FORTIERS RESEARCHIOPICS

PLANT RESPONSES TO FLOODING

Topic Editors Pierdomenico Perata, Rens Voesenek, Rashmi Sasidharan, and Chiara Pucciariello

FRONTIERS COPYRIGHT STATEMENT

© Copyright 2007-2014 Frontiers Media SA. All rights reserved.

All content included on this site, such as text, graphics, logos, button icons, images, video/audio clips, downloads, data compilations and software, is the property of or is licensed to Frontiers Media SA ("Frontiers") or its licensees and/or subcontractors. The copyright in the text of individual articles is the property of their respective authors, subject to a license granted to Frontiers.

The compilation of articles constituting this e-book, wherever published, as well as the compilation of all other content on this site, is the exclusive property of Frontiers. For the conditions for downloading and copying of e-books from Frontiers' website, please see the Terms for Website Use. If purchasing Frontiers e-books from other websites or sources, the conditions of the website concerned apply.

Images and graphics not forming part of user-contributed materials may not be downloaded or copied without permission.

Individual articles may be downloaded and reproduced in accordance with the principles of the CC-BY licence subject to any copyright or other notices. They may not be re-sold as an e-book.

As author or other contributor you grant a CC-BY licence to others to reproduce your articles, including any graphics and third-party materials supplied by you, in accordance with the Conditions for Website Use and subject to any copyright notices which you include in connection with your articles and materials.

All copyright, and all rights therein, are protected by national and international copyright laws.

The above represents a summary only. For the full conditions see the Conditions for Authors and the Conditions for Website Use.

ISSN 1664-8714 ISBN 978-2-88919-304-2 DOI 10.3389/978-2-88919-304-2

ABOUT FRONTIERS

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

FRONTIERS JOURNAL SERIES

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing.

All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

DEDICATION TO QUALITY

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world's best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

WHAT ARE FRONTIERS RESEARCH TOPICS?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area!

Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

PLANT RESPONSES TO FLOODING

Topic Editors:

Pierdomenico Perata, Scuola Superiore Sant'Anna, Italy Rens Voesenek, Utrecht University, Netherlands Rashmi Sasidharan, Utrecht University, Netherlands Chiara Pucciariello, Scuola Superiore Sant'Anna, Italy

Flooded Rumex crispus. Photo credits: Ole Pedersen.

Global warming has dramatically increased the frequency and severity of flooding events worldwide. As a result, many man-made and natural ecosystems have become flood-prone. For plants, the main consequence of flooding is the drastic reduction of oxygen availability that restricts respiratory energy production and finally affects survival. Flooding can negatively influence crop production and wild plant distributions, since most plants are sensitive to excessively wet conditions. However, plants have evolved a broad spectrum of adaptive responses to oxygen deficiency that eventually leads to tolerance. Many of these morphological and physiological adaptations have been described in some crops and wild plant

species and considerable progress has been made in understanding the molecular aspects governing tolerance traits. Moreover, the molecular mechanism of plant oxygen sensing has been recently elucidated. However, many other aspects concerning plant acclimation responses to flooding remain unanswered.

With this research topic we seek to build an online collection of articles addressing various aspects relating to "plant responses to flooding" which will reflect the exciting new developments and current state of the art in this vibrant and dynamic research field. All kinds of articles, including original research articles, short reviews, methods and opinions are welcome, in the attempt to broadly and freely disseminate research information, tools and protocols.

Table of Contents

04 Plant Responses to Flooding Chiara Pucciariello, Laurentius A. C. J. Voesenek, Pierdomenico Perata and Rashmi Sasidharan 06 Responses to Flooding of Plant Water Relations and Leaf Gas Exchange in Tropical Tolerant Trees of a Black-Water Wetland Ana Herrera 18 Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods Ole Pedersen, Timothy D. Colmer and Kaj Sand-Jensen 37 Fermentation Metabolism and Its Evolution in Algae Claudia Catalanotti, Wenqiang Yang, Matthew C. Posewitz and Arthur R. Grossman 54 Sulfide as a Soil Phytotoxin - A Review Leon P. M. Lamers, Laura L. Govers, Inge C. J. M. Janssen, Jeroen J. M. Geurts, Marlies E. W. Van der Welle, Marieke M. Van Katwijk, Tjisse Van der Heide, Jan G. M. Roelofs, Alfons J. P. Smolders Tolerance of Anaerobic Conditions Caused by Flooding During Germination and *68* Early Growth in Rice (Oryza Sativa L.) Berta Miro, and Abdelbagi M. Ismail Reactive Oxygen Species Mediate Growth and Death in Submerged Plants 86 Bianka Steffens, Anja Steffen-Heins and Margret Sauter 93 Does Suberin Accumulation in Plant Roots Contribute to Waterlogging Tolerance? Kohtaro Watanabe, Shunsaku Nishiuchi, Konstantin Kulichikhin and Mikio Nakazono 100 Characterization of the Phosphofructokinase Gene Family in Rice and Its **Expression Under Oxygen Deficiency Stress** Angelika Mustroph, Johanna Stock, Natalia Hess, Sophia Aldous, Anika Dreilich and Bernhard Grimm 116 Barley Responses to Combined Waterlogging and Salinity Stress: Separating Effects of Oxygen Deprivation and Elemental Toxicity Fanrong Zeng, Lana Shabala, Meixue Zhou, Guoping Zhang and Sergey Shabala 129 How Unique is the Low-Oxygen Response? An Analysis of the Anaerobic Response During Germination and Comparison with Abiotic Stress in Rice and Arabidopsis Reena Narsai and James Whelan

Plant responses to flooding

Chiara Pucciariello¹, Laurentius A. C. J. Voesenek², Pierdomenico Perata¹ and Rashmi Sasidharan²*

¹ Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy

² Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands

*Correspondence: r.sasidharan@uu.nl

Edited and reviewed by:

Andreas P. M. Weber, Heinrich-Heine-Universität, Germany

Keywords: anoxia, flooding, hypoxia, low oxygen, submergence, waterlogging

Climate change models predict an increase in the frequency of flooding events globally, making flooding stress a major environmental threat for plants. Annually, crop damages due to unseasonal and severe flooding events amount to billions of dollars in yield losses. Despite the vulnerability of most crops to wet conditions, there is significant variation in the plant tolerance to flooding. Plant species adapted to wet areas have evolved specific strategies to deal with and even thrive under these conditions. In order to generate flood resilient, high yielding crops, it is of essence to not only understand the different elements that define flooding stress, but also to determine how plants sense and respond to these signals. In addition, the understanding of the genetic basis of tolerance variation and the underlying genes and processes will be key to discovering novel tolerance mechanisms and ultimately translating these to crops. In the last few years, the flooding research community has made leaps and bounds in understanding several of these aspects, unraveling more layers of the plant flooding response and paving the way for further research. This special issue entitled "Plant responses to flooding stress" brings together a collection of review and original research articles reflecting the broad scope and dynamics of the field of plant anaerobiosis.

The conditions during flooding can drastically affect survival. Large survival differences exist between plants submerged in complete darkness versus those submerged with some light, hinting at the importance of underwater photosynthesis. This importance is not only related to the production of carbohydrates but also, to the generation of molecular oxygen that accumulates in submerged plants and diffuses to tissues with less oxygen (e.g., roots). Pedersen et al. (2013) summarize recent advances and methods to quantify underwater photosynthesis in terrestrial plants in relation to leaf acclimations.

Among cereals, rice has the unique capacity to germinate and grow vigorously in flood-prone areas. Rice adaptive plasticity to different hydrological regimes has allowed the selection and characterization of some genotypes that have been subsequently used to breed high yielding and tolerant modern varieties. Miro and Ismail (2013) present an overview of the current understanding of the mechanisms associated with tolerant traits such as anaerobic germination and early vigor in rice that can help to develop tolerant varieties for direct-seeding systems. Narsai and Whelan (2013) employed a meta-analyses of microarray data to compare global low oxygen transcriptomic responses of tolerant rice with the relatively intolerant Arabidopsis. Based on their results they conclude that while Arabidopsis is simply responding to general stress conditions, rice displays transcriptome reconfigurations specific to low oxygen conditions.

Energy limitation during hypoxia, necessitates several resource limiting measures in plants. Amongst these is the use of pyrophosphate (PPi)-dependent enzymes that can take PPi as a substrate to catalyze reactions, thus sparing precious ATP reserves. Mustroph et al. (2013), execute a detailed expression analyses on the rice ATP and PPi-dependent phosphofructokinase gene family to establish their role during anoxic stress.

The study of flood adaptive strategies that evolved in nature and were selected by farmers will be crucial to develop stresstolerant crop varieties. In this context, other environmental factors likely influence submergence tolerance, and stress combinations need to be explored toward the selection of crops tolerant to multiple stresses. Zeng et al. (2013) studied the combined response to waterlogging and salinity of barley varieties. They conclude that hypoxia is not the only factor determining the differential response of the genotypes to the stress combination and that the soil type strongly influence the presence of elemental toxicity.

The accumulation of toxic substances in flooded soils is a serious concern for plants. In some plant species, the formation of an apoplastic suberin barrier in the roots can help to prevent toxins entry and at the same time loss of oxygen. Watanabe et al. (2013) review the role of this barrier in waterlogging tolerance. In a similar context, Lamers et al. (2013) provide an overview of the effect of toxic sulfide accumulation in fresh and marine water. The accumulation of sulfide by microbial activity occurring in aquatic ecosystems is exacerbated by anthropogenic inputs. This makes sulfide-related pollution an urgent question to address.

Reactive oxygen species (ROS) are a major component of low oxygen stress. ROS production is expected to contribute to submergence adaptation. Owing to their transient nature ROS detection has been famously difficult to accurately quantitate. Steffens et al. (2013) outline the role of ROS during flooding and review the potential of techniques such as electron paramagnetic resonance to investigate ROS *in planta*.

Large trees encounter specific problems such as relatively deep floods (10-15 m) and prolonged durations of these floods (up to 7 months). Herrera (2013) reviews the biochemical responses of tropical trees to flooding in South America. The emphasis in this overview lies on leaf gas exchange, stomatal conductance, water status, and carbohydrate balance.

Beside plants, the unicellular green alga *Chlamydomonas rein*hardtii has received special attention for its response to low oxygen due to its capacity to produce H_2 , a source of renewable energy, under anoxia. Catalanotti et al. (2013) describe the fermentation pathway of *Chlamydomonas*, also discussing the fermentation process evolution.

This Frontiers special showcases the broad scope and importance of low oxygen stress studies in plants. We are grateful to all the authors for contributing to this collection. We would also like to acknowledge all the reviewers for taking the time to assess the work submitted here and helping to shape this focus issue.

