−

n−1
∑

k=0

vi
k(x, 0+)sα−1−k. (10)

Taking the Laplace transform on both sides of equation (10)
we get:

L[Dα
t vi(x, t)]+ L[ςvi(x, t)]+ L[ξvi(x, t)] = 0. (11)

Using equation (10), we have:

L[vi(x, t)] =
1

s
vi(x, 0)−

1

sα
L[ςvi(x, t)]−

1

sα
L[ξvi(x, t)]. (12)

Taking the inverse Laplace transform on both sides of equation
(12), we get:

TABLE 1 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for WBK equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 1.04892 ×10−4 1.23033 ×10−4 1.07078 ×10−4 1.67111 ×10−12

(0.1,0.3) 9.64474 ×10−5 3.69597 ×10−4 3.04565 ×10−4 4.51196 ×10−11

(0.1,0.5) 8.88312 ×10−5 6.16873 ×10−4 4.81303 ×10−4 2.08888 ×10−10

(0.2,0.1) 4.25408 ×10−4 1.19869 ×10−4 1.04388 ×10−4 1.57879 ×10−12

(0.2,0.3) 3.91098 ×10−4 3.60098 ×10−4 2.97260 ×10−4 4.26227 ×10−11

(0.2,0.5) 3.60161 ×10−4 6.01006 ×10−4 4.70138 ×10−4 1.97328 ×10−10

(0.3,0.1) 9.71922 ×10−4 1.16789 ×10−4 1.01776 ×10−4 1.49181 ×10−12

(0.3,0.3) 8.93309 ×10−4 3.50866 ×10−4 2.90150 ×10−4 4.02799 ×10−11

(0.3,0.5) 8.22452 ×10−4 5.85610 ×10−4 4.59590 ×10−4 1.86481 ×10−10

(0.4,0.1) 1.75596 ×10−3 1.13829 ×10−4 9.92418 ×10−5 1.41043 ×10−12

(0.4,0.3) 1.61430 ×10−3 3.41948 ×10−4 2.83229 ×10−4 3.80803 ×10−11

(0.4,0.5) 1.48578 ×10−3 5.70710 ×10−4 4.49118 ×10−4 1.76298 ×10−10

(0.5,0.1) 2.79519 ×10−3 1.10936 ×10−4 9.67808 ×10−4 1.33388 ×10−12

(0.5,0.3) 2.56714 ×10−3 3.33274 ×10−4 2.76492 ×10−4 3.60145 ×10−11

(0.5,0.5) 2.36184 ×10−3 5.56235 ×10−4 4.38895 ×10−4 1.66734 ×10−10

TABLE 2 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for MB equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 8.16297 ×10−7 6.35269 ×10−5 6.35267 ×10−5 4.57301 ×10−13

(0.1,0.3) 7.64245 ×10−7 1.90854 ×10−4 1.90854 ×10−4 1.23478 ×10−11

(0.1,0.5) 7.16083 ×10−7 3.18549 ×10−4 3.18548 ×10−4 5.71662 ×10−11

(0.2,0.1) 3.26243 ×10−6 6.18930 ×10−5 6.18931 ×10−5 4.32265 ×10−13

(0.2,0.3) 3.05458 ×10−6 1.85945 ×10−4 1.85945 ×10−4 1.16698 ×10−11

(0.2,0.5) 2.86226 ×10−6 3.10352 ×10−4 3.10352 ×10−4 5.40272 ×10−11

(0.3,0.1) 7.33445 ×10−6 6.03095 ×10−5 6.03098 ×10−5 4.08618 ×10−13

(0.3,0.3) 6.86758 ×10−6 1.81187 ×10−4 1.81187 ×10−4 1.10335 ×10−11

(0.3,0.5) 6.43557 ×10−6 3.02408 ×10−4 3.02408 ×10−4 5.10809 ×10−11

(0.4,0.1) 1.30286 ×10−5 5.87746 ×10−5 5.87749 ×10−5 3.86524 ×10−13

(0.4,0.3) 1.22000 ×10−5 1.76574 ×10−4 1.76574 ×10−4 1.04358 ×10−11

(0.4,0.5) 1.14333 ×10−5 2.94707 ×10−4 2.94708 ×10−4 4.83143 ×10−11

(0.5,0.1) 2.03415 ×10−5 5.72867 ×10−5 5.72865 ×10−4 3.65707 ×10−13

(0.5,0.3) 1.90489 ×10−5 1.72102 ×10−4 1.72102 ×10−4 9.87438 ×10−12

(0.5,0.5) 1.78528 ×10−5 2.87241 ×10−4 2.87240 ×10−4 4.5715 ×10−11
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vi(x, t) = vi(x, 0)− L−1[
1

sα
L[ςvi(x, t)]]

− L−1[
1

sα
L[ξvi(x, t)]]. (13)

Now, we apply a new iterative technique that was derived in the
New Iterative Method section.

APPLICATION OF LAPLACE TRANSFORM
WITH DJ METHOD TO FRACTIONAL
WHITHAM-BROER-KAUP EQUATIONS

Problem 3.1: Time Fractional WBK Equation

Dα
t u+ uux + vx + buxx = 0,

Dα
t v+ (uv)x + auxxx − bvxx = 0. (14)

Subject to ICs

u(x, 0) = λ − 2Bk coth(kξ ),

v(x, 0) = −2B(B+ b)k2csch2(kξ ), (15)

where β =
√

a+ b
2
, ξ = x+ cand λ, c, k, are any constants.

For α = 1, the exact solution of the system is as follows:

TABLE 3 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for ALW equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 8.02989 ×10−6 3.17634 ×10−5 3.17634 ×10−5 1.20348 ×10−13

(0.1,0.3) 7.38281 ×10−6 9.54273 ×10−5 9.54269 ×10−5 3.25026 ×10−12

(0.1,0.5) 6.79923 ×10−6 1.59274 ×10−4 1.59274 ×10−4 1.50478 ×10−11

(0.2,0.1) 3.23228 ×10−5 3.09466 ×10−5 3.09465 ×10−5 1.13895 ×10−13

(0.2,0.3) 2.97172 ×10−5 9.29725 ×10−5 9.29723 ×10−5 3.07447 ×10−12

(0.2,0.5) 2.73673 ×10−5 1.55176 ×10−4 1.55176 ×10−4 1.42339 ×10−11

(0.3,0.1) 7.32051 ×10−5 3.01549 ×10−5 3.01549 ×10−5 1.07747 ×10−13

(0.3,0.3) 6.73006 ×10−5 9.05935 ×10−5 9.05932 ×10−5 2.90939 ×10−12

(0.3,0.5) 6.19760 ×10−5 1.51204 ×10−4 1.51204 ×10−4 1.34695 ×10−11

(0.4,0.1) 1.31032 ×10−4 2.93874 ×10−5 2.93874 ×10−5 1.02029 ×10−13

(0.4,0.3) 1.20455 ×10−4 8.82871 ×10−5 8.82870 ×10−5 2.75424 ×10−12

(0.4,0.5) 1.10919 ×10−4 1.47354 ×10−4 1.47354 ×10−4 1.27514 ×10−11

(0.5,0.1) 2.06186 ×10−4 2.86433 ×10−5 2.86432 ×10−5 9.66033 ×10−14

(0.5,0.3) 1.89528 ×10−4 8.60509 ×10−5 8.60506 ×10−5 2.60846 ×10−12

(0.5,0.5) 1.74510 ×10−4 1.43620 ×10−4 1.43620 ×10−4 1.20763 ×10−11

TABLE 4 | Second-order DJ solution for v(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for WBK equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 6.41419 ×10−3 1.10430 ×10−4 5.86860 ×10−5 3.28081 ×10−12

(0.1,0.3) 5.99783 ×10−3 3.31865 ×10−4 3.04565 ×10−4 8.85812 ×10−11

(0.1,0.5) 5.61507 ×10−3 5.54071 ×10−4 3.08812 ×10−4 4.10099 ×10−10

(0.2,0.1) 1.33181 ×10−2 1.07016 ×10−4 5.56884 ×10−5 3.07768 ×10−12

(0.2,0.3) 1.24441 ×10−2 3.21601 ×10−4 2.97260 ×10−4 8.30963 ×10−11

(0.2,0.5) 1.16416 ×10−2 5.36927 ×10−4 2.92626 ×10−4 3.84706 ×10−10

(0.3,0.1) 2.07641 ×10−2 1.03737 ×10−4 5.28609 ×10−5 2.88849 ×10−12

(0.3,0.3) 1.93852 ×10−2 3.11737 ×10−4 2.90150 ×10−4 7.79908 ×10−11

(0.3,0.5) 1.81209 ×10−2 5.20447 ×10−4 2.77382 ×10−4 3.6107 ×10−10

(0.4,0.1) 2.88100 ×10−2 1.00579 ×10−4 5.01929 ×10−5 2.71246 ×10−12

(0.4,0.3) 2.68724 ×10−2 3.02245 ×10−4 2.83229 ×10−4 7.32356 ×10−11

(0.4,0.5) 2.50985 ×10−2 5.04593 ×10−4 2.63019 ×10−4 3.39055 ×10−10

(0.5,0.1) 3.75193 ×10−2 9.75385 ×10−5 4.76741 ×10−5 2.54828 ×10−12

(0.5,0.3) 3.49617 ×10−2 2.93107 ×10−4 2.76492 ×10−4 6.88039 ×10−11

(0.5,0.5) 3.26239 ×10−2 4.89335 ×10−4 2.49480 ×10−4 3.18537 ×10−10
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u(x, t) = λ − 2Bk coth(k(ξ − λt)),

v(x, t) = −2B(B+ b)k2csch2(k(ξ − λt)). (16)

Applying Laplace transform and inverse Laplace transform to
equation (3.1), we have:

u(x, t) = u(x, 0)

+ L−1[
1

Sα
L[−

(

u(x, t)ux(x, t)+ vx(x, t)+ buxx(x, t)
)

]],

v(x, t) = v(x, 0)+ L−1[
1

Sα
L[−

(

(u(x, t)v(x, t))x

+ auxxx(x, t)− bvxx(x, t)
)

]]. (17)

Now, using the basic idea of the DJ method discussed in the
Fundamental Theory of Proposed Method section, we have:

u0 = λ − 2Bk coth(kξ ),

v0 = −2B(B+ b)k2csch2(kξ ), (18)

u1 =
−2Bk2tαλ csc h2(k(x+ c))

Ŵ(1+ α)
, (19)

v1 =
1

Ŵ(1+ α)
4Bk3tα csc h2(k(x+ c))(−(b+ B)λ coth(k(x+ c))

− (a+ b2 − B2)k(2+ 3 csc h2(k(c+ x)))), (20)

TABLE 5 | Second-order DJ solution for v(x, t) in comparison with ADM, VIM, and OHAM solutions at α = 1 for MB equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 5.88676 ×10−5 1.65942 ×10−5 1.65942 ×10−5 2.59213 ×10−13

(0.1,0.3) 5.56914 ×10−5 4.98691 ×10−5 4.98691 ×10−5 6.99872 ×10−12

(0.1,0.5) 5.27169 ×10−5 8.32598 ×10−5 8.26491 ×10−4 3.24016 ×10−11

(0.2,0.1) 1.18213 ×10−4 1.60813 ×10−5 1.60812 ×10−5 2.43233 ×10−13

(0.2,0.3) 1.11833 ×10−4 4.83269 ×10−5 4.83269 ×10−5 6.56712 ×10−12

(0.2,0.5) 1.05858 ×10−4 8.06837 ×10−5 7.94290 ×10−4 3.04035 ×10−11

(0.3,0.1) 1.78041 ×10−4 1.55880 ×10−5 1.55880 ×10−5 2.28336 ×10−13

(0.3,0.3) 1.68429 ×10−4 4.68440 ×10−5 4.68439 ×10−5 6.16531 ×10−12

(0.3,0.5) 1.59428 ×10−4 7.82068 ×10−5 7.63646 ×10−4 2.85432 ×10−11

(0.4,0.1) 2.38356 ×10−4 1.51135 ×10−5 1.51135 ×10−5 2.14485 ×10−13

(0.4,0.3) 2.25483 ×10−4 4.54174 ×10−5 4.54174 ×10−5 5.79099 ×10−12

(0.4,0.5) 2.13430 ×10−4 7.58243 ×10−5 7.34471 ×10−4 2.68103 ×10−11

(0.5,0.1) 2.99162 ×10−4 1.46569 ×10−5 1.46569 ×10−5 2.01559 ×10−13

(0.5,0.3) 2.83001 ×10−4 4.40448 ×10−5 4.40448 ×10−5 5.44208 ×10−12

(0.5,0.5) 2.67868 ×10−4 7.35317 ×10−5 7.06678 ×10−4 2.51949 ×10−11

TABLE 6 | Second-order DJ solution for v(x, t) in comparison with second-order ADM, VIM, and OHAM solutions at α = 1 for ALW equation.

(x, t) Absolute error

of ADM [17]

Absolute error

of VIM [18]

Absolute error

of OHAM [19]

Absolute error of

2nd-order NIM

(0.1,0.1) 4.81902 ×10−4 8.29712 ×10−6 8.29711 ×10−6 6.71962 ×10−14

(0.1,0.3) 4.50818 ×10−4 2.49346 ×10−5 2.49345 ×10−5 1.81427 ×10−12

(0.1,0.5) 4.22221 ×10−4 4.16299 ×10−5 4.16298 ×10−5 8.39947 ×10−12

(0.2,0.1) 9.76644 ×10−4 8.04063 ×10−6 8.04063 ×10−6 6.30876 ×10−14

(0.2,0.3) 9.13502 ×10−4 2.41634 ×10−5 2.41634 ×10−5 1.70328 ×10−12

(0.2,0.5) 8.55426 ×10−4 4.03419 ×10−5 4.03418 ×10−5 7.88563 ×10−12

(0.3,0.1) 1.48482 ×10−3 7.79401 ×10−6 7.79400 ×10−6 5.92521 ×10−14

(0.3,0.3) 1.38858 ×10−3 2.34220 ×10−5 2.34219 ×10−5 1.59992 ×10−12

(0.3,0.5) 1.30009 ×10−3 3.91034 ×10−5 3.91034 ×10−5 7.40708 ×10−12

(0.4,0.1) 2.00705 ×10−3 7.55675 ×10−6 7.55675 ×10−6 5.56907 ×10−14

(0.4,0.3) 1.87661 ×10−3 2.27087 ×10−5 2.27087 ×10−5 1.50359 ×10−12

(0.4,0.5) 1.75670 ×10−3 3.79121 ×10−5 3.79121 ×10−5 6.96112 ×10−12

(0.5,0.1) 2.54396 ×10−3 7.32847 ×10−6 7.32846 ×10−6 5.23618 ×10−14

(0.5,0.3) 2.37815 ×10−3 2.20224 ×10−5 2.20224 ×10−5 1.41377 ×10−12

(0.5,0.5) 2.22578 ×10−3 3.67658 ×10−5 3.67658 ×10−5 6.54527 ×10−12
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u2 =
1

(Ŵ(1+ α))2Ŵ(1+ 2α)Ŵ(1+ 3α)
(2Bk3t2α coth(k(x+ c)) csc h4

(k(x+ c))(4Bk2t
α
λ2(Ŵ(1+ 2α))2 + (−20(a+ b2 − B2)k2 + λ2 −

(4(a+ b2 − B2)k2 + λ2) cos h(2k(x+ c)))(Ŵ(1+ α))2Ŵ(1+ 3α))),

(21)

v2 = Bk4t2α csc h6(k(x+ c))

[
1

√
πŴ(1+ α)Ŵ(1+ 3α)

23+2αBk2tαλ csc h(k(x+ c))

Ŵ(
1

2
+ α)(16(a+ b2 − B2)k cosh(k(x+ c))

+2(a+ b2 − B2)k cosh(3k(x+ c))

+(b+ B)λ(2 sinh(k(c+ x))+ sinh(3k(x+ c))))

−
1

Ŵ(1+ 2α)
(12(11b− 5B)(a+ b2 − B2)k2 (22)

−3(b+ B)λ2 + 2(4(13b− 7B)(a+ b2 − B2)k2

+(b+ B)λ2) cosh(2k(x+ c))+ (4(b− B)(a+ b2 − B2)k2

+(b+ B)λ2) cosh(4k(x+ c))

+4(a+ b2 − B2)kλ(10 sinh(2k(x+ c))+ sinh(4k(x+ c))))].

Three terms approximate the solution for equation (14):

u = u0 + u1 + u2,

v = v0 + v1 + v2. (23)

We take k = 0.1, λ = 0.005, a = b = 1.5 and c = 10 in the
above problem.

Problem 3.2: Time Fractional MB Equation

Dα
t u+ uux + vx = 0,

Dα
t v+ (uv)x + uxxx = 0, (24)

Subject to ICs

u(x, 0) = λ − 2k coth(kξ ),

v(x, 0) = −2k2 csc h2(kξ ). (25)

where ξ = x+ c and k, λ, c are arbitrary constants.
For α = 1, the exact solution of the system is as follows:

u(x, t) = λ − 2k coth(k(ξ − λt)),

v(x, t) = −2k2 csc h2(k(ξ − λt)). (26)

According to the DJ method described in the Fundamental
Theory of Proposed Method section, we have:

u(x, t) = u(x, 0)+ L−1[
1

Sα
L[−

(

u(x, t)ux(x, t)+ vx(x, t)
)

]],

v(x, t) = v(x, 0)+ L−1[
1

Sα
L[−

(

(u(x, t)v(x, t))x + uxxx(x, t)
)

]],

(27)

so that

u0 = λ − 2k coth(k(x+ c)),

v0 = −2k2 csc h2(k(x+ c)), (28)

u1 = −
2k2tαλ csc h2(k(x+ c))

Ŵ(1+ α)
, (29)

v1 = −
4k3tαλ coth(k(x+ c)) csc h2(k(x+ c))

Ŵ(1+ α)
, (30)

u2 =
2k3t2αλ2 csc h4(k(x+ c))

Ŵ(1+ 2α)
{
4k2tα coth(k(x+ c))(Ŵ(1+ 2α))2

(Ŵ(1+ α))2Ŵ(1+ 3α)

− sinh(2k(x+ c))}, (31)

v2 =
4k4t2αλ2 csc h4(k(x+ c))

Ŵ(1+ 2α)
{−2− cosh(2k(x+ c))+

2k2tα(3+ 2 cosh(2k(x+ c))) csc h2(k(x+ c))(Ŵ(1+ 2α))2

(Ŵ(1+ α))2Ŵ(1+ 3α)
}.(32)

Three terms approximate the solution for equation (25):

u = u0 + u1 + u2,

v = v0 + v1 + v2. (33)

Problem 3.3: Time Fractional ALW Equation

Dα
t u+ uux +

1

2
uxx + vx = 0,

Dα
t v+ (uv)x −

1

2
vxx = 0, (34)

subject to Ics

u(x, 0) = λ − k coth(kξ ),

v(x, 0) = −k2 csc h2(kξ ). (35)

where ξ = x+ c and λ, c, k are arbitrary constants.
For α = 1, the exact solution of the system is as follows:
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FIGURE 1 | (A) Coupled surface for WBK equation, (B) for MB equation, (C) for ALW equation at α = 1.

FIGURE 2 | 2D curves for u(x, t) part of (A) WBK equation, (B) MB equation, (C) ALW equation at x = 1.
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u(x, t) = λ − k coth(k(ξ − λt)),

v(x, t) = −k2 csc h2(k(ξ − λt)). (36)

According to the DJ method described in the Fundamental
Theory of Proposed Method section, we have:

u(x, t) = u(x, 0)

+L−1[
1

Sα
L[−(u(x, t)ux(x, t)+ vx(x, t)+

1

2
uxx(x, t))]],

v(x, t) = v(x, 0)+ L−1[
1

Sα
L[−((u(x, t)v(x, t))x −

1

2
vxx(x, t))]].

(37)

So that

u0 = λ − k coth(k(x+ c)),

v0 = −k2 csc h2(k(x+ c)), (38)

u1 = −
k2tαλ csc h2(k(x+ c))

Ŵ(1+ α)
, (39)

v1 = −
2k3tαλ coth(k(x+ c)) csc h2(k(x+ c))

Ŵ(1+ α)
, (40)

u2 =
1

Ŵ(1+ 2α)
k3t2αλ2 csc h4(k(x+ c))

{
2k2tα coth(k(x+ c))(Ŵ(1+ 2α))2

(Ŵ(1+ α))2Ŵ(1+ 3α)
− sinh(2k(c+ x))},(41)

v2 =
2k4t2αλ2 csc h4(k(x+ c))

Ŵ(1+ 2α)
{−2− cosh(2k(x+ c))

+
1

(Ŵ(1+ α))2Ŵ(1+ 3α)
(k2tα

(3+ 2 cosh(2k(x+ c))) csc h2(k(x+ c))(Ŵ(1+ 2α))2)}.

(42)

Three terms approximate the solution for equation (26):

u = u0 + u1 + u2,

v = v0 + v1 + v2. (43)

Values of the parameters are taken to be same as problem 3.1.

RESULTS AND DISCUSSION

The DJ method is experienced upon the fractional WBK,
MB, and ALW equations. Mathematical 7 have been used for
most computations.

Tables 1–3 show the estimation of absolute errors of the
second-order DJ solution with ADM, VIM, and second-
order OHAM solutions for u(x, t) of fractional WBK, MB,
and ALW equations at α = 1, respectively. Tables 4–6
shows the estimation of absolute errors of second-order DJ
solution with ADM, VIM, and second-order OHAM solutions
for v(x, t) of fractional WBK, MB, and ALW equations at
α = 1, respectively. The tabulated results show that the
second-order approximate solutions by the DJ method are

FIGURE 3 | 2D curves for v(x, t) part of (A) WBK equation, (B) MB equation, (C) ALW equation at x = 1.
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FIGURE 4 | Absolute error curves for coupled (A) WBK equation, (B) MB equation, (C) ALW equation at x = 50.

closer to exact solutions than those of ADM, VIM, and
OHAM solutions.

Figures 1A–C show the coupled surface of the second-
order approximate solution by NIM for u(x, t) and v(x, t),
part of WBK, MB, and ALW equations at α = 1,
respectively. Figures 2, 3 show the 2D plots of the second-
order approximate solution by NIM for u(x, t) and v(x, t) of
WBK, MB, and ALW equations at x = 1 and different
values of α, respectively. Figures 4A–C show the absolute
error graph for the coupled WBK, MB, and ALW equation
at x = 50.

It is clear from 2D figures that as the value of α increases to 1,
the approximate solutions tend closer to the exact solution.

CONCLUSION

The DJ method converges rapidly to the exact solution
at lower order of approximations for the WBK system.
The results obtained by the proposed method are very
encouraging in assessment with ADM, VIM, and OHAM.
As a result, it would be more appealing for researchers to
apply this method for solving systems of non-linear PDEs
in different fields of science especially in fluid dynamics
and physics. The accurateness of the technique can more
be improved by taking higher-order estimation of the
proposed method.
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In this paper we study the attractor of a parabolic semiflow generated by a singularly

perturbed PDE with a non-linear term given by a bistable potential, in an oval surface; the

Allen-Cahn equation being a prototypical example. An additional constraint motivated by

a variational principle for closed geodesics originally proposed by Poincaré arising from

geometric considerations is introduced. The existence of a global attractor is established

by modifying standard techniques in order to handle the constraint. Based on previous

work on the elliptic case, it is known that when the perturbation parameter tends to zero,

minimal energy solutions exhibit a sharp interface concentrated on a closed geodesic.

We provide numerical simulations using Galerkin’s method. Based on the analytical and

numerical results we conjecture that, when the perturbation parameter tends to zero

and for large times, the transition layers of the solutions of this PDE consists of closed

geodesics or a union of arcs of such geodesics, thus characterizing the structure of

the attractor.

Keywords: attractors, parabolic semiflow, closed geodesics, Galerkin method, oval surfaces

1. INTRODUCTION

The qualitative study of dynamical systems in infinite dimensions has been of fundamental
importance. In the case of dynamical systems associated with partial differential equations of
evolution having variational structure, many of the ideas and methodologies of gradient-like
systems can be extended to infinite dimensions. In particular, the study and characterization of
attractors is of special interest.

In this paper, we prove the existence of the global attractor of the parabolic equation
associated to:

− ǫ21u+W′(u) = 0, (1)

on an oval surface M1 (see Figure 1) where u : M → R, 0 < ǫ ≪ 1, 1 represents the Laplace–
Beltrami operator onM andW(u) is a non-linear term, which in particular includes the Allen-Cahn
non-linearity. The flow will be considered in a space of functions satisfying a geometric constraint
to be explained later.

Equation (1) arises in many contexts among which we may mention materials science,
superconductivity, population dynamics, and pattern formation.

An important case for W(u) is given by W(u) = (1 − u2)2, which has been widely studied
both analytically and numerically for example in Hutchinson and Tonewaga [1] and Padilla and
Tonewaga [2] and references therein.

1A closed and compact surface enclosing a strictly convex set in R
3.
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FIGURE 1 | Example of an oval surface in R
3.

In a bounded domain � ⊂ R
n, n ≥ 2, with suitable initial

and boundary conditions, in Bronsard and Kohn [3], it is shown
that, when ǫ → 0, the solution u of (1) separates� in two regions
where u ≈ 1 and u ≈ −1, respectively, and the transition layer,
moves with normal velocity equal to its principal curvatures.
A similar behavior occurs on an oval surface for non-trivial
solutions of (1). Using results in Hutchinson and Tonewaga [1]
and Padilla and Tonewaga [2], in Garza-Hume and Padilla [4]
it is established that, when ǫ → 0, non-trivial minima of the
corresponding energy function (with a suitable restriction) have
a transition layer located at the shortest closed geodesic.

This fact is obtained using the variational structure of
the problem, because (1) is the Euler Lagrange equation of
the functional:

Eǫ(u) =

∫

M

(

ǫ

2
|∇u|2 +

1

ǫ
W(u)

)

, (2)

in a suitable functional space.
For ǫ → 0, functions u with uniformly bounded energy

Eǫ(u) < E0, can be proved to be close to ±1 in most of
the domain, except for a transition curve. The proof follows
from a classical result in differential geometry due to Birkhoff
that guarantees the existence of a closed geodesic on a surface
diffeomorphic to the sphere (see Poincaré [5] where the
corresponding variational principle was first conjectured, later
demostrated by Berger and Bombieri [6]):

Proposition 1. Suppose that γ is a closed curve on M that
under the Gauss map, g, divides the unit sphere in two parts
of equal measure. Assume further that among all the curves
satisfying the above conditions, γ has minimal length. Then γ is
a closed geodesic.

