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Editorial on the Research Topic

Cognitive Multitasking – Towards Augmented Intelligence

The original inspiration of artificial intelligence (AI) was to build autonomous systems that were
capable of demonstrating humanlike behaviors. However, modern AI systems have begun to
far exceed humanly achievable performance levels in areas such as image processing, complex
optimization, and unmanned systems, due to the present-day data deluge, accompanied by subtle
algorithmic enhancements in machine learning algorithms. This is occurring across a variety
of domains, where prominent examples include IBM Watson winning Jeopardy! and Google
DeepMind’s AlphaGo beating the world’s leading Go player. However, the AI future need not be
limited to a human imitating standpoint. Instead, it may be more beneficial to build AI systems
that are able to excel at that which humans have not evolved to do or to even consider. Humans
have not evolved to process multiple distinct situations within short timespans (i.e., in the order of
a few seconds) – as interleaving more than one task usually entails a considerable switching cost
during which the brain must readjust from one task to the other.

Machines, on the other hand, are largely free from any such switching bottlenecks. Thus,
machines can move more fluidly between tasks. Furthermore, when related tasks are bundled
together, it may also be possible to seamlessly transfer or share the learned knowledge among them.
As a result, while an AI attempts to solve some complex task, several other simpler ones may be
unconsciously solved. Moreover, knowledge learned unconsciously in one task may be harnessed
for intentional use in another application.

This special issue aims to explore deeply the issues faced in cognitive multitasking. Emphasis
is placed on computational models and algorithms, as well as new hardware advances, that shall
enable machines to be developed as consummate multitask problem-solvers. Following a rigorous
peer review process, 11 papers have been accepted to be included in the special issue.

The first paper, “Multi-Task Learning Based Network Embedding” by Wang et al. presents a
multi-task learning-based network embedding approach for network representation learning. The
first task is designed to preserve the high-order proximity between pairwise nodes, while the second
task is to preserve the low-order proximity in the one-hop area of each node. Comprehensive
empirical studies on multi-label classification, link prediction, and visualization in five real-world
networks, including social network, citation network, and language network, have been conducted
to evaluate the performance of the proposed method over existing state-of-the-art approaches.

In the second paper entitled “High Cognitive Flexibility Learners Perform Better in Probabilistic
Rule Learning,” Feng et al. analyze how cognitive flexibility of human being, as assessed by
the number-letter task, is associated with the learning process of a probabilistic rule task. This
paper concludes that further research should be conducted to explore the internal process of
learning differences between high and low flexibility learners by using other technologies across
multiple modes.
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To improve the convergence speed, a two-level transfer
learning method has been proposed by Ma et al. in their
paper “A Two-Level Transfer Learning Algorithm for
Evolutionary Multitasking.” The proposed method intends
to use the correlation and similarity among the paired tasks
to improve the efficiency and effectiveness of a multifactorial
evolutionary algorithm.

The forth paper, “A Preliminary Study of Knowledge Transfer
in Multi-Classification Using Gene Expression Programming” by
Wei and Zhong. embarks a preliminary study on evolutionary
multitasking optimization with gene expression programming
for multi-classification. Experimental studies on 10 high-
dimensional datasets show that knowledge transfer among
separate binary classifiers under the proposed multitasking
method can enhance multi-classification performance when
compared to existing approaches.

To learn good representations of node in graphs or
network, Xie et al. proposed a multi-task representation
learning architecture coupled with the task of supervised
node classification for graph classification and an end-to-
end multi-task network representation learning framework
with multi-task loss function for network embedding, in “A
Multi-Task Representation Learning Architecture for Enhanced
Graph Classification” and “Multi-Task Network Representation
Learning,” respectively.

In the seventh paper entitled “Droplet-Transmitted Infection
Risk Ranking Based on Close Proximity Interaction,” to identify
people who are potentially-infected by droplet-transmitted
diseases, Guo et al. present a multi-tasking framework to
model the principle of Close Proximity Interaction and thus
infer the infection risk of individuals. Experimental studies in
different scenarios, including indoor office, bus station and bus
compartment, hospital, show that the proposed method can
achieve consistent results when compared to manual analysis
very efficiently.

The eighth paper, “A Privacy-Preserving Multi-Task Learning
Framework for Face Detection, Landmark Localization,
Pose Estimation, and Gender Recognition” by Zhang et al.
introduce a privacy-preserving multi-task learning approach
to address the privacy issue existing in the training data
for face processing tasks. The proposed method utilizes the
differential private stochastic gradient descent algorithm to
optimize the end-to-end multi-task model and weighs the loss
functions of multiple tasks to improve learning efficiency and
prediction accuracy.

To improve the performance of multi-task optimization, Xu
et al. present new transfer sparks in fireworks algorithm for
multitasking. For each task to be optimized, transfer sparks
are generated with adaptive length and promising direction
vector to transfer useful genetic information between different
tasks while the optimization progresses online. The efficacy
of the proposed method has been validated on the multi-
task optimization benchmarks against existing state-of-the-art
evolutionary multitasking approaches.

In the 10th paper entitled “Electroencephalographic
Workload Indicators During Teleoperation of an Unmanned
Aerial Vehicle Shepherding a Swarm of Unmanned Ground
Vehicles in Contested Environments,” Rojas et al. try to identify
the electroencephalographic (EEG) indicators that can be
used for the objective assessment of cognitive workload in
a multitasking setting and as a foundational step toward a
human-autonomy augmented cognition system.

Last but not the least, Howard et al. in their paper “BrainOS:
A Novel Artificial Brain-Alike Automatic Machine Learning
Framework,” explores some of the principles of the brain that
seem to be responsible for its autonomous, problem-adaptive
nature. The presented BrainOS is an automatic approach for
selecting the appropriate model based on three factors, which
are (a) input at hand, (b) prior experience, which is a history
of results of prior problem solving attempts), and (c) world
knowledge that represented in the symbolic way and used as a
means to explain its approach. Preliminary studies of BrainOS
show that it can deal with complex problems, such as natural
language processing.

As can be observed, in the 11 accepted papers, the second and
tenth paper focus on psychology and neuroscience in cognitive
multitasking, while the other papers concentrate on the multi-
task optimization and learning algorithm designs. The human
brain possesses the most remarkable ability to perform multiple
tasks with apparent simultaneity, and leverages the experiences
in solving one task to help the decision making in another task.
These accepted papers have first illustrated the explorations of
intelligent systems and algorithms that mimic beyond the human
brain in efficient multitasking. Secondly, it can also be observed
in these papers that the rapid increase in the variety, volume and
complexity of real-world problems, the opportunity, tendency,
and (even) the need to multitask is unprecedented.

The guest editors would like to thank all the authors who
submitted their work to the special issue, and all reviewers for
their hard work in completing timely and constructive reviews.
Special thanks also go to the Editor-in-Chiefs and members of
the editorial team for their support during the editing process of
this Special Issue.
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Composed of nodes and edges, graph structured data are organized in the

non-Euclidean geometric space and ubiquitous especially in chemical compounds,

proteins, etc. They usually contain rich structure information, and how to effectively

extract inherent features of them is of great significance on the determination of

function or traits in medicine and biology. Recently, there is a growing interest in

learning graph-level representations for graph classification. Existing graph classification

strategies based on graph neural networks broadly follow a single-task learning

framework and manage to learn graph-level representations through aggregating node-

level representations. However, they lack the efficient utilization of labels of nodes in a

graph. In this paper, we propose a novel multi-task representation learning architecture

coupled with the task of supervised node classification for enhanced graph classification.

Specifically, the node classification task enforces node-level representations to take

full advantage of node labels available in the graph and the graph classification task

allows for learning graph-level representations in an end-to-end manner. Experimental

results on multiple benchmark datasets demonstrate that the proposed architecture

performs significantly better than various single-task graph neural network methods for

graph classification.

Keywords: multi-task learning, representation learning, graph classification, node classification, graph neural

network

1. INTRODUCTION

Learning with graph-structured data, such as chemical compounds or proteins, requires effective
representations of their internal structure (Hamilton et al., 2017b), as the structural changes usually
have an impact on the traits they express. Nodes with different properties and unique connections
make up a variety of graphs, and one of the graph learning tasks is to predict the labels for graphs.
Specifically, nodes represent entities and edges represent relationships between them, and the
category of a graph is always correlated with the graph structure and node labels in real world.
Therefore, models capable of capturing node features and graph structure have been shown to
achieve superior performances on classification tasks (Rossi et al., 2012).

In recent years, there has been a surge of interest in Graph Neural Networks (GNNs) (Cao
et al., 2016; Monti et al., 2017; Schlichtkrull et al., 2018; Zou and Lerman, 2019) for learning
representations of graphs and nodes. The general approach with GNNs broadly follows a recursive
neighborhood aggregation scheme by passing, transforming and aggregating feature vectors of

6
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nodes across the graph (Gilmer et al., 2017; Hamilton
et al., 2017a; Xu et al., 2018). Empirically, these GNNs have
achieved outstanding performance in many tasks such as graph
classification and node classification. However, a major limitation
of these GNN architectures is that they only focus on a specific
task and their design is based on heuristics or experimental
trial-and-error, and there is little theoretical understanding of
the properties. As a result, GNNs’ representational capacity and
generalization ability are limited (Xu et al., 2019).

In real-world applications, the graph classification task
is always correlated with the node classification task, and
effective node representations are conducive to learning graph
features with the same aggregation scheme (Petar et al., 2018).
For example, a graph classification task is to predict the
carcinogenicity of proteins, for which categories of nodes that
represent different amino acids are of crucial importance.
Nevertheless, previous related deep graph embedding methods
treat real problems as several single tasks, while ignoring the rich
correlation information between these related tasks. They do not
follow human’s cognitive laws of new things that people often
apply the knowledge they have acquired by learning related tasks,
whereas working on a single task from scratch is inefficient and
increases the risk of overfitting. Moreover, they usually require
multiple training steps that are difficult to optimize for each
task (Tran, 2018).

To address the aforementioned challenges, we present a
multi-task representation learning (MTRL) framework for
both graph classification and node classification, schematically
depicted in Figure 1. The MTRL framework is capable of
learning representations of latent node embeddings and graph
embeddings from local graph topology, and the shared
representations between different tasks enable our model to
generalize better on each task. A densely connected neural
network is trained end-to-end to learn embeddings for nodes
and graphs from the adjacency vector or feature vector, in which
the READOUT function aggregates node representations from
the final iteration to generate the entire graph’s representation.
The weighted sum of losses of graph classification and node
classification is utilized in the back propagation of the multi-
task learning process, thus graph-level features and fine-
grained node features can be captured synchronously, and
the generalization ability of models is improved through
collaborative training. Specifically, our contributions in this
paper are as follows:

• We propose a novel multi-task representation learning
architecture and extend it further for different models
designed specifically for graph classification. Compared with
single-task learning models, our approach shows better
performance in different tasks.

• Our architecture is efficiently trained end-to-end for the joint
and simultaneous multi-task learning of supervised graph
classification and node classification in a single stage.

• We conduct empirical evaluation of our architecture on five
challenging benchmark graph-structured datasets, and the
experimental results demonstrate significant improvement
over state-of-the-art baselines.

The full text is structured as follows. After a basic introduction,
the related backgrounds and algorithms about GNNs are shown
in section 2. In section 3, we give a clear definition of the
graph classification and the node classification, then the MTRL
architecture is developed. Section 4 provides the experimental
results of two classification tasks. Finally, in section 6 we
conclude with a discussion of our architecture and summarize
the future work.

2. RELATED WORK

Representation learning (Bengio et al., 2013) has been widely
utilized in various fields such as computer vision (Du and Wang,
2015; Butepage et al., 2017) and natural language processing
(Janner et al., 2018). With the rapid development of biology,
chemistry, and medical science, the microscopic structure of
molecular compounds as proteins and genes are paid more
attention. This kind of graph-structured data attracts the interests
of researchers in graph classification, and various methods are
presented to learn graph representations.

Recently, a wide variety of GNN models have been proposed,
including approaches inspired by convolutional neural networks
(Defferrard et al., 2016; Kipf and Welling, 2016; Lei et al., 2017),
recursive neural networks (Scarselli et al., 2008) and recurrent
neural networks (Li et al., 2016). These methods have been
applied to various tasks, such as graph classification (Dai et al.,
2016; Zhang et al., 2018) and node classification (Kipf and
Welling, 2016; Hamilton et al., 2017a). Instead of using hand-
crafted features suited for specific tasks, deep learning techniques
enablemodels to automatically learn features and representations
for each node. In the context of graph classification, which is our
main task, the major challenge is going from node embeddings to
the representation of the entire graph. Most methods (Duvenaud
et al., 2015; Li et al., 2016; Gilmer et al., 2017) have the limitation
that they simply pool all the node embeddings in a single layer
and do not learn the hierarchical representations, so they are
unable to capture the natural structures of large graphs. Some
recent approaches have focused on alleviating this problem by
adopting novel aggregation approaches.

A latest research (Xu et al., 2019) developed theoretical
foundations for reasoning about the expressive power of GNNs
and presented a Graph Isomorphism Network (GIN) under the
neighborhood aggregation framework. They proved that GNNs
are at most as powerful as the Weisfeiler-Lehman (WL) test in
distinguishing graph structures, and showed the discriminative
power of GIN is equal to that of the WL test. They developed a
“deep multisets" theory, which parameterizes universal multiset
functions with the neural network, and a multiset is a generalized
concept of a set that allows elements in it have multiple instances.
Besides, multi-layer perceptrons (MLPs) are utilized in the model
so that different graph structures could be discriminated through
aggregation, combination and READOUT strategy. GIN updates
node representations as:

h(l)v = MLP(l)
(

(1+ ǫ
(l)) · h(l−1)

v +
∑

u∈N (v)
h(l−1)
u

)

. (1)
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FIGURE 1 | Schematic depiction of the Multi-Task Representation Learning (MTRL) architecture.

They applied the sum aggregator that adds all neighbors of the
current node, and set the combination method as (1+ ǫ

(l)) in lth
layer, so that all nodes can be effectively integrated and mapped
to the next layer. As a theoretical framework, GIN outperforms
popular GNN variants, while some other researchers focus on
coarsening the input graph inspired by the pooling method in
convolutional neural networks.

DIFFPOOL (Ying et al., 2018) is a differentiable graph pooling
module that can be adapted to various GNN architectures in
a hierarchical and end-to-end fashion. DIFFPOOL learns a
cluster assignment for nodes at each layer, which then forms
the coarsened input for the next layer, and it is able to extract
the complex hierarchical structure of graphs. Given the input
adjacency matrix and node embedding matrix, the DIFFPOOL
layer coarsens the input graph and generates a coarsened
adjacency matrix as well as a new embedding matrix for each
node or clusters in the coarsened graph. In particular, they
applied the two following equations:

X(l+1) = S(l)
T
Z(l) ∈ R

nl+1×d, (2)

A(l+1) = S(l)
T
A(l)S(l) ∈ R

nl+1×nl+1 , (3)

where A(l) represents the adjacency matrix at this layer. Z(l)

and X(l) denote the input node embedding matrix and the
cluster embedding matrix respectively. S(l) is the probabilistic
assignment matrix that assigns each node at layer l to a specific
cluster in the next coarsened layer l + 1. Each row of S(l)

corresponds to a node or cluster at layer l, and each column
corresponds to a target cluster at layer l + 1. The assignment
matrix is generated from the pooling GNN using input cluster
features X(l) and the cluster adjacency matrix A(l):

S(l) = softmax
(

GNNl,pool(A
(l),X(l))

)

, (4)

where the softmax function is utilized in a row-wise fashion.
The output dimension of GNNl,pool is pre-defined as the
hyperparameter of the model, which corresponds to the

maximum number of clusters in each layer. Besides, the
embedding GNN is a standard GNN module applied to A(l)

and X(l):

Z(l) = GNNl,embed(A
(l),X(l)). (5)

The adjacency matrix between the cluster nodes A(l) from
Equation (3) and the pooled features for clusters X(l) from
Equation (2) are passed through a standard GNN to obtain new
embeddings Z(l) for the cluster nodes. GIN and DIFFPOOL can
learn to discriminate and capture the meaningful structure of
graphs in terms of aggregation and pooling, respectively, and they
are powerful in the graph classification task.

In many real-world applications, such as network analysis and
molecule classification, the input data is observed with a fraction
of labeled graphs and labeled nodes. Thus it is desirable for the
model to predict the labels of graphs and nodes simultaneously
in a multi-task learning setting. Multi-task learning (MTL) refers
to the paradigm of learning several related tasks together, which
has been broadly used in natural language processing (Chen et al.,
2018; Schulz et al., 2018; Sanh et al., 2019), computer vision (Choi
et al., 2018; Kendall et al., 2018; Liu et al., 2019) and genomics
(Yang et al., 2018). To be specific, SaEF-AKT (Huang et al.,
2019) introduces a general similarity measure and an adaptive
knowledge transfer mechanism to assist the knowledge transfer
among tasks. EMT (Evolutionary multitasking) via autoencoding
(Feng et al., 2018) allows the incorporation of multiple search
mechanisms with different biases in the EMT paradigm. MTL is
inspired by human learning activities where people could transfer
the knowledge learned from the previous problems to facilitate
learning a new task. Similar to human learning, the knowledge
contained in a problem can be leveraged by related problems
in the multi-task machine learning process. A main assumption
of MTL is that there is an optimal shared parameter space for
all problems, which is regularized by a specific loss, manually
defined relationships or other automatic methods that estimate
the latent structure of relationships among problems. Due to the
shared processes that give rise to strong dependencies of multiple
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tasks, the MTL approach is able to explore and leverage the
commonalities among related tasks in the learning process.

3. METHODOLOGY

The key idea of the MTRL architecture is that it enables
the graph classification and node classification tasks to be
performed simultaneously. Along the way, it helps to improve the
generalization ability of the model and avoid falling into the local
minimum. In this section, we outline the MTRL structure and
demonstrate how it works on the GIN and DIFFPOOL models.
Before introducing the architecture, we start by discussing the
statement of the problem.

3.1. Problem Statement
The input to the MTRL architecture is a set of labeled graphs
D = {(G1, y1), (G2, y2), ...}, where yi ∈ Y is the label associated
with graph Gi ∈ G, and G = (A, F,V) denotes a graph with
an adjacency matrix A ∈ {0, 1}n×n and node feature vectors
F ∈ R

n×d, assuming each node v ∈ V has d features. There
are two tasks of interest: (1) Graph classification, where graph
labels yG are given and the goal is to learn a representation vector
rG that helps predict the label of the graph, yG = g(rG); (2)
Node classification, where each node v has a corresponding label
yv and we aim to learn a representation vector rv such that v′s
label could be predicted as yv = h(rv). The main symbols are
listed in Table 1.

3.2. Multi-Task Representation Learning
In this work, we build upon theMTRL architecture to learn useful
representations for graph classification and node classification
in an end-to-end fashion. The graph classification is set as
the primary task while the node classification as the secondary
task, and the performance of the model could be improved by
sharing the training information in the primary task and the
auxiliary related task. Since these two classification tasks are
related, it is intuitive to assume that they share a common feature
representation based on the original features, which do not have
enough expressive power for multiple tasks. A more powerful
representations could be learned for both tasks by the MTRL
architecture and it will bring improvement on the performance.

Follow the GNN structure, the architecture adopts a
neighborhood aggregation and combination strategy, where the

TABLE 1 | Main symbols and descriptions in the paper.

Notations Descriptions

G Input labeled graph

A Adjacency matrix

F Feature information matrix

n Number of nodes in a graph

d Dimension of node features

rG Graph embedding representation

rv Node embedding representation

representation of a node is iteratively updated by aggregating its
neighbors’ representations and combining its representation of
the previous layer. Especially, after k iterations of aggregation and
combination, representations of each node is able to capture the
structural information within its k-hop graph neighborhood. For
node classification, the node representation of the final layer is
utilized for prediction. For graph classification, there should be
a READOUT method that aggregates all node representations of
the final iteration to generate the graph representation.

Based on the normal GNNmodels for graph classification, the
MTRL architecture adds an additional softmax layer for node
classification. Given an input graph G, the parameters of the
model are trained to minimize the cross-entropy of the predicted
and true distributions,

Lv = −
∑

v∈V

∑

c∈C
ycv · log(ŷ

c
v) (6)

where ycv is the ground-truth label; ŷcv is prediction probabilities,
and C indicates node classes. The loss of graph classification LG

is similar to Equation (6).
During the multi-task learning process, the related

information is exchanged and supplemented by a shared
representation at a shallow level, and the accuracy of
node classification and graph classification are optimized
simultaneously. The node classification task enforces node-level
representations to take full advantage of node labels available in
the graph and the graph classification task allows for learning
graph-level representations in an end-to-end manner. More
precisely, we achieve multi-task learning on graphs by designing
a joint loss function that combines the two masked categorical
cross-entropy losses for supervised graph classification and
node classification:

LMTRL = LG + α · Lv (7)

where α is used for the integration of the loss so that the scale
of all losses is close. Noted that when α is 0, the architecture is
equal to a single-task graph classification model. Besides, how
we extract node representations is crucial to the discrimination
task. In particular, we consider two state-of-the-art models that
employ the above MTRL architecture.

3.2.1. Multi-Task GIN

The original GIN applies five GNN layers and all MLPs have
two layers. It utilizes information from all depths of the
model to consider all structural information in Equation (8),
because features from deep layers are key to achieving better
discriminative performance while features from shallow layers
could generalize better.

rG = CONCAT
(

READOUT({r(l)v |v ∈ G}) | l = 0, 1, ..., L
)

. (8)

The READOUT is set as a simple permutation invariant function
such as summation. Similarly, to obtain both global and refined
representations of nodes, we achieve node features extraction that
concatenated across all layers as follows, and then the softmax
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activation function is used to produce a probability distribution
over node labels.

rv = CONCAT(r(l)v | l = 0, 1, ..., L). (9)

In the multi-task GIN (MT-GIN), all parameters in the network
except for two softmax layers are shared. Considering that
different tasks may have various sample noises in all directions
with different patterns, the hard parameter sharing method could
offset some noises through learning from multiple tasks, which
will result in better performance on each task.

3.2.2. Multi-Task DIFFPOOL

Different from GIN, DIFFPOOL applies a more sophisticated
graph-level pooling READOUT function. The GNN model used
for DIFFPOOL is built on top of the GRAPHSAGE (Hamilton
et al., 2017a) architecture as it has superior performance
compared with the standard graph convolutional network. It
sets a DIFFPOOL layer after two GRAPHSAGE layers, then
three layers of graph convolutions are performed before the final
READOUT layer. Since the DIFFPOOL layer will reduce the
number of nodes by 90%, which makes it impossible for the
node classification task, we extract the features matrix from the
GRAPHSAGE layer before the DIFFPOOL layer and utilize each
row in the matrix as the node representation, which is shown
in Figure 2.

For this reason, in the multi-task DIFFPOOL (MT-
DIFFPOOL), only parameters in the first two GRAPHSAGE
layers are shared. The backpropagation of the graph classification
loss starts from the last layer of the network, and the vanishing
gradient problem leads to slower learning in the first few
layers, thus their parameters may be dominated by the node
classification task. These GRAPHSAGE layers before the pooling
layer aim to learn efficient node representations, therefore the
node classification task could facilitate capturing enhanced
node features.

3.3. Complexity Analysis
Although applying multi-task framework requires additional
computation of the node classification loss, we observed
that the MT-GIN and the MT-DIFFPOOL do not incur
substantial additional running time compared with GIN and
DIFFPOOL in practice. Specifically, for the DIFFPOOL model,
the computing cost is concentrated on GRAPHSAGE layers
and the computation of an assignment matrix in DIFFPOOL
layers, whereas the node classification loss is calculated in the
first GRAPHSAGE layer, and it introduces only a few additional
computation. Suppose K is the number of layers. n is the total
number of nodes. m is the total number of edges. r is the
number of neighbors being sampled for each node, and d is the
dimensions of the node hidden features remain constant. The
time complexity of a GRAPHSAGE layer isO(rKnd2), and that of
the DIFFPOOL algorithm could be denoted as O(n2). Similarly,
the time complexity of GIN is O(m), and our MTRL framework
has the same time complexity as them respectively.

4. EXPERIMENTS

In this section, two state-of-the-art models employed with the
proposed multi-task learning architecture are compared with
the single-task learning ones. We evaluate the algorithms on
an unsupervised learning task: visualization, and two supervised

TABLE 2 | Statistics of datasets used in our experiments.

Datasets MUTAG PTC ENZYMES PROTEINS NCI1

Num. of Graphs 188 344 600 1113 4110

Avg. Number of Nodes 14.29 25.56 32.63 39.06 29.87

Avg. Number of Edges 14.69 25.96 62.14 72.82 32.30

Node Attr. (Dim.) – – +(18) +(1) –

Num. of Graph Classes 2 2 6 2 2

Num. of Node Classes 7 19 3 3 37

FIGURE 2 | A graphical illustration of the Multi-task DIFFPOOL model.
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learning tasks: graph classification and node classification. Before
we analyze the effect of the presented framework, we first
introduce the datasets and model configurations.

4.1. Datasets
We use five bioinformatics graph classification benchmarks. For
the ENZYMES dataset, the nodes have feature vectors, while
for the other datasets, we set the adjacency matrix as input
features since that have no features. The statistics of datasets are
summarized in Table 2, and details of datasets are as following:

MUTAG (Debnath et al., 1991) is a dataset of 188
mutagenic aromatic and heteroaromatic nitro compounds,
and the classification is based on whether or not they
have a mutagenic effect on the Gram-negative bacterium
Salmonella typhimurium.

PTC (Predictive ToxicologyChallenge) dataset (Toivonen
et al., 2003) contains 344 chemical compounds tested for
carcinogenicity in mice and rats. The classification task is to
predict the carcinogenicity of the chemical compounds.

ENZYMES (Borgwardt et al., 2005) is a dataset of protein
tertiary structures consisting of 600 enzymes from the BRENDA
enzyme database (Schomburg et al., 2004). In this case, the
task is to correctly assign each enzyme to one of the six EC
top-level classes.

PROTEINS (Dobson and Doig, 2003) is similar to ENZYMES,
where nodes are secondary structure elements. If two nodes are

neighbors in the amino acid sequence or 3D space, there will be
an edge between them. Each node has a discrete type attribute
(helix, sheet or turn). Different from ENZYMES, it comes with
the task of classifying into enzymes and non-enzymes.

NCI1 (Wale et al., 2008) represents a balanced subset of
chemical compounds screened for activity against non-small cell
lung cancer. This dataset contains more than 4,000 chemical
compounds, each of which has a class label between positive
and negative. Each chemical compound is represented as an
undirected graph where nodes, edges and node labels correspond
to atoms, chemical bonds, and atom types respectively.

4.2. Model Configurations
In our experiments, we evaluate the MTRL framework on GIN
and DIFFPOOL model. Following (Yanardag and Vishwanathan,
2015; Niepert et al., 2016), we report the average of validation
accuracy across the 10 folds within the cross-validation. For
DIFFPOOL and MT-DIFFPOOL, the mean variant is used in
GRAPHSAGE layers, and the l2 normalization is added to the
node embeddings at each layer to make the training more stable.
For GIN and MT-GIN, ǫ in Equation (1) is fixed to 0, since
this variant is proved to have strong empirical performance (Xu
et al., 2019). Batch normalization (Ioffe and Szegedy, 2015) is
applied for each layer in the two models. All models are trained
for 350 epochs and 10 iterations for each epoch. We use the
Adam optimizer (Kingma and Ba, 2015) with the initial learning

FIGURE 3 | Visualization of the MUTAG dataset. Each point represents a node in the dataset, and triangles of different colors represent graphs of different classes.

(A) GIN, (B) MT-GIN, (C) DIFFPOOL, (D) MT-DIFFPOOL.
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rate 0.01 and decay it by 0.5 every 50 epochs. Besides, the
hyperparameter we tune is the weight of the node classification
task α ∈ {0, 0.5, 0.75, 1.25, 1.5, 2}.

5. RESULTS

5.1. Visualization
Visualizations are indispensable for analyzing high-dimensional
data, which is able to intuitively reveal the intrinsic structure
of data. Graphs and nodes of a smaller dataset, MUTAG, are
represented as representation vectors with different models, and
these vectors are further mapped into a two-dimensional space
using t-SNE (Maaten and Hinton, 2008).

Figure 3 shows the visualization of graph and node
representations. For MT-GIN and MT-DIFFPOOL, the
hyperparameter α is fixed to 1. There are obvious differences
between GIN and DIFFPOOL, as GIN could distinguish the
graph representations from the node representations, while
graph representations of different classes learned by DIFFPOOL
are further away. All models are able to learn distinguishable
graph representations, whereas GIN has a part of outliers on
the right side and the same thing happens with DIFFPOOL in
the lower left corner. In contrast, MT-GIN and MT-DIFFPOOL
achieve more compact clusters. These models differ greatly in
the performance of node representation learning. The node

visualization results of GIN and DIFFPOOL are not meaningful,
in which nodes with different tags are clustered together. Models
with the MTRL framework achieve superior performance on
node visualization, and both MT-GIN and MT-DIFFPOOL form
clear boundaries among three main classes of nodes. Intuitively,
this experiment demonstrates that the MTRL framework could
help learn more meaningful and robust representations.

5.2. Training Set Performance
We validate the performance of our architecture and baselines by
comparing their training accuracies, and we measure the effect
of the key parameter α. An attributed dataset – ENZYMES and
a large dataset – NCI1 are taken as examples. Figures 4, 5 show
training curves of MT-GIN and MT-DIFFPOOL with different
α, noted that the multi-task architecture is equal to a single-task
graph classification model when α is 0. In our experiments, the
multi-task learning model has a relatively rapid convergence rate,
and they brings gain in fitting training compared to fixing α to
0 as in MT-GIN (MIN-0) and MT-DIFFPOOL (DIFFPOOL-0).
It should be noted that the node classification accuracy of the
MIN-0 and DIFFPOOL-0 tends to decline as iteration increases
on ENZYMES, as latent representations of nodes are learned
to fit the graph classification task. In particular, the training
accuracy aligns with the models’ representation power, and the
multi-task learning models with different α tend to have higher

FIGURE 4 | Training set performance of different models on the ENZYMES dataset. (A) Training loss for graphs of MT-GIN. (B) Training loss for nodes of MT-GIN.

(C) Training loss for graphs of MT-DIFFPOOL. (D) Training loss for nodes of MT-DIFFPOOL.
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FIGURE 5 | Training set performance of different models on the NCI1 dataset. (A) Training loss for graphs of MT-GIN. (B) Training loss for nodes of MT-GIN.

(C) Training loss for graphs of MT-DIFFPOOL. (D) Training loss for nodes of MT-DIFFPOOL.

TABLE 3 | Graph classification accuracy (%) of the MTRL architecture as well as

the state-of-the-art baselines.

Datasets MUTAG PTC ENZYMES PROTEINS NCI1

GIN 89.55 69.71 65.67 73.29 77.12

MT-GIN 91.63 72.65 69.55 75.48 82.59

DIFFPOOL 87.21 65.04 62.68 72.08 68.91

MT-DIFFPOOL 87.36 70.52 64.90 76.18 71.26

The best results are shown in bold.

training accuracies than the single-task learning ones. Moreover,
the weight of node classification loss is not always positively
correlated with the training accuracy for graphs or nodes, thus
the hyperparameter α is important and should be well tuned.

5.2.1. Test Set Performance

Next, we compare test accuracies.We fix the training ratio to 90%
and display the average accuracy of graph classification and node
classification, as shown in Tables 3, 4. The MTRL architecture
consistently outperforms the original GNN models, and it is
able to efficiently capture graph structure and node features. By
means of node classification task that accurately extracts node
attributes, theMTRL architecture can achieve better performance
in graph classification.

TABLE 4 | Node classification accuracy (%) of the MTRL architecture as well as

the state-of-the-art baselines.

Datasets MUTAG PTC ENZYMES PROTEINS NCI1

GIN 28.21 18.60 27.33 26.49 2.08

MT-GIN 94.35 91.02 71.23 61.85 80.48

DIFFPOOL 19.76 3.11 31.87 29.27 1.22

MT-DIFFPOOL 97.20 88.33 82.71 73.02 83.99

The best results are shown in bold.

For graph classification, both MT-GIN and MT-DIFFPOOL
outperform the original models on all datasets. The MUTAG
dataset is relatively small with simple structure thus the
improvement is not obvious. Specifically, even if node adjacency
vectors are provided as input features, it still reaches higher
accuracy on PTC and NCI1 dataset. The experimental results
demonstrate that models’ generalization performance is
improved as the potential information contained in multiple
tasks is leveraged.

For node classification, it is observed that the MTRL
architecture shows significant improvement on five protein
datasets, since the results of single-task GNN models are hardly
better than random guesses, and their accuracy is relative to the
number of nodes in each class. The training accuracy of node
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classification is very close to the test accuracy on ENZYMES and
NCI1, which means the learning of graph-level structure is able
to prevent the overfitting of fine-grained node-level features from
a macroscopical view.

6. CONCLUSION

In this paper, we develop a novel multi-task representation
learning architecture coupled with the task of supervised node
classification for enhanced graph classification. Along the
way, we extend the architecture to two state-of-the-art GNN
models, thus the model could perform node classification
during the process of graph classification. We conduct
extensive experiments on multiple benchmark datasets, and the
experimental results demonstrate that the proposed architecture
performs significantly better than various superior GNN
methods for graph classification as well as node classification.

Moreover, we will explore the following directions in
the future:

(1) The MTRL architecture could simultaneously optimize
graph classification and node classification task, and we will make
it scalable for other graph applications such as unsupervised link
prediction or community detection.

(2) We have analyzed the effect of the weight parameter α,
and we plan to explore a self-adaptive parameter or structure
that could balance losses of each task. Moreover, it would
also be interesting to investigate soft parameter sharing or
regularization-based sharing.
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Different from conventional single-task optimization, the recently proposed multitasking
optimization (MTO) simultaneously deals with multiple optimization tasks with different
types of decision variables. MTO explores the underlying similarity and complementarity
among the component tasks to improve the optimization process. The well-known
multifactorial evolutionary algorithm (MFEA) has been successfully introduced to solve
MTO problems based on transfer learning. However, it uses a simple and random
inter-task transfer learning strategy, thereby resulting in slow convergence. To deal
with this issue, this paper presents a two-level transfer learning (TLTL) algorithm,
in which the upper-level implements inter-task transfer learning via chromosome
crossover and elite individual learning, and the lower-level introduces intra-task transfer
learning based on information transfer of decision variables for an across-dimension
optimization. The proposed algorithm fully uses the correlation and similarity among
the component tasks to improve the efficiency and effectiveness of MTO. Experimental
studies demonstrate the proposed algorithm has outstanding ability of global search
and fast convergence rate.

Keywords: evolutionary multitasking, multifactorial optimization, transfer learning, memetic algorithm,
knowledge transfer

INTRODUCTION

In recent years, the development of evolutionary computation has attracted extensive attention.
Based on the Darwinian theorem of “Survival of the Fittest” (Dawkins, 2006; Ma et al., 2014a), the
population-based evolutionary algorithms (EAs) have been successfully used to solve a wide range
of optimization problems (Deb, 2001; Qi et al., 2014; Ma et al., 2018). Multitasking optimization
(MTO) problems have emerged as a new interest in the area of evolutionary computation (Da
et al., 2016; Gupta et al., 2016a; Ong and Gupta, 2016; Yuan et al., 2016). Inspired by the ability
of human beings to process multiple tasks at the same time, MTO aims at dealing with different
optimization tasks simultaneously within a single solution framework. MTO introduces implicit
transfer learning across different optimization tasks to improve the solving of each task (Gupta
and Ong, 2016; Gupta et al., 2016b). If the component tasks in an MTO problem possess some
commonalities and similarities, sharing knowledge among these optimization tasks is helpful to
solve the whole MTO problems (Bali et al., 2017; Yuan et al., 2017).
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Transfer learning is a new machine learning method that
has caught increasing attention in recent years (Pan and Yang,
2010; Tan et al., 2017). It focuses on solving the target problem
by applying the existing knowledge learned from other related
problems (Gupta et al., 2018). In general, the more commonalities
and similarities are shared between the source problem and
target problem, the more effectively the transfer learning work
for them. Multifactorial evolutionary algorithm (MFEA) is the
first work to introduce transfer learning into the domain of
evolutionary computation to deal with MTO problem (Gupta and
Ong, 2016). In MFEA, the knowledge is implicitly transferred
through chromosomal crossover (Gupta and Ong, 2016). As
a general framework, MFEA uses a simple inter-task transfer
learning by assortative mating and vertical cultural transmission
with randomness, which tends to suffer from excessive diversity
thereby leading to a slow convergence speed (Hou et al., 2017).

To deal with the aforementioned issues of MFEA, this
paper proposes a two-level transfer learning (TLTL) framework
in MTO. The upper level performs inter-task knowledge
transfer via crossover and exploits the knowledge of the elite
individuals to reduce the randomness, which is expected to
enhance the search efficiency. The lower level is an intra-
task knowledge transfer for transmitting information from one
dimension to other dimensions within the same optimization
task. The two levels cooperate with each other in a mutually
beneficial fashion. The experimental results on various MTO
problems show that the proposed algorithm is capable of
obtaining high-quality solutions compared with the state-of-the-
art evolutionary MTO algorithms.

In the rest of this paper, section “Background and Related
Work” introduces the background of MTO and MFEA as
well as the related work of transfer learning in evolutionary
computation. The proposed TLTL algorithm is described in
section “Method.” Section “Experimental Methodology” presents
the MTO test problems. The comparison results between
the proposed algorithm and the state-of-the-art evolutionary
multitasking algorithms are shown in section “Results.” Finally,
section “Discussion and Conclusion” concludes this work and
points out some potential future research directions.

BACKGROUND AND RELATED WORK

This section introduces the basics of MTO and MFEA, and the
related work of Evolutionary MTO.

Multitasking Optimization
The main motivation of MTO is to exploit the inter-task synergy
to improve the problem solving. The advantage of MTO over the
counterpart single-task optimization in some specific problems
has been demonstrated in the literature (Xie et al., 2016; Feng
et al., 2017; Ramon and Ong, 2017; Wen and Ting, 2017;
Zhou et al., 2017).

Without loss of generality, we consider a scenario in which
K distinct minimization tasks are solved simultaneously. The
j-th task is labeled Tj, and its objective function is defined as
Fj (x) : Xj → R. In such setting, MTO aims at searching the

space of all optimization tasks concurrently for
{

x
∗

1, . . . , x
∗

k

}
=

argmin{F1(x1), . . . , FK(xk)}, where each x
∗

j is a feasible solution
in decision space Xj. To compare solution individuals in
the MFEA, it is necessary to assign new fitness for each
population member pi based on a set of properties as follows
(Gupta and Ong, 2016).

Definition 1 (Factorial Cost)
The factorial cost of an individual is defined as αij = γδij + Fij,
where Fij and δij are the objective value and the total constraint
violation of individual pi on optimization task Tj, respectively.
The coefficient γ is a large penalizing multiplier.

Definition 2 (Factorial Rank)
For an optimization task Tj, the population individuals are sorted
in ascending order with respect to the factorial cost. The factorial
rank rij of an individual pi on optimization task Tj is the index
value of pi in the sort list.

Definition 3 (Skill Factor)
The skill factor τi of an individual pi is the component task on
which pi performs the best τi = argmin{rij}.

Definition 4 (Scalar Fitness)
The scalar fitness of an individual pi in a multitasking
environment is calculated by βi = max{1/ri1, . . . , 1/riK}.

Multifactorial Evolutionary Algorithm
This subsection briefly introduces MFEA (Gupta and Ong, 2016),
which is the first evolutionary MTO algorithm inspired by the
work (Cloninger et al., 1979). MFEA evaluates a population of
N individuals in a unified search space. Each individual in the
initial population is pre-assigned a dominant task randomly.
In the process of evolution, each individual is only evaluated
with respect to one task to reduce the computing resource
consumption. MFEA uses typical crossover and mutation
operators of classical EAs to the population. Elite individuals
for each task in the current generation are selected to form the
next generation.

The knowledge transfer in MFEA is implemented through
assortative mating and vertical cultural transmission (Gupta and
Ong, 2016). If two parent individuals assigned to different skill
factor are selected for reproduction, the dominant tasks, and
genetic material of offspring inherit from their parent individuals
randomly. MFEA uses a simple inter-task transfer learning and
has strong randomness.

Evolutionary Multitasking Optimization
Transfer learning is one active research field of machine learning,
where the related knowledge in source domain is used to
help the learning of the target domain. Many transfer learning
techniques have been proposed to enable EAs to solve MTO
problems. For example, the cross-domain MFEA, i.e., MFEA,
solves multi-task optimization problems using implicit transfer
learning in crossover operation. Wen and Ting (2017) proposed
a utility detection of information sharing and a resource
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FIGURE 1 | The general flowchart of proposed algorithm.

redistribution method to reduce resource waste of MFEA. Yuan
et al. (2017) presented a permutation-based MFEA (P-MFEA)
for multi-tasking vehicle routing problems. Unlike the original
MFEA using a random-key representation, P-MFEA adopts a
more effective permutation-based unified representation. Zhou
et al. (2017) suggested a novel MFEA for combinatorial MTO
problems. They developed two new mechanisms to improve
search efficiency and decrease the computational complexity,
respectively. Xie et al. (2016) enhanced the MFEA based
on particle swarm optimization (PSO). Feng et al. (2017)
developed a MFEA with PSO and differential evolution (DE).
Bali et al. (2017) put forward a linearized domain adaptation
strategy to deal with the issue of the negative knowledge
transfer between uncorrelated tasks. Ramon and Ong (2017)
presented a multi-task evolutionary algorithm for search-based

software test data generation. Their work is the first attempt
to demonstrate the feasibility of MFEA for solving real-world
problems with more than two tasks. Da et al. (2016) advanced
a benchmark problem set and a performance index for single-
objective MTO. Yuan et al. (2016) designed a benchmark
problem set for multi-objective MTO that can facilitate the
development and comparison of MTO algorithms. Hou et al.
(2017) proposed an evolutionary transfer reinforcement learning
framework for multi-agent intelligent system, which can adapt
to the dynamic environment. Tan et al. (2017) introduced an
adaptive knowledge reuse framework across expensive multi-
objective optimization problems. Multi-problem surrogates
were proposed to reuse knowledge gained from distinct
but related problem-solving experiences. Gupta et al. (2018)
discussed the recent studies on global black-box optimization
via knowledge transfer across different problems, including
sequential transfer, multitasking, and multiform optimization.
For a general survey of transfer learning, the reader is referred to
Pan and Yang (2010).

METHOD

This section introduces the TLTLA algorithm for MTO.
The upper level is an inter-task knowledge learning, which
uses the inter-task commonalities and similarities to improve
the efficiency of cross-task optimization. The lower level
transfer learning focuses on intra-task knowledge learning,
which transmits the information from one dimension to other
dimensions to accelerate the convergence. The general flowchart
of the proposed algorithm is shown in Figure 1.

At the beginning of TLTLA, the individuals in the population
are initialized with a unified coding scheme. Let tp indicate the
inter-task transfer learning probability. If a generated random
value is greater than tp, the algorithm goes through four steps
to complete the inter-task transfer learning process. The parent
population produces offspring population by crossover operator

FIGURE 2 | The unified coding and different decoding in multi-tasking optimization with quadratic assignment problem (QAP) and knapsack problem (KP).
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FIGURE 3 | Representation scheme of an individual.

and mutate operator. In chromosome crossover, part of the
knowledge transfer is realized with the random inheritance
of culture and gene from parent to children. However, this
pattern is accompanied by strong randomness. To deal with
this issue, this paper suggests knowledge transfer of inter-task
elite individuals. Finally, the individuals with high fitness are
selected into the next generation. If the generated random value
is less than tp, the algorithm performs a local search based
on intra-task knowledge transfer. According to the individual
fitness and the elite selection operator, the algorithm executes
1-dimensional search using information from other dimensions.
Detailed description of the above two processes are provided in
the following subsections.

Encoding and Decoding
To facilitate the knowledge transfer in the multitasking
environment, Gupta et al. (2016b) suggested using the unified
individual coding scheme. Let K denote the number of distinct
component tasks in the multitasking environment, the search
space dimension of the i-th task is denoted as Di. Through
the unified processing, the number of decision variables of
every chromosome is set to DMTO = max{Di}. Each decision
variable in a chromosome is normalized in the range [0, 1]
as shown in Figure 2. Conversely, in the phase of decoding,
each chromosome can be decoded into a task-specific solution
representation. For the i-th task Ti, we extract Di decision
variables from the chromosome, and decoded these decision
variables into a feasible solution for the optimization tasks Ti.
In general, the extracted part is the first Di decision variables
of the chromosome.

Initialization
In the initialization, a population p0 of N individuals is generated
randomly by using a unified coding scheme. Every individual
is encoded in a chromosome and associated with a set of
properties including factorial cost, skill factor, factorial rank, and
scalar fitness. The four properties have been described in section
“Background and Related Work.” Representation scheme of an
individual is shown in Figure 3.

In such a setting, considering K optimization tasks in
the initial multitasking environment, we assign the equal
computation resource to each component task. In other words,
the subpopulation of each component task is composed by N/K
individuals in the evolutionary process.

FIGURE 4 | Five points in two-task optimization problem.

Fitness Evaluation
In a multitasking environment, an individual may optimize one
or multiple optimization tasks. Herein, a generic way is used to
calculate the fitness of each individual (Gupta and Ong, 2016).
Figure 4 and Table 1 illustrate the fitness assignment of the
individuals in a two-task optimization problem.

As shown in Figure 4, five individuals and their corresponding
fitness function values on different tasks are given. According
to the definitions of four properties described in the section
“Background and Related Work,” the corresponding values are
shown in Table 1. For example, individual p2 has factorial costs
0.8 and 2 on component tasks T1 and T2, respectively. After
sorting all individuals based on their factorial costs in ascending
order, the factorial ranks of individual p2 on tasks T1 and T2 are
2 and 4, respectively. Thus, the final scalar fitness and skill factor
of individual p2 are 1/2 = max{1/2, 1/4} and T1, respectively.

Inter-Task Knowledge Transfer
This subsection describes the inter-task transfer learning in
Algorithm 1, which enables the discovery and transfer of
existing genetic material from one component task to another.
Individuals in the multitasking environment may have different
cultural backgrounds, i.e., different skill factors. When the
cultural background of an individual is changed, the individual

TABLE 1 | The results of calculating individual fitness.

Individual Factorial cost Factorial rank Skill factor Scalar fitness

αi1 αi2 ri1 ri2 τi βi

p1 0.5 3 1 5 T1 1

p2 0.8 2 2 4 T1 1/2

p3 1.5 1 4 3 T2 1/3

p4 1 0.5 3 1 T2 1

p5 2 0.8 5 2 T2 1/2

Bold values in the case used to explain the concept of individual fitness evaluation
in multitasking environment.
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is transferred from one task to another (Gupta and Ong, 2016).
One of the drawbacks in MFEA is the strong randomness in its
inter-task knowledge transfer. To deal with this issue, an elite
individual transfer is proposed in this subsection.

Algorithm 1: Inter-task transfer learning.
Require:
Pt, the current population;
rmp, the balance factor between crossover and mutation;
N, the population size;
K, the number of component tasks.
1. for i = 1 to N/2 do
2. Randomly choose parents (pa, pb) from Pt
3. if (τa == τb) or (rand < rmp)
4. (ca, cb) = crossover on (pa, pb)
5. ca and cb randomly inherits τa or τb
6. else
7. ca = mutation in (pa) and cb = mutation on (pb)
8. ca inherits (τa) and cb inherits (τb)
9. end if

10. end for
11. for i = 1 to N do
12. Evaluate ci on task τi
13. end for
14. Compute factorial rank for all individuals
15. Record elite individuals (factorial rank == 1) as

Bt = {b1,. . .,bK} and set
16. for i = 1 to K
17. Evaluate bi on task τr , where r = rand (K) and r ! = i
18. Put the evaluated individualinto
19. end for
20. Rt = Ct ∪ Pt ∪ Br

t
21. Compute scalar fitness for all individuals

22. Select N elite individuals from Rt to Pt+1
23. Set t = t+1

There are two ways of inter-task individual transfer in
Algorithm 1. One is implicit genetic transfer through
chromosomal crossover as shown in line 5 (Gupta and
Ong, 2016). If two parent individuals with different cultural
backgrounds undergo crossover, their offspring can inherit
from one of them (Cavallisforza and Feldman, 1973; Gupta and
Ong, 2016). The other is the elite individual transfer among
tasks, which interchanges the skill factor of the best individuals
among tasks in lines 17. If multiple optimization tasks are of
commonality and similarities, a good solution to one task is
also expected to have a good performance on other tasks. To
reduce resource consumption, this operation is applied to the
best individuals only.

Individual Production
In inter-task transfer learning, the proposed algorithm uses the
simulated binary crossover (SBX) (Deb and Agrawal, 1994; Ma
et al., 2016b) operator and the polynomial mutation (Ma et al.,
2016a) operator to produce the offspring population.

