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Sources of Microtemporal Clustering
in Sociolinguistic Sequences

Meredith Tamminga*

Department of Linguistics, University of Pennsylvania, Philadelphia, PA, United States

Persistence is the tendency of speakers to repeat the choice of sociolinguistic variant
they have recently made in conversational speech. A longstanding debate is whether
this tendency toward repetitiveness reflects the direct influence of one outcome on the
next instance of the variable, which | call sequential dependence, or the shared influence
of shifting contextual factors on proximal instances of the variable, which | call baseline
deflection. | propose that these distinct types of clustering make different predictions
for sequences of variable observations that are longer than the typical prime-target
pairs of typical corpus persistence studies. In corpus ING data from conversational
speech, | show that there are two effects to be accounted for: an effect of how many
times the /ing/ variant occurs in the 2, 3, or 4-token sequence prior to the target
(regardless of order), and an effect of whether the immediately prior (1-back) token
was /ing/. | then build a series of simulations involving Bernoulli trials at sequences
of different probabilities that incorporate either a sequential dependence mechanism,
a baseline deflection mechanism, or both. | argue that the model incorporating both
baseline deflection and sequential dependence is best able to produce simulated data
that shares the relevant properties of the corpus data, which is an encouraging outcome
because we have independent reasons to expect both baseline deflection and sequential
dependence to exist. | conclude that this exploratory analysis of longer sociolinguistic
sequences reflects a promising direction for future research on the mechanisms involved
in the production of sociolinguistic variation.

Keywords: sociolinguistics, persistence, priming, style-shifting, simulation, corpus

1. INTRODUCTION

Quantitative sociolinguists have long known that in conversational speech, speakers tend to
repeat the choice of the sociolinguistic variant they have recently made. Following Szmrecsanyi
(2006), T call this phenomenon persistence!. Persistence has been observed for a wide range of
variables across multiple languages, including pronominal alternations in Quebec French (Sankoff
and Laberge, 1978), the passive alternation in English (Weiner and Labov, 1983; Estival, 1985),
/s/-deletion and /n/-deletion in Puerto Rican Spanish (Poplack, 1980, 1984), verbal /s/ omission
in some varieties of English (Poplack and Tagliamonte, 1989), /s/-deletion in Brazilian Portuguese
(Scherre and Naro, 1991, 1992; Scherre, 2001), the English dative alternation (Gries, 2005), particle
placement in English (Gries, 2005; Szmrecsanyi, 2006), English coronal stop deletion (Tamminga,
2016), and more. The evidence is abundant that a speaker’s choice of variant for a variable at any
given moment is partly predictable from their most recent variant choice for the same variable.

!t has also sometimes been called perseverance, perseveration, serialism, parallelism, and most colorfully, the “birds of a
feather” effect.
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How to explain this phenomenon, though, is more
controversial. Broadly speaking, there are two classes of
explanation. Tamminga et al. differentiate between sequential
dependence, which is when “the outcome of a sociolinguistic
alternation in one moment directly influences the likelihood of
a matching outcome some moments later” (Tamminga et al,
2016, p. 33), and baseline deflection, which is when “two closely-
proximal instances of a sociolinguistic variable are more likely
to occur under similar social-contextual circumstances than two
instances that are further apart, and thus are more likely to have
matching outcomes” (Tamminga et al., 2016, p. 34). Both of these
could in principle produce the kind of microtemporal clustering
that has been called persistence. Research on persistence
sometimes assumes sequential dependence and attributes
the dependence to priming, in the psycholinguistic sense of
facilitated access to a recently encountered linguistic form 2. But
it has also been repeatedly observed that stylistic forces might
produce apparently similar repetitiveness. To trace an example
in the literature, Weiner and Labov (1983) find that speakers are
more likely to choose a passive construction instead of an active
one when they have already recently used a passive. Weiner
and Labov attribute this to both a “mechanical tendency to
preserve parallel structure” (suggesting sequential dependence)
and “a stylistic factor operating” (suggesting baseline deflection)
(Weiner and Labov, 1983, p. 56). In a subsequent study building
on Weiner and Labov’s results, Estival concludes that “the effect
we have been studying [is] a syntactic priming effect” (Estival,
1985, p. 21). In other words, she asserts that persistence in the
passive involves sequential dependence in the form of structural
priming. On the other hand, Branigan et al. raise the possibility
of baseline deflection when they point out that Weiner and
Labov’s result “might just reflect shifts in the register used during
the interviews which they studied” (Branigan et al., 1995, p. 492).
Distinguishing between these possibilities is not straightforward.

In this paper I propose that we can make some progress in
disentangling sequential dependence and baseline deflection by
looking at sequences of multiple observations of the variable
prior to a target instance of that variable, instead of just the
immediately prior observation. These sequences reflect a string of
prior instances on which the speaker had to choose between two*
variants of the same sociolinguistic variable as in the target, each
of which may be separated by some distance from the target and
from other prior observations. For a variable with two possible
variants A and B, the usual approach to persistence is to ask
whether the probability of choosing B at target T is different based
on whether the prior token was A or B: does the outcome in
what I will call the A-T and B-T conditions differ?* If we extend
our view back to the two choices the speaker made before the
target, it will give us four conditions: A-A-T, B-A-T, A-B-T, and
B-B-T °. I call this a 2-prior sequence, and say that the B-A-T

2Priming itself might arise from a variety of mechanisms, such as spreading
activation or error-driven implicit learning, any of which would fall under the
umbrella of sequential dependence.

30r more, although I will not consider variables with more than two variants here.
“I explicitly include the T in the sequence name to make the directionality clear.
SNote that in these cases, the hyphens elide an unknown amount of speech between
observations of the variable; in section 4 I will briefly address the question of

sequence has a 1-back variant of A and a 2-back variant of B
(that is, I use “2-prior” to refer to the total depth of the sequence
before the target, and “2-back” to refer to a single observation in
a particular position within the sequence). We can then ask how
the probability of getting B at the target T differs in those four
conditions. For instance, we might hypothesize that the observed
rate of B in the target will be higher in the A-B-T condition than
the B-A-T condition because in A-B-T, the prior instance of B
occupies a slot closer in the sequence to the target.

In section 2.3, I conduct this type of quantitative analysis
on 2-prior, 3-prior, and 4-prior sequences for the variable ING®
in conversational speech. ING is the alternation between the
velar and alveolar nasal after unstressed /1/, as in working vs.
workin’. Previous work has attributed ING persistence to priming
(Abramowicz, 2007; Tamminga, 2014, 2016), but this variable
has also been shown to exhibit style-shifting within data very
comparable to that used here (Labov, 2001), making ING a
suitable test case for this analysis. Both in section 2.3 and in
further statistical analyses of the corpus data in section 2.4, I
will demonstrate that the probability of the /ing/’ variant is
influenced by how many instances of /ing/ occur in the N-
prior sequence, as well as by which variant occurs in the 1-back
position. There is not, however, evidence that the probability of
/ing/ in the target additionally depends on the ordering of the
variants at a depth greater than 1-back.

After showing how N-prior sequences influence ING
outcomes in the corpus data, I turn in section 3 to a series
of simulations to explore what kind of process may have
produced the patterns observed in speech. I create a series of
simulations based on Bernoulli processes—in essence, modeling
sociolinguistic variation as the flipping of weighted coins.
The simulations can be set up to have different sources of
microtemporal clustering built in, or to exclude such sources.
One version of the simulation has sequential dependence built
in, while others involve various simple versions of baseline
deflection. With each simulation, I generate a dataset that can
be analyzed using the same approach as I took with the corpus
data, allowing for an intuitive comparison of the outcomes. While
every simulation with any source of microtemporal clustering
built in produces a difference of some magnitude based on the 1-
prior sequence (that is, the analog to the usual persistence effect),
the predicted probability as a function of the 3-prior sequence
can differ more substantially between models containing baseline
deflection and ones containing sequential dependence.

The possibilities for this type of simulation are enormous, and
pursuing an exhaustive search of what it might produce is beyond
the scope of such preliminary work as this paper. I will, however,

the distance between observations, but I will mostly leave modeling of decay in
multi-token sequences for later work.

®Following one variationist convention, the all-capitalized representation ING
represents the variable itself, the choice between two outcome variants.

71 will use orthographic representations inside slashes for the variants: /ing/ for /m/
and /in/ for /m/ to achieve consistency with my sequence notation. For N-prior
sequences, I put the entire sequence between a single pair of slashes. In graphs, I
omit the slashes as unnecessary visual clutter. Although unconventional, I believe
this is the most visually distinctive set of options, and therefore is to be preferred
as a way of making the complex discussion slightly easier to follow.
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suggest that each of the two mechanisms of microtemporal
clustering maps more cleanly and consistently to one of the
two central effects in the corpus data: baseline deflection can
produce the effect of how many times /ing/ occurred in the
prior sequence and sequential dependence straightforwardly
gives rise to the effect of the immediately-prior token. The
pattern seen in the corpus ING data, then, can be produced most
effectively by a simulation in which I include both sequential
dependence and baseline deflection mechanisms. I argue that this
is a welcome result because there are independent reasons to
believe in linguistic behavioral phenomena (as I discuss in the
following subsection) that should give rise to both of these types
of clustering. Finding out that their combination is necessary
to produce observed microtemporal patterns in corpus data
suggests that future work on persistence might move beyond
either/or questions about the source of persistence.

1.1. A Terminological Note

The sociolinguistics and corpus linguistics literatures have
often used the term “priming” for persistence. Objections to
this designation have usually been framed in terms of “style-
shifting” or “register changes.” I will avoid using these terms
throughout this paper even though the discussion would surely
read more intuitively if I contrasted “priming” (sequential
dependence) models with “style-shifting” (baseline deflection)
models. However, I will maintain that the content- and
context-blind quantitative modeling I will explore in this paper
does not and cannot distinguish between different real-world
interpretations of the microtemporal structures I am exploring.
It is tempting to suggest that sequential dependence should
be interpreted as the psychological effect of priming—which
would itself still leave many questions about the priming
mechanism unanswered. However, stylistic and discourse-
structural considerations could also give rise to an effect of
true sequential dependence. For instance, even if a choice of a
particular word order alternant was made purely stochastically,
unrelated to contextual preferences, a speaker might wish to
continue with the same choice on later utterances in order to
maintain the parallelism of the discourse. Similarly, speakers
might tend toward repetitiveness itself as a stylistic choice rather
than making a series of independent choices that happen to all
be occurring under the influence of the same external situation.
The same ambiguity is present when it comes to baseline
deflection. It may seem most natural to understand shifts in a
speaker’s target variant rate as being the result of style-shifting,
but it is also quite possible to think of psychological factors
that could have a similar effect in jointly shaping sequences
of target outputs. For instance, a speaker might be operating
under a greater memory or attentional burden at some stretches
of speech than others, which in turn might influence self-
monitoring behavior. The quantitative approach taken here
does not distinguish these possibilities; it only distinguishes
between the quantitative properties of baseline deflection and
sequential dependence. The evidence for how these distinct
sources of microtemporal clustering should be interpreted will
have to come from other directions. Most importantly, the
evidence on this question of interpretation will need to come

from conversational corpus data analysis that attends to speaker
identity and behavior in particular sociointeractional contexts;
such work might conceivably be supplemented by focused,
socially sensitive experimental investigations.

2. PRIOR SEQUENCES OF THE ING
VARIABLE

In previous work, I have shown that there is a relationship
between a token of ING and the most recent token of ING from
the same speaker (Tamminga, 2014, 2016), specifically that the
speaker is likely to repeat their immediately prior variant choice.
This is consistent with earlier work from Abramowicz (2007),
as well as with the corpus persistence literature more generally.
Here I use the same underlying dataset as in my previous work to
extend my consideration of ING persistence to 2-prior, 3-prior,
and 4-prior sequences.

2.1. Data

The conversational speech data come from the Philadelphia
Neighborhood Corpus (PNC, Labov and Rosenfelder, 2011).
The PNC contains sociolinguistic interviews recorded in
Philadelphia between 1972 and 2012. The recordings have been
orthographically transcribed, then automatically forced-aligned
at the word and phone level using the FAVE-align component of
the FAVE suite (Rosenfelder et al., 2011). The master ING dataset
used here, which comes from a 118-speaker subset of the PNC,
is the same as that described in Tamminga (2014, 2016); more
detail on the speaker demographics can be found there. To create
that dataset, I coded all of the ING observations in the sample
auditorily using a Praat script to facilitate exhaustive searching of
the corpus’ FAVE-aligned TextGrids 8. The data are coded with
0 representing /in/ and 1 representing /ing/, so values closer to
1 indicate a higher probability of the /ing/ variant being chosen.
The data used for analysis in the current paper is a subset of this
master ING dataset; details of how and why this particular subset
was chosen are given in section 2.2 below. The primary predictor
of interest in this study is the makeup of the N-prior sequence.
Each ING token was coded for the values of the four prior
ING observations from the same speaker, modulo the exclusions
described in section 2.2. The multivariate analyses described in
section 2.4 also include the following control predictors:

e Whole word frequency: the Lgl0CD measure from SUBTLEX
(Brysbaert and New, 2009)

e Speech rate: the number of vowels per second in a 7-word
window centered on the target word, which is automatically
collected by the Praat script originally used to code the data

e Preceding coronal: in this dataset ING shows progressive
dissimilation

e Following pause: in this dataset /ing/ is more frequent before a
pause

e Speaker gender: male or female, since ING is a classic stable
variable, with women on average using more /ing/ than men.

8Thanks to Joe Fruehwald for sharing his handCoder.Praat script.

Frontiers in Artificial Intelligence | www.frontiersin.org

June 2019 | Volume 2 | Article 10


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Tamminga

Microtemporal Clustering in Sociolinguistic Sequences

2.2. Revisiting the Envelope of Variation

In quantitative sociolinguistics, deciding what to count and how
to count it is a crucial process, sometimes called defining the
envelope of variation. I give special attention to these decisions
here because, as I point out in Tamminga (2014), the study of
persistence raises new issues for the envelope of variation. Two
of these issues are relevant here: the role of the interlocutor and
the definition of the variable itself.

Regarding the role of the interlocutor, in Tamminga (2014,
2016), I omit prime-target pairs that were interrupted by an
instance of the variable from an interlocutor. The reason for
this decision is that we do not currently know how phenomena
like accommodation and interspeaker priming interact with
intraspeaker persistence, so we should neither assume that an
ING token from an interlocutor is the same as a token from
the target speaker and can be included, nor assume that it
is irrelevant and can be ignored. Here I extend that decision
to the consideration of sequences, making interruption-based
exclusions for the length of the N-prior sequence at hand.
Figure 1 illustrates that if there had been no interruption, the
target at £4 would have had a 3-prior sequence of /ing-ing-in-T/,
while the target at t3 would also have had a 2-prior sequence of
/ing-ing-T/ and could have been included in a 2-prior analysis.
But because there is an interruption between the 2-back and 3-
back positions relative to the target at fy, t4 ends up with no
3-prior sequence, but does still have a valid 2-prior sequence of
/ing-in-T/. With this practice, the number of targets that can be
included is reduced at each greater depth of prior token sequence.

The second issue is that of the definition of the dependent
variable itself. So far I have defined ING as the alternation
between the velar and alveolar nasal after unstressed /1/, but
complications arise because this alternation occurs in a range
of grammatical contexts. Often the ING variable is defined as
including progressive verbs and gerunds formed with the -ing
suffix, such as working, monomorphemes like ceiling, and the
words something and nothing. However, there has long been
uncertainty about whether or not the surface variability in
these contexts is the output of a single variable process. In
Tamminga (2014, 2016), I show that the monomorphemic
(e.g., ceiling) and polymorphemic (e.g., working) context exhibit
within-category, but not across-category, persistence, and argue
that this is evidence that multiple variable processes are at

t t t; ty

Z ~. N

1-back % ng ~ in

2-back g. ing
3-back

FIGURE 1 | Coding of a sequence with an interruption; grayed-out content
reflects potential coding that is blocked by the interruption.

play. In this paper, I aim to sidestep rather than illuminate
these questions about the definition of the variable. Therefore,
I exclude all monomorphemic observations and do not treat
them as interruptions because I have already previously shown
that they do not influence persistence in the much more
frequent polymorphemic cases. On the other hand, in Tamminga
(2014) T do find some puzzling evidence for persistence
between the polymorphemic categories and something/nothing, a
category that poses the additional problem of allowing additional
variants. I therefore exclude the something/nothing category but
conservatively treat something and nothing as interruptions.
There is also one other special case, that of the phrase going to. I
exclude instances of gonna from consideration entirely, but treat
instances of going to that could have been produced as gonna
as both exclusions and interruptions. Instances of going to that
could not be realized with gonna (such as “I'm going to the store”)
are included normally.

At each greater depth of N-prior sequence, some additional
data is lost because of interlocutor and exclusion-based
interruptions, and additionally the number of unique N-prior
sequences increases. There is thus a tension between wishing to
look at shorter N-prior sequences because there is more data and
a simpler analysis, but also wishing to look at longer N-prior
sequences because they provide a more refined view of the time-
course of variable production. A 3-prior sequence seems to offer
a good compromise between these goals in the particular data at
hand, but I also look at the 2-prior and 4-prior sequences. The
2-prior sequence provides a simple starting point for reasoning
about sequences of prior observations, and the 4-prior sequence
makes it clear that the data at hand should not be stretched
further. Overall, approximately the same general pattern arises
at the 2-prior, 3-prior, and 4-prior levels, which provides some
reassurance regarding the stability of the results.

2.3. Descriptive Analysis

I begin with an analysis of the subset of the verbal ING data for
which the 2-prior sequence is intact (N = 3,071). For a depth
of two prior observations, there are four unique prior token
sequence options: /in-in-T/, /ing-in-T/, /in-ing-T/, /ing-ing-T/
(recall that T represents the linear position of the target). The first
two sequences have /in/ as their immediately prior observation,
and the last two sequences have /ing/ as their immediately prior
observation, so a traditional persistence analysis would group
together the first two sequences (as /in/-primed) and the last
two sequences (as /ing/-primed). I calculated the /ing/ rate after
each of these unique sequences. The results are in Figure 2.
The unique 2-prior sequences are arranged on the x-axis, and
the y-axis shows the probability of the /ing/ variant after each
sequence. To help guide the visual interpretation at the expense
of added redundancy, the graph is also faceted by how many
/ing/ observations occurred in the 2-prior sequence, and the
bars are color coded by the value of the 1-back variant. From
Figure 2, it is immediately apparent that the /ing/ rate is higher
for observations that had more instances of /ing/ in the 2-prior
sequence: the /ing/ rate after two /in/ variants is 16% (N = 1,420),
while the /ing/ rate after two /ing/ variants is 79% (N = 892).
In the middle facet of the graph, we see an additional effect:
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FIGURE 2 | Corpus probability of /ing/ variant by 2-prior sequence. Error bars
are Clopper-Pearson binomial 95% confidence intervals.

when the 2-prior sequence contains one of each variant, the order
they come in matters: the /ing/ rate is higher after an /in-ing-
T/ sequence (50%, N = 375) than an /ing-in-T/ sequence (36%,
N = 384). That there is a difference between the two blue bars
and between the two red bars in Figure 2 shows that the 2-
prior sequence matters beyond supplying the immediate 1-back
variant. But that there is a difference between the blue and red
bars in the middle facet shows that there is an effect of the 1-back
variant that goes beyond the total number of /ing/ observations
preceding the target.

Next I turn to the subset of the data in which the full 3-prior
sequence is intact (N = 2,334, so 737 observations removed from
the 2-prior subset due to interruptions between the 2-back and
3-back positions). There are eight unique 3-prior sequences to
consider, which I will not enumerate here but which can be found
listed along the x-axis of Figure 3. Figure 3 is set up in the same
way as Figure 2: there is a bar representing the rate of /ing/ use
for targets preceded by each of the unique 3-prior sequences, the
facets represent the total number of /ing/ variants in the 3-prior
sequence, and the color coding represents the 1-back variant. As
before, we see a very strong effect at the far ends of the graph:
the /ing/ rate after a sequence of three /in/ observations is 14%
(N = 898) while the /ing/ rate after a sequence of three /ing/
observations is 83% (N = 540). In the 1/3 /ing/ facet, we see
that the /ing/ rate is higher when the one /ing/ in the sequence
is in the 1-back position (42%, N = 177) but that the order of
the 2-back and 3-back positions does not make a large difference:
the /ing/ rate is 26% after /ing-in-in-T/ (N = 192) and 28% after
/in-ing-in-T/ (N = 142) sequences. In the 2/3 /ing/ facet, we see
essentially the same thing: the /ing/ rate is depressed when the 1-
back token was /in/ (47%, N = 132) but does not appear to differ
between /ing-in-ing-T/ (61%, N = 108) and /in-ing-ing-T/ (60%,
N = 145) sequences.

It should already be apparent from the token counts given in
the discussion of the 3-prior sequence results that data sparsity
will raise its head as a real problem in the 4-prior sequences, both
because there are now 16 unique prior token sequences to subset
by and because the total number of observations is down to 1804
after loss of an additional 530 observations due to interruptions

between the 3-back and 4-back positions. However, even the
smallest subset in this breakdown (/ing-in-ing-in-T/) still has 33
observations in it, so I will cautiously proceed. I will not break
down all 16 /ing/ rates shown in Figure 4 in the discussion here,
but will instead make some general observations. With less data,
the patterns are inevitably somewhat less clear, but there are a
couple reasons to believe that the basic result here is consistent
with the previous two clearer patterns. First, within each facet,
every red bar is taller than every blue bar, and subsequently the
average of the red bars is higher than the average of the blue
bars across the three middle facets. This is consistent with the
observation of an effect of the 1-back variant. Second, within the
same-colored bars in each facet, the fluctuations we see are not
consistent with plausible predictions from the sequence order.
For instance, the /ing/ rate for /ing-in-in-in-T/ is higher than for
/in-ing-in-in-T/ even though the latter has a more recent instance
of /ing/ in the sequence. This suggests that the deeper-than-1-
back order-based fluctuations seen here are random rather than
systematic, and that if we had more data in each subset we
would expect to see them level out to look more like Figure 3. Of
course, the only way to confirm this would be to get more data, a
non-trivial task.

2.4. Statistical Analysis

In the descriptive analyses just given in section 2.3, I took
the following approach at each N-prior sequence depth. First,
I calculated /ing/ rates conditioned on each unique N-prior
sequence separately. Then, I proposed on the basis of those
observed /ing/ rates that treating every unique prior token
sequence as a distinct context was missing a generalization:
that observed ING rates differ only based on how many /ing/
observations occurred in the prior sequence and what variant
is in the 1-back position, not any additional information about
the order of variants in the 2-back, 3-back, or 4-back positions.
However, the descriptive analyses have not yet accounted for
many factors that are known to affect variation in general or
ING specifically, such as phonological context or speaker gender.
They also do not account for the non-independence that results
from different speakers (with different characteristic /ing/ rates)
each contributing more than one token to the dataset (prior to
the sequence formation process and associated exclusions for
interruptions, the average number of observations per speaker is
34). I therefore turn to mixed-effects logistic regression to assess
whether the observations I made based on the raw data reflect
statistically significant differences that are robust to the inclusion
of these other predictors.

The mixed-effects logistic regressions in this section were fit
using the | me4 package version 1.1-18 (Bates et al., 2015) in
R version 3.5.1 (R Core Team, 2015). The dependent variable
is the ING variant in each target observation, with 0 as /in/
and 1 as /ing/. The models include as fixed effects several
known predictors of ING that are available in this dataset
and were described in Section 2.1, namely lexical frequency,
speech rate, preceding segment, following segment, and speaker
gender. The lexical frequency measure (LglOCD) comes from
SUBTLEX (Brysbaert and New, 2009) already base-10 log-
transformed, and speech rate is natural log transformed. These
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continuous control predictors are then z-scored to center
around their mean log value. The categorical control predictors
(preceding/following phonological context and gender) are given
a sum-coded (also known as deviation-coded) contrast scheme,
so that the intercept in the regression is computed at the
grand mean of their levels rather than a reference level. In
addition to these fixed effects, each model also includes a
speaker random intercept; equivalent models were fit with
by-word random intercepts that were dropped because they

captured little variance but made generating predicted values
more complicated. The speaker random intercept is particularly
important, as I discuss in Tamminga (2014), because the
non-independence of observations from the same speaker can
give rise to apparent “repetitiveness” effects without any true
microtemporal clustering involved. Speaker clustering has not yet
been controlled out in the mean rates shown in the figures above,
so it is crucial to fit these models to account for that non-temporal
source of apparent clustering.
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I will focus on modeling the 3-prior subset of the data,
attempting to capture the pattern seen in Figure 3, rather than
modeling the 2-prior or 4-prior sequence analyses. I choose to
focus on the 3-prior subset because the 2-prior sequences do not
offer enough granularity to look at interesting sequence effects,
while the 4-prior sequence analysis has so many prior token
sequence conditions that it leaves us without enough data to get
a confident probability estimate within each condition. I fit three
models to the 3-prior data, which are intended to approximately
map to the two-step approach I just recapped for the descriptive
data analysis, with Model 1 representing the first step and Models
2 and 3 representing the second step and a refinement thereof.
The fixed effects from Model 1 are given in Table 1. Model 1
includes a prior sequence predictor, with a separate level for each
unique 3-prior sequence. The levels of this predictor are reverse
difference coded, so each level is compared to the previous level.
For example, the line in Table 1 labeled “Prior seq. (ing.in.in.T
- in.in.in.T)” represents the test of the difference between the
probability of /ing/ in an /ing-in-in-T/ sequence and an /in-in-
in-T/ sequence. The order of the levels is set to be the same as in
Figure 3, so the coeflicients in the model represent the difference
between the height of each bar and the bar to the left of it (in log-
odds). For example, the coefficient for “Prior seq. (ing.in.in.T -
in.in.in.T)” maps to the estimated difference between the second
blue bar from the left in Figure 3 and the first one on the left.

The control predictors are all significant in the expected
directions, which is good because they were selected to reflect
only known influences on ING. When we turn to the critical
predictor of prior sequence in this model, it is important to recall
that the contrasts are set up so that each level is compared to the
level preceding it. The order of the levels is the same as that in
Figure 3: the levels are sorted first by their prior sequence /ing/
count, then by the 1-back position, then the 2-back position,
reflecting a plausible expectation that more prior /ing/s might
increase the /ing/ rate and, when the number of prior /ing/s is the

TABLE 1 | Model 1: Each 3-prior sequence compared to the previous 3-prior
sequence.