REFERENCES

- Catalanotti, C., Yang, W., Posewitz, M. C., and Grossman, A. R. (2013) Fermentation metabolism and its evolution in algae. *Front. Plant Sci.* 4:150. doi: 10.3389/fpls.2013.00150
- Herrera, A. (2013) Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. *Front. Plant Sci.* 4:150. doi: 10.3389/fpls.2013.00106
- Lamers, L. P. M., Govers, L. L., Janssen, I. C. J. M., Geurts, J. J. M., Van der Welle, M. E. W., Van Katwijk, M. M., et al. (2013). Sulfide as a soil phytotoxin – a review. *Front. Plant Sci.* 4:268. doi: 10.3389/fpls2013.00268
- Miro, B., and Ismail, A. M. (2013). Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (*Oryza sativa* L.). *Front. Plant Sci.* 4:269. doi: 10.3389/fpls. 2013.00269
- Mustroph, A., Stock, J., Hess, N., Aldous, S., Dreilich, A., and Grimm, B. (2013) Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. *Front. Plant Sci.* 4:125. doi: 10.3389/fpls.2013.00125
- Narsai, R., and Whelan, J. (2013). How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with

abiotic stress in rice and Arabidopsis. Front. Plant Sci. 4:349. doi: 10.3389/fpls.2013.00349

- Pedersen, O., Colmer, T. D., and Sand-Jensen, K. (2013) Underwater photosynthesis of submerged plants recent advances and methods. *Front. Plant Sci.* 4:140. doi: 10.3389/fpls.2013.00140
- Steffens, B., Steffen-Heins, A., and Sauter, M. (2013) Reactive oxygen species mediate growth and death in submerged plants. *Front. Plant Sci.* 4:179. doi: 10.3389/fpls.2013.00179
- Watanabe, K., Nishiuchi, S., Kulichikhin, K., and Nakazono, M. (2013) Does suberin accumulation in plant roots contribute to waterlogging tolerance? *Front. Plant Sci.* 4:178. doi: 10.3389/fpls. 2013.00178
- Zeng, F., Shabala, L., Zhou, M., Zhang, G., and Shabala, S. (2013). Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. *Front. Plant Sci.* 4:313. doi: 10.3389/fpls.2013.00313

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 May 2014; accepted: 05 May 2014; published online: 23 May 2014. Citation: Pucciariello C, Voesenek LACJ, Perata P and Sasidharan R (2014) Plant responses to flooding. Front. Plant Sci. **5**:226. doi: 10.3389/fpls.2014.00226

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

Copyright © 2014 Pucciariello, Voesenek, Perata and Sasidharan. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland

A. Herrera*

Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela

Edited by:

Rens Voesenek, Utrecht University, Netherlands

Reviewed by:

Uener Kolukisaoglu, University of Tuebingen, Germany Vasileios Fotopoulos, Cyprus University of Technology, Cyprus

*Correspondence:

A. Herrera, Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Calle Suapure, Colinas de Bello Monte, Caracas 1050, Venezuela. e-mail: ana.herrera@ciens.ucv.ve

This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during 8 years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs) and photosynthetic rate (PN) during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential (ψ) suggests that flooding does not cause water deficit. The P_N decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates (TNC) accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high q_s and P_N . The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased P_N. Therefore, trees would perform as if flooding did not signify a stress to their physiology.

Keywords: flooding, photosynthesis, sap flux, stomatal conductance, tolerance

INTRODUCTION

Flooding brings about a number of changes to the soil environment, including among others reduction in oxygen concentration (Kozlowski, 1984), generation of reduced ions and, additionally, diminution of irradiance incident on leaves. Flood tolerance depends on the depth of the water column, the duration of the flooded period and specific plant traits (Colmer and Voesenek, 2009). Partial or total oxygen deficiency in the roots of higher plants causes morphological, anatomical and biochemical changes, and anoxia-tolerance seems to be strictly organ-specific (Drew, 1997); such changes allow plants of tolerant species to revert to normoxic condition as flooding progresses (Pezeshki, 1993).

A large number of articles have been published on physiological responses to waterlogging/flooding in temperate tolerant plants, both herbs and trees, as well as the tropical herb, rice, but less is known about the physiological, let alone biochemical or molecular, responses of tropical species, especially trees. I here review the existing literature on tropical tolerant trees, while comparing these with temperate tolerant and intolerant species.

Flood tolerance varies greatly with, among other factors, plant species and age, and time and duration of flooding (Kozlowski, 1997). A reduction in g_s and P_N are the earliest response to flooding observed in intolerant as well as tolerant species (Pezeshki, 1993; Batzli and Dawson, 1997; Fernández et al., 1999). In tropical flood-tolerant trees, reductions in P_N and g_s are reverted

later on as flooding progresses (Fernández et al., 1999; Rengifo et al., 2005), as shown previously in temperate flood-tolerant trees (Pezeshki, 1993).

One of the main reasons why hypoxia due to flooding reduces g_s is decreased root water absorption (Kozlowski, 1984; Tournaire-Roux et al., 2003) through reductions in root hydraulic conductivity (Aroca et al., 2011). The decrease in P_N observed in flood-tolerant herbaceous and tree species is apparently governed not only by stomatal but also by non-stomatal (mesophyll) factors (Pezeshki, 1987, 1993).

In riparian Panamazonian forests, trees can suffer regular, long-lasting and deep flooding, when white-water rivers such as the Orinoco or black-water rivers such as the Rio Negro overflow, thus creating floodplain ecosystems called in the first case várzea and in the second, igapó (Prance, 1979). These ecosystems differ, among other traits, in quality of the waters; várzeas have nutrientrich, turbid and higher pH waters, whereas in the igapós waters are very nutrient-poor, transparent and acidic. These characteristics are bound to affect plant physiology and growth differently. Amazonian wetlands cover over 1,000,000 km² (Melack et al., 2004), more than three times the area of the British Isles; therefore, knowing how tropical plants cope with flooding becomes of global importance.

Flood tolerance has been extensively examined in herbaceous or small floating and submerged angiosperms (revised by Colmer and Voesenek, 2009). Here, I will be dealing with large trees, which will surely make a difference because of resistances encountered by long-distance transport of O_2 and the slow diffusion of this gas in water. In tropical wetlands, the water-column may be as high as 10–15 m and the flood period last up to 7 months (Vegas-Vilarrúbia and Herrera, 1993a; Parolin et al., 2006).

This review summarizes the results of research on physiological responses to flooding of trees in the seasonal igapó of the Mapire River. This igapó is formed when the blackwater Mapire River, a northern tributary of the Orinoco, increases its flow due to rainfall and is additionally dammed by the Orinoco. Four broad phases can be defined in the flood cycle (Figure 1A): drainage (D, December-March), risingwaters (RW, April-May), full flood (FF, June-August), and falling-waters (FW, September-November). The igapó lake covers trees at various heights depending on tree size and position along a gradient from the savanna to the river channel (Figure 1B). The species that have been examined along this gradient are Acosmium nitens (Papilionaceae), Campsiandra laurifolia (Mimosaceae), Eschweilera tenuifolia (Lecythidaceae), Pouteria orinocoensis (Sapotaceae), Symmeria paniculata (Polygonaceae), and Psidium ovatifolium (Myrtaceae). The aspect of this ecosystem at drainage and full flood is shown in **Figure 2**. All species in the Mapire igapó are evergreen. Several, such as *C. lau-rifolia*, *S. paniculata*, and *P. ovatifolium*, retain leaves underwater.

Similar plant responses have been repeatedly observed during the various stages of the flood cycle. I will focus this review on results obtained in the field by Fernández et al. (1999), Rengifo et al. (2005), and Herrera et al. (2008a,b). In spite of inter-annual variability in gas exchange found during eight non-consecutive years of sampling, a general picture emerged of increased gs and P_N during the flooded period to values as high as or higher than in plants in drained yet wet soil (Figure 3). The inter-annual variability may be due, among other factors, to differences in the exact timing of the flood phase, leaf developmental stage, rainfall, air temperature, and relative humidity. For example, measurements made in 1998 (Rengifo et al., 2005) were most certainly affected by the fact that this, as opposed to the other years of sampling, was a strong El Niño year. Based on these results and the literature, model are proposed (Figure 4) explaining physiological responses to the inhibitory and the acclimatized phases of flooding in species growing exclusively in this ecosystem.

FIGURE 1 | (A) Changes over the year in rainfall (bars) and water column height (circles) of the Mapire River relative to the Orinoco. Values are mean $\pm SE$ (n = 4 years). Stages of the flooding cycle are indicated as drainage (D), rising-waters (RW), full flooding (FF), and falling-waters

(FW). (B) Schematic view of the vegetation and water level along a gradient from the Mapire bed to the savanna. Approximate location of species indicated. Modified from Fernández et al. (1999) and Herrera et al. (2008b).

I will present evidence in favor or against the proposed models. Results on water status, leaf gas exchange and Total non-structural carbohydrates (TNC) are shown in **Table 1** and will be discussed where pertinent. The following issues will be examined: (1) Just how low does oxygen concentration become and how does it affect root water absorption and water status? (2) Are reductions in g_s and P_N under flooding reversible? (3) Does flooding cause photoinhibition? (4) Are changes in P_N under flooding caused by changes in stomatal and non-stomatal limitations? (5) How does leaf carbohydrate balance change during flooding?

The significance of under-water photosynthesis for wholeplant C balance and the possible changes under flooding in leaf anatomy will be examined, and some eco-physiological and ecological considerations made.

MODELS OF PHYSIOLOGICAL RESPONSES TO THE INHIBITORY AND THE ACCLIMATIZED PHASES OF FLOODING

Flooding at the inhibitory phase (RW) causes hypoxia, probably not anoxia. Hypoxia generates changes in hormone balance that cause stomatal closure and a decrease in absorption of water by roots, which may also promote stomatal closure. This brings about a decrease in intercellular CO₂ concentration, C_i and P_N. The decrease in gs and PN under high radiation and air evaporative demand could induce chronic photoinhibition. The decrease with flooding in soil N and absorption capacity of the roots creates a deficiency of N and possibly other nutrients, thus reducing the content and/or activity of rubisco, decreasing P_N, increasing relative non-stomatal limitation to photosynthesis (L_{NS}) and decreasing relative stomatal limitation (L_S) [for definitions see Herrera et al. (2008a)]. The L_{NS} could also increase due to down-regulation of PSII. Root TNC content decreases due to both an increase in root anaerobic respiration and a decrease in leaf TNC content due to both decreased P_N and increased root demand.