In lines 2–9 of Algorithm 1, assortative mating and
vertical cultural transmission are performed in the parent pool.
Specifically, two randomly selected parent individuals undergo
crossover or mutation based on the balance factor rmp. In
the crossover operation, the mating of parent individuals with
different skill factor may lead to the emergence of genetic transfer
(Cavallisforza and Feldman, 1973; Feldman and Laland, 1996).
Each child imitates the skill factor from one of the two parent
individuals randomly. The random inheritance mechanism can
be considered as an inter-task knowledge transfer, which shares
relevant information for promoting population evolution.

FIGURE 5 | An example of transfer learning among different dimensions.
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TABLE 2 | Nine bi-tasking benchmark problems.

Two-task Intersection Task Rs DT Global optimal Landscape
problem and similarity

1 CI+HS Griewank 1.0000 50 (0, 0, . . ., 0)∈[−100, 100]50 Multimodal+Non-separable

Rastrigin 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

2 CI+MS Ackley 0.2261 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Rastrigin 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

3 CI+LS Ackley 0.0002 50 (42.0969, . . ., 42.0969)∈ [−50, 50]50 Multimodal+Non-separable

Schwefel 50 (420.9687, . . ., 420.9687)∈ [−500, 500]50 Multimodal+Separable

4 PI+HS Rastrigin 0.8670 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Sphere 50 (0, . . ., 0, 20, . . ., 20)∈ [−100, 100]50 Unimodal+Separable

5 PI+MS Ackley 0.2154 50 (0, . . ., 0, 1, . . ., 1)∈ [−50, 50]50 Multimodal+Non-separable

Rosenbrock 50 (1, 1, . . ., 1)∈ [−50, 50]50 Multimodal+Non-separable

6 PI+LS Ackley 0.0725 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Weierstrass 25 (0, 0, . . ., 0)∈ [−0.5, 0.5]25 Multimodal+Non-separable

7 NI+HS Rosenbrock 0.9434 50 (1, 1, . . ., 1)∈ [−50, 50]50 Multimodal+Non-separable

Rastrigin 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

8 NI+MS Griewank 0.3669 50 (10, 10, . . ., 10)∈ [−100, 100]50 Multimodal+Non-separable

Weierstrass 50 (0, 0, . . ., 0)∈ [−0.5, 0.5]50 Multimodal+Non-separable

9 NI+LS Rastrigin 0.0016 50 (0, 0, . . ., 0)∈ [−50, 50]50 Multimodal+Non-separable

Schwefel 50 (420.9687, . . ., 420.9687)∈ [−500, 500]50 Multimodal+Separable

Inter-Task Knowledge Transfer of Elite Individuals
Due to the strong randomness of assortative mating and
vertical cultural transmission, population evolution has some
limitations in the global search and convergence. In lines 15–19 of
Algorithm 1, an elite individual transfer is introduced to alleviate
this issue.

In each generation, the best individual of each component
task (i.e., the factorial rank of this individual is 1) is recorded in
line 15. Considering the commonalities and similarities among
different tasks, a new skill factor for each best individual is
assigned and evaluated with respect to the new task. The inter-
task knowledge transfer of elite individuals is shown in line 17.
If multiple optimization tasks are of strong commonalities and
similarities, a good solution of one task is also expected to have
good performance on the other tasks.

Evaluation and Selection
As shown in line 20, the combined population Rt consists
of parent population Pt , offspring population Ct , and learned
individuals Br

t . An elitist selection operator is used and the
individuals with higher scalar fitness are selected into the next
generation in line 22.

Intra-Task Knowledge Transfer
Besides, inter-task transfer learning, the proposed algorithm is
also characterized with intra-task transfer learning as shown
in Algorithm 2. The intra-task transfer learning transmits the
knowledge from one dimension to other dimensions within the
same task. The proposed cross-dimensional one-dimensional
search complements well with SBX and is expected to prevent the
algorithm from getting trapped in local optima.

Algorithm 2: Intra-task transfer learning.
Require:

Pt , the current population;
S, the number of variables in unified individual coding.
1. for i = 1 to S do
2. Randomly select an individual pr from Pt
3. Off (1, S) = differential evolution on {xi}
4. for j = 1 to S do
5. dj = (pr (1),. . .,pr(j-1), Off (j), pr (j+1), . . ., pr (S))
6. Evaluate dj on task τpr
7. if dj is better than pr
8. pr(j) = Off (j)
9. end if

10. end for
11. end for

One-Dimensional Mutation
At the beginning of Algorithm 2, an individual is randomly
selected from the current population in line 2. In line 3, S
offspring genes [Off (1),. . .,Off (S)] are generated by DE mutation
operator (Qin and Suganthan, 2005; Ma et al., 2014b,c), with
the parent genes coming from the i-th dimension variable xi
of the population.

One-Dimensional Search Among Dimensions
As shown in lines 4–10 of Algorithm 2, S offspring are
iteratively used to compare with the S variables of the selected
individual pr as shown in Figure 5. Three individuals with the
same dominant task are given in the search space. Firstly, we
randomly select an individual p2 from the current population.
Secondly, three decision variables 2, 3, and 5 are extracted in
the 1st dimension of individuals p1, p2, and p3, respectively.
Thirdly, three extracted decision variables undergo DE to
generate three offspring genes 4, 2 and 1.5. Finally, the cross-
dimensional search for individual p2 is performed to find
out improved solutions. Offspring genes 1.5 and 2 replace
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the parent genes 3 and 4, respectively, as they obtain better
fitness. On the contrary, offspring gene 4 is abandoned as it
attains no improvement.

Evaluation and Selection
The evaluation and selection of a temporary individual dj
constructed by the one-dimensional search are shown in
lines 8–11. To reduce the number of function evaluations,
the temporary individual dj is evaluated only on task
τpr . In line 7, if the new constructed individual dj is
better than pr in terms of fitness value, pr is updated by
dj in line 8.

EXPERIMENTAL METHODOLOGY

The proposed TLTLA is compared with the state-of-
the-art evolutionary MTO algorithms, i.e., MFDE (Feng
et al., 2017), MFEA (Gupta and Ong, 2016), and SOEA
(Gupta and Ong, 2016). The benchmark MTO problems
(Da et al., 2016) are used to test the algorithms. All
test problem are bi-tasking optimization problems. To
verify the effectiveness of the compared algorithms,
component tasks in MTO problems possess different types
of correlation in Da et al. (2016). To demonstrate the
scalability of the proposed algorithm on more complex
problems, we also construct nine tri-tasking optimization
problems in this study.

Optimization Functions
This section introduces seven elemental single-
objective continuous optimization functions (Da
et al., 2016) used to construct the MTO test
problems. The specific definitions of these seven
functions are shown as follows. In particular, the
dimensionality of the search space is denoted
as D.

(1) Sphere:

F1(x) =

D∑
i=1

x2
i , x ∈ [−100, 100]D

(2) Rosenbrock:

F2(x) =

D−1∑
i=1

(100(x2
i − xi+1)

2
+ (xi − 1)2), x ∈ [−50, 50]D

(3) Ackley:

F3(x) = −20 exp(−0.2

√√√√ 1
D

D∑
i=1

x2
i )−

exp(
1
D

D∑
i=1

cos(2πxi))+ 20+ e, x ∈ [−50, 50]D
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TABLE 4 | The mean and standard deviation of function values obtained by four compared algorithms on nine bi-tasking optimization problems.

Problem Task TLTLA MFDE MFEA SOEA

CI+HS T1 0.00E+ 00 (0) 1.00E− 03 (3.05E− 03) 3.73E− 01 (0.0617) 9.08E− 01 (0.0585)

T2 0.00E+ 00 (0) 2.61E+ 00 (7.96) 1.95E+ 02 (34.4953) 4.10E+ 02 (49.0439)

CI+MS T1 1.20E− 14 (2.47E− 14) 1.00E− 03 (0.003) 4.39E+ 00 (0.4481) 5.32E+ 00 (1.2338)

T2 0.00E+ 00 (0) 3.00E− 03 (0.012) 2.27E+ 02 (52.2778) 4.41E+ 02 (65.0750)

CI+LS T1 3.41E− 14 (1.21E− 14) 2.12E+ 01 (0.04) 2.02E+ 01 (0.0798) 2.12E+ 01 (0.2010)

T2 6.36E− 04 (1.11E− 19) 1.84E+ 04 (1578.16) 3.70E+ 03 (429.1093) 4.18E+ 03 (657.2786)

PI+HS T1 2.88E+ 01 (62.1998) 7.83E+ 01 (15.37) 6.14E+ 02 (131.0438) 4.45E+ 02 (57.2891)

T2 9.63E− 08 (3.86E− 07) 2.20E− 05 (2.90E− 05) 1.01E+ 01 (2.4734) 8.40E+ 01 (17.1924)

PI+MS T1 1.02E+ 00 (1.1088) 1.00E− 03 (0.001) 3.49E+ 00 (0.6289) 5.07E+ 00 (0.4417)

T2 2.65E+ 01 (24.5602) 6.03E+ 01 (20.53) 7.02E+ 02 (267.8668) 2.40E+ 04 (10487.2597)

PI+LS T1 1.60E− 12 (4.90E− 12) 4.60E− 01 (0.58) 2.00E+ 01 (0.1302) 5.05E+ 00 (0.6299)

T2 1.59E− 14 (6.32E− 14) 2.20E− 01 (0.47) 1.93E+ 01 (1.7291) 1.32E+ 01 (2.3771)

NI+HS T1 3.52E+ 01 (20.8321) 8.93E+ 01 (48.60) 1.01E+ 03 (346.1264) 2.43E+ 04 (5842.0394)

T2 2.54E+ 00 (11.3913) 2.05E+ 01 (15.41) 2.87E+ 02 (92.4182) 4.48E+ 02 (61.1642)

NI+MS T1 5.55E− 17 (2.23E− 16) 2.03E− 03 (0.0042) 4.20E− 01 (0.0654) 9.08E− 01 (0.0702)

T2 1.35E− 03 (0.0030) 2.97E+ 00 (1.08) 2.71E+ 01 (2.6883) 3.70E+ 01 (3.4558)

NI+LS T1 3.85E+ 01 (89.1612) 9.62E+ 01 (20.02) 6.51E+ 02 (98.6871) 4.37E+ 02 (62.6339)

T2 6.36E− 04 (7.31E− 10) 3.94E+ 03 (730.99) 3.62E+ 03 (325.0275) 4.14E+ 03 (524.4335)

FIGURE 6 | Convergence trends of tasks in CI+HS.

(4) Rastrigin:

F4(x) =

D∑
i=1

(x2
i − 10 cos(2πxi)+ 10), x ∈ [−50, 50]D

(5) Schwefel:

F5(x) = 418.9829× D−
D∑

i=1

xi sin(|xi|
1
2 ), x ∈ [−500, 500]D

(6) Griewank:

F6(x) = 1+
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi
√

i
), x ∈ [−100, 100]D

(7) Weierstrass:

F7(x) =

D∑
i=1

(

kmax∑
k=0

[ak cos(2πbk(xi + 0.5))])− D
kmax∑
k=0

[ak cos(2πbk
· 0.5)]a = 0.5, b = 3, kmax = 20, x ∈ [−0.5, 0.5]D

Two Multitasking Optimization Problem
Sets
The nine bi-tasking optimization problems were first proposed
in Da et al. (2016), based on which nine tri-tasking optimization
problems are constructed in this paper. The properties of the
bi-tasking optimization problems are summarized in Table 2,
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FIGURE 7 | Convergence trends of tasks in CI+MS.

FIGURE 8 | Convergence trends of tasks in CI+LS.

which clearly shows the commonalities and similarities among
component tasks.

For the global optimal solutions of the two component tasks,
complete intersection (CI) indicates that the global optima of
the two optimization tasks are identical on all variables in the
unified search space. No intersection (NI) means that the global
optima of the two optimization tasks are different on all variables
in the unified search space. Partial intersection (PI) suggests that
the global optima of the two tasks are the same on a subset of
variables in the unified search space.

The similarity (Rs) of a pair of optimization tasks are
divided into three categories (Da et al., 2016). According to
the Spearmans rank correlation similarity metric [40], Rs < 0.2
indicates low similarity (LS), 0.2 < Rs < 0.8 means medium
similarity (MS), and Rs > 0.8 denotes high similarity (HS).

In addition to the above nine bi-tasking optimization
problems, this paper attempts to solve tri-tasking optimization
problems. Nine constructed tri-tasking optimization problems
are shown in Table 3.

RESULTS

Experimental Results on Bi-Task
Optimization Problems
On the nine bi-tasking optimization problems, the population
size is set to N = 100 for TLTLA, MFDE, MFEA, and SOEA. The
maximum number of function evaluations is set to be 50,000 for
SOEA and 100,000 for TLTLA, MFDE, and MFEA. Since SOEA
is a single-tasking algorithm, it has to be run twice on bi-tasking
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FIGURE 9 | Convergence trends of tasks in PI+HS.

FIGURE 10 | Convergence trends of tasks in PI+MS.

problems. As such, SOEA consumes the same computational
budget with other algorithms. All compared algorithms are
performed in 20 independent runs on each MTO problem. The
balance factor between crossover and mutation is set to rmp = 0.3
in TLTLA, MFDE, and MFEA.

Table 4 presents the mean and standard deviation of
function values obtained by the four compared algorithms
on nine bi-tasking optimization problems. The best
mean function value on each task is highlighted in
bold. Compared with MFEA, MFDE and SOEA, TLTLA
obtains much better performance. TLTLA obtains the best
results in 17 out of 18 independent optimization tasks,
except the task T1 of the PI+MS problem. To study the
search efficiency of TLTLA, MFDE, MFEA, and SOEA,
Figures 6–14 show the convergence trends of all compared
algorithms on the representative optimization tasks. In

terms of convergence rate, TLTLA obtains a better overall
performance than MFDE, MFEA, and SOEA on most of
optimization tasks.

On the MTO problems with the high inter-task similarity or
complementarity, such as CI+HS, CI+MS, CI+LS, PI+HS, and
NI+HS, as shown in Tables 2, 4, TLTLA performs much better
than MFEA, MFDE and SOEA in terms of solution quality. In
particular, TLTLA obtains the corresponding global optimum 0
on tasks T1and T2 of CI+HS and task T2 of CI+MS. Three
MTO algorithms, i.e., TLTLA, MFEA, and MFDE, work better
than the traditional single-task optimization algorithm SOEA
thanks to the use of inter-task knowledge transfer. However,
the knowledge transfer in MFEA and MFDE is of strong
randomness. TLTLA handles this issue by the inter-task elite
individual transfer and intra-task cross-dimensional search. The
inter-task elite individual transfer is more suitable for MTO
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FIGURE 11 | Convergence trends of tasks in PI+LS.

FIGURE 12 | Convergence trends of tasks in NI+HS.

problems with CI, i.e., the global optima of two component
optimization tasks are identical in the unified search space. The
intra-task transfer learning can improve the population diversity
and complement well with SBX.

On some MTO problems, the component tasks have different
number and/or different kinds of decision variables, such
as PI+LS problem. Let one of the component tasks be α-
dimensional and the other be β-dimensional (supposing α < β).
Therefore, all the individuals in the unified search space are
encoded by β decision variables. Using cross-dimensional search,
TLTLA is able to utilize the information of the extra β− α

decision variables to optimize the α-dimensional component
task, which is ignored by the other compared algorithms. This
may be the reason TLTLA performs the best on PI+LS problem.

On separable and non-separable optimization tasks, as shown
in Tables 2, 4, TLTLA performs well on all separable optimization
tasks but not on the non-separable Rosenbrock function. The

reason is that Rosenbrock function is fully non-separable
problem making the cross-dimensional search of intra-task
knowledge transfer inefficient.

Experimental Results on Tri-Tasking
Optimization Problems
To study the scalability of the proposed algorithm in solving
more complex tri-tasking optimization problems, we construct
nine tri-tasking optimization problems based on the bi-
tasking problems (Da et al., 2016). Specifically, nine tri-tasking
optimization problems are constructed by adding an additional
task into a bi-tasking optimization problem proposed in Da
et al. (2016). All compared algorithms are performed in 20
independent runs on each tri-tasking problem. TLTLA is
compared with MFEA. Both algorithms are extended to handle
tri-tasking problems. The balance factor between crossover and
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FIGURE 13 | Convergence trends of tasks in NI+MS.

FIGURE 14 | Convergence trends of tasks in NI+LS.

mutation is set to rmp = 0.3 for all compared algorithms. The
population size is set to N = 150 for all compared algorithms.
The maximum number of function evaluations is set to 150,000
for all compared algorithms. It is important to note that the
experimental settings assign an equal amount of computing
resources for each component optimization task in bi-tasking and
tri-task optimization problems.

Table 3 reports the mean and standard deviation of the
function values obtained by TLTLA and MFEA on nine tri-
tasking optimization problems. The best mean function value
on each task is highlighted in bold. As can be summarized in
Table 3, TLTLA performs significantly better than MFEA in
dealing with the tri-tasking problems. The experimental results
in Tables 3, 4 demonstrate the high scalability of the proposed
algorithm. When the number of component tasks is increased,
TLTLA can still obtain solutions of high quality. In particular,
on task T2 of NI+HS+Ackley and task T1 of NI+LS+Griewank,
the proposed algorithm gets more improvements in solving
tri-tasking problem than the corresponding bi-tasking problem.

The reason is that the corresponding global optimum 0 of the
added Griewank task is found, which indicates that TLTLA can
utilize the population diversity in the multitasking environment
to escape from the local optima.

The Effectiveness Analysis of Two
Proposed Knowledge Transfers
In this section, we empirically study the effectiveness of the
two proposed knowledge transfer methods, including inter-task
and intra-task knowledge transfers. Two variants of TLTLA,
namely TLTLA-U and TLTLA-L are designed to compared with
TLTLA. The former is the same as TLTLA without using the
intra-task knowledge transfer, the latter is TLTLA without using
the inter-task knowledge transfer. MFEA is also involved in the
comparison as the baseline. Table 5 shows the mean and standard
deviation of the function values obtained by each compared
algorithm on nine bi-tasking optimization problems. The best
mean function value on each task is highlighted in bold. The sums
of rankings of the four compared algorithms are also presented.
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TABLE 5 | The mean and standard deviation of function values between the algorithms TLTLA, TLTLA-U, TLTLA-L, and MFEA.

Problem Task TLTLA Rank TLTLA-U Rank TLTLA-L Rank MFEA Rank

CIHS T1 0.00E+00 (0) 1 3.38E-01 (0.0701) 3 7.93E-02 (0.0311) 2 3.73E-01 (0.0617) 4

T2 0.00E+00 (0) 1 1.75E+02 (51.3951) 2 5.49E+02 (39.1071) 4 1.95E+02 (34.4953) 3

CIMS T1 1.20E-14 (2.47E-14) 1 5.35E+00 (0.9860) 3 2.10E+01 (0.1022) 4 4.39E+00 (0.4481) 2

T2 0.00E+00 (0) 1 2.33E+02 (60.9264) 3 5.44E+02 (49.9483) 4 2.27E+02 (52.2778) 2

CILS T1 3.41E-14 (1.21E-14) 1 2.01E+01 (0.0431) 2 2.11E+01 (0.0457) 4 2.02E+01 (0.0798) 3

T2 6.36E-04 (1.11E-19) 1 3.65E+03 (435.9930) 3 1.91E+00 (1.4314) 2 3.70E+03 (429.1093) 4

PIHS T1 2.88E+01 (62.1998) 1 6.80E+02 (165.2077) 4 5.44E+02 (39.4790) 2 6.14E+02 (131.0438) 3

T2 9.63E-08 (3.86E-07) 1 7.07E+00 (1.6748) 2 8.99E+00 (4.8763) 3 1.01E+01 (2.4734) 4

PIMS T1 1.02E+00 (1.1088) 1 3.27E+00 (0.4646) 2 2.09E+01 (0.0578) 4 3.49E+00 (0.6289) 3

T2 2.65E+01 (24.5602) 1 6.43E+02 (580.1922) 3 2.60E+02 (46.9642) 2 7.02E+02 (267.8668) 4

PILS T1 1.60E-12 (4.90E-12) 1 1.99E+01 (0.1446) 2 2.10E+01 (0.1169) 4 2.00E+01 (0.1302) 3

T2 1.59E-14 (6.32E-14) 1 2.08E+01 (3.0661) 3 2.26E+01 (1.8860) 4 1.93E+01 (1.7291) 2

NIHS T1 3.52E+01 (20.8321) 1 1.06E+03 (1.20E+03) 4 2.72E+02 (40.9484) 2 1.01E+03 (346.1264) 3

T2 2.54E+00 (11.3913) 1 2.58E+02 (90.7596) 2 5.28E+02 (38.6019) 4 2.87E+02 (92.4182) 3

NIMS T1 5.55E-17 (2.23E-16) 1 3.76E-01 (0.0754) 3 6.74E-02 (0.0172) 2 4.20E-01 (0.0654) 4

T2 1.35E-03 (0.0030) 1 2.76E+01 (2.6969) 3 5.55E+01 (2.3183) 4 2.71E+01 (2.6883) 2

NILS T1 3.85E+01 (89.1612) 1 6.52E+02 (120.3008) 4 5.42E+02 (34.9702) 2 6.51E+02 (98.6871) 3

T2 6.36E-04 (7.31E-10) 1 3.70E+03 (613.1705) 4 1.93E+00 (1.6964) 2 3.62E+03 (325.0275) 3

SUM 18 52 55 55

In Table 5, using only one knowledge transfer method,
TLTLA-U and TLTLA-L achieve similar overall performance to
MFEA. However, combining two proposed knowledge transfers,
TLTLA performs much better than MFEA, TLTLA-U, and
TLTLA-L on nine test problems, which indicates that the inter-
task and the intra-task knowledge transfer procedures cooperate
with each other in a mutually beneficial fashion. Therefore,
the inter-task and intra-task transfer learning components are
indispensable for the proposed algorithm.

DISCUSSION AND CONCLUSION

In this paper, a novel evolutionary MTO algorithm with TLTL
is introduced. Particularly, the upper level transfer learning uses
the commonalities and similarities among tasks to improve
the efficiency and effectiveness of genetic transfer. The lower
level transfer learning focuses on the intra-task knowledge
learning, which transmits the beneficial information from one
dimension to other dimensions. The intra-task knowledge
learning can effectively use decision variables information from
other dimensions to improve the exploration ability of the
proposed algorithm. The experimental results on two-task and
three-task optimization problems show the superior performance
and high scalability of the proposed TLTLA.

Evolutionary MTO is a recent paradigm introducing the
transfer learning of machine learning into the evolutionary
computation (Zar, 1972; Noman and Iba, 2005; Chen et al.,
2011; Zhu et al., 2011, 2015a,b,c, 2016, 2017; Gupta and Ong,
2016; Hou et al., 2017). There remain many open challenging
problems. For instance, how to avoid the negative transfer? Most
evolutionary MTO algorithms were proposed based on the inter-
task similarity and commonality. However, on problems with

few inter-task similarity and commonality, these algorithms may
have worse performance than those with no transfer learning. To
deal with this issue, introducing similarity measurement between
two tasks could be a good choice. Moreover, how to extend
the existing transfer learning based optimization algorithms to
solve large-scale multitask problems in real applications remains
a challenging problem.
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Recently, multi-task learning (MTL) has been extensively studied for various face

processing tasks, including face detection, landmark localization, pose estimation, and

gender recognition. This approach endeavors to train a better model by exploiting the

synergy among the related tasks. However, the raw face dataset used for training

often contains sensitive and private information, which can be maliciously recovered

by carefully analyzing the model and outputs. To address this problem, we propose a

novel privacy-preserving multi-task learning approach that utilizes the differential private

stochastic gradient descent algorithm to optimize the end-to-end multi-task model and

weighs the loss functions of multiple tasks to improve learning efficiency and prediction

accuracy. Specifically, calibrated noise is added to the gradient of loss functions to

preserve the privacy of the training data during model training. Furthermore, we exploit

the homoscedastic uncertainty to balance different learning tasks. The experiments

demonstrate that the proposed approach yields differential privacy guarantees without

decreasing the accuracy of HyperFace under a desirable privacy budget.

Keywords: multi-task learning, privacy preserving, differential private stochastic gradient descent, balance

different learning tasks, differential privacy guarantees

1. INTRODUCTION

Recently, neurorobotics has made great progress in a wide range of scientific fields, including
locomotion and motor control, learning and memory systems, action selection and value systems,
and many more. All of these models need to consider the problem of simultaneously solving
multiple related tasks, which is the prevalent idea behind multi-task learning (MTL). MTL focuses
on learning several tasks simultaneously by transferring knowledge among these tasks. In training
machine learning models, the required datasets may contain private and sensitive information.
Privacy is considered the private sphere of an individual or group that secludes information about
themselves from the public environment and ought to be preserved adequately. These datasets for
machine learning tasks enable faster commercial or scientific progress, but privacy-preservation
has become an urgent issue that needs to be addressed. In early works, some privacy-preserving
techniques, including k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala et al., 2006), and
t-closeness (Li et al., 2007), that anonymize the data before analyzing it, were proposed. Even
though curators can apply several simple anonymization techniques, sensitive personal information
still has a high probability of being disclosed (Wang et al., 2010). As an essential and robust
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privacy model, differential privacy can successfully resist most
privacy attacks and provide a provable privacy guarantee
(Dwork, 2011a; McMahan et al., 2017; Wang et al., 2018;
Erlingsson et al., 2019). Moreover, differentially private MTL
was introduced by Gupta et al. (2016), where the authors
proposed a differentially private algorithm using a noisy task
relation matrix and developed an attribute-wise noise addition
scheme that significantly improves the utility of their proposed
method. However, those algorithms significantly increase the
time complexity of MTL, making it difficult to perform the
iterative calculation in training models.

MTL is widely used in a broad range of practical applications,
including face detection (Ranjan et al., 2017; Ahn et al., 2018;
Chen et al., 2018; Zhao et al., 2019), federated MTL (Smith
et al., 2017; Corinzia and Buhmann, 2019; Sattler et al., 2019),
speech recognition (Huang et al., 2013; Kim et al., 2017; Liu
et al., 2017; Subramanian et al., 2018), and other applications
(Doersch and Zisserman, 2017; Han et al., 2017; Liu et al., 2017,
2019; Hessel et al., 2019). Ranjan et al. (2017) presented an
algorithm for simultaneous face detection, landmark localization,
pose estimation, and gender recognition. The proposed method,
called HyperFace, exploits the synergy among the tasks to boost
their individual performance. Their work demonstrates that
HyperFace is able to capture both global and local information
regarding faces and performs significantly better than many
competitive algorithms for each of these four tasks. However,
multi-task models without privacy preservation may impair
the privacy of users during the training process of models.
Therefore, enforcing privacy preservation on private datasets
is a challenge that needs to be addressed. Existing privacy
preservation methods have successfully integrated differential
privacy into iterative training processes like stochastic gradient
descent (Abadi et al., 2016; Papernot et al., 2016; McMahan
et al., 2017; Wu et al., 2017; Bun et al., 2018; Wang et al., 2018).
These differentially private frameworks preserve private and
sensitive data within an acceptable performance range in single-
task models. However, up until now, there have been few studies
on privacy preservation in MTL. Another major challenge is that
a reasonable trade-off of multi-task losses can make the noise
level more balanced among individual tasks. Previous methods
(Sermanet et al., 2013; Eigen and Fergus, 2015; Kokkinos, 2017)
alwaysmanually adjust weights or just initialize weights and often
become trapped in a local optimum.

As mentioned above, MTL has made great progress in a wide
range of practical applications. However, an important challenge
is how to preserve private and sensitive information contained
in training datasets. In practice, existing privacy preservation
methods have been successfully applied to many single-task
models, but they are rarely applied to multi-task models. In this
paper, we integrate the rigorous differential privacy mechanism
with a multi-task framework named HyperFace through training
five related tasks within a desirable privacy budget. We adopt
the differential private stochastic gradient descent algorithm to
optimize the end-to-end multi-task model. Specifically, Gaussian
noise is added to the gradient of loss functions for preserving
the privacy of the training data during the training process
of the model. Furthermore, we exploit the homoscedastic
uncertainty to weigh loss functions of multiple tasks, which can

improve learning efficiency and prediction accuracy. Our main
contributions are summarized as follows:

1. We propose a novel privacy-preserving multi-task learning
framework that provides differential privacy guarantees
on HyperFace.

2. The loss functions of multiple tasks are adjusted by utilizing
the homoscedastic uncertainty, which makes the model more
balanced within the privacy budget on individual tasks.

3. We evaluate our approach on face detection, landmark
localization, pose estimation, and gender recognition. The
extensive experiments demonstrate that data privacy can be
preserved without decreasing accuracy.

The rest of the paper is organized as follows. The next section
reviews differential privacy and multi-task learning. Section 3
describes the proposed approach in detail. Section 4 analyzes the
experimental results of our approach, and section 5 concludes
the paper.

2. RELATED WORK

In this section, we briefly review differential privacy and multi-
task learning.

2.1. Differential Privacy
Differential privacy is a new and promising model presented
by Dwork et al. (2006b) in 2006. It provides strong privacy
guarantees by requiring the indistinguishability of whether or not
an individual’s data exists in a dataset (McSherry and Talwar,
2007; Dwork, 2011b; Dwork and Roth, 2014; McMahan et al.,
2017; Wang et al., 2018; Erlingsson et al., 2019). We regard
a dataset as d or d′ on the basis of whether the individual
is present or not. A differential privacy mechanism provides
indistinguishability guarantees with respect to the pair (d, d′);
the datasets d and d′ are referred to as adjacent datasets. The
definition of (ε, δ)-differential privacy is provided as follow:

DEFINITION 1. A randomized mechanismM :D → R satisfies
(ε, δ)-differential privacy if, for any two adjacent datasets d, d′ ∈ D

and for any subset of outputs Y ⊆ R, it holds that

Pr[M(X) ∈ Y] ≤ eεPr[M(X′) ∈ Y]+ δ

The parameter ε denotes the privacy budget, which controls the
privacy level of M. For a small ε, the probability distributions
of the output results of M on d and d′ are extremely similar,
and it is difficult for attackers to distinguish the two datasets. In
addition, the parameter δ, which provides a possibility to violate
ε-differential privacy, does not exist in the original definition of
ε-differential privacy (Dwork et al., 2006a).

There are several common noise perturbation mechanisms
for differential privacy that mask the original datasets or
intermediate results during the training process of models:
the Laplace mechanism, the exponential mechanism, and the
Gaussian mechanism. Phan et al. (2017) developed a novel
mechanism that injects Laplace noise into the computation of
Layer-Wise Relevance Propagation (LRP) to preserve differential
privacy in deep learning. Chaudhuri et al. (2011, 2013) adopted
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the exponential mechanism as a privacy-preserving tuning
method by training classifiers with different parameters on
disjoint subsets of the data and then randomizing the selection
of which classifier to release. In Yin and Liu (2017), numerical
evaluations of the Gaussian cumulative density function are used
to obtain the optimal variance to improve the utility of output
perturbation Gaussian mechanisms for differential privacy.

To add less noise, the gradient computation of loss functions
samples Gaussian noise instead of Laplacian noise, since the
tail of the Gaussian distribution diminishes far more rapidly
than that of the Laplacian distribution. A general paradigm for
approximating the deterministic real-valued function f :M → R

with a differential privacy mechanism is via additive noise
calibrated to f ’s sensitivity Sf , which is defined as the maximum
of the absolute distance |f (d) − f (d′)| where d and d′ are
adjacent datasets. For instance, the Gaussian noise mechanism
is defined by

M(d) , f (d)+N (0, S2f · σ
2)

where N (0, S2
f
· σ

2) is the normal (Gaussian) distribution with

mean 0 and standard deviation Sf σ .

2.2. Multi-Task Learning
MTL is an interesting and promising area in machine learning
that aims to improve the performance of multiple related
learning tasks by transferring useful information among them.
Based on an assumption that all of the tasks, or at least
a subset of them, are related, jointly learning multiple tasks
is empirically and theoretically found to lead to better
performance than learning them independently. Recently, MTL
is becoming increasingly popular in many applications, such
as recommendation, natural language processing, and face
detection. Yin and Liu (2017) proposed a pose-directed multi-
task convolutional neural network (CNN), andmost importantly,
an energy-based weight analysis method to explore how CNN-
based multi-task learning works. However, multi-task learning
algorithms may cause the leakage of information from different
models across different tasks. Specifically, an attacker can
participate in the multi-task learning process through one task,
thereby acquiring model information of another task. To address
this problem, Liu et al. (2018) developed a provable privacy-
preserving MTL protocol that incorporates a homomorphic
encryption technique to achieve the best security guarantee. Xie
et al. (2017) proposed a novel privacy-preserving distributed
multi-task learning framework for asynchronous updates and
privacy preservation. Previous methods always apply privacy
preservation to the parameters of models. In this paper, we
combine HyperFace with a differential privacy mechanism for
preserving the privacy of original datasets.

3. METHODOLOGY

This section presents our approach of differentially private
learning on HyperFace, which provides a (ε, δ)-differential
privacy guarantee for HyperFace. Section 3.1 summarizes the
definition of the problem that needs to be resolved and

TABLE 1 | Notations and symbols.

Notations Descriptions

(ε, δ) Privacy budget

L(·) General loss function with parameters

gt (xi ),gt (xi ) Gradient and bounded gradient of the ith example in

a subset of examples Lt

ĝt Noisy gradient of a subset of examples

‖ · ‖2,S ℓ2 norm of the gradient of an example

N (·) Normal Gaussian distribution

ηt Learning rate of a subset of examples

loss∗ Corresponding loss functions of different tasks

the notations used, section 3.2 introduces the details of the
framework, while section 3.3 discusses and analyzes the method.

3.1. Review of the Problem and Notations
HyperFace is a prevalent multi-task model for simultaneously
learning the related tasks of face detection, landmark localization,
pose estimation, and gender recognition. In this model,
the synergy between related tasks is utilized to improve
the performance of the individual tasks. There are two
main problems for preserving privacy and boosting model
performance in Hyperface. In practice, facial datasets used to
train Hyperface contain a large amount of private and sensitive
information. Training data without a strong privacy guarantee
can be maliciously recovered by carefully analyzing the model
and outputs. Another problem is that the performance of a multi-
task model is highly dependent on appropriate weights among
the loss of each task. However, HyperFace simply initializes
these weights, which may cause the model to become trapped
in a local optimum rather than reaching the global optimum.
The notations and symbols used throughout the paper are
summarized in Table 1.

3.2. Our Approach
In this paper, we present a novel approach called Differentially
Private Learning on HyperFace (DPLH) to preserve the privacy
of original facial datasets that contain landmark coordinates, pose
estimations, gender information, and much more. To collect the
faces with private attributes that need to be protected, we need
to crop all faces from each given image in facial datasets. When
optimizing the loss function of each task with the stochastic
gradient descent algorithm, we allocate a reasonable privacy
budget across each of the gradient updates on examples and
analyze the privacy cost of the trained model. To trade off the
privacy and utility of the Hyperface multi-task model, we utilize
the synergy between related tasks to adjust the weights of each
loss function.

3.2.1. Pre-training

There are two pre-training steps that need to be performed
before the model update on Hyperface by applying the Gaussian
mechanism: regional candidate selection and initializing the
weights of HyperFace.
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FIGURE 1 | Per iterative computation process for preserving privacy on each learning task.

FIGURE 2 | The architecture of DPLH.
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FIGURE 3 | Results for the loss and accuracy of face detection and gender classification on HyperFace (H) vs. DPLH. (A) Loss of face detection. (B) Accuracy of face

detection. (C) Loss of gender classification. (D) Accuracy of gender classification.

Facial datasets usually involve a large amount of private
information that is potentially distributed over the images. In
order to apply the differential privacy mechanism to these facial
data, the given images are selectively cropped to generate positive
candidate regions with faces and negative candidate regions
without faces by regional candidate selection. We filter out
candidate regions as positive and negative by computing the
Intersection over Union (IOU) overlap. The candidate regions
are considered as positive with an IOU overlap of more than 0.5,
and negative candidate regions have an IOU overlap of <0.35.
Subsequently, these selected candidate regions are scaled to 227
* 227 pixels as the input of the model. In addition, the ground
truths, such as landmark localization and the visibility factor
corresponding to these candidate regions, need to be adjusted as
well since they are relative to the original images rather than the
selected regions.

Initializing the weights of network is helpful for finding

global optimal solutions or avoiding becoming trapped in poor

local optimal solutions. A good initialization facilitates gradient
propagation in deep networks and avoids the problems of a

vanishing gradient or gradient exploding. In this paper, we pre-
train a single-task model, whose parameters are initialized to
the default, for face detection with an input of the candidate
regions generated by regional selection. Then, the parameters
of this single task are used to initialize HyperFace for better
convergence performance.

3.2.2. Training

Training data may not be effectively protected by only adding
noise to the final parameters that result from the training process.
Generally, there are few useful and exact characterizations of the
dependence of these parameters on the training data. Moreover,

adding excessive noise to the parameters may destroy the utility
of the learning model. In the worst case, excessive noise will

degrade the model performance, and a small amount of noise
may not provide a strong privacy guarantee. Hence, we propose a

novel approach for HyperFace to preserve the privacy of training

data and control the influence of training data in the stochastic

gradient descent computation.
In the training process of our DPLH model, we iteratively

compute the gradient update from training data and then apply
the Gaussian mechanism for differential privacy to the gradient
update. Figure 1 shows the per iterative computation process for
protecting privacy while learning each task. Suppose the training
datasets with N examples consist of selected candidate regions
with adjusted ground truth. Given a sampling probability q,
clipping threshold S, and noise multiplier z, our approach focuses
on minimizing each task loss function L(θ j) with parameter
θ
j(1 ≤ j ≤ 5) in the training process by using a stochastic

gradient descent optimizing algorithm. At each step of stochastic
gradient descent, we select a subset of the examples Lt ⊆ [1, ...,N]
by choosing each example with probability q. We compute the
gradient ∇

θ
jL(θ j, xi) as gt(xi) with each example i ∈ Lt , clip
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FIGURE 4 | Results for the loss and mean square error (MSE) of landmark localization, landmark visibility, and pose estimation on HyperFace(H) vs. DPLH. (A) Loss of

landmark localization. (B) Loss of landmark visibility. (C) Loss of pose estimation. (D) MSE of landmark localization. (E) MSE of landmark visibility. (F) MSE of pose

estimation.

each gradient to have maximum ℓ2 norm S using gt(xi) =

gt(xi) ∗min(1, S
||gt(xi)||2

), then add noise to them and compute the

average of the noisy gradients by ĝt =
1
qN (

∑

i gt(xi)+N (0, σ 2I)).

Subsequently, we take a step in the opposite direction of this

average noisy gradient, like θt+1 = θt − ηt ĝt . In addition to

outputting the model, we estimate the privacy budget of an

iterative Gaussian noise mechanism by privacy accounting. We
describe our approach in more detail below.

Loss functions. In order to better measure the performance
of the model, different loss functions and evaluation metrics
are used for the training tasks of face detection, landmark
localization, landmark visibility, pose estimation, and
gender classification.
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Face detection.We use regional candidate selection to generate
positive candidate regions with faces (l = 1) and negative
candidate regions without faces (l = 0) in given images. We
can train the face detection task with loss function lossD, given
as follows

lossD = (1− l) ∗ log(1− p)−1 + l ∗ log(p)−1, (1)

where p is the prediction probability of a candidate region with
a face.

Landmark localization.We consider the category of candidate
regions and the visibility factor of landmark points when
computing the loss function of landmark localization. There is
no loss corresponding to invisible landmark points or negative
candidate regions. We compute the loss of landmark location by

lossL =
l

2Nl

Nl
∑

i=1

vi((âi − ai)
2 + (b̂i − bi)

2), (2)

where (âi, b̂i) is the ith predicted landmark location. If the ith

landmark is visible in the positive candidate region, the visibility
factor vi is 1; otherwise, it is 0.Nl is the total number of landmark
points in a candidate region.

Landmark visibility. This task is learned with positive regions
to estimate the presence of the predicted landmark. The loss
function is shown in (3)

lossV =
l

Nl

∑

i=1

Nl(v̂i − vi)
2, (3)

where v̂i is the predicted visibility of the ith landmark.
Pose estimation. The head pose annotation contains roll, pitch,

and yaw expressed as (p1, p2, p3) in ground truth. We compute
the loss of pose estimation for a positive candidate region by

lossP =
l

3
((p̂1 − p1)

2 + (p̂2 − p2)
2 + (p̂3 − p3)

2), (4)

where (p̂1, p̂2, p̂3) are the pose estimations.
Gender classification. Predicting gender is a two-class problem

similar to face detection. Computing the loss of the gender
prediction for a positive candidate region is defined as

lossG = l(1− g) ∗ log(1− pg)
−1 + lg ∗ log(pg)

−1, (5)

where g = 0 if the gender is male, or else g = 1. pg is the predicted
probability of male.

Trading off loss. The simple approach to combining losses
among learning tasks is to directly perform a linear weighted sum
of the losses for each individual task, as shown in (6)

lossall =

5
∑

i=1

λti lossti , (6)

where ti is the i
th element from the set of tasks T = {D, L,V , P,G}

and parameter λti is the weight of each task. However, the naive

method of tuning weights manually makes it difficult to balance
the performance of individual tasks. We aim to better balance
the process of iteratively computing average noisy gradient for
each task by using homoscedastic task uncertainty to trade off
multiple loss functions. Homoscedastic task uncertainty, which
captures the relative confidence between tasks, is a quantity that
remains constant for all input data and varies between different
tasks, reflecting the uncertainty inherent to the regression or
classification task. Homoscedastic uncertainty can be used as a
basis for weighting losses in a multi-task learning problem. The
positive scalar σ added to the total loss function relates to the
uncertainty of the tasks as measured in terms of entropy. The
total loss function with the homoscedastic task uncertainty is
finally provided by

L(λti , σ1, σ2, . . . , σi) =

5
∑

i=1

1

2σ 2
i

Lti (λti )+ logσ 2
i (7)

Privacy accounting. For our DPLH model, we attach
importance to computing the overall privacy cost of training.
When iteratively computing the average noisy gradient for
each task, the composability of differential privacy allows
the privacy accountant to accumulate the privacy cost
corresponding to all of the gradients. To make the testing
process more transparent and to ensure our model provides
a (ε, δ)-differential privacy guarantee, we encapsulate the key
differential privacy mechanism into the privacy accountant and
positively tune the hyperparameters to achieve different levels of
privacy protection.

3.2.3. Architecture of DPLH

In this section, we describe the flow of processing training data in
our proposed method, as illustrated in Figure 2.

As shown in Figure 2, the model input is composed
of candidate regions with a specific size of (227, 227)
generated by the regional candidate selection. Positive candidate
regions have full ground truth of face detection, landmark
coordinates, landmark visibility factors, pose estimation, and
gender information. In contrast, negative candidate regions
without faces have the ground truth of face detection, and
other ground truths are set to none. These data with ground
truth are used to adjust the weights and bias of each layer in
the network. In pre-training, we train a single-task model for
face detection, and the learned parameters from this network
are used to initialize Hyperface. Thereby, we use the candidate
regions with adjusted ground truth as input to train the privacy-
preserving model. We iteratively compute the gradient update
from training data and then apply the Gaussian mechanism
for differential privacy to the gradient update, and the privacy
cost of iterative calculation is accumulated and accounted. We
balance the loss functions of related tasks to ensure better
performance for applying the differential privacy mechanism
on each task and output a modest small loss. In the end, we
will get an output of the evaluation metric results and the
privacy budget.
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TABLE 2 | T-test results on the performance of multiple tasks at different epochs.

Epochs Task 50 100 150 200 250 300 350 400 450 500

P-value (%)

lossD 0.068 0.054 0.039 0.033 0.032 0.031 0.031 0.031 0.030 0.030

lossL 0.185 0.123 0.105 0.089 0.075 0.073 0.073 0.072 0.072 0.072

lossV 0.314 0.285 0.212 0.183 0.179 0.178 0.178 0.178 0.178 0.178

lossP 0.351 0.317 0.297 0.283 0.279 0.279 0.279 0.279 0.279 0.279

lossG 0.063 0.057 0.049 0.039 0.038 0.038 0.038 0.038 0.038 0.038

AccD 0.093 0.078 0.061 0.057 0.056 0.054 0.054 0.054 0.054 0.054

AccG 0.045 0.031 0.027 0.025 0.024 0.024 0.024 0.024 0.024 0.024

MSEL 0.194 0.172 0.151 0.143 0.139 0.138 0.138 0.138 0.138 0.138

MSEV 0.112 0.089 0.073 0.067 0.065 0.065 0.065 0.065 0.065 0.065

MSEP 0.185 0.169 0.154 0.147 0.145 0.145 0.145 0.145 0.145 0.145

3.3. Discussion
The proposed approach, DPLH, aims to preserve private
and sensitive information in training datasets. The main
idea is to iteratively compute the HyperFace model update
from optimizing loss functions and then apply the Gaussian
mechanism for differential privacy to the gradient update
before incorporating it into the model. In principle, this
method can theoretically provide the (ε, δ)-differential privacy
guarantee and can prevent private and sensitive data from
being maliciously recovered. Furthermore, we use a privacy
accountant to estimate the privacy cost of the training process
and use different loss functions and evaluation metrics for the
training tasks of face detection, landmark localization, landmark
visibility, pose estimation, and gender classification. In the
end, the losses of each task have reasonable, small values,
and the evaluation metrics of each loss function will reflect
good performance.

4. EXPERIMENT

In this section, we evaluate our approach on the AFLW
dataset (Martin Koestinger and Bischof, 2011) and report
the results of each task for different noise levels. Section
4.1 introduces the details of the experimental setup and
the training dataset. Sections 4.2 and 4.3 show the results
and analysis.

4.1. Dataset and Experimental Setup
We train our model by using the AFLW dataset, which
contains more than 25,000 faces in almost 22,000 real-world
images with full poses, gender variations, and some more
private information. It provides 21 landmark point coordinates
per face, along with the face bounding-box, face pose (yaw,
pitch, and roll), and gender information. These data cannot
be directly used as inputs to the model. We need to
prepare the input of the model for evaluating face detection,
landmark localization, landmark visibility, pose estimation, and
gender classification.

The input does not come from the original dataset, AFLW,
but rather comprises candidate regions generated by the regional
candidate selection method. The proposed method introduced in

section 3 is used for cropping essential regions from images and
adjusting privacy-related facial features. For each image from the
AFLW dataset, we use the Selective Search (Van de Sande et al.,
2011) algorithm to generate candidate regions for faces and then
filter out positive samples and negative samples by computing
the Intersection over Union (IOU) overlap. The equation of
IOU is

IOU =
Aoverlap

Aunion
(8)

where Aoverlap is the area of overlap between the selected
candidate region and the ground truth bounding-box, and
Aunion is the area of union encompassed by both of them.
Positive candidate regions are selected from regions that have
an IOU overlap of more than 0.5 with the ground truth
bounding box. The candidate regions with an IOU overlap
of <0.35 are considered as negative candidate regions, and
other candidate regions are neglected. Subsequently, we scale
these selected candidate regions uniformly to 227 * 227 pixels
to match the input size of our model. Note that the faces
in the images have full pose variations, resulting in some of
the landmark points being invisible. We use a visibility factor
to annotate visible landmarks provided by the AFLW dataset
(Martin Koestinger and Bischof, 2011). However, the given
ground truth fiducial coordinates and corresponding visibility
factors are relative to the original images. Training the model
directly by using the raw information can have a negative
impact on the quality of the model. Hence, the landmark
points are shifted and scaled to the selected candidate regions
using (9)

(ai, bi) = (
ci − c

w
∗ w′,

di − d

h
∗ h′) (9)

where (ci, di)
′s are the given ground truth fiducial coordinates,

and (ai, bi)
′s are the ground truth fiducial coordinates of

adjusted candidate regions. These regions can be characterized
by {c, d,w, h}, where (c, d) are the upper left coordinates of
a region and w, h are the width and height of the region,
respectively. In the end, some of the visible landmark
are modified to be invisible, because positive candidate
regions may not contain all (ai, bi)

′s. The landmark
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FIGURE 5 | Results for low noise level training, modest noise level training, and high noise level training with privacy budget (10, 10−5), (5, 10−5), (0.7, 10−5). (A) Low

noise level. (B) Modest noise level. (C) High noise level.

points of negative candidate regions are set to invisible
by default.

In our experiments, we obtain more than 40,000 candidate
regions. We take 70% of them to train models and the rest
for evaluating model performance. Moreover, we set some
hyperparameters to fixed values for the next experiments.
The sampling probability is given by q = L/Nc, where
Nc is the total number of inputs and L is the number of

samples involved in a batch. We fix the clipping threshold
S = 0.5, the number of epochs E = 500, batch size
L = 32, input size Nc = 40, 000, and the learning
rate η = 0.00015.

4.2. Results of Model Training
In this experiment, we compare the results of our model
DPLH training and HyperFace training. In order to better
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evaluate the performance of each task, we choose the accuracy
metrics for face detection and gender classification and
the mean square error metrics for landmark localization,
landmark visibility, and pose estimation. We allocate the
privacy budget (ε, δ) as (5, 10−5) to DPLH to provide a
privacy guarantee.