Estimate z-value Pr(>[z|)
Intercept —0.38 —2.17 0.030
Control
Speech rate -0.22 —-3.41 0.001
Lexical frequency —0.45 —7.38 <0.001
Preceding coronal 0.28 4.60 <0.001
Following pause 0.35 4.73 <0.001
Female speaker 0.49 2.99 0.003
Critical
Prior seq. (ing.in.in.T - in.in.in.T) 0.12 0.56 0.575
Prior seq. (in.ing.in.T - ing.in.in.T) 0.05 0.19 0.847
Prior seq. (in.in.ing.T - in.ing.in.T) 0.78 2.81 0.005
Prior seq. (ing.ing.in.T - in.in.ing.T) -0.27 —1.01 0.314
Prior seq. (ing.in.ing.T - ing.ing.in.T) 0.61 2.01 0.045
Prior seq. (in.ing.ing.T - ing.in.ing.T) —0.16 —0.62 0.602
Prior seq. (ing.ing.ing.T - in.ing.ing.T) 0.59 2.40 0.017

same, those /ing/s might be expected to be more powerful if they
are at a closer sequence position to the target. What we see is that
the first three levels do not differ significantly from one another,
but then /in-in-ing-T/ significantly favors /ing/ compared to
/in-ing-in-T/ (B = 0.78, p = 0.005). The next level, /ing-ing-
in-T/, does not differ significantly from /in-in-ing-T/, but it is
significantly lower than /ing-in-ing-T/ (B = 0.61, p = 0.045).
The /ing-in-ing-T/ level in turn does not differ significantly from
/in-ing-ing-T/. But the final level, /ing-ing-ing-T/, does differ
significantly from /in-ing-ing-T/ in favoring /ing/ (B = 0.59, p =
0.017). This set of hypothesis tests is consistent with my proposal
that there is an influence of the 1-back variant but not deeper
(that is, (> 1)-back) order effects. The difference tests that are
equivalent to the difference between each red bar with a blue
bar next to it within a facet in Figure 3—that is, the jump up
in /ing/ probability from 1-back = /in/ to 1-back = /ing/, when
the prior /ing/ count is the same—show evidence that this 1-
back effect is significant. The cases where the 1-back position and
the prior /ing/ count are the same do not show evidence for a
significant difference. Note that none of these predictors directly
test the hypothesis of differences attributable to the prior /ing/
count alone. If there were no prior /ing/ count effect at all, we
would expect the comparisons between levels where the 1-back
value switches from /ing/ to /in/ but the prior /ing/ count goes
up by 1 (as in the comparison between /ing-ing-in-T/ and /in-in-
ing-T/ for example) to show a significant decrease in probability
(essentially “resetting” back to the blue level instead of the red
level). This is not the case. To directly test the idea that there are
two things going on, prior /ing/ count and 1-back effect, I will
need to fit a model containing those two predictors explicitly.
The purpose of Model 1 here is in fact to argue that Model 1 is
not the correct model: that in treating every 3-prior sequence as
a unique context we are missing a generalization about how the
real differences across those sequences can be captured by a pair
of overlapping simpler predictors.

Model 2, accordingly, is congruent with that proposal: instead
of a single predictor with a different level for each prior token
sequence, I include two predictors, one for /ing/ count in the
prior sequence (the equivalent of the facets in Figure 3) and
one for the 1-back variant (the equivalent of the bar colors
in Figure 3). The prior /ing/ count is treated as a categorical
predictor here, again using reverse difference coding for the
contrasts. The results from this model are given in Table 2.
There is a significant effect such that if the 1-back variant is
/ing/, the target is more likely to be /ing/ (8 = 0.68, p <
0.001). While the size of the coeflicient is quite similar to the
comparisons in Model 1 that amounted to a test of a 1-back effect
while controlling prior /ing/ count (which were 0.78 and 0.61),
pooling over all of the prior /ing/ count values approximately
doubles the effect size (z). When we look at the prior /ing/
count predictor, we can see that the difference between 1 and 0
prior /ing/s is not significant but all other comparisons between
levels are. This is consistent with what we saw in Model 1 with
the lack of difference between the first two levels of the prior
sequence predictor.

Model 3 reflects a refinement of Model 2 but keeps the
basic premise of the model. The only difference between Model
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2 and Model 3 is that Model 3 treats prior /ing/ count as a
continuous numeric predictor instead of a categorical predictor.
In one sense this is not the correct thing to do: an integer
count value is a different sort of thing than a continuous
number, and the only options for prior /ing/ count values
are integers. However, what it reflects in this model is the
premise that what were trying to capture with the prior
/ing/ count predictor is something like “how /ing/-ful is the
speaker’s overall recent prior experience,” and we only have a
coarse-grained measure of what is underlyingly a continuous
measure. In theory we might want to look at something
like a weighted moving average over a larger window to get
a more truly continuous measure of “how /ing/-ful is the
speaker’s overall recent prior experience.” The reason I do not
undertake such an analysis is that the problem of interlocutor
interruptions makes it difficult to go very far back. In any
case, Table 3 presents the results of Model 3. It shows that
the 1-back estimate is stable but now the linear prior /ing/
count predictor has a larger effect size and much smaller p-
value than any of the corresponding prior /ing/ count values
in Model 2.

The three models I have fit here are not nested, and therefore
cannot appropriately be compared formally with log-likelihood
tests. However, various model criteria might support an informal
comparison of the models. Each model is simpler than the last
in terms of degrees of freedom (Model 1 d.f. = 14, Model 2 d.f.
=11, Model 3 d.f. =9). As a result, the log likelihood inevitably
goes up, but only slightly: the log likelihoods of the three models
are —1058.2, —1058.8, and —1059.4, respectively. Meanwhile,
the AIC and BIC measures, which penalize extra parameters, go
down from Model 1 (AIC = 2144.5, BIC = 2225.1) to Model 2
(AIC =2139.5, BIC = 2202.8) and from Model 2 to Model 3 (AIC
= 2136.8, BIC = 2188.6). These criteria are in line with the view
that Model 3 is the simplest and strongest model of the prior
sequence effects in this data.

Figure 5 shows a data visualization that is equivalent to the
observed data visualization in Figure 3 but instead represents
the predicted probabilities from Model 3 for a particular male
speaker (PNC PHO06-2-2) whose mean /ing/ rate is near the
dataset grand mean, for a token that neither follows a coronal
nor precedes a pause and has a scaled log vowels per second of 0
and a scaled Lgl0CD value of 0. This illustrates that this model
is producing predictions that are a good match for the empirical
patterns we saw in section 2.3—these patterns remain when we
control for speech rate, frequency, phonological context, speaker
gender, and speaker identity clustering.

3. PRIOR SEQUENCES IN SIMULATED
DATA

The empirical data in section 2.3 showed the same pattern at
three lengths of N-prior sequence: the probability of /ing/ at a
target is affected by both the total number of /ing/ instances in
the N-prior sequence and the variant used at the 1-back position
(that is, the token that would normally be treated as the prime),
without evidence to suggest that it is influenced by the order of

TABLE 2 | Model 2: Categorical prior /ing/ count and 1-back.

Estimate z-value Pr(>|z|)
Intercept —0.68 —3.62 <0.001
Control
Speech rate -0.22 —3.46 0.001
Lexical frequency —0.45 —7.35 <0.001
Preceding coronal 0.28 4.58 <0.001
Following pause 0.35 4.72 <0.001
Female speaker 0.49 2.99 0.003
Critical
1-back /ing/ 0.68 4.07 <0.001
Prior /ing/ count (1-0) 0.20 1.12 0.262
Prior /ing/ count (2-1) 0.38 2.15 0.032
Prior /ing/ count (3-2) 0.47 2.32 0.020
TABLE 3 | Model 3: Continuous prior /ing/ count and 1-back.
Estimate z-value Pr(>|z|)
Intercept —-1.19 —6.38 <0.001
Control
Speech rate -0.22 —3.50 <0.001
Lexical frequency —0.45 —7.31 <0.001
Preceding coronal 0.28 4.60 <0.001
Following pause 0.35 4.69 <0.001
Female speaker 0.49 3.03 0.002
Critical
1-back /ing/ 0.67 4.06 <0.001
Prior /ing/ count 0.35 3.79 <0.001

prior observations at an N-back position of N greater than 1. The
statistical modeling in section 2.4 supported that interpretation
of the data while controlling for other known predictors of ING.
But what does this result actually tell us about the source of
persistence? In this section I aim to show that this type of analysis
can move us toward an answer on a problem that has seemed
intractable for some time.

In this section I use a series of simple Bernoulli process
simulations to explore the potential processes generating
different patterns of target probabilities based on prior token
sequences. It should be emphasized that this is a preliminary
tour through what I believe could become a fruitful area of
research more broadly. The use of computational simulations
in sociolinguistics is not new, but most simulations are
simulations of communities, such as agent-based models
of the spread of sound change through a population over
generations. The simulations I use here are focused on a
microtemporal level and are conceptually very simple: I
model the production of variation essentially as strings of
coin flips at different probabilities, then analyze the generated
data in the same way as I analyzed the corpus ING data.
I compare the output of different simulated models to
the corpus results from the previous section as a way of
investigating the plausibility of different processes having
generated the data. I particularly pay attention to the ways
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in which the predictions from models of baseline deflection
and models of sequential dependence are dissociated under
various conditions. This is of interest because it motivates
the study of multiple token sequences in contrast to the
usual persistence approach (looking at only one prior
token) that does not distinguish between baseline deflection
and sequential dependence. While I will not be able to
conduct an exhaustive search of the many-dimensional
parameter space opened up by these models, my preliminary
explorations here will suggest that a model combining
both a sequential dependence mechanism and a baseline
deflection mechanism produces patterns that most closely and
consistently resemble the results of the corpus data analysis
in section 2.3.

3.1. Simulation Preliminaries

For clarity of exposition with a sociolinguistic audience in mind,
I will discuss the models here as if they involved speakers
producing the ING variable: for instance, I will describe a
Bernoulli trial® with an outcome of 1 as an instance of the /ing/
variant. I will also present visualizations of the model outputs
using this framing around ING, making the graphs directly
visually comparable to the graphs in section 2.3. It should, of
course, be borne in mind that everything happening in these
simulations is merely lists of probabilities and 0s and 1s; nothing
about them is specific to ING (or to sociolinguistic variation, or,
indeed, to linguistic behavior).

°A Bernoulli trial is simply a random variable with only two possible outcomes,
sometimes treated as “success” and “failure.” The probability of success and
probability of failure add up to 100%. A familiar example of a Bernoulli trial is
a coin flip.

Each simulation involves the same set of simulated “speakers,”
whose identity is tracked during each run of the simulation.
Each speaker has some baseline probability of producing the
/ing/ variant (vs. the /in/ variant). These baseline probabilities
are taken from the observed corpus data so that the overall
distribution of speakers and their linguistic behavior resembles
that of the real data. In the corpus 3-prior dataset, there are 118
speakers who each produce on average 34 observations. Of these,
17 speakers end up contributing only /ing/ or only /in/ outcomes
to the 3-prior data, but only because of exclusions: none of these
are speakers whose ING behavior is categorical in the larger data
set. However, in the interest of avoiding simulated speakers with
categorical baselines, I exclude these 17 speakers in order to end
up with 101 simulated speakers with non-categorical baselines.
The distribution of by-speaker baseline /ing/ probabilities is
shown in Figure 6. Each of the simulated speakers will produce
an ordered string of 20 “ING tokens” (Bernoulli trials) with the
speaker’s /ing/ probability as the outcome probability of each
trial. Since the first three trials from each speaker are excluded
from analysis because they do not have enough previous trials,
each speaker contributes 17 observations to the simulated data
set, resulting in a total of 1717 observations in each simulated
data set (compared to 2300 in the observed data at 3-prior depth).
I calculate the observed proportion of 0s and 1s conditioned on
each preceding trial sequence, then store these values. The entire
run is then repeated 500 times and the distribution of results from
those runs is presented graphically. I also fit a linear mixed effects
regression to each simulation run, with predictors equivalent to
the critical predictors from Model 3 from the corpus data analysis
plus the speaker random effect (the control predictors in Model
3 are not relevant for the simulated data). I extract the 1-back
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FIGURE 6 | Observed by-speaker probabilities from corpus data, used for
simulated speaker baselines.

and prior /ing/ count predictor z-values (effect sizes) and p-values
from each run over the course of the 500 runs in order to find
out how often each simulation produces statistically significant
effects aligned with the corpus results.

The series of simulations that I will compare across the
following subsections is built up as follows. The first simulation,
in section 3.2, contains no microtemporal clustering: I call
this the null simulation. Each subsequent simulation has some
source of microtemporal clustering added in. In the sequential
dependence simulations in section 3.3, the built-in clustering
mechanism that is added to the null simulation is that the
outcome of each trial affects the outcome probability for the
next trial. In the baseline deflection simulations in section 3.4,
a different built-in clustering mechanism is added to the null
simulation: each speaker has two or more states with distinct
target probabilities that are above and below the speaker’s
characteristic probability. These create the possibility of baseline
deflection as the speaker moves between different states and thus
different target probabilities; a Markov chain model generates
the sequences of states that the speakers move through. Finally,
in section 3.5, both of these distinct clustering mechanisms are
included in the simulation at the same time. In all simulations, the
data is generated by sampling the binomial distribution randomly
at each trial (at the specified probabilities) using the bi nom
package in R.

3.2. The “Null” Simulation: No

Microtemporal Clustering
The first thing I do is show what the N-prior sequence effects
look like in data that has speaker clustering (speakers differ
in their characteristic rates) but no form of microtemporal
clustering (that is, neither sequential dependence nor baseline
deflection, with no intraspeaker probability fluctuation). I call
this the “null” simulation because of the lack of critical clustering
structure. This simulation is important because it would be
easy to mistake speaker clustering for within-speaker temporal
structure. This will also be a starting point for the creation of
various microtemporally structured probability patterns that I
will use in the subsequent simulations.

The speaker baselines in the null simulation are as just
discussed in section 3.1 and shown in Figure 6. The results of

the null simulation are shown in Figure 7. What is immediately
apparent is that the effect of the prior /ing/ count seen in section
2.3 arises from speaker clustering without any within-speaker
microtemporal structure. This makes sense: without controlling
for speaker clustering, a target preceded by three /ing/ outcomes
is more likely to be a target from a high-/ing/ speaker and
therefore more likely to itself have an /ing/ outcome. While there
would be an apparent 1-back effect if we looked only at the 1-
back prior token depth (the red boxes are on average higher than
the blue boxes), we do not see any 1-back effect beyond that
generated by the prior /ing/ count, which is also as expected. The
regression results from the simulations confirm that the 1-back
effect is not present (a significant positive effect on 1.8% of trials
and a significant negative effect on 2.8% of trials).

In theory, including random speaker intercepts in a linear
mixed effects model of each simulation’s data should eliminate
the visually-apparent /ing/ count effect. The statistical model
values show that actually the models end up somewhat anti-
conservative: there is a significant positive effect of prior /ing/
count on 11.4% of runs. Because the structure of the model
does not include any possible true microtemporal source of this
effect, we can be confident that these findings actually arise from
incompletely controlled speaker clustering ', This should be
kept in mind when interpreting the other models; I will compare
the observed number of significant prior /ing/ count effects to
this rate 1.

3.3. Simulating Sequential Dependence

I now build on the null simulation by adding the first candidate
source of within-speaker microtemporal structure: sequential
dependence. This simulation is identical to the previous one
except that, within each speaker, the outcome probability of
each Bernoulli trial is slightly influenced by the outcome of the
previous trial. I set the probability adjustment to 0.05: if the prior
outcome was a 1, I add 0.05 (out of 1) to the target probability,
and if the prior outcome was a 0, I subtract 0.05 from the target
probability. The probability adjustment is always done to the
speaker’s base probability, so the probabilities don’t snowball and
go out of bounds. Notice that this is equivalent to each speaker
having two states with different /ing/ probabilities, with the state
they are in on each trial determined by the ING outcome of the
previous trial. Any number of more sophisticated adjustments to
the baseline could be used to generate the exact /ing/ probabilities
for these states; the &= 0.05 adjustment is simple and transparent
but is not intended to involve any substantive claim about how
these probabilities are or should be adjusted.

The results we see in Figure 8 bear a resemblance to the
observed data in Figure 3. We see what looks like the prior
/ing/ count effect, although the null simulation made it clear
that this can derive from speaker-level clustering. We also see

10 A “true” null simulation would be one that simply contains 1717 Bernoulli trials
at a single probability, which should produce a spurious prior /ing/ count effect
only 5% of the time.

1Of course, the empirical data should also be reassessed in light of this finding,
but because the prior /ing/ count p-value from Model 3 is very low, I will continue
with the assumption that this effect is unlikely to be due to chance even with the
elevated probability of a spurious result.
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FIGURE 8 | Results of 500 runs of a sequential dependence simulation with a 0.05 boost.

an effect where the red boxes are higher than the blue boxes  between the /ing-in-in-T/ and /in-ing-in-T/ conditions in the
within each facet: the only-1-back effect. This model produces  1/3 ing facet, and between the /ing-in-ing-T/ and /in-ing-ing-T/
a significant positive 1-back effect on 73.4% of runs, but a  conditions in the 2/3 ing facet. These differences result from
significant positive prior /ing/ count effect only 8.6% of the  small biases in which types of speakers produce which prior
time—the latter being slightly lower than the false positive rate  token sequences 2. Consider the 2/3 /ing/ sequences. If a
in the null simulation. In other words, all of the apparent  speaker has a low /ing/ baseline probability, they are slightly
/ing/ count effect here is attributable to the speaker rather than

temporal clustering. Interestingly, there is also a small difference  12Thanks to Dan Lassiter for identifying the source of these differences.
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more likely to produce an /ing/ after another /ing/ (as in /in-
ing-ing-T/ due to the facilitating effect of the first /ing/) but
less likely to spontaneously produce /ing/ twice apart from
that facilitating influence, as in /ing-in-ing-T/. In contrast,
it is somewhat “easier” for a high-/ing/ speaker to produce
the two /ing/s spontaneously. As a result, /ing-in-ing-T/ prior
sequences are slightly more likely to come from high-/ing/
speakers, and subsequently slightly more likely to result in
an /ing/ outcome.

3.4. Simulating Baseline Deflection

In the next set of simulations, I investigate baseline deflection
instead of sequential dependence. I remove from the simulations
the mechanism of adjusting the target probability based on
the prior outcome. Instead, I give each speaker two target
probabilities that average to the same characteristic probability as
they had in the previous simulations, when possible. Specifically,
I add and subtract 0.3 from the baseline, so for example a
speaker with an overall baseline of 0.4 will have a state A /ing/
probability of 0.1 and a State B /ing/ probability of 0.7. When this
calculation would put the probabilities outside of the 0 to 1 range,
I replace the value with 0 or 1 accordingly—so, speakers can have
a categorical behavior in one of their two states. The speaker then
switches back and forth between states A and B over stretches
of trials.

The state-switching behavior in the simulation is generated
stochastically using a Markov process: each state has a transition
probability reflecting the likelihood that the process will switch
to the other state for the next trial, but there is no further
time dependence. I use symmetrical transition probabilities
throughout the simulations I present here (so the probability
of switching from A to B is the same as the probability of
switching from B to A) but will present several different transition
probabilities reflecting different degrees of state “stickiness.” The
use of the Markov process to generate the state switches is not
intended as a claim that this kind of state switching is actually
generated stochastically. On the contrary: I expect that changes in
state would reflect responses to changes in the real world context
where the speech is taking place, such as changes in topic, context,
or interlocutor, or changes in the speaker’s internal state, such
as shifts in stance, attitude, or attention. From the perspective of
the analyst, however, such contextual changes are unpredictable
and therefore can be modeled as a stochastic process 3. Once the
sequence of states has been determined, there is a Bernoulli trial
with the probability of success equal to the output probability
at each trial’s predetermined state, which produces the /ing/ or
/in/ variant as in the previous simulations. The idea is to produce
a model capturing the intuition that when two trials are closer
together they are more likely to be in the same state, and therefore
more likely to have the same outcome. The most important
property of the model is simply that the state sequences are
generated independent of the outcomes at each trial.

This approach to the simulation of baseline deflection offers
different parameters that could be adjusted to generate a very
wide range of possible outcomes. Here I present versions of the

3Thanks to Kory Johnson for this suggestion and for proposing the use of Markov
processes for this purpose.

simulation at four different between-state transition probabilities.
I do not change any other parameters: I hold the number of states
(two) and the size of the difference between them for each speaker
constant and do not allow for one state to be stickier than the
other or for the stickiness of states to change over time.

When the transition probability is low, so the states are quite
sticky, the result is a pattern that reflects the continuous effect of
a prior token sequence such that the more prior /ing/s there are,
and the closer in the sequence they are to the target, the higher
the observed /ing/ rate in the target will be. This is shown in
Figure 9 for a model where the transition probability out of both
states is 10%. I call this a continuous-N-back effect, in contrast
to an only-1-back effect. In the regression models extracted over
the runs of the simulation, this simulation produces a significant
positive /ing/ count effect on 99.8% of runs, and a significant
positive 1-back effect on 71% of runs. This seems promising, but
recall that the model is not actually set up to detect a difference
between a continuous-N-back effect and an only-1-back effect;
visual inspection of the output in Figure 9 suggests that this is
a somewhat different pattern than what we see in the corpus
data. In a model where the transition probability is 50% for both
states, so speakers are equally likely to stay in their current state
or switch to the other state, then both the 1-back and prior /ing/
count effects are lost: there is a significant positive /ing/ count
effect on 10.8% of runs, again comparable to the null rate, and a
significant positive 1-back effect on 1.4% of runs. The output of
the model is not shown here but is visually identical to that of the
null model.

It is also possible to get a result that looks like the 1-back
result from the sequential dependence model. This arises when
the transition probability for both states is just shy of 50%, so a
speaker is a little more likely to stay in their current state than
not: Figure 10 shows the results when the transition probability
is 40%. This model produces a significant positive 1-back effect
on 36.6% of runs, which is not trivial but also not as good as the
sequential dependence model where 73.4% of runs produce a 1-
back effect. Like the sequential dependence model, though, this
simulation mostly loses the significant prior /ing/ count effect,
producing a significant positive /ing/ count effect on only 17.8%
of runs, not a very big improvement over the 11.4% positive
results in the null simulation.

Interestingly, these simulations are also able to reverse
the direction of at least the 1-back pattern. Figure 11 shows
that as soon as the transition probability in each state is
over 50%, the direction of the 1-back effect reverses, so that
at each value of the prior token count, the contexts where
the prior /ing/s were further away have the higher /ing/
probability, which is not as we would generally expect given
the usual persistence pattern. The statistical models confirm
this reversal: on 67.6% of runs of this simulation there is
a significant negative 1-back effect. This reversal reflects the
fact that when the transition probability is over 50%, two
sequentially adjacent tokens are actually less likely to occur
in the same state, rather than more likely, because from
token to token the state is more likely to switch than to
stay the same. This highlights that the argument in favor of
baseline deflection as a source of repetitiveness does contain
some assumptions about the time course of baseline deflection,
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FIGURE 10 | Results of 500 runs of a baseline deflection model with between-state transition probability of 0.4.

namely that the window over which the baseline might
shift is sufficiently wide that in fact two tokens occurring
sequentially are more likely to be produced in the same
window than not. It is also worth noting that there is an
attested pattern of anti-persistence in the literature, which
Szmrecsanyi (2006) terms the horror aequi effect. This particular
simulation gives us one way of understanding how such an effect
could arise.

3.5. Combining Sequential Dependence

and Baseline Deflection

Both of the simulation types discussed so far have drawbacks
in terms of the likelihood that their microtemporal clustering
model might have produced the corpus ING data discussed in
section 2.3. The sequential dependence model nicely produces an
only-1-back effect reminiscent of the distinct pattern seen in the
corpus data, but produces a prior /ing/ count effect only at chance
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rates. The baseline deflection models can clearly produce a wide
range of patterns. But in the case where a baseline deflection
model does consistently give rise to the desired prior /ing/
count effect (the version with the lowest transition probability),
it also produces a continuous-1-back pattern rather than an
only-1-back pattern.

There are two model classes under consideration here,
and two empirical effects we desire to produce with the
models. It seems that each model is better suited to producing
one of the empirical effects: most versions of the baseline
deflection models produce an /ing/ count effect, and the
sequential dependence model produces an only-1-back effect.
An appealing next step, then, is to combine the models
to create a simulation that has both sequential dependence
and baseline deflection built in. In this simulation, the state-
shifting behavior is first generated using a Markov process
as in the baseline deflection models; then the coin-flipping
procedure takes place with the sequential dependence boosting
behavior built in. The results of a set of simulations of this
type with transition probability of 0.1 (as in the baseline
deflection model of Figure9) and a boost of 0.05 (as in
the sequential dependence model of Figure8) are shown
in Figure 12.

This set of simulations now has several desirable features. The
basic pattern of results shown in the graph more closely resembles
an only-1-back effect than a continuous-1-back effect, making
it an improvement over the component baseline deflection
model alone; this is achieved through the inclusion of the
sequential dependence boost. In terms of the model fit, we get
a significant /ing/ count term on 99.2% of runs and a significant
1-back term on 99.6% of runs. By combining these two sources
of microtemporal clustering into a single model—in a way

that is consistent with the existence of multiple independently
motivated phenomena that we expect to shape linguistic behavior
in speech—we are able to more consistently arrive at an outcome
that resembles the corpus data.

4. DISCUSSION

The sizable corpus sociolinguistic literature on persistence has
typically asked how a single prior instance of a variable affects
the outcome in a target instance of the same variable. In the
first part of this paper, I extended this view of persistence to
ask what effect sequences of multiple prior tokens have on the
outcome of a target token. The descriptive results in section
2.3 indicate that this analysis of sociolinguistic sequences can
reveal additional microtemporal structure that is not visible when
we look only at a single prior token. More specifically, there
are two aspects of the corpus ING results that are of interest
and would not be detectable with the 1-back information only.
First, there is a cumulative effect of how many /ing/ tokens
occur in the prior token sequence, regardless of their position.
This effect goes beyond the clustering we expect merely from
differing speaker baselines. Second, there is a distinct effect of
what variant occurred in the 1-back position. If we look only
at the previous token, we would not be able to see either effect:
we could not tell the difference between 1/3 and 2/3 of the prior
tokens being /ing/ if we had only one token, nor would we be able
to tell that the order of previous tokens is irrelevant beyond the
1-back position.