During the acclimatized phase, the appearance under full flood of morpho-anatomical adaptations which improve oxygen supply would cause the acclimation. These structures would result in a situation of normoxia for the tree and cause stomatal opening and increased N and water absorption by the roots because of synthesis of new aquaporins. The increase in N uptake would cause an increase in rubisco and chlorophyll contents, and P_N. Increased root water absorption would promote stomatal opening. This would also lead to increased P_N. In the process of acclimation of P_N to full flood, L_{NS} decreases and L_S increases. The role of hormones in this acclimation is presumed but no evidence for it is available. After acclimation, the tree would perform as if flooding did not signify a stress to its physiology, growth or reproduction.

OXYGEN CONCENTRATION UNDER FLOODING AND ITS EFFECTS ON ROOT WATER ABSORPTION AND WATER STATUS

Oxygen concentration in the water of the Mapire igapó decreases with flooding from 5 mg L^{-1} (300 μ M) at the surface of the lake to 2 mg L^{-1} (120 μ M) at a depth of 15 m (details in Herrera et al., 2008b). The K_m of cytochrome-c oxidase is 14 μ M (Geigenberger, 2003); Armstrong et al. (2009) give a figure of 0.14 μ M; whichever the values actually is, there is at least a ten times surplus of oxygen before tissues, especially in the roots, become anoxic. Therefore, even in the "worst" situation, plants do not seem to be exposed to severe oxygen stress. Nevertheless, without exact knowledge

Table 1 | Changes from drainage (D) to full-flooding (FF) in morning leaf water (ψ) and osmotic (ψ_s) potential, maximum quantum yield of PSII (F_v/F_m), total chlorophyll content (Chl), photosynthetic rate (P_N), stomatal conductance (g_s), and total non-structural carbohydrate contents (TNC) as hexose equivalents of the species indicated.

Species	Season	ψ	ψ_{s}	F_v/F_m	Chl	P _N	gs	TNC
		(MPa)		(µg cm ^{−2})		$(\mu mol m^{-2} s^{-1})$	(mmol m ⁻² s ⁻¹)	(g hexose m ⁻²)
A. nitens	D	-4.27	-4.13	0.79	28.9	8.1	207	9.4
	FF	-0.22	-3.50	0.79	22.6	12.3	399	14.4
E. tenuifolia	D	-1.53	-1.66	0.83	25.6	7.6	153	9.8
	FF	-0.18	-1.10	0.79	23.0	4.2	196	22.1
C. laurifolia	D	-1.07	-1.33	0.82	36.0	12.4	276	6.2
	FF	-0.47	-1.87	0.82	19.1	16.0	671	13.7
S. paniculata	D	-1.70	-2.02	0.81	34.0	15.3	1161	7.7
	FF	-0.28	-1.43	0.79	23.7	5.2	98	27.5
P. ovatifolium	D	-2.10	-2.53	0.84	24.0	13.3	269	15.4
	FF	-0.30	-1.50	0.80	22.2	5.7	109	26.6

Values are mean. Modified from Rengifo et al. (2005).

of internal root O_2 concentration, describing the situation as hypoxia or anoxia is simply speculative. The decrease in the ATP/ADP ratio at decreasing O_2 concentration is not paralleled by an increase in the NADPH/NAD⁺ ratio until O_2 concentration reaches 1%, implying maintenance of aerobic respiration (Geigenberger, 2003).

Since O_2 diffuses very slowly in water, the question remains: how much of that $120 \,\mu M O_2$ reaches root cells? The occurrence of anaerobic root respiration has been well documented in intolerant as well as tolerant species (Crawford, 1992). Anaerobic respiration has been reported in some tropical flood-tolerant trees (Joly and Crawford, 1982; Parolin and Wittmann, 2010). Indirect evidence for the occurrence of anaerobic metabolism in the Mapire igapó is a notable smell of alcohol near trees of *C. laurifolia* under FF which is not perceived at any other period of the flooding cycle. The sole direct evidence of alcoholic fermentation in a species from this ecosystem was provided by measurements of increased alcoholic dehydrogenase activity in seedlings of *A. nitens* grown under waterlogging (Izquierdo, 1988).

Changes in O_2 concentration from RW to FF should not totally compromise aerobic respiration; nevertheless, a 60% decrease in O_2 concentration could certainly be reflected in whole-plant and leaf performance, as seems to happen. This marked decrease in O_2 concentration would be alleviated after a short period under flooding by the production of new morpho-anatomical structures and the operation of physiological and biochemical processes, such as pressurized gas transport and aquaporin synthesis.

In an ingenuous approach to the issue of aquaporin influence on root water absorption, McElrone et al. (2007) accessed through caves the fine roots of trees growing at a depth of 18 m and determined that aquaporin activity contributed up to 45% of hydraulic conductivity. The collection of fine roots and measurement of aquaporin activity in flooded trees should help understanding the acclimation of aerial responses to flooding.

The improvement of oxygen transport to the roots by pressurized gas transport, experimentally demonstrated in some temperate tree species (Grosse et al., 1992) and tropical flood-tolerant herbs (Konnerup et al., 2011), is one of the known adaptations to flooding. In saplings of five Amazonian tree species, internal aeration of the roots was improved under conditions of pressurized gas transport as shown by measurements of oxygen exchange between root and rhizosphere. Using a tracer gas, Graffmann et al. (2005) showed gas permeability of transport pathways between the stem base and the roots of these saplings and concluded that pressurized gas transport significantly contributes to internal aeration of roots.

In intolerant species, the initial reduction under flooding in g_s is accompanied by decreased ψ and leaf water status (Crawford, 1982; Ruiz-Sánchez et al., 1996). In trees of the Mapire igapó, ψ was found to increase with flooding (**Table 1**), suggesting that flooding does not cause water deficit in these trees. Weak or no relationship between g_s and ψ was found, except for *A. nitens* ($r^2 = 0.43$), the one species growing along the gradient in the Mapire igapó that suffers from water deficit during the dry season. Since g_s diminished during the earlier stages of flooding, trees behaved as iso-hydric species. Similar increases with flooding in ψ without decreased P_N and, presumably, g_s were found in the evergreen várzea tree *P. glomerata* (Armbrüster et al., 2004). These results suggest a direct effect of flooding on gas exchange independent from water status.

The ABA content of leaves and xylem sap extracted under positive pressure increased from D to RW and FF in *C. laurifolia* and *P. orinocoensis*, together with the known decrease in g_s , suggesting a positive relationship between ABA and stomatal closure. In fact, the regression between ABA and g_s was linear with $r^2 = 0.98$ (Rengifo et al., 2006). A similar relationship was found in flooded tomato plants (Else et al., 1995). These results are subject to revision, since to obtain meaningful changes in sap ABA content, care must be taken when collecting sap, as overpressurizing stems may bring out ABA located in roots (Jackson, 1997), thus portraying an erroneous picture of ABA influence on g_s during the flooding cycle. No relationship was found in flooded tomato plants between stomatal closure and inhibition of gibberellin or cytokinin export (Else et al., 2009). Possible methodological errors in determination of data by Rengifo et al. (2006) may render their interpretation erroneous; nevertheless, they open interesting research avenues in tolerant trees.

Trees under flood in the igapó showed values of leaf osmotic potential (ψ_s) consistently lower than those of ψ (**Table 1**), suggesting the occurrence of osmotic adjustment (Rengifo et al., 2005); an osmotic adjustment of 0.26 MPa was shown to take place in flooded citrus seedlings (García-Sánchez et al., 2007). In four of the igapó species studied, soluble sugars contributed significantly to the decrease in ψ_s ; in *A. nitens*, the contribution was low presumably because nitrogenous compounds supplied by nitrogen fixation in this legume made a significant contribution (Fernández et al., 1999). The accumulation in leaves of osmotically active metabolites, mostly sugars, may be a mechanism whereby these trees tolerate flooding by increasing turgor potential, which allows the resumption of high g_s and P_N.

When it is due to water transport from the roots to the atmosphere and not to replenishment of reservoirs, xylem sap flux may indicate the ability of roots to absorb water. In trees of *C. laurifolia*, sap flux changed seasonally; relative to the highest values measured during drainage in November, sap flux was 47% at the dry season, decreasing to 25% at rising-waters and resuming 49% under full flood [calculated from Herrera et al. (2008b)].

Since at RW dawn ψ remained high, it became apparent that the initial stages of flooding imposed a restriction to sap flux unrelated to water deficit. The decrease at RW in highest daytime sap flux was due to reduced leaf-specific hydraulic conductivity, whereas the recovery of daytime sap flux observed 1.5 months later was correlated to an increase in leaf-specific hydraulic conductivity, and attributed to acclimation.

The decrease with flooding in root hydraulic conductivity has been documented and attributed to cytoplasmic acidification due to increased CO₂ concentration and inhibition of aquaporin activity (Aroca et al., 2011). Evidence of this has been gathered in herbs and shrubs, mainly of agronomic interest and floodintolerant, but no data are still available on flood-tolerant trees. Early flooding in the Mapire igapó apparently inhibited water absorption by roots and this inhibition was overcome later on at a higher water column through an acclimation process possibly involving the improvement of internal aeration by adventitious roots or by synthesis of new aquaporins.

A substantial night-time flux accompanied by nocturnal stomatal aperture was found in *C. laurifolia* under FF (Herrera et al., 2008b). Similar observations have been made in plants of other species and from other environments (e.g., arid) and a role for night-time transpiration in N absorption has been suggested (Snyder et al., 2008). Why would flood-tolerant trees implement a mechanism for nutrient acquisition during the night remains to be elucidated. One possibility is that the development of positive nocturnal root pressure generated by active transport of ions into the xylem, together with open stomata, results in increased sap flux and nutrient supply to the shoot.

STOMATAL CLOSURE AND REDUCTION IN P_{N} under flooding are reversible

In three out of four tropical tree species that grow on drained soils in drylands, experimentally subjected to waterlogging (Lopez and Kursar, 1999), g_s diminished 30% on average, one of the species, *Prioria copaifera*, showing no change. In this species P_N was significantly reduced after 45 days of experimental flooding but, in contrast to the other three species, resumed drained values after 90 days of flooding, the authors deeming this a flood-tolerant species.

In **Table 2**, values of maximum P_N of evergreen trees in a Brazilian várzea and the Mapire igapó are compared during the drained and flooded periods. None of the várzea species showed changes with flooding, whereas in the igapó P_N increased in all the species. The observation that although igapó waters are poorer and more acidic than várzea waters, average maximum P_N at FF was similar between wetlands merits further comparative research.