Figure 3 shows the results for the loss and accuracy of
face detection and gender classification on the two models.
A declining trend of losses is depicted in Figure 3A for face
detection and Figure 3C for gender classification. As the epochs
increase in number, the losses of HyperFace on these tasks
decline faster, and the losses of DPLH decrease gently. After
convergence, the two models consume 500 epochs to reduce the
loss to desirably small values. Moreover, the losses from training
HyperFace converge to a smaller level than the differentially
private losses. Additionally, Figures 3B,D illustrate the growth
trend of accuracy for face detection and gender classification,
respectively. The accuracy from training HyperFace consuming
the same number of epochs rises fastest, and, in addition,
the metrics evaluating the two models both converge to high
levels. Figure 4 shows the results for the loss and mean
square error (MSE) of landmark localization, landmark visibility,
and pose estimation on the two models. Similar to Figure 3,
the losses of the three tasks on training the two models
converge to desirably small levels. The MSE curves decline
to small values, converging to a nearby level, respectively on
their tasks.

These figures indicate that the final results for loss,
accuracy, and mean square error converge to a desirable level.
From the perspective of three metrics, the two models can
almost achieve approximate results on respective tasks, which
demonstrates that our approach decreases model performance
and utility very little compared with HyperFace. Our approach
achieves 90 and 86% accuracy on face detection and gender
classification, respectively, compared with 99 and 90% accuracy
on HyperFace. For landmark localization, landmark visibility,
and pose estimation, our approach achieves 0.255, 0.25, and
0.27 mean square error, respectively, compared with 0.245,
0.2, and 0.24 on HyperFace. The final results indicate that
our approach can provide a differential privacy guarantee
with desirable performance of the system. We conduct a
t-test on the performance of multiple tasks with different
epochs. For p-value ≤ 0.05, the performance of the DPLH
method approximates to that of Hyperface without privacy
preservation. As shown in Table 2, the extremely small p-value
indicates that the DPLH method provides a differential privacy
guarantee and achieves performance that is similar to that of the
Hyperface method.

4.3. Results for Training With Different
Noise Levels
In this experiment, we consider the effect of different noise
levels on the performance of DPLH. We compare three noise
levels for the training characteristics of HyperFace integrated
with differential privacy. We set a privacy budget ε =

0.7 to train the DPLH with a number of epochs E =

500, which represents high noise level training. Besides, we
consume a fixed ε = 5 privacy budget per epoch to train
HyperFace with a modest noise level. Moreover, low noise level
training is performed on HyperFace with a privacy budget
ε = 10 per epoch. In addition, that we fix δ = 10−5

per figure.
Figure 5 shows the results on different privacy budgets (ε, δ).

In each plot, we show the evaluation of accuracy for two
tasks (face detection and gender classification) and the mean
square error for three tasks (landmark localization, landmark
visibility, and pose estimation). Figures 5A,B illustrate low noise
level training and modest noise level training, respectively.
The accuracy of the two noise levels rises gently, and the
accuracy of low noise level training is higher than that of
modest noise level training after convergence. On the evaluation
of MSE, the two noise level trainings converge to a desirable
level. In contrast, Figure 5C illustrates high noise level training
performance on DPLH. The accuracy of high noise level training
converges to lower values, and the MSE shows a unstable
decline trend. We achieve desirable performance for (10, 10−5),
(5, 10−5) differential privacy, respectively, since the accuracy
converges to a high level and the MSE converges to a low
level. However, (0.7, 10−5)-differential privacy training brings too
much noise to the model, resulting in unstable performance.
The final results indicate that acceptable noise level training
on HyperFace can provide a differential privacy guarantee and
stable performance, while an excessive noise level may destroy
the performance and utility of the model, making privacy
preservation irrelevant.

5. CONCLUSION

In this paper, we propose a novel method called differentially
private learning on HyperFace that provides a differential
privacy guarantee and desirable performance for simultaneously
learning face detection, landmark localization, pose estimation,
and gender classification. We demonstrate the utility and
effectiveness of our model for training all four tasks
on the datasets. In the future, we will carry out further
studies on selecting the most appropriate noise level
automatically to provide a differential privacy guarantee
and excellent performance.
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The goal of network representation learning, also called network embedding, is to encode

the network structure information into a continuous low-dimensionality embedding space

where geometric relationships among the vectors can reflect the relationships of nodes

in the original network. The existing network representation learning methods are always

single-task learning, in which case these methods focus on preserving the proximity of

nodes from one aspect. However, the proximity of nodes is dependent on both the local

and global structure, resulting in a limitation on the node embeddings learned by these

methods. In order to solve this problem, in this paper, we propose a novel method,

Multi-Task Learning-Based Network Embedding, termed MLNE. There are two tasks in

this method so as to preserve the proximity of nodes. The aim of the first task is to

preserve the high-order proximity between pairwise nodes in the whole network. The

second task is to preserve the low-order proximity in the one-hop area of each node. By

jointly learning these tasks in the supervised deep learning model, our method can obtain

node embeddings that can sufficiently reflect the roles that nodes play in networks. In

order to demonstrate the efficacy of our MLNE method over existing state-of-the-art

methods, we conduct experiments on multi-label classification, link prediction, and

visualization in five real-world networks. The experimental results show that our method

performs competitively.

Keywords: network representation learning, multi-task learning, network embedding, high-order proximity, low-

order proximity

1. INTRODUCTION

A network is an important way of representing the relationships between objects, for example,
in social networks, state grids, and citation networks (Gong et al., 2017). With the increasing
complexity of a network, it is more valuable to explore it as a carrier of information. There are
some meaningful applications in network analysis, such as node classification (Tsoumakas and
Katakis, 2007), link prediction (Lü and Zhou, 2011), community detection (Fortunato, 2010),
and recommender systems (Lü et al., 2012). Traditional network representation methods, such as
an adjacency matrix, pose several challenges (Peng et al., 2019). First, network analysis methods
based on traditional forms of representation usually have high computational complexity. Second,
traditional network representation methods make it difficult to design parallel and distributed
algorithms. These two challenges make these methods hard to use for large-scale network analysis.
Moreover, there is a limitation when machine learning is applied in network analysis due to
high dimensionality and sparsity. Thus, determining how to properly construct a meaningful
representation of the structure information extracted from networks is promising research.
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Network representation learning (NRL), also called network
embedding (Hamilton et al., 2017; Goyal and Ferrara, 2018),
has been proposed for encoding network information into
a continuous low-dimensionality feature space. From the
perspective of network topology, those nodes that have similar
structures should have similar representation vectors. For
example, those nodes within the same community in a network
have similar proximity structures, and thus they should be closer
in embedding space. Due to the learned representations, the
relationships between nodes and the roles that nodes play in
networks can be efficiently analyzed. Many network analysis
tasks can be dealt with based on the distances in the embedding
space, so that the computational complexity is low and parallel
algorithms can be adopted for network analysis problems.
Moreover, manymachine-learning algorithms have been used for
network analysis, benefiting from network embedding. Not only
that, but those representations can be applied in other application
tasks (Herman et al., 2000; Hu et al., 2016; Wang et al., 2017; Wei
et al., 2017; Shi et al., 2018).

Recently, an increasing number of methods have been
proposed for network representation learning (Chen et al.,
2018; Peng et al., 2019; Zhang et al., in press). These methods
can mainly be classified into three categories (Peng et al.,
2019). The first is matrix factorization-based methods (Qiu
et al., 2018; Liu et al., 2019b), which are directly inspired by
the dimension-reduction technique. One of the best-known
methods is Laplacian Eigenmaps (Belkin and Niyogi, 2002),
which generate a network representation through factorizing the
Laplacian of the network adjacency matrix. GraRep (Cao et al.,
2015) builds a k-step relationship information matrix so as to
sufficiently capture the pairwise node proximity. According to the
matrix, it adopts SVD to generate different representations and
finally concatenates all of them to form a global representation.
Qiu et al. exploited sparse matrix factorization for large-scale
network embedding (Qiu et al., 2019). The second category is
random walk-based methods. DeepWalk (Perozzi et al., 2014)
was the first method to introduce random walk into network
representation learning. It uses a sampling method called
unbiased randomwalk to generate discrete sequences of nodes, in
which case sequences and nodes are abstracted as sentences and
words. It also introduces the skip-gram (Mikolov et al., 2013),
the best-known model in natural language processing (NLP), to
learn representations for nodes from those sequences. Node2vec
(Argerich et al., 2016) was proposed to develop a novel sampling
method named biased random walk, which is based on breadth-
first search (BFS) and depth-first search (DFS), resulting in more
flexibility in the exploration of networks. The third category is
deep learning-based methods. Wang et al. proposed a structural
deep network embedding method named SDNE (Wang et al.,
2016). Cao et al. proposed a deep neural network for learning
graph representations (DNGR) (Cao et al., 2016). Both SDNE
and DNGR follow the encoder-decoder framework, where the
encoder maps a high-dimensionality feature vector into a lower-
dimensionality representation and the decoder reconstructs the
original feature vector from that. They build a proximity matrix
in which an element represents the pairwise node proximity and
apply an autoencoder model to learn representations from that

matrix. SDNE directly adopts a network adjacency matrix as the
proximity matrix and combines the autoencoder loss function
with the Laplacian Eigenmaps loss function. DNGR introduces
the pointwise mutual information (PMI) matrix as the proximity
matrix, which is mostly used to evaluate the similarity among
words in NLP. Network embedding methods are not limited to
the above three categories (Tang et al., 2015; Donnat et al., 2018).

Existing network embedding algorithms have achieved
promising performance, but these methods all focus on single-
task learning, resulting in a lack of diversity in representations.
A good representation of a node should depend on its position
and structure in the local community and global network. For
example, a node may be the centroid of the local community
and also play a role as a bridge between communities in
the global network (Musiał and Juszczyszyn, 2009). To learn
network representation from both the local and global network
structure information, we resort to multi-task learning (MTL)
for help in exploring and exploiting global and local network
representation learning.

In this paper, we propose a multi-task learning-based network
embedding called MLNE. In MLNE, there are three components:
a shared encoder, decoder, and classifier. We adopt positive
pointwise mutual information (PPMI), which is a commonly
used method to measure the similarity between discrete objects,
to build the global proximity matrix. In order to build the matrix,
we introduce random surfing to gather graph information.
The shared encoder and decoder form a standard autoencoder
to learn the latent representation from the global proximity
matrix in an unsupervised manner. The shared encoder encodes
the global feature information into a low-dimensionality node
embedding, and the decoder decodes that information from
the learned embeddings. Another task is to preserve the local
features. The key idea behind this task is that the learned
embedding from the shared encoder contains graph information
such as the structure of local graph neighborhoods, so that
the one-hop area of nodes can be reconstructed from that
learned embedding. Due to the network sparsity, the direct
neighborhoods should make more contributions to nodes, and
thus it is worth designing a specific task to optimize embedding
with respect to first-order proximity. The task is carried out
by the shared encoder and the specific classifier, which predicts
whether there is an edge between pairwise nodes. As a result,
the learned embeddings can preserve both the local and global
structural information. In addition, we design a regularizer to
make those nodes that are direct neighborhoods for each other
much closer in Euclidean space and vice versa, resulting in good
clustering. Empirically, we conduct experiments on five real-
world network datasets and three tasks: node classification,
link prediction, and visualization. The experimental
results show that our model has competitive performance
against baselines.

The rest of this paper is organized as follows. In section
II, preliminaries are given. Section III introduces the proposed
algorithm in detail. In section IV, we briefly compare our
algorithm with other related network embedding methods and
analyze the experimental results. In the last section, this paper
is concluded.
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2. PRELIMINARIES

In this section, we discuss the preliminaries of network
representation learning in detail. First, we briefly introduce
the notation and formulate the problem. Second, detailed
descriptions of positive pointwise mutual information and
random surfing are presented. An introduction to multi-task
learning is then given.

2.1. Notations and Definitions
A network can be formally modeled as a graphG = (V ,E), where
V is the set of nodes and E is the set of edges. v ∈ V represents a
node in the graph, and (vi, vj) ∈ E represents an edge between vi
and v. The adjacency matrix is defined as A ∈ R

|V|×|V|. Network
representation learning aims to build an embedding matrix Z ∈
R
|V|×d, where d≪ |V| and each row z ∈ R

d represents a vector
representation of a node.

2.2. PPMI and Random Surfing
Pointwise mutual information (PMI) is a measure to quantify
the correlation between two discrete objects. PMI has commonly
been applied in the field of NLP such as in the measurement of
the similarity between words. PMI can be defined as follows:

PMI(w, c) = log (
#(w, c) · D

#(w) · #(c)
) (1)

where #(·) means the number of occurrences of an object
and D =

∑

w

∑

c #(w, c).
It is found that when the statistics of co-occurrence count

between two objects #(w, c) is 0, the measure will result in
log (0) = −∞. An alternative measure called positive pointwise
mutual information (PPMI) is proposed to address this problem.
PPMI can be defined as follows:

PPMI(w, c) = max (0, PMI(w, c)) (2)

Cao et al. firstly introduced PPMI into NRL to generate node
representation (Cao et al., 2016). In order to build PPMI matrix,
they designed a random surfing model to extract structure
information of network and directly generate the probabilistic
co-occurrence matrix without sampling process. The key idea
behind the model is that the visited probability from source node
to target node can be iteratively calculated by a transition matrix.

Let the Pk be the k-th step visited probability matrix in which
each element Pk(i, j) represents the probability from source node
vi to node vj after k times transitions. The P0 initially is set as A.
The Pk can be defined as follows:

Pk = γ · Pk−1 · T + (1− γ ) · P0 (3)

where T is the transition matrix, γ is the probability that
the model will continue simulation, and 1 − γ is the restart
probability. The element in T is the probability that node vi will
reach node vj. If Ai,j = 1, T(i, j) = 1/deg(i), otherwise T(i, j) = 0.

According to (3), a set of visited probability matrices can be
defined as P = {P0, P1, ..., PK}. The probabilistic matrix can be
constructed as follows:

r =

K
∑

i=k

Pi. (4)

where K is the number of samplings.

2.3. Multi-Task Learning
Traditional machine learning methods aim to optimize for a
specific metric. To realize the goal of a task, a model is trained
by fine-tuning parameters. By training the model, we can get
a satisfying result, but some information that helps to improve
the performance will be ignored. This information can be mined
from related tasks. To utilize the information effectively, a
new approach, named multi-task learning (MTL) (Ruder, 2017;
Thung and Wee, 2018), is proposed. In MTL, multiple related
tasks are learnt jointly, and useful information is shared among
related tasks. In MTL, each task can benefit from other tasks,
and then we can get a better result by training several tasks.
Multi-task learning has been widely used in several fields, such as
natural language processing (Liu et al., 2019a), image processing
(Du et al., 2018), computer vision (Zhang et al., 2018), and
recommendation (Wang et al., 2018).

There are two commonly used approaches to carrying out
MTL in deep learning. The first is hard parameter sharing
of hidden layers. In this approach, different tasks share the
hidden layers, and the output layers are different. The second
is soft parameter sharing of hidden layers. In this approach,
different tasks have similar parameters, and the output layers are
also different. Figure 1 shows these two approaches to MTL in
deep learning.

3. THE FRAMEWORK

In this section, we first give the detailed description of the
framework of our proposed approach, MLNE. Next, our multi-
task learning model based on deep learning is described in detail.

3.1. An Overview of the Framework
In this work, we leverage multi-task learning to learn robust and
meaningful node representations. Figure 2 shows the framework
of our proposed model, MLNE, in which there are two phases:
building the proximity matrix and embedding nodes. In the first
phase, we extract information on the local and global structures
to build a proximity matrix where each element represents the
similarity between nodes. In the second phase, our model jointly
optimizes two tasks so as to learn node representations in which
there are two tasks, preserving the global and local network
structures. The framework of the proposed algorithm is given
as Algorithm 1.

3.2. Multi-Task Learning Model
Deep learning is introduced into multi-task learning model so as
to learn complex structural information. In our proposed model,
there are multiple layers with non-linear activation functions,
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FIGURE 1 | Two approaches for multi-task learning in deep neural networks. (A) Hard parameter sharing approach. (B) Soft parameter sharing approach.

FIGURE 2 | The framework of MLNE.

Algorithm 1: Framework of the proposed MLNE

Input: Input Graph: G = (V ,E); Adjacency matrix: A;
Number of samplings: K; Probability of resampling: γ ;
Weighted parameters of the loss function: α,β , η; Number
of dimensions of representation vectors: R.

Output:

Representation vectors of nodes: 8.
1: Initialize matrix of node representations 8 ∈ R

|V|×|d|.
2: Construct the global proximity matrix Sglobal;
3: Local proximity Slocal← A;
4: Initialize the parameters of the network: θ ;
5: Input Sglobal into the neural network and train the network

model by optimizing the objective function (Equation 10) by
stochastic gradient descent.

such as sigmoid and relu, so as to build non-linear projections.
At a high level, our model consists of three components as shown
in Figure 3: a shared encoder network, a decoder network, and a
classifier network.

The first task includes the shared encoder and the specific
decoder and can be seen as a standard autoencoder model. The
encoder maps the high-dimensionality structural information
into a lower-dimensionality embedding space, si → zi, and the

decoder reconstructs the structural information from the learned
embeddings, zi → si. In order to preserve the global structural
information, the PPMI matrix is adopted as the global proximity
matrix S, and a random surfing model is used to build the PPMI.
The loss function can be defined as follows:

Lglobal =

n
∑

i=1

||si − si||2 = ||S− S||2. (5)

The second task includes the shared encoder and the specific
classifier. The task is to preserve the local structural information,
so the classifier is used to reconstruct the structure of the
one-hop area of the nodes. On the other words, the classifier
decodes the local structural information from the learned node
embeddings based on the shared encoder so as to predict the
direct neighborhoods of nodes. Thus, the adjacency matrix A is
adopted as the classifier’s expected output Y . The second task can
be seen as a multi-label classifier task, and the loss function can
be defined as follows:

Llocal = −

n
∑

i=1

yi log yi + (1− yi) log (1− yi) (6)
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FIGURE 3 | The architecture of MLNE.

where yi is the output of the classifier.
Furthermore, mini-batch batch gradient decent (MBGD) is

used to optimize the parameters of the model. As shown in
Figure 4, the sampled batch with a fixed number of nodes can be
regarded as a sampled sub-graph. As a result of this, a regularizer
component is formulated to optimize those nodes in Euclidean
space so as to make nodes with edges linked closer together and
nodes without edges linked farther apart.

The size of the batch is defined as M, and the adjacency
matrix of the sampled sub-graph can be defined as AM×M

sub
∈

A|A|×|A|, where each element represents the relationship between

nodes. We let Z
|V|×d
sub

∈ Z|V|×d be the corresponding sub-
embedding matrix. The regularizer attempts to minimize the
following contrastive loss:

Lreg =
1

2×M ×M

M
∑

i=1

M
∑

j=1

Asub(i, j)d
2
i,j

+(1− Asub(i, j))max (m− di,j, 0)
2 (7)

where m is the margin and di,j is the Euclidean distance between
the i-th and j-th representations, di,j = ||Zsub(i)− Zsub(j)||2.

The Euclidean distance matrix D, where each element
represents the measure between representations, can be defined
as follows:

D = H +HT − 2G. (8)

whereZsub is Grammatrix ofG andH is theDiagonalmatrix ofG.
The revised regularizer is shown as follows:

Lreg =
1

2×M ×M
||Asub

⊙

D

+ (1− Asub)
⊙

max (m− D, 0)||2. (9)

where
⊙

is the Hadamard product.

In order to preserve the local and global structural
information, we design a multi-task learning model and jointly
optimize (Equations 5, 6, and 9). The objective function can be
defined as follows:

L = αLglobal + βLlocal + ηLreg . (10)

where α, β , and η are the corresponding weights of each task and
the regularizer.

4. EXPERIMENTS

In this section, we evaluate our proposed model, MLNE,
on five real-world network datasets and three tasks, namely
node classification, link prediction, and visualization.
The experimental results demonstrate that MLNE has
competitive performance.

4.1. Datasets
There are five real-world networks in our experiments, including
a social network, citation networks, and a language network.
They are listed as follows:

• Cora (McCallum et al., 2000) is a citation network with 2,708
nodes and 5,429 edges, where the nodes represent the scientific
publications and the edges represent the citation relationship
between publications. The nodes are split into seven classes
according to scientific field.
• DBLP (Tang et al., 2008) is another citation network composed

of 13,184 publications from five classes and with 95,955 edges.
• 20-NEWSGROUP (Lang, 1995) is a language network that

contains 20,000 newsgroup documents with 20 different
labels. The tf-idf vectors of each word are adopted as the
representations of documents, and cosine similarity is used
to measure the similarity between documents. We select 592
documents from three classes, com.graphics, rec.sport.baseball,
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FIGURE 4 | Illustration of the regularizer.

and talk.politics.gums respectively, to build a network in which
the nodes represent the documents and cosine similarity is the
weight of each edge.
• Blogcatalog (Tang and Liu, 2009) is a social network in

which nodes represent the authors and edges represent the
relationships between users. According to user interests, there
are 39 different categories, and each user is labeled with at
least one category. The network contains 10,312 nodes and
333,983 edges.
• Pubmed (Sen et al., 2008) is a citation network collected

from the PubMed database in which nodes represent scientific
publications and all the nodes are classified into three classes.
This network consists of 19,717 nodes and 44,338 edges.

4.2. Baseline Algorithms
We consider the following three baseline algorithms.

• DeepWalk adopts random walk to sample paths composed of
discrete nodes, and the Skip-gram model, which has achieved
great success in word embedding, is used to generate node
representations from the sampled paths.
• node2vec optimizes the DeepWalk through jointly combining

the BFS and DFS. There are two hyperparameters, p and q,
that lead the sampling such that the network structure can be
deeply exploited.
• GraRep builds k different node representations by SVD and

connects them so as to generate a global node representation.

4.3. Parameter Setting
As mentioned in Perozzi et al. (2014); Grover and Leskovec
(2016), we set walk length l = 80, number of walks n = 10,
and window size w = 10 for random walk in DeepWalk and
node2vec. Specifically, we employ a grid search over return and
in-out hyperparameters p, q ∈ {0.25, 0.5, 1, 1.5, 2} by 10-fold
cross-validation for node2vec. For GraRep, we set the number of
sampling steps k = 4 by trial and error.

In our model, the shared encoder contains an input layer
and a hidden layer, where the size of the input layer is the
same as the size of network V and the size of the hidden layer
is the dimensionality of the node representation vector. The
decoder and the classifier contain an output layer with the size
of |V|. The sigmoid activation function is used in all layers.

For hyperparameters, α, β , and η are set at 1000, 1, and 10,
respectively, through using grid search on the validation set. As
suggested in Cao et al. (2016), we set K = 10 and γ = 0.98 for
random surfing.

For a fair comparison, the dimensionality of node
representation vector d is set to 128 for all algorithms, as
used in Cao et al. (2015).

4.4. Link Prediction
The link prediction task is to predict whether an edge exists
between pairwise nodes in the original network. In order to
conduct the task, a portion of the existing edges in the original
network is randomly selected to be hidden. The remaining
networks are then used as the input of NRL models. Node
embeddings can then be learned from the trained models, and
the inner product between the representation vectors of pairwise
nodes is normalized by the sigmoid function. To evaluate the
performance of each algorithm over the link prediction task,
10% of the hidden edges are utilized as the positive data. In
addition, an equal number of edges not existing in the network
is sampled as the negative data. AUC and Macro-F1 are utilized
as evaluation metrics.

Table 1 shows the results of link prediction on Cora, 20-
NEWSGROUP, and Blogcatalog. We find that MLNE and
GraRep perform well but DeepWalk and node2vec have similar
and poor performance. MLNE is consistently better than the
baselines with respect toMacro-F1. For AUC, GraRep andMLNE
perform similarly in most cases and outperform the others,
except for in 20-NEWSGROUP, where GraRep is markedly better
than MLNE, outperforming it by 22.71%.

4.5. Node Classification
Node classification is an important task in network analysis.
Thus, this task is used to evaluate the quality of different learned
network representations. In this experiment, Logistic Regression
(LR) is used as a classifier. A portion of the labeled nodes are
randomly selected as the training dataset, and thus the remaining
nodes without labels are adopted to test the performance. The
training ratio is raised from 10% to 90%. The process is repeated
10 times for all algorithms on five networks. The nodes in
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Blogcatalog have at least one label and thus Micro-F1 and Micro-
F1 are used as with the evaluation metrics. The experimental
results are reported in Tables 2–5.

Table 2 shows the results of node classification on Cora.
We find that MLNE has good performance. As the training
ratio increases, MLNE outperforms the others on Macro-F1
and Micro-F1. When the training ratio is less than 50%,
MLNE achieves better performance than DeepWalk and GraRep
with a 90% training ratio. For Micro-F1, MLNE has the best
performance in most cases. When the training ratio is better
than 30%, MLNE achieves 0.39, 2.05, and 6.77% gains over
DeepWalk, node2vec, and GraRep, respectively. For Macro-F1,
MLNE has performance that is competitive with DeepWalk.
As the training ratio increases, MLNE is better than the
other baselines.

Table 3 shows the results of node classification on DBLP. The
number of different labels in DBLP is lower than in the other
networks, and thus the evaluation metrics of all of the algorithms
are good. DeepWalk maintains a slight advantage over the others
in most cases on Micro-F1 and Macro-F1. GraRep has a poor

TABLE 1 | Macro-F1 and AUC on Cora, 20-NEWSGROUPS, and Blogcatalog for

the link prediction task.

Model
Cora 20-NEWSGROUP Blogcatalog

Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC

DeepWalk 37.21 86.76 39.25 58.15 44.02 55.30

node2vec 33.33 83.22 33.95 59.88 38.20 55.81

GraRep 64.35 93.24 57.08 78.93 47.01 77.97

MLNE 80.95 93.76 60.24 64.32 68.67 77.47

performance and it is worse thanMLNE on those metrics, by 1.02
and 1.23%, respectively.

Table 4 shows the results of node classification on 20-
NEWSGROUP.We find that MLNE has the best performance on
Micro-F1 and Macro-F1. In fact, MLNE with only 10% training
ratio data arrives at a result close to DeepWalk and node2vec
when they are given 90% of the data. Compared with DeepWalk,
the Micro-F1 values of node2vec, GraRep, and MLNE improve
by 12.86, 10.29, and 3.25%. For Macro-F1, MLNE is also better
than those baselines, by 13.39, 11.01, and 3.31%. DeepWalk and
node2vec have similar performance and are worse than GraRep
on these metrics.

Table 5 shows the results of node classification on Blogcatalog.
For Micro-F1, when the training ratio is greater than 10%,
MLNE is better than DeepWalk, node2vec, and GraRep, by
3.58, 3.57, and 3.68% respectively. Additionally, with a 60%
training ratio of data, it beats all of the other algorithms,
even when they are given a 90% training ratio. For Macro-
F1, the performance of MLNE, DeepWalk, and node2vec
proved much more competitive. When the training ratio is
less than 60%, MLNE performs better than the baselines.
As the training ratio increases from 60 to 90%, node2vec
outperforms the others. GraRep has the worst performance on
both metrics.

Table 6 shows the results of node classification on Pubmed.
For Micro-F1, when the training ratio is equal to 10%, Deepwalk
is better than MLNE, and MLNE outperforms the other
algorithms. When the training ratio is greater than 10%, the
proposed algorithm MLNE outperforms all of the comparison
algorithms. For Macro-F1, MLNE performs better than all of the
baselines. GraRep also has the worst performance on Micro-F1
and Macro-F2.

TABLE 2 | Node classification results on Cora.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 76.68 79.55 81.00 82.08 82.85 83.11 83.11 83.58 84.39

node2vec 77.16 79.40 80.16 81.11 81.51 81.86 81.79 82.08 82.18

GraRep 75.16 76.64 77.25 77.92 78.06 78.48 77.75 78.28 77.75

MLNE 75.57 79.34 81.01 82.43 82.99 83.52 83.81 84.11 84.57

Macro-F1 DeepWalk 75.27 78.40 79.91 81.19 82.04 82.24 82.19 82.62 83.41

node2vec 75.67 78.40 79.20 80.39 80.90 81.36 81.42 81.60 81.92

GraRep 73.21 74.97 75.52 76.31 76.41 76.74 75.96 76.68 76.15

MLNE 74.66 78.22 79.89 81.55 82.01 82.61 83.00 83.17 83.73

TABLE 3 | Node classification results on DBLP.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 90.96 91.61 91.97 92.28 92.40 92.65 92.61 92.65 92.52

node2vec 90.89 91.50 91.85 92.07 92.24 92.35 92.43 92.52 92.27

GraRep 90.51 90.77 90.97 91.11 91.13 91.30 91.35 91.41 91.39

MLNE 90.34 91.58 92.04 92.16 92.29 92.38 92.41 92.58 92.57

Macro-F1 DeepWalk 90.46 91.20 91.61 91.96 92.12 92.18 92.32 92.40 92.31

node2vec 90.43 91.12 91.50 91.76 91.596 92.07 92.13 92.24 92.02

GraRep 89.94 90.22 90.43 90.58 90.61 90.81 90.83 90.90 90.93

MLNE 89.80 91.15 91.67 91.84 92.00 92.10 92.11 92.31 92.31
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TABLE 4 | Node classification results on 20-NEWSGROUP.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 61.16 69.64 74.34 75.39 77.33 78.57 79.04 78.31 79.17

node2vec 65.52 71.30 75.54 77.08 78.55 79.75 80.00 79.41 80.17

GraRep 69.91 77.36 80.60 82.25 83.58 84.47 84.61 85.71 85.50

MLNE 79.62 82.05 83.49 84.27 84.43 84.77 85.56 86.05 85.85

Macro-F1 DeepWalk 59.51 69.11 74.28 75.39 77.31 78.56 78.94 78.03 78.95

node2vec 63.23 70.95 75.52 77.07 78.54 79.71 79.87 79.07 79.70

GraRep 69.60 77.31 80.60 82.22 83.56 8445 84.49 85.56 85.33

MLNE 79.63 82.06 83.50 84.25 84.41 84.73 85.44 85.84 85.64

TABLE 5 | Node classification results on Blogcatalog.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 33.84 36.71 38.08 38.87 39.46 39.91 40.51 40.76 41.22

node2vec 33.83 36.49 38.09 38.95 39.67 40.04 40.34 40.96 41.02

GraRep 36.15 38.05 38.81 39.19 39.51 39.66 39.83 39.89 40.11

MLNE 35.74 38.85 39.83 40.58 41.15 41.34 41.64 41.80 41.87

Macro-F1 DeepWalk 19.02 22.13 23.79 24.44 25.17 25.61 26.35 26.42 26.75

node2vec 19.71 22.77 24.63 25.69 26.43 26.80 27.13 27.75 27.70

GraRep 19.63 22.23 22.63 23.03 23.24 23.45 23.59 23.74 24.26

MLNE 22.27 24.40 25.39 26.16 26.44 26.56 26.78 26.85 26.94

TABLE 6 | Node classification results on Pubmed.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 DeepWalk 80.06 80.80 80.89 80.97 81.01 80.55 80.49 80.10 80.83

node2vec 79.23 80.03 80.16 80.42 80.21 79.91 79.78 79.87 80.83

GraRep 79.14 79.39 79.39 79.78 79.66 79.56 79.51 78.83 79.82

MLNE 80.03 81.09 81.44 81.55 81.62 81.71 81.76 81.82 82.35

Macro-F1 DeepWalk 78.69 79.44 79.54 79.69 79.69 79.19 79.06 78.81 79.78

node2vec 77.70 78.53 78.61 78.96 78.63 78.40 78.16 78.52 79.78

GraRep 77.70 78.00 77.98 78.53 78.35 78.18 78.18 77.56 78.83

MLNE 78.73 79.78 80.12 80.24 80.32 80.42 80.44 80.52 81.11

FIGURE 5 | Visualization of 20-NEWSGROUP. Each point represents a document. The color indicates the category of each document. (A) is the result of DeepWalk,

(B) is the result of node2vec, (C) is the result of GraRep, and (D) is the result of the proposed MLNE.

4.6. Visualization
Visualization is another important task for exploring and
analyzing a network. To conduct this task, the size of learned

node embeddings is firstly reduced for display; a popular
dimensionality reduction technique t-SNE is used to visualize the
network in two-dimensional space. For documents labeled into
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three categories in the 20-NEWSGROUP, three different colors
indicate the corresponding points. A good visualization result
keeps nodes within the same cluster close and vice versa.

From Figure 5, we can see that DeepWalk and node2vec do
not perform well because there are no clear boundaries among
the groups. For GraRep, there are two clusters where nodes also
tend to mix together. Obviously, MLNE slightly outperforms
the baselines and learns a good clustering, resulting in much
clearer boundaries. The experimental results demonstrate the
effectiveness of MLNE in the visualization task.

5. CONCLUSION

In this paper, we propose a multi-task learning-based network
embedding named MLNE. In order to jointly preserve the
local and global structural information, we design a model
based on multi-task learning. The model is composed of three
components: a shared encoder, decoder, and classifier. The shared
encoder and decoder can be seen as a standard autoencoder that
automatically learns representations from the global features.
The shared encoder and classifier are used to reconstruct the
one-hop area of a node from the learned latent representation.
Additionally, a regularization based onmini-batch batch gradient
descent is introduced to learn stable and robust representations.
Experimental results on node classification, link prediction, and
visualization tasks demonstrate the superiority of our proposed
MLNE in learning node representations.

In the future, we will extend multi-task learning to
heterogeneous information networks and large-scale networks.
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Gene Expression Programming (GEP), a variant of Genetic Programming (GP), is a

well established technique for automatic generation of computer programs. Due to the

flexible representation, GEP has long been concerned as a classification algorithm for

various applications. Whereas, GEP cannot be extended to multi-classification directly,

and thus is only capable of treating an M-classification task as M separate binary

classifications without considering the inter-relationship among classes. Consequently,

GEP-based multi-classifier may suffer from output conflict of various class labels, and the

underlying conflict can probably lead to the degraded performance in multi-classification.

This paper employs evolutionary multitasking optimization paradigm in an existing

GEP-based multi-classification framework, so as to alleviate the output conflict of each

separate binary GEP classifier. Therefore, several knowledge transfer strategies are

implemented to enable the interation among the population of each separate binary task.

Experimental results on 10 high-dimensional datasets indicate that knowledge transfer

among separate binary classifiers can enhance multi-classification performance within

the same computational budget.

Keywords: gene expression programming, evolutionary multitasking, classification, genetic programming,

evolutionary computation

1. INTRODUCTION

Classification is a fundamental and active research topic in data mining. Various real-world
applications involving medical diagnosis, image categorization, credit approval, and etc., are
covered by classification techniques. Formally, in a classification task, a classifier is to assign a class
label k to the given input data Xi with features X1

i , X
2
i , ..., X

N
i after being trained by data X1, X2, ...,

XM , where N andM represent the number of the features and the sample size, respectively. In this
paper, we focus on the multi-classification problems in which the number of the candidate values
for class labels is larger than two.

Generally, machine learning methods involving Neural Networks (Krizhevsky et al., 2012),
Random Forests (Breiman, 2001), Support Vector Machine (Chang and Lin, 2011), and etc.,
are applied to solve the multi-classification problems. Considering the issue of the curse of
dimensionality, many evolutionary algorithms (EA) have been utilized to assist aforementioned
machine learning methods to tackle high-dimensional datasets, including Artificial Bee Colony
(ABC) (Hancer et al., 2018), Particle Swarm Optimization (PSO) (Xue et al., 2012; Tran et al.,
2018), and Genetic Programming (GP) (Chen et al., 2017). To be specific, these population-based
algorithms can evolve individuals with a fitness function with respect to the machine learning
classifier, and therefore can be conducted in either single-objective or multi-objective fashion. By
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searching effective feature subsets and limiting the subset size
using EAs, the classifier can be trained in a more efficient way
and the classification results can be more interpretable.

Unlike other population-based algorithms that must be
implemented with a given machine learning classifier, GP is
capable of completing both feature selection and classification
independently owing to its tree structure. By converting the
tree structure of GP into a string structure, Gene Expression
Programming (GEP) (Zhong et al., 2017), a variant of GP, enjoys
the same benefit as GP of independent classification ability
with additional power of controlling bloat issue by restricted
string length (Ferreira, 2002). With the automatic construction
capability, GEP-based methods have emerged to show high
effectiveness on symbolic regression (Cheng and Zhong, 2018;
Huang et al., 2018; Zhong et al., 2018b), time series prediction
(Zuo et al., 2004), knowledge discovery (Zhong et al., 2014),
and etc.

Although GP and GEP can construct classification rules
independently and have been prevailing in a plethora of
applications involving spectral image categorization (Rauss
et al., 2000), radar imagery recognition (Stanhope and Daida,
1998), medical diagnosis (Gray et al., 1996), credit approval
(Sakprasat and Sinclair, 2007), and etc., they cannot be directly
applied to multi-classification. To adapt GP and GEP to
multi-classification, most researchers are devoted to manually
configuring some contrived rules to achieve collision avoidance
of class labels, thereby combining the results of multiple binary
classifiers. In Muni et al. (2004), a novel evolutionary operator
is designed to guide the population, and a meta-heuristic rule
is supplied to iteratively remove output collision of different
binary classifiers. To avoid output collision, the order, that
the varying binary classifiers come into effect for prediction,
can also be redesigned according to the accuracy and the
reciprocal training samples (Zhou et al., 2003). Moreover, the
well-established multi-objective techniques can also enhance
the multi-classifiers by maintaining a pareto front of binary
classifiers by considering precision, recall, and classification rule
size, and employing negative voting to avoid output collision
numerically (Nag and Pal, 2015). Notably, any individual in
population of aforementioned GP and GEP can only be a binary
classifier, hence it is still unnatural to extend these algorithms
to multi-classification in despite of explorations in past few
years. Furthermore, since nearly all the GP-based and GEP-based
multi-classification methods straightforwardly depend on binary
classifiers, it is fitness function and combining strategy of binary
classifiers that relatively matter in the algorithmic design.

As discussed above, existing GP and GEP methods for multi-
classification generally adopt contrived rules to avoid output
collision of binary classifiers, and a crucial cause for output
collision is the separate training process for each binary classifier,
which potentially degrades the performance of multi-classifiers.
In fact, intuitively, a classification rule trained by binary classifiers
of one class can hopefully be utilized by another class as a
rule component that can to some extent boost its own binary
classification performance through recognizing the pattern
of negative samples. According to the consideration above,
this paper takes into account the Evolutionary Multitasking

paradigm (Gupta et al., 2015, 2017; Ong and Gupta, 2016;
Bali et al., 2019) to facilitate the multi-classification avoiding
output collision of binary classifiers by enhancing the knowledge
transfer among multiple binary classifiers. Equipped with the
capability of latent genetic transfer, Evolutionary Multitasking
can resolve many optimization problems simultaneously by
enabling the knowledge transfer among different problems
through the unified chromosome representation. In control of
the synergies of searching space for varying optimization tasks
(Gupta et al., 2016a,b; Da et al., 2018; Zhou et al., 2018),
Evolutionary Multitasking, which can be easily employed on
existing population-based algorithm (Feng et al., 2017; Chen
et al., 2018; Liu et al., 2018; Zhong et al., 2019), have shown
promising results on a vast number of cases in multi-objective
optimization (Gupta et al., 2016c; Feng et al., 2018), symbolic
regression (Zhong et al., 2018a), capacitated vehicle routing
problems (Zhou et al., 2016), expensive optimization tasks (Min
et al., 2017), and can be extended to a large scale version (Chen
et al., 2019; Liaw and Ting, 2019) to enable some more scalable
applications in the future. The methodology of Evolutionary
Multitasking paradigm naturally fits the multi-classification
problem, by treating each binary classification problem as an
optimization task within certain function evaluations. Notably,
concerning the multi-classification as Evolutionary Multitasking
problem does not require a design for unified representation
as the canonical Multifactorial Evolutionary Algorithm (MFEA)
(Gupta et al., 2015) does, since each binary classification
task (optimization task) in this scenario shares the same
solution representation.

For canonical GP, knowledge transfer especially for
Evolutionary Transfer Learning, has been widely investigated
in past few years. Generally, two sorts of strategies prevails
for knowledge transfer in canonical GP, modularization and
initialization (O’Neill et al., 2017). For modularization, fitter
canonical GP individuals in source domain can be evaluated
and extracted as new function units in the GP population
in the target domain (O’Neill et al., 2017), which eliminates
the uncommon features between source domain and target
domain. For initialization that is a really simple and direct
way, GP individuals of higher fitness value in source domain
and their subtrees often serve as the initial individuals and
favorable components to select (Muller et al., 2019). Initialization
techniques also include the knowledge transfer with respect
to the feature importance. Using the ranks and fitness value
of population in the source domain problems to vote for each
feature, relatively fair feature importance can be obtained to
guide the evolution of the target domain problems (Ardeh et al.,
2019). Whereas, most relevant researchers have focused on the
Evolutionary Transfer Learning, where one or several source
problems are applied to assist the target problems, rather than the
Evolutionary Multitasking, in which various problems are solved
simultaneously with the same priority. Moreover, the existing
works mainly rely on experiment design related to individual
structure of canonical GP, so it is possible that the same strategies
may not work in some variants of canonical GP. Therefore, as an
important variant of canonical GP, GEP, with a string structure
which is distinct from that of GP, should be investigated with
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FIGURE 1 | The encoding tree for mathematical expression.

some similar knowledge transfer techniques of Evolutionary
Multitasking that is more general than Evolutionary Transfer
Learning, for more potential promising possibilities. In this
paper, GEP methods with different variation operators are
employed with corresponding knowledge transfer techniques
to show the effectiveness and the limits of the Evolutionary
Multitasking methods in multi-classification, based on an
existing multi-classification framework designed for GEP.

The rest of this article is organized as follows. Section 2
introduces a GEP-based multi-classification framework that the
experimental study is based on. The canonical Evolutionary
Multitasking paradigm, MFEA, is described briefly in section
3. The proposed knowledge transfer strategies are presented
in section 4, followed by the experimental study in section 5.
Eventually, the conclusions are drawn in section 6.

2. GEP MULTI-CLASSIFICATION
FRAMEWORK

AccGEP (Zhou et al., 2003) is a well designed GEP-based
algorithm for multi-classification. Hence, considering the
prevalence and the maturity of this framework, this article will
employ AccGEP to serve as the baseline method for the study
of knowledge transfer. In this section, the basic concept and the
algorithmic details of GEP will be presented, followed by the
introduction of AccGEP.

2.1. GP and GEP
As a member of evolutionary algorithms, GP generally considers
each solution for optimization problem as an individual of the
whole population, in which the evolution of the algorithm is
driven by variation operators encompassing mutation operators,
crossover operators, and selection operators (Poli et al., 2008)
among the individuals, like most meta-heuristic algorithms.

Different from other population-based methods, the
representation of each individual of GP is a mathematical
expression encoded by a tree, where input variables are

FIGURE 2 | The encoding string for mathematical expression.

represented by leaf nodes, and the function operators like
“−” and “sin,” are represented by intermediate nodes having
offspring size of the same value with corresponding operands.
For instance, Figure 1 depicts an individual that is encoded by
mathematical expression, 2A exp(A) − A + cos(B − A), in GP
population. For this mathematical expression, given the specific
values of A and B, the output of the individual can be decoded
in a bottom-up fashion to the root node of the representation
tree. In canonical GP, the mutation, crossover, selection variation
operators are applied to search for the more effective tree
structures, thereby yielding the acceptable individuals with the
satisfactory fitness values.

Distinct from canonical GP, GEP owns a string-based
structure for each individual. Illustrating the same mathematical
expression with the encoding tree of Figure 1, the string-based
structure of GEP individual can be depicted as Figure 2, where
the encoding tree is encoded by the string structure in a
breadth-first-search traverse way. As illustrated by Figure 2, each
individual of GEP population is composed of two parts, head
part and tail part. In GEP, both the function units and terminal
(i.e., variable) units constitute the head part of the string, while
no function units but only the terminal units occur in tail
part. During the evolution process of GEP, each string-based
individual maintains a fixed length for both the head part and
the tail part. Precisely speaking, a predefined constraint should
be exerted on the length of head part(h) and the length of tail
part(l) that:

l = h · (u− 1)+ 1 (1)

where u amounts to the maximum operand of the function unit,
so as to guarantee that the encoded mathematical expression is
complete (Poli et al., 2008). Furthermore, due to the breath-first-
search traverse encoding mechanism, it is possible that some of
the nodes saved in the string structure will not be utilized to
encode mathematical expression.

2.2. AccGEP for Multi-Classification
With the capability of constructing mathematical expression,
GEP-based algorithms is able to solve regression problems
naturally, and can tackle binary classification issues by posing
threshold values on regression tasks. For multi-classification
problems, like most GEP-based classifiers, AccGEP, employed
one-against-all (Aly, 2005) learning method, that is, treating an
M-classification problem asM binary classification tasks. In one-
against-all strategy, each binary classification problem is adopted
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to decide the data samples whether or not belong to a specific
class, according to the fittest rule in the GEP population as follow:

{

Xi ∈ Classj,GEP(Xi) > 0
Xi /∈ Classj,GEP(Xi) ≤ 0

. (2)

Algorithm 1: Covering Strategy

Input: E+ (set of positive examples), E− (set of negative examples)
Output: H (A set of GEP-based rules)

1: /* Initialization */
2: H← ∅
3: Lmin ←+∞ (minimum description length obtained)
4: LH ← 0 (current description length)
5: Ltheory ← 0 (theory bits)
6:

7: /* Learning */
8: Repeat

9: Learn a rule R to cover the positive samples in E+
10: E+ ← E+−{s | s can be covered by R}
11: /* Pruning */
12: Ltheory ← Ltheory+ number of bits for encoding R
13: Lexception(H) ←number of bits for encoding current

exceptions
14: LH ← 0.5 · Ltheory + Lexception(H)
15: If (LH < Lmin) Then
16: H← H ∪ {R}
17: Else

18: Termination
19: /* Update */
20: If (Lmin > LH) Then
21: Lmin ← LH
22: Until E+ == ∅

To deal with the complex feature spaces in multi-classification
(Zhou et al., 2003), AccGEP applied the covering strategy to learn
multiple rules for each binary classification problem. As shown
in the algorithm 1, for each binary classification issue, AccGEP
is designed to exploit a rule set that can cover all the positive
data samples, and each rule in the rule set should be learnt by
GEP and the according positive sample set with some criteria in
each iteration. To be specific, the fitness function of each rule is
designed as follow:

Fitness(R) =

{

0, Pre < 0
Pre · exp(Rec− 1), Pre ≥ 0

. (3)

where Pre, Rec represent the precision and recall in binary
classification, respectively. Generally, Pre is computed as the ratio
of true positive samples and predicted positive samples, while
Rec is computed as the ratio of true positive samples and all
positive samples. However, since the positive sample set, E+
in algorithm 1, shrinks in each iteration, a new formula for
computing Pre is presented in AccGEP to better take advantage
of the distribution information:

Pre = (
TP

TP + FP
−

P

P + N
) ·

P + N

N
(4)

FIGURE 3 | The flow chart for post pruning of AccGEP framework.

where TP, FP, P, N, stand for the number of true positive
samples, false positive samples, all positive samples in
training set, all negative samples in training set of binary
classification, correspondingly.

In order to allay the structural risks, the minimum description
length principle in information theory is employed as a pruning
technique for early stopping. As indicated in algorithm 1, L(H)
stands for the description length of the current rule set, H. The
learning process is terminated when the description length of rule
set no longer declines. Moreover, Lexception and Ltheory amount to
the bits for encoding the error of the rule set, and the bits for
encoding the rule set itself. The computation formula of the two
description length are defined as follow:

{

Lexception(H) = log2(C
FP
TP+FP)+ log2(C

FN
TN+FN)

Ltheory(H) = log2(Nc)
∑s

i=1 L(Ri)
. (5)

where TP, FP, TN, FN, Nc, s, L(Ri), represent true positive
samples, false positive samples, true negative samples, false
negative samples, the number of distinct symbols applied in GEP,
the number of the current rules, the valid length of individual for
rule Ri, accordingly.

Having obtained multiple decision rules for each binary
classification, a post-pruning technique is employed to combine
the rules to yield the final results of multi-classification.
Generally, as depicted in Figure 3 the combining strategy consists
of steps as follow:

• Evaluation: In evaluation process, all the active rules in the rule
set should be evaluated according to the fitness function as well
as the existing samples in the training set.
• Sorting: In sorting process, all the active rules in the rule set

should be sorted based on the fitness values.
• Selecting: In selecting process, the rule with the highest fitness

value is selected, then it is moved into an ordered rule set. For
the original rule set, the selected rule is removed.
• Update: In updating process, all the samples covered by the

selected rule in selecting process will be removed as well.
• Default Class: With remaining samples and remaining rules

that are able to cover any sample, AccGEP will proceed with
the cycle from step 1 to step 4 as illustrated in Figure 3.
Otherwise, the iteration will terminate and a default class label
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is decided, so as to avoid the scenario when all the rules will
reject a new example. In general, the default class label will
be set as the one that has most samples in the remaining
sample set at the end of the algorithm cycle introduced above.
Nevertheless, when there is a tie in the sample count in the
remaining sample set or the remaining sample set is empty,
the default class label can be determined randomly.

Through post-pruning process, AccGEP can attain an ordered
rule set as well as a default class label. Subsequently, in the
prediction phase for testing data, each testing sample belonging
can be determined by the first rule that covers it in the ordered
rule set. If a testing sample is rejected by all the rules, then the
default class label will be assigned.