This fact suggests a natural constraint for the problem under
consideration. The function u belongs to the space of functions
that satisfies:

∫

S2
u(g−1(y))dy = 0, (3)

where g is the Gauss map.
On the other hand, solutions of (1) correspond to stationary

points of the associated gradient flow:

ut = ǫ1u−
1

ǫ
W′(u). (4)

The main goal of this paper is show the existence of the
attractor of the associated parabolic equation to (1) (i.e., Equation
4), and conjecture its structure in terms of functions that
possess transition layers determined by closed geodesics or arcs
of geodesics. In other words, given any initial condition, the
corresponding parabolic semiflow determined by (4) approaches
a function with transitions in geodesics. This will be done by
considering the special case in which M = S2 and W(u) =

(1− u2)2. This will simplify both the analysis and the numerics.
From now on we consider solutions of (4) satisfying the

constraint (3). Under the above restrictions, it becomes:

∫

S2
u = 0, (5)

which will be incorporated into the equation later on as a
Lagrange multiplier. As a first step, we will proof the existence
of an attractor for (4) under the constraint (5). We will recall
some standard facts in dynamical systems theory, Sobolev spaces
on Riemannian manifolds as well as Gronwall’s inequality, which
are presented in the following section. This is done for the
sake of completeness and to introduce notation and may be
skipped by readers familiar with dynamical systems and analysis
on manifolds.

Having shown the existence of the attractor, some numerical
experiments are performed using the Galerkin method. A few
words are in order regarding the limitations of our numerical
approach. Even when in principle the method should be
applicable for any initial condition, we only considered some that
already exhibit a relatively well-defined interface. The aim of the
numerical simulations is to make plausible our conjecture on the
structure of the global attractor and a more detailed study of the
method is not carried out. As for the analytical approach, we
remark that the problem of establishing the existence of a global
attractor for other surfaces or manifolds in similar situations
seems to be a reasonable extension of the methods and ideas
here presented. In particular for the case of surfaces with non-
zero Euler characteristic as is done in Del Río et al. [14] for the
elliptic case.

2. GENERAL RESULTS

2.1. Semigroups of Operators
The notation and terminology used in this section is adapted
or quoted from Temam [7], although arguments and results in
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Sell and You [8] and Robinson [9] are also used. Since these are
standard results and references, no explicit references are made.

We will consider dynamical systems whose state is described
by an element u(t) of a metric space H. In most cases, and
in particular for dynamical systems associated with partial or
ordinary differential equations, the parameter t (the time or the
timelike variable) varies continuously in R or in some interval of
R. Usually the space H will be a Hilbert or Banach space.

The evolution of the dynamical system is described by a family
of operators S(t), t ≥ 0, that mapH into itself and enjoy the usual
semigroup properties:

{

S(t + s) = S(t) · S(s) ∀s, t ≥ 0.
S(0) = I, Identity in H.

(6)

If φ is the state of the dynamical system at time s, then S(t)φ is
the state of the system at time t + s, and

u(t) = S(t)u(0) (7)

u(t + s) = S(t)u(s) = S(s)u(t), s, t ≥ 0. (8)

The semigroup S(t) will be determined in our case by the solution
of a PDE. The basic properties of the operators S(t) which are
needed will be established in the next subsection but, for the time
being, we assume that:

S(t) is a continuous (non-linear) operator from H into itself

∀t ≥ 0. (9)

These operators may or may not be one-to-one; the injectivity
property is equivalent to the backward uniqueness property for
the dynamical system.When S(t), t > 0, is one-to-one we denote
by S(−t) its inverse which maps S(t)H onto H; we then obtain a
family of operators S(t), t ∈ R, which have the property (6) on
their domains of definition, ∀s, t ∈ R. It is clear that for t < 0,
the operators S(t), are not usually defined everywhere in H.

Definition 1. For u0 ∈ H the orbit or trajectory starting in u0 is
the set

⋃

t≥0 S(t)u0.

Definition 2. When it exists, an orbit or trajectory ending at u0
is the set

⋃

t≥0 S(−t)−1u0.

Definition 3. For u0 ∈ H or for A ∈ H, the ω-limit set of u0 (or
A) is

ω(u0) =
⋂

s≥0

⋃

t≥s

S(t)u0,

or

ω(A) =
⋂

s≥0

⋃

t≥s

S(t)A,

where closures are taken in H.

Definition 4. When it exists, the α-limit set of u0 ∈ H or
A ⊂ H is

α(u0) =
⋂

s≤0

⋃

t≤s

S(−t)−1u0,

or

α(A) =
⋂

s≤0

⋃

t≤s

S(−t)−1A.

Proposition 2. φ ∈ ω(A) if and only if there exists a sequence of
elements of φn ∈ A and a sequence tn → ∞ such that

S(tn)φn → φ as n → ∞. (10)

Remark 1. Analogously, φ ∈ α(A) if and only if there exists a
sequenceψn converging toψ inH and a sequence tn → ∞, such
that φn = S(tn)ψn ∈ A, ∀n.

Definition 5. A fixed point, or an equilibrium point is a point
u0 ∈ H such that

S(t)u0 = u0 ∀t ≥ 0.

2.2. Invariant Sets
We say that a set X ⊂ H is positively invariant for the semigroup
{S(t)}t≥0 if

S(t)X ⊂ X ∀t ≥ 0.

It is said to be negatively invariant if {S(t)}t≥0 if

S(t)X ⊃ X ∀t ≥ 0.

When the set is both positively and negatively invariant, we call it
an invariant set or a functional invariant set.

Definition 6. A set X ⊂ H is a invariant set for the semigroup
{S(t)}t≥0 if

S(t)X = X ∀t ≥ 0.

The simplest examples of invariant sets are equilibrium points,
heteroclinic orbits and limit cycles.

Lemma 1. Assume that for some subset A ∈ H, A 6= ∅, and for
some t0 > 0, the set

⋃

t≥0 S(t)A is relatively compact in H. Then
ω(A) is non-empty, compact, and invariant.

2.3. Absorbing Sets and Attractors
Definition 7. An attractor is a set A ∈ H that enjoys the
following properties:

1. A is an invariant set.
2. A possesses an open neighborhood U such that, for every

u0 ∈ U , S(t)u0 converges toA as t → ∞. This means that:

dist (S(t)u0,A) → 0,

as t → ∞.

The distance in (2) is understood to be the distance of a point
to a set:

dist (x,A) = inf
y∈A

d(x, y),

d(x, y) denoting the distance of x to y in H.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 June 2020 | Volume 6 | Article 2045

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Medina and Padilla Allen-Cahn Attractor on the Sphere

Definition 8. If A is an attractor, the largest open set U that
satisfies (2) is called the basin of attraction of A. Alternatively,
we say thatA attracts the points of U .

Definition 9. It is said thatA uniformly attracts a set B ⊂ U if

d (S(t)B,A) → 0

as t → ∞.

d (B0,B1) is now the semidistance of two sets:

d(B0,B1) = sup
x∈B0

inf
y∈B1

d(x, y).

The convergence in the above definition is equivalent to the
following: for every ǫ > 0, there exists tǫ such that for t ≥

tǫ , S(t)B is included in Uǫ , the ǫ-neighborhood of A. When no
confusion can occur we simply say thatA attracts B.

Definition 10. We say that A ∈ H is a global (or universal)
attractor for the semigroup {S(t)}t≥0 if A is a compact attractor
that attracts the bounded sets of H (and its basin of attraction is
then all of H).

It is easy to see that such a set is necessarily unique. Also such
a set is maximal for the inclusion relation among the bounded
attractors and among the bounded functional invariant sets. For
this reason it is also called the maximal attractor.

In order to establish the existence of attractors, a useful
concept is the related concept of absorbing sets.

Definition 11. Let B be a subset of H and U an open set
containing B. We say that B is absorbing in U if the orbit of
any bounded set of U enters B after a certain time (which may
depend on the set):

{

∀ B0 ⊂ U B0 bounded

∃ t1(B0) such that S(t)B0 ⊂ B, ∀t ≥ t1(B0)

We say also that B absorbs the bounded sets of U .

The existence of global attractor A for a semigroup {S(t)}t≥0

implies that of an absorbing set. Indeed, for ǫ > 0, let Vǫ denote
the ǫ-neighborhood ofA (i.e., the union of open balls of radius ǫ
centered onA). Then, for any bounded set B0, d(S(t)B0,A) → 0
as t → ∞; hence d(S(t)B0,A) ≤ ǫ

2 for t ≥ t(ǫ) and S(t)B0 ⊂ Vǫ

for such t’s. This shows that Vǫ is an absorbing set.
Conversely, it is a standard result that a semigroup that

possesses an absorbing set and enjoys some other properties
possesses an attractor.

In order to prove existence of an attractor when the existence
of an absorbing set is known, we need further assumptions
on the semigroup {S(t)}t≥0, and we will make one of the
two following:

• The operators S(t) are uniformly compact for t large. By this we
mean that for every bounded set B there exists t0 which may
depend on B such that

⋃

t≥t0

S(t)B (11)

is relatively compact in H.

Alternatively, if H is a Banach space, we may assume that S(t)
is the perturbation of an operator satisfying (11) by a (non-
necessarily linear) operator which converges to 0 as t → ∞.
More precisely:

• If H is a Banach space and for every t, S(t) = S1(t) + S2(t)
where the operators S1(·) are uniformly compact for t large and
S2(t) is a continuous mapping from H into itself such that the
following holds:

For every bounded set C ⊂ H,

rc(t) = sup
φ ∈C

|S2(t)φ|H → 0 (12)

as t → ∞.
Of course, if H is a Banach space, any family of operator

satisfying (11) also satisfies (12) with S2 = 0.

Theorem 1. Assume that H is a metric space and that the
operators S(t) are given and satisfying (6), (9) and either (11) or
(12). We also assume that there exists an open set U and a bounded
set B of U such that B is absorbing in U .

Then the ω-limit set of B,A = ω(B), is a compact attractor
which attracts the bounded sets of U . It is the maximal bounded
attractor in U (for the inclusion relation).

Furthermore, if H is a Banach space, if U is convex, and the
mapping t 7→ S(t)u0 is continuous from R

+ into H, for every u0
in H; thenA is connected too.

The proof of this theorem is carried out through several steps,
which can be found in Temam [7].

2.4. Sobolev Spaces in Riemannian
Manifolds
The notation and terminology used in this section can be found
in Hebey [11] and Aubin [12].

Let (M, g) be a smooth Riemannian manifold. Given k an
integer, and p ≥ 1 real, set

C
p

k
(M) =

{

u ∈ C∞(M) :∀j = 0, . . . , k,

∫

M
|∇ ju|pdν(g) <∞

}

.

When M is compact, one clearly has that C
p

k
(M) = C∞(M) for

any k and any p ≥ 1. For u ∈ C
p

k
(M), set also

||u||Hp

k
=

k
∑

j=0

(∫

M
|∇ ju|pdν(g)

)1/p

.

We define the Sobolev space H
p

k
as follows:

Definition 12. Given (M, g) a smooth Riemannian manifold, k
an integer, and p ≥ 1 real, the Sobolev spaceH

p

k
is the completion

of C
p

k
with respect to || · ||Hp

k
.

Note here that one can look at these spaces as subspaces of
Lp(M), in which the norm of Lp(M), || · ||p is defined by

||u||p =

(∫

M
|u|pdν(g)

)1/p

.
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Definition 13. Given (E, ||·||E) and (F, ||·||F) two normed vector
spaces with the property that E is a subspace of F, we say that the
embedding of E in F is compact if bounded subsets of (E, || · ||E)
are relatively compact in (F, ||·||F). This fact is written as E ⊂⊂ F.

This means that bounded sequences in (E, || · ||E) possess
corvergent subsequences in (F, || · ||F). Clearly, if the embedding
of E in F is compact, it is also continuous, i.e., if there exists C > 0
such that for any x ∈ E, ||x||F ≤ C||x||E.

The following theorem is needed in order to prove the
existence of the attractor of the equation in consideration.

Theorem 2. Let (M, g) be a smooth, compact Riemannian n-
manifold. For any real numbers 1 ≤ q < p and any integers
0 ≥ m < k, if 1/p = 1/q− (k−m)/n, then H

q

k
(M) ⊂⊂ H

p
m(M).

In particular, for any q ∈ [1, n), H
q
1(M) ⊂⊂ Lp(M) where

1/p = 1/q− 1/n.

The first part of the above theorem has the
following consequence:

Corollary 1. For any q ∈ [1, n), Hn
1 (M) ⊂⊂ H

q
1(M), thus

Hn
1 (M) ⊂⊂ Lp(M) for all p ≥ 1.

2.5. Differential Inequalities
The following inequality is derived from Gronwall’s lemma and
will be used later on.

Lemma 2. Let y a positive absolutely continuous function on
(0,∞) which satisfies:

y′ + γ yp ≤ δ,

with p > 1, γ > 0, δ ≥ 0. Then, for t > 0,

y(t) ≤

(

δ

γ

)1/p

+ (γ (p− 1)t)−1/(p−1).

Proof: If y(0) ≤ (γ /δ)1/p, then y(t) ≤ (γ /δ)1/p, ∀t ≥ 0. If y(t) >
(γ /δ)1/p, then there exists t0 ∈ (0,∞) such that y(t) ≥ (γ /δ)1/p

for 0 ≤ t ≤ t0, and y(t) ≤ (γ /δ)1/p for t ≥ t0.
For t ∈ [0, t0] we write z(t) = y(t) − (γ /δ)1/p ≥ 0 and since

(a+ b)p ≥ ap + bp for a, b ≥ 0, p > 1, we have

yp = (z + (γ /δ)1/p)p ≥ zp + γ /δ.

Hence

z′ + γ zp ≤ y′ + γ
(

yp −
γ

δ

)

≤ 0,

and then by integration

z(t)p−1 ≤
1

z
1−p
0 + γ (p− 1)t

≤
1

γ (p− 1)t
,

This implies the desired result for t ∈ [0, t0], and since, this
inequality holds for t ≥ t0, the lemma is proved.

3. EXISTENCE AND STRUCTURE OF
ATTRACTOR

The main result is the following in which the existence of a global
attractor is shown for equation (4) subject to constraint (5).

Theorem 3. The semigroup {S(t)}t≥0 associated with (4) - (5)
possesses a maximal attractor which is bounded in H2

1(S
2),

compact and connected in L2(S2). Its basin of attraction is the
whole space L2(S2), and attracts bounded sets of L2(S2).

Proof: The existence of a solution proposed equation is
equivalent to finding the minimum of:

infEǫ(u) = inf

∫

M

(

ǫ

2
|∇u|2 +

1

ǫ
W(u)

)

for all u ∈ H2
1(M), subject to the constraint:

G(u) =

∫

M
u(y)f (y) = 0,

where f (y) is the Jacobian determinant of the transformation of
S2 intoM. This determinant can be considered to be positive, and
this factor is the Gaussian curvature in y.

For fixed ǫ > 0, the existence of this minimum is
a consequence of this functional satisfies the Palais–Smale
condition (see Struwe [13]), is bounded below and the constraint
defines a closed lineal subspace.

On other hand it should be noted that:

d

dt
Eǫ(u) = −ǫ

∫

S2
u2t ≤ 0. (13)

This last statement ensures the existence of a global solution for
t > 0. This is sufficient to define the associated semiflow to
given equation.

Another way to verify the above statement, is to first prove
the existence and uniqueness of a solution of (4)–(5) subject to a
suitable initial condition; then the backward uniqueness in order
to show existence for all t ∈ R. Finally apply the theorem 4 for
the characterization of global attractor.

In the usual way, we shall see the existence of an absorbent set
in L2(S2) and subsequently, the compactness of the mentioned
semigroup, according to theorem 1.

The Euler–Lagrange equation associated to (2) with the
constraint (3) (for each ǫi), contain a Lagrange multiplier λi
as follows:

ut − ǫi1u+
4

ǫi
(u3 − u)+ λif = 0. (14)

In Del Río et al. [14], it is shown that these multipliers are
bounded. This fact will be used later.

In order to prove the existence of an absorbing set in L2(S2),
we multiply (2) by u and integrate over S2. Using Green’s formula
we obtain:

1

2

d

dt
||u||2

L2
+ǫi

∫

S2
|∇u|2+

∫

S2

(

4

ǫi
(u4 − u2)+ λifu

)

= 0, (15)
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where || · ||L2 denotes the norm L2(S2).
By a standard corollary (see for instance 1)H2

1(S
2) ⊂⊂ L2(S2),

therefore there exists a constant c0 such that ||u||L2 ≤ c0||u||H2
1
,

and there exists a c1 such that:

∫

S2
|u|2 ≤ c1

∫

S2
|∇u|2. (16)

An estimate of the third integral in (15) is required, for which the
following inequality is used:

−λifu ≤
1

2
λ2i f

2 +
1

2
u2,

and by Hölder’s inequality, for a C > 0:

∫

S2

(

4

ǫi
− λifu

)

≤

(

4

ǫi
+

1

2

)∫

S2
u2 +

1

2
λ2i

∫

S2
f 2

≤ C

√

∫

S2
u4 + C,

and for certain A, B > 0:

∫

S2

(

4

ǫi
(u4 − u2)+ λifu

)

≥
4

ǫi

∫

S2
u4 − C

√

∫

S2
u4 + C =

4

ǫi

(
√

∫

S2
u4 − A

)2

− B.

Thanks to (15) and the previous relationship, we conclude that
there exists a c′1 > 0 such that:

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
u4 − c′1

)

≤

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
(u4 − u2)+ λifu

)

= 0.

Thus:

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
u4 − c′1

)

≤ 0,

this meaning that:

1

2

d

dt
||u||2

L2
+ ǫi

∫

S2
|∇u|2 +

∫

S2

(

4

ǫi
u4
)

≤ 4πc′1. (17)

According to (16) concluded from (17), there exists a c′2 =

2(4πc′1) such that:

d

dt
||u||2

L2
+

2ǫi

c21
||u||2

L2
≤ c′2.

By using the classical Gronwall lemma, we obtain that:

||u(t)||2
L2

≤ ||u0||
2
L2
exp

(

−
2ǫi

c21
t

)

+
c′2c

2
1

2ǫi

(

1− exp

(

−
2ǫi

c21
t

))

.

Therefore:

lim sup
t→∞

||u(t)||L2 ≤ ρ0, ρ
2
0 =

c′2c
2
1

2ǫi
.

There exists an absorbing set B0 in L2(S2), namely, any ball of
L2(S2) centered at 0 of radius R > ρ0, as if B is a bounded set of
L2(S2), included in a ball B(0,R) of L2(S2), then S(t)B ∈ B(0, ρ′0)
for t ≥ t0(B, ρ

′
0), with

t0 =
c21
2ǫi

ln

(

R2

(ρ′0)
2 − ρ20

)

.

In order to prove the uniform compactness of operators, we
proceed using by an argument proposed by B. Nicolaenko
(see Temam [7]) and making use of the absorbent
set in L2(S2) whose existence was established in the
previous paragraph.

By Holder inequality:

∫

S2
u4 ≥

1

4π

(∫

S2
u2
)2

.

Analogously to (15), we conclude that:

y′ + γ y2 ≤ δ,

where y = ||u||2
L2
, γ = 1

π
, δ = 8πc′1. Lemma 2 shows that:

y(t) ≤
(γ

δ

)1/2
+

1

γ t
, ∀t > 0.

Let ρ2 be a real number greater than (γ /δ)1/2 and

T0 =
1

γ

(

ρ22 −

(γ

δ

)1/2
)−1

.

The above relations show that for any set B of L2(S2), bounded
or not, S(t)B is included in the ball B2 centered at 0 of radius ρ2,
if t ≥ T0, thus demostrating the existence of an absorbent set in
H2
1(S

2). The uniform compactness of operators S(t) follows from
the fact that a bounded set B is included in a ball B(0,R) for all
t ≥ t0, that which is bounded inH2

1(S
2) and relatively compact in

L2(S2) (corollary 1). The existence of the global attractor follows
from theorem 1.

Having shown the existence of a global attractor,
the question of characterizing its structure arises. This
question can be answered provided there is a suitable
Lyapunov functional.

Definition 14. A Liapunov functional for {S(t)}t≥0 on a set F ⊂

H is a continuous function F :F → R such that:

1. For each uo ∈ F , the function t → F(S(t)u0) is
non-increasing.

2. If F(S(τ )u1) = F(u1) for some τ > 0, then u1 is a fixed point
of {S(t)}t≥0, i.e., S(t)u1 = u1, ∀t > 0.
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FIGURE 2 | Spherical coordinates using longitude θ and latitude φ.

The following standard theorem establishes the structure of
the attractor.

Theorem 4. Let there be a given semigroup {S(t)}t≥0 which enjoys
the properties (6), (7). We assume that there exists a Lyapunov
functional as in the definition 14, and a global attractor A ⊂ F .
Let E denote the set of fixed points of the semigroup. Then

A = M+(E).

Furthermore, if E is discrete, A is the union of E and of the
heteroclinic curves joining points of E and

A =
⋃

z∈E

M+(z).

Remember that,M+(X) is the set (maybe empty) of points u∗,
which belongs to an orbit {u(t), t ∈ R} such that d(u(t),X) → 0
as t → ∞.

The details of this proof can be found in Temam [7] theorem
4.1 in chapter 7, Robinson [9] theorem 10.13, Ladyzhenskaya [17]
theorem 3.2, or Sell [8] theorem 72.1.

4. THE EQUATION IN S2

Once the existence of an attractor is proved, in this section
we provide a numerical method for its characterization. In this
implementation the Galerkin method is used.

S2 is parametrized with spherical coordinates by
(r cos θ cosφ, r sin θ cosφ, r sinφ), where 0 ≤ θ ≤ 2π y −π

2 ≤

φ ≤ π
2 (see Figure 2).

Then, the Laplacian in these coordinates is given by:

1u =
1

r2 cosφ

(

∂

∂r

(

(r2 cosφ)(1)
∂u

∂r

)

+
∂

∂θ

(

(r2 cosφ)

(

1

r2 cos2 φ

)

∂u

∂θ

)

+
∂

∂φ

(

(r2 cosφ)

(

1

r2

)

∂u

∂φ

))

=
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 cos2 φ

∂2u

∂θ2
+

1

r2
∂2u

∂φ2
−

tanφ

r2
∂u

∂φ
.

Using r = 1 in the above expression, the Laplace–Beltrami
operator in S2 is obtained:

1u =
1

cos2 φ

∂2u

∂θ2
+
∂2u

∂φ2
− tanφ

∂u

∂φ
.

Then (4) becomes:

∂u

∂t
− ǫ

(

1

cos2 φ

∂2u

∂θ2
+
∂2u

∂φ2
− tanφ

∂u

∂φ

)

−
4

ǫ
u(1− u2) = 0.

(18)
By implementing Galerkin’s method, we can approximate the
attractor. This is done by projecting Equation (18), with a suitable
initial condition on a finite dimensional subspace, thus reducing
it to a system of ordinary differential equations. The details are
provided in the next section.

5. GALERKIN METHOD

The idea is to obtain a finite dimensional reduction of (18). One
way to do this is using Galerkin method, which will be described
below (for more details see Kythe et al. [15] and Evans [10]).

We consider the problem:

∂u

∂t
− ǫ

(

1

cosφ2
∂2u

∂θ2
+
∂u

∂φ2
− tanφ

∂u

∂φ

)

−
4

ǫ
u(1− u2) = 0

on S2 × (0,T] (19)

u(θ ,φ) = g(θ ,φ) en S2 × {t = 0}. (20)

Assume that the funtions wk = wk(θ ,φ), (k = 1, . . .) are smooth,
{wk}

∞
k=1

is an orthogonal basis of H2
1(S

2) and an orthonormal

basis of L2(S2). For instance, we could take {wk}
∞
k=1

to be the

complete set of eigenfunctions of1 in S2.
Fix now a positive integer m. We will look for an

approximation um of the form

um(t) = u(x, t) =

m
∑

k=1

dkm(t)wk, (21)

where we will select the coefficients dkm(t), (0 ≤ t ≤ T, k =

1, . . . ,m) so that:

dkm(0) = (g,wk) (22)
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and

(u′m(t),wk)+ B[um(t),wk; t] = (f(t),wk). (23)

Here (·, ·) denotes the inner product in L2(S2), ′ =
d
dt
,B[um,wk; t] is the bilinear form:

−

∫

S2

(

ǫ

(

1

cosφ2
∂2um(t)

∂θ2
+
∂2um(t)

∂φ2
− tanφ

∂um(t)

∂φ

)

−
4

ǫ
um(t)

)

wk, (24)

and

f(t) = −
4

ǫ
(um(t))

3. (25)

Thus, we look for a function um of the form (21) that satisfies the
projection (23) of problem (19)–(20) onto the finite dimensional
subspace spanned by {wk}

m
k=1

.
By the standard theorem on existence and uniqueness

of systems of ordinary differential equations, we have the
following result:

Theorem 5. For each integer m = 1, 2, . . ., there exists a unique
funtion um of the form (21) satisfying (22), (23).

Functions wk, will be selected via the method of separation of
variables, applied to the equation 1u = 0 on S2, i.e., we assume
that u = 2(θ)8(φ), where we have:

1

cos2 φ

∂2u

∂θ2
− tanφ

∂u

∂φ
+
∂2u

∂φ2
= 0,

1

cos2 φ
2′′8− (tanφ)28′ +28′′ = 0,

1

cos2 φ
2′′8 = (tanφ)28′ −28′,

1

cos2 φ
2′′8 = 2[(tanφ)8′ −8′′],

2′′

2
= −

cos2 φ[8′′ − (tanφ)8′]

8
.

The corresponding solutions for 2 are of the form sine and
cosine, while those corresponding to 8 are solutions to the
Legendre equation, in which the substitution x = sinφ has been
made. Thus, we use the associated Legendre polynomial denoted
by P(k, l, x), which is defined by:

P(k, l, x) =
(−1)k

l! · 2l
· (1− x2)

m
2 ·

dk+l

dxk+l
(x2 − 1)l, (26)

where k ≥ 0 and l ≤ k. (For more details see Arfken [16]).
According to the above condition (5) we choose the functions

um as:

um =

m
∑

k=1

ak,lm (t) sin(kθ)P(k, l, sin(φ))+bk,lm (t) cos(kθ)P(k, l, sin(φ)),

(27)

withm = 1 and ǫ = 0.001, (23) becomes:

1110.33a1,01 (t)3 + a1,01 (t)
(

− 1973.92+ 1110.33a1,11 (t)2

+ 1110.33b1,01 (t)2

+ 370.11b1,11 (t)2
)

+ 740.22a1,11 (t)b1,01 (t)b1,11 (t)

+ 4.9348
d

dt
a1,01 (t) = 0,

1110.33a1,11 (t)3 + a1,11 (t)
(

− 1973.82+

1110.33a1,11 (t)2 + 370.11b1,01 (t)2 + 1110.33b1,11 (t)2
)

+

740.22a1,01 (t)b1,01 (t)b1,11 (t)+ 4.9348
d

dt
a1,11 (t) = 0,

1110.33b1,01 (t)3 + 1110.33a1,01 (t)2b1,01 (t)+ 370.11a1,11 (t)2b1,01 (t)+

740.22a1,01 (t)a1,11 (t)b1,11 (t)+b1,01 (t)
(

−1973.92+1110.33b1,11 (t)2
)

+

4.9348
d

dt
b1,01 (t) = 0,

1110.33b1,11 (t)3 + b1,11 (t)
(

− 1973.82+ 1110.33a1,01 (t)2+

1110.33b1,11 (t)2
)

+740.22a1,01 (t)a1,11 (t)b1,01 (t)+370.11a1,01 (t)2b1,11 (t)

+ 4.9348
d

dt
b1,11 (t) = 0. (28)

6. NUMERICAL RESULTS

If the initial condition (22) is

a1,01 (0) = 0, a1,11 (0) = 1, b1,01 (0) = 0, b1,11 (0) = 0, (29)

we obtain

a1,01 (t) = 0, b1,01 (t) = 0, b1,11 (t) = 0,

a1,11 (t) =
65794

√

2435101734+ 1893748702 exp
(

− 9869100
12337 t

)

,

and

u1 =
65794

√

2435101734+ 1893748702 exp
(

− 9869100
12337 t

)

sin(θ)

P(1, 1, sinφ).