The reversal of diminished g_s to values under drainage was associated in *C. laurifolia* and *S. paniculata* to the growth of adventitious roots (**Figure 5**). The occurrence with flooding of adventitious roots and hypertrophied lenticels has been reported in trees of several species in the central Amazonian floodplains (Parolin, 2001). Amelioration of leaf gas exchange through improvement in aeration by adventitious roots and hypertrophied lenticels has been reported in temperate tolerant species (Kozlowski, 1984) such as *L. laricina*, in which such roots increase root hydraulic conductivity apart from improving oxygenation (Islam and Macdonald, 2004).

FLOODING AND PHOTOINHIBITION

Despite decreased g_s and P_N and high radiation and air temperature, emerged leaves of tolerant trees do not become photoinhibited during RW, when decreased P_N is often observed. Values of maximum quantum yield of PSII, F_v/F_m (**Table 1**), were always higher than 0.70, the threshold proposed by Bolhàr-Nordenkampf and Öquist (1993) for determining that photoinhibition occurs. The F_v/F_m was also higher than 0.70 in plants of *S. paniculata* growing in the Solimões River várzea that had

been submerged at 1 m in the dark for 6 months, and leaves submerged deeper did become photoinhibited ($F_{\nu}/F_m = 0.20$) but regained high values several weeks later upon re-emergence (Waldhoff et al., 2002).

In the Mapire igapó, most leaves of plants of *S. paniculata* and *P. ovatifolium* under FF for approximately 6 months may become photoinhibited because the entire tree is covered with a 15-m-high water column. This, together with a reduction of 50% in radiation at a depth of 60 cm in June (Fernández et al., 1999), could mean that deeply submerged leaves do reduce P_N to zero. Leaves of *S. paniculata* that developed at D and remained submerged for approximately 4 months were fully functional when they emerged at FW (Fernández et al., 1999), indicating that they were not negatively affected by submergence.

FIGURE 5 | Adventitious roots observed in October at falling-waters in trees of: (A) *Campsiandra laurifolia* and (B) *Symmeria paniculata*. Note in (B) the mud deposits on leaves from previous flood.

Table 2 | Maximum values of photosynthetic rate in evergreen trees growing in a várzea and an igapó during drainage (D) and flooding (FF).

Species	Wetland	P _N (μmol	References	
		D	FF	
Pouteria glomerata	várzea	10.0 ± 1.3	10.4 ± 2.0	Parolin et al. (2006)
Pouteria glomerata	várzea	12.0	12.2	Armbrüster et al. (2004)
Cecropia latiloba	várzea	16.8 ± 1.5	15.0 ± 4.6	Parolin (2000)
Senna reticulata	várzea	20.0 ± 4.0	18.4 ± 4.3	
Nectandra amazonum	várzea	9.3 ± 2.4	7.6 ± 3.1	
All		13.6	12.7	
Acosmium nitens	igapó	8.7 ± 0.9	11.6 ± 0.7	
Eschweilera tenuifolia	igapó	6.3 ± 0.7	8.6 ± 1.3	
Campsiandra laurifolia	igapó	8.0 ± 1.2	13.6 ± 0.5	
Symmeria paniculata	igapó	4.3 ± 0.8	10.0 ± 0.9	
Psidium ovatifolium	igapó	3.7 ± 0.4	10.0 ± 0.9	
All		6.2	10.8	

Values are mean \pm SE for species and mean for each wetland (in bold). Data for the igapó are means of value reported by Fernández et al. (1999), Rengifo et al. (2005), and Herrera et al. (2008a,b).

REVERSIBLE REDUCTION IN P_{N} under flooding is associated to changes in stomatal and non-stomatal limitations

It has not been systematically examined whether in flood-tolerant trees P_N decreases under flood due to decreased g_s only. In flooded plants of the tropical species *Genipa americana*, photosynthesis was co-limited by stomatal and non-stomatal factors (Mielke et al., 2003). In seedlings of the non-tolerant temperate species *Nothofagus menziesii* and *N. solandri*, P_N , g_s , and non-stomatal conductance, i.e., mesophyll conductance plus carboxylation efficiency, decreased markedly in response to waterlogging (Sun et al., 1995). In the igapó species *P. orinocoensis*, carboxylation efficiency in experimentally submerged seedlings decreased 70% and CO₂-saturated P_N 61% relative to drained seedlings (Fernández, 2006), indicating co-limitation of photosynthesis by stomatal and non-stomatal factors.

In order to determine whether in species of the Mapire igapó P_N is reduced due to changes in L_S and L_{NS} , response curves of P_N to C_i were done (**Figure 6**). Photosynthetic capacity was affected by flooding, as indicated by variations in CO₂-saturated P_N (**Figures 6**, **7**). The L_S (the difference in CO₂-saturated P_N and P_N at ambient CO₂ concentration divided by the former) decreased, whereas L_{NS} (CO₂-saturated P_N at a given time divided by the maximum CO₂-saturated P_N) increased relative to drainage

(**Figure 7**). The increase in L_{NS} was related to a decrease in total soluble protein (TSP), an indirect measure of rubisco content, and chlorophyll content (**Figure 7**). Nevertheless, it was previously reported that rubisco content was similar in emerged and submerged leaves of *P. ovatifolium* and higher in submerged than emerged leaves of *S. paniculata* (Fernández et al., 1999), indicating no loss of rubisco due to submergence or even flooding. It remains to determine whether this maintenance of rubisco content is a general response in the rest of the species in the igapó. A 54% change in P_N was due to changes in g_s , confirming that the limitation imposed by flooding to P_N was not only stomatal (Herrera et al., 2008a).

Soil NO₃⁻ content in the Mapire igapó decreases markedly during the flooded period, whereas NH_4^+ content progressively increases until drainage (Barrios and Herrera, 1994). The decrease in NO₃⁻ content could be relevant for metabolism in nonleguminous but not in leguminous trees. Approximately 30% of the species in the Mapire igapó, including *A. nitens* and *C. laurifolia*, are legumes (Rosales, 1988). Setting aside differences in habit and habitat, the positive effect in the pasture legume *Lotus corniculatus* of low O₂ concentration on nodulation, N₂ fixation and growth reported by James and Crawford (1998) suggests that a similar response of N₂ fixation to low O₂ could be expected in flood-tolerant legume trees.

An increase with flood in L_{NS} in legumes would not necessarily involve a decrease in rubisco content due to low N supply, since legumes do not depend on NO_3^- availability for protein synthesis. Instead, the increase in L_{NS} and decrease in TSP of legumes of the Mapire igapó could be due to low availability/absorption of other nutrients, extremely low O_2 concentration in the nodules or toxicity caused by reduced ions. Uptake of NO_3^- and NH_4^+ by saplings of *Fagus sylvatica* (flood-intolerant) was severely inhibited by waterlogging, whereas in *Populus tremula* \times *P. alba* (flood-tolerant) absorption of both N forms was unaffected (Kreuzwieser et al., 2002). We have no information on which form of nitrogenous compounds trees, whether legumes or non-legumes, absorb at D or FF.

Leaf N content of species in the Mapire igapó (Rosales, 1988) was similar to that in the Rio Negro igapó (Parolin et al., 2002), with an average of 2% (by dry mass). No data are available for seasonal variations in leaf N content in the Mapire igapó; in the Rio

Negro igapó, content varied between the drained and the flooded phases, with no consistent trend, since in some species content decreased, whereas in others it increased with flooding. Changes in content were related to leaf development, content being higher in new leaves which flushed mostly during the flooded period. Therefore, the reduction in soil N availability is not apparently reflected in leaf N content.

LEAF CARBOHYDRATE BALANCE CHANGES DURING FLOODING

Information on changes in TNC content of flood-tolerant species is scant. In seedlings of the várzea species *Himatanthus sucuuba* experimentally subjected to submergence in the dark, root starch content diminished while alcoholic dehydrogenase activity remained relatively constant after an initial increase (Ferreira et al., 2009). It has been proposed that flood tolerance is proportional to the capacity of roots for TNC storage (Crawford, 1992). In the Mapire igapó, difficulty in accessing roots has impeded the determination of root TNC content; therefore, leaf TNC balance has been used as a surrogate measure.

Leaves of all the trees studied in the Mapire igapó accumulated TNC under flooding (Table 1) but this accumulation was not always related to a higher P_N. Similarly, flooded seedlings of the temperate tolerant species L. laricina showed a marked increase in shoot starch after 27 days of flooding, as opposed to seedlings of the intolerant species Picea mariana (Islam and Macdonald, 2004), which suggests that starch accumulation in leaves is a tolerance mechanism. In our investigation, TNC accumulation began at RW, when P_N of all the species was lower than the maximum (Table 1). This suggests that photosynthates could not be translocated to other sinks and the mechanisms responsible for alleviating hypoxia had not begun operating. In all the species TNC content began to decrease at FF or FW, coinciding with the resumption of high P_N (Rengifo et al., 2005). Enhanced starch and sugar accumulation was observed in woody species under flooding, suggesting that this is a consequence of reduced phloem translocation from shoot to root (Kreuzwieser et al., 2004).

SIGNIFICANCE OF UNDER-WATER PHOTOSYNTHESIS FOR WHOLE-PLANT C BALANCE

In the Mapire igapó, some of the tree species maintain live leaves submerged for as long as 6 months. Submerged leaves brought to the air showed values of P_N similar to emerged leaves (**Figure 8**), indicating that leaves may be photosynthetically active under water.

The significance for whole-tree physiology of underwater photosynthesis has not been examined yet; the energy-costly process

submerged leaves of the species indicated. Green circles, emerged leaves; blue circles, submerged leaves. The blue indicates the duration of the flood period. Modified from Herrera et al. (2001).

of maintaining live leaves under water may be compensated by continued O_2 supply to the roots produced by the photosynthetic activity of these submerged leaves. Significant daily oscillations in TNC content of submerged leaves of *P. ovatifolium* and *C. laurifolia* that were 53 and 131% of those in aerial leaves, respectively (Fernández et al., 1999), support the hypothesis that these leaves are in effect photosynthesizing underwater. Additionally, the balance could resided in having leaves that are fully functional when waters fall; in this case, the payback would lie in a higher wholetree leaf area, hence higher productivity, as opposed to trees which do not maintain live leaves under water.

The occurrence of radial oxygen loss in submerged plants has been interpreted as evidence of photosynthetic O_2 production and transport to roots (Armstrong et al., 2006), demonstrating a positive contribution of underwater photosynthesis to wholeplant survival.

Indirect evidence of the occurrence of underwater photosynthesis is contradicted by the finding in seedlings of *P. orinocoensis* that O₂ consumption by submerged leaves measured with an O₂ electrode became almost zero after 12 days and remained so for 45 days, while emerged leaves, although continually reducing P_N and g_s during 45 days of treatment, had values of P_N after 12 days of 70% the value at the beginning of flooding (Fernández, 2006). The author argues that such responses would be expected from seedlings in the field because to them, in contrast to adult trees, flooding would be abrupt and stressful.