3. MULTIFACTORIAL EVOLUTIONARY
ALGORITHM

Inspired by the bio-cultural multifactorial inheritance, MFEA
(Gupta et al., 2015), a typical Evolutionary Multitasking
algorithm, is designed to fully exploit the potential of
population-based algorithm to solve several optimization issues
simultaneously. By introducing variables including factorial rank
r, skill factor τ , scalar fitness φ, MFEA can enable the knowledge
transfer among varying problems through a unified solution
representation. Initially, all the initial solutions in the population
should be evaluated across all the target problems. Subsequently,
each individual will be assigned with a skill factor τ to indicate
the task in which it has the most promising result. At length, the
skill factor τ is determined by the factorial rank r of an individual
across all the tasks as τ = argj min(rj), and then the scalar fitness

φ can be computed accordingly by φ = 1
rτ
. In order to improve

the algorithm efficiency, in the subsequent evolution process,
each individual will be only evaluated for the optimization task
of its skill factor. By enabling the associative mating (Gupta et al.,
2015), the skill factor of a certain individual can possibly undergo
the variation.

With the techniques of assortative mating and selective
evaluation for knowledge transfer, MFEA basically can comply
with the similar work flow with the conventional Evolutionary
Algorithms. In general, themain steps ofMFEA can be illustrated
as follow:

• Initialization: To start with, an initial population, P, is
produced in MFEA. Then, all the individuals should be
evaluated under all the problems, thereby getting the
corresponding τ , φ, r.
• Assortative Mating: In each generation, the offspring will

be generated through the conventional genetic operators
including mutation and crossover. In MFEA, a control
parameter, rmp, is applied to indicate the probability of the
crossover between two individuals of different skill factor
τ , which is concerned as a process of knowledge transfer.
Otherwise, the crossover for parents of the same τ , or the
mutation upon a single parent, is implemented.
• Selective Evaluation: Having generated an offspring population

O, those individuals that undertake the crossover of different

skill factor have undetermined τ . Intuitively, the skill factor
of an individual should be set randomly based on the values
of its parent. For those offsprings that merely undergo the
casual crossover or mutation operator, skill factor will simply
imitate their parents, known as a cultural transmission process
(Gupta et al., 2015). Subsequently, the whole population will
only be evaluated according to their best tasks. Aside from the
optimization task τ , the fitness value of an individual for other
problems should be assigned with ∞, in order that the true
factorial ranks r would not be affected.
• Population Update: At the end of each generation, the skill

factors and the scalar fitness of hybrid populationO∪P should
be re-evaluated to maintain only the individuals owning the
best scalar fitness.

As discussed in section 1, an essential trigger for output
collision in multi-classification is the separate training process
of each binary classifier. Intuitively, binary classifier for different
class labels might share some common structures and even
some influential features. Based on the consideration above,
it is believed that the latent genetic transfer attribute in
Evolutionary Multitasking can enhance the performance of the
existing GEP-based classifier by enabling the interaction among
binary classifiers.

4. PROPOSED ALGORITHM

In this section, an Evolutionary-Multitasking-based classification
method using GEP (EMC-GEP) is proposed. First, the general
framework of the algorithm architecture is given. Then different
knowledge transfer strategies for distinct GEP variation operators
are discussed in section 4.2.

4.1. Framework
As portrayed by Figure 4, the whole algorithm can be divided
into four sections. First, theM-classification problem is degraded
as M binary classification through One-Against-All learning.
Then, each binary classification will be concerned as an
optimization task that is tackled by each subpopulation, POP,
that owns an archive, A. During the iterative evolution, all
the subpopulation will undergo the variation operator as well
as knowledge transfer. As depicted in Figure 4, the evolution
process of each subpopulation include three parts: evolution
within own subpopulation, knowledge transfer from its own
archive, and knowledge transfer from the other archives. Notably,
after each evolution iteration, the archive of each subpopulation
will be updated as well. After the evolution process, the whole
population can obtain various classification rules for each binary
classification problem. With these learnt classification rules,
the rules combination process (i.e., the post-pruning process
depicted in section 2 and Figure 3), can combine all the binary
rules to yield an ordered rule set (as well as a default class label
as explained in section 2), so as to resolve the M-classification
problem eventually. Each section will be detailed as follows.
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FIGURE 4 | The general flow chart for the EMC-GEP framework.

4.1.1. One-Against-All Strategy
One-Against-All is a casual strategy that treats the M-
classification as M separate binary classification problems. As
a variant of Error-Coding Output Codes (ECOC) (Dietterich
and Bakiri, 1994), One-Against-All strategy is computationally
efficient, compared with other ECOC-based strategies. Based on
One-Against-All strategy, EMC-GEP will learn multiple rules
for each binary classification problem, which is the same as the
covering strategy of AccGEP as algorithm 1, thereby enhancing
the robustness and stability of the classification framework.

4.1.2. Paradigm in Multi-Population
In this article, the MFEA paradigm is implemented in a
multi-population fashion as illustrated in Figure 4, with each
subpopulation focusing on one optimization task. Since the
canonical paradigm simply evolves the population as a whole
encompassing all the target tasks and only one individual is
reserved for each task in each iteration, it is possible that
the collected information for each task is scant to guide the
population to evolve. Moreover, the original framework ofMFEA
have only one control parameter rmp (Gupta et al., 2015) to
enable the assortative mating for individuals of the unified
representation, but such a framework cannot facilitate more
flexible and extensible operation based on the population. Hence,
based on discussion of Chen et al. (2018), Gong et al. (2019),
and Liu et al. (2018), multi-population mechanism is employed
to improve the stability of the MFEA paradigm and to enable
more flexible operation on both sub-population and mixed-
population (Chen et al., 2018).

For each task, a population, POP, is maintained along with
an archive, A. Population, POP, is maintained to enable the

flexible population-based operations and variation operators.
Archive, A, is used to record some successful individuals of the
corresponding POP, in order that those successful individuals
hopefully can transfer their valuable solution components to
its own POP or other POP in later knowledge transfer phase.
Similar with the POP, each archive A will be updated according
to the reciprocal subpopulation. Initially, each archive A should
be initialized randomly. Then, after each evolution iteration, the
individuals in population and the individuals in archive will be
both sorted. With certain archive replacement probability, arp,
the individuals in archive will be replaced by some individuals
in population. Notably, the archive size is strictly smaller than
that of population. Hence, with larger arp, the archive tends
to resemble the fittest individuals in current population, while
with smaller arp, more successful individuals in the searching
history can be recorded, thereby enhancing the diversity of the
archive individuals. Specifically, the archive update mechanism is
illustrated as algorithm 2. It is notable that the fittest individual
for each population may not be stored in the archive. The
rationale behind this idea is intuitive. Generally, the archive is
used to update two sorts of populations, its own population
and other populations. To update its own population, the fittest
individual is not necessarily stored in the archive since the self
population expects more randomness and history information
from the archive. To update other populations, although the
fittest individual may own the most useful information in its
own problem context, the synergies between the source archive
and target population is uncertain. Therefore, we apply a loosely
organized update archive to store both the good individuals and
historical individuals to provide a more comprehensive transfer
for other populations.
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Algorithm 2: Archive Update

Input: POPi, Ai, arp, n(size of Ai)
Output: Ai

1: /* Sorting */
2: Sorting population POPi according to the fitness value
3: Sorting archive Ai according to the fitness value
4:

5: /* Update */
6: j← 0
7: For j < nDo

8: If (rand(0, 1) < arp) Then
9: Ai,j← POPi,j
10: (Ai,j, POPi,j amount to the j-th individual in

Ai, POPi)
11: j← j+ 1
12: End For

13: Return Ai

4.1.3. Evolution Process
Distinct from previous works on knowledge transfer in multi-
population (Chen et al., 2018; Liu et al., 2018), where the
evolutionary operator is directly employed on two different
populations, this paper utilizes the archive as the group of
representative individuals of each population for knowledge
transfer. As depicted in Figure 4, the evolution process of EMC-
GEP involve three sections, self evolution (i.e., POPi ← POPi),
self transfer (i.e., POPi ← Ai), cross transfer (i.e., POPi ← Aj).
The reason why self transfer is adopted in this paper is that, some
useful solution components may not be fully exploited and may
be forgotten by the subpopulation. Therefore, it is believed that
the knowledge transfer from the “former” subpopulation toward
the current subpopulation may help as cross knowledge transfer.

Generally, MFEA paradigm employs a probability variable
rmp to control the mutual knowledge transfer for individuals of
distinct skill factors (Gupta et al., 2015). Whereas, in this paper,
a step-wise transfer control mechanism is applied to enable a
more stable knowledge transfer process like (Da et al., 2018).
As illustrated in algorithm 3, the transfer process is launched
whenever the iteration count t can be divided by a certain transfer
interval δ. Unlike those methods that try to adaptively select
a similar task to transfer (Chen et al., 2019), as a preliminary
study, this paper simply randomly selects an archive Aj for each
subpopulation POPi, where imay not necessarily differ from j due
to the discussion above.

It is notable that, same with covering strategy of AccGEP
in algorithm 1, EMC-GEP also learns multiple rules for each
binary classification task, and consistently the number of each
binary classfication rules for distinct tasks can be different.
Hence, it is possible that some binary classification tasks are
still searching for the rules to cover the positive samples, while
other tasks may already terminate. In this special circumstance,
those archives, of which the reciprocal population’s learning
process has terminated, will still remain for knowledge transfer
of those active population, and will undergo no changes during
the evolution.

Algorithm 3: Evolution with Knowledge Transfer

Input: POP1, POP2, ..., POPM ,A1,A2, ...,AM , δ (transfer interval)
Output: New Population and New Archives

/* Preparation */
t← 1
Generate initialM population randomly.
InitializeM archive with corresponding population.
/* Evolution */
While ending condition not satisfied Do

/* Searching */
For each subpopulation POPi Do

If t % δ == 0 Then
/* Transfer */
k← rand(1,M)
POPi ← Transfer(POPi, Ak)

Else

Self Evolution
End For

/* Updating */
For each archive Ai Do

Ai ← Update(POPi,Ai) as Algorithm 2
End For

t← t + 1
EndWhile

4.1.4. Rules Combination Using AccGEP
After the evolution process for those population aiming at
varying binary classification tasks, we can obtain a vast number
of classification rules, among which multiple rules are utilized
for the same binary classification issue. To avoid output conflict,
a combination phase is necessary for analyzing these rules. In
this paper, EMC-GEP will adopt the same strategy as the post-
pruning phase in AccGEP, which has already been specifically
explained in Figure 3 and section 2.2.

4.2. Knowledge Transfer
The knowledge transfer has been investigated in various
population-based algorithms, and the investigation mainly
concentrated on the chromosome representation (Zhou et al.,
2016; Zhong et al., 2018a), and the problem similarity (Da et al.,
2018; Chen et al., 2019). However, in this paper, the problem
representation for each binary classification problem does not
require redesign, and we tend to select the archive randomly
to assist the target task. The vital concern of our study is that,
most knowledge transfer research highly depends on the data
structure, and the efforts on GEP-based method are insufficient
to supply a brief understanding of knowledge transfer effect on
GEP. Hence, to add to a preliminary insight, this paper tries to
employ knowledge transfer operations on different evolutionary
operators in GEP.

4.2.1. GEP With Canonical Variation Operator
Originally, the variation operators of GEP include mutation
operator and crossover operator (and sometimes rotation
operator) based on the string structure in Figure 2. Considering
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the data structure, the variation operator that really matters in
knowledge extraction of the canonical GEP is crossover operator,
since crossover operation can extract a continuous segment of
an individual, and it is believed that the continuous segment can
serve as useful genetic material for some classification problems.

To be specific, in GEP, crossover operator involves two
operations, single-point crossover and two-point crossover.
For single-point crossover, the crossover operation of GEP
individuals resemble the behavior of Genetic Algorithm. Due
to the breath-first-search encoding style of GEP, the forward
part of crossover can serve as a skeleton of an expression tree.
Taking the expression tree in Figure 1 as an example, the first
four operators, “+,” “−,” “cos,” “∗,” in a combination as first four
nodes in a string-based individual, can construct a basic skeleton
of the whole mathematical expression, which can be regarded as
a form of transferable knowledge. For two-point crossover, the
skeleton of an expression tree can also be extracted in the same
way as one-point crossover. Moreover, with more segmented
structure, the two-point crossover can hopefully extract the useful
structure of an individual more flexible by enabling cutting out
the intermediate string section of GEP individual.

To achieve the knowledge transfer through crossover
operator, whenever knowledge transfer is launched in algorithm
3, the two parents of a crossover operator should be selected
in target population POPi and the source archive Ak separately.
Aside from the selection choice, the crossover operation remains
unchanged in other respects.

4.2.2. GEP With DE-Based Variation Operator
Besides the conventional evolutionary operators, some
variants of GEP methods can employ DE-based operators by
transforming the string construction process into a continuous
optimization method, which is highly extensible and has
shown promising capability in applications like symbolic
regression (Zhong et al., 2015).

In general, individuals in Differential Evolution (DE) (Storn
and Price, 1997) should undergo mutation operation, where
each element in individual will be replaced, in certain
probability, by some random element added to a scaled
difference element (Storn and Price, 1997). There are various
mutation strategies frequently applied in the literature involving
“DE/rand/1,” “DE/current-to-best/1,” “DE/best/1,” In this paper,
as in Zhong et al. (2015), “DE/current-to-best/1” is employed as
defined follow:

vi,g = xi,g + Fi · (xbest,g − xi,g)+ Fi · (xr1 ,g − xr2 ,g) (6)

where v, x, F, i, g, r1, r2, stand for new element, original element,
mutation control parameter, individual index, dimension index,
the first random index, and the second random index,
accordingly. To apply the DE-based operator in GEP, SLGEP
(Zhong et al., 2015) can transform the difference operation in
equation 6 into a matching binary operator as:

ψ(a, b) =

{

1, a 6= b
0, a = b

. (7)

Then subsequently, the mutation operation of DE in equation 6
can be changed into a probability computation process:

φ = 1− (1− F · ψ(xbest,j, xi,j)) ∗ (1− F · ψ(xr1 ,j, xr2 ,j)) (8)

where the probability φ is adopted to control mutation operation
of a specific node on position j in string structure representation
in Figure 2. That is, when a random value in [0,1] is smaller
than corresponding φ, then the node in the reciprocal position
should be replaced by a newly sampled node, where the new
node is sampled by the frequency record of all the nodes in
the population as Zhong et al. (2015). The evolution process in
SLGEP can be conluded as algorithm 4.

Algorithm 4: Evolution Process of SLGEP

Input: F, r1, r2, x1, x2, ..., xM ,CR (replacement probability),
k(mandatory mutation index)
Output: New Population

For each individual xi Do

/* Variation */
For each dimension xi,j Do

Compute probability φ based on equation 8
If (rand1(0, 1) < CR OR j == k) AND
rand2(0, 1) < φ Then

ui,j ← “Frequency-based Assignment”
(Zhong et al., 2015)

Else

ui,j ← xi,j
End For

/* Selection */
If f (ui) < f (xi) Then

xi ← ui
End For

To achieve knowledge transfer based on the DE-based
operator in SLGEP, similar to the strategy for canonical operator,
this paper simply selects the individuals in archive to complete
the computation process in the DE-based operator. The core
computation part in DE-based operator is equation 8. According
to the transfer paradigm Transfer (POPi,Ak) in algorithm 3,
for computation of φ, xbest,j, xr1 ,j, xr2 ,j are selected from external
archive Ak, and xi,j is selected from population POPi. Notably,
the “Frequency-based Assignment” in the original work is
grounded on the frequency record of each sort of node in
the whole population, which can also concerned as a form of
useful knowledge especially for feature selection. Resembling
the feature-wise knowledge transfer in Ardeh et al. (2019), this
paper also enables the transfer of the node frequency by applying
the frequency record of the archive Ak upon the individual
assignment in population POPi.

5. EXPERIMENTAL STUDY

To verify the assumption that the proposed techniques
can hopefully allay the conflict of each binary classification
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TABLE 1 | Data information with dimension size, sample size, and class size.

Index Name Features Samples Classes

1 DLBCL-A 661 141 3

2 DLBCL-B 661 180 3

3 Armstrong-2002 2,063 62 3

4 Lapointe-2004 1,625 69 3

5 Alizadeh-2000 2,116 72 4

6 Wine 13 178 3

7 Lung Cancer 56 32 3

8 Urban Land Cover 148 675 9

9 TOX-171 5,748 171 4

10 GLA-BRA-180 49,151 180 4

problem, the comparative studies on 10 high-dimensional multi-
classification datasets for distinct GEP operators with their
according transfer strategy are conducted. Aside from the direct
comparative results, a relatively detailed discussion is also
provided for a deeper insight on the effectiveness of knowledge
transfer from various “source archives.” The comparison among
the proposed method, K Nearest Neighbor, and Decision Tree
is also provided. For all the experimental studies, the results are
yielded by 30 independent trials, and theWilcoxon sign-rank test
(Wilcoxon, 1992) with α = 0.1 is performed to check for the
significant difference of the experiment results.

5.1. Parameter Settings
Nearly all the fundamental settings of EMC-GEP are based on
the original recommended settings of AccGEP in Zhou et al.
(2003). In detail, the function set includes {+, -, *, /, Sqrt,
IF}. The terminal set totally depends on the given classification
problems, in addition to a list of constants, {1, 2, 3, 5, 7}. As
for the algorithmic parameters, the chromosome length, the
population size and the maximum iteration are 100, 1,000, and
1,000 respectively. The operator probability is set to 0.02 for
mutation, and 0.8 for crossover in which 0.4 for one-point
crossover, and 0.4 for two-point crossover.

Furthermore, for the DE-based GEP, SLGEP, Automatically
Designed Function (ADF) in Zhong et al. (2015) has been
removed to ensure the consistency as the AccGEP framework.
The function set, terminal set, chromosome length, population
size, maximum iteration should be set as the same settings as
AccGEP, as aforesaid. In terms of the DE-based evolutionary
operators introduced in section 4.2.2, the mutation factor, F,
crossover factor, CR, and themandatory index k, are all generated
randomly according to their corresponding domain.

The original parameters of EMC-GEP only involve the archive
replacement parameter, arp, as well as the transfer interval, δ. In
this study, based on the empirical trials of the authors, arp and δ
are set to 0.8 and 10 reciprocally for a preliminary study.

5.2. Experiment Data
The experiment datasets in the comparative study are mainly
high-dimensional low sample size data as illustrated in Table 1,
involving those datasets of which the dimension and sample

TABLE 2 | Accuracy comparison between AccGEP and EMCGEP under distinct

operators.

Data

index

AccGEP-GA EMCGEP

-GA

AccGEP

-DE

EMCGEP

-DE1

EMCGEP

-DE2

1 72.9 (4) 71.6 (5)= 75.1 (3) 77.4 (1)+ 75.6 (2)=

2 74.4 (4) 72.8 (5)= 78.9 (2) 81.4 (1)+ 78.9 (2)=

3 77.2 (5) 81.1 (3)+ 78.9 (4) 83.9 (1)+ 83.3 (2)+

4 58.2 (4) 46.5 (5)− 61.7 (2) 60.6 (3)= 62.9 (1)=

5 53.8 (4) 60.0 (1)+ 56.3 (3) 55.0 (5)= 60.0 (1)+

6 94.9 (2) 86.8 (5)− 90.4 (4) 93.2 (3)+ 95.0 (1)+

7 48.8 (2) 47.5 (4)= 48.8 (2) 40.0 (5)− 52.5 (1)+

8 74.4 (2) 75.0 (1)= 72.2 (5) 74.1 (3)+ 73.8 (4)+

9 50.0 (4) 48.6 (5)= 55.6 (2) 56.7 (1)= 52.6 (3)−

10 58.9 (5) 59.3 (4)= 63.7 (2) 63.1 (3)= 64.7 (1)=

Average

rank

3.6 3.8 2.9 2.6 1.8

The bold values stand for the best performance across all the methods upon a given

dataset.

size are both moderately small, thereby embodying the
performance of EMC-GEP compared with the original method
in diversified circumstances.

Among these datasets, Urban Land Cover (Johnson and Xie,
2013) is a categorization dataset for image information, and
Wine (Aeberhard et al., 1992) is a widely used multi-classification
dataset. Moreover, we also adopt some bio-information data
involving DLBCL-A (Hoshida et al., 2007), DLBCL-B (Hoshida
et al., 2007), and Lung Cancer (Hong and Yang, 1991). Complex
gene expression data, encompassing Alizadeh-2000 (Alizadeh
et al., 2000), Lapointe-2004 (Lapointe et al., 2004), Armstrong-
2002 (Armstrong et al., 2001), TOX-171 (Kwon et al., 2012),
and GLA-BRA-180 (Sun et al., 2006), are employed as well for a
more comprehensive comparison. In this article, for each dataset,
75% of data serves as training data, while 25% of data serves as
testing data.

5.3. Comparison Results
5.3.1. Comparison With AccGEP
As depicted in Table 2, five methods are utilized to analyze
the 10 datasets to give a brief intuition about the performance
of each strategy. For AccGEP-GA, GEP with GA operator
(i.e., mutation operator and crossover operator as discussed
above) is implemented under AccGEP framework. Accordingly,
EMCGEP-GA is based on the AccGEP-GA with additional
knowledge transfer for crossover. On the other hand, AccGEP-
DE is the implementation of GEP with DE operator (i.e.,
“Current-to-Best” and “Frequently-based Sampling”) under the
AccGEP framework. More precisely, EMCGEP-DE1 is based on
AccGEP-DE with additional knowledge transfer for “Current-
to-Best,” while EMCGEP-DE2 is grounded on EMCGEP-
DE1 with extensive knowledge transfer for “Frequently-
based Sampling.”

In Table 2, the fundamental data is the accuracy of the
multi-classifier in percentage, and the rank number is included
in the parenthese to give the relative order for performance of
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these methods, to supply a brief intuition of the comparison.
As for the significance test, “+,” “=,” “−,” represent our
method is significantly better than the original method, has
no significant difference with the original method, and is
significantly worse than the original method, with Wilcoxon
sign-rank test (Wilcoxon, 1992) at α = 0.1. To clarify, the
test for EMCGEP-GA is conducted to compare with AccGEP-
GA, and the tests for EMCGEP-DE1 and EMCGEP-DE2 are
conducted to compare with AccGEP-DE. In this way, the
effectiveness of knowledge transfer on each component can be
clearly investigated.

At length, for knowledge transfer on canonical GEP operators,
there is no significant difference between AccGEP-GA and
EMCGEP-GA. Even for the average rank among those five
algorithms, AccGEP-GA and EMCGEP-GA share the similar
rank number. This result can be attributed to the ambiguous
structure of GEP. Albeit in GP-based knowledge transfer study,
the segments of the expression tree serve as the useful structure
to different problems, the knowledge transfer of GEP string
segments is in a higher level. Since the active structure is the
expression tree, the transfer upon the encoding string tends
to be more indirect and more ambiguous. Hence, considering
two best results in Table 2, although the idea of “abstract
knowledge transfer” is intuitively promising, the algorithmic
details still require more careful designs. For instance, in each
evaluation of GEP individual, a great portion of the string may
be the inactive area during decoding, thus the segment-based
knowledge transfer somehowmay be a cost of time resources, and
then it is no wonder why the transfer process cannot enhance the
classification accuracy in limited evaluations.

Conversely, the knowledge transfer on DE-based operators
basically can attain significantly better results compared with
AccGEP-DE. Notably, the average rank of DE-based GEP is
apparently better than canonical GEP. Moreover, the average
ranks of EMCGEP are also better than the baseline method
AccGEP-DE. To elaborate the results, the knowledge transfer
upon “Current-to-Best” can possibly lead to the exploration
toward the valuable operator in other binary classification
of the GEP population, thereby avoiding lasting reliance on
mutation operators when stuck in local minima. To be specific,
instead of transferring knowledge by the segment structure
in EMCGEP-GA, the basic transfer ingredient in EMCGEP-
DE is gene, which can more efficiently change the solution
structure. Since when the target position in GEP individual
is active, then a new injected gene can hopefully change the
whole structure of the original individual, which can explore
the searching space effectively when the evolution process is
stuck in the local minima. Grounded on EMCGEP-DE1, the
knowledge transfer on feature, “Frequently-based Sampling,”
highly depends on the problem dimension. For those datasets
with extremely high dimension like gene expression data,
data 3 and data 10, transfer on feature to some extent will
make no difference due to the complex distribution and the
limited evaluations. But according to its average rank (1.8)
compared with that of EMCGEP-DE1 (2.6), the feature transfer
is still a promising avenue for knowledge transfer mechanism if
adopting more detailed rules and employing more well-allocated
computational resources.

TABLE 3 | Accuracy comparison with DT, KNN, and EMCGEP under distinct

operators.

Data index Decision

tree

K Nearest

neignbor

EMCGEP-

DE1

EMCGEP-

DE2

1 76.0 (2) 87.2 (1) 77.4 (3) 75.6 (4)

2 75.8 (4) 83.2 (1) 81.4 (2) 78.9 (3)

3 80.3 (4) 88.8 (1) 83.9 (2) 83.3 (3)

4 70.8 (1) 66.3 (2) 60.6 (4) 62.9 (3)

5 74.1 (2) 85.1 (1) 55.0 (4) 60.0 (3)

6 93.7 (2) 68.4 (4) 93.2 (3) 95.0 (1)

7 45.0 (3) 61.5 (1) 40.0 (4) 52.5 (2)

8 76.9 (1) 44.4 (4) 74.1 (2) 73.8 (3)

9 56.9 (2) 62.9 (1) 56.7 (3) 52.6 (4)

10 58.7 (4) 71.0 (1) 63.1 (3) 64.7 (2)

Average rank 2.5 1.7 3.0 2.8

The bold values stand for the best performance across all the methods upon a given

dataset.

5.3.2. Comparison With Other Classifiers
In Table 3, EMCGEP-DE1, EMCGEP-DE2 are employed to
compare with DT and KNNunder the given datasets. Specifically,
DT and KNN are implemented with scikit-learn (Pedregosa et al.,
2011) in python with default settings.

As depicted in Table 3, although the Evolutionary
Multitasking paradigm can enhance the performance of the
existing AccGEP that searches rules based on evolutionary
algorithms, the performance of the proposed EMCGEP is
still limited compared with DT and KNN. Specifically, the
classification results of DT are comparable with those of
EMCGEP-DE1 and EMCGEP-DE2. Since DT and EMCGEP
are both designed to construct rules according to given data in
a non-parametric fashion, the behavior of these methods seem
similar. However, KNN generally outperforms the proposed
EMCGEP. One of the significant causes can be the intrinsic
problem in GP methods, that the rule construction tend to be
complex and unstable under high dimension scenario. Although
GEP can alleviate the bloating issue of GP to some extent, the
“evolutionary” behavior still makes the method unstable and
even random. Nevertheless, like in data 6 and data 8, KNN
sometimes is also unreliable confronting with data with certain
distribution compared with EMCGEP.

5.4. Further Discussion
Grounded on the experiment results above, EMCGEP-DE1
and EMCGEP-DE2 can attain significantly better performance
compared with the baseline method. Therefore, to provide
a deeper insight into the working mechanism of knowledge
transfer upon the “Current-to-Best” operator and the
“Frequently-based Assignment” operator, this section tries
to offer a more comprehensive and detailed discussion for the
factors contributing to the higher-quality solutions.

In Figures 5, 6, four sub-figures are given to illustrate a
specific evolution process of a binary classification problem a
given class in data 2 (i.e., DLBCL-B). To be specific, the first
sub-figure depicts the evolution of the best individual in the
binary classification population. The rest sub-figures illustrate
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FIGURE 5 | Degrees of assistance to class 1 from various “source domains” in EMC-GEP-DE1.

FIGURE 6 | Degrees of assistance to class 3 from various “source domains” in EMC-GEP-DE2.
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the fitness enhancement from the archive Aj of each class. To
clarify, the fitness enhancement here indicates the improvement
of the fitness value of population POPi after the transfer process
Transfer (POPi,Aj), which can be also concerned as the assistance
from archive Aj of class j to the population POPi. Since the
transfer interval δ is configured as 10 and the maximum
iteration is 1,000, the maximum visible iteration of these
sub-figures is 100.

In Figure 5, for data 2 (i.e., DLBCL-B), the best fitness
variation process of the first binary classifier of class 1 is provided,
along with the fitness enhancement from each source archive
Aj in each transfer iteration. In the first sub-figure, a relatively
good behavior of the convergence tendency of the class-1 binary
classification is indicated, since the evolution can achieve the
stepwise decrease in the fitness value so as to avoid the local
optima. Generally, the self transfer process (i.e., POPi ←
Ai), can imitate the process of the self evolution of the given
population, (i.e., POPi ← POPi), and the archive from class
1 does offer relatively stable transfer performance in the first
several iterations as well as the continuous enhancement in
the last 30 iteration. Furthermore, as depicted in the Figure 5,
compared to the class 1, archive of class 2 can also supply a
satisfying improvement in early 20 iterations, and the archive of
class 3 can offer a stable support from iteration 20 to iteration
60 to help the target population get higher-quality solution
when trapped in the local optima, thereby potentially enhancing
the performance of the binary classifiers in POP1. Hence, in
EMCGEP-DE1, it can be concluded that the transfer operation
upon the operator “Current-to-Best” is capable of achieving
performance enhancement by self transfer process, POPi ← Ai,
and the cross transfer process, POPi ← Aj.

Similarly, as for the transfer operation upon the “Frequency-
based Sampling,” the strategy also can offer a satisfying
convergence trend as depicted in Figure 6. There are several
stepwise fitness improvements for the convergence curve in the
first sub-figure in Figure 6. In the very first improvement in
iteration 18, three archives can offer similar support considering
the fitness enhancement from each class. Whereas, in terms of
the improvement in iteration 70, the abrupt change in class 2
and class 1 played the predominant factors for helping binary
classifiers of class 3 to escape from the local minima. This change
elaborates our assumption that, transfer process can possibly
enhance the original self evolution phase. It is notable that, in
this scenario, the cross transfer of class 1 and class 2 both can
offer more effective and stable fitness enhancement compared
to the self transfer from class 3, which indicates the promising
potential of knowledge transfer for multi-classification. However,
the limit of Evolutionary Multitasking is also clear from the
discussions above. Since it is uncertain which knowledge source is
more beneficial for the current target population according to the

unstable scale of fitness enhancement illustrated in Figures 5, 6,
so that it is hard to design elaborated and accurate algorithm for
the given problems by Evolutionary Multitasking.

6. CONCLUSION

In this paper, knowledge transfer strategies upon canonical
GEP operator and DE-based GEP operator are employed to
alleviate the output conflict for multi-classification problem.
In the proposed framework, a stepwise transfer is adopted to
enable the segment-based transfer, DE-based transfer, as well
as the feature transfer. The comparison results indicate that
the DE-based transfer along with feature transfer generally can
obtain significantly better performance compared to the baseline
methods. Albeit the segment-based transfer for canonical GEP
in this study can make no difference, some of the results and
attributes of segment-based transfer still can make it special and
promising, so that we concluded that this high-level transfer
mechanism still require more algorithmic concern in detail.
Although it is believed that knowledge transfer can enhance the
existing multi-classifier, the Evolutionary Multitasking cannot
tackle the intrinsic drawbacks like the randomness of the
evolutionary classifiers. Furthermore, it is hard to capture the
exact behavior of knowledge transfer for the evolution process,
which makes it hard to design an elaborated and precise
algorithm pipeline. Hence, it is deemed that both limits of
Evolutionary Multitasking remain to be investigated and entails
further discussion.
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In recent years, lots of multifactorial optimization evolutionary algorithms have been

developed to optimizemultiple tasks simultaneously, which improves the overall efficiency

using implicit genetic complementarity between different tasks. In this paper, a novel

multitask fireworks algorithm is proposed with novel transfer sparks to solve multitask

optimization problems. For each task, some transfer sparks would be generated with

adaptive length and promising direction vector, which are very helpful to transfer

useful genetic information between different tasks. Finally, the proposed algorithm is

compared against some chosen state-of-the-art evolutionary multitasking algorithms.

The experimental results show that the proposed algorithm provides better performance

on several single objectives and multiobjective MTO test suites.

Keywords: evolutionary multitasking, multitask optimization, fireworks algorithm, transfer spark, evolutionary

algorithm

INTRODUCTION

Traditional evolutionary algorithms aim to find the optimal solution for a single optimization
problem by applying the reproduction and selection operators to generate better individuals
iteratively (Coello et al., 2006). With the complexity of the problem increasing, simultaneously
solving multiple optimization problems efficiently and quickly becomes an urgent problem (Ong
and Gupta, 2016). In this context, inspired by multitasking learning in the machine learning
field (Chandra et al., 2017), evolutionary multitasking (EMT) is proposed to solve the multitask
optimization (MTO) problem by encoding the solutions from different tasks into a unified search
space and utilizing the information of potential complementarity and similarity of different tasks
to improve the convergence speed and the quality of the solutions (Gupta et al., 2016b).

The best known and the first instructive work in the EMT area is the multifactorial
evolutionary algorithm (MFEA) (Gupta et al., 2016b, 2017). The MFEA algorithm is inspired by
the multifactorial inheritance (Rice et al., 1978; Cloninger et al., 1979). Each task corresponds
to a cultural bias block, and each cultural bias block will have an impact on the development
of the offspring. When individuals with different cultural biases hybridize, they exchange
information about each other’s cultures and promote optimization by exploiting the potential
genetic complementarity between multiple tasks (Gupta and Ong, 2016). Intuitively, an inferior
solution of a task may be an exceptional solution for the other task. Similarly, the same solution
in a unified space can also be excellent in multiple tasks concurrently. In both cases, the MFEA
allows multiple tasks to bundle together to optimize and share genetic information to improve
the overall efficiency of the search process (Gupta et al., 2018). To this end, MFEA also proposed
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the mechanisms of assortative mating and vertical cultural
transmission to ensure the efficiency and intensity of information
exchange between tasks. These ideas have a profound impact on
subsequent algorithms.

Currently, the research on EMT can approximately be
summarized into three categories, the practical application of
EMT (Sagarna and Ong, 2016; Yuan et al., 2016; Zhou et al.,
2016; Cheng et al., 2017; Binh et al., 2018; Thanh et al., 2018;
Lian et al., 2019; Wang et al., 2019) and the improved algorithm
based on the MFEA framework (Bali et al., 2017; Feng et al.,
2017; Wen and Ting, 2017; Joy et al., 2018; Li et al., 2018; Tuan
et al., 2018; Zhong et al., 2018; Binh et al., 2019; Liang et al.,
2019; Yin et al., 2019; Yu et al., 2019; Zheng et al., 2019; Zhou
et al., 2019) and the perfection of EMT theory (Gupta et al.,
2016a; Hashimoto et al., 2018; Liu et al., 2018; Zhou et al., 2018;
Bali et al., 2019; Chen et al., 2019; Feng et al., 2019; Huang
et al., 2019; Shang et al., 2019; Song et al., 2019; Tang et al.,
2019). From the above studies, a consensus can be summarized
that efficiently utilizing the inter-task related information is the
key to improve overall search efficiency in EMT. Therefore,
many studies focus on analyzing and optimizing knowledge
transfer between tasks. Zhong et al. (2018) proposed a multitask
genetic programming algorithm, which adopted a novel scalable
chromosome representation to allow cross-domain coding of
multiple solutions in a unified representation. The improved
evolutionary mechanism takes both the implicit transfer of
useful features between tasks and the ability of exploration into
account. Liang et al. (2019) introduced genetic transform strategy
and hyper-rectangle search strategy to the MFEA to improve
the efficiency of knowledge transfer between tasks in the late
iteration of the traditional MFEA. Huang et al. (2019) proposed
an efficient surrogate-assisted multitask evolutionary framework
with adaptive knowledge transfer, which is very superior for
solving expensive optimization tasks. The surrogate model is
constructed according to the historical search information of
each task and reduces the evaluation times. A universal similarity
measurement mechanism and an adaptive knowledge transfer
mechanism are proposed to help knowledge transfer efficiently.
Chen et al. (2019) presented the adaptive selection mechanism to
evaluate the correlation between tasks and cumulative return on
knowledge transferring to select the appropriate assisted task for
a given task to prevent the influence of negative tasks. Feng et al.
(2019) proposed an explicit genetic transferring EMT algorithm
by autoencoding. This explicit genetic transfer method effectively
utilizes multiple preferences embedded in different evolutionary
operators to improve search performance. Bali et al. (2019)
adopted the online learning mechanism into EMT and initiated a
data-driven parameter tuning multitasking approach to mitigate
harmful interactions between unrelated tasks to enhance overall
optimization efficiency.

It is noted that most of the existing EMT algorithms are
affected by the well-known MFEA algorithm. Individuals
exchange genetic information through the chromosomal
crossover. The hybridization of individuals with the same
cultural background contributes to exploit, while individuals
from different cultural backgrounds share information about
their respective tasks. However, there are two drawbacks. First,

the crossover sites and offset directions are randomly generated;
therefore, the information transferred from the other task might
not necessarily contribute to the optimization of the target task.
Second, the intensity of information exchange is artificially set,
and the optimization performance lacks effective feedback on it,
which makes the search effect of EMT algorithm sensitive to the
relationship between the tasks optimized simultaneously.

Swarm intelligence algorithms have the potential to transfer
potential genetic information between tasks due to their inherent
parallelism (Feng et al., 2019; Song et al., 2019). Inspired by
coevolution (Cheng et al., 2017), by mapping multiple tasks
into different subpopulations, the same type of subpopulations
compete with each other, and subpopulations with different
types cooperate, and potentially helpful knowledge blocks can
be efficiently transferred between populations and utilized. The
fireworks algorithm (FWA) (Tan and Zhu, 2010) is a recently
proposed evolutionary algorithm based on swarm intelligence.
First, a fixed number of positions in the search space are chosen
as fireworks. Then, a set of sparks is generated through the
explosion operation from the fireworks. Afterward, the superior
solutions from the whole fireworks and sparks are selected as
the fireworks for the next generation to continually improve the
quality of the solution iteratively. Benefiting from the powerful
global search and information utilization capabilities of FWA, it
has attracted much research interest (Zheng et al., 2013; Liu et al.,
2015; Li et al., 2017; Li and Tan, 2018) and has demonstrated
excellent performance in many real-world problems (Yang and
Tan, 2014; Bacanin and Tuba, 2015; Bouarara et al., 2015; Ding
et al., 2015; Rahmani et al., 2015). In this paper, an innovative
transfer vector (TV) is introduced to represent the bias of
knowledge transfer between tasks. The TV is constructed by the
current fitness information of other tasks and has promising
direction and adaptive length. A potential superiority solution
with the probability to navigate other tasks called transfer spark
(TS) is generated by adding the TV as the bias to the current
firework. A novel multitask optimization fireworks algorithm
(MTO-FWA) utilizing the TS to exchange implicit information
between tasks is proposed.

The rest of this paper is organized as follows. Section
Preliminary introduces the basics of MTO and the benchmark
EMT algorithmMFEA. Section Method describes the basic FWA
algorithm, the proposed MTO-FWA, and the promotion of
MTO-FWA on multiobjective optimization problems. Section
Experiments demonstrates the experiment results on both
single-objective and multiobjective MTO problems to assess
the effectiveness of MTO-FWA. Finally, Section Conclusion
concludes this paper and elaborates on future work.

PRELIMINARY

The section presents the key concept of MTO and the benchmark
EMT algorithmMFEA.

Multitask Optimization
In general, conventional optimization problems can be divided
into two categories: single-objective optimization (SOO)
problems and multiobjective optimization (MOO) problems
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(Liang et al., 2019). They are both committed to seeking the
optimal solution of an optimization task. The difference is
that SOO has only one objective function, while MOO needs
to optimize multiple conflicting objective functions. The
purpose of the SOO is to search out the solution with the
best function value, while the goal of the MOO problem is to
obtain a solution set with splendid convergence and diversity.
Inspired by the cognitive ability of humans to multitasking, the
knowledge acquired from solving the problem can enlighten
the optimization of related problems (Gupta et al., 2016b).
MTO is devoted to implementing an evolutionary search on
multiple optimization tasks simultaneously to improve the
convergence by seamlessly transferring knowledge between
multiple optimization problems.

Unlike SOO and MOO, MTO is a new paradigm that aims

to seek out the optimal solutions for multiple tasks at once. As

shown in Figure 1, the input to the MTO consists of multiple

optimization tasks, each of which can be a SOO or MOO

problem. All the tasks are handled by the MTO paradigms

simultaneously, so the output of the MTO contains the optimal

solution for each task separately.

tX1,X2, ¨ ¨ ¨ ,XKu

= targminT1 pX1q , argminT2 pX2q , ¨ ¨ ¨ , argminTK pXKqu

(1)

The formal representation of MTO is shown in formula
(1), where Xj denotes the optimal solution of the jth task
Tj (j= 1,2,. . .K).

Multifactorial Evolutionary Algorithm
Inspired by the multifactorial inheritance (Rice et al., 1978;
Cloninger et al., 1979), a novel EMT paradigm multifactorial
optimization is proposed. Each task Tj is considered as a factor
affecting individual evolution in the K-factorial environment [4,
5]. MFEA is a popular implementation that integrates genetic
operators in genetic algorithm into multifactorial optimization
(Gupta et al., 2016b, 2017; Bali et al., 2017; Feng et al., 2017; Wen
and Ting, 2017; Binh et al., 2018, 2019; Li et al., 2018; Thanh
et al., 2018; Zhong et al., 2018; Zhou et al., 2018, 2019; Liang

FIGURE 1 | Illustration of multitask optimization.
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et al., 2019; Shang et al., 2019; Yin et al., 2019; Yu et al., 2019;
Zheng et al., 2019). All the individuals are encoded into a unified
search space Y, and each individual can be decoded to optimize
different component problems to effectively realize cross-domain
knowledge transfer. In general, Y is normalized to [0, 1]D, where
D is the number of dimensions of the unified search space.
D = max {Dj ǫ t1,2,...Ku}, where Dj indicates the number of
dimensions of the jth task. By coding, a single chromosome
y P Y can signify a combination of chromosomes corresponding
to K different tasks. By decoding, the chromosomes in the
unified search space can be differentiated into K chromosomes
specific to the task. To evaluate the performance of a solution
in the uniform search space on different tasks, MFEA proposes
some definitions.

Factorial Cost: The factorial cost of individual pi is defined as
ψ

i
j which is applied to measure the performance of individual

pi on a specific task Tj. When the pi is the feasible solution

of task Tj and satisfies the constraint conditions, ψ i
j is the

fitness value of Tj. Otherwise, ψ
i
j is a very large value and

indicates that the individual pi is not a candidate solution of
task Tj.

Factorial Rank: The factorial rank rij indicates the rank of

fitness values ψ i
j for an individual pi on a given task Tj by sorting

the ψ i
j in ascending order.

Scalar Fitness: To illustrate the best performance that an
individual can achieve in all tasks. The scalar fitness ϕi is defined
based on the best factorial rank of individual pi among all the
tasks that can be expressed as ϕi =

1
minj ǫ t1,2... kur

i
j

.

Skill Factor: The skill factor τi of individual pi represents the
task that pi shows the best performance, which is defined as
τi = argminjt r

i
ju.

Besides the traditional genetic operators, MFEA also
applies the assortative mating to control the strength of
genetic information transfer between tasks and vertical
cultural transmission to enhance the efficiency of implicit
knowledge transfer.

Assortative Mating: For two randomly selected individuals,
if their skill factor is the same or satisfied the threshold called
random mating probability (RMP), they can perform crossover
to exchange their respective genetic information or they can
only mutate. Intuitively, individuals with the uniform skill factor
have a high probability of performing the crossover operator but
individuals from different tasks can only exchange their genetic
information in a small probability.

Vertical Cultural Transmission: Inspired by the multifactorial
inheritance, MFEA believes that offspring will share the
same cultural environment with their parents; that is,
offspring should inherit their skill factors from their parents.
If the offspring is obtained by the crossover operator, it
will inherit the skill factor of either parent with equal
probability. Otherwise, if the offspring is generated by the
mutation operator, its skill factor will be completely inherited
from the only parent. Based on the previous definitions,
the pseudocode of the basic MFEA algorithm is shown
in Algorithm 1.

Algorithm 1: The Pseudocode of MFEA

N, the size of population;
K, the number of the optimization tasks;
Randomly generate N individuals as the initial population P.
Assign initial skill factor to each individual in P randomly.
Evaluate the factorial cost of each individual
while the maximum number of evaluations is not reached:

Generate the offspring population Q according to assortative
mating mechanism.
Offspring inherit the skill factor based on vertical cultural
transmission strategy.
Evaluate individuals in Q.
Merge P and Q to generate new population R = P

Ť
Q.

Update the scalar fitness ϕ and skill factor τ of every
individual in R.
Select the fittest N individuals from R as the new P.

end while

METHODS

This section introduces the basic FWA, the MTO-FWA based on
the TS, and the extended multiobjective MTO-FWA.

The Basic FWA
Illuminated by the phenomenon that fireworks exploding to
generate some explosion sparks and illuminate a surrounding
area, a novel swarm intelligence algorithm FWA is proposed
(Tan and Zhu, 2010). It believes that the fireworks explosion
phenomenon is analogical to the process of searching the optimal
solution. If there is a promising area around the current search
space, fireworks will migrate to that area and generate explosion
sparks to perform the local search.

The prime procedure of FWA is as follows: first, randomly
initialize a set of fireworks and evaluate each firework
according to the objective function Then, each firework
performs a local search through an explosion operation. To
save computational resources and improve search efficiency,
the resource allocation strategy is used to allocate the
scope and frequency of each fireworks local search. In
general, individuals with better fitness function values are
considered more likely to lead to global optimum, and
therefore are allocated more search resources. Based on the
above ideas, fireworks with better fitness values will generate
a mass of sparks and possess smaller explosion amplitudes,
and fireworks with worse fitness values can only generate
a smaller amount of sparks and have wider explosion
amplitudes relatively. After the explosion, the Gaussian mutation
operation is applied to produce Gaussian mutation sparks
to increase the diversity of the population. Finally, the next
generation of fireworks is selected from the candidate set
including fireworks, and the sparks produced by explosion and
Gaussian mutation based on their performance. The processes
repeat iteratively until the maximum number of evaluations
is reached.
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Explosion Operation

In the basic FWA algorithm (Tan and Zhu, 2010), the number of
sparks and explosion amplitude of each firework xi are shown in
formula (2) and (3), respectively:

Si = Ŝ ¨
fmax − f pxiq + ǫřN

i = 1 pfmax − f pxiqq + ǫ
(2)

Ai = Â ¨
f pxiq − fmin + ǫřN

i = 1 pf pxiq − fminq + ǫ
(3)

where Ŝ and Â are two artificial parameters to control the
total number of fireworks and the total amount of explosion
amplitude, respectively, N represents the population size, fmax

and fmin denote the maximum and minimum objective values
among the total fireworks, and ǫ indicate a tiny real value to
prevent zero as the denominator. To avoid this, good fireworks
have too many explosion sparks, but bad fireworks have very few
explosion sparks. Two other constants parameters a, b P[0,1] are
introduced to bound the Si to a proper range.

Si =

$
’’’&
’’’%

round
´
a ¨ Ŝ

¯
, x ă a ¨ Ŝ

round
´
b ¨ Ŝ

¯
, x ą b ¨ Ŝ

round
´
Ŝ
¯
, otherwise

(4)

Conventional FWA does not conduct the explosion operation
on each dimension of fireworks, but randomly selects Dexplosion

dimensions for explosion operation. Each dimension d of
explosion spark eis, which can be indicated as edis with sP[1, Si],
d P[1, Dexplosion], conducts explosion operation according to
formula (5).

edis = xdi + Ai ¨ random(−1, 1) (5)

The spark generated by the explosion may exceed the boundary
of the search space. FWA proposed the mapping rule to map it
back to the search space as expressed in formula (6).

edis = xdmin + edismod(xdmax − xdmin) (6)

The outline of the explosion process is provided in Algorithm 2.

Algorithm 2: The Pseudocode of explosion

for s= 1 Ñ Si do
Initialize the explosion spark: eis = xi

Dexplosion = round(D ¨ random(0, 1))
Stochastically choose Dexplosion dimensions of eis.
for each dimension d of Dexplosion dimensions do

eis
d = eis

d + Ai ¨ random(−1, 1)
if edis is out of the threshold value then

edis = xdmin + edismod(xdmax − xdmin)
end if

end for
end for

Gaussian Mutation Operator

Some specific sparks are generated by the Gaussian explosion,
which adds an offset that satisfies a Gaussian distribution to the
spark to increase the diversity of population. The process of the
Gaussian explosion is shown in formula (7).

ĕdi = xdi ¨ Gaussian(1, 1) (7)

Similar to the explosion process, the Gaussian mutation also
randomly selects Dgaussian dimensions to mutate. ĕdi indicates
the d dimension of the Gaussian mutation spark with
d P[1, Dgaussian].

Selection Mechanism

At each iteration of the algorithm, N individuals should be
retained for the next generation. The individual with the best
fitness is preferentially kept among all the current sparks and
fireworks. Then, the remaining N – 1 individuals are chosen
with the probability that is proportional to their distance from
other individuals to maintain the diversity of sparks. Manhattan
distance (Chiu et al., 2016) is usually used tomeasure the distance
between a solution with other solutions. The choosing probability
of the individual xi represents as Pb pxiq defined in formula (8),
where M denotes the solution set containing all the current
individuals of both fireworks and sparks.