In the second part of the paper, I have suggested that this
enriched view of the microtemporal structure of sociolinguistic
repetitiveness can bring new evidence to a longstanding debate
about the nature of that repetitiveness. The observation of
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FIGURE 12 | Model with both baseline deflection (transition probability = 0.1) and sequential dependence (boost = 0.05).

persistence in corpus data has often been interpreted as  sequential dependence model is that it does not reliably produce
reflecting sequential dependence, where the outcome of a  the /ing/ count effect. It is possible to build a baseline deflection
prior instance of the variable directly influences the target  model that mimics the output of this sequential dependence
outcome. On the other hand, it is often objected that persistence ~ model (as in Figure 10), but such a model ends up with the same
might arise as a result of baseline deflection, where sequential ~ drawback as the sequential dependence model in that it also does
tokens are more likely to occur under similar contextual not reliably produce the /ing/ count effect. On the other hand,
circumstances and therefore more likely to have the same  a baseline deflection model with a relatively low between-states
outcome. To clarify what these two types of microtemporal transition probability of 0.1 has the advantage of almost always
clustering predict, I built a number of simulations in which  producing a significant /ing/ count effect as desired. However,
sociolinguistic variation between /ing/ and /in/ is modeled it does not produce the same kind of separation between 1-
using Bernoulli processes. In these simulations, sequential  back (and only 1-back) conditions as the corpus data exhibits.
dependence is modeled by allowing the outcome of one Instead, it produces a continuous effect of recent /ing/ tokens:
Bernoulli trial to adjust the outcome probability on the next  the more /ing/s and the closer those /ings/ in the prior token
Bernoulli trial, while baseline deflection is modeled by creating  sequence, the greater the likelihood of /ing/ in the target (as seen
pre-established sequences of states with different outcome  in Figure 9). While we might have expected such a continuous-
probabilities but then not making reference to the actual  N-back effect on intuitive grounds, it does not actually accord

outcomes across trials. with the pattern seen in the corpus data. In section 3.5, I
The sequential dependence model produces one of the two  showed that combining the sequential dependence and baseline
central effects of interest in the empirical data, the only-1-  deflection clustering mechanisms into a single model produces

back pattern (seen in Figure 8). From a mechanical point of a surface pattern that is a near match for the corpus data, as
view, this can be understood straightforwardly: the sequential ~ well as nearly-always significant critical main effects from the
dependence models were built such that the target trial is only  regression models.

given information about the outcome of the immediately prior That the combined simulation seems to most successfully
trial, not of previous trials. Of course, nothing would prevent  match the corpus data is an appealing result because we have
us from building a sequential dependence model that adjusts  independent evidence for the real-world phenomena that might
the target trial probability based on the outcome information  produce both types of microtemporal clustering. As I discussed in
from several previous trials. The corpus result, then, is not  section 1.1, there are multiple candidate phenomena that might
trivial; the usefulness of a sequential dependence model that only  give rise to each of the two types of microtemporal clustering
tracks a single prior token suggests that it may be worthwhile  under consideration here. Priming is the most commonly
to investigate comparable real-world processes that operate over  appealed-to phenomenon generating sequential dependence, but
long distances in terms of time yet a limited window in terms  other sources of true sequential dependence are possible. Style
of prior instances of the linguistic variable. A downside of the  shifting, broadly construed, is the most frequently suggested
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phenomenon that could give rise to co-occurrence through
baseline deflection. To reiterate the point in section 1.1, nothing
in this paper should be taken as evidence for or against particular
mappings of clustering types to real-world interpretations.
However, the fact that phenomena that could produce both
clustering types unquestionably exist means that a model in
which multiple phenomena are at play is an entirely plausible
one. For example, were we to think that baseline deflection arises
from contextual style-shifting while sequential dependence arises
from priming of a recently-used linguistic option, we might
find it entirely unsurprising that speakers are both style-shifting
and exhibiting priming at the same time: there is plenty of
evidence for the existence of both style-shifting and priming
in human linguistic behavior. Indeed, to conclude that one of
those phenomena was not at play might be even more surprising.
The same logic applies to other possible interpretations of
the sources of microtemporal clustering; the current study
has nothing to say about where sequential dependence and
baseline deflection come from, although conceivably some
outgrowth of this approach could be used to probe for more
precise quantitative properties of priming and style-shifting in
future work.

Of course, the analyses and results of this paper are
far from conclusive; they are best treated as a promising
methodological demonstration inviting further research. One
possibility that should be kept in mind is that the particular
properties of the corpus results themselves could have occurred
by chance. I have explored the simulations with a view to
identifying a model that could plausibly have generated the
corpus results as observed. But given the role of chance as
well as possible uncontrolled factors in conversational speech
data, one possibility is that the corpus results themselves
are a chance output of a model like one of the models I
have deemed less successful. Even if the pattern of results
seen here is not due to chance, it might still be true that
the pattern reflects something specific about the particular
conversational interactions in the PNC data, or something
unique to Philadelphia English, or something about the ING
variable itself. We should be cautious to not reify or over-
interpret the “prior /ing/ count” and “only-1-back” effects as I
have described them here. The basic persistence effect has been
found repeatedly across many different studies and therefore
is seen as demanding a relatively general explanation; no deep
investment in general explanations of these longer sequence
effects should be made unless they can also be established as
more generally recurring properties of sociolinguistic sequences.
The most important step toward building confidence in this
pattern of results will be to repeat the analysis on other ING
data sets, other English variables besides ING, and ideally other
languages entirely.

There are also many possible analyses that this paper has
not undertaken. My preliminary explorations of the simulations
have barely broached the many-dimensional parameter space
afforded even by the simple models used here. Furthermore,

the models could be enriched in many ways. While it would
probably not be useful to simulate all of the possible details
of ING variation simultaneously, one particular factor that
has not played a role in any of the analyses thus far is
the amount of time that elapses between each token. In
previous work I have shown that the decay of ING persistence
is very slow (Tamminga, 2014), which suggests that decay
is unlikely to play a major modulating role in the effects
we see when we abstract away from the exact duration of
the time between a prior token and a target. An additional
practical consideration in omitting temporal lag as a factor in
the corpus analysis is that it is not, at first glance, obvious
how best to combine the different prior token sequences
with all of the possible decay relationships between them.
However, future work might explore ways of integrating
a continuous time dimension into the analysis of prior
token sequences.

The goal of this paper was to show that there is value in
the study of sociolinguistic sequences and the microtemporal
structure they reveal. Sequential dependence and baseline
deflection seemed inextricably intertwined in the 1-prior view,
and indeed every single simulation in section 3 produces an
overall difference between 1-prior conditions that would be
counted as a finding of persistence under traditional quantitative
approaches to persistence. Through the simulations, though, we
learned that a longer time window can give us a more nuanced
picture of what speaker repetitiveness looks like, with baseline
deflection and sequential dependence producing outcomes that
can be seen to be different when we look at longer prior
sequences. We have already made much progress through
the study of persistence at the 1-prior depth; as Szmrecsanyi
concludes, “persistence is actually sufficiently patterned and
predictable to help us understand better the linguistic choices
that speakers make” (Szmrecsanyi, 2006, p. 6). The combined
corpus analysis and simulations here suggest that this sentiment
is as true of longer sequences as it is of prime-target pairs.
The potential in modeling longer sequences can be seen from
this study regardless of whether the particular analyses offered
here are correct. We have not yet reached the limits of what
we can learn using persistence, 1-back or N-back, as a tool for
the investigation of sociolinguistic variation. By investigating
quantitative patterns at the microtemporal level, we can learn
more about what factors are at play in the production of
sociolinguistic variation.
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There is a growing trend in regional dialectology to analyse large corpora of social media
data, but it is unclear if the results of these studies can be generalized to language as
a whole. To assess the generalizability of Twitter dialect maps, this paper presents the
first systematic comparison of regional lexical variation in Twitter corpora and traditional
survey data. We compare the regional patterns found in 139 lexical dialect maps based
on a 1.8 hillion word corpus of geolocated UK Twitter data and the BBC Voices dialect
survey. A spatial analysis of these 139 map pairs finds a broad alignment between
these two data sources, offering evidence that both approaches to data collection allow
for the same basic underlying regional patterns to be identified. We argue that these
results license the use of Twitter corpora for general inquiries into regional lexical variation
and change.

Keywords: dialectology, social media, Twitter, British English, big data, lexical variation, spatial analysis,
sociolinguistics

INTRODUCTION

Regional dialectology has traditionally been based on data elicited through surveys and interviews,
but in recent years there has been growing interest in mapping linguistic variation through
the analysis of very large corpora of natural language collected online. Such corpus-based
approaches to the study of language variation and change are becoming increasingly common
across sociolinguistics (Nguyen et al., 2016), but have been adopted most enthusiastically in
dialectology, where traditional forms of data collection are so onerous. Dialect surveys typically
require fleldworkers to interview many informants from across a region and are thus some of the
most expensive and complex endeavors in linguistics. As a result, there have only been a handful
of surveys completed in the UK and the US in over a century of research. These studies have been
immensely informative and influential, shaping our understanding of the mechanisms of language
variation and change and giving rise to the modern field of sociolinguistics, but they have not
allowed regional dialect variation to be fully understood, especially above the levels of phonetics
and phonology. As was recently lamented in the popular press (Sheidlower, 2018), this shift from
dialectology as a social science to a data science has led to a less personal form of scholarship, but it
has nevertheless reinvigorated the field, democratizing dialectology by allowing anyone to analyse
regional linguistic variation on a large scale.

The main challenge associated with corpus-based dialectology is sampling natural language in
sufficient quantities from across a region of interest to permit meaningful analyses to be conducted.
The rise of corpus-based dialectology has only become possible with the rise of computer-mediated
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communication, which deposits massive amounts of regionalized
language data online every day. Aside from early studies based
on corpora of letters to the editor downloaded from newspaper
websites (e.g., Grieve, 2009), this research has been almost
entirely based on Twitter, which facilitates the collection of
large amounts of geolocated data. Research on regional lexical
variation on American Twitter has been especially active (e.g.,
Eisenstein et al., 2012, 2014; Cook et al., 2014; Doyle, 2014;
Jones, 2015; Huang et al.,, 2016; Kulkarni et al.,, 2016; Grieve
et al, 2018). For example, Huang et al. (2016) found that
regional dialect patterns on American Twitter largely align
with traditional dialect regions, based on an analysis of lexical
alternations, while Grieve et al. (2018) identified five main
regional patterns of lexical innovation through an analysis of the
relative frequencies of emerging words. Twitter has also been
used to study more specific varieties of American English. For
example, Jones (2015) analyzed regional variation in African
American Twitter, finding that African American dialect regions
reflect the pathways taken by African Americans as they migrated
north during the Great Migration. There has been considerably
less Twitter-based dialectology for British English. Most notably,
Bailey (2015, 2016) compiled a corpus of UK Twitter and mapped
a selection of lexical and phonetic variables, while Shoemark
et al. (2017) looked at a Twitter corpus to see if users were more
likely to use Scottish forms when tweeting on Scottish topics. In
addition, Durham (2016) used a corpus of Welsh English Twitter
to examine attitudes toward accents in Wales, and Willis et al.
(2018) have begun to map grammatical variation in the UK.

Research in corpus-based dialectology has grown dramatically
in recent years, but there are still a number of basic questions
that have yet to be fully addressed. Perhaps the most important
of these is whether the maps of individual features generated
through the analysis of Twitter corpora correspond to the maps
generated through the analysis of traditional survey data. Some
studies have begun to investigate this issue. For example, Cook
et al. (2014) found that lexical Twitter maps often match the
maps in the Dictionary of American Regional English and Urban
Dictionary (see also Rahimi et al.,, 2017), while Doyle (2014)
found that Twitter maps are similar to the maps from the Atlas
of North American English and the Harvard Dialect Survey.
Similarly, Bailey (2015, 2016) found a general alignment for a
selection of features for British English. While these studies have
shown that Twitter maps can align with traditional dialect maps,
the comparisons have been limited—based on some combination
of a small number of hand selected forms, restricted comparison
data (e.g., dictionary entries), small or problematically sampled
Twitter corpora (e.g., compiled by searching for individual
words), and informal approaches to map comparison.

A feature-by-feature comparison of Twitter maps and survey
maps is needed because it is unclear to what extent Twitter
maps reflect general patterns of regional linguistic variation. The
careful analysis of a large and representative Twitter corpus is
sufficient to map regional patterns on Twitter, but it is also
important to know if such maps generalize past this variety,
as this would license the use of Twitter data for general
investigations of regional linguistic variation and change, as well
as for a wide range of applications. The primary goal of this study

is therefore to compare lexical dialect maps based on Twitter
corpora and survey data so as to assess the degree to which these
two approaches to data collection yield comparable results. We
do not assume that the results of surveys generalize; rather, we
believe that alignment between these two very different sources
of dialect data would be strong evidence that both approaches
to data collection allow for more general patterns of regional
dialect variation to be mapped. A secondary goal of this study
is to test how consistent dialect patterns are across different
communicative contexts. Corpus-based dialectology has shown
that regional variation pervades language, even in the written
standard (Grieve, 2016), but we do not know how stable regional
variation is on the level of individual linguistic features. To
address these gaps in our understanding of regional linguistic
variation, this paper presents the first systematic comparison
of lexical dialect maps based on surveys and Twitter corpora.
Specifically, we report the results of a spatial comparison of
the maps for 139 lexical variants based on a multi-billion-word
corpus of geocoded British Twitter data and the BBC Voices
dialect survey.

BRITISH DIALECTOLOGY

Interest in regional dialect variation in Great Britain is
longstanding, with the earliest recorded comments on accent
dating back to the fifteenth and sixteenth centuries (Trevisa,
1495). The study of regional variation in lexis grew in popularity
during the late eighteenth and early nineteenth centuries, with
dialect glossaries being compiled across the country, especially
in Yorkshire and the North, in order to preserve local lexis,
which was assumed to be going extinct. Most notably, Wright’s
(1898) English Dialect Dictionary, which drew on many of
these glossaries, detailed lexical variation across the British Isles,
especially England. The earliest systematic studies of accents in
England also began around this time (see Maguire, 2012).

It was not until the Survey of English Dialects (SED) (Orton,
1962), however, that a full survey of dialect variation across
England was attempted. Data was collected between 1950 and
1961 in 313 primarily rural locations using a 1,322 question
survey, which included 730 lexical questions. Respondents,
typically older males who had lived most of their lives in that
location, were interviewed face-to-face by a fieldworker. The
rest of the UK was covered separately. Scotland and Northern
Ireland, along with the far north of England, were mapped by
The Linguistic Survey of Scotland, which began collecting data
in 1952 through a postal questionnaire (Mather et al., 1975).
This survey also mapped regional variation in Scottish Gaelic
(O’Dochartaigh, 1994). Finally, both Welsh (Jones et al., 2000)
and English (e.g., Parry, 1999) in Wales were mapped in the late
twentieth century.

With the rise of sociolinguistics in the 1960s and 1970s,
work on language variation and change in the UK shifted focus
from regional patterns to social patterns, generally based on
interviews with informants from a range of social backgrounds
from a single location. Interest in regional dialects, however,
began to re-emerge recently. Llamas (1999) developed the Survey
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of Regional English (SuRE) to collect data from across levels
of linguistic analysis. A national survey was never conducted,
but the SURE method was adopted for research in individual
locations, including by Llamas (2007) in Middlesbrough, Asprey
(2007) in the Black Country, and Burbano-Elizondo (2008) in
Sunderland. In addition, the lexical component of the SuRE
system was adapted for a national survey conducted as part of
the BBC Voices project (Elmes, 2013). BBC Voices was designed
to provide a snapshot of modern language use in the UK and
employed various methods for data collection, including group
interviews (Robinson et al., 2013), an attitudinal questionnaire
(Bishop etal., 2005), and a web-based survey to collect lexical data
based on SuRE. This lexical data, discussed below, is the basis for
the present study. It has previously been subjected to statistical
analysis (Wieling et al., 2014), which found evidence for four
dialect regions (Southern England, Northern England, Scotland,
and Northeast Scotland) based on a multivariate analysis of the
maps for the top 10 variants of each of the 38 alternations.
In addition to the BBC Voices survey, three other UK dialect
surveys have recently come online. In 2007, Bert Vaux initiated
the Cambridge online survey of World Englishes, which collects
data on 31 alternations of various types from across the world,
including the UK. MacKenzie et al. (2015) collected data on 31
alternations of various types from across the UK, with the help
of undergraduate Linguistics and English Language students at
the University of Manchester. Finally Leemann et al. (2018) used
a mobile phone app to collect data on 26 alternations, primarily
related to pronunciation, from over 47,000 speakers from over
4,900 localities from across the UK.

There is also a long history of corpus-based research in British
dialectology. Most research on Old and Middle British dialects
is essentially corpus-based, as it relies on samples of historical
writing (e.g., Brook, 1963), but more specifically dialect corpora
were compiled to map regional patterns in contemporary British
English in the 1970s and 1980s. The first was the 1 million
word Helsinki Corpus of British English Dialects (Ihalainen
et al, 1987), designed as a grammatical supplement to the
SED. Informants were recorded in their home and encouraged
to talk about any subject they pleased to elicit naturalistic
speech. The second was the 2.5 million word Freiburg Corpus
of English Dialects, which contains transcriptions of interviews
with older informants telling their life stories to fieldworkers
(see Anderwald, 2009; Szmrecsanyi, 2013). Because these datasets
consist of transcriptions of interviews elicited from a small
number of informants, they fall in between traditional dialect
surveys and the large natural language corpora that are the focus
of this study.

Despite this long tradition of research, relatively little is known
about regional linguistic variation in contemporary British
English, especially compared to American English and especially
in regard to lexical and grammatical variation. In large part this
is because so few researchers have yet to take advantage of the
immense social media corpora that can now be compiled and
whose popularity is driving dialectology around the world. In
addition to comparing lexical variation in corpora and surveys,
a secondary goal of this study is therefore to encourage the
adoption of computational approaches in British dialectology.

MATERIALS AND METHODS
BBC Voices Dataset

The regional dialect survey data we used for this study was drawn
from the BBC Voices project (Upton, 2013)!. We chose this
dataset, which was collected online between 2004 and 2007, not
only because it is easily accessible, but because it is the most
recent lexical dialect survey of British English and because it
focuses on everyday concepts, whereas older surveys tended to
focus on archaic words and rural concepts, which are rarely
discussed on Twitter.

The BBC Voices survey collected ~734,000 responses from
~84,000 informants to 38 open-ended questions, each designed
to elicit the variants of a lexical alternation. The criteria for the
selection of these 38 questions is unclear. Some (e.g., what word
do you use for running water smaller than a stream) had been
included in previous surveys, whereas others (e.g., young person
in cheap trendy clothes and jewelery) were seemingly intended
to elicit emerging forms (i.e., chav). In addition, two questions
(male partner, female partner) are associated with variants
that are not generally interchangeable (e.g., boyfriend/husband,
girlfriend/wife); we therefore excluded these questions from our
final analysis. All informants did not respond to all questions.
The most responses were provided for drunk (29,275) and the
fewest for to play (a game) (9,897). Across all responses, 1,146
variants were provided, with the most for drunk (104) and the
fewest for mother (10). For example, of the 18 variants supplied
in the 11,272 responses to the left-handed question, cack-handed
(4,101) and left (3,987) are most common, together accounting
for 72% of responses.

The large number of variants associated with each alternation
is problematic because if we considered the complete set, our
comparison would be dominated by very uncommon forms,
which cannot be mapped accurately. Consequently, we only
considered the most common variants of each alternation. In
doing so, however, we violated the principle of accountability,
which requires all variants to be taken into consideration
(Labov, 1972). Fortunately, this frequency distribution ensures
that excluding less common variants, which contribute so few
tokens, will have almost no effect on the proportions of the more
common variants. We therefore only retained variants that were
provided by at least 5% of respondents. We tested other cut-offs,
but higher thresholds (e.g., 10%) resulted in variants with clear
regional patterns being excluded, whereas lower thresholds (e.g.,
1%) resulted in variants that are too infrequent to show patterns
being included.

Not only is each alternation associated with multiple variants,
but each variant is associated with multiple distinct orthographic
forms. These are the specific answers provided by informants
that were judged by the BBC Voices team to be closely related
to that variant, including inflections, non-standard spellings, and
multiword units. Across all responses, 45,573 distinct forms were
provided (ignoring capitalization), with the most for unattractive

'We downloaded the BBC Voices survey dataset, specifically the ‘RADAR 1’
component of the dataset, from the project website, which is available at http://
routledgetextbooks.com/textbooks/_author/upton-9780415694438
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(2,300) and the fewest for a long seat (285). For example, of
the 4,101 cack-handed responses to the left-handed question,
informants provided 142 distinct orthographic forms, including
“cack handed” (1,833) and “cack-handed” (1,026), which account
for 70% of all responses, with the 18 forms provided by at least
10 informants accounting for 95% of responses. Alternatively,
there are 86 forms provided by one informant, including
“kerhandit” and “cack handedEnter Word,” the latter form clearly
representing a data entry error.

The large number of forms associated with each variant is also
problematic, especially because many of the most uncommon
forms are of unclear status. This includes not only data entry
errors, but forms that are almost never used with the target
meaning, such as “china” for mate, which comes from “china
plate” in Cockney rhyming slang. Fortunately, the frequency
distribution also allowed us to exclude less frequent forms from
our analysis without affecting the regional patterns of more
frequent variants. For each variant we only included forms that
were returned by at least 50 informants.

At the end of this process, our final feature set includes
36 alternations (e.g., left-handed), associated with 139 variants
(e.g., cack-handed, left, cag-handed), which in turn are associated
with 291 distinct orthographic forms (e.g., cack handed, cack-
handed, etc.). The complete set of alternations and variants is
presented in Table 1. The complete set of forms are included
in the Supplementary Materials. The number of variants per
alternation ranges from 2 to 7, most with 4 variants; the
number of forms per variant ranges from 1 to 12, most with
2 forms. Notably, there are 291 forms in our dataset, but
only 288 unique forms, because 3 are linked to the variants
of multiple alternations: “chuck” is associated with the throw
and heavy rain alternations, “hot” with the hot weather and
attractive alternations, and “pissed” with the annoyed and drunk
alternations. This situation is problematic and points to a larger
issue with polysemy (and homophony) in our feature set, which
we return to later in this paper, but crucially because the
proportional use of each variant is calculated relative to the
frequency of the other variants of that alternation, the maps for
these overlapping variants are distinct.

After selecting these 139 variants, we extracted the regional
data for each from the BBC Voices dataset, which provides
the percentage of informants in 124 UK postal code areas who
supplied each variant. For example, the cack-handed variant
accounted for 4,101 out of the 11,272 responses for the left-
handed alternation (36%), with a minimum of 0% of informants
using this form in the Shetlands and a maximum of 100% of
informants in Jersey. Notably, these two extreme postal code
areas have the fewest respondents, leading to generally less
reliable measurements for these areas. Most areas, however, are
associated with far more informants and thus exhibit much
more variability. For example, 96% of postal code areas are
characterized by between 10 and 70% usage of this particular
variant. There are also a very small number of missing data points
in our BBC Voices dataset (48 out of 17,236 values), which occur
in cases where no responses were provided by any informants in
that postal code area for that question. Because this is a negligible
amount of missing data and because it is distributed across many

variants, we simply assigned the mean value for that variant
across all locations to those locations. In addition, because the
BBC Voices dataset provides percentages calculated based on
the complete set of variants, whereas we are looking at only
the most common variants, we recalculated the percentage for
each variant in each postal code area based only on the variants
selected for analysis. For example, in the Birmingham area, the
overall percentages for cack-handed (32.3%), left (23.8%), and
cag-handed (32%), which cumulatively account for 88.1% of
responses, were recalculated as 36.7, 27, and 36.3%, respectively,
which sum to 100%.

Finally, we mapped each of the variants in this dataset. For
example, the maps for the alternation between sofa/couch/settee
is presented in the first column of Figure 1, where each map plots
the percentage of one variant across the 124 postal code areas
in the BBC Voices dataset. In this case, a clear regional pattern
can be seen within and across variants, with sofa being relatively
more common in the South, couch in Scotland, and settee in the
Midlands and the North of England. The complete set of maps
are presented in the Supplementary Materials.

UK Twitter Dialect Corpus

The regional dialect corpus used for this study consists of a
large collection of geolocated Twitter data from the UK that
we downloaded between 2014-01-01 and 2014-12-31 using the
Twitter API. This data was collected as part of a larger project
that has explored lexical variation on Twitter (see also Huang
et al., 2016; Grieve et al., 2017, 2018; Nini et al., 2017). In total,
this corpus contains 1.8 billion words, consisting of 180 million
Tweets, posted by 1.9 million unique accounts. The median
number of Tweets per account is 10. The corpus contains data for
360 days, with data for 5 days missing due to technical issues. To
analyse regional variation in the corpus, we formed regional sub-
corpora by grouping all individual Tweets by postal code regions
based on the provided longitude and latitude. Postal code regions
were used to facilitate comparison with the BBC Voices data.
Opverall, the corpus contains 124 postal code regions, with on
average 1.5 million Tweets per region, with the number of Tweets
varying from between 5.5 million Tweets in Manchester to 54,000
Tweets in the Outer Hebrides, reflecting variation in population;
London is not the largest region because it is subdivided into
smaller areas.

Notably, we do not filter our corpus in any way, for example by
excluding re-Tweets or spam or Tweets from prolific posters or
bots. Tweets from one user may also appear in different regional
sub-corpora if the user was in different postal code regions when
those posts were made. The Twitter corpus analyzed in this
study is an unbiased sample of geolocated Tweets, similar to
what a user would see if they browsed Tweets from a region
at random. We believe that modifying the corpus to make it
more likely to show regional patterns is a highly subjective
process that necessarily results in a less representative corpus. By
including all Tweets from a given region in our corpus, we have
taken a more conservative choice, allowing us to assess the base
level of alignment between Twitter data and traditional dialect
surveys. Removing Tweets from the corpus may lead to the
identification of stronger regional patterns or better alignment
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TABLE 1 | Feature set.

Alternation Total Variants
1 Hot 6 Boiling, roasting, hot, baked, sweltered, sweating
2 Cold 4 Freezing, chilly, nippy, cold
3 Tired 2 Knackered, shattered
4 Unwell 3 Sick, poorly, ill
5 Pleased 3 Chuffed, happy, made up
6 Annoyed 2 Pissed off, angry
7 To play a game 2 Play, lake
8 To play truant 5 Skive, bunk, wag, play hookey, skip
9 Throw 2 Chuck, lob
10 Hit hard 5 Whack, smack, thump, wallop, belt
11 Sleep 5 Kip, sleep, snooze, nap, doze
12 Drunk 2 Pissed, wasted
13 Pregnant 4 Up the duff, pregnant, bun in the oven, expecting
14 Left-handed 3 Cack-handed, left, cag-handed
15 Lacking money 4 Skint, broke, poor, brassic
16 Rich 5 Loaded, minted, well off, rolling in it, rich
17 Insane 5 Mad, nuts, crazy, mental, bonkers
18 Attractive 4 Fit, gorgeous, pretty, hot
19 Unattractive 2 Ugly, minger
20 Moody 4 Mardy, grumpy, stroppy, moody
21 Baby 7 Baby, bairn, sprog, babby, kid, wean, little one
22 Mother 5 Mum, mam, mummy, ma, mom
23 Grandmother 3 Nanny, granny, grandma
24 Grandfather 4 Grandad, grandpa, grampa, pop
25 Friend 4 Mate, pal, friend, buddy
26 Young person in cheap trendy clothes and jewelery 4 Chav, townie, scally, ned
27 Clothes 5 Clothes, gear, clobber, togs, kit
28 Trousers 5 Trousers, pants, keks, jeans, trews
29 Child’s soft shoes worn for PE 4 Plimsolls, pumps, daps, trainers
30 Main room of house (with TV) 4 Living room, lounge, sitting room, front room
31 Long soft seat in the main room 3 Sofa, settee, couch
32 Toilet 4 Loo, bog, toilet, lavatory
33 Narrow walkway alongside buildings 4 Alley, ginnel, pavement, path
34 To rain lightly 3 Drizzle, spit, shower
35 To rain heavily 4 Pour, piss, chuck, bucket
36 Running water smaller than a river 4 Stream, brook, burn beck

3

-

with dialect survey maps, but this can only be tested once a
baseline is established.