The case of *S. paniculata* and *P. ovatifolium* is particularly interesting, because plants of these species are covered by water earlier and remain submerged longer than other species in the igapó forest. Most of the foliage of these plants remains under water at 25% of incident radiation, yet is fully functional as soon was waters fall (Fernández et al., 1999; Rengifo et al., 2005). An important issue related to the possible underwater photosynthetic activity is that of whether enough CO₂ is available. The CO₂ concentration calculated at the pH and alkalinity of the water from data of Vegas-Vilarrúbia and Herrera (1993b) was at any season one order of magnitude higher than the K_m(CO₂) of rubisco (Fernández et al., 1999); therefore, CO₂ availability would not be a limiting factor as long as the gas diffused into the leaf.

LEAF ANATOMY REMAINS UNCHANGED UNDER FLOODING

In many tolerant was well as intolerant species, flooding leads to a programmed destruction of cells in the leaves as well as stems that ends in the formation of aerenchyma, in a process designed to improve aeration of organs. In the Mapire igapó, as observed in tolerant trees of the Solimões River igapó (Waldhoff and Furch, 2002; Waldhoff, 2009), leaf anatomy remained practically unchanged regardless of phase of the flood cycle (Herrera et al., 2009; **Figure 9**). Emerged leaves under FF are apparently new and, using lack of sediment deposition as an indicator, produced by branches not covered by water. No signs of branch or petiole elongation under flooding, a phenomenon observed in flooded herbs (Bailey-Serres and Voesenek, 2008), have been observed but their occurrence may not be ruled out without detailed time-series on labeled individuals.

A xeromorphic leaf anatomy, such as described for droughttolerant trees (Roth and Lindorf, 1991), was observed, with

abundant sclerenchyma separating mesophyll sections into areoles, and no aerenchyma formation (Herrera et al., 2009). The significance of the occurrence of heterobaric leaves in this environment is unclear and merits further investigation.

Leaves collected in the Mapire igapó at FW from trees on drained soil and trees under flooding had few differences in proportional tissue thickness, the sole significant ones being a reduction in whole-leaf thickness of *E. tenuifolia*, *P. orinocoensis*, and *S. paniculata* and a change in relative thickness of parenchymata in *E. tenuifolia* (Herrera et al., 2009). These results contrast with observations done on the tropical species *Alchornea triplinervia* (Roças and Scarano, 2001), where palisade and spongy parenchymata of flooded plants growing in the field were 1.4 times as thin as those in unflooded plants.

Specific leaf area (SLA = area/mass) decreased with flooding, being higher in young than mature leaves and similar in mature emerged and submerged leaves (Herrera et al., 2009). In *Rumex palustris*, a wetland herbaceous plant, leaf thickness and SLA were 20 and 58% lower in submerged than emerged leaves (Mommer et al., 2005). This was attributed the function of facilitating O₂ diffusion through the liquid phase into the mesophyll. In trees of the Mapire igapó the acclimation to flooding of leaf gas exchange may involve an increase in mesophyll conductance to CO₂ in spite of augmented dry mass per area, which may have increased due to increased total soluble protein (Herrera et al., 2008a).

ECO-PHYSIOLOGICAL AND ECOLOGICAL CONSIDERATIONS

The occurrence in all the species of the Mapire igapó examined of values of g_s and P_N as high under D as under FF suggests that even

though these species are indeed tolerant to flooding, they thrive under drainage as long as the soil is wet. This is supported by the finding that in C. laurifolia, A. nitens, P. orinocoensis, and P. ovatifolium, a strong relationship between the formation of new wood rings and the fluctuation of the river level during the non-flooded months suggested that an increase in the river water level during drainage promoted growth probably because of better access to ground water (Dezzeo et al., 2003). This could be interpreted as meaning that these species chose to occupy wetlands because of the competitive advantages tolerance gives them, not because of a strict requirement of flooding to grow. Trees of A. nitens and C. laurifolia grow vigorously at the savanna-end of the gradient, where they experience flooding of low height and short duration, and trees of Andira inermis, among others, grow to very large size in areas of the savanna far removed from the igapó. The apparent lack of need for flooding in these species contrasts with the requirement of salt in other flood-tolerant trees, mangroves, in many of which P_N and growth increase in response to salinity up to an optimum (Wang et al., 2011).

Flooding is frequently considered a generalized stress (e.g., Jackson and Colmer, 2005; Bailey-Serres and Voesenek, 2008; Perata et al., 2011), even when dealing with flood-tolerant plants (Parolin and Wittmann, 2010). In agreement with Otte (2001), I argue here that flooding would be stressful if it were not normally encountered by plants and that waterlogging and flooding are not stressful to wetland plants, but only to non-adapted dry land plants. The aim in this argument is not semantic; rather, I have endeavored to demonstrate that initial "negative" responses to flooding of tolerant trees are part of the adaptation.

Additionally, the mere observation that ψ increases when waters rise supports the idea of not describing flooding as a stress to tolerant plants.

Of the 85 species identified in the Mapire igapó, 85% flowered and 73% set fruit during the flooded period, mostly during August-September (**Figure 10**). Detailed time-series of leaf production and reproduction in conspecific trees growing under flood and in dry lands would be welcome when dealing with flood tolerance. Together with high P_N values and maintenance of leaf area, the reproductive phenological behavior seems to indicate

REFERENCES

- Armbrüster, N., Müller, E., and Parolin, P. (2004). Contrasting responses of two amazonian floodplain trees to hydrological changes. *Ecotropica* 10, 73–84.
- Armstrong, J., Jones, R. E., and Armstrong, W. (2006). Rhizome phyllosphere oxygenation in *Phragmites* and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. *New Phytol.* 172, 719–731.
- Armstrong, W., Webb, T., Darwent, M., and Beckett, P. M. (2009). Measuring and interpreting respiratory critical oxygen pressures in roots. *Ann. Bot.* 103, 281–293.
- Aroca, R., Porcel, R., and Ruiz-Lozano, J. M. (2011). Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 63, 43–57.
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. *Annu. Rev. Plant Biol.* 59, 313–339.
- Barrios, E., and Herrera, R. (1994). Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification. *J. Trop. Ecol.* 10, 399–416.

- Batzli, J. M., and Dawson, J. O. (1997). Physiological and morphological responses of red alder and sitka alder to flooding. *Physiol. Plant.* 99, 653–663.
- Bolhàr-Nordenkampf, H. R., and Öquist, G. (1993). "Chlorophyll fluorescence as a tool in photosynthesis research," in *Photosynthesis* and Production in a Changing Environment, eds D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, and S. P. Long (London: Chapman and Hall), 193–206.
- Colmer, T. D., and Voesenek, L. A. C. J. (2009). Flooding tolerance: suites of plant traits in variable environments. *Funct. Plant Biol.* 36, 665–681.
- Crawford, M. M. (1992). Oxygen availability as an ecological limit to plant distribution. *Adv. Ecol. Res.* 23, 93–185.
- Crawford, R. M. M. (1982). "Physiological responses to flooding," in *Encyclopedia of Plant Physiology*, eds A. Pirson and M. H. Zimmermann (Berlin: Springer-Verlag), 453–477.
- Dezzeo, N., Worbes, M., Ishii, I., and Herrera, R. (2003). Annual tree rings revealed by radiocarbon

that flooding increases fitness through its two components, survival and fecundity. This supports the idea that flooding, far from constituting a stress to these wetland plants, is a natural and necessary part of the suite of environmental variables that make their presence in this ecosystem possible.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Thus far, a wealth of information is available on the responses to flood of leaf gas exchange and leaf and whole-plant water status but we know very little about mechanisms underlying such responses. The following is important to solve this issue:

- 1. In order to gain knowledge on plant tolerance to hypoxia/anoxia in tropical tolerant trees, the morphoanatomical, biochemical and molecular characteristics of roots must be literally unearthed. *De novo* synthesis of root aquaporins and the occurrence of pressurized O_2 transport could help explain acclimation to flooding. Difficulty in accessing the root system of large trees has hindered progress in this area and data from more feasible experiments with seedlings may not necessarily be extrapolated to adult trees.
- 2. Examination of the hormonal balance of these trees under flooding seems imperative; preliminary data on leaf and xylem ABA contents point in the direction of promising research.
- 3. Long-term phenological observations under continually drained conditions should help elucidate whether these species are dependent on flooding for the completion of their life cycle.

dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. *Plant Ecol.* 168, 165–175.

- Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250.
- Else, M. A., Davies, W. J., Malone, M., and Jackson, M. B. (1995). A negative hydraulic message from oxygendeficient roots of tomato plants? *Plant Physiol.* 109, 1017–1024.
- Else, M. A., Janowiak, F., Atkinson, C. J., and Jackson, M. B. (2009). Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. *Ann. Bot.* 103, 359–376.
- Fernández, M. D. (2006). Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of *Pouteria* orinocoensis. Photosynthetica 44, 32–38.
- Fernández, M. D., Pieters, A., Donoso, C., Herrera, C., Tezara, W., Rengifo, E., et al. (1999). Seasonal changes in photosynthesis of trees in the flooded forest of the Mapire river. *Tree Physiol.* 19, 79–85.

- Ferreira, C. S., Piedade, M. T. F., Franco, A. C., Carvalho Goncalves, J. F., and Junk, W. F. (2009). Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of *Himatanthus* sucuuba, a Central Amazon tree. Aquat. Bot. 90, 246–252.
- García-Sánchez, F., Syvertsen, J. P., Gimeno, V., Botía, P., and Perez-Perez, J. G. (2007). Response to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. *Physiol. Plant.* 130, 532–542.
- Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. *Environ. Pollut.* 116, 31–35.
- Graffmann, K., Grosse, W., Junk, W. J., and Parolin, P. (2005). Pressurized gas transport in Amazonian floodplain trees. *Biotropica* 37, 609–619.
- Grosse, W., Frye, J., and Lattermann, S. (1992). Root aeration in wetland trees by pressurized gas transport. *Tree Physiol.* 10, 285–295.
- Herrera, A., Escala, M., and Rengifo, E. (2009). Leaf anatomy changes related to physiological adaptations to flooding in Amazonian tree species. *Brazil. J. Plant Physiol.* 21, 301–308.