Pb pxiq =
Manhattan distance(xi)ř

i P M Manhattan distance(xi)
(8)

The Structure of the FWA

Algorithm 3 summarizes the FWA framework. After the
fireworks explode, the explosion sparks and Gaussian mutation
sparks are generated based on Algorithm 2 and formula (7),
respectively. The explosion sparks are generated according to the
explosion operator, and the number and amplitude of the spark
depend on the fitness of the firework. The Gaussian mutation
sparks are generated by the Gaussian explosion process, whose
number is denoted by Gas. Finally, N individuals remain for the
next generation according to the selection mechanism.

Multitask Optimization Firework Algorithm
For MTO problems, the objective function landscape is
heterogeneous, and the worst case is that they are not
similar or intersecting. The key of EMT is to effectively
utilize the implicit genetic information complementation from
different tasks to improve the overall efficiency. Therefore, the
interaction and transfer of information between different tasks
are very important.

Swarm intelligence algorithms frequently possess multiple
populations, which can grow the cognition of search space and
further the diversity of solutions. This is very promising for
exploring the heterogeneous search space of MTO problems.
Different tasks can be assigned to different populations,
and the cooperation between different populations provides
an interpretable theoretical basis for information interaction
between tasks. Different from the crossover process of randomly
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Algorithm 3: The Pseudocode of FWA

N, the size of population;
Gas, the number of Gaussian mutation spark;
Randomly generate N initial fireworks.
while the maximum number of evaluations is not reached:

for each firework xi do
Calculate the number of sparks Si and the explosion
amplitude Ai according to formula (2) and (3).
Generate explosion sparks of the firework xi based
on Algorithm 2.

end for
for gas= 1:Gas do

Obtain a Gaussian mutation spark for a randomly
selected firework xj using formula (7).

end for
Evaluate all the fireworks and sparks.
Select N suitable solutions to constitute the fireworks of
next iteration according to the selection mechanism.

end while

selected individuals in MFEA, information interaction between
populations utilizes information from the whole population,
which can effectively avoid random noise and negative
knowledge transfer.

Unlike other swarm intelligence algorithms, FWA naturally
possesses multiple populations on account of that every spark
is generated near its parent firework and therefore they have
similar properties. Just based on such an evolutionary strategy,
each firework and its generated sparks are constituted as a task
module, and each one is allocated a specific task. Disparate
task modules exchange information to facilitate the exchange of
implicit genetic information and individuals within a module
compete with each other to promote convergence.

Compared with the conventional FWA, the main motivation
of MTO-FWA can be summarized as two points.

1) Combine fireworks and their sparks into a task module to
solve a specific task. Competition comes fromwithinmodules,
and communication between tasks is based not on individuals
but the module population. The comparison between the
task module structure and the conventional FWA structure
is shown in Figure 2.

2) A TS is proposed to solve information transfer and knowledge
reuse between different tasks.

Explosion Operation

The traditional method controlling the number of sparks is
sensitive to the maximum fitness value in the population, and
the resource allocation gap between individuals is uncontrollable.
The individuals with the highest adaptive value may get all the
resources, while those with the lowest adaptive value may not
get any resources. The traditional FWA solves this problem by
setting thresholds, but this is crude and inelegant. Therefore,
we use the power-law distribution (Li et al., 2017) to allocate
spark number, through fitness rank rather than the fitness value

to determine the number of spark explosion fireworks, which is
shown in formula (9).

Sr = Ŝ ¨
r−α

řN
r = 1 r

−α
(9)

N represents the total number of fireworks, r denotes the
fitness rank of fireworks, and α indicates the artificial parameter
controlling the distribution of resource allocation. The larger the
α, more explosion sparks a good firework produces.

For the amplitude, the dynamic control algorithm (Li et al.,
2017) is used, and the explosion amplitude of all fireworks is
controlled dynamically, as shown in formula (10).

f pxq =

$
’&
’%

A1
i , g = 1

CrA
g−1
i , f (x

g
i ) ě f (x

g−1
i )

CaA
g−1
i , f

´
x
g
i

¯
ă f (x

g−1
i )

(10)

where A
g
i denotes the explosion amplitude of the ith firework

in generation g. In the initialization generation, the explosion
amplitude is set to a large real value, usually the diameter of the
search space. If the function value of the offspring firework is
larger than that of the parent fireworks, the explosion amplitude
will be multiplied by a shrink coefficient Cr ă 1 to reduce the
explosion amplitude so as to exploit a better solution in the
local scope. Instead, the amplitude of the explosion is multiplied
by an amplification coefficient Ca ą 1 to attempt to make the
largest progress. In other words, the explosion amplitude is
very large at the beginning of the iteration and shrinks to a
smaller value in the later stages of the iteration by the dynamic
tuning strategy.

It should be emphasized that the proposed MTO-FWA has
the same mapping rules as FWA. The difference is that the
explosion operator works in each dimension of fireworks instead
of the Dexplosion dimensions randomly selected, which has been
proven to bemore effective than themethod of randomly selected
dimensions (Li and Tan, 2018).

Guiding Spark

Different from the conventional FWA, the proposed MTO-FWA
uses the guiding spark (GS) (Li et al., 2017) instead of the
Gaussian mutation operator. The GS can guide the fireworks
in a good direction by adding a guiding vector that indicates
the dominant direction and step size to the fireworks location.
The guiding vector is obtained by calculating the average of
the differences between the pre-σSi sparks and the post-σSi
sparks after all the sparks are sorted by their fitness values f (eis)
in the ascending order. By using the deviation between the
top population and the bottom population, the random noise
can be effectively reduced, the fireworks can be guided in the
right direction, and the step length can be adjusted adaptively
with the distance from the minimum value of the objective
function. The generation of GS for the ith firework is shown in
formula (11).

1i =
1

σSi
(
ÿ
σSi

s = 1
eis −

ÿSi

s = Si−σSi+ 1
eis)

GSi = xi +1i (11)
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FIGURE 2 | (A) The framework of conventional FWA vs. (B) the framework of MTO-FWA.

where σ is the ratio parameter, eis represents the sth explosion
spark generated by the ith fireworks, 1i indicates the guiding
vector of the i th fireworks, and GSi denotes the GS of the i th
fireworks. It is worth noting that only one GS is generated for
each firework.

Transfer Spark

The TS is proposed to exchange information between different
tasks in MTO-FWA. Each firework, explosion spark, and GS
will be assigned a skill factor, and the spark inherits the skill
factor from their parents. The firework and its sparks constitute
a task module with the same skill factor. To avoid excessive
evaluations, individuals will only evaluate the fitness values of
the tasks they are assigned. In the MTO problem, according to
the concept of implicit genetic information complementation,
the location information of a task module can greatly help
optimize another task. Based on this, assume the ith firework for
the optimization task j denoted as FWi

j , it generates a unique

spark for optimizing the task k according to the information
from the task k. This information from task k is denoted as
TV i

jk
. This spark is different from other sparks generated by

FWi
j as its skill factor is k. Since it can transfer the information

from other tasks, this type of spark is named TS. The TS
generated by FWi

j under the guiding of TV i
jk

is represented

as TSi
jk
. TV i

jk
and TSi

jk
can be obtained by equations (12) and

(13), respectively.

TV i
jk =

2

σMj + σMk
(
ÿ
σMk

i = 1
xik−

ÿ
σMj

i = 1
xij)

r−α

řNj

r = 1 r
−α

(12)

TSijk = FWi
j + TV i

jk (13)

where Mk and Mj denote the total number of the individuals
that the skill factor is k and j, respectively. In general,
Mk is equal to Mj. σMk represents the best σMk th
individuals in ascending order of fitness value of task k,
and σMj indicates the best σMj th individuals of task
j. The average value of the difference of each of the

best σMth individuals is taken as a deviation. Then, each
firework will be assigned deviation using the power-law
distribution according to the fitness rank. The fireworks that
perform better on task j are considered to have more genetic
advantages and will be given more information from task k.
In contrast, individuals who perform poorly on the original
task can only be assigned a small amount of exchanged
genetic information.

Conventional EMT algorithms randomly select individuals
with different skill factors to crossover for genetic information
transfer. In FWA, the locations and fitness values of the
sparks generated by the explosion contain a lot of information
about the objective function. Even the inferior solution that
will be eliminated in the selection process still contains the
genetic information that can play a great positive role in
understanding the fitness landscape of the objective function
and transferring the genetic information between tasks. In
general, this information is ignored and not effectively utilized.
Given this, we use dominant subpopulations rather than a

single optimal individual for transferring genetic information
in MTO. Second, by using subpopulations for information

transfer, the uncorrelated values will be canceled out. Most
of the dimensions of the best spark are good, but the rest

are not, which means that to learn from the single best

individual is to learn its good and bad at the same time.
However, learning from a good population is another matter.
Only the common characteristics of the population will be
transferred, and other information will be regarded as random
noise canceling each other, so the transferred knowledge will be
more accurate.

Most EMT algorithms use crossover operators to transfer

knowledge between tasks, such as SBX crossover operators. The
idea is to do a local search around the parents from different tasks,

andmost of the offspring will fall closer to their parents, and a few

will fall in between. TV, which is essentially a similar effect, can

be thought of as the average of the σM vectors pointing from task

j to task k, and the generated solution TSjk will fluctuate between
the superior subpopulations of xj and xk.
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Selection Mechanism

All the individuals in the same task module have the same
skill factor, and an individual with the best fitness in a task
module is kept as candidate firework, instead of selecting
from the entire individual pool. Then, all candidate fireworks
and TSs are then combined and grouped according to skill
factor. Afterward, the selection probability is assigned according
to the fitness value of the individual, and each group will
select N solutions according to this probability as the next
generation of fireworks. For task j, the selection strategy is shown
in Algorithm 4.

Algorithm 4: Selection mechanism

Nj, the population size of task j;
Keep the individual with the best fitness in each task module with
skill factor τj as the candidate solution.
Merge the candidate solutions and the all the TS with skill factor
τj as set Uj.
Assign the selection probability of the solution inUj according to

factorial rank rij .

Select Nj solutions in Uj according to the selection probability as
the fireworks in the next generation.

The Structure of the MTO-FWA

Algorithm 5 summarizes the MTO-FWA framework. Assume
that K tasks are optimized simultaneously; first, all the fireworks
are initialized randomly and each one is evaluated by all the
tasks. Then, each firework is assigned a skill factor τ according
to their performance. After a firework exploding, Si sparks with
different explosion amplitude Ai are generated according to
formulas (9) and (10). After that, a GS is generated by using
the knowledge of exploding fireworks according to formula (11),
and the skill factors of the explosion sparks and the GS are
all set to τ . Afterward, K−1 TS are generated for other K−1
tasks, respectively, to share knowledge according to formulas
(12) and (13). Finally, each task applies the selection strategy to
pick the appropriate solutions for the next generation according
to Algorithm 4.

Multitask Optimization Firework Algorithm
for MOO
Multiobjective problems have two or more conflicting objectives
for simultaneous optimization. Due to the lack of prior
knowledge of the objective functions, we always study plentiful
obtained solutions and retain the non-dominated solutions, the
Pareto solution set, as the approximation of the true Pareto
optimal set. Based on the fact that FWA is adept in using a
single indicator to conclude the number of explosion sparks and
the explosion amplitude, considering that MOO requires both
convergence and diversity, the S-metric indicator (Liu et al.,
2015) is introduced into FWA instead of the fitness value to select
and evaluate the solutions. It should be noted that in the proposed
multitask firework algorithm for MOO (MOMTO-FWA), except
for the indicator modified to S-metric, the explosion operator,

Algorithm 5: The overall framework of MTO-FWA

Randomly initialize fireworks.
Evaluate the objective values of different tasks for each firework.
Assign skill factor τ to each firework according to the fitness value
while not reach stop criteria

for each firework xi do
Calculate the number of sparks si according to
formula (9), the explosion
amplitude Ai based on formula (10).
Obtain locations of explosion sparks of the firework
xi and assign skill factor τ .
Generate a GS according to formula (11) and assign
skill factor τ .
for each remaining K-1 tasks do

Produce a TS according to formula (12) and (13),
then assign skill factor τ̆ .

end for
end for
for each task do

Select the solutions for the next generation
according to Algorithm 4.

end for
end while

the GS, the TS, and the MTO-FWA are consistent. The
following sections highlight the S-metric and the external archive
mechanism for preserving non-dominated solutions.

S-Metric

The S-metric indicator can be regarded as the size of the space
dominated by the solution or solution set (While et al., 2006).
The S-metric for a solution set M = tm1,m2, ¨ ¨ ¨mi ¨ ¨ ¨mnu is
indicated as formula (14) (Emmerich et al., 2005).

S pMq : = ^(
ď

mPM

tx|m ă x ă xref u) (14)

where ^ denotes the Lebesgue measure, ă denotes the
dominance relationship, and xref indicates the reference point
dominated by all the solutions. Homoplastically, the S-metric for
a single solution is represented as formula (15).

S pmiq = 1S pM,miq : = S pMq − S(Mztmiu) (15)

The S-metric of a solution mi can be considered as the region
that is only dominated by mi but not by other solutions in
the population.

External Archive Mechanism

To ensure the quality of the solution, MOMTO-FWA uses an
external archive mechanism to save the advantageous solutions
for the entire iteration of each task. The number of individuals
in the external archive remains at a fixed value E. For a single
task k, the Ek solutions are selected from a pool of candidates
Mk consisting of all fireworks, explosion sparks, GS, and TS with
the same skill factor of τk. By selecting the optimal solution
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with the largest S-metric and updating the S-metric of remaining
solutions, the selected Ek solutions gain the maximum S-metric
in all the Ek sets. It has been proven that the solution set that
has the theoretic maximum of S-metric comes necessarily from
the True Pareto Front (Fleischer, 2003). The concrete mechanism
of update the external archive of the specific task is shown
in Algorithm 6.

Algorithm 6: Updating strategy for the external archive

Mk, all the individuals with the same skill factor τt including the
fireworks, explosion sparks,TS, andGS; EAk, the external archive;
|EAk, the external archive of next generation; qeak, the selected
individual save into EAk;
Candidates pool Uk =Mk

Ť
EAk.

Calculate the S-metric for every candidate in Uk.
While ||EAk| ăEk
qeakÐarg maxuPUk

(S−metric(u)).

Save qeak into |EAk.
remove qeak from Uk.
Update the S-metric for each candidate in Uk.

end while
Save |EAk as the external archive of next generation.

EXPERIMENTS

In this section, the proposed MTO-FWA is compared with other
state-of-the-art EMT algorithms. The performance of MTO-
FWA is comprehensively evaluated by the single-objective MTO
test suite and the performance of MOMTO-FWA is assessed by
the multiobjective MTO test suite.

Experiments on MTO for Single-Objective
Problems
The performances of EMT algorithms are evaluated by the
classical single-objective MTO test suite presented in the
evolutionary MTO technical report (Da et al., 2017). The
similarity of the fitness landscape and the degree of intersection
of the global optima are the two key factors affecting genetic
complementarity between different tasks. In other words, if
the values of the corresponding dimensions of the global
optima of different tasks are closer, the genetic information
of the task is more likely to generate complementarity.
Homoplastically, the more similar the fitness landscape of
the optimization functions of the different tasks, the more
helpful the knowledge an individual learns from one task
to optimize other tasks indirectly. Therefore, based on the
degree of intersection of the global optima, the designed
benchmark problems can be divided into complete intersection
(CI), partial intersection (PI), and no intersection (NI)
categories. According to the similarity in the fitness landscape,
the designed benchmark problems can be categorized as
High Similarity (HS), Medium Similarity (MS), and Low
Similarity (LS) classes. Based on the combination of the

above two classification strategies, nine continuous MTO
benchmark problems for SOO are proposed, each problem
consisting of two classical SOO functions including the Sphere,
Rosenbrock, Ackley, Rastrgin, Griewank, Weierstrass, and
Schwefel functions.

As a typical swarm intelligence algorithm, the proposedMTO-
FWA is compared not only with the classical basic MFEA
algorithm but also with MFDE and MFPSO (Feng et al.,
2017), the two swarm intelligence EMT algorithms. For a fair
comparison, the population number for a single task is set to
100, and the maximum number of fitness evaluation for a single
task is set to 100,000, using the average results of 30 independent
runs for comparison. The MFEA uses simulated binary crossover
operator (SBX) and polynomial mutation methods produce
offspring to reproduce offspring, the RMP is set to 0.3, pc and
ηc in SBX are set to 1 and 2, respectively, and the parameters in
polynomial mutation pm and ηm are set to 1 and 5, respectively.
In MFPSO, the w decreases linearly from 0.9 to 0.4; c1, c2,
and c3 are all set to 0.2; and the RMP is also set to 0.3.
In MFDE, the RMP is set to 0.3, and F and CR are set to
0.5 and 0.9. To ensure fairness, in MTO-FWA, the RMP is
also set as 0.3; Cr , Ca, σ , and α are set to 0.9, 1.2, 0.2,
and 0.

Table 1 shows the average and standard deviation of the
objective function values of all algorithms that run 30 times
independently on the classical single-objective MTO test suite.
The superior average objective value results are highlighted in
bold. TheWilcoxon rank sum test is performed at the significance
level of 5%, and the proposedMTO-FWA is compared with other
EMT algorithms. Significantly better and worse results than the
basic MFEA are presented as “+” and “−”.

As can be seen from Table 1, MTO-FWA shows obvious
advantages in the average objective value of all the tasks in the
classic MTO test problems compared with the basic MFEA.
Compared with MFPSO and MFDE, MTO-FWA also shows
better performance on both 15 out of 18 tasks, respectively, in
the classical single-objective MTO test suite. The above statistical
results verify the competitiveness and potential of the MTO-
FWA algorithm in solving single-objective MTO. It is worth
emphasizing that MTO-FWA reveals better performance than
other EMT algorithms in most low and medium similarity
test problems such as CIMS, CILS, PIMS, PILS, NIMS, and
NILS. It is mainly due to the fact that the proposed TS can
provide useful direction and step size and reduce the probability
of negative information transfer by using information about
the entire population rather than individual individuals. MFEA
cannot mitigate the impact of negative knowledge transfer, which
leads to the crossing process randomly happening with a lot
of noise. Compared to MFPSO, MTO-FWA achieved better
results on NIMS and NILS problems, because TV integrates
information about the many sparks around the fireworks;
therefore, it can provide better directions than the vector in
PSO. Compared with MFDE, the MTO-FWA achieved better
results on CIMS, CILS, PILS, and NIMS problems. It can be
considered that the information used is the difference between
two or more randomly selected individuals in DE, which is
unpredictable. The information used in MTO-FWA comes
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TABLE 1 | Averaged objective value and standard deviation obtained by

MTO-FWA, MFPSO, MFDE, and MFEA on the single-objective multitask problem.

MTO-FWA MFPSO MFDE MFEA

CIHS T1 4.638E–7+

(3.264E−7)

2.147E−1+

(4.836E−2)

9.696E−4+

(3.625E−3)

3.684E−1

(6.462E−2)

T2 8.672E−5+

(6.218E−5)

7.865E0+

(3.692E1)

2.256E0+

(7.854E0)

1.875E2

(3.854E1)

CIMS T1 8.239E−5+

(1.173E−4)

5.871E−2+

(3.106E−2)

9.872E−4+

(2.765E−3)

4.426E0

(5.832E−1)

T2 9.634E−6+

(2.928E−5)

5.938E0+

(2.812E1)

3.672E−3+

(1.361E−2)

2.234E2

(5.364E1)

CILS T1 2.316E0+

(4.176E−2)

5.326E0+

(9.162E0)

2.203E1–

(3.851E−2)

2.017E1

(6.797E2)

T2 1.173E4–

(1.161E3)

2.172E3+

(4.163E3)

1.183E4–

(1.506E3)

3.694E3

(5.361E2)

PIHS T1 7.124E1+

(1.763E1)

2.012E2+

(1.368E2)

7.629E1+

(1.128E1)

5.768E2

(9.744E1)

T2 5.647E−6+

(4.293E−6)

3.625E3–

1.367E2

2.196E−5+

(2.861E−5)

9.736E0

(1.852E0)

PIMS T1 7.072E−4+

(8.106E−4)

2.953E0+

(3.157E−1)

9.529E−4+

(8.694E−4)

3.573E0

(5.821E−1)

T2 8.168E1+

(1.632E1)

1.176E2+

(1.583E2)

6.654E1+

(2.216E1)

6.914E2

(3.128E2)

PILS T1 1.263E−1+

(2.684E−1)

9.521E−3+

(5.130E−2)

3.613E−1+

(5.148E−1)

2.001E1

(9.424E−2)

T2 3.564E−2+

(6.845E−2)

4.672E−2+

(1.396E−1)

2.175E−1+

(4.673E−1)

1.962E1

(2.765E0)

NIHS T1 8.521E1+

(3.262E1)

4.216E1+

(2.723E1)

8.812E1+

(4.171E1)

9.894E2

(4.328E2)

T2 2.716E1+

(9.864E0)

3.672E1+

(1.128E2)

1.976E1+

(1.493E1)

2.627E2

(7.632E1)

NIMS T1 1.184E−3+

(2.651E−3)

4.691E−1–

2.966E−1

1.987E−3+

(4.282E−3)

4.248E−1

(6.384E−2)

T2 2.658E0+

(1.113E0)

1.332E1+

(1.942E0)

2.968E0+

(1.062E0)

2.772E1

(2.961E0)

NILS T1 1.012E2+

(2.106E1)

3.167E2+

(1.176E2)

9.478E1+

(1.971E1)

6.271E2

(1.034E2)

T2 2.125E3+

(2.946E2)

9.116E3–

(7.126E3SS)

3.916E3–

(7.136E2)

3.643E3

(3.767E2)

“+” and “−” denote the algorithm statistically significant better and worse than MFEA,

respectively.

from the difference between the two populations, so it is
more specific.

Experiments on MTO for Multiobjective
Problems
Similar to the above study for single-objective MTO, this
experimental study considers the nine multiobjective multitask
problems built in the recent technical report (Yuan et al., 2017).
Analogously, the test problems can be classified as high similarity
(HS), medium similarity (MS), and low similarity (LS), three

TABLE 2 | Averaged value and standard deviation of the IGD obtained by

MOMTO-FWA, MOMFEA, and NSGA-II on the multiobjective multitask problem.

MOMTO-FWA MOMFEA NSGA-II

CIHS T1 2.437E−4+

(5.507E−5)

3.422E−4

(9.643E−5)

1.733E−3–

(2.345E−4)

T2 2.757E−4+

(8.144E−5)

2.339E−3

(5.491E−4)

4.418E−3–

(6.989E−4)

CIMS T1 1.066E−1–

(1.303E−2)

5.932E−2

(7.136E−2)

1.306E−1–

(5.421E−2)

T2 1.263E−2–

(9.682E−3)

1.259E−2

(9.080E−3)

2.714E−2–

(1.589E−2)

CILS T1 1.466E−4+

(1.013E−5)

2.701E−4

(2.943E−5)

2.524E−1–

(6.195E−2)

T2 1.448E−4+

(6.575E−6)

1.867E−4

(8.093E−6)

2.022E−4–

(8.687E−6)

PIHS T1 3.186E−4+

(9.145E−5)

8.317E−4

(1.179E−3)

1.0581E−3–

(3.854E−4)

T2 3.424E−4+

(1.470E−4)

4.091E−2

(1.885E−2)

5.480E−2–

(2.087E−2)

PIMS T1 7.767E−4+

(3.510E−4)

2.862E−3

(1.257E−3)

5.033E−3–

(1.367E−3)

T2 1.094E1+

(3.423E0)

1.388E1

(4.159E0)

1.559E1–

(3.700E0)

PILS T1 4.307E−4–

(6.266E−4)

3.495E−4

(3.003E−4)

2.209E−4+

(1.357E−4)

T2 3.834E−4+

(1.044E−4)

1.109E−2

(2.350E−3)

6.343E−1–

(5.097E−4)

NIHS T1 1.465E0+

(1.072E−2)

1.552E0

(1.469E−2)

9.376E1–

(7.172E0)

T2 2.709E−4+

(6.558E−5)

4.961E−4

(1.058E−4)

8.450E−4–

(1.731E−4)

NIMS T1 1.571E−1+

(6.445E−2)

2.133E−1

(2.352E−1)

5.846E−1–

(5.182E−1)

T2 2.623E−3+

(1.667E−3)

3.541E−2

(6.654E−2)

6.518E−2–

(5.992E−2)

NILS T1 1.574E−3–

(1.121E−3)

8.351E−4

(5.645E−5)

8.277E−4+

(5.807E−5)

T2 3.827E−3+

(5.133E−4)

6.432E−1

(4.165E−4)

6.422E−1+

(3.896E−4)

“+” and “−” denote the algorithm statistically significant better and worse than MOMFEA,

respectively.

categories according to the similarity in the fitness landscape, and
each category can be divided into three sub-categories, complete
intersection (CI), partial intersection (PI), and no intersection
(NI) by the degree of intersection of the value of optima in each
dimension. Each MTO problem consists of two MOO problems,
each consisting of two or three objective functions commonly
studied in the literature. Meanwhile, the proposed MOMTO-
FWA is also compared with the well-known NSGA-II (Deb
et al., 2002), since it is frequently applied as the underlying
basic solver by many multiobjective EMT algorithms. For a
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fair comparison, the population number for a single task is set
to 100, and the maximum number of fitness evaluation for a
single task is set to 100,000, using the average results of 30
independent runs for comparison. Both MOMFEA and NSGA-
II use SBX, and polynomial variations use the same parameter
values. In SBX, pc and ηc are set to 0.9 and 20, respectively.
As for polynomial mutation, pm and ηm are set to 1/D6 and
20, respectively.

Table 2 shows the average and standard deviation of the IGD
of all algorithms that run 30 times independently on the classical
multiobjective MTO test suite. The superior average IGD values
are highlighted in bold. TheWilcoxon rank sum test is performed
at the significance level of 5%, and the proposed MOMTO-
FWA is compared with other multiobjective EMT algorithms.
Significantly better and worse results than the basic MOMFEA
are presented as “+” and “−.”

As can be seen from Table 2, MOMTO-FWA shows
obvious advantages in the average IGD value on 14 out of
18 tasks in the classic multiobjective MTO test problems
compared with the basic MOMFEA. Compared with NSGA-
II, MOMTO-FWA also shows better performance on 16
out of 18 tasks in the multiobjective MTO test suite. It

is worth emphasizing that MOMTO-FWA reveals better
performance than other multiobjective EMT algorithms in
most low and medium similarity test problems such as CILS,
PIMS, PILS-T2, NIMS, and NILS-T2 problems. Compared to
MOMFEA, MOMTO-FWA achieved better results on CIHS,
CILS, PIHS, PIMS, PILS-T2, NIHS, NIMS, and NILS-T2
problems, Even if it cannot surpass the performance of
MOMFEA on CIMS, PILS-T1, and NILS-T1 problems, the
performance of MOMTO-FWA is not much different. This
may be because MOMFEA uses non-dominant ranking, while
MOMTO-FWA uses S-metric as the evaluation index. In the
later stage of the algorithm, the archiving-based mechanism
reduces the diversity of solutions. Encouragingly, MOMTO-
FWA achieves much better results than MOMFEA and NSGA-
II on PIHS-T2, PIMS-T1, PILS-T2, NIMS-T2, and NILS-T2.
It can be considered that the knowledge learning from simple
tasks provides inspiration for solving difficult tasks and thus
improves accuracy.

Figure 3 shows the average IGD values of MOMFEA, NSGA-
II, and the proposed MOMTO-FWA after 30 independent runs
on the classic multiobjective multitask test set. It should be noted
that to indicate the changes in IGD more clearly, the starting

FIGURE 3 | The average IGD with the number of evaluation for MOMFEA, NSGA-II, and MOMTO-FWA on the multiobjective multitask benchmark problem.
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point of the evaluation in Figure 3 starts from the 2000th
evaluation, not from the 0th evaluation. Therefore, the algorithm
has a preeminent starting point on some test problems, which
does not mean that the random initialization of the population
has undergone artificial intervention, but the population has
converged to a state with a better IGD value within 2,000
evaluations. It is obvious from Figure 3 that the proposed
MOMTO-FWA has terrific exploration ability and can quickly
find out a better solution when the value of the fitness function
of the initial population is terrible. In all the test problems,
MOMTO-FWA is always on top in terms of IGD value within
20,000 evaluations. Besides, the proposed MOMTO-FWA
converges faster than MOMFEA and NSGA-II in
most problems.

CONCLUSION

In this paper, we propose the strategy named TS to enable
the FWA to solve MTO problems. The core idea is to
bind a firework and its generated explosion sparks and GS
into a task module to solve a specific problem. Through
the performance of other task modules, a TS is generated
around the firework to transfer the implicit genetic information
between tasks. For the single-objective MTO problem, the
objective function value corresponding to the task is used
as the indicator to measure the performance of the task
module to control the number of explosion sparks and the
explosion amplitude. For multiobjective multitask problems,
S-metric is applied to evaluate individual performance. The
evaluation method based on the indicator is simple and effective,
which is unified for utilizing the FWA to solve the SOO
and MOO in MTO. Experimental results have shown that the
proposed MTO-FWA can get promising results compared with

the state-of-the-art multitask evolutionary algorithms on both
SOO and MOO. There are several future research directions.
One direction is to improve the efficiency of information
sharing and transfer between fireworks. In addition, our current
research focuses on the numerical optimization of two tasks.
The many task problems and the simultaneous optimization of
discrete and numerical tasks are the focus of the next phase of
our research.
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We propose an automatic method to identify people who are potentially-infected by

droplet-transmitted diseases. This high-risk group of infection was previously identified by

conducting large-scale visits/interviews, or manually screening among tons of recorded

surveillance videos. Both are time-intensive and most likely to delay the control of

communicable diseases like influenza. In this paper, we address this challenge by

solving a multi-tasking problem from the captured surveillance videos. This multi-tasking

framework aims to model the principle of Close Proximity Interaction and thus infer the

infection risk of individuals. The complete workflow includes three essential sub-tasks: (1)

person re-identification (REID), to identify the diagnosed patient and infected individuals

across different cameras, (2) depth estimation, to provide a spatial knowledge of

the captured environment, (3) pose estimation, to evaluate the distance between the

diagnosed and potentially-infected subjects. Our method significantly reduces the time

and labor costs. We demonstrate the advantages of high accuracy and efficiency of our

method. Our method is expected to be effective in accelerating the process of identifying

the potentially infected group and ultimately contribute to the well-being of public health.

Keywords: influenza-like infection, person re-identification, multi-person pose estimation, infection risk ranking,

multi-tasking

1. INTRODUCTION

The most frequent infectious diseases in humans—and those with the highest potential for rapid
pandemic spread—are usually transmitted via droplets during close proximity interactions (Salathé
et al., 2010). Such infectious diseases include influenza, common colds, whooping cough, SARS-
CoV, and many others. Influenza alone leads to a projected annual cost of 2.0-5.8 billion USD for
the American health-care system (Yan et al., 2017). It is critical to identify the group of individuals
who are in close contact with the diagnosed patient, in order to understand and mitigate the spread
of the aforementioned pandemic diseases.

Previous attempts model the contact networks relevant for disease transmission by using online
questionnaire (Ibuka et al., 2016), surveys (Leung et al., 2017), and wearable devices (Smieszek et al.,
2016; Ozella et al., 2018). Manual approaches (surveys and interviews) require a significant amount
of human efforts, while wearable devices introduce additional cost and are limited to small-scale
study. Open challenges remain in the development of methods to fast capture the contact networks.
Given the high density of surveillance cameras in metropolitans, the impact of using captured
videos to identify the contact networks is under-explored. However, two significant challenges exist
for this vision-based method: (1) re-identify the diagnosed patient in non-overlapping monitor
cameras and (2) assess the potential risk of infection in the exposed population. The most popular
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solution to identify a specific person from videos is currently face
recognition. However, poor illumination and camera viewpoint
make it difficult for existing face recognition method to achieve
satisfactory performance. Overlapping and occlusion of multiple
faces also create significant difficulties. Meanwhile, it is non-
trivial to assess the infectious risk from the captured video
quantitatively. How to obtain a robust estimation of the
interaction between the detected subjects in the video is still an
open question.

We propose a novel framework to automatically evaluate
the infection risk based on the principle of Close Proximity
Interaction. Our success leverages the advantages of Artificial
Intelligence (AI) systems over human beings in solving
multiple tasks simultaneously. The accurate identification of
this potentially-infected group can only be achieved with
an integrative understanding of personal identity, spatial and
temporal contexts from the video sequences. Such a wide range
of information is processed by individual sub-tasks, including
person detection, re-identification, depth and pose estimation.
The user study shows that our method is effective in reducing
the time and labor costs, and produces consistent results as
human screening.

To this end, we made the following contributions:

• We propose a novel framework to evaluate the infection risk
of identified individuals. This framework is constructed upon
multi-tasking capabilities of modern techniques of computer
vision. Our method effectively addresses the problem of
infectious disease prevention, greatly reducing labor and
time costs.

• We quantitatively model the principle of Close Proximity
Interaction for assessing and ranking the infection risk. This is
achieved by robustly reconstructing the 3D joint trajectories,
based on 3D depth and pose estimation. The proposed metric
takes distance as well as mutual contact between subjects
into account.

• We evaluate our method in real-world environments
including indoor office, and other scenarios with massive
human traffic (e.g., shopping mall, hospital, public transport).
The results show that our automatic method is not only
time-efficient but also produces consistent prediction results
as human observers.

The rest of this paper is structured as follows. Section 2
summarizes the related works, and section 3 describes the
proposed framework to model the principle of Close Proximity
Interaction, including the cornerstones to build this framework.
Section 4 presents the results from our experiments, and section 5
discusses the failure cases and limitations of our method.
Section 7 concludes this work and points out the directions for
future efforts.

2. RELATED WORK

2.1. Infectious Disease Monitor
Monitoring the spread of infectious disease is critical for taking
prompt actions to control the expansion. The contact in close
distance between an infectious individual and the population

leads to the spread of respiratory infections (Leung et al., 2017).
This paper investigates the diseases transmitted via droplets.

The conventional methods started with social surveys, by
asking participants to report their contact patterns, including
the number/duration of contacts and other demographical
information (including age, gender, household size) (Eames et al.,
2012; Read et al., 2014; Dodd et al., 2015). Understanding the
contact pattern allows us to build parameterized models and
capture the transmission patterns. Leung et al. (2017) proposed a
diary-based design, using both paper and online questionnaires,
and found out that the approach of using paper questionnaires
leads to an increasing report of contacts and longer contact
duration than using online questionnaires. However, conducting
such social surveys and questionnaires requires a significant
amount of time and effort.

Researchers use wearable devices to analyze the contact
patterns among a group of individuals. A recent work measured
face-to-face proximity between family members within 16
households with infants younger than six months for 2-
5 consecutive days of data collection (Ozella et al., 2018).
Researchers compared the two methods of reporting with paper
diaries and recording with wearable sensors, to monitor the
contact pattern at a conference (Smieszek et al., 2016). They
found out that reporting was notably incomplete for contacts <5
min, and participants appear to have overestimated the duration
of their contacts. The typical device is RFID-based and proves to
be useful in a variety of scenarios, including a pediatric hospital
(Isella et al., 2011), a tertiary care hospital (Voirin et al., 2015),
and a primary school (Stehlé et al., 2011). The merit of using
wearable devices is a high-resolution measurement of contact
matrices between individuals with the device. However, it is not
feasible to apply to a wide, dynamic, and unconstrained scenario.

Different from existing methods, our work utilizes the
surveillance cameras as the capture device and process the
video input with the state-of-the-art techniques in computer
vision. Our method quantitatively modeled the principle of
close proximity interaction and introduced a graph structure to
represent the contact pattern.

2.2. Person Re-identification
Person re-identification is a long-standing and significant
problem that has profound application value for a wide range
of fields such as security, health care, business. It aims at re-
identifying the person of interest from a collection of images
or videos taken by multiple non-overlapping cameras in a
large distributed space over a prolonged period. Re-ID is
fundamentally challenging due to three difficulties: (1) diverse
visual appearance changes caused by variations in view angle,
lighting, background clutter, and occlusion. (2) difficulties in
producing discriminating feature representation invariant to
background clutter. (3) over-fitting problem due to the limited
scale of a tagged dataset.

Two types of solutions are proposed to address these
problems. One is to learn a more distinctive feature
representation to make a trade-off between recognition
accuracy and generalization ability. The other is to leverage
the Siamese neural network and triplet loss to minimize the
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loss of images with the same identity and maximize that with
different identities. We briefly survey the person re-identification
literature from these two aspects in this paper.

2.2.1. Improvements in Feature Representation
Improvements in feature representation mainly achieved by
leveraging local parts of the person. Representative methods
applied part-informed features such as segmentation mask,
pose, gait, etc. Pose sensitive model proposed by Saquib Sarfraz
et al. (2018) incorporates both fine- and coarse-grained pose
information into CNN to learn the feature representation
without explicitly modeling body parts. The combined
representation includes both the view captured by the camera
and joint locations, which ensures the discriminating embedding.
Song et al. (2018) proposed a mask-guided contrastive attention
model to learn features separately from the background and
human bodies. Their work takes the binary body mask as
input to remove the background in pixel-level and use gait
information as features. However, failure cases will happen
when discriminative body parts are missing. Horizontal Pyramid
Matching (HPM) approach is proposed by Fu et al. (2018),
solving this problem by using partial feature representations
at different horizontal pyramid scales and adopting average
and max pooling for inter-person variations. For similarity
measurement, metric learning approaches are exploited such as
cross-view quadratic discriminant analysis (Liao et al., 2015),
relative distance comparison optimization (PRDC algorithm)
(Zheng et al., 2011), locally-adaptive decision functions (LADF)
(Li et al., 2013) and etc.

2.2.2. Siamese Neural Network Architecture
Siamese neural network architecture is also adopted to tackle
the problem of person re-identification by taking image pairs
or triplets (Ding et al., 2015) as input. Siamese CNN (S-CNN)
for person re-identification was presented in Yi et al. (2014)
and Li et al. (2014). Improvements such as Gated Siamese CNN
(Varior et al., 2016) aimed at acquiring finer local patterns
for discriminative capacity enhancement. Cheng et al. (2016)
proposed a Multi-Channel Parts-Based CNN with improved
triplet loss consisting of multiple channels to jointly learn the
global full-body and local body-parts features. Triplet loss is also
widely used to learn fine-grained similarity image metrics (Wang
et al., 2014). Quadruplet loss Chen et al. (2017c) strengthens
the generalization capability and leads the model to output with
a larger inter-class variation and a smaller intra-class variation
superior to triplet loss.

2.3. Multi-Person Pose Estimation
Multi-person pose estimation aims at recognizing and locating
key points on multiple persons in the image, which is the basis
for resolving the technical challenges such as human action
recognition (HAR) and motion analysis. Single person pose
estimation is based on the assumption that the person dominates
the image content. Deep learningmethods performwell when the
assumption is satisfied. However, for our specific problem in this
paper, the case of a single person in one captured image seldom
happens. Thus, we focus on the survey of multiple people pose

estimation problem here. Cases such as occluded or invisible key
points and background clutter lead to significant difficulties for
multi-person pose estimation. State-of-the-art approaches built
on CNN can be mainly divided into two categories: bottom-up
approaches and top-down approaches.

2.3.1. Bottom-Up Approaches
Bottom-up approaches (Insafutdinov et al., 2016; Pishchulin
et al., 2016; Cao et al., 2017)mainly adopt the strategy of detecting
all key points in the image first and then matching poses to
individuals. Deepcut (Pishchulin et al., 2016) casts the problem in
the form of an Integer Linear Program (ILP), and the proposed
partitioning and labeling formulation jointly solve the task of
detection and pose estimation. A follow-up work, Deepercut
(Insafutdinov et al., 2016), achieves better success by adopting
image-conditioned pairwise terms with deeper ResNet (He et al.,
2016). An open-source effort, Openpose (Cao et al., 2017), uses a
non-parametric representation referred to as Part Affinity Fields
(PAFs) for associating body parts with individuals, achieving
real-time performance with high accuracy.

2.3.2. Top-Down Approaches
Top-down approaches (Fang et al., 2017; Huang et al., 2017;
Papandreou et al., 2017; Chen et al., 2018) are opposed to
the former, locating and partitioning all persons in the image
followed by utilizing single person pose estimation caches
individually for each person. Cascaded Pyramid Network (CPN)
(Chen et al., 2018) takes two steps to cope with overlapping or
obscured keypoints: GlobalNet for easy recognized keypoints and
RefineNet for hard one. Papandreou et al. (2017) leverages the
Faster RCNN (Ren et al., 2015) as the person detector and the
fully convolutional ResNet to predict heatmaps and offsets. The
recent work based on Mask-RCNN (He et al., 2017) extends
Faster RCNN to predict human keypoints by combining the
human bounding box and the corresponding feature map.

2.4. Multi-Tasking Intelligence
Multi-tasking refers to the capability of solving many tasks
simultaneously. The current advances of artificial intelligence
outperform human beings in effortlessly handling multiple tasks
without switching costs. There are a couple of mainstream
techniques for solving multi-tasking problems.

One of the popular techniques is to use the evolutionary
algorithm to tackle the problem of multi-tasking. This is
referred to as evolutionary multi-tasking optimization. In
classic EAs, different optimization problems are typically solved
independently. Researchers proposed a variety of techniques,
such as multi-factorial memetic algorithm (Chen et al.,
2017a), opposition-based learning (Yu et al., 2019), cross-
task search direction (Yin et al., 2019), explicit autoencoding
(Feng et al., 2018), and cooperative co-evolutionary memetic
algorithm (Chen et al., 2017b), for the purpose of solving the
multi-tasking problem. Evolutionary multi-tasking algorithms
share knowledge among individual tasks and accelerate the
convergence of multiple optimization tasks (Liang et al., 2019).

Relevant domains to multi-task are transfer learning and
multi-objective optimization. A linearized domain adaptation
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FIGURE 1 | Pipeline of our method. Written informed consent for the publication of this image was obtained from the identifiable persons.

(LDA) strategy transforms the search space of a simple task to the
search space similar to its constitutive complex task (Bali et al.,
2017). Researchers explored the use of transfer learning to tackle
the problem of dynamicmulti-objective optimization (Jiang et al.,
2018). This method can significantly speed up the evolutionary
process by reusing past experience and generating an effective
initial population pool. The formulation of multi-objective
optimization allows us to share the underlying similarity between
different optimization exercises and automates the information
transfer, which improves the convergence (Gupta et al., 2016).

Inspired by the methods mentioned above, our method solves
a multi-tasking problem by effectively taking advantage of the
information from a few building blocks. Our method directly
applies to real-world scenarios to identify potentially-infected
subjects. So far, we found that this problem is under-explored.

3. METHODOLOGY

The key contribution of our method is to quantitatively model
the principle of Close Proximity Interaction (Salathé et al., 2010),
based on the state-of-the-art techniques in computer vision. The
input to our workflow is video sequences VSi, i = 1, 2, 3, · · · ,Nc,
captured by multiple (Nc) cameras. These cameras are potentially
non-overlapping and installed at different locations. The search
starts with a diagnosed patient P∗, who is confirmed in the
clinic with the pandemic disease. The goal of this work is
to identify the contact graph (CG) and quantitatively evaluate
their potential infection risk (PR) with the principle of close
proximity interaction. The workflow of our method is presented
in Figure 1.

Our method successfully evaluates the infection risk and
requires to solve multiple problems simultaneously. The tasks
range from the fundamental problem to extract human from an
image, to identify the same subject across different cameras and
eventually to evaluate the infection risk for potential subjects. The

knowledge learned from one task is harnessed for use in other
tasks. The final goal of infection assessment can only be achieved
by integrating the knowledge from prior sub-tasks. We describe
our method as two main stages: (1) identifying the potentially-
infected group, (2) modeling close proximity interaction.

3.1. Identifying the Contact Graph
The first step of our method is to identify the potentially-
infected group of subjects. This includes a couple of sub-tasks:
(1) segmenting the persons from the image, (2) re-identifying the
diagnosed patient P∗ across different cameras, (3) constructing
the contact graph (CG) by adding the individuals who appear in
the same image with the patient P∗.

Faster R-CNN (Ren et al., 2015) is used for person
segmentation as the first step of our method. Faster R-CNN
extends Fast R-CNN by unifying the Region Proposal Networks
(RPNs) with the original network architecture to break the
bottleneck of computing time cost. RPNs are a kind of fully-
convolutional network (FCN) for generating detection proposals,
sharing convolutional layers with Fast R-CNN. RPNs and Fast
R-CNN are trained independently. The unified architecture
provides convolutional features for both object detection and
region proposal tasks.

We leverage an open-source project, SVDNet (Sun et al.,
2017), for person re-identification. We choose this method
because of its mesrits in computational performance and
comparable accuracy as the state-of-the-art. This work optimizes
the deep representation learning process with Singular Vector
Decomposition (SVD). It is motivated by the observation
that after training a convolutional neural network (CNN) for
classification, the weight vectors within a fully-connected layer
(FC) are usually highly correlated.

We use a graph representation to model the contact
network. Each edge E is a sequence involving two subjects
SA, SB as the graph nodes. Two nodes can be connected with
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multiple edges since two subjects can encounter each other at
multiple locations.

3.2. Modeling Close Proximity Interaction
We model the principle of close proximity interaction by
extracting contextual knowledge from the surveillance videos.
The knowledge includes personal identity (acquired from the
previous stage), spatial and temporal information. The latter two
components describe the movement trajectories of individual
persons in the 3D space. These are used o evaluate the extent
of interaction proximity among subjects in the contact graph
(CG). This is based on the assumption that the infection
transmitted via droplet is critically related to the physical distance
between individuals.

For each edge E in the contact graph CG, we segment the
sequences from the video containing both subjects SA, SB on the
edge E. For each sequence, we perform three tasks: (1) depth
estimation, (2) posture estimation, and (3) risk evaluation.

For the task of depth estimation, we use the existing method
(Zhou et al., 2017). This method estimates the depth information
from unstructured video sequences captured by a monocular
camera. The acquired depth information is used to estimate the
joint trajectories in the 3D world robustly.

For the task of posture estimation, we use OpenPose (Cao
et al., 2017), an open-source real-time multi-person pose
estimation system. We use the provided body and hands detector
to obtain the 24 key points of each individual in the image.
Two-dimensional position information can be acquired by the
pre-trained model.

Third, we calculate the Euclidean distances between all visible
keypoints of two people separately and seek the joint on the
identified patient with the smallest distance to a potential subject.
The distance of joints in the 3D world can be computed with
the pose positions on a 2D image and the extracted depth
information. We compute the infection risk as:

R =
1

Nj

Nj
∑

i = 1

D(Ji, J
∗
m) (1)

J∗m = argmin
j

D(Ji, J
∗
j ), i, j = 1, · · · ,Nj (2)

where Nj is the number of joints. J∗m indicates the joint on the
identified patient with the minimum distance to the potentially-
infected subject. D(Ji, J

∗
m) computes the distance between the Ji

joint on the potentially-infected subject and J∗m on the patient.
The risk R indicates the average distance of all joints on the
potentially-infected subject to J∗m on the patient. We iterate this
process for all identifiable subjects in the image.

4. RESULTS

4.1. Hardware and Software
Our algorithm runs on a standard PC (CPU: Intel i7 9700, GPU:
RTX1080Ti, RAM:16G). The algorithm is implemented in the
Python environment. The deep learningmodels are implemented
with the open-source framework, TensorFlow.

4.2. Person Detection
The model is trained on COCO dataset for 160k iterations,
starting from a learning rate of 0.02 and reducing it by 10 at 60k
and 80k iterations. In RPN network, we use 5 scales with box
area of the square of 32, 64, 128, 256 and 512 pixels for anchors
and 3 ratios of 0.5, 1, 2. There are 256 anchors per image to use
for training in total. The Faster R-CNN outputs the individual
detection results. The average time cost for this task is 0.011 s.

4.3. Person Re-identification
We use the database of CASIA (Yu et al., 2009; Chen
et al., 2017c) to train our network model for the task of
person re-identification. The task of person re-identification
achieved 88.24% top-1 accuracy, mAP = 70.68% only with
softmax loss. The training strategy of combining Part-based
Convolutional Baseline (PCB) and ResNet50 achieves state-of-
the-art performance. We use Adam Optimizer with the learning
rate of 0.1, the batch size of 32, and the stride of 2. Dropout
strategy is adopted to avoid the over-fitting problem, and the drop
rate is set to be 0.5. The process of the training is presented in
Figure 2.

The number of people in the image critically affects the
computation load of our method. The initial process for person
segmentation leveraging the Faster R-CNN is insensitive to the
number of people. The average time cost of one single image
is 0.8 s. However, the amount of time spent on subsequent
steps is affected by the number of people involved. The person
re-identification method takes segmented individuals as input
and seeks the target person among these people. The increase
in the number of people leads to greater time consumption,
increasing from 0.8 s of 5 persons to 1.4 s of 70 persons (shown in
Figure 3). The time cost of multi-person pose estimation based
on OpenPose is 0.8 s for 4, 032× 3, 024 pixels’ image. Thus, the
total time cost of our method is no more than 3 s, far below the
average time required by labor.

4.4. Experiment on Public Dataset
Wehere evaluate ourmethod on a public dataset, HDA (Nambiar
et al., 2014). We choose this dataset because they offer the video
sequences in an uncropped way so that the depth information can
be obtained. TheHDAdataset is originally constructed for person
re-identification, with 18 cameras recorded simultaneously
during 30 min in a typical indoor office scenario at a busy hour
(lunchtime) involving more than 80 persons. The cameras are
located on three floors, and 13 cameras have been fully labeled.
The floor plans are offered on the dataset website1. To accurately
evaluate ourmethod, we choose four labeled cameras (camera ID:
50/54/58/60) on Floor 7 and analyze the contact patterns between
the detected persons. Camera 50 and 60 are placed toward the
corridor, Camera 54 captures an indoor office room, and Camera
58 monitors a lobby at the lift. These are typical scenarios in an
office environment.

Figure 4 plots the distance between subjects (marked as ID:
15, 22, 24, 32) in Camera 50. We here assume that the subject of
ID:24 is the diagnosed patient and compute the relative distance

1Available online at: http://vislab.isr.ist.utl.pt/hda-dataset/.
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FIGURE 2 | Time performance in the task of person re-identification. (Left) The training stage. (Right) The time cost given different number of persons.

FIGURE 3 | Illustration of public HDA dataset (Nambiar et al., 2014). (A) Camera layout; (B) Camera 50; (C) Camera 54; (D) Camera 58; (E) Camera 60.

with other subjects who appear in this camera. Because there is no
direct body contact in this scenario, we use the distance between
the body centers (the hip joints) of two subjects for the visual
demonstration. The results show that the predicted distance
between the two subjects is consistent with the perception in the
real world. It shows that our method can reliably capture the
interaction within close proximity.

4.5. Multiple Scenarios
To further verify our method, we consider public places
with a massive flow of people where the infectious
disease spreads quickly. Three typical scenarios are
considered here: a bus station, a bus compartment, and
a hospital.

4.5.1. Bus Station
The scene is rainy and the background is chaotic (Figure 5).
Many people are partially shielded by umbrellas. In the

middle of the image, the crowd is so dense that only
the heads can be seen. Another point worth noting is
that the distance between the person and the camera
varies greatly. Thus, the relative size of the skeleton
varies greatly, which is prone to influence the results
of risk ranking. However, through the robust method
combining depth and posture estimation, risk ranking results
are satisfactory.

4.5.2. Bus Compartment
Insufficient light in the bus compartment makes it harder
to achieve the person retrieval (Figure 6). Besides, the target
person is photographed from a side view rather than the
same angle as his identity photo. Different perspectives
are also an important factor causing difficulties in person
retrieval. Results show that our method is robust to the
view variations.

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2020 | Volume 13 | Article 11386

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Guo et al. Droplet-Transmitted Infection Risk Ranking

FIGURE 4 | Measuring the distance between subjects in Camera 50 from the public HDA dataset (Nambiar et al., 2014).

FIGURE 5 | Experimental results at a bus station. From left to right: the detected persons, the pose estimation and the ranking order of infection risk.Written informed

consent for the publication of this image was obtained from the identifiable persons.

FIGURE 6 | Experimental results in a bus compartment. From left to right: the detected persons, the pose estimation and the ranking order of infection risk. Written

informed consent for the publication of this image was obtained from the identifiable persons.
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FIGURE 7 | Experimental results at a hospital.From left to right: the detected persons, the pose estimation and the ranking order of infection risk. Written informed

consent for the publication of this image was obtained from the identifiable persons.

4.5.3. Hospital
The mutual occlusion between individuals is significant in this
case (Figure 7). Considering the pose information we use is
two dimensional, it is difficult to determine the exact distance
between people. With the depth information, infection risks we
obtained are consistent with our visual, intuitive judgment.

4.6. Comparison With User Study
To evaluate the reasonableness of our method in assessing the
risk of infection, we used the risk assessment obtained by human
subjects as a comparison baseline.

4.6.1. Participants
Ten volunteers (5 males and 5 females) with an average age
of 21 and SD of 3.5 were recruited in this study. They are
all undergraduate and graduate students in the department of
information science. Written agreement to participate in this
study was obtained from individual participant after explanations
of this study. They all agreed to join this study for free.

4.6.2. Procedures
Participants were invited to the lab and conducted this
experiment. After explaining the task details, they signed the
agreement of participation. They were instructed to rank the
infection risk of all detected persons in each video, given the
diagnosed subject. They were not aware of the purpose of this
study, as the comparison baseline of our proposed algorithm.

We used all three scenarios (bus station, bus compartment,
and hospital) in the previous section. Participants were presented
with a short sequence of videos, They were instructed to sort
the infection risk of all detected individuals in the image based
on common sense or intuition. Starting from the candidate with
the highest perceived risk, they associated with the candidate
with the rank number from 1 to N (N is the number of
candidates in each image). No judging criteria were given.
We started the timer when the participant sees the image
and started marking it without explicitly informing the user
of timekeeping. Interviews were conducted after participants
finished the previous procedure by asking open questions and
collecting their subjective feedback on how they perceived and

ranked the risk. Each participant spent around 20 min to
complete the study.

4.6.3. Quantitative Findings
We compared the ranking result from our method and the user
experiments (Figure 8). The bar plots show the distribution of
the ranking order, while the number on top of each box is
the proposed order by our method. The results show that the
ranking order of infection risk is consistent between our method
and human subjects. Participants achieved a higher degree of
consensus with the highest and lowest ranking candidates. For
the examples of both the bus station and the hospital, all
participants identified the person (ID = 3 and ID = 4 in these
two respective examples) closest to the diagnosed patient as
the top candidate of infection risk. For the example of the bus
compartment, the choice of the top candidate is distributed to
two options (ID = 3 and ID = 4). However, for other options
between the highest and lowest ranking candidate, participants
showed a higher degree of variation.

In terms of time cost, our method requires far less time
(3 s) to process one image, than the time cost required by
our participants (2 min). During the decision flow, when the
participants ranked the risk order, we observed that it requires
significantly less time to identify the person of the highest risk
than the rest choices. This is consistent with the high degree
of consensus in the candidate selection. We believe this shows
the advantages of our method in accuracy and efficiency. The
reasoning behind the decision process of human participants is
to be explained in the following paragraph.

4.6.4. Qualitative Findings
We interviewed the participants and collected their feedback and
comments. We asked about how they decided the ranking order,
and all participants mentioned the factor of the distance between
the candidate and the diagnosed patient. This confirms the
principle of close proximity interaction. Six participants explicitly
pointed out that the fact that the top candidate is conversing
with the diagnosed patient in the examples of the bus station and
hospital critically shapes their decision. This is also consistent
with the transmission route of the droplet. When people are
having a face-to-face conversation, the droplets are more likely
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FIGURE 8 | Comparison of manual ranking and our method. Horizontal axis: the candidate ID in the image (from left to right). Vertical axis: the ranking order. A smaller

value of the ranking order indicates a higher risk of infection. (A) Bus station; (B) Bus compartment; (C) Hospital.

FIGURE 9 | Failure cases of our method. Images in (A) are from the public dataset HDA (Nambiar et al., 2014). Written informed consent for the publication of image

(B) was obtained from the identifiable persons.

to spread out to the person in the conversational group. The
carried virus in the droplet causes the infection. For the ranking
decision with lower possibility, participants agreed that it is more
difficult to decide since more than one candidate is located at a
similar distance with the diagnosed patient. However, they also
mentioned that since the rest of the candidates are not exposed
to the high infection risk, their significance to infection control
deserves less attention.

5. DISCUSSION

In this section, we discuss the insights we learned from our
experience, in particular typical failure cases and limitations in
our experiments.

5.1. Failure Case Analysis
The building blocks critically determine the success of inferring
the close proximity interaction in the upstream workflow. Here
we identify the failure cases caused by two components: person
re-identification and distance estimation.

The state-of-the-art methods in person re-identification still
face significant challenges in a complicated environment. The
current accuracy of re-identification in our method is 88%. In
selected scenarios, the method in our work fails to identify the
same person in two different camera views. This is caused by
the relative perspective between the person in the view and the
camera perspective. Improving the method of re-identification
is the solution to this problem. Figure 9A presents one typical
failure case. The person on the left of the image is about to

exit from the corridor and partially occluded. This creates a
detection failure.

Reliable reconstruction of 3D information from the 2D image
is still an open question in the domain of computer vision.
Although we propose an efficient method to infer the depth
information and integrate with the 2D posture, failure cases still
arise due to occlusion and viewpoint perspective. For the former
case, if the two persons are standing in line with the camera
(shown in the right image of Figure 9B), the detected key points
will be almost mixed together. At this time, it is significantly
challenging to predict the distance between the subjects.

6. LIMITATIONS

First, only direct infection is considered, while the indirect
infection is neglected. Some bacteria or viruses will remain
on objects such as escalator rail, doorknob, shopping cart, etc.
handled by infected patients. Though their infection may be
weakened to varying degrees, it still poses potential threats to
indirect infection. We did not take these contaminated objects
into account yet. Object detection and tracking techniques will
help to locate these objects. It is challenging to accurately
determine whether a person is in direct contact with an object
rather than just being close to it due to the factors of occlusion
and overlapping.When the contaminated object is sheltered from
persons or multiple objects overlap each other, the visible part
of the object is insufficient to provide sufficient information for
making a judgment.

Second, formulating the infection risk assessment criteria
based on vision-level rather than chemical analysis also presents
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a unique set of challenges. Obtaining the exact distance between
people in practical circumstances is necessary for verifying the
estimated distance by our method. Besides, the potential risk
of infection varies according to different environmental set-ups
and transmission routes of infectious diseases. A confined space
like a room may lead to a higher risk than an open space. The
cumulative effect of continuously contact over a while rather
than a particular moment is difficult to measure. Besides, it
is worth pointing out that we do not take the intra-person
variations of immunity into account since it cannot be measured
at the vision-level.

7. CONCLUSION

This paper proposes a novel method to represent the potentially-
infected group of people as a graph structure. We also model the
principle of close proximity interaction by robustly analyzing the
physical distance between subjects in the 3D world. This vision-
based approach can re-identify diagnosed patients with infectious
diseases and evaluate the infection risk of people who have
contacted them. We evaluated our method in various scenarios,
including indoor office, bus station, bus compartment, hospital.
The comparison with the process of manual analysis shows that
our method achieves consistent results but significantly reduces
the time cost.

There are a few directions for our future work. Our current
work focuses on the direct contact between the subjects and
neglects the indirect contact between subjects via objects. It is
highly likely that the objects in close contact with the diagnosed
subject contain the virus and thus lead to disease spread.
Investigating the indirect infection caused by contaminated
objects is in line with our future work. Besides, deploying our
method in an in-the-wild study could validate the effectiveness

of our method in the real world. One potential scenario is to
predict the absentee statistics of the childcare center, given the
surveillance camera videos. This could offer advice to parents and
administrators concerning the status of the disease infection on
both individual and group levels.
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Networks, such as social networks, biochemical networks, and protein-protein

interaction networks are ubiquitous in the real world. Network representation learning

aims to embed nodes in a network as low-dimensional, dense, real-valued vectors, and

facilitate downstream network analysis. The existing embedding methods commonly

endeavor to capture structure information in a network, but lack of consideration of

subsequent tasks and synergies between these tasks, which are of equal importance for

learning desirable network representations. To address this issue, we propose a novel

multi-task network representation learning (MTNRL) framework, which is end-to-end and

more effective for underlying tasks. The original network and the incomplete network

share a unified embedding layer followed by node classification and link prediction tasks

that simultaneously perform on the embedding vectors. By optimizing the multi-task loss

function, our framework jointly learns task-oriented embedding representations for each

node. Besides, our framework is suitable for all network embedding methods, and the

experiment results on several benchmark datasets demonstrate the effectiveness of the

proposed framework compared with state-of-the-art methods.

Keywords: multi-task learning, representation learning, node classification, link prediction, graph neural network

1. INTRODUCTION

Networks are ubiquitous in the real world, and can be organized in the form of graphs where nodes
represent various objects and edges represent relationships between objects. For examples, in a
protein-protein interaction network (Wang et al., 2019), the physical interactions among proteins
constitute the networks of protein complexes where each individual protein is an independent
node and the interaction represents an edge. In medical practice (Litjens et al., 2017), analyzing
protein-protein networks can gain new insights into biochemical cascades and guide the discovery
of putative protein targets of therapeutic interest. For efficiently mining these complex networks,
it is necessary to learn an informative and discriminative representation for each node in the
complex network. Therefore, network representation learning (Cui et al., 2019), also known as
graph embedding (Yan et al., 2005), has attracted a great deal of attention in recent years.

Existing network representation learning methods can be generally divided into two categories,
including unsupervised and semi-supervised methods. Unsupervised network representation
learning methods (Khosla et al., 2019), such as DeepWalk (Perozzi et al., 2014), node2vec (Grover
and Leskovec, 2016), and GraphGAN (Wang et al., 2018), explore specific proximities and
topological information in a complex network and optimize the carefully designed unsupervised
loss for learning node representations, which can be used for subsequent node classification
(Kazienko and Kajdanowicz, 2011) and link prediction (Liben-Nowell and Kleinberg, 2007; Lü
and Zhou, 2011). Semi-supervised network representation learning methods (Li et al., 2017), such
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as GraphSAGE (Hamilton et al., 2017), GAT (Veličković
et al., 2018), and so on, develop end-to-end graph neural
network architectures for semi-supervised node classification
based on the partial labeled nodes and other unlabeled
nodes in hand. However, all of these methods are lack of
adequate consideration for subsequent network analysis tasks.
More specifically, unsupervised network representation learning
methods inherently ignore the category attributes of nodes.
Both unsupervised and semi-supervised network representation
learning methods are not supervised by the link prediction
task in the process of learning desirable node representations.
The only existing work is that, Tran et al. presented a
densely connected autoencoder architecture (Zhu et al., 2016),
namely local neighborhood graph autoencoder (LoNGAE,
αLoNGAE) (Tran, 2018), to learn a joint representation of
both local graph structure and available external node features
for the multi-task learning (Yu and Qiang, 2017) of node
classification and link prediction. Nevertheless, it has poor
scalability on general network embeddingmethods due to the use
of autoencoder.

As a bridge between the graph structured network data and
the underlying network analysis task, network representation
learning algorithms should not only preserve the proximities
and complex topological structure, but also learn high-quality
node representations for enhancing the performance of relevant
tasks. Fortunately, multi-task learning (MTL) is a standard
paradigm that takes full advantage of the synergy among
tasks to make multiple learning tasks promote each other
(Yu and Qiang, 2017). In deep learning (LeCun et al., 2015),
multi-task learning (Caruana, 1993) is usually implemented
by sharing the soft or hard parameters of the hidden layer.
Each task has its own parameters and models when sharing
soft parameters. The distance between model parameters is
regularized to encourage parameter similarity. Sharing the
hard parameter is the most common method of multi-task
learning on neural networks, which significantly reduces the risk
of overfitting.

Inspired by this, we attempt to propose a universal multi-
task network representation learning (MTNRL) framework,
which can be implemented on general network embedding
methods for link prediction and node classification. To enable
the traditional network embedding methods to effectively learn
multiple tasks synchronously, two different network analysis
tasks share parameters of the feature extraction module and
retain its own task-specific module in our framework. The shared
feature extraction module is utilized for learning the latent low-
dimensional representations of nodes in a complex network. The
task-specific module takes the obtained node representations as
input and incorporates the losses of node classification and link
prediction tasks. Through jointly optimizing the overall losses,
we can learn the desirable network representations and improve
the classification or prediction results of different tasks. Besides,
our proposed MTNRL framework has good universality and can
be applied to almost all of the existing network representation
learning approaches.

The main contributions of this paper are summarized
as follows:

• We propose a novel multi-task network representation
learning (MTNRL) framework, which simultaneously
performs multiple tasks including node classification and
link prediction by sharing the intermediate embedding
representations of nodes.

• The proposed framework is implemented on state-of-the-art
graph attention neural networks in detail for illustration.

• We conduct empirical evaluation on three datasets and
the experimental results demonstrate that the proposed
framework achieves similar or even better results than existing
original network representation learning methods.

The rest of this paper is arranged as follows. We first summarize
related works in section 2. Section 3 presents our proposed
multi-task network representation learning framework for node
classification and link prediction. Section 4 describes the
experimental settings and results, while conclusions are discussed
in section 5.

2. RELATED WORK AND MOTIVATION

2.1. Network Representation Learning
Recently, network representation learning has attracted an
increasing research attention in various fields. Existing network
representation learning techniques can roughly be divided as
unsupervised and semi-supervised. Given a complex network
with all nodes being unlabeled, unsupervised methods learn
node representations through optimizing the carefully designed
objective to capture proximities and topology in the network
graph, which can facilitate identifying the class labels for the
nodes. Deepwalk (Perozzi et al., 2014) regards the sequence
of nodes generated by random walk (Tong et al., 2006) as
a sentence, the nodes in the sequence as words in the text,
and obtains node representations through optimizing the Skip-
Gram model (Lazaridou et al., 2015). LINE (Tang et al.,
2015) characterizes the first-order proximity observed from
the connections among nodes, and preserves the second-
order proximity through calculating the number of common
neighbors for two nodes without direct connection. Node2vec
(Grover and Leskovec, 2016) extends the Deepwalk algorithm by
introducing a pair of hyper-parameters for adding flexibility in
exploring neighborhoods, and generates random walk sequences
by breadth-first search (Beamer et al., 2013) and depth-first
search (Barták, 2004).

Unsupervised learning begins with clustering and then
characterization, while supervised learning is carried out
simultaneously with classification and characterization. Semi-
supervised learning is a classic paradigm of machine learning
between supervised learning and unsupervised learning. In this
paradigm, a small amount of labeled data and a large number of
unlabeled data are used to train the learning model. In practice,
it is arduous to obtain a great deal of labeled data and semi-
supervised learning is capable of improving the performance
of purely supervised learning algorithms through modeling
the distribution of unlabeled data. Therefore, semi-supervised
learning has received considerable attention in recent years.
Semi-supervised learning methods utilize partial nodes being
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labeled and others remaining unlabeled to learn high-quality
node representations supervised by partial nodes. For examples,
graph convolution networks (GCN) (Kipf and Welling, 2017)
generalizes the original convolutional neural networks on grid-
like images to non-grid graphs through considering the localized
first-order approximation of spectral graph convolutions for
encoding graph structure and optimizing the cross-entropy
loss over labeled node examples for semi-supervised node
classification. Given a graph composed of instance nodes,
Planetoid (Yang et al., 2016) presents a semi-supervised learning
framework based on graph embeddings which can train an
embedding for each instance to jointly predict the class label
and the neighborhood context in the graph. This method
has both transduction variables and induction variables. While
in the inductive variant, the embeddings are defined as a
parametric function of the feature vectors, so predictions can
be made on instances not seen during training. GraphSAGE
(Hamilton et al., 2017) is an inductive network representation
learning framework that learns an embedding function for
generating node representations through sampling a fixed-size
set of neighbors of each node, and then performing a specific
aggregator over neighboring nodes (such as the mean over all the
sampled neighbors’ feature vectors, or the result of feeding them
through a recurrent neural network). Graph attention networks
(GAT) (Veličković et al., 2018) operate on graph-structured data,
leveraging masked self-attentional layers (Zhang et al., 2018)
to address the shortcomings of prior methods based on graph
convolutions. Thesemethods are all implemented as a single task,
but multi-task learning can be used to improve the performance
of multiple tasks simultaneously.

2.2. Multi-Task Learning
Multi-task learning is a promising area of machine learning
that leverages the useful information contained in multiple
learning tasks to help learn each task more accurately. Multi-
task learning is capable of learning more than one learning task
simultaneously, because each task can take advantage of the
knowledge of other related tasks. Traditional multi-task learning
methods (Doersch and Zisserman, 2017) can be classified into
many kinds, including multi-task supervised learning, multi-task
unsupervised learning (Kim et al., 2017), and multi-task semi-
supervised learning (Zhuang et al., 2015). Multi-task supervised
learning implies that each task in multi-task learning is a
supervised learning task, which models the function mapping
from examples to labels. Different from the multi-task supervised
learning with labeled examples, the training set of multi-task
unsupervised learning only consists of unlabeled examples to
mine the information contained in the dataset.

2.3. Motivation
In many practical applications, there is usually only a small
amount of labeled graph data, because manual annotation
wastes labor and time considerably (Navon and Goldschmidt,
2003). For example, in biology, the structure and function
analysis of a protein network may take a long time, while
large amounts of unlabeled data are easily available. Hence,
semi-supervised learning methods are widely used to improve

learning performance of graph analysis. Unfortunately, all of the
aforementioned semi-supervised learning methods applied on
graphs, such as GCN, GraphSAGE, and GAT only learn the latent
node representations in a single-task oriented manner and lack
consideration of the synergy among subsequent graph analytic
tasks. In reality, tasks of node classification and link prediction
usually share some common characteristics and can be conducted
simultaneously for facilitating each other.

As far as we know, the only existing work is the local
neighborhood graph autoencoder (LoNGAE, αLoNGAE), which
implements the multi-task network representation learning
based on a densely connected symmetrical autoencoder and
is model dependent. The model utilizes the parameter sharing
between encoders and decoders to learn expressive non-linear
latent node representations from local graph neighborhoods.
Motivated by this, we innovatively propose a general multi-task
network representation learning (MTNRL) framework, which
is model-agnostic and can be applied on arbitrary network
representation models. It optimizes the losses of two tasks jointly
to learn the desirable node representations followed by node
classification and link prediction tasks that performed on the
embedding vectors.

3. METHODOLOGY

In this section, we formally define the problems of network
representation learning and multi-task learning. Then the
proposed MTNRL framework and its implementation on graph
attention networks are elaborated in detail.

3.1. Problem Formulation and Notations
A network is usually denoted as G = (V ,E), where V =

{v1, · · · , vn} represents a set of nodes and n is the number of
nodes. E =

{

ei,j
}n

i,j=1
denotes the set of edges between any two

nodes. Each edge ei,j can be associated with a weight ai,j ≥ 0,
which is an element of the adjacency matrix A for the network G.
In an unweighted graph, for nodes vi and vj not linked by an edge,
ai,j = 0, otherwise, ai,j = 1. Formally, we define the following two
problems closely related to our work.

Definition 1 (Network representation learning). Given a
network G = (V ,E), network representation learning aims to
learn a function f :V → Rn×d, that maps each node into a
d-dimensional embedding space. Meanwhile, d is the dimension
of latent representations and d ≪ n.

Definition 2 (Multi-task learning). Given multiple related
learning tasks, the goal of multi-task learning is to improve the
performance of each task by jointly learning these related tasks
and mining the useful information contained in these tasks.

The main symbols used throughout this paper are listed
in Table 1.

3.2. Framework
Aiming to obtain the compact and expressive representation of
a complex network, network representation learning is widely
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TABLE 1 | Notations and their descriptions.

Notations Descriptions

G The given network

V Set of nodes in the given network

E Set of edges in the given network

v A node v ∈ V

ei,j An edge between nodes vi and vj

n Number of nodes in the given network

c The number of class labels for nodes in V

A The adjacency matrix of G

d The dimension of learned node representations

Z The initial feature matrix of nodes

H The embedding representation matrix of nodes

used in a variety of applications, including node classification,
link predication, and so on.

As one of the most important application for network
representation learning, node classification attempts to assign
the predicted class label to each node in the network based on
the patterns learnt from the partially labeled nodes. Intuitively,
similar nodes in a complex network should have the same
labels. The results of node classification are often used in
recommendation systems and data mining systems. Because in
these practical applications, nodes in a complex network are only
partially labeled due to high labeling costs, and a large portion of
vertices in networks do not have ground truth. According to the
number of labels of each node in a network, node classification
can be categorized into multi-class node classification and multi-
label node classification. In multi-label node classification, each
node may correspond multiple labels, while each node only has
one label in multi-class node classification. Essentially, node
classification based on existing network representation learning
techniques typically consist of two stages: representation learning
and node classification.

With the carefully designed network embedding algorithm, a
network graph G can be taken as input to the embedding model
f for learning the low-dimensional dense representation H in an
unsupervised or semi-supervised manner, which is expressed as:

H = f (A,Z) (1)

A denotes the adjacency matrix of G and Z is the initial feature
representation of nodes, which can be represented by nodes’
feature property or other properties. For unsupervised network
representation learning, the obtained node representations are
then utilized to train a supervised classifier for node classification.
Semi-supervised network representation learning directly trains
a classifier well for classification while training the embedding
model. With the well-trained classifier, we can infer the labels
of the remaining nodes. The performance of node classification
is reflected by the predicted accuracy for node labels. The loss
function of node classification can be defined as follow:

LNC = −
∑

v∈VL

c
∑

k = 1

yv,k ∗ log(Pv,k) (2)

where VL is the set of labeled nodes and c denotes the number
of class labels. yv,k represents an indicator variable of node v,
which is equal to 1 if node v belongs to class k, otherwise 0. Pv is
the predicted probability vector of node v and can be calculated
by Pv = softmax(WThv + b), in which hv is the embedding
representation of node v, W is the weight matrix, and b is the
bias in the final fully connected layer.

Another fundamental application for network representation
learning is link predication. Link prediction endeavors to predict
the existing possibility of edges between two nodes in a network
that are unobserved or missing by utilizing available network
nodes and topological structure. In general, we randomly hide
a portion of the existing links for simulation and use the left
edges to train an unsupervised network embedding model.
To seamlessly integrate the tasks of link prediction and node
classification, we design a loss function for link prediction as:

LLP = −

n
∑

i = 1

n
∑

j = 1

[

Ai,j ∗ log
(

Si,j
)

+
(

1− Ai,j

)

∗ log
(

1− Si,j
)]

(3)
where Ai,j is an element of the adjacency matrix of a network
G and n indicates the number of nodes. Si,j = s(hi, hj) is a
score of the predicted link between nodes vi and vj, which can
be calculated with the inner product or other similarity measure
between embedding representations hi and hj. A larger score
usually implies that the two nodes may have a higher likelihood
to be linked. With the loss in Equation (3), we can learn the
structural representations for each node in the network graph
and then utilize the obtained representations to predict the
unobserved link.

To benefit subsequent tasks of both node classification and
link prediction, we learn informative and discriminative graph
representations collaboratively supervised by these two tasks.
More specifically, the overall loss function for multi-task network
representation learning (MTNRL) can be formulated as:

L = LNC + αLLP (4)

where α is a tradeoff factor for balancing losses of node
classification and link prediction. For illustration, our MTNRL
framework is shown in Figure 1. A network graph is taken as the
input to a network representation learning model. By virtue of
the network representation learning model for graph-structured
data, the proximity and topological structure will be preserved in
the embedding representations. Furthermore, we simultaneously
perform node classification and link prediction tasks through
optimizing the carefully designed multi-task loss function on the
node representations obtained from the representation learning
module. As a result, we jointly learn task-oriented embedding
representations for each node, which are capable of improving
the performance of a variety of graph analytics applications.

3.3. Implementation on Graph Attention
Networks
Graph attention networks (GAT) (Veličković et al., 2018)
introduce an attention-based architecture to learn the
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FIGURE 1 | Graphical illustrations of our proposed multi-task network representation learning framework.

node-focused representations for node classification on
graph-structured data. GAT is based on the classical neighbor
aggregation schema for generating low-dimensional node
representations and extends the pioneering graph convolutional
networks through exploring the importance of different
neighboring nodes. Based on the attention mechanism widely
used in sequence-based tasks, GAT calculates an attention

coefficient eij = a
(

WEhi,WEhj

)

for pairwise nodes. Suppose

h =
{

Eh1, Eh2, . . . , EhN

}

, Ehi ∈ R
F is a set of node features used as

the input to the attention layer, where N is the number of nodes,
and F is the number of features for each node. A shared linear
transformation, parameterized by a weight matrix, W ∈ R

F′×F ,
is applied to every node. Then the shared attentional mechanism

a :RF′ ×R
F′ → R is utilized to calculate eij. With the normalized

attention coefficients αij = softmaxj
(

eij
)

=
exp(eij)

∑

k∈Ni
exp(eik)

, we can

pay different attention to the neighboring nodes when attending
over its neighbors for generating the latent representation of
each node. Therefore, the normalized attention coefficients
are used to compute a linear combination of the features
corresponding to them, to serve as the final output features for
every node (after potentially applying a non-linear function σ ):

Eh′i = σ

(

∑

j∈Ni
αijWEhj

)

, where h′ =
{

Eh′1,
Eh′2, . . . ,

Eh′N

}

, Eh′i ∈ R
F′

is a new set of node features produced by the attention layer. By
optimizing the loss of semi-supervised node classification, GAT
learns the representation of nodes. By stacking to multiple layers,
a deep graph attention network can be constructed for capturing
the high-order topological relationship among nodes in a graph.

The proposed MTNRL framework can be implemented on
arbitrary network representation learning methods. In this
subsection, we introduce an implementation of the MTNRL
framework on graph attention networks (MT-GAT) as an
example. The original graph attention networks adopt a two-
layer GAT model for inductive learning, which can predict
the labels of nodes in a semi-supervised manner based on
the masked self-attention operated on graph-structured data.

In our implementation of MT-GAT, node classification and
link prediction tasks are predicted simultaneously. As shown in
Figure 2, a network graph is taken as input to graph attention
networks that can output compact embedding representations
of nodes. Then we use the learned low-dimensional node
representations for multi-task learning. In the MT-GAT, all
parameters in the network except the softmax layer for node
classification are shared. In this implementation, the loss function
of node classification employs a negative log likelihood loss and
the loss function of link prediction adopts a two-class cross
entropy loss, which is in consistent with Equations (2) and (3).

3.4. Discussion
To further demonstrate that our MTNRL is a universal
framework, we explain how it can be used in Graph
Convolutional Networks (GCN) (Kipf and Welling, 2017). GCN
is a classical convolutional neural network architecture applied to
graph-structured data, which can explicitly characterize the first-
order neighboring structure and be stacked to multiple layers
for encoding high-order proximities in a network. The original
GCN only optimizes the semi-supervised node classification loss
for learning latent node representations. Under the proposed
MTNRL framework, we can optimize the loss functions of both
node classification and link prediction tasks at the same time.
Through further assigning the proper weights to the losses of
two tasks, we can complete the implementation of our MTNRL
framework on GCN.

4. EXPERIMENT

We conduct the experimental evaluation of the proposed multi-
task network representation learning framework on graph
attention networks (MT-GAT), compared with state-of-the-
art methods. This section first introduces the specifics of
experimental datasets and several baselines. Then, we present the
details of the implementation, followed by experimental results
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FIGURE 2 | Schematic depiction of implementation of the proposed framework on graph attention networks.

TABLE 2 | Statistics of benchmark datasets used in our experiments.

Datasets Cora Citeseer Pubmed

Nodes 2,708 3,327 19,717

Edges 5,429 4,732 44,338

Text feature dimension 1,433 3,703 500

Classes 7 6 3

and analysis of different algorithms. Finally, we analyze the
sensitivity of the hyperparameters.

4.1. Datasets
We adopt three benchmark citation network datasets for
evaluation, including Cora, Citeseer, and Pubmed (Sen et al.,
2008), whose detailed statistics are summarized in Table 2. For
these citation networks, each paper is denoted as a node and
the words of each paper are encoded as the features of nodes
which is a vocabulary containing multiple words. Each node only
corresponds a class label. The features of the paper consist of a
string of binary codes, which indicate whether the paper contains
this word.

• The Cora dataset consists of 2,708 papers from machine
learning area and these papers are divided into the
seven categories: Case Based, Genetic Algorithms, Neural
Networks, Probabilistic Methods, Reinforcement Learning,
Rule Learning, Theory. The citation network consists of
5,429 edges that represent citation relationships. The text
information of each publication is encoded by a tf-idf
vector of 1,433 dimensions indicating the importance of the
corresponding words.

• The Citeseer dataset consists of 3,312 scientific publications
from the CiteSeer web database, and are categorized into six
classes: Agents, Artificial Intelligence, Data Base, Information
Retrieval, Machine Language, and HCI. The citation network

consists of 4,732 links. Each publication in the dataset
is described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the
dictionary. The dictionary consists of 3,703 unique words.

• The Pubmed dataset consists of 19,717 scientific publications
from PubMed database pertaining to diabetes classified
into three classes: Diabetes Mellitus Experimental, Diabetes
Mellitus Type 1, Diabetes Mellitus Type 2. The citation
network consists of 44,338 links. Each publication in the
dataset form a dictionary which is made up of 500
unique words.

4.2. Baselines
We compare our MT-GAT against the following baselines: graph
convolution networks (GCN), graph autoencoder (GAE, VGAE),
graph attention networks (GAT), local neighborhood graph
autoencoder (LoNGAE, αLoNGAE).

• GCN (Kipf and Welling, 2017) performs a convolution
operation on each node’s neighbors for feature aggregation in
each graph convolutional layer, which can be stacked to deeper
networks for semi-supervised node classification tasks.

• GAE and VGAE (Kipf and Welling, 2016) utilize a graph
convolutional network (GCN) encoder and a simple inner
product decoder. The advantage of this method is that it can
naturally incorporate node features compared to most existing
unsupervised models for link prediction.

• GAT (Veličković et al., 2018) is a novel neural network
architecture that operates on graph-structured data,
leveraging masked self-attentional layers to address the
shortcomings of prior methods based on graph convolution
or their approximation.

• LoNGAE and αLoNGAE (Tran, 2018) introduce a densely
connected autoencoder architecture to learn a joint
representation of both local graph structure and available
external node features for the multi-task learning of link
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TABLE 3 | Accuracy of semi-supervised node classification on Cora.

Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

GCN 0.842 0.842 0.828 0.828 0.821 0.821 0.807 0.807 0.800

αLoNGAE 0.803 0.793 0.790 0.783 0.780 0.777 0.770 0.767 0.763

GAT 0.824 0.822 0.816 0.808 0.806 0.804 0.798 0.796 0.794

MT-GAT (ours) 0.874 0.864 0.861 0.856 0.855 0.850 0.848 0.832 0.827

The best results are shown in bold, and our MT-GAT with significant improvements over

the baselines is shown with underlines.

TABLE 4 | Accuracy of semi-supervised node classification on Citeseer.

Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

GCN 0.846 0.824 0.824 0.824 0.813 0.802 0.802 0.780 0.780

αLoNGAE 0.733 0.727 0.723 0.716 0.710 0.706 0.697 0.690 0.683

GAT 0.718 0.716 0.710 0.708 0.706 0.704 0.700 0.698 0.696

MT-GAT (ours) 0.852 0.845 0.841 0.835 0.830 0.820 0.816 0.800 0.780

The best results are shown in bold, and our MT-GAT with significant improvements over

the baselines is shown with underlines.

prediction and node classification. LoNGAE and αLoNGAE
adopt the densely connected symmetrical autoencoder, where
αLoNGAE uses node features and LoNGAE does not. In our
node classification experiments, we only adopt αLoNGAE for
comparison due to its superiority.

4.3. Experimental Settings
We implement our MT-GAT with the Pytorch-GPU backend,
along with several additional details. Gradient descent
optimization is employed with a fixed learning rate of 0.005. Two
layers of dropout are used in the model with dropout rate of 0.1
to prevent the problem of overfitting. The number of attention
heads in the graph attention layer is set to 8, consistent with
the setting for transductive learning in GAT. We train for 300
epochs for MT-GAT. The loss of node classification is negative
log likelihood loss while the loss of link prediction is binary cross
entropy. The tradeoff factor between node classification and
link prediction tasks α is 1. For fair comparison, we use mean
classification accuracy to measure the performance of the node
classification task, and use AUC and AP to evaluate the results
of link prediction. The evaluation metric AUC is the area under
the ROC curve. In the context of unbalanced categories, even
if the number of certain categories increases significantly, the
growth of the curve is not obvious, and therefore we choose it to
eliminate the impact of a lot of imbalanced classes. AP is just the
average accuracy score.

4.4. Results and Analysis
We use different methods to obtain embedding vectors of nodes,
and adopt softmax as classifier. For comparison, the training
ratio of the classifier is ranged from 10 to 90% with a step
of 10% in each dataset for all methods. We run each method
10 times, respectively at a given training ratio and report the
average performance.

Tables 3–5 demonstrate the comparison ofmean classification
accuracy on semi-supervised node classification for GCN,
αLoNGAE, GAT, and our MT-GAT. For clarity, the best results

TABLE 5 | Accuracy of semi-supervised node classification on Pubmed.

Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

GCN 0.871 0.838 0.838 0.806 0.806 0.774 0.774 0.741 0.741

αLoNGAE 0.807 0.803 0.800 0.797 0.796 0.793 0.790 0.787 0.786

GAT 0.794 0.792 0.790 0.788 0.786 0.784 0.782 0.780 0.788

MT-GAT (ours) 0.854 0.847 0.843 0.836 0.831 0.824 0.822 0.816 0.806

The best results are shown in bold, and our MT-GAT with significant improvements over

the baselines is shown with underlines.

TABLE 6 | AUC and AP performance of different methods on link prediction.

Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

GAE 0.910 0.920 0.895 0.899 0.964 0.965

VGAE 0.914 0.926 0.908 0.920 0.944 0.947

LoNGAE 0.896 0.915 0.860 0.892 0.926 0.930

αLoNGAE 0.943 0.952 0.956 0.964 0.960 0.963

GCN 0.809 0.811 0.811 0.822 0.828 0.834

MT-GAT (ours) 0.930 0.963 0.931 0.963 0.968 0.970

The best results are shown in bold.

are shown in bold. For node classification, GCN and our MT-
GAT exhibit better performance compared with LoNGAE and
GAT. Although GCN occasionally outperforms our MT-GAT
on the Pubmed dataset when the training ratio is 90%, it is
inferior to our MT-GAT in all other cases. It is shown that on
this task, the performance of our MT-GAT is relatively stable
and splendid compared with baselines, which fully demonstrates
the superiority of our multi-task network representation learning
framework. Furthermore, we conduct the t-test in Tables 3–
5 and our MT-GAT with significant improvements over the
baselines is shown with underline as measured by a t-test with
a p-value6 0.05.

Table 6 shows the comparison of AUC and AP performance
on link prediction for GAE, VGAE, LoNGAE, αLoNGAE, GCN,
and MT-GAT. For link prediction, the LoNGAE that only
captures graph structure without node features is less than
satisfactory, but the αLoNGAE with node features performs
slightly better. Although αLoNGAE occasionally outperforms
our MT-GAT on the Cora and Citeseer datasets, αLoNGAE
is restrictive and obviously provides no flexibility in extending
to general network representation learning methods. In the
meantime, the performance of GAE and VGAE is mediocre
because it is potentially a poor choice in combination with
an inner product decoder, and the generative model is not
flexible enough. Note that in this task, our MT-GAT performs
comparable or more excellent than other methods, due to the
capability of our framework for collaboratively learning task-
oriented embedding representations.

Overall, our MT-GAT achieves more outstanding and stable
performance on both tasks of node classification and link
prediction. However, these baselines mostly learn network
representations based on a model-dependent framework without
careful consideration of the follow-up tasks to optimize the
embedding model. Our MT-GAT is simultaneously supervised

Frontiers in Neuroscience | www.frontiersin.org 7 January 2020 | Volume 14 | Article 198

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xie et al. Multi-Task Network Representation Learning

FIGURE 3 | The effect of different hyperparameters α on the Cora dataset. We choose the AUC and AP scores of link prediction and the classification accuracy of

node classification to demonstrate the effect of different hyperparameters for the experiments.

by node classification and link prediction tasks, and is capable
of learning comprehensive and desirable node representations.
Through the joint learning of two different loss functions,
our model is able to achieve more effective, complete, and
stable predictions.

4.5. Parameter Sensitivity
The parameter sensitivity of MT-GAT is investigated in this
section. More specifically, we evaluate how different values
of hyperparameter α can affect the performance of node
classification and link prediction. The hyperparameter α is
varied from 0 to 1 with an increment of 0.1. We report the
three evaluation metrics: mean classification accuracy for node
classification, AUC score for link prediction, and AP scores for
link prediction. The histogram in Figure 3 displays the results of
evaluation metrics with different parameter settings for the Cora
dataset. We notice that the performance of node classification
and link prediction on the Cora dataset fluctuates from α = 0
to 1. It slightly boosts at first and reaches the local optimum at
α = 0.3. After the value of α is over 0.3, it gradually declines
and slightly increases to the peak at α = 1. The AUC and AP
scores of link prediction are more sensitive to parameters than
the classification accuracy of node classification. Especially, when
parameter α is 0, the optimization of the link prediction loss is
completely separated from that of the network embeddingmodel,
thus causing AUC and AP scores of link prediction to always
float around the starting value of 0.5. It empirically suggests
that the consideration of the weight parameter α between node
classification and link prediction tasks can facilitate learning
network representations more effectively.

5. CONCLUSION

In this paper, we propose a multi-task network representation
learning framework, namely MTNRL, which exploits the synergy

among the node classification and link prediction tasks for
facilitating their individual performance. The experimental
results demonstrate the MTNRL framework on GAT is well-
performed on a range of graph-structured network datasets
for both node classification and link prediction. Besides,
the proposed method can soundly outperform the state-of-
the-art network representation learning methods. The main
advantage of our MT-GAT is the performance improvement
brought by the extensive parameter sharing between link
prediction and node classification tasks. The proposed
framework solves the single-task limitations of traditional
network representation learning methods. In particular, our
framework is universal and can be implemented on any arbitrary
network embedding methods to improve performance. In
future work, we will investigate the implementation of our
framework on heterogeneous network representation methods
and explore the scalability of our framework on other network
analysis tasks.
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Background: Although many electroencephalographic (EEG) indicators have been

proposed in the literature, it is unclear which of the power bands and various indices

are best as indicators of mental workload. Spectral powers (Theta, Alpha, and Beta) and

ratios (Beta/(Alpha + Theta), Theta/Alpha, Theta/Beta) were identified in the literature as

prominent indicators of cognitive workload.

Objective: The aim of the present study is to identify a set of EEG indicators that can

be used for the objective assessment of cognitive workload in a multitasking setting and

as a foundational step toward a human-autonomy augmented cognition system.

Methods: The participants’ perceived workload was modulated during a teleoperation

task involving an unmanned aerial vehicle (UAV) shepherding a swarm of unmanned

ground vehicles (UGVs). Three sources of data were recorded from sixteen participants

(n = 16): heart rate (HR), EEG, and subjective indicators of the perceived workload using

the Air Traffic Workload Input Technique (ATWIT).

Results: The HR data predicted the scores from ATWIT. Nineteen common EEG features

offered a discriminatory power of the four workload setups with high classification

accuracy (82.23%), exhibiting a higher sensitivity than ATWIT and HR.

Conclusion: The identified set of features represents EEG indicators for the objective

assessment of cognitive workload across subjects. These common indicators could

be used for augmented intelligence in human-autonomy teaming scenarios, and form

the basis for our work on designing a closed-loop augmented cognition system for

human-swarm teaming.

Keywords: augmented intelligence, cognitive load, human-autonomy teaming, human-swarm teaming,

shepherding, mental load, cognitive indicators, EEG
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1. INTRODUCTION

Mental workload refers to the depletion of mental resources
due to mental demands imposed by a task on an individual.
When task difficulty increases, mental workload increases due
to the reduction in available cognitive resources. Research
has shown that when an individual is under high cognitive
workload and the cognitive workload approaches the individual’s
cognitive capacity, suboptimal decisions and human errors are
expected. In the absence of any increase of task demand,
prolonged mental activities also leads to depletion of cognitive
resources (Kamzanova et al., 2014). Low workload can also
lead to errors, due to boredom and the possibility for
human distraction from the main task due to environmental
influencing factors.

Humans have a limited amount of resources (both physically
and mentally); therefore, optimizing these resources toward
specific sets of tasks is likely to produce better results. However,
it is challenging to understand these human limitations within
a work environment due to many factors, such as demographic
factors (gender, age, ethnicity), intrinsic motivation, mood states
(happy, sad, anxious, etc.), previous experience, and different
problem-solving strategies due to mental abilities, education, and
skills. For example, the level of difficulty to accomplish a task
might be seen differently by two operators; operator A could
see the task difficult at first, but then find a good strategy to
solve the task, while operator B could find the task extremely
difficult, get discouraged, and fail to complete the task. As human
resources are limited, there is a problem when a task demands
more resources (Maior et al., 2014).

In many domains, the ability to process information, to react
to different environments, and tomake accurate decisions is vital.

For instance, air traffic controllers (ATCs) generally perform in

a highly cognitively-demanding environment, working for long

periods of time, and under stress (Dasari et al., 2017). This
scenario can lead to depletion of cognitive resources and thus
degradation of performance. Another clear example is doctors
and nurses in critical care units, they face large volumes of work,
need to act quickly, and stay alert after many hours of intense
work. In this case, errors and compromised standards signify that
quality and safety of patient care might be endangered (MacPhee
et al., 2017). It is, therefore, evident that there is a need tomeasure
mental workload to identify the changes of cognitive demands
on an individual while completing a task, which can potentially
help reduce errors, task failure, accidents, and thus improve and
maintain performance longer.

A number of metrics have been proposed for measuring
mental workload. In the literature, these metrics can be divided
into two main groups: subjective and objective measures.
Subjective metrics are based on an operator’s opinions, answers
to questionnaires, and interviews. A popular technique for the
subjective assessment of an operator’s mental workload is the
NASATask Load indeX (NASA-TLX) (Hart and Staveland, 1988).
This method uses six dimensions: mental demand, physical
demand, temporal demand, performance, frustration level, and
effort, each with 10- or 20-point scale. An overall rating is then
calculated as the weighted mean of all six ratings. One of the

limitations of NASA-TLX is the lack of continuous measurement
while the task is performed, since participants typically answer
the survey questions after a task is completed and they may
be unable to recall the workload experienced during a trial.
The Air Traffic Workload Input Technique (ATWIT) (Stein,
1985) is less pruned to this problem. Although, it is a workload
rating scale designed for use in air traffic control studies, it has
been successfully applied in other domains (Loft et al., 2015).
This technique uses a scale from 1 (low workload) to 7 (high
workload), which is administered by freezing the simulation.
At each freeze, participants are asked to report their level of
workload. An advantage of using this technique is that it enables
a more accurate evaluation, since the participant can report the
workload as it changes, instead of waiting until the end of the
task/scenario to report workload.

Objective measures are generally based on experimental
methods used to collect physiological and/or behavioral
information by a single sensor or a combination of different
types of sensors, simultaneously (Debie et al., 2019). In
contrast with subjective measures, objective techniques offer
a continuous measure of workload in real time, and also their
implementations do not interfere with the performance of
the task at hand (Wang et al., 2015). In general, objective
measures can be classified either as neurophysiological,
physiological, or behavioral. Neurophysiological measures
include electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS) (Hirshfield et al.,
2009). Physiological measures include electrocardiography
(ECG) (Veltman and Gaillard, 1996), heart rate and heart
rate variability (HRV) (Elkin-Frankston et al., 2017), pupil
dilation (Pomplun and Sunkara, 2003), blink frequency and
blink duration (Tsai et al., 2007), and saccades (Ahlstrom and
Friedman-Berg, 2006). Behavioral measures include keystroke
dynamics, mouse tracking, and body positioning (Mota and
Picard, 2003). Most objective measures (physiological and
neurophysiological) rely on the assumption that changes in
cognitive demands are reflected in the autonomic nervous
system (ANS) (Mulder, 1989; Veltman and Gaillard, 1996).
Although, physiological measures can be used as indicators of
mental workload, neurophysiological techniques are considered
the most direct indicators of different cognitive states (Debie
et al., 2019).

There are two main techniques with appropriate temporal
resolution to measure cognitive workload using brain signals:
fNIRS and EEG. fNIRS measures cognitive workload by
examining the levels of oxygenated (HbO) and deoxygenated
(HbR) hemoglobin concentration in the cerebral cortex (Rojas
et al., 2017b), and alertness, and indicative of loss of cortical
arousal (Kamzanova et al., 2014). In this regard, fNIRS is
commonly used to measure the amount of effort exerted in a
given brain region in response to a given task. Different studies
have reported that increased levels of HbO in the pre-frontal
cortex correlates with increased task engagement which is used
to indicate increased cognitive workload (Ayaz et al., 2012; Herff
et al., 2014). On the other hand, EEG measures the brain’s
electrical activity and pattern analysis of this activity is used to
indicate different levels of cognitive workload. Spectral analysis is
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used to decompose EEG signals into their constituent frequency
components. Typically, EEG data are partitioned into five bands
(from slowest to fastest: delta, theta, alpha, beta, and gamma).
The power spectral density (PSD) in each band is computed and
used to compare the conditions being studied (i.e., low vs. high
workload). EEG is considered the most popular approach in the
literature to objectively assess cognitive states (Gevins et al., 1997;
Abbass et al., 2014; Dong et al., 2016; Rojas et al., 2019a).

Although many indicators have been proposed in the
literature, it is unclear which of the power bands and various
indices is the most optimal for mental workload. In the following
section, we present the most prominent indicators in the
literature and their relationship with cognitive workload. The
intent is not to provide an exhaustive literature review, but
identify EEG metrics that could be potentially used as indicators
of mental workload in our experiment.