Figure 3 show the behavior of u1 at different times (t = 0, t =
0.0001, t = 1).

If the initial condition is now,

a1,01 (0) = 0, a1,11 (0) = 0, b1,01 (0) = 0, b1,11 (0) = 2, (30)

then

a1,01 (t) = 0, a1,11 (t) = 0, b1,01 (t) = 0, b1,11 (t) =
4

√

9− 5 exp(−8000t)
,

and

u1 =
4

√

9− 5 exp(−8000t)
cos(θ)P(1, 1, sinφ).
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FIGURE 3 | Behavior of u1(t) for different values of t according to Equation (29). (A) Graph of u1(0). (B) Level curves of u1 (0). (C) Graph of u1 (0.001). (D) Level curves

of u1(0.001). (E) Graph of u1(1). (F) Level curves of u1 (1).
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FIGURE 4 | Behavior of u1 (t) for different values of t according to Equation (29). (A) Graph of u1(0). (B) Level curves of u1(0). (C) Graph of u1 (0.01). (D) Level curves of

u1(0.01). (E) Graph of u1 (0.02). (F) Level curves of u1(0.02).
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FIGURE 5 | Behavior of u2(t) for different values of t according to Equations (34)–(36). (A) Graph of u2(0). (B) Level curves of u2 (0). (C) Graph of u2(0.0055). (D) Level

curves of u1 (0.0055). (E) Graph of u2 (0.02). (F) Level curves of u2(0.02).
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Figure 4 show the behavior of u1 at different times (t = 0, t =
0.01, t = 0.02).

As mentioned in the previous section the legendre equation is
involved, we can also choose the Legendre polinomial as follows.
If the following functions are now chosen,

um =

m
∑

k=1

(

ak(t) sin(kθ)P(k, sin(φ))+ bk(t) cos(kθ)P(k sin(φ))
)

,

(31)
where P(k, sin(φ)) is the Legendre polynomial of k degree, with
m = 2 and ǫ = 0.01 the corresponding projection is,

1110.33a1(t)
3 +

(

−1973.92+ 1572.97a2(t)
2 + 1110.33b1(t)

2

+1592.97b2(t)
2
)

a1(t)+ 4.9348
d

dt
a1(t) = 0,

675.162a2(t)
3 +

(

−1357.61+ 1572.97a1(t)
2 + 1572.97b1(t)

2

+675.162b2(t)
2
)

a2(t)+ 3.392628
d

dt
a2(t) = 0,

1110.33b1(t)
3 +

(

−1973.92+ 1110.33a1(t)
2 + 1572.97a2(t)

2

+1572.97b2(t)
2
)

b1(t)+ 4.9348
d

dt
b1(t) = 0,

675.162b2(t)
3 +

(

−1357.61+ 1572.97a1(t)
2 + 675.162a2(t)

2

+1572.97b1(t)
2
)

b2(t)+ 3.392628
d

dt
b2(t) = 0. (32)

With the initial condition,

a1(0) = −0.877583, a2(0) = 0, b1(0) = 0, b2(0) = −0.479426,
(33)

we obtain the following expressions for u2 for the values
t = 0, t = 0.0055, and t = 0.02. Figure 5

shows the graph and level curves of u2 for the values
mentioned above.

u2(0) = −0.877583 sin(θ)P(1, sin(φ))

− 0.479426 cos(2θ)P(2, sin(φ)), (34)

u2(0.0055) = −1.2858 sin(θ)P(1, sin(φ))

− 0.1449 cos(2θ)P(2, sin(φ)), (35)

u2(0.02) = −1.3333 sin(θ)P(1, sin(φ)). (36)

7. CONCLUSIONS

All the numerical simulations show that the graph of the solution
on S2 approaches values close to 1 and −1 when t increases, as
can be seen in Figures 3A,C,E–5A,C,E found in grayscale color,
while in the Figures 3B,D, 4B,D, the transition layer (show in
red color) takes place along the level set θ = π which is a closed
geodesic (great circle). It can also be noted that in Figure 5B the
transition layer at the value t = 0 is not a straight line, but as t
increases, this curve becomes a straight line, θ = π , as mentioned
above. This suggests that, for ǫ sufficiently small, the attractor will
consist of functions concentrating in −1 or +1 with transitions
along great circles.
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The variable-coefficient Heisenberg ferromagnetic spin chain (vcHFSC) equation is

investigated using the Lie group method. The infinitesimal generators and Lie point

symmetries are reported. Four types of similarity reductions are acquired by virtue

of the optimal system of one-dimensional subalgebras. Several invariant solutions

are derived, including trigonometric and hyperbolic function solutions. Furthermore,

conservation laws for the vcHFSC equation are obtained with the help of Lagrangian

and non-linear self-adjointness.

Keywords: variable-coefficient Heisenberg ferromagnetic spin chain equation, Lie symmetry, invariant solutions,

non-linear self-adjointness, conservation laws

INTRODUCTION

The investigation of physical phenomenon modeled by non-linear partial differential equations
(NLPDEs) and searching for their underlying dynamics remain the hot issue of research for applied
and theoretical sciences. A lot of attention has been concentrated on looking for the explicit
solutions of NLPDEs, for they can provide accurate information with which to understand some
interesting physical phenomena. A great many powerful methods have been proposed to construct
the explicit solutions of NLPDEs, such as the inverse scattering method [1], the Lie group method
[2–5], the Hirota bilinear method [6, 7], the extended tanh method [8–10], the homoclinc test
method [11–13], the F-expansion technique [14], and so on [15–18]. Among these methods, the
Lie group method is a powerful and prolific method for the study of NLPDEs. On the one hand,
based on the Lie group method, we can obtain new exact solutions directly or from the known
ones or via similarity reductions; on the other hand, the conservation laws can be constructed
via the corresponding Lie point symmetries. Recently, invariant solutions of a class of constant
and variable coefficient NLPDEs have been obtained by virtue of this method, such as Keller-Segel
models [19], generalized fifth-order non-linear integrable equation [20], KdV equation [21], and
Davey-Stewartson equation [22].

So far, many effective methods have been extended to construct exact solutions of different types
of differential equations. For example, the generalized Bernoulli sub-ODE and the generalized
tanh methods have been applied to establish optical soliton solutions of the Chen-Lee-Liu
equation [23]. The Lie group method has been used to find the exact solutions of the time
fractional Abrahams–Tsuneto reaction diffusion system [24] and the non-linear transmission line
equation [25].
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Liu Invariant Solutions and Conservation Laws

In this work, we will focus on the (2+1)-dimensional
variable-coefficient Heisenberg ferromagnetic spin chain
(vcHFSC) equation

iqt + δ1(t)qxx + δ2(t)qyy + δ3(t)qxy + δ4(t)
∣

∣q
∣

∣

2
q = 0, (1)

where δ1(t), δ2(t), δ3(t), and δ4(t) are arbitrary functions with
respect to t. The interaction properties and stability of the
bright and dark solitons are presented in [26]. Non-autonomous
complex wave and analytic solutions are obtained in [27]. When
δi(t) (i = 1, · · · , 4) are arbitrary constants, Equation (1)
can be reduced to the following (2+1)-dimensional Heisenberg
ferromagnetic spin chain (HFSC) equation:

iqt + δ1qxx + δ2qyy + δ3qxy + δ4
∣

∣q
∣

∣

2
q = 0. (2)

Latha and Vasanthi [28] obtained multisoliton solutions by
employing Darboux transformation and analyzed the interaction
properties of Equation (2). Anitha et al. [29] derived the
dynamical equations of motion by employing long wavelength
approximation and discussed the complete non-linear excitation
with the aid of sine-cosine function method. Periodic solutions
were obtained by Triki andWazwaz [30], and they also discussed
conditions for the existence and uniqueness of wave solutions.
Tang et al. [31] reported the explicit power series solutions and
bright and dark soliton solutions of Equation (2), and they also
obtained some other exact solutions via the sub-ODE method.

However, the Lie symmetries, invariant solutions, and
conservation laws of the (2+1)-dimensional vcHFSC equation
(1) have not been studied. In the current work, we study
the vcHFSC equation (1) via the Lie group method and
obtain new invariant solutions, including the trigonometric and
hyperbolic function solutions. Moreover, based on non-linear
self-adjointness, conservation laws for vcHFSC equation (1)
are constructed.

The main structure of this paper is as follows. In section
Lie Symmetry Analysis and Optimal System, based on the Lie
symmetry analysis, we construct the Lie point symmetries and the
optimal system of one-dimensional subalgebras for Equation (1).
In section Symmetry Reductions and Invariant Solutions, four
types of similarity reductions and some invariant solutions are
studied by virtue of the optimal system. In section Non-linear
Self-Adjointness and Conservation Laws, conservation laws for
Equation (1) are obtained with the help of Lagrangian and non-
linear self-adjointness. Section Results and Discussion provides
the results and discussion. Finally, the conclusion is given in
section Conclusion.

LIE SYMMETRY ANALYSIS AND OPTIMAL
SYSTEM

In this section, our aim is to obtain the Lie point symmetries and
the optimal system of the vcHFSC equation (1) by employing the
Lie group method.

The vcHFSC equation (1) can be changed to the
following system















F1 = ut + δ1(t)vxx + δ2(t)vyy + δ3(t)vxy
+δ4(t)(u

2v+ v3) = 0,
F2 = −vt + δ1(t)uxx + δ2(t)uyy + δ3(t)uxy

+δ4(t)(u
3 + uv2) = 0,

(3)

by using the transformation

q(x, y, t) = u(x, y, t)+ iv(x, y, t), (4)

where u(x, y, t) and v(x, y, t) are real and smooth functions.
Suppose that the associated vector field of system (3) is

as follows:

V = ξ 1(x, y, t, u, v)
∂

∂x
+ ξ 2(x, y, t, u, v)

∂

∂y
+ ξ 3(x, y, t, u, v)

∂

∂t

+ η1(x, y, t, u, v)
∂

∂u
+ η2(x, y, t, u, v)

∂

∂v
, (5)

where ξ 1(x, y, t, u, v), ξ 2(x, y, t, u, v), ξ 3(x, y, t, u, v), η1(x, y, t, u, v)
and η2(x, y, t, u, v) are unknown functions that need to
be determined.

If vector field (5) generates a symmetry of system (3), then V
must satisfy symmetry condition

pr(2)V(11)
∣

∣

11 = 0, pr(2)V(12)
∣

∣

12 = 0, (6)

where

{

11 = ut + δ1(t)vxx + δ2(t)vyy + δ3(t)vxy + δ4(t)(u
2v+ v3),

12 = −vt + δ1(t)uxx + δ2(t)uyy + δ3(t)uxy + δ4(t)(u
3 + uv2).

The infinitesimals ξ 1, ξ 2, ξ 3, η1, and η2must satisfy the following
invariant conditions















































η1t + ξ
3δ1

′(t)vxx + δ1(t)η
2
xx + ξ

3δ2
′(t)vyy + δ2(t)η

2
yy

+ξ 3δ3
′(t)vxy

+δ3(t)η
2
xy + ξ

3δ4
′(t)(u2v+ v3)+ δ4(t)(2uη

1v

+u2η2 + 3v2η2) = 0,

−η2t + ξ
3δ1

′(t)uxx + δ1(t)η
1
xx + ξ

3δ2
′(t)uyy

+δ2(t)η
1
yy + ξ

3δ3
′(t)uxy

+δ3(t)η
1
xy + ξ

3δ4
′(t)(u3 + uv2)+ δ4(t)(3u

2η1

+η1v2 + 2uvη2) = 0,

(7)

where

η1t = Dt(η
1 − ξ 1ux − ξ

2uy − ξ
3ut)+ ξ

1uxt + ξ
2uyt

+ξ 3utt ,

η1xx = Dxx(η
1 − ξ 1ux − ξ

2uy − ξ
3ut)+ ξ

1uxxx

+ξ 2uxxy + ξ
3uxxt ,

η1xy = Dxy(η
1 − ξ 1ux − ξ

2uy − ξ
3ut)+ ξ

1uxxy

+ξ 2uxyy + ξ
3uxyt ,

η1yy = Dyy(η
1 − ξ 1ux − ξ

2uy − ξ
3ut)+ ξ

1uxyy
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+ξ 2uyyy + ξ
3uyyt ,

η2t = Dt(η
2 − ξ 1vx − ξ

2vy − ξ
3vt)+ ξ

1vxt

+ξ 2vyt + ξ
3vtt ,

η2xx = Dxx(η
2 − ξ 1vx − ξ

2vy − ξ
3vt)+ ξ

1vxxx

+ξ 2vxxy + ξ
3vxxt ,

η2xy = Dxy(η
2 − ξ 1vx − ξ

2vy − ξ
3vt)

+ξ 1vxxy + ξ
2vxyy + ξ

3vxyt ,

η2yy = Dyy(η
2 − ξ 1vx − ξ

2vy

−ξ 3vt)+ ξ
1vxyy + ξ

2vyyy + ξ
3vyyt .

Solving Equation (7), one can obtain

ξ 1 = c1x+ c2, ξ
2 = c1y+ c3, ξ

3 =
2c1

∫

δ1(t)dt

δ1(t)

+
c4

δ1(t)
, η1 = c1u, η

2 = c1v, (8)

where c1, c2, c3, and c4 are arbitrary constants, and the coefficient
functions δ1(t), δ2(t), δ3(t), and δ4(t) are determined by

ξ 3δ2t + ξ
3
t δ2 − 2δ2c1 = 0,

ξ 3δ3t + ξ
3
t δ3 − 2δ3c1 = 0,

ξ 3δ4t + ξ
3
t δ4 + 2c1δ4 = 0. (9)

The Lie algebra of infinitesimal symmetries of system (3) is
generated by the four vector fields:

J1 = x
∂

∂x
+ y

∂

∂y
+

2
∫

δ1(t)dt

δ1(t)

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
,

J2 =
∂

∂x
, J3 =

∂

∂y
, J4 =

1

δ1(t)

∂

∂t
. (10)

The one-parameter groups gi generated by the Ji are given
as follows:

g1 :(x, y, t, u, v) →

(

xeε , yeε , t + ε
2
∫

δ1(t)dt

δ1(t)
, ueε , veε

)

,

g2 :(x, y, t, u, v) →
(

x+ ε, y, t, u, v
)

,

g3 :(x, y, t, u, v) →
(

x, y+ ε, t, u, v
)

,

g4 :(x, y, t, u, v) →

(

x, y, t +
ε

δ1(t)
, u, v

)

. (11)

If
{

u = U(x, y, t), v = V(x, y, t)
}

is a solution of system (3), by
employing symmetry groups gi (i = 1, 2, 3, 4), we can obtain the
following new solutions

(u(1), v(1)) →

(

eεU

(

xe−ε , ye−ε , t − ε
2
∫

δ1(t)dt

δ1(t)

)

,

eεV

(

xe−ε , ye−ε , t − ε
2
∫

δ1(t)dt

δ1(t)

)

)

,

(u(2), v(2)) →
(

U
(

x− ε, y, t
)

,V
(

x− ε, y, t
))

,

TABLE 1 | Commutator table of the vector fields of system (3).

[Ji ,Jj] J1 J2 J3 J4

J1 0 −J2 −J3 −2J4

J2 J2 0 0 0

J3 J3 0 0 0

J4 2J4 0 0 0

TABLE 2 | Adjoint table of the vector fields of system (3).

Ad J1 J2 J3 J4

J1 J1 J2e
ε J3e

ε J4e
2ε

J2 J1 − εJ2 J2 J3 J4

J3 J1 − εJ3 J2 J3 J4

J4 J1 − 2εJ4 J2 J3 J4

(u(3), v(3)) →
(

U
(

x, y− ε, t
)

,V
(

x, y− ε, t
))

,

(u(4), v(4)) →

(

U

(

x, y, t −
ε

δ1(t)

)

,V

(

x, y, t −
ε

δ1(t)

))

.(12)

In order to construct the optimal system for system (3), we apply
the formula

Ad(exp(εJi))Jj = Jj − ε
[

Ji, Jj
]

+
ε2

2

[

Ji,
[

Ji, Jj
]]

− · · · , (13)

where
[

Ji, Jj
]

= JiJj − JjJi and ε is a parameter. The
commutator table and the adjoint table of system (3) have been
constructed and are presented in Tables 1, 2, respectively.

Based on Tables 1, 2, system (3) has the following optimal
system [3, 32]

(i) J1; (ii) J2 + αJ3 + βJ4; (iii) J3 + χJ4; (iv) J4, (14)

where α,β , and χ are arbitrary constants.

SYMMETRY REDUCTIONS AND
INVARIANT SOLUTIONS

Based on the optimal system (14), our major goal is to deal with
the similarity reductions and invariant solutions for system (3).

Subalgebra J1
The characteristic equations of subalgebra J1 can be written as

dx

x
=

dy

y
=

dt
2

δ1(t)

∫

δ1(t)dt
=

du

u
=

dv

v
. (15)

Solving these equations yields the four similarity variables

r = x

(∫

δ1(t)dt

)− 1
2

, s = y

(∫

δ1(t)dt

)− 1
2

,

u = F(r, s) ·

(∫

δ1(t)dt

)
1
2

, v = H(r, s) ·

(∫

δ1(t)dt

)
1
2

, (16)
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and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t),

δ4(t) = k3δ1(t)

(∫

δ1(t)dt

)−2

, (17)

where k1, k2, and k3 are arbitrary constants. These variables
reduce system (3) to the following (1+1)-dimensional PDEs















F − rFr − sFs + 2Hrr + 2k1Hss + 2k2Hrs

+2k3(F
2H +H3) = 0,

−H + rHr + sHs + 2Frr + 2k1Fss + 2k2Frs + 2k3(F
3

+FH2) = 0.

(18)

Subalgebra J1 does not give any group-invariant solutions.

Subalgebra J2 + αJ3 + βJ4
The similarity variables of this generator are

r = αx− y, s = βx−

∫

δ1(t)dt,

u = F(r, s), v = H(r, s), (19)

and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t), δ4(t) = k3δ1(t), (20)

where ki (i = 1, 2, 3, 4) are arbitrary constants. Substituting
Equations (19) and (20) into (3), we have















Fs − (α2 + k1 − αk2)Hrr − β
2Hss − (2αβ − βk2)Hrs

−k3(F
2H +H3) = 0,

Hs + (α2 + k1 − αk2)Frr + β
2Fss + (2αβ − βk2)Frs

+k3(F
3 + FH2) = 0.

(21)

For solving Equation (21), we use the transformation ζ = r− κs,
F = f (ζ ), H = h(ζ ), where κ is an arbitrary constant, and then
(21) can be reduced to the following ODEs















−κf ′ + (2αβκ − βk2κ − β
2κ2 − α2 − k1 + αk2)h

′′

−k3(f
2h+ h3) = 0,

−κh′ − (2αβλ− βk2λ− β
2λ2 − α2 − k1 + αk2)f

′′

+k3(f
3 + f h2) = 0.

(22)

Solving Equation (22) yields































f = −B1

+A1 tan

(

r −
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

h = A1

+B1 tan

(

r −
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

(23)

and






























f = −B1

+A1 cot

(

r −
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

h = A1

+B1 cot

(

r −
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

(24)

where k3 = −
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2(A2
1+B21)

and A1, B1

are free parameters.
Based on Equations (19), (23), and (24), we obtain the

following trigonometric function solutions for system (3)















































































u = −B1

+A1 tan

(

αx− y−
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

v = A1

+B1 tan

(

αx− y−
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

(25)

and














































































u = −B1

+A1 cot

(

αx− y−
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

v = A1

+B1 cot

(

αx− y−
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

(26)

where k3 = −
4αβ−2βk2+1−

√
4β2(k22−4k1)+4β(2α−k2)+1

4β2(A2
1+B21)

and A1, B1

are free parameters.

Subalgebra J3 + χJ4
The similarity variables of this generator are

r = x, s = χy−

∫

δ1(t)dt,

u = F(r, s), v = H(r, s), (27)

and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t), δ4(t) = k3δ1(t), (28)

where ki (i = 1, 2, 3, 4) are arbitrary constants. System (3) can
then be transformed to

{

Fs −Hrr − χ
2k1Hss − χk2Hrs − k3(F

2H +H3) = 0,
Hs + Frr + χ

2k1Fss + χk2Frs + k3(F
3 + FH2) = 0.

(29)

For solving Equation (29), we use the transformation ζ = r− κs,
F = f (ζ ), H = h(ζ ), where κ is an arbitrary constant; Equation
(29) can then be written as

{

−κf ′ + (χk2κ − χ
2κ2k1 − 1)h′′ − k3(f

2h+ h3) = 0,
−κh′ − (χk2κ − χ

2κ2k1 − 1)f ′′ + k3(f
3 + f h2) = 0.

(30)
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To obtain the solutions of Equation (30), we shall apply the
(

G′

G

)

method, as described in [33].
Let us consider the solutions of (30), as

f =

n
∑

i=0

Ai

(

G′

G

)i

, h =

m
∑

i=0

Bi

(

G′

G

)i

. (31)

By balancing the highest order derivative term and non-linear
term in (30), we obtain m = n = 1, and G = G(ζ ) satisfies
second-order ODE

G′′ + λG′ + µG = 0.

Solving Equation (30), we obtain

µ =
λ2(A2

1 + B21)+ 4B0(B0 − λB1)

4A2
1

,

A0 =
λ(A2

1 + B21)− 2B0B1

2A1
, κ =

k3(A
2
1 + B21)(2B0 − λB1)

2A1
,

k1 =
−2A1((A

2
1 + B21)(λχB1k2k3 − 2χA1B0k2k3 + 2A1k3)+ 2A1)

χ2k23(λA
2
1B1 + λB

3
1 − 2A2

1B0 − 2B0B
2
1)

2
, (32)

where λ, χ , d1, B0, B1, k2, and k3 are arbitrary constants.
Substituting (32) into (30), we obtain two types of solutions of

(30), as follows:
When λ2 − 4µ > 0,











































f = λB1−2B0
2i ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

−
λ(λB1−2B0)

2i
√
λ2−4µ

−
λB0−2µB1

i
√
λ2−4µ

,

h = B1
2

√

λ2 − 4µ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

− λB1
2 + B0,

(33)

where

k1 =

2k3(λB0B1 − µB
2
1 − B20)+ λ

2 − 4µ+ 2iχk2k3(λB0B1
−µB21 − B20)

√

λ2 − 4µ

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = r −
2k3(λB0B1 − µB

2
1 − B20)

i
√

λ2 − 4µ
s, λ,µ,χ ,B0,B1,

C1,C2, k2, and k3 are arbitrary constants.

When λ2 − 4µ < 0,











































f = λB1−2B0
2 ×

(

C1 cosh
(

1
2

√
4µ−λ2ζ

)

−C2 sinh
(

1
2

√
4µ−λ2ζ

)

C1 sinh
(

1
2

√
4µ−λ2ζ

)

+C2 cosh
(

1
2

√
4µ−λ2ζ

)

)

−
λ(λB1−2B0)

2
√

4µ−λ2
−

λB0−2µB1√
4µ−λ2

,

h = B1
2

√

4µ− λ2 ×

(

C1 cosh
(

1
2

√
4µ−λ2ζ

)

−C2 sinh
(

1
2

√
4µ−λ2ζ

)

C1 sinh
(

1
2

√
4µ−λ2ζ

)

+C2 cosh
(

1
2

√
4µ−λ2ζ

)

)

− λB1
2 + B0,

(34)

where

k1 =

2k3(λB0B1 − µB
2
1 − B20)+ λ

2 − 4µ+ 2χk2k3(λB0B1
−µB21 − B20)

√

4µ− λ2

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = r −
2k3(µB

2
1 + B20 − λB0B1)
√

λ2 − 4µ
s, λ,µ,χ ,B0,B1,C1,C2, k2,

and k3 are arbitrary constants.

Taking into account Equations (27), (33), and (34), we obtain the
hyperbolic function solutions for system (3):











































u =
λB1−2B0

2i ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

−
λ(λB1−2B0)

2i
√
λ2−4µ

−
λB0−2µB1

i
√
λ2−4µ

,

v = B1
2

√

λ2 − 4µ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

− λB1
2 + B0,

(35)

where λ2 − 4µ > 0,

k1 =

2k3(λB0B1 − µB
2
1 − B20)+ λ

2 − 4µ

+2iχk2k3(λB0B1 − µB
2
1 − B20)

√

λ2 − 4µ

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = x−
2k3(λB0B1 − µB

2
1 − B20)

i
√

λ2 − 4µ

(

χy−

∫

δ1(t)dt

)

,

λ,µ,χ ,B0,B1,C1,C2, k2,

and k3are arbitrary constants.










































u =
λB1−2B0

2 ×

(

C1 cos
(

1
2

√
4µ−λ2ζ

)

−C2 sin
(

1
2

√
4µ−λ2ζ

)

C1 sin
(

1
2

√
4µ−λ2ζ

)

+C2 cos
(

1
2

√
4µ−λ2ζ

)

)

−
λ(λB1−2B0)

2
√

4µ−λ2
−

λB0−2µB1√
4µ−λ2

,

v = B1
2

√

4µ− λ2 ×

(

C1 cos
(

1
2

√
4µ−λ2ζ

)

−C2 sin
(

1
2

√
4µ−λ2ζ

)

C1 sin
(

1
2

√
4µ−λ2ζ

)

+C2 cos
(

1
2

√
4µ−λ2ζ

)

)

− λB1
2 + B0,

(36)

where λ2 − 4µ < 0,

k1 =

2k3(λB0B1 − µB
2
1 − B20)+ λ

2 − 4µ+ 2χk2k3(λB0B1
−µB21 − B20)

√

4µ− λ2

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = x−
2k3(µB

2
1 + B20 − λB0B1)
√

λ2 − 4µ

(

χy−

∫

δ1(t)dt

)

,

λ,µ,χ ,B0,B1,C1,C2, k2, and k3 are arbitrary constants.

Subalgebra J4 =
1

δ1(t)
∂

∂t
The similarity variables of this generator are

r = x, s = y,

u = F(r, s), v = H(r, s), (37)
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and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t), δ4(t) = k3δ1(t), (38)

where ki (i = 1, 2, 3) are arbitrary constants. Thus, system (3) can
be transformed to

{

Hrr + k1Hss + k2Hrs + k3(F
2H +H3) = 0,

Frr + k1Fss + k2Frs + k3(F
3 + FH2) = 0.