- Herrera, A., Rengifo, E., and Tezara, W. (2001). "Leaf gas exchange of trees in a tropical seasonally flooded forest," in *The Tree 2000*, ed M. Labrecque (Montreal, QC: Isabelle Quentin), 257–262.
- Herrera, A., Tezara, W., Rengifo, E., and Flores, S. (2008a). Changes with seasonal flooding in sap flow of the tropical flood-tolerant tree species, *Campsiandra laurifolia*. *Trees* 22, 551–558.
- Herrera, A., Tezara, W., Marín, O., and Rengifo, E. (2008b). Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. *Physiol. Plant.* 134, 41–48.
- Islam, M. A., and Macdonald, S. E. (2004). Ecophysiological adaptations of black spruce (*Picea mariana*) and tamarack (*Larix laricina*) seedlings to flood. *Trees* 18, 35–42.
- Izquierdo, L. (1988). Efecto de la Inundación Sobre la Actividad Metabólica en Raíces de una Especie Arbórea, Acosmium nitens (Vog.) Yakoul (Papilonaceae) de áreas Estacionalmente Inundables. Licenciado thesis, Universidad Central de Venezuela, Caracas.
- Jackson, M. (1997). Hormones from roots as signals for the shoots of stressed plants. *Trends Plant Sci.* 2, 22–28.
- Jackson, M. B., and Colmer, T. D. (2005). Response and adaptation by plants to flooding stress. *Ann. Bot.* 96, 501–505.
- James, E. K., and Crawford, R. M. M. (1998). Effect of oxygen availability on nitrogen fixation by two *Lotus* species under flooded conditions. *J. Exp. Bot.* 49, 599–609.
- Joly, C. A., and Crawford, R. M. M. (1982). Variation in tolerance and metabolic responses to flooding in some tropical trees. *J. Exp. Bot.* 33, 799–809.
- Konnerup, D., Sorrell, B. K., and Brix, H. (2011). Do tropical wetland plants possess convective gas flow mechanisms? *New Phytol.* 190, 379–386.
- Kozlowski, T. T. (1984). Plant responses to flooding of soil. *BioScience* 34, 162–167.
- Kozlowski, T. T. (1997). Responses of woody plants to flooding and salinity. *Tree Physiol. Monogr.* 1, 1–29.
- Kreuzwieser, J., Furniss, S., and Rennenberg, H. (2002). Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. *Plant Cell Environ.* 25, 1039–1049.
- Kreuzwieser, J., Papadopoulou, E., and Rennenberg, H. (2004). Interaction of flooding with carbon metabolism

of forest trees. *Plant Biol.* 6, 299–306.

- Lopez, O. R., and Kursar, T. A. (1999). Flood tolerance of four tropical tree species. *Tree Physiol.* 19, 925–932.
- McElrone, A. J., Bichler, J., Pockman, W. T., Addington, R. N., Linder, C. R., and Jackson, R. B. (2007). Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. *Plant Cell Environ.* 30, 1411–1421.
- Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K. I., Lima, B. T., et al. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. *Glob. Change Biol.* 10, 530–544.
- Mielke, M. S., de Almeida, A.-A. F., Gomes, F. P., Aguilar, M. A. G., and Mangabeira, P. A. O. (2003). Leaf gas exchange, chlorophyll fluorescence and growth responses of *Genipa americana* seedlings to soil flooding. *Environ. Exp. Bot.* 50, 221–231.
- Mommer, L., Pons, T., Wolters-Arts, M., Venema, J., and Visser, E. (2005). Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. *Plant Physiol.* 139, 497–508.
- Otte, M. L. (2001). What is stress to a wetland plant? *Environ. Exp. Bot.* 46, 195–202.
- Parolin, P. (2000). Phenology and CO₂-assimilation of trees in Central Amazonian floodplains. *J. Trop. Ecol.* 16, 465–473.
- Parolin, P. (2001). Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. *Oecologia* 128, 326–335.
- Parolin, P., Armbrüster, N., and Junk, W. J. (2002). Seasonal changes of leaf nitrogen content in trees of amazonian floodplains. Acta Amazon. 32, 123–132.
- Parolin, P., Armbrüster, N., and Junk, W. J. (2006). Two Amazonian flooplain trees react differently to periodical flooding. *Trop. Ecol.* 47, 243–250.
- Parolin, P., and Wittmann, F. (2010). Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems. *AoB Plants* 2010:plq003. doi: 10.1093/aobpla/plq003
- Perata, P., Armstrong, W., and Voesenek, L. A. C. J. (2011). Plants and flooding stress. *New Phytol.* 190, 269–273.
- Pezeshki, S. R. (1987). Gas exchange response of tupelo-gum (*Nissa*

aquatica L.) to flooding and salinity. *Photosynthetica* 21, 489–493.

- Pezeshki, S. R. (1993). Differences in patterns of photosynthetic responses to hypoxia in floodtolerant and flood-sensitive tree species. *Photosyntetica* 28, 423–430.
- Prance, G. T. (1979). Notes on the vegetation of Amazonia. III. Terminology of Amazonian forest types subjected to inundation. *Brittonia* 31, 26–38.
- Rengifo, E., Herrera, A., Tezara, W., and Flores, S. (2006). Efecto de la Inundación y la Sequía Sobre la Conductancia Estomática, el Contenido ABA Xilemático y Foliar y el Estado Hídrico de dos Especies Arbóreas Tropicales Tolerantes a la Inundación. Santo Domingo: IX Congreso Latinoamericano de Botánica.
- Rengifo, E., Tezara, W., and Herrera, A. (2005). Water relations, chlorophyll a fluorescence and carbohydrate contents in trees of a tropical forest in response to flood. *Photosynthetica* 43, 203–210.
- Roças, G., and Scarano, F. R. (2001). Leaf anatomical variation in *Alchornea triplinervia* (Spreng) Müll. Arg. (Euphorbiaceae) under distinct light and soil water regimes. *Trop. Ecol.* 47, 243–250.
- Rosales, J. (1988). Análisis Florístico-Estructural y Algunas Relaciones Ecológicas en un Bosque Inundable en la Boca del río Mapire, Edo. Anzoátegui. M.Sc. thesis, Instituto Venezolano de Investigaciones Científicas, Caracas, 233.
- Roth, I., and Lindorf, H. (1991). Leaf structure of species of *Pachira* indigenous of Venezuela from different habitats. *Bot. Jahrb. Syst.* 113, 203–219.
- Ruiz-Sánchez, M. C., Domingo, R., Morales, D., and Torrecillas, A. (1996). Water relations of Fino lemon plants on two rootstocks under flooded conditions. *Plant Sci.* 120, 119–125.
- Snyder, K. A., James, J. J., Richards, J. H., and Donovan, L. A. (2008). Does hydraulic lift or nighttime transpiration facilitate nitrogen acquisition? *Plant Soil* 306, 159–166.
- Sun, O. J., Sweet, G. B., Whitehead, D., and Buchan, G. D. (1995). Physiological responses to water stress and waterlogging in *Nothofagus* species. *Tree Physiol.* 15, 629–638.
- Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.-T., et al. (2003). Cytosolic pH regulates root water transport

during anoxic stress through gating of aquaporins. *Nature* 425, 393–397.

- Vegas-Vilarrúbia, T., and Herrera, R. (1993a). Seasonal alternation of lentic/lotic conditions in the Mapire system, a tropical floodplain lake in Venezuela. *Hydrobiologia* 262, 43–55.
- Vegas-Vilarrúbia, T., and Herrera, R. (1993b). Effects of periodic flooding on the water chemistry and primary production of the Mapire system (Venezuela). *Hydrobiologia* 262, 31–42.
- Waldhoff, D. (2009). Leaf structure in trees of Central Amazonian floodplain forests (Brazil). Environ. Exp. Bot. 66, 135–142.
- Waldhoff, D., and Furch, B. (2002). Leaf morphology and anatomy in eleven tree species from Central Amazonian floodplains (Brazil). *Amazoniana* 17, 79–94.
- Waldhoff, D., Furch, B., and Junk, W. (2002). Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: *Symmeria paniculata. Environ. Exp. Bot.* 48, 225–235.
- Wang, W., Yan, Z., You, S., Zhang, Y., Chen, L., and Lin, G. (2011). Mangroves: obligate or facultative halophytes? A review. *Trees* 25, 953–963.

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 January 2013; accepted: 08 April 2013; published online: 01 May 2013.

Citation: Herrera A (2013) Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. Front. Plant Sci. 4:106. doi: 10.3389/fpls.2013.00106

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Herrera. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Underwater photosynthesis of submerged plants – recent advances and methods

Ole Pedersen^{1,2,3}*, Timothy D. Colmer³ and Kai Sand-Jensen¹

¹ The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Hillerød, Denmark

² Institute of Advanced Studies, The University of Western Australia, Crawley, WA, Australia

³ School of Plant Biology, The University of Western Australia, Crawley, WA, Australia

Edited by:

Rens Voesenek, Utrecht University, Netherlands

Reviewed by:

Masanori Arita, University of Tokyo, Janan Thijs Leendert Pons, Utrecht University, Netherlands

*Correspondence:

Ole Pedersen, The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Helsingørsgade 51, 3400 Hillerød, Denmark

e-mail: opedersen@bio.ku.dk

We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO₂ and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence.

Keywords: flooding tolerance, light extinction, carbon dioxide, wetland plants, photorespiration

Knowledge of plant and environmental factors determining photosynthesis by submerged plants is essential for understanding aquatic plant ecophysiology and ecosystem productivity, as well as submergence tolerance of terrestrial plants. Following the pioneering studies by Arens (1933) and Steemann Nielsen (1946) on the use of dissolved inorganic carbon (DIC) for photosynthesis of aquatic plants, numerous studies on the regulatory role of light and DIC for underwater photosynthesis of aquatic plants have been conducted. Particularly, the use of DIC by aquatic plants has fascinated researchers and been reviewed several times (e.g., Madsen and Sand-Jensen, 1991; Maberly and Madsen, 2002; Raven and Hurd, 2012) because this process is important for growth and survival and the uptake mechanisms are very different from those of terrestrial, amphibious, and floating leaved plants exposed to atmospheric air (definitions of these life forms and examples of species are in Sculthorpe (1967)). Since the physical conditions differ markedly between water and air, we have often been approached by researchers asking for practical advice, unavailable in the literature, before engaging in work with underwater photosynthesis. Thus, this review serves to offer the background and a practical guide for measurements of carbon fixation by plants when under water.

Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding (Figure 1A). Torrential rains sometimes result in overland floods that inundate terrestrial plants (Vervuren et al., 2003) and with the current projection on climate change, the frequency of such flooding events are expected to increase (Parry et al., 2007). We therefore predict that research on underwater photosynthesis will extend

greatly beyond its current focus on aquatic plants as natural wetlands and many crops will become submerged in future flooding events. Researchers engaging in underwater photosynthesis should be aware that physical restrictions on light availability and gas exchange are much more profound under water than on land (Sand-Jensen and Krause-Jensen, 1997). Moreover, the aquatic sources and mechanisms of inorganic carbon use are complex, difficult to study, and often challenging to fully understand (Madsen and Sand-Jensen, 1991; Raven and Hurd, 2012).