Next, we measured the frequency of each of the 139 lexical
variants in our BBC Voices dataset across our 124 postal code
area sub-corpora. We then summed the counts for all forms
associated with each variant in each postal code area and
computed a percentage for each variant for each alternation in
each postal code area by dividing the frequency of that variant by
the frequency of all variants of that alternation in that postal code
area. In this way, we created a regional linguistic dataset based
on our Twitter corpus that matches our BBC Voices dataset,
consisting of percentages for all 139 variants, grouped into 36
alternations, measured across the 124 postal code areas, where the

percentages for the variants for each alternation sum to 100% in
each postal code area. We also mapped the percentages of all 139
variants across the 124 postal code areas. For example, the Twitter
maps for the alternation between sofa/couch/settee are presented
in the second column of Figure 1. The complete set of maps are
presented in the Supplementary Materials.

Crucially, we counted all tokens of the variants in our corpus,
making no attempt to disambiguate between word senses. For
example, the variant spit in the alternation between drizzle/spit
is used more often in the corpus to refer to the physical action
as opposed to light rain, but we counted all tokens of spit
regardless of the meaning it expressed. This is the simplest and
most common approach in Twitter-based dialectology, although
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it is clearly problematic. Automatic word sense disambiguation
systems are not commonly used in corpus-based dialectology
because they are difficult to apply at scale and are fairly
inaccurate, especially when working with uncommon dialect
forms in highly informal data. We return to the issue of polysemy
later in this paper, when we consider how variation in meaning
affects the overall alignment between the two sets of maps and
how much alignment can be improved through the application
of techniques for word sense disambiguation.

Finally, it is important to acknowledge that Twitter corpora
do not represent language in its entirety. Twitter corpora only
represent Twitter, which is a very specific form of public, written,
computer-mediated communication. The unique constellation
of situational properties that define Twitter affect its form and
differentiate it from other varieties of languages, as does the
demographic background of Twitter users, who in the UK are
more likely to be young, male, and well-educated compared to
the general population (Longley et al., 2015; Mellon and Prosser,
2017). These are the social and situational patterns that define
Twitter and they should be reflected in any corpus that attempts
to represent this variety of language. The goal of this study is to
evaluate the degree to which general patterns of regional variation
persist in Twitter corpora despite its unique characteristics.

Lee’s L

To systematically assess the similarity of the Twitter maps and
the survey maps we measured the degree of alignment between
each pair of maps. There is, however, no standard method for
bivariate map comparison in dialectology. Other than visually
comparing dialect maps (e.g., Grieve et al., 2013), the simplest
approach is to correlate the two maps by calculating a correlation
coefficient (e.g., Pearson’s ), essentially comparing the values of
the two maps at every pair of locations. This was the approach
taken in Grieve (2013), for example, where Pearson correlation
coefficients were calculated to compare a small number of
maps representing general regional patterns of grammatical and
phonetic variation. This is also the general approach underlying
many dialect studies that have used methods like factor analysis
(e.g., Nerbonne, 2006) and principal components analysis (e.g.,
Shackleton, 2007) to identify common regional patterns in large
sets of dialect maps based on correlation (or covariance) matrices.
Although correlating dialect maps generally appears to yield
consistent and meaningful results, this process ignores the spatial
distribution of the values of each variable. Consequently, the
similarity between two dialect maps can be estimated incorrectly
and significance testing is unreliable, as it is based on the
assumption that the values of a variable are independent across
locations (see Lee, 2001).

Alternatively, methods in spatial analysis have been
designed specifically for inferential bivariate map comparison
(Wartenberg, 1985; Lee, 2001). Most notably, Lee (2001)
proposed a spatial correlation coefficient (L) that measures the
association between two geographically referenced variables,
taking into account their spatial distribution. Lee’s L is essentially
a combination of Pearson’s r, the standard bivariate measure
of association, and Moran’s I, the standard univariate measure
of global spatial autocorrelation (see Grieve, 2018). On the

one hand, Pearson’s r correlates the values of two variables (x
and y) by comparing the values of the variables at each pair of
observations (i.e., locations) and can be expressed as

_ > i (xi —X) (i —y)
r =
\/2 :,‘ (i _x)z\/E ,'()’i _7)2

On the other hand, Moran’s I compares the values of a
single variable (x) across all pairs of locations, with the spatial
distribution of the variable used to define a spatial weights matrix
(w), which specifies the weight assigned to the comparison of
each pair of locations (i, j). For example, a spatial weights matrix
is often set at 1 for neighboring locations and 0 for all other
pairs of locations. When row standardized, Moran’s I can be
expressed as

I Do Zj wij(xi — X)(xj — X)
Zi (xi — E)Z

Combining these two measures, Lee defined his bivariate
measure of spatial association L as

_ > ((Zj wij (% — f)) <Zj wi(j = ))>
X -2 01— 97

so that every pair of locations is compared within and across
the two variables, taking into consideration the geographical
distribution of the values. Like Pearson’s r, Lee’s L can range
from —1 to +1, where stronger positive values indicate stronger
matches. Lee’s L is independent of scale, which is important as our
maps can differ in terms of scale. In addition, pseudo-significance
testing can be conducted for Lee’s L through a randomization
procedure, in much the same way as Morans I. Lees L is
recalculated for a large number of random rearrangements of the
locations over which the variable was measured. The set of values
that results from this process represents the null distribution of
Lee’s L. The observed value of Lee’s L is then compared to this
null distribution to generate a pseudo p-value.

Finally, to calculate Lee’s L, a spatial weights matrix must
be defined. For this study, we used a nearest neighbor spatial
weights matrix, where every location is compared to its nearest
n neighbors, including itself, with each of these n neighbors
assigned a weight of 1 and all other locations assigned a weight
of 0. Following Grieve (2017), who suggests setting n at ~10%
of the total locations, our main analysis is based on 10 nearest
neighbors, calculated using postal code area centroids, but we
also ran the analysis based on 2, 5, and 20 nearest neighbors, so
as to judge how sensitive our results are to this setting.

RESULTS

Map Comparison

We correlated all 139 pairs of Twitter and BBC Voices dialect
maps using Lee’s L, based on a 10 nearest neighbor spatial
weights matrix. The 139 L values range from —0.28 to +0.74,
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with a median of +0.14, indicating a tendency for the maps to
align. Overall, 109 of the 139 comparisons (78%) exhibit positive
correlation coefficients, and 93 of these pairs (67%) exhibit
significant correlations at the p < 0.05 level>. Computing Lee’s
L using 2, 5, and 20 nearest neighbors produced similar results,
with all analyses finding that 78-80% of the map pairs exhibit
positive correlations, and with the Lee’s L values across all 139
pairs of maps exhibiting strong correlations (r > 0.89), indicating
the choice of spatial weights matrix does not have a large effect on
our results. We also computed Pearson correlation coefficients
for all 139 pairs of maps, which yielded similar results (median
r =0.22, 82% of comparisons with positive correlations). Finally,
there is a strong correlation between Pearson’s r and Lee’s L
(r = 0.90), indicating that Lee’s spatial adjustment does not have
a large effect on our results.

These results demonstrate that the regional patterns in the
BBC Voices survey data and our Twitter corpus are broadly
comparable. It is unclear, however, just how similar these maps
really are. Significant alignment, at any level, is not a guarantee
of meaningful alignment. Furthermore, given standard rules of
thumb for Pearson’s r, a median Lee’s L of 0.14 does not seem
especially strong. We do not know, however, how exactly to
interpret Lee’s L within the context of this study. Ultimately,
the question we are interested in answering is whether two sets
of maps under comparison tend to align in a meaningful way
for dialectologists. It is therefore crucial that we compare the
two sets of maps visually to assess the degree of alignment,
especially those map pairs that show seemingly low-to-middling
correlations. In other words, we believe it is important to calibrate
our interpretation of Lee’s L for dialectological inquiry, rather
than simply noting that a certain percentage of map pairs show
a significant or substantial spatial correlation.

For example, we believe it is clear that the maps for sofa, couch
and settee presented in Figure 1 broadly align. Lee’s correlation
coefficients here range between L = 0.63 for couch, which is
the eighth best match in our dataset, to L = 0.27 for settee,
which is the 40th best match. Crucially, the result for settee
suggests that what appears to be low-to-middling values for Lee’s
L might represent very meaningful alignments in the context of
dialectology. To investigate this issue further, we examined how
the visual similarity between the 139 pairs of maps degrades as
Lee’s L falls.

In Figure 2, we present 8 pairs of maps with L values ranging
from 0.74 to 0.03. We can clearly see that the alignment between
the two sets of maps falls with Lee’s L, as expected. For example,
the maps for granny (L = 0.74) show very similar patterns,
identifying Scotland, Northern Ireland, and the Southwest as
hotspots for this variant. The other three pairs of maps with L
> 0.4 also appear to be very good matches. Below this level, we
still find clear broad alignment between the maps, including for
mate (L = 0.24), which is more common in England especially in

2We did not adjust the p-value for multiple comparisons because our goal is not to
identify individual pairs of maps that show significant correlations. Rather, we are
interested in reporting the proportion of the 139 map pairs that show a meaningful
level of correlation in the context of dialectological inquiry, which is a much stricter
test of robustness.

the Midlands, and scally (L = 0.17), which is more common in
the North, especially around Liverpool. Only bonkers (L = 0.04)
shows no obvious alignment, but the two maps both show
relatively little spatial clustering in the first place, and even these
maps are not obviously inconsistent with each other. In Figure 3,
we present 8 pairs of maps with L values around 0.14—the
median Lee’s L across all 139 maps. Once again, we see broad
alignment across the maps, although there is considerably more
local variation than most of the pairs of maps presented in
Figure 2. For example, chuck (L = 0.15) is identified as occurring
primarily outside England in both maps, but the Twitter map is
less definitive and also identifies a hotspot in the Southwest. Sick
(L = 0.13) probably shows the worst overall match across these
8 examples: both maps show the form is relatively common in
Northern Ireland and the Southeast, but only the BBC Voices
map also identifies Scotland as a hotspot. Finally, in Figure 4,
we present 8 pairs of maps with p values around 0.05, all of
which are associated with L values of <0.1. There is at least
partial alignment between all pairs of maps associated with
p < 0.05. For example, both maps identify grandpa (L = 0.06,
p = 0.01) as occurring relatively more often in Scotland and
the Home Counties, although the status of Northern Ireland
and Wales is inconsistent. Even the maps for spit (L = 0.06,
p = 0.06) align to some degree, with both identifying hotspots
around Liverpool.

Overall, we therefore find considerable alignment between
the BBC Voices and the Twitter lexical dialect maps. The
matches are far from perfect, but in our opinion a clear
majority of the map pairs analyzed in this study show real
correspondence, with the nations of the UK and the major
regions of England being generally classified similarly in both
sets of maps. The maps do not appear to be suitable in
most cases for more fine-grained interpretations, except at
higher levels of correlation, but given that these maps are
defined at the level of postal code areas, which in most
cases are fairly large regions, this seems like a reasonable
degree of alignment, suggesting that these two approaches
to data collection in dialectology allow for similar broad
underlying patterns of regional lexical variation to be identified
in British English.

Understanding Misalighments

Although the Twitter maps and the survey maps broadly
correspond, the degree of alignment varies considerably
across the 139 map pairs. To understand why some
Twitter maps match the survey maps better than others,
we considered how well alignment is predicted by three
factors: the frequency of each variant in the Twitter corpus,
the amount of spatial clustering in each Twitter map, and
the likelihood of each variant occurring with the target
meaning in the Twitter corpus. Knowing how these three
characteristics of Twitter maps predict their alignment
with survey maps not only offers guidance for improving
the accuracy of Twitter maps, but it provides a basis for
judging if new Twitter maps are likely to generalize, without
comparison to survey maps, which are unavailable for most
lexical alternations.
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FIGURE 3 | Map comparisons (part 2).
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TABLE 2 | Summary of the mixed-effects model fitted to Lee’s L.

Parameter Estimate SE Standardized
estimate
Fixed effects Intercept 0.0412 0.0796 0.1648
Moran’s | 0.8172*** 0.0845 0.1579
Log-transformed frequency —0.0250** 0.0075 —0.0532
Target meaning ratio 0.0010* 0.0004 0.0357
Random effects SD of random intercepts 0.1220

*p < 0.05, **p < 0.01, **p < 0.001, p-values calculated using Satterthwaite’s approximation.

1001

~
o
L

Target Meaning Percentage
& 3

Predicted
Lee'sL

0.57

0.21

-0.15

0.2 0.4

Moran's |

FIGURE 5 | Expected value of Lee’s L as a function of Moran’s | and target meaning ratio.

0.6 0.8

First, we included the frequency of each of the 139 variants
in the complete Twitter corpus as a predictor in our model
based on the assumption that measures of relatively frequency
become better estimates of their true values as the number
of tokens seen increases. Our intent was to assess how much
misalignment can be explained by Twitter maps being based
on too few observations. Second, we included the strength of
the regional pattern exhibited by each of the 139 Twitter maps
as a predictor in our model by computing the global spatial
autocorrelation statistic Moran’s I for each Twitter map using
a 10 nearest neighbor spatial weights matrix. Our intent was
to assess how much map misalignment can be explained by
Twitter maps failing to exhibit clear regional patterns. It is
important to acknowledge, however, that if the survey maps
also fail to show regional patterns, misalignment should not be
interpreted as evidence that the Twitter maps are inaccurate, as
two random maps should not be expected to align. Furthermore,
in general we expect these two measures to be correlated, as we
know that Moran’s I forms part of the foundation for Lee’s L.
Nevertheless, we wanted to assess how strong this relationship
is, how much alignment increases with spatial clustering, and
how much variation is left to be explained by other factors.
Finally, we included an estimate of the percentage of tokens that
were used with the target meaning in the corpus for each of

the 139 variants as a predictor in our model by extracting 50
random concordance lines for each variant and coding them as
target or non-target uses. Although polysemy is not an issue in
surveys, where informants are asked to name concepts, variation
in meaning should affect the accuracy of our Twitter maps,
which were based on counts for all tokens of a variant regardless
of their meaning. Our intent was to assess how much map
misalignment is due to variation in the meaning of variants in
the Twitter corpus.

We fit a linear mixed-effects regression model to Lees
L, measured across the 139 map pairs, with log-transformed
frequency, Moran’s I, and the percentage of target meaning
as predictors, including alternation as a random intercept to
account for the fact that the 139 variants are grouped into
36 alternations. Parameters were estimated using restricted
maximum likelihood. Although Lee’s L can range from —1 to
+1, we used a linear model because the observed values range
from —0.28 to +0.74 and because we are not focusing on the
behavior of the model at extreme values. We log-transformed the
frequency predictor because it is positively skewed, resulting in a
clearer linear relationship with Lee’s L.

The model is summarized in Table 2. All individual predictors
in the fixed-effects component of our model are significant, while
the variance component of our model indicates that a substantial
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FIGURE 6 | Bunk/hookey/skip/skive/wag alternation comparison.
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TABLE 3 | Descriptive statistics for the playing truant variants before and after filtering.

Variant Corpus Spatial clustering: Polysemy: Map alignment:
frequency Moran’s | percentage of target uses Lee’s L
All tokens Bunk 4757 0.39 28 0.47
Hookey 808 0.10 10 —0.04
Skip 28272 0.19 2 -0.13
Skive 2666 0.54 82 0.52
Wag 7549 0.21 0 —0.06
Filtered tokens Bunk 559 0.49 100 0.57
Hookey 41 0.11 100 0.07
Skip 985 0.13 100 0.00
Skive 547 0.38 100 0.39
Wag 49 0.20 100 0.33

amount of variability in Lee’s L is attributable to variation across
the 36 alternations. As expected, Moran’s I and the percentage of
target meanings are positively correlated with Lee’s L, indicating
that Twitter maps tend to be better matches when they show
clear regional patterns and when they are primarily based on
occurrences of word tokens with the target meaning. Frequency,
however, is negatively associated with Lee’s L, indicating that
Twitter maps tend to be better matches when they are based on
fewer tokens. This result is surprising. Although it suggests that
our corpus is large enough to investigate this set of alternations,
we believe that it also likely points to a fundamental issue with the
ability of dialect surveys, as opposed to Twitter corpora, to map
common words that are in use across the region of interest, often
in alternation with less common regional words in the language
of individuals. The relative usage of such words can still show
continuous regional patterns, but it is difficult for such patterns to
be mapped using surveys, where informants generally report one
word per question. The drop in alignment as frequency rises may
therefore reflect inaccuracies in the survey maps for common
words, as opposed to the Twitter maps.

Finally, we can use our model to propose some guidelines
about how likely new Twitter maps are to generalize—without
taking survey data, which is rarely available, into consideration.
These guidelines are useful because they allow dialectologists who
map regional lexical variation using Twitter corpora to assess
how confident they should be that their maps identify general
patterns. For example, if one is interested in mapping general
dialect regions through the multivariate analysis of Twitter lexical
alternation maps, these guidelines could be used to filter out maps
that are less likely to generalize, prior to aggregation. Figure 5
illustrates how the expected value of Lee’s L for map pairs changes
as a function of the Moran’s I and target token percentage, when
log-transformed frequency takes its mean value. The solid and
dashed lines represent cut-off values for Lee’s L of 0.15 and 0.40
and were drawn to facilitate the assessment of the reliability of
the alignment with a given combination of predictor values. For
example, if we take a Lee’s L value of 0.15 as being indicative of
alignment, Twitter maps that have a Moran’s I of at least 0.35
and are based on at least 50% target meanings can be expected
to generalize.

Dealing With Polysemy

As is common in Twitter dialect studies, we did not control
for polysemy (and homophony). We found, however, that high
levels of polysemy do affect the generalizability and presumably
by extension the accuracy of these maps. To deal with this
issue, methods for word sense disambiguation can be applied.
At the most basic level, all the tokens of the relevant forms can
be hand-coded. This is most accurate, but it is an extremely
time-consuming task and thus usually impractical when working
with large corpora or feature sets. Alternatively, various more
advanced approaches could be applied. For example, a sample
of tokens can be hand-coded and then a machine learning
classifier can be trained on this data and used to code
other tokens (Austen, 2017), or a token-based semantic vector
space model could be applied (Hilpert and Saavedra, 2017).
A simpler and more transparent approach is to only count
tokens that occur in contexts where the target meaning is
especially likely.

For example, as summarized in the first half of Table 3, the
playing truant alternation, which includes 5 variants, shows
considerable polysemy in our Twitter corpus, based on our hand
coding of 50 random tokens of the form drawn from our corpus.
Only skive, which is the variant with the best alignment, occurs
with its target meaning over 50% of the time. The only other
variant with a strong alignment is bunk, which remarkably occurs
with its target meaning only 28% of the time, illustrating how
a regional signal can be detected even when the target meaning
is relatively rare. The other three variants, however, occur with
their target meanings at most 10% of the time and show negative
alignments, making them three of the worst matches in the
feature set. Notably, the strength of alignment is clearly associated
with the amount of spatial clustering, but there is no clear
relationship with frequency. For example, hookey, which is the
most infrequent variant, shows poor alignment, but so does skip,
which is by far the most frequent variant.

To test whether we can improve the maps for this alternation
through simple word-sense disambiguation we recounted these
variants in the Twitter corpus in restricted contexts, identified
based on concordance line analysis. Specifically, we only counted
tokens of skip when it was immediately followed by class, classes,

Frontiers in Artificial Intelligence | www.frontiersin.org

36

July 2019 | Volume 2 | Article 11


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Grieve et al.

Mapping Lexical Variation Using Twitter

college, lecture, school, uni, university, or work; bunk, skive, and
wag when followed by these words or off; and hookey when
preceded by a form of the verb play. We then recomputed the
variant percentages, as well as the three map characteristics used
as predictors of our model. The results are presented in the
second half of Table 3, while the variants in all three datasets are
mapped in Figure 6.

Opverall, there is a substantial rise in alignment after filtering:
all three variants with negative correlations now show positive
correlations, most notably wag. We also see a clear improvement
in the alignment for bunk. Alternatively, although the alignment
is still strong, we see a decrease for skive, presumably because the
number of tokens examined has been drastically reduced, even
though the vast majority of these tokens were used with the target
meaning. This highlights the main limitation with word sense
disambiguation: in most cases it will greatly reduce token counts,
potentially down to problematic levels. For example, consider
the maps for the rarest of these words: after filtering there are
very few tokens left for hookey and wag, resulting in maps where
most areas have no attestation at all of the form, suggesting
that the corpus is too small to map these variants. Nevertheless,
as the map for wag illustrates, such maps can still represent
improvements over the unfiltered versions in terms of alignment
with the survey data.

DISCUSSION

Although Twitter corpora are increasingly being used as the basis
for dialect maps, their generalizability had not been established.
Do these maps tell us anything about general patterns of regional
variation, including in the spoken vernacular? Can these maps
extend our general understanding of language variation and
change? These are important questions because currently Twitter
is the only data source from which precisely geolocated texts
can be sampled at scale. Twitter maps have the potential to
answer a range of basic questions in regional dialectology,
but only if they are generalizable. In this study, we therefore
set out to systematically test if Twitter maps, based on a 1.8
billion word corpus of geolocated Tweets collected in 2014
from across the UK, align with traditional survey maps, based
on an unbiased sample of 139 lexical dialect maps taken
from the BBC Voices dialect survey. Overall, we found broad
correspondence between the two datasets, with a majority of
the 139 map pairs showing meaningful levels of alignment in
our opinion. In most cases, these two sets of maps agree across
the four nations of the UK and within England between the
North, the Midlands, and the South, although a substantial
number of map pairs show more precise correspondence,
for example identifying specific cities as hotspots for certain
words. Given how different these two approaches to data
collection are, we believe the alignment between these maps is
strong evidence that Twitter maps are able to identify general
dialect patterns.

The main outcome of this study is therefore validating the
use of Twitter corpora for the analysis of general patterns
of regional lexical variation, at least in British English. This

Pissed Off

100%

Pissed Off

U

72.3%
52

33.9

FIGURE 7 | Angry/pissed off alternation.

is an important result for regional dialectology, because
there are many advantages to working with dialect corpora
as opposed to dialect surveys. Not only is it far easier
to build corpora than conduct surveys, but dialect corpora
allow for the open-ended analysis of a far wider range of
features than surveys, which can only be used to collect data
on a limited number of pre-selected features. Corpora also
generally improve the resolution of dialect maps, allowing
for more informants to be sampled over more locations.
For example, our Twitter corpus contains posts from 1.9
million accounts, whereas the BBC Voices dataset contains
responses from 84,000 informants. Finally, the fundamental
reason to prefer dialect corpora is that they allow patterns of
regional variation to be observed in natural language, whereas
surveys only provide the opportunity to observe the linguistic
opinion of informants, elicited in a single and very artificial
communicative context.

For all these reasons, we believe that Twitter corpora can
be the basis for general inquiry into regional lexical variation.
However, we also believe that our analysis suggests that Twitter
maps may generally provide a better foundation for dialectology
than survey data, allowing for regional patterns to be identified
more accurately in many cases. Perhaps the most striking
example is the alternation between angry and pissed off, which is
mapped in Figure 7. The Twitter maps identify much stronger
regional patterns than the survey maps for these two variants,
especially for angry, which shows limited spatial clustering in
the survey data (Moran’s I = 0.10), but a clear pattern in
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the Twitter data (Moran’s I = 0.80). This example not only
demonstrates how common words like angry, which are in
usage across the UK, can show regional patterns and how
these patterns can be identified through corpus analysis, but
that such patterns can be difficult to access through surveys.
This is reflected by the fact that the BBC Voices data for
angry range from 0 to 100%, indicating that in some postal
code areas no informant provided angry, whereas the Twitter
analysis finds that in no postal code is either variant used <28%
of the time. This result appears to expose a major limitation
with standard survey-based approached to data collection in
dialectology: individual informants can usually only supply a
single variant per question, even when the informant uses
multiple variants in their daily lives. In such cases, the maps
for these variants, especially standard forms like angry that are
clearly commonly used across the entire region of interest, may
not accurately reflect patterns of regional linguistic variation
in the population. The Twitter maps therefore seem to be
more realistic than the survey maps, and by extension more
reliable, although further research is necessary to directly test
this hypothesis.

In addition to offering important validation for corpus-
based approaches to regional dialectology, this study makes
several other methodological contributions to the field.
Perhaps of greatest value, we provide general quantitative
guidelines for judging if Twitter-based maps are likely
to generalize. We also introduce a new method for map
comparison, Lees L, which we borrowed from spatial
analysis and which provides a more principled method
for map correlation than approaches currently used in
dialectology. We also show, however, that map comparison
based on non-spatial correlation analysis yields similar results,
offering support for the long tradition in dialectometry of
using what are essentially correlation-based methods for
aggregation (like Factor Analysis and Principal Components
Analysis). Although we found Twitter maps to be remarkably
robust in the face of polysemy, we also began to explore
the use of techniques for word sense disambiguation
to improve the reliability of lexical dialect maps; there
is considerably more work to be done in this area. In
addition, while we believe our results show that corpus-
based approaches to dialectology are at least as powerful
as survey-based approaches, our results also offer support
for the generalisability of dialect surveys, whose validity
has long been questioned, especially from outside the field
(e.g., Pickford, 1956).

Descriptively, this study also presents one of the few corpus-
based analyses of regional variation on the national level in
modern British English. British dialectologists have not fully
engaged with methods from computational sociolinguistics,
and research has thus progressed slowly in recent years
compared to American English. Consequently, there is much
less agreement on issues such as the modern dialect regions
of the UK than in the US, or how these regions are
changing over time. These are the types of basic questions
that British dialectologists can now pursue through the
analysis of Twitter corpora, confident their results can provide

insights about general patterns of regional linguistic variation
in the UK.