(39)

For solving Equation (39), we use the transformation ζ = r− κs,
F = f (ζ ), H = h(ζ ), where λ is an arbitrary constant, and then
(39) can be reduced to the following ODEs

{

(1+ κ2k1 − κk2)h
′′ + k3(f

2h+ h3) = 0,
(1+ κ2k1 − κk2)f

′′ + k3(f
3 + f h2) = 0.

(40)

Solving Equation (40) yields















































f = C1 sin

(

r −
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

s

)

−C2 cos

(

r −
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

s

)

,

h = C2 sin

(

r −
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

s

)

+C1 cos

(

r −
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

s

)

,

(41)

where C1,C2, k1, k2, and k3 are arbitrary constants.
On combining Equations (37) and (41), we obtain the periodic

function solutions for system (3):















































u = C1 sin

(

x−
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

y

)

−C2 cos

(

x−
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

y

)

,

v = C2 sin

(

x−
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

y

)

+C1 cos

(

x−
k2+

√
4k1k3(C

2
1+C2

2)+k22−4k1
2k1

y

)

,

(42)

where C1,C2, k1, k2, and k3 are arbitrary constants.

NON-LINEAR SELF-ADJOINTNESS AND
CONSERVATION LAWS

Conservation laws have been extensively researched due to their
important physical significance. Many effective approaches have
been proposed to construct conservation laws for NPDEs, such
as Noether’s theorem [34], the multiplier approach [35], and so
on [36, 37]. Ibragimov [38, 39] proposed a new conservation
theorem that does not require the existence of a Lagrangian and
is based on the concept of an adjoint equation for NLPDEs. In
this section, we will construct non-linear self-adjointness and
conservation laws for vcHFSC equation (1).

Non-linear Self-Adjointness
Based on the method of constructing Lagrangians [38], we have
the following formal Lagrangian L in the symmetric form

L = ū
[

ut + δ1(t)vxx + δ2(t)vyy +
1
2δ3(t)vxy

+ 1
2δ3(t)vyx + δ4(t)(u

2v+ v3)
]

+v̄
[

−vt + δ1(t)uxx + δ2(t)uyy +
1
2δ3(t)uxy

+ 1
2δ3(t)uyx + δ4(t)(u

3 + uv2)
]

,

(43)

where ū and v̄ are two new dependent variables.
The adjoint system of system (3) is

{

F∗1 = δL
δu = 0,

F∗2 = δL
δv = 0,

(44)

where

δL

δu
=
∂L

∂u
− Dt

∂L

∂ut
+ DxDx

∂L

∂uxx
+ DxDy

∂L

∂uxy
+ DyDy

∂L

∂uyy
, (45)

δL

δv
=
∂L

∂v
− Dt

∂L

∂vt
+ DxDx

∂L

∂vxx
+ DxDy

∂L

∂vxy
+ DyDy

∂L

∂vyy
, (46)

with Dx, Dy, and Dt the total differentiations with respect to x, y,
and t.

For illustration, Dx can be expressed as

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ uxt

∂

∂ut

+vxt
∂

∂vt
+ · · · .

Substituting (43), (45), and (46) into (44), the adjoint system for
system (3) is















F∗1 = −ūt + δ1(t)v̄xx + δ2(t)v̄yy + δ3(t)v̄xy
+2δ4(t)ūuv+ δ4(t)v̄(3u

2 + v2),
F∗2 = v̄t + δ1(t)ūxx + δ2(t)ūyy + δ3(t)ūxy
+2δ4(t)v̄uv+ δ4(t)ū(u

2 + 3v2).

(47)

The system (3) is non-linear self-adjoint when adjoint system (47)
satisfy the following conditions

{

F∗1
∣

∣

ū = φ(x,y,t,u,v),v̄ = ψ(x,y,t,u,v) = λ11F1 + λ12F2,

F∗2
∣

∣

ū = φ(x,y,t,u,v),v̄ = ψ(x,y,t,u,v) = λ21F1 + λ22F2,
(48)

where φ(x, y, t, u, v) 6= 0 or ψ(x, y, t, u, v) 6= 0, and λij (i, j = 1, 2)
are undetermined coefficients.
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Substituting the expressions of Fi (i=1,2) and F∗i (i=1,2) into
(48), we obtain the following equations

(λ12 − ψu)(δ1(t)uxx − δ2(t)uyy − δ3(t)uxy)
−(λ11 − ψv)(δ1(t)vxx + δ2(t)vyy + δ3(t)vxy)
−(λ11 + φu)ut + (λ12 − φv)vt + ψuv(2δ1(t)uxvx

+2δ2(t)uyvy + δ3(t)uxvy + δ3(t)uyvx)
+ψuu(δ1(t)u

2
x + δ2(t)u

2
y + δ3(t)uxuy)+ ψvv(δ1(t)v

2
x

+δ2(t)v
2
y + δ3(t)vxvy)

+(2δ1(t)ψxu + δ3(t)ψyu)ux + (2δ2(t)ψyu + δ3(t)ψxu)uy
+(2δ1(t)ψxv + δ3(t)ψyv)vx
+(2δ2(t)ψyv + δ3(t)ψxv)vy + δ1(t)ψxx + δ2(t)ψyy

+δ3(t)ψxy − λ11δ4(t)(u
2v+ v3)

−λ12δ4(t)(uv
2 + u3)+ 2δ4(t)φuv+ 3δ4(t)ψu

2

+δ4(t)ψv
2 − φt = 0,

(49)

−(λ22 − φu)(δ1(t)uxx + δ2(t)uyy + δ3(t)uxy)
−(λ21 − φv)(δ1(t)vxx + δ2(t)vyy + δ3(t)vxy)

−(λ21 − ψu)ut + (λ22 + ψv)vt + φuv(2δ1(t)uxvx
+2δ2(t)uyvy + δ3(t)uxvy + δ3(t)uyvx)

+φuu(δ1(t)u
2
x + δ2(t)u

2
y + δ3(t)uxuy)+ φvv(δ1(t)v

2
x

+δ2(t)v
2
y + δ3(t)vxvy)

+(2δ1(t)φxu + δ3(t)φyu)ux
+(2δ2(t)φyu + δ3(t)φxu)uy + (2δ1(t)φxv + δ3(t)φyv)vx

+(2δ2(t)φyv + δ3(t)φxv)vy + δ1(t)φxx + δ2(t)φyy
+δ3(t)φxy − λ21δ4(t)(u

2v+ v3)
−λ22δ4(t)(uv

2 + u3)+ 2δ4(t)ψuv+ 3δ4(t)φv
2

+δ4(t)φu
2 + ψt = 0.

(50)

Solving the above systems, we have

φ = −Cu,ψ = Cv, λ12 = λ21 = 0, λ11 = C, λ22 = −C. (51)

Theorem 4.1. System (3) is non-linearly self-adjoint.
The formal Lagrangian corresponding to (43) reads as,

L = −Cu[ut + δ1(t)vxx + δ2(t)vyy +
1
2δ3(t)vxy

+ 1
2δ3(t)vyx + δ4(t)(u

2v+ v3)]

+Cv[−vt + δ1(t)uxx + δ2(t)uyy +
1
2δ3(t)uxy

+ 1
2δ3(t)uyx + δ4(t)(u

3 + uv2)].

(52)

Conservation Laws
In this section, we will construct the conservation laws for
system (3) by Ibragimov’s theorem. Next, we briefly review the
notations used in the following sections. Let x = (x1, x2, . . . , xn)
be n independent variables, u = (u1, u2, . . . , um) be m
dependent variables,

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηs(x, u, u(1), . . .)

∂

∂us
, (53)

be a symmetry ofm equations

Fs(x, u, u(1), . . . , u(N)) = 0, s = 1, 2, . . . ,m. (54)

and the corresponding adjoint equation

F∗s (x, u, v, u(1), v(1), . . . , u(N), v(N))

=
δ(viFi)

δus
= 0. s = 1, 2, . . . ,m. (55)

Theorem 4.2. Any Lie point, Lie-Bäcklund and non-local
symmetry X,as given in (53), of Equation (54) provides a
conservation law for the system (54) and its adjoint system (55).
The conserved vector is defined by

Ti = ξiL+Ws

[

∂L
∂usi

− Dxj

(

∂L
∂usij

)

+ DxjDxk

(

∂L
∂us

ijk

)

− · · ·

]

+Dxj (W
s)

[

∂L
∂usij

− Dxk

(

∂L
∂us

ijk

)

+ DxkDxr

(

∂L
∂us

ijkr

)

− · · ·

]

+DxjDxk (W
s)

[

∂L
∂us

ijk
− Dxr

(

∂L
∂us

ijkr

)

+ · · ·

]

+ · · · ,

(56)

where Ws = ηs − ξiu
s
i is the Lie characteristic function and

L =
m
∑

i=1
viFi is the formal Lagrangian.

Based on the formula in Theorem 4.2, we next construct
conserved vectors for system (3) by employing the formal
Lagrangian (43) and the symmetry operator (10). For system (3),
Equation (56) becomes the following form

Tx = ξL−W1
[

Dx

(

∂L
∂uxx

)

+ Dy

(

∂L
∂uxy

)]

+Dx(W
1)
(

∂L
∂uxx

)

+ Dy(W
1)
(

∂L
∂uxy

)

−W2
[

Dx

(

∂L
∂vxx

)

+ Dy

(

∂L
∂vxy

)]

+ Dx(W
2)
(

∂L
∂vxx

)

+Dy(W
2)
(

∂L
∂vxy

)

= ξL−W1C(δ1(t)vx +
1
2δ3(t)vy)

+Dx(W
1)
(

Cδ1(t)v
)

+ Dy(W
1)
(

1
2Cδ3(t)v

)

+W2C(δ1(t)ux +
1
2δ3(t)uy)− Dx(W

2)
(

Cδ1(t)u
)

−Dy(W
2)
(

1
2Cδ3(t)u

)

,

(57)

Ty = ηL−W1
[

Dx

(

∂L
∂uyx

)

+ Dy

(

∂L
∂uyy

)]

+Dx(W
1)
(

∂L
∂uyx

)

+ Dy(W
1)
(

∂L
∂uyy

)

−W2
[

Dx

(

∂L
∂vyx

)

+ Dy

(

∂L
∂vyy

)]

+Dx(W
2)
(

∂L
∂vyx

)

+ Dy(W
2)
(

∂L
∂vyy

)

= ηL−W1C
[

1
2δ3(t)vx + δ2(t)vy

]

+ Dx(W
1)
(

1
2Cδ3(t)v

)

+Dy(W
1)
(

Cδ2(t)v
)

+W2C
[

1
2δ3(t)ux + δ2(t)uy

]

− Dx(W
2)
(

1
2Cδ3(t)u

)

−Dy(W
2)
(

Cδ2(t)u
)

,

(58)

Tt = τL+W1

(

∂L

∂ut

)

+W2

(

∂L

∂vt

)

= τ

L−W1 (Cu)−W2 (Cv) ,(59)

with

W1 = 8− ξux − ηuy − τut ,

W2 = �− ξvx − ηvy − τvt .

Case 1 J1 = x ∂
∂x + y ∂

∂y +
2
∫

δ1(t)dt

δ1(t)
∂
∂t + u ∂

∂u + v ∂
∂v

The Lie characteristic functions for this operator are

W1 = u− xux − yuy −
2
∫

δ1(t)dt

δ1(t)
ut , (60)

W2 = v− xvx − yvy −
2
∫

δ1(t)dt

δ1(t)
vt . (61)
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FIGURE 1 | Plot of invariant solution (25) with δ1(t) = sint, A1 = 1, B1 = 4, α = β = k1 = 1, k2 = 3 at t = 0. (A) Perspective view of the solution u. (B) Perspective

view of the solution v.

FIGURE 2 | Plot of invariant solution (36) with δ1(t) = 1, C1 = 2, C2 = 1, λ = µ = χ = 1, B0 = B1 = k2 = k3 = 1 at t = 5. (A) Perspective view of the solution u. (B)

Perspective view of the solution v.

FIGURE 3 | Plot of invariant solution (42) with C1 = 1, C2 = 2, k1 = k2 = k3 = 1 at t = 0. (A) Perspective view of the solution u. (B) Perspective view of the solution v.

The corresponding conservation laws are

Tx = − 1
2C
[

2k1δ1(t)(uvyy − uyyv)+ k2δ1(t)

(uvxy − uxvy + uyvx − uxyv)+ 2(uut + vvt)
]

x

− 1
2C
[

k2δ1(t)(uyyv− uvyy)+ 2δ1(t)

(uxyv− uyvx − uvxy + uxvy)
]

y

− 1
2C
∫

δ1(t)dt
[

2k2(utyv− uvty − utvy + uyvt)

+4(utxv− uvtx − utvx + uxvt)
]

− 1
2C
[

k2δ1(t)(uvy − uyv)+ 2δ1(t)(uvx − uxv)
]

,

(62)

Ty = 1
2C
[

2k1δ1(t)(uvxy + uxvy − uyvx − uxyv)+ k2δ1(t)

(uvxx − uxxv)
]

x

+ 1
2C
[

2δ1(t)(uxxv− uvxx)+ k2δ1(t)

(uyvx + uxyv− uvxy − uxvy)− 2(uut + vvt)
]

y

+ 1
2C
∫

δ1(t)dt
[

2k2(uvtx − utxv+ utvx − uxvt)

+4k1(uvty − utyv+ utvy − uyvt)
]

+ 1
2C
[

k2δ1(t)(uxv− uvx)+ 2k1δ1(t)(uyv− uvy)
]

,

(63)

Tt = C
[

(uux + vvx)x+ (uuy + vvy)y− (u2 + v2)
]

−C
∫

δ1(t)dt
[

2k1(uvyy − uyyv)
+2k2(uvxy − uxyv)+ 2(uvxx − uxxv)

]

.
(64)
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Case 2 J2 =
∂
∂x

The Lie characteristic functions for this operator are

W1 = −ux,W
2 = −vx. (65)

The corresponding conservation laws are

Tx = −
1

2
C
[

2δ2(t)(uvyy − uyyv)+ δ3(t)

(uvxy − uxyv− uxvy + uyvx)+ 2(uut + vvt)
]

, (66)

Ty =
1

2
C
[

2δ2(t)(uvxy − uxyv+ uxvy − uyvx)+ δ3(t)

(uvxx − uxxv)
]

, (67)

Tt = C(uux + vvx). (68)

Case 3 J3 =
∂
∂y

The Lie characteristic functions for this operator are

W1 = −uy,W
2 = −vy. (69)

The corresponding conservation laws are

Tx =
1

2
C
[

2δ1(t)(uvxy − uxyv− uxvy + uyvx)+ δ3(t)

(uvyy − uyyv)
]

, (70)

Ty =
1

2
C
[

2δ1(t)(uxxv− uvxx)− δ3(t)

(uvxy − uxyv+ uxvy − uyvx)− 2(uut + vvt)
]

, (71)

Tt = C(uuy + vvy). (72)

Case 4 J4 =
1

δ1(t)
∂
∂t

The Lie characteristic functions for this operator are

W1 = −
1

δ1(t)
ut ,W

2 = −
1

δ1(t)
vt . (73)

The corresponding conservation laws are,

Tx =
1

2
C
[

k2(uvty − utyv+ utvy − uyvt)

+2(uvtx − utxv+ utvx − uxvt)
]

, (74)

Ty =
1

2
C
[

k2(uvtx − utxv+ utvx − uxvt)

+2k1(uvty − utyv+ utvy − uyvt)
]

, (75)

Tt = C
[

k1(uyyv− uvyy)

+k2(uxyv− uvxy)+ (uxxv− uvxx)
]

. (76)

RESULTS AND DISCUSSION

The Lie group method has been successfully used to establish
the invariant solutions for the vcHFSC equation. Some results
for the vcHFSC equation have been published in the literature.

Huang et al. [26] used the Hirota bilinear method and found the
bright and dark solitons to Equation (1). Peng [27] reported some
new non-autonomous complex wave and analytic solutions to
Equation (1) with the aid of the

(

G′/G
)

method. In this article, we
constructed the trigonometric and hyperbolic function solutions
to the studied equation. Compared with the solutions obtained
in references [26, 27], our results are new. To better understand
the characteristics of the obtained solutions, the 3D graphical
illustrations are plotted in Figures 1–3.

With the Lagrangian, we find that the vcHFSC equation
is non-linearly self-adjoint. Furthermore, a new conservation
theorem has been used to construct conservation laws for the
vcHFSC equation. Based on the four infinitesimal generators,
we obtained four conserved vectors. It worth noting that the
conservation laws obtained in this article have been verified by
Maple software.

CONCLUSION

In this research, the infinitesimal generators and Lie point
symmetries of the vcHFSC equation have been investigated
using the Lie group method. Based on the optimal system of
one-dimensional subalgebras, four types of similarity reductions
are presented. Taking similarity reductions into account, the
invariant solutions are provided, including trigonometric and
hyperbolic function solutions. Furthermore, conservation laws
for the vcHFSC equation are derived by non-linear self-
adjointness and a new conservation theorem.
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In this paper Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are

proposed to solve nonlinear partial differential equations (PDEs) in right triangles. These

algorithms evaluate more times the function than a standard explicit Runge–Kutta

scheme (nt times per step), and these extra evaluations do not increase the order of

convergence but the stability region grows with O(n2t ). Hence, the total computational

cost is O(nt) times lower than with a traditional explicit algorithm. Thus, these algorithms

have been traditionally considered to solve stiff PDEs in squares/rectangles or cubes.

In this paper, for the first time, ESERK methods are considered in a right triangle. It is

demonstrated that such type of codes keep the convergence and the stability properties

under certain conditions. This new approach would allow to solve nonlinear parabolic

PDEs with stabilized explicit Runge–Kutta schemes in complex domains, that would be

decomposed in rectangles and right triangles.

Keywords: complex geometries, higher-order codes, multi-dimensional partial differential equations, nonlinear

PDEs, Stabilized Explicit Runge-Kutta methods

1. INTRODUCTION

Let us suppose that we have to solve a nonlinear PDE with dominating diffusion:

ut = d(ux̄x̄ + uȳȳ)+ f (t, x̄, ȳ, u) (x̄, ȳ) ∈ � ⊂ R
2, (1)

subject to traditional initial and Dirichlet boundary conditions:

u(0, x̄, ȳ) = g1(x̄, ȳ) (x̄, ȳ) ∈ �, (2)

and

u(t, x̄, ȳ) = g2(x̄, ȳ) (x̄, ȳ) ∈ ∂(�). (3)

These types of problems are very common in a large amount of areas such as atmospheric
phenomena, biology, chemical reactions, combustion, financial mathematics, industrial
engineering, laser modeling, malware propagation, medicine, mechanics, molecular dynamics,
nuclear kinetics, etc., see [1–9], to mention a few.

A widely-used approach for solving these time-dependent and multi-dimensional PDEs is to
first discretize the space variables (with finite difference or spectral methods) to obtain a very large
system of ODEs of the form

y′ = f (t, y); y(t0) = y0; (4)
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where y, y0 ∈ R
n, t ≥ t0, and f (t, y) takes value in R

n, this
procedure is well-known as the method of lines (MOL). But these
systems of ODEs not only have a huge dimension, additionally
they might become very stiff problems.

Hence, traditional explicit methods are usually very slow, due
to absolute stability, it is necessary to use very small length steps,
see [6, 7] and references therein. Therefore, these schemes are not
usually considered.

Implicit schemes based on BDF and Runge–Kutta methods
have much better stability properties. However, since the
dimension of the ODE system is very high, then it is necessary
to solve very large nonlinear systems at each iteration.

Other numerous techniques have also been proposed based
on ETD schemes (but it is necessary to approximate operators
including matrix exponentials), alternating direction implicit
methods (they have limitations on the order of convergence) and
explicit-implicit algorithms. However, in any case the number of
operations is huge when the system dimension is high.

For those cases where it is known that the Jacobian eigenvalues
of the function are all real negative or are very close to this semi-
axis, there is another option: stabilized explicit Runge–Kutta
methods (they are also called Runge-Kutta-Chebyshev methods).
This happens, for example, when diffusion dominates in the
PDE, when the Laplacian is discretized using finite differences or
some spectral techniques, then the associated matrix has this type
of eigenvalues.

These types of algorithms are totally explicit, but they
have regions of stability extended along the real negative
axis. These schemes typically have order 2 or 4 [8, 10–
16]. Recently, we propose a new procedure combined with
Richardson extrapolation to obtain methods with other orders of
convergence [17, 18], but in all these methods, these integrators
have many more stages than the order of convergence. Most of
these extra stages seek to extend as much as possible the region of
stability along the negative real axis. Regions of stability increase
quadratically with the number of stages. Thus, the cost per step
is greater than in a classic Runge–Kutta, because it is necessary
to evaluate the function in Equation (4) nt times. However, the
number of steps reduce proportionally with n2t , thus the total
computational cost is reduced proportionally with nt .

These schemes have been traditionally considered in
squares/rectangles or cubes. But this makes difficult to apply
them in PDEs with complex geometries, which happens in most
of the cases. Some different strategies have been proposed to
apply them when the original domain is not a square nor a cube
(see [3–5]). They implemented stabilized Runge–Kutta methods
after using adaptive multiresolution techniques or fixed mesh
codes in space. But simulations in complex geometries constitute
a very challenging problem, see (section 4, [5]), where they stated
for their results based on adaptive multiresolution techniques
that they “will only present here 2D and 3D simulations in
simplified geometries for the sake of assessing our results and
perspectives in the field.”

As far as we know, stabilized explicit Runge–Kutta methods
have not been tested in triangles yet. For this reason, in this paper,
we are analysing how ESERK methods can be employed to solve
nonlinear PDEs in these types of regions and their convergence.

In this paper, a summary on ESERK4 methods is provided
in section 2. The major advance of our contribution is given in
section 3: it is explained how ESERK4 can be utilized for (1) when
� is a right triangle. After some linear transformations and spatial
discretizations ESERK4 is numerically stable and fourth-order
convergence in time, and second-order in space is obtained. This
allows a new way to numerically approach parabolic nonlinear
PDEs in complex domains in the plane, which can be easier
decomposed in a sum of triangles and rectangles. Finally, some
conclusions and future goals are outlined.

2. ESERK4 METHODS

2.1. Construction of First-Order Stabilized
Explicit Methods
In [17], ESERK4 schemes were developed for nonlinear PDEs in
several dimensions with good stability properties and numerical
results in squares and cubes. The idea is quite simple: first-order
stabilized explicit Runge–Kutta (SERK) methods are derived
using Chebyshev polynomials of the first kind:

T0(x) = 1, T1(x) = x, Ts(x) = 2xTs−1(x)− Ts−2(x), (5)

s being the number of stages of the first-order method.
If we consider

Rs(z) =
Ts(w0,s + w1,sz)

Ts(w0,s)
, w0,s = 1+

µ4

s2
, w1,s =

Ts(w0,s)

T′
s(w0,s)

,

(6)
then |Rs(z)| oscillates between −λ4 and λ4 (for a value 0 < λ4 =

0.311688 < 1 that we will calculate later) in a region which is
O(s2), and Rs(z) = 1+ z + O(z2).

We can construct Runge–Kutta schemes with |Rs(z)| as
stability functions by just changing x = 1+αpx̄ (and considering
that 1,Ts(x) and x̄ are the stability functions of Identity operator,
gs, and hf (·), and writing Rs(z) as a linear combination of the
Chebyshev polynomials, see Theorem 1 [12] for more details).

2.2. Construction of Higher-Order ESERK
Schemes
Once first-order SERK methods have been derived, they
approximate the solution of the initial value problem (4), by
performing ni steps with constant step size hi at x0 + h, i.e.,
yhi (x0 + h) : = Si,1, with step sizes h1 > h2 > h3 > . . . (taking
hi = h/ni, ni = 1, . . . , 4).

Finally

S4,4 =
−S1,1 + 24S2,1 − 81S3,1 + 64S4,1

6
=

=
64yh/4(x0 + h)− 81yh/3(x0 + h)+ 24yh/2(x0 + h)− yh(x0 + h)

6

(7)

is a fourth-order approximation with

P4s(z) =
−Rs(z)+24(Rs(z/2))

2−81(Rs(z/3))
3+64(Rs(z/4))

4

6 .
(8)
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as its stability function. Additionally, we have that

|P4s(z)| ≤
|Rs(z)| + 24|Rs(z/2)|

2 + 81|Rs(z/3)|
3 + 64|Rs(z/4)|

4

6
.

The positive real solution of

x+ 24x2 + 81x3 + 64x4

6
= 0.95

is λ4 = 0.311688. Hence, whenever |Rs(z)| < 0.311688, then
|P4s(z)| < 0.95. Taking µ4 = 27

16 , it can be checked numerically
that |Rs,4(z)| ≤ 0.311688 for z ∈ [−s2,−1] and 9 ≤ s ≤

4000, and therefore the ESERK4 methods derived in this way are
fourth-order approximations and numerically stable in a region
including [−s2, 0].

2.3. Parallel, Variable-Step, and Number of
Stages Algorithm
In [17], we constructed a variable-step and number of stages
algorithm combining all the schemes derived there, with s up to
4,000. The idea is quite simple: (i) First, we select the step size
in order to control the local error; the best results were obtained
using techniques considered for standard extrapolation methods
(see Equations (8–11) in [17]). (ii) Later the minimum s is chosen
so that the absolute stability is satisfied.

Recently, we are working developing the parallel version of
this code (see [19]). Using 4 threads, CPU times are up to 2.5
times smaller than in the previous sequential algorithm. The
new parallel code also has a decreasing memory demand, and
therefore it is possible to solve problems with higher dimension
in regular PCs.

3. DECOMPOSITION OF COMPLEX
GEOMETRIES INTO RIGHT TRIANGLES

Complex geometric shapes are ubiquitous in our natural
environment. In this paper, we are interested in numerically
solving partial differential equations (PDEs) in such types of
geometries, which are very common in problems related with
human bodies, materials, or simply a complicated engine in
classical engineering applications.

One very well-known strategy, within a finite element
context, is to build the necessary modifications in the
vicinity of the boundary. Such an approach is studied in
the composite finite element method (FEM). Those methods
based on finite element are usually proposed only for linear
PDEs. FEM is a numerical method for solving problems of
engineering and mathematical physics (typical problems include
structural analysis, heat transfer, fluid flow, mass transport,
or electromagnetic potential, because these problems generally
require numerically approximating the solution of linear partial
differential equations). The finite element method allows the
transformation of the problem in a system of algebraic equations.
Unfortunately, it is more difficult to employ these techniques
with nonlinear parabolic PDEs in several dimensions, although
some results have been obtained to know when the resulting

discrete Galerkin equations have a unique solution in [20].
However, for some problems, some of these techniques are not
easy to be employed numerically, they are computationally very
expensive because they require solving nonlinear systems with
huge dimension at every step, or it is difficult to demonstrate that
the numerical schemes have unique solution in a general case.