1.1. EEG Indicators of Mental Workload
In the literature, EEG correlates of spectral powers at different
cortical locations have been proposed for the assessment of
cognitive workload. For example, theta band (4–8 Hz) has been
linked to mental fatigue and mental workload (Gevins et al.,
1995). Theta spectral power is thought to increase with increase
demands on cognitive resources (Vidulich and Tsang, 2012;
Xie et al., 2016), with higher task difficulty (Antonenko et al.,
2010), and with increase of working memory (Borghini et al.,
2012); particularly, theta power increases in tasks requiring a
sustained concentration (Gevins and Smith, 2003). In addition,
increase in theta power is related to lower mental vigilance and
alertness, and indicative of loss of cortical arousal (Kamzanova
et al., 2014). An increase in theta power monitored over
the frontal cortex has been linked to an increase in task
difficulty and use of higher memory resources (Parasuraman
and Caggiano, 2002), frontal theta also increases during
vigilance (Paus et al., 1997).

Alpha band (8–12 Hz) power has shown sensitivity to
experiments in mental workload (Sterman and Mann, 1995; Xie
et al., 2016; Puma et al., 2018), cognitive fatigue (Borghini
et al., 2012), and also with reduction in attention or
alertness (Kamzanova et al., 2014). In general, alpha band
increases in relaxed states with eyes closed and decreases when
the eyes are open (Antonenko et al., 2010). An increase in alpha
power is related to lowermental vigilance and alertness (MacLean
et al., 2012; Kamzanova et al., 2014) and therefore a decrease
in the attention resources allocated to the task (Vidulich and
Tsang, 2012). On the other hand, a progressive suppression
of alpha waves has been linked to increasing levels of task
difficulty (Mazher et al., 2017). Cortical areas that have been
associated with alpha band changes are parietal and occipital
areas (Dasari et al., 2017; Puma et al., 2018).

Beta band (12–30 Hz) has been linked to visual
attention (Wróbel, 2000), short-term memory (Tallon-Baudry
et al., 1999; Palva et al., 2011), and hypothesized to react to
an increase in working memory (Spitzer and Haegens, 2017).
An increase in beta power is associated with elevated mental
workload levels during mental tasks (Coelli et al., 2015) and
concentration (Kakkos et al., 2019). In addition, beta band

activity reflects an arousal of the visual system during increased
visual attention (Wróbel, 2000). An increase in beta activity has
been observed in the parieto-occipital channels during visual
working memory tasks (Mapelli and Özkurt, 2019).

In addition, the use of multiple EEG frequency bands
(ratios or indices) has been proposed as an indicator of
mental workload. This is based on the assumption that by
combining information from multiple bands, the assessment of
workload can be enhanced. For example, beta/(alpha + theta)
(or Engagement Index, EI) has been used to study alertness
and task engagement (Pope et al., 1995; Freeman et al., 1999;
Mikulka et al., 2002), mental attention investment (MacLean
et al., 2012), and mental effort (Smit et al., 2005). When alpha
reduction was observed to correlate with increases in activity
in frontal-parietal cortical areas, beta power increased while
theta decreased, indicating a state of high vigilance (MacLean
et al., 2012). When alpha reduction was seen to correlate with
increases in activity in occipital and parietal areas, beta decreased
and theta increased, indicating a state of drowsiness, or low
vigilance (MacLean et al., 2012).

Another index used to explore the assessment of workload
is the theta/alpha ratio (or Task Load Index, TLI). This index
is based on the assumption that an increase of mental load is
associated with a decrease in alpha power and an increase in
theta power (Stipacek et al., 2003; Käthner et al., 2014). While an
increased level of fatigue is related to increase of alpha and theta
powers (Käthner et al., 2014; Xie et al., 2016). Research has shown
that workload manipulations increased theta power at anterior
frontal and frontal midline regions and decreased alpha power at
parietal regions (Gevins and Smith, 2003). In general, an increase
of cognitive workload has been associated with an increase of
theta power together with a decrease of alpha power (Fairclough
and Venables, 2004).

Theta/beta ratio has been used to study attention-
deficit/hyperactitivty disorder (ADHD) and working memory
problems in children (Lansbergen et al., 2011). This ratio shows
increased theta power and decreased beta power during resting
state in individuals with ADHD (Barry et al., 2003). Theta/beta
ratio has been negatively correlated with mean reaction time
in adults, indicating an increased theta/beta ratio linked to
shorter, faster reaction time (Loo and Makeig, 2012). Theta/beta
ratio has been used for monitoring sleepiness and wakefulness
in car drivers (Sun et al., 2015). This ratio has been used to
discriminate distraction from attentive driving as measured in
the parietal lobe (Zhao et al., 2013). This index is based on the
assumption that an increase in alertness and task engagement
results in an increase in beta power and a decrease in theta
power (Gale and Edwards, 1983). Table 1 presents a summary
of EEG indicators for the assessment of cognitive workload
identified in the literature.

The present study was conducted to directly address
the challenge to identify a set of indicators that can be
used for the objective assessment of cognitive workload in
a multitasking setting. Consequently, we have designed a
simulation environment which affords manipulation of task
complexity by varying the quality of information in the
simulation. It has been shown that information quality affects
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TABLE 1 | Summary of EEG correlates of spectral powers for the assessment of

cognitive workload in the literature.

Indicator
Type of cognitive

Description
behavior

Theta

Workload,

vigilance, and

concentration.

Theta spectral power is thought to

increase with increase cognitive

resources demand.

Theta increases in tasks requiring a

sustained focus of concentration and

vigilance.

Alpha

Workload,

cognitive fatigue,

and attention.

Alpha band increases in relaxed

states with eyes closed and

decreases when the eyes are open.

An increase in alpha power is related

to lower mental vigilance and

alertness.

Beta

Workload,

visual attention,

and concentration.

An increase in beta power is

associated with elevated mental

workload levels during mental tasks

and concentration.

Beta band activity reflects an arousal

of the visual system during increased

visual attention.

Beta

Alpha+ Theta

Mental Effort,

vigilance, and

attention.

It has been used to study alertness

and task engagement, mental

attentional investment, and mental

effort.

Theta

Alpha

Workload,

mental effort.

This index is based in the assumption

that an increase of mental load is

associated with a decrease in alpha

power and an increase in theta power.

Theta

Beta

Working memory,

attention, and

sleepiness.

This index is based in the assumption

that an increases in alertness and

task engagement result in an increase

in beta power and a decrease in theta

power.

cognitive workload (Young et al., 2016). Finally, we aim to
identify EEG indices that may be used to trigger technological
support to maintain performance.

2. METHODS

2.1. Participants
Sixteen participants (four females) were recruited. Their age
ranged from 22 to 50 years old (mean age 33 ± 8.1 std). The
experiment was approved by the University of New South Wales
(UNSW) Research Ethics Committee (protocol ID: HC180554).
All participants provided written informed consent prior to
participating in the study. A demographics questionnaire was
given to the participants before the start of the experiments.
Participants did not receive monetary compensation for their
participation in this study.

2.2. Description of the Experiment
Participants were seated on a fixed chair in front of a
computer screen placed on a desk. An introduction to the
experimental procedure and a practice session were provided to

the participants before the start of the study. After that, the EEG
head cap was mounted on the participants’ head. To minimize
any muscle movement artifacts, the participants were instructed
to remain as still as possible while holding the mouse at all times
during the experiment. Next, a 1 min baseline recording was
obtained, in the first 30 s, the participants were told to close their
eyes; then in the remaining 30 s, the participants were told to keep
their eyes open and fixed on a point in the center of the screen.
Finally, the participants were instructed to start the experiment
after a 2-min break; the complete session lasted∼50 min.

The experimental task was to teleoperate an unmanned aerial
vehicle (UAV) to guide a swarm formation of autonomous
unmanned ground vehicles (UGVs). Only the UAV remote-
operator knows the destination defined by the mission profile.
The UGVs consist of a group of four vehicles with capabilities
to self-organize to autonomously maintain a formation during
the mission. The operator’s graphical user interface (presented in
Figure 1) displays sufficient information to successfully guide the
UAV with information display on the UAV (e.g., speed, altitude),
mission state information, navigation map, and localization of
the UGVs. This experiment is designed to run the simulation
that combines four scenarios of different levels of information
quality. Each scenario lasts 4 min and is repeated two times
per participant. Simultaneously, EEG data and heart beat were
recorded continuously during the experimental task. During each
experimental condition, participants rated their mental effort
using a computer version of the ATWIT questionnaire.

2.3. Simulation Environment
The experimental task is undertaken using the Virtual Battlespace
Simulation 3 (VBS3) (Bohemia Interactive Simulations, Orlando
Florida, USA) environment. The VBS3 software was used
under the Australian Defence Force (ADF) Enterprise Licence
Agreement with BISSimulation Australia. Information latency
and loss were modeled to impact the operator’s control station
(as illustrated in Figure 1). This interface was programmed in C#
(Microsoft Corporation, Washington, USA) since VBS3 does not
have the capability for simulating information latency and loss as
required. The interface has twomain graphic displays located side
by side on the top. On the left side, there is a lateral view of the
UAV and UGVs’ positions on a map. The UAV is presented by a
green rectangle and the UGVs are visualized as blue rectangles.
A blue star marks the UGVs’ destination on the map. On the
right side, real-time video streamed from the UAV camera is
provided to the operator. At the bottom of the interface, detailed
textual information on the UAV and UGVs’ status including their
positions, headings and speeds are provided. In the middle of
the interface, a panel lists all possible UGV formation options;
however, for this study we limit the formation to a boxing
formation alone.

2.4. Experimental Design
A within-subject design with four different experimental
conditions determined by the levels of quality of information was
used in this study. The four experimental conditions (scenarios)
are: (1) low latency/delay and low dropout; (2) low delay and
high dropout; (3) high delay and low dropout; and (4) high
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FIGURE 1 | UAV pilot interface.

delay and high dropout. The experiment is counterbalanced
by using the composite 3 × 3 Latin Square design to avoid
confounding due to order effects. In our experiment, information
latency is the amount of time a video frame from the UAV
camera and the status of all vehicles to traverse in the camera’
s field of view are delayed to the interface; while, information
loss is the rate in which video frames and data about the
status of vehicles are not transmitted during data transmission.
Ideally, information latency should be unnoticeable to the
UAV operator and the delivery of information should be
operationally assured.

However, to modulate the participants’ perceived workload,
information latency and information loss are injected into the
simulation. Thus, it has been hypothesized that the latency
and loss of information affect the subjects’ perceived cognitive
workload. Information latency and information loss are modeled
using two parameters, d for the delay time (Low d = 1 s,
High d = 9 s) of information transmission, and lf for the
number of video frames lost per second (Low lf = 1 s, High
lf = 9 s) in transmission. Table 2 lists the parameter values
corresponding to the corresponding levels of information latency
and loss, respectively.

2.5. Heart Rate Measurement
A mouse (Mionix Naos QG) equipped with heart rate (HR)
and galvanic skin response (GSR) sensors is used as the main
input method during the simulation. The biometric sensors
are designed to measure the physiological data on the palm
of the user; thus, the user must maintain the mouse in their
hand at all times while the simulation is running. The mouse
uses a sample rate of eight samples per second. In addition,

TABLE 2 | Variables used in information latency and loss.

Variable Level Parameter value

Information latency
Low d = 1 s

High d = 9 s

Information loss
Low lf = 1 s

High lf = 9 s

the mouse can also record different mouse metrics, such as:
number of scrolls, clicks, and movements. In this study, the heart
rate information is only used to corroborate the design of the
experimental conditions due to its high sensitivity to mental load
measure (Cinaz et al., 2010).

2.6. Electroencephalographic (EEG)
Measurement
A wireless EEG acquisition system (Emotiv EPOC) was used
to record neural activity. This device has a resolution of 14
channels (plus 2 reference channels) with a sampling frequency
of 128 samples per second. Some advantages of using the
Emotiv EPOC is its low cost, good signal-to-noise ratio, and
ease of use (Duvinage et al., 2013). In addition, the EPOC
has shown satisfactory results in diverse research studies in
emotion recognition (Ramirez and Vamvakousis, 2012), brain
computer interface (Holewa and Nawrocka, 2014), and cognitive
workload (Lim et al., 2015). Figure 2 presents the headset
and the channel positions based on the international 10–
20 EEG system of electrode placement. Channel locations
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FIGURE 2 | Cortical areas covered by the electrodes of the EEG

EMOTIV Epoc.

correspond to: AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4, M1, and M2. M1 is used as the
ground reference channel for measuring the voltage of the
other channels, while M2 is used as a feed-forward reference
point to reduce external electrical interference (Badcock et al.,
2015). A saline solution was employed to reduce the electrode
impedance and facilitate sensitivity between each electrode and
the scalp (Duvinage et al., 2013).

2.6.1. EEG Pre-processing
EEG pre-processing was performed in Matlab (version 2018b,
The MathWorks Inc.) by using custom software and the EEGLab
toolbox (Delorme and Makeig, 2004). Baseline correction was
performed by subtracting the correspondingmean from a pretrial
(200ms) period from each channel. Then, EEG signals were band-
pass filtered between 2 and 43 Hz using a FIR filter, which
helps remove high-frequency artifacts and low-frequency drifts.
Electrode movement artifacts were manually removed from the
data; these artifacts produce large spikes that are several orders
of magnitude bigger than the neural response produced by EEG.
Artifacts from eye blinks and movements were corrected using
themultiple artifact rejection algorithm (MARA)which evaluates
ICA-derived components (Winkler et al., 2014).

2.6.2. Feature Extraction
Feature extraction was carried out using spectral analysis. First,
the power distribution from each channel was studied by
transforming the EEG into power spectral density (PSD) using
a fast-Fourier transform (FFT) and using 10-s windows with 50%
overlapping windows multiplied by the Hamming function to

reduce spectral leakage (Chaouachi et al., 2011). Second, from
each window, the EEG channels were decomposed into sub-
bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–40 Hz). Third, the PSD results
of each frequency band were normalized (1/f) to obtain the
relative PSD of each band to the baseline time period. This
normalization helps to make quantitative comparisons of power
across frequency bands (Cohen, 2014). Finally, the resulting PSD
values in each band were averaged to obtain the power spectral
features used for classification.

2.6.3. Feature Selection
Feature selectionwas carried out to reduce the number of features
and build a more accurate learning model. The selection criteria
was based on the joint mutual information algorithm (JMI), this
method ranks the features with the largest mutual information
(MI) that produces most of theMI between the feature vector and
the class label (Yang andMoody, 1999). The reason to choose JMI
is that it presents better tradeoff in terms of accuracy, stability,
and flexibility than other ranking methods (Brown et al., 2012;
Rojas et al., 2019b). A disadvantage of this method is the fact that
there is no stopping criteria to reach the best subset of features,
and the user needs to select the number of features from the
ranking list to form the optimal subset.

2.6.4. Classification
The classification task is to determine the level of mental effort
based on the recorded EEG signals from each participant. To
identify the four levels of mental effort, we used the linear
discriminant analysis (LDA) algorithm for offline analysis. The
reason to choose LDA is because it is the most popular classifier
in brain computer interface (BCI) research due to its good
performance and low computational cost, attributes needed for
the development of an on-line assessment of mental effort in our
future work. Tomeasure the classifier’s performance, the data was
divided into two parts with 70% for training and the remaining
30% used for testing and to report generalization performance. k-
fold cross validation (k = 10) was performed on the training set;
the training set was randomly divided into k partitions. Then, k-1
partitions are used to fit the learning model and the remaining
partition used to validate the model, this process is repeated
k times, and each time using a different partition to validate
the model. The final generalization results are presented as the
average and standard deviation on the 30% untouched test set.

2.7. Validation of Experimental Design
In order to validate the experimental conditions, the response
to the ATWIT questionnaire and the heart rate information
were analyzed. The research hypothesis of this study is that
different levels in the quality of information (delay and dropout)
significantly affect the perceived mental effort of the participants
during the experimental task. In order to corroborate the
research hypothesis and the design of this experiment, a repeated
measures model was used to appraise statistical difference for the
four different experimental conditions. Therefore, it was expected
that the level of mental effort in each condition is significantly
different and this difference can be observed by the subjective
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FIGURE 3 | Analysis workflow used in the present study.

and objective metrics. A p value that is >0.05 was not considered
statistically significant.

ATWIT scores and heart rate data were tested for normality
using the Shapiro-Wilk test. Both tests showed that the data
significantly deviated from a normal distribution, p = 0.01 for
ATWIT scores and p = 0.033 for heart rate. Then, a logarithmic
transformation was applied to reinforce the linearity of both
data, which resulted in meeting the normality assumption (p >

0.05) after a subsequent normality test for both data. However,
after checking normality visually using Q–Q plots (quantile–
quantile plots), the distribution of both data was non-normal.
Therefore, the non-parametric Friedman test was applied to both
data for testing the difference between experimental conditions
and Wilcoxon signed ranks test as post-hoc test.

Figure 3 illustrates a summary of the analysis workflow
used to obtain the results presented in this study. First,
acquired EEG signals are cleaned through a series of signal
processing techniques, then decomposition (feature extraction)
of EEG signals into sub-bands (beta, alpha, theta) is carried
out. The obtained features from each participant are then
ranked using a feature selection technique. Each rank is then
evaluated using an LDA classifier. Finally, the list of most
prominent features contributing to the accuracy of the classifier
are identified.

3. RESULTS

3.1. Validation of Experimental Conditions
Two methods were used to evaluate the experimental design.
First, the subjective workload assessment using ATWIT scores
was evaluated for each experimental condition. Second, heart
rate (HR) is used to corroborate the cognitive modulation with
respect to each condition. The experimental assumption of this
study is that in conditions with low quality communication
(e.g., high delay and high dropout condition), the participants’
perceived workload will be significantly different than in
conditions with high quality communication (e.g., low delay and
low dropout).

FIGURE 4 | The bar graph represents the mean and standard deviation of

ATWIT scores. The Wilcoxon test showed a significant increase of workload

(p = 0.002). ∗p < 0.0083.

3.1.1. ATWIT Scores
Figure 4 shows the results of the subjective workload evaluation
using ATWIT test. The recorded ATWIT response for each
condition was averaged among the participants. The overall trend
of subjects’ perceived workload showed the lowest workload in
the Low-Low condition (mean = 4.4, std = 2.2), medium
workload in the Low-High (mean = 5.0, std = 2.3) and
High-Low (mean = 4.7, std = 2.7) conditions, and the
highest workload in the High-High (mean = 5.9, std =

2, 4) condition. Overall, ATWIT scores showed an increase of
perceived workload in experimental conditions with low quality
communication compared to experimental conditions with high
quality of communication.

A Friedman test of differences among repeated measures was
carried out to examine changes in ATWIT scores under the
four conditions. This test was used with the following research
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FIGURE 5 | Subjects’ heart rate (HR) in beats per minute (bpm). The bar graph

represents the mean and the standard deviation of participants’ HR during the

four experimental conditions. The Wilcoxon test showed a significant increase

between High-High and Low-Low (p = 0.003) conditions. ∗p < 0.0083.

hypothesis Ho: There are no significant differences between the
mean ATWIT scores among the experimental conditions. In
other words, the distribution of the answer to the ATWIT
questionnaire is independent of the experimental condition
(no difference in perceived workload). A statistically significant
difference in perceived workload depending on the experimental
conditions [χ2(n = 16) = 10.471, p = 0.015] was obtained. Post-
hoc tests using multiple two-sided Wilcoxon signed-rank tests
were performed with Bonferroni correction applied, resulting in
a significance level set at p < 0.0083. There were no significant
differences between the Low-Low and Low-High (p = 0.178), the
Low-Low and High-Low (p = 0.502), the High-Low and Low-
High (p = 0.303), the High-High and Low-High (p = 0.025), or
the High-High and High-Low (p = 0.011) conditions. However,
this statistical test showed a significant increase (p = 0.002)
in perceived workload as declared in the ATWIT scores by the
participants in the Low-Low and High-High scenarios.

3.1.2. Heart Rate Information
Another metric used to validate the experimental design was
the participants’ heart rate (HR). Figure 5 presents the results
of the heart rate value between the four different conditions in
the experiment. Heart rate has been shown to be a physiological
indicator directly related to mental workload (Luque-Casado
et al., 2016). In this case, the experimental assumption (refer
to section methods) was that delay and dropout of information
affect the cognitive workload of the participants and this can
be observed by measuring the participants’ heart rate. Overall,
the results showed that during the Low-Low condition the
participants exhibited the lowest HR (mean = 72.47, std = 8.9),
medium HR during the Low-High (mean = 78.94, std = 15.83)
and High-Low (mean = 73.76, std = 9.9), and the highest HR
(mean = 83.73, std = 16.8) during the High-High condition.

TABLE 3 | Reference values for classification accuracy and standard deviation

(std) using LDA.

Power bands Ratios

Theta Alpha Beta Theta/

Beta

Beta/

(Alpha + Theta)

Theta/

Alpha

Accuracy 60.28 53.13 69.89 55.50 56.44 49.10

Std (±) 8.16 10.12 6.48 8.51 8.36 5.92

Results are presented in percentage.

A Friedman test was carried out to examine changes in
heart rate under the four conditions. The Friedman test on the
heart rate information revealed a significant difference among
the scenarios [χ2(n = 16) = 15.60, p = 0.001]. Post-hoc
tests using multiple two-sided Wilcoxon signed-rank test with
Bonferroni correction applied showed that the participants’ heart
rate in High-High conditions increased statistically significant
(p < 0.0083) compared to the heart rate in Low-Low (p =

0.003), while in the other conditions there were no significant
differences between the Low-Low and Low-High (p = 0.039),
the Low-Low and High-Low (p = 0.408), the High-Low and
Low-High (p = 0.079), the High-High and Low-High (p =

0.023), or the High-High and High-Low (p = 0.01) conditions.
These results showed that in experimental conditions with low
quality communication (e.g., High-High) the participants’ heart
rate increased significantly, which also suggest an increase in
cognitive workload as a result.

These two results (ATWIT and HR) validate the assumption
that the different cognitive demands are affected due to the
experimental conditions. In addition, high delay and high
dropout exhibited the most significant increase in ATWIT score
and heart rate, which suggests that this experimental condition
induced the highest cognitive demand in the experiment. On
the other hand, experimental conditions with low delay and low
dropout exhibited the lowest ATWIT scores and lowest heart
rate, which suggest that it produced the least cognitive demand
in the experiment.

3.2. Evaluation of EEG Indicators
Based on the indicators identified in the literature, this
study explores the classification performance using only three
frequency bands: Theta (4–7.5 Hz), Alpha (8–12 Hz), and
Beta (13–35 Hz).

3.2.1. Reference Values
First, the indicators are investigated separately to obtain a
reference performance value. Table 3 presents the grand average
results from the classification task using each indicator. The
results represent the classification accuracy (in percentage %)
and standard deviation using each indicator separately. Each
indicator was obtained from each channel. The highest overall
accuracy (75.99 ± 6.48%) was achieved using the Beta band,
while the lowest accuracy (49.10±5.92) was obtained with Alpha
band only.
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3.2.2. Feature Selection Evaluation
Second, using a feature selection method based on mutual
information, to identify any kind of statistical dependency
between variables, a subset of indicators was obtained. In this
step, only the power bands (Theta, Alpha, Beta) were used in the
feature selection process to avoid introducing correlated variables
into the subset of indicators. Figure 6 presents the correlation
analysis of all the indicators. In this figure, it is possible to
observe that all the ratios (e.g., theta/beta) are highly correlated
with the power bands (e.g., beta, alpha). Therefore, removing
these variables from the analysis will make the feature selection
more efficient.

The objective of feature selection is to find a good
representation of the data, improve estimators’ performance
by reducing the dimensionality of the data and eliminating
redundant and irrelevant data from each participant’s data (Rojas
et al., 2019b). After applying joint mutual information (JMI), the
features were ranked according to the their relevance to the class
label. This process returned 16 ranks (one rank per participant),
each rank contains the ranking of 42 features (e.g., 3 indicators *
14 channels = 42 features). These ranks represent the importance
of each indicator and channel with respect to the class label from
each participant. However, a limitation of this process is that
each rank is different from one another, which complicates direct
comparisons between participants.

In order to obtain a subset of common features that potentially
describe most of the data for all the participants, the frequency

FIGURE 6 | Strength and direction of correlations among the EEG features.

of appearances and ranking position were considered for each
feature and for each participant. To achieve that, a new list
containing the top 10 features from each rank were chosen (160
features in total). Then, the number of appearances of each
feature in the list was counted and a weight [from 1 (most
important) to 0.1 (least important)] for its position in each rank
was given. For example, a feature (Theta in T8) appeared two
times in the list (i.e., this feature was in the top 10 features
only in two participants), in the first rank it appeared in the
first position (weight = 1.0) and in the second rank in the
seventh position (weight = 0.4); thus, its total value is 1.4 (please
refer to Figure 7).

The complete results obtained during the weight process
mentioned above is presented in Figure 7. Beta band in channel
T7 (BetaT7) exhibited the highest value from this list, it suggests
that this feature is the most important feature in our sample
population. On the other hand, features from channels O1, FC6,
and AF4 in the Theta and Alpha bands showed the lowest
value from this list, which suggest that these features are less
important among the 16 ranks. Based on this frequency of
appearance, a common set of features can be obtained across
the participants, which represents the most relevant features in
the data set.

3.2.3. Classification Results
Using both ranks, after feature selection (FS) and after application
of weights (FS + weights), classification was carried out to
obtain performance results and compare these with the obtained
reference values (refer to section 3.2.1). Figure 8 presents the
classification results of both methods. FS presented the highest
accuracy (89.84 ± 5.60%) using the top 40 features (in total, 42
features), while the FS + weights method presented slightly lower
accuracy (89.43 ± 5.47%) using the same number of features.
It is to note, that using the top 10 features from both methods
produced a higher accuracy (77.57 ± 8.39% for FS, and 70.60
± 8.98% for FS + weights) than the highest reference accuracy
value (69.89 ± 6.48) using any of the frequency bands and ratios
separately, which was achieved using the 14 channels in the
Beta band. Overall, both methods showed comparable results,
which suggests that the group of common features across our
sample population can be used as indicators of cognitive load in
our experiment.

FIGURE 7 | Frequency of appearance of each indicator. Each indicator was weighted according to its ranking (e.g., rank = 1 weight = 1, rank = 2 weight = 0.9) and

number of occurrences in the list.
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FIGURE 8 | Classification results using the features ranked after the feature

selection (using JMI) process (in orange) and after the feature selection +

weights process (in blue).

However, in order to identify the appropriate number of
features to be used as indicators of workload in our experiment,
a stopping criterion was introduced. This criterion is based on
comparing consecutive classification results using two-sample
t-tests. Using this method, the searching process is stopped
when three consecutive non-statistically significant results were
obtained. The final number of features is the one that produced
the first non-statistically significant result. After this step, the
appropriate number of features is 18 for FS (85.44 ± 6.70%) and
19 for FS + weights (82.83 ± 8.01%). These top 19 features are
presented in Table 4.

3.2.4. Activated Cortical Areas
The majority of features from the identified subset (top 19
features) are from the Beta band and the frontal area. Figure 9
presents the cortical location of each feature with respect to
their frequency band (Theta, Alpha, Beta). Three channels (F4,
F7, FC5) from the frontal area, one channel from the temporal
area (T7) and one channel (P7) from the parietal area were
obtained in the Theta band. In the Alpha band seven channels
were identified, the same three channels in the frontal area (F4,
F7, FC5), bilateral activation in the temporal area (T7, T8), and
one channel (P7) from the parietal area. The Beta band exhibited
the largest number of channel within the top 19 features in
four cortical locations, in the frontal (F7, FC5, F8), bilateral
activation in both the temporal (P7, P8) and parietal (P7, P8)
cortex, and in the occipital area (O1). Another interesting finding
is that most of the features in the top 19 corresponded to the
left hemisphere.

3.2.5. Evaluation of the Weight Process
Two more filter feature selection methods were used to evaluate
the weight process to capture the most common features across
the sample population. These two techniques are Information
Gain (InfoGain) and student’s t-test, their criteria to rank

TABLE 4 | Top 19 features after feature selection and weight procedure

(FS + weights).

Ranking Channel Band Ranking Channel Band

1 T7 Beta 11 FC5 Theta

2 P7 Alpha 12 F4 Theta

3 P7 Theta 13 F7 Beta

4 T8 Beta 14 FC5 Beta

5 F8 Beta 15 P7 Beta

6 O1 Beta 16 F7 Theta

7 P8 Beta 17 T8 Alpha

8 F4 Alpha 18 T7 Alpha

9 FC5 Alpha 19 T7 Theta

10 F7 Alpha

each feature are entropy and statistical based (Novaković,
2016), respectively. These two feature selection techniques were
implemented and a group of 16 different ranks (i.e., one rank
per subject) was obtained from each technique. Then, the weight
process was applied to each technique separately using the top 10
features from each participant. Please refer to section 3.2.2 for a
more detailed description.

Figure 10 presents the classification results of both techniques
using LDA. It was expected that each technique will produce
different rankings and different classification results. This is
mainly due to the different ranking strategies followed by
different techniques. In addition, similar to the JMI technique,
InfoGain and t-test lack a stopping criterion to obtain the
best feature subset; therefore, three consecutive non-statistically
significant results were used to stop the searching process for
each method. For the InfoGain method, the stopping criterion
led to 16 features (85.06 ± 6.04%) and 19 for InfoGain +
weights (83.36 ± 6.63%). For the t-test method the stopping
criterion led to 17 features (84.40 ± 6.74%) and 27 for t-test +
weights (85.77± 5.38%).

These results highlight that the weight process captures
the most common features among the sample population.
Introducing the weight process after feature selection allows the
classifier tomaintain a comparable performance than the reliance
on individual rankings for each participant. Therefore, the use
of common features not only facilitates making comparisons
across subjects but also reduces the complexity of the analysis by
focusing on a smaller set of features.

3.3. Sensitivity of EEG Indicators
In order to examine the sensitivity of the proposed set of
EEG indicators to differentiate between the four experimental
conditions (i.e., four levels of workload), a test for differences
was conducted using the Friedman Test. This test was used with
the following research hypothesis Ho: There are no significant
differences between the mean EEG values among the experimental
conditions. In other words, the distribution of EEG values is
independent of the experimental conditions (the EEG indicators
do not capture a difference in workload). Figure 11 presents the
results of this test.
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FIGURE 9 | Cortical locations of the top 19 features in the three bands explored in this study.

FIGURE 10 | Classification results using Information Gain (left panel) and t-test (right panel).

The results exhibited a statistically significant difference in
EEG values depending on the experimental conditions [χ2(n =

16) = 31.27, p = 0.000]. Post-hoc tests using multiple two-sided
Wilcoxon signed-rank tests were performed with Bonferroni
correction applied (p < 0.0083). There were no significant
differences between the Low-Low and Low-High (p = 0.030), the
Low-Low and High-Low (p = 0.01), or the High-Low and Low-
High (p = 0.026) conditions. However, this statistical test showed
a significant difference in the Low-Low and High-High (p =

0.000), the High-High and Low-High (p = 0.005), and the High-
High and High-Low (p = 0.000) conditions. This result suggests
that using the proposed set of EEG features presents higher
sensitivity to measure cognitive load during our experiment, than
the ATWIT questionnaire and the heart rate.

4. DISCUSSIONS

The primary goal of the current investigation was to examine
different EEG indicators for the objective assessment of cognitive
workload. An experiment was designed to modulate the
participants’ perceived workload. EEG indicators of spectral
powers at different cortical locations (based on theta, alpha, and
beta bands) were compared and investigated. Using a feature

selection technique, the most important features were obtained
for each subject, then a weight procedure was applied to identify
a set of common features across our sample population. The
identified set of features represents a group of possible EEG
indicators for the objective assessment of cognitive workload.

The experimental conditions and overall assumption of the
experiment were validated. The research hypothesis about the
use of delay and dropout to modulate the participant’s perceived
workload was confirmed by using statistical analysis performed
on both the averaged ATWIT response and heart rate (HR)
data. The overall trend exhibited that the participants faced a
significantly higher (p < 0.0083) cognitive workload during the
high delay and high dropout (High-High), a similar trend was
also observed using the EEG indicators. This finding suggests
that the increase of participants’ cognitive workload in scenarios
with high delay and high dropout reflects the difficulty in
understanding and identifying new information after the loss
of an already-familiar scenario. This is in line with previous
studies on the relationship between information quality and
workload. For instance, in an experiment to study the effect of
audio communication latency on cognitive workload (Krausman,
2013), it was found that increased audio communication latency
led to increased cognitive workload and lower task accuracy.
Similarly, increased workload has been reported in participants
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FIGURE 11 | The bar graph represents the mean and standard deviation of

the proposed set of EEG features. The Wilcoxon test showed a significant

increase of workload the Low-Low and High-High (p = 0.000), the High-High

and Low-High (p = 0.005), and the High-High and High-Low (p = 0.000)

conditions. ∗p < 0.0083.

after the use of automation in teleoperated systems, where
participants face new information after the use of automation to
complete a task (Chen et al., 2017).

The weighting process after feature selection (FS + weight)
helped obtain a common set of features across our sample
population. In the machine learning and the data mining
literature, feature selection is an important preprocessing step
in regression and classification problems (Vergara and Estévez,
2014). An advantage of using feature selection in comparison
with other dimensionality reduction methods (e.g., PCA) is that
feature selection does not alter or transform the data; thus,
attempting to understand the underlying process that produced
a given classification result can be achieved (Bennasar et al.,
2015). In our experiment, although feature selection was used to
determine the most important features for each subject and also
to identify the irrelevant features to be discarded, it produced
sixteen different rankings that made it difficult to deduce a
common set of features. Thus, the weighting process helped
determine a common set of features by using the individual
rankings of each feature from each participant. The resulting set
(Table 4) represents the most frequent features in the complete
feature set. It is worth mentioning that by using the ranked
features according to their relevance to the class label, the weight
process retains useful intrinsic groups of interdependent features,
which helped avoid redundant and irrelevant features in the FS
process. This common set of features (top 19) represents less than
half (∼ 45%) of the total number of features.

The common set of features showed objective confirmation of
the different levels of perceived workload during the classification
task. The classification task exhibited a much better performance
(82.23%) using the top-19 features than any of the reference
values (Table 3) using each indicator separately. In addition, the
obtained feature set represents a combination of well-known

EEG power bands that have been linked to cognitive workload as
identified in our literature review. These frequency bands (theta,
alpha, beta) are generally associated with a different dimension
of workload (e.g., attention, vigilance, or mental fatigue). For
instance, theta band has been successfully used to study mental
fatigue and alertness (Gevins et al., 1995; Kamzanova et al.,
2014), alpha band has been employed to assess mental vigilance,
attention and alertness (Antonenko et al., 2010; Borghini et al.,
2012; MacLean et al., 2012), while beta band has been used
to study visual attention or short-term memory (Tallon-Baudry
et al., 1999; Wróbel, 2000; Palva et al., 2011). Therefore, using a
combination multiple frequency bands will make the assessment
of workload more robust to other intrinsic cognitive processes
that are carried out simultaneously. This is particular important,
since our experiment reflects a multitasking environment where
different dimensions are present at the same time, e.g., navigation
while maintaining orientation, or planning while maintaining
communication distance with the alpha vehicle.

The identified feature set also helped identify the most
relevant cortical areas associated with the assessment of cognitive
workload in our experimental task. The majority of identified
channels are from the frontal, temporal, and parietal regions,
cortical areas that have been associated to cognitive workload
in previous studies. For instance, increase in theta band
power over the frontal cortex has been associated with an
increase in task difficulty and use of more working memory
resources (Parasuraman and Caggiano, 2002). Suppression of
Alpha power has been observed in the parietal and occipital
areas during increase of mental workload (Mazher et al., 2017;
Puma et al., 2018). Increase in Beta power over the parietal
and occipital cortical regions has been observed during visual
working memory tasks (Mapelli and Özkurt, 2019). In addition,
bilateral activation was identified in the beta band. These
activations were found in the frontal (F7 and F8), temporal (T7
and T8), and parietal (P7 and P8) areas. While in the alpha band,
a bilateral activation was only found in temporal areas (T7 and
T8). The observed bilateral activation in different cortical areas
suggests that there is is no single brain region or hemisphere
that solely responds to mental workload. In addition, as many
other cognitive tasks, the brain functions as a system rather than
separated brain areas working independently (Rojas et al., 2016).

We acknowledge that this study presents some limitations that
should be addressed in our future research. The use of a small
number of electrodes to monitor the cortical activity restricts
our ability to make generalizations to other cerebral regions
from the proposed set of EEG features. Advantages of using the
Emotive EPOC is that it is less uncomfortable to be worn for
longer periods of time and less unpleasant for participants since it
uses dry electrodes. However, in future research a larger number
of electrodes to record activity in more areas of the cerebral
cortex should be considered. Another limitation of this study
is that each sensor modality was analyzed separately to study
workload. Debie et al. (2019) highlighted the disadvantages of
using a single sensor modality to capture changes in cognitive
workload. For instance, a given measure may respond to a
particular task (e.g., attention or engagement) but may fail to
capture workload change in other tasks (e.g., working memory or
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mental fatigue). Thus, combining multiple sensors can measure
different aspects of workload and can potentially complement
one another to provide a better assessment of cognitive workload
in multitasking situations.

Finally, the results of this study expand earlier findings
from previous research of cognitive workload assessment
using EEG. However, direct comparisons with other studies
are difficult because of the use of different experimental
conditions, EEG acquisition system, sampled population
and with different demographics, validation methods, and
classification models (Rojas et al., 2017a). Therefore, the
contributions of this study can be summarized as follows: (1) it
offers an exploratory study that aims to compare different EEG
indicators identified in the literature for the objective assessment
of cognitive workload; (2) it introduces a framework to extend
the feature selection process to identify the most important
features among the sample population; and (3) it presents a
group of features (EEG power bands and cortical regions) as
possible indicators for the objective assessment of cognitive
workload in multitasking environments.

5. CONCLUSIONS

This study investigated different EEG power bands to identify a
set of indicators that can be used for the objective assessment of
cognitive workload. Results showed that our experimental study
was valid at increasing mental workload in the participants as
measured by three metrics (ATWIT, HR, and EEG). The use of
a weighting process after feature selection (FS + weights) helped
identify common features across all participants. In addition, a set
of indicators (including EEG power bands and cortical regions)
was identified as objective metric of workload in our multitasking
environment. The proposed set of indicators exhibited higher
sensitivity to various levels of cognitive workload than the

subjective metric (ATWIT) and the physiological measure
(heart rate). Finally, future research will adopt the proposed
EEG indicators to trigger adaptive automation to maintain
performance in human-swarm teaming.
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Human intelligence is constituted by a multitude of cognitive functions activated either

directly or indirectly by external stimuli of various kinds. Computational approaches

to the cognitive sciences and to neuroscience are partly premised on the idea that

computational simulations of such cognitive functions and brain operations suspected

to correspond to them can help to further uncover knowledge about those functions

and operations, specifically, how they might work together. These approaches are also

partly premised on the idea that empirical neuroscience research, whether following on

from such a simulation (as indeed simulation and empirical research are complementary)

or otherwise, could help us build better artificially intelligent systems. This is based on

the assumption that principles by which the brain seemingly operate, to the extent that

it can be understood as computational, should at least be tested as principles for the

operation of artificial systems. This paper explores some of the principles of the brain

that seem to be responsible for its autonomous, problem-adaptive nature. The brain

operating system (BrainOS) explicated here is an introduction to ongoing work aiming

to create a robust, integrated model, combining the connectionist paradigm underlying

neural networks and the symbolic paradigm underlying much else of AI. BrainOS is an

automatic approach that selects the most appropriate model based on the (a) input at

hand, (b) prior experience (a history of results of prior problem solving attempts), and (c)

world knowledge (represented in the symbolic way and used as a means to explain its

approach). It is able to accept diverse and mixed input data types, process histories and

objectives, extract knowledge and infer a situational context. BrainOS is designed to be

efficient through its ability to not only choose the most suitable learning model but to

effectively calibrate it based on the task at hand.

Keywords: human brain, artificial intelligence, architecture design, hyperparameters, automatic machine learning,

BrainOS
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1. INTRODUCTION

As humans are constantly surrounded by data, their survival
depends on their capability to understand and evaluate their
observations of the external environment. They formulate and
extract knowledge from received information by transforming
the data into specific patterns and models. To this end, a number
of biological processes and aspects of the brain are involved
(Hernandez et al., 2010). Once established, brain agents create
and refer to these models with each observation.

Both researchers and theorists specializing in neuroscience
agree that these brain agents support the task of analyzing
external data, processing them and making decisions using
fundamental units of thought. Howard and Hussain (2018)
describe this process of the fundamental code unit as cognitive
minimums of thought where n to N information exchange is
expressed in an assembly-like language at the neuronal cellular
level. The Fundamental Code Unit addresses the question of
whether input signals feed to the brain in their analogical
form or if they are transformed beforehand. Bierdman’s theory
of components recognition and Yin’s review of theories of
geometry of perception supports the FCU model where an
infinite combination of patterns are created from a fixed number
of components (Yin, 2008). The conclusions regarding brain
processes derived from the field of neuroscience are applied
in parallel to the field of artificial intelligence (AI) (Wang
et al., 2016). The finest example of this is Machine Learning
(ML), which is inspired by the brain’s methods of processing
external signals (input data) (Wang et al., 2016). ML can mimic
human brain behavior (Louridas and Ebert, 2016) by providing
a set of appropriate and intelligent techniques to perform
data analysis (Howard and Lieberman, 2014). ML automates
data manipulation by extracting sophisticated analytical models.
Within this branch of AI, systems are capable of learning
from data and distributions, distinguishing patterns and making
autonomous decisions, which considerably decreases the need for
human intervention.

The appeal of ML is considerably rising due to factors, such as
the growing demands of data mining tools (Bredeche et al., 2006).
Indeed, in a world replete with data, intelligent computation is
gainful in terms of expense and performance (Wang and Yan,
2015). Automated data handling has yielded valuable systems
able to solve increasingly complex problems and provide more
accurate outcomes.

The three big challenges that ML still face are (1) that
it requires a great deal of training data and is domain-
dependent, (2) it can produce inconsistent results for different
types of training or parameter tweaking, and (3) it produces
results that may be difficult to interpret when such black-
box algorithms are used. Here, we propose a novel automatic
approach to address such shortcomings in a multidisciplinary
approach that aims to bridge the gap between statistical Natural
Language Processing (NLP) (Cambria et al., 2014) and the many
other disciplines necessary for understanding human language,
such as linguistics, common sense reasoning and computing.
Our proposed approach, “Brain OS” is an intelligent adaptive
system that combines input data types, processes history and

objectives, researches knowledge and situational context to
determine what is the most appropriate mathematical model,
chooses the most appropriate computing infrastructure on which
to perform learning, and proposes the best solution for a
given problem. BrainOS has the capability to capture data
on different input channels, perform data enhancement, use
existing AI models, create others and fine-tune, validate and
combine models to create more powerful collection of models.
To guarantee efficient processing, BrainOS can automatically
calibrate the most suitable mathematical model and choose the
most appropriate computing learning tool based on the task to
handle. Thus, it arrives at “optimal” or pre-optimal solutions.
BrainOS leverages both symbolic and sub-symbolic methods
as it uses models, such as semantic networks and conceptual
dependency representations to encode meaning but it also uses
deep neural networks and multiple kernel learning to infer
syntactic patterns from data. The architecture of BrainOS uses
concepts from the critic-selector model of mind and from brain
pathology treatment approaches.

Herein, a thorough evaluation of the state of the art of
Automatic ML is discussed, and specifically the proposed
automatic BrainOS is presented in detail. The advantages of
BrainOS over state of the art models are enumerated, and
an empirical study is presented in order to validate the
proposed framework.

2. STATE-OF-THE-ART: AUTOMATIC ML
FRAMEWORKS

ML has several models, which apply one or more techniques to
one or more applications. ML models include support vector
machine (SVM) (Mountrakis et al., 2011), bayesian networks
(BNs) (Bielza and Larranaga, 2014), deep learning (DL) (Bengio
et al., 2013), decision trees (DTs) (Kotsiantis, 2013), clustering
(Saxena et al., 2017), artificial neural networks (ANNs) (Dias
et al., 2004), etc.

Each ML model is an intelligent computing mean that is
trained to perform a well-defined task according to a set of
observations. These intelligent models require a set of related
data to extract knowledge about the problem at hand. The
construction of these data is a crucial factor by which the
performance of themodel is judged. Themore the data, the better
the performance becomes.

All ML models undergo three principle steps: (1) receiving
input data (signals), (2) processing these data, and finally (3)
deriving outputs according to the handled task. To check if
the system achieves a good learning level, an evaluation metric
is computed. It is then tested on a number of patterns not
previously observed and is then judged whether it has acquired
a good generalization capability or not.

For any given application, there are a number of specific
models that can perform better than the others. The choice of the
best model for a well-determined task does not obey to any rule.
Rather, there are only instructions on how these models proceed.
Thus, there is no way to understand how to choose the best model
for a problem.
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FIGURE 1 | H2O’s standard architecture. H2O is designed mainly on Java language with some blocks based on Python, JavaScript, R, and Flow. The software stack

is composed of the top and bottom sections, divided by the network cloud. The top part highlights some of REST API customers, while the bottom illustrates the

constituents undergoing the Java virtual machine (image courtesy of H2O.ai).

While classic ML focuses on developing new models and
techniques without regard to the resulting increase in complexity,
automatic ML (AML), affirms that these tools can be employed
in an easier manner. AML platforms computerize the majority
of ML tasks in less time and implementation costs. Therefore,
automatic ML has become a hot topic not only for industrial
users, but also for academic purposes.

Fine-tuning or optimization is a key component to provide
suitable models Hutter et al. (2019). AML framework addresses
issues, such as the best ML model for different problems,
model tuning or hyper-parameters optimization, etc. (Yao et al.,
2019). Simple classical methods, Bayesian optimization and
metaheuristics are among the most used tools of optimization
in AML.

To develop such automated frameworks, researchers
have developed and proposed several solutions e.g., H2O,
Google Cloud AutoML, and Auto-sklearn depicted in
Figures 1–3, respectively. These frameworks have certainly
solved several problems but are still far from the strategy
behind the human brain. What can be noticed throughout

the enumerated techniques is that developers are using
sophisticated ML models without reasoning; hence, no
explainable AI.

• H2O

H2O (Landry, 2018) is an open source machine learning
platform for the enterprise. The platform contains a module
that employs a set of well-defined algorithms to form
a pipeline. It provides a specific graphical interface to
set the appropriate model, the stopping criteria and the
training dataset.

It supports several linear and complex ML models, such as
Deep Neural Networks (DNN), gradient boosting machines,
etc. It also supports the Cartesian and random grid searches
optimization techniques. It is designed based mainly on Java
developing language with some blocks on Python, Javascript,
R and Flow. The standard H2O architecture is visualized in
Figure 1 (Landry, 2018).

The H2O software stack depicted in Figure 1 is composed
of numerous components that can be divided into two parts
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FIGURE 2 | Google Cloud AutoML’s standard architecture. Cloud AML offers a simple interface for inexperienced users to exploit models according to their needs.

Using DNNs and genetic algorithms, Cloud AutoML trains machine learning models, deploys models based on user data, and stores trained data in cloud storage.

The framework generates predictions with a REST API (image courtesy of Google Cloud).

FIGURE 3 | Auto-sklearns’s standard architecture. Auto-sklearn employs Bayesian fine-tuning for hyperparameter settings. The program utilizes 15 classification

approaches, 14 pre-processing techniques, and four feature engineering methods.

(top and bottom). The top part highlights some of REST API
customers, while the bottom part illustrates the constituents
undergoing the Java virtual machine.

In spite of its ease of use especially for ML beginners and
non-specialists, H2O still suffers from a lack of background
in data science. Another drawback concerns the huge amount
of employed resources. In fact, failures during complex
executions are very likely to occur.

• Google’s Cloud AutoML

Cloud AutoML (Vinson, 2018) presents a series of
products permitting inexperienced users to exploit well-
qualified models obeying their business queries. It employs
sophisticated capabilities of Google, such as transfer learning.
It provides users with a simple interface so that they are able

to learn, assess, improve, and unfold techniques according
to their data. The products offered by this framework
include AutoML Vision and video-intelligence, AutoML
natural language and translation and AutoML Tables, etc.
The standard Cloud AutoML’s architecture is visualized in
Figure 2 (Vinson, 2018).

This framework is mainly based on deep neural networks
(DNN) and genetic algorithms. It also asks users to respect a
limit of training data size. For AutoML, tables data size should
not surpass 100 Go.

• Auto-sklearn

Auto-sklearn, proposed by Feurer et al. (2015), employs
Bayesian fine-tuning for hyperparameter settings. It is an
improved version of the scikit-learn system (a preceding
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automatic ML). The standard Auto-sklearn’s architecture is
visualized in Figure 3.

There are 15 classification approaches, 14 pre-processing
techniques and four feature engineering methods.
Although its structure is advanced, this toolkit’s package
does not support natural language inputs. Therefore, it
can not distinguish categorical data from digital data
(Feurer et al., 2015).

Although the majority of preexisting ML frameworks have
efficiently solved several problems, such as object recognition and
image understanding, they are still far from simulating human
brain processes. ML has attempted to mimic the brain as a
model for computation, for instance neural networks algorithms,
however ML is still not able to perform as well as the human
brain. We propose a novel automatic ML framework called
“BrainOS.” The proposed system architecture and operation is
biologically inspired by neuron cells, designed at a very low level
of abstraction.