Photosynthesis provides sugars and O₂. The importance of underwater photosynthesis to internal O₂ status (Figure 1B), including via internal long-distance transport into roots growing in anoxic sediments, has been demonstrated for aquatic species (e.g., Borum et al., 2005; Sand-Jensen et al., 2005; Holmer et al., 2009; Pedersen et al., 2011) and terrestrial wetland plants when completely submerged (Pedersen et al., 2006; Winkel et al., 2011, 2013). By contrast, during the night submerged plants rely on O₂ uptake from the surrounding water to sustain their respiration and belowground organs can suffer from O₂ deficiency.

The majority of studies on photosynthesis by submerged aquatic plants have been carried out on detached leaves and algal thalli. These may experience very different environmental conditions than entire communities of submerged plants or plant dominated ecosystems, which have rarely been examined (e.g., Sand-Jensen et al., 2007; Christensen et al., 2013). We thus recommend undertaking studies on communities and ecosystems because they may reveal very different principles of regulation of greater relevance for the ecology and natural performance of

FIGURE 1 | Completely submerged terrestrial vegetation (A), white flakes of CaCO₃ on leaves of a pondweed (*Potamogeton lucens*) (B) and an incubator with a vertically rotating wheel holding vials with leaf segments for measurements of underwater net photosynthesis (C) or dark respiration when in complete darkness. The bubbles on the submerged mosses (A) are obvious signs that underwater photosynthesis takes place with O₂ evolution causing the bubble formation. Moreover, the submerged grasses possess superhydrophobic self cleansing leaf surfaces

submerged aquatic plants, as well as survival of terrestrial species during overland floods.

With the present review, we describe the general background and the recent advances in underwater photosynthesis of phytoelements (shoots, excised thalli, or leaf portions), communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water.

UNDERWATER PHOTOSYNTHESIS

CHALLENGES UNDER WATER – REDUCED GAS DIFFUSION AND LIGHT PENETRATION

The 10⁴-fold lower diffusion coefficient of gases in water, compared with in air, presents a major challenge to submerged plants (Armstrong, 1979; Maberly and Madsen, 2002). Diffusive boundary layers (DBL) develop on all surfaces and their thickness adjacent to leaves in water is of the same order of magnitude as those for leaves in air (Vogel, 1994; Raven and Hurd, 2012). Although the transport distance for gases across the DBL is similar, the much lower diffusion coefficient in water results in a 10⁴-fold lower flux that retain a thin gas film when under water, evident as a silvery reflecting surface. In **(B)**, high pH on the adaxial leaf surfaces following extensive underwater photosynthesis has resulted in precipitation of $CaCO_3$ (See "Challenges Under Water – Reduced Gas Diffusion and Light Penetration"). Photos: a shallow puddle on Öland, Sweden **(A)**, the bicarbonate rich (1.8 mmol DIC L⁻¹) Lake Slåen, Denmark **(B)** and the custom built wheel incubator by Ray Scott at the University of Western Australia **(C)**; photos by Ole Pedersen.

for the same concentration gradient and thus the DBL constitutes a much larger proportion of the total resistance to gas exchange for leaves under water than in air (Maberly and Madsen, 2002). The "bottleneck effect" of the DBL on underwater gas exchange was demonstrated in a study of four submerged aquatic species, where the DBL accounted for 90% of the total resistance to carbon fixation (Black et al., 1981). Hence, inorganic carbon limitation of photosynthesis is a much more common and prominent feature for aquatic than terrestrial leaves (Stirling et al., 1997). On average, the underwater photosynthesis increased threefold in a study of 14 submerged freshwater species at saturating relative to ambient supply of DIC supply (Nielsen and Sand-Jensen, 1989). The immediate acclimation of photosynthesis of five fast growing annual terrestrial species by doubling of atmospheric CO₂ was 1.6- to 2.1-fold while the average increase of relative growth rate over 56 day was 1.25-fold and only significant for one of the five species (Stirling et al., 1998).

The restricted gas exchange under water has resulted in evolution of a suite of adaptive features in aquatic leaves and macroalgal thalli to reduce the influence of DBL on the exchange of O₂ and

 CO_2 , including the supplementary use of HCO_3^- (bicarbonate) (Sculthorpe, 1967; Maberly, 1990; Colmer et al., 2011). In seawater and in many freshwaters, the pool of HCO₃⁻ is several fold higher than of CO₂ and thus presents an attractive alternative to CO₂. Use of HCO₃⁻ has evolved many times among unicellular algae, macroalgae, and angiosperms in freshwater and marine environments (Raven and Hurd, 2012) and can involve direct uptake into the cells or external conversion to CO2 in the DBL catalyzed by surface bound carbonic anhydrase and/or extrusion of protons in acids bands (charophytes; Lucas and Smith, 1973) or lower leaf surfaces in e.g., species of Potamogeton and Elodea (Prins et al., 1980) often with precipitation of CaCO₃ on the alkaline upper leaf surfaces (Figure 1B). While the DBL reduces the direct HCO_3^- flux to the leaf surface, the "stagnant" layer is required to forming high CO2 concentrations by acid titration of HCO_3^- (Helder, 1985). Use of HCO_3^- is prominent for marine macroalgae and seagrasses, freshwater charophytes, and in 50% of 80 tested species of freshwater angiosperms (Sand-Jensen and Gordon, 1984; Maberly and Madsen, 2002), but the ability is absent among mosses and pteridophytes. Also 12 amphibious species alternating between emergent and submerged forms in Danish lowland streams relied solely on CO₂ use although high HCO₃⁻ concentrations may still benefit photosynthesis by stabilizing pH and permitting rapid uncatalyzed replenishment of the CO_2 consumed (Maberly, 1990). The proportion of HCO_3^- users among angiosperm species in lakes increases significantly with alkalinity and, thus, availability of HCO₃ (Maberly and Madsen, 2002) in accordance with the increasing advantage of $HCO_3^$ use for photosynthesis and growth. Assuming for simplicity a 10fold higher apparent preference for CO₂ than HCO₃ by leaves in alkaline water containing 0.015 mmol L⁻¹ CO₂ and 1.5 mmol L^{-1} HCO₃, the supply rate of HCO₃ would be 10-fold higher than that of CO₂. In softwater containing only 0.15 mmol L^{-1} HCO_3^- the supply rate of the two carbon species would be the same. Terrestrial plant species lack these adaptive features for aquatic life, and when underwater their leaves show dramatically reduced net photosynthesis (Sand-Jensen et al., 1992; Nielsen, 1993) and dark respiration (Colmer and Pedersen, 2008; Pedersen et al., 2009). Thus, 13 terrestrial species submerged in CO₂ rich stream water were unable to use HCO₃⁻ and median rates of underwater net photosynthesis were sevenfold lower than of 10 permanently submerged stream plants and the terrestrial species were unable to support substantial growth (Sand-Jensen et al., 1992; Figure 2).

The extraction capacity of the DIC pool is only some 1-4% for obligate CO₂ users while it is typically 40–70% among HCO₃⁻ users; 16 of 19 species (Madsen and Sand-Jensen, 1991). This is because of the ability of HCO₃⁻ users to continue photosynthesizing despite very high external pH and low DIC in the water. In vegetation rich water bodies of high pH, HCO₃⁻ users can eventually out compete all obligate CO₂ users (Sand-Jensen et al., 2010). Submerged aquatic plants unable to use HCO₃⁻ typically have final pH's in the external medium of the order of 8.6–9.8 in alkaline solutions and final CO₂ concentrations equivalent to CO₂ compensation points of 2–10 μ mol L⁻¹, while active HCO₃⁻ users typically have final pH's of 9.8–11.0 and final CO₂ concentrations mostly below 0.3 μ mol L⁻¹ (Sand-Jensen et al., 1992).

produced under water while leaves of terrestrial plant species were formed in air (n = 12). Letters indicate significant differences (P < 0.05); Tukey test. Data from Sand-Jensen et al. (1992), with measurements taken at 15°C.

For a large collection of stream plants, median final CO₂ values among the supposedly obligate CO₂ users were $6.0 \,\mu$ mol L⁻¹ for homophyllous and $4.8 \,\mu$ mol L⁻¹ for heterophyllous amphibious plants, within the typical range of CO₂ compensation points, while the median final CO₂ concentration for the putative HCO₃⁻ users was only $0.04 \,\mu$ mol L⁻¹ reflecting the supplementary use of HCO₃⁻ (**Figure 2**). Heterophyllous amphibious species form morphologically and anatomically distinct leaf types under water as compared to in air (Sculthorpe, 1967). The underwater leaf forms are an acclimation that enhances underwater gas exchange (Sand-Jensen et al., 1992; Colmer et al., 2011).

Photosynthesis of submerged aquatic plants and flooded terrestrial plants can also be severely limited by light (Kirk, 1994). In water, light is exponentially attenuated with depth following the equation: $I_Z = I_0(1 - f) e^{-Z\epsilon}$; where I_z is the available irradiance at a given depth (z), I_0 is the irradiance at the surface, and ε is the attenuation coefficient. The proportional reflection and back scattering at the water surface (f) is variable but typically about 0.1 such that the proportion of down welling irradiance is 0.9 (Kirk, 1994). The attenuation coefficient of pure water averaged across the photosynthetic spectrum is about 0.03 m⁻¹, so in ultra clear water such as oligotrophic oceanic water, rooted plants could grow as deep as 70 m with 10% of surface irradiance still being available, which happens to be the approximate lower depth limit of seagrasses (Duarte, 1991). In most cases, however, colored dissolved organic matter (CDOM), pigments in planktonic algae and suspended particles, together reduce light penetration much more profoundly (Staehr et al., 2012b). Because freshwaters compared with marine waters are typically richer in nutrients, phytoplankton, CDOM exported from land and particles suspended from shallow sediments, attenuation coefficients typically range from 0.3 to 10 m⁻¹ and thus have lower depth limits of rooted plants from 7 m to only 0.2 m (Middelboe and Markager, 1997). Flooding after heavy rain is commonly associated with erosion, high particle loads and high release of CDOM from inundated terrestrial soils. Flooded terrestrial plants can, therefore, experience extreme shading corresponding to attenuation coefficients between 1 and 8 m⁻¹ (Parolin, 2009) making light limitation also of terrestrial plants a prominent feature during flooding events (Colmer et al., 2011).