On the other hand, Implicit–Explicit (IMEX) methods have
been employed to solve a very stiff nonlinear system of ODEs
coming from the spatial discretization of nonlinear parabolic
PDEs that appeared in the modelization of an ischemic stroke in
[5]. The authors employed an adaptive multiresolution approach
and a finite volume strategy for the spatial discretizations.
And a Strang splitting method in time, combining ROCK4, an
explicit Stalized Explicit Runge–Kutta scheme for the diffusion
part, and Radau5, an implicit A-stable method for the reaction.
These methods were previously analyzed in [3] for streamer
discharge simulations, and the authors demonstrated second-
order convergence in time. Later, they employed similar strategies
for different physical problems in [4, 21]. As the authors
state, some of these procedures are complicated except in
simple domains like squares and cubes, and only second-order
convergence in time is possible. However, there are complex
problems where nonlinear terms have potentially large stiffness,
and at the same time, it is necessary to efficiently solve the model
with small errors. This motivates to derive high-order schemes
with good internal stability properties.

In what follows we will explain a new strategy to numerically
solve the nonlinear parabolic PDE given by Equation (1) where
� is any right triangle, and therefore any researcher can combine
the theory (utilized with FEM) to spatially decomposed any
complex geometry into triangles (since any acute triangle and
obtuse triangle can be decomposed into two right triangles), and
later employing the method described in this paper. Additionally,
schemes proposed in this work are fourth-order ODE solvers (in
time), and numerical spatial approximations will be second-order
(although fourth-order formulae can be explored except for the
closest points to vertices).

3.1. Higher-Order Spatial Approximations
in the Triangle
Without loss of generality we can consider that our right triangle
is TR, the one with vertices (0, 1), (0, 0), (1, 0). Otherwise we first
use a linear transformation of the right triangle with vertices
P1 = (x̄1, ȳ1), P0 = (x̄0, ȳ0), P2 = (x̄2, ȳ2) [where (x̄0, ȳ0) is the
vertex of the right angle]:

(x, y) = L(x̄, ȳ) = (a1(x̄− x̄0)+a2(ȳ− ȳ0), b1(x̄− x̄0)+b2(ȳ− ȳ0)),
(9)

where the parameters a1, a2, b1, b2 can be computed easily as

a1 =
ȳ2−ȳ0
Det , a2 =

x̄0−x̄2
Det ,

b1 =
ȳ0−ȳ1
Det , a2 =

x̄0−x̄1
Det ,

(10)

where

Det =

∣

∣

∣

∣

∣

∣

1 1 1
x̄0 x̄1 x̄2
ȳ0 ȳ1 ȳ2

∣

∣

∣

∣

∣

∣

(11)
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and it is easy to check that Det 6= 0 if and only the three points
are not in a line (but we always have a triangle).

The main reason of decomposing our general region � ∈ R2

into right triangles (and not other triangles) is, that after this
linear transformation given by Equations (9) and (10), our PDE
given by Equation (1) transforms into the Equation

ut = c1uxx + c2uyy + f (t, x, y, u) (x, y) ∈ TR, (12)

subject to (traditional) initial and Dirichlet boundary conditions.
Therefore, let us first study Equation (12), together with

u(0, x, y) = g1(x, y) (x, y) ∈ TR, (13)

and

u(t, x, y) = g2(x, y) (x, y) ∈ ∂(TR), (14)

where ∂(TR) is the border of the triangle with vertices
(0, 1), (0, 0), (1, 0). One positive issue is that, after the traditional
spatial discretization described below, the matrix obtained from
the diffusion term has all the eigenvalues real, and therefore
we can utilize the ESERK methods proposed in the previous
section 2.

Now, let us define the spatial discretization of our continuous
problem provided by Equation (12), the problem domain TR is
discretized by the grid points (xi, yj), where

xi = i · h, i = 0, 1, . . . ,N, N =
1

h
, yj = j · h,

j = 0, 1, . . . ,N − i, h = 1x = 1y, (15)

since xi + yj ≤ 1.
With this semidiscretizations we will approximate uxx and uyy

at point (xi, yj) with the following second-order formulae:

∂2ui,j

∂x2
=

ui+1,j − 2ui,j + ui−1,j

h2
,

∂2ui,j

∂y2
=

ui,j+1 − 2ui,j + ui,j−1

h2
.

(16)
After the linear transformation given by Equations (9) and (10),
our PDE given by Equation (1) may transform into one Equation
where one term in uxy would appear. Normally, this term can be
approximated in the square or the rectangle through the formula

∂2ui,j

∂x∂y

=
ui+1,j+1 − ui,j+1 − ui+1,j + 2ui,j − ui−1,j − ui,j−1 + ui−1,j−1

2h2
,

(17)

however, in TR, we can obtain that the point (xi, yj) is in TR, i.e.,
xi + yj < 1, but the point (xi+1, yj+1) might not satisfy that
xi+1 + yj+1 ≤ 1, and therefore we cannot employ these finite
difference formulae if a term in uxy appears. Fortunately, we will
check that this term cancels after this transformation [given by
Equations (9 and 10)] whenever the original triangle with vertices
(x̄1, ȳ1), (x̄0, ȳ0), and (x̄2, ȳ2) is a right triangle and (x̄0, ȳ0) is the
vertex of the right angle. This fact is explained in Figure 1. If we

FIGURE 1 | Spatial discretization in the right triangle TR. We need to

approximate partial derivatives of u in the interior (orange points), and therefore

we have obtained in the previous steps approximations of the function in the

interior, and the points in the border (blue points), but we do not have these

values outside of TR (red points).

would need to approximate
∂2u2,1
∂x∂y , then it would be necessary to

obtain an approximation of u3,2, but this point is outside of the
TR, the region of study.

In this work, we are employing only second-order
approximations in space. In other works, for example [13],
we have also employed SERK codes after higher-order
discretizations in space, but in rectangles. Normally, in
rectangles, we can use formulae similar to

∂2ui,j

∂x2
=

−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12h2
,

i = 2, . . . ,N − 2, (18)

and in the lower edge

∂2u1,j

∂x2
=

10u0,j − 15u1,j − 4u2,j + 14u3,j − 6u4,j + u5,j

12h2
. (19)

However, in the triangle, again we can observe in Figure 1, that
we would need to approximate the solution in points outside TR

before we can calculate (19) near the vertex (0, 1). Obviously, one
possible idea for the future is considering the decomposition of
complex regions into bigger rectangles in the interior, and small
right triangles near the border of the complex region where it is
necessary to solve the PDE.

Now, we are ready to understand why we chose right triangles
in the decomposition of complex regions. The main reason is,

Frontiers in Physics | www.frontiersin.org 4 September 2020 | Volume 8 | Article 36768

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Martín-Vaquero ESERK Methods for Nonlinear PDEs in Triangles

that simple calculations give us [after linear transformations
given by Equations (9–11)]:

ux̄x̄ + uȳȳ = a1
(

a1uxx + b1uxy
)

+ b1
(

a1uxy + b1uyy
)

+a2
(

a2uxx + b2uxy
)

+ b2
(

a2uxy + b2uyy
)

, (20)

and therefore, after this linear transformation, ux̄x̄ + uȳȳ has the
following term in uxy

(

2a1b1 + 2a2b2
)

uxy. (21)

If we change a1, a2, b1, and b2 for their values given by Equation
(10)

a1b1 + a2b2 =
ȳ2 − ȳ0

Det

x̄0 − x̄2

Det
+

ȳ0 − ȳ1

Det

x̄0 − x̄1

Det
(22)

which is 0 if and only if the vectors
−−→
P2P0 and

−−→
P0P1 are orthogonal,

i.e., if they form a right angle at P0.
Thus, if the original triangle has a right angle at P0,

there is not a term in uxy, and we can use the second-
order approximations in space, with the spatial discretization
described above. Additionally, the following theorem guarantee
that ESERK methods can be employed (with numerical stability
and good results) in this right triangle to solve the PDE
given by Equations (1)–(3) after the linear transformation given
by Equations (9)–(11) and the spatial discretization given by
Equation (15):

Theorem: Let Equations (1)–(3) be the PDE to be solved,
and � a right triangle with a right angle at P0. After linear
transformation given by Equations (9) and (10), this PDE
transforms into Equations (12)–(14), which can be discretized by
Equations (15) and (16), transforming into the system of ODEs


















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













u11
u21
...

uN−2 1

u12
...
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...
u1 N−2
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,

(23)
F(t, xi, yj, uij) being the sum of f (t, x, y, u) at the grid points plus
the function given by the spatial discretization of the derivatives
at the boundary.

The associate matrix, A, to the terms c1uxx + c2uyy (with
c1, c2 ≥ 0) is real and symmetric, and therefore all the eigenvalues
of this matrix are negative and real. Hence, Extrapolated
Stabilized Explicit Runge–Kutta are numerically stable whenever
∂u[F(t, x, y, u)] does not modify this type of eigenvalues (real and
negative) in the Jacobian function and s >

√

41t(µ + σ ) (µ
being c1

h2
and σ = c2

h2
). Therefore, ESERK4 methods can solve

Equations (1)–(3) with a fourth-order convergence in time, and
second in space.

Proof: It only remains to study the associate matrix A.
But simple calculations allow us to obtain that

A =





















BN−2 CN−2,N−3 0N−2,N−4 . . . 0N−2,2 0N−2,1

Ct
N−2,N−3 BN−3 CN−3,N−4 . . . 0N−3,2 0N−2,1

0N−4,N−2 Ct
N−3,N−4 BN−4

. . .
...

...
...

...
. . .

. . .
. . .

. . .

02,N−2 02,N−3 . . . . . . B2 C2,1

01,N−2 01,N−3 . . . . . . Ct
2,1 B1





















,

(24)
where Bi is the square matrix with dimension i

Bi =



















−2µ − 2σ µ 0 . . . 0

µ −2µ − 2σ µ
. . . 0

0 µ −2µ − 2σ
. . .

...
...

. . .
. . .

. . . µ

0 0 . . . µ −2µ − 2σ



















,

(25)

Ci+1,i =

(

σ Idi
0i,1

)

,

0i,j is the i× jmatrix with all the values equal 0, Idi is the identity
matrix of dimension i, µ = c1

h2
and σ = c2

h2
, and therefore A is a

symmetric real matrix.
Finally, it is well-known that all the eigenvalues of any

symmetric real matrix A are real. Let us suppose that (λ, v) is a
complex pair of A, i.e., an eigenvector v = x + yi ∈ C

n, where
x, y ∈ R

n and λ = a + bi ∈ C is the corresponding eigenvalue
with a, b ∈ R. Therefore,

Ax+ iAy = Av = λv = (ax− by)+ i(bx+ ay). (26)

Hence, equalizing real and imaginary parts, we have

Ax = (ax− by), Ay = (bx+ ay), (27)

and therefore

Ax · y = a(x · y)− b||y||2, x · Ay = b||x||2 + a(x · y). (28)

In this way we can conclude that

0 = x · Ay− Ax · y = b(||x||2 + ||y||2), (29)

and, since ||x||2 + ||y||2 6= 0, then b = 0 and λ = a ∈ R

Additionally, since σ ,µ ≥ 0, the Gershgoring theorem
guarantees for all the eigenvalues of A that 4(µ + σ ) ≤ λi ≤ 0.

Therefore, whenever the nonlinear part does not modify this
type of eigenvalues (real and negative) in the Jacobian function, a
bound of the spectral radius of the Jacobian is 4(µ + σ ), and we
merely need to use an ESERK method with s >

√

41t(µ + σ ) to
guarantee numerical stability.
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TABLE 1 | Analysis of the numerical convergence at points

p1 = (t, x, y) = (1, 0.15, 0.15) (top) and p2 = (t, x, y) = (1, 0.5, 0.25) (bottom) for the

ESERK4 algorithm with s = 100 with k = 1t = 0.2, 0.1 and 0.05, and

h = 1x = 1y = 0.025, 0.0125, and 0.00625.

s = 100, p1 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 2.264e−4 1.215e−5 1.595e−5

h = 0.0125 3.355e−4 6.364e−6 2.479e−6

h = 0.00625 4.430e−4 5.842e−5 3.109e−6 3.577

Spatial conv. 1.180

s = 100, p2 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 3.449e−4 2.709e−6 4.073e−5

h = 0.0125 1.412e−3 8.117e−5 1.479e−5

h = 0.00625 1.649e−3 1.975e−5 4.536e−6 4.253

Spatial conv. 1.583

4. NUMERICAL EXAMPLE

Let us now study the numerical behavior of ESERK methods in a
right triangle with one example. We will consider

ut =
5

π2
(ux̄x̄ + uȳȳ)+ (1− u)3 + f (t, x̄, ȳ) (x̄, ȳ) ∈ � ⊂ R

2,

(30)
where

f (t, x̄, ȳ) = e−3t

(

sin

(

π(ȳ− 2x̄− 3)

5

)

− et
)3

,

� is the triangle with vertices (−1, 1), (−3, 2), and (0, 3) and
initial and boundary conditions are taken such that u(t, x̄, ȳ) =

e−t sin
(

π(ȳ−2x̄−3)
5

)

is its solution.

Hence, we first consider the linear transformation given by
Equations (9) and (10), i.e., a1 = −2/5, a2 = 1/5, b1 = 1/5, b2 =
2/5. In this way Equation (30) transforms into the Equation

ut =
1

π2
(uxx + uyy)+ (1− u)3 + f (t, x, y) (x, y) ∈ TR, (31)

where

f (t, x, y) = e−3t
(

sin (πx) − et
)3
,

and initial and boundary conditions are taken such that
u(t, x, y) = e−t sin (πx) is its solution.

Now, it is possible to utilize second-order approximations in
space, as it was explained in the previous section. ESERK4 with
s = 100 and 150 where considered for this numerical experiment
with different values of h = 1x = 1y and k = 1t. Numerical
convergence at several points was analyzed with both methods,
and numerical errors at two points [p1 = (t, x, y) = (1, 0.15, 0.15)
and p2 = (t, x, y) = (1, 0.5, 0.25)] are shown in Tables 1, 2.

First of all, we calculated all the eigenvalues of the matrix A
after spatial discretization. As it was demonstrated in Theorem

TABLE 2 | Analysis of the numerical convergence at points

p1 = (t, x, y) = (1, 0.15, 0.15) (top) and p2 = (t, x, y) = (1, 0.5, 0.25) (bottom) for the

ESERK4 algorithm with s = 150 with k = 1t = 0.2, 0.1 and 0.05, and

h = 1x = 1y = 0.025, 0.0125, and 0.00625.

s = 150, p1 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 2.150e−4 1.228e−5 1.599e−5

h = 0.0125 3.235e−4 5.693e−6 2.132e−6

h = 0.00625 4.401e−4 5.842e−5 2.625e−6 3.695

Spatial conv. 1.303

s = 150, p2 k = 0.2 k = 0.1 k = 0.05 Temporal conv.

h = 0.025 3.275e−4 3.657e−6 4.042e−5

h = 0.0125 1.327e−3 7.585e−5 1.788e−5

h = 0.00625 1.568e−3 1.975e−5 3.824e−6 4.340

Spatial conv. 1.701

TABLE 3 | Analysis of the numerical convergence at points

p1 = (t, x, y) = (1, 0.15, 0.15), and p2 = (t, x, y) = (1, 0.5, 0.25) for the ESERK4

algorithm withs = 100 and s = 150 with k = 1t = 0.025, and

h = 1x = 1y = 0.025, 0.0125, and 0.00625.

s = 100, p1 s = 100, p2 s = 150, p1 s = 150, p2

h = 0.025 1.749e−5 3.489e−5 1.750e−5 3.490e−5

h = 0.0125 4.544e−6 9.593e−6 4.542e−6 9.575e−6

h = 0.00625 2.086e−6 9.398e−7 2.026e−6 7.835e−7

Spatial conv. 1.534 2.607 1.555 2.738

23, they are real and negative, and they are inside the intervals
[−1, 292, 0] for h = 0.025; [−5, 183, 0] for h = 0.0125; and
[−20, 746, 0] for h = 0.00625. In the three cases, the bound
4(µ+σ ) given by Gershgoring theorem is a good approximation
for the spectral radius [4(µ+σ ) is 1296.91 for h = 0.025, 5187.64
for h = 0.0125, and 20750.6 for h = 0.00625, less than a 1% over
the real values].

ESERK4 schemes are stable in [−s2, 0] therefore any ESERK

method with s >
√
20750.6k ≥

√
4150.2 = 64.4214 (since our

bigger k = 0.2) is stable in this numerical example.
In both Tables 1, 2, if we take k = 0.2 (also with k = 0.1), we

can observe that errors are similar with the three different values
h = 0.025, 0.0125, and 0.00625 at many of the points. In this case,
most of the error is due to the temporal discretization. Actually,
in L2 norm, errors with constant k = 0.2 grow when h decrease
for the three step lengths in space, this is because there are more
points and they are close to the border.

If we take h = 0.025 constant, and we vary k = 0.2, 0.1, and
k = 0.05, in general we observe that errors in most of the points
decrease between k = 0.2 and 0.1, however, if we only compare
the errors with h = 0.025, k = 0.1 and k = 0.05, errors are similar
at most points (and also in L2 norm). Obviously, this is because,
with h = 0.025, k = 0.1, or k = 0.05, part of the error is due to
the spatial discretization.
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FIGURE 2 | Exact and numerical solutions in the right triangle TR. Numerical approximation is obtained with ESERK4 with s = 150, k = 1t = 0.025,

h = 1x = 1y = 0.00625.

Therefore, it is not so easy to observe 4−th order convergence
in time and 2−nd in space. If we choose h = 0.00625, then
most of the error with k1 = 0.2, k2 = 0.1, and k3 = 0.05 is

due to temporal discretization. Hence, calculating logk1/k3

(

err1
err3

)

(these values are called Temporal convergence in Tables 1, 2, err1
being the error with k1, and err3 being the error with k3) we can
observe numerical rates in the range 3.6–4.3 in general, which
gives us a good idea of the fourth-order convergence in time of
ESERK4 schemes.

Now, if we fix k = 0.05, and we repeat the process with h1 =

0.025, h2 = 0.0125, and h3 = 0.00625, we observe that between
h1 and h2 errors divide (more or less) by 4 which gives us a good
idea of the second order in space of the discretization proposed
for the right triangle. However, with k = 0.05, and h3 a part of the
error is due to the temporal discretization. Thus, if we calculate

logh1/h3

(

err1
err3

)

(these values are called Spatial convergence in

Tables 1, 2, err1 being the error with h1, and err3 being the error
with h3), we observe numerical rates in the range 1.2–1.7.

Since, part of the error with k = 0.05 is due to the temporal
discretization, and the temporal convergence is fourth-order, let
us choose a smaller k4 = 0.025, and repeat the process with this
length step in time. InTable 3, errors with bothmethods (s = 100
and s = 150), and h = 1x = 1y = 0.025, 0.0125, and 0.00625
are shown at both points, p1 and p2.

Now, most of the errors are because of the spatial
discretization, and we can observe that the numerical spatial
convergence rates are in the range 1.5–2.7. They suggest that
the numerical convergence rate is 2 as it was expected from the
previous theoretical analysis.

In Figure 2, the exact solution and the numerical
approximation obtained with ESERK4 with s = 150,
k = 1t = 0.025, h = 1x = 1y = 0.00625 are shown.
We can check that both plots look identical.

5. CONCLUSIONS AND FUTURE GOALS

In this paper, for the first time, ESERK schemes are proposed
to solve nonlinear partial differential equations (PDEs) in
right triangles. These codes are explicit, they do not require
to solve very large systems of linear nor nonlinear equations
at each step. It is demonstrated that such type of codes
are able to solve nonlinear PDEs in right triangles. They
keep the order of convergence and the absolute stability
property under certain conditions. Hence, this paper opens
a new line of research, because this new approach will
allow, in the future, to solve nonlinear parabolic PDEs
with stabilized explicit Runge–Kutta schemes in complex
domains, that would be decomposed in rectangles and
right triangles.

Additionally, we consider that this procedure can be extended
to tetrahedron and other simplixes for the solution of multi-
dimensional nonlinear PDEs in complex regions in R

n.
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A large class of problems in quantum physics involve solution of the time independent

Schrödinger equation in one or more space dimensions. These are boundary value

problems, which in many cases only have solutions for specific (quantized) values of the

total energy. In this article we describe a Python package that “automagically” transforms

an analytically formulated Quantum Mechanical eigenvalue problem to a numerical form

which can be handled by existing (or novel) numerical solvers. We illustrate some uses of

this package. The problem is specified in terms of a small set of parameters and selectors

(all provided with default values) that are easy to modify, and should be straightforward

to interpret. From this the numerical details required by the solver is generated by the

package, and the selected numerical solver is executed. In all cases the spatial continuum

is replaced by a finite rectangular lattice. We compare common stensil discretizations of

the Laplace operator with formulations involving Fast Fourier (and related trigonometric)

Transforms. The numerical solutions are based on the NumPy and SciPy packages for

Python 3, in particular routines from the scipy.linalg, scipy.sparse.linalg,

and scipy.fftpack libraries. These, likemost Python resources, are freely available for

Linux, MacOS, and MSWindows. We demonstrate that some interesting problems, like

the lowest eigenvalues of anharmonic oscillators, can be solved quite accurately in up to

three space dimensions on a modern laptop—with some patience in the 3-dimensional

case. We demonstrate that a reduction in the lattice distance, for a fixed the spatial

volume, does not necessarily lead to more accurate results: A smaller lattice length

increases the spectral width of the lattice Laplace operator, which in turn leads to an

enhanced amplification of the numerical noise generated by round-off errors.

Keywords: numpy array, FFT (fast fourier transform), quantum mechanics, python classes, eigenvalue problems,

sparse SciPy routines, Schrödinger equations

1. INTRODUCTION

The Schrödinger equation has been a central part of “modern” physics for almost a century. When
interpreted broadly, it can be formulated in a multitude of ways [1]. Here we mainly restrict our
discussion to the non-relativistic, time independent form,

[

−1q + V(q)
]

ψ(q) = Eψ(q). (1)

This constitutes an eigenvalue problem for E (there are many cases where the operator
defined by Equation (1) allows for a continuous spectrum of E-values, but this will not
directly influence the treatment of finite discretizations of such systems). In Equation (1), q
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denotes the configuration space coordinate for a system of one
or more particles in one or more spatial dimensions, and 1q

is a Laplace operator on this configuration space. V(q) is the
interaction potential, and E the eigenvalue parameter, interpreted
as an allowed energy for the quantum system.

Despite its appearance as a single-particle equation,
Equation (1) can also be used to model N-particle systems,
with q = (r1, . . . , rN) and 1q = (c111, . . . , cN1N). Here
each 1k is an ordinary flat space Laplace operator, and ck is a
numerical coefficient inversely proportional to the mass mk of
particle k; this mass may differ from particle to particle. By a
suitable scaling of each coordinate rk, one can mathematically
transform all ck to (for instance) unity. But such transformations
may obscure physical interpretations of the coordinates, and
make mathematical formulations more error-prone.

How to solve eigenvalue problems like (1)? Fortunately
for the rapid initial development of quantum mechanics, for
many important physical cases [like the hydrogen atom [2, 3]
and harmonic oscillators [4]] it could be reduced to a set of
one-dimensional eigenvalue problems, through the separation
of variables method. Moreover, the resulting one-dimensional
problems could all be solved exactly by analytic methods. The
origins for such fortunate states of affairs can invariably be
traced to an enhanced set of symmetries. However, not every
system of physical interest enjoy a high degree of symmetry. Even
most one-dimensional problems of the form (1) have no known
analytic solution. A popular and much investigated system is the
anharmonic oscillator,

[

−
d2

dx2
+ µx2 + εx4

]

ψ(x) = Eψ(x). (2)

This model has often functioned as a theoretical laboratory [5,
6], for instance to investigate the behavior and properties of
perturbative [7, 8] and other [9–12] expansions, and alternative
solution methods [13–15].

It this article we describe some attempts to simplify numerical
solutions of eigenvalue problems like (1). Our approach
relies on standard numerical algorithms, already coded and
freely available through Python packages like numpy [16]
and scipy [17, 18]. The main aim is to automatize the
transformation of (1) to function calls accepted by the numerical
eigenvalue solvers. Within the above class of models, the problem
is completely defined by the coefficient vector (c1, c2, . . . , cN) and
the real function V(q). In principle, this should be the only user
input required for a numerical solution.

In practice some additional decisions must be made, like how
a possibly infinite configuration space should be reduced to a
region of finite extent, how the boundaries of this region should
be treated, and how this region should be further approximated
by a finite lattice. Other options involve selection of numerical
approaches, like whether dense or iterative sparse matrix solvers
should be used. Such decisions have consequences for many
“trivial” details of the numerical programs, but they can be
provided in the form of parameters and selectors, automatically
implemented without further tedious and error-prone human
intervention. Even many of the decisions indicated above may

ultimately by delegated to artificial intelligence systems, but this
is beyond our current scope.

2. AVAILABLE PYTHON PROCEDURES
FOR NUMERICAL SOLUTION

Numerical approaches to problems like those above are in
principle straightforward: The operator

H = T+ V

defined by Equation (1) is approximated by a finite real
symmetric matrix

MH = MT +MV

where we have introduced the symbol T = −1q. For densely
defined matrices MH there are several standard numerical
eigenvalue solvers available, like eig and eigvals in the
scipy.linalg package. A 104 × 104 matrix of double
precision numbers requires 800 Mb of storage space; this is
indicative of the problem magnitudes that can be handled
by dense matrix methods on (for instance) modern laptops.
That is, such computers have more than enough memory for
numerical treatment of one-dimensional problems, and usually
also sufficient memory for two-dimensional ones.

For higher-dimensional problems one may utilize the sparse
nature ofMH to find solutions through iterative procedures, like
the eigsh eigenvalue solver in the scipy.sparse.linalg
package. This solver does not require any explicit matrix
construction of MH, only a LinearOperator function that
returns the vector MHψ for any input vector ψ . In the
representations we consider, MV is always diagonal, and MT can
be made diagonal by a Fast Fourier Transform (FFT), or some
of its discrete trigonometric variants. This opens the possibility
it to handle non-sparse matrix problems, where T is replaced
by more general expressions of F(T), by the same procedures.
For instance functions F that involves fractional and/or inverse
powers of its arguments.

3. REQUIRED PARAMETERS AND
SELECTORS

In this section we describe the additional quantities that a user
must input for a full specification of the numerical problem.
They assume that configuration space has been modeled
by a rectangular point lattice, with a selection of possible
boundary conditions.

3.1. Lattice Shape
The most basic quantity of the numerical model is the discrete
lattice approximating the relevant region of configuration space.
For rectangular approximations this is defined by the shape
parameter, a Python tuple,

shape =
(

s0, s1, . . . , sd−1

)

, (3)
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where each sk is a positive integer specifying the number of lattice
points in the k’th direction, and d is the (effective) dimension
of configuration space. For models with continuous symmetries
(for instance rotational ones) the effective dimension may be
chosen smaller than the physical one, by separation of variables.
Likewise, discrete symmetries may can used to reduce the size of
configuration space that this lattice must approximate.

In Python programs, quantities like the wave function ψ and
the potential V are defined as floating point NumPy arrays of
shape shape.