3. BRAINOS: A NOVEL AUTOMATIC ML
FRAMEWORK

Attracted by the strength of the human brain’s ability to reason
and analyze objects and ideas, we propose a novel automatic
ML framework called “BrainOS.” The system’s architecture and
operation is inspired by the behavior of neuronal cells.

Since existing ML models have many challenges related to
over-sized task-dependent training data and uninterpretable
results, BrainOS addresses these shortcomings. Indeed, it
provides a multidisciplinary approach able to deal with natural
language processing (NLP) so that the gap between statistical
NLP and many other disciplines necessary for understanding

human language is minimized. Linguistics, commonsense
reasoning, and affective computing are essential to analyze
the human language. BrainOS involves symbolic as well as
sub-symbolic techniques by employing models like semantic
networks and conceptual dependency representations to encode
meaning. Furthermore, it uses DNNs to deduce syntactic aspects
from data.

3.1. High-Level BrainOS Model
Thanks to its anthropomorphic and data-adaptive power,
BrainOS can be of great use in various types of applications,
because it has the capability to react differently according to the
user’s profile and preferences. Data adaptation signifies the ability
to pick out themost adequatemathematical model in terms of the
received input data.

The high-level BrainOS architecture is presented in Figure 4.
The Input Data Layer is composed of data points coming from
various source channels (sensors, videos, images, etc). When
fed through this layer, the data undergo numerous stages of
data retrieval and handling. For example, input points can
be identified, typified, and pre-processed. Sampling techniques
can also be employed at this level. The Data Processing Layer
identifies a number of intelligent approaches according to the
following stages:

• Critic-Selector Mechanism: combines input data types,
processes history and objectives, researches knowledge and
situational context to determine the most appropriate ML
model for existing data and how the system should manage
the processing resources.

• Data handling using ML pipelines: A series of vertical and
horizontal pipelines to spread out the data can help prepare
the data more quickly and efficiently.

FIGURE 4 | High-level Brain OS architecture. Input data information is received from various mixed input data channels. Real world context is retrieved from the

meta-world container. The objective presents the aim of the processing problem and the desired outputs. The most appropriate model is then created and stored in

the model repository for future use or chosen from a preexisting model within the repository. The output data contains the results and findings achieved after

undergoing data processing.
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FIGURE 5 | Detailed BrainOS architecture.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2020 | Volume 14 | Article 16121

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Howard et al. BrainOS

• Model training and/or transfer learning: Not isolating
algorithms and utilizing knowledge from a previous task to
solve related ones increases efficiency and accuracy.

The Output Data Layer contains the results and the findings
achieved after undergoing the Data Processing Layer.

BrainOS is adaptive to various data channels. It employs
several data processing techniques and model selector
components. Similar to the human brain, BrainOS uses an
archive of data, knowledge and ML models. BrainOS is boosted
by a complex qualifier-orchestrator meta-component. The
critic-model selector is located within the orchestrator to give
an answer to the question “What is the best tool to chose for a
given problem?”.

Based on the human brain, which uses different neuronal
areas to process input data, depending on the receptor type, the
proposed infrastructure is founded on an ensemble of resources
that are managed by the critic-selector (turned on and off), much
in the manner the biological mind operates.

3.2. BrainOS Fundamental Architecture
The key concept of BrainOS is its adaptability to the problem at
hand. It selects the appropriate models for the nature of the input
data. Figure 5 visualizes a more thorough overview about the
architecture of the whole infrastructure. As shown in Figure 5,
BrainOS topology is characterized by a number of components.
In the next section, every component is detailed.

3.3. Problem Formalization Component
Problem formalization is the principle entry point of the system.
It houses three sub-components: data, meta-world information,
and task objective. These three components contain all the
necessary related information associated with the data and
the task to be processed. The input data is held within the
data container while general and real world context data is
held in the meta-world container. The task objective represents
the primary aim of the problem to be processed and the
desired outputs.

For consistency, the input data points should comply to a
specific schema. This can be done using an API to connect
BrainOS to other ML packages to maintain the task’s integrity
and consistency. Figure 6 presents an example of the problem
formalization component.

3.4. The Critic Component
The critic (qualifier) component utilizes the problem formulation
and the BrainOS history (meta-world knowledge) to enhance
the dataset fed to the system. It improves the data with
antedate datasets, which complement the current input features
in a module called the data enhancer. Furthermore, it applies
qualifications, imposes constraints and builds requirements to
achieve an intermediate. Figure 7 shows the architecture of the
critic component.

3.5. History Database
Proposing an adaptive learning system in a non-static space
looks like the human’s reasoning aspect. In fact, humans exploit
their knowledge and experiences to find solutions to any kind

FIGURE 6 | Problem formalization component. The problem formalization

component includes mixed input data, general real-world data context

contained within the meta-world container, and the major objective of the

processing problem, as well as the desired outcomes.

FIGURE 7 | The qualifier (critic) component. The qualifier component

enhances the datasets fed to the system and applies qualifications, imposes

constraints, and builds requirements to achieve an intermediate.

of problem. Inspired by this extraordinary capability, BrainOS
blends at least two memory sub-components: world knowledge
and history. Figure 8 shows the architecture of the history
database component.
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FIGURE 8 | History database component. The history database component is comprised of world knowledge as well as the Brain OS history. The world knowledge

sub-component contains the domain knowledge package of crawling NLP and ontologies as well as research experience comprised of stored models and more

abstract research knowledge.

1. The BrainOS history: includes the experience acquired over
the system life cycle in terms of encountered data sets,
previously employed models and achieved outcomes. Such
a quick memory access resource is of great value especially
in situations where the platform encounters problems already
resolved. In this case, the system uses a “reflex response.”

2. The world knowledge: holds the “common sense” world
knowledge, overlaying from general to domain-specific
concepts. The domain knowledge package contains numerous
fields within which the infrastructure requires a knowledge
expert. The integrated research experience is comprised of
models and inferences drawn from real world knowledge
encompassing the following two components:

• Stored models: include non-constrained previously
discovered resources.

• More abstract research knowledge: a big information
field. It can be carried out on specific problem
formulations, distinct problem solutions, or
precise datasets.

3.6. The Planner Component
The Planner is based essentially on the processed problem and

the history of used models. It is able to set the most adequate

processing flow for the tackled problem according to the world

knowledge, objective, and the similarity of the present task with

those treated in the past.
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FIGURE 9 | The planner architecture. The planner sets the most adequate

processing flow for the problem according to world knowledge. Within the

planner, special heuristic search algorithms can be run for the detection of the

proper node sequences for a given task.

As an example, for a problem of intent extraction from an
image, the planner might prescribe the following steps:

• Run captioning algorithms on the image to obtain a
narrativization of the image.

• Run object detection and activity recognition on the image.
• Run an algorithm to obtain an ontology for the previously

extracted concepts.
• Infer intent using all the previously obtained entities

and ontologies.

The planner plays the role of large bidirectional graph
knowledge within which special heuristic search algorithms
can be run for the detection of the proper node sequences
for a given task. The architecture of the planner is visualized
in Figure 9.

3.7. The Parallel Executor
The parallel executor plays the role of task scheduler.
This component builds models, stores solution modules,
and selects infrastructure. It manages when, what and
how threads will be executed once they come from
the selector.

The parallel executor triggers a number of threads for
convenient structures. Based on the models provided by the
selector, the executor creates new models or combines existing
ones. It partitions the corresponding tasks in parallel threads
processing simultaneously. The architecture of the parallel
executor is visualized in Figure 10.

3.8. The Module Scheduler
The module scheduler receives threads sent by the parallel
executor and plans a schedule for the solution’s execution. This
gives the ability of parallel execution using different resources.

3.9. The Selector Component
The Selector, the key component of BrainOS, picks out the
adequate model according to the Problem Formulation. With the
intention to provide suitable models, the Selector proceeds with
the following steps in parallel:

1. Searching for an adequate model in BrainOS history. If a good
fit is found, then the corresponding tool is optimized, trained,
and evaluated.

2. Else, searching in the Research Knowledge including
published papers and source codes. If a suitable candidate is
found, then it is tuned, learned, and evaluated.

3. Building a tool from scratch after type and topology are
defined. Thereafter, the model is tuned, trained, and assessed.

4. Performing an ensemble learning by combining several
models which may give better findings than a higher
accuracy model.

Therefore, before the Selector adopts the solution model for
the given Problem Formulation, it analyses whether there is a
combination of models that can outperform the selected model.
If the Selector finds such a model combination, then the model
solution is an ensemble ofmodels. The architecture of themodule
selector is visualized in Figure 11.

The selected ensemble of models, the problem formulation
and the given precision are then archived in the BrainOS history.
The four approaches are executed in parallel where every module
records the best model within the online model repository.

The criterion determines whether the retrieval is a fitted
enough approach according to the predetermined objectives, or
when one of the modules should be excluded from the search.
For each part of BrainOS processing plan, appropriate models are
selected. It is advisable to furnish different specialized Domain
Specific Instances of the selector, each one optimized for a
specific domain knowledge or problem context. For instance,
for classification purposes, SVM, K-means clustering, ANNs and
other tools can be employed. For time-dependant problems,
recurrent architectures, such as recurrent neural networks
(RNNs) (Chouikhi et al., 2017) are highly recommended.
To deal with feature engineering problems, independent
component analysis (ICA) (Henriquez and Kristjanpoller, 2019),
independent component analysis (PCA) (Kacha et al., 2020),
autoencoders (AEs) (Xu et al., 2016), matrix factorization, and
various forms of clustering.

Concerning optimization tasks, there are many useful
techniques, such as evolutionary computation (Chouikhi et al.,
2016), global optimization, naive optimization, etc.

3.10. The Orchestrator Component
From a high level of abstraction, the BrainOS plays the role
of an orchestrator-centered infrastructure as it monitors overall
models. It is arranged in a graph to pick out the processing
paths. The proposed framework seems to be powerful as it can
employ any approach from supervised to unsupervised learning,
reinforcement learning, search algorithms, or any combination
of those.

The orchestrator is a meta-component which merges input
data, processes history and objectives, and researches knowledge
and situational context to determine the most appropriate
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FIGURE 10 | The parallel executor. The parallel executor creates new models or combines existing ones. It partitions corresponding tasks in parallel threads

processing simultaneously.

ML model for a given problem formulation. The orchestrator
is comprised of four components: models selector, problem
qualifier, planner and parallel executor.

4. INTERPRETATIONS

Our evaluation of BrainOS focuses on the following questions:
Question 1 Flexibility and adaptability: Is BrainOS capable

enough to deal with a large variety of application areas?
Question 2 Fast convergence: When dealing with a certain

task, does BrainOS proceed quickly or it takes much time
to converge?

Question 3 Accuracy: How does BrainOS ensure the
achievement of accurate results?

4.1. Flexibility and Adaptability
One of the most important characteristics of the BrainOS
is its flexibility to handle several issues. BrainOS can be
adapted for a large array of existing problems, and also
extended for new approaches. Here, we provide just a small
subset of possible application areas for the BrainOS. It
can be applied to Anthropomorphism in Human/Machine
Interaction problems including personality emulation and
emotional intelligence. Moreover, BrainOS is relevant in dealing
with brain disease diagnostics and treatment (e.g., Alzheimer,

Parkinson Disease, etc.), automated manufacturing systems,
energy management, etc.

In fact, the inner memory modules, incubated within the
BrainOS architecture, store previous experiences and knowledge.
This gives our platform the possibility to solve any kind
of application, even those with a high-level of abstraction.
What specifies the proposed paradigm over the state of the
art, is the consistency with conceptual data, such as NLP.
Indeed, it addresses the shortcomings of the existing models
in solving many contextual tasks. Additionally, it provides
a plenty of ML models, each of which performs in a
specific field.

4.2. Fast Convergence
BrainOS can decrease the execution time. If a problem was
previously tackled and another problem in the same context
is about to feed to BrainOS, the model previously employed
can be directly found in the BrainOS history and used to solve
the new task. In this case, there is no need to proceed to the
selector and the subsequent components. Furthermore, one of
the common challenges of automatic ML systems is to quickly
decide how to choose the model that best fits the given task.
BrainOS encompasses a selector component which automatically
and directly chooses better models according to the task at
hand. This can be gainful in terms of run time. Furthermore,
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FIGURE 11 | The selector. The selector runs the history model selector, the researched-based builder, the model ensembler, and the model designer in parallel. The

history model selector searches for an adequate model in BrainOS history. The Research-Based Builder searches published papers and source code to find a suitable

model. The model ensembler combines several models, which may give better findings than a higher accuracy model. The model designer builds tools from scratch.

The model processor evaluates and trains the selected models.

BrainOS supports parallel execution by launching several threads
simultaneously through the parallel executor component. This
can save much time and hasten data processing.

4.3. Accuracy
BrainOS holds many components, which constitute levels
through which the data circulates. At the majority of these
levels, there is a storage of historical processing and models and
knowledge from world experience. Recording previous models
and their findings gives a priori indications about what model
to use. Furthermore, BrainOS provides several optimization
techniques as well as ML models capable of affording high
generalization capability. It is also possible to carry out an
ensemble learning by executing many models at the same time
and taking the best one.

4.4. Availability and Scalability
Data Processing Service is responsible for collecting data from
different input channels, decompressing it, and storing it for later
usage. There is a large number of data channels which can send
data to the BrainOS. Thus, on the Cloud, there is a need for high
scalability in recording this data, and there will also be a demand
to store a large amount of it. There are different technologies
which can support this, but the most suitable ones that can enable
the constant increase of inputs and high parallelism of incoming
data are those based on the Publish/Subscribe Paradigm. In
this specific case of data processing, the inputs will act as
data publishers while the BrainOS which processes the data, as
a subscriber.

5. EMPIRICAL RESULTS

Currently the implementation of AML models, such as Google’s
AI solution is likely to be susceptible to high latency,
computational cost and power consumption. This is due to
the huge data flow presented by larger data sets. The big
issue, which the industry will not overcome easily, is that
it is using digital arithmetic units and Boolean gates, which
themselves are a mismatch with how neurons and synapses work.
This represents, therefore, a poor approach to implementing
deep neural architectures. To continue solving more complex
problems, using increasingly more hardware is mandatory yet
unsustainable. The proposed BrainOS is under the way of
implementation. We are designing and testing some BrainOS
modules, and we will gather all the modules into one framework.
For example, we are working with a completely new architecture
for Deep Neural Networks (DNN), which we call Deep Cognitive
Neural Network (DCNN) (Howard et al., 2019).

5.1. Deep Cognitive Neural Network
(DCNN)
DCNN is one of the new ML models exhibiting characteristics
similar to the human brain, such as perception and reasoning
and is a much better fit for building Neural Networks. The
value of this new architecture is that big data analysis can
be run near real-time on small devices, such as mobile
phones and IoT devices. The proposed DCNN architecture,
shown in Figure 12, is comprised of one million neurons and
2.5 billion synapses. DCNN has a remarkable property of
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FIGURE 12 | DCNN architecture (1,000 hidden layers, 1 million neurons, and 2.5 billion synapses).

FIGURE 13 | Decision making speed: for very large scale DNN processing, simulation results of DCNN has shown 300× faster decision-making as compared to the

state-of-the-art Multi-Layer Perceptron (MLP) based deep neural network comprising one million neurons and 2.5 billion synapses.

concurrently acquiring highly energy-efficient implementation,
fast decision-making, and excellent generalization (long-term
learning). DCNN is highly energy-efficient in computing with

ultra-low energy requirements that can easily be implemented in
both hardware and software, as its neurons can be represented
by simple equations consisting of addition, subtraction, and
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FIGURE 14 | DCNN based optimized decision-making. (A) DCNN based real-time optimal adaptation. (B) Optimized dataset extraction: the data is first collected for

learning which helped GA based reasoning process to build optimized dataset.

division operations. A highly energy-efficient implementation
of shallow neural networks using complementary metal-oxide
semiconductor (CMOS) or Probabilistic CMOS (PCMOS)

technology has revealed that they are up to 300× times more
efficient in terms of energy performance product (EPP). The
substantial gain per-operation is proportional, which depends on
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the entire application, where large gains are expected with deep
structures for large scale processing.

5.2. DCNN Fast Decision-Making
DCNN was trained and tested using the state-of-the-art MNIST
dataset (LeCun et al., 1998). The decision making results are
depicted in Figure 13. It can be seen that for very large scale
processing, DCNN has shown up to 300× faster decision-making
as compared to the state-of-the-art Multi-Layer Perceptron
(MLP) based deep neural network.

5.3. DCNN Integration With the Reasoning
Algorithm
Another unique property of the developed DCNN is its quick
adaptability and convergence behavior when integrated with
reasoning algorithms to acquire human-like computing (both
perception and reasoning simultaneously) in real-time. Large
scale simulation reported up to 80× faster decision-making. The
simulated reasoning/optimization framework is demonstrated
in Figure 14. Figure 14A shows the DCNN based sensing and
adaptation procedure, trained on an optimized dataset produced
by the optimization framework. The optimization framework
is shown in Figure 14B, which is responsible for analysis
and reasoning. In this framework, the learning module assists
the reasoning process in deciding the best configurations to
be used in new upcoming situation. Whereas, the reasoning
module [e.g., genetic algorithm (GA)] uses learning module to
maximize the utility function. The proposed framework is used
for an optimized and autonomous power control in wireless
uplink systems. Simulation results demonstrated significant
performance improvement of DCNN + GA framework as
compared to DNN+GA, in terms of real-time decision making.
Specifically, in an offline optimization mode, DCNN took 0.28
s/decision as compared to DNN’s 2 min/decision. Nevertheless,
once the DCNN is trained on an optimized dataset, it performed
300× time faster than DNN as shown in Figure 14. More details
on the optimization framework and dataset are comprehensively
presented in Adeel et al. (2016).

We believe that our proposed DCNN is an optimal choice for
future ultra-low power and energy efficient devices capable of
handlingmassive arrays ofmathematical calculations in real-time
for both generalized learning and optimization applications. To
acquire more flexibility for dealing with a variety of applications,
we are currently implementing the DCNN regression model

along with the designing and testing of other BrainOS modules.
Lately, we will gather all the modules in one framework.

6. CONCLUSION

Our work was motivated both by the intellectual goal of creating
a model of human intelligence that better resembles how the
brain and cognition works as well as the related practical
goal of building a more effective machine learning approach;
an automatic-ML approach in particular. While ML and AI
approaches have generally been premised on duplicating brain
and cognitive functions, their varied suitability for different
kinds of problems means that no one model is adequate for all
problems. The way forward as many have supposed long ago,
is to figure out how to select an approach (which might be one
or a system of models), in an automatic, rational/explainable
manner, for any particular problem at hand, to elicit optimal
solutions to that problem. This means the selection and
calibration (i.e., parameter selection) of a system/architecture
of models. The BrainOS system described in this paper differs
from existing automatic ML tools in what it automates and
how it does so. It proceeds from existing taxonomies of
approaches in the automatic ML literature, to develop its own
architecture. Preliminary studies have convinced us that BrainOS
can deal with complex high-level problems, such as natural
language processing.
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Cognitive flexibility reflects the ability to switch quickly between tasks or stimulus
sets, which is an important feature of human intelligence. Researchers have confirmed
that this ability is related to the learners’ academic achievement, cognitive ability,
and creativity development. The number-letter switching task is an effective tool for
measuring cognitive flexibility. Previous studies have found that high flexibility individuals
perform better in rule-based tasks such as the Iowa Gambling Task. It is not clear
whether highly flexible learners have learning advantages when the rule tasks involve
probabilistic cues. Using an inter-individual differences approach, we examined whether
cognitive flexibility, as assessed by the number-letter task, is associated with the learning
process of a probabilistic rule task. The results showed that the high flexibility group
reached a higher level of rule acquisition, and the accuracy during the post-learning
stage was significantly higher than the low flexibility group. These findings demonstrate
that cognitive flexibility is associated with the performance after the rule acquisition
during the probabilistic rule task. Future research should explore the internal process of
learning differences between high and low flexibility learners by using other technologies
across multiple modes.

Keywords: cognitive flexibility, rule learning, probability, switch cost, reward

INTRODUCTION

As a core component of executive functioning (EF), cognitive flexibility has attracted much
attention in psychological research. Research from various fields has investigated the internal
mechanism underlying cognitive flexibility. Animal-based research has explored the underlying
mechanisms of this function from an anatomical neurology perspective (Darby et al., 2018).
Developmental psychologists focus on the training and growth of cognitive flexibility in children
and adolescents (Dajani and Uddin, 2015). Studies of patients with neurological impairment
also provide a window for exploring internal mechanisms (Lange et al., 2017). Despite extensive
attention and research, there is still no clear common definition of cognitive flexibility, which
can influence how this construct is operationalized in research (Müller et al., 2014). Based on the
understanding that cognitive flexibility refers to “the ability of switching between tasks and stimulus
sets in a quick and flexible manner” (Diamond, 2013; Müller et al., 2014), previous studies measured
cognitive flexibility using scales or cognitive tasks (e.g., Wisconsin Card Sorting Test, WCST;
task- switching paradigms) and researches have proved subjects with different levels of cognitive
flexibility have different behavioral and neural characteristics (Müller et al., 2014). Although there
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is yet no clear conclusion about the mechanisms underlying
cognitive flexibility, many researchers hold that cognitive
flexibility is a prerequisite for many psychological functions, and
it is one of the most important factors affecting intelligence and
creativity (Diamond, 2013). For children, cognitive flexibility
is a significant predictor of academic performance (Stad et al.,
2018). High cognitive flexibility learners, including children
(Lehto and Elorinne, 2003) and adults (Dong et al., 2016),
usually show better performance on learning task, such as the
Iowa Gambling task, which involves decision-making under
uncertainly and has partly common neural mechanisms with rule
learning (Hartstra et al., 2010).

Rule learning is based on stimulus patterns and feedback
of behavioral outcomes to discover the relationship between
operations and outcomes. Upon mastering the relationship,
learners develop guidelines for subsequent behavioral choices,
allowing them to further predict the corresponding results. This
process enables an individual to recognize new information
that expands upon existing knowledge. From the perspective
of cognitive psychology, this process can be summarized as
follows: the brain encodes stimuli, stimuli and feedback is used
to construct rules, these rules are used to predict subsequent
stimuli, and these rules are also applied to other similar stimuli
(Dehaene et al., 2015). Hypothesis testing is at the core of
rule learning (Klayman and Ha, 1989; Liu et al., 2015). During
rule learning tasks, rule learning can enter the application
stage smoothly if the hypothesis is successfully tested. If the
hypothesis cannot explain the stimulus sequence, it must undergo
further revision by the participant. This process will be repeated
until the correct hypothesis is found or the experiment has
ended. Successful hypothesis testing requires flexible switching
among multiple possible hypotheses. High cognitive flexibility
learners show better abstract induction, working memory, and
feedback learning abilities during the Iowa Gambling task (Dong
et al., 2016), which has some common neural basis of rule
learning (Hartstra et al., 2010). We speculate that high-flexibility
individuals may display more accurate and faster rule acquisition
during rule learning as a result of their cognitive advantages.

In contrast to deterministic rule learning, there is no one-
to-one matching relationship between cues and results in
probabilistic rule learning. To use weather forecasting as an
example, a “dark cloud” cue may result in “rain” in 70% of
cases. Yet, in 30% of cases, the result is “cloudy.” Therefore,
the cue “dark cloud” cannot be fixed to a certain attribute (i.e.,
“rain”), and the same reaction to “dark cloud” may be reinforced
as “rain” or “cloudy.” It is impossible for learners to achieve
complete error-free performance, and they eventually accept
certain inevitable mistakes (Craig et al., 2011). This study aims
to explore, for the first time, whether healthy adults with high
cognitive flexibility show an advantage during a probabilistic
rule learning task, just as in other rule-based learning tasks
(i.e., Iowa Gambling Tasks; Dong et al., 2016). The WCST
is perhaps the most widely used tool to measure cognitive
flexibility in neuropsychology at present. However, compared
to WCST, task-switching paradigms can provide a more pure
measurement of cognitive flexibility by reducing the demand
for working memory, classified learning and rule reasoning

(Buchsbaum et al., 2005; Lange et al., 2018). This study uses
the classical “number-letter task” to measure learners’ cognitive
flexibility. Performance on the “number-letter task” (switch cost)
will be used to divide participants into high and low cognitive
flexibility groups, and their dynamic learning characteristics in
different stage of probabilistic rule learning will be explored.

MATERIALS AND METHODS

Participants
Three hundred and ten undergraduates from Soochow University
completed the number-letter task. Data from 13 subjects was
excluded for responding too quickly (RT below 100 ms), giving
repeated responses, or misunderstanding the instructions. Data
from 297 subjects (60 males) aged from 17 to 26 (M = 18.7,
SD = 1.5) were used for further grouping. All subjects were right-
handed, had normal or correct-to-normal vision, and no reported
cognitive impairment. None of the subjects had participated
in similar experiments. Participants were reimbursed according
to their performance in the coin-searching task. All subjects
had given written informed consent. The study protocol was
approved by “the Ethical Committee of Soochow University.”

Materials and Procedure
Number-Letter Task
In the classic number-letter task (Rogers and Monsell, 1995), a
letter plus a number (e.g., 2U or M5) appears in a quadrant at
the center of the screen. Letters are either vowels (A/E/I/U) or
consonants (G/K/M/R) and numbers are either odd (3/5/7/9) or
even (2/4/6/8). A letter and a number are randomly combined to
form number-letter stimulus pairs. In the current study, the task
consisted of practice and formal trials.

Practice trials
Letter, number and number-letter joint judgments were included
in the practice trials. The sequence of letter and number
judgments was balanced among subjects. For letter judgments,
32 trials (16 trials of consonants, half of them paired with an
odd number) were included. Subjects were instructed to press
‘E’ or ‘I’ as quickly and accurately as possible to determine
whether the letters were consonants or vowels. During the letter
judgment trials, the stimulus pairs always appeared in the upper
two quadrants. After an incorrect response, “ × ” would appear
and the participants were instructed to re-press the correct key.
The number judgment trials differed from the letter judgment
trials in that the stimulus pairs always appeared in the two bottom
quadrants and the subjects were required to determine whether
the number was even or odd. In the combined number-letter
trials, the stimulus pairs were presented clockwise one by one
in each quadrant, and the number or letter was not the same
as the previous one. For the stimulus pairs appearing in the
upper two quadrants, letter judgments were needed, otherwise
number judgments were required. Only when the accuracy rate
was higher than 80% could participants enter the formal trials.

Frontiers in Psychology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 415132

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00415 March 13, 2020 Time: 14:6 # 3

Feng et al. High Cognitive Flexibility Perform Better

Formal experiment
The formal experiment consisted of 128 trials of combined
number-letter judgments. " × " without chance of correction
would appear after incorrect responses. When the stimulus
pair jumped from the first quadrant to the fourth quadrant,
the subjects needed to switch from letter judgment to number
judgment accordingly. Similarly, when the stimulus pair jumped
from the third to the second quadrant, the judgment should
change from number to letter. We classified these as switching
trials. When the stimulus pairs jumped from the fourth to the
third quadrant or the second to the first quadrant, there was
no need for task type switching. We classified these as non-
switching trials.

The latency difference between switching and non-switching
trials was regarded as the switch cost (the switch cost of
latency = the average latency of the correct response in the
switching trials – the average latency of the correct response in
the non-switching trials). Switch cost was used to distinguish
learners with high and low cognitive flexibility. High flexibility
participants had a smaller switch cost, and the switch cost of low
flexibility participants was greater. Participants that with switch
cost scores in the upper 27th percentile were included in the low
flexibility group, subjects with scores in the lower 27th percentile
were included in the high flexibility group. Only these high and
low flexibility groups completed the coin searching task.

Coin-Searching Task
The coin-searching task is similar to that of Bellebaum and
Daum (2008). E-prime 2.0 was used to program and run the
task. The stimuli were presented on a 17′ computer monitor
with a resolution of 1024 × 768 pixels. Each participant sat
approximately 57 cm from the screen. Responses were recorded
via ‘F’ and ‘J’ keys on a computer keyboard. There were 12 regular
color blocks [RGBred (255, 0, 0), RGBwhite (255, 255, 255)] on the
left and right sides of a black [RGB (0, 0, 0)] background. The
visual angles of stimulation were shown in Figure 1.

The total number of red blocks was equal on both sides, with
either 4 or 8 cases. The number of red blocks in the right column
on both sides was either 0 or 2 or 4 or 6. If there was no red block
in the right column of the selected side, the reward probability
is 0. Similarly, the reward probability was 2/6 (1/3) for two red
blocks, 4/6 (2/3) for four red blocks and 6/6 (1) for six red blocks
of the selected side. The combinations of reward probabilities in
single trial and the number of trials are shown in Table 1.

Prior to beginning the task, the participants were told that:
(1) Red and white blocks would appear on both sides of the
fixation cross [The subjects were not informed that the total
number of red blocks (4 or 8) was equal on both sides]; (2)
A coin was hidden in one of the 12 colored blocks; (3) The
task was to guess whether a coin was more likely to be hidden
under a red block on the left (“F” key) or right (“J” key) side,
and there was no need to judge a specific location for the coin;
(4) There was a “rule” determining the reward and that correct
identification and application of this rule would result in a
greater reimbursement at study completion. Participants were
not told beforehand the exact reimbursement amounts (correctly
identifying rule: 50RMB, failure to identify rule: 40RMB).

FIGURE 1 | The visual angles of stimulation.

TABLE 1 | The combinations of reward probabilities in a single trial and number
of trials.

Type of stimulus Number of trials
(Including left-right

balance)Reward probability of
the right column for
one side

Reward probability of
the right column for

the other side

0 1/3 120/540

0 2/3 90/540

1/3 2/3 240/540

1/3 1 90/540

The fixation point was presented with a random duration
between 900 and 1100 ms. Then the color blocks were presented
on two sides of the fixation cross. After the fixation point
flashes, participants made a choice by pressing the “F” or “J” key
with the left or right index finger respectively. The minimum
reaction time was 1000 ms and the maximum was 2700 ms.
The selected side would present for another 500 ms. After a
400—600 ms interval (black screen), feedback was presented for
500 ms. A triangle or a hexagon was represented to indicate
reward or no reward respectively, which was balanced between
subjects. There were three blocks, with 540 trials in total.
Block 1 and Block 3 were identical. In Block 2 (trial 181–
360), the participants were given additional feedback indicating
the exact location of the coin: in the reward trials, the coin
would appear under one of the red blocks in the right column
of the selected side; and in the non-reward trials, the coin
would appear under a white block in the right column of the
selected side. The exact location of coins was determined at
random. The procedure is shown in Figure 2. After finishing
the experiment, subjects completed a questionnaire assessing
rule identification success. In the questionnaire, subjects firstly
described the rule he/she had found in as much detail as
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FIGURE 2 | Schematic illustration of an exemplar trial in the coin-searching task.

possible, and then evaluated his/her own confidence in the rules
described before with one of six points (6-quite sure, 5-pretty
sure, 4-a little sure, 3-a little not sure, 2-pretty not sure, 1-
quite not sure).

The rule of the task is that the reward probability is
determined by the ratio of red blocks in the right column
of the chosen side. Choosing the side with a higher ratio of
red blocks in the right column (i.e., a larger number of red
blocks) will result in a higher likelihood of receiving a reward.
In Figure 2, the reward probability is 1/3 for the left side
and 2/3 for the right. Although there is a 1/3 probability of
receiving no-reward upon choosing the right side, the right side
is the correct choice since it has a higher chance of reward
than the left side.

To control for potential left/right dominance effects, half of
the participants were instructed to make their correct choice
according to the comparison of reward probability in the two left
columns of each side.

Data Analysis
For the number-letter task, participants were ranked according
to their switch cost. The first 27% (smaller switch cost) of the

participants were assigned to the high flexibility group, and the
last 27% were assigned to the low group.

In order to analyze the dynamic learning characteristics of
probabilistic rule tasks, a window analysis with 20 window
lengths and 1 step length was used. A stable performance
criterion of ≥ 80% correct choices (≥ 16 correct responses
within 20 successive trials) was considered successful task rule
learning (learning baseline) (Bellebaum and Daum, 2008). For
the subjects who learned the rule, the crossover point of the
dynamic learning curve and the learning baseline (as shown
in Figure 3B) was used as the key point to distinguish pre-
and post-learning stages. If the subjects did not find any rule
during the experiment, all responses were regarded as pre-
learning in the subsequent analysis; similarly, if a participant
learned the rule at the beginning of the experiment participant
responses were regarded as post-learning only. A mixed analysis
of variance (ANOVA) [2(high/low flexibility) × 4(probability
pair) × 2(learning stage)] was adopted for the accuracy and
latency scores of the coin-searching task. High/low cognitive
flexibility was a between-subjects factor, probability pair (0-
1/3, 0-2/3, 1/3-2/3, 1-1/3) and learning stage (pre-and post-
learning stage) were within-subjects factors. Statistical analysis
was performed using SPSS22.0.
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TABLE 2 | Switching cost (ms) for high and low cognitive flexibility groups.

Minimum Maximum M ± SD Lower27th percentile Upper 27th percentile

All participants (297) 137.5 2085.3 813.4 ± 389.2 525.3 1041.1

High cognitive flexibility group (39) 137.5 517.1 357.3 ± 109.9

Low cognitive flexibility group (37) 855.9 2069.6 1161.1 ± 285.5

RESULTS

Overview of the Data
High and low cognitive flexibility groups were created according
to switch cost scores on the number-letter task. Participants with
a score less than 525.3 ms were assigned to the high flexibility
group, and participants with a score greater than 1041.1 ms
were assigned to the low flexibility group (Table 2). 39 (15
males, age39 = 20.2 ± 2.0) high flexibility and 37 (5 males,
age37 = 19.3 ± 1.6) low flexibility participants were willing to
participate further. Given that this study comprises part of the
first author’s doctoral thesis, there is a difference between the total
number of participants and participants assigned to the high and
low cognitive flexibility groups.

27 out of 39 (69.2%) participants in the high flexibility group
and 12 out of 37 (44.4%) participants in the low flexibility group
identified the correct rule (Figure 4). Pearson Chi-square test
showed that the number of rule discoverers in the high group was
significantly higher than that in low flexibility group [χ2 = 10.3,
df = 1, p = 0.001].

In order to describe the dynamic learning process more
closely, we plotted the learning curves of each participant.
A typical rule learner and a non-learner are shown in Figure 3,
and the average learning curves of the four groups (High CF –
learner group: 27, and 3 out of 27 participants only had the post-
learning stage since they had found the right rule with a few trials;
high CF – non-learner group: 12; low CF – learner group: 12;
low CF – non-learner: 25) are shown in Figure 5. The average

learning point of all rule learners was 251 trials, which is the 71st

trial in block 2 (this block contains the specific feedback about
coin position). Both the high and low flexibility groups reached
their learning point in the second block (high CF group – 244,
low CF group – 257).

Further, the confidence scores for the described rules of
four groups (high CF – learner, high CF – non-learner, low
CF – learner, low CF – non-leaner) and two groups (learner,
non-learn)were compared. One-way analysis of variance for
four groups showed that there was significant difference among
four groups [F(3,72) = 3.108, p < 0.05], A Least-Squares
Difference (LSD) test revealed high CF – learners’ confidence
score [M ± SD = 4.6 ± 1.2] was significantly higher than that
of low CF – non-learners [M ± SD = 3.6 ± 1.4]. Independent
sample t-test showed the confidence score of learner group
(M = 4.4, SD = 1.1) was significantly higher than non-learner
group (M = 3.7, SD = 1.3) [t(76) = −2.761, p < 0.05, Cohen’s
d =−0.626].

Accuracy Analysis
As mentioned above, the participants received feedback
indicating reward or non-reward during the experiment.
A correct response was recorded when participants chose the
side with the greater number of red blocks in the right column (or
left column, n = 38). Timed-out and unresponsive trials (1.16%
of trials) were not included in the analysis. Accuracy scores
were analyzed (accuracy = number of correct responses/total
number of responses). A mixed measures ANOVA [2(high/low

FIGURE 3 | The learning curve of a typical rule non-learner (A) and a learner (B).
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FIGURE 4 | The number of rule discovers for high and low cognitive flexibility
groups.

flexibility) × 4(probability pair) × 2(learning stage)] for
participant accuracy scores showed a significant main effect of
learning stage [F(1,34) = 709.728, p < 0.001, η2

p = 0.954] and
probability pair [F(3,102) = 10.942, p < 0.001, η2

p = 0.243]. The
interaction between learning stage and group was marginally
significant [F(1,34) = 3.051, p = 0.090, η2

p = 0.082]. All other
effects were not significant. An analysis of simple effects of
high/low flexibility group and learning stage on accuracy
showed a significant difference between the two groups after
rule acquisition only [F(1,34) = 12.651, p < 0.05, η2

p = 0.271]
(Figure 6). In order to further investigate the differences
between groups after rule acquisition, a mixed measures
ANOVA [4(probability pair) × 2(high/low flexibility)] was
performed on the post-learning data. We observed a significant
main effect of probability pair [F(3,111) = 19.889, p < 0.001,
η2

p = 0.350] and group [F(1,37) = 11.662, p < 0.05, η2
p = 0.240].

However, the probability pair × high/low flexibility interaction
was not significant (Figure 7A). Next we merged trials from
the four probability pair conditions (0, 1/3; 0, 2/3; 1/3, 2/3;
1/3, 1) by averaging the accuracy of conditions with equal
probability difference values. Two probability difference
conditions were created: 1/3 probability difference (0, 1/3; 1/3,
2/3) and 2/3 probability difference (0, 2/3; 1/3, 1). A mixed
measures ANOVA [2(probability difference) × 2(high/low
flexibility)] showed a significant main effect of probability
difference [F(1,37) = 48.914, p < 0.001, η2

p = 0.569] and
high/low flexibility [F(1,37) = 11.662, p < 0.05, η2

p = 0.240].
A significant probability difference × high/low flexibility
interaction was also observed [F(1,37) = 4.875, p < 0.05,
η2

p = 0.116] (Figure 7B). Simple effects analysis showed
there was a significant difference between high/low flexibility
groups for the 1/3 probability difference [F(1,37) = 11.314,

FIGURE 5 | The average learning curves of the four groups.

FIGURE 6 | The accuracy of high and low CF groups during different learning
stages (∗p < 0.05).

p < 0.05, η2
p = 0.234], and a marginally significant

difference [F(1,37) = 3.482, p = 0.07, η2
p = 0.086] for the

2/3 probability difference.

Latency Analysis
After deleting timed-out and unresponsive trials (1.16% of trials),
a mixed measures ANOVA [2(learning stage) × 4(probability
pair) × 2(high/low flexibility)] showed a significant main
effect of learning stage [F(1,34) = 84.561, p < 0.001,
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FIGURE 7 | The accuracy of high and low CF groups during post-learning stage. (A) Accuracy in different probability pairs. (B) Accuracy in different probability
differences (∗p < 0.05).

FIGURE 8 | The latency of high and low cognitive flexibility groups for pre- and post-learning stages in different probability pairs (∗p < 0.05).

η2
p = 0.713] and probability pair [F(3,102) = 10.030, p < 0.001,

η2
p = 0.228]. A marginally significant main effect of group

was also observed [F(1,34) = 3.395, p = 0.074, η2
p = 0.091].

Significant interactions between learning stage and probability
pair [F(3,102) = 7.728, p < 0.001, η2

p = 0.185], and probability
pair and high/low flexibility were observed [F(3,102) = 3.203,
p < 0.05, η2

p = 0.086]. The three-way interaction was marginally
significant [F(3,102) = 2.181, p = 0.095, η2

p = 0.060] and the
interaction between learning stage and group was not significant
[F(1,34) = 0.001, p = 0.973, η2

p = 0.000]. Simple effects analysis of
the four probability pairs in the different learning stages showed

a significant difference among four probability pairs after rule
learning [F(3,32) = 6.752, p < 0.05, η2

p = 0.388]. A Least-Squares
Difference (LSD) test revealed significant differences between 0-
1/3 and 1/3-1 probability pairs (p < 0.05) during post-learning.
Simple effects analysis of the four probability pairs for the two
flexibility groups showed that only the low flexibility group had
significantly different latencies in the different probability pairs
[F(3,32) = 5.571, p < 0.05, η2

p = 0.343]. The latency of high
and low cognitive flexibility groups for pre- and post-learning
stages in different probability pairs was shown in Figure 8. In
order to further describe the reaction time differences within
the low-flexibility group, a 2 × 4 repeated measures ANOVA
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[2(learning stage) × 4(probability pair)] was conducted on the
data of the low group only. All main and interaction effects
were significant [learning stage: F(1,11) = 24.340, p < 0.001,
η2

p = 0.689; probability pair: F(3,33) = 6.244, p < 0.05,
η2

p = 0.362; learning stage × probability pair interaction:
F(3,33) = 3.623, p < 0.05, η2

p = 0.248]. Simple effects analysis
showed a marginally significant difference among probability
pairs after learning acquisition [F(3,9) = 3.250, p = 0.074,
η2

p = 0.520]. Specifically, there were (marginally) significant
differences between 0_1/3 and 0_2/3 (p = 0.089), 1/3_2/3 and
1/3_1 (p = 0.073), and 0_1/3 and 1/3_1 (p < 0.05). Additionally,
the data of the 1/3 and 2/3 probability differences after rule
acquisition were averaged respectively. A paired sample t-test
showed a significant difference between 1/3 (M = 498.20 ms,
SD = 176.54 ms) and 2/3 (M = 419.97 ms, SD = 135.34 ms)
probability differences [t(11) = 3.406, p < 0.05, Cohen’s
d = 0.24]. After successful rule learning, the low flexibility subjects
responded faster to stimuli with a higher probability difference.

DISCUSSION

In the present study, learners were grouped into high and
low cognitive flexibility groups based on their performance on
the number-letter switching task. The learning characteristics
of the two groups in a rule task with probabilistic cues were
preliminarily explored. Behavioral data analysis showed that
the differences between the two groups are mainly manifested
in the following three points: (1) The high CF group showed
a higher rate of rule acquisition, which partially verified our
hypothesis that high cognitive flexibility learners would show
more accurate rule acquisition during rule learning. However,
the two groups showed very similar average rule acquisition
points, the high flexibility group did not show faster rule
acquisition as predicted. (2) The high flexibility group showed
significantly higher accuracy than the low flexibility group after
rule acquisition. (3) After rule learning, the low-flexibility group
showed significantly different response latencies across the four
probabilistic pairing conditions, while the high-flexibility group
did not show such differences.

The rule acquisition speed of the high flexibility group was
not faster than that of the low flexibility group, which may be
related to the reward feedback provided in block 2. In order to
reduce task difficulty, the exact coin position was shown to the
learners during the second block (for reward feedback, the coin
was shown under the red block on the dominant side; for non-
reward feedback, the coin was shown under the white block).
This feedback aided the subjects in identifying the existence
of a “dominant side.” Combining this knowledge with the
relationship between reward and red blocks, the subjects could
identify the basis for response more easily. This design reduces
the difficulty of the task (Bellebaum and Daum, 2008) which has
been proved in previous study. However, we guess this design of
exact coin position in block 2 may have weakened the inter-group
differences of the high and low flexibility groups to some extent.
It is possible to find the correct basis of reaction from the specific
position of the coin for both high and low groups, and the average

learning curves in Figure 5 also supported this. The cue of exact
location of the coin provided participants with a shortcut to the
task, which was open to both groups.

Even if the involvement of block design made the task became
easier, the overall rule learning rate of the task in present study
was 51.3% [(21 + 12)/(39 + 37)]. That is, only half of the
participants identified the correct rule, which is lower compared
with previous studies using this paradigm [66.7% (18/27)]
(Bellebaum and Daum, 2008). This may be related to differences
in participant cognitive flexibility levels: in Bellebaum’s study the
level of flexibility was not a key factor of interest and so the overall
level of cognitive flexibility in their sample is unknown. In the
present study, 48.7% of subjects had low flexibility. This relatively
large proportion of low flexibility subjects may explain the overall
lower learning rate in our study.

After rule learning, the accuracy of the high flexibility group
was higher than that of the low flexibility group for the 1/3
and 2/3 probability differences. Especially for the 1/3 probability
difference, the advantage of the high flexibility group was
more pronounced. This finding may indicate that the high-
flexibility group used the response criterion correctly more
frequently and that this group may have a greater mastery
and confidence surrounding rule learning. Using the Iowa
Gambling task, Dong et al. (2016) showed that people with
high flexibility showed explicit knowledge of task rules whereas
the low group did not, which is consistent with the higher
response accuracy of the high flexibility group in this study.
Their research also showed that the lower P300 amplitude of the
low flexibility group in the stimulus selection evaluation stage
might be due to the lower cognitive and abstract generalization
abilities or working memory abilities of the low flexibility
group. The present findings extend the advantage of the high
cognitive flexibility group to probabilistic reward learning, that
is, the high flexibility group could distinguish stimuli with little
differences in probability more effectively at the later stage
of learning. However, what are the differences in the internal
learning processes that result in group differences? Müller et al.
(2014) suggests that differences in cognitive flexibility among
individuals is related to many factors, including gray matter
volume of the right anterior insula, the functional connection
between the bilateral anterior insula and the midcingulate
cortex/supplementary motor areas, and the degree of impulsivity
according to the Big Five personality traits. Different factors exert
unique effects on cognitive flexibility. Research across multiple
paradigms and using various methodologies (i.e., fMRI, EEG)
is needed to further understand the mechanisms underlying
cognitive flexibility.

There were significant differences among the probabilistic
pairs for the low flexibility group. The differences were mainly
due to faster responses to large probability differences (2/3) than
to small probability differences (1/3) in the post-learning stage.
However, the high flexibility group did not change significantly
with the change of probability pairs. For the high flexibility
group, although the number of red blocks on the left and
right sides changed constantly according to the settings of the
experimental conditions, high flexibility subjects may approach
all conditions by applying a unified ‘framework,’ or response
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basis, with all conditions being parallel parts of that framework.
For the low flexibility learners, they may not have employed such
a framework. Their response basis may vary for each probability
condition even after entering the post-learning stage. This may
be evidenced by the low flexibility learners showing slower
response latencies for the 1/3 probability difference condition
that were not accompanied by accuracy levels comparable to that
of the 2/3 condition (accuracy is significantly lower in the 1/3
probability difference for the low flexibility group). It is perhaps
due to confusion about the response basis in the 1/3 probability
difference condition that the latency under this condition is
longer and the accuracy is lower. In fact, this condition appeared
to be particularly difficult for the low flexibility subjects. This
may be due to two reasons: (1) A greater number of learners
in the low group did not identify the correct response criteria
(rule) applicable to all conditions of the task during learning. (2)
Because the probability attributes of the rules were not indicated
before the task, and people generally tend to search for a simple
‘stimulus-response’ connection (i.e., correct response = reward),
it may be a greater challenge for the low cognitive flexibility group
to realize and accept a probability-based reward pattern.

Cognitive flexibility involves explicit and implicit forms of
processing (Fujino et al., 2017), and the flexible goal achievement
is not fully conscious (Custers and Aarts, 2010). Study has shown
that there are different areas of brain activity in individuals
with rationality-based explicit aspect of flexibility and experience-
based implicit aspect of flexibility, and there is strong connection
between them (Fujino et al., 2017). In present study, subjects were
required to describe the founded rule after the task. Most of the
subjects who had reached the acquisition level behaviorally could
describe the correct rule while others report being unclear or
not always following the same rule, not all the subjects who had
learned the rule could grasp the rule consciously. However, the
objective separation of implicit and explicit parts in probabilistic
rule learning was not yet realized. Meanwhile, for the confidence
of the rule, learner group had significant higher confidence score
than non-learner group. When subjects were further divided into
high CF – learner, high CF – non-learner, low CF – learner
and low CF – non-learner group, only high CF – learners’
confidence score was significantly higher than that of low CF –
non-learners. No matter high CF – learner vs. high CF – non-
learner group or low CF – learner vs. low CF – non-learner group,
the confidence scores were not significant. This was because
although some subjects had not learned the rules objectively, they
thought the rule had been found was correct and gave relatively
high confidence scores.

As mentioned before, the study has reached some conclusions
about differences between high and low CF learners in
probabilistic rule learning. And, there are some issues not taken
into account and deserve further attention. Firstly, the sample
was imbalanced by sex, and most of the subjects were mainly
women. The results of this study cannot exclude the effect of
potential gender differences. Secondly, it is possible that the
difference of two groups in acquisition speed of rule may be
disguised as the setting of the task, which depends on the use

of other probabilistic rule tasks for further investigation. Thirdly,
the differences between groups were in behavioral, post-learning
stage in detail. An unresolved issue concerns the question as to
what is the cause of the differences before the rule is acquired.
Further detailed analysis of the learning process using tools such
as ERP will be helpful. Finally, in present study, the artificial
80% response accuracy rate was used as the cut-off point for the
acquisition of rule, and the six-point scale also used to evaluate
the learners’ certainty of rule after the completion of the coin-
searching task. Whether there are some objective and implicit
indicators of rule acquisition in probabilistic rule learning is an
interesting point for further study.

CONCLUSION

This study preliminarily confirms that there are significant
differences in learning outcomes between high and low cognitive
flexibility learners in probabilistic rule learning. In short,
cognitive flexibility is associated with the performance after the
rule acquisition during the probabilistic rule task. The deep-
rooted reasons for these differences need to be further explored
by using other experimental techniques.
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