UNDERWATER PHOTOSYNTHESIS IN SUBMERGED AQUATIC PLANTS AND RECENT ADVANCES

The net process of photosynthesis (Eq. 1) is often described simply as the fixation of CO_2 (or HCO_3^- in water; Eq. 2) catalyzed by several enzymes, including Rubisco, driven by light and resulting in production of organic matter, O_2 and OH^- :

$$CO_2 + H_2O \rightarrow CH_2O + O_2 \tag{1}$$

$$HCO_3^- + H_2O \rightarrow CH_2O + O_2 + OH^-$$
(2)

The rate of the process can be determined by the production of O₂ and new organic matter (e.g., by isotopic tracing with ¹³C and ¹⁴C) and the consumption of CO₂, HCO₃⁻, or more generally the pool of DIC: CO₂, HCO₃⁻ and CO₃²⁻. Photosynthesis is an alkalinization process as reflected by the release of OH⁻ in Eq. 2 and the equivalent consumption of CO₂ and protons in Eq. 1 (i.e., CO₂ + H₂O \leftrightarrow H⁺ + HCO₃⁻) such that photosynthesis can be determined by the pH increase when converted to DIC consumption accounting for the buffer capacity [mainly due to carbonate alkalinity (CA), See, The CO₂ Equilibria in Water].

In charophytic macroalgae, use of HCO_3^- in photosynthesis can be closely coupled stochiometrically to carbonate precipitation (McConnaughey, 1991):

$$Ca2+ + 2HCO3- + H2O \rightarrow CH2O + O2 + CaCO3 (3)$$

This process is pH neutral because conversion of HCO₃⁻ to CO_3^{2-} generates the necessary proton for conversion of HCO_3^{-} to CO_2 for assimilation. Thus, HCO_3^- is equally divided between production of organic matter and CaCO3 and the photosynthetic quotient (PQ: mol O_2 evolved mol⁻¹ DIC consumed) is only about 0.5 compared with the typical value of 1.0 in Eqs 1 and 2. The active processes are apparently active antiport of H^+ and Ca^{2+} in the acid bands and Ca^{2+} extrusion in the alkaline bands resulting in gradual accumulation of CaCO₃ from inside the carbonate layer (McConnaughey, 1991). Carbonate precipitation closely coupled to photosynthesis is also found in coralline red algae, several green algae, and numerous freshwater angiosperms developing polar leaves with high pH and carbonate precipitation being confined to the upper leaf surfaces (Raven and Hurd, 2012). However, it remains to be tested whether active Ca^{2+} extrusion is involved in angiosperm use of HCO_3^- as in charophytes (Prins et al., 1980). Even though photosynthesis and carbonate precipitation may not be closely coupled, the alkalinization process in Eqs 1 and 2 may still result in carbonate precipitation on leaf surfaces (Figure 1B) or in the surrounding water because of increase of pH and CO_3^{2-} , though with a variable ratio to the fixation of CO₂ in organic matter. Consequently, O₂ evolution is a more reliable measure of underwater photosynthesis, while DIC use and production of organic matter and carbonate are essential parameters in the analysis of plant growth and carbon dynamics in ecosystems and on regional and global scales (McConnaughey et al., 1994; Cole et al., 2007). While coupled calcification photosynthesis leads to extensive drawdown of DIC and sediment accumulation of organic carbon and carbonates, carbonate formation per se generates H⁺ tending to reduce pH and increase CO₂. During geological periods of intense formation of coral reefs, CO2 concentrations are suggested to have increased in the ocean and the atmosphere (Opdyke and Walker, 1992). The coupled photosynthesis calcification process has three major ecological or physiological implications: (i) in coral and coralline algae carbonates are directly used to build up the structural skeleton, (ii) in all phototrophs, surface precipitates will protect them against grazing animals, and (iii) calcification will prevent alkalinization during intensive photosynthesis which could otherwise have led to such high pH levels that tissues are damaged and photosynthesis is severely inhibited.

The photosynthetic capacity under optimum light, temperature, and DIC conditions varies among species and within species depending on their investment in active transport processes and catalytic machinery. On dry mass basis, maximum rates of photosynthesis of detached leaves of submerged aquatic plants from lakes typically vary 25-fold and dark respiration only fourfold between slow-growing, oligotrophic isoetid species and fast growing, eutrophic elodeid species (Nielsen and Sand-Jensen, 1989). Photosynthetic rates per unit dry mass increase significantly with reduced leaf thickness, higher relative surface area, and higher concentrations of pigments and nitrogen in structural and catalytic proteins, including Rubisco (Madsen et al., 1993). Because metabolism on a dry mass basis increases with declining leaf thickness, photosynthesis expressed per surface area only varies eightfold among species (Nielsen and Sand-Jensen, 1989). A comparison with terrestrial leaves characterizes the aquatic leaves by their lower chlorophyll and Rubisco concentrations and lower photosynthetic rates per surface area mainly due to the thin leaves of most aquatic species. This finding has been interpreted by Maberly and Madsen (2002) as a result of selection of submerged plants to match the low rates of carbon influx predominantly because of high transport resistance. Thin submerged leaves with chloroplasts in epidermal layers will also increase the cost effectiveness of light use and can also be regarded as a particular advantage in a low light aquatic environment with no risk of desiccation damage to the epidermal layers.

Realized rates of underwater photosynthesis for a given plant tissue varies from zero at compensation levels for light and DIC to maximum rates at saturating light and DIC. Light and DIC levels required to saturate photosynthesis increase with temperature and are highly dependent on the extent of self shading and, therefore, the scale of analysis of either detached leaves, individuals or populations (See Underwater Photosynthesis - Approaches and Methods). On a daily level, light limitation takes place early in the morning (low light but plenty of CO₂, Figure 3) and colimitation of both light and CO₂ takes place late in the afternoon where also CO₂ is low (Figure 3). On a seasonal level, light limitation is present from late autumn to early spring outside the tropical regions. Populations in deep or turbid waters and dense populations with high self shading face permanent light limitation. Photosynthetic rates at saturating light and DIC increase with temperature due to stimulation of enzyme activity up to an optimum level depending on the adaptation and acclimation of the species but are usually located between 25 and 32°C for temperate submerged aquatic plants (Santamaría and van Vierssen, 1997). The temperature exponent gradually declines and reaches zero as temperature approaches the optimum temperature and it turns negative above the optimum due to increasing influence of photorespiration (Long, 1991) and risk of damage of macromolecules, membranes, and structural organization of membrane proteins (Johnson et al., 1974; Lambers et al., 2008). Respiration continues to increase up to higher temperatures than photosynthesis resulting in proportionally greater losses of organic matter and optima for growth being located at lower temperature than optima for photosynthesis (Olesen and Madsen, 2000; Pilon and Santamaría, 2001).

Ninety nine percent of all studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis (Sand-Jensen and Krause-Jensen, 1997). The influence of light, DIC, and temperature on underwater photosynthesis show mutual interdependencies and are, moreover, strongly dependent on the spatial scale. From detached phytoelements to closed communities, light compensation points typically increase three- to eightfold and light saturation levels increase from 200 to 400 μ mol m⁻² s⁻¹ to more than the maximum irradiances at noon of about 1500 μ mol m⁻² s⁻¹ (**Table 1**; Sand-Jensen et al., 2007). The stimulation of photosynthesis in alkaline water by rising CO₂ concentrations from 20 (close to air equilibrium) to 250 µmol L^{-1} (more than 10-fold above air equilibrium) is about ninefold for detached leaves and only 1.9- to 2.5-fold for dense communities of freshwater CO₂ users while for efficient HCO₃⁻ users the

(<15 μ mol L⁻¹). During the night, total system respiration consumed O₂ (pO₂ dropped to 2.5 kPa early in the morning) and CO₂ rose to 550 μ mol L⁻¹. Data extracted from Rich et al. (2013).

 CO_2 stimulation is only about twofold for individual leaves and insignificant for dense communities (**Table 2**; Sand-Jensen et al., 2007). Open communities of less self shading take an immediate position between detached individual leaves and dense communities. Profound self shading and light limitation of photosynthesis in dense aquatic communities imply that the influence of temperature and inorganic carbon supply is smaller than observed for well illuminated phytoelements. The full scale influence of temperature and CO_2 on community photosynthesis is confined to tissues in the upper part of the canopy receiving irradiances above light saturation.

Up scaling of metabolic analyses from communities of submerged aquatic plants to entire ecosystems dominated by rooted plants have only been done in a few instances. Kelly et al. (1983) studied a shallow, densely vegetated stream (Gryde Stream, Denmark) by open water O_2 measurements and confirmed that incoming irradiance was the main determinant of daily and seasonal variations of underwater photosynthesis which was only light saturated for a few hours at noon on clear summer days. The high CO₂ concentrations (typically 10-fold air equilibrium) in lowland streams is a prerequisite for the high photosaturated rates and strong light dependency of submerged plants in general and CO₂ users in particular (Sand-Jensen and Frost-Christensen, 1998). With natural CO₂ concentrations close to air equilibrium, as observed in most lakes and ponds and in streams in the

	Thallus (mean)	Community LAI (m ² m ⁻²)				
		3.0	6.3	8.9	13.8	
GP_{max} (µmol O ₂ m ⁻² s ⁻¹)	7.95	11.5	17.4	22.0	23.7	
A (μ mol O ₂ mol ⁻¹ photon)	0.064	0.031	0.049	0.069	0.072	
E_{C} (µmol photon m ⁻² s ⁻¹)	22	67	99	94	175	
E_K (µmol photon m ⁻² s ⁻¹)	Approx. 300	Not sat.	Not sat.	Not sat.	Not sat.	

Table 1 | Photosynthetic parameters for thallus segments and communities of Fucus serratus of varying leaf area index (LAI).

 GP_{max} : light saturated photosynthesis, α : the initial linear slope of photosynthesis versus irradiance, E_e : the light compensation points when net photosynthesis is zero, E_k : the irradiance for onset of light saturated photosynthesis. From Binzer and Sand-Jensen (2002b).

Table 2 | Increase (x-fold) of maximum gross production of O₂ at high (250 μ mol L⁻¹) relative to low (20 μ mol L⁻¹) CO₂ concentration in alkaline water (5000 μ mol L⁻¹ DIC) of leaves and freshwater plant communities at two densities (LAI; 2 or 10 m² m⁻²).

	Temperature (°C)	Leaves	Community (LAI $2 \text{ m}^2 \text{ m}^{-2}$)	Community (LAI 10 m ² m ⁻²)
HCO ₃ USERS				
Potamogeton crispus	15	2.1	1.45	1.16
Potamogeton pectinatus	15