Furthermore, our results not only offer evidence of the
general value of Twitter corpora for theoretical research in
dialectology, but they are themselves of direct relevance to
our understanding of regional linguistic variation and change.
Our main finding in this regard is that patterns of regional
lexical variation are relatively stable across data sources—at least
sufficiently stable for broad patterns of regional lexical variation
to align. This result implies that patterns of regional lexical
variation are relatively stable across communicative contexts. In
fact, we find considerable evidence that the alternations behave
quite differently in these two datasets: the median absolute
difference in the maximum percentage of the 139 variants in
the two datasets is 27%. In part, this is because of differences
in how lexical alternation was measured, but the differences are
so dramatic that it seems reasonable to assume that context
matters in this regard. For example, the map for bairn (see
Figure 2) shows that the variant is returned by up to 100% of
informants in some areas the BBC Voices survey, but never
accounts for more than 7% of the tokens of this alternation
in any area in our Twitter corpus. Despite such differences in
scale, these two maps show good alignment overall (L = 0.43).
This result presumably obtains because the effect of situational
variation is relatively consistent across the region: the percentage
of bairn in the Twitter corpus drops dramatically, but the
magnitude of this drop is relatively similar across the map,
resulting in the same basic regional pattern being found in
both datasets.

We believe this is an important result that sheds light on the
relationship between the regional and situational determinants
of language variation and change—an area that has been largely
overlooked in dialectology and sociolinguistics, at least in part
because dialect surveys and sociolinguistic interviews do not
allow for situational variation to be analyzed in detail, as
they involve eliciting data in one very specific and artificial
context. Of course, there is still considerable disagreement
between the two sets of maps, and our analysis of various
characteristics of the Twitter maps only accounted for a
proportion of this misalignment. Some of this variation may
well be due to the interplay between region and situation.
For example, it may be the case that people in different
regions are using Twitter for a quantitatively different range
of communicative purposes. Further research is necessary to
explore these relationships, including analyzing and comparing
regional variation in corpora representing other varieties of
natural language, which will increasingly become possible as
more and more language data comes online. However, much
of this misalignment may also be due to social factors, which
we have not considered in this study. In particular, we know
that the demographics of our Twitter corpora do not match
the demographics of the general population or presumably
of the informants who responded to the BBC Voices survey.
Similarly, some of this misalignment may be explained by
our choice not to filter our Twitter dataset, for example by
removing re-tweets. Our goal here was to evaluate the baseline
level of alignment between Twitter dialect corpora and dialect
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surveys. How this alignment can be improved through more
complex approaches to corpus construction could be the focus
of future research now that we have set a baseline level
of alignment.

Unfortunately, the analysis of social variation in Twitter is
nowhere near as straightforward as the analysis of regional
variation at this time, as the requisite metadata is not recorded
or provided by Twitter or other social media platforms.
Increasingly, however, researchers are developing powerful
methods for estimating the demographics of Twitter users,
based on a wide range of factors (e.g., Wang et al, 2019).
Furthermore, there can be little doubt that as more and more
of our lives are played out online increasing amounts of detailed
social metadata will become available to researchers, as well as
increasing amount of language data from across a wide range of
registers, including the spoken vernacular. This will transform
how we conduct sociolinguistic research. To truly understand
how language variation and change functions as a system, across
region, society, and communicative contexts, we must adopt a
corpus-based approach to data collection. This is the only way
that variation can be observed in a wide range of linguistic
variables across a wide range of social and situational contexts.
This is the promise of computational sociolinguistics and the
future of our field.
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The goal of this paper is to provide a complete representation of regional linguistic
variation on a global scale. To this end, the paper focuses on removing three constraints
that have previously limited work within dialectology/dialectometry. First, rather than
assuming a fixed and incomplete set of variants, we use Computational Construction
Grammar to provide a replicable and falsifiable set of syntactic features. Second, rather
than assuming a specific area of interest, we use global language mapping based
on web-crawled and social media datasets to determine the selection of national
varieties. Third, rather than looking at a single language in isolation, we model seven
major languages together using the same methods: Arabic, English, French, German,
Portuguese, Russian, and Spanish. Results show that models for each language are able
to robustly predict the region-of-origin of held-out samples better using Construction
Grammars than using simpler syntactic features. These global-scale experiments are
used to argue that new methods in computational sociolinguistics are able to provide
more generalized models of regional variation that are essential for understanding
language variation and change at scale.

Keywords: dialectology, dialectometry, construction grammar, syntactic variation, text classification, language
mapping, dialect mapping, computational sociolinguistics

1. INTRODUCTION

This paper shows that computational models of syntactic variation provide precise and robust
representations of national varieties that overcome the limitations of traditional survey-based
methods. A computational approach to variation allows us to systematically approach three
important problems: First, what set of variants do we consider? Second, what set of national dialects
or varieties do we consider? Third, what set of languages do we consider? These three questions
are usually answered in reference to the convenience or interests of the research project at hand.
From that perspective, the goal of this paper is global, multi-lingual, whole-grammar syntactic
dialectometry. Previous work has performed whole-grammar dialectometry with Construction
Grammars, first using a pre-defined inventory of national varieties (Dunn, 2018a) and then using
data-driven language mapping to select the inventory of national varieties (Dunn, 2019b). This
paper further extends computational dialectometry by studying seven languages across both web-
crawled and social media corpora. The paper shows that a classification-based approach to syntactic
variation produces models that (i) are able to make accurate predictions about the region-of-origin
of held-out samples, (ii) are able to characterize the aggregate syntactic similarity between varieties,
and (iii) are able to measure the uniqueness of varieties as an empirical correlate for qualitative
notions like inner-circle vs. outer-circle.
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What features do we use for dialectometry? Most previous
work relies on phonetic or phonological features (Kretzschmar,
1992, 1996; Heeringa, 2004; Labov et al, 2005; Nerbonne,
2006, 2009; Grieve et al., 2011, 2013; Wieling and Nerbonne,
2011, 2015; Grieve, 2013; Nerbonne and Kretzschmar, 2013;
Kretzschmar et al, 2014; Kruger and van Rooy, 2018) for
the simple reason that phonetic representations are relatively
straight-forward: a vowel is a vowel and the measurements
are the same across varieties and languages. Previous work on
syntactic variation has focused on either (i) an incomplete set of
language-specific variants, ranging from only a few features to
hundreds (Sanders, 2007, 2010; Szmrecsanyi, 2009, 2013, 2014;
Grieve, 2011, 2012, 2016; Collins, 2012; Schilk and Schaub,
2016; Szmrecsanyi et al., 2016; Calle-Martin and Romero-
Barranco, 2017; Grafmiller and Szmrecsanyi, 2018; Tamaredo,
2018) or (ii) language-independent representations such as
function words (Argamon and Koppel, 2013) or sequences
of part-of-speech labels (Hirst and Feiguina, 2007; Kroon
et al., 2018). This forces a choice between either an ad hoc
and incomplete syntactic representation or a reproducible but
indirect syntactic representation.

This previous work on syntactic dialectometry has depended
on the idea that a grammar is an inventory of specific structures:
the double-object construction vs. the prepositional dative, for
example. Under this view, there is no language-independent
feature set for syntax in the way that there is for phonetics. But we
can also view syntax from the perspective of a discovery-device
grammar (Chomsky, 1957; Goldsmith, 2015): in this case, our
theory of grammar is not a specific description of a language like
English but rather a function for mapping between observations
of English and a lower-level grammatical description of English:
G D(cOrPUS). Thus, a discovery-device grammar (G) is
an abstraction that represents what the grammatical description
would be if we applied the learner (D) to a specific sample of
the language (CORPUS). A discovery-device grammar allows us
to generalize syntactic dialectometry: we are looking for a model
of syntactic variation, V, such that when applied to a grammar,
V(G), the model is able to predict regional variation in the
grammar. But G is different for each language, so we generalize
this to V(D(CORPUS)). In other words, we use an independent
corpus for each language as input to a discovery-device grammar
and then use the resulting grammar as a feature space for
performing dialectometry. This approach, then, produces an
inventory of syntactic features for each language in a reproducible
manner in order to replace hand-crafted syntactic features. The
specifics of the datasets used for modeling regional variation are
described in section 2.1 and the discovery-device grammar used
to create reproducible feature sets is described in section 2.2.

What type of model should we use to represent global
syntactic variation? Previous work has relied largely on
unsupervised methods like clustering (Wieling and Nerbonne,
2011), factor analysis of spatial autocorrelation scores (Grieve,
2013), and individual differences scaling as an extension of
multidimensional scaling (Ruette and Speelman, 2014). These
models attempt to aggregate individual variants into larger
bundles of features: which individual features represent robust
aggregate isoglosses with a similar geographic extent? The

problem is that it is difficult to evaluate the predictions of one
such bundle against another. While useful for visualizations,
these models are difficult to evaluate against ground-truths.
Another strand of work models the importance of predictor
variables on the use of a particular variant, with geographic
region as one possible predictor (Szmrecsanyi et al., 2016). These
models are based on multivariate work in sociolinguistics that
attempts to find which linguistic, social, or geographic features
are most predictive of a particular variant.

While useful for understanding individual variants, however,
these models are unable to handle the aggregation of variants
directly. For example, although it is possible to create a distance
matrix between regions for each individual feature and then to
aggregate these matrices, the resulting aggregations are subject
to variability: What is the best aggregation method? If two
methods provide different maps, which should we prefer? How
stable are aggregations across folds? On the one hand, we want
dialectometry to establish a ground-truth about the regional
distribution of variants and dialects. But, on the other hand,
because unsupervised methods like clustering are subject to such
potential variability, we also need a ground-truth to evaluate
which aggregation method is the most accurate.

One solution to this problem is to take a classification
approach, in which the ground-truth is the region-of-origin
for individual samples. Given a model of dialectal variation,
how accurately can that model predict the region-of-origin of
new samples? For example, the idea is that a more complete
description of the syntactic differences between Australian
English and New Zealand English will be able to predict more
accurately whether a new sample comes from Australia or
New Zealand. This prediction task provides a ground-truth
for aggregation. But it comes with two important caveats:
First, a high prediction accuracy does not guarantee that the
model captures all relevant variation, only that it captures
enough variation to distinguish between national varieties. This
can be mitigated, however, by using cross-fold validation and
unmasking as shown in section 3.2. Second, while most work in
dialectometry tries to establish geographic boundaries, this work
assumes geographic boundaries (i.e., polygons of nation-states).

What languages and regions need to be represented in
dialectometry? Because of coloniziation and globalization
(Kachru, 1990), a few languages like English are now used
around the world by diverse national communities. Even though
these international languages have global speech communities,
dialectology and sociolinguistics continue to focus largely on
sub-national dialects, often within so-called inner-circle varieties
(Kachru, 1982). This paper joins recent work in taking a global
approach by using geo-referenced texts (Goldhahn et al., 2012;
Davies and Fuchs, 2015; Donoso and Sanchez, 2017) to represent
national varieties (Szmrecsanyi et al., 2016; Calle-Martin and
Romero-Barranco, 2017; Cook and Brinton, 2017; Rangel et al.,
2017; Dunn, 2018a, 2019b; Tamaredo, 2018). The basic point is
that in order to represent regional variation as a complete system,
dialectometry must take a global perspective. This paper uses
data-driven language mapping to choose (i) which international
languages are used widely enough to justify inclusion and (ii)
which languages in which countries need to be included as
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TABLE 1 | Size of geo-referenced corpora in words by region.

Region Countries Population (%) Web (%) Twitter (%)

Africa, North 250 mil 3.4% 123.85 mil 0.7% 85.55 mil 21%
Africa, Southern 75 mil 1.0% 59.07 mil 0.4% 87.34 mil 2.1%
Africa, Sub-Saharan 73 742 mil 10.1% 424.75 mil 2.6% 254.20 mil 6.1%
America, Brazil 1 206 mil 2.8% 218.11 mil 1.3% 118.13 mil 2.9%
America, Central 25 214 mil 2.9% 886.61 mil 5.3% 383.81 mil 9.3%
America, North 2 355 mil 4.8% 236.59 mil 1.4% 350.12 mil 8.5%
America, South 11 210 mil 2.9% 1,163.00 mil 7.0% 402.15 mil 9.7%
Asia, Central 10 198 mil 2.7% 965.09 mil 5.8% 102.79 mil 2.5%
Asia, East 8 1,635 mil 22.3% 2,201.86 mil 13.2% 95.70 mil 2.3%
Asia, South 1,709 mil 23.3% 448.23 mil 2.7% 331.19 mil 8.0%
Asia, Southeast 22 615 mil 8.4% 2,011.06 mil 12.1% 245.18 mil 5.9%
Europe, East 17 176 mil 2.4% 4,553.10 mil 27.4% 322.46 mil 7.8%
Europe, Russia 1 144 mil 2.0% 101.44 mil 0.6% 105.04 mil 2.5%
Europe, West 25 421 mil 5.7% 2,422.85 mil 14.6% 823.80 mil 19.9%
Middle East 15 334 mil 4.5% 660.73 mil 4.0% 222.98 mil 5.4%
Oceania 8 59 mil 1.0% 164.02 mil 1.0% 213.06 mil 51%
Total 199 7.35 bil 100% 16.65 bil 100% 4.14 bil 100%

national varieties. We use geo-referenced corpora drawn from
web pages and social media for both tasks. Seven languages
are selected for dialectometry experiments: Arabic, English,
French, German, Portuguese, Russian, and Spanish. These seven
languages account for 59.25% of the web-crawled corpus and
74.67% of the social media corpus. The corpora are regionalized
to countries. Thus, the assumption is that any country which
frequently produces data in a language has a national variety of
that language. For example, whether or not there is a distinct
variety of New Zealand English depends entirely on how much
English data is observed from New Zealand in these datasets.
The models then have the task of determining how distinct New
Zealand English is from other national varieties of English.

First, we consider the selection of (i) languages and (ii)
national varieties of languages (section 2.1) as well as the selection
of a syntactic feature space (section 2.2). We then present the
specifics of the experimental framework (section 2.3). Second,
we compare prediction accuracies by language and feature set
(section 3.1), in order to measure the quality of the models.
Next, we evaluate the robustness of the models across rounds of
feature pruning and the similarity of the models across registers
in order to examine potential confounds (section 3.2). Having
validated the models themselves, the next section examines
regional accuracies and the similarities between national varieties
(section 3.3). Finally, we develop measures for the syntactic
uniqueness of each regional variety (section 3.4) and search
for empirical correlates of concepts like inner-circle and outer-
circle within this corpus-based approach (section 3.5). Third,
we discuss two important issues: the application of different
categorizations like inner-circle vs. outer-circle or native vs.

non-native to these datasets (section 4.1) and the implications of
a computational approach to dialectometry for sociolinguistics
more broadly (section 4.2).

2. MATERIALS AND METHODS
2.1. Language Mapping and Dialectometry

We begin with data-driven language mapping: First, what
languages have enough national varieties to justify modeling?
Second, which national varieties should be included for each
language? Third, which datasets can be used to represent specific
national varieties and how well do these datasets represent the
underlying populations? This paper depends on geo-referenced
corpora: text datasets with meta-data that ties each document
to a specific place. The size of both datasets by region is shown
in Table 1, together with ground-truth population data from the
UN (United Nations, 2017). The size of each region relative
to the entire dataset is also shown: for example, 14.6% of the
web corpus comes from Western Europe which accounts for
only 5.7% of the global population. This comparison reveals the
over-representation and under-representation of each region.
Data comes from two sources of digital texts: web pages
from the Common Crawl! and social media from Twitter?. The
Common Crawl data represents a large snapshot of the internet;
although we cannot direct the crawling procedures, we are able
to process the archived web pages from the perspective of a
geo-referenced corpus. The author of each individual web page

Uhttp://www.commoncrawl.org
Zhttp://www.twitter.com
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FIGURE 1 | Cities for Collection of Twitter Data (50 km radius from each).

may be unknowable but we can use country-specific top-level
domains for country-level geo-referencing: for example, web
pages under the .nz domain are from New Zealand. Previous
work has shown that there is a relationship between domain-
level geo-referenced web pages and national varieties (Cook and
Brinton, 2017). Some countries are not available because their
top-level domains are used for other purposes (i.e., .ai, .fm, .io, .ly,
.ag, .tv). Domains that do not contain geographic information are
also removed from consideration (e.g., .com sites). The Common
Crawl dataset covers 2014 through the end of 2017, totalling
81.5 billion web pages. As shown in Table 1, after processing
this produces a corpus of 16.65 billion words. This dataset
represents 166 out of 199 total countries considered in this
paper. Some countries do not use their country-level domains
as extensively as others: in other words, .us does not account
for the same proportion of web pages from the United States
as .nz does from New Zealand. It is possible that this skews
the representation of particular areas. Thus, Table 1 shows the
UN-estimated population for each region as reference. The web
corpus is available for download® as is the code used to create
the corpus®.

In isolation, web-crawled data provides one observation of
global language use. Another common source of data used for
this purpose is Twitter [e.g., (Eisenstein et al., 2010, 2014; Roller
et al., 2012; Kondor et al,, 2013; Mocanu et al., 2013; Graham
et al.,, 2014; Donoso and Sanchez, 2017)]. The shared task at
PAN-17, for example, used Twitter data to represent national
varieties of several languages (Rangel et al., 2017). A spatial search
is used to collect Tweets from within a 50 km radius of 10 k
cities®. This city-based search avoids biasing the selection by

3https://labbcat.canterbury.ac.nz/download/?jonathandunn/CGLU_v3
“https://github.com/jonathandunn/common_crawl_corpus
Shttps://github.com/datasets/world-cities

using language-specific keywords or hashtags. A map of each
city used for collection is shown in Figure 1; while this approach
avoids a language-bias, it could under-represent rural areas given
the 50 km radius of each collection area. The Twitter data covers
the period from May of 2017 until early 2019, drawn from
the Twitter API using a spatial query. This creates a corpus
containing 1,066,038,000 Tweets. The language identification
component, however, only provides reliable predictions for
samples containing at least 50 characters (c.f., the language id
code® and the models used”). Thus, the corpus is pruned to
include only Tweets above that length threshold. As shown in
Table 1, this produces a corpus containing 4.14 billion words.
While the Common Crawl corpus represents 166 countries, the
Twitter corpus represents 169. There are 33 countries that only
Twitter represents (not the Common Crawl) and 30 that only
the Common Crawl represents (not Twitter). This shows the
importance of drawing on two different sources of language use.

Given the idiosyncracies of these two datasets (i.e., the
availability of country-codes for web data and the selection of
cities for Twitter data), it is quite likely that each represents
different populations or, at least, that each represents different
registers of language usage from the same population. We can
use ground-truth population data to deal with the problem of
different populations. First, notice that both datasets under-
represent all regions in Africa; but the web dataset has the
worst under-representation: while Africa accounts for 14.5% of
the world’s population, it accounts for only 3.7% of the web
corpus. The Americas and Europe, on the other hand, are over-
represented in both datasets. Twitter especially over-represents
North America (8.5% of the corpus vs. 4.8% of the population);
but the web corpus under-represents North America (only 1.4%

Shttps://github.com/jonathandunn/idNet
“https://labbcat.canterbury.ac.nz/download/?jonathandunn/idNet_models
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of the corpus), mostly from the lack of adoption of the .us
domain. Western Europe is over-represented in both corpora:
while it acounts for only 5.7% of the population, it provides 14.6%
of the web corpus and 19.9% of the Twitter corpus. Although
these trends are expected, it is helpful to quantify the degree
of over-representation. Less expectedly, the web corpus greatly
over-represents Eastern Europe (27.4% of the corpus but only
2.4% of the population). Asia, especially the East and South, are
under-represented in both datasets.

On the one hand, the use of population data here allows
us to quantify exactly how each of these datasets is skewed.
On the other hand, our purpose is to model regional syntactic
variation: do the datasets need to be prefectly aligned with
regional populations in order to achieve this? There are two
observations to be made: First, if a region is over-represented
then we do not need to worry about missing any national
varieties from that area; but we should be worried about over-
representing those particular national varieties (this is why there
is a cap on the number of training samples from each dialect).
Second, it could be the case that we are missing national
varieties from under-represented areas. For example, any missing
national varieties are likely to be from Africa or East Asia,
given the skewed representations of this dataset. Related work,
however, has shown that it in the case of major international
languages like those considered here, the problem is over-
representation rather than under-representation in the form of
missing regional varieties (Dunn and Adams, 2019). We leave it
to future work to make improvements in the selection of regional
varieties using population-based sampling to overcome skewness
in corpus distributions.

What languages should be included in a model of global
syntactic variation? Given that we are using countries to define
regional varieties, a language needs to occur in many countries.
Here we use a threshold of 1 million words to say that a
language is used significantly in a given country. Table 2 shows
the seven languages included in this study, encompassing 59.25%
of the web corpus and 74.67% of the Twitter corpus. Some
other languages occur in several countries in one dataset but not
the other and so are not included. For example, Italian occurs
in 17 countries in the web corpus but only 2 in the Twitter
corpus; Indonesian occurs in 10 countries in the web corpus
but only 3 countries in the Twitter corpus. Given that we model
varieties using a classifier, we focus on those languages that have
a sufficient number of national varieties to make classification a
meaningful approach.

2.2. Finding Syntactic Variants

This paper represents syntactic variants using a discovery-
device Construction Grammar (CxG) that produces a CxG
for each language given an independent corpus representing
that language. CxG itself is a usage-based paradigm that views
grammar as a set of overlapping constructions made up of
slot-fillers defined by syntactic, semantic, and sometimes lexical
constraints (Goldberg, 2006; Langacker, 2008). This paper draws
on recent approaches to computational modeling of CxGs
(Dunn, 2017, 2018b, 2019a), including previous applications

TABLE 2 | Above: number of countries and words by language and domain and
Below: number of varieties and test samples by language and domain.

Language Countries  Words (Web) Countries Words (Twitter)
(Web) (Twitter)
Arabic (ara) 19 348,671,000 25 179,473,000
English (eng) 130 4,990,519,000 137 1,5652,268,000
French (fra) 36 479,857,000 24 176,009,000
German (deu) 24 500,029,000 7 71,234,000
Portuguese (por) 14 431,884,000 22 199,080,000
Russian (rus) 37 1,361,331,000 9 126,834,000
Spanish (spa) 43 1,757,200,000 44 789,239,000
% of Total: 59.25% % of Total: 74.67%
Language Varieties N. Test (Web)  Varieties N. Test (Twitter)
(Web) (Twitter)
Arabic (ara) 4 14,685 7 15,637
English (eng) 14 66,476 14 64,208
French (fra) 13 46,562 4 12,130
German (deu) 7 35,240 2 7,722
Portuguese (por) 4 15,129 2 8,650
Russian (rus) 19 84,925 3 9,164
Spanish (spa) 17 84,093 17 76,653

of a discovery-device CxG to dialectometry for English
(Dunn, 2018a, 2019b).

Constructions are represented as a sequence of slot-
constraints, as in (la). Slots are separated by dashes and
constraints are defined by both type (Syntactic, Joint Semantic-
Syntactic, Lexical) and by filler (for example: NOUN, a part-of-
speech or ANIMATE, a semantic domain).

(la) [SYN:NOUN — SEM-SYN:TRANSFER[V] — SEM-
SYN:ANIMATE[N] — SYN:NOUN]

(1b) “He gave Bill coffee.”

(Ic) “He gave Bill trouble.”

(1d) “Bill sent him letters.”

(2a) [SYN:NOUN — LEX:“give” — SEM-SYN:ANIMATE[N] —

LEX:“a hand"]
“Bill gave me a hand.”

(2b)

The construction in (la) contains four slots: two with
joint semantic-syntactic constraints and two with simple
syntactic constraints. The examples in (1b) to (1d) are
tokens of the construction in (la). Lexical constraints, as
in (2a), represent idiomatic sentences like (2b). A CxG
is a collection of many individual constructions. For the
purposes of dialectometry, these are quantified as one-hot
encodings of construction frequencies. This, in essence, provides
a bag-of-constructions that is evaluated against traditional
bag-of-words features.

A large portion of the language-learning corpus for each
language comes from web-crawled data (Baroni et al., 2009;
Majli§ and Zabokrtsk}'f, 2012; Benko, 2014) and data from the
CoNLL 2017 Shared Task (Ginter et al., 2017). Because the goal
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is to provide a wide representation of each language, this is
augmented by legislative texts from the EU and UN (Tiedemann,
2012; Skadis et al., 2014), the OpenSubtitles corpus (Tiedemann,
2012), and newspaper texts. The exact collection of documents
used for learning CxGs is available for download®. While both
web-crawled and social media datasets are used to represent
national varieties, the grammars used are learned mainly from
web-crawled corpora. On the one hand, we use separate datasets
for grammar learning and dialectometry in order to remove the
possible confound that the grammars are over-fitting a specific
dataset. On the other hand, we do not explicitly know which
regional varieties the data used for grammar learning is drawn
from. The discussion in section 3.5, as well as other work (Dunn,
2019b), shows that at least the English grammar better represents
inner-circle varieties like UK English. In this case, then, we prefer
to avoid the possible confound of over-fitting even though the
result is a grammar that is learned from datasets implicitly drawn
from inner-circle varieties.

This paper evaluates two alternate CxGs for dialectometry,
alongside function words and lexical features: CxG-1 (Dunn,
2018a,b) and CxG-2 (Dunn, 2019a). As described and evaluated
elsewhere (Dunn, 2019a), CxG-1 relies on frequency to select
candidate slot-constraints while CxG-2 relies on an association-
based search algorithm. The differences between the two
competing discovery-device grammars as implementations of
different theories of language learning are not relevant here.
Rather, we evaluate both grammars because previous work
(Dunn, 2018a) relied on CxG-1 and this comparison makes it
possible to connect the multi-lingual experiments in this paper
with English-only experiments in previous work. It should be
noted, however, that other work has shown that association-
based constraints out-perform frequency-based constraints
across several languages (Dunn, 2019a). As shown in section 3,
this paper finds that association-based constraints also perform
better on the task of dialectometry. This is important because
the evaluation connects the emergence of syntactic structure with
variation in syntactic structure.

Previous work on syntactic dialectometry focuses on paired
sets of features which can be viewed as alternate choices that
express the same function or meaning. In other words, these
approaches contrast constructions like the double object vs. the
prepositional dative and then quantify the relative preference
of particular varieties for one variant over the other. From our
perspective, such an approach is essential for a limited feature
space because syntactic variation is structured around different
constructions that encode the same function or meaning. In
other words, two constructions which have entirely different
uses cannot be in competition with one another: constrasting
the double object and the get-passive constructions, in isolation,
is not a meaningful approach to syntactic variation because
their frequencies are influenced by other unseen parts of the
grammar. On the other hand, looking at the frequency of a single
construction in isolation can be meaningful but will never reveal
the full picture of syntactic variation.

8 https://labbcat.canterbury.ac.nz/download/?jonathandunn/CxG_Data_FixedSize

This whole-grammar construction-based approach to
dialectology represents as much of the functional space as
possible. This provides an implicit pairing of syntactic variants:
without a topic bias, we expect that the relative frequency of
a specific construction will be consistent across documents. If
one construction is more frequent, that indicates an increased
preference for that construction. This approach does not
explicitly pair variants because part of the problem is to
learn which constructions are in alternation. From a different
perspective, we could view alternating variants as knowledge
that is traditionally given to models within quantitative
sociolinguistics: which constructions are in competition with
one another? But the idea here is to leave it to the model itself to
determine which constructions are in competition.

Because this work is situated within both dialectometry
and construction grammar, we view syntactic variation as
fundamentally structured around function and meaning (as
described above). But more traditional sociolinguistic and
generativist work on syntactic variation does not share this
underlying view. In this case the prediction task itself allows
us to translate between competing assumptions: regardless of
how we understand the source of variation, the models are
ultimately evaluated on how well they are able to predict region-
of-origin (samples from New Zealand vs. samples from Australia)
using only syntactic representations. This type of ground-truth
evaluation can be undertaken, with greater or lesser success,
with any set of assumptions. Whether or not dialectal variation
is fundamentally based on alternations and whether or not
dialectometry models require alternations, the argument here is
that the ability to distinguish between dialects (without topic-
based features) is a rigorous evaluation of the quality of a model
of dialects.

Finally, how does geographic variation as modeled here
interact with register variation? We can think about this in two
different ways: First, does register variation within these datasets
present a confound by being structured geographically? In other
words, if the corpus from Australia represents newspaper and
magazine articles but the corpus from New Zealand represents
discussion forums, then the ability to distinguish between
the two is a confound. Given the size of the datasets, the
consistent collection methodology, the cross-fold validation
experiments, the large number of national varieties per language,
and the comparison of web-based and Twitter data, however,
this confound is not likely. Second, is register variation the
same underlying phenomenon as regional variation? In other
words, is the difference between New Zealand English and
Australian English ultimately the same type of phenomenon
as the structured difference between newspaper writing and
discussion forums? This is an empirical question for future work
that requires a dataset containing both register meta-data and
spatial meta-data.

2.3. Modeling National Varieties

The experiments in this paper take a classification approach
to dialectometry: given a one-hot encoding of construction
frequencies (i.e., a bag-of-constructions), can we distinguish
between different national varieties of a language? There are
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two main advantages to this approach: First, the model can be
evaluated using prediction accuracies on held-out testing data.
This is important to ensure that the final model is meaningful.
Second, a classification approach provides an implicit measure
of the degree of syntactic separation between national varieties
across the entire grammar (c.f,, region similarities in section 3.3).
A particular construction may be unique to a given variety, but
this in itself is less meaningful if the varieties are otherwise the
same. How deep or robust is the syntactic variation? How distinct
are the national varieties? Dialectometry is about going beyond
variation in individual syntactic features to measure the aggregate
syntactic relationships between varieties.

The main set of experiments uses a Linear Support Vector
Machine (Joachims, 1998) to classify varieties using CxG features.
Parameters are tuned using separate development data®. Given
the general robust performance of SVMs in the literature relative
to other similar classifiers on latent variation tasks (Dunn et al.,
2016), we forego a systematic evaluation of classifiers. For
reproducibility against future work, all results are calculated on
pre-specified training and testing sets. Given the large number
of samples in each test set (Table 2) and the robustness in the
cross-validation evaluation (Table 4) we are not concerned with
over-fitting and given the high performance in general we are
not concerned with under-fitting (Table 3). Under this evaluation
regime, any classifier could be used; thus, it is not important to
contrast a Linear SVM with other shallow classifiers such as Naive
Bayes or Decision Trees in this context. The Linear SVM uses
the training data to learn weights for each construction in the
grammar for each regional variety; in the aggregate, the model
builds a high-dimensional representation of each variety that
maximizes the distance between them (i.e., so that varieties like
American English and Nigerian English can be easily separated).
The quality and generalizability of the models are evaluated using
held-out testing data: how well can those same feature weights be
used to predict which regional variety a new sample belongs to?
Because it is possible here that the varieties could be distinguished
in a low-dimensional space (i.e., being separated along only a
few constructions), we use unmasking to evaluate the robustness
of the models in section 3.2. This classification-based approach
deals very well with the aggregation of features, including being
able to ignore redundant or correlated features. On the other
hand, this robust aggregation of syntactic features requires that
we assume the spatial boundaries of each regional variety.

Moving to data preparation, the assumption is that a language
sample from a web-site under the .ca domain originated from
Canada. This approach to regionalization does not assume that
whoever produced that language sample was born in Canada
or represents a traditional Canadian dialect group; rather, the
assumption is only that the sample represents someone in
Canada who is producing language data; but the two are
closely related (Cook and Brinton, 2017). This corresponds with
the assumption that Twitter posts geo-referenced to particular
coordinates represent language use in that place but do not
necessarily represent language use by locals. Geo-referenced

Development data allows experimental settings and parameters to be evaluated
without over-fitting the training/testing data that is used for the main experiment.

TABLE 3 | F1 of classification of regional varieties by language and feature type
(web corpus above and twitter corpus below).

CcC Function CxG-1 CxG-2 Unigram Bigram Trigram N.
Regions
Arabic 0.88 0.90 1.00 1.00 1.00 0.96 4
English 0.65 0.80 0.96 1.00 0.98 0.87 14
French 0.61 0.78 0.96 1.00 0.98 0.90 13
German 0.84 0.89 0.96 1.00 0.98 0.86 8
Portuguese  0.89 0.98 0.99 1.00 1.00 0.97 4
Russian 0.41 0.79 0.95 1.00 0.95 0.80 19
Spanish 0.52 0.78 0.95 1.00 0.99 0.91 17
™™ Function CxG-1 CxG-2 Unigram Bigram Trigram N.
Regions
Arabic 0.80 0.88 0.98 1.00 1.00 0.94 8
English 0.55 0.76 0.92 1.00 0.97 0.82 14
French 0.88 0.98 0.98 1.00 1.00 0.99 4
German 0.83 0.90 0.95 1.00 0.99 0.95 2
Portuguese  1.00 0.99 1.00 1.00 1.00 0.99 2
Russian 0.73 0.83 0.93 1.00 0.94 0.87 3
Spanish 0.51 0.82 094 1.00 0.99 0.92 17

documents represent language use in a particular place. Unlike
traditional dialect surveys, however, there is no assurance that
individual authors are native speakers from that place. We have
to assume that most language samples from a given country
represent the native varieties of that country. For example, many
non-local residents live in Australia; we only have to assume that
most speakers observed in Australia are locals. On the one hand,
this reflects the difference between corpus-based and survey-
based research: we know less about the individuals who are
represented in these datasets. On the other hand, this reflects
increased mobility: the idea that a local individual is born, is
raised, and finally dies all in the same location is no longer
proto-typical.

In order to average out the influence of out-of-place samples,
we use random aggregation to create samples of exactly 1,000
words in both corpora. For example, in the Twitter corpus
this means that an average of 59 individual Tweets from a
place are combined into a single sample. First, this has the
effect of providing more constructions per sample, making
the modeling task more approachable. Second and more
importantly, individual out-of-place Tweets and web pages are
reduced in importance because they are aggregated with other
Tweets and web pages presumably produced by local speakers.
If we think of non-locals as outliers, this approach aggregates
outliers with non-outliers in order to reduce their influence. We
leave for future work an evaluation of different approaches to
this problem. The larger issue is the relationship between small
but carefully curated corpora for which significant meta-data
is available for each speaker and these large but noisy corpora
which are known to contain out-of-place samples (i.e., tourists in
Twitter data). One promising approach is to evaluate such noisy
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FIGURE 2 | Countries with national varieties for selected languages.

corpora based on how well they are able to predict demographic
meta-data for the places they are intended to represent (Dunn
and Adams, 2019). In this case, it has been shown that web-
crawled and Twitter corpora are significantly correlated with
population density (especially when controlling for GDP and
general rates of internet usage) and that both datasets can be used
to predict which languages are used in a country (as represented
using census data). While there is much work to be done on
this problem, the prediction of demographic meta-data provides
a way to evaluate the degree to which large and noisy corpora
reflect actual populations.

We take a simple threshold-based approach to the problem of
selecting national varieties to include. For English and Spanish,
any national variety that has at least 15 million words in both
the Common Crawl and Twitter datasets is included. Given
the large number of countries in Table 2, this higher threshold
accounts for the fact that both English and Spanish are widely
used in these datasets. Lower relative thresholds are used for
the other languages, reflecting the more limited prevalence of
these languages: the thresholds are made relative to the amount
of data per language and are comparable to the English and
Spanish threshold. For English and Spanish, the national varieties
align across both datasets; thus, the experiments for these two
languages are paired and we also consider similarity of models
across registers. But for the other languages aligning the national
varieties in this way removes too many from consideration; thus,
there is no cross-domain evaluation for Arabic, French, German,
Portuguese, or Russian.

The inventory of national varieties in Table 2 is entirely data-
driven and does not depend on distinctions like dialects vs.
varieties, inner-circle vs. outer-circle, or native vs. non-native.
Instead, the selection is empirical: any area with a large amount
of observed English usage is assumed to represent a national
variety of English. Since the regions here are based on national

boundaries, we call these national varieties. We could just as
easily call them national dialects or regional varieties. The global
distribution of national varieties for each language is shown
in Figure 2.

The datasets are formed into training, testing, and
development sets as follows: First, 2k samples are used for
development purposes regardless of the amount of data from a
given variety. Depending on the size of each variety, at least 12k
training and 2.5k testing samples are available. Because some
varieties are represented by much larger corpora (i.e., Tweets
from American English), a maximum of 25k training samples
and 5k testing samples are allowed per variety per register. These
datasets contain significantly more observations than have been
used in previous work (Dunn, 2018a).

For each language, we compare six sets of features: First,
syntactic representations using CxG-1 and CxG-2; Second,
indirect syntactic representations using function words'’; Third,
unigrams and bigrams and trigrams of lexical items. Lexical
unigrams represent mostly non-syntactic information while
increasing the size of n begins to indirectly include information
about transitions. The n-grams are representing using a hashing
vectorizer with 30k dimensions (thus, these representations have
no syntactic features present). This avoids biasing the selection
of specific n-grams (i.e., with content more associated with
dominant inner-circle varieties). But this also means that the
lexical features themselves cannot be inspected.

3. RESULTS

This section reports the results of dialectometry experiments
across seven languages. First, in section 3.1 we look at overall
predictive accuracy using the F-Measure metric across feature

0For replicability, these are taken from https://github.com/stopwords-iso
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sets and languages. The purpose of this analysis is to contextualize
and then explore the interpretation of classification-based
dialectometry. Second, in section 3.2 we examine the robustness
of models across registers (using the web corpus and the Twitter
corpus) and across rounds of feature pruning. The purpose of
this analysis is to understand how meaningful these models are in
the presence of possible confounds such as a reliance on a small
number of highly predictive variants. These first two sections
are important for validating a classification-based approach to
syntactic variation. Third, in section 3.3 we analyze predictive
accuracy and prediction errors across languages and develop
representations of regional syntactic similarity. The purpose
of this analysis is to use dialect classification to understand
global syntactic variation in the aggregate. Fourth, in section
3.4 we examine measures of the uniqueness of different regional
varieties and in section 3.5 we apply these models to evaluate
empirical correlates for notions like inner-circle and outer-circle.
These last two sections are important for understanding what
dialect classification can tell us about global, whole-grammar
syntactic variation once the approach itself has been validated.

3.1. Features, Model Size, and Predictive

Accuracy

The overall prediction accuracy across languages is shown in
Table 3 (with the web corpus above and the Twitter corpus
below). On the left-hand part of the table, the syntactic features
are grouped: function words and the two CxG feature sets.
On the right-hand part, the lexical features are grouped: lexical
unigrams, bigrams, and trigrams. For reference, the number of
regions for each variety is shown in the final column.

A classification-based approach has the goal of distinguishing
between national varieties. We would expect, then, that the task
of distinguishing between a small number of varieties is easier
than distinguishing between a larger number of varieties. For
example, there are only two varieties of German and Portuguese
in the Twitter corpus. For Portuguese, all feature sets have Fls
of 1.00 or 0.99; in other words, this is an easy task and there
are many ways of doing it. This is also an indication that these
varieties of Portuguese (here, from Brazil, BR, and from Portugal,
PT) are quite distinct across all feature sets. On the other
hand, even though German also has a small number of national
varieties (here, from Germany, DE, and from Austria, AT), there
is a wide variation in prediction accuracy, with function words
(F1 = 0.83) and CxG-1 (F1 = 0.90) having markedly lower
performance than other feature sets. The point is that model
performance depends on both the number of national varieties
included in the model (showing the importance of taking an
empirical approach to the selection of varieties) as well as on the
degree of difference between the varieties themselves. Portuguese
as used in Brazil and Portugal is significantly more distinct
than German as used in Germany and Austria. Digging deeper,
however, we also notice that function words as features are more
uneven across languages than other feature sets. For example,
Arabic on Twitter has eight national varieties and function words
achieve an F1 of 0.80; but for Russian on Twitter, with only
three varieties, function words achieve a lower F1 of 0.73. This

is an indication that, as indirect proxies for syntactic structure,
the usefulness of function words for this task varies widely
by language (at least, given the inventory of function words
used here).

Regardless of the number of national varieties per language,
lexical unigrams perform the best (F1 = 1.00). In other words, it
is not difficult to disinguish between samples from New Zealand
and Australia when given access to lexical items (Christchurch vs.
Brisbane). While we know that syntactic models are capturing
linguistic variation, however, the success of lexical models, as
argued elsewhere (Dunn, 2019b), is partly a result of place-names,
place-specific content, and place-specific entities. In other words,
geo-referenced texts capture the human geography of particular
places and this human geography information takes the form of
specific lexical items. Previous work has focused on capturing
precisely this type of content (Wing and Baldridge, 2014; Adams,
2015; Hulden et al, 2015; Lourentzou et al., 2017; Adams
and McKenzie, 2018). The problem is that, without organizing
the frequency of such lexical features according to concept
(Zenner et al.,, 2012), these models may not represent linguistic
variation!!. For example, we know that as n increases n-grams
represent increasing structural information (i.e., transitions
between lexical items instead of lexical items in isolation). Here
we see that, by the time #n is raised to three, the predictive
accuracy of CxG-2 always surpasses the predictive accuracy
of trigrams (with the single exception of French on Twitter).
The difference between CxG-2 and bigrams is much smaller
than the distance between the various syntactic features. This
is evidence that the advantage of unigrams over CxG-2 reflects
the advantage of human geography content (i.e., lexical items
in isolation) over linguistic variation (i.e., transitions between
lexical items). In short, while some of the lexical variation is
linguistic (soda vs. pop), a good deal of it is also based on human
geography (Chicago vs. Singapore). The advantage of syntactic
models in this context is that such non-linguistic variations do
not introduce confounds: we know that these models represent
regional varieties of each language.

Models on the web corpus (above) have higher predictive
accuracy than models on the Twitter corpus (below). This is
true except in cases, such as Portuguese, where there is a wide
difference in the number of national varieties represented (for
Portuguese, two vs. four). For reasons of data availability, only
English and Spanish have strictly aligned varieties; in both of
these languages, the syntactic features perform better on the web
corpus than the Twitter corpus, although the gap is wider for
English than for Spanish. This raises a question that is addressed
in the next section: are models of syntactic variation consistent
across these registers? In other words, do the web-based and
Twitter-based models make the same types of errors?

The web corpus also provides more varieties per language
(with Arabic as the sole exception, which is better represented
on Twitter). In many cases this difference is significant: there are
19 varieties of Russian on the web, but only three on Twitter.

"This is a simplification, of course, but the underlying point is that it is difficult
to distinguish linguistic lexical variation from human geography-based and topical
lexical variation without relying on the idea of conceptual alternations.
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In this case, there are competing Russian-language social media
platforms (i.e., www.vk.com) that are not included in this study.
In other words, outside of English and Spanish, which are aligned
across datasets, the Twitter data is less comprehensive.

What does the F-Measure tell us about models of syntactic
variation? First, the measure is a combination of precision and
recall that reflects the predictive accuracy while taking potentially
imbalanced classes into account: how many held-out samples can
be correctly assigned to their actual region-of-origin? On the one
hand, this is a more rigorous evaluation than simply finding a
significant difference in a syntactic feature across varieties within
a single-fold experimental design: not only is there a difference
in the usage of a specific feature, but we can use the features
in the aggregate to characterize the difference between national
varieties. On the other hand, it is possible that a classifier is
over-fitting the training data so that the final model inflates the
difference between varieties. For example, let’s assume that there
is a construction that is used somewhat frequently in Pakistan
English but is never used in other varieties. In this case, the
classifier could achieve a very high prediction accuracy while only
a single construction is actually in variation. Before we interpret
these models further, the next section evaluates whether this sort
of confound is taking place.

3.2. Model Robustness Across Features

and Registers

If a classification model depends on a small number of highly
predictive features, thus creating a confound for dialectometry,
the predictive accuracy of that model will fall abruptly as such
features are removed (Koppel et al., 2007). Within authorship
verification, unmasking is used to evaluate the robustness of
a text classifier: First, a linear classifier is used to separate
documents; here, a Linear SVM is used to classify national
varieties of a language. Second, for each round of classification,
the features that are most predictive are removed: here, the
highest positive and negative features for each national variety
are pruned from the model. Third, the classifier is retrained
without these features and the change in predictive accuracy is
measured: here, unmasking is run for 100 iterations using the
CxG-2 grammar as features, as shown in Figure 3 (with the
web-based model above and the Twitter-based model below).
For example, this removes 28 constructions from the model of
English each iteration (two for each national dialect), for a total
of approximately 2,800 features removed. The figures show the F-
Measure for each iteration. On the left-hand side, this represents
the performance of the models with all features are present;
on the right-hand side, this represents the performance of the
models after many features have been removed. This provides a
measure of the degree to which these models are subject to a few
highly predictive features.

First, we notice that models with a higher starting predictive
accuracy (e.g., Arabic and Portuguese in the web-based model
and Portuguese and French in the Twitter-based model) tend to
maintain their accuracy across the experiment. Even after 100
rounds of pruning, Arabic and Portuguese (CC) remain above

0.95 with CxG-2 features'2. Similarly, French and Portuguese
remain above 0.95 after 100 rounds of pruning (TW). This
indicates that a high performing dialect classification model is
based on a broad and distributed set of features. But this is
not always the case: for example, Arabic (TW) starts out with
the same performance as French but over the course of the
experiment declines to a performance that is 10% lower than
French. This is an indication that this Twitter-based model of
Arabic is less robust than its counter-part model of French
(although keep in mind that the French model has only 4 varieties
and the Arabic model has 8).

Second, although Spanish and Russian have a starting
accuracy that is comparable to other languages, with F1s of 0.95
for both languages on the web corpus, their accuracy falls much
more quickly. Spanish and Russian decrease by around 20% by
the end of the experiment while English and French decrease by
only 10% in total. On the Twitter corpus, Spanish and Russian
again pattern together, this time with a 15% reduction. But here
the English model has a somewhat steeper decline. In most
cases, however, the starting accuracy of a model is related to its
rate of decline: more accurate models are also more robust to
feature pruning. The purpose of this evaluation is to show that
a classification approach to dialectometry is not subject to the
confound of a small number of highly predictive features.

The next question is about the similarity of national varieties
as represented in the web corpus vs. the Twitter corpus. Is
there a consistent representation of variation or are the models
ultimately register-specific? For this analysis we focus on English
and Spanish as the two languages that are aligned by national
varieties across both datasets. We focus on an analysis of errors:
First, two national varieties that are more often confused by
the classifier are more similar according to the model. Thus,
we represent the similarity of regions using the total of all
errors between two varieties. For example, if UK English is
predicted to be New Zealand English 50 times and New Zealand
English is predicted to be UK English 25 times, there are 75
total errors between these varieties. More errors reflects more
similar varieties!®.

The question is whether the web corpus and Twitter both
provide the same patterns of similarity. Figure4 shows the
relative errors between varieties for both datasets (with English
above and Spanish below): the web (blue) occupies the left-hand
side of each bar and Twitter (red) occupies the right-hand side.
If both colors are the same size, we see the same proportion
of errors for a given pair across both datasets. This figure also
shows the most similar varieties, with the varieties having the
highest total errors occupying the bottom of each. For example,
the most similar varieties of English on Twitter are American
(US) and Canadian English (CA). The most similar varieties
on the web corpus, however, are New Zealand (NZ) and South
African English (ZA)™. The Pearson correlation between errors,
paired across datasets by varieties, is highly significant for English

2Here and below we focus on CxG-2 as the highest performing syntactic model.
13Country abbreviations are given in Appendix A (Supplementary Material).
4The ISO country codes are used in all figures and tables; these are shown by
common name in the first Appendix in Supplementary Material.
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FIGURE 3 | Model robustness by language using unmasking for 100 iterations with CxG-2 features (web models above and twitter models below).

at 0.494 (note that this involves the number of errors but does
not require that the errors themselves match up across registers).
At the same time, there remain meaningful differences between
the datasets. For example, Nigeria (NG) and Portugal (PT) have
many errors in the Twitter model but very few in the web model.
On the other hand, New Zealand (NZ) and South Africa (ZA)
have a large number of errors in the web model but few in
the Twitter model. This is an indication that the models are
somewhat different across registers.

The errors for Spanish, in the bottom portion of Figure 4,
also are significantly correlated across registers, although the
Pearson correlation is somewhat lower (0.384). For example,
both corpora have significant errors between Argentina (AR)

and Uruguay (UY), although Twitter has a much higher error
rate. But errors between Costa Rica (CR) and Uruguay (UY) and
between Argentina (AR) and Costa Rica (CR) are only found on
Twitter. Errors between Honduras (HN) and Nicaragua (NI), on
the other hand, are only found in the web model. The point is
that the two registers are associated in their error rates for both
English and Spanish (the only languages with regional varieties
aligned across both datasets).

The high accuracy of these models could suggest that the
models are over-fitting the test set, even with a relatively large
number of samples in the test set. Thus, in Table 4, we compare
the weighted F1 scores on the test set with a 10-fold cross-
validation evaluation that includes the training and testing data
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FIGURE 4 | Classification errors by percent of dataset for web and twitter corpora using CxG-2 features (English errors above and Spanish errors Below).

together. The table shows the maximum and minimum values
across folds. There are only three cases in which the minimum
fold F1 is lower than the reported test set metrics: Russian (web
data), Arabic (Twitter data), and Portuguese (Twitter data). In
each case the difference is small and in each case the average fold
F1 is the same as the F1 from the test set alone. This evidence
shows that the models are not over-fitting the test set and that
this reflects a robust classification accuracy.

This section has approached two important questions: First,
is a classification model dependent on a small number of highly

predictive features? Second, does a classification model produce
the same type of errors across both web corpora and Twitter
corpora? In both cases some languages (like English) are more
robust across feature pruning and more stable across registers
than others (like Spanish). This is the case even though the
F-Measure (reflecting predictive accuracy alone) is similar for
both languages: 0.96 vs. 0.95 for the web model and 0.92 vs.
0.94 for the Twitter model. These alternate evaluations, then, are
important for revealing further properties of these classification
models. The predictive accuracy for both languages is high across
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TABLE 4 | Comparison of train/test and cross-validation results by weighted F1 for CxG-2.

CcC T™W
Train-Test CV-Max CV-Min Train-Test CV-Max CV-Min

Arabic 1.00 1.00 1.00 Arabic 0.98 0.98 0.97
English 0.96 0.96 0.96 English 0.92 0.92 0.92
French 0.96 0.96 0.96 French 0.98 0.98 0.99
German 0.96 0.96 0.96 German 0.95 0.96 0.95
Portuguese 0.99 0.99 0.99 Portuguese 1.00 1.00 0.99
Russian 0.95 0.95 0.94 Russian 0.93 0.95 0.93
Spanish 0.95 0.95 0.95 Spanish 0.94 0.94 0.94
Bold values indicate CV results lower than results on the test set.

TABLE 5 | Classification performance for English regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1(CC) Prec (TW) Recall (TW) F1 (TW)

AU 0.97 0.96 0.97 AU 0.82 0.83 0.83
CA 0.94 0.94 0.94 CA 0.84 0.79 0.81
IE 0.97 0.97 0.97 IE 0.95 0.95 0.95
NZ 0.91 0.92 0.91 Nz 0.92 0.90 0.91
UK 0.95 0.95 0.95 UK 0.87 0.90 0.89
us 0.93 0.95 0.94 us 0.85 0.89 0.87
ZA 0.94 0.96 0.95 ZA 0.92 0.94 0.93
IN 0.97 0.98 0.97 IN 0.97 0.97 0.97
MY 0.96 0.96 0.96 MY 0.99 0.99 0.99
NG 0.98 0.98 0.98 NG 0.94 0.95 0.94
PH 0.98 0.97 0.98 PH 0.98 0.98 0.98
PK 1.00 0.99 0.99 PK 0.98 0.98 0.98
CH 0.97 0.94 0.96 CH 0.98 0.97 0.97
PT 0.99 0.98 0.98 PT 0.93 0.90 0.92
AVG 0.96 0.96 0.96 AVG 0.92 0.92 0.92

both registers and the regional varieties which are confused is
significantly correlated across both registers.

3.3. Regional Accuracy and Similarity
While the previous sections have evaluated classification-
based models externally (prediction accuracy by feature type,
robustness across feature pruning, error similarity across
registers), this section and the next focus on internal properties
of the models: what are the relationships between national
varieties for each language? Which regions perform best within
a model? In this section we examine the F-Measure of individual
national varieties and the similarity between varieties using
cosine similarity between feature weights. Because the Twitter
dataset has fewer varieties for most languages, we focus on
similarity within the web models alone and only for languages
with a large inventory of varieties (i.e., only for English, French,
and Spanish).

We start with English in Table 5. The left-hand side shows
Precision, Recall, and F-Measure scores for the web corpus and

the right-hand side for the Twitter corpus, both using the CxG-
2 feature set. The higher the scores for each national dialect, the
more distinct that variety is from the others in syntactic terms.
New Zealand English (NZ) has the lowest F1 (0.91) for the web
corpus. While the score of NZ English is the same for the Twitter
model (0.91), it is no longer the lowest scoring variety: this is now
Canadian English (CA) at 0.81. In fact, the lowest performing
varieties for the Twitter model are all inner-circle varieties:
Australia (AU), Canada (CA), United Kingdom (UK), and the
United States (US). This phenomenon is explored further in the
next section: why are more dominant varieties more difficult to
model? Is this consistent across languages? For now we note only
that all of the countries included in the model are expected, with
perhaps the exception of Portugal (PT) and Switzerland (CH).
While previous work made an explicit distinction between inner-
circle and outer-circle varieties (Dunn, 2018a), here we leave this
type of categorization as an empirical question.

We can compare national varieties within a model by
comparing their respective feature weights: which regions have
the most similar syntactic profiles? We use cosine distance to
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FIGURE 5 | Region similarity by cosine between feature weights, English CxG-2.

NZ

1.25

1.15

1.1

0.935

PH PK PT UK US

measure the similarity between feature weights and then use a
heat map, as in Figure 5, to visualize the similarities. Cells with
a higher value (more red) indicate a pair of varieties which the
model is trying hard to separate (thus, a more similar pair).
For example, the most similar pair is UK English (UK) and
Irish English (IE); this is expected given that Northern Ireland
is part of the UK. The next four pairs also are expected: Indian
(IN) and Pakistan English (PK), American (US) and Canadian
English (CA), New Zealand (NZ) and South African English
(ZA), American (US) and Nigerian English (NG). While the
final pair is less transparent, it is important that the model picks
out these pairs of related varieties without any pre-knowledge.
On the other hand, dark blue values indicate that the model is
not concerned with separating the pair (because they are not
very similar): for example, South African English (ZA) and Swiss
English (CH).

French varieties are shown in Table 6, with again a much
larger inventory for the web model than for the Twitter
model. As with English, the lowest performing varieties in
terms of prediction accuracy are the most dominant inner-circle
varieties: France (FR), Belgium (BE), and Switzerland (CH).
One possible reason is that there is more internal variation in
France than in, for example, Cameroon (CM). Another possible
reason is that these inner-circle varieties have influenced the
outer-circle varieties, so that they are harder to distinguish
from the colonial varieties. The regions in the web model
are expected given French colonial history: European varieties
(France, Switzerland, Belgium, Luxembourg), African varieties
(Burkina Faso, Cameroon, Senegal), North African varieties
(Grenada, Algeria, Tunisia), Pacific varieties (New Caledonian,
French Polynesia), and unconnected island varieties with current
or past French governance (Réunion, Grenada). All have a history
of French usage.

Following the same methodology for English, region similarity
is shown in Figure 6. The closest varieties are from Réunion
and French Polynesia, from Senegal and Burkina Faso, and from

France and Belgium. This again shows that the model not only
distinguishes between varieties but can also situate the varieties
in relationship to one another.

Next, regional accuracies for Spanish are shown in Table 7;
these are aligned by country with the exception of Peru (PE)
which is missing from the Twitter dataset. There is a single
European variety (Spain), South American varieties (Argentina,
Chile, Colombia, Ecuador, Peru, Paraguay, Uruguay, Venezuela),
Central American varieties (Costa Rica, Guatemala, Honduras,
Nicaragua, Panama, El Salvador), as well as Cuban and Mexican
varieties. The alignment across datasets helps to ensure that
only expected varieties occur; as discussed above, there is in
fact a significant correlation between the errors produced on the
two datasets.

The similarity between Spanish regions is shown in Figure 6
(below French). The most similar varieties are from Costa Rica
and Chile, from Spain and Chile, and from Venezuela and
Colombia. The least similar are from Argentina and Chile and
from Peru and Venezuala.

Russian varieties are shown in Table 8, encompassing much
of Eastern Europe and Central Asia. As mentioned before, the
Twitter dataset is missing a number of important varieties, most
likely because of the influence of other social media platforms.
There are two noisy regions, SO and PW, present in the web
corpus’®. Beyond this, the countries represented are all expected:
in addition to Russia (RU), there are varieties from Central
Asia (Azerbaijan, Georgia, Kyrgyzstan, Tajikistan, Uzbekistan),
Southeast Europe (Bulgaria, Moldova), and Eastern Europe
(Belarus, Lithuania, Slovenia, Ukraine). There are also varieties
that reflect expanding-circle varieties of Russian (Ecuador, Haiti).
Given the lack of alignment between the datasets, it is difficult
to evaluate whether or not these expanding-circle varieties are

150One approach that could remove the few noisy regions that show up in Russian
and, later, in German is to use population-based sampling to reduce the amount of
data per country before selecting regional varieties.
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TABLE 6 | Classification performance for French regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1(CC) Prec (TW) Recall (TW) F1 (TW)
BE 0.94 0.86 0.90 BE 0.97 0.94 0.96
BF 0.98 0.98 0.98 BF - - -
CH 0.92 0.93 0.93 CH - - -
CM 1.00 1.00 1.00 CM - - -
Dz 0.99 0.99 0.99 DZ - - -
FR 0.92 0.95 0.93 FR 0.97 0.98 0.98
GD 0.94 0.92 0.93 GD - - -
HT - - - HT 1.00 1.00 1.00
Ly 0.97 0.96 0.96 Ly 1.00 1.00 1.00
NC 0.96 0.95 0.95 NC - - -
PF 0.97 0.97 0.97 PF - - -
RE 0.94 0.95 0.95 RE - - -
SN 0.98 0.98 0.98 SN - - -
TN 0.98 0.97 0.98 ™ - - -
AVG 0.96 0.96 0.96 AVG 0.98 0.98 0.98

robust. This reflects another limitation of an entirely data-driven
approach: when is the use of Russian in a country a stable
dialect and when is it a non-native variety that reflects short-term
military or economic connections? The capacity of this syntactic
model to predict both suggests that, in empirical terms, the
distinction is not important. It could be the case, however, that
some varieties are more robust than others to feature pruning.
For reasons of space, similarities between Russian varieties are
not shown.

Because they have fewer national varieties each, we end with
Arabic, German, and Portuguese together (this table is shown
in Appendix 2 (Supplementary Material)). Starting with Arabic,
the regional comparison is made difficult by the little overlap
between the two datasets: only data from Syria is consistent
across registers. Focusing on the Twitter model, then, we note
that it does contain examples of several traditional dialect
groups: Algerian (DZ) represents the Maghrebi group, Egypt
(EG) represents the Egyptian group, Iraq (IQ) and Syria (SY)
represent the Mesopotamian group, Jordan (JO) and Palestine
(PS) represent the Levantine group, and Kuwait (KW) represents
the Arabian group. In addition, there is a Russian (RU) dialect
of Arabic, reflecting an emerging outer-circle variety. Given the
sparsity of regions shared across the two datasets, we do not
explore further the relationships between varieties. The point
here is to observe that the models on both datasets maintain a
high accuracy across regions and that the available countries do
represent many traditional dialect groups.

For German, Twitter provides only a few inner-circle varieties.
Here we see, again, that the most central or proto-typical dialect
(Germany, DE) has the lowest overall performance while the
highest performance is found in less-central varieties. While
other languages have national varieties representing countries
that we expect to see, the German web corpus contains three
regions that are almost certainly noise: the PW (Palau), SO
(Somalia), and TL (East Timor) domains are most likely not
used for regional web pages but rather for other purposes. No

other language has this sort of interference by non-geographic
uses of domain names (except that Russian also picks up
data from .so and .pw). Most likely this results from having
a frequency threshold that is too low. Because a classifier
attempts to distinguish between all classes, the inclusion of
noisy classes like this may reduce performance but will never
improve performance. Thus, we leave this model as-is in order
to exemplify the sorts of problems that an entirely data-driven
methodology can create. Ignoring these varieties, however, the
web-based model does provide a well-performing model of
Austria (AU), Switzerland (CH), Germany (DE), Luxembourg
(LU), and Poland (PL).

For Portuguese, again the Twitter model only covers major
varieties: Brazil and Portugal. The web corpus, unlike German,
does not show any noisy regions but it does include two expected
African varieties: Angola (AO) and Cabo Verde (CV). While the
model performs well, we will not delve more deeply into the
region-specific results.

The purpose of this section has been to examine the prediction
accuracies across national varieties alongside the similarity
between varieties. With the exception of some noisy regions for
German and Russian, these results show that the model both is
able to make accurate predictions about syntactic variation as well
as to make reasonable representations of the aggregate similarity
between national varieties.

3.4. Empirical Measures of Region

Uniqueness

We have seen in the sections above that outer-circle or
expanding-circle varieties often have higher predictive accuracies
even though they are less proto-typical and less dominant.
For example, these sorts of varieties have been shown to have
lower feature densities for these CxG grammars (Dunn, 2019b),
which indicates that the grammars are missing certain unique
constructions. Regardless, these varieties remain unique in that
they are easier to distinguish from more central varieties.
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FIGURE 6 | Region similarity by cosine between feature weights, French (above) and Spanish (below) CxG-2.
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For example, the English Twitter models show the main inner-
circle varieties as having the lowest F1 scores: Australia (0.83),
Canada (0.81), United States (0.87), and the United Kingdom
(0.89). This phenomenon is not limited to English, however. In
the French web model, again the inner-circle (i.e., European)
varieties have the lowest F1 scores: Belgium (0.90), Switzerland
(0.93), and France (0.93). The other languages do not present
examples as clear as this; for example, Arabic and German and
Portuguese do not contain enough varieties to make such a
comparison meaningful. Russian and Spanish are characterized
by a large number of varieties that are contiguous in relatively
dense regions, thus showing a less striking colonial pattern. Why
is it that, in cases of non-contiguous dialect areas, the inner-circle
varieties have the lowest prediction accuracy?

In qualitative terms, there are several possible explanations.
First, it could be the case that these inner-circle varieties have
strongly influenced the other varieties so that parts of their

syntactic profiles are replicated within the other varieties. Second,
it could be that there is an immigration pipeline from outer-
circle to inner-circle countries, so that the samples of UK English,
for example, also contain speakers of Nigerian English. Third, it
could be the case that media and communications are centered
around inner-circle markets so that outer-circle varieties are
influenced by one or another center of power. Additional factors
could include the strength of standardization across languages,
the number of L1 vs. L2 speakers that are represented for each
language, and the average level of education for each country.
None of these possibilities can be distinguished in empirical
terms within the current study.

We have shown above, however, that this approach to
dialectometry can (i) make accurate predictions about variety
membership and (ii) can create reasonable representations of
aggregate syntactic similarity between regions. In this section we
formulate an approach to identifying, in purely synchronic terms,
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TABLE 7 | Classification performance for Spanish regions, web, and twitter corpora, CxG-2 features.

Prec (CC) Recall (CC) F1(CC) Prec (TW) Recall (TW) F1 (TW)
AR 0.94 0.94 0.94 AR 0.85 0.90 0.87
CL 0.99 0.98 0.98 CL 0.97 0.98 0.97
CO 0.95 0.94 0.95 CO 0.95 0.93 0.94
CR 1.00 1.00 1.00 CR 0.91 0.87 0.89
Cu 0.96 0.97 0.97 Ccu 0.98 0.97 0.98
EC 0.96 0.96 0.96 EC 0.98 0.98 0.98
ES 0.94 0.95 0.94 ES 0.94 0.96 0.95
GT 0.96 0.96 0.96 GT 0.94 0.95 0.95
HN 0.93 0.94 0.94 HN 0.94 0.92 0.93
MX 0.94 0.93 0.93 MX 0.92 0.93 0.93
NI 0.92 0.86 0.89 NI 0.98 0.98 0.98
PA 0.98 0.98 0.98 PA 0.95 0.95 0.95
PE 0.94 0.92 0.93 PE - - .
PY 0.94 0.96 0.95 PY 0.93 0.94 0.93
SV 0.95 0.94 0.95 SV 0.93 0.94 0.93
uy 0.91 0.93 0.92 )4 0.88 0.85 0.86
VE 0.97 0.98 0.98 VE 0.94 0.93 0.93
AVG 0.95 0.95 0.95 AVG 0.94 0.94 0.94
TABLE 8 | Classification performance for Russian regions, web, and twitter corpora, CxG-2 features.
Prec (CC) Recall (CC) F1 (CC) Prec (TW) Recall (TW) F1 (TW)

AZ 0.94 0.94 0.94 AZ - - -
BG 1.00 1.00 1.00 BG - - -
BY 0.98 0.95 0.97 BY 0.91 0.85 0.88
EC 0.96 0.98 0.97 EC - - -
EE 0.86 0.89 0.87 EE - - -
GE 0.95 0.95 0.95 GE - - -
HT 0.99 0.99 0.99 HT - - -
KG 0.99 0.99 0.99 KG - - -
Kz 0.96 0.93 0.94 Kz - - -
LT 0.94 0.93 0.94 LT - - -
Lv 0.92 0.91 0.91 Lv - - -
MD 0.98 0.97 0.97 MD - - -
RU 0.90 0.90 0.90 RU 0.93 0.96 0.94
Sl 1.00 1.00 1.00 Sl - - .
TJ 0.95 0.97 0.96 TJ - - -
UA 0.93 0.94 0.94 UA 0.98 0.96 0.97
uz 0.92 0.92 0.92 uz - - -
AVG 0.95 0.95 0.95 AVG 0.94 0.94 0.93

which varieties within a model represent central inner-circle
countries that are the sources of influence for other outer-circle
countries. The observations about prediction accuracy depend
on the evaluation of the model, but we want this measure of
uniqueness to depend on the model of variation itself.

The feature weights represent the positive and negative
importance of each syntactic feature for each national variety.
We used cosine similarities between feature weights above to

find the most similar regions. Here we are interested in the
overall uniqueness of a particular dialect: which varieties are
in general not similar to any other varieties? We calculate this
by summing the Spearman correlations between each variety
and all other varieties. For example, if UK English has similar
ranks of features as Irish and New Zealand English, then this
will produce a high value. But if Swiss English generally has low
relationships between feature ranks with other varieties, then this
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TABLE 9 | Variety uniqueness by language using spearman correlation, web CxG-2 model.

English French Russian Spanish
1 us -0.46 1 FR -0.49 1 TJ 0.04 1 ES -0.24
2 UK -0.25 2 RE -0.36 2 EE 0.15 2 PY -0.05
3 CA -0.22 3 CH -0.32 3 Sl 0.17 3 uy -0.04
4 NZ -0.18 4 LU -0.26 4 LT 0.23 4 AR -0.02
5 AU -0.16 5 PF -0.18 5 EC 0.23 5 CO 0.00
6 IE -0.14 6 SN -0.15 6 Kz 0.23 6 CL 0.03
7 PH -0.06 7 BE -0.10 7 UA 0.23 7 HN 0.04
8 MY -0.05 8 NC -0.08 8 Lv 0.26 8 cu 0.06
9 IN -0.01 9 BF -0.03 9 GE 0.32 9 MX 0.10
10 NG 0.02 10 GD -0.02 10 HT 0.35 10 NI 0.12
11 CH 0.05 11 TN 0.05 11 KG 0.35 1 GT 0.13
12 ZA 0.06 12 Dz 0.07 12 uz 0.36 12 SV 0.15
13 PT 0.13 13 CM 0.25 13 AZ 0.36 13 CR 0.18
14 PK 0.14 - - - 14 BY 0.47 14 VE 0.19
- - - - - - 15 RU 0.56 15 EC 0.23
- - - - - - 16 MD 0.67 16 PE 0.25
- - - - - - 17 BG 0.84 17 PA 0.32

will produce a low value. These uniqueness values are shown
in Table9 for each of the languages with a large number of
varieties, calculated using CxG-2 web-based models. Spearman
correlations are preferred here instead of Pearson correlations
because this reduces the impact of the distance between varieties
(which the classifier is trying to maximize).

The uniqueness of each region reflects, at least for non-
contiguous languages like English and French, the degree to
which a variety belongs in the inner-circle. For example, the top
three countries for English are the United States, the UK, and
Canada; for French they are France, Réunion (the only French
overseas department in the model), and Switzerland. In both
cases the uniqueness of varieties with this measure reflects the
same scale that categorizations like inner and outer circle are
attempting to create. The most unique variety of Spanish is the
only non-contiguous variety (from Spain). The interpretation of
the rest of the regions on this scale is made more difficult because
they are of course densely situated. Notice, also, that while
English and French have a scale with higher uniqueness (with
starting values of -0.46 and -0.49), both Spanish and Russian
have a scale with higher similarity (with ending values of 0.84
and 0.32). Russian has no negative values at all, for example.
The most unique varieties of Russian are from Tajikistan,
Estonia, and Slovenia. Rather than being inner-circle, as in
French and English, these are more peripheral varieties. While
this uniqueness measure still reflects an important property
of the relationships between varieties, then, its interpretation
is complicated by the different behavior of languages with
contiguous or non-contiguous varieties.

The purpose of this section has been to show that the feature
weights from the model can also be used to create a general
measure of variety uniqueness which reflects an important
property of the status of varieties. While qualitative work creates
categories like inner-circle or outer-circle, this produces a scale

that represents similar intuitions. The difference is that the notion
of inner-circle depends on historical and social information about
variety areas, with little linguistic analysis, while this scale is
entirely linguistic with no historical information whatsoever.

3.5. Empirical Evidence for World Englishes
How can we connect data-driven approaches to syntactic
variation with qualitative assessments within sociolinguistics?
In this section we compare the model of English variation in
this paper with traditional classifications from the World
Englishes paradigm into inner-circle, outer-circle, and
expanding-circle varieties.

First we look at classification accuracy (c.f., Table5). We
expect that inner-circle varieties will be more closely clustered
together as they are more closely related and are used in mainly
monolingual contexts. There is a significant difference between
inner-circle and outer-circle performance in both datasets using
a two-tailed t-test (p = 0.0183 for CC and p = 0.004 for TW).
Upon inspection we see that the outer-circle varieties have higher
accuracies, in part because they are more unique.

Second, we look at the degree of fit between the grammar and
each regional variety using the relative average frequency: how
often do constructions in the grammar occur in each variety?
In other words, because the grammar is learned on a different
dataset which is likely skewed toward inner-circle varieties, we
would expect that the grammar itself would better describe these
varieties. A higher average frequency means a better default
description (i.e., because the samples are all the same length
and so should contain approximately the same number of
constructions per sample). We again divide the varieties into
inner-circle and outer-circle and test the significance of this
difference using a two-tailed ¢-test: the result is significant (
0.0011 for CC and p = 0.0004 for TW). In this case, inspection
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shows that the inner-circle varieties have higher frequencies than
the outer-circle varieties.

Third, we look at uniqueness values as calculated in Table 9.
First, we see that there is a clear separation between inner-circle
and outer-circle varieties, with the exception of South African
English. But is the difference significant? Again using a two-tailed
t-test there is a significant difference, although to a lesser degree
p = 0.024 for CC).

In all three cases, there is a significant difference between
attributes of inner-circle and outer-circle varieties: the proto-
typical inner-circle varieties are better described by the grammar
but less distinguishable in terms of classification accuracy and
in terms of aggregate similarities. There is a consistent and
significant distinction, even when the model of varieties of
English makes no geographic or sociohistorical assumptions.

4. DISCUSSION

This paper has shown (i) that whole-grammar dialectometry
and data-driven language mapping can be brought together to
produce models capable of predicting the membership of held-
out samples with a high degree of accuracy. In addition, we
have shown (ii) that these models do not depend on only a
small number of highly predictive variants, (iii) that there is a
strong association between classification errors across registers
in those languages that are paired across both datasets, (iv) that
the models can be used to create reasonable representations
of the aggregate similarity between varieties, and (v) that
measures of uniqueness based on these models provide an
empirical approximation of categorical notions like inner-circle
vs. outer-circle varieties. Taken together, these results show that
a computational approach to dialectology can overcome the
limitations of traditional small-scale methods. The discussion
in this section focuses on two questions: First, how do these
computational models of dialect relate to previous qualitative
understandings of dialect? Second, what does the increased
scale and scope of these models mean for interactions between
sociolinguistics and computational linguistics?

4.1. Categorizing Varieties

At its core, the goal of computational dialectology is to provide
precise global-scale models of regional linguistic variation that
are both replicable and falsifiable. In other words, these models
are descriptions of how linguistic structure (specifically, syntax as
represented by CxG) varies across national varieties. But we also
want to explain linguistic variation in historical or social terms:
what real-world events caused the spread of these languages in
order to create the aggregate relationships that we now observe?
While such historical explanations are often ad hoc, this paper has
attempted to explain synchronic variation using only empirical
measures. While it is certainly the case that the concepts used
here (predictive accuracy, region similarity, region uniqueness)
tell us about varieties, it is not the case that they tell us the
same things as traditional qualitative studies. In this case, two
clear differences between this paper and traditional approaches
to dialectology and dialectometry are (i) the focus on global

variation with countries as the smallest spatial unit and (ii) the
focus on written as opposed to spoken language.

First, we have a distinction between places (i.e., English used
in the United States) and varieties (i.e., American English). There
is a claim, whether implicit or explicit, in traditional dialectology
that these two are not the same thing. For example, some speakers
(older, male, rural, less educated) are taken as more representative
than others (younger, urban, immigrant). A farmer born and
raised in Kansas is assumed to be a local, a representative of
American English; an IT specialist born in India but educated
and living in Kansas is not. The argument in this paper, and
perhaps in corpus-based research more broadly, is that this
starting assumption is problematic. In short, we take American
English to be English as used in the United States. We make no
effort to exclude certain participants. This approach, then, can
be situated within a larger movement away from NORM-based
studies (Cheshire et al., 2015; Scherrer and Stoeckle, 2016).

Second, the dialect areas used in this paper ignore distinctions
between native speakers and non-native speakers. Similar to the
idea of locals vs. non-locals, the claim is that some places that
produce a great deal of English data (for example, Nigeria or
Malaysia) do not have the same status as American English
as sources of ground-truth English data. This distinction is
clearly a slippery-slope: while some language learners are not
fully fluent, people who use a language like English for regular
communicative functions cannot be categorized given a priori
reasonings. We take this instead as an empirical question:
language mapping is used to discover countries where English
is regularly and robustly produced and dialect modeling is used
to validate that these countries have distinct and predictable
varieties. The social status of different English users (i.e., native
vs. non-native) is entirely non-empirical and irrelevant. Given
that these datasets do not come with individual demographics,
however, it is important to also evaluate how well they reflect
known demographic properties of the places they are taken to
represent in order to ensure the connection between places and
syntactic variants (Dunn and Adams, 2019).

Third, a distinction is sometimes made between varieties and
dialects. For example, outer-circle and expanding-circle dialects
are often called varieties. But what is the basis of this distinction?
The argument in this paper is simple: the status of Nigerian
English or Cameroon French or Angolan Portuguese is an
empirical matter. The question is whether we can find these
varieties using data-driven language mapping and can model
their syntactic profile accurately enough to distinguish them from
other varieties consistently across registers.

While previous work in dialectology and dialectometry
focuses specifically on variation within individual countries, this
paper has focused on global variation across many national
varieties. One on the hand, this is important because the seven
languages studied in this paper are used around the world: any
local study will overlook important interactions. On the other
hand, this means that these results are difficult to compare
with previous small-scale studies. How could these methods be
adapted to traditional problems of, for example, dividing Britain
or the United States into dialect regions? First, there is no explicit
spatial information provided to the models in this paper because
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the classes are all pre-defined. On approach would be to use
existing sub-national administrative boundaries (such as postal
codes) and apply a meta-classifier to evaluate different groupings.
Which combinations lead to the highest predictive accuracy?
This could be undertaken with the Twitter dataset but not with
the web-crawled dataset.

4.2. Sociolinguistics and Computational
Linguistics

Why should sociolinguistics more broadly care about a
computational approach to dialectology? The first reason is
simply a matter of descriptive adequacy: the models of variation
in this paper have a broad and replicable feature space that is
ultimately more meaningful and robust than multivariate models
containing only a few features. While the grammars used are not
explored further here, quantitative and qualitative evaluations are
available elsewhere (Dunn, 2017, 2018a,b, 2019a). These models
are more meaningful because they make predictions about
categories as a whole (i.e., American English). They are more
robust because they are evaluated against held-out samples using
predictive accuracy. For both of these reasons, computational
models of variation provide more accurate descriptions; this
is important for quantitative sociolinguistics, then, simply as
an extension of existing methods for discovering externally-
conditioned variants (here, conditioned by geography). On the
other hand, this approach of combining grammar induction and
text classification produces models that, while easily understood
in the aggregate, ultimately give us intricate and detailed
descriptions that are difficult for human analysts to understand.
The question is, do we expect human analysts to have full and
complete meta-awareness for all variants in all national varieties
of a language?

Beyond this, however, sociolinguistics is currently limited to
small-scale studies, as discussed in the introduction. But the
languages studied in this paper are used in many countries
around the world. Each of these varieties has the potential
to influence or be influenced by other distant varieties. In
the same way, limiting a study to a handful of constructions
ignores most of the functional capability of a language. Thus,
current methods provide tiny snapshots of variation. But, moving
forward, our ability to further understand syntactic variation and
change depends on modeling entire grammars across all relevant
varieties. While recent work has increased the number of features
in order to produce larger-scale studies (Szmrecsanyi, 2013; Guy
and Oushiro, 2015), such features remain language-specific and
are defined a priori. On the other hand, however, a continued
question for work that is bottom-up, such as this paper, is how
to evaluate the connection between corpus-based models (which
have been shown to be stable, robust, and highly accurate from
an internal evaluation) and speech communities in the real world.
How can computational descriptions and qualitative fieldwork be
better combined?

Given the higher performance of lexical features in this paper,
why should work in NLP that is not directly concerned with
linguistic variation take a CxG or some other syntactic approach?
There is an important distinction between topic variation (i.e.,

content arising from differences in human geography) and
latent variation (i.e., structural variations arising from differences
in variety). Any purely-lexical model is unable to distinguish
between these two sources of information: Is this text written by
someone from New Zealand or is it about New Zealand? Does
this Tweet describe a vacation in New Zealand or was it written
by a New Zealander on a vacation in the United States? Any
model that is unable to distinguish between topical and latent
properties within geo-referenced datasets will confuse these two
types of cases. On the other hand, this is an incomplete approach
the problem: how can we distinguish between topical variation,
human geography-based varation, and linguistic variation within
lexical items in order to have a better understanding of how these
languages are used around the world? This remains a problem for
future research.

Why should computational linguistics, and artificial
intelligence more broadly, care about dialectology? As
computational models become more important to society,
it is essential that such models reflect all speakers equally. In
spite of this, many models are biased against certain populations:
either directly encoding the biases of individuals (Bolukbasi
et al,, 2016) or indirectly encoding a preference for dominant
inner-circle varieties (Jurgens et al., 2017). Dialectometry can
be used to prevent indirect biases against varieties like Nigerian
English or Cameroon French by, first, identifying the relevant
varieties that need to be considered and, second, providing a
method to optimize language models for region-specific tasks.
For example, if we can identify the membership of a sample
that is part of an independent text classification problem (i.e.,
identifying helpful reviews or removing harrassing messages),
then we can evaluate the degree to which existing models prefer
dominant varieties (i.e., only suggesting reviews written in
American English). This is important to ensure that inner-circle
dominated training sets do not encode implicit biases against
other varieties. It is also important because computational
dialectometry can potentially improve equity between varieties
in a way that traditional methods cannot.
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Inspired by work in comparative sociolinguistics and quantitative dialectometry, we
sketch a corpus-based method (Variation-Based Distance & Similarity Modeling—VADIS
for short) to rigorously quantify the similarity between varieties and dialects as a function
of the correspondence of the ways in which language users choose between different
ways of saying the same thing. To showcase the potential of the method, we present
a case study that investigates three syntactic alternations in some nine international
varieties of English. Key findings include that (a) probabilistic grammars are remarkably
similar and stable across the varieties under study; (b) in many cases we see a cluster of
“native” (a.k.a. Inner Circle) varieties, such as British English, whereas “non-native” (a.k.a.
Outer Circle) varieties, such as Indian English, are a more heterogeneous group; and (c)
coherence across alternations is less than perfect.

Keywords: comparative sociolinguistics, VADIS, probabilistic grammar, dialectometry, variationist linguistics

INTRODUCTION

Determining whether different varieties, dialects, or languages for that matter share the same or
a similar “grammar” is an important and theoretically significant topic in comparative linguistics.
In this paper we present a variationist method (Variation-Based Distance & Similarity Modeling—
VADIS for short) to determine such similarity, based on naturalistic corpus and hence production
data. VADIS builds bridges between subfields in sociolinguistics and variation studies that should
be allied but that are in practice surprisingly disjoint. First, DIALECTOMETRY (see e.g., Séguy, 1971;
Goebl, 1982; Nerbonne et al., 1999) is concerned with aggregate measures of linguistic similarity
and distance as a function of geographic space; what is at issue is inter-speaker variation, where
language users of dialect A use form X and language users of dialect B use form Y. Second,
VARIATIONIST LINGUISTICS (see e.g., Labov, 1969; Gries, 2003; Bresnan et al., 2007) takes an
interest in how speakers choose between formally distinct variants to express the same meaning,
subject to probabilistic constraints that may be language-internal, stylistic, or language-external
in nature; variationist linguistics, then, is in the first place all about intra-speaker variability (or
“variability in the linguistic signal within a given language,” in the parlance of van Hout and
Muysken, 2016, p. 250), that is, variation between forms that are in principle available to all
members of a given speech community. The basic idea behind VADIS is to use the output of
variationist modeling as an input to dialectometric analysis, or—in other words—to measure
inter-speaker variation by assessing the structure of intra-speaker variability.
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Why do we need VADIS? There is, of course, an extensive
literature on how to determine the grammatical similarity of
varieties and dialects based on dialect atlases or survey data
(for example, Spruit et al., 2009; Szmrecsanyi and Kortmann,
2009; Cysouw, 2013). Using naturalistic corpus data to measure
the grammatical similarity of varieties is a trickier task. One
avenue consists of establishing the text frequencies of forms and
constructions in corpora, and to distill geolinguistic patterns
from the frequency signal (Szmrecsanyi, 2013; Grieve, 2016).
But VADIS digs even deeper than that: what counts is not
if and/or how often people use particular constructions, but
how they choose between “alternate ways of saying ‘the same’
thing” (Labov, 1972, p. 188). VADIS takes advantage of the fact
that variationist analysis is good at quantifying the probabilistic
grammar(s)—the set of constraints and their probabilistic
effects on how people choose between variants of a particular
variable! —of intra-speaker variation, and essentially defines the
similarity between varieties as being proportional to how similar
the probabilistic grammars regulating variation are. This is a
more thoroughgoing, less “surfacy” method in comparison to the
above-mentioned classical similarity-estimation methods: note
that two dialects may have the exact same inventory of forms,
and (though unlikely) these forms may even occur with the exact
same text frequency—but still, the probabilistic conditioning of
the forms may vary. VADIS is the only currently available method
that will work under such circumstances.

VADIS builds on methods developed in comparative
sociolinguistics (e.g., Tagliamonte, 2001), which has been used
for decades to evaluate the relatedness of typically a small number
of dialects drawing on multivariate evidence of typically a single
variation phenomenon: are the same constraints significant
across varieties? Do the constraints have similar effect sizes?
Is the overall ranking of constraints similar? Unlike classical
comparative sociolinguistics, however, VADIS scales up better to
the study of a potentially infinite number of varieties based on
many variation phenomena.

To showcase the descriptive and theoretical potential of the
VADIS method, we analyze by way of a case study similarity
patterns and relationships between varieties of English, fueled by
a variationist analysis of three syntactic alternations:

(1) The genitive alternation (Heller et al., 2017)
a. the country’s economic crisis (the s-genitive)
b. the economic growth of the country (the of -genitive)
(2) The dative alternation (Rothlisberger et al., 2017)
a. I'd  given Heidi my T-Shirt
ditransitive dative variant)
b. I'd given the key to Helen (the prepositional
dative variant)
(3) The particle placement
Szmrecsanyi, 2018)
a. just cut the tops off (verb-object-particle order)
b. cut off the flowers (verb-particle-object order)

(the

alternation (Grafmiller and

"The concept of a probabilistic grammar thus largely overlaps with what
variationist sociolinguists refer to as a “variable grammar,” defined by Tagliamonte
(2006, p. 240), citing Poplack and Tagliamonte (2001, p. 91), as being represented
by “the hierarchy of constraints constituting each factor [that regulates variation]”.

In principle, it is the analyst’s decision which alternation(s)
to include in the analysis; VADIS does not impose any
restrictions, as long as linguistic choice-making can be modeled
as a function of clearly defined language-internal and and/or
language-external probabilistic constraints. In the case study at
hand, the three alternations above were selected as they are all
positional alternations subject to similar probabilistic constraints
(e.g., constituent weight, constituent animacy, and so on).

The alternations in (1-3) are studied in nine World Englishes
(British English, Canadian English, Irish English, New Zealand
English, Hong Kong English, Indian English, Jamaican English,
Philippine English, and Singapore English), based on materials
from the International Corpus of English (ICE) and the Corpus
of Global Web-Based English (GloWbE). Relevant observations
of the (a) and (b) variants above were annotated for ~10
probabilistic constraints including e.g., the principle of end
weight (longer constituents tend follow shorter constituents; see
e.g., Wasow and Arnold, 2003) and animacy effects (animate
constituents tend to occur early; see e.g., Rosenbach, 2008).

Analysis indicates, among other things, that (a) probabilistic
grammars are remarkably similar and stable across the varieties
under study; (b) in many cases we see a cluster of “native” (a.k.a.
Inner Circle) varieties, such as British English, whereas “non-
native” (a.k.a. Outer Circle) varieties, such as Indian English, are a
more heterogeneous group; and (c) coherence across alternations
is less than perfect.

This paper is structured as follows: Section Data discusses
the datasets we investigate. Section Spelling out the Variation-
Based Distance & Similarity Modeling (VADIS) Method explains
the VADIS method. In sections Quantification via similarity
coeflicients, Mapping out (dis)similarity relationships between
varieties, and Assessing coherence, we present results. Section
Discussion and Conclusion offers a discussion and conclusion.

DATA

In this paper, we re-analyze the genitive alternation dataset
investigated by Heller (2018), the dative alternation dataset
investigated by Rothlisberger (2018), and the particle placement
dataset investigated by Grafmiller and Szmrecsanyi (2018) (see
examples (1-3) above). The three datasets have been created
in the context of the same project, and share the same basic
design. With an interest in comparative probabilistic variation
analysis, team members tapped into the International Corpus
of English? (ICE) (Greenbaum, 1991) and the Corpus of Global
Web-based English3 (GlIoWDbE) (Davies and Fuchs, 2015) to
investigate syntactic variability in the following nine varieties
of English:

British English (henceforth: BrE)
Canadian English (CanE)

Irish English (IrE)

New Zealand English (NZE)
Jamaican English (JamE)

Zhttp://ice- corpora.net/ice/index.html
3https://www.english-corpora.org/glowbe/

Frontiers in Artificial Intelligence | www.frontiersin.org

64

November 2019 | Volume 2 | Article 23


http://ice-corpora.net/ice/index.html
https://www.english-corpora.org/glowbe/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Szmrecsanyi et al.

Variation-Based Distance and Similarity Modeling

Singapore English (SgE)
Indian English (IndE)
Hong Kong English (HKE)
Philippine English (PhlE)

ICE, initiated in 1990, is an ongoing project which was designed
to create a set of parallel, balanced corpora representative of
language usage across a wide range of (standard) national
varieties. Each ICE component contains 500 texts of
~2,000 words each, sampled from 12 spoken and written
genres/registers. ICE components included here contain data
from the early 1990s, with some also containing data collected
as late as the early 2000s. Sampling for each national component
is conducted by local teams following a common corpus design
and annotation scheme to ensure maximal comparability across
the components. GloWbE contains data collected from 1.8
million English language websites—both blogs and general web
pages—from 20 different countries (~1.8 billion words in all).
To keep the datasets to a manageable size, texts were randomly
sampled from each of the nine varieties in GloWDbE, totaling
500,000 words per variety.

Areally, we are dealing with a convenience sample, subject to
the limits of the availability of corpora. But a deliberate attempt
was made to evenly balance what (e.g., Kachru, 1985, 1992)
has called “Inner Circle” varieties of English (BrE, IrE, CanE,
and NZE) and “Outer Circle” varieties of English (JamE, SgE,
IndE, HKE, and PhIE). The distinction between Inner Circle
and Outer Circle varieties is roughly equivalent to McArthur
(1998) distinction between English as a Native Language (ENL)
varieties (about communities “in which the language is spoken
and handed down as the mother tongue of the majority
of the population”; Schneider, 2011, p. 30), and English as
a Second Language (ESL) varieties (about communities “in
which English has been strongly rooted for historical reasons
and assumes important internal functions (often alongside
indigenous languages), e.g., in politics (sometimes as an official
or co-official language), education, the media, business life, the
legal system, etc.”; Schneider, 2011, p. 30). We know from
the literature (see Szmrecsanyi and Roéthlisberger, 2019 for
discussion) that this is a very important dialect-typological
distinction in English linguistics.

The goal was to compile datasets amenable to variationist
analysis. That means that in a first step interchangeable genitive,
dative, and particle placement variants were defined which could
be paraphrased by the competing variant with no semantic
change. So, for example, (4a) can be paraphrased by (4b), which
is why (4a) is a token that would have been included in the
dataset, but (5a) cannot—in any of the varieties we study—be
paraphrased by (5b), which is why (5a) is not a token that would
have been included in the dataset

(4) a. the speech of the president
b. the president’s speech

(5) a. three liters of wine
b.? wine’ three liters

For reasons of space, we cannot review the definitions of the
variable contexts in detail here; the reader is referred to the

discussions in Heller (2018), Rothlisberger (2018), and Grafmiller
and Szmrecsanyi (2018).

After all interchangeable variants were identified in the
materials (dative alternation: N = 13,171; genitive alternation:
N = 13,798; particle placement alternation: N = 11,454), each
observation was annotated, manually or automatically, for a
multitude of known and less-well known constraints on syntactic
variation. For example, the principle of end-weight (Behaghel,
1909; Wasow and Arnold, 2003) predicts that in VO languages
such as English, “heavy” constituents should follow “lighter”
constituents. Thus, team members determined (a) the length of
the possessor and possessum phrases in the genitive alternation
(prediction: comparatively long possessors should favor the of -
genitive, because the of -genitive places the possessor phrase after
the possessum phrase), (b) the length of the recipient and theme
phrases in the dative alternation (prediction: comparatively long
recipients should favor the prepositional dative, because the
prepositional dative places the recipient phrase after the theme
phrase), and (c) the length of the direct object in the particle
placement alternation (prediction: long direct objects favor verb-
particle-object order, which places the direct object after the
particle). Again, for reasons of space we cannot discuss the
annotation procedure in detail; the reader is referred to Heller
(2018), Rothlisberger (2018), and Grafmiller and Szmrecsanyi
(2018).

SPELLING OUT THE VARIATION-BASED
DISTANCE AND SIMILARITY MODELING
(VADIS) METHOD

Overview

VADIS is designed to measure the (dis)similarity of grammars.
Grammar is understood here as a set of probabilistic grammars
(a.ka. “variable grammars” in variationist sociolinguistics
parlance) conditioning a set of N > 1 alternations or variation
phenomena (a.ka. “variables” in variationist sociolinguistics
parlance). A probabilistic grammar specifies the set of constraints
(a.ka. predictors or “conditioning factors” in variationist
sociolinguistics parlance) regulating a given alternation.

VADIS builds on methods developed in comparative
sociolinguistics (see e.g., Tagliamonte, 2001, 2012, 162-173;
Tagliamonte et al., 2016), which is a sub-discipline in variationist
sociolinguistics that evaluates the relatedness between varieties
and dialects based on how similar the conditioning of variation is
in these varieties. Comparative sociolinguists rely on three what
they call “lines of evidence” to determine relatedness:

1. Are the same constraints significant across varieties?
2. Do the constraints have the same strength across varieties?
3. Is the constraint hierarchy similar?

Similarity thus assessed is then often interpreted as historical and
genetic relatedness. VADIS draws inspiration from this literature
and adapts the comparative sociolinguistics method so that it can
be applied to datasets sampling (a) more than a couple of dialects
or varieties, and (b) more than one variation phenomenon at a
time. This is accomplished through more rigorous quantification.
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Let us illustrate by coming back to our case study, which
covers three syntactic alternations in some nine regional varieties
of English. Our point of departure is the view that the dative,
genitive, and particle placement alternations are alternations
between different forms that have the same meaning. We
specifically consider each alternation as coming with its own
probabilistic grammar, which regulates how people choose
between variants. For example, Bresnan et al. (2007) is a seminal
study that calculates regression models that predict how speakers
of US American English choose between ditransitive (e.g., I'd
given Heidi my T-Shirt) and prepositional dative variants (e.g., I'd
given my T-Shirt to Heidi). According to the formula of model A
(Bresnan et al., 2007; Figure 4), a non-given theme significantly
decreases the odds that speakers will choose a prepositional
dative variant by some 67% (b = —1.1), while an inanimate
recipient significantly increases the odds for a prepositional
dative variant by a factor of about 12 (b = 2.5). These effects
are part of the probabilistic grammar that regulates dative choice
in spoken US American English, as sampled in the Switchboard
corpus. But what would happen if we fitted a parallel model on
data of, say, British English? Would we obtain a different model
formula? Would the same constraints be significant? Would they
have the same effect size? VADIS is a method to address these
questions in a rigorously quantitative fashion. The basic idea
behind VADIS is that similarity between varieties is proportional
to how similar probabilistic grammars and model formulas are.

The VADIS Pipeline

Practically speaking, VADIS consists of the following steps:

Step 1: define, per alternation, the p most important
constraints on variation. In the case study we are reporting here,
we set p = 84 and so include the eight most important predictors
(across all varieties) for each alternation®. We thus choose, in the
case study at hand, to hold the number of constraints constant
across alternations for the sake of maximum comparability,
but we stress that in principle, the number of constraints do
not need to be the same, considering that some alternations
would naturally lend themselves to having more constraints than
others, depending on the extent of previous research and the
complexity of the factors at play. To identify the most important
predictors, we fit conditional random forest models across all
varieties (i.e., not accounting for variety differences) and created
a global variable importance ranking of the predictors; we also
consulted the extant literature on the alternations in question.
Other ways to define predictor sets are certainly possible, but
this task is best left to the VADIS user, not to the method itself.

4We experimented with predictor sets of different sizes, from p = 5 to p = 10.
In principle, larger predictor sets are preferable to smaller predictor sets, but then
again including too many predictors that turn out as insignificant in many cases
is problematic. Given these principles p = 8 seemed like a good compromise for
the case study we report here. See Tamaredo et al. (2019) for a VADIS analysis that
uses p = 5.

>The method as outlined here does not distinguish between different types
of constraints, e.g., between what Tamminga et al. (2016, p. 303) term
sociostylistic factors (s-conditioning), internal linguistic factors (i-conditioning),
and physiological and psycholinguistic factors (p-conditioning). Note however
that the method can be easily adapted to restrict attention to only particular types
of constraints.

In the case of multi-level categorical predictors, we simplified
to binary contrasts whenever possible. The predictor sets thus
generated are reported in Table 1. We skip a detailed discussion
of individual predictors and instead refer the reader to the
publications where the annotation of predictors are discussed
in detail.

Step 2: Fit a series of mixed-effects logistic regression models,
one per variety and alternation. The response variable is variant
choice (e.g., s-genitive vs. of-genitive), and the independent
variables are the predictor sets identified in step 1. Note
that, following Gelman (2008), all numeric variables in the
model should be standardized and categorical variables should
be centered. This approach allows direct comparison of the
magnitudes of the coefficients in the model. We use mixed-
effects models (R function glmer()) with random intercepts
for speaker/writer (approximated by corpus file id) and genre.
Additional random intercepts were possessor and possessum
head for the genitive alternation, verb and theme head for the
dative alternation and particle verb and head of the direct object
for the particle placement alternation. In previous studies, from
which these data were taken, random slopes for a number of
predictors were initially tried and evaluated. In most cases,
models failed to converge, and in those that were successful, the
random slopes were not statistically justified. In our experience,
this is quite common with corpus-based grammatical alternation
studies, where the individual group levels of the random
effects (typically texts and/or lexical items) tend to be sparsely
populated. There is also growing evidence that imposing maximal
random effects structure where it is not supported can adversely
affect results (Bates et al., 2015; Matuschek et al., 2017). Therefore
we did not include random slopes for this study. The resulting
models are of satisfactory quality: concordance statistic (C)
values® are consistently greater than 0.88, and VIFs never
exceed 2.5.

Step 3: Based on the variety-specific regression models,
determine cross-variety similarity based on predictor
significance’. In this step, we define the probabilistic distance
between two varieties as being proportional to the extent
to which the varieties do not overlap with regard to which
constraints significantly (in the case study at hand, we set alpha
= 0.05%) regulate variant choice. To exemplify, consider two

®The concordance statistic (or index) represents the probability that the model
will rank any randomly chosen observation of the predicted variant higher than
any randomly chosen observation of the alternate variant. C is equal to the area
under the receiver operating characteristic curve. Note that model fit only matters
for VADIS to the extent that the model fits are acceptable and reasonably close
to one another across the same alternation. One probably should not compare
models with C values of 0.75 and 0.95, but a range of 0.02 or 0.03 seems
perfectly reasonable.

7We acknowledge that this step relies on null hypothesis significance testing based
on ultimately arbitrary alpha levels, which is increasingly controversial. Note,
however, that VADIS also includes two other lines of evidence which are more
nuanced. The main reason why we include step 3 is that checking significances is a
customary line of evidence in classical comparative sociolinguistics, and so for the
sake of continuity with the extant literature VADIS also considers this criterion.

8 A Bonferroni correction could in principle be used to make the alpha level more
conservative, but we refrain from doing so here since our main interest lies with
comparative analysis (using significance as an auxiliary criterion), and not with
statistical significance per se.
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TABLE 1 | Predictor sets used for the analysis.

Genitive alternation (see Heller et al., 2017)

Dative alternation (see Rothlisberger et al., 2017)

Particle placement alternation (see Grafmiller
and Szmrecsanyi, 2018)

Possessor animacy (animate vs. inanimate)
Possessor length in words
Possessum length in words

Possessor NP expression type (NP vs. NC vs. other)  Theme head frequency

Final sibilancy in possessor (present vs. absent)
Previous choice (of vs. s vs. hone)
Semantic relation (prototypical vs. non-prototypical)

Possessor head frequency Recipient head frequency

Log weight ratio between recipient and theme
Recipient pronominality (pronominal vs. non-pronominal)
Theme complexity (complex vs. simple)

Theme pronominality (pronominal vs. non-pronominal)
Theme definiteness (definite vs. indefinite)
Recipient givenness (given vs. new)

Length of the direct object in words
Definiteness of the direct object (definite vs. indefinite)
Givenness of the direct object (given vs. new)

Concreteness of the direct object (concrete vs.
non-concrete)

Thematicity of the direct object

Directional modifier (present vs. absent)
Semantics (compositional vs. hon-compositional)
Surprisal.P

hypothetical varieties A and B and five constraints a-e which
regulate some variation phenomenon:

Variety A Variety B
Constraint a Significant Significant
Constraint b Significant Not significant

Constraint ¢ Not significant Significant

Constraint d Not significant Not significant

Constraint e Significant Significant

Variety A and B agree on the significance of three constraints
(a, d, e), and disagree with regard to two constraints. The
distance between the two varieties is thus two out of five squared
Euclidean distance points. Scaling this to an interval between
0 (no disagreement whatsoever) and 1 (maximal disagreement)
yields, in the fictitious example at hand, a distance value of 2/5 =
0.4 and a corresponding similarity value of 3/5 = 0.6.

Step 4: Based on the variety-specific regression models,
determine cross-variety distance and similarity based on the
magnitude of effects. To define the similarity between the
varieties, this step compares the extent to which the effect sizes
of the constraints in the various regression models are similar
(inspired by the procedure sketched in Heller, 2018). This is
done by calculating a distance matrix based on the model
estimates (using Euclidean distance), whether or not they are
significant® This is illustrated with a toy example in Tables 2,
3. Table 2 shows the model estimates of five constraints for
three varieties. The Euclidean distances between these varieties,
based on the estimates from Table 2, are presented in Table 3.
The next step for this line of evidence is to calculate the mean
distance per variety, i.e., the average of the pairwise distances
between the varieties (cf. Table 4). To scale the distances to an
interval between 0 and 1, we can ask the following question:
what is the maximal distance between the varieties under study?

%A disadvantage of including all estimates in the model, also the ones of constraints
that do not reach significance, is that the latter may not be very reliable. However,
we have opted not to use significance as an arbitrary cut-off point in this line of
evidence in order not to repeat the weakness of the first line (see also footnote 7 in
that respect).

TABLE 2 | Model estimates for three fictitious varieties A, B, and C.

Variety A Variety B Variety C
Constraint —2.10 —-1.50 1.20
Constraint —1.30 —1.60 —1.20
Constraint 0.75 —0.05 0.63
Constraint 0.69 0.80 2.20
Constraint —0.92 —-1.0 —-0.79

TABLE 3 | Distance matrix for fictitious varieties A, B, and C (Euclidean distance).

Variety A Variety B Variety C
Variety A 0
Variety B 1.06 0
Variety C 3.63 3.15 0

We define this maximal distance here as the distance between
two hypothetical varieties whose constraints have exactly the
opposite effects. Such cases of complete constraint “flipping”,
ie., a systematic reversal in the direction of every constraint’s
effect between two varieties, are very unlikely to happen in real
world contexts. We set the absolute size of all the constraints to a
reasonable value (£1) to create two (hypothetical) varieties that
are about as different from one another as we could realistically
expect two related varieties to be. For the toy case involving 5
constraints in Table 2, the maximum distance is calculated to
be 4.47. We divide the observed distances by this value to give
normalized distances within a range of 0 to 1. For the similarity
scores we subtract these scaled distances from 1 to give us a
score where larger values represent greater average similarity (cf.
Table 4). Averaging over the similarities in our toy example gives
a similarity coeflicient of 0.42.

Step 5: Fit a series of conditional random forest models,
one per variety and alternation. To independently estimate the
relative importance of the constraints, we use permutation-
based variable importance rankings derived from conditional
random forests (CRFs; Strobl et al, 2009). Like regression
models, random forests are a supervised learning method
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TABLE 4 | Mean distances and mean similarities per variety.

Variety Mean distance Mean distance (scaled) Mean similarity
Variety B 2.10 0.47 0.53
Variety A 2.34 0.562 0.48
Variety C 3.39 0.76 0.24
Mean 2.61 0.58 0.42

that aims to predict an outcome from a set of predictor
values, however, this is where the similarities end. Random
forests are a decision tree-based ensemble method which
offers various advantages over regression models. Random
forests are more reliable with unbalanced data, and offer
methods for assessing the conditional importance of individual
predictors in CRFs. Additionally, cross-validation is built into
the method, resulting in greater accuracy and more reliable
importance measures. For these reasons we believe CRFs offer
a valuable independent assessment of the relationship between
the alternations and their constraints. For calculating the CRFs
and variable importances we use the cforest() and varimpAUC()
functions in R’s party package!®. The response variable and
independent variables in the models are the same as for the
regression models in step 2 (though inputs are not standardized
for the CRFs)'!.

Step 6: Based on the variety-specific conditional random
forest models, determine cross-variety distance and similarity
based on the importance rankings of the predictors. In this last
step, we measure the probabilistic distance between two varieties
simply as the Spearman rank correlation between those varieties’
respective variable importance rankings'2. For example, consider
the three hypothetical varieties A, B, and C with the constraint
rankings below:

Variety A Variety B Variety C
Constraint a 1 1 2
Constraint b 2 3 4
Constraint ¢ 3 2 3
Constraint d 4 4 1
Constraint e 5 5 5

Varieties A and B show the greatest degree of similarity, with a
correlation of p = 0.9, while varieties A and C are least similar,
with a correlation of p = 0.3. Variety B is slightly more similar to
variety C than variety A is (p = 0.4), but it is far more similar to

19The number of trees in the forests was set to 500, and the number of predictors
sampled (“mtry”) was set to 3. All other hyperparameters were left at the default
values for the package functions.

"Note that no random effects were included given that mixed effects random
forests are not yet fully implemented for classification problems.

12We stress that this measurement is only about the ranking of the constraints, and
does not take graded differences in terms of the actual variable importance scores
into account (see Strobl et al., 2009, p. 336 on why variable importance scores
should not be directly compared across models). Graded differences are anyway
covered by the 21 Jine of evidence (step 4).

A than to C. We can arrange these pairwise correlations in a table
like so:

Variety A Variety B Variety C
Variety A 1 0.9 0.3
Variety B 0.9 1 0.4
variety C 0.3 0.4 1

From the workflow described above, it is clear that the case
study reported in this paper (analyzing the similarity of nine
varieties based on three alternations, including various subsets
of the data) generated hundreds of regression and CRF models.
Hence, it is not possible to report a comprehensive overview of
model quality measures for the case studies. Instead, we restrict
ourselves reporting the C values for the regression models based
on all available data in Table 5 below.

An R package (under development) which performs
all the above calculation is available at https://github.com/
jasongrafl/VADIS. The analysis scripts we used to conduct
our case study are available at https://osf.io/3gfqn/, along
with the genitive alternation and dative alternation datasets
(the particle placement dataset is built into the R package
mentioned above).

About Concept Validity and Reliability

Given the novelty and complexity of the VADIS methodology,
some evaluation of the methods validity and reliability is
warranted. Preliminary work suggests that the similarity
coefficients do indeed accurately and consistently capture relative
degrees of similarity among varieties. In a study using a series of
simulated datasets, designed with varying degrees of similarity,
Heller (2018, p. 199-204) showed that the similarity coefficients
derived from models fit to these datasets correlated inversely
with the degree of variability built into the data simulation.
The more variable the datasets were designed to be when they
were created, the lower the similarity coefficients were for all
three lines of evidence. In a second study, Rothlisberger (2018,
p- 175; 215-216) used a bootstrapping procedure to assess the
reliability of the similarity coefficients for each line of evidence
across 1,000 bootstrap sample