3.2. Edge Lengths and Offsets
The geometric extent of the selected region is specified by its
edge lengths xe. This is a NumPy array of positive floating
point numbers,

xe =
[

e0, e1, . . . , ed−1

]

. (4)

A secondary quantity, derived from xe and shape is the
elementary lattice cell,

dx = xe/shape =
[

e0/s0, e1/s1, . . . , ed−1/sd−1

]

. (5)

The absolute positioning of the region, with respect to some
fixed coordinate system, is specified by a NumPy array of floating
point numbers,

xo =
[

x0, x1, . . . , xd−1

]

. (6)

This is defined as the position of the “lower left” corner of the
selected region. The placement of the lattice points within the
region still needs to be specified, as will be discussed below.

3.3. Boundary Conditions
The restriction to finite regions of space requires imposition
of boundary conditions. For regions of rectangular shape
(generalized to arbitrary dimensions), as considered here, the
perhaps simplest choice is periodic boundary conditions in each
directions. This may be viewed as a topological property of
configuration space itself. Other boundary conditions are really
properties of functions defined on this space, as specifications of
how the functions should be extended beyond the boundary. Two
natural choices are symmetric and anti-symmetric extensions.
With a lattice approximation a further distinction can be made,
related to how the lattice points are positioned relative to
the boundary.

In this connection, it is natural to consider the cases handled
by the trigonometric cousins of the fast Fourier transform (FFT).
In the one-dimensional case the extension may be symmetric
or anti-symmetric with respect to a boundary, which is situated
either (i) at a lattice point, or (ii) midway between two lattice
points. Thus, at each boundary there is 2 × 2 matrix of
possibilities, as indicated by Table 1.

With two boundaries there are altogether 4 × 4 = 16
possibilities. However, the routines in scipy.fftpack (dct
and dst of types I–IV) only implement cases where both options
come from the same row of Table 1. With the periodic extension

TABLE 1 | Individual boundary conditions covered by standard discrete

trigonometric transforms (DCT and DST).

Function extension Symmetric Anti-symmetric

Boundary at lattice point “S” “A”

Boundary midway between points “s” “a”

P in addition, one ends up with a set of nine possibilities in
each direction:

B =
{

′PP′, ′SS′, ′SA′, ′AS′, ′AA′, ′ss′, ′sa′, ′as′, ′aa′
}

.
(7)

Hence, the numerical model must be further specified by a
Python tuple of two-character strings, defining the selected
boundary condition in all directions,

bc =
(

b0, b1, . . . , bd−1

)

(8)

with each bk ∈ B (or in an enlarged set of possibilities).

3.4. Lattice Positions. Dual Lattice Squared
Positions
When bc is given, one may automatically calculate the positions
of all lattice points

xlat =
(

X0,X1, . . . ,Xd−1

)

, (9)

provided shape, xe, and xo are also known. In Equation (9),
the property xlat is a tuple of one-dimensional arrays. For
illustration, consider the case of a 3-dimensional lattice of shape
(sx, sy, sz). Then xlat is a Python tuple (X,Y,Z), where X is a
numpy array of shape (sx, 1, 1), Y is a numpy array of shape
(1, sy, 1), and Z is a numpy array of shape (1, 1, sz). These are all
one-dimensional arrays, but their shape information implies that
(for instance) the Python expressionX∗Y automatically evaluates
to a numpy array of shape (sx, sy, 1).

A Python function V(x, y, z), defined by an expression that
can involve “standard” functions, may then be evaluated on the
complete lattice by the short and simple expression V(∗xlat).
When V depends on all its arguments, the result will be a numpy
array of shape (sx, sy, sz).

In general, when Fourier transforming a periodic function
f (x), where x takes values on some discrete lattice, the result

becomes another periodic function f̃ (k), where k takes values
on another discrete lattice (the dual lattice/reciprocal space).
Modulo an overall scaling, a set of k-values (labeling the
points of some complete, minimal subdomain to be extended
by periodicity) can be defined such that f (x + a) transforms

to e−ik·a f̃ (k). A natural choice for that minimal domain is,
in physicists language, the first Brillouin zone (this choice
may still leave a somewhat arbitrary selection of boundary
points to be included). On this subdomain of the dual lattice,
derivatives can be defined as the multiplication operators −ik.
But these operators must still be extended to the full dual
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lattice by periodicity. The common stensil expressions for lattice
derivatives correspond to the lowest Fourier components of the
(periodically extended) multiplication operator−ik.

For the other (discrete trigonometric) transformations a
complication arises, because a derivation also induces a
transposition of the boundary conditions in B. However, two
derivations in the same direction leave the boundary conditions
unchanged, and hence can be represented as a multiplication
operator q on the transformed functions. Let ∂k be shorthand
notation for ∂/∂xk. The previous conclusion implies that all
operators of the form F(∂20 , ∂

2
1 , . . . , ∂

2
d−1

) can be evaluated
through multiplications and fast discrete transforms,

F(∂20 , ∂
2
1 , . . . , ∂

2
d−1) = T

−1 F(q0, q1, . . . , qd−1) T . (10)

We have implemented code that performs T and T −1 through
a sequence of discrete trigonometric or fast Fourier transforms,
dependent on bc and the other parameters. Analogous to
the arrays xlat of lattice positions (Equation 9), one may
automatically calculate similar arrays of squared positions for
reciprocal lattice,

qlat = (Q0,Q1, . . . ,Qd−1). (11)

3.5. Lattice Laplacian. Stensil
Representations
Instead of relying on FFT type transforms, one may directly
construct discrete approximations (stencils) of the Laplace
operator, and similar differential operators. The simplest
implementation of a lattice Laplacian in one dimension is
obtained by use of the formula

d2ψ

dx2
(xn) ≈

ψ(xn + δx)− 2ψ(xn)− ψ(xn − δx)

δx2
, (12)

where δx is the distance between nearest-neighbor lattice points.
The formal discretizations error of this approximation is of order
δx2. By summing such expression in d orthogonal directions one
finds the (2d + 1)-stensil expression for the lattice Laplacian.

A more accurate approximation is the (4d + 1)-stencil,

1ϕ(xn) ≈

d−1
∑

k=0

−ϕ(xn + 2δk)+ 16ϕ(xn + δk)− 30ϕ(xn)+ 16ϕ(xn − δk)− ϕ(xn − 2δk)

12|δk|2
. (13)

Here δk denotes a vector of length |δk| pointing in positive
k-direction.

An arbitrary (short-range) position independent operator O
can in general be represented by a stensil sO(b) such that

(Oψ) (xn) =
∑

b

sO(b)ψ(xn−b). (14)

When n− b falls outside the lattice, the value of ψ(xn−b) must is
interpreted according to the boundary conditions bc. This can
again be automatized. We have implemented an algorithm for
this, currently only for 5 of the 9 cases in B in each direction,
but for an arbitrary number of directions.

The various ways to approximate the Laplace operator, or
more generally the kinetic energy operator, is made available
through the selector ke, whose value is currently limited to the
set of options { ′2dplus1′, ′4dplus1′, ′fftk2′}. The last of
these options is discussed in section 5.

4. SIMPLE APPLICATIONS

In this section we will demonstrate some applications of our
automatic code. The main requirement is that in each case
only a set of parameters and selectors should be provided, with
no coding required by the application itself. This should be
sufficient to generate eigenvalues En as requested, and optionally
also the associated eigenfunctions (an issue which we have not
yet tested).

4.1. Example: One-Dimensional Harmonic
Oscillator
Consider the eigenvalue problem of the one-dimensional
harmonic oscillator,

− ψ ′′
n (x)+ x2 ψn(x) = En ψn(x). (15)

The eigenvalues are En = 2n+ 1 for n = 0, 1, . . ., and the extent
of the wavefunctionψn(x) can be estimated from the requirement
that a classical particle of energy En is restricted to x2 ≤ En. A
quantum particle requires a little more space than the classically
restricted one.

For a numerical analysis we provide the parameters

shape = (128, ), bc = ( ′a′, ′a′), xe = (25, ), xo = (−12.5),

V = lambda x : x ∗ ∗2,

selects the 3-stensil approximation for T (default choice), and the
dense matrix solver eigvalsh (default choice). This instantly
returns 128 eigenvalues as plotted in Figure 1. We may easily
change shape to (1024), for a much better result. The potential
for additional explorations, without any coding whatsoever,
should be obvious.

For a better quantitative assessment of the accuracy obtained

we plot some energy differences, E
(exact)
n − En, in Figure 2.

This brute force method leads to a dramatic increase in
memory requirement with increasing lattice size. For a lattice
with N = 2m sites, the matrix requires storage of 4m double
precision (8 byte) numbers. For m = 13 this corresponds to
about 1

2 Gb of memory, for m = 14 about 2 Gb. The situation
becomes even worse in higher dimensions.

Assuming that we are only interested some of the lowest
eigenvalues, an alternative approach is to calculate these by the
iterative routine eigsh from scipy.sparse.linalg. This
allows extension to larger lattices, as shown in Figure 3.

With a sparse eigenvalue solver the calculation becomes
limited by available computation time, which in many cases is a
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FIGURE 1 | The 128 lowest eigenvalues of Equation (15), computed with the

standard 3-stensil approximation for the Laplace operator (here the kinetic

energy T ). The parameters are chosen to illustrate two typical effects: With the

bc=(a, a) boundary conditions the harmonic oscillator potential is effectively

changed to V = ∞ for x ≥ 12.5, thereby modifying the behavior of extended

(highly exited) states. The effect of this is to increase the eigenenergies of such

states, to a behavior more similar to a particle-in-box. This is visible for n & 80.

The effect of using the 3-stensil approximation for T is to change the spectrum

of this operator from k2 to (the slower rising) (2/δx)2 sin2 (kδx/2). This is visible

in the sub-linear rise of the spectrum for N = 27.

FIGURE 2 | The discretizations error of energy eigenvalues when using the

standard 3-stensil approximation for the one-dimensional Laplace operator

(here the kinetic energy T ). There is no improvement in E90 beyond a certain

lattice size N, because the corresponding oscillator state is too large for the

geometric region. Hence, for improved accuracy of higher eigenvalues one

should instead increase the xe, while maintaining xo = −xe/2. For the other

states the improvement is consistent with the expectation of an error

proportional to δx2. This predicts an accuracy improvement of magnitude

212 = 4, 096 when the number of lattice sites increases from N = 27 to

N = 213 for a fixed geometry. The eigenvalues are computed by the dense

matrix routine eigvalsh from scipy.linalg.

much weaker constraint: With proper planning and organization
of calculations, the relevant timescale is the time to analyze
and publish results (i.e., weeks or months). The computation
time is nevertheless of interest (it shouldn’t be years). We have
measured the wall clock time used to perform the computations
for Figures 2, 3, performed on a 2012 Mac Mini with 16 Gb
of memory, and equipped with a parallelized scipy library.

FIGURE 3 | The discretizations error computed by the routine eigsh from

scipy.sparse.linalg. For a fixed lattice size the discretizations error is

essentially the same as with dense matrix routines. However, with a memory

requirement proportional to the lattice size (instead of its square) it becomes

possible to go to much larger lattices. This figure also demonstrates (E70) that

the error can be limited by boundary effects instead of the finite discretization

length δx.

FIGURE 4 | The wall clock time used to find the lowest 128 eigenvalues, for

various systems and methods. We have also used the dense matrix routine

eigvalsh to compute the eigenvalues of a 27 × 27 (N = 214)

two-dimensional lattice; not unexpected it takes the same time as for a 214

one-dimensional lattice. Somewhat surprisingly, with eigsh it is much faster

to find the eigenvalues for two-dimensional lattice than for a one-dimensional

with the same number of sites, and somewhat faster to find the eigenvalues

for a three-dimensional lattice than for the two-dimensional with the same

number of sites.

Hence, the eigvalsh and eigsh routines are running with
four threads. The results are plotted in Figure 4.

Here we have used the eigsh routine in the most
straightforward manner, using default settings for most
parameters. This means, in particular, that the initial vector for
the iteration (and the subsequent set of trial vectors) may not
be chosen in a optimal manner for our category of problems.
It is interesting to observe that eigsh works better for higher-
dimensional problems. The (brief) scipy documentation [17]
says that the underlying routines works best when computing
eigenvalues of largest magnitude, which are of no physical
interest for our type of problems. It is our experience that the
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FIGURE 5 | One may think that it takes longer to compute more eigenvalues.

This is not always the case when the number of eigenvalues is small, as

demonstrated by this figure. The default choice of eigsh is to compute k = 6

eigenvalues. For our two- and three-dimensional problems this looks close to

the optimal value, but it is too low for the one-dimensional problem.

suggested strategy, of using the shift-invert mode instead, does
not work right out-of-the-box for problems of interesting size
(i.e., where dense solvers cannot be used). We were somewhat
surprised to observe that the computation time may decrease if
the number of computed eigenvalues increases (cf. Figure 5).

4.2. Example: 2- and 3-Dimensional
Harmonic Oscillators
The d-dimensional harmonic oscillator

[

−1+ r2
]

ψn(r) = En ψn(r), (16)

has eigenvalues En = (d + 2n), for n = 0, 1, . . .. The degeneracy
of the energy level En is gn = (n + 1) in two dimensions, and
gn = 1

2 (n + 1)(n + 2) in three dimensions1. This degeneracy
may be significantly broken by the numerical approximation.
For a numerical solution we only have to change the previous
parameters slightly:

shape = (128, ) ∗ dim, bc = (( ′a′, ′a′), ) ∗ dim,

xe = (25, ) ∗ dim, xo = (−12.5, ) ∗ dim, (17a)

V = lambda x, y : x ∗ ∗2+ y ∗ ∗2 (dim = 2), (17b)

V = lambda x, y, z : x ∗ ∗2+ y ∗ ∗2+ z ∗ ∗2 (dim = 3),
(17c)

for dim = 2, 3.
As already discussed, the routine eigsh works somewhat

faster in higher dimensions than in one dimension (for the
same total number N of lattice points). The corresponding
discretizations errors are shown in Figures 6, 7.

The discretizations error continues to scale like δx2. This
means that a reduction of this error by a factor 22 = 4
requires an increase in the number of lattice points by a factor
2d in d dimensions. This means that is becomes more urgent

1The general formula is gn =
(d−1+n

d−1

)

.

FIGURE 6 | The discretization error of energy eigenvalues when using the

standard 5-stensil approximation for the two-dimensional Laplace operator.

Exactly, the states E78 and E90 are the two edges of a 13-member multiplet

with energy 26, and the state E12 is the middle member of a 5-member

multiplet with energy 10. With the chosen parameters all states considered a

well confined inside the geometric region; hence we do not observe any

boundary correction effects.

FIGURE 7 | The discretization error of energy eigenvalues when using the

standard 7-stensil approximation for the three-dimensional Laplace operator.

Exactly, the states E56 and E83 are the two edges of a 28-member multiplet

with energy 15, and the state E15 is the middle member of a 10-member

multiplet with energy 9.

to use a better representation of the Laplace operator in higher
dimensions. Fortunately, as we shall see in the next sections,
better representations are available for our type of problems.

5. FFT CALCULATION OF THE LAPLACE
OPERATOR

One improvement is to use the reflection symmetry of each axis
(x → −x, y → −y, etc.) to reduce the size of the spatial
domain. This reduces δx by a half, without changing the number
of lattice points.

A much more dramatic improvement is to use some
variant of a Fast Fourier Transform (FFT): After a Fourier
transformation, ψ(r) → ψ̃(k), the Laplace operator turns into
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FIGURE 8 | With a FFT representation of the Laplace operator the

discretization error drops exceptionally fast with δx ∝ N−1. When it becomes

“small enough” the effect of numerical roundoff becomes visible; the latter

leads to an increase in error with δx. The results in this figure is for a

one-dimensional lattice, but the behavior is the same in all dimensions. The

lesson is that we should make δx “small enough” (which in general may be

difficult to determine a priori), but not smaller. It may also be possible to rewrite

the eigenvalue problem to a form with less amplification of roundoff errors.

FIGURE 9 | Accuracy of computed eigenvalues for a 1D oscillator, using the

FFT approximation for kinetic energy T. This figure may suggest that an

increase in the number of lattice size N will lead to a accurate treatment of

states with higher n. Our findings are that this is not the case: The results for

N = 27 and N = 28 have essentially the same behavior as for N = 26.

multiplication operator,

(−1ψ) (r) → k2 ψ̃(k).

This means that application of the Laplace operator can
be represented by (i) a Fourier transform, followed by (ii)
multiplication by k2, and finally (iii) an inverse Fourier
transform. Essentially the same procedure works for the related
trigonometric transforms.

For rectangular lattices, these options can also be
implemented as practical procedures, due to the existence
of efficient and accurate2 algorithms for discrete Fourier

2The error of a back-and-forth FFT is a few times the numerical accuracy, i.e., in

the range 10−14 to 10−15. with double precision numbers. However, when an

error of this order is multiplied by k2 it can be amplified by several orders of

FIGURE 10 | Accuracy of computed eigenvalues for a 2D oscillator, using the

FFT approximation for kinetic energy T. As can be seen, a large number of the

lowest eigenvalues can be computed to an absolute accuracy in the range

10−14–10−12 with a lattice of size 26 × 26. We observe not improvement by

going to 27 × 27 lattice, but no harm either (except for an increase in the wall

clock execution time from about 3 to 30 s for each combination of boundary

conditions).

FIGURE 11 | Accuracy of computed eigenvalues for a 3D oscillator, using the

FFT approximation for kinetic energy T. As can be seen, a large number of the

lowest eigenvalues can be computed to an absolute accuracy in the range

10−14 to 10−12 with lattice of size 26 × 26 × 26. We observe no improvement

by going to 27 × 27 × 27 lattice, but no harm either (except for an increase in

the wall clock execution time from about 6 to 95 min for each combination of

boundary conditions).

and trigonometric transforms. The time to perform the above
procedure is not very much longer than the corresponding stensil
operations. The benefit is that the Laplace operator becomes
exact on the space of functions which can be represented by the
modes included in the discrete transform.

We have coded this FFT-type representation of the Laplace
operator for the various types of boundary conditions listed in
Table 1. This possibility can be chosen as an option for the kinetic
energy selector, ke. The obtainable accuracy through this option
increases dramatically, as illustrated in Figures 8–11. As shown
in Figure 8, a decrease of the lattice length δx does not necessarily

magnitude. Hence, the range of k2-values should not be chosen significantly larger

than required to represent ψ(r) to sufficient accuracy.
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TABLE 2 | The 10 lowest eigenvalues of the quantum anharmonic oscillator,

calculated to high precision by the method described in [14], from the Schrödinger

equation
(

− d2

dξ2
+ ξ4

)

ψn(ξ ) = εnψn(ξ ).

n εn

1 1.060 362 090 484182 899 647046 016 693

2 3.799 673 029 801394 168 783094 188 513

3 7.455 697 937 986738 392 156591 347 186

4 11.644 745511 378 162020 850 373281 371

5 16.261 826018 850 225937 894 954430 385

6 21.238 372918 235 940024 149 711113 589

7 26.528 471183 682 518191 813 828183 681

8 32.098 597710 968 326634 272 106438 332

9 37.923 001027 033 985146 516 378551 910

10 43.981 158097 289 730785 318 113752 827

The eigenfunctions obey the (anti-)symmetry property, ψn (ξ ) = (−1)n−1 ψn (−ξ ).

lead to a more accurate result. We attribute this to an enhanced
amplification of roundoff errors.

It might be that the harmonic oscillator systems are
particularly favorable for application of the FFT representation.
One important feature is that the Fourier components of the
harmonic oscillator wave functions vanishes exponentially fast,

like e−k2/2, with increasing wave-numbers k2. This feature
is shared with all eigenfunctions of polynomial potential
Schrödinger equations, but usually with different powers of k in
the exponent, which quantitatively leads to a somewhat different
behavior. Furthermore, the onset of exponential decay will occur
for larger values of k2 for the more excited states (i.e., with larger
eigenvalue numbers).

For systems with singular wavefunctions the corresponding
Fourier components may vanish only algebraically with k2. An
equally dramatic increase in accuracy cannot be expected for
such cases.

6. ANHARMONIC OSCILLATORS

Our general setup allows for any computable potential, by simply
changing the definition of the function assigned to V (This
does not mean that every potential will lead to a successful
calculation of eigenvalues). For demonstration and comparison
purposes, like here, one encounters the problem that the exact
answers are no longer known. This makes it more difficult
to assess the accuracy and other qualities of the code. As an
example where some instructive comparisons are possible, we
consider the two-dimensional anharmonic oscillator obeying the
Schrödinger equation,

1

2

(

−
d2

dx2
−

d2

dy2
+ x4 + 6 x2y2 + y4

)

9E(x, y) = E9(x, y).

(18)
By construction, this problem has separable solutions of the form

9E(x, y) = ψm(ξ )ψn(η), with ξ = (x+y)/
√
2, η = (x−y)/

√
2,

(19)

TABLE 3 | The 22 lowest eigenvalues E of the two-dimensional quantum

anharmonic oscillator, as defined by the Schrödinger equation
1
2

(

− d2

dx2
− d2

dy2
+ x4 + 6 x2y2 + y4

)

9E (x, y) = E9E (x, y), displayed to 30 decimals

accuracy.

(Px,Py) Comp E

(S,S) ε1 + ε1 2.120 724 180 968365 799 294092 033385

(S,A) ε1 + ε2 4.860 035 120 285577 068 430140 205205

(A,S) ε1 + ε2 4.860 035 120 285577 068 430140 205205

(S,S) ε2 + ε2 7.599 346 059 602788 337 566188 377025

(S,S) ε1 + ε3 8.516 060 028 470921 291 803637 363878

(A,A) ε1 + ε3 8.516 060 028 470921 291 803637 363878

(S,A) ε2 + ε3 11.255 370967 788 132560 939 685535 698

(A,S) ε2 + ε3 11.255 370967 788 132560 939 685535 698

(S,A) ε1 + ε4 12.705 107601 862 344920 497 419298 064

(A,S) ε1 + ε4 12.705 107601 862 344920 497 419298 064

(S,S) ε3 + ε3 14.911 395875 973 476784 313 182694 372

(S,S) ε2 + ε4 15.444 418541 179 556189 633 467469 884

(A,A) ε2 + ε4 15.444 418541 179 556189 633 467469 884

(S,S) ε1 + ε5 17.322 188109 334 408837 542 000447 077

(A,A) ε1 + ε5 17.322 188109 334 408837 542 000447 077

(S,A) ε3 + ε4 19.100 443449 364 900413 006 964628 557

(A,S) ε3 + ε4 19.100 443449 364 900413 006 964628 557

(S,A) ε2 + ε5 20.061 499048 651 620106 678 048618 897

(A,S) ε2 + ε5 20.061 499048 651 620106 678 048618 897

(S,A) ε1 + ε6 22.298 735008 720 122923 796 757130 281

(A,S) ε1 + ε6 22.298 735008 720 122923 796 757130 281

(S,S) ε4 + ε4 23.289 491022 756 324041 700 746562 742

This equation is separable in terms of two identical one-dimensional problems, with

eigenvalues εm as listed in Table 2. Hence each eigenvalues E is composed of two

eigenvalues εm, εn as indicated in the second column. The reflection parities (Px ,Py ) listed

in the first column indicate how the wavefunctions 9E (x, y) can be chosen symmetric (S)

or anti-symmetric (A) under the reflections x → −x or y → −y.

where the factors ψ obey a one-dimensional equation,

(

−
d2

dξ 2
+ ξ 4

)

ψm(ξ ) = εm ψm(ξ ), (20)

and E = εm + εn. As mentioned in the introduction, equations
like the latter have been quite intensely studied in the literature.
Accurate values for the even parity eigenvalues of Equation (20)
can for instance be found in Table 1 of [9]. In Table 2, we list
the 10 lowest eigenvalues to 30 decimals precision, calculated
by the very-high-precision method described in [14]. Hence, for
practical purposes all εm of interest can be considered exactly
known. This means that the eigenvalues E of Equation (18) can
also be considered exactly known. We list the 22 lowest ones of
them in Table 3. These are the values we want to compare against
the standard solution methods. The latter make no use of the
separability property of the problem, which anyway is destroyed
by the lattice approximation.

The first column of Table 3 associates a symmetry
classification (Px, Py) to each eigenvalue E, or rather to its
corresponding eigenfunction 9E(x, y). Since Equation (18) are
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TABLE 4 | Numerical calculations of the lowest eigenvalues of the two-dimensional quantum anharmonic oscillator, by various approximations and lattice sizes.

(Px,Py) Stensil (210 × 210) “FFT” (24 × 24) “FFT” (25 × 25) “FFT” (27 × 27)

(S,S) 2.120 574 864 327 2.121 724 631 908 2.120 724 180 968 2.120 724 180 969

(S,A) 4.859 463304 350 4.863 978 042 739 4.860 035 120 276 4.860 035 120 286

(A,S) 4.859 463304 350 4.863 978 042 731 4.860 035 120 269 4.860 035 120 289

(S,S) 7.597 839625 245 7.580 886 360 302 7.599 346 064 273 7.599 346 059 599

(S,S) 8.514 505169 411 8.443 877 132 728 8.516 060 033 426 8.516 060 028 467

(A,A) 8.514 700940 122 8.466 735 662 572 8.516 060 024 420 8.516 060 028 467

(S,A) 11.252 295 795135 11.091 953 034554 11.255 371027 420 11.255 370967 792

(A,S) 11.252 295 795137 11.091 953 034552 11.255 371027 446 11.255 370967 784

(S,A) 12.702 160 201238 12.713 861 518776 12.705 107605 729 12.705 107601 868

(A,S) 12.702 160 201248 12.713 861 518777 12.705 107605 757 12.705 107601 861

(S,S) 14.905 839 565650 16.827 495 880048 14.911 396413 962 14.911 395875 970

(S,S) 15.438 616 444914 17.044 711 067731 15.444 418909 471 15.444 418541 178

(A,A) 15.439 522 886891 14.126 665 759659 15.444 418 063 518 15.444 418541 175

(S,S) 17.316 965 583271 18.162 997 853055 17.322 188195 788 17.322 188109 337

(A,A) 17.317 047 769535 16.740 653 634905 17.322 187929 414 17.322 188109 328

(S,A) 19.091 567 414142 18.071 825 773508 19.100 442 397 522 19.100 443449 360

(A,S) 19.091 567 414151 18.071 825 773501 19.100 442 397 503 19.100 443449 361

(S,A) 20.053 053 266697 20.244 253 292135 20.061 496 254 183 20.061 499048 648

(A,S) 20.053 053 266716 20.244 253 292132 20.061 496 254 153 20.061 499048 648

(S,A) 22.290 449 617012 22.809 096 276441 22.298 734848 064 22.298 735008 720

(A,S) 22.290 449 617033 22.809 096 276438 22.298 734848 071 22.298 735008 718

(S,S) 23.276 097 201666 35.427 997 419504 23.289 486 014 610 23.289 491022 749

The accuracy obtained is indicated by an underscore of the first inaccurate position (when taking roundoffs into account). The first column list the symmetry types (reflection parities) of

the associated wavefunction.

invariant under reflections,

Px : x → −x or Py : y → −y,

all eigenfunctions can be constructed to transform symmetrically
(S) or anti-symmetrically (A) under such reflections. For m < n,
such a construction is

9(±)
mn (x, y) =

1
√
2

[

ψm(ξ )ψn(η)± ψn(ξ )ψm(η)
]

. (21a)

Form = n there is only one possibility,

9mm(x, y) = ψm(ξ )ψm(η). (21b)

By use of the properties that

ψm(−ξ ) = (−1)m−1ψ(ξ ), Px :(ξ , η) → −(η, ξ ), and

Py :(ξ , η) → (η, ξ ),

we find that

9(±)
mn (−x, y) = ±(−1)m+n9(±)

mn (x, y), and

9(±)
mn (x,−y) = ±9(±)

mn (x, y). (22)

and further that 9mm(−x, y) = 9mm(x,−y) = 9mm(x, y).
The conclusion is that in an exact calculation the states 9mn

will be double degenerate when m 6= n, with parities (Px, Py)
equal to (S, S) and (A,A) when m, n are both even or both
odd, otherwise with parities (S,A) and (A, S). The states 9mm

are singlets with parities (S, S). The first column of Table 3 is
constructed according to these rules.

Table 4 displays the results of some standard numerical
solutions to Equation (18), “automagically” generated in the
same way as the previous treatments of the harmonic (linear)
oscillators. In the second column we show the results of
using the minimal 5-point stensil approximation of the Laplace
operator on a 1, 024 × 1, 024 lattice (approximating the whole
space). The resulting numerical problem is solved with the
eigsh sparse solver. The numerical accuracy is indicated by
an underscore of the first inaccurate position, when taking
proper roundoffs into account: The exact and numerical results
are rounded off to the same number of digits, and compared;
the underscore indicates the first position where the results
differ.

As can be seen, the results are less than impressive,
taking into account the amount computational work invested.
One straightforward improvement is to utilize the reflection
symmetries of the problem to reduce the magnitude of the
problem (with the same lattice cell size δx2) by a factor 4,
or to reduce the lattice cell size δx2 (with the same problem
magnitude) by a factor 4. Another option is to use a higher order
stensil approximation like (13). However, as already discussed in
section 5, an even better option (for this class of problems) is to
use a FFT type of approximation of the Laplace operator. The
resulting eigenvalues are listed in columns 3–5, for various lattice
sizes approximating the upper right quadrant (x ≥ 0, y ≥ 0) of
space. For each lattice size the problem must be solved 4 times,
with symmetric (S) and anti-symmetric (A) boundary conditions
at the axes x = 0 and y = 0.
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By symmetry under interchange, x ↔ y, we expect the
(S,A) and (A, S) to give identical results (as long as the lattice
approximation respects this symmetry). As can be seen, the
numerical results satisfy the symmetry within a numerical
accuracy of few × 10−12, regardless how close the results
are to the exact values. The degeneracy of states with (S, S),
respectively, (A,A) symmetry cannot be deduced in the same
way from the lattice approximated problem. In the infinite space
formulation the problem is separable, which in turn implies
this degeneracy. However, the lattice approximation introduces
boundaries that are non-factorizable in the (ξ , η)-coordinates.
This means that the problem is no longer separable in the lattice
approximation. As a result the degeneracy of the (S, S) and (A,A)
energies are split by a much larger amount, of the same order as
the difference between exact and numerical results. (In this case,
the lattice problem could be made separable by a rotation of the
lattice orientation by 45 degrees.)

We observe that even a 24 × 24 lattice with in the “FFT
approximated” Laplace operator provide almost equally accurate
results as a 210 × 210 lattice with the 5-stensil approximation.
The results from a 25 × 25 lattice seems more than sufficient
for practical purposes (say compared to experimental obtainable
accuracy), with little to be gained by further decrease of the lattice
length δx.

The computation times for the “FFT approximation” are
about 0.06, 0.8, and 75 s for respectively 16 × 16, 32 × 32, and
128× 128 lattice sizes. For the same number of lattice points, the

5-stensil formulation may lead to somewhat shorter computation
times. But this is completely offset by the need to work with a
much larger number of lattice points: The computation time for
the 1, 024× 1, 024 stensil approximation was about 30 min.

The Python package described in this paper is available at [19].
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A Vector Series Solution for a Class of
Hyperbolic System of Caputo
Time-Fractional Partial Differential
Equations With Variable Coefficients
Ahmad El-Ajou1* and Zeyad Al-Zhour2*

1Department of Mathematics, Faculty of Science, Al-Balqa’ Applied University, Al-Salt, Jordan, 2Department of Basic Engineering
Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

In this paper, we introduce a series solution to a class of hyperbolic system of time-
fractional partial differential equations with variable coefficients. The fractional derivative
has been considered by the concept of Caputo. Two expansions of matrix functions are
proposed and used to create series solutions for the target problem. The first one is a
fractional Laurent series, and the second is a fractional power series. A new approach, via
the residual power series method and the Laplace transform, is also used to find the
coefficients of the series solution. In order to test our proposed method, we discuss four
interesting and important applications. Numerical results are given to authenticate the
efficiency and accuracy of our method and to test the validity of our obtained results.
Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative
arrangement on the behavior of the solution.

Keywords: hyperbolic systems, power series, analytical–numerical methods, fractional derivatives, Laplace
transform

1 INTRODUCTION

Many natural phenomena have been modeled through partial differential equations (PDEs),
especially in physics, engineering, chemistry, and biology, as well as in humanities [1, 2]. A wide
range of PDEs can be classified under the name of hyperbolic PDEs that have the following general
form [2–6]:

ut(x, t) � a(x, t)ux(x, t) + b(x, t)u(x, t) + f (x, t), x ∈ I, t > 0, (1)

subject to the following initial condition:

u(x, 0) � u0(x). (2)

The equations of compressible fluid flow and the Euler equations are examples of PDEs that can
be reduced to hyperbolic PDEs when the effects of viscosity and heat conduction are neglected [6]. In
addition, many mathematical models are appearing as hyperbolic systems of PDEs that have the
following general form:

Ut(x, t) � A(x, t)Ux(x, t) + B(x, t)U(x, t) + F(x, t), x ∈ I, t ≥ 0, (3)

subject to

U(x, 0) � U0(x), (4)
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where U(x, t), F(x, t) ∈ Mn×1, n ∈ N are vector functions of
two variables x and t,U0(x) ∈ Mn×1 is a vector function of x,
A(x, t), B(x, t) ∈ Mn×n are matrix functions of two variables x
and t, and A(x0, t0) is diagonalizable with real eigenvalues for
every (x0, t0) ∈ I × [0,∞). The system in Eqs 3, 4 is said to be
strictly hyperbolic if the eigenvalues of A(x0, t0) are all
distinct, whereas it is said to be elliptic at a point (x0, t0) if
none of the eigenvalues of A(x0, t0) are real for every
(x0, t0) ∈ I × [0,∞).

In recent decades, many mathematical models have been
reformulated using the concept of fractional calculus because
they are found to reflect the phenomenon that has been modeled
in a more precise and realistic way by replacing the ordinary
derivative with a fractional derivative (FD) of the model. The
concept of fractional calculus dates back to the 17th century [7, 8]
and has recently gained considerable interest because of its
extensive use in widespread fields, for instance, engineering,
biological, chemical, and applied physics such as in nonlinear
oscillation, waves, and diffusion as we mentioned [7–13]. In fact,
from that date until now, there are many definitions of the FD.
The most popular definition is the Caputo FD that is denoted and
defined as [7, 8]

Dα
t u(x, t) � { Jm−α

t zmt u(x, t), m − 1< α<m,
zmt u(x, t), α � m,

, t > t0 ≥ 0, (5)

where m ∈ N and Jαt is the Riemann–Liouville fractional integral
operator (R-LFIO) of order α> 0 with respect to t ≥ t0 ≥ 0, which
is defined by

Jαt u(x, t) �
1

Γ(α) ∫t

t0
(t − τ)α− 1u(x, τ)dτ, t > τ > t0 ≥ 0. (6)

For more details about the properties of the two previous
definitions, readers can refer to the references [7–12]. The most
useful properties that we need in this research are

Jαt (t − t0)μ � Γ(μ + 1)
Γ(μ + α + 1)(t − t0)μ+α, μ> − 1, t ≥ t0 ≥ 0, (7)

Jαt λ � λ

Γ(α + 1)(t − t0)α, λ is a constant, (8)

Dα
t (t − t0)μ �

⎧⎪⎪⎨⎪⎪⎩ Γ(μ + 1)
Γ(μ − α + 1)(t − t0)μ− α, μ ∉ {0, 1, 2, . . . ,m − 1}

0 μ ∈ {0, 1, 2, . . . ,m − 1}
,

(9)

Dα
t λ � 0, λ is a constant. (10)

As mentioned, the definition of Caputo is one of the most
important definitions of the FD, since it was and still is an
appropriate and effective tool in the modeling of many natural
phenomena in all sciences and fields. For example, but not limited
to, the definition of Caputo has recently been used to construct a
mathematical model to illustrate the impacts of deforestation on
wildlife species [13], in a fractional investigation of bank data
[14], to model the spread of hookworm infection [15], and newly
to model and analyze the dynamics of novel coronavirus
(COVID-19) [16].

It is difficult to find exact solutions (ESs) for the fractional
differential and integral equations; for this reason, analytical and
numerical methods are usually used to find approximate
solutions (ASs) for those equations. In recent decades, many
methods have been used to find analytical and numerical
solutions for fractional differential and integral equations such
as the variational iteration method [17], the Adomian
decomposition method [18], the homotopy perturbation
method [17], the homotopy analysis method, the fractional
transform method [19], Green’s function method [20], and
other methods [21, 22].

In the last five years, the residual power series method
(RPSM) has achieved an advanced rank among the methods
used to find ASs for many fractional differential and integral
equations. It has been used in determining ESs and ASs for
many equations such as homogeneous and non-homogeneous
time- and space-fractional telegraph equation [23], time-
fractional Boussinesq-type and space-fractional
Klein–Gordon–type equations [24], fractional multi-
pantograph system [25], space- and time-fractional linear
and nonlinear KdV–Burgers equation [26], multi-energy
groups of neutron diffusion equations [27], and other
equations. The RPSM is characterized by its ease and speed
in finding solutions for equations in the form of a power series.
In fact, the RPSM is a mechanism for finding the coefficients of
the fractional power series (FPS) without having to find a
recurrence relation that we normally obtain from equating
the corresponding coefficients in the series. The RPSM is a
good alternate proceeding for gaining analytic solutions for
fractional PDEs.

Despite all the features we mentioned about the RPSM, we will
present in this paper a major modification to the method. We use
the concept of limit at infinity instead of the concept of FD in
determining the coefficients of the power series solution (SS). As
is well known, finding an FD manually is not easy and sometimes
takes tens of minutes when it is calculated by software packages,
while calculating the limit is much easier than calculating the FD
manually and faster by compute. Indeed, the RPSM determines
the coefficients of the power SS of the differential or integral
equations, whereas the proposed technique determines the
coefficients of the expansion that represents the Laplace
transform (LT) of the solution. Therefore, we do not need FDs
during the transaction-finding process. To be able to implement
the newmethod, we need to provide two expansions of the matrix
functions, one to represent the solution of the equation and the
other to represent the LT of the solution. Moreover, the
convergence of the introduced expansions is studied. In fact,
the proposed method called the Laplace-RPSM (L-RPSM) was
first introduced by the authors in [28] and used for introducing
exact and approximate SSs to the linear and nonlinear neutral
FDEs. El-Ajou [29] then adapted the new method in creating
solitary solutions for the nonlinear time-fractional partial
differential equations (T-FPDEs).

Several articles are interested in providing ASs to T-FPDEs of
hyperbolic type, such as the Caputo time-fractional–order
hyperbolic telegraph equation [30], hyperbolic T-FPDEs
[31–35], the time-fractional diffusion equation [36], fractional
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advection–dispersion flow equations [37], and other hyperbolic
equations. However, a limited number of research studies
provided analytical and numerical solutions for hyperbolic
systems of T-FPDEs. Kochubei [38] presented a
numerical–analytical solution for homogeneous hyperbolic
fractional systems, and Hendy et al. [39] introduced a solution
for two-dimensional fractional systems that was provided by a
separate contrast scheme. Therefore, more research is needed in
providing analytical and numerical solutions for such systems
due to their importance in many applications as
mentioned above.

The present work aims to apply the L-RPSM to construct ASs
of a hyperbolic system of T-FPDEs with variable coefficients in
the sense of Caputo’s FD, which are given in the form of the
following model:

U(α)
t (x, t) � A(x, t)U(β)

x (x, t) + B(x, t)U(x, t)
+ F(x, t), 0< α, β≤ 1, x ∈ I, t ≥ 0, (11)

subject to

U(x, 0) � U0(x), (12)

where U(α)
t (x, t) � Dα

t U(x, t) refers to Caputo’s time-FD of
order α of the multivariable vector function U(x, t), U(β)

x (x, t) �
Dβ

xU(x, t) refers to Caputo’s space-FD of order ß of the
multivariable vector function U(x, t), and the definitions of all
terms and variables in Eqs 11, 12 are the same as those in Eqs 3, 4.

This paper is organized as follows: In Section 2, the analysis of
matrix FPS is prepared. In Section 3, the construction of FPS
solution to a hyperbolic system of T-FPDEs with variable
coefficients in the sense of Caputo’s FD is presented using the
L-RPSM. In Section 4, application models and graphical and
numerical simulations are performed in order to illustrate the
capability and the simplicity of the proposed method. Finally, the
conclusion is presented in Section 5.

2 PRELIMINARIES OF MATRIX FPS

Here, we present some definitions and theories regarding matrix
analysis and the matrix FPS, which are playing a central role in
constructing the L-RPSM solution to a hyperbolic system of
T-FPDEs with variable coefficients.

Definition 2.1. The R-LFIO of order α> 0 of a matrix function
U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤ j≤ k, is defined as

Jαt U(x, t) � [Jαt uij(x, t)]r×k, x ∈ I, t ≥ t0. (13)

Definition 2.2. Caputo’s time-FD operator of order α> 0 of a
matrix function U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤ j≤ k, is

Dα
t U(x, t) � [Dα

t uij(x, t)]r×k, x ∈ I, t ≥ t0. (14)

Lemma 2.1. If m − 1< α≤m and m ∈ N, then

1. Dα
t J

α
t U(x, t) � U(x, t),

2. Jαt D
α
t U(x, t) � U(x, t) −∑m−1

j�0
zjU(x, 0+)

ztj
(t−t0)j

j! , t > t0.

Definition 2.3 Let Ak ∈ Mm×n. We say that a sequence {Ak}
converges to a matrix A ∈ Mm×n with respect to a matrix norm
‖ • ‖ on Mm×n if and only if limk→∞‖Ak − A‖ � 0. If {Ak}
converges to A, we write limk→∞Ak � A .

Definition 2.4 For 0< α≤ 1, x ∈ I, and t ≥ t0, a matrix power
series of the following form:

∑∞
m�0

Hm(x)(t − t0)mα � H0(x) +H1(x)(t − t0)α +H2(x)(t − t0)2α

+ . . . , x ∈ I t ≥ t0,
(15)

is called a bivariate matrix FPS around t0, where t is an
independent variable and Hm(x) ∈ Mr×k are matrix functions
of the independent variable x called series coefficients.

Theorem 2.1. Assume that U(x, t) � [uij(x, t)] ∈
Mr×k, 1≤ i≤ r, 1≤ j≤ k, such that uij(x, t) ∈ C (I × [t0, t0 + T))
and Dmα

t uij(x, t) ∈ C(I × (t0, t0 + T)) for 1≤ i≤ r, 1≤ j≤ k,
w � 0, 1, 2, . . . , n + 1, where Dmα

t � Dα
t .D

α
t . . . Dα

t (m-times)
and α> 0. Then,

J(n+1)αt D(n+1)α
t U(x, t) � D(n+1)α

t U(x, ξ)
Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ ξ ≤ t < t0 + T. (16)

Proof. Of the operator definition in Eqs 6, 13 we have

J(n+1)αt D(n+1)α
t U(x, t) � 1

Γ((n + 1)α) ∫t

t0
(t − y)(n+1)α− 1D(n+1)α

y

U(x, y)dy
� D(n+1)α

t U(x, ξ)
Γ((n + 1)α) ∫t

t0
(t − y)(n+1)α− 1dy(based on the second mean value theorem for integral [4])

� D(n+1)α
t U(x, ξ)

Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ ξ ≤ t < t0 + T .

Theorem 2.2. Assume that U(x, t) � [uij(x, t)] ∈
Mr×k, 1≤ i≤ r, 1≤ j≤ k, such that uij(x, t) ∈ C(I × [t0, t0 + T))
and Dmα

t uij(x, t) ∈ C(I × (t0, t0 + T)) for 1≤ i≤ r, 1≤ j≤ k,
m � 0, 1, 2, . . . , n + 1, where α ∈ (0, 1]. Then,

U(x, t) � ∑n
m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα

+ D(n+1)α
t U(x, ξ)

Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ ξ ≤ t ≤ t0 + T .

(17)

Proof. From Theorem 2.1, it suffices to demonstrate that

J(n+1)αt D(n+1)α
t U(x, t) � U(x, t) − ∑n

m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα.

According to Lemma 2.1, it is easy to show that the formula is
correct for n � 0 and n � 1. Thus, inductively, we prove the
theorem as follows:
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J(n+2)αt D(n+2)α
t U(x,t)� Jαt ((J(n+1)αt D(n+1)α

t )Dα
t U(x,t))

�Jαt ⎛⎝Dα
t U(x,t)−∑n

m�0

D(m+1)α
t U(x,t0)
Γ(mα+1) (t−t0)mα⎞⎠ (by Lemma 2.1)

�Jαt Dα
t U(x,t)−∑n

m�0

D(m+1)α
t U(x,t0)

Γ((m+1)α+1) (t−t0)
(m+1)α (by Eq. (7))

�U(x,t)−U(x,t0)−∑n+1
m�1

Dmα
t U(x, t0)
Γ(mα+1) (t−t0)mα (by Lemma 2.1)

�U(x,t)−∑n+1
m�0

Dmα
t U(x, t0)
Γ(mα+1) (t−t0)mα.

Thus, the proof of Theorem 2.2 has been completed.
Let us call the series (Eq. 17) the bivariate fractional matrix Taylor’s

formula (BFMTF) of the matrix function U(x, t). As any series, the
tail of the series (Eq. 17), Rn(x, t) � D(n+1)α

t U(x, ξ)
Γ((n+1)α+1) (t − t0)(n+1)α, is

called the nth remainder for the Taylor series of U(x, t). The
function P(x, t) � U(x, t) −Rn(x, t) is an approximate function

for U(x, t), and the accuracy of the approximation increases as
Rn(x, t) decreases. Finding a bound for Rn(x, t) gives an
indication of the accuracy of the approximation
P(x, t) ≈ U(x, t). The following theorem provides such a bound.

Theorem 2.3. (The Remainder Estimation Theorem) Assume that
D(n+1)α

t U(x, t), α ∈ (0, 1] is defined on (I × (t0, t0 + d)). If∣∣∣∣∣∣∣∣∣∣D(n+1)α
t U(x, t)

∣∣∣∣∣∣∣∣∣∣≤M(x) on t0 ≤ t ≤ d and fixed x for some matrix
norm ‖ • ‖, then the remainderRn(x, t) of theBFMTFofU(x, t) satisfies

Rn(x, t)≤ M(x)
Γ((n + 1)α + 1)(t − t0)(n+1)α, t0 ≤ t ≤ d. (18)

Proof. The definition of the remainder of the BFMTF of
U(x, t) as in Eq. 17 is given by

Rn(x, t) � D(n+1)α
t U(x, t)

Γ((n + 1)α + 1)(t − t0)(n+1)α

� U(x, t) − ∑n
m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα.

(19)

According to Theorem 2.2, the remainder can be expressed as

FIGURE 1 | Surface graphs of the fifth AS of U1(x, t) and U2(x, t) in Eq. 81 and the ES of U1(x, t) and U2(x, t) in Eq. 72 for a fixed value of β � 0.5 and different
values of α: (A) α � 0.7, (B) α � 0.85, (C) α � 1, and (D) ES when α � 1.
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J(n+1)αt D(n+1)α
t U(x, t) � U(x, t) − ∑n

m�0

Dmα
t U(x, t0)

Γ(mα + 1) (t − t0)mα.

(20)So, for t0 ≤ τ ≤ t ≤ d, we have

‖Rn(x, t)‖ �
����J(n+1)αt D(n+1)α

t U(x, t)����
�
�������� 1
Γ((n + 1)α) ∫t

t0
(t − τ)(n+1)α− 1D(n+1)α

t U(x, τ)dτ
��������

≤
1

Γ((n + 1)α) ∫t

t0

∣∣∣∣(t − τ)(n+1)α− 1∣∣∣∣����D(n+1)α
t U(x, τ)dτ����

≤
1

Γ((n + 1)α) ∫t

t0

∣∣∣∣(t − τ)(n+1)α− 1∣∣∣∣M(x) dτ

� M(x)
Γ((n + 1)α) ∫t

t0
(t − τ)(n+1)α− 1dτ

� M(x)
Γ((n + 1)α + 1)(t − t0)(n+1)α.

Thus, the proof is completed.
Note that when n→∞, Taylor’s formula (17) is of the form

U(x, t) � ∑∞
m�0

U(mα)
t (x, t0)
Γ(mα + 1) (t − t0)mα, x ∈ I, t0 ≤ t < t0 + T , (21)

which can be applied throughout this work.
Finally, it is worth to mention that if α � 1, then the BFMTF

(Eq. 21) becomes

U(x, t) � ∑∞
m�0

zmU(x, t0)
m!ztm

(t − t0)m, t0 ≤ t < t0 + T , (22)

which is the bivariate classical matrix Taylor’s formula of a matrix
function.

Lemma 2.2. Let U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤ j≤ k,
such that uij(x, t) are of exponential orders (EOs) λij and piecewise
continuous functions (PCFs) on I × [t0,∞), respectively. Then,

1. L[Jαt U(x, t)] � sα−1L[U(x, t − t0)], α> 0.
2. L[Dα

t U(x, t)] � sαL[U(x, t − t0)]
−∑m−1

k�0 sα−k−1z
k
t U(x, t0), m − 1< α<m.

3. L[Dnα
t U(x, t)] � snαL[U(x, t − t0)]

−∑n−1
k�0s(n−k)α−1D

kα
t U(x, t0), 0< α< 1.

Corollary 2.1. Let U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤
j≤ k, such that uij(x, t) are PCFs on I × [t0,∞) and of EOs
λij, respectively. Assume that U(x, t) can be represented as a
BFMTF as in Eq. 21. Then, the inverse LT of U(x, t) has the
following fractional matrix expansion (FME):

U(x, s) � e−t0s∑∞
n�0

U(mα)
t (x, t0)
s1+nα

, 0< α≤ 1, x ∈ I, s> λ, (23)

where λ � minλij , 1≤ i≤ r, 1≤ j≤ k, which can be applied
directly throughout this work when t0 � 0.

Theorem 2.4. Let U(x, t) � [uij(x, t)] ∈ Mr×k, 1≤ i≤ r, 1≤
j≤ k, such that uij(x, t) are PCFs on I × [t0,∞) and of EOs
λij, respectively, and U(x, s) � L[U(x, t)] can be represented as
the FME in Eq. 23. For some matrix norm ‖ • ‖, if∣∣∣∣∣∣∣∣∣∣ se−t0s L[D(n+1)α

t U(x, t)
∣∣∣∣∣∣∣∣∣∣≤M(x), 0< α≤ 1, on I × (λ, c] and

at a fixed point x, then the norm of the remainder of the FME in
Eq. 23 satisfies

||Rn(x, s)||≤ M(x)
s1+(n+1)α

, x ∈ I, λ< s≤ c . (24)

Proof. As it is assumed in the text of the theorem, suppose
that ∣∣∣∣∣∣∣∣ se−t0s L[D(n+1)α

t ψ(x, t)]∣∣∣∣∣∣∣∣≤M(x), x ∈ I, λ< s≤ c. (25)

As in Eq. 19, the remainder of the FME in Eq. 23 is

Rn(x, s) � U(x, s) − e−t0s∑n
k�0

Dkα
t U(x, t0)
s1+kα

. (26)

Multiplying Eq. 26 by s1+(n+1)α, we get

s1+(n+1)αRn(x, s) � s1+(n+1)αU(x, s) − e−t0s∑n
k�0

s(n+1−k)αDkα
t U(x, t0)

� se−t0s⎛⎝s(n+1)αL[U(x, t − t0)] −∑n
k�0

s(n+1−k)α−1Dkα
t U(x, t0)⎞⎠

� se−t0sL[D(n+1)α
t U(x, t)].

(27)Thus, it follows that

Rn(x, s) � se−t0s

s1+(n+1)α
L[D(n+1)α

t U(x, t)]. (28)

Finally, for 0≤ λ< s≤ c and fixed x, we have

TABLE 1 | Values of ||RES6(x, t)|| for different values of α.

(x, t) α � 0.6 α � 0.8 α � 1.0

(0.0, 0.0) 0.000000 0.000000 0.000000
(0.2, 0.2) 3.5563 × 10−3 1.6882 × 10− 4 7.6648 × 10− 6

(0.4, 0.4) 4.8228 × 10−2 5.1980 × 10− 3 5.3168 × 10− 4

(0.6, 0.6) 2.2559 × 10−1 3.9524 × 10− 2 6.5249 × 10− 3

(0.8, 0.8) 6.8021 × 10−1 1.6888 × 10− 1 3.9295 × 10− 2

(1.0, 1.0) 1.6103 × 100 5.2523 × 10− 1 1.5995 × 10− 1

TABLE 2 | Values of RES7(x, t) for different values of α.

(x, t) α � 0.6 α � 0.8 α � 1.0

(0.0, 0.0) 0.000000 0.000000 0.000000
(0.2, 0.2) 9.6895 × 10− 4 2.6675 × 10−5 6.82732 × 10− 7

(0.4, 0.4) 1.9432 × 10− 2 1.3932 × 10−3 9.2535 × 10− 5

(0.6, 0.6) 1.1395 × 10− 1 1.4361 × 10−2 1.6690 × 10− 3

(0.8, 0.8) 4.0283 × 10− 1 7.5982 × 10−2 1.3162 × 10− 2

(1.0, 1.0) 1.0780 × 100 2.7858 × 10−1 6.5901 × 10− 2
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||Rn(x, s)|| � 1
s1+(n+1)α

����s e− t0sL[D(n+1)α
t U(x, t)]����

≤
M(x)
s1+(n+1)α

.

(29)

Thus, we reach the end of the proof.

3 APPLYING THE L-RPSM TO THE
HYPERBOLIC SYSTEM OF T-FPDES

In this section, we construct an AS to the hyperbolic system of
T-FPDEs with variable coefficients given in Eqs 11, 12 by using
the L-RPSM. To achieve it, firstly, we apply the LT on both sides
of Eq. 11, and use Lemma 2.2, and Eq. 12; then, we have

U(x, s) � U0(x)
s

+ L[L−1[A(x, s)] zβx(L− 1[U(x, s)])]
sα

+L[L−1[B(x, s)]L−1[U(x, s)]]
sα

+ F(x, t)
sα

, x ∈ I, s> λ≥ 0,
(30)

where U(x, s) � L[U(x, t)](s), A(x, s) � L[A(x, t)](s),
B(x, s) � L[B(x, t)](s), and F(x, s) � L[F(x, t)](s). Let the
solution of Eq. 30 have the following FME:

U(x, s) � ∑∞
m�0

Hm(x)
s1+mα

, x ∈ I, s> λ≥ 0, (31)

where Hm(x) � U(mα)
t (x, 0) ∈ Mr×1, m � 0, 1, 2, . . ., 0< α≤ 1,

and A(x, t),B(x, t), and F(x, t) have a BFMTF.
Of course, treating with a finite series is acceptable more than

an infinite series. For this reason, the L-RPSM deals with a finite
series while calculating coefficients of the SS. So, we express the
kth truncated series (kth TS) of U(x, s) as follows:

Uk(x, s) � U0(x)
s

+ ∑k
m�1

Hm(x)
s1+mα

. (32)

To apply the L-RPSM for determining the coefficients Hm(x),
m � 1, 2, 3, . . . , k, in the kth TS in Eq. 32, we define the so-called
residual matrix function (RMF) for Eq. 30 as

RMF(x, s) �U(x, s)−U0(x)
s

−L[L−1[A(x, s)]zβx(L−1[U(x, s)])]
sα

−L[L−1[B(x, s)]L−1[U(x, s)]]
sα

−F(x, t)
sα

, x ∈I, s>λ ≥ 0,

(33)

and the kth residual matrix function (RMFk) of the style form

RMFk(x,s)�Uk(x,s) −U0(x)
s

−L[L−1[A(x,s)]zβx(L−1[Uk(x,s)])]
sα

−L[L−1[B(x,s)]L−1[Uk(x,s)]]
sα

−F(x,t)
sα

,x∈I,s>λ≥0.

(34)

The main idea of the L-RPSM can be shown in the following
clear facts related to the RMF and RMFk:

1. limk→∞RMFk(x, s) � RMF(x, s), x ∈ I, s> λ≥ 0
2. RMF(x, s) � 0 ∈ Mr×1, x ∈ I, s> λ≥ 0
3. RMF(x, s) has an FME. So, we can express it as follows:

RMF(x, s) �∑∞

m�1
Hm(x) − Nm[Hi(x)]

s1+mα
, i ∈ {0, 1, 2, . . . ,m − 1},

(35)

where Nm, m � 1, 2, 3, . . ., are operators depending on the
operators L and zβx .

4. Thus, Hm(x) − Nm[Hi(x)] � 0 ∈ Mr×1, for m � 1, 2, 3, . . .
and i ∈ {0, 1, 2, . . . , m − 1}.

5. RMFk(x, s) is not a TS of the expansion of RMF(x, s), but it
is obtained by substitutingUk(x, s) into Eq. 35. So, it takes
the following form:

RMFk(x, s) �∑k

m�1
Hm(x) − Nm[Hi(x)]

s1+mα
+ ∑nk

m�k+1

N m[Hj(x)]
s1+mα

,

(36)

where j ∈ {0, 1, 2, . . . , k}, i ∈ {0, 1, 2, . . . , m − 1},
Nm, m � k + 1, k + 2, . . . , nk, are operators, and N m[Hj(x)]≠ 0.

6. Using the following fact determines the unknown
coefficients Hk(x) , k � 1, 2, 3, . . ., in the FME (Eq. 31):

lims→∞(s1+kαRMF(x, s)) � lims→∞(s1+kαRMFk(x, s))
� Hk(x) − Nk[Hi(x)] � 0, k � 1, 2, 3, . . . , i ∈ {0, 1, 2, . . . , k − 1}.

(37)

Now, to find H1(x), in Eq. 32, substitute the 1st TS,
U1(x, s) � U0(x))

s + H1(x))
s1+α , into the 1st RMF, RMF1(x, s), to get

RMF1(x, s) � H1(x) − N1U0(x)]
s1+α

+ N 2[U0(x),H1(x)]
s1+2α

+ . . .

+N n1[U0(x),H1(x)]
s1+n1α

.

(38)

Multiply Eq. 38 by s1+α to obtain

s1+αRMF1(x, s) � H1(x) − N1[U0(x)] +N 2[U0(x),H1(x)]
sα

+ . . .

+ N n1[U0(x),H1(x)]
s(n1− 1)α

.

(39)

Compute the limit to Eq. 39 as s→∞, use the fact in Eq. 37, and
solve the new obtained equation for H1(x) to have

H1(x) � N1[U0(x)]. (40)

Similarly, to determine the second unknown coefficient in
Eq. 32, H2(x), we substitute U2(x, s) � U0(x))

s + H1(x))
s1+α + H2(x))

s1+2α into
RMF2(x, s) to get
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RMF2(x, s) � H2(x) − N2[U0(x),H1(x)]
s1+2α

+N 3[U0(x),H1(x),H2(x)]
s1+3α

+ . . .

+N n2[U0(x),H1(x),H2(x)]
s1+n2α

.

(41)

Multiply Eq. 41 by s1+2α and compute the limit at infinity for
both sides of a new obtained equation, according to Eq. 37, to
have

H2(x) � N2[U0(x),H1(x)]. (42)

In general, to determine the nth unknown coefficient in
Eq. 32, Hn(x), we substitute Un(x, s) � U0(x))

s + H1(x))
s1+α + . . . +

Hn(x))
s1+nα into RMFk(x, s) for k � n, re-multiplying both sides of
the new obtained formula by s1+nα, and use the fact in Eq. 37
to obtain

Hn(x) � Nn[U0(x),H1(x), . . . ,Hn−1(x)]. (43)

This procedure can be repeated for the required number of
FME coefficients representing the solution of Eq. 30. Therefore,
the kth approximation of the solution of Eq. 30 can be
represented as the following finite series:

Uk(x, s) � U0(x)
s

+ N1[U0(x)]
sα+1

+ N2[U0(x),H1(x)]
s2α+1

+ . . .

+ Nk[U0(x),H1(x), . . . ,Hk−1(x)]
skα+1

. (44)

If we act the inverse LT on both sides of Eq. 44, then we obtain
the kth approximation of the solution of the initial value problem
(IVP) (Eqs 11, 12), which takes the following expression:

Uk(x, s) � U0(x)
s

+ N1[U0(x)]
Γ(1 + α) tα + N2[U0(x),H1(x)]

Γ(1 + 2α) t2α + . . .

+ Nk[U0(x),H1(x), . . . ,Hk−1(x)]
Γ(1 + kα) tkα.

(45)

4 APPLICATIONS AND NUMERICAL
SIMULATIONS

To test our proposed method, we present in this section four
interesting and important applications. The first three
applications are prepared so that the ES is already known,
while the last application is prepared without knowing the
solution in advance to test the predictability of the solution or
obtain a suitable AS.

Application 4.1. Consider the following homogeneous
hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) − A(x, t)U(1)

x (x, t) − B(x, t)U(x, t) � 0,

0< α≤ 1, x ∈ R, t ≥ 0, (46)

subject to

U(x, 0) � ( x
1
), (47)

where

A(x, t) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ tαx

1
2x

x2 −t
3α

2x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
B(x, t) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ t4αx − tα −t2α

t5α + t2αx4

x
+ tαxΓ(1 + 2α)

Γ(1 + α) −x2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and the ES is U(x, t) � ( x
1 + t2αx2

).
To obtain an FME solution for this application using the

L-RPSM, transform Eq. 46 to the Laplace space as follows:

U(x, s) − U(x, 0)
s

− L[L−1[A(x, s)]z1x(L− 1[U(x, s)])]
sα

−L[L−1[B(x, s)]L−1[U(x, s)]]
sα

� 0, x ∈ R, s> λ≥ 0.
(48)

Let the solution of Eq. 48 have a form of the FME as in Eq. 31.
According to the condition in Eq. 47, the first coefficient of the
FME in Eq. 31,H0(x) � U(x, 0) � ( x

1
). Therefore, the kth TS of

Eq. 31 takes the following expression:

Uk(x, s) � ( x
1
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α≤ 1, x ∈ R, s> λ≥ 0, (49)

and the kth RMF of Eq. 48 is

RMFk(x,s)�Uk(x,s)−⎛⎝x

1
⎞⎠1
s
−L[L−1[A(x,s)]z1x(L−1[Uk(x,s)])]

sα

−L[L−1[B(x,s)]L−1[Uk(x,s)]]
sα

, x∈R,s>λ≥0.

(50)

To find the first unknown coefficient H1(x) � ( h11(x)
h12(x)) in

Eq. 49, we put the 1st TS, U1(x, s) � ( x1) 1
s + H1(x)

s1+α , into the 1st

RMF to get the following abbreviated expression:

RMF1(x,s)�⎛⎝h11(x)
h12(x)

⎞⎠ 1
s1+α

+⎛⎝ 0

h12(x)−Γ(1+2α)
⎞⎠ x2

s1+2α

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ h11(x)
Γ(1+α)

−x4−xh11(x)Γ(1+2α)
Γ(1+α)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+2α)
s1+3α

+⎛⎝ h12(x)
−h11(x)x3

⎞⎠ Γ(1+3α)
Γ(1+α)s1+4α

−⎛⎝x2

0
⎞⎠Γ(1+4α)

s1+5α
−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝xh11(x)

Γ(1+α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+5α)
s1+6α

−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

h11(x)
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+6α)
Γ(1+α)s1+7α.

(51)

Multiply Eq. 51 by s1+α to obtain
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s1+α RMF1(x,s)�⎛⎝h11(x)
h12(x)

⎞⎠ +⎛⎝ 0

h12(x)−Γ(1+2α)
⎞⎠x2

sα

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ h11(x)
Γ(1+α)

−x4−xh11(x)Γ(1+2α)
Γ(1+α)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+2α)
s2α

+⎛⎝ h12(x)
−h11(x)x3

⎞⎠ Γ(1+3α)
Γ(1+α)s3α

−⎛⎝x2

0
⎞⎠Γ(1+4α)

s4α
−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝xh11(x)

Γ(1+α)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+5α)
s5α

−⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

h11(x)
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+6α)
Γ(1+α)s6α.

(52)

Take the limit at infinity for Eq. 52 and use Eq. 37 to get

H1(x) � ( h11(x)h12(x)) � ( 0
0
). (53)

Similarly, we can obtain the second unknown coefficient in Eq.

49, H2(x) � ( h21(x)
h22(x)). Substitute U2(x, s) � ( x

1
) 1

s + H2(x)
s1+2α into

RMF2(x, s) to get the next summarized expression of the second

RMF of Eq. 48:

RMF2(x,s)�⎛⎝ h21(x)
h22(x)−x2Γ(1+2α)

⎞⎠ 1
s1+2α

+⎛⎝ Γ(1+2α)
x2h22(x)−x4Γ(1+2α)

⎞⎠ 1
s1+3α

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h21(x)
Γ(1+2α)

−xh21(x)Γ(1+α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+3α)
s1+4α

−⎛⎝x2−h22(x)
x3h21(x)

⎞⎠ Γ(1+4α)
Γ(1+2α)s1+5α

−⎛⎝0

1
⎞⎠Γ(1+5α)

s1+6α
−⎛⎝xh21(x)

0
⎞⎠ Γ(1+6α)
Γ(1+2α)s1+7α −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

h21(x)
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1+7α)
Γ(1+2α)s1+8α.

(54)

Multiply Eq. 54 by s1+2α, apply the limit at infinity of the
obtained equation, and use Eq. 37 to get

H2(x) � ( h11(x)
h12(x)) � ( 0

x2Γ(1 + 2α)). (55)

If we repeat the previous procedure for k � 3, 4, . . ., we can see that

Hk(x) � ( 00), for k � 3, 4, . . . . (56)

So, the ES for Eq. 48 will be as follows:

U(x, s) � 1
s
( x
1
) + ( 0

x2
) Γ(1 + 2α)

s1+2α
. (57)

If we apply the inverse LT on Eq. 57, then the SS of the IVP
(Eqs 46, 47) will take the following form:

U(x, t) � ( x
1
) + ( 0

x2
)t2α, (58)

which coincides with the ES.
Application 4.2. Consider the following non-homogeneous

hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) + A(x, t)U(1)

x (x, t) + B(x, t)U(x, t)
� F(x, t), 0< α≤ 1, x ∈ R, t ≥ 0, (59)

subject to

U(x, 0) � ( 0
x2
), (60)

where

A(x, t) �⎛⎝ x tα

2x+ t2α 0
⎞⎠, B(x, t) �⎛⎝ tα x

0 2x+ t2α
⎞⎠,

F(x, t) �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ x3 + exΓ(1+α)+(2+ ex)xtα +(x+ ex)t2α

2x3 +(2xex +Γ(1+2α)Γ(1+α) )tα +(2+x)xt2α + ext3α + t4α
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

According to the construction in Section 3, the LT of Eq. 59
can be represented by

U(x, s) −⎛⎝ 0

x2
⎞⎠ 1

s
+ L[L−1[A(x, s)]z1x(L− 1[U(x, s)])]

sα

+ L[L−1[B(x, s)]L−1[U(x, s)]]
sα

− F(x, t)
sα

� 0.

(61)

The kth TS of the FME of the solution of Eq. 61 has the
following form:

Uk(x, s) � ( 0
x2
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α≤ 1, x ∈ R, s> λ≥ 0,

(62)
and the kth RMF of Eq. 61 is

RMFk(x, s) �Uk(x, s)−( 0

x2
)1
s

+ L[L−1[A(x, s)]z1x(L−1[Uk(x, s)])]
sα

+ L[L−1[B(x, s)]L−1[Uk(x, s)]]
sα

−F(x, t)
sα

, x ∈R, s>λ≥0.

(63)

So, to set the first unknown coefficient of Eq. 62, substitute
U1(x, s) into s1+αRMF1(x, s) to get

s1+αRMF1(x, s) � ( h11(x) − exΓ(1 + α)
h12(x) )

+ ( xh12(x) − 4xΓ(1 + α) − xexΓ(1 + α)
2xh12(x) − 2xexΓ(1 + α) − Γ(1 + 2α)) 1

sα

−⎛⎜⎜⎜⎜⎜⎜⎜⎝ ex + x − h11(x)
Γ(1 + α)
2x

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 2α)
s2α

−⎛⎜⎜⎜⎜⎜⎜⎝ 0

ex − h12(x)
Γ(1 + α)

⎞⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 3α)
s3α

− ( 0

1
) Γ(1 + 4α)

s4α

(64)
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and use the result in Eq. 37 to obtain

H1(x) � ( h11(x)
h12(x)) � ( exΓ(1 + α)

0
). (65)

Again, substitute U2(x, s) into s1+2αRMF2(x, s) to get

s1+2αRMF2(x, s) � ( h21(x)
h22(x) − Γ(1 + 2α))

+ ( xh22(x) − xΓ(1 + 2α)
2xh22(x) − 2xΓ(1 + 2α)) 1

sα

−⎛⎜⎜⎜⎜⎜⎜⎜⎝ h21(x)Γ(1 + 3α)
Γ(1 + 2α)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 2α)
s2α

−⎛⎜⎜⎜⎜⎜⎜⎝ 0

1 − h22(x)
Γ(1 + 2α)

⎞⎟⎟⎟⎟⎟⎟⎠ Γ(1 + 4α)
s3α

.

(66)

According to the fact in Eq. 37, we have

H2(x) � ( h21(x)
h22(x)) � ( 0

Γ(1 + 2α)). (67)

Similarly, anyone can check that Hk(x) � 0, for k � 3, 4, . . ..
So, the ES for Eq. 61 can be expressed as

U(x, s) � ( 0
x2
) 1
s
+ ( 1

0
) exΓ(1 + α)

s1+α
+ ( 0

1
) Γ(1 + 2α)

s1+2α
. (68)

Thus, the FME solution of the IVP (Eqs 59, 60) would be as
follows:

U(x, t) � ( 0
x2
) + ( ex

0
)tα + ( 0

1
)t2α, (69)

which is identical to the ES U(x, t) � ( extα

x2 + t2α
).

Application 4.3. Consider the following non-homogeneous
hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) + A(x, t)U(β)

x (x, t) + B(x, t)U(x, t)
� F(x, t), 0< α, β≤ 1, x ∈ R , t ≥ 0, (70)

subject to

U(x, 0) � ( 0
xβ
), (71)

where

A(x, t) � ( xβ 0
0 xβ

), B(x, t) � ( 1 tα

tα 1
),

F(x, t) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ tαxβEα(tα) + (tα + tαxβ + Γ(1 + 2α)
Γ(1 + α) )tαEβ(xβ)(2 + Γ(1 + β))xβEα(tα) + t3αEβ(xβ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
and the ES is

U(x, t) � ( t2αEβ(xβ)
xβEα(tα) ), (72)

where Eα(t) is the Mittag-Leffler function defined by the
following expansion [40]:

Eα(t) � ∑∞
m�0

tm

Γ(1 +mα). (73)

Mathematica 7 software has been used through a low-RAMPC for
obtaining all numerical calculations and symbolism. Since theMittag-
Leffler function is an infinite expansion, it was difficult to perform the
calculations using theMittag-Leffler function as it is. For this, the fifth
truncated series of the expansion in Eq. 73 was used throughout the
calculations.

Like the previous applications, transform Eq. 70 to the
Laplace space using the initial condition in Eq. 71 to read as follows:

U(x, s) − U0(x)
s

+ L[L−1[A(x, s)]zβx(L− 1[U(x, s)])]
sα

+ L[L−1[B(x, s)]L−1[U(x, s)]]
sα

− F(x, t)
sα

� 0, 0< α, β≤ 1, x ∈ R, s> λ≥ 0.

(74)

Let the solution of the algebraic equation (74) has an FME as
in Eq. 31. Then, the kth TS of the FME ofU(x, s) can be given by

Uk(x, s) � ( 0
xβ
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α, β≤ 1, x ∈ R, s> λ≥ 0,

(75)

and the kth RMF of Eq. 74 is given by

RMFk(x, s) � Uk(x, s) − ( 0

xβ
) 1
s

+ L[L−1[A(x, s)]z1x(L− 1[Uk(x, s)])]
sα

+ L[L−1[B(x, s)]L−1[Uk(x, s)]]
sα

− F(x, t)
sα

, x ∈ R, s> λ≥ 0.

(76)

Now, to determine H1(x) in Eq. 73, we substitute U1(x, s) �( 0
xβ
) 1

s + H1(x)
s1+α into Eq. 76 for k � 1, and multiplying the

obtained equation by s1+α gives the following formula:

s1+αRMF1(x, s) � ( h11(x)
h12(x) − xβ

) +H12(x; α, β)
sα

+H13(x; α, β)
s2α

+H14(x; α, β)
s3α

+H15(x; α, β)
s4α

+H16(x; α, β)
s5α

+H17(x; α, β)
s6α

,

(77)
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where H1j(x; α, β) ∈ M2×1, j � 1, 2, . . . , 7, are vector functions
free from s. So, according to Eq. 37, we have

H1(x) � ( h11(x)
h12(x)) � ( 0

xβ
). (78)

Using the same previous approach, we find the following
vector coefficients of Eq. 75:

H2(x) � ( Γ(1 + 2α)Eβ(xβ)
xβ

),
H3(x) � ( 0

xβ
),

H4(x) � ( 0
xβ
),

H5(x) � ( 0
xβ
). (79)

So, the fifth AS of Eq. 74 can be written as follows:

U5(x, s) � ( 0
xβ
) 1
s
+ ( 0

xβ
) 1
s1+α

+ ( Γ(1 + 2α)Eβ(xβ)
xβ

) 1
s1+2α

+ ( 0
xβ
) 1
s1+3α

+ ( 0
xβ
) 1
s1+4α

+ ( 0
xβ
) 1
s1+5α

. (80)

Transforming the AS in Eq. 80 to the t-space by the inverse
LT, we get the fifth approximation of the solution of the IVP (Eqs
70, 71) as follows:

U5(x, t) � ( 0
xβ
) + ( 0

xβ
) tα

Γ(1 + α)

+ ( Γ(1 + 2α)Eβ(xβ)
xβ

) t2α

Γ(1 + 2α)

+ ( 0
xβ
) t3α

Γ(1 + 3α) + ( 0
xβ
) t4α

Γ(1 + 4α) + ( 0
xβ
) t5α

Γ(1 + 5α). (81)

Obviously, there is a pattern between the terms of Eq. 81 that
gives us the ES as in Eq. 72.

The mathematical behavior of the solution of the IVP (Eqs
70, 71) is illustrated next by plotting the three-dimensional
space figures of the fifth approximation of the two
components of the vector solution in Eq. 81 for different
values of α and a fixed value of β � 0.5. Figures 1A–C show
the fifth AS, (U1)5(x, t) and (U2)5(x, t), when α � 0.7, α � 0.85,
and α � 1, respectively, on the square [0, 1] × [0, 1].
Figure 1D shows the ES expressed by Eq. 72 for α � 1.

Figures 1C,D show that the fifth AS of the IVP (Eq. 70, 71) is
excellent compared to the ES, as well as in the previous cases,
which have not been documented in order not to increase the
numbers of graphs. It is known that, by increasing the number

of terms in the series, the accuracy of the solution increases and,
thus, the error of solution reduces; therefore, we can reduce the
error of the solution by calculating more coefficients of the FME
solution as in Eq. 31.

In the next application, the ES is unknown. Therefore, we are
trying to find the ES or an appropriate approximation of the
solution.

Application 4.4. Consider the following non-homogeneous
hyperbolic system of T-FPDEs with variable coefficients:

U(α)
t (x, t) − A(x, t)U(1)

x (x, t) − B(x, t)U(x, t)
� F(x, t), 0< α≤ 1, x ∈ R, t ≥ 0, (82)

subject to

U(x, 0) � ( x + 1
ex
), (83)

where

A(x,t)�( 0 −e−x(ex+(x−1)Eα(tα) +(1+x)tα)
Γ(1+α)−exx−tαx 0

),
B(x, t) � ( tα 1

0 x
), F(x, t) � ( xEα(tα)

0
).

Similar to the previous applications, the LT of Eq. 82 is
given by

U(x, s) − ( x + 1
ex
) 1
s
− L[L−1[A(x, s)]z1x(L− 1[U(x, s)])]

sα

−L[L−1[B(x, s)]L−1[U(x, s)]]
sα

− F(x, t)
sα

� 0, 0< α≤ 1, x ∈ R, s> λ≥ 0, (84)

the kth TS of the expansion of the solution of Eq. 84 is given as

Uk(x, s) � ( x + 1
ex
) 1
s
+ ∑k

m�1

Hm(x)
s1+mα

, 0< α≤ 1, x ∈ R, s> λ≥ 0,

(85)

and the kth RMF of Eq. 84 is given by

RMFk(x, s) � Uk(x, s) − ( x + 1
ex
) 1
s

− L[L−1[F(x, s)]z1x(L− 1[Uk(x, s)])]
sα

(86)

−L[L−1[B(x, s)] L−1[Uk(x, s)]]
sα

− F(x, t)
sα

, x ∈ R, s> λ≥ 0.

According to the fact in Eq. 37, we can create, successively, the
following first eight coefficients of the expansion in Eq. 31 for this
application:
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H0(x) � ⎛⎝ x + 1

ex
⎞⎠,

H1(x) � ⎛⎝ 1

Γ(1 + α)
⎞⎠,

H2(x) � ⎛⎝ 1 + Γ(1 + α)
0

⎞⎠,
H3(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + Γ(1 + 2α)

Γ(1 + α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H4(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (1 + Γ(1 + α))Γ(1 + 3α)

Γ(1 + 2α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H5(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (Γ(1 + α) + Γ(1 + 2α))Γ(1 + 4α)

Γ(1 + α)Γ(1 + 3α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H6(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (Γ(1 + 2α) + (1 + Γ(1 + α))Γ(1 + 3α))Γ(1 + 5α)

Γ(1 + 2α)Γ(1 + 4α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
H7(x) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 + (Γ(1 + α)Γ(1 + 3α) + (Γ(1 + α) + Γ(1 + 2α))Γ(1 + 4α))Γ(1 + 6α)

Γ(1 + 3α)Γ(1 + 5α)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
(87)

Thus, the seventh AS of Eq. 84 has the following expression:

U7(x, s) � H0(x)
s

+ H1(x)
s1+α

+ H2(x)
s1+2α

+ H3(x)
s1+3α

+ H4(x)
s1+4α

+ H5(x)
s1+5α

+ H6(x)
s1+6α

. + H7(x)
s1+7α

,

(88)

so the seventh AS of the IVP (Eqs 82, 83) can be expressed as follows:

U7(x, t) � H0(x) + H1(x) tα

Γ(1 + α) + H2(x) t2α

Γ(1 + 2α)
+ H3(x) t3α

Γ(1 + 3α)
+H4(x) t4α

Γ(1 + 4α) + H5(x) t5α

Γ(1 + 5α) + H6(x) t6α

Γ(1 + 6α)
+ H7(x) t7α

Γ(1 + 7α). (89)

To test the AS in Eq. 89, we need to find the norm of residual
error vector (RES(x, t)) for different values of t and x in the region
[0, 1] × [0, 1], where the residual error vector is defined by

RESk(x, t) � (Uk)(α)t (x, t) − A(x, t)(Uk)(1)x (x, t)
− B(x, t)Uk(x, t) − F(x, t), (90)

and the Frobenius norm is chosen for error analysis and
defined by

‖U(x, t)‖ �

���������������⎛⎝∑m
i�1
∑n
j�1

|uij(x, t)|2
√√ ⎞⎠, U(x, t) � [uij(x, t)] ∈ Mk×r.

(91)

Tables 1, 2 show the values of ||RES6(x, t)|| and ||RES7(x, t)||,
respectively, for different values of α. The data in the tables indicate
that the norm of the residual error of the obtained AS decreases as
(x, t)→ (0, 0) as well as when α→ 1. This indicates that the
convergence of the BFMTF in Eq. 17 depends on t, x, and α as
illustrated in Theorem 2.3. As we know, we can reduce the error in the
FME solution as we increase the number of terms of the expansion. As
we can see from the data in Tables 1, 2, the seventh approximation is
more accurate than the sixth approximation. Anyway, it can be said
that the L-RPSM is good at providing an accurate AS of a hyperbolic
system of T-FPDEs with variable coefficients.

5 CONCLUSION

We have found that the ES for the hyperbolic system of T-FPDEs
with variable coefficients is available if the solution is a linear
combination of power functions or if it is a composite of an
elementary function and a power function. In case the ES is not
available, a good approximation of the solution can be obtained. The
L-RPSM is an effective, accurate, easy, and speed technique in
obtaining the values of coefficients for the SS. Through this work,
we have presented a solution that may be missing for this kind of
problem andwe have opened theway for researchers to provide other
ways to solve this class of equations. Moreover, the newly proposed
technique can be used to construct many types of the ordinary or
partial DEs of fractional order such as Lane–Emden, Boussinesq,
KdV–Burgers, K(m, n), Klein–Gordon, and B(l,m, n) equations.
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