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Editorial on the Research Topic

Complexity and Self-Organization

Complexity occurs when relevant interactions prevent the study of elements of a system in isolation.
These interactions between elements may lead to the self-organization of the system. A system can
be described as self-organizing when its global properties are a product of the interactions of its
components. Complexity and self-organization are prevalent in a broad variety of systems. Because
of this, they have been studied from multiple perspectives and disciplines, leading naturally to
transdisciplinary studies.

The scientific study of complexity and self-organization was limited before the popularization
of computers in the 1980s, as previous tools were insufficient to deal with hundreds or thousands
of variables. Thus, computer science has been essential for these studies.

In computational intelligence, complexity and self-organization have been studied and exploited
with different purposes. The aim of this Research Topic was to bring together novel research into a
coherent collection, spanning from theory and methods to simulations and applications.

For example, it has been observed that complex systems studied by different disciplines reach a
balance between change and stability that has been also described as criticality. This balance allows
the maintenance of functionality (robustness) and also the potential to change in response to new
situations (adaptability). The different contributions included in this Research Topic illustrate how
this balance is present in a broad variety of phenomena.

We received 22 submissions, out of which ten were accepted.
Of these, three dealt with formal methods as a crucial tool for the understanding of complex

and self-organizing systems. Voit and Meyer-Ortmanns propose a data-based approach to
automatically infer heteroclinic networks. These are networks where nodes represent saddle fixed
points in phase space, while edges are heteroclinic orbits (which occur when the unstable manifold
of a saddle fixed point intersects the stable manifold of another saddle). The proposed method
is based on a template system that uses a learning algorithm to adjust the eigenvalues at the
saddles, eventually reconstructing the topology of the original heteroclinic network. This approach
is promising to infer a structure that reproduces an observed function or dynamics.

Camargo uses an agent-based model of ideological alignment to explore the usefulness of
different approaches and methods to analyze its dynamics. Camargo generalizes to argue that
the proposed approaches can be applied to other agent-based models of social behavior, where
complexity is such that measurements of the performance of the model are not explicit nor
straightforward.

An obstacle of measurements is the lack of proper metrics. In this respect, Correa presents
a mini-review on how metrics of emergence, self-organization, and complexity can contribute
to commerce/consumer studies, in particular, to the understanding “electronic word-of-mouth”
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(EWOM) data. These metrics can be used as proxies to the degree
of customers’ comments diversification, customers’ comments
polarization, and the diversification-polarization balance.

A particular subset of the studies of complex systems concerns
itself with issues of cognitive science, which is addressed in three
of the papers. The first of them asks what happens when humans
interact with humanoid robots that mimic their behavior in a
self-organizing way. This interesting question is investigated in
Mazumori et al. In their system, the robot’s behavior is partially
self-organized using a memory of prior interaction with other
humans (art gallery visitors) and an internal dynamics that
makes the robot only partially predictable. Engagement of the
interaction partner and the inversion of roles, i.e., that the human
starts to imitate the robot, are frequently observed.

Ramos-Fernandez et al. consider the question how
information is being acquired and distributed in a group of
individuals, specifically validated against data obtained from
spider monkey colonies. The particular dynamics studied are
the dynamics of subgroups of monkeys which split and merge
(fission-fusion dynamics) and how these decisions are taken by
integrating events experienced by the individuals over time. The
different timescales of the dynamics (fights, signaling, and rank)
are used by the faster degrees of freedom as reference in a form
of “downward causation.” Thus, the decisions of the individuals
of the collective make up the structure which, in turn, influences
the decisions of the individuals.

Considering the neural mechanisms of behavior, Morales and
Froese contribute to this research topic with a short study on
the role of unsupervised learning in the formation of functional
clusters in the C. elegans nervous system. Unsupervised Hebbian
learning can be a self-optimization process to bring the initial
network into a state of better generalization to new patterns.

Another important application of the study of complexity
is the overarching field of global issues which is addressed
in the following two papers. Nowhere does the importance
of complexity science show as clearly as in issues of global
ecological and economical systems which do not yield to
simplistic treatments if one seeks them to be relevant. Amongst
such topics, sustainability is of particular importance for
the future of society and organized humanity. Molina-Perez
et al. bring together an arsenal of methods to address the
challenges of such models. An earlier model for the interplay
of economical and ecological parameters, solved by constrained
optimization, is considered under different policy regimes,
uncertain stressors, and multiple experimentation with different
elasticity parameters; it is subjected to machine-learning based
clustering analysis for the parameters that produce stable
vs. unstable regimes. All components, complex modeling,
optimization, machine learning, and data mining work together
to obtain a picture not only of how the system behaves on the
whole, but also what policies should be enacted to increase the
chance of obtaining desirable results.

Grisogono discusses how artificial intelligence (AI) could
help tackle global complex problems, such as climate change,
collapsing ecosystems, international conflicts, extremism, public
policy, economics, and governance. These problems require

decision-making to attempt solutions or improvements. AI has
the potential of mitigating failures and limitations in human
decision-making, leading to a balance between robustness and
adaptability. Nevertheless, there are also risks and drawbacks
in AI, so its proper use and development should be discussed
in detail.

Our research topic also shows how the concepts of
complexity and self-organization are helpful in studying
biological systems. Two above-mentioned papers Morales and
Froese and Ramos-Fernandez et al. have contributions to both
cognitive science and biology.

Our understanding of morphogenesis, as an important
process of natural development, has advanced recently in part
because of computing power, data availability, and algorithms.
Thus, Pastor-Escuredo and del Álamo explore how computation
is contributing to developmental biology. Computational models
and simulations are proving useful to unravel the dynamic
and multi-scale nature of morphogenesis. Machine learning
and in particular deep learning architectures are promising
in this respect. There are also potential applications for
tissue engineering, identification of therapeutic targets, and
synthetic life.

Finally, Casiraghi and Schweitzer address questions related
to computational social science. In particular, they propose a
method for improving the robustness of online social networks.
Their aim is to prevent drop-out cascades of users. This is
done using strategies to influence particular agents, reducing
their probability of leaving the network, and thus considerably
reducing drop-out cascades and increasing robustness.

As topics, complexity and self-organization have worked their
way out of an exotic niche into the center of human activities.
In contrast to the traditional reductionist treatment of scientific
investigations, in today’s crosstalk of disciplines, there is no
field of human endeavor or study that can be considered in
isolation. Understanding complexity has become a crucial skill
in studying how the interacting levels of organismic function,
society, ecological, and economical webs lead to a functioning
whole—or to its disintegration. The richness of the contributions
to this research topic serves as a showcase for the width and
variety of tools and viewpoints that are being marshaled to
this purpose.
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Heteroclinic networks are structures in phase space that consist of multiple saddle fixed

points as nodes, connected by heteroclinic orbits as edges. They provide a promising

candidate attractor to generate reproducible sequential series of metastable states. While

from an engineering point of view it is known how to construct heteroclinic networks

to achieve certain dynamics, a data based approach for the inference of heteroclinic

dynamics is still missing. Here, we present a method by which a template system

dynamically learns to mimic an input sequence of metastable states. To this end, the

template is unidirectionally, linearly coupled to the input in a master-slave fashion, so that

it is forced to follow the same sequence. Simultaneously, its eigenvalues are adapted

to minimize the difference of template dynamics and input sequence. Hence, after the

learning procedure, the trained template constitutes a model with dynamics that are

most similar to the training data. We demonstrate the performance of this method at

various examples, including dynamics that differ from the template, as well as a regular

and a random heteroclinic network. In all cases the topology of the heteroclinic network

is recovered precisely, as are most eigenvalues. Our approach may thus be applied

to infer the topology and the connection strength of a heteroclinic network from data

in a dynamical fashion. Moreover, it may serve as a model for learning in systems of

winnerless competition.

Keywords: inference, heteroclinic networks, learning, metastable states, winnerless competition

1. INTRODUCTION

When the unstable manifold of a saddle fixed point intersects the stable manifold of another
saddle this is called a heteroclinic orbit. A heteroclinic network is a set of multiple saddles that are
connected this way. Non-linear dynamics of heteroclinic networks are frequently found in ordinary
differential equations under certain constraints like symmetries [1] or delay [2]. They are predicted
in models of coupled phase oscillators [2, 3], vector models [2], pulse-coupled oscillators [4]
and models of winnerless competition (WLC) [5]. Applications are manifold and range from
social [6, 7] and ecological [5, 8] systems, to computation [4] and neuronal [9–13] networks. In
particular, heteroclinic sequences in models of winnerless competition predict transient dynamics
that share features with cognitive dynamics [5, 9–11, 13, 14]. Cognitive dynamics, or more
generally, brain dynamics proceeds via sequential segmentation of information that is manifest
in sequences of encephalography (EEG)-microstates [15] which are brief periods of stable scalp
topography with a quasi-stationary configuration of the scalp potential field. Transitions between
EEG-microstates have been modeled by epsilon-automata [16], for example, or by noisy network
attractor models [17], of which the latter are closely related to heteroclinic networks. Such
sequences of metastable states are observed on different time scales, ranging from milliseconds

6
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to seconds [18]. In addition, these sequences may be nested as
reflected in so-called chunking dynamics [10] when, for example,
slow oscillations of neuronal activity modulate fast oscillations
modulate even faster ones. On a formal level, the “events” in
WLC are described as saddle equilibria (with one or higher-
dimensional unstable manifolds), connected via heteroclinic
orbits which facilitate transitions among the saddles [1]. The
orbits can form heteroclinic sequences, cycles, or even whole
networks with saddles as nodes and heteroclinic connections
as edges. Specifically, heteroclinic networks are considered in
this paper.

In an abstract representation, such sequences of metastable
states can bemodeled as a sequence of symbols, each representing
one state with discrete state-transitions between them as in
finite-state machines. In contrast, heteroclinic dynamics captures
both, the sequence of states and autonomous smooth transitions
between them as they exist in a physical realization.

How to construct a heteroclinic network with a certain
topology has been well-studied, e.g., in references [19–21].
Moreover, with the perspective of engineering oscillators as noise
driven heteroclinic cycles, the influence of different parameters
on the dynamics has been investigated in Horchler et al. [22].
This way, versatile generators of repetitive patterns may be
constructed by designing suitable heteroclinic networks.

In this article we address the inverse problem: Given the time
series of a dynamics that was generated by a heteroclinic network,
we propose how to infer the topology and the eigenvalues of
this network. Related studies have been conducted for example
by Selskii and Makarov [23]. The authors focus on how a
learning process synchronizes the dynamics of heteroclinic cycles
by adapting the expanding eigenvalues only. In Calvo Tapia
et al. [24], this approach was extended by an additional step
that identifies the sequence of saddles in a discrete manner,
but it is still limited to circular topologies. With focus on
the sequential memory in neural systems, Seliger et al. [25]
proposed a learningmechanism for sequences of images based on
winnerless competition. In their model, the learning mechanism
that alters and adapts the competition matrix is realized via delay
differential equations.

In this paper, we present a method that infers the topology
and all eigenvalues of a so-called simple [26] heteroclinic network
from time series data, generated by a heteroclinic network.
Note that “simple” here does not refer to the topology, but to
the type of heteroclinic network: Heteroclinic orbits of simple
heterolinic networks are contained in two-dimensional fixed-
point subspaces, so that (for a suitably chosen coordinate system)
the saddles lie on the coordinate axes. If the input was generated
by a heteroclinic network, the time series of the process switches
between metastable states, which manifest themselves in the
data as accumulation points if the sampling rate was constant.
Otherwise, if for a given time series the generating dynamics
is not known, but the series shows such features of metastable
states, the generation via a heteroclinic network would be a first
conjecture. The inference is realized as a continuous dynamical
process that alters the parameters of a template system. At the
end of the process, this template system generates the same
sequence of metastable states that was presented to it. The

method may thus be considered from various perspectives:
As a data analysis/inference tool, as a tool for engineering
purposes, and as a model of a learning process in the context of
winnerless competition.

The remainder of this article is structured as follows. In
section 2, we describe the method by introducing the template
system and defining the learning dynamics. Additionally, we
give a first demonstration of the method at a simple example,
the Kirk-Silber network. Subsequently, we present increasingly
complex networks in section 3 to highlight different aspects and
possible obstacles in the application of the method. We conclude
in section 4.

2. THE LEARNING DYNAMICS

Suppose we have an input signal y(t) ∈ R
N that was generated by

a simple heteroclinic network. In this case, the multidimensional
time series has accumulation points (representing the metastable
states) that lie on the coordinate axes in the positive hyperoctant
(if necessary, after a suitable rotation). Moreover, we assume
normalization, so that these accumulation points are essentially
the unit vectors ei for i ∈ {1, . . . ,N}. Our goal is to construct
a system (described by ODEs) which generates a signal that
resembles this input. To this end, we employ the idea that the
ODEs of a simple heteroclinic network have a certain form as
described in section 2.1. To mimic the dynamics of the input for
a specific system, these ODEs of Equation (1) below merely have
to be adjusted in their parameters. We call this adjustment (the
incremental changes of the eigenvalues) the learning dynamics,
defined in section 2.2. Afterwards, we demonstrate this method
at a simple example, the Kirk-Silber network.

2.1. Template System
In the following, we describe the template system, which
after training should reproduce the input sequence. Consider
an input sequence y(t) ∈ R

N with N accumulation points
(representing the metastable states) on the coordinate axes in
the positive hyperoctant (Depending on the context, the variable
y may represent, for example, species concentrations, cognitive
information, or whatever physical meaning the temporary
winner in this case of WLC has). To produce such a sequence
by a simple heteroclinic network, N dimensions are required, as
saddle fixed points are located only on the coordinate axes. We
thus propose as template

dt xi = xi



−ai,i

(

1

2
+

x2i
b2i

)

+
∑

j

(

aj,i +
ai,i

2

) x2j

b2j





+σηi(t) ∀i ∈ {1, . . . ,N}, (1)

where x ∈ R
N describes the state, and ai,j ∈ R and bi ∈ R, bi >

0 are free parameters that will be subject to learning. Indices
i, j, k are always assumed ∈ {1, . . . ,N}. The parameter σ ≥ 0
determines the noise strength, and ηi(t) is white noise with zero
mean and unit variance. This system has N equilibria ξi = {x ∈
R
N
: xi = bi > 0, xj = 0∀j 6= i} with only a single item xi > 0

active. Moreover, the eigenvalues of the Jacobian of Equation (1)
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evaluated at ξi are ai,j, and the corresponding eigenvectors are
ej = {x ∈ R

N
: xj = 1, xk = 0∀k 6= j}. Precisely these properties

are the reason for choosing the very form of Equation (1). It is the
lowest order realization that has the aforementioned properties
andZN

2 reflection symmetry. A second order realization would in
principle be also possible, but lacks this symmetry and may show
divergent dynamics as soon as xi < 0 for some i. Equation (1)
may be understood as a generalization of the ODEs of the simplex
method [19] that makes all eigenvalues and the saddle positions
directly available as parameters. These ODEs can be retrieved
from Equation (1) by setting bi = 1 and ai,i = −2 for all i.

Note that Equation (1) is equivariant under reflection
symmetry Z

N
2 . As a result, the coordinate planes Pi,j = {x ∈

R
N
: xk = 0∀k /∈ {i, j}} are invariant sets. Thus, when the

eigenvalues of two equilibria ξi and ξj fulfill ai,j < 0, aj,i >

0, ai,i < 0, and aj,j < 0, there exists a heteroclinic orbit from
ξi to ξj within Pi,j [27, 28]. Furthermore, the hyperoctants (e.g.,
R
N
+) are invariant sets, so in the following we assume w.l.o.g. all

components of x (and y) to be positive at all times. For simplicity,
we also assume that the input sequence y(t) is normalized so that
the accumulation points are the unit vectors ei ∈ R

N . We thus
fix bi = 1∀i.

2.2. Definition of the Learning Dynamics
The principal idea is tomake the template system follow the input
signal y(t) ∈ R

N by coupling it linearly into the template. If
we know also the system that generates the input, the learning
may be performed online, so that the signal is learned while it is
generated. When the generating system is known, the setup can
be seen as a master-slave coupling, as there is no coupling back
from the template to the generating system. Thus, Equation (1) is
extended by a coupling term

dt xi = xi (. . . ) + σηi(t)+ ϑ(yi − xi) (2)

with yi the ith component of the input signal and ϑ the strength
of the coupling. Empirically, for ϑ large enough the coupling
draws the template dynamics close to the input as desired,
even under the influence of noise. For mutual coupling of two
identical heteroclinic networks without noise such an effect may
be anticipated via the master stability function approach [29]:
The mode corresponding to the synchronized manifold has the
original eigenvalues, say λl; the transverse mode has eigenvalues
λl−2ϑ , and perturbations away from the synchronized manifold
thus decay if the coupling ϑ is large enough. A detailed discussion
of this synchronization (in the sense that ||x(t) − y(t)|| → 0 for
t → ∞) for linearly coupled heteroclinic cycles will be given
elsewhere (Voit and Meyer-Ortmanns, in preparation).

Even with coupling, however, small differences between
master and slave remain as long as the two systems are not
identical. The key point is therefore the following: When the
trajectory is in the vicinity of saddle ξi, it is the N eigenvalues
ai,j at ξi that determine the time evolution of the concentrations
xj near ξi. If there is a difference (yj − xj) > 0 (< 0) while the
systems are close to ξi, it is therefore the eigenvalue ai,j that has to

be increased (decreased) to match the eigenvalue underlying the
signal. This is realized by the learning rule

dt ai,j = (1− δij(1+ ρ))γϑ(yj − xj) exp

(

−
(

bi −
yi + xi

2

)2

ζbi

)

,

(3)

where γ > 0 is the learning rate, δij the Kronecker delta. The first
terms are precisely the scaled dependence on the deviation of the
current dynamics x from the original y. By taking along a factor
of ϑ , the learning rate γ becomes independent of the coupling
strength. The exponential term is a Gaussian ensuring that the
changes of eigenvalues are local to the saddle these eigenvalues
are associated with: The difference bi − yi+xi

2 becomes small
precisely when the average of the dynamics of the input and
the template is close to the location of the saddle. It should be
noticed that here the structure of simple heteroclinic networks
enters in that it suffices to measure the ith component only,
since regularly never a situation occurs where two coordinates
i, j simultaneously strongly differ from zero such that xi ≈ bi
and xj ≈ bj at the same time. The range of this localization is
adjusted by the parameter ζ > 0. The bi-dependence is kept
in the exponent for cases where bi 6= 1 to adjust the size of
the neighborhood of the saddle. Note that the situation for the
radial eigenvalues is different. It is necessary to use coordinates
local to the saddle, which for non-radial components are just the
global ones. The radial component, however, is transformed to
x̃i = bi − xi (equivalently for yi) in local coordinates, so that the
sign of the learning rule has to be inverted. We therefore require
ρ > 0 and usually will choose ρ ≥ 1 since radial eigenvalues
empirically converge slower than eigenvalues associated with the
other directions.

2.3. Inferring a Single Eigenvalue
We proceed by illustrating the method introduced above with a
Kirk-Silber network [30]. This is a simple heteroclinic network
consisting of two heteroclinic cycles that share a common edge,
c.f. Figure 1. Suppose that the ODEs of the master system dty
are known and of the form of Equation (1). The slave system
(the template) naturally is Equation (2), and we assume to know
all eigenvalues ai,j but a2,3, which is different from its value
in the master system a2,3m. The effect of the linear coupling
is to continuously counteract this difference, but ultimately the
learning dynamics of Equation (3) leads to the convergence
a2,3 → a2,3m, and the contribution of the coupling term in
Equation (2) vanishes, c.f. Figure 2. Note that the learning takes
place whenever the template system visits ξ2 and x3 differs from
y3. During the remaining time, the differences between x and y

are due to the differing noise realizations in both systems, which
also makes both dynamics diverge as soon as the coupling is
removed at t = 1, 500. Afterwards the fact that the template
(slave system) on its own has the same dynamics as the master
system is clear from its value of a2,3 = a2,3m on the one hand,
and the statistics (of visits to ξ3 vs. ξ4) on the other hand. It
might be beneficial to delay the start of learning in order to allow
initial transients to decay (this is not necessary when the initial
condition is close to the heteroclinic network).
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FIGURE 1 | Topology of two Kirk-Silber networks. The networks initially differ in their expanding eigenvalues at ξ2. Sketched in orange is the linear coupling and its

effect to increase (decrease) the eigenvalues toward ξ3 (ξ4), respectively, in the slave system.

FIGURE 2 | Learning dynamics near the Kirk-Silber network. From top to bottom: Dynamics of the master system, the slave system, their difference, and the

eigenvalue a2,3 are plotted against time. Vertical dashed lines mark the beginning of learning (t = 100) and its end (t = 1, 500), at which time also the coupling is

turned off (→ ϑ = 0), so that due to different noise realizations the system states slowly diverge. Parameters are ϑ = 1, γ = 0.5, ζ = 50, σ = 10−6; eigenvalues are

chosen as arad. = −1, acontr. = −0.22, aexp. = 0.2, and a2,3m = 0.21.

3. INFERRING HETEROCLINIC NETWORKS
WITH INCREASING COMPLEXITY

In this section, we illustrate our method of the previous section
by heteroclinic networks with increasingly complex features.
As the simplest non-trivial topology we choose the Kirk-Silber
network in section 3.1. At this example, we demonstrate how
not only one, but all eigenvalues are recovered by the template
without any prior knowledge. In addition, we point out how
even the noise level may be captured by the learning method.
Moreover, in section 3.2 we analyze the effect of a mismatch
between the system that generated the input and the template
system. Significant differences in the ODEs of the two systems
strongly affect the convergence of radial eigenvalues, while the
remaining eigenvalues are mostly inferred well. Furthermore,
in section 3.3 we focus on larger networks with more complex
topologies. We both probe our method at a highly regular,
hierarchical heteroclinic network which exhibits two time scales,
and construct a random heteroclinic network (by the simplex

method) to generate the input and reconstruct its topology by
learning. The latter example underlines the role of noise in how
extensively the heteroclinic network is explored, especially in the
case of an irregular topology with heterogeneous preferences of
heteroclinic connections.

3.1. Inferring All Eigenvalues and the Noise
Level
As the basic example in section 2, we demonstrated the
successful inference of a single eigenvalue of a Kirk-Silber
network. Actually, however, all eigenvalues may be inferred at
the same time. Thus it is possible to start with a template
with unbiased randomly or uniformly chosen parameters and
infer the whole topology of a simple heteroclinic network. As
demonstration, again we choose the Kirk-Silber network and
initialize all eigenvalues as 0. The learning method then infers
the values of the generating system, c.f. Figure 3. It is convenient
to distinguish the different kinds of eigenvalues and refer to
them by standard terminology [31] according to their respective
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FIGURE 3 | Learning all eigenvalues of a Kirk-Silber network. Eigenvalues are

grouped by their corresponding direction. Horizontal dotted lines mark the true

values. Transverse eigenvalues converge slightly slower, radial significantly.

Parameters are ϑ = 5, γ = 1, ρ = 10, and σ = 10−6.

eigendirection (radial, contracting, expanding, and transverse).
Note that transverse eigenvalues converge only slightly slower
than contracting and expanding ones, while radial eigenvalues
pose a greater difficulty and converge much slower. Therefore,
accelerating the learning process for radial eigenvalues (by
choosing ρ ≥ 1) may be useful to moderate this effect.

Up to this point we neglected a careful discussion of the
influence of noise, although noise has to be present in the
generating system to sustain the switching between saddles. If the
template should reproduce this switching after the input signal
is switched off, it must also be subject to noise. As the noise
intensity influences the pace of switching, it ought to be the same
in both systems.

To discover the original noise intensity we exploit its
characteristics. If the noise is lower in the template than it was
in the generating system, this has no noticeable effect. However,
if it is stronger in the template, contracting eigenvalues fluctuate
during learning, c.f. Figure 4. Thus, by performing multiple
learning trials with decreasing σ in Equation (1), the correct noise
level (as inherent in the input) may be recovered.

In summary, after decoupling the template from the master
system with identical dynamics, the time evolution of both
systems is exactly the same if there is no noise and identical initial
conditions have been used. Otherwise, i.e., under the influence of
noise and depending on the initial conditions, the statistics and
sequence of visited saddles in both decoupled time evolutions
remain the same, but the dynamics differs in details.

3.2. Mismatched Template
In the examples above the input signal is generated by a system
of ODEs that has the same form as the template. Otherwise,
if the input stems from a different implementation of a simple
heteroclinic network, the question arises of how this mismatch
between template and generating system impacts the inference.
In the following we pursue this question, as it is crucial in view of

FIGURE 4 | Influence of the noise strength on the template system during

learning a Kirk-Silber network. Plotted are the contracting eigenvalues during

learning. The master system has always σ = 10−6. For stronger noise in the

template contracting eigenvalues fluctuate. Parameters are ϑ = 5, γ = 1, and

ρ = 10.

the fact that for a realistic inference task the form of the original
ODEs is usually unknown.

Time continuous models of population dynamics are
commonly derived as a mean-field approximation [32] of
reaction equations that describe interactions at the level of
individuals. One basic example of such a continuous model is
the May-Leonard model [33]. It contains a heteroclinic cycle
that is also known as the Busse-Heikes cycle [34], generated by
the ODEs

dtxi = xi(1− xi − bxi+1 − cxi+2) , (4)

where 0 < c < 1 < b, b− 1 > 1− c, and i ∈ Z3 = {1, 2, 3} cyclic.
The variables xi represent population densities, thus they are
restricted to the positive octantR3

>0. By a variable transformation
(xi → √

xi) the Guckenheimer-Holmes cycle [35] emerges,
which matches the form of the template. The original Busse-
Heikes cycle, however, does not; it has second-order terms
instead of third-order ones1.

Nevertheless, our method is able to infer the Busse-Heikes
cycle. With the default parameters (ϑ = 1, γ = 0.5,
ζ = 50, and ρ = 10), we find that the radial eigenvalues
fluctuate strongly, but the eigenvalues of the remaining directions
converge approximately to their true values. Choosing a low
value of ρ (e.g., ρ = 0.2) reduces the fluctuations of the radial
eigenvalues. The resulting template follows a heteroclinic cycle
with the same topology, but different shape of the approach
toward the saddles, c.f. Figure 5A.

Since the heteroclinic cycles that we considered so far do not
contain transverse directions and we want to analyze the effect
of a mismatch also on the transverse eigenvalues, we modified a

1Commonly, the terms “Busse-Heikes cycle” and “Guckenheimer-Holmes cycle”
are used synonymously, as the heteroclinic cycles (as objects in phase space) are
diffeomorphic to each other. In this article, however, we specifically distinguish the
two different ODE systems by these terms.
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FIGURE 5 | Effects of mismatched templates. Upper panels show the dynamics of the signal and template against time. Lower panels display the deviation of the

eigenvalue in the template from their value ai,jm in the master system, i.e., di,j = ai,j − ai,jm, sorted by the kind of direction they correspond to (radial, expanding,

contracting, and transverse). Parameters are ϑ = 1, γ = 0.5. (A) Busse-Heikes cycle, with b = 1.25, c = 0.8, and ρ = 0.2. (B) Kirk-Silber network with only

second-order terms, using ρ = 0.1. (C) Guckenheimer-Holmes cycle with higher order terms, using a = 1, b = 1.25, c = 0.8, α = 0.01, β = 0.01, and ρ = 1.

Kirk-Silber system in the same way (so that its terms are second-
order instead of third-order). The situation is quite similar; small
ρ remedies the fluctuation of radial eigenvalues, whereas the
transverse eigenvalues converge toward their true values, only
slower than expanding and contracting ones, c.f. Figure 5B.

One further possible mismatch of the template and the
generating system is due to higher order terms. To check the
effect, we modified a Guckenheimer-Holmes cycle by adding two
fourth-order terms:

dtxi = xi
(

1− ax2i − bx2i+1 − cx2i+2 − αx4i − βx2i x
2
i+1

)

. (5)

The additional terms do not break the Z3
2 equivariance. Thus, for

|α| and |β| small, the heteroclinic cycle persists (it is structurally
stable). While the second term affects the dynamics far from
the saddles (for β 6= 0), the first one acts in their vicinity.
More precisely, α 6= 0 changes the position of the saddles and
also the eigenvalues, so |α| ≪ 1 is necessary to maintain the
heteroclinic cycle.

As long as the cycle persists, our method correctly identifies
it and approximately infers the eigenvalues (independently on
whether they are original or changed due to α 6= 0) of the
generating system, c.f. Figure 5C. Here, as in the other cases of
mismatched templates, the eigenvalues corresponding to radial
directions fluctuate and converge to values different from the
ones in the generating system. More precisely, we observed
radial eigenvalues to be only slightly negative, even though these
directions should be definitely stable. In contrast to section 3.1
setting ρ ≥ 1 is not helpful, but intensifies the problem. Instead,
a possible remedy is to ensure that radial directions are stable
by fixing the radial eigenvalues to a negative value (e.g., −1)
from the beginning and keeping them at this value rather than
changing them by the learning dynamics (by setting ρ = 0), see
the following example.

3.3. Inferring Larger Regular and Irregular
Networks
The example networks presented up to this point were rather
simple in their topology, involving four saddles at most. Larger
networks may pose additional challenges for inference, as we
point out by the following two examples: one is a highly regular,
hierarchical heteroclinic network with nine nodes; the other one
is a random heteroclinic network composed of 12 nodes with
heterogeneous in- and out-degrees.

In Voit and Meyer-Ortmanns [36], we constructed a
heteroclinic network H that is hierarchically structured. It
consists of three small heteroclinic cycles (SHCs) that constitute
the saddles of a large heteroclinic cycle (LHC). This hierarchy is
produced by a difference of the expanding eigenvalues associated
with connections belonging to one SHC vs. connections between
different SHCs. The structural hierarchy translates to a hierarchy
in time scales, which amounts to the modulation of fast
oscillations by slower ones. The network H obeys a Z3 × Z3

symmetry. Thus it is highly regular, as is its dynamics. All
saddles are visited equally often, and all SHCs dominate with the
same frequency.

We apply our inference method to the dynamics generated
by the very system described in Voit and Meyer-Ortmanns [36],
c.f. Figure 6. It thus deviates from the template dynamics by
containing only second-order terms compared to the third-
order terms of the template. This mismatch leads to a
deviation of the inferred radial eigenvalues from the real ones,
c.f. Figure 6D, just as expected from the previous section.
Nevertheless, the topology of H and its structural hierarchy
(manifest as the difference between the two kinds of expanding
eigenvalues in the small and large heteroclinic cycles) is
inferred correctly. The resulting dynamics of the template
thus reproduces the same sequence of saddles visited as the
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original system. Frequency and amplitude, however, are not
recovered accurately.

As an alternative, we fixed the radial eigenvalues to their true
value ai,i = −1 and subjected only ai,j for i 6= j to the learning
method (setting ρ = 0). For these entries, the error of the
inference is comparable to the previous situation, c.f. Figure 6E.
In addition, due to employing the true radial eigenvalues, the
resulting dynamics does not only reproduce the sequence of the
visited saddles correctly, but also recovers the frequency and
amplitude of the oscillations to a good agreement, c.f. Figure 6H.

For the random heteroclinic network, we generated a 12 node
Erdős–Rényi graph with edge probability 0.2, without self-loops.
Subsequently, two-loops were removed by deleting one of the
edges each, whilst ensuring that the in- and out-degree at all
nodes is at least one. Figure 7 depicts the topology of the resulting
graph G.

From the graph we generated the heteroclinic network by
employing the same form of ODEs as in the template Equation
(1) and choosing the eigenvalues ai,j from the adjacency matrix A
in the following way:

ai,j =
{

X ∈ (0.4, 0.6) for Ai,j = 1

X ∈ (−1.1,−0.9) for Ai,j = 0
(6)

with X a random variable taken uniformly from the specified
interval. The choice of these intervals is arbitrary to some extent.
Mainly, eigenvalues in expanding directions (Ai,j = 1) must
be positive, while contracting, radial and transverse eigenvalues
must be negative. Furthermore, for the heteroclinic network as

a whole to be attractive, “contraction must surpass expansion”.
The size of the intervals controls the degree of heterogeneity in
the preference of heteroclinic orbits. Overall, this process is thus
an adapted version of the simplex method [19], which describes
how to construct a simple heteroclinic network for a given graph.

For our choice of intervals, the expanding eigenvalues differ
sufficiently, so that the system dwells more frequently in some
parts of the network than in others. The relevance of this becomes
especially clear once the learning method is applied. Strong noise
is required to infer all parts of the heteroclinic network, c.f.
Figure 8. Then, however, also the inferred eigenvalues fluctuate

FIGURE 7 | Topology of the random heteroclinic network G. The edge

thickness is determined by the magnitude of the expanding eigenvalue at the

node from which the respective heteroclinic orbit originates.

FIGURE 6 | Eigenvalues ai,j and dynamics of the hierarchical heteroclinic network H. Panel (A) depicts the original values, (B) the values inferred with parameters

ϑ = 10, γ = 20, ρ = 0.001, σ = 10−6 where ai,j = 0 initially, and (C) the values inferred with parameters ϑ = 10, γ = 20, ρ = 0, σ = 10−6 with ai,j = −δij initially. The

inference was realized over 19× 103 time units. The lower panels show the error of the inference, i.e., (D) the difference of panels (B,A), (E) the difference of panels

(C,A). The remaining panels display the dynamics at the end of the inference process plotted against time. Panel (F) shows the input signal, (G,H) the dynamics of the

templates that resulted in (B,C), respectively.
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FIGURE 8 | Eigenvalues ai,j of the random heteroclinic network G. Panel (A) depicts the original values, (B) the values inferred with parameters ϑ = 5, γ = 3, ρ = 0.2,

σ = 0.002, and (C) the values inferred with parameters ϑ = 5, γ = 3, ρ = 0.2, σ = 0.00001. The inference was realized over 19× 103 time units. The lower panels

show the error of the inference, i.e., (D) the difference of panels (B,A), (E) the difference of panels (C,A). Panel (F) displays the number of times the dynamics visits

each of the saddles for both noise strengths.

strongly. For low noise levels, on the other hand, some saddles
are visited only rarely. For example, saddle 10 is not visited at all
for σ = 10−5, but 12 times for σ = 0.002, c.f. Figure 8F. This
scarcity of visits to certain saddles is one factor that may lead to a
comparatively bad inference of their eigenvalues, c.f. Figure 8E.
However, other factors such as the topology of the heteroclinic
network and the recent history of the trajectory before arriving at
a certain saddle play a role as well.

For practical applications the obvious trade-off between
exploring the whole network (high noise level) and the quality of
the inferred eigenvalues (low noise level) is of minor importance.
Indeed, for weak noise it would be impossible to infer some of the
saddles, but the actual dynamics neither visits these saddles.

Besides the noise strength, the length of the input signal needs
to be taken into account. Longer input is beneficial, as weakly
attached parts of the networks get visited more often. If the input
is too short, only the most probable cycles of the heteroclinic
network become inferred. For example, running the inference for
merely 1500 time units, we observed the resulting heteroclinic
network settle to the cycles 1 → 2 → 6 → 11 → 1, or
1 → 3 → 5 → 6 → 11 → 1.

4. DISCUSSION

In summary, we have introduced a novel method of learning
simple heteroclinic networks. It is based on an unbiased template
system of a heteroclinic network in combination with a learning
dynamics that progressively alters the eigenvalues at the saddles.
The system thereby dynamically infers the eigenvalues at all
saddles and thus reconstructs the topology of the heteroclinic
network that generated the signal. A key ingredient is the linear

coupling to the input signal, which forces the dynamics of the
input onto the template. Only this enables the learning, which
primarily takes place when the system visits the saddle equilibria.
The trained template then reproduces sequences of metastable
states most similar to the input time series.

We worked out the performance of this method for
various examples, inferring all eigenvalues even in comparatively
large heteroclinic networks. Moreover, we illustrated possible
difficulties that the noise level or a mismatch of template
and generating system can pose, for example. We pointed out
strategies to handle them. A subtle point will be to achieve
a deeper understanding of what determines the speed of
learning the eigenvalues of saddles, that is, its dependence on
the topology of the heteroclinic network, the noise level and
other factors.

In view of engineering underlying heteroclinic networks from
a given data set, ourmethod provides a continuous counterpart to
designing simple finite-state machines from given example data,
as it automatically interpolates between subsequent maxima. If
data of sequential switching between different metastable states
suggest games of winnerless competition behind their generation,
it would be natural to attempt a learning of rates at a first
place (say in generalized Lotka-Volterra models), rather than
a learning of eigenvalues. In simple heteroclinic networks it is
the local information stored in the eigenvalues of the saddles
that is sufficient to control and learn the time evolution of
the dynamics in a desired way, bridging the global (non-local)
distance between the different saddles. Therefore, as long as the
assumed heteroclinic network is simple, one would learn the rates
as a function of the learned eigenvalues, while the eigenvalues at
the saddles are expressed in terms of the rates.
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Simple heteroclinic networks are specific in the sense that
the saddles lie on the coordinate axes, the phase space has
a dimension that is given by the number of saddles, and
together with the imposed symmetry one knows from the local
information of the eigenvalues at one saddle at which saddle one
ends up next. It is therefore sufficient to learn the eigenvalues
(and thus mimic the local dynamics) in order to reproduce the
global dynamics. In general (and in particular in the context
of heteroclinic computing), the heteroclinic networks are non-
simple and the dimension of phase space is lower than the
number of saddles. It is an interesting open challenge to derive
rules for learning non-simple heteroclinic networks and possibly
combine these with the concept of heteroclinic computing.
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In a recent round table organized by the Santa Fe Institute, the complexity of commerce

captured the attention of those interested in understanding how complex systems

science can be applicable for settings where consumers and providers interact. Despite

the usefulness of applied complexity for commerce-related phenomena, few works have

attempted to provide insightful ideas. This mini-review aims at providing a succinct

discussion of how the metrics of emergence, self-organization, and complexity might

benefit the research agenda of applied complexity and commerce/consumer studies.

In particular, the paper argues possible pragmatic ways to understanding the valuable

information present in word-of-mouth data found on electronic commerce platforms.

Keywords: emergence, self-organization, applied complexity, commerce-consumer research, electronic

word-of-mouth

1. INTRODUCTION

Emergence, self-organization, and complexity are three fundamental concepts in complex systems
science [1, 2]. Nonetheless, the application of these concepts to the understanding of human
behavior in the realm of commerce/consumer studies is far from being well-understood. In fact,
on September 12, 2019, the Santa Fe Institute organized a discussion of this topic (https://wiki.
santafe.edu/index.php/Complexity_of_Commerce_Agenda). As an extension of this matter, a well-
deserved exposition would consist of providing a discussion on how the metrics of emergence,
self-organization, and complexity [3] might benefit the research agenda of applied complexity
and commerce/consumer studies. A warning note, however, should be stated beforehand.
As commerce/consumer research is wide enough to be considered in one single paper, this
circumstance demands the choice of a particular phenomenon. Accordingly, the remaining of this
paper focuses on the consumers’ “electronic word-of-mouth” (EWOM). Word-of-mouth [4] takes
place when customers produce informal communications directed at other consumers about the
ownership, usage, or characteristics of particular goods and services. When these communications
are produced and shared through social media or electronic platforms, they are also known as
“electronic word-of-mouth” [5].

Although the analysis of EWOM through statistical techniques is well-known in behavioral
sciences [6, 7], the application of concepts coming from the framework of applied complexity
is less frequent in the literature, being the works of Reingen and Kernan [8] and Jun et al. [9]
two remarkable exceptions. Mathematical modeling or computerized simulations are also available
from sociophysics [10, 11] by analyzing synthetic data.

A related yet different approach is the conceptual discussion provided here, which elaborates
upon the idea of collecting natural EWOM data, preprocessing, and transform it as network data
to calculate the emergence, self-organization, and complexity of its network structure. To achieve
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this goal, the organization of this mini-review is as follows. The
idea of EWOM as a case study for applied complexity is present
in the next section which also illustrates the computational
steps to follow for collecting and preprocessing EWOM data
and transform it as network data. Such illustration is not an
analytical coverage. Also in section 2, is present the formalization
of emergence, self-organization, and complexity, by summarizing
the ideas of previous works [3, 12]. Section 3, then, enumerates
possible benefits and challenges for applied researchers. In
section 4, the paper closes presenting possible research questions
that could be used for guiding empirical studies focusing on
EWOM from the perspective of applied complexity.

2. EWOM AS A CASE STUDY FOR APPLIED
COMPLEXITY

From a data science perspective [13], EWOM data are not
intrinsically structured, and it demands the application of
natural language processing and text mining techniques [14,
15] to structure them following principles of tidy data [16].
The utility of tidying up this data lies in the possibility to
leverage information mechanics (e.g., production, storage, and
transmission) to gain insights into essential phenomena, such as
customer engagement in online reviews [17], or quantifying the
effect of online consumer reviews on new product sales [18].

In online food delivery platforms [19], it might be interesting,
for example, to know possible differences among customers’
experiences when consuming products of globalized fast-food
chains. Because the preparation of each product follows a
standardized industrial procedure in each of these globalized
restaurants, several research projects can be conducted. One of
these projects, for example, could be the empirical validation
of agent-based models focusing on word-of-mouth dynamics
with information seeking [20]. In projects of this sort, it
might be revealing the description of how the dynamics of
customers’ positive word-of-mouth differ from the dynamics
of negative word-of-mouth. With web scraping techniques for
collecting real data from different globalized platforms, the
possibility to characterize complaints vs. recommendations,
and the estimation of customers’ cultural customs when they
recommend outstanding products, are certainly two other
fruitful ventures. If applied researchers wish to turn their
attention to customers’ word-of-mouth semantics, the use of
text-network analyses [21], based on principles of social network
analysis [22, 23] might provide exciting answers. Working with
these topics might be fruitful for those who acknowledge the
imperfect nature of real-world data and yet wish to use it for
theoretical development. Arguably, a brief description of how
to collect and preprocess EWOM data might be illustrative for
applied researchers.

2.1. Collecting and Pre-processing of
EWOM Data
The use of web scraping techniques [24] is a convenient means
for collecting EWOM data from online food delivery platforms.
Web scraping refers to the process of extracting data from

websites automatically. The specifics on how web scraping works
are beyond the scope of this paper, but the preprocessing of
EWOM data deserves some mention. By its nature, EWOM
data is not structured, but a convenient way to structure it
is to transform customers’ comments into a document-term
matrix [15], whose entries show the frequency of appearance
of every single word in each comment (i.e., words are arranged
as rows, while comments are arranged as columns). As the
number of comments generally exceeds the number of unique
words that customers use for expressing their experiences, the
resulting dimensionality of this matrix makes it equivalent to
an incidence matrix [22]. This document-term matrix can then
be re-expressed as a similarity matrix whose entries show the
Jaccard index that quantifies the similarity between every word-
comment unit [25]. The calculation of the Jaccard index here
allows appreciating subtle semantic differences in customers’
comments (e.g., a strong recommendation without hesitation on
any aspect of the service vs. a recommendation accompanied
by a warning regarding food variety). The knowledge of these
semantic differences proves to be important for estimating the
number of states for EWOM data. As these states are related to
the concepts of emergence, self-organization, and complexity, it
is convenient to describe them.

2.2. Emergence, Self-Organization, and
Complexity of EWOM Data
In a recent paper, Santamaría-Bonfil et al. [3] summarized both
the discrete and continuous measures of emergence (E), self-
organization (S), and complexity (C) which are applicable to any
dataset or probability distributions [12], and rely on Shannon’s
information theory, as pioneered by the Santa Fe Institute [1].
A few ideas about the implications of using these concepts for
analyzing EWOM data are necessary at this point. The first idea
posits that EWOM is a dynamic property of an open system
composed of customers and sellers that interact by using an
electronic platform. The second idea states the possibility of
analyzing EWOM at different scales. While from a microscopic
scale, one would see a series of written characters (i.e., letters,
emojis, words) with a particular frequency distribution, from
a macroscopic scale, one would see a set of possible semantic
states (i.e., complaint, recommendation, or suggestion). As these
semantic states are not trivially detectable at a microscopic
level, the coordinated production of written characters allows
the emergence of new behaviors (e.g, satisfied vs. unsatisfied
customers, and successful vs. non-successful restaurants in the
online food delivery platform). This idea is compatible with that
of emergence [12] that refers to properties of a phenomenon
which are present at one scale (e.g., a satisfied client) and are not
at another scale (e.g., the words written by a client). According
to Santamaría-Bonfil et al. [3], the concept of emergence (E)
for discrete probability distribution measures the average ratio
of uncertainty a process produces by new information that is
a consequence of changes dynamics or scale. For continuous
distributions, the interpretation of E is constrained to the
average uncertainty a process produces under a specific set of
statistical parameters, such as the standard deviation in a normal
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distribution. The discrete and continuous versions of E are
defined as

ED = −K

N
∑

i=1

pilog2pi (1)

EC = −K(lim1→0H(X1)+ log2(1)) (2)

Equation (1) defines discrete E, where pi = P(X = x) is
the probability of element i. Equation (2) defines continuous E,
where X1 corresponds to discretized version of X, and 1 is the
integration step, and K is a normalizing constant that constrains
E in the range [0 ≤ E ≤ 1] and is estimated as

K =
1

log2(b)
(3)

where b corresponds to the number of bins of a probability mass
function, or, in the continuous case, to the states that satisfies
P(xi) > 0 (i.e., recommendations, complaints, or suggestions).
In addition, log2(b) represents the maximum entropy for a
distribution function with alphabet size of b (i.e., the number
of characters used by customers when writing their comments).
Thus, E can be deemed as the ratio between the entropy for given
empirical distribution H(X), and the maximum entropy for the
same alphabet size H(U). Now, let’s turn the attention to self-
organization. According to Fernández et al. [12] self-organization
(S) is related to an increase in order or a reduction of entropy. Put
it differently, as emergence supposes an increase of information, S
should be anti-correlated with E, and this is formally expressed as

S = 1− E = 1−
(

H(P(X))

H(U)

)

(4)

The numerical result of Equation (4) is also in the range
[0 ≤ S ≤ 1]. With this final result, we can now realize the
notion of complexity. Here, complexity represents a balance
between change and regularity, allowing EWOM to adapt
to contextual contingencies (e.g., showing dynamic changes
as a function of the service quality of food providers or
the increasing competitiveness among restaurants). While the
regularity ensures the survival of information (e.g., a systematic
positive opinion), change leads to the exploration of new
possibilities (e.g., the emergence of recommendations for new
products or services); that is, complexity describes the behavior
of a system as the average uncertainty produced by emergent and
regular global patterns as described by its probability distribution
[3], which is formally expressed as follows:

C = 4× E× S (5)

In Equation (5), C is maximal when E equals S, and the highest
value of C is achieved when one (or just a few) of the states
is highly probable. C becomes zero when all of the states share
the same probability of occurrence. The pragmatic interpretation
of these metrics derive from a perspective called “the world
as evolving information” [26]. An essential ingredient of this
perspective posits the benefits of describing energy, matter, life

and cognition in terms of information. These benefits neither
deny the utility of physics for describing physical phenomena,
nor chemistry for chemical events, nor biology for life-related
facts. Nonetheless, this perspective is meant only for the cases
when the approaches of physics, chemistry, or biology are not
sufficient for comprising phenomena with manifestations at
different scales. The eight tentative laws of information proposed
by Gershenson [26] are useful for understanding the benefits
of employing the concepts of emergence, self-organization, and
complexity for EWOM research.

3. ENUMERATING BENEFITS AND
CHALLENGES

The recognition that EWOM is an emergent dynamic property
of an open system composed of customers and sellers that
interact by using an electronic platform is admittedly compatible
with the idea that it changes as time goes by; i.e., the law
of information transformation as proposed in the world as
evolving information. As any customer can perceive (i.e., read)
the information provided by other customers regarding their
experiences in dealing with a particular seller, this sort of
customer-to-customer interaction is also compatible with the
law of information propagation. If, for example, the seller-to-
customer interaction preserves itself in terms of a systematic
presence of customers’ complaints (i.e., one of the probable
semantic states), this circumstance opens the possibility for
the electronic platform to penalizing the seller (e.g., when
Amazon automatically returns the money paid by the customer
after reporting any irregularity with the quality of the product
shipped by the seller). In this last case, the so-called law of
requisite complexity would be taking place, resulting from the
platform and the seller. The ability of a seller to generate the
best service possible so as to create a critical balance between
a stable positive EWOM with a rather minimum amount of
negative EWOM, would be deemed as the law of information
criticality. If we accept the idea that EWOM is a powerful online
information source that influences online shopping [27], then
we can realize that this information is having a certain control
over its environment, which conforms to the law of information
organization. The law of information self-organization stating
that information tends to its preferred, most probable state
also has an implication for EWOM studies. Because customers
engage in the so-called “collaborative consumption” [19], the
publication of opinions aiming at persuading other’s decisions
will create the possibility of a shared and dominant opinion
regarding seller’s conduct. This fact also relates to the law of
information potentiality, according to which a customer can give
different potential meanings to information. Finally, the law of
information perception implies that the perception of customers
might be generalized so as to respond to novel information. Even
though the precise situation and context are always unique, this
creates some sort of uncertainty, and this is intrinsically related
to Shannon’s entropy, as explained by Fernández et al. [12].
This last concept permits me to enumerate some challenges for
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FIGURE 1 | Two consumer associative networks resulting from text-network analysis. (A) Shows a hypothesized network of customers’ comments for brand A.

(B) Shows a hypothesized network of customers’ comments for brand B.

researchers who acknowledge the narrowness in the scope, lenses,
and epistemology of their discipline [28].

The first challenge for researchers with little or no knowledge
of applied complexity is the idea that all economic agents (i.e.,
consumers, sellers, and platforms) can be seen as interacting
components of a dynamic system. As agents can be seen as
systems too, a second challenge is the use of social network
analysis [22] to understand the relationships of economic
agents from a systemic viewpoint. Few works have followed
this orientation without using the concepts of emergence, self-
organization, and complexity [29]. For example, Henderson et al.
[30] showed several empirical examples of consumer associative
networks to mapping an extensive array of branding effects,
including branded features, driver brands, complements, co-
branding, cannibalization, brand parity, brand dilution, brand
confusion, counter-brands, and segmentation. The idea of
consumer associative networks proved to be essential for the so-
called “goal systems theory” proposed by Kopetz et al. [31]. This
theory posits that the study of the goal-action interaction, taking
place in a cognitive and motivational processes of the consumer,
might be revealing for understanding a set of consumer-
related phenomena including product variety search, impulsive
buying, preferences, choices, and regret. Rocha and Holme
[32] showed another applied perspective when they studied the
network organization of consumer complaints. Although the
orientation of these works might be the standard for scientific
associations, such as the complex systems society, my own
impression is that they remain widely ignored by members
of other applied-oriented associations, such as the society for
consumer psychology, or the association for consumer research.

The ideas mentioned above call for the development of
interdisciplinary perspectives that demand the search for novel
insights. For example, the concept of “antifragility” [33] might
be fruitful to explain why some products become best-sellers
even after receiving a bunch of negative reviews. The search
for novel insights also demands the use of other tools for
collecting and analyzing EWOM data. It is beyond the scope
of this mini-review to provide a thorough description of these
tools, but they include the use of agent-based modeling and
simulation [20], web scraping, natural language processing, text
mining and network analysis [34]. As these techniques are
easily implemented in object-oriented programming languages,

applied researchers might regard strategic their learning. After
all, these programming languages offer other benefits, such as
reproducibility; allowing others to follow the computational
procedures that allow them to get the same results reported in
a publication [35], or scalability; employing technologies capable
of collecting and analyzing massive amounts of data [36]. The
goals of scientific projects, such as FutureICT [37] that promote
the use of the power of information to explore social and
economic life, certainly call for multidisciplinary collaboration.
All that is needed is the proposal of empirical studies where
commerce/consumer studies and applied complexity can meet.
EWOM research from an applied complexity perspective might
be deemed as one of the several cases aligned with these goals.

4. CONCLUDING REMARKS

Until this point, it should be clear how applied complexity can
provide several contributions to the study of EWOM research.
While the concept of consumer associative network is useful for
understanding EWOM data from a psychological viewpoint [30,
31], the concepts of emergence, self-organization, and complexity
have not been integrated. This integration might be better
understood with an example. Figure 1 shows two consumer
associative networks resulting from the procedures described in
section 2.1. Although both of these figures reveal the network
structure of EWOM data for two different brands of pizzas, the
network on the left shows a different structure of the network on
the right.

With the calculus of E, S, and C, commerce/consumer
researchers end up with a set of proxies to the degree of
customers’ comments diversification, customers’ comments
polarization, and the diversification-polarization balance,
respectively. Because the network structure of EWOM data
might change as time goes by, then a dynamic analysis of these
changes might help commerce/consumer researchers understand
the (external) factors that act upon these structures (e.g., How
effective are promotions to increase and maintain the number of
positive comments?). The comparison between these structures
is another issue to explore (e.g., How similar are the network
structures of EWOM data for two restaurants of a globalized
fast-food chain operating in different countries?). Finally, the
power of emergence, self-organization, and complexity for
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predicting future sales could be another related topic (How
sensitive are sales to significant changes in the network structure
of EWOM data?). These topics are relevant when we consider
the case of Uber Eats, Just-Eat, Food Panda, or Delivery Hero, as
business models that facilitate the interaction between customers
and restaurants [19]. Working with EWOM data collected from
these globalized platforms turns out to be an empirical field
with unknown opportunities for complex systems scientists.
The reason behind this statement is the gap between theory
and observation. In network analysis, for example, idealized-
mathematical illustrations make use of networks with few nodes
and edges, but what would happen if we need to work with
vast data sets of comments for a numerous collection of food

providers? Howmuch scalability would be required for analyzing
a disproportionate set of data? These questions posit important
challenges for developers of cloud computing technologies, such
as Data bricks or Google Cloud.
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The growing availability of imaging data, calculation power, and algorithm sophistication
are transforming the study of morphogenesis into a computation-driven discipline. In
parallel, it is accepted that mechanics plays a role in many of the processes determining
the cell fate map, providing further opportunities for modeling and simulation. We provide
a perspective of this integrative field, discussing recent advances and outstanding
challenges to understand the determination of the fate map. At the basis, high-resolution
microscopy and image processing provide digital representations of embryos that
facilitate quantifying their mechanics with computational methods. Moreover, innovations
in in-vivo sensing and tissue manipulation can now characterize cell-scale processes
to feed larger-scale representations. A variety of mechanical formalisms have been
proposed to model cellular biophysics and its links with biochemical and genetic factors.
However, there are still limitations derived from the dynamic nature of embryonic tissue
and its spatio-temporal heterogeneity. Also, the increasing complexity and variety of
implementations make it difficult to harmonize and cross-validate models. The solution to
these challenges will likely require integrating novel in vivo measurements of embryonic
biomechanics into the models. Machine Learning has great potential to classify spatio-
temporally connected groups of cells with similar dynamics. Emerging Deep Learning
architectures facilitate the discovery of causal links and are becoming transparent and
interpretable. We anticipate these new tools will lead to multi-scale models with the
necessary accuracy and flexibility to formulate hypotheses for in-vivo and in-silico testing.
These methods have promising applications for tissue engineering, identification of
therapeutic targets, and synthetic life.

Keywords: morphogenesis, cell mechanics, multi-scale modeling, morphomechanical fields, deep learning,

cell fate map, fluorescence microscopy, digital embryo

INTRODUCTION

Embryogenesis is a complicated ensemble of processes by which a single cell turns into a multi-
cellular living organism. Through various developmental stages, the cell population proliferates
while tissues develop, change their properties, differentiate, and gain their specific functionality
[1]. During embryogenesis, biochemical, genetic, and epigenetic factors interact, forming a tangled
network of processes with diverse physical length scales and time scales [2, 3]. Remarkably,
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the robustness and variability of these processes are balanced
to make possible the reproducibility and diversity of living
specimens [4].

Mechanics plays a central role in shaping the embryo [5,
6]. Gene expression gradients regulate tissue patterning and
cellular properties, such as rheology, adhesion, and contractility
[7]. At the same time, the embryonic cells sense mechanical
cues from their microenvironment and convert them to
biochemical signals, including gene expression [8, 9]. These
cues are essential to guide morphogenesis but also tissue repair,
given that immature cells can retain significant plasticity and
reprogram in response to external forces [10, 11]. The cross-
talk between biophysical and biochemical processes involves
multiple mechanisms and molecules and occurs in multiple
scales [12]. Besides, cells can follow complex trajectories within
the developing embryo, thereby creating and being exposed to
continuous changes in the microenvironment [13–16].

Researchers have been long interested in discovering
mechanistic links between physical processes and gene
expression that lead to cell fate determination [17–21].
Recent advances in microscopy, modeling, and computation
have enabled quantifying 2D and 3D mechanical forces and
rheological properties in multi-cellular colonies, including live
developing embryos [22–28]. These methods provide local
data in space and time, and analyzing them to unravel cell fate
maps is challenging. High-resolution, long-term observation
in two or three dimensions is desirable to consider the whole
range of scales at which mechanics can impact cell fate. Still,
it complicates the analysis further because it involves massive
amounts of data. Furthermore, the statistical treatment of the
data needs to accommodate the highly heterogeneous and
time-evolving properties of developing tissues [29–31].

This perspective discusses current advances in computational
methods for the characterization of mechanical processes
during embryogenesis and how these processes influence
cell fate. Sections Digital Reconstruction of Embryogenesis,
In vivo Quantification of Forces and Mechanical Properties,
and Computational Models in this perspective are organized
according to key steps in the analysis of experimental data
and relevant methodological approaches. Each section presents
our view into key advances and outstanding challenges. Section
Morphomechanical Domains in Developing Tissues: Follow the
Cell, Not the Voxel proposes a paradigm to deal with the
massive data produced by experimental techniques and construct
a multi-scale representation of embryo dynamics. Finally,
section Understanding Multi-Scale Embryonic Dynamics by
Machine Learning presents problems at the intersection between
morphogenesis and Machine Learning that has not been so far
tackled by the community.

DIGITAL RECONSTRUCTION OF
EMBRYOGENESIS

Progress in live microscopy and fluorescence reporters now
allow high-resolution, time-lapse imaging of developing

embryos in two and three dimensions [32–35]. Image
analysis and computer vision methods can now create digital
atlases of developing embryos (Figures 1A–F). These atlases
contain spatio-temporal information about cell and tissue
morphology, cell lineages, and functional patterns, such
as gene expression or protein activity [36–42]. Moreover,
novel visualization tools allow for systematically browsing
these digital embryos (Figure 1), and integrating them into
numerical simulations and machine learning algorithms
[36, 42, 43].

The three-dimensional in-vivo imaging of whole embryos has
challenges associated with image resolution, quality, and artifacts
(e.g., anisotropic point spread function). Besides, photobleaching
and phototoxicity make it challenging to extend imaging
over intervals long enough to capture relevant morphogenetic
processes. Multi-view light-sheet microscopy (LSM) [35, 44, 45]
and view fusion algorithms [46, 47] allow for 3D imaging large
embryos with cellular isotropic resolution. Recently, advances
proposing adaptive optics and lattice LSM with ultrathin light-
sheet excitation featured, promising sub-cellular resolution
during long-term observation [48].

Reconstructing the multi-scale dynamics of embryogenesis
requires not only long-term imaging with sub-cellular spatial
resolution but also sub-minute temporal resolution. An
established approach to achieve these joint demands is to
record images of several embryos within the same cohort with
different temporal resolutions and to register the resulting
images spatially onto a common template [49, 50]. The projected
growth in computing power of microscopy systems (e.g., by
embedded GPU computing) makes it possible to envision
enhanced microscopes with real-time adaptive multi-scale
observation [51, 52].

Image processing workflows must be able to handle the
massive amounts of complex data resulting from microscopy
modalities to provide a quantification of structures, motion, and
hierarchy [3, 53]. Intensity-based methods, such as optical flow
or image registration produce continuous velocity fields [53–
55] that can leverage the powerful modeling and descriptive
tools of continuum and statistical mechanics [56, 57]. On
the other hand, tracking the motion and divisions of single
cells yields discrete cell lineages, which presents apparent
advantages [4, 36, 40].

Motion estimation is critical because determining cell fate
involves reconstructing 3D cell trajectories across the various
developmental stages, imposing quasi-error-free requirements
(Figures 1E,F). Deep Learning tools, such as Convolutional
Neural Networks can help to improve the performance
under challenging conditions, such as deep-tissue segmentation
provided tagged training data [58, 59]. Interactive annotation
tools for correction and validation are still a suitable approach
to generate reliable expert-driven data [36, 42, 43, 60]
and potentially allow crowdsourced results [61]. Beyond
image data repositories, sharing detailed experiment metadata
through systematic frameworks (e.g., based on ontologies)
can provide a “Big Data” substrate for machine learning to
optimize pipelines.
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FIGURE 1 | Digital reconstruction of cell trajectories in a zebrafish embryo. (A) Three-dimensional (3D) rendering of cell nuclei (blue) in raw data and selection of cells
(yellow) in the dorsal line, performed at 10.7 h-post-fertilization and backtracked to 7 hpf. From left to right, each panel shows a different spatial orientation (animal
pole, lateral and ventral). (B) Detected cell nuclei (red) and cell selection as in (A) (yellow), shown in a spatial slice over the orthoslice of the raw data channel (gray).
Same time step and view angles as in (A). (C) 3D rendering of cell nuclei (blue) and selection of cells of the dorsal line at 10.7 hpf (yellow). (D) Cell detection (red) and
cell selection (yellow) in the same slice as (B). (E) Left: Two cell selections (green and yellow) over nuclei detection domains at 7 hpf. Middle: forward tracking (yellow
to red colormap indicates time advancement) of the two selected cell domains. Right: forward tracking of the two cell selections from a lateral point of view. (F) Cell
selections (green and yellow) at 10.7 hpf. Cell backward tracking (yellow to purple colormap) in same view angles than (E). This dataset and the visualization tool
Mov-IT are freely available from the BioEmergences open workflow http://bioemergences.iscpif.fr/bioemergences/openworkflow-index.php [36].
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IN VIVO QUANTIFICATION OF FORCES
AND MECHANICAL PROPERTIES

Digital reconstruction of morphogenesis already provides
structured data, but embedding biophysical formalisms is
invaluable to decipher multi-scale dynamics. The study of
biophysics in single cells is not new: the measurement of
the rheological properties of cells, their internal stresses
and the forces they exert has received significant attention
in the past two decades [12, 23, 62]. The requirement
of non-invasiveness, three-dimensionality, and the need for
calibrated sensors that sensitive enough to resolve minute forces
and deformations make this task particularly challenging in
live embryos.

Laser ablation was one of the pioneering methods to quantify
embryonic mechanics in vivo. This technique produces a
localized cut in a tissue, which allows for estimating tissue
tensions by letting the ablated region relax to a stress-free
configuration [63–65]. This technique is still widely used
but it is disruptive. A non-invasive alternative is to use
fluorescence reporters to measure acto-myosin activity as
a surrogate metric of force generation. Still, both methods
rely on independent measurements of tissue rheology
[66, 67]. Molecular sensors based on fluorescence resonance
energy transfer (FRET) also provide a minimally invasive
means of measuring forces in vivo [68]. This modality is
very attractive since it probes the tension born by specific
molecules. However, it requires careful calibration, does
not provide vector or tensor data, and needs a different
sensor to measure the tension born by each molecule. It is
undoubtable that these approaches will continue to shed light
on numerous embryogenic processes. Even so, their critical
examination has kindled the search for easy-to-calibrate
quantifications of the strains, stresses and material properties
inside live tissues.

Because in vitro assays allow for careful control of
experimental parameters, they have experienced significant
progress in the past 20 years, thus offering valuable lessons
for the development of in vivo techniques. In particular,
there is a diversity of force microscopy methods that exploit
the linear properties and high deformability of hydrogelsto
provide sensitive, calibrated strain-stress sensors. Cells are
cultured on these hydrogels, the deformation caused by the
cells on the hydrogel is measured, typically by tracking the
motion of fiduciary markers (e.g., fluorescent microspheres),
and the traction forces exerted by the cells are recovered
from the measured deformations [69–71]. Monolayer Stress
Microscopy is an extension of traction microscopy that
quantifies the collective distribution of intracellular stress
in thin confluent cell cultures [72]. A similar approach
was proposed to estimate ventral furrow invagination in
Drosophila although in that case the stress-free configuration
was not known [73]. Of note, traction forces can be highly
three-dimensional even when the cells are plated on flat
hydrogels [74], leading to significant bending and additional
intracellular stress in cell monolayers [75]. Quantifying the

forces involved in epithelial bending and invagination could
offer new biomechanical insights about the morphogenesis of
tissues and organs.

In live developing embryos, it is now feasible to measure
strains (and strain rates, Figure 2) at the cellular level
by tracking the morphological changes of segmented cells
[55, 76]. Tissue-level strain fields can be derived from cell
tracking and optical flow methods (Figures 2A–C) [57, 77]. By
combining the cell-level and tissue-level strain quantifications
it is possible to infer tissue rearrangements, such as cell
deformation and cell intercalation [55, 60, 77, 78]. These
metrics can be overlaid with functional data, such as gene
expression and acto-myosin activity, to provide a correlation-
based understanding of tissue dynamics [53, 77, 79]. Moreover,
continuum strain fields enable the quantification of internal
stresses based on a prescribed mechanical model for the embryo.
These formulations are very advantageous—they allow for
writing sets of equations that can be solved analytically or
numerically to fully characterize the mechanical state of the
tissue [80]. A mechanical formalism that has been applied to
developing embryos with notable success relies on enforcing
static equilibrium of forces between intracellular pressure and
cortical tension. This formulation leads to a geometrical problem
for cell shapes that can be closed by analyzing experimental
images [81–86]. However, it must be recalled that embryonic
tissue properties are heterogeneous, highly non-linear and time-
evolving, which makes it challenging to develop mechanical
formalisms that are uniformly valid across different regions
of space, instants of time, and genetic and pharmacological
manipulations. Furthermore, a significant challenge is to
establish the stress-free reference state to properly quantify visco-
elastic forces.

A recent approach for the in-vivo characterization of
embryonic mechanics, without prior assumptions, consists
of injecting microdroplets or hydrogel microspheres of
size comparable to one cell, and that can act as calibrated
sensors and/or actuators (Figure 2) [87]. After appropriate
functionalization by surface coating, these sensors can be made
biocompatible and are internalized by the embryo, thereby
minimizing the invasiveness of the method. Incompressible
fluorescent oil-droplets allow for quantifying anisotropic
stresses [88], whereas hydrogel droplets with characterized
compressibility allow for quantifying isotropic ones [89].
Moreover, ferrofluid droplets can be act as active sensors
to measure the local tissue rheology [90]. An additional
feature of these sensors is that they move with their
neighboring cells during development, thus providing
valuable information about the temporal evolution of
mechanical stresses and tissue rheology. Their limitations
stem from reduced sampling ability, given by the limited
number of sensors that can be used per embryo, and the
current lack of scalable computational frameworks to relate
the measurements with cell fate determination. Even so,
it is reasonable to expect that emerging innovations will
simplify the implementation of these techniques, enabling their
widespread application.
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FIGURE 2 | Lagrangian representation of kinematics and genetic expression.
(A) Three schematic snapshots of different time intervals of migrating cell

(Continued)

FIGURE 2 | nuclei within an area. The trajectories of two cells (gray and blue)
are highlighted. In the second time step a gene expression pattern in yellow is
shown affecting several cells. In the last time step another different gene
expression pattern is represented in cyan affecting another set of cells. Green
blobs represent mechanical sensors that sense local deformation. (B) Two
snapshots showing the relative displacements of neighbor cells with respect of
a reference cell (gray). These relative displacements are translated into a
kinematic descriptor of relative area change rate that representation expansion
(blue) and compression (red). The relative displacements in this schematic
panel imply a local expansion (blue value) around the reference cell between
timesteps t and t + 1 as shown by the average increasing distance between
the cell nuclei. (C) same schematic than in (B) for a compressive case with
cells getting closer to the reference cell (red value). (D) Lagrangian
vectorization of compression/expansion descriptor [same colormap than
(B,C)] and gene expression along time for the two reference cells. The data
sensed with the mechanical probe is also vectorized in a Lagrangian
representation with colormap dark blue to white. Gene expression is
vectorized along the reference cell trajectories. (E) Schematic of a transformer
(encoder-decoder) architecture trained to infer local forces from deformation
measurements (input). The input is segmented into different temporal frames
as subvectors. (F) Schema of a transformer architecture trained to infer
mechanical factors (input) involved in the appearance of expression patterns at
different temporal scales.

COMPUTATIONAL MODELS

Computational models with explanatory and predictive power
can infer causal links and contribute to the mechanistic
understanding of embryogenesis. These models allow researchers
to observe processes, reverse engineer mechanisms, and test
hypotheses with much looser constraints than pharmacological
or genetic manipulations. Many biological problems involving
collective cell-cell and cell-matrix interactions have been
simulated using discrete, continuum, and hybrid physical
models [91, 92]. Discrete agent-based models initially considered
cellular movements within a lattice to investigate multicellular
interactions [93]. Lattice-free agent-based models consider
continuous movements of each agent. A common approach
is to conceptualize cells as objects with fixed geometry and
biophysical properties, whose trajectories are dictated by the
balance of forces exerted by their neighbors and the environment
[94]. Subcellular resolution can be achieved through agent-based
models in which each agent is deformable and occupies several
nodes [95]. The cellular Potts model (CPM) is an energy-based
stochastic model, typically defined on a lattice that can have
subcellular resolution, that is particularly well-suited to deal
with large deformations and multi-scale phenomena [96]. These
features make the CPM well-suited to simulate collective cell
dynamics in a diversity of scenarios, including morphogenesis
[97]. While they are mostly phenomenological, these models
are a promising, computationally efficient approach to study
how meso-scale multicellular phenomena emerge from the self-
organization of sub-cellular and cellular processes.

The cellular Potts model was initially applied to quantify
epithelial dynamics including the rearrangements of different
cells [98]. Subsequently, the CPM has provided insight about
how cortical tension and cell adhesions drive cell sorting
and tissue organization [99, 100]. More recently, agent-based
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models have proven useful to integrate mechanical cues with
gene expression. Epithelial and mesenchymal tectonics were
simulated together with gene regulatory network dynamics to
recapitulate the dynamics of early zebrafish development [26].
Deformable agent-based models are a promising approach
to quantify mechanotransduction, the heterogeneity of
embryonic tissues, and their impact in larger-scale developmental
processes [92, 101].

Vertexmodels bridge the discrete and continuum descriptions
[102]. In these models, each cell is approximated by a polygon
in 2D or a polyhedron in 3D, and the tissue measurements are
sampled at the junction of three or more cells [102, 103]. Vertex
models provide more information on cell interfaces than agent-
based models permitting the analysis of topological changes in
the cell environment [104, 105]. Curved cell geometries can
be resolved with finite-elements [106, 107], and the biophysical
interaction between the membrane and the cytoplasmic fluid can
also be incorporated using immersed boundary methods [108].
Vertex models have been widely applied to study the mechanics
of epithelia, which are represented as manifolds that can fold
or invaginate [109–114]. These models have made contributions
to our understanding various tissue behaviors: growth [115–
117], cell division and packing [118], planar polarity [119] and
the formation of compartments [120]. Dynamic cellular finite-
element models have been also proposed for individual and
collective cell movements and mechanics [121].

As stated above, continuum models can adapt mechanical
theories, such as hydrodynamics and statistical mechanics to
live matter [122], taking advantage of a massive body of
knowledge and powerful tools from applied mathematics and
computation, such as stability theory, perturbation methods,
and computational fluid dynamics. In addition to providing
a means to relate measurements of strain fields to internal
stresses [78, 123], these models are well-suited to perform
predictive simulations large-scale embryo dynamics. The widely
studied formation of the ventral furrow in Drosophila [124]
is a good example of a process governed by hydrodynamics
[56]. Most continuum models are limited by their inherent
coarse-grained, but fusion between these models and agent-based
models could help resolve the contribution individual cells to
tissue behavior [125].

MORPHOMECHANICAL DOMAINS IN
DEVELOPING TISSUES: FOLLOW THE
CELL, NOT THE VOXEL

Although microscopy experiments provide increasingly rich
data about embryonic development, the data is obtained in a
form that makes it difficult to extract the relationships between
cellular and subcellular dynamics, large-scale biomechanical
phenomena, and cell fate maps. The root for this difficulty can
be illustrated using the analogy between the cell trajectories
and a flow; observation through the microscopy imposes a
perspective in a fixed reference frame as an external observer
of embryogenesis (i.e., Eulerian frame). However, a perspective
as an internal observer that records data along the trajectory

of each cell would be more suitable (i.e., Lagrangian frame).
The Lagrangian framework allows for computing deformation
rates and finite deformations over arbitrarily long time intervals
[57]. It also helps discover Lagrangian coherent structures
[126, 127] formed by cells that experience similar histories
of mechanical cues, and which potentially organize the
embryogenic flow (Figure 2D).

The Lagrangian trajectories of embryonic cells can be obtained
by single-cell tracking or by approximating their motion as
a continuous flow [14, 15, 53]. Moreover, in the Lagrangian
framework, descriptors related to morphology, mechanics,
genetics, etc. can be expressed in terms of the cell trajectories at
specific time intervals. The usefulness of this approach depends
on whether it can identify true morphomechanical fields. That is,
if it finds connected domains of cells with a similar history of
cues, if these domains are reproducible across several specimens,
and if they can be related to the fate maps. We previously
showed that machine learning does identify morphomechanical
fields by classifying cell populations with similar Lagrangian cues
either via clustering or with training data [57]. Comparison of
cohorts can be either performed using a canonical embryo as
reference or computing a statistical average ofmorphomechanical
fields. This is a different approach from statistical spatial atlases
frequently used to align information within a cohort [49, 50].
However, several fundamental questions and methodological
obstacles remain unanswered. In particular, the sensitivity
of the automatic classification of morphomechanical fields to
intra-phenotypic variability, and its usefulness in establishing
inter-phenotype differences need to be addressed in more
detail. In particular, automating these analyses for cohorts of
embryos requires systematic scanning across entire embryos
to compensate for the different development rates of each
embryo and its phenotype variability. Then, through the spatio-
temporal registration of fields [54], it could be possible to
infer robust phenotyping structures and assess the impact of
dynamics variability into morphological configuration of tissues
and organs.

UNDERSTANDING MULTI-SCALE
EMBRYONIC DYNAMICS BY MACHINE
LEARNING

Biological systems are often defined as networks of discrete
elements or biochemical processes, which serve as a conceptual
framework to glean mechanistic insight about their organization
[128, 129]. Framing embryogenesis using this paradigm involves
identifying morphogenetic events and fields [130], which can
be diverse in nature, duration, and length-scale. Based on
image data, one can define morphogenetic events as spatio-
temporal spots of statistically abnormal behavior given a
reference window. They may comprise subcellular or mesoscopic
regions and a variable number of time frames and can be
encapsulated by applying spatio-temporal connectivity [131].
When these fields are backtracked, they become unwound in
time and space, allowing the discovery of intersections with past
events and/or environmental cues. Likewise, forward tracking
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of events can reveal cascade effects that propagate into one
or more morphogenetic fields. The structured representation
of digital embryos as spatio-temporally connected fields is a
form of dimensionality reduction that fits machine learning-
driven approaches.

Owing to recent advances in machine learning methods,
computers can now perform human-like reasoning in tasks,
such as conversation or gaming [132–134]. Deep learning (DL)
architectures, such as Feed-Forward Networks, Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN)
can be applied to analyze interactions in the networks of
elements employed in systems biology [135]. Consequently,
the applications of DL to biomedicine are quickly becoming
ubiquitous [136–139]. The analysis of high-throughput genomics
data to study genetic variations in regulatory networks is
no exception [140, 141]. A main barrier toward adopting
DL in developmental biology has been its black-box nature,
which does not easily permit inferring mechanisms or causal
relationships, and makes it challenging to manipulate models to
test hypotheses.Most ongoing efforts tomitigate these limitations
can be encompassed under the epistemological paradigm of the
Visible Neural Network [142]. One approach toward VNN is
to represent the nodes in the network as “visible” data-driven
models. This approach has been used to relate cell genotypes
and phenotypes based on cell ontologies [143]. An alternate
approach is to build the nodes in the network using explicit
models based on theoretical or semi-empirical laws [144]. Both
approaches allow for manipulating the inner machinery of
the DL architecture, thereby facilitating hypothesis testing, the
inference of causal relationships, and elucidating mechanisms.
Furthermore, coupling DL model-driven architectures with
multi-level structured training data can help reduce the amount
of inputs, simplify the architecture and facilitate its interpretation
[145]. Exhaustive simulations running on cloud technologies
[146, 147] can leverage computational models and feed machine
learning workflows to create multiple hypothesis to be tested
in-vivo. In the case of embryo development, most theoretical
and computational models are coarse grained and, thus, better
suited to represent meso-scale and large-scale phenomena (see
section Computational Models). Consequently, it could be
beneficial to develop hybrid approaches in which cell-scale
phenomena are modeled with DL. This type of bottom-up
methodology has shown great potential to improve the prediction
of chaotic deterministic systems, such as turbulent flow [148],
but it should be noted that, epistemologically, it constitutes
a transparent network of opaque nodes. Given that multiple
relationships among genetic and biophysical processes evolve
dynamically in space and time during morphogenesis, RNNs are
a suitable approach to treat experimental data sequences. Several
architectures of RNN have been proposed to improve training
and solve the vanishing gradient problem through time [149].
LSTM comprise memory cells to infer long-term dependencies
in sequences [150–152]. Gated Recurrent Units are another
RNN architecture that addresses the long-term memory problem
and outperforms LSTM in some applications [153, 154]. Sets
of LSTM can be combined to design an encoder-decoder that

approaches the problem as a conversion of the input sequence
into an intermediate fixed-length sequence (encoder) that can
be further classified (decoder) [153, 155]. Recent advances in
sequence analysis have been based on the idea of attention
[156–161]. Attention architectures deal with long inputs by
focusing on relevant frames of the sequence, eliminating
the restriction of a fixed-length intermediate sequence, and
leveraging intermediate states of the encoder as additional input
to the decoder. Attention also provides clarity of the input-
output relationships [156] and has shown promising results
in end-to-end entailment of complex data sequences [162].
The transformer, an architecture without recurrence that relies
on feed-forward layers and attention, has been proposed to
exploit the potential of attention while allowing for massive
parallelization [161, 163].

A key issue is how to pre-train [163, 164] and train these
architectures with the data streams of morphogenesis. For
instance, contextual bidirectional pre-training might facilitate
characterizing strain-stress relationships given past and future
tissue states (Figures 2E,F), in order to generate stress maps.
Also, entailment of morphogenetic cues and mechanical events
with fate map determination could be possible using the input
defined by the profiles of cell trajectories, labeled according to
a given morphogenetic field or a mature organ. In this regard,
the scalability of biological domain tagging could introduce
bottlenecks in the generation of training sets, particularly
when considering the inherent variability of biological data.
These tasks may require using several input vectors at the
same time requiring extending current speech-oriented DL
architectures [165, 166].

OUTLOOK

In this perspective, we have critically surveyed recent advances
in computational methods for the characterization of
embryogenesis, focusing on how to integrate data from
biophysical measurements or models into cell fate maps. The
ongoing surge in research efforts to quantify the biophysics
of morphogenesis is leading to important methodological
contributions and new insights about how genetics unfold into
phenotypes. Despite these advances, the mechanistic description
of morphogenesis remains challenging, given the dynamic
and multi-scale nature of the underlying processes and the
notable plasticity of immature cells. Thus, new methods are
required to understand the interplay of physics, genetics, and
epigenetics, leading to cell fate map determination. State-of-
the-art imaging systems, image analyses, and computer vision
methods are enabling the digital curation of multi-dimensional,
high-resolution atlases of developing embryos. These data need
to be structured in a systematic way to ensure experimental
reproducibility and compatibility of different databases, which
are necessary for statistically significant comparisons of large
cohorts. In this sense, we posit that data analysis would benefit
from a Lagrangian representation based on cell trajectories
containing the cumulative histories of the spatio-temporal
events and environmental cues cells experience along their
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paths. This representation integrates spatial information into
temporal sequences allowing for multi-scale discovery of
morphomechanical fields.

Computational models offer a powerful toolbox to assimilate
and explain experimental data, as well as to test new hypotheses.
As these models grow in sophistication, they are beginning
to predict and decipher the dynamics of developing embryos,
based on multi-scale biophysical formalisms that can tackle
spatio-temporal heterogeneity and complex mechanobiological
interplays. These formalisms are benefitting from novel,
minimally-invasive experimental approaches to measure the
evolving mechanical properties of live embryos. However,
the increasing diversity of models makes it difficult to
identify, harmonize, and cross-validate a set of laws that
govern the dynamics of morphogenesis. The lack of long-term
maintenance of many open-source modeling codes makes this
task additionally challenging.

In parallel, machine learning is quickly gaining traction
as an alternative to classic model-driven computation
to leverage intensive experimentation machine learning
and causality inference tools [167, 168] can help test the
completeness of models. In particular, these tools can
elucidate morphomechanical domains formed by cells with
similar dynamics, and link the formation of these domains
with upstream biomechanical events. Deep learning (DL)
architectures are becoming transparent and interpretable by
nesting data-driven or model-driven visible nodes, and have
been proven useful to discover causal links in other biological
processes. For a holistic approach, DL is suitable to analyze
spatio-temporal profiles, seek for events, discover patterns and
identify dynamic entities. Multi-scale comparison of cohorts
with model-driven DL architectures can be the basis to discover
“missing data,” factors and critical spatio-temporal processes
regulating phenotype configuration. Overall, the methodologies
and approaches here discussed will have valuable practical
applications for tissue engineering, stem cell research, genetics
and behavior of diseases, drug studies, and synthetic life.

DATA AVAILABILITY STATEMENT

The dataset used for visualization in Figure 1 and
the free version of the visualization tool Mov-IT
are freely available from the BioEmergences open
workflow http://bioemergences.iscpif.fr/bioemergences/
openworkflow-index.php. Data and tool are described in
Faure et al. [36].

ETHICS STATEMENT

A dataset of a developing wild-type zebrafish embryo was
presented in Figure 1. This dataset was produced by the
BioEmergences lab (bioemergences.eu) as described in Faure
et al. [36].

AUTHOR CONTRIBUTIONS

DP-E conceived the work, made the figures, and co-wrote
the manuscript. JÁ advised for this work and co-wrote
the manuscript.

FUNDING

This work was supported by NIH grants 1 R01 HD092216-01A1,
NIH 1R01HL128630, 1R01HL130840, NIH 2R01 GM084227,
and NSF grant NSF CBET – 1706436/1706571.

ACKNOWLEDGMENTS

We thank BioEmergences Lab-CNRS and Nadine Peyriéras
for the joint work on computational developmental biology
that inspired this work. We also thank Nicole Gorfinkiel for
discussions on tissue mechanics. We thank the Biomedical
Image Technologies Lab-UPM, Andres Santos, María Jesús
Ledesma-Carbayo and Jose M. Goicolea for their collaboration
on previous work.

REFERENCES

1. Keller R. Physical biology returns tomorphogenesis. Science. (2012) 338:201–
3. doi: 10.1126/science.1230718

2. Davidson L, von Dassow M, Zhou J. Multi-scale mechanics from
molecules to morphogenesis. Int J Biochem Cell Biol. (2009) 41:2147–62.
doi: 10.1016/j.biocel.2009.04.015

3. Blanchard GB, Adams RJ. Measuring the multi-scale integration of
mechanical forces during morphogenesis. Curr Opin Genet Dev. (2011)
21:653–63. doi: 10.1016/j.gde.2011.08.008

4. Gilmour D, Rembold M, Leptin M. From morphogen to morphogenesis and
back. Nature. (2017) 541:311–20. doi: 10.1038/nature21348

5. Heisenberg C-P, Bellaïche Y. Forces in tissue morphogenesis and patterning.
Cell. (2013) 153:948–62. doi: 10.1016/j.cell.2013.05.008

6. Lecuit T, Lenne P-F, Munro E. Force generation, transmission, and
integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol.

(2011) 27:157–84. doi: 10.1146/annurev-cellbio-100109-104027
7. Heller E, Fuchs E. Tissue patterning and cellularmechanics. J Cell Biol. (2015)

211:219–31. doi: 10.1083/jcb.201506106

8. Wozniak MA, Chen CS. Mechanotransduction in development: a
growing role for contractility. Nat Rev Mol Cell Biol. (2009) 10:34–43.
doi: 10.1038/nrm2592

9. Mammoto T, Ingber DE. Mechanical control of tissue and organ
development. Development. (2010) 137:1407–20. doi: 10.1242/dev.024166

10. Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin Y-F, et al. In vivo cardiac
reprogramming contributes to zebrafish heart regeneration. Nature. (2013)
498:497–501. doi: 10.1038/nature12322

11. Gálvez-SantistebanM, Chen D, Zhang R, Serrano R, Nguyen C, Zhao L, et al.
Hemodynamic-mediated endocardial signaling controls in vivo myocardial
reprogramming. Elife. (2019) 8:e44816. doi: 10.7554/eLife.44816

12. Roca-Cusachs P, Conte V, Trepat X. Quantifying forces in cell biology. Nat
Cell Biol. (2017) 19:742–51. doi: 10.1038/ncb3564

13. Kwan KM, Otsuna H, Kidokoro H, Carney KR, Saijoh Y, Chien C-B.
A complex choreography of cell movements shapes the vertebrate eye.
Development. (2012) 139:359–72. doi: 10.1242/dev.071407

14. Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW,
et al. The dynamics of gene expression in vertebrate embryogenesis at single-
cell resolution. Science. (2018) 360:eaar5780. doi: 10.1126/science.aar5780

Frontiers in Physics | www.frontiersin.org 8 February 2020 | Volume 8 | Article 3129

http://bioemergences.iscpif.fr/bioemergences/openworkflow-index.php
http://bioemergences.iscpif.fr/bioemergences/openworkflow-index.php
http://bioemergences.eu
https://doi.org/10.1126/science.1230718
https://doi.org/10.1016/j.biocel.2009.04.015
https://doi.org/10.1016/j.gde.2011.08.008
https://doi.org/10.1038/nature21348
https://doi.org/10.1016/j.cell.2013.05.008
https://doi.org/10.1146/annurev-cellbio-100109-104027
https://doi.org/10.1083/jcb.201506106
https://doi.org/10.1038/nrm2592
https://doi.org/10.1242/dev.024166
https://doi.org/10.1038/nature12322
https://doi.org/10.7554/eLife.44816
https://doi.org/10.1038/ncb3564
https://doi.org/10.1242/dev.071407
https://doi.org/10.1126/science.aar5780
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pastor-Escuredo and del Álamo Computation for Dynamics of Morphogenesis

15. Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM.
Single-cell mapping of gene expression landscapes and lineage in the
zebrafish embryo. Science. (2018) 360:981–7. doi: 10.1126/science.aar4362

16. Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, and Schier AF.
Single-cell reconstruction of developmental trajectories during zebrafish
embryogenesis. Science. (2018) 360:eaar3131. doi: 10.1126/science.aar3131

17. Turing AM. The chemical basis of morphogenesis. Bull Math Biol. (1990)
52:153–97. doi: 10.1007/BF02459572

18. Kimmel CB, Warga RM, Schilling TF. Origin and organization of the
zebrafish fate map. Development. (1990) 108:581–94.

19. Woo K, Fraser SE. Order and coherence in the fate map of the zebrafish
nervous system. Development. (1995) 121:2595–609.

20. Sako K, Pradhan SJ, Barone V, Inglés-Prieto Á, Müller P, Ruprecht V, et al.
Optogenetic control of nodal signaling reveals a temporal pattern of nodal
signaling regulating cell fate specification during gastrulation. Cell Rep.
(2016) 16:866–77. doi: 10.1016/j.celrep.2016.06.036

21. Chan CJ, Heisenberg C-P, Hiiragi T. Coordination of morphogenesis
and cell-fate specification in development. Curr Biol. (2017) 27:R1024–35.
doi: 10.1016/j.cub.2017.07.010

22. Keller PJ. Imaging morphogenesis: technological advances and biological
insights. Science. (2013) 340:1234168. doi: 10.1126/science.1234168

23. Polacheck WJ, Chen CS. Measuring cell-generated forces: a guide to the
available tools. Nat Methods. (2016) 13:415–23. doi: 10.1038/nmeth.3834

24. Villoutreix P, Delile J, Rizzi B, Duloquin L, Savy T, Bourgine P, et al. An
integrated modelling framework from cells to organism based on a cohort
of digital embryos. Sci Rep. (2016) 6:37438. doi: 10.1038/srep37438

25. Sharpe J. Computer modeling in developmental biology: growing
today, essential tomorrow. Development. (2017) 144:4214–25.
doi: 10.1242/dev.151274

26. Delile J, Herrmann M, Peyriéras N, Doursat R. A cell-based computational
model of early embryogenesis coupling mechanical behaviour and gene
regulation. Nat Commun. (2017) 8:13929. doi: 10.1038/ncomms13929

27. Yeh Y-T, Serrano R, François J, Chiu J-J, Li Y-SJ, Del Álamo JC, et al. Three-
dimensional forces exerted by leukocytes and vascular endothelial cells
dynamically facilitate diapedesis. Proc Natl Acad Sci USA. (2018) 115:133–8.
doi: 10.1073/pnas.1717489115

28. Latorre E, Kale S, Casares L, Gómez-González M, Uroz M, Valon L, et al.
Active superelasticity in three-dimensional epithelia of controlled shape.
Nature. (2018) 563:203–8. doi: 10.1038/s41586-018-0671-4

29. Forgacs G, Foty RA, Shafrir Y, Steinberg MS. Viscoelastic properties of
living embryonic tissues: a quantitative study. Biophys J. (1998) 74:2227–34.
doi: 10.1016/S0006-3495(98)77932-9

30. Marmottant P, Mgharbel A, Käfer J, Audren B, Rieu J-P, Vial J-C, et al. The
role of fluctuations and stress on the effective viscosity of cell aggregates. Proc
Natl Acad Sci USA. (2009) 106:17271–5. doi: 10.1073/pnas.0902085106

31. Wu P-H, Aroush DR-B, Asnacios A, ChenW-C, DokukinME, Doss BL, et al.
A comparison of methods to assess cell mechanical properties. Nat Methods.

(2018) 15:491–8. doi: 10.1038/s41592-018-0015-1
32. Olivier N, Luengo-Oroz MA, Duloquin L, Faure E, Savy T, Veilleux

I, et al. Cell lineage reconstruction of early zebrafish embryos
using label-free nonlinear microscopy. Science. (2010) 329:967–71.
doi: 10.1126/science.1189428

33. Supatto W, Truong TV, Débarre D, Beaurepaire E. Advances in multiphoton
microscopy for imaging embryos. Curr Opin Genet Dev. (2011) 21:538–48.
doi: 10.1016/j.gde.2011.08.003

34. Gao L, Shao L, Chen B-C, Betzig E. 3D live fluorescence imaging of cellular
dynamics using Bessel beam plane illumination microscopy. Nat Protoc.
(2014) 9:1083–1101. doi: 10.1038/nprot.2014.087

35. Wolff C, Tinevez J-Y, Pietzsch T, Stamataki E, Harich B, Guignard L, et al.
Multi-view light-sheet imaging and tracking with the MaMuT software
reveals the cell lineage of a direct developing arthropod limb. Elife. (2018)
7:e34410. doi: 10.7554/eLife.34410

36. Faure E, Savy T, Rizzi B, Melani C, Stašová O, Fabrèges D, et al.
A workflow to process 3D+ time microscopy images of developing
organisms and reconstruct their cell lineage. Nat Commun. (2016) 7:8674.
doi: 10.1038/ncomms9674

37. Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K,
et al. Fast, accurate reconstruction of cell lineages from large-scale

fluorescence microscopy data. Nat Methods. (2014) 11:951–8. doi: 10.1038/
nmeth.3036

38. Tinevez J-Y, Pietzsch, T, Rueden C.MaMuT. Github (2018). Available online
at: https://github.com/fiji/MaMuT (accessed September 1, 2019).

39. Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro
G, et al. Real-time three-dimensional cell segmentation in large-scale
microscopy data of developing embryos. Dev Cell. (2016) 36:225–40.
doi: 10.1016/j.devcel.2015.12.028

40. Ulman V, Maška M, Magnusson KE, Ronneberger O, Haubold C, Harder
N, et al. An objective comparison of cell-tracking algorithms. Nat Methods.

(2017) 14:1141–52. doi: 10.1038/nmeth.4473
41. Dufour AC, Jonker AH, Olivo-Marin J-C. Deciphering tissue

morphodynamics using bioimage informatics. Philos Trans R Soc B

Biol Sci. (2017) 372:20150512. doi: 10.1098/rstb.2015.0512
42. Schott B, Traub M, Schlagenhauf C, Takamiya M, Antritter T, Bartschat A,

et al. EmbryoMiner: a new framework for interactive knowledge discovery
in large-scale cell tracking data of developing embryos. PLoS Comput Biol.

(2018) 14:e1006128. doi: 10.1371/journal.pcbi.1006128
43. Leggio B, Laussu J, Carlier A, Godin C, Lemaire P, Faure E. MorphoNet:

an interactive online morphological browser to explore complex multi-
scale data. Nat Commun. (2019) 10:2812. doi: 10.1038/s41467-019-1
0668-1

44. Tomer R, Khairy K, Amat F, Keller PJ. Quantitative high-speed imaging
of entire developing embryos with simultaneous multiview light-sheet
microscopy. Nat Methods. (2012) 9:755–63. doi: 10.1038/nmeth.2062

45. Wu Y, Chandris P, Winter PW, Kim EY, Jaumouillé V, Kumar A, et al.
Simultaneous multiview capture and fusion improves spatial resolution
in wide-field and light-sheet microscopy. Optica. (2016) 3:897–910.
doi: 10.1364/OPTICA.3.000897

46. Rubio-Guivernau JL, Gurchenkov V, Luengo-Oroz MA, Duloquin L,
Bourgine P, Santos A, et al. Wavelet-based image fusion in multi-
view three-dimensional microscopy. Bioinformatics. (2011) 28:238–45.
doi: 10.1093/bioinformatics/btr609

47. Schmied C, Stamataki E, Tomancak P. Open-source solutions
for SPIMage processing. Methods Cell Biol. (2014) 505–29.
doi: 10.1016/B978-0-12-420138-5.00027-6

48. Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne
IA, et al. Observing the cell in its native state: imaging subcellular
dynamics in multicellular organisms. Science. (2018) 360:eaaq1392.
doi: 10.1126/science.aaq1392

49. Ronneberger O, Liu K, Rath M, Rueβ D, Mueller T, Skibbe H, et al. ViBE-Z:
a framework for 3D virtual colocalization analysis in zebrafish larval brains.
Nat Methods. (2012) 9:735–42. doi: 10.1038/nmeth.2076

50. Castro-González C, Luengo-Oroz MA, Duloquin L, Savy T, Rizzi B,
Desnoulez S, et al. A digital framework to build, visualize and analyze a gene
expression atlas with cellular resolution in zebrafish early embryogenesis.
PLoS Comput Biol. (2014) 10:e1003670. doi: 10.1371/journal.pcbi.10
03670

51. Power RM, Huisken J. A guide to light-sheet fluorescence
microscopy for multiscale imaging. Nat Methods. (2017) 14:360–73.
doi: 10.1038/nmeth.4224
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Modeling of complex adaptive systems has revealed a still poorly understood benefit

of unsupervised learning: when neural networks are enabled to form an associative

memory of a large set of their own attractor configurations, they begin to reorganize

their connectivity in a direction that minimizes the coordination constraints posed by

the initial network architecture. This self-optimization process has been replicated in

various neural network formalisms, but it is still unclear whether it can be applied to

biologically more realistic network topologies and scaled up to larger networks. Here

we continue our efforts to respond to these challenges by demonstrating the process

on the connectome of the widely studied nematode worm C. elegans. We extend our

previous work by considering the contributions made by hierarchical partitions of the

connectome that form functional clusters, and we explore possible beneficial effects

of inter-cluster inhibitory connections. We conclude that the self-optimization process

can be applied to neural network topologies characterized by greater biological realism,

and that long-range inhibitory connections can facilitate the generalization capacity of

the process.

Keywords: artificial neural networks, self-organization, Hebbian learning, self-modeling, complex adaptive

systems, Hopfield networks, artificial life, computational neuroscience

1. INTRODUCTION

The brain consists of a vast number of interacting elements. An important research question is
how this complex adaptive system manages to give rise to large-scale coordination in the service
of cognition, especially in the absence of a central controller or explicit knowledge of what would
be the best neural connectivity. A promising approach is therefore the study of self-organization
in artificial neural networks. Watson et al. (2011b) developed a self-optimization algorithm in
Hopfield neural networks able to form associative memory of its attractor configurations through
unsupervised learning of the Hebbian variety. This causes the networks to begin to reorganize their
connectivity in a direction that minimizes the neural coordination constraints posed by the initial
network architecture.

Previous work with this algorithm has been done using fully-connected networks, but without
self-connections, and only with non-directed connections constrained to symmetric weights that
are assigned in a random or highly modular manner (Watson et al., 2011a,c). More recently,

34

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00040&domain=pdf&date_stamp=2020-04-02
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alejandroe@ciencias.unam.mx
https://doi.org/10.3389/frobt.2020.00040
https://www.frontiersin.org/articles/10.3389/frobt.2020.00040/full
http://loop.frontiersin.org/people/860941/overview
http://loop.frontiersin.org/people/40939/overview


Morales and Froese Unsupervised Learning in C. elegans Connectome

self-optimization has also been demonstrated in the case of
continuous activation functions (Zarco and Froese, 2018a,b).
This shows that the self-optimization process might be more
generally applicable. Nevertheless, a concern with this work is
that these network topologies are too artificial compared with
those of actual neural networks. Accordingly, we propose that it
would be more meaningful to employ the connectome of a real
organism in order to better assess the scope of self-optimization.

A particularly suitable connectome comes from the nematode
worm, Caenorhabditis elegans. This worm is one-millimeter-long
and consists of only 959 cells, of which 302 belong to the nervous
system. C. elegans is relevant in this research because it is a
reference model in biology (White et al., 1986; Walker et al.,
2000; Girard et al., 2006). It was the first multicellular organism
whose genome has been sequenced in its entirety, as well as the
first animal whose neural connections, called connectome, has
been completed. C. elegans has also been studied in the field of
artificial life using agent-based modeling (Izquierdo and Beer,
2015; Izquierdo, 2018).

In recent work, we demonstrated self-optimization in the C.
elegans connectome (Morales and Froese, 2019), by turning it
into a Hopfield neural network that captures the connectome’s
directed multigraph topology including its self-connections. We
set two simulation experiments: (1) we ran the self-optimization
algorithm with only excitatory (positive) connections, and (2)
with 30% inhibitory (negative) connections arbitrarily assigned
in a homogeneous fashion at the beginning of the algorithm.
Under these conditions the C. elegans connectome showed a
tendency to optimize its own connectivity, but more so in case
(1). The addition of inhibitory synapses increased the difficulty
of learning to find attractors with optimal neural coordination,
and there remained a broader spread of attractors even after
convergence. We hypothesize that this has to do with how
coordination happens in functionally related neurons within
clusters of the connectome.

Here we explore the possibility that this poor performance
can be overcome by making inhibitory connections more
concentrated between clusters, thereby also making our analysis
more biologically plausible. We ran the self-optimization
procedure in the whole C. elegans connectome, but also
separately for each of the hierarchically organized functional
clusters. We performed two sets of simulation experiments:
(1) we arbitrarily assigned 30% inhibitory connections to local
connections within each cluster, and ran self-optimization on
each of the clusters as an independent network, and (2) we
applied 30% of inhibitory connections to the whole connectome
but restricted them to long-range inter-cluster connections, and
ran the process on the entire connectome while also monitoring
neural coordination within clusters.

The key finding of these simulation experiments is that the
poor performance associated with the introduction of inhibitory
connections can be successfully overcome by focusing inhibition
to connections between clusters. This is the case both in terms
of the number of attractors found and their energy levels: the
process tends to converge on a more refined set of more optimal
attractors, including attractors that normally would not be found
by the network prior to self-optimization. Interestingly, while this

capacity to generalize to better attractors is also noticeable in the
clusters when self-optimization is run on them independently,
generalization is less marked when they are evaluated while
embedded into the whole network—even though in the latter
case they tend to converge on lower energy values because they
do not have to overcome the added coordination constraints
introduced by local inhibitory connections. This suggests that
generalization to better attractor configurations is a property
of the whole network, rather than being a simple reflection of
generalization occurring at the level of local clusters.

2. METHODS

2.1. The Connectome
We ran the self-optimization algorithm in the connectome
published by Jarrell et al. (2012). The database contains
hermaphrodite neural system information (because males arise
infrequently, at 0.1%), such as connection direction, type of
connection (synapse or gap junction), and the number of
connections between neurons. We translate the connectome into
a directed multigraph, with neurons as nodes and connections
as edges. Chemical synapses are modeled as single-directed links
between neurons (for example, A → B indicates that neuron
A is presynaptic to neuron B, and B is postsynaptic to A). Gap
junctions are represented in the model as double-linked neurons
(if two neurons,C andD, have a gap junction between them, there
are two links: C → D and D → C).

We assigned binary activation states (−1, 1) to neurons. The
number of connections between neurons was assigned as the
weight of each edge, normalized in the interval (0, 1). Both links
in gap junctions were assigned the same weight, and values vary
between 1 and 81 before normalization (and form a power law).
Therefore, we clip to 1 the 15 high weight values, which we
determine with an arbitrary cut-off of weights greater than 44.
Reduction of this outliers broadens the state-space explorations
during the self-optimization.

We did not also consider pharyngeal neurons because they
belong to another independent neural system (Albertson and
Thompson, 1976). Only 279 neurons are taken into account, with
5,588 connections. This differs from the number in our previous
paper (282 neurons and 5,611 connections) because here we
follow Sohn et al. (2011) in removing the neurons VC6, CANR,
and CANL which do not have obvious connections.

Sohn et al. (2011) proposed a modular organization of the
C. elegans connectome in five clusters based on a constraint
community detection method for directed, weighted networks.
This model shows hierarchical relationships between the clusters
that define systemic cooperation between circuits with identified
biological functions (mechanosensation, chemosensation, and
navigation). This division also considers bilateral neural pairs
present in the connectome so that the members of a pair should
not be assigned to different structural clusters. There are two big
clusters named 1 and 2. Smaller cluster names have hierarchical
branch names: 1 (or 2) represents a big cluster branch in the left
digit and small cluster branching is called 1 (or two rightward)
in the right digit. Table 1 shows the basic information of each
cluster. The authors also observed many ties between the clusters
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TABLE 1 | This table contains cluster information from the partition of Sohn et al.

(2011), including the number of nodes and edges, average degree, and average

shortest path of each cluster.

Cluster

name

No.

nodes

No. edges Average

node

outgoing

degree

Average

shortest

path

Cluster

learning rate

Whole

connectome

279 5,588 (3,392

intra, 2,196

inter-cluster)

20 2.5 0.00001

11 57 665 11.6 2.17 0.0000843

12 79 1,107 14 2.09 0.00005

13 14 115 8.2 1.52 0.0005

21 74 1,109 14.9 1.97 0.00005

22 55 396 7.2 3.08 0.0001416

11 + 12 +13 150 2,704 18 2.23 0.0000207

21 + 22 129 1,980 15.3 2.34 0.0000283

Cluster names have hierarchical branch information: 1 (or 2) represents a former branch

in the left digit and later branching is called 1 (or two rightward) in the right digit. First,

we include information about the whole connectome before the partition, including the

number of inter-cluster connections and intra-cluster ones. Then, we include information

about the main 5 clusters. Finally, we include also information of the big clusters formed

hierarchically from the five main clusters.

depended on hierarchical proximity. Cluster 11, 12, and 13
comprise a big cluster, and cluster 21 and 22 formed another
grand cluster.

2.2. Model Dynamics
Asynchronous state updates are calculated with the following
equation:

si(t + 1) = θ

[

N
∑

j

(

∑

k

wijk

)

sj(t)

]

(1)

where si is the state of neuron i and wijk in the connection weight
between neuron i and neuron j with index k (more than one tie
with the same direction could arise between i and j). In a Hopfield
network, a node i satisfies a constraint with its interaction with
node j with index k if sisjwijk > 0. System energy represents the
constraint satisfaction level in the network:

E = −
N

∑

ijk

wO
ijk(t)si(t)sj(t) (2)

where wO
ijk

is the original weight configuration of wijk, the

Hebbian learning changes during the process are managed in
another variable.

The self-optimization algorithm consists on the repeating the
following sequence of steps, each repetition is called a reset-
convergence cycle:

1. Arbitrary assignment of states for the neurons (reset).
2. Convergence of the network for a certain time period, most

frequently resulting in an attractor.
3. Application of Hebbian learning.

2.3. Introducing Inhibitory Connections
Morales and Froese (2019) explored two different weight
configurations with self-optimization: when all connections
are excitatory (positive), and when 30% are inhibitory
(negative). In order to make the model more realistic,
we introduced the inhibitory connections in the second
weight configuration (Capano et al., 2015). This is because
inhibitory connections are known to have an impact on network
dynamics (Brunel, 2000). We found that the network shows a
tendency to self-optimize when all connections are excitatory,
but the 30% inhibitory connections restrict coordination
and constraint satisfaction. Adding inhibitory connections
will always have the effect of increasing the difficulty of
constraint satisfaction, but it is also likely that this decrease
in performance has to do with the fact that we distributed the
inhibitory connections in a random fashion without taking
the structural organization of the connectome into account.
Therefore, we investigated the extent of self-optimization
within each of the connectome’s functional clusters with 30%
inhibitory connections, and also self-optimization of the whole
connectome when those inhibitory connections are concentrated
between clusters.

More specifically, we run two sets of experiments: (1) self-
optimization is run in each isolated cluster separately, and (2)
we test for self-optimization in the whole connectome with
inhibitory edges only assigned to inter-cluster connections and
wemonitor each embedded cluster. Since self-optimization in the
network is sensitive to its size, we adjusted the learning rate in
each isolated cluster in order to make the comparison fairer (see
Table 1 for the learning rates). Python code of this simulation is
available on GitHub1.

3. RESULTS

Each experiment consists on the following setup (averaged
from 10 different experiments with a different initial random
number seed): the network is set to an initial configuration
with only positive values and then we performed 1,000 reset-
convergence cycles without Hebbian learning. Then, self-
optimization is applied using 1,000 reset-convergence cycles
that include Hebbian learning. Finally, another 1,000 reset-
convergence cycles are applied without Hebbian learning
using the learnt configuration obtained so far in order
to show its stability. Note that these structural changes
accumulated during learning are not directly reflected in
the resulting figures. All the energy results shown in the
figures were obtained by testing state configurations against
the original connectome topology, because this reveals the
extent to which the process was able to satisfy the original
network constraints.

The experiment shown in Figure 1 explored self-optimization
capacity in each isolated cluster, including the big clusters
consisting of the join of smaller clusters. Each network tested
separately show a tendency to self-coordinate during Hebbian
learning, presenting a greater diversity of attractors. Some

1https://github.com/aehecatl/self_opt_c_elegans
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generalization capacity can also be seen, when a network starts
to converge on energy values that were not previously seen
during the initial phase. There are two exceptions: cluster 11
converges on a good energy value but one that was already
included in the original distribution of energy values, and cluster
22 only converges on an average energy value of the ones
previously encountered.

Figure 2 shows the experiments with 30% inhibitory
connections arbitrarily assigned to only inter-cluster
connections. We again find a tendency of the energy to
decrease and the network to self-optimize, but the capacity
for generalization to better previously unseen attractors is
less notable. Nevertheless, the embedded clusters converge on
better energy values compared to the isolated clusters, although

this may be partially because the inhibitory connections were
moved to the inter-cluster domain, thereby also decreasing the
difficulty of intra-cluster coordination. However, we know that
this decrease in intra-cluster complexity is not the whole story
because there is one exception: cluster 13 performs worse under
these embedded conditions compared to isolated conditions.

This leads us to ask about the performance of self-
optimization at the level of the whole connectome. Figure 3
shows that restricting inhibitory connections to the inter-
cluster domain has the effect of facilitating the self-optimization
process: it now consistently generalizes to a more refined set
of energy values that are much lower. This occurs despite the
fact that both conditions feature the same overall number of
inhibitory connections.

FIGURE 1 | Examples of self-optimization in different C. elegans clusters with 30% inhibitory connections; each panel was run separately (independent to the rest of

the connectome). The learning rate in each experiment was proportional (regarding the edges) to the one used with the entire connectome and proved to be suitable

in the previous work of Morales and Froese (2019). (A–E) Correspond to the clusters 11, 12, 13, 21, 22, respectively. (F,G) Belong to the two big clusters formed at a

higher level from the previous: the chemosensory cluster (11 + 12 + 13) and the mechanosensory one (21 + 22). Each panel was averaged from 10 different

experiments and shows the energy of the neuron states in three distinct phases: before learning (1–1,000), during the self-optimization process (1,001–2,000), and

after learning (2,001–3,000). Self-optimization can be observed in almost all panels, but tend to remain a diversity of attractors. The difference in y-scale of each panel

underline the complexity of the problem to be solved by self-optimization. Energy values averaged in (A) before self-optimization produce −25.22 (0.91 SD), during

self-optimization −26.71 (0.61 SD), and after self-optimization −26.98 (0.06 SD). In the case of (E) we have −17.78 (0.5 SD), −18.01 (0.24 SD), and −18.07 (0.07

SD), respectively.
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FIGURE 2 | Examples of self-optimization in different C. elegans clusters monitored in the context of a single experiment. 30% inhibitory neurons were added

arbitrarily only to inter-cluster connections. The learning rate in the experiment was the same to the one used with the entire connectome and proved to be suitable in

the previous work of Morales and Froese (2019). (A-E) Correspond to the clusters 11, 12, 13, 21, 22, respectively. (F,G) Belong to the two big clusters formed at a

higher level from the previous: the chemosensory cluster (11+12+13) and the mechanosensory one (21+22). Each panel was averaged from 10 different experiments

and shows the energy of the neuron states in three distinct phases: before learning (1-1,000), during the self-optimization process (1,001-2,000), and after learning

(2,001-3,000). Self-optimization can be observed in almost all panels, but in this case the global attractors tend to be punctual. Some clusters like 22 represent a

complex case for the algorithm. Energy values averaged in (C) for cluster 13 before self-optimization produce −19.35(1.13 SD), during self-optimization −20.64(0.42

SD), and after self-optimization −20.74(0 SD).

4. DISCUSSION

We successfully demonstrated the capacity of self-optimization
for the case of the C. elegans connectome. Through repeated
reset-convergence cycles, the network managed to generalize to
previously unseen attractors with better coordination constraint
satisfaction. Moreover, we managed to improve on previous
work by showing that inhibitory connections do not hinder
this process as long as they are concentrated to connections
between clusters.

For simplicity, we assigned all inhibitory connections to inter-
cluster connections in an arbitrary way. However, in real neural
networks it is whole neurons, not isolated connections, that
are inhibitory. Future work could therefore further improve
the biological realism of our model by taking into account
the excitatory or inhibitory functions of the neurotransmitters
associated with each of the neurons in the connectome (Riddle
et al., 1997; Pereira et al., 2015).

We also note that here we only explored the dynamics of the
network in an uncoupled mode. Accordingly, an outstanding
challenge is to embed the model of the connectome in whole
worm simulations to explore the relationship between coupled
and uncoupled dynamics (Izquierdo and Bührmann, 2008;
Zarco and Froese, 2018b). So far it is unknown whether
self-optimization can also occur when the network is in a
coupled mode. Nevertheless, it has been speculated that the
uncoupled mode of self-optimization could reflect the prevalent
need for sleep among animals (Woodward et al., 2015). If
this is on the right track, our model could be developed
into a scientific hypothesis to inform current debates about
the function of the quiescent state observed in C. elegans
(Raizen et al., 2008; Trojanowski and Raizen, 2016). Future
modeling work could also explore similarities and differences
between this proposal and other neural network models of
the function of sleep (Hopfield et al., 1983; Fachechi et al.,
2019).
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FIGURE 3 | Self-optimization tested in the whole connectome with two different scenarios. (A) With 30% inhibitory connections arbitrarily assigned at the beginning of

the process. (B) With 30% inhibitory connections arbitrarily assigned only in the inter-cluster connections at the beginning of the process. Each panel was averaged

from 10 different experiments and shows the energy of the neuron states in three distinct phases: before learning (1–1,000), during the self-optimization process

(1,001–2,000), and after learning (2,001–3,000). Both scenarios tend to self-optimize, but the algorithm explores a broader variety of attractors and converges on

more optimal patterns of coordination when inhibitory connections are restricted to inter-cluster connections.

One limitation of our work is that the model is not
sufficiently realistic compared with living systems and their
complex interactions at different levels. We can overcome this
limitations by implementing our model under different attractor
dynamics like heteroclinic or slow and fast dynamics in synapses
(Izhikevich, 2007).
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Among all tools used to understand collective human behavior, few tools have been
as successful as agent-based models (ABMs). These models have been particularly
effective at describing emergent social behavior, such as spatial segregation in
neighborhoods or opinion polarization on social networks. ABMs are particularly common
in the study of opinion and belief dynamics, being used by fields ranging from
anthropology to statistical physics. These models, much like the social systems they
describe, often do not have unique output variables, scales, or clear order parameters.
This lack of clearly measurable emergent behavior makes such complex ABMs difficult to
study, ultimately limiting their application to cases of empirical interest. In this paper, we
introduce a series of approaches to analyze complex multidimensional ABMs, drawing
from information theory and cluster analysis. We use these approaches to explore
a multi-level agent-based model of ideological alignment introduced by Banisch and
Olbrisch to extend Mäs and Flache’s argument communication theory of bi-polarization.
We use the tools introduced here to perform a thorough analysis of the model for small
system sizes, identifying the convergence toward steady-state behavior, and describing
the full spectrum of steady-state distributions produced by this model. Finally, we show
how the approach we introduced can be easily adapted for larger implementations, as
well as for other complex agent-based models of social behavior.

Keywords: complex systems, agent-based modeling, computational social science, opinion dynamics, belief

dynamics, social influence, polarization, cognitive-evaluative maps

1. INTRODUCTION

Over the last decades, computational social science has risen as a strongly empirical discipline,
drawing on data science methods to tackle high-dimensional large data sets that cannot be
understood with simple analytical tools. This is particularly true in the study of public attention and
public opinion dynamics: there are multiple studies looking at large-scale trends in Internet search
queries, online petitions, and forums, as well as applying natural language processing methods to
news articles and social media activity. It is now possible to quantify, to a degree, what people care
about, and what they think of it.

This increasing availability of data on individual and public opinion calls for realistic,
theory-informed models. Models of opinion change and belief dynamics have traditionally been
studied by a large number of disciplines, including but not limited to economics [1–3], political
science [4], sociology [5], anthropology [6], philosophy [7], and psychology [8] among others.
There is also a tradition in statistical physics, dating back to the voter model [9–12], but also
considering models such as the majority rule model [13], the Sznajd model [14], and a number
of bounded confidence models [15]. Each model typically describes opinion change through
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a fixed strategy, where an agent might update their beliefs tomore
accurate values [16–18], or perhaps might seek conformity by
following either the majority around them [13], or by copying the
mean opinion [4]. The effects of social influence might vary with
the distance between one’s own opinion and the advocated one
[19–21], on the details of how the new information is presented
[22] or even to meta-information [23–25]. Opinion dynamics
models often also take into account the structure of the social
networks where agents are embedded. In these models, opinion
formation is often described as a result of the combination
of social structure and behavior, as agents in different parts
of a social network will be exposed to different sources of
information, while the social network itself might change over
time, as agents choose to change their own connections according
to the behavior and opinions of their neighbors [11, 26, 27].

Rather than producing an exhaustive list of models and
modeling choices, this study aims to develop methods that
allow for a thorough exploration of complex models. Many
of the models presented above, much like the social systems
they describe, have multiple output variables, often displaying
divergent behavior in one coarse-graining scale while displaying
convergent behavior in another. This makes such complex
models hard to study, particularly as their application into
questions of empirical interest requires expanding models
to multidimensional landscapes and parameter spaces, where
emergence and convergence are difficult to identify in first place.

With these problems in mind, in this paper we introduce a
series of tools that provide a scalable way to explore the parameter
space of complex agent-based models. As a case study, we use an
multi-level opinion dynamics agent-based model which contains
all of these features—no clear output variable, multidimensional
parameter space and output space. We perform a thorough
analysis of the model for small system sizes, and show how the
same analysis could be performed for larger implementations of
other complex models.

The agent-based model we use as a case study was originally
introduced as a toy model of opinion polarization. In recent
years, the spread of information on social networks has been
described a driving force behind political polarization, through
mechanisms of homophily leading to “filter bubbles” or “echo
chambers” [11, 28, 29]. While a more robust body of evidence
is needed to clarify the many roles of online social networks in
political polarization, the role of homophily and social influence
in the process of opinion polarization is already well-described
by concepts such as the argument communication theory of bi-
polarization, introduced by Mäs and Flache [30]. This theory
proposes to account for the emergence of a bi-modal distribution
in opinions through an amplification of small differences between
individuals. It draws from the theory of informational influence,
or persuasive argument theory [16–18], while assuming that
homophily with respect to an individual’s opinions [28, 31–
34] will be the main factor behind communication and opinion
change. As argued by Mäs and Flache, the cognitive-social bias
of homophily is a sufficient mechanism to account for the
emergence of a bimodal opinion distribution.

The simplicity of Mäs and Flache’s theoretical model is also
its limitation, in that it focuses on the emergence of polarization
around a single issue, or a single pair of opposing issues on

FIGURE 1 | Representation of the agent cognitive-evaluative map, adapted
from Banisch and Olbrich [35]. In this example, agents form attitudes on N = 2
different issues, represented by the squares in (A). Their attitudes are based
on their beliefs M = 6 facts, represented as circles with ones indicating the
presence of a belief and zeros indicating its absence. Beliefs may contribute
positively (black solid lines), or negatively (gray dashed lines) to the attitudes, or
may not contribute at all (no line). The mapping from beliefs to attitudes is
summarized by the matrix C, shown in (B). Respectively, −1, 1, and 0 s
represent positive, negative, and null contributions.

an axis. This limitation has been addressed by an extended
computational model proposed by Banisch and Olbrich [35],
who draw from structural theories of attitude dynamics [36–
38] to make a distinction between individual beliefs held by an
agent and their attitudes toward multiple issues. The relations
between beliefs and attitudes are framed by Banisch and Olbrich
as cognitive-evaluative maps shared by a population [39]. In their
computational model, an individual’s beliefs are encoded as a
vector x of binary values, while their attitudes are represented
as another vector y, this one with integer values, which depend
on the belief vector but also on a cognitive-evaluative matrix C,
through the linear equation y = C · x (in the notation used
here). In the example shown in Figure 1A, a total of six beliefs
determines an agent’s attitude toward two issues. Each issue is
affected positively by two issues, negatively by two others, and is
not affected by the last two. This can be represented as a bipartite
graph where every belief is connected to an opinion, which can
be summarized by the adjacency matrix shown in Figure 1B.
The separation between belief and attitude makes this network
different from other network models of belief dynamics [40],
where beliefs affect each influence each other directly. In this two-
level model, in principle, unless two agents interact, one agent
does not have access to another agent’s beliefs—while the decision
to interact might be based on attitudes only.

As described above, Banisch and Olbrich’s model of
ideological alignment is a multi-dimensional agent-based model
which can exhibit emergent behavior in more than one level,
posing an interesting challenge for current methods of analysis
of ABMs. In the next sections, we explore the parameter space
of this model by investigating the ensemble of all cognitive-
evaluative maps for systems with small numbers of beliefs and
attitudes. We then introduce different approaches to analyze the
convergence of the model, as well as the range of steady-states it
can produce. Finally, we argue how these approaches can easily be
applied to other complex agent-based models of social behavior.

2. METHODS

2.1. Multi-Level Agent Based Model
Following Banisch and Olbrich’s model [35], we define the
cognitive-evaluation matrix relating M beliefs to N issues as
a N × M matrix C. We limit entries cij to values within
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{−1, 1, 0}, corresponding to the attitude toward an issue j being
affected negatively, positively, or unaffected by a belief i. This
implies a total of 3MN possible cognitive-evaluative matrices.
The exponential growth with M and N is a product of the
combinatorial nature of the problem, since a priori the relation
between a pair of beliefs i1 and j1 does not impose any constraint
on the relation between any pair i2 and j2. Consequently, the
number of possible Cmatrices quickly grows beyond what would
be effectively enumerable. For M = 2, N = 2, there is a
total of 34 = 81 possible matrices, while for larger systems
such as M = 10 beliefs affecting N = 3 issues, this number
grows to 330 ≈ 2 × 1014. When considering the output of
every agent based model, we take into account how multiple
matrices might be equivalent under symmetry operations. These
operations, which represent all permutations of an agent’s beliefs
and opinions (e.g., replacing belief i for belief j), result in a smaller
set of isomorphic graphs connecting beliefs to opinions, thus
mitigating the exponential growth described above. In this brief
study, we focus on three case studies where a thorough study of
the matrix ensemble is possible, once such symmetries are taken
into consideration: namelyM = 4, N = 2 andM = 3, N = 5.

For every matrix C in each matrix ensemble, we run a total
of 20 simulations with different random seeds. For every random
seed, we initialize 1,000 agents with random sets of beliefs, i.e.,
initializing their beliefs as random vectors x ∈ {0, 1}M , and
mapping them to y ∈ Z

N attitude vectors through y = C · x. We
then iterate every simulation through 15,000 time steps, which
we show is enough for model convergence. In every time step, for
every agent a1 in themodel, we select another agent a2 at random,
measure the homophily between them, and if this homophily is
above a given threshold, agent a1 selects a random belief from
a2’s beliefs, and copies it. With 1,000 agents and 15,000 time
steps, every simulation runs for a total of 15 × 106 interactions
between agents.

As described above, the similarity or homophily between
agents can be measured in multiple ways. In this study, we define
homophily as measured by oneminus the normalizedManhattan
distance between the attitudes of a pair of agents. The reasons for
this choice are many. First, if the distance between agents were to
be measured in belief space, i.e., according to their belief vectors
only, the dynamics of the agent based model would be trivial:
agents wouldmove toward each other, aggregating in a few points
in belief space, and no other kind of dynamics would be possible.
In other words, agents would concentrate in a finite number of
x ∈ {0, 1}M points in belief space.

This kind of dynamics corresponds to a series of bounded
confidence models in opinion dynamics, such as the ones
introduced byDeffuant et al. [15] and by Krause and Stöckler [41]
and Hegselmann and Krause [42], both of which were expanded
by many following works [43–48]. In this category of models,
for high enough homophily thresholds, agents might cluster in
a few points, while for lower thresholds they would eventually
all collapse into a single set of beliefs x, depending on the initial
distribution of a agents in the opinion space, but not depending
on the cognitive-evaluative matrix C. If one were to assume, for
example, that every set of beliefs is equally likely a priori, thus
defining the initial conditions of the simulation as a uniform

distribution over {0, 1}M , then every point in belief space would
be equally likely to become the steady state of the system, upon
a random perturbation to the uniform initial condition of the
model. The corresponding dynamics in attitude space y ∈ Z

N

would also be one of aggregation toward a few attitude vectors
y, and the likelihood of convergence toward a specific attitude
vector would be proportional to the fraction of x vectors that map
to y through y = C · x. Other than that, unless the combination
of a particular initial distribution over belief space and the right
homophily threshold could allow to the formation of two clusters,
measuring homophily as a function of belief homophily would
only lead to the formation of homogeneous steady states where
all agent have exactly the same opinions and beliefs.

Given that the dynamics induced by any distance metric in
belief space will inevitably lead to agents aggregation in both
belief and attitude space, what is left is to investigate the dynamics
produced by metrics in attitude space. For this choice, if one
were to use the Euclidean or L2 norm to measure the distance
between attitude vectors y, for a given set of y1 = (0, 0),
y2 = (1, 1), and y3 = (0, 2), one would obtain dist(y1, y2) <

dist(y1, y3). Were one to use the Manhattan or L1 norm, they
would find dist(y1, y2) = dist(y1, y3). In the absence of reasons
to argue that y1 differs more from y3 than from y2, we will
pick the simplest assumption, and use the Manhattan norm
for simplicity.

2.2. Measuring Simulation Outputs
To test whether simulations with the same C matrix but
initialized with different random seeds might produce different
steady-state distributions, we first assess the variability within
multiple runs of the same matrix, as shown in Figure 2. Since
every run of the model produces 1,000 trajectories over a M-
dimensional belief space and a N-dimensional opinion space, we
represent the state of an individual run over time with a set of
summary statistics: its centroid ycentroid ∈ R

N , its covariance
matrix 6ij, and its maximum width in each of its principal axes,
which can be identified by decomposing 6ij into its scaling and
rotational components.

We measure the spread of agents over time for every run in
two ways. First, we calculate the mean distance from the centroid
of a simulation run at a given time step and the centroid of
its steady state (i.e., its centroid after 15,000 steps). Second, we
measure the effective number of states over time for each run. The
effective number of states is a measure inspired in entropy-based
measures of diversity, which have their origin in information
theory [49, 50]. We define it as 2 to the power of the entropy
of the distribution of agents over multiple states, as shown in
Equation (1).

ENS(t) = 2−
∑

i pi(t) log2 pi(t) (1)

In Equation (1) above, the entropy term is summed over the
proportion pi(t) of agents occupying state yi at time t, for all
states yi in attitude space. In essence, the effective number of
states is a measure of the diversity of sets of attitudes taken by
the agents in a run at a given point in time: in other words, of
how their attitudes are divided between multiple simultaneous
states (or sets of attitude values y), weighed according to how
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FIGURE 2 | Multiple measures of model convergence. (A) Shows the trajectory of the centroid for 20 runs of the same M = 4, N = 2 matrix, plotted for the first
coordinate in attitude space, over time, reaching three possible values at t =15,000. (B) Shows the L1 distance between the centroid of every run at time t and the
centroid of the same run at t =15,000, for all M = 4, N = 2 matrices. (C) Shows the effective number of states over time, for 1,000 runs of the same M = 4, N = 2
matrix, while (D) shows the effective number of states over time for runs of all M = 4, N = 2 matrices. (E–H) Show the same analysis, for M = 5, N = 3 matrices.

many agents adopt them at that point in time. This measure is
highest when agents are evenly distributed across many states
and lowest when they concentrated at a single state. In the social
sciences, equivalent approaches have been used to describe the
effective number of parties in a parliament [51], as well as the
effective number of issues from a political agenda receiving public
attention at the same time [52].

Finally, in addition to analyzing every simulation for every
C matrix, we also cluster groups of steady-state distributions
according to which points in attitude space are occupied at
t =15,000 by a given run.

3. RESULTS

In this section, we present the results of simulations for the three
case studies mentioned above:M = 4, N = 2 andM = 3, N = 5.
Unless specified, we use a distance threshold of β = 1. Unlike
Banisch and Olbrich’s study [35], which shows the results for
a selected set of matrices that could produce a varied set of
behaviors, we focus on the behavior emerging from the whole
ensemble of matrices defined by a given (M,N) pair.

3.1. Studying Model Convergence
Figure 2 displays an analysis of convergence for this agent-based
model, for system sizes of M = 4, N = 2, and M = 5, N = 3.
In summary, it shows that different runs of the same matrix
can produce different results, that convergence typically happens
before t =15,000 steps, and that this convergence is usually to a
single point in attitude space.

The figure compares the full ensembles of M = 4, N = 2
and M = 5, N = 3 matrices with the matrices C2×4 and C3×5

specified in Equation (2):

C2×4 =
[

−1 0 0 1
0 1 1 0

]

C3×5 =





0 −1 1 1
1 −1 0 1
0 0 −1 0



 (2)

The first point is illustrated by Figures 2A,E. Both panels show
the trajectory of the first coordinate of the centroid of 20 different
runs of the same C matrix. In plotting these time series, a small
increment of 0.01 was added to the y-value of each run, to
make visible the many horizontal lines that otherwise would be
overlaid. The panels indicate that most centroids converge to a
value before 15,000 steps, but that the value itself varies across
runs. For this particular choice of Cmatrices, centroids stabilized
at values of −1, 0, and +1 for C2×4, and −2, −1, 0, +1, and +2
for C3×5. The fact that the values of 2 and −2 are not observed
for C2×4 and that neither 3 or −3 is observed for C3×5 is likely
due to these specific maps. Still, the diversity of centroid values
presented in both panels is enough to show the kind of behavior
that would be erased if one were to average multiple runs for the
same Cmatrix.

Naturally, displaying the results of a single pair of matrices is
no argument for general convergence. The model convergence
around 15,000 time steps for these (M,N) pairs is further
presented in all other panels in Figure 2. Figures 2B,F show the
L1 distance between the centroid of the distribution of agents
in attitude space at time t and the same distribution at time
t =15,000, averaged over all M = 4, N = 2 and M = 5, N = 3
matrices, respectively for each panel. Shaded areas represent the
25–75 and 5–95% intervals of the distribution of the distance to
steady-state centroids, showing that the convergence observed at
t =15,000 is not an average phenomenon, and also not unique to
C2×4 and C3×5, but rather that convergence is observed for both
whole matrix ensembles.
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FIGURE 3 | Examining all steady-state distributions for 20 runs of every M = 5, N = 3 matrix. (A) Shows a rank plot indicating the range of cluster sizes, i.e., the
number of runs producing each steady-state distribution. (B,C) Show a breakdown of the number of states (i.e., points in attitude space) per cluster: the number of
clusters with a single state is over one order of magnitude above the number of clusters with two or more states, and those one-state steady states are also the ones
corresponding to the largest number of runs, as shown in (C). (D–F) Count the number of clusters according to their width in each cluster’s widest axis [Width 1, (D)],
followed by its second and third widest axes [widths 2 and 3, (E,F), respectively]. In order, red, green, and blue bars indicate clusters with width 1,

√
2, and

√
3, as

indicated by the insets in (D). (G) Shows the frequency of different steady-state distributions, when clustered only on their shape, but not on their position in attitude
space.

The remaining panels show the evolution of the effective
number of states over time, for 1,000 runs of C2×4 and C3×5

(Figures 2C,G) and for single runs of all matrices in that (M,N)
pair (Figures 2D,H). The effective number of states, described in
Equation (1), measures the diversity of points in attitude space
occupied by the multiple agents in a model over time. In all
panels, this effective number quickly converges to approximately
1.0, both on average and as a whole, as indicated by the shaded
areas. This convergence implies that most runs ultimately lead to
steady states occupying a single point in attitude space, for both
M = 4, N = 2 andM = 5, N = 3 matrices.

3.2. Analyzing Steady States
In the previous section, we established that the model usually
converges before 15,000 steps, that a typical run converges to a
single point in attitude space, but that different runs of the same
matrix might result in path-dependent symmetry breaking. In
this section, we examine the range of steady-state distributions
produced by multiple runs of this model for many C matrices,
clustered according to which points in attitude space (i.e., which
states) are occupied at t =15,000 by a given run.

The results of the clustered by steady-state distributions are
shown in Figure 3 for 20 runs of every M = 5, N = 3 matrix.
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Figure 3A shows a rank plot indicating the range of cluster sizes,
i.e., the number of runs producing each steady-state distribution.
As evidenced by the log-scale on the y axis, this is a long-
tail distribution: most runs produce the same few steady-state
distributions, while most steady states are only observed for 10
runs or less.

From Figure 3B, we see that most steady-state clusters
correspond to single states, while the number of clusters with two
or more states is over an order of magnitude smaller. Figure 3C
compares the number of states with the number of runs falling
into each cluster, i.e., the cluster size: it shows that most large
clusters are single-state clusters, followed by two-state clusters.

As indicated by the top three panels, most runs of this
model result in a few single-state clusters, while wider steady-
state distributions correspond to a small proportion of all
resulting steady-states of the model, with many distributions
corresponding to only a few model runs each. Figures 3D–F

investigate this range of wider distributions, binning clusters
according to their width in each cluster’s principal axes, obtained
by decomposing each their covariance matrices 6ij into scaling
and rotational components. Principal components are shown in
Figures 3D–F from most important to least important (namely,
Widths 1, 2, and 3), with the height of every bar indicating the
number of clusters with a particular width in each principal axis.

Figures 3D–F also show red, green, and blue bars. These
bars indicate the number of steady-state clusters with particular
widths, namely 1,

√
2, and

√
3. The high cluster count at

these particular (Euclidean) distance values is a consequence of
the discrete grid-like nature of the agent-based model, which
produces steady states such as the ones indicated by the insets
in Figure 3D, which have widths of 1,

√
2, and

√
3.

Finally, Figure 3G shows the frequency of different steady-
state clusters, when grouped only regarding their shape, and
therefore also aggregating over orientation and centroid position.
It confirms what is indicated by the other six panels: the largest
fraction of steady-state distributions is point-like, representing
all 1,000 agents converging toward the same point in attitude
space, a phenomenon which happens for 96% of all model runs,
including C matrices with all kinds of symmetry and levels of
interdependency between issues. Steady-state distributions two
or more states together only take 4% of all runs of the model.

It is important to note that Figure 3G is a two-dimensional
representation of a three-dimensional model. This is only
possible because the frequency of three-dimensional steady states
distribution is under 1%, which is comparable to the frequency
of other two-dimensional steady states shown in the figure. This
is in agreement with Figure 3F, which shows that <1% of all
steady states have a non-zero width in their third main axis.
In other words: zero-dimensional (point-like) steady states are
by far the most common, corresponding to 96% of all model
runs, followed by one-dimensional, two-dimensional and three-
dimensional steady states, in order of decreasing frequency.

Finally, the reviewer might notice that steady-state
distributions such as the bottom left in Figure 3G should
not be absorbing states under the model with β = 1. Rather,
given enough time, this distribution should converge to the
point-like distribution on the top left of Figure 3G, which is

an absorbing state. This 1% of all steady-state distributions
likely corresponds to runs which are still in their transient state
by t =15,000. Preliminary runs of (M = 10, N = 2) and
(M = 10, N = 3) show a similar pattern: these system sizes tend
to show polarized one-dimensional distributions for timescales
longer than 15,000 time steps, only converging to absorbing
states after over 50,000 time steps. In their paper, Banisch and
Olbrich argue these transient distributions should become more
empirically relevant as population sizes grow–we explore this
point in more detail in the section 4.

4. DISCUSSION

The aim of this article was to provide a good illustration of
the complexity involved in studying an agent-based model of
human behavior that is actually guided by social and cognitive
psychology. The theoretical details and model choices made by
Banisch and Olbrich [35] to model Mäs and Flache’s argument
communication theory of bi-polarization resulted in a model
which is simple to define and to run, but which requires careful
analysis, as its outputs are inherently multidimensional and
dependent on a number of factors. It is this sort of system which
often limits linear and analytical approaches, since the relevant
part of the behavior happens at an emergent level. Through a
complete enumeration of the M = 4, N = 2 and M = 5, N =
3 cognitive-evaluative matrices, we find that most runs of the
model, for all cognitive-evaluative matrices, move toward a few
steady-state distributions. We find that the clusters of steady-
state distributions in attitude space corresponding to most runs
are often pointwise steady-state distributions, where all agents
converge toward the same vector y in attitude space. Steady states
composed of two or more attitude states take over approximately
4% of all runs of the model, with distribution with 2 states being
the most frequent.

Our analysis of small of Banisch and Olbrich’s model for small
M andN suggests that the most likely result after many iterations
of the model is consensus, and that any deviation from consensus
would hardly be described as “polarization.” These are, however,
small systems: matrices with larger M and N allow for a larger
spread of agents in attitude space, which allows for the emergence
of distributions polarized along one axis. We observe that in
preliminary runs of matrices with (M = 10, N = 2) and
(M = 10, N = 3), which display one-dimensional distributions
of agents in attitude space for longer than 15,000 time steps,
only converging after over 50,000 time steps. This suggests
that larger systems should take longer to converge, allowing
for the sustained existence of social dynamics within transient
population states. Distributions displayed during the transient
period should be particularly relevant for larger population sizes,
a point also made by Banisch and Araújo when talking more
broadly about opinion dynamics models [47].

The main result of this work, beyond producing insights
about small systems, is a methodological contribution. As
described in more detail in section 2 this multi-level agent-
based model does not have any clear output variables, nor a
clear aggregation scale, order parameter or measurable outcome.
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Its emergent behavior is the product of countless interactions
where agents update their beliefs and attitudes, but there is
no clear metric assessing when such emergent behavior has
happened, or even to tell apart the model transient from its
steady state.

This paper introduced a number of approaches to address this
problem: in Figure 2, after establishing that individual runs of
the model for the same cognitive-evaluative matrix should not
be averaged without losing significant information, we observe
the distribution of agents in attitude space over time, plotting
the distance between the agents’ centroid over time and the final
position of their centroid, as well as looking at the effective
number of states of every run. This effective number of states, just
like its equivalent measures from other multidimensional models
of social behavior, takes an approach from information theory
to quantify the diversity of states in the model. With these tools
combined, we are able to establish model convergence around
t =15,000 steps.

The analysis presented in Figure 3 presents further methods
which can be applied to complex agent-based models: by using
a combination of cluster analysis and PCA-like methods to
establish the main directions of variation of all the steady states
produced by 20 runs of the model for every M = 5, N = 3.
These states were then aggregated in multiple ways, leading to a
thorough description of the full spectrum of outputs produced by
this model.

The methods presented here open many doors for future
research. Firstly, they allow for a more careful exploration
of Banisch and Olbrich’s model, at system sizes of empirical
relevance. Moreover, the full enumeration approach used here
might also be ideal—further research is needed to identify the
correct ensembles of matrices to represent the mapping between
opinions and attitudes. One might also want to consider the

interplay of social network structures and cognitive-evaluative
maps, as the separation between beliefs and attitudes might
lead to stronger separation between agents in different parts of
a network.

Most importantly, this work introduces a scalable way to
explore the parameter space of complex agent-based models such
as the one studied in this paper. Methods such as the effective
number of states or the clustering by steady-state are most
appropriate for models which resemble real-life social behavior,
particularly the dynamics of beliefs, opinions and attitudes, where
emergent phenomena are not static, easily measurable or even
clearly defined—and where there usually is no order parameter
that identifies different regimes of the model. Here we have
introduced not an order parameter, but a set of analysis tools,
which can bring more power and clarity to future complex
models of social behavior.
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How Could Future AI Help Tackle
Global Complex Problems?
Anne-Marie Grisogono*

College of Science and Engineering, Flinders University, Adelaide, SA, Australia

How does AI need to evolve in order to better support more effective decision-making

in managing the many complex problems we face at every scale, from global climate

change, collapsing ecosystems, international conflicts and extremism, through to all the

dimensions of public policy, economics, and governance that affect human well-being?

Research in complex decision-making at an individual human level (understanding of

what constitutes more, and less, effective decision-making behaviors, and in particular

the many pathways to failures in dealing with complex problems), informs a discussion

about the potential for AI to aid in mitigating those failures and enabling a more robust

and adaptive (and therefore more effective) decision-making framework, calling for AI to

move well-beyond the current envelope of competencies.

Keywords: AI decision support, complex decisions, human limitations, wicked problems, interface design

INTRODUCTION

Human intelligence rests on billions of years of evolution from the earliest origins of life, and
despite its undeniably unique nature within the biosphere, and the apparent gulf that distinguishes
the human species from all others, it should nevertheless be seen as an extremum within a
continuum. The unifying feature of all natural intelligence systems is that they have evolved under
strong selection pressures to solve the problems of surviving and thriving sufficiently to reproduce
better than their competitors. Unlike the evolution of faster speed, sharper teeth, more efficient
energy harvesting and utilization, or better camouflage, all of which improve physical capabilities,
the evolution of intelligence enables better choices to be made as to how and when to employ
those capabilities, by processing relevant sensed and stored information. If the environment is
challenging enough, whether through the prevalence of threats, the scarcity of necessary resources
or through intense competition for them, then there is a high fitness pay-off for evolving both the
necessary physical characteristics for sensing, processing and storing the relevant information, and
the intelligence to exploit them.

From this perspective we can define intelligence as the ability to produce effective responses
or courses of action that are solutions to complex problems—in other words, problems that are
unlikely to be solved by random trial and error, and that therefore require the abilities to make finer
and finer distinctions betweenmore andmore combinations of relevant factors and to process them
so as to generate a good enough solution. Obviously this becomes more difficult as the number of
possible choices increases, and as the number of relevant factors and the consequence pathways
multiply. Thus complexity in the ecosystem environment generates selection pressure for effective
adaptive responses to the complexity.

One possible adaptive strategy is to find niches to specialize for, within which the complexity is
reduced. The opposite strategy is to improve the ability to cope with the complexity by evolving
increased intelligence at an individual level, or collective intelligence through various types of
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cooperative or mutualistic relationships. Either way, increased
intelligence in one species will generally increase the complexity
of the problems they pose for both other species in the shared
ecosystem environment, and for their own conspecifics, driving
yet further rounds of adaptations. Even when cooperative
interactions evolve to deal with problems that are more complex
than an individual can cope with, the shared benefits come
with a further complexity cost in maintaining the cooperative
relationships and policing for cheats (Nowak, 2006).

This ratcheting dynamic of increasing intelligence and
increasing complexity continues as long as two conditions are
met: further increases in sensing and processing are sufficiently
accessible to the evolutionary process, and the selection pressure
is sufficient to drive it. Either condition can fail. Thus generally a
plateau of dynamic equilibrium is reached. But it is also possible
that under the right conditions, which we will return to below,
the ratcheting of both complexity and intelligence may continue
and accelerate.

Artificial intelligence on the other hand, has not evolved
through natural selection, but rather owes its genesis to human
intelligence (at least on this planet), which has a number of
important implications that have colored its trajectory so far. But
to contemplate its possible futures and ours, this paper argues
the need to re-examine the relationship between human and
machine within a much broader context. In particular, we need
to understand both the strengths and the limitations of human
intelligence, consider what our most pressing issues are and what
kinds of advances in AI would be most useful in helping us
to navigate those complex problems in the near to mid-term.
At the same time we need to be mindful of the risks, not only
in the nearer term but also those that may only materialize as
longer term consequences, and address how these may be averted
or mitigated.

AI AND THE LIMITATIONS OF HUMAN
INTELLIGENCE

It was natural for the pioneers of AI to choose human cognitive
abilities such as playing chess or Go, navigating obstacles, or
recognizing and interpreting written and spoken language, as the
yardsticks by which to measure early progress in AI capabilities,
not only because they were so far beyond what could be simulated
at the time, but also perhaps, because we felt so impressed with
our own dazzling cognitive strengths. But now that many of these
and other quintessentially human examples of intelligence are
being relegated to the growing list of tasks at whichAI can surpass
human performance, we need to step back and acknowledge that
human intelligence is not the pinnacle of what can be achieved.

Just as the Copernican revolution and later astronomical
discoveries dislodged us from the center of the universe and
pushed us into orbiting a minor star in an undistinguished
galaxy, and Darwinism pushed us from the pre-eminent position
we had assumed over all life forms into just a twig of the
evolutionary tree of life, the current and recent sweep of advances
in understanding of neuroscience, cognition, behavioral science,
evolutionary psychology and related fields call for yet another

round of humbling re-appraisal of where we fit in the grand
scheme of things.

Taking the concept of intelligence as the ability to produce
effective solutions to complex problems by processing relevant
sensed and stored information, it is evident that human
intelligence and ingenuity have led to immense progress in
producing solutions for many of the pressing problems of
past generations, such as higher living standards, longer life
expectancy, better education and working conditions. But it
is equally evident that the transformations they have wrought
in human society and in the planetary environment include
many harmful unintended consequences, and that the benefits
themselves are not equitably distributed and have often masked
unexpected downsides.

We are now confronting a complex network of
interdependent global problems which we seem increasingly
incapable of dealing with effectively at either the national or
international levels, and arguably it is the very successes of
human intelligence that have ratcheted the complexity of the
challenges we face to a level that unaided human intelligence is
now unable to cope with.

This was recognized as long ago as 1973 in a remarkably
prescient paper (Rittel and Webber, 1973) in which the authors
coined the term “wicked problems” (as opposed to benign
problems which are tractable) and laid out ten hallmarks1

characterizing them, together with a very clear analysis of
their roots in complexity. Their inability to lay out an equally
clear prescription for the resolution of such wicked problems
signaled that a tipping point had indeed been reached where our
limitations had now outstripped our cleverness.

What has changed in the intervening decades? While the
scale and urgency of the global problems we face have certainly
intensified, what we have since learned in the germane fields
of complexity science, evolutionary psychology, brain and
behavioral science, and artificial intelligence, suggests that we
may be close to another tipping point where we could possibly
drive the emergence of advanced artificial intelligence systems
that can effectively support human decision-making in managing
such problems, by a combination of mitigating human fallibilities
and complementing human shortcomings.

At this point the reader may be wondering why there should
be a human in the decision process at all if we have indeed
overstepped our domain of competence. There are possibly
three reasons.

Firstly, even if there does come a day when AI systems are
judged able to take over the management of complex issues
without human control, such a judgment would imply that
humans have confidence in those systems, and such confidence
can only be developed through a transition period of human
and machine working together, learning the strengths and

1Briefly the ten hallmarks are: no definitive formulation; no stopping rule;
solutions are not true-or-false, but better or worse; no immediate or ultimate
test of a solution; every solution attempt is a “one-shot operation”; no well-
described set of potential solutions or permissible operations; essentially unique;
can be considered a symptom of another problem; many possible explanations;
and the decision-maker has “no right to be wrong” because of the gravity of
the consequences.
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limits of each other’s capabilities, and evolving better ways to
arrive at good decisions, through evaluating and learning from
the consequences of those decisions. Secondly, there is the
perennial issue of expert knowledge elicitation. Despite all their
human failings, there is surely a vast, unquantifiable reservoir of
relevant experiential implicit knowledge, and hopefully wisdom,
in the cohorts of public officials, managers and analysts who
currently strive to deal with these spiraling problems. If an
AI system is to eventually run things without them, it had
better somehow absorb what they know that cannot be itemized
in databases - which links to the third reason: will people
really want to be excluded from managing their societies
and enterprises? The answer that might emerge in the future
when the question actually becomes pertinent is impossible to
predict today. But we have enough reasons to proceed on the
assumption that the next steps will involve advanced AI support
for human decision-makers.

To propose a set of desiderata for the advances in AI that are
needed we now turn to what we have learned about the specific
limitations that plague human decision-makers in complex
problems. We can break this down into two parts: the aspects of
complex problems that we find so difficult, and what it is about
our brains that limits our ability to cope with those aspects.

Sources of Difficulty in Complexity
Interdependence is a defining feature of complexity and has
many challenging and interesting consequences. In particular, the
network of interdependencies between different elements of the
problem means that it cannot be successfully treated by dividing
it into sub-problems that can be handled separately. Any attempt
to do that creates more problems than it solves because of the
interactions between the partial solutions.

Dynamical processes driving development of the situation
often involve many positive and negative feedbacks, thus
amplifying and suppressing different aspects of the situation,
and resulting in highly non-linear dynamics. This means that
relying on linear extrapolation of current conditions can lead to
serious errors.

There is no natural boundary that completely isolates a
complex problem from the context it is embedded in. There is
always some traffic of information, resources, and agents in and
out of the situation which can bring about unexpected changes,
and therefore the context cannot be excluded from attention.

Complex problems exist at multiple scales, with different
agents, behaviors and properties at each, but with interactions
between scales. This includes both emergence, the appearance
of complex structure and dynamics at larger scales as a result of
smaller-scale phenomena, and its converse, top-down causation,
whereby events or properties at a larger scale can alter what
is happening at the smaller scales. In general, all the scales are
important, there is no single “right” scale at which to act.

Interdependence implies multiple interacting causal and
influence pathways leading to, and fanning out from, any event
or property, so simple causality (one cause—one effect), or linear
causal chains will not hold in general. Yet much of our cultural
conditioning is predicated on a naïve view of linear causal chains,
such as finding “the cause” of an effect, or “the person” to be

held responsible for something, or “the cure” for a problem.
Focusing on singular or primary causes makes it more difficult
to intervene effectively in complex systems and produce desired
outcomes without attendant undesired ones—so-called “side-
effects” or unintended consequences. Effective decision making
requires the ability to develop sufficient understanding of the
causal and influence network to engage with it effectively, neither
oversimplifying it, nor becoming overwhelmed with unnecessary
levels of detail.

Furthermore, such networks of interactions between
contributing factors can produce emergent behaviors which
are not readily attributable or intuitively anticipatable
or comprehensible, implying unknown risks and
unrecognized opportunities.

There are generally multiple interdependent goals in a
complex problem, both positive and negative, poorly framed,
often unrealistic or conflicted, vague or not explicitly stated, and
stakeholders will often disagree on the weights to place on the
different goals, or change their minds. Achieving sufficient high
level goal clarity to develop concrete goals for action is in itself a
complex problem.

Complex situations generally contain many adaptive agents

with complex relationships and shifting allegiances, and new
behaviors and features continually arise. This means that
approaches that worked in the past may no longer work,
interventions that frustrate the intents of some agents will often
simply stimulate them to find new ways to achieve them, and
opportunities created by the inevitable new vulnerabilities that
interventions create will be rapidly identified and exploited.

Many important aspects of complex problems are hidden,
so there is inevitable uncertainty as to how the events and
properties that are observable, are linked through causal and
influence pathways, and therefore many hypotheses about them
are possible. These cannot be easily distinguished based on the
available evidence.

Limitations of the Human Brain
The brief overview above reveals some of the cognitive abilities
that are essential for successful tackling of complex problems.
One immediate conclusion that can be drawn is that there is
a massive requirement for cognitive bandwidth—not only to
keep all the relevant aspects at all the relevant scales in mind
as one seeks to understand the nature of the problem and
what may be possible to do, but even more challenging, to
incorporate appropriate non-linear dynamics as trajectories in
time are explored. Given the well-known limitations of human
working memory, short-term memory and attention span, this is
an obvious area for advanced AI support to target.

But there is a more fundamental problem that needs to
be addressed first: how to acquire the necessary relevant
information about the composition, structure and dynamics
of the complex problem and its context at all the necessary
scales, and revise and update it as it evolves. This requires a
stance of continuous learning, i.e., simultaneous sensing, testing,
learning and updating across all the dimensions and scales of the
problem, and the ability to discover and access relevant sources
of information. At their best, humans are okay at this, up to a
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point, but not at the sheer scale and tempo of what is required in
real world complex problems which refuse to stand still while we
catch up.

Moreover, there are both physiological factors such as the
impacts of stress, fatigue and anxiety on cognitive performance,
and particular features of the human brain, legacies of our
evolutionary history, which compound the difficulties.

Because the human brain evolved to deal with the problems
of surviving and thriving that our ancestors faced, modern
humans are still equipped with the same heuristics, behavioral
tendencies and biases that worked well enough in the distant past.
These hardwired shortcuts based on rules of thumb, operating
automatically below conscious awareness and so permitting
very rapid adaptive responses to various simple conditions,
enabled them to cope with the level of complexity that existed
then—keeping track of a hundred or so individuals and their
interactions, intents, and histories (Dunbar, 1992). But features
relying on approximations that held true for dealing with
common problems in past environments can morph into risky
bugs in today’s highly interconnected and rapidly evolving
complex situations (Kahneman, 2002).

To understand how all these factors interact to limit
human competence in managing complex problems, and
what opportunities might exist for mitigating them through
advanced AI systems, we now review some key findings from
relevant research.

In particular we are interested in learning about the nature
of human decision-making in the context of attempting to
manage an ongoing situation which is sufficiently protracted2

and complex to defeat most, but not all3, decision-makers.
Drawing useful conclusions about the detailed decision-making
behaviors that tend to either sow the seeds of later catastrophes,
or build a basis for sustained success, calls for an extensive body
of empirical data from many diverse human subjects making
complex decisions in controllable and repeatable complex
situations. Clearly this is a tall ask, so not surprisingly, the field
is sparse. However, one such research program (Dörner, 1995;
Evans et al., 2011; Dörner and Gerdes, 2012; Dorner and Güss,
2013; Donovan et al., 2015), which has produced important
insights about how successful and unsuccessful decision-making
behaviors differ, stands out in having also addressed the
underlying neurocognitive and affective processes that conspire
to make it very difficult for human decision-makers to maintain
the more successful behaviors, and to avoid falling into a vicious
cycle of less effective behaviors.

In brief, through years of experimentation with human
subjects attempting to achieve complex goals in computer-based
micro-worlds with complex underlying dynamics, the specific

2Managing complex situations involves many decisions over an extended period,
with the consequences of earlier ones impacting on the necessity or possibility of
later ones, and affecting the trajectory of the situation. To come to grips with how
decision-making behaviors shape outcomes it is important to conduct experiments
for a long enough period to allow these consequences to develop and confront the
decision-maker.
3In order to learn what decision-making behaviors are more effective, the degree of
complexity of the experimental environment has to be tuned to the edge of human
competence so that data can also be gathered about what does work.

decision-making behaviors4 that differentiated a small minority
of subjects who achieved acceptable outcomes in the longer
term, from the majority who failed to do so, were identified.
Results indicated that most subjects could score some quick wins
early in the game, but as the unintended consequences of their
actions developed and confronted them, and their attempts to
deal with them created further problems, the performance of the
overwhelming majority (∼90%) quickly deteriorated, pushing
their micro-worlds into catastrophic or chronic failure.

As would be expected, their detailed behaviors reproduced
many well-documented findings about the cognitive traps posed
by human heuristics and biases. Low ambiguity tolerance was
found to be a significant factor in precipitating the behavior of
prematurely jumping to conclusions about the problem and what
was to be done about it, when faced with situational uncertainty,
ambiguity and pressure to achieve high-level goals. The chosen
(usually ineffective) course of action was then defended and
persevered with through a combination of confirmation bias
(Nickerson, 1998), commitment bias (Staw, 1997), and loss
aversion (Kahneman and Tversky, 1979), in spite of available
contradictory evidence. The unfolding disaster was compounded
by a number of other reasoning shortcomings such as difficulties
in steering processes with long latencies and in projecting
cumulative and non-linear processes (Sterman, 1989). Overall
they had poor situation understanding, were likely to focus on
symptoms rather than causal factors, were prone to a number
of dysfunctional behavior patterns, and attributed their failures
to external causes rather than learning from them and taking
responsibility for the outcomes they produced.

By contrast, the remaining ten percent who eventually
found ways to stabilize their micro-world, showed systematic
differences in their decision-making behaviors and were able
to counter the same innate tendencies by taking what amounts
to an adaptive approach, developing a conceptual model
of the situation, and a stratagem based on causal factors,
seeking to learn from unexpected outcomes, and constantly
challenging their own thinking and views. Most importantly,
they displayed a higher degree of ambiguity tolerance than the
unsuccessful majority.

These findings are particularly significant here because
most of the individual human decision-making literature
has concentrated on how complex decision-making fails,
not on how it succeeds. However, insights from research
into successful organizational decision-making in complex
environments (Collins, 2001; Weick and Sutcliffe, 2001), do
corroborate the importance of taking an adaptive approach.

In summary, analysis of the effective decision behaviors
offers important insights into what is needed, in both human
capabilities and AI support, to deal with even higher levels of
complexity beyond current human competence. There are two
complementary aspects here—put simply: how to avoid pitfalls
(what not to do), and how to adopt more successful approaches
(what to do instead).

4The behaviors were grouped in five categories: goal decomposition; collecting
and organizing information; projection and planning; decision and execution; and
meta-cognition.
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It is not difficult to understand how the decision making
behaviors associated with the majority contributed to their lack
of success, nor how those of the rest enabled them to develop
sufficient conceptual and practical understanding to manage and
guide the situation to an acceptable regime. Indeed if the two
lists of behaviors are presented to an audience, everyone can
readily identify which list leads to successful outcomes and which
leads to failure. Yet if those same individuals are placed in the
micro-world hot seat, 90% of them will display the very behaviors
they just identified as likely to be unsuccessful. This implies that
the displayed behaviors are not the result of conscious rational
choice, but are driven to some extent by unconscious processes.

This observation informed development of a theoretical
model (Dörner and Gerdes, 2012; Dorner and Güss, 2013)
incorporating both cognitive and neurophysiological processes
to explain the observed data. In brief, the model postulates
two basic psychological drives that are particularly relevant to
complex decision making, a need for certainty and a need for
competence. These are pictured metaphorically as tanks which
can be topped up by signals of certainty (one’s expectations
being met) and signals of competence (one’s actions producing
desired outcomes), and drained by their opposites—surprises and
unsuccessful actions. The difference between the current level
and the set point of a tank creates a powerful unconscious need,
stimulating some behavioral tendencies and suppressing others,
and impacting on cognitive functions through stimulation of
physiological stress. If both levels are sufficient the result
is motivation to explore, reflect, seek information and take
risky action if necessary—all necessary components of effective
decision making behavior. But if the levels get too low the
individual becomes anxious and is instead driven to flee, look
for reassurance from others, seek only information that confirms
his existing views so as to top up his dangerously low senses of
certainty and competence, and deny or marginalize any tank-
draining contradictory information. The impacts of stress on
cognitive functions reinforce these tendencies when the levels are
too low by reducing abilities to concentrate, sustain a course of
action, and recall relevant knowledge.

Individuals whose tanks are low therefore find it difficult to
sustain the decision-making behaviors associated with success,
and are likely to act in ways that generate further draining signals,
digging themselves deeper into a vicious cycle of failure. We can
now understand the 90:10 ratio, as the competing attractors are
not symmetric—the vicious cycle of the less effective decision
behaviors is self-reinforcing and robust, while the virtuous
cycle of success is more fragile because one’s actions are not
the sole determinant of outcomes in a complex situation, so
even the best decision-makers will sometimes find their tanks
getting depleted, and therefore have difficulty sustaining themore
effective decision making behaviors.

Further research has demonstrated that the more effective
decision making behaviors are trainable to some extent, but
because they entail changing meta-cognitive habits they require
considerable practice, reinforcement and ongoing support
(Evans et al., 2011; Grisogono and Radenovic, 2011; Donovan
et al., 2015). However, the scope for significant enhancement
of unaided human complex decision making competence is

limited—not only in the level of competence achievable, but
also and more importantly, in the degree of complexity that can
be managed.

Meanwhile, the requirements for increased competence, and
the inexorable rise in degree of complexity to be managed,
continue to grow.

How Could AI Help?
Recent AI advances such as deep learning and generative
adversarial networks have demonstrated impressive results in
many domains—superhuman precision in classification tasks,
beating humanworld champions in Go, and generation of images
that are hard for humans to discriminate from reality, to name
a few.

But what are the prospects for advances in AI to deliver
the kind of decision support capability that is needed by those
charged with managing the most challenging, indeed wicked,
problems? And can those advances be achieved by research that
continues to set goals based on beating human performance, or
on fooling human discrimination?

Despite its successes, the best examples of AI are still very
specialized applications that focus on well-defined domains,
and that generally require a vast amount of training data to
achieve their high performance. Such applications can certainly
be components of an AI decision support system for managing
very complex problems, but the factors discussed in the two
previous sections imply that much more is needed: not just
depth in narrow aspects, but breadth of scope by connecting
the necessary components so as to create a virtual environment
which is a sufficiently valid model of the problem and its
context, and in which decision-makers can safely explore and test
options for robustness and effectiveness, while being supported in
maintaining effective decisionmaking behaviors and resisting the
less effective ones. The following section develops amore detailed
set of desiderata for such an AI support system.

The resurgence of interest in Artificial General Intelligence
seems a promising avenue for the kinds of advances that are
needed, but it is telling that AGI is most often explicitly pursued
through the lens of the touted general intelligence that humans
possess (Adams et al., 2012), in other words still focusing on
what we believe we are good at, rather than exploring the most
critical parts of the very much larger space of what we are
not good enough at. But is human intelligence truly general?
The claim rests principally on our ability to learn, and this is
certainly a core requirement for future intelligent systems. But
we should also acknowledge that the human brain is the product
of our particular evolutionary history and sports the evidence
of its contingencies in many kluges, biases and peculiarities
(Marcus, 2009). It would be reasonable to suppose that other
more efficient, more general, more powerful and less flawed
designs are possible.

Obviously there is still an immense amount to be learned
about how human intelligence actually works and how the
detailed structure and architecture of the brain produces it. And
there will certainly be many insights that can be implemented in
novel AI developments—for example the recent breakthroughs
in understanding the workings of the neocortex (Hawkins et al.,
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2019), and the comprehensive program to develop cognitive
models of how humans build compositionally structured causal
models of the world grounded in their capacities for intuitive
physics and intuitive psychology, so as to apply them to
development of advanced AI systems (Tenenbaum et al., 2011;
Lake et al., 2017). However, there is also an argument to be made
that relying too much on guiding further development of AI on
what is known about human intelligence, risks reproducing some
of its limitations, or at least misses opportunities to deliberately
and specifically mitigate them so as to extend and complement
human capability.

DESIDERATA FOR AN AI DECISION
SUPPORT SYSTEM FOR COMPLEX
PROBLEMS

The preceding discussion suggests an AI decision support system
with three functional areas: an interface through which the
human decision-maker interacts with it, the AI core generating
and operating on a virtual conceptual model, and an interface
to the outside world through which the AI core can grow
its capability. Since the future system envisaged here is well
beyond what is currently possible, its design can only be sketched
out conceptually. The following two subsections offers some
high level desiderata for the interfaces and the core, based on
a hypothetical use case: in the light of the research insights
presented in the preceding section, what would be most useful
to a well-intentioned human decision-maker faced with very
complex situations to manage?

A third subsection raises some of the ethical issues that must
be addressed if such a system is able to be built.

Interfaces to the Human Decision-Maker
and the Outside World
The decision-maker5 needs to be able to give the system some
initial direction about the problem, its scope, context, and
goals and then develop them through dialogue, with intuitive
visualizations presented by the interface to anchor and stimulate
his participation. As these take shape the dialogue should extend
to exploration of possible actions and their consequences, the
development of courses of action, the building of necessary
support from stakeholders and eventually monitoring the
implementation of decisionsmade, and revising all above asmore
is learned and as the situation evolves.

The way that these are presented should support human
understanding of the emerging conceptual model of the problem
and its context, implying an appropriate level of coarse-
graining in terms of intuitively comprehensible parameters. In
particular, the interface should expose both explicit and implicit
assumptions in the conceptual model, and possible levers of
action and their consequences, both in the intended pathways
and in other pathways that may be stimulated, together with

5For simplicity here we assume a single decision-maker, recognizing that in a
real world problem situation there will be many involved and that will necessitate
further support requirements.

estimates of the degree of uncertainty and the risks resulting from
the consequent ranges of possible outcomes.

To reduce risks and further develop the conceptual model, the
ongoing dialogue between the human and the interface should
be able to launch searches for more data, initiate probing actions,
and pose and explore “what if?” and “how could?” questions.

Conflicts and trade-offs also need to be identified –
both those that must be explicitly managed, such as the
balance between long-term and short-term outcomes, competing
interests between different agents, and conflicts between
espoused values and/or principles, and those that are actually
false dichotomies which should be resolved by supporting
exploration of integrative solutions in their place.

Most importantly, to enable the necessary adaptive approach,
the interface must not only continuously evolve the conceptual
model, but also in parallel prompt and support a process of
continuous co-evolution of the goals, data collection plan, and
both the structure and implementation of the strategy.

The decision-maker needs to have confidence that the system
is in fact presenting accurate and comprehensive information and
making judgments in accord with a transparent and agreed set of
goals, values and principles. This implies additional requirements
with respect to visibility of the goals, values and principles on
which it is operating, flagging of uncertainties and assumptions,
and where possible testing them, and demonstration that it
is using its searching and learning resources to improve its
conceptual model so as to reduce risks and uncertainties, in other
words, actively subjecting its critical aspects to severe testing, and
generating an audit trail for decisions made in relation to every
complex issue.

These considerations imply that both the interface and the
conceptual model behind it must be open systems that permit
evolution of the vocabulary of the interface and the semantic map
to the ontology of the model.

Since the interface is also the locus of the metacognitive
support that the system can provide to the decision-maker,
its design must be informed by an understanding of human
limitations and shortcomings.

In particular, and building on, but going beyond the currently
established principles of human computer interaction, for which
a vast literature exists6, the interface design should scaffold
a human decision-maker who seeks to overcome the specific
difficulties and obstacles discussed in the previous section.
For example, the interface could monitor for the influence
of unconscious biases in the decision-maker’s actions, such
as confirmation bias, framing and recency biases, loss/gain
asymmetry and so on, flagging them for conscious attention and
offering options for reducing them. It could also reduce anxiety
stemming from ambiguity, by demonstrating that an effective
risk management strategy is in place (i.e., that indicators of
emerging risks are being monitored and averting or mitigating
action plans are ready to be triggered), and anxiety stemming
from information overload, by effective partitioning of the

6See for example the scope of CHI ’19- Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems http://st.sigchi.org/publications/toc/chi-
2019.html
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information assimilation workload. Shouldering the workload
of maintaining as many alternative working hypotheses as
necessary, and exposing and testing the implicit assumptions in
each of them, would assist in reducing the danger of premature
convergence to a narrow singular view of the problem and hence
selecting an inadequate strategy.

Overall what is being described here is a cooperative system
where learning and adaptation occurs at the levels of both the
human and the AI support system. Importantly, it also occurs
at the level of the combined system—the interface supporting
the decision-maker’s learning by setting the example of its
own learning behavior, in particular by continuously making
predictions based on its current conceptual model, monitoring
for the real world outcomes and revising its models in the light
of what has been learned, and the human decision-maker being
willing to expose their reasoning and ideas and subject them to
analysis in their dialogue with the AI support system.

Of course these hypothetical examples are illustrative rather
than prescriptive, and certainly not comprehensive, but they
can serve as an adequate starting place for an iterative and
continuously learning design process for the interface. Future
research will no doubt surface many further opportunities
to enhance both human decision-making performance, and
the decision performance of the combined human plus AI
support system.

Irrespective of how this design research agenda might evolve
in detail in the future, one important consequence that seems
inevitable is that the system’s interface to the outside world must
be able to autonomously engage in all relevant aspects as a trusted
partner or agent of the decision-maker. Therefore, to enable the
scale, tempo and depth of testing and learning that is called for in
dealing with multi-faceted and open-ended complex problems,
the interface to the outside world must be essentially unfettered
and support multiple simultaneous high bandwidth interactions,
as well as robust and secure. This point will have repercussions in
discussing ethical concerns.

AI Core
These requirements imply that the AI core needs the ability
to develop situational models of the complex problems to be
managed, and asmuch of their context as necessary, and to evolve
them in a real time loop through predictive processing (Clark,
2015) and updating, i.e., by monitoring relevant developments,
using the current version of the model to predict expected
consequences, comparing predictions to actual outcomes, and
hence updating the models as a result of what is learned. This
means that the models must be open systems so that their
structures and composition can change as more is learned, and
as the situation itself changes over time.

The models need to exist at multiple scales—from coarse
resolution to as fine a level as is required to model the relevant
entities and events (whether by bottom-up models or by machine
learning from data), and include all the dimensions relevant
to the necessary scales of representation and all significant
outcome variables, all accessible levers of influence that could be
exercised, all the causal and influence pathways that may lead to
significant consequences, the causal and influence relationships

between entities and events, within and across scales, and their
time dependence.

Including all the significant outcome variables implies a
detailed representation of how success and failure of the complex
problem will be judged, as well as intermediate outcomes and
indicators that signal which consequence pathways are activated.

Situation models with such wide scope will necessarily be
hybrid models, containing many detailed components, plus
representations of the interactions and interdependencies
between the components. To support zooming between scales,
the core will need the ability to extract human comprehensible
coarse-grained models7 from the more detailed models,
whether data driven ML models or bottom-up micro-parameter
based models.

To deal with complex problems at the “wicked” end of the
complexity scale the core will need to be able to model humans
who are stakeholders or actors in the situation, so that their
responses to interventions or external events can be anticipated,
and combinations of incentives and compensatory measures can
be discovered that have a chance of fostering enough consensus
for effective action to be taken. These models will also have
to be learned by predictive processing, and continuously tested
and updated.

In particular, the core will need to develop very goodmodels of
the human decision-makers which it is supporting, so that it can
learn to interact with them in a way that they will value and trust.

In summary, besides the requisite models, the AI core needs
a number of intelligent functions to enable all the operations
implied by the considerations above, and the ability to evolve
these as well in the light of its experience and interactions with
the decision-maker in order to improve its capability.

Ethical Issues
If such an intelligent support system is ever built it will be
extremely useful and powerful. How could misuse be prevented?
This is a serious question which must be addressed at the earliest
stages of development. Internationally agreed guidelines8 and
regulation, and a set of safety standards to be met, together with
public transparency of the setup and use of any such system
would at least make it possible to monitor the known systems.
Detecting covert systems is more challenging and may need to
be part of an overall cybersecurity capability, along with ensuring
security from malicious manipulation.

The requirement for the system to be an autonomous agent
with broad unlimited access to the world for learning and testing
purposes, will raise particular ethical issues not only with respect
to privacy, but also with respect to the commonly expressed fear
that as AI becomes more intelligent and powerful, it will become
harder, if not impossible, to continue to exert human control
over it. The need to allow it to become more autonomous and
intelligent and situated in the real world in order to be sufficiently

7This has proven difficult so far but recent work in this paper, Mattingly et al.
(2018) and references therein may provide a breakthrough, not only in generating
a human-comprehensible coarse-grained model, but importantly in identifying
the few “stiff” parameter combinations that characterize its emergent macro
level properties.
8See Jobin et al. (2019) for a recent overview.
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effective is at odds with one proposed safeguardmeasure—that of
strictly limiting its access to other real world systems. Therefore,
it will be essential to develop other approaches to ensure that it
continues to serve human needs and interests. However, defining
those needs and interests will be a challenging and controversial
wicked problem in itself. All these considerations point to the
importance and urgency of addressing the ethical issues at the
earliest stages.

Transparency is a powerful aid to addressing some of the
ethical issues with AI supported decisions that may have adverse
impacts on individuals or groups. For example prejudicial bias
introduced into machine learning systems through training data
could be exposed through triangulation with independent data
sources. Similarly, exposing the assumptions that are made in the
conceptual model, together with the efforts that have been made
to test them, and whatever evidences are available to support or
refute them, would help ethics watchdogs do their job.

DISCUSSION

It was noted in the Introduction section that the mutual
ratcheting of complexity and intelligence did not necessarily
terminate in a plateau of dynamic equilibrium. Under the right
conditions it could continue and accelerate.

The right conditions are that selection pressure for intelligence
remains strong and that the evolutionary process is able to
generate further improvements in intelligence.

This describes where we are today. We desperately need
more powerful intelligence to navigate the perilous waters
we find ourselves in, and we have spawned completely new
channels of creating and evolving intelligence beyond those
afforded purely by our own biology. And both processes are
arguably accelerating. Therefore, we do not have the option of
turning back.

But it does raise another serious ethical question: where will
the ratcheting dynamic of complexity and intelligence lead us?
Will AI-aided resolution (or at least diminution) of tomorrow’s
most serious global problems generate even more disastrously
wicked problems in a chain of escalation that rapidly drives
humans to irrelevance?

While we cannot rule out worst case fears, the preceding
discussions suggest two considerations that give grounds for
cautious optimism.

Firstly the “wickedness” of wicked problems is in large part
due to the shrinking of the viable option space as more agents
with diverse priorities acquire a veto stake in the decision
process and so need to be simultaneously satisfied. But a future
AI support system could ameliorate this problem, through
its capabilities to model the different agents and to devise
strategies to win them over—as has already been demonstrated
several times recently in the manipulation of voter opinions and
preferences (Burkell and Regan, 2019). Of course this also raises
ethical concerns and there would need to be a code of conduct
agreed that provided transparency and guidelines as to what
was acceptable.

Secondly, the ratcheting of complexity observed so far
has largely been driven by short-sighted “fixes” of perceived
problems, without much consideration of longer term and
wider scope consequences—hence inadvertently creating further
problems. This is intrinsically the case in natural evolutionary
processes, and also very much the case with human decision-
makers due to their limited cognitive bandwidth. (A good
example is the rapid evolution of mines that are more lethal and
harder to detect being driven by researching and fielding better
vehicle protection and mine detection systems.) Again, a future
AI support system could potentially reduce the pace of ratcheting,
by anticipating longer term and wider scope consequences,
factoring them in to the evaluation of strategy options, and where
necessary actively reducing unwanted consequences with further
supplementary actions.

Of course there is also the possibility that the tide
does not turn, but rather continues to pose growing
threat levels. But then what choice do we have? The
immediate global and national problems facing us are
urgent and we need all the help we can get. If we decline
the opportunity to develop such systems, we will in any
case face escalating problems, which might now include
opponents and vested interests armed with the very capabilities
we declined.

This suggests that it is time to shift the balance of
investment in AI research and development away from
competing with humans and toward creating new cooperative
partnerships with them, to extend and buttress our joint
capability to manage the rafts of wicked problems that
threaten us. It will involve developing many new aspects
of AI capability, but every new capability we create will
help generate the next. We are rushing into a future that
we can barely imagine, but we need to look ahead with
as much clarity as we can muster, embrace the present
opportunity we have to shape the trajectory, and use it to face
the risks.

Such a discourse should be taken into account in setting
priorities for investing in AI research and in formulating
guidelines, standards and regulatory frameworks, which must
be continuously reviewed and updated as we learn more
about what is possible, what is necessary and what is to
be avoided.
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Online social networks (OSN) are prime examples of socio-technical systems in which

individuals interact via a technical platform. OSN are very volatile because users enter and

exit and frequently change their interactions. This makes the robustness of such systems

difficult to measure and to control. To quantify robustness, we propose a coreness

value obtained from the directed interaction network. We study the emergence of large

drop-out cascades of users leaving the OSN by means of an agent-based model. For

agents, we define a utility function that depends on their relative reputation and their costs

for interactions. The decision of agents to leave the OSN depends on this utility. Our aim

is to prevent drop-out cascades by influencing specific agents with low utility. We identify

strategies to control agents in the core and the periphery of the OSN such that drop-out

cascades are significantly reduced, and the robustness of the OSN is increased.

Keywords: socio-technical system, adaptability, robustness, simulations, agent-based model

1. INTRODUCTION

Self-organization describes a collective dynamics resulting from the local interactions of a vast
number of system elements (Schweitzer, 1997), denoted in the following as agents. Themacroscopic
properties that emerge on the system level are often desired, for example, coherent motion in
swarms or functionality in gene regulatory networks. But as often these self-organized systemic
properties are not desired, for example, traffic jams or mass panics in social systems. Hence, while
self-organization can be a very useful dynamics, we need to find ways of controlling it such that
systemic malfunction can be excluded, or at least mitigated. This refers to the bigger picture of
systems design (Schweitzer, 2019): how can we influence systems in a way that optimal states can be
achieved and inefficient or undesired states can be avoided?

In general, self-organizing processes can be controlled, or designed, in different ways. On the
macroscopic or systemic level, global control parameters, like boundary conditions, can be adjusted
such that phase transitions or regime shifts become impossible. This can be done more easily for
physical or chemical systems, where temperature, pressure, chemical concentration, etc. can be
fixed. On themicroscopic or agent level, we have two ways of controlling systems: (i) by influencing
agents directly, (ii) by controlling their interactions.

Referring to socio-economic systems, we could, for example, incentivize agents to prefer certain
options, this way impacting their utility function. This requires to have access to agents, which is
not always guaranteed. For instance, it is difficult to access prominent agents or to influence large
multi-national companies. Controlling agents’ interactions, on the other hand, basically means to
restrict (or to enhance) their communication, i.e., their access to information and dissemination.
Restrictions can be implemented both globally and locally.
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In this paper, we address one particular instance of social
systems, namely online social networks (OSN). Prominent
examples for such networks are facebook, reddit, or
Twitter. OSN are instances of a complex system comprising a
large number of interacting agents which represent users of such
networks. OSN are, in fact, socio-technical systems because they
combine elements of a social system, i.e., users communicating,
with elements of a technical system, i.e., platforms, protocols,
GUI (graphical user interfaces), etc. The technical component
is important because it allows to control the access to users, as
well as their communication. The term control refers to the fact
that access and interactions are monitored, but also influenced in
different ways.

In reality, it becomes very difficult to control OSN because
of their large volatility, which has two causes. The first one
is the entry and exit dynamics, which impacts the number of
agents: Users enter or leave the OSN at a high frequency. The
second one is the connectivity, which impacts the number of
interactions: Users easily connect to and disconnect from other
users or interact with lower or higher frequency. They have ample
ways of interacting; thus, it becomes very difficult to shield them
from certain information.

Because of this volatility, in an OSN interactions cannot
be fully controlled. But we can certainly influence users via
their utility function. Users join an OSN for a certain purpose,
namely to socialize and to exchange information. Hence, their
benefits are a function of the number of other users they
interact with. Their costs, on the other hand, result from the
effort of maintaining their profile, learning about the features of
the graphical user interface, etc. The utility, i.e., the difference
between benefits and costs, can then be increased by either
increasing the benefits, e.g., by increasing their number of friends,
or by decreasing their costs, e.g., by automatizing profile updates,
or by a combination of both.

OSN are a paradigm for the emergence of collective dynamics
and are much studied because of this. For example, the
emergence of trends, fashions, social norms, or opinions occurs
as a self-organized process that can sometimes be initiated
but hardly be controlled. A worrying trend emerges if users
decide to leave the social network. If their decision causes
other users to leave as well, because they lost their friends,
this can quickly result in large drop-out cascades and in
the total collapse of the OSN (Kairam et al., 2012). This
happened, for example, to friendster, an OSN with about 117
million users in 2011. As studied in detail (Garcia et al.,
2013), less integrated users left friendster, this way, making
it less attractive to the remaining users to further stay on
the platform.

To model such a self-organized dynamics by means of
an agent-based model requires us to solve a number of
methodological issues. On the agent level, we need to model
individual decisions of agents based on their perceived utility,
which is to be defined. On the system level, we need to quantify
how the drop-out of individual agents impact other agents and
the whole system, in the end (Jain and Krishna, 1998, 2002). In
a volatile system, agents come and go at a large rate, without
threatening the stability of the system every time. Hence, we need

to define a macroscopic measure that allows quantifying whether
the system is still robust.

Once these methodological issues are solved, we can turn
to the more interesting question of systems design. This means
that, by using our agent-based model, we explore possibilities
to influence the system such that it becomes more robust. Our
focus will be on the microscopic level, i.e., influencing agents
rather than whole systems. This is sometimes referred to as
mechanism design. But, different from designing communication,
i.e., influencing interactions, here we influence agents via their
utility functions. This leads to another methodological problem,
namely how to identify those agents that are worth to be
influenced, i.e., are most promising for reaching a desired
system state.

This problem is for networks addressed in the so-called
controllability theory (Liu et al., 2011), which is very much related
to control theory in engineering. It allows to quantify how much
of a network is controlled by a given agent, which then can be
used to rank agents with respect to their control capacity (Zhang
et al., 2019). To apply this formal framework, however, requires
to have a static network, i.e., the interaction topology should
not change on the same time scale as the interaction. So, this
framework does not allow us to study drop-out cascades in which
the network topology changes at every time step. Because of this,
in our paper, we have to rely on a computational approach, i.e.,
we use our agent-based model to simulate the decision of agents
to leave the network and its impact on the remaining network,
while monitoring the overall robustness of the system by means
of a macroscopic measure.

With these considerations, we have already specified the
structure of this paper. In section 2, we model the decisions of
agents and quantify the robustness of the network. In section 3,
we introduce a reputation dynamics that runs on the network, to
determine the benefits of the agents. In section 4 we highlight the
dynamics of the OSN without any interventions, to demonstrate
its breakdown. In section 5, eventually, we use our model
to explore different agent-based strategies of improving the
robustness of the network.

2. ROBUSTNESS OF THE SOCIAL
NETWORK

2.1. Agents and Interaction Networks
2.1.1. Networks
For our agent-based model of the OSN we use the specific
representation of a complex network. The term complex refers
to the fact that we have a large number of interacting agents
such that new system properties can emerge as the result of
these collective interactions. The term networkmeans that agents
are represented by nodes, and their interactions by links of the
network. This implies that all interactions are decomposed into
dyadic interactions between any two agents.

Using a mathematical language, networks are denoted as
graphs, nodes as vertices and links as edges. We can then formally
define a graph object G as an ordered pair G = G(V ,E), where V
is the set of vertices of the graph, and E is the set of edges. Vertex
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i ∈ V and j ∈ V are connected if and only if ij ∈ E. The graph is
not static but changes on a time scale T, i.e., G(T). We call T the
network time because agents can enter or exit the OSN, this way
changing both the number of vertices and edges.

Agents are characterized by an binary state variable si(T) ∈
{0, 1}, where si(T) = 1 means that agent i at time T decides to
stay in the OSN, whereas si(T) = 0 means that it decides to leave
the OSN. This decision is governed by a utility function Ui(T):

si(T) := 2[Ui(T)] ; Ui(T) = Bi(T)− Ci(T) (1)

The Heaviside function 2(x) returns 1 if x ≥ 0 and 0 otherwise.
Bi(T) and Ci(T) are the benefits and the costs of agent i at time
T. Only if the benefits exceed the costs, agent i will stay in the
OSN, otherwise it leaves. The two functions need to be further
specified, which is done in section 3.

2.1.2. Interactions
We want to model an OSN; therefore, we consider directed
interactions between agents. Taking the example of Twitter,
a directed interaction i → j means that agent i is a follower of
agent j. Obviously, the reverse does not need to apply but can
be frequently observed. Each of these interactions is represented
as a directed link in the network G. A formal expression for the
topology of a network with N agents is the adjacency matrix
A ∈ N

N×N in which the elements aij are either 0 or 1. This
allows to define the in-degree d+i and the out-degree d−i of an
agent i ∈ V as the number of incoming or outgoing links of i.
We can also define the total degree of agent i as the sum of both
in- and out-degree, di = d+i + d−i .

Various works have proposed methods for identifying groups
of agents that are stable over time in OSNs. In particular, De
Meo et al. (2017) have focused on evaluating the compactness
of such groups, i.e., the homogeneity in terms of mutual agents’
similarity within groups. The concept of compactness, originally
introduced in Botafogo et al. (1992), is often used to describe
the cohesion of parts of the internet, collaboration networks,
and OSNs (Egghe and Rousseau, 2003). Differently from this
approach, in this article we aim at characterizing the robustness
of the whole network, irrespectively of the stability of specific
groups therein. For this reason, we begin our analysis from
macroscopic quantities that allow to readily investigate the
properties of a complex networks.

The degree distribution is an important macroscopic quantity
to characterize a complex network. It is known that OSN have
a rather broad degree distribution (Garcia et al., 2013), i.e.,
many agents are linked to only a few other agents, while a few
agents, called hubs, have very many incoming links from other
agents. Additionally, OSN often show a so-called core-periphery
structure (Borgatti and Everett, 2000), in which well-connected
agents form a core, whereas agents with only a few, or even
no, connections form the periphery. Identifying such structures
helps to analyze the robustness of the network. Precisely, we can
assume that the OSN is robust, despite an ongoing entry and
exit of agents, if the core changes, but continues to exist. This
implies that the volatile dynamics mostly affects the periphery.
If, however, the drop-out of a few agents is amplified into a large

FIGURE 1 | k-core decomposition of a network with 10 agents.

drop-out cascade that affects even the core of the OSN, then the
robustness of the system is very low. We need to come up with
a robustness measure that reflects such a situation appropriately.
This is developed in the next section.

2.2. Quantifying Robustness
2.2.1. Coreness
We decided to use the coreness ki of agents as our starting
point because it reflects from a topological perspective how well
an agent is integrated into the network (Seidman, 1983). A
coreness value ki allows quantifying the impact on the network
when removing agent i. Individual coreness values are obtained
by means of a pruning procedure, which is known as k-core
decomposition. It assigns agents to different concentric shells that
reflect the integration of these agents in the network. Specifically,
the k-core is identified by subsequently pruning all agents with
a degree di < k. Pruning starts with k = 1 and stops when
all the agents left have a degree greater or equal to kmax. The
corresponding k-shell then consists of all agents that are in a k-
core but not in the (k + 1)-core, i.e., agents assigned to a k-shell
have coreness value ki = k.

Figure 1 provides an illustration of the k-core decomposition
applied to a network of 10 agents. Agents with a coreness ki = 1
are located in the periphery (dark blue), i.e., they are loosely
connected with the core. Note that some of these agents have
a relatively high degree, in spite of their low coreness. Agents
with a coreness ki = 2 are closely connected to, but not
yet fully integrated into the core, belong to an intermediate
shell (blue). The 5 agents with coreness ki = kmax = 3
are the most densely connected ones in this sample network
and belong to the innermost core (light blue). This illustrates
that the higher the coreness ki of an agent i, the stronger the
impact on the network when removing i because this potentially
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disconnects a large number of agents with lower coreness from
the network. Conversely, removing agents with low coreness will
have a weaker impact on the network because they belong to
outer shells, and removing them disconnects a smaller number
of agents.

In this article, we want to quantify how much the drop-out of
agents will impact the robustness of the network. As motivated
above, robustness shall be characterized by the average coreness
of the agents:

〈

k
〉

=
1

N

kmax
∑

k=1

k nk ;
kmax
∑

k=1

nk = N (2)

where N = |V| is the total number of (connected and
disconnected) agents in the network and nk is the number of
agents with a coreness value ki = k.

〈

k
〉

will be high if either most
agents have a relatively high coreness, or few agents have a very
high coreness. In both cases, the core of the network is less likely
to be affected by cascades that started in the periphery. So,

〈

k
〉

summarizes the information we are interested in. In this paper,
we do not focus on the heterogeneity of coreness values, which
could be described by the variance of the coreness distribution,
or by coreness centralization (Wasserman and Faust, 1994).

2.2.2. In-Degree and Out-Degree Coreness
The above definition of coreness is based on the total degree di
of agents, i.e., it is appropriate for undirected networks. For the
case of a directed network discussed in this paper, this may give
wrong conclusions about the embeddedness of agents. Therefore,
we now introduce two separate measures, in-degree coreness,
k+i , and out-degree coreness, k−i , which reflect the existence of
directed links via the in- and out-degrees d+i , d

−
i .

The results for the different metrics and the differences
between them are illustrated in the sample network of 10 agents
in Figure 1. This network is characterized by 3 k-shells, but it
is important to note that the three different coreness metrics
possibly assign the same agents to very different k-shells. Take
the example of the pair of purple agents that, according to total-
degree coreness, are assigned to the shell k = 2. If we account
for directionality of the links, they are now assigned to k = 1,
i.e., to the periphery. Moreover, the red agent that, according to
the total degree coreness, belongs to the core, kmax = 3, is now
assigned to the shell k = 2 if in-degree coreness is taken into
account, and to k = 1, i.e., to the periphery, if out-degree coreness
is instead considered.

This example makes clear that it very much depends on
the application whether coreness should be calculated based on
directed or undirected links, and whether in- or out-degrees
should be considered. In the following we will use in-degree
coreness, k+i , to compute the average coreness

〈

k
〉

, Equation (2),
i.e., nk is the number of agents with in-degree coreness k+i = k.
The reason for this choice comes from the benefits of agents
defined in 1 and is discussed in the following section.

3. DYNAMICS ON THE SOCIAL NETWORK

3.1. User Benefits and Costs
To enable a network dynamics on the time scale T, where
agents can leave the network according to Equation (1), we
need to further specify their benefits, Bi(T), and costs, Ci(T).
This leads to the question of why, in the real world, users
join or leave an OSN. There are certainly different reasons,
such as information exchange, maintaining friendship links, or
receiving attention. From this, we can deduce that benefits should
increase with the in-degree d+i of an agent in a monotonous, but
likely non-linear manner. For instance, on Twitter attention
increases with the number of followers. More important,
however, is not just the number, but also the importance of
the followers. The attention for a user i can considerably
increase if it has a number of important users j following.
This amplifies the attention because, in an OSN, other users
following the important user j this way also receive information
from i.

To capture such effects in our agent-based model, we assign
to each agent a second state variable, reputation Ri, which is
continuous and positive. In real-world OSN, user reputation
plays an important role and can be proxied by different measures,
such as number of likes in Facebook positive votes in
Amazon and Dooyoo, or retweets on Twitter. Other proxies
take the activity of users into account, for example, the RG score
from Researchgate, or the Karma points from Reddit. All
of these measures have the drawback that they are (i) specific
to the OSN, (ii) depend on the subjective judgment of other
users (see e.g., Golbeck and Hendler, 2004, 2006). In the existing
literature, the concept of reputation often relates to that of the
trust agents pose on each others (Golbeck and Hendler, 2004;
Guha et al., 2004; De Meo et al., 2015). Such reputation depends
on the activity in the OSN of the agents, e.g., when they evaluate
content posted by other agents by “liking” or “disliking” it (Liu
et al., 2008; DuBois et al., 2011). In particular, DeMeo et al. (2015)
have shown that OSN characterized by groups of agents that have
higher reputation of each other have higher compactness, and are
possibly more stable over time.

Differently from these works, to express agents’ reputation
we resort to so-called feedback centrality measures. These are
prominently known from the early versions of the PageRank
algorithm, in which the importance (centrality) of a node in
a network entirely depends on the importance of the nodes
linked to it. This choice effectively allows us to estimate agents’
reputation directly from the observed topology of the network.
This leads to a set of equations for the importance of all nodes
that has to be solved in a self-consistent way. While this is a
crucial element to define our reputationmeasure, it is not enough
to explain reputation. We also need to consider that reputation
fades out over time if it is not continuously maintained. Usually,
the reputation of an agent can be maintained in different
ways, (i) by the own effort of the agent and (ii) by means
of direct interactions with others. Such considerations have
been formalized in other reputation models (Schweitzer et al.,
in review). Here, we only consider the increase of reputation
coming from other agents, to simplify the formalization.
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In the following section, we will specify our dynamics for the
reputation of an agent, which leads to a stationary value of Ri(T).
Given that we have calculated this value, we posit that the benefit
of an agent from being in the OSN comes from its reputation
as a good proxy of the attention that this agent receives from
others. The absolute value of Ri will also depend on the network
size and the density of links. What matters in an OSN is not
the absolute value, but the reputation of users relative to that of
others. Therefore, we define the benefit Bi for each agent i ∈ V(G)
as the absolute reputation rescaled by the largest reputation value
Rmax(T) at the given time T.

Bi(T) := b
Ri(T)

Rmax(T)
= b

Ri(T)

maxj∈V(G) Rj(T)
(3)

The constant b allows to weight the benefits from the reputation
against the costs.

To specify the costs Ci(T), in our model, we consider two
contributions. First, there are fixed costs per time unit, c0, that
do not depend on the activity of the agents. They capture, in a
real OSN, the minimal effort made by users to be present in the
OSN, i.e., to learn about the GUI and to maintain the profile.
The second contribution comes from the costly interaction with
other agents. Because, for instance on Twitter, agent i can only
control whom to follow, these costs should be proportional to the
out-degree d−i of the agent, ci d

−
i . In a real OSN, the costs per

interaction, ci, are not the same for all users. More prominent
users have, for example, much more time constraints because of
other activities that compete for their attention. Therefore, it is
reasonable to assume that ci is a non-linear function of the user’s
reputation, ci(Ri) = c1R

2
i . The non-linearity induces a stronger

saturation effect for more prominent users in interacting with
many other users.

As with the benefits, also the costs should not depend on the
absolute reputation of the agent, but on the relative one. This

leads to

Ci(T) := c0 + c1d
−
i

[

Ri(T)

Rmax(T)

]2

. (4)

Denoting the relative reputation at a given time T as ri(T) =
Ri(T)/Rmax(T), we can eventually write down the utility function
of agent i, Equation (1), as:

Ui(T) = b ri(T)−c0−c1d
−
i r2i (T) = −c0+

[

b− c1d
−
i ri(T)

]

ri(T).
(5)

3.2. Reputation Dynamics
After linking the utility function of agents to their reputation, we
have to specify how to calculate the latter. In accordance with the
above discussion, we use the following reputation dynamics:

dRi(t)

dt
= −γRi(t)+

∑

j∈V[G(T)]
ajiRj(t) (6)

Here, t denotes a time scalemuch shorter than the time scale T at
which agents decide whether to stay or to leave the OSN. Hence,
compared to the change of the network, the change of reputation
is fast enough such that a stationary value Ri(T) is obtained at
time T.

The first term in Equation (6) expresses a continuous decay of
reputation with a rate γ , to reflect the fact that reputation fades
out over time if it is notmaintained. The second term captures the
increase of reputation coming from other agents linked to agent
i, i.e., aji = 1. The summation is over all agents part of the OSN
at time T.

Whether or not the reputation values Ri(T) converge to
positive stationary values very much depends on the topology of
the network expressed by the adjacency matrix A, as illustrated
in Figure 2. Specifically, if an agent has no incoming links that
boost its reputation, Ri(t) will go to zero. Therefore, even if this
agent has an outgoing link to other agents j, it cannot boost

FIGURE 2 | Impact of the adjacency matrix on the reputation Ri (t) of three agents. Only if cycles exist and agents are connected to these cycles, a non-trivial

stationary reputation can be obtained. (A) The presence of one cycle guarantees a non-trivial stationary reputation, identical for all agents. (B) The absence of cycles

results in a trivial stationary reputation for all agents. (C) The presence of a cycle guarantees non-trivial stationary reputations. Furthermore, two different stationary

values appear when agent 3 has 2 incoming links to boost its reputation.

Frontiers in Robotics and AI | www.frontiersin.org 5 April 2020 | Volume 7 | Article 5762

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Casiraghi and Schweitzer Improving the Robustness of OSN

their reputation. Non-trivial solutions depend on the existence
of cycles, which are formally defined as subgraphs with a closed
path from every node in the subgraph back to itself. The shortest
possible cycle involves two agents, 1 → 2 → 1. This maps to
direct reciprocity: agent 1 boosts the reputation of agent 2 and vice
versa. Cycles of length 3 map to indirect reciprocity, for example
1 → 2 → 3 → 1. In this case, there is no direct reciprocity
between any two agents, but all of them benefit regarding their
reputation because they are part of the cycle. In order to obtain a
non-trivial reputation, an agent not necessarily has to be part of a
cycle, but it has to be connected to a cycle.

4. DYNAMICS OF THE SOCIAL NETWORK

4.1. Entry and Exit Dynamics
We now have all elements in place to model the entry and exit
dynamics of agents in the OSN. At each time step T, agents
evaluate their benefits and costs according to Equations (3) and
(4). This is based on their relative reputation ri(T) which has
reached a stationary value at time T, according to Equation (6).
They then make a (deterministic) decision to either stay or leave
the OSN, according to Equation (1).

Hence, at every time T, a number Nex(T) < N of agents will
leave the network. To compensate for this, we assume that the
same number of new agents will enter the network at the same
time, i.e., N =const. all the time. One may argue that this is at
odds with our research question, namely to model how cascades
of users leaving impact the robustness of the OSN. But as the
empirical case study of the collapse of the OSN Friendster
has demonstrated (Garcia et al., 2013), this collapse was not due
to the fact that no new users entered. Instead, they became less
integrated into the social network. Signs for this trend became
already visible when Friendster had about 80 million users.
After that, it still grew up to 113 million users, until it collapsed.
So, the problem of the robustness of an OSN cannot be trivially
reduced to the (wrong) assumption that there is a lack of new
users entering.

Therefore we have to address the question of how,
despite entering of new users, large drop-out cascades become
increasingly likely. To measure the size of the drop-out cascades,
we will monitor Nex(T) over time. If this number is consistently
large, it becomes evident that even with a large entry rate,
new agents cannot substantially stabilize the OSN, hence its
robustness is lost. We further need to study how new agents will
be integrated in the OSN. If at any time T a varying number of
Nex(T) agents enter, we have to model how they are linked to
the network, to become members of the OSN. We assume that
new agents do not have complete knowledge of the network;
therefore, to start with, they form random connections to a
(varying) number of members. Precisely, as in random graphs,
new agents create directed links to established agents with a small
probability p. Thus, their expected number of links is roughly Np.

Because agents leaving delete all their links and agents
randomly entering create links, the topology of the network
continuously changes at the time scale T. To ensure that the
evolution also continues if no agent has decided to leave, in this
case, we randomly pick one of the agents with the lowest relative

reputation, to replace it with one new agent. To measure how
well new agents become integrated into the OSN, we monitor the
mean coreness

〈

k
〉

(T), Equation (2), over time T. Large values
indicate that most agents belong to the core, small values instead
that most agents belong to the periphery.

4.2. Results of Computer Simulations
In the following, we discuss the simulation results for a network
of fixed size, N = 20. Further we use fixed parameters γ = 0.1,
b = 1, c0 = 0.45, c1 = 0.05, p = 0.05. For a discussion of
parameter dependencies and optimal values, see section 5.2.

To initialize our simulations of the network dynamics, we
assume that at time T = 0, 5 out of 20 agents initially form
a fully connected cluster, as shown in Figure 3A. This ensures
that these five agents have a non-zero reputation at T = 1
and thus will not leave the OSN. The remaining 15 agents with
reputation zero, however, will be replaced by new agents that
randomly create links to the agents in the network. This way,
at T = 50 already a realistic network structure with a core, a
periphery, different k-shells and a few isolated agents emerges, as
shown in Figure 3B. Figure 3 displays further snapshots of the
network evolution, while the corresponding systemic variables to
monitor the dynamics, namely the mean coreness,

〈

k
〉

(T), and
the number of agents leaving, Nex(T), are shown in Figure 4.
From the latter, we can clearly identify three different phases of
network evolution.

4.2.1. (I) Build Up Phase
In this initial phase, as already mentioned, the network
establishes its characteristic topology.Most agents become tightly
integrated into the network, as also visible from Figures 3B,C.
Because of this, the mean coreness quickly increases, while the
number of agents leaving decreases, but both variables show
considerable fluctuations.

4.2.2. (II) Metastable Phase
After agents have become well-connected to the core, they tend to
have higher benefits than costs. If no agent would leave the OSN,
we choose one of the agents with the lowest reputation to leave,
to keep the network dynamics going. Hence, Nex(T) = 1 or very
low, for most of the time, while

〈

k
〉

only slightly fluctuates.
Still, the status of the OSN is not stable but only metastable,

because of the slow dynamics that is illustrated by means of
Figures 3E,F. Agents that were earlier part of the periphery have
now become part of the core, this way decreasing the size of the
periphery. In fact, the smaller the periphery, the more likely the
formation of new links to the core. The probability that a new
agent i becomes part of the core Q with size |Q| is given as:

P(i ∈ Q) ≥
( |Q|
k−max

)

pk
−
max ·

( |Q|
k+max

)

pk
+
max (7)

where k−max, k
+
max are the values for the in-degree and the out-

degree coreness of the agents in the core. The two r.h.s terms
stand for the probability of creating and of receiving links from
the core, where p is the probability for an incoming agent to
create a new link. P(i ∈ Q) is indeed increasing with the size of
the core, |Q| (Łuczak, 1991).

Frontiers in Robotics and AI | www.frontiersin.org 6 April 2020 | Volume 7 | Article 5763

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Casiraghi and Schweitzer Improving the Robustness of OSN

FIGURE 3 | Some instances from the graph evolution of a 20-nodes network. (A) T = 0, 〈k〉 = 1. (B) T = 50, 〈k〉 = 1.65. (C) T = 501, 〈k〉 = 3.15. (D) T = 3001,

〈k〉 = 3.35. (E) T = 5350, 〈k〉 = 2.95. (F) T = 5353, 〈k〉 = 1.3. (G) T = 5360, 〈k〉 = 0.85. (H) T = 7000, 〈k〉 = 0.75.

FIGURE 4 | Evolution of mean coreness and number of rewired nodes for each time step in a 20-nodes network. Three regions can be identified: (I) Build up, (II)

Metastable state, (III) Breakdown.

4.2.3. (III) Breakdown Phase
The slow dynamics during phase (II) leads to a point where
agents from the outer shells of the in-degree core receive
a higher reputation than agents in the core. If no agent
decides to leave the OSN, in this situation, an agent from
the core is chosen to be removed, because of the lower
reputation. This then triggers whole cascades of agents leaving,
because the drop-out of a core agent abruptly decreases the
reputation of other agents in the core and the outer shells. The
transition from phase (II) to phase (III) can be seen by the

increasing number of agents leaving, while the mean coreness
steadily decreases.

Once the core has been destroyed, the OSN has no ability
to recover because most agents are replaced at each time step.
Nearly all links from the newly entering agents will be to agents
from the periphery; thus, the probability of forming a new core
is extremely low. The breakdown phase (III) can be characterized
not only by the rather low mean coreness and the large number
of entries and exits, but also by the much larger fluctuations of
both values.
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FIGURE 5 | Results of network interventions. (Left) control of many peripheral agents, (Right) control of one agent close to the core. (A,B) show the mean coreness

〈k〉 and the number of agents leaving, Nex over time T, to be compared to Figure 4. (C,D) Snapshots of the network at a particular time T, when the cost c0 of the

agents circled in red is adjusted.

5. IMPROVING ROBUSTNESS

5.1. Network Interventions
The simulation results shown in Figure 4 make it very clear
what we mean by improving robustness: to prevent the complete
breakdown of the OSN. This does not imply to prevent cascades,
which can always happen in response to agents leaving the OSN.
But we argue that a social network is robust if the decision of
agents to leave the OSN will not trigger large cascades of leaving
agents that destroy the whole core.

This requires us to influence agents in the OSN such that they
decide not to leave the network. The trivial solution would be to
reduce the costs of all agents to a level that always guarantees a
positive utility or to increase the benefits in the same manner.
A much smarter solution, however, would focus only on a few
agents, namely those with the ability to prevent large cascades.
The problem to identify those agents is addressed in research
about network controllability (Liu et al., 2011; Zhang et al., 2016),
which is related to control theory. The method assigns a control
signal, i.e., an incentive to stay or to leave, to the identified agents
with the most influence on the network dynamics (Zhang et al.,
2019), which are called driver nodes. Precisely, this signal is added
to the reputation dynamics, Equation (6), of the driver nodes.

We will not follow this formal procedure in our paper for
several reasons. The most important one is the continuous
evolution of the network topology, which is not considered in the
network controllability approach. It would require us to redo the

identification of the driver nodes and the assignment of control
signals at every time step T. Further, in our context of users
leaving an OSN, these control signals are difficult to interpret
because they change the reputation dynamics. Our intention
instead is to influence the decisions of the agents, Equation (1),
i.e., to apply control signals to the costs of staying in the OSN.
Specifically, we apply two different scenarios to incentivize agents
(i) from the periphery, or (ii) from the core.

The first scenario is motivated by our insight that large
cascades are caused by the disappearing periphery. Therefore,
a straightforward intervention is to choose agents with a low
reputation from the periphery as drivers. These are incentivized
to stay in the OSN, i.e., their costs are reduced such that their
utility is increased and they decide not to leave. The second
scenario is to choose agents close to the core, i.e., from its first
outer shells, as drivers. These are incentivized to leave the OSN,
i.e., their costs are increased such that they decide to not stay. This
more subtle scenario is motivated by the insight that agents that
are only close to the core will not trigger large cascades if they
leave. But if they leave, they considerably reduce the reputation
of their closest neighbors, this way increasing the size of the
periphery. The results of these two scenarios are illustrated in
Figure 5.

Specifically, in scenario (i), we identify at each time step T
all agents from the periphery, i.e., with a coreness value ki =
1. Their cost c0 is then reduced by 10%, i.e., to ĉ0 = 0.9c0.
As Figure 5A demonstrates, this scenario can only delay the
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complete breakdown (in comparison to Figure 4 without any
interventions). But it cannot completely prevent large drop-out
cascade, because the build-up of a large core that eventually gets
destroyed is only delayed.

In scenario (ii), on the other hand, we are able to achieve
the goal of preventing a complete breakdown. This scenario has
remarkable differences to scenario (i): We only incentivize one
agent, instead of many, and we choose this agent from the vicinity
of the core instead from the periphery. Precisely, we choose the
agent from the first outer shell identified by means of the directed
k-core decomposition, i.e., ki = kmax − 1. This agent is enforced
to leave by increasing its cost by 10 percent, i.e., to ĉ0 = 1.1c0.

As shown in Figure 5B, this scenario considerably improves
the robustness of the network, as witnessed by the average
coreness. At the same time, because one agent is chosen for
control from the beginning, we also observe that the build-up
phase (I) is extended in comparison to the case of no control (see
Figure 4). But phase (II), which was called metastable before, is
now considerably extended. We still notice small cascades, but
no complete breakdown, i.e., the metastable phase has become a
quasistable one.

5.2. Life-Time Before Breakdown
The above simulations are both interesting and counter-intuitive
because controlling one agent close to the core leads to much
better results than controlling many agents from the periphery.
We, therefore, continue with a more refined discussion of the
peripheral control. As shown, this kind of network intervention
increases the time before the breakdown, but cannot completely
prevent it. To further quantify this dynamics, we use the life-time
�Q of the core Q (measured in network time T) as an additional
systemic variable (Schweitzer et al., in review). As Figure 5A

illustrates, for scenario (i) the value of�Q can be clearly obtained
from the simulations because of the sharp transition toward the
breakdown of the OSN. For scenario (ii), obviously �Q → ∞ as
Figure 5B shows.

We are interested in comparing the life-times of the core for
peripheral control and without control (also shown in Figure 4).
Because �Q changes considerably for different simulations, we
use the average life-time

〈

�Q

〉

taken from 100 independent runs
with the same setup. We further have to consider that

〈

�Q

〉

depends on other system parameters, notably the system size N.
We, therefore, vary N for simulations with peripheral control
and without control, keeping all other parameters the same. The
results are shown in Figure 6, from which we can deduce some
interesting insights.

First, we note that for small networks (N < 30), our
peripheral control strategy works very well. The life-times
increased considerably in comparison to the no-control reference
case. Secondly, we observe that this advantage becomes smaller if
the network size increases. For networks larger than N = 30,
there is almost no difference in life-times between the peripheral
control and the no-control case. Further, for N > 30 in both
cases, the life-time decreases almost linearly with the increasing
network size.

The latter observation can be explained from the fact that, with
increasing network size N, the network becomes much denser.

FIGURE 6 | Comparison of different periphery control approaches with fixed

control signal. The effectiveness of the control method without adapting the

signal to the size of the network decreases with size. In the figure are plotted

bootstrap samples for 〈�Q〉 obtained from 100 simulations for each network

size and each strategy. The control signal used is u = −0.05.

We recall that links between agents are formed such that new
agents entering the OSN create links to established agents with
a fixed probability, p. The average number of links per agent is
thusNp, i.e., it increases linearly with N. The denser the network,
the larger the core and the smaller the periphery. In line with our
above discussion, this means less robustness of the network, i.e.,
the breakdown occurs earlier in time.

The non-monotonous dependence of
〈

�Q

〉

on the network
size, for the no-control case, results from the fact that the model
parameters are not completely independent. This fact is also
obvious from Equation (5). Instead, it was already pointed out
(Schweitzer et al., under review) that there is an optimal cost level
to maximize the life-time of the network. This is understandable
from our above discussions. If costs are very low, only very
few agents will leave the OSN. Because of the slow dynamics
described in phase (II), these agents will, at some point, reach a
reputation large enough to compare to the core, and hence the
core agents will leave. An intermediate cost level, on the other
hand, makes sure that this evolution does not take place, or is at
least considerably delayed. The optimal cost level that maximizes
the life-time, however, also depends on the other parameters, b,
N, γ , p.

From Figure 6, we can deduce that, for the fixed cost
parameters chosen in our simulation, the optimal network size is
N = 30, simply because, for this size, the life-time is maximized
(kept all other parameters the same). Hence, for small networks,
N < 30, the optimal cost level should be lower than what was
used in the simulation. Given the suboptimal values, the life-time
was also lower for the no-control case. Remarkably, the life-time
in case of peripheral control is not affected by this. So, we can
conclude that, at least for small networks, peripheral control also
compensates for not optimal parameter choices.
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For larger networks, N > 30, Figure 6 suggests that there
is no difference between peripheral control and no control. But
this observation is mainly due to the fact that we have not used
the optimal parameters for a given network size N. To further
investigate this, we have performed an extensive optimization to
determine the optimal values for c0 and ĉ0 for a given N. It then
turns out that, with the optimal parameters, the life-times for the
peripheral control and no-control cases are no longer the same,
but differ significantly.

Specifically, we performed two-samples t-tests for the means
and Wilcoxons-tests for the medians of bootstrap samples of
the average life-times

〈

�Q

〉

obtained from the simulations with
and without control. As the H0 hypothesis, we assume that the
means of the life-times in both cases are equal and as alternative
hypothesis that the life-times are higher in case of peripheral
control. Using always the optimal parameters for both cases,
we obtained p-values in the order of 10−12 for the alternative
hypothesis, independent of the network size. This provides strong
evidence for the conclusion that the peripheral control always
improves the robustness of the network, as measured by the life-
time before breakdown. For small networks, this holds already
for arbitrary parameter choices, for large networks only if the
optimal parameters are chosen.

In Figure 6, we also plot the bootstrapped 95% confidence
intervals for the average life-time

〈

�Q

〉

. We note that the size
of the confidence interval decreases with N. Hence, for small
networks, even optimal parameter values cannot guarantee a
minimal variance of �Q, and in single simulations, a breakdown
of the network can happen much earlier or later.

Eventually, we also tested whether reputation differences in
the peripheral agents matter for the network intervention. While
the above simulations assumed that all peripheral agents are
controlled, we also considered that only peripheral agents with
high, or with low reputation are influenced in their costs. These
cases, however, did not generate any remarkable difference with
respect to the average life-time.

6. CONCLUSIONS

After more than 35 years of understanding complex systems,
there should be foundations enough for managing them in
a better and more quantitative manner. Sadly, to know how
systems work does not already imply also to know how to
influence them such that more desired system states are obtained.
This holds particularly for socio-economic systems, which are
adaptive, which means they respond to proposed changes in
both intended and unintended ways. Systems design (Schweitzer,
2019) therefore has to master a difficult balance: on the one
hand, systems should be carefully steered toward a wanted
development, on the other hand, systems should not be over-
regulated, to not lose their ability to innovate and to find solutions
outside the box. This balance cannot be obtained by brute force,
in a top-down approach to system dynamics, it has to be found in
a bottom-up approach that focuses on the system elements and
their interactions.

Our paper contributes to this discussion in several ways. We
study a problem of practical relevance that can hardly be solved
in a top-down approach: the collapse of an online social network

(OSN) because the decision of some users to leave causes the
drop-out of others at large scale. A real-world example is the
collapse of the OSN Friendster (Garcia et al., 2013). As long as
users are free to stay or to leave, the emergence, of such large
failure cascades cannot be prevented by administrative ruling.
Applying global incentives for users to stay, on the other hand,
usually implies high costs and questionable efficiency.

Therefore, in this paper, we propose a bottom-up approach
to influence the OSN on the level of users, i.e., agents in our
model. They can be targeted in two ways: by influencing their
interactions or by influencing their utility. We have argued
for the latter, because of the large volatility in the dynamics
of the OSN. Specifically, we propose to change the costs of
particular agents such that the overall robustness of the OSN
is increased. As already mentioned in the Introduction, OSN
should be seen as socio-technical systems, and it is in fact the
technical component that in principle allows us to influence
the costs of users much easier than it would be possible in the
offline world.

Improving robustness first requires us to define an appropriate
measure of robustness suitable for real-world OSN. Here we
propose the average in-degree coreness, which does not just reflect
the degree of agents but quantifies how well they are integrated in
the OSN. Next, we have to understand why robustness decreases
in the absence of network interventions. Based on computer
simulations and detailed discussions of agent benefits and costs,
we show that it is the changing relation between the core
and the periphery of the OSN, which eventually destabilizes
the network. Our approach deviates from the one taken in
De Meo et al. (2015, 2017) in the fact that we are interested
in the robustness of the whole network, and not so much of
separate groups. In fact, we learn that is heterogeneity within
the network topology, in terms of core-periphery structure, what
guarantees robustness. This is in contrast with what expected by
generalizing those results obtained for separate groups, where
agents’ homogeneity increases stability. Moreover, our approach
allows to estimate the reputation of agents in the absence
of explicit data collecting active declarations of trust between
agents in the OSN. To do so, we exploit so-called feedback
centralities, that exploit the OSN topology. This is in contrast
with common approaches that rely on the presence of likes,
dislikes, or agents’ ratings to provide a measure for the reputation
of agents.

Based on the insights obtained from our analysis, we have
proposed two different scenarios for network interventions to
improve robustness. The first one targets peripheral agents and
reduces their cost, to incentivize them to stay in the OSN. The
second one targets only one agent from a k-shell next to the core
and increases its cost, to incentivize it to leave the OSN. Both
scenarios have in common to increase the size of the periphery,
but they reach this goal in different ways. As we demonstrate
by means of computer simulations, the first scenario is able to
considerably delay the breakdown of the OSN, while the second
one is able to prevent this breakdown. Dependent on the optimal
choice of parameters, we could show that even the peripheral
control improves the robustness of the OSN in a statistically
significantmanner. Still, we argue that the second scenario should
be the preferred one because it requires (i) to only control a single
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agent instead of many, and (ii) less investment because, instead of
decreasing the costs of many agents via compensations, here the
cost is increased.

Our findings are interesting and, at first sight, also counter-
intuitive because they challenge our understanding of how to
improve the robustness of systems. One could simply argue
that the best way to increase robustness is to keep all parts
of the system tightly together, to not lose anything. This may
apply to mechanical or technical systems. But for socio-technical
and socio-economic systems, we have to take into account
their adaptivity and their ability to respond to changes in an
unintended manner. Therefore, the first step for interventions
is to understand the eigendynamics of these systems, i.e.,
their behavior in the absence of regulations or control. To
achieve this understanding in the case of complex systems,
agent-based modeling is the most appropriate way. Different
from a complex network approach that focuses mainly on the

link topology, agent-based modeling allows also capturing the
internal dynamics of the system elements, i.e., the nodes or
agents, in response to interactions. Only this advanced level of
modeling enables us to propose interventions targeted at specific
agents and to investigate how the system as a whole responds to
these network interventions.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

GC and FS designed the research and wrote the manuscript. GC
carried out the computer simulations.

REFERENCES

Borgatti, S. P., and Everett, M. G. (2000). Models of core/periphery structures. Soc.
Netw. 21, 375–395. doi: 10.1016/S0378-8733(99)00019-2

Botafogo, R. A., Rivlin, E., and Shneiderman, B. (1992). Structural analysis of
hypertexts: identifying hierarchies and useful metrics.ACMTrans. Inform. Syst.
10, 142–180. doi: 10.1145/146802.146826

De Meo, P., Ferrara, E., Rosaci, D., and Sarne, G. M. L. (2015). Trust and
compactness in social network groups. IEEE Trans. Cybernet. 45, 205–216.
doi: 10.1109/TCYB.2014.2323892

De Meo, P., Messina, F., Rosaci, D., and Sarné, G. M. (2017). Forming time-stable
homogeneous groups into online social networks. Inform. Sci. 414, 117–132.
doi: 10.1016/j.ins.2017.05.048

DuBois, T., Golbeck, J., and Srinivasan, A. (2011). “Predicting trust and distrust in
social networks,” in 2011 IEEE Third Int’l Conference on Privacy, Security, Risk

and Trust and 2011 IEEE Third Int’l Conference on Social Computing, 418–424.
Egghe, L., and Rousseau, R. (2003). BRS-compactness in networks: theoretical

considerations related to cohesion in citation graphs, collaboration
networks and the internet. Math. Comput. Model. 37, 879–899.
doi: 10.1016/S0895-7177(03)00091-8

Garcia, D., Pavlin, M., and Frank, S. (2013). “Social resilience in online
communities: the autopsy of Friendster,” in Proceedings of the First ACM

Conference on Online Social Networks (New York, NY: Association for
Computing Machinery), 39–50. doi: 10.1145/2512938.2512946

Golbeck, J., and Hendler, J. (2004). “Accuracy of metrics for inferring trust and
reputation in semantic web-based social networks,” in Engineering Knowledge

in the Age of the Semantic Web, eds E. Motta, N. R. Shadbolt, A. Stutt,
and N. Gibbins (Berlin; Heidelberg: Springer Berlin Heidelberg), 116–131.
doi: 10.1007/978-3-540-30202-5_8

Golbeck, J., and Hendler, J. (2006). Inferring binary trust relationships in
Web-based social networks. ACM Trans. Internet Technol. 6, 497–529.
doi: 10.1145/1183463.1183470

Guha, R., Kumar, R., Raghavan, P., and Tomkins, A. (2004). “Propagation of trust
and distrust,” in Proceedings of the 13th Conference onWorldWideWeb -WWW

’04 (New York, NY: ACM Press), 403. doi: 10.1145/988672.988727
Jain, S., and Krishna, S. (1998). Emergence and growth of complex

networks in adaptive systems. Comput. Phys. Commun. 122:10.
doi: 10.1016/S0010-4655(99)00293-3

Jain, S., and Krishna, S. (2002). Crashes, recoveries, and core shifts
in a model of evolving networks. Phys. Rev. 65, 26103–26104.
doi: 10.1103/PhysRevE.65.026103

Kairam, S. R., Wang, D. J., and Leskovec, J. (2012). “The life and death of online
groups,” in Proceedings of the Fifth ACM International Conference on Web

Search and Data Mining - WSDM ’12 (New York, NY: ACM Press), 673.
doi: 10.1145/2124295.2124374

Liu, H., Lim, E.-P., Lauw, H. W., Le, M.-T., Sun, A., Srivastava, J.,
et al. (2008). “Predicting trusts among users of online communities,”
in Proceedings of the 9th ACM Conference on Electronic Commerce

- EC ’08 (New York, NY: ACM Press), 310. doi: 10.1145/1386790.1
386838

Liu, Y.-Y., Slotine, J.-J., and Barabási, A.-L. (2011). Controllability
of complex networks. Nature 473:167. doi: 10.1038/nature
10011

Łuczak, T. (1991). Size and connectivity of the k-core of a random graph. Discrete
Math. 91, 61–68. doi: 10.1016/0012-365X(91)90162-U

Schweitzer, F. (Ed.). (1997). Self-Organization of Complex Structures: From

Individual to Collective Dynamics. Part 1: Evolution of Complexity and

Evolutionary Optimization, Part 2: Biological and Ecological Dynamcis, Socio-

Economic Processes, Urban Structure Formation and Traffic Dynamics. London:
Gordon and Breach.

Schweitzer, F. (2019). “The bigger picture: complexity meets systems design,” in
Design. Tales of Science and Innovation, eds G. Folkers and M. Schmid (Zurich:
Chronos Verlag), 77–86.

Seidman, S. B. (1983). Network structure and minimum
degree. Soc. Netw. 5, 269–287. doi: 10.1016/0378-8733(83)
90028-X

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and

Applications. Cambridge: Cambridge University Press.
Zhang, Y., Garas, A., and Schweitzer, F. (2016). Value

of peripheral nodes in controlling multilayer scale-free
networks. Phys. Rev. E 93:012309. doi: 10.1103/PhysRevE.93.
012309

Zhang, Y., Garas, A., and Schweitzer, F. (2019). Control contribution identifies
top driver nodes in complex networks. Adv. Complex Syst. 22:1950014.
doi: 10.1142/S0219525919500140

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Casiraghi and Schweitzer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 11 April 2020 | Volume 7 | Article 5768

https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1145/146802.146826
https://doi.org/10.1109/TCYB.2014.2323892
https://doi.org/10.1016/j.ins.2017.05.048
https://doi.org/10.1016/S0895-7177(03)00091-8
https://doi.org/10.1145/2512938.2512946
https://doi.org/10.1007/978-3-540-30202-5_8
https://doi.org/10.1145/1183463.1183470
https://doi.org/10.1145/988672.988727
https://doi.org/10.1016/S0010-4655(99)00293-3
https://doi.org/10.1103/PhysRevE.65.026103
https://doi.org/10.1145/2124295.2124374
https://doi.org/10.1145/1386790.1386838
https://doi.org/10.1038/nature10011
https://doi.org/10.1016/0012-365X(91)90162-U
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1103/PhysRevE.93.012309
https://doi.org/10.1142/S0219525919500140
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 21 July 2020

doi: 10.3389/frobt.2020.00090

Frontiers in Robotics and AI | www.frontiersin.org 1 July 2020 | Volume 7 | Article 90

Edited by:

Daniel Polani,

University of Hertfordshire,

United Kingdom

Reviewed by:

Deborah M. Gordon,

Stanford University, United States

Matthew Lutz,

Max Planck Institute of Animal

Behaviour, Germany

Heiko Hamann,

University of Lübeck, Germany

*Correspondence:

Gabriel Ramos-Fernandez

ramosfer@alumni.upenn.edu

Specialty section:

This article was submitted to

Computational Intelligence in

Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 31 October 2019

Accepted: 05 June 2020

Published: 21 July 2020

Citation:

Ramos-Fernandez G, Smith

Aguilar SE, Krakauer DC and Flack JC

(2020) Collective Computation in

Animal Fission-Fusion Dynamics.

Front. Robot. AI 7:90.

doi: 10.3389/frobt.2020.00090

Collective Computation in Animal
Fission-Fusion Dynamics
Gabriel Ramos-Fernandez 1,2*, Sandra E. Smith Aguilar 3, David C. Krakauer 4 and

Jessica C. Flack 4

1Departamento de Modelación Matemática de Sistemas Sociales, Instituto de Investigaciones en Matemáticas Aplicadas y

en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico, 2Unidad Profesional Interdisciplinaria

en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Ciudad de México, Mexico, 3Conservación Biológica y

Desarrollo Social A.C., Ciudad de México, Mexico, 4 Santa Fe Institute, Santa Fe, NM, United States

Recent work suggests that collective computation of social structure can minimize

uncertainty about the social and physical environment, facilitating adaptation. We explore

these ideas by studying how fission-fusion social structure arises in spider monkey

(Ateles geoffroyi) groups, exploring whether monkeys use social knowledge to collectively

compute subgroup size distributions adaptive for foraging in variable environments. We

assess whether individual decisions to stay in or leave subgroups are conditioned on

strategies based on the presence or absence of others. We search for this evidence

in a time series of subgroup membership. We find that individuals have multiple

strategies, suggesting that the social knowledge of different individuals is important.

These stay-leave strategies providemicroscopic inputs to a stochastic model of collective

computation encoded in a family of circuits. Each circuit represents an hypothesis for

how collectives combine strategies to make decisions, and how these produce various

subgroup size distributions. By running these circuits forward in simulation we generate

new subgroup size distributions and measure how well they match food abundance in

the environment using transfer entropies. We find that spider monkeys decide to stay or

go using information from multiple individuals and that they can collectively compute a

distribution of subgroup size that makes efficient use of ephemeral sources of nutrition.

We are able to artificially tune circuits with subgroup size distributions that are a better fit

to the environment than the observed. This suggests that a combination of measurement

error, constraint, and adaptive lag are diminishing the power of collective computation

in this system. These results are relevant for a more general understanding of the

emergence of ordered states in multi-scale social systems with adaptive properties–both

natural and engineered.

Keywords: social systems, distributed computing, inductive game theory, social information, animal foraging,

collective intelligence

1. INTRODUCTION

In an influential framework for studying animal social organization, Hinde (1976) stressed
that both animal and human societies are multiscale. Short-term interactions between pairs of
individuals lead to longer-term social relationships and social structures, with social relationships
arising as individuals generalize from a history of social interactions. Hinde noted that individuals
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classify social relationships into types (kin, matriline, etc.)
regardless of the individuals involved. The idea that primates use
abstraction to make sense of their world has been shown in a
number of studies subsequent to Hinde (1976) (e.g., Cheney and
Seyfarth, 1990, 2008).

Over a series of papers, Flack et al. (Flack, 2012, 2017a,b;
Flack et al., 2013; Daniels et al., 2017; Brush et al., 2018) have
been developing a theory of collective computation (inspired
in part by Hopfield’s collective computation in neural networks
Hopfield, 1982, 1984; Tank and Hopfield, 1988). In the context
of animal behavior, this work links Hinde’s (1976) generalization
and abstraction processes to the formation of collectives. In Flack
and Krakauer’s formulation, components (for the purposes of this
paper, individuals) reduce uncertainty about the environment or
state of a system by coarse-graining fast microscopic behavior
(Flack, 2017a). An example of uncertainty reduction would be
over the cost of social interaction (Flack, 2012). When coarse-
grainings converge (meaning the estimates of regularities are
largely shared by individuals), this can produce a coherent
mesoscale (e.g., a social network or circuit). This can then
function like an information bottleneck (Tishby et al., 2000;
Tishby and Zaslavsky, 2015; Flack, 2017a): the strategies, as
coarse-grainings, capture regularities individuals perceive in the
physical or social environment. The way individuals combine
strategies to make decisions in the collective captures the
regularities they perceive as most important. Emergent from
these slowly changing mesoscopic individual strategies and
collective metastrategies is social structure. As a social structure
consolidates and individuals start to “reference it” for decision-
making, it feeds back through effective downward causation
(Flack, 2017a) to modulate the cost of social interaction or
interaction with the environment. Once complete, this process
can give rise to a new scale, and under suitable conditions,
novel functions.

To make this concrete, consider as an example the
collective computation of power structure in macaque societies
(reviewed in Flack, 2012, 2017a). Individuals summarize
fight histories using unidirectional signals. The sender emits
the signal once it perceives it is likely to loose a fight.
The signal reduces uncertainty in the receiver that the
sender agrees to subordination—willingness to yield in future
interactions. Encoded in the consolidating network or circuit
of signals between group members is information about
the distribution of power. Hence the power structure is
computed as individuals estimate regularities about fighting
abilities and share these opinions with the receiver and other
group members via signals. Through this process, different
levels of organization arise at successively slower timescales:
fights (fast), signaling (slow), and power structure (slowest).
The process of generating coarse-grained, slow variables (the
signals, properties of the circuits) is the outcome of individual
strategic computations (interaction and signaling decisions)
that aggregate into an output collectively estimated to fit
the state of the environment (Flack, 2017a,b). This two-
part process of information accumulation and aggregation
makes up collective computation (Daniels et al., 2017; Flack,
2017a).

Among other examples in the animal behavior literature
that might result from collective computation are coordinated
foraging and predator avoidance in animal groups (Couzin
et al., 2003; Gordon, 2016; Sosna et al., 2019), rapid direction
changes during collective motion in fish schools and bird flocks
(Hein et al., 2015), and distributed foraging in social insects
(Gordon, 2016).

Fission-fusion social dynamics, in which individuals fission
and fuse into subgroups of varying size, is a collective pattern
arising from individual decisions (Sueur et al., 2011; Ramos-
Fernández et al., 2018). These dynamics are thought to be
adaptive, as they allow individuals to forage more efficiently
in heterogeneous environments, share information about the
location of resources, and adjust the size of their subgroups
to resource availability (Aureli et al., 2008; Sueur et al., 2011;
Palacios-Romo et al., 2019). The individual, strategic decisions to
leave or join subgroups, how these decisions influence subgroup
size distributions, and whether these are a good fit or even
predicted by environmental states, are open questions. Previous
work on spider monkeys suggests individuals change their
strategies based on environmental states to include the rate at
which they encounter fruit and the presence of knowledgeable
individuals in social networks (Ramos-Fernández and Morales,
2014; Palacios-Romo et al., 2019).

We study how individual spider monkeys use social
knowledge (information accumulation) to collectively compute
adaptive subgroup size distributions (information aggregation).
We use inductive game theory (DeDeo et al., 2010; Krakauer
et al., 2010) to extract stay-leave probabilistic strategies from a
time series of subgroup composition. The strategies constitute
the microscopic input to the collective computation. From
the microscopic input we construct a family of circuits in
which nodes correspond to individuals and edges, weighted by
probabilities obtained from the data, specify probabilistic rules—
strategies—for remaining in or leaving a subgroup. Circuits
capture variation in the way individuals integrate over their
strategies (see section 3) to decide to stay or go.

Each circuit serves as a mesoscopic hypothesis for how
strategies combine to produce decisions and how decisions
combine to compute subgroup size distributions. In a
computational language, the inputs (individual strategies)
combine to produce an output (a subgroup size distribution).
We run the circuits forward in simulation to determine how
individuals combine strategies and hence how many information
sources they take into account to make decisions. We construct
a food abundance index based on the size and abundance
of fruiting trees and calculate the transfer entropy between
this index and the distribution of subgroup size in order to
determine whether the circuit that best recovers the observed
subgroup size distribution is also optimally computing the state
of the environment.

2. DATA

Subgroup composition data were collected in Punta Laguna,
Yucatan, Mexico, as part of a long-term study of social behavior
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FIGURE 1 | Our dataset samples the process of fission-fusion dynamics in the entire group. Each row with colored circles on the top of the figure represents how the

47 individuals that conform the spider monkey group are sorted into subgroups at a given moment, with each color indicating subgroup membership. Thus, in the first

row or time step represented, the group is organized in 9 different subgroups and, throughout the remaining steps, subgroups change size and memberships by

individuals leaving (fission) and joining (fusion). Our sample includes only one subgroup followed at any time, so we have information on the presence or absence of

each group member on the observed subgroup. For example, the bottom part of the figure shows observations from one subgroup (turquoise dots on the top). Here,

rows represent 5 instantaneous scan samples taken every 20’ on individuals 17 thru 23, where each individual can be either present (full circles) or absent (empty

circles). In this case, the subgroup shows a fission of two individuals in the third scan and the fusion of three at the fifth scan. For analysis, we coded data as binary

vectors corresponding to each scan sample.

using identified individuals (details about study site and subjects
can be found in the Supplementary Information). Data consist
of scan samples of subgroup composition, taken every 20’ during
an average of 5 h. per day throughout 2 years (Jan. 2013–Dec.
2014), for a total of 5,780 scan samples. A total of 47 known
adult, sub-adult and juvenile individuals were observed during
this period (see Supplementary Table 1). Thus, each sample is a
vector of 47 binary digits, with 0 corresponding to an absence
of the individual in the ith position and 1 corresponding to a
presence (Figure 1). Continuous series of scans, averaging 8.4
scan samples (± 3.9 SD), include uninterrupted follows of a
subgroup in which at least one individual remained during the
full series. Given that the typical duration of a subgroup is 1.5 h.
(Pinacho-Guendulain and Ramos-Fernández, 2017), a subgroup
may persist over multiple scans. The temporal resolution of
this sampling regime was maintained in the analysis in order
to obtain a sufficient number of continuous series of scans.
Had we resampled the original dataset at a larger temporal
scale, we would have lost an important number of continuous
series. Also, the persistence of a subgroup over several scans
implies that individuals in a subgroup are tolerating one another,
which is informative about the weight of their mutual influence
(see below).

The raw data supporting the conclusions of this manuscript
will be made available by the authors, without undue reservation,
to any qualified researcher.

3. MICROSCOPIC STRATEGY
EXTRACTION AND DISTRIBUTION

We distinguish between strategies and decisions. A decision is
binary: to leave or stay in a subgroup (in the original inductive
game theory work, to join or avoid a fight, DeDeo et al., 2010).
Strategies (called1P, as in previous work, DeDeo et al., 2010) are
“above-null” probabilities (see below for calculation) describing
the weight of individual A’s presence or absence in the current
subgroup (as determined by scan sampling, see section 2) on
individual B’s decision to stay or go from the subgroup in the
subsequent sample. Here and in previous work (DeDeo et al.,
2010), multiple individuals can influence individual B. Hence B
will have multiple strategies and, in the limit, a strategy for every
other group member. We address how B integrates strategies to
reach a decision in section 4. Here we quantitatively describe
how we define and extract strategies from the time series. We
end up with a list of pair-wise strategies for which our extraction
method indicates above-null support in the time series. We do
not consider higher order strategies as in DeDeo et al. (2010).

For all pairs of individuals {A:B, A:C, A:D,...}, we calculate the
probability an individual B is present or absent in a sample if
individual A was present in the previous sample within the same
continuous series of scans:

P(A → B) =
N(Bt+1 | At)

N(A)
, (1)
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FIGURE 2 | Frequency distribution of the values of 1P for the different combinations of dyadic weights, as defined in Equations (2) and (4) (A,B) and for the total sum

of the incoming weights that each individual receives (C,D; this is the in-strength of nodes in Figure 3). The values of 1P(A → B) have a wider distribution around

zero, with correspondingly higher total values of in-strength, than in the case of 1P(!A → B).

where N(Bt+1 | At) is the total number of times B was present at
time t+1 given that A was present at time t within a continuous
series of scans and N(A) is the number of times A was present in
all samples.

As with previous work (DeDeo et al., 2010), to remove
time-independent effects from the transition probabilities (for
example, due to general differences in gregariousness), we
calculate the difference between the probability inferred from the
data and a null expectation:

1P(A → B) =
N(Bt+1 | At)− Nnull(Bt+1 | At)

N(A)
, (2)

whereNnull(Bt+1 | At) is the average number of times B is present
at time t+1 given that A is present at time t within a continuous
series of scans, calculated from 1,000 bootstrapped permutations
of the data.

Similarly, we consider the weight of A’s absence on the
presence of another individual B in a subsequent sample:

P(!A → B) =
N(Bt+1 |!At)

N(!A)
, (3)

and

1P(!A → B) =
N(Bt+1 |!At)− Nnull(Bt+1 |!At)

N(!A)
, (4)

where N(Bt+1 |!At) is the number of times B is present in
a sample when A is absent in the previous sample within a
continuous series of scans, N(!A) is the number of times A is
absent in all samples, and Nnull(Bt+1 |!At) is the average of the
same number for 1,000 bootstrapped versions of the original data.

These 1P constitute the pair-wise weight of each group
member on a given individual’s binary decision to leave or
join a subgroup.

Figure 2 shows the frequency distribution of the values of 1P
as defined in Equations (2) and (4). In all cases values are centered
around zero, with the values of 1P(!A → B) closer to zero
than in other cases. This is because the denominator in Equation
(4) is larger than in Equation (2), as it includes all instances of
individual A being absent from the observed scan. There are
proportionally fewer cases in which B is present after an absence
of A because there are many cases where A is absent. Thus, these
values of 1P(!A → B) should be interpreted with care. It is also
the case that most values of the total sum of weights received are
positive. In other words, most individuals receive a total positive
weight from the presence or absence of strategically connected
individuals. Only a few cases show a total negative weight of the
presence or absence of others.

We identified significantly positive dyadic weights as values
of 1P higher than the 95% percentile of the permuted values
for each dyad. Accordingly, significantly negative dyadic weights
were values of 1P lower than the 5% percentile of the permuted
values for each dyad.
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4. MESOSCOPIC CIRCUIT
CONSTRUCTION

We use the strategies obtained from the data to construct circuits
(i.e. the set of all significant1P values as weights between all pairs
of individuals; this is the mesoscopic level of our analysis) each of
which is a hypothesis for (1) how individuals integrate over their
strategies to arrive at a binary decision to join or leave a subgroup
and, (2) specify how the resulting decisions combine to produce
the distribution of subgroup size. The circuits in Figure 3 give a
qualitative summary of significant strategies. For each individual,
there are 46 potential weights (significant 1P values) from either
the presence or absence of others at scan time t, which could
determine its presence or absence at scan time t + 1. The circuits
in Figure 3 show only 31 individual nodes for 1P(A → B) and
36 for 1P(!A → B), who were involved in significant weights.
On average, each individual in these circuits is linked to 20.25
(± 1.98 SE) other individuals in the 1P(A → B) and to 31.67
(± 1.40 SE) in the 1P(!A → B) circuit (Figure 3). Similarly,
whereas each of the circuits in Figure 3 could have up to 1,260
links, the 1P(A → B) circuit has 314 and the 1P(!A → B)
circuit 570 links. Supplementary Figure 1 shows the values of
all significant weights included in these circuits, as well as the
individual instrength and outstrength.

The circuit for 1P(A → B) (upper panel in Figure 3)
represents significant weights of the presence of individual A
at scan t on the presence of individual B at scan t + 1. Most
of the values of 1P(A → B) were positive or close to zero
(see Figure 2A), therefore this circuit contains mostly positive
weights (gray links), corresponding to weights of attraction.
There is an apparent homophily by sex in this circuit, with
individuals influencing other individuals of the same sex more
than those of the other. Other attractive interactions are those
between some pairs of adult females and their subadult daughters
(e.g., females VE-VI and JA-LX in the upper panel of Figure 3,
CH-LO andME-KL in the lower panel). Individuals differ in their
in-strength values (as can be observed in Figure 2B) with the
individuals with the highest values of in-strength receiving many
different weights, some with high values of 1P, both females and
males. Only one individual (female BL) had a negative in-strength
value, implying that it received a total negative 1P(A → B)
higher than the total positive 1P(A → B).

The circuit for 1P(!A → B) shows a different picture
(lower panel in Figure 3). Here values were skewed below
zero, although overall they were much closer to zero than
the values of 1P(A → B) (Figure 2). Even considering that
the variation around zero is small, this circuit contains both
positive and negative weights, corresponding to repulsion and
attraction, respectively, but the most important links are negative
or attractive. There is, as in the previous circuit, evidence of
some degree of homophily, with individuals of the same sex
influencing each other through negative links more than those
of the opposite sex. Conversely, a high proportion of positive or
repulsive links occur between the sexes. Both males and females
have high values of in-strength, although those with a negative
in-strength (receiving many negative, attractive weights) in this
circuit were all females. Individuals with the highest values of

FIGURE 3 | Circuits showing the strategies (significant, pairwise negative and

positive weights) extracted from the data and as defined in Equations (2)

(upper panel, 1P(A → B)) and (4) (lower panel, 1P(!A → B)). Nodes

correspond to individuals indicated by two-letter codes and their shape

represents females (circles) and males (squares). Only for the purposes of this

visualization we removed the 11 juvenile individuals, who do not move

independently of their mothers. However, they were included in the analyses of

1P values. Edges correspond to significant 1P values, of a width proportional

to their value. Each circuit employs a different range of 1P values, as

1P(A → B) values range from −0.00076 to 0.3 and 1P(!A → B)) values from

−0.00033 to 0.00315 (see Figure 2). Node size is proportional to the

in-strength of the node, i.e., the total significant weight from others as defined

by the sum of the incoming 1P values. Node color corresponds to whether

the node has a positive (blue) or negative (purple) in-strength. The color of

edges corresponds to negative (red) and positive (gray) values.

positive in-strength (corresponding to a total sum of positive or
repulsive weights in this network) were males.

Each individual can have multiple strategies, and they can be
in conflict (DeDeo et al., 2010), with some weights positive and
others negative. In addition, the weight or importance (given by
1P) of each strategy varies. Hence individuals must integrate
over their set of strategies to make a decision about whether
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FIGURE 4 | Example of rules by which individuals integrate incoming weights to decide their state at scan t+ 1. In the upper panel, an individual B integrates

incoming weights using a decision rule. If B, who is not present in the focal subgroup at scan t, receives a significant weight 1P from the presence of A on its

presence at scan t+ 1, while receiving another significant weight from individual D’s absence on its presence, B will integrate both weights by a simple sum. If this

sum
∑

1P is above a certain threshold U, B will decide to join a subgroup where it was not present at time t. In the lower panel, each individual arrives to its own

value of
∑

1P, which will determine its presence or absence from the subgroup at time t+ 1, depending on the values of U and L. A sum of 1Ps greater than U or

smaller than L could lead an individual to either maintain (e.g., B was absent in time t and its
∑

1P is below L, leading to its absence in t+ 1) or change its previous

state (e.g., C was present in time t and
∑

1P is below L, leading to its absence in t+ 1).

to join or leave the subgroup. Figures 2B,D show frequency
histograms for these incoming values, corresponding to the in-
strength of the nodes in Figure 3. These in-strength values can be
understood as the likelihood that an individual will be influenced
by others: an individual with a high in-strength is more likely to
decide to be present due to another individual’s presence (in the
case of 1P(A → B) values, upper panel in Figure 3) or absence
(in the case of 1P(!A → B) values, lower panel in Figure 3) than
another individual with a lower in-strength.

We further assume that at any given time t, if the sum of
significant 1P values

∑

1P directed toward an individual B is
positive and greater than a threshold U, B will be present on the
sample at t+1 (irrespective of whether it was present or absent in
the previous sample; Figure 4). Conversely, if

∑

1P is negative
and smaller than a threshold L, individual B will be absent from
the following sample (again, independently of whether it was
present or absent in the previous sample). However, if L <
∑

1P < U, then there is no effect from others and B remains
in the same state as in the previous sample (i.e., present if it was
present at time t, absent if it was absent; Figure 4). Thus, U is
a threshold parameter controlling how likely it is for individuals
to be present in a subgroup based on the weight of others. The
value L controls the opposite, i.e., how likely it is that individuals
will be absent in a subgroup based on the weight of others.
Note that the total sum

∑

1P includes both the 1P(A → B)

and the 1P(!A → B) values, such that an individual would be
integrating the weights it receives across both circuits shown in
Figure 3. At higher values ofU, the presence of an individual in a
subgroup is less likely to be influenced by others. In that sense,
high values of U imply less interdependence of individuals in
their decisions to be present or not in a subgroup. Conversely,
L controls the opposite end of the range of values of

∑

1P, such
that at more negative values of L, an individual should be less
likely to be absent from a subgroup due to the previous weight
from others. We tested U = {0.0001, 0.001, 0.01, 0.1, 0.2, ..., 0.9}
and L = {−0.9,−0.8, ...,−0.1,−0.01, ...,−0.00001}.

Different individuals could actually be using a different value
of the U and L thresholds, or the values could change over time,
depending on slower ecological variables such as the dry and
wet seasons or even longer timescales related to the ecological
succession of the forest in the spider monkey’s habitat. In this
work we assume, as a first approximation, a single value of the
threshold parameters for all individuals and seasons.

There are also subtle points here concerning how strategies
are aggregated by individuals to produce binary decisions. In
previous work (DeDeo et al., 2010), higher order (triadic—C
only joins current fight if both A and B were present in the
previous fight) as well as pair-wise strategies (A joins if B was
previously present) were extracted from time series data and
a circuit was constructed for each strategy class. Preliminary
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FIGURE 5 | Subgroup size distribution for the original dataset (black thick line) and for the simulated datasets. Lines of a given color correspond to the resulting

distribution from 100 repetitions using different values of U, with L= −0.00001.

analyses in that work suggest these triadic strategies are non-
decomposible into two pair-wise strategies (i.e., not reducible to
additive individual or pair-wise interactions; Daniels et al., 2016;
Chen et al., 2019). Individuals typically had multiple higher-
order strategies and so, as with pair-wise, higher-order strategies
were pushed through gates to produce binary decisions. Here
we allow for the possibility that individuals take into account
multiple strategies and hence be under the influence of multiple
individuals, but we do not explore whether the interactions are
pair-wise or higher-order.

We use these circuits to generate, by simulation, new datasets
from the original dataset. In what follows, we restricted our
analyses and simulations to a subset of the original dataset that
included the same months for which food abundance data was
available (Sep. 2013–Sep. 2014; see section 6), corresponding to
3,032 scan samples. We started by randomly choosing a scan
sample (subgroup) that serves as the “seed” or first scan of a
sequence of n samples, where n is randomly drawn from the
frequency distribution of the number of samples per continuous
observation period in the original biweekly period. Thus, the
seed establishes which of the 47 monkeys in the group are
present or absent in the first sample. Because the seed and the
duration of continuous observation periods are selected within
observation periods, simulated data contain information about
the variation in subgroup size and composition between bi-
weekly periods. If an individual A is present in the first scan,
the simulation looks at values of 1P(A → B) and considers
any significant values or weights of A on others. If, on the
contrary, A is not in the seed, then the simulation looks for
significant values of 1P(!A → B). This applies to all 47
individuals.

These rules are used to determine subgroup composition of
the n samples in the continuous observation period. This is
repeated for 633 sequences, corresponding to the number of
continuous observation periods in the original dataset. In total,
we generated 100 simulated datasets for each combination of
thresholds U and L.

5. TESTING CIRCUITS IN SIMULATION

Here we assess how individuals integrate strategies to make
decisions 1P and how decisions combine to compute the
subgroup size distribution. We do so by asking which circuit,
given an integration threshold, produces a simulated data set with
a distribution of subgroup size that best recovers the observed
one. We used each set of 100 simulated datasets with different
values of U to evaluate the set of subgroup size distributions that
is in closest correspondence to the observed. We only show the
effects of varying U at L = −0.00001, since the variation in L
for any value of U does not have an effect on the subgroup size
distribution. This is likely because values of

∑

1P are mostly
positive (Figures 2C,D), so very few values are below the L
threshold. In other words, even the smallest negative value of
L has no effect on the tendency of individuals to modify their
presence based on the presence or absence of others.

For values of U = 0.4 and above the subgroup size
distribution from simulated datasets is similar to the observed
(Figure 5). Values of U < 0.4 generate distributions where
small subgroups are underrepresented and larger subgroups are
overrepresented. This is due to the fact that, at lower values of
U, individuals are more likely to be influenced by others, both
through the significant values of 1P(A → B) and 1P(!A → B).
The former dominate the dynamics of subgroup size change
because they have higher and positive values overall (Figure 2).
Thus, whenU < 0.4, individuals are aggregating more frequently,
deciding to join subgroups at higher frequency as in the observed
data. Values of U < 0.4 give rise to subgroups converging at a
single size for each value of U (Figure 5). This may be due to
all individuals deciding to join subgroups, even those without
significant weights, as must be the case in subgroups larger than
36, the number of nodes in the largest network in Figure 3

that depicts all individuals that are involved in significant
weights.

We compared the observed subgroup size distribution and
those obtained by simulation under different values of U using

Frontiers in Robotics and AI | www.frontiersin.org 7 July 2020 | Volume 7 | Article 9075

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ramos-Fernandez et al. Collective Computation in Animal Fission-Fusion Dynamics

FIGURE 6 | Jensen-Shannon (JS) distance between the observed and simulated subgroup size distributions shown in Figure 5. Each dot corresponds to the JS

distance between an instance of 100 simulations for each value of U. For all simulations, L = −0.00001.

the Jensen-Shannon distance (Figure 6). This distance between
two random variables x and y is defined as:

JS(x|y) = H

[

x+ y

2

]

−
1

2
[H(x)+H(y)] (5)

where H is the entropy of each variable, p(x) 1
logp(x) and X and

Y are, in this case, the observed subgroup size and the subgroup
size obtained in one run of a simulation, respectively. Figure 6
corroborates what is apparent in Figure 5, that simulations run
withU ≥ 0.4 yield subgroup size distributions that are closer and
indistinguishable from the observed distribution, with JS values
that are close to zero, while simulations run withU < 0.4 have an
increasing JS with respect to the observed. Simulations run with
all values of L forU=0.4 yield subgroup size distributions that are
equally close to the observed (data not shown).

6. FIT OF OUTPUT TO ENVIRONMENT

A central question is whether the collective computation output
is adaptive (Flack, 2017a; Brush et al., 2018). Previous studies
of spider monkeys suggest there is a weak relationship between
subgroup size and food abundance (Symington, 1988; Pinacho-
Guendulain and Ramos-Fernández, 2017). In general, subgroups
tend to be larger during periods of high food abundance. This
suggests that subgroup size can track the abundance of resources.
Here, we investigate whether subgroup size distribution is
predicted by the relative abundance of fruiting trees.

We use data from a 1-ha plot where all the trees (diameter at
breast height, D > 10 cm) from the 15 most consumed species
by the monkeys, were monitored bi-weekly for a year from
September 2013 to September 2014, comprising 25 monitoring
periods. A total of 487 trees were identified, theirDwas recorded,
and every 2 weeks they were assessed for the presence of fruit. The
data obtained were used to calculate the proportion of trees with
fruit available in a given period expressed in terms of the total tree

D rather than tree number. To do so we calculated the sum of the
D values of all the trees with fruit (Df ) in period p divided by the
sum of D values for all the trees in the plot (Di), giving an index
of food abundance for a period p, IFAp =

∑

Df /
∑

Di.
Figure 7 shows the time series for the IFA and subgroup size

during one year. As mentioned above, maintaining the temporal
resolution of the subgroup size time series was important in
order to maintain a sufficient number of continuous series of
observations. Despite the different temporal resolution of each
time series, it seems that subgroup size increases together with
IFA during the second wet season.

In previous work, the match between the collective
computation output and the environment was evaluated
using mutual information (Brush et al., 2018). Here we use
transfer entropy:

Tx→y(t) = H(yt|yt−1)−H(yt|yt−1, xt−1) (6)

This is a measure of how much uncertainty in a variable y is
reduced given past states of both y and a variable x that is assumed
to be independent of y. This dependence is over and above the
uncertainty about y reduced by consideration of its own past
state. Here transfer entropy is measuring how much subgroup
size uncertainty is reduced by considering past states of subgroup
size and IFA, conditioned on the uncertainty reduction by the
past states of subgroup size alone. Given the difference in time
resolution for the two time series (Figure 7), this implies that,
within a given bi-weekly period, we are measuring the transfer
entropy between a constant value of IFA and varying values of
subgroup size. We used the JIDT package (Lizier, 2014) in R
(R Core Team, 2017) to estimate the transfer entropy between
time series, using the Kraskov estimator with the number of
closest neighbors k = 4. The two observed time series have a
TIFA→SGS(t)=0.036 nats.

To explore whether spider monkeys collectively compute a
subgroup size distribution that is a goodmatch to the distribution
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FIGURE 7 | Time series for the index of food abundance (IFA; A) and subgroup size (B). The IFA measures the overall abundance of fruit in the spider monkey’s

habitat, considering their most preferred species, their fruiting status and the abundance and relative size of trees (see section 6). The temporal resolution of the

subgroup size data is 20 min, whereas food abundance was monitored biweekly. Thus, the IFA series has the same value throughout a given biweekly period, while

subgroup size fluctuates at a much finer temporal scale. Noted above are the seasons (wet or dry) to which each sample belongs. Panel (C) presents a fragment of

the subgroup size time series showing its variation between September 30 and October 31st 2013. Note that the time series was constructed with sets of scan

samples taken every 20’ collected throughout 4–8 h periods and that subgroups followed in consecutive days were not necessarily the same. Therefore, the spikes

and drops observed in the curve do not always reflect fission or fusion events.

of fruiting trees, we assess which of our circuits with different
strategy integration rules (described in section 4), computes a
distribution of subgroup size that is a good fit to the current
abundance of fruiting trees. Shown in Figure 8 is the time series
for the subgroup size values together with the subgroup size
time series of all simulated data sets generated for different
values of U. Figure 8 shows what was already apparent in
the subgroup size distributions shown in Figure 5, but in the

form of a time series: simulated data sets with U ≥ 0.4
generate a subgroup size distribution that is closest to the
observed distribution.

We calculated the transfer entropy between the IFA time series
and its corresponding subgroup size time series. We generated
simulated data sets that included the same values of IFA as in
the original dataset, but because the observation period length
could vary (as the length of each observation period, n, was
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FIGURE 8 | Time series for subgroup size as observed (black line) and simulated (lines of varying color). Each colored line corresponds to an instance of 100

simulations for different values of U and L = −0.00001. Wet and dry seasons are noted above.

FIGURE 9 | Transfer entropy between simulated IFA and simulated subgroup size. Each gray circle corresponds to an instance of 100 simulations run with varying

values of U and L = −0.00001. Red dots indicate the upper and lower limits of 99 percent confidence intervals of the mean. The dotted line corresponds to the value

of transfer entropy found for the observed IFA and subgroup size data in Figure 7.

sampled from the distribution of observed n) there is a certain
degree of variation around the observed data. Each simulated IFA
series was compared to its corresponding subgroup size series.
These values of TIFA→SGS(t) are presented in Figure 9, which
also shows the value of TIFA→SGS(t) obtained for the observed
IFA and subgroup size time series (Figure 7). The results suggest
simulated subgroup size data sets with 0.01 < U < 0.4
match the temporal variation in IFA values better than the
empirically observed subgroup size distribution and better than
the simulated distributions computed with U ≥ 0.4.

7. DISCUSSION

Social structure typically changes slowly compared to the
interactions giving rise to it. As such, social structure, whether
optimal for the environment or not, reduces uncertainty about
the future state of the system and provides a relatively stable

background against which individuals can tune their own
strategies (Flack, 2017a). Hence there are two challenges for
a group computing its social structure: that it changes slowly
enough to remain informative for decision-making and that it
adaptively tracks the environment.

Frugivorous spider monkeys are faced with two significant
sources of uncertainty related to foraging—to discover the
location of fruiting trees and to distribute themselves over these
fruiting trees to minimize conflict (Aureli et al., 2008) and the
costs associated with large groups (Asensio et al., 2009), as well
as to maximize resource intake (Symington, 1988). We have
used a theory of collective computation (see references in the
introduction) to explore how fission-fusion dynamics arises in
spider monkey groups and whether the resulting distribution
of subgroup size is a good match to the environment. We
found spider monkey collectives appear to be able to partially
match subgroup size to resource abundance. Our results suggest
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however that the collective computation of subgroup size is
not optimal with respect to food availability as measured by
our index.

In simulating the circuits of subgroup-joining strategies we
discover values of a sensitivity parameter U (a measure of the
degree of consensus among the incoming weights required for
an individual to make a decision about whether to stay or
go) leading to a distribution of subgroup size that is a better
match (than the observed distribution of subgroup size) to the
observed abundance of fruiting trees. This suggests collective
computation is under constraint and the system is experiencing
adaptive lag—that is, still learning the best collective strategy
to integrate information accumulated by group members. The
deviation might instead be spurious–an outcome of (1) the way
in which we calculate the food abundance index, (2) the fact that
the data used to construct the two distributions are noisy and
have different time resolutions: food abundance was measured at
a bi-weekly scale while subgroup size was observed every 20 min,
or (3) other factors besides social knowledge and relationships
contributing to subgroup size decision-making.

We should also be cautious in interpreting the power of
the collective computation at small U values. In these limits
subgroups converge to a constant size where food abundance
is expected to be somewhat predictive of size simply because
both values remain constant during each bi-weekly period. These
caveats aside, whereas collective computation in this system
is not optimal, it remains nonetheless predictive and able to
capture information about the environment. Specifically, the
circuits that capture subgroup joining strategies can aggregate
information about the environment. Although we did not study
longer timescales, the slowly changing structure of groups
provides a means for storing information accumulated by
individuals about food availability across years (Palacios-Romo
et al., 2019). With individuals that are more than 30 years
old (see Supplementary Information), who are using spatial
memory for their foraging decisions (Valero and Byrne, 2007),
the information made available to the group through their
experience is likely an important element to track long-term
changes in the foraging environment.

Some means by which computations can be refined
maximizing the match between group behavior and the
abundance of food, includes individuals changing the way
they accumulate information and/or compute strategies for
staying or leaving, tuning how individuals integrate over those
strategies, and tuning how the strategies interact in the circuit
to produce subgroup size distributions. For example, are some
individuals’ strategies (perhaps because they influence many
others) exerting a disproportionate effect on the output or do
many individuals contribute in small ways? The problem of
how collectives achieve optimal information processing is an
important one in biology (Tkačik and Bialek, 2016), and near
optimal information processing has been discovered in a number
of biological systems (e.g., Petkova et al., 2019). However,
these examples tend to be relatively simple developmental
mechanisms such as segmentation during development of
the fruit fly larval body plan. The circuit approach allows
the question of tuning to obtain optimal information

processing to be addressed through simulation in more
complicated systems.

Additional factors that could affect decision-making, thereby
shifting the subgroup distribution from optimal to suboptimal,
are a variety of social variables like sex and age, the previous
history of interactions, and kinship relationships (Ramos-
Fernández et al., 2009; Busia et al., 2017). However, because we
are extracting individual strategies directly from the data, these
modulating factors are already included in the weights between
individuals. Other factors that are currently implicit include the
risk of predation or location within the group’s home range,
which could also affect the subgroup size.

Our results shed light on how a group can best acquire
and share information about patchy and dynamic environments.
While individual foraging strategies based on spatial knowledge
have been well-documented (Janson and Byrne, 2007; Fagan
et al., 2013), group foraging strategies are less well-known outside
of social insects (Gordon, 2016; cf. Gil et al., 2018). Exchanging
information about available patches when foragers disperse and
learning about the location and availability of different patches
increases the foraging success of the whole group (Falcón-Cortés
et al., 2019). The circuit of individual strategies that we infer
here is, at least in part, a reflection of information sharing about
available patches. Following another individual when ignorant
is a simple mechanism of information sharing (Palacios-Romo
et al., 2019), that could be reflected in the dyadic weights we
have measured. This would lead to a fully connected circuit with
information about food sources promoting a flexible grouping
pattern that matches heterogeneity in the environment.

It is interesting to compare our approach to that of optimal
foraging theory, which would postulate an optimal subgroup
size distribution, based on a set of constraints and the best
compromise between costs and benefits, which for most cases
are unknown (Fretwell and Lucas, 1970; Stephens and Krebs,
1986). An empirical test of this postulate would consist of
the match or lack thereof of the observed distribution to the
food abundance and this would be interpreted in terms of
the unknown mechanisms for how subgroup size comes about
(e.g., Chapman et al., 1995). Our approach is more mechanistic:
we observe a series of stay-leave decisions resulting from the
interactions between individuals and construct a circuit of
strategies that serves as a hypothesis for how the subgroup
size distribution could emerge. We measure how similar these
emerging distributions are to the observed and then test how
well the time series matches the environmental variation. That
we find alternative circuits that could produce a better match
to the environment implies that the system is not necessarily
constrained, as would be postulated by optimal foraging theory.

Mutual information, as a measure of uncertainty reduction,
has some nice properties. It provides a robust way to
study how near optimal a collective behavior is, and this
provides a proxy for adaptiveness. We can also study different
kinds of uncertainty reduction: an endogenous one, that
involves collective computation of social structure that makes
the world more predictable for individuals within a system
(e.g., Brush et al., 2018); and an exogenous one, whereby
collective computation produces social structure that encodes
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knowledge about resource availability in the environment (this
paper). Uncertainty reduction is consistent with a cost-benefit
framework without requiring costs and benefits to be estimated.
And quantification of the quality of the output of collective
computation in information theoretic terms builds a technical
bridge to Boltzmann’s and von Neumann’s ideas about the role of
entropy in generating ordered states (Krakauer et al., 2020) that
can form the basis of new levels of individuality, even at the social
level.

In addition to assessing whether the output matches
the environment, we studied the mechanics of collective
computation. Previous work suggests spider monkeys
preferentially follow food-aware individuals (Palacios-Romo
et al., 2019). In the time series we find evidence in support
of this result: we are able to extract significant (above-null)
pair-wise probabilistic strategies used by individuals to decide
to stay in or leave subgroups. Each individual had 20-30
strategies of varying strength (out of 46 possible). Generally
the 1P were larger for “stay” strategies than “leave” strategies,
suggesting possible food presence is a more important factor to
spider monkeys than possible food absence. This emphasis on
“attraction” might also be important for maintaining cohesion
in fission-fusion dynamics in the context of a heterogeneous
foraging environment with multiple alternative foraging options
(Ramos-Fernández, 2005; Sueur et al., 2011). The strategies we
find also recover well-known social patterns for Ateles spp., in
particular—same sex based homophily for joining and repulsive
tendencies between individuals of different sex (Fedigan and
Baxter, 1984; Ramos-Fernández et al., 2009). It remains to be
determined whether further, more fine-grained patterns like
the frequency of dyadic interactions are also recovered by
these strategies.

We used the extracted strategies to construct a family of
circuits that vary in how individuals integrate these strategies to
produce binary decisions to join or leave a subgroup. Individuals
can have both repulsion (leave) and attraction (join) strategies.
In previous work (DeDeo et al., 2010), strategies were passed
through an AND or OR gate that captured conflict averse
(all strategies have to say “go” to join a fight) and conflict
prone dispositions (one “go” strategy was sufficient to join).
Here we use thresholds. To recover the observed subgroup
size distribution in simulation requires sums over strategies
(
∑

1P ≥ U = 0.4) much larger than the strength of individual
strategies (the majority of individual 1P values are below 0.05).
This suggests individual-level decisions, as well as the aggregate
output, require that individuals take into account relationships
and social knowledge of many group members. If so, this
would suggest that spider monkeys rely on social information
from the wisdom of crowds (e.g., Jayles et al., 2017; Moreno-
Gámez et al., 2017; Kao et al., 2018) to make decisions. These
decisions are aggregated to collectively compute subgroup size
distributions.

Mesoscale strategic circuits are summaries or average
tendencies and therefore provide an economical way to process
information. Slow variables, encoded in individual strategies, are
compressed summaries of noisy interactions (Flack, 2017b). The
idea that the mesoscale circuit is a compressed representation

of microscopic dynamics has parallels in multiplex networks,
which have proven to be a better representation of the dynamics
of many systems than the simple aggregation of different layers
(De Domenico et al., 2015; Smith-Aguilar et al., 2019). Moreover,
this way of compressing information may allow the social
structure of spider monkeys to be flexible enough to track a
dynamic environment, and, at the same time, be robust to
disturbances. This has parallels to neural processing (Bassett
et al., 2011; Daniels et al., 2017). As we have discussed elsewhere
(see Brush et al., 2013, 2018; Daniels et al., 2017; Flack, 2017a)
compression and related principles of collective computation
have implications for engineered systems, such as web search and
swarm robotics (e.g., Bonabeau et al., 1999; Seth, 2001; Young
et al., 2013), as well as pattern recognition by artificial neural
networks and human reputation networks.

How spider monkeys collectively compute fission-fusion
social structure and how these computations can be tuned to
realize adaptive variants raises many questions. Using longer
time series, we could ask whether collective computation and
fit to the environment are being refined and improved over
time. With higher resolution data on strategies, and using
methods from information theory (e.g., Rosas et al., 2019),
it should be possible to quantify the degree to which the
output is irreducibly encoded in the circuit as opposed to
decomposeable. Is social knowledge processed in a pairwise
manner or do individuals perceive synergistic interactions
among group members (e.g., does individual’s A perception
of individuals B and C contribute non-additively to its
social knowledge)?

Understanding how a natural social system carries out
adaptive computations could help to improve the performance
of artificial systems. For instance, our results could provide
insight into the mechanisms underlying learning through
backpropagation in artificial neural networks. The way in
which individuals adjust their strategic signaling in computing
an appropriate power structure that feeds back to provide
information about social interaction cost might be analogous
to unsupervised learning (i.e., where the target is endogenous
to the system) (Flack, 2017a; Brush et al., 2018). A system like
the one we study here, with fission-fusion dynamics that can
adjust to environmental conditions like the availability of fruiting
trees, might be analogous to supervised learning (i.e., where
the target is exogenous to the system). In both cases, feedback
might share features with backpropagation in the strong and
weak senses–the connection weights in the circuits/networks
appear to be adjusted with a combination of vector (Brush
et al., 2018) and scalar feedback (Flack et al., 2006) to minimize
the network’s error function when learning a task (Rumelhart
et al., 1986; Lillicrap et al., 2020). This is just one of many
exciting comparisons that could be made to better understand
how different types of feedback, through tuning (Daniels et al.,
2017) and downward causation (Flack, 2017a), shape the ability
of the circuit to learn. And, as described in the Introduction,
collective coarse-graining can produce a coherent mesoscale
functioning as an information bottleneck, an ideal that is at
least conceptually similar to the information bottleneck described
by Tishby and colleagues to explain how deep neural networks
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encode information parsimoniously (Tishby et al., 2000; Tishby
and Zaslavsky, 2015; Flack, 2017a).

We have studied how a natural social system collectively
computes. This is achieved through feedback among different
scales of social organization, as proposed by Hinde’s (1976) early
paradigm and made explicit in Flack (2017a) and Flack (2017b).
Studying collective computation should also find a range of
different applications in the engineering of distributed, adaptive
systems (Bonabeau et al., 1999).
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The study of sustainability challenges requires the consideration of multiple coupled

systems that are often complex and deeply uncertain. As a result, traditional

analytical methods offer limited insights with respect to how to best address such

challenges. By analyzing the case of global climate change mitigation, this paper shows

that the combination of high-performance computing, mathematical modeling, and

computational intelligence tools, such as optimization and clustering algorithms, leads

to richer analytical insights. The paper concludes by proposing an analytical hierarchy of

computational tools that can be applied to other sustainability challenges.

Keywords: decision support tools, sustainability, end-of-century climate targets, computational intelligence,

climate change, deep uncertainty

INTRODUCTION

The resolution of contemporary sustainability challenges requires the consideration of coupled
systems, long-term time frames, multiple objectives, and deep uncertainty (Liu et al., 2013,
2016; Hull et al., 2015). For instance, sustainable ecosystem management, water planning, and
climate change adaptation and mitigation require the joint consideration of environmental
and human systems. These spheres (i.e., systems) are inexorably connected as changes in the
behavior and constitution of the natural environment often induce changes in human institutions
and incentives. Conversely, the evolution of human preferences, technology, and institutions
determines significantly the development trajectories of natural resource systems. Often, if these
interactions are not monitored and regulated, one or both systems stop functioning in a sustainable
manner (Ostrom, 2009, 2011; Hull et al., 2015). For example, in the context of accelerated
global climate change, if anthropogenic emissions continue rising, the growing concentration
of greenhouse gases (GHG) in the atmosphere will result in climate imbalances (e.g., changes
in precipitation patterns, higher temperatures) that can induce irreversible changes in natural
ecosystems (e.g., loss of biodiversity) and in the economy (e.g., higher inequality).

Policy analysis in the context of sustainability is challenging. First, human and environmental
spheres are complex systems: path dependencies in both require the consideration of large time
frames, and their non-linear interactions induce dynamic behavior that is difficult to anticipate
and characterize. Second, deep uncertainty affects both spheres as experts and stakeholders often
disagree on the causal representation of these systems, the value of key parameters for analysis,
and the relevance of different metrics for describing sustainability (Lempert, 2003; Marchau et al.,
2019).
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The combination of both conditions, complexity and deep
uncertainty, has complicated the role of traditional policy
analysis methods when applied to sustainability challenges. On
the one hand, the use of simplistic models for analysis can result
in omissions relevant for determining long-term outcomes. On
the other hand, if the scope of an analysis is too narrow, it
is difficult to make the analysis relevant to a wide range of
stakeholders (Lempert, 2003; Marchau et al., 2019). Thus, a key
emerging question in sustainability sciences is how to design
robust policy interventions that explicitly account for complexity
and deep uncertainty and which can inform in practical detail
public policy discussions of sustainability challenges that affect a
wide range of actors.

Modern computational intelligence tools, such as machine
learning, optimization, agent-based modeling, and data
visualization, offer opportunities for circumventing these
limitations (Lempert et al., 2006; Groves and Lempert, 2007;
Bryant and Lempert, 2010; Kasprzyk et al., 2013; Isley et al., 2015;
Kwakkel, 2017). Yet, their analytical power for sustainability
sciences can be best harnessed when these are used in an
integrated way. For example, complex simulation models,
such as agent-based models (ABMs), can be used as scenario
generators in exploratory simulation contexts. Moreover,
general purpose and multi-objective optimization techniques
can be combined with ABMs to estimate the optimal policy
response across large sets of feasible parametrizations. The
resulting database can be further analyzed with machine
learning algorithms to classify outcomes in terms of the
combination of parameter values that trigger different policies.
Finally, interactive data visualization techniques can be
used to create decision support tools for stakeholders and
the public.

Over the last two decades, a growing body of research
has applied this integrative approach for studying various
sustainability challenges in water (Lempert and Groves,
2010; Groves et al., 2019b; Molina-Perez et al., 2019), energy
(Popper et al., 2009), and natural resource planning (Groves
et al., 2016; Fischbach et al., 2019). The findings of these
studies show that there are no silver bullets for achieving
sustainability across human and environmental spheres and
that policies that can contribute to achieving sustainable
outcomes frequently rely on combinations of different
measures that need to be implemented sequentially. First,
by addressing immediate vulnerabilities through robust
policies. Second, by responding adaptively to medium and
long-term changes in both spheres (Groves et al., 2019b;
Molina-Perez et al., 2019). This body of research, defined
as Decision Making under Deep Uncertainty (DMDU)
(Marchau et al., 2019), has cemented the foundations for
the general application of computational intelligence tools to
sustainability sciences.

This paper applies DMDU methods—specifically Robust
Decision Making (Lempert, 2003; Groves et al., 2019b)—to
structure an analysis of global climate change mitigation and
to demonstrate that the combination of multiple computational

tools for analyzing this sort of sustainability challenges leads
to richer analytical insights than those produced by traditional
monodisciplinary studies. Particularly, our analysis shows that
by integrating optimization, integrated assessment models, and
machine learning algorithms, it is possible to quantitatively
identify key drivers of vulnerability of climate change mitigation
policies. It also shows that alternative policy proposals can work
as complements across regions to cost-effectively decarbonize the
global economy. The paper concludes by proposing an analytical
hierarchy of computational tools that can be applied to other
sustainability challenges.

COMPUTER MODELING FOR CLIMATE

CHANGE POLICY ANALYSIS

Virtual Laboratories and Policy Regimes
Simulation models are popular tools in the field of climate
change because of (a) the long-term time horizons needed to
be taken into consideration, (b) the heterogeneous economic
and technological conditions of countries and industries, and
(c) the non-linearities and path dependencies associated with
climate policy. To highlight how the combined used of
integrated assessment models (IAMs) and other computational
intelligence tools can result into a more detailed understanding
of sustainability challenges, in this study we use the Exploratory
Dynamic Integrated Assessment Model (EDIAM) developed by
Molina-Perez (2016).

The EDIAM model is primarily based on the theoretical
framework developed by Acemoglu et al. (2012), which
takes into account the interrelation between climate mitigation,
innovation, and growth. Particularly, it describes the propagation
of climate policy impacts in the economy through endogenous
productivity changes that affect labor, energy, and technology
markets. EDIAM expands over this framework by including
the role of learning-by-doing, differentiating technology
properties across sectors, modeling entrepreneurs’ investment
decisions in continuous form, considering the role of
technological transferability across nations, and calibrating
environmental equations using a full ensemble of Coupled
Model Intercomparison Project Phase 5 (CMIP5) climate
projections (Taylor et al., 2012; IPCC, 2013).

The motivation for using EDIAM as an instrument for
experimentation in this paper is based on four of its
characteristics. First, it emphasizes the role that technology policy
plays in climate mitigation. Second, it describes how climate
policy propagates through time, changing the incentives of
economic agents (i.e., path dependency). Third, it considers the
interconnection between regions and between the environment
and the economy and its role in shaping global outcomes
(i.e., emerging behavior). Fourth, its specification allows for
the exploration of a wide range of climate, economic, and
policy assumptions. In short, this model serves as a good tool
for analyzing how the interplay of complexity (i.e., emergent
non-linear behavior) and deep uncertainty can be analyzed
through the combination of different computational intelligence
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tools. Having said this, the reader should be conscious of
the modeling features that fall outside the scope of this
study. First, although empirically valuable, the model currently
does not consider the possibility of endogenous innovation
in the emerging region. Second, international trade and oil
prices are also currently outside the scope of this work.
Finally, in the optimization setup of this framework, without
taxation on fossil fuels, it is not possible to mobilize the
resources necessary to fund complementary technology policy
for mitigating climate change. In reality, there are many other
financial channels through which it would be possible to fund
technology-based climate mitigation policies. In the following
paragraphs, we describe the most relevant aspects of the model
for this analysis1.

In EDIAM’s framework, international climate policy is
comprised on nine different elements:

1. Number of years policy intervention is active, starting in
2022: D

2. Carbon tax in the advanced region: τA

3. Carbon tax in the emerging region: τE

4. Technology subsidy for sustainable energy technologies in the
advanced region: hA

5. Technology subsidy for sustainable energy technologies in the
emerging region: hE

6. R&D subsidy for sustainable energy technologies in the
advanced region: qA

7. R&D subsidy for sustainable energy technologies in the
emerging region: qE

8. Green Climate Fund (GCF) technology subsidy for
sustainable energy technologies in the emerging region: hG

9. GCF R&D subsidy for sustainable energy technologies in the
emerging region: qG.

Formally, the optimal policy intervention is that which
maximizes the intertemporal utility of representative consumers
in the advanced and emerging regions (Equation 1.1)2. which
depends both on consumption C (Equation 1.7) and the
effects of fossil fuels used in production on temperature rise
1T (i.e., quality of the environment S, Equations 1.3–1.6),
subject to the intertemporal equilibrium conditions of both
economies (Equations 1.8–1.13) and to the budget constraint
(Equations 1.17, 1.18) in both regions (Acemoglu et al., 2012).
The setup of the budget constraints is such that investments
on technology-oriented climate action (i.e., technology and
R&D subsidies) cannot be greater than the fiscal resources
collected through a carbon tax in each region. Cooperation
between regions is possible through the use of the GCF,

1The complete specification of EDIAM, including the derivation of intertemporal
dynamics and calibration, can be found in Molina-Perez (2016), specifically
Chapter 3, pages 31–59, Appendix A, pages 152–161, and Appendix C,
pages 163 and 164. Additionally, we have made publicly available all
datasets and programming scripts describing the operationalization of EDIAM’s
framework in the following github repository: https://github.com/emolinaperez/
Ediam_vFrontiers.
2The EDIAM model is specified in continuous form. Yet, it is important to note
that the discounted values of utility are computed using discrete time steps after
the continuous model is numerically solved.

which redirects resources from the advanced region to the
emerging region.

Formally, this is expressed as follows3:
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(1.16)

3For clarity, all time subscripts are omitted, but all variables in this optimization
set up are dynamic.
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where

β : atmosphere’s sensitivity to CO2 emissions (degrees Celsius)
ξ : atmosphere’s carbon sink capacity (ppm/BTU/year)
δ: average rate of natural environmental
regeneration (dimensionless/year)
1T: temperature rise since preindustrial times
(degrees Celsius)
CO2|6.0 ◦C : CO2 emissions concentration that will result
in temperature rise of 6.0◦C with respect to preindustrial
levels4 (ppm)
1Tdisaster : 6.0 (degrees Celsius)
φ (S): costs of environmental quality
degradation (dimensionless)
ε: elasticity of substitution (dimensionless)
ρ: discount rate (dimensionless/year)
pkj : primary energy prices of sector “j,” region “k” (usd/BTU)

5k
j : innovation profitability of sector “j,” region “k”

(dimensionless)
αk: proportion of capital income to the total income of the
economy in region “k” (dimensionless)
ηkj : energy technologies propensity to innovation in sector “j,”
in region “k” (dimensionless/year)
ψk
j,i: unitary cost of production for technology type “i” in

sector “j” in region “k” (usd/machine)
Lkj : share of labor working in sector “j,” region “k”
(dimensionless)
Ak
j : productivity of sector “j,” region “k” (dimensionless)

xkji: number of units of technology “i” used in sector “j” in
region “k” (machines)
θkj : share of entrepreneurs working in sector “j,” region “k”
(dimensionless)
γj : mean R&D returns to productivity in sector “j”
(dimensionless/year)
ηj: innovation propensity of sector “j” (dimensionless/year)
νj : probability of successfully imitating/adapting in the
emerging region the technologies of sector “j” developed in the
advanced region (dimensionless)
T : end of simulation, year 2100
T0 : initial year of simulation, year 2012
j ∈ {“s”−sustainble energy− “f” −fossil energy− }
k ∈ {“A”−advanced region− “E”− emerging region− }.

4The model is not defined beyond this limit of temperature rise because such level
of temperature rise will result in abrupt and irreversible changes to the global
climate system, including events such as the ice sheet collapse, permafrost carbon
release, and methane hydrate release (IPCC, 2013).

As shown in Equation (1.2), we model consumer preferences
through a constant relative risk aversion (CRRA) utility function,
which depends both on consumption C and on the quality
of the environment S. The parameter σ is the inverse of the
intertemporal elasticity of substitution. Equation (1.3) describes
the quality of the environment as dependent on temperature
rise, which is determined by Equations (1.4)–(1.6), where 1T
represents the increase in average surface global temperature
since preindustrial times for a given level of CO2 atmospheric
concentration. The parameter λ controls how quickly the quality
of the environment decreases as anthropogenic CO2 emissions
rise. In the same fashion as Acemoglu et al. (2012), the state
variable S is a metric of general environmental quality. In
this study, this is empirically measured in parts per million
(ppm) of atmospheric CO2 concentrations: the lower the value
of S, the higher the environmental quality of the planet.
The combination of Equations (1.3)–(1.6) connects this state
variable to CO2 atmospheric concentrations, which in turn allows
for internalizing the marginal impact of global fossil energy
consumption on consumers’ utility.

As shown in Equation (1.7), consumption depends on final
production and the cost of technologies used in production. Final
production (Equation 1.8) is modeled as a CES aggregate of
the two primary energy sources: fossil fuel-based energy (f) and
sustainable energy (s). Primary energy production (Equation 1.9)
assumes that economic agents use labor and an infinite number of
sector-specific technologies “i” for energy production (Acemoglu,
2002), Lkj represents the labor used in sector “j” ∈

{

f , s
}

, Ak
ji

is the productivity of technology of type “i” used in sector “j”,
and xkji is the number of units of technology type “i” in sector “j”
used in production, in region “k.” For operationalizing themodel,
we rely on the same assumption used by Acemoglu et al. (2012):

Ak
j ≡

∫ 1
0 Ak

jidi, such that Ak
j is the average productivity of sector

“j” in region “k.”
The share of production of each energy type “j” (Equation

1.10) depends on the prices of secondary energy types and
the carbon tax. Secondary energy prices (Equation 1.11) in
turn depend on productivity improvements in both energy
sectors, technology costs, and technology subsidies. Technology
costs (Equation 1.14) depend on the accumulated number of
technologies used in each sector “j” in both regions. The
parameter ιi in this power-law function controls the rate at
which experience leads to cost reductions in technology sector
“i.” The evolution of productivity of section “j” in the advanced
region (Equation 1.15) depends on share of entrepreneurs
working in this sector, its R&D returns to productivity, and
its innovation propensity. For the emerging region (Equation
1.16), we assume that technology entrepreneurs also innovate,
but their efforts are targeted toward imitating the existing
technologies in the advanced region. The success of these
endeavors depends on the ease of transferability of technologies
invented in the advanced region. The share of entrepreneurs
working on sector “j” (Equation 1.13) determines the sectorial
rate of technological progress, which depends on the value
“V(.)” that investors assign to the mean profitability of sector
“j” in region “k” (Πk

j ). Following the same approach as Train
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Kenneth (2003) and Achtnicht et al. (2012), this value function
is a deterministic utility component that models economic
agents’ decisions over competing alternatives in the logistic form
expressed in Equation (1.13).

The relative profitability of each sector “j” is described
in Equation (1.12). If this ratio is >1, then the majority of
research and development is directed toward sustainable energy
technologies. In the tradition of Acemoglu (2002) and Acemoglu
et al. (2012) framework, Equation (1.12) shows that there are
three key forces determining which sector captures the greater
share of entrepreneurial activity: (1) the “direct productivity

effect” Ak
s

Ak
f

incentivizing research in the sector with the more

advanced and productive technologies, (2) the “price effect”
pks
pk
f

incentivizing research in the energy sector with the higher

energy prices, and (3) the market size effect Lks
Lk
f

pushing R&D

toward the sector with the highest market size. In addition
to these forces, in the EDIAM modeling framework, two

more factors are at play: (1) the “experience effect”
(

ψf

ψs

)
α

1−α

pushing innovative activity toward the sector that more rapidly
reduces technological production costs and (2) the “innovation
propensity effect” ηs

ηf
incentivizing R&D in the sector that more

rapidly yields new technologies. Note also that the research and
technology subsidies also incentivize R&D in sustainable energy
technologies. Finally, Equations (1.16) and (1.17) indicate that
each region’s contribution to the optimal policy should not be
greater than the funds collected through the carbon tax.

Table 1 lists the set of policy regimes considered in this study.
For each policy, we indicate in which sectors (i.e., carbon tax,
technology subsidies, and R&D subsidies) cooperative actions
are implemented and in which sectors individual independent
actions are carried out. Thus, we model different policy
regimes as a mix of individual and cooperative actions across
sectors. In total, Table 1 describes nine different policy regimes.
The future without action (FWA) represents the benchmark
policy case in which climate policy is not implemented (i.e.,
laissez-faire economy). The policy regime “P1. I. Carbon Tax
[Both]” represents a non-cooperative case in which both regions
implement independently climate policy. Policy case “P2. I.
Carbon Tax + I.Tech-R&D[Both]” depicts a different non-
cooperative policy regime. In this case, the optimal policy
response includes independent levels of taxation, technology
subsidies, and R&D subsidies for both regions.

Multiple cooperation regimes are described in Table 1. For
all these policy cases, we assume that regions agree initially on
the implementation of a harmonized carbon tax as proposed

TABLE 1 | Description of alternative policy regimes considered.

Policy regime Independent sectors Cooperation sectors Formalism in optimization

problem

P0

FWA: Future Without Action

• None • None τA, τE , hA, hE , qA, qE , hG, qG = 0

P1

I. Carbon Tax [Both]

• Carbon tax • None τA, τE > 0

hA, hE , qA, qE , hG, qG = 0

P2

I. Carbon Tax + I.Tech-R&D[Both]

• Carbon tax

• Technology subsidies

• R&D subsidies

• None τA, τE , hA, hE , qA, qE > 0

hG, qG = 0

P3

H. Carbon Tax +
Co-Tech[GCF]+R&D[AR]

• No R&D subsidies in

emerging region

• Harmonized carbon tax

• Co-funded

technology subsidies

τA = τE > 0

hA, qA > 0

hE = hG > 0

qE = qG = 0

P4

H. Carbon Tax + Co-Tech[GCF] + I.

R&D[Both]

• Independent R&D subsidies • Harmonized carbon tax

• Co-funded

technology subsidies

τA = τE > 0

hA, qA,qE > 0

hE = hG > 0

qG = 0

P5

H. Carbon Tax +
Co-R&D[GCF]+Tech[AR]

• No technology subsidies in

emerging region

• Harmonized carbon tax

• Co-funded R&D subsidies

τA = τE > 0

hA, qA > 0

qE = qG > 0

hE = hG = 0

P6

H. Carbon Tax + Co-R&D[GCF]+I.

Tech[Both]

• Independent technology

subsidies in emerging region

• Harmonized carbon tax

• Co-funded R&D subsidies

τA = τE > 0

hA, hE , qA > 0

qE = qG > 0

hG = 0

P7

H. Carbon Tax + Co-Tech-R&D[GCF]

• None • Harmonized carbon tax

• Co-funded R&D subsidies

• Co-funded

Technology subsidies

τA = τE > 0

hA, qA > 0

hE = hG > 0

qE = qG > 0

For each policy regime, it is indicated in which sectors (i.e., carbon tax, technology subsidies, and/or R&D subsidies) cooperative actions are implemented and in which sectors individual

independent actions are carried out. Thus, each policy regime can be represented as a mix of individual and cooperative actions across sectors. The set of mathematical restrictions

used to represent each policy regime in the optimization framework is noted.
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by Nordhaus (2011); therefore, the carbon tax rate is the
same across both regions. We also assume that cooperation
under the GCF does not have to follow a unique architecture
and that it is possible to cooperate in certain sectors, while
allowing independent action in others. Policy case “P3: H.
Carbon Tax + Co-Tech[GCF]+R&D[AR]” considers the case
of a harmonized carbon tax across regions and cooperation in
co-funded technology subsidies under GCF. However, in this
case, independent R&D subsidies are only implemented in the
advanced region. Policy “P4: H. Carbon Tax + Co-Tech[GCF]
+ I. R&D[Both]” expands on the latter case by considering that
independent R&D subsidies are implemented in both regions.

Policy “P5. H. Carbon Tax + Co-R&D[GCF]+Tech[AR]”
includes the implementation of a harmonized carbon tax in
both regions, co-funded R&D subsidies under the GCF and
independent technology subsidies in the advanced region. Policy
regime “P6. H. Carbon Tax + Co-R&D[GCF]+I.Tech[Both]”
expands policy case P5 by allowing for the implementation of
independent technology subsides in both regions. Finally, policy
regime “P7: H. Carbon Tax + Co-Tech-R&D[GCF]” considers
the case in which in addition to a harmonized carbon tax,
cooperation under the GCF includes co-funded R&D subsidies
and technology subsidies.

Uncertain Stressors Across Spheres
To analyze the performance of different policy regimes across
uncertainty, we focus on four uncertain stressors, affecting two
spheres: (1) the elasticity of substitution between fossil and
sustainable energy inputs in production, and the economic
agents’ discount rate, impacting the economic sphere and
(2) climate sensitivity to GHG emissions and the capacity
of atmospheric carbon sinks affecting the ecological sphere.

Thus, there are two types of elements in our analysis: (1)
policy regimes that describe different sectorial interventions
and cooperation schemes between regions and (2) scenarios
which describe unique parameter combinations of economic and
climatic variables.

This framework allows us to explore uncertainty in more
detail by generating an ample set of emission trajectories through
variations of economic parameters and policy regimes. For
example, Figure 1 compares a subset of simulated emission
pathways that vary the elasticity of the substitution parameter
(ε, Equation 1.8) for two policy regimes, against the four
Representative Concentration Pathways (RCPs) included in the
CMIP5 dataset. It is possible to see that the range of variation
produced with these simulations is similar to that captured by
the four RCPs included in CMIP5. This feature is important for
this analysis because as discussed in section Machine Learning
Algorithms for Identifying Decision-Relevant Conditions, by
considering such a disaggregated set of variation, it is possible to
identify with higher precision vulnerability thresholds.

The elasticity of substitution is an important parameter in
the economic sphere because it describes the extent to which
sustainable energy technologies can be used to substitute the
functions of fossil energy technologies in secondary energy
production. The results of Acemoglu et al. (2012) have spurred
interest among empirical researchers on estimating more
accurately the potential level of substitution between the two
sectors. At present, initial empirical results show that the short-
and long-term values of the elasticity of substitution are likely to
be closer to the low substitution case considered in Acemoglu
et al. (2012), but more importantly, these initial results show
that the strength of the substitution effect in the long term is
highly uncertain. For instance, Papageorgiou et al. (2013) use

FIGURE 1 | Comparison Between Simulated (Left Panel) and Original (Right Panel) RCP Emissions Trajectories. (A) Emissions Pathways (EDIAM simulations). (B)

Emissions Pathways (RCPs in CMIP5). The right panel shows emissions time series for all RCPs considered in this study (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP

8.5). For each time step, the left panel shows the subset of emission trajectories used for comparing CMIP5 and EDIAM’s output.
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FIGURE 2 | Effect of Different Discount Elasticities of Substitution Scenarios on Optimal Policy Response’s Structure and Effectiveness. The vertical axis denotes

temperature rise with respect to preindustrial levels for different simulated time series. The color legend indicates the level of substitutability between the two sectors:

the darker colors denote scenarios of high elasticity of substitution, and the clearer-color scenarios of low elasticity of substitution. The structure of the optimal policy

response, as well the climate scenario and discount rate parameters used for the simulations, is highlighted for the highest and lowest elasticity of

substitution scenarios.

cross-country sectoral energy data and nested CES production
functions to estimate this parameter. They find evidence that the
elasticity of substitution in the short term is more likely to be in
the low substitution range (ε= 3) of Acemoglu et al. (2012) study,
but in the long term it is plausible that this parameter falls in the
high-range values. Another study by Pottier et al. (2014) argues
that the elasticity of substitution between sustainable energy and
fossil energy is also likely to be in the low substitution range (ε
= 3), perhaps even below one (ε < 1). They argue that this is the
case mainly because capital stocks for most of the energy system
last for many decades, and this delays substitution away from
fossil energy. However, the authors consider that in the long term,
as innovation broadens the range of technological possibilities,
it is plausible that all energy sources will be fairly substitutable.
These results and the debate among researchers on this topic
support the notion that the elasticity of substitution between
sustainable and fossil energy is a deeply uncertain parameter.
These empirical findings show that the current state of science
does not provide sufficient and adequate evidence to estimate
accurately this parameter. They also suggest that in the long term
a wide range of values is plausible.

We explore the implications of varying levels of
substitutability between the two sectors by considering 10
different scenarios for this parameter. Figure 2 lists the different
elasticity of substitution scenarios considered in this analysis
and exemplifies their effect on temperature rise stabilization.
It shows that the 10 scenarios considered for the elasticity of
substitution can result in substantially different outcomes. For

instance, it shows that for three high levels of substitutability
scenarios, ε = 10.0, ε = 9.2, and ε = 8.4, it is possible to
induce a full self-reinforcing transition away from fossil energy
before the end of the simulation runs (i.e., policy duration
< 300 years). In contrast, for the low elasticity of substitution
scenarios, ε = 3.0, ε = 3.8, ε = 4.6, and ε = 5.3, it is necessary
to sustain policy intervention (i.e., harmonized carbon tax in
both regions) during the entire simulation at a high level (i.e.,
50%) to delay temperature rise. This shows that the cost and
effectiveness of policy intervention is closely linked to the degree
of substitutability between the fossil and sustainable energy
sectors. The less substitutable these sectors are, the more effort
is required to induce a successful transition toward sustainable
energy and the decarbonization of secondary energy production
in both regions.

The discount rate is a mathematical formalism that helps
us express future costs and gains at today’s equivalent value.
In the context of climate change, this parameter attempts to
describe how societies of today value the environmental and
economic outcomes of the future. Controversy over the proper
value of the discount rate lies at the heart of many of the debates
associated with climate change policy. It should not be a surprise
that studies that use different discounting values reach different
conclusions regarding the structure of the optimal environmental
policy required to stabilize global temperature rise. This debate
is best exemplified by Nordhaus and Stern’s research on the
level of carbon taxation needed to keep temperature rise at
sustainable levels (Acemoglu et al., 2012). In short, Nordhaus,
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FIGURE 3 | Effect of Different Discount Rate Scenarios on Optimal Policy Response’s Structure and Effectiveness. Each line describes a single simulation run for a

specific discount rate scenario. All other input parameters are held constant (ε = 5.3 and Climate Model = NorESM1-ME). The resulting optimal environmental policy

is highlighted for two cases: for each, the different elements of the policy response are listed, including Carbon Tax, R&D Subsidies, Technology Subsidies, and Policy

Duration for both regions. Note that the trajectory of the optimal policy response is the same for both the 1.15 and 1.5% discount rates.

using a discount rate of 1.50% per year, finds that an initial
small carbon tax that increases over time would guarantee that
temperature rise will be kept below three degrees Celsius in
the long term, while Stern, using a discount rate of 0.10% per
year, argues that a higher initial carbon tax is needed to achieve
temperature rise stabilization sooner and avoid future significant
damage from climate change. This disagreement among climate
experts is evidence of the deep uncertainty associated with the
discount rate.

In this analysis, we explore this uncertain stressor by
considering a diverse set of discount rate scenarios. To develop
these scenarios, we assume that the maximum value that this
parameter can take is the one proposed by Nordhaus (i.e., 1.5%
per year) and that the minimum value is the one proposed by
Stern (i.e., 0.10% per year). However, we also consider three
more possibilities in between to explore in more detail the role
of varying levels of discounting on the structure of the optimal
policy response.

Figure 3 lists the five discount rate scenarios considered in
this analysis. This exercise provides an illustrative example of
the discount rate’s role in determining the structure of the
policy response. By comparing the optimal policy response across
the Stern (i.e., 0.10% per year) and Nordhaus (i.e., 1.5% per
year) limits, it is possible to see that in the first case policy
intervention is more decisive across both regions than policy
intervention in the second case. For instance, the policy response
with the 0.10% per year discount rate uses higher levels of carbon
taxation and technology subsides in both regions. As a result, the

environmental outcomes are also significantly different; for the
0.10% discount rate, temperature rise is kept below two degrees
Celsius throughout the entire simulation, while for the 1.15%
discount rate, temperature rise continues for over a century until
it is stabilized at∼3◦C. In this case, the cost of policy intervention
is higher for the 0.10% discount rate, but it is important to note
that in comparison to the 1.5% discount rate policy, this policy
requires to be implemented during a shorter period of time (i.e.,
135 vs. 180 years); thus, under alternative climate conditions, it is
also feasible that both policies display similar intervention costs,
or that in fact, the 0.10% discount rate policy becomes cheaper.

The uncertainty associated with the speed of temperature rise
is associated with the limitations of our understanding of the
global climate system. Each general circulation model used by
the IPCC and included in the CMIP5 ensemble uses different
assumptions and parameter values to describe the atmospheric
changes resulting in growing anthropogenic GHG emissions,
and, as a result, the magnitude of the estimated changes varies
greatly among different modeling groups. In this respect, one of
the features of EDIAM is that it uses 12 GCMs included in the
CMIP5 data ensemble to calibrate the parameters ξ, δ, β, and S0 in
Equations (1.4) and (1.6). Thus, in EDIAM, GCMs are described
as unique combinations of climate sensitivity of GHG (β) and
the capacity of the atmospheric carbon sink (δ, S0) as listed in
Table 2.

Figure 4 provides an illustrative example of how different
GCMs may lead to a different structure of the optimal
environmental policy. It shows that for a GCM that displays
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higher climate sensitivity, such as MIROC-ESM-CHEM, it is
possible that under certain circumstances, the optimal policy uses
a higher mix of carbon taxes, research subsidies, and technology
subsidies than in the case of a GCM that displays lower climate
sensitivity, likeNorESM1-M. It also shows that the environmental
outcomes between both scenarios are different: in this case, for

TABLE 2 | Estimated climate parameters using CMIP5 GCM models.

Climate scenario β ξ δ S0

MIROC-ESM-CHEM 6.13 0.010 0.00278 590

GFDL-CM3 6.11 0.010 0.00259 635

MIROC-ESM 5.93 0.010 0.00260 633

bcc-csm1-1 5.00 0.010 0.00182 916

MPI-ESM-LR 4.67 0.010 0.00161 1,042

MPI-ESM-MR 4.67 0.010 0.00161 1,045

NorESM1-ME 4.34 0.010 0.00136 1,236

MRI-ESM1 4.26 0.010 0.00130 1,294

NorESM1-M 4.13 0.010 0.00119 1,415

MIROC5 4.12 0.010 0.00119 1,417

GFDL-ESM2M 3.29 0.010 0.00071 2,403

GFDL-ESM2G 3.19 0.010 0.00063 2,695

The table lists the estimated parameters for the 12 CMIP5 climate models included in this

study; the parameters of Equations (1.4) and (1.6) are listed for each climate model. These

parameters are estimated using CO2 emission levels’ variation across representative

concentration pathways (RCPs) for each of the climatemodels in an autoregressivemodel.

both simulation runs temperature rise is successfully mitigated,
but this occurs at a higher level for climate scenario MIROC-
ESM-CHEM than for scenario NorESM1-M. It also shows that
the cost of policy intervention is unambiguously higher for
climate scenario MIROC-ESM-CHEM because although the rate
of carbon taxation is smaller in climate scenario NorESM1-M,
policy intervention lasts longer in the latter case. Evidently, these
results can change when combined with other uncertainties, yet it
offers an illustrative example of the interplay between the optimal
policy response and the different climate scenarios.

USING MODELS DIFFERENTLY THROUGH

COMPUTATIONAL EXPERIMENTATION

Considering Multiple Dimensions of Merit
Sustainability challenges often deal with multiple spheres (e.g.,
economic, ecological, technological) (Liu et al., 2013; Hull
et al., 2015); as a result, sustainability studies need to deal
with multiple, and often, opposing measures of merit. Climate
change mitigation offers a clear example of this as it requires
the consideration of different metrics to evaluate and compare
the performance of competing policy proposals. In this study,
we focus primarily on the outcome that policy intervention
has on economic and environmental conditions by the end of
the century. This aligns the scope of this work to discussions
associated with the end-of-the century temperature rise and
emission stabilization targets.

FIGURE 4 | Effect of Different Climate Scenarios on Optimal Policy Response’s Structure and Effectiveness. This figure shows temperature rise time series for two

simulation experiments. Both simulations used the same parameter values for the elasticity of substitution (i.e., 8.4) and the discount rate (i.e., 1.50% per year) but are

run for different climate scenarios: MIROC-ESM-CHEM (i.e., orange line) and NorESM1-M (i.e., green). For each simulation, the pointing arrows indicate the resulting

optimal policy as a combination of carbon taxes, research subsidies, and technology subsidies across both regions.
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From an economic perspective, we estimate the cost of
policy intervention by comparing consumption levels across
the policy intervention case and the laissez-faire economy.
Then, the higher the reduction in consumption compared
to the laissez-faire economy, the higher the costs of policy
intervention. From an environmental perspective, we consider
two metrics: the end-of-the century temperature rise level and
end-of-century CO2 atmospheric concentrations. The firstmetric
is useful for comparing policies in terms of the temperature
levels that are plausible with its implementation. The second
metric is useful to analyze whether or not a policy stabilizes
CO2 emissions such that temperature permanently stops rising.
We make this distinction because maintaining temperature rise
below a certain threshold (e.g., two degrees Celsius) does not
entail that atmospheric CO2 concentrations are also stabilized.
Without stabilization, if climate policy is lifted, temperatures will
continue rising.

Experimental Design and Case Generation
We use the elements outlined in the previous sections to
conduct several simulation experiments. The experimental
design includes a full-factorial sampling design across different
EDIAM’s parameters; this includes

• 12 climate scenarios
• 10 elasticity of substitution scenarios
• 5 discount rate scenarios.

We considered all possible combinations of these uncertain
exogenous factors for developing individual model
parametrizations, which yields a total of 600 cases. Table 3

summarizes the scope of the experimental design of this study
using the XLRM framework developed by Lempert (2003), while
emphasizing that we are dealing specifically with uncertain
stressors in the context of sustainability (i.e., XSLRM).

MACHINE LEARNING ALGORITHMS FOR

IDENTIFYING DECISION-RELEVANT

CONDITIONS

Experimental Datasets and Results
Figure 5 describes the sequence of steps we implemented to
produce the datasets used for the analysis described in this
section. For each of the steps in the process, this figure indicates
the method and general characteristics of the datasets produced.
The experimental design consisted of 5,400 optimization runs
across 600 parametrizations that vary climate parameters,
elasticity of substitution, and the discount rate. The optimization
runs estimate the optimal policy response for each of the
parametrizations, considering the restrictions of the different
policy regimes, using Byrd et al. (1995) “L-BFGS-B” method for
constraint optimization. On average, it takes 10,000 simulation
runs to converge on a solution for the optimization problem.
Thus, in total, the results described in the following sections
required∼54 million simulation runs.

Four datasets are relevant for this sequence of steps. The
experimental design dataset describes how the combination

TABLE 3 | XSLRM summary of experimental design.

Uncertain stressors

(XS)

Policy levers (L)

Climate uncertainty:

• 12 Climate scenarios

Economic uncertainty:

• 10 elasticity of

substitution scenarios

• 5 discount

rate scenarios

• P0. FWA (Future Without Action)

• P1. I. Carbon Tax [Both]

• P2. I. Carbon Tax + I.Tech-R&D[Both]

• P3. H. Carbon Tax + Co-Tech[GCF]+R&D[AR]

• P4. H. Carbon Tax+Co-Tech[GCF]+ I. R&D[Both]

• P5. H. Carbon Tax + Co-R&D[GCF]+Tech[AR]

• P6. H. Carbon Tax + Co-R&D[GCF]+I. Tech[Both]

• P7. H. Carbon Tax + Co-Tech-R&D[GCF]

System relationships

(R)

Metrics (M)

• Exploratory dynamic

integrated assessment

model (EDIAM)

• End-of-century temperature rise

• Stabilization of GHG emissions

• Economic costs of policy intervention

The main components of the exploratory analysis are grouped according to four different

categories: (1) the deep uncertainty scenario taken into account (i.e., 12 climate scenarios,

10 Elasticity of Substitution Scenarios, and 5 Discount Rate Scenarios), (2) the policy

regimes analyzed (i.e., 8 different policy regimes, (3) the system relationship that links

actions to consequences (i.e., EDIAM model), and (4) the metrics considered to analyze

the performance of different policies.

of climate and economic parameters vary across the different
optimization runs. In terms of its cardinality, there are 600
unique combinations of parameters in this dataset, identified
by unique future ids, which are combined with the 9 policy
regimes, indicated by a unique policy id. The optimal policy
response dataset describes for each of the 5,400 runs the
combination of policy parameters that solves the optimization
problem described in section Virtual Laboratories and Policy
Regimes; each of these optimal vectors is unique, since each
of the estimated variables is continuous (e.g., carbon tax rates,
subsidy rates, and R&D intensities). The simulation dataset
describes the dynamic behavior of the system under these 5,400
optimal policy vectors using 66 output variables of the EDIAM
model. Finally, in the scenario discovery dataset, we aggregate
simulation results by summarizing the dynamic behavior of each
run using an expanded set of variables that compare absolute
and relative behavior across regions and sectors. For instance, by
comparing end-time technological progress with respect to initial
conditions, technological progress in competing sectors within
regions, and technological progress across regions.

Results from the simulation runs generated by the
experimental design are shown in Figure 6. These results
are useful for highlighting some of the features of the system
and of the policy response. The figure shows that there is
ample variation with respect to the penetration levels of
sustainable energy that can be achieved through the various
policy regimes. It is possible to see that the FWA (i.e., laissez-
faire economy) results in limited penetration of sustainable
energy across both regions, and as a result, end-of-century
temperature rise levels are close to the environmental limit
(i.e., 6◦C). Figure 6 also reveals that the best environmental
outcomes are concentrated in the upper right corner of
these panes. These futures represent scenarios in which
the policy response induces a successful transition toward
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FIGURE 5 | Sequence Used for Data Production and Analysis. Blocks denote analytical steps used for producing the datasets for this analysis. The general

characteristics of the methods and datasets used in the analysis are indicated in each box.

FIGURE 6 | Example of Experiment Results across Different GCMs. Each point describes an individual future through the penetration of sustainable primary energy as

percent of total secondary energy production for the emerging region (x-axis) and for the advanced region (y-axis). The size of the points reflects the type of policy

regime, the smaller points denote policy regimes which include the FWA and the two non-GCF policies (i.e., P1 and P2), and bigger points indicate GCF-based

policies (i.e., P3, P4, P5, P6, and P7). The color legend denotes end-of-the century temperature rise; the green points describe temperature rise conditions closer to

the 2◦C target, while the red points describe temperature rise conditions closer to the environmental disaster condition of 6◦C. The figure includes four panes; each

pane displays results for a different GCMs.

sustainable energy across both regions. It is possible to see
that the non-GCF policies (i.e., P1 and P2) can achieve similar
levels of penetration of sustainable energy in both regions
than GCF-based policies (i.e., P3–P7). These results also
show that policy performance varies across GCMs in terms

of the penetration of sustainable energy and the resulting
temperature rise.

The structure of the optimal environmental policy varies
across the uncertainty space in order to meet the climate
policy targets described. This variation in the structure of the
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FIGURE 7 | Changes in Optimal Response’s Structure Across Different Elasticity of Substitution, Climate Sensitivity, and Discount Rate Scenarios. P2: I. Carbon Tax +
I. Tech-R&D [Both]. For each panel (A,B), the left panes describe changes in the structure of the optimal policy in the advanced region (AR) and the right panes

describe changes in the emerging region (ER) for the independent comprehensive policy regime (P2). The top panes show results for the individual carbon taxes, the

middle panes for R&D subsidies, and the bottom pane for technology subsidies. Uncertainty values are described using three bins; for the elasticity of substitution,

these bins are defined as low, medium: [5:8), and high: [8:10); for climate sensitivity, these bins are defined, considering the range of values presented in Table 2, as

low: [3:5), medium: [5:6), and high: [6,7); and for the discount rate, these bins are defined as low: [0, 6%), medium [6,12%), and high [12,15%). The legend of each cell

represents the mean value of the policy element for the subset of futures describe by the intersecting bins (elasticity of substitution, climate sensitivity, and discount

rate). The color legend denotes the effort level of the policy response: colors toward red denote higher effort policies; colors toward green denote lower effort policies.

optimal response has important implications for policy design
and exemplifies the richness of the experimental results. For
example, Figure 7A shows for policy P2: I. Carbon Tax + I.
Tech-R&D [Both] how the optimal response changes across two
parameters: the elasticity of substitution and climate sensitivity
to GHG. The left panes describe changes in the structure of the
optimal policy in the advanced region (AR), and the right panes
describe changes in the emerging region (ER). The top panes
show results for the individual carbon taxes, the middle panes for
R&D subsidies, and the bottom pane for technology subsidies.
The results presented in this figure show that the structure of
the optimal policy is very sensitive to the combined effect of the
elasticity of substitution and climate sensitivity: the higher the
climate sensitivity and the lower the elasticity of substitution,
then the higher the effort of the optimal policy response.

The discount rate is another important factor that influences
the structure of the optimal policy response. Figure 7B describes
changes in the structure of the optimal policy across different
scenarios of the elasticity of substitution and the discount rate.
As expected, it shows that the strength of the policy response
increases as the discount rate diminishes. However, in this case
it is possible to see that as the elasticity of substitution increases,
the influence of the discount rate in the structure of the optimal

policy diminishes. For high elasticity of substitution scenarios,
it is possible to see that the structure of the optimal policy is
insensitive to changes in the discount rate. These results highlight
the importance of regional differences in defining the structure
of optimal environmental regulation. It is possible to see that in
the emerging region carbon taxation is always equal or higher
than carbon taxation in the advanced region. In contrast, the
technology policy elements of optimal environmental regulation
are higher in the advanced region than in the emerging region.
Since technologies are developed in the advanced region, then the
optimal policy prioritizes accelerating technology development
over taxation in this region, while in the emerging region, higher
taxation creates a strong market niche for sustainable energy,
which is used more effectively by R&D and technology subsides
that accelerate the technological catching-up process.

A similar analysis for policy regime P7 “H. Carbon Tax
+ Co-Tech-R&D[GCF]” shows that under the GCF the level
of carbon taxation reduces for both regions compared to the
level of taxation in the non-cooperative policy regime (i.e., P2).
Additionally, the optimal level of effort in R&D and technology
subsidies in the emerging region is on average higher than the
optimal level of effort in the non-cooperative policy regime. This
indicates that under the GCF, it is feasible for the emerging region
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to make higher investments in R&D and technology subsidies
and reduce the rate of taxation. Similarly, for the advanced
region, these results show that it is possible to reduce the level
of carbon taxation by co-funding R&D and technology subsidies
in the emerging region. Finally, the results show that in the
most adverse scenarios under the GCF (i.e., low elasticity of
substitution and high climate sensitivity), optimal environmental
regulation requires higher R&D and technology subsidies in the
emerging region than in the advanced region.

Machine Learning Algorithms for

Describing Vulnerability Conditions
The previous section describes general characteristics of the
experimental datasets and insights of the computational
experiment. Yet, these results do not provide a systemic
understanding of how the interaction of the set of stressors
considered in the experiment affect the structure and
effectiveness of optimal climate policy response under
uncertainty. To address this, we follow two steps. First, we
classify experimental outcomes with respect to whether or not
specific policy objectives are met. Second, we use non-parametric
clustering analysis for understanding the combination of factors
that lead to meeting these objectives. We consider an outcome
is not vulnerable when the temperature target (i.e., 2◦C) and/or
the stabilization targets are met. This suggests that there are two
outcome types of interest in this experiment:

1. Simulations in which the 2◦C end-of-century temperature rise
target is met

2. Simulations in which the 2◦C end-of-century temperature rise
target and CO2 stabilization are met.

Table 4 presents the performance statistics of different policy
regimes across the 600 parametrization cases considered for
these two outcome types. As expected, the FWA does not meet
any of the climate change objectives. It also shows that for
the independent carbon tax policy (i.e., P1) in the majority
of simulations, it is possible to keep the temperature rise
below 2◦C, but in none of these cases is this policy able
to stabilize CO2 emissions. This shows that this policy is
effective in delaying temperature rise but is less effective at
inducing successful decarbonization across regions. In contrast,
policies that complement carbon taxes with R&D and technology
subsidies are able to meet the CO2 stabilization targets in a higher
number of futures. It is possible to see that the stabilization
targets are met in less than one third of the futures considered.
In this respect, some of the GCF-based policies (i.e., P4 and P7)
are slightly more effective than the non-GCF policy (i.e., P2) in
meeting the stabilization target.

For the second step, we use the algorithm PRIM (Patient
Rule Induction Method) (Friedman and Fisher, 1999), a
non-parametric bump hunting classification algorithm, to
quantitatively describe vulnerability condition of different
policies. In particular, we use PRIM in the context of the scenario
discovery method developed by Bryant and Lempert (2010).
Thus, for each policy regime, we classify simulation outcomes
into two cases of interest (Is): (1) cases in which the policy

TABLE 4 | Performance of optimal policy response across different policy regimes.

Policy name Number (percentage) of futures meeting

the end-of-century climate policy target

Temperature rise below 2◦C

CO2 stabilization

achieved

CO2 stabilization not

achieved

P0. FWA 0 (0) 0 (0.0)

P1. I. Carbon Tax [Both] 0 (0) 375 (62.5)

P2. I. Carbon Tax + I.

Tech-R&D[Both]

153 (25.5) 398 (66.3)

P3. H. Carbon Tax +
Co-Tech[GCF] + R&D[AR]

130 (21.7) 344 (57.3)

P4. H. Carbon Tax +
Co-Tech[GCF] + I. R&D[Both]

153 (25.5) 391 (65.2)

P5. H. Carbon Tax +
Co-R&D[GCF] + Tech[AR]

130 (21.7) 395 (65.8)

P6. H. Carbon Tax +
Co-R&D[GCF] + I. Tech[Both]

145 (24.2) 415 (69.2)

P7. H. Carbon Tax +
Co-Tech-R&D[GCF]

165 (27.5) 402 (67.0)

The table summarizes the performance of each policy across the 600 parametrizations

considered for the four outcome types. The numbers (percentage) of parametrization

meeting the different end-of-century climate policy targets are listed under each column.

target is met and (2) cases in which the policy target is not
met. Then, PRIM is used to parse the simulation database
into concise clusters that describe dimensional conditions under
which policies do not meet targets. This is done through the
estimation of recursive peeling trajectories, as class types often
require more than one cluster to be fully described. This implies
that once an initial cluster is chosen, the algorithm removes all the
data points from the dataset inside the first cluster and replicates
the peeling/pasting process with the remaining data.

Two statistical measures are used to describe the suitability
of a decision relevant cluster. Coverage (Equation 2) measures
how completely the cases defined by cluster B cover the cases of
interest (Is); in this study, this is the percent of total vulnerable
cases that are captured by the cluster. Density (Equation 3)
measures the purity of the scenarios; in this study, this is
the percent of cases within the cluster that are vulnerable.
Interpretability of these cluster is an important subjective
measure; generally, the fewer dimensions used by the cluster, the
higher its suitability for the analysis.

Coverage =
∑

xi∈B yi
′

∑

xi∈xI y
′
i

(2)

Density =
∑

xi∈B yi
′

∑

xi∈B 1
(3)

where yi′ = 1 if xi ∈ Is and yi
′ = 0 otherwise.

We first use scenario discovery to understand the cases in
which end-of-century CO2 stabilization at 2◦C targets is not met.
These are futures in which CO2 stabilization is not achieved
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FIGURE 8 | PRIM Boxes Describing Decision Relevant Scenarios. Filled circles show non-vulnerable cases, where the CO2 stabilization and temperature rise targets

are met, and open circles indicate futures in which one of these two targets is not met. These futures are plotted across the two uncertainty dimensions that are found

to be most relevant using PRIM: (1) the elasticity of substitution and (2) the climate sensitivity to GHG.

and in which end-of-century temperature rise is above 2◦C.
Figure 8 shows the results of this clustering analysis. The figure
shows a series of scatter plots of all futures for different policy
regimes. Filled circles show non-vulnerable cases, where the CO2

stabilization and temperature rise targets are met, and open
circles indicate futures in which one of these two targets is
not met. These futures are plotted across the two uncertainty
dimensions that are found to be most relevant using PRIM:
(1) the elasticity of substitution and (2) the climate sensitivity
to GHG. High values of the elasticity of substitution describe
scenarios in which the technologies across sectors are highly
substitutable, which are more favorable for climate policy. Low
values of the elasticity of substitution denote scenarios in which
sectors are less substitutable, which makes it harder to move
away from fossil energy. For the case of climate sensitivity, high
values describe climate scenarios in which global temperature
rises rapidly with growing CO2, thus making it harder to
keep temperature levels below the 2◦C target. Low values are

associated with climate scenarios for which global temperature
rises less abruptly with growing CO2 emissions. Finally, the
shaded regions highlighted in yellow and blue were selected
using scenario discovery to describe these sets of vulnerable
futures. Table 5 provides a detailed description of the boundary
conditions of each scenario box, as well as the corresponding
coverage and density statistics that describe to which extend these
scenario boxes adequately capture the vulnerable conditions of
each policy.

The results presented in Figure 8 and Table 5 show
that the vulnerability region varies slightly across the
different environmental policy regimes. For the independent
comprehensive policy (“P2 I. Carbon Tax+I. Tech-R&D[Both]”),
the vulnerability region is defined solely by the elasticity of
substitution. The optimal policy under this regime fails to meet
the stabilization target in all scenarios that do not display a high
elasticity of substitution. For the other three policy regimes,
the vulnerability region is described by both the elasticity of
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TABLE 5 | Scenario discovery analysis summary results for stabilization target.

Policy name Scenario

box

Scenario description Coverage Density

P2. I. Carbon Tax + I. Tech-R&D[Both] Box1 • Elasticity of substitution < 9.0 99% (445/447) 93% (413/447)

P4. H. Carbon Tax + Co-Tech[GCF] + I.

R&D[Both]

Box1 • Climate sensitivity to GHG > 4.5 53% (237/447) 80% (190/237)

Box2 • Elasticity of substitution < 8.0

• Climate sensitivity to GHG < 4.5

45% (202/447) 95% (182/202)

P6. H. Carbon Tax + Co-R&D[GCF] +
I.Tech[Both]

Box1 • Elasticity of substitution < 9.5

• Climate Sensitivity to GHG > 4.0

86% (392/455) 87% (341/392)

Box2 • Elasticity of substitution < 7.6

• Climate sensitivity to GHG < 4.0

13% (60/455) 100% (60/60)

P7. H. Carbon Tax + Co-Tech-R&D[GCF] Box1 • Elasticity of substitution < 9.5

• Climate sensitivity to GHG > 5.5

30% (130/435) 97% (126/435)

Box2 • Elasticity of substitution < 8.0

• Climate sensitivity to GHG > 5.5

70% (305/435) 97% (296/305)

The table summarizes the statistical properties (i.e., coverage and density) of the scenario boxes describing the vulnerability conditions of each policy regime. The quantitative thresholds

defining each scenario box are listed.

substitution and climate sensitivity. Scenario box 1 describes
“high climate sensitivity futures,” while Scenario box 2 describes
“medium-to-low elasticity of substitution scenarios.” Differences
in the vulnerable region exists between these three policy
architectures, namely, that the comprehensive GCF policy (“P7.
H. Carbon Tax + Co-Tech-R&D[GCF]”) shows a greater area of
success than the other three policy architectures.

These results also show that out of the four uncertainties
considered in this analysis, (1) elasticity of substitution, (2)
climate sensitivity, (3) atmospheric carbon sink capacity, and (4)
the discount rate, only the first two determine whether or not the
optimal policy achieves the objective of stabilizing CO2 emissions
at sustainable levels before the end of the century. Arguably, out
of these two factors, the elasticity of substitution plays a more
fundamental role in determining the vulnerability of the policy
response, as all scenarios that display medium to low elasticity
of substitution are vulnerable across all policy regimes, while
high climate sensitivity scenarios induce vulnerability at high
elasticity of substitution scenarios for three out of the four policy
regimes considered.

On the other hand, the end-of-century 2◦C temperature rise
target is met in a greater number of futures than the stabilization
target. This implies that the former is a more achievable
target than the later. Certainly, meeting the stabilization target
would be highly beneficial as this would imply that climate
change would not be a prevailing public policy problem
after the end of the century; however, the results show that
this target is met only under very favorable economic and
environmental circumstances.

DISCUSSION

Key Lessons From the Case Study
The results presented in the previous sections show that the
combined application of multiple computational intelligence
tools produces new insights andmore detailed information about

the effectiveness of different climate policy regimes. First, the
use of the EDIAM model allows for the joint consideration
of multiple regions and the interaction between the economy,
the environment, and optimal climate policy. As a result, it is
possible to analyze climate change policy multidimensionally
in terms of both its ability to mitigate temperature rise and
its economic cost (or benefit). Second, by using the EDIAM
model in a computational experimentation setting, we show that
an uncoordinated carbon tax is the highest cost policy in the
majority of cases and that interregional cooperation through
the GCF can sometimes be more costly than independent
comprehensive climate policy. Our experiment also highlights
that there are noticeable differences between policies in terms of
the period of time required to achieve stabilization (cooperation
between regions generally induces decarbonization faster than
non-cooperation). However, we also find that for a considerable
number of futures, policy intervention needs to remain in place
for as long as 300 years.

Through the application of data visualization techniques, we
show that it is possible to describe the dynamics of optimal
climate regulation. It doing so, we find that regional differences
play a significant role in determining the structure of the
optimal policy response. Particularly, we show that in emerging
economies carbon taxation is always equal or higher than carbon
taxation in advanced economies. In contrast, the technology
policy effort of climate policy is stronger in advanced economies
than in the emerging economies. Since mitigation technologies
aremainly produced in advanced nations, then the optimal policy
prioritizes accelerating technology development over taxation in
this region, while in the emerging region, higher taxation creates
a strong market niche for sustainable energy diffusion, which
is used more effectively by R&D and technology subsidies that
accelerate the technological catching-up process.

We demonstrate that it is possible to use clustering algorithms
to quantitatively identify key drivers of vulnerability of climate
policy across various objectives. We find that out of the four
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FIGURE 9 | Hierarchical Relationship Between Computational Tools.

stressors considered, (1) elasticity of substitution, (2) climate
sensitivity to GHG emissions, (3) discount rate of economic
agents, and (4) carbon sink capacity, only the first two determine
whether or not the optimal policy achieves the objective of
stabilizing CO2 emissions at sustainable levels before the end of
the century. Considering the relevance of the debate about the
appropriate value of the discount rate in climate policy analysis,
this finding, which shows that there are more critical drivers of
climate policy vulnerability, exemplifies very well the benefits
of combining different computational tools for decision analysis
in complex systems. Finally, we show that for the independent
carbon taxes policy (i.e., P1), in the majority of cases, it is possible
to keep the temperature rise below 2◦C, but in none of the cases,
this policy is able to stabilize CO2 emissions before the end of
the century.

A Hierarchy of Computational Tools for

Analyzing Sustainability Challenges
The combined application of various computational tools to this
case study yields lessons with respect to their hierarchical relation
for analyzing sustainability challenges amid complexity and
deep uncertainty. Figure 9 describes this hierarchy schematically;
each block represents an analytical element to be integrated
in the analysis of sustainability challenges, and arrows indicate
information flows in this hierarchy.

As shown in this case study, the first layer in this hierarchy
englobes optimization and Integrated Assessment Models
(IAMs). The combination of both perspectives is conducive
for analyzing sustainability challenges. IAMs provide the
required formalism and tractability for taking into consideration
sustainability interdependencies across spheres. Optimization
provides the analytical framework needed for formalizing policy
options in the light of sustainability objectives. This requires
adequate cost estimates of competing alternatives, formalization

of decision restrictions, and sustainability performance metrics
for all systems considered. The second layer pertains to the
integration of the models produced in the first layer with
exploratory modeling (Bankes, 1993; Kwakkel, 2017). The
intention of using exploratory modeling is to produce, for
each parametrization case, a vector of optimal action. This
yields a rich database that maps out changes in optimal
action across the often vast ensemble of cases considered.
The third layer of this hierarchy connects with the second
by the direct application of data visualization and machine
learning techniques. Machine learning techniques, in particular
clustering techniques and decision rule classifiers, can be used to
identify statistically (a) vulnerability conditions of sustainability
objectives across policy alternatives and (b) critical thresholds
for triggering different actions. Data visualization techniques
can be particularly useful to track down changes of the
optimal policy response across the parameterization space and
to create decision-support tools to be used in participatory
planning exercises.

This integration of computational tools is useful because
the statistical evidence produced through the integration of
these tools leads to a more nuanced understanding of the
conditions under which different policy alternatives are more
appropriate for achieving sustainability goals. For example,
Molina-Perez et al. (2019) apply a similar approach for analyzing
sustainability water challenges amid climate, economic, and
technological deep uncertainty. In their analysis, the authors
integrate econometric, water, and climate modeling tools to
develop an IAM, which is combined with an optimization
framework that assesses how to best expand the water
infrastructure of Monterrey, Mexico. Their results show that
it is possible to develop a robust expansion strategy that
meets systems’ reliability and environmental restrictions without
exposing the city to large financial and operational risks. Such
strategy is comprised of a diversified collection of projects that
considers both conventional and non-conventional expansion
strategies and that postpones large infrastructure investment
until more information about climate and technological change
becomes available.

There are multiple avenues for future research with respect
to integrating multiple computational tools for analyzing
sustainability challenges. On the one hand, this line research
will greatly benefit from standard statistical procedures for
designing experimental designs that reduce the risks of biases
and increase precision of estimations. This is challenging as
each one of these tools (i.e., simulation models, optimization,
and machine learning algorithms) needs to be calibrated,
trained, and parametrized. In current studies, this is mainly
done ad hoc and there is little evidence describing, for
example, how parameter selection in an optimization routine
impacts statistical inference of a classification algorithm; the
same is true for experimental designs in exploratory modeling
exercises. On the other hand, there is ample room for
studying, from a behavioral perspective, how to best transfer
findings of these studies to non-specialized audiences. For
instance, experimental evidence comparing the impact on
knowledge transfer of different combinations of computational
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tools could shed light on the most appropriate approach
for integration.

CONCLUSIONS

This paper applies DMDU methods to structure an analysis
of global climate change mitigation and to demonstrate
that the combination of multiple computational tools
for analyzing this sort of sustainability challenges leads to
richer analytical insights than those produced by traditional
monodisciplinary studies.

The scope of the computational experiment in the study
considers nine different policy regimes and 600 different
optimization cases. The ensemble of cases combines four sources
of uncertainty: elasticity of substitution, discount rate, climate
sensitivity to GHG, and atmospheric carbon sink capacity. The
performance of the different policy regimes is evaluated in terms
of the end-of-century conditions. Particularly, the performance
of each policy regime is evaluated in terms of its capacity
to meet two climate change sustainability objectives: (1) the
stabilization of CO2 emissions and (2) the 2◦C temperature
rise target.

The analysis shows that the structure of optimal
environmental regulation changes markedly across the
uncertainty space. The results show that the optimal
policy response is most affected by climate sensitivity
uncertainty and the elasticity of substitution uncertainty.
In particular, the strength of the optimal policy response
is directly proportional to the level of climate sensitivity
to greenhouse gas emissions and inversely proportional
to the elasticity of substitution between the sustainable
energy and fossil energy sectors. We also show that the
discount rate does affect the structure of the optimal policy
response, but its influence is less significant when compared
to the influence of climate sensitivity and the elasticity
of substitution.

The comparison of GCF-based policy regimes and non-
GCF policy regimes shows that the GCF does affect the
structure of climate policy. These results show that under the
GCF the level of carbon taxation reduces for both regions
compared to the level of taxation in the non-cooperative
policy regimes. Also under the GCF, the optimal level of effort
in R&D and technology subsidies in the emerging region is
on average higher than the optimal level of effort in the
non-cooperative policy regime. This indicates that under the
GCF it is feasible for the emerging region to make higher
investments in R&D and technology subsidies and reduce
the rate of taxation. Similarly, for the advanced region it
is shown that it is possible to reduce the level of carbon
taxation by co-funding R&D and technology subsidies in the
emerging region.

We use machine learning algorithms to analyze the
experimental database. These results show that the objective
stabilizing CO2 emissions below 2◦C before the end of the
century is rarely met. Two decision relevant clusters describe

this type of vulnerability: (1) high climate sensitivity to
greenhouse gas emissions and (2) medium-low elasticity of
substitution. In contrast, the 2◦C temperature rise target
without CO2 stabilization is met in a greater number of
cases. For both types of vulnerability, the role of discount
rate in defining the vulnerability conditions is found
to be minimal.

This analysis shows that by integrating optimization, complex
simulation models, and machine learning algorithms, it is
possible to quantitatively identify key drivers of vulnerability
of climate change mitigation policies. Drawing on lessons
from this case study, we propose an analytical hierarchy
of computational tools that can be applied to other
sustainability challenges. The first layer of this hierarchy
consists of coupling IAMs with optimization to capture
sustainability interdependencies across systems and path
dependencies of optimal policy decisions. The second
layer proposes to use exploratory modeling (Bankes, 1993;
Kwakkel, 2017) to deal with deep uncertainty. Finally, the
third layer of this hierarchy connects with the second by
the direct application of data visualization and machine
learning techniques for identifying relevant decision clusters,
characterizing vulnerability conditions, and identifying critical
sustainability thresholds.
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In this study, we report the investigations conducted on the mimetic behavior of a new

humanoid robot called Alter3. Alter3 autonomously imitates the motions of a person in

front of it and stores the motion sequences in its memory. Alter3 also uses a self-simulator

to simulate its own motions before executing them and generates a self-image. If the

visual perception (of a person’s motion being imitated) and the imitating self-image differ

significantly, Alter3 retrieves a motion sequence closer to the target motion from its

memory and executes it. We investigate how this mimetic behavior develops interacting

with human, by analyzing memory dynamics and information flow between Alter3 and

a interacting person. One important observation from this study is that when Alter3 fails

to imitate a person’s motion, the person tend to imitate Alter3 instead. This tendency

is quantified by the alternation of the direction of information flow. This spontaneous

role-switching behavior between a human and Alter3 is a way to initiate personality

formation (i.e., personogenesis) in Alter3.

Keywords: personogenesis, agency, imitation, self-simulation, memory, reconsolidation, humanoid robot

1. INTRODUCTION

We present a new humanoid robot named Alter3 (Figure 2) and analyze the dynamics of Alter3’s
interactions with humans. The philosophy behind Alter3 is grounded in long-running discussions
around human/robot cognition (see section 2). We are particularly interested in Rössler’s argument
of an artificial cognitive map system (Rössler, 1981), and we attempt to realize and extend
his ideas with Alter3. Rössler named the self-organization of a dynamic cognitive map under
locomotion as the “Helmholtz–Poincare–Tolman” hypothesis based on Helmholtz’s internal map
system generated through locomotion (Von Helmholtz, 1867), Poincare’s internal and external
representation of the world (Poincarẽ, 1905), and Tolman, O’Keefe, and Nadal’s ideas of a cognitive
map, which was later discussed in relation to placing cells in the hippocampus (O’Keefe and Nadel,
1978).

Dayan et al. (1995) later argued that Helmholtz’s idea could be implemented in a self-supervised
hierarchical neural system, which they called a Helmholtz machine. The Helmholtz machine is
based on an inference system that uses variational Bayesian networks. It is essentially equivalent
to a Boltzmann machine (Hinton and Sejnowski, 1983) and provides a basis for a variational
autoencoder (Kingma and Welling, 2014).

Apart from the probabilistic approach to cognitive map systems, a dynamic systems approach
has also been studied. Jun Tani, for example, studied the self-organization of a neural representation
of an environment, with a recurrent neural network on a navigation robot in a real environment
(Tani, 1996). More recently, using long short-term memory networks, Noguchi et al. (2019)
demonstrated the modality of self-organization of a cognitive map in a navigation robot. The
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current research is not a probabilistic approach to cognitive
map systems. However, it is not, in the strict sense, a dynamic
systems approach, as the updates of the entire system are not
synchronized, and above all, it can only operate as a system when
it interacts with humans.

Rössler’s autonomous navigation system is based on a digital
scanner and a digital flight simulator. Alter3 is the realization of
another autonomous machine, with a completely new purpose.
The purpose is to investigate the ways in which a humanoid robot
becomes a person, which we call the “personogenesis” (Rossler
et al., 2019) of a humanoid robot. “Personogenesis” refers to the
process by which an agent acquires free will to act out of its
own volition, much like an independent person. In addition, it
may perceive happiness from the emotions of a person or be able
to display similar emotions. For example, human babies imitate
the mother’s facial expressions automatically, which is called
primitive mimicry (Meltzoff andMoore, 1989), and then advance
to the personogenesis phase. In Rossler et al. (2019) and Rossler
(1987), this advancement is initiated by two coupled agents: “the
twomirror-competent brain equation carriers with cognition and
memory and mirror competence suddenly become, if coupled
in a cross-caring fashion, their own masters.” In other words,
coupled agents (one of the two can be a real person) can
suddenly share and exchange happy mental states with each
other. Our primary goal is to observe the transition from
the primitive automatic mimicry phase to personogenesis in a
humanoid robot.

Alter3 autonomously imitates the motion of a person in front
of it and stores those motions in its memory in the form of
a time series. At the same time, the self-simulator included in
Alter3 simulates Alter3’s motions and generates a self-image. If
the visual perception (the motion of the person being imitated)
and the self-image differ significantly, Alter3 retrieves a motion
from memory that is closer to the human motion and enacts the
retrieved motion. In both the cases, Alter3’s spontaneous neural
dynamics affect the generation of motion. Thus, Alter3 involves
three primary functions/features: an automatic mimicry capacity,
self-simulation, and memory selection/variation with a neural
noise source. To the best of our knowledge, this is one of the first
study to focus onmemory-driven imitation in a humanoid robot.

1.1. Automatic Mimicry Capacity
Piaget’s major assumption in his cognitive development theory
(Piaget, 1966) is based on mimicry. It is known that newborn
infants automatically imitate the facial and manual gestures of
adults (Meltzoff and Moore, 1989). This ability is believed to be
an innate characteristic and is observed in human babies when
they are approximately 3 months old. In the design of Alter3,
imitation is considered an important step in the development of
cognitive abilities. Therefore, we implemented an algorithm that
imitates the motion of a person captured by the eye camera.

1.2. Self-Simulation
A self-simulator forms a mental image of the self. Recently,
David Ha and Jürgen Schmidhuber worked on model-based
reinforcement learning and proposed a “world model” (Ha
and Schmidhuber, 2018). In this model, an agent learns an

environmental model that includes its behavior and uses the
environmental model for simulation. It demonstrates that a
control policy can be trained in the simulated world.

While these are examples of self-simulators that include not
only the self but also the environment, Alter3’s self-simulators
are more specific to the self-image. A more pertinent study
is that of the self-modeling agent proposed by Bongard et al.
(2006). Because a four-legged agent acquires a self-model by
autonomously generating its own behavior, even if one of the
legs is removed, the self-model is able to adapt. Kwiatkowski and
Lipson (2019) extended this study by replacing the self-model
with a neural network.

In these studies, the self-simulator is autonomously acquired
through evolutionary processes or through learning by neural
networks; however, in our study, we assume that the self-
simulator has already been acquired in Alter3, and the parameters
are fixed. This is done to focus specifically on the acquisition of
individuality, based on the development of memory through the
imitation of human motion.

1.3. Memory Selection and Variation
As soon as Alter3 generates a motion, it stores the motion
pattern in its memory buffer. The memory is realized as a
queue of chunks (3 s each), with a size of 50 chunks (= 1,500
frames). When the memory is full, the oldest memory chunks are
removed, and new memory chunks are added to the queue (i.e.,
first in, first out).

Alter3 imitates the behavior of the person in front of it (this
is called the awake or open-eye mode). Alter3 uses the memory
queue when it is difficult to imitate behavior or when no human
is in front of it. It searches for the optimal behavioral pattern
evaluated by the optical flow in the memory chunk. When a
memory is retrieved and executed, it is modified by the neural
state. This allows the memory to be recalled and rewritten
without the presence of a person. Specifically, after the recalled
motion is executed, it is combined in spontaneous neural activity
to be stored as a slightly different motion. The more it is recalled,
the more the memory makes a slightly deformed copy of itself. It
can be seen as a Darwinian evolutionary process of the memory.
This is called the dream mode or the closed-eye mode.

The details of these algorithms are given in section 3.

2. RELATED WORKS ON IMITATION IN
HUMANOIDS ROBOTS

Imitation of human behavior by humanoid robots is a long-
standing theme in terms of cognitive and biological aspects (see
e.g., Schaal, 1999). There are two types of imitation studies in
robotics: one for learning and the other for communication.
Both share the same underlying mechanism of imitation,
while the former uses imitation as a learning tool with an
explicit purpose, the latter has no specific purpose for imitation
besides communication.

Schaal (1999) claimed that imitation would be a promising
approach for developing cognition in a humanoid robot. In
the recently surveyed article by Hussein et al. (2017), learning
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through imitation is presented as a viable research area for novel
learning methods. Although most works on imitation consider
it as a strategy for learning from humans unidirectionally, we
are more interested in bidirectional imitation learning—human
to robot and robot to human. We call this approach “imitation
for communication.”

Through communication, people develop the social ability
to think about others and maintain a good relationship,
and imitation plays a significant role in this process. As in
Trevarthen’s experiments (Trevarthen, 1977) with infant–mother
communication, and Nadal’s study on pretend-play behavior
between two children, imitation is a strong driving force for
organizing lively interactions (Nadel et al., 2004). Christopher
Nehaniv and Kerstin Dautenhahn edited a book on imitation
and social learning (Nehaniv and Dautenhahn, 2007). They also
started the Aurora project, which aims to help autistic kids
acquire social skills with the use of robots (The AuRoRA Project,
1998).

Along with the “imitation for communication” approach,
Ikegami and Iizuka (2007) and Iizuka and Ikegami (2004)
studied a turn-taking game to show how imitation emerges as
a by-product of mutual cooperation. The present work is a
continuation of the previous approaches, in a new humanoid
body, with new memory dynamics and a self-simulator.

3. SYSTEM ARCHITECTURE

Figure 1 shows an overview of Alter3’s internal system. The
system is a combination of Rössler’s autonomous cognitive map
system (Rössler, 1981) and Frith, Blakemoore, and Wolpert’s
comparator model (Frith et al., 2000). We extended it to include
a memory state and a neural network as a spontaneous dynamics
circuit. As mentioned earlier, the system is constructed with three
functionalities in mind:

(1) Automatic imitation capability.
(2) Self-simulation.
(3) Memory selection and variation through spontaneous

dynamics.

In this section, we explain the methods used to achieve the above
three functionalities and describe Alter3’s hardware.

3.1. Humanoid Alter3
Alter3’s body has 43 movable air actuator axes, and its motions
can be controlled through a remotely placed air compressor that
is mediated by a control system (Figure 2). More specifically,
its motion is controlled by two types of commands: SETAXIS
and GETAXIS. A SETAXIS command, which can be regarded
as a motor command, is used to set each axis of the humanoid

FIGURE 1 | System architecture of Alter3 for the imitation of human behavior. Alter3’s motion is controlled by three main subsystems: a self-simulator, an automatic

mimicry unit, and memory storage. Additionally, autonomous neural dynamics perturb the memory system. When Alter3 retrieves a memory chunk and executes it,

the retrieved chunk is varied with the neural states and stored again. The details of each module are described in section 3. The mode-selection mechanism is also

described in the section and Figure 5.
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robot to a desired value. By contrast, a GETAXIS command
is a command used to retrieve the current axis angle realized
on Alter3. Ideally, it is expected that the value obtained from
GETAXIS will be the same as the value set by SETAXIS. However,
the actual value set for each axis can differ from the intended
value. Such differences are caused by physical constraints and
latency owing to the body being driven by air actuators. The
control system sends commands via a serial port to control the
body. Alter3’s motions are determined online, and the refresh rate
is 100–150 ms.

Alter3 has two cameras, one in each eye, which send visual
images to a control system. The camera images are used to extract
the key points of the skeleton posture of a human in front of
Alter3, using a software called OpenPose (Cao et al., 2017). Alter3
uses the key points of the skeleton to imitate the human posture.
In the following sections, the image processing system used for
imitation is described in detail.

3.1.1. Automatic Mimicry Capacity
In the awake mode, Alter3’s motor commands are generated by
the automatic mimicry module through the following processes:

1. Detect a human pose.
2. Map the detected human pose to the angles of the axes.
3. Generate motor commands from the obtained angles and

Alter3’s spontaneous neural dynamics.

An image from the eye camera is taken as input to a pose
detection algorithm. We used OpenPose (Cao et al., 2017) as the
algorithm. It detects human poses and generates the positions of
key points, such as the head, neck, shoulders, elbows, and wrists.
The configuration of the key points of a human skeleton differs
from that of the axes in Alter3, and angles of the axes are required
as motor commands for Alter3; therefore, we map the positions
to the angles. The components responsible for these processes
partially constitute Alter3’s body schema and can be regarded as
the controller in the comparator model (Frith et al., 2000). When

FIGURE 2 | Body of Alter3. The body has 43 axes that are controlled by air

actuators. It is equipped with a camera inside each eye.

OpenPose detects poses of multiple people, Alter3 focuses on the
center-most person in its visual field and imitates the person’s
pose. Once the person is locked into Alter3’s vision, the person
is tracked until the person disappears from its view.

Alter3’s spontaneous dynamics consist of spiking neurons
(Izhikevich, 2003) that are combined with the calculated angles
of the axes as a weighted average to calculate the final axis values
(see details in the following sections). The final values are sent to
Alter3 as motor commands at every frame, and Alter3 behaves
in accordance with the motor commands. Thus, Alter3 not only
imitates human motion but also modifies its own motion to an
extent based on its spontaneous dynamics.

It should be noted that the choice of whether Alter3 imitates
human motion based on the above-mentioned process (awake
mode) or based on its memory (dream mode) depends on the
result of the comparison between its self-simulation and current
visual perception, as described below.

3.1.2. Self-Simulation
Alter3 contains a self-simulator that simulates a future self-image
before executing motor commands. The self-simulator is a robot
simulator that receives each joint angle as a motor command
(which is the same as the SETAXIS command described above)
and returns a posture as a visual image (Figure 3). We used
a custom-built simulator that visualizes the results of forward
kinematics by calculating joint positions from joint angles
without a physics engine, other than simple inertia. As Alter3’s
axes are controlled by air actuators that do not have sufficient
torque to control the axes precisely, the actual motions differ
from the motor commands. Thus, we manually calibrated the
upper and lower limits of the joint angles in the simulation

FIGURE 3 | Example of an internal image generated by the self-simulator. The

self-simulator receives the SETAXIS commands (motor commands) and

generates a visual image.
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by comparing the simulated poses and the actual poses by
Alter3. This self-simulator can be regarded as a predictor in the
comparator model (Frith et al., 2000), which predicts a future
state from an efference copy.

The predicted future self-image is compared with the visual
perception of the optical flow values. The difference between the
two is used to determine the operation mode of Alter3. If the
difference between the optical flow values and the predicted self-
image exceeds a threshold, the mode switches from awake mode
to dream mode, i.e., Alter3 will stop using its automatic mimicry
capacity (OpenPose and its mapping function) and will begin
using its memory to generate new imitation behavior. The details
of this process are explained in the following subsection.

Therefore, Alter3 uses the self-simulator to predict a future
posture from the motor commands generated by the automatic
mimicry module before executing the commands. It then
determines whether it should execute these commands or use
memory to imitate the human motion (based on a comparison
between the state predicted by the self-simulator and a target
human motion).

3.1.3. Memory Selection and Development
Alter3 has a fixed memory size in which the sequence of
movements is divided into short chunks that are stored over
time. Each memory chunk is a short sequence of behavior but
is labeled by an abstract representation of the visual image of
the movement. Specifically, we used the optical flow of the self-
image for this purpose. When Alter3 identifies that the automatic
imitation of a human is not viable under certain criteria, it
searches for the optimal movement in its memory by using the
labels. In addition, the movement that is retrieved is stored in the
memory as a new memory chunk, which allows the formation of
a closed loop.

Alter3 stores the executed motor commands in its memory
as a memory chunk for every 30 frames. As mentioned in the
subsection above, the sequence of motor commands is converted
to a self-image via the self-simulator. They are then converted
to a series of optical flows. We adapted a dense (lattice) type
algorithm to calculate the optical flow. It was originally a two-
dimensional vector field, but we adapted it as a scalar field
by using the magnitude of the vector. The memory chunk
containing 30 frames of the pose sequence was labeled with the
time average of the optical flow. Here, we considered the time
average of the optical flow as the short-term meaning or label
of appearance of the self-motions. For example, when Alter3
performs the action “raising left hand,” the motor command is
a high-dimensional time series and contains a large amount of
information that is irrelevant to the meaning of the motion.
It is assumed that the spatial pattern of the optical flow will
always take a high value near the upper right side of the body
in such cases. Thus, optical flow is qualified as the meaning or
the label. In our experiment, optical flow was calculated using the
algorithm proposed by Farnebäck (2003), and OpenCV library
(Bradski, 2000) was used for the actual implementation. The
memory was realized as a queue of memory chunks, and its size
was limited (50 chunks = 1,500 frames). Thus, if the memory
was full, the oldest memory chunk was removed, and a new
memory chunk was added (i.e., first in, first out). Figure 4 shows
this process.

Alter3 can replay past motions based onmemory in the dream
mode. This memory recall and motion replay occurs in the
following two cases.

1. When no human is in sight.
2. When a self-simulated motion differs significantly from the

target human motion.

FIGURE 4 | Illustration of the structure and storage process of the memory. The memory comprises a time sequence of action chunks of 30 frames each and a

time-averaged value of optical flow associated with each action chunk.
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The first case is specifically defined for when OpenPose detects
no humans for 100 frames. In this case, Alter3 recalls a motion
sequence randomly frommemory and replays it. When replaying
the motion, Alter3’s spontaneous dynamics, which consist of
spiking neurons, causes a minor change in the motion as with the
case of automatic mimicry (the details of this mutation process
are described in the next subsection). The mutated motion is
then stored as a new memory. In this case, the memory is
reconstructed by store-replay cycles and spontaneous dynamics,
without any inputs from the environment. This is similar to
memory consolidation in a dream, where memory is reactivated
and reorganized (e.g., Wamsley et al., 2010). When a human
comes into sight, Alter3 switches to the awake mode.

The second case is specifically defined for when the difference
between the optical flows of the self-simulated visual images
and the optical flows of the visual perception (human image)
exceeds a certain threshold during a short period (15 frames).
Mean squared error is used to measure the difference between
the two optical flows. In this case, Alter3 retrieves a memory
chunk that has been labeled with the optical flow values that
are closer to those of the current visual image from the camera
and replays the motion. The replayed motion is also mutated
by the spontaneous dynamics. The motion is labeled as having
a certain optical flow and is stored as a new memory. This is
similar to memory reconsolidation, where the recalled memory
becomes temporally unstable; then, the memory is consolidated
again and becomes stable (e.g., Suzuki et al., 2004). If the optical
flow values of the recalled motion are close to the values of the
current human motion when a memory chunk is replayed, then
Alter3 switches back to awake mode. The algorithms for mode
selection are summarized in Figure 5.

It should be noted that both memory recall mechanisms
explained above are not simple replay mechanisms. Rather, both
are memory reconstructions with mutations that are caused
by spontaneous dynamics. We expect that the memory recall
mechanisms will allow Alter3 to explore new movement patterns
that cannot be generated from its automatic mimicry capacity.
Additionally, the second recall mechanism can select memories
in accordance with the ability to imitate humans, for a given
memory chunk; therefore, it develops the contents of memory
according to the imitation ability. As a result, we expect
that memory structures can evolve through the experimental
imitations of human agents.

3.2. Memory Variation by Spontaneous
Dynamics
Alter3 has internal spontaneous dynamics that act as a central
pattern generator (CPG). This generator has no input from the
environment. It consists of spiking neurons (see Appendix for
the details of the neuron model). The first reason for using
spiking neurons instead of other chaotic dynamical systems or
stochastic dynamic systems is that we intend to add a learning
process with stimulus input in the future work (e.g., the difference
between simulated future self-image and target human motion
might be used as stimulus input to the spiking neurons). The
second reason is that, in this research, it is important that
memory becomes unstable with the internal dynamics when it is
recalled, i.e., the dynamics are used to perturb the memory. Thus,
it would be better if the dynamics kept changing with synaptic
plasticity. We compared the dynamics of spiking neurons with
synaptic plasticity to spiking neurons without synaptic plasticity
and random patterns. The results (Figure A1) show that the

FIGURE 5 | Flow chart for mode selection. When no human is detected and the automatic mimicry module works well, Alter3 enters the awake mode. In the awake

mode, Alter3 behaves only according to the automatic mimicry system. A dream mode is divided into two sub-modes. When no person is detected, Alter3 randomly

extracts one memory chunk of behavior and replays it. By contrast, when a person is detected, and the automatic mimicry system is unable to imitate the person

efficiently (judged by the optical flow), Alter3 searches for a better memory chunk and deploys it.
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generated patterns of the spiking neurons with synaptic plasticity
were more structured and temporally richer than the ones
without plasticity (seeAppendix 2 for the details of this analysis).
For these reasons, we adopted spiking neurons with plasticity as
the candidates for noise sources to perturb memory.

The dynamics of the CPG are added to the motor
commands before they are sent to Alter3, which implies that
the dynamics also mutate recalled memories, much like memory
reconsolidation. The original motor commands generated by
automatic imitation or memory selection are always affected by
the CPG. Specifically, final motor commands realized by Alter3’s
hardware are taken in a weighted summation of the original
motor commands and output of the CPG. We set the weight
of the CPG output to 0.1, and the weight of original motor
commands to 0.9. In other words, CPG dynamics mutate recalled
memories, like memory reconsolidation.

4. EXPERIMENTS

We conducted experiments with Alter3 at the NRW-Forum,
Düsseldorf between April 26 and May 4, 2019. During the

experiments, Alter3 was located in the exhibition room (Figure 6,
left), which is a public space. The public could freely visit
the exhibition and witness Alter3’s movements. They were
allowed to interact with it through their own movements
(Figure 6, right; see also Supplementary Video 1). There was
no limitation on the duration for which a person can interact
with Alter3, and no information about the experiment was
provided besides the fact that Alter3 could imitate human
motion. The advantage of a public demonstration was that
people of all ages, genders, and nationalities could come to
see Alter3. Furthermore, as our policy was to experiment with
robots in an open and natural environment, the demonstration
was a welcome activity. It is also possible to conduct longer
experiments, which can last for weeks (Ikegami, 2010, 2013;
Masumori et al., 2020).

We performed six experiments, each consisting of 100,000
frames and lasting approximately 4–5 h. During the experiments,
we recorded Alter3’s motor commands, its actual motion data,
and the human motion data (Figure 7). We analyzed these
data to understand how Alter3’s behavior changed during
the experiments.

FIGURE 6 | Alter3 at the exhibition NRW-Forum, Düsseldorf. It was evident to the public that Alter3 was trying to imitate the pose of a person.

FIGURE 7 | Example of the recorded data. The first raw data represent the mode flag (0 represents awake mode; 1 represents memory mode). The second raw data

represent human motion data. The third raw data represent motor command data, which were sent to Alter3. The last raw data represent Alter3’s actual motion data.
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5. RESULTS

5.1. Development of Memory Structure
We analyzed the change inmemory and actual motions of Alter3.
The memory and actual motion values (values of SETAXIS and

GETAXIS) have 43 dimensions; hence, we adapted a dimension-
reduction algorithm called UMAP (McInnes et al., 2018) to
visualize them. Figure 8 shows the results of the dimension-
reduction by UMAP, which reduced the memory and actual
motion data of Alter3 to two dimensions. These results show

FIGURE 8 | Motor commands (A) and motion data (B) are projected onto a two-dimensional space using the dimension reducing algorithm, UMAP. The blue dots

indicate that the pose is generated by imitating human motion, and the red dots represent poses generated from memory. (A) Motor commands data (history of

Alter3’s motor commands: SETAXIS) for each experiment. (B) Motion data (history of Alter3’s actual motion: GETAXIS) for each experiment.
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a different pattern for each experiment, especially experiments
#0 and #5. We consider that these differences reflect differences
in the interactions between Alter3 and humans. This suggests
that different personalities in Alter3 emerge from different
environments (e.g., differences in the frequency and duration of
people’s stays and motion patterns).

As shown in this figure, in almost all the experiments, the
poses generated in the awake mode and the poses generated
in the dream mode have different clusters, although some of
these clusters overlap. The former poses tend to have more
clusters than the latter ones. This suggests that Alter3 not

only copied human motions but also varied them using its
memory mutation and selection process. The memory data
(Figure 8A) and the actual motion data (Figure 8B) reflect the
same tendencies. However, they also marginally differ because
of Alter3’s construction: Alter3’s axes are controlled by air
actuators, and they do not have sufficient torque to control
the axes precisely. Thus, the actual motions differ from the
motor commands.

Figure 9 shows the developments in the motion patterns
over time. Figure 9A (top) shows that the clusters of the poses
generated frommemory, represented by the red dots, are initially

FIGURE 9 | Example of the time development of motion patterns. (A) Time series of the poses in two-dimensional space. The entire duration of the experiment was

divided into five parts at every 20,000 frames and plotted as five figures (top). The subsequent two rows represent the time series of the switching between memory

and awake modes (middle) and the time series of whether a human is within Alter3’s sight (bottom). (B) Trajectory of motion data in two-dimensional space (UMAP)

and sample real data for a point in two-dimensional space. A red line in the two-dimensional space represents the trajectory of the motion data that is generated

based on memory. A blue line represents the trajectory of the motion data that is generated based on human imitation.
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located near the clusters of the poses generated by automatic
mimicry capacity, represented by the blue dots. Then, the red
clusters begin to vary and move away from the blue clusters.
At 40,000–60,000 frames and 80,000–100,000 frames, many red
clusters can be observed. In these phases, there are cases where
Alter3 retrieves a memory and behaves accordingly despite a
person being in its sight (Figure 9A, middle and bottom). In such
a case, memory selection and the reconsolidation process occur.
These results suggest that the memory selection and variation
process work well to diversify memory, rather than just copy
human motion.

The motion pattern of Alter3 can be represented in a two-
dimensional plane. Figure 9B shows the trajectories of the
motion data in two-dimensional space (UMAP), and some
samples of the data of actual points in the two-dimensional space.
It can be observed that the complex motion pattern derived
from human motion (at 1000–1200 frames) gradually converges
to relatively static motions (at 38,000–38,200 frames and at
70,000–70,200 frames), probably because there were few humans
in Alter3’s sight at 38,000–38,200 frames, and none at 70,000–
70,200 frames. This suggests that Alter3’s memory diversifies
itself through interactions with the environment (human) at first.
However, without such interactions, its memory is overwritten
by its spontaneous activity and gradually disappears, similar to
forgetting dynamics in actual humans.

5.2. Information Flow Between Alter3 and
Human
To evaluate whether Alter3 could effectively imitate human
motion and whether humans also imitated Alter3, we analyzed
the information flow between Alter3 and humans. We used
transfer entropy (TE) to estimate the information flow between
the motions of Alter3 and the humans during the experiments.
TE measures directed information transfer (Schreiber, 2000). A
high TE from one entity to another indicates that the former
affects the latter. Thus, TE enables us to estimate causation during
an imitation.

The TE from time series J to time series I is defined as

TEJ,I =
∑

p(it+1, i
(k)
t , j(l)t+1)log

p(it+1 | i
(k)
t , j(l)t+1)

p(it+1 | i
(k)
t )

, (1)

where it denotes the value of I at time t, jt denotes the value of j
at time t, and it+1 denotes the value of i at time t + 1. Parameters
k and l give the order of the TE and represent the number of time
bins in the past that are used to calculate the histories of time
series i and j. Here, they are set to k = l and k = 3.

We computed the TE between the motion data of both Alter3
and humans (continuous multivariate data) using the Kraskov–
Stögbauer–Grassberger estimator in the JIDT library (Lizier,
2014) and compared the results for the awake and memory
conditions. The awake condition was defined to be equivalent to
the awake mode explained above. The memory conditions were
defined such that there was a human in front of Alter3, but the
error of the optical flow exceeded the threshold, and memory was
used to generate Alter3’s motion.

The mean TE values between Alter3’s motion and human
motion are shown in Figure 10. In the awake mode, the value
of TE from Alter3’s motion to human motion was significantly
lower than in the opposite direction (Mann–Whitney U-test,
n = 6, p = 0.0025). This implies that information flow from
humans to Alter3 was higher than the flow from Alter3 to
humans. This suggests that Alter3 could imitate human motion
effectively. In contrast, for the memory condition, the value of
TE from Alter3 to human motion was significantly higher than
the TE value for the opposite direction (Mann–Whitney U-test,
n = 6, p = 0.0227). This suggests that information flow was
reversed in the memory condition, and humans tended to imitate
Alter3. During the dream mode, the motions were selected from
memory based on the similarity of the visual image-basedmotion
pattern (optical flow) between the poses of Alter3 and a human,
rather than the similarities of joint angles itself. Thus, under this
condition, the similarity of the motion at the joint angle level will
not necessarily be as high as it would be in the awake mode. Such
a difference may induce people to start imitating Alter3.

TE varies temporally. As an example of a time series, Figure 11
shows an alternation of local TE between Alter3 and human
motions. It shows that, in the memory conditions, the local TE
from Alter3’s motion to human motion was often higher than in
the opposite direction. In addition, in the awake mode, the local
TE fromAlter3’s motion to humanmotion was sometimes higher
than that from human to Alter3. These results imply that the
causes and effects of the imitation were often reversed over time;
thus, Alter3 and humans imitated each other. We think that this

FIGURE 10 | Transfer entropy (TE) between Alter3 and human motions. In the

awake condition, the TE from Alter3’s motion to human motion was

significantly lower than the reverse case. In contrast, for the memory condition,

the TE from Alter3 to human motion was significantly higher than the TE in the

opposite direction. The awake conditions were equivalent to the awake mode,

where Alter3 imitated human motion with its automatic mimicry module. The

memory conditions were defined when Alter3 used memory to generate

motion (i.e., there was a human in front of Alter3, but the difference between

the optical flow values of the human motion image and the simulated future

self-image of Alter3 exceeded a threshold; thus, memory was used to

generate motion). *p < 0.05, **p < 0.01.

Frontiers in Robotics and AI | www.frontiersin.org 10 January 2021 | Volume 7 | Article 532375111

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Masumori et al. Personogenesis Through Imitation in “Alter3”

FIGURE 11 | Example of a time series of local transfer entropy (TE) between Alter3 and human motions. The yellow zones indicate a memory condition in the dream

mode, where Alter3 used its memory to generate a posture. In the memory condition, the values of local TE from Alter3’s motion to human motion tend to be higher

than those from human motion to Alter3’s motion. Furthermore, in the awake mode, in which Alter3 imitates human motion by automatic mimicry capacity, there were

also cases where the values of local TE from Alter3 to human motion were sometimes considerably higher (e.g., close to 420 frames in the figure). We think that this

was because Alter3’s generated motion pattern was sometimes not as good as expected, thus Alter3 failed to imitate human motion. It seems that this situation led

people to imitate Alter3 in turn, thus TE values from Alter3 to human sometimes higher than opposite direction even in the awake mode.

was because Alter3’s generated motion pattern was sometimes
not as good as expected, thus Alter3 failed to imitate human
motion. It seems that such a situation led people to imitate Alter3
in turn, thus the TE value from Alter3 to human was sometimes
higher than opposite direction.

6. DISCUSSIONS

Alter3 is programmed to imitate the motion of a person in front
of it. A human pose detection algorithm (OpenPose) extracts the
key points of the skeleton from the posture pattern. However,
Alter3 sometimes fails to imitate themotion. The imitation rating
is based on the difference between the optical flow pattern of
Alter3 and the optical flow pattern of the person Alter3 attempts
to imitate. The smaller the difference, the better the imitation.
The main reasons why Alter3 sometimes fails to imitate human
motion are (i) physical constraints imposed by the mechanical
structure of Alter3, (ii) incorrect detection caused by OpenPose
or disturbance to the eye camera, (iii) the dynamic characteristics
of Alter3’s unstable process, (iv) a significant time delay between
the control program and the motor output, and (v) Alter3
encountering a style of motion that cannot be imitated. Such
types of failures play an important role for Alter3, such as
organizing memory through selection and mutation processes
and inducing role switching in interactions with human, as
discussed below.

Introducing memory into Alter3, we incorporated an
imitation recovery process: if Alter3 fails to imitate human
motion with automatic mimicry capacity, Alter3 uses memory
to imitate the motion. Alter3’s spontaneous neural dynamics
commonly affects the generation of motion. Therefore, posture

patterns are not only stored in memory but also changed
over time. Owing to the selection and the mutation processes,
memories are copied and changed when they are used. If Alter3
uses a stored pattern frequently, more copies of this pattern
emerge with modifications.

Alter3’s organized motion is generated by the automatic
mimicry capacity or through Alter3’s memory. Therefore,
the whole posture space of Alter3 is decomposed into two
categories. One consists of the postures provided by estimating
human postures, and the other category has the self-organized
postures generated through memory selection and variation. The
decomposition is shown by applying the UMAP compression
in Figure 8. These two categories are created spontaneously
through interaction with humans.Moreover, if no person appears
in front of Alter3 for a certain period, the postures in the latter
category gradually change and converge to Alter3’s spontaneous
dynamics provided by the spiking neurons, after which another
category is organized.

To determine whether Alter3 imitates people’s postures or
whether people imitate Alter3, we measured the TE between
Alter3 and the people whose motions it seemed to imitate. The
results suggest that people often imitate Alter3 strongly when
Alter3 is in the dream mode (i.e., when Alter3 fails to imitate
with the automatic mimicry capacity and it generates a motion
from its memory). We also found that people sometimes imitate
Alter3, even when Alter3 was in the awake mode (i.e., when it
generates a motion based on its autonomous mimicry capacity).
It is interesting that people try to imitate the posture of Alter3
because it shows that imitation is an essential property of a living
system. In other words, as people grow up, primitive imitation
behavior does not disappear, but exists as a background process.
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For example, close friends are known to synchronize the timing
of their speech.

Starting from primitive imitation without any memories,
Alter3 develops its memories via imitating human behavior and
generates various behaviors based on memory selection and
variation processes.While Alter3 interacts with a human and fails
to imitate the human’s behavior, humans tend to imitate Alter3
instead. This is quantified by the reversal of TE. We say that this
spontaneous switching of roles between man and machine is a
necessary condition of personogenesis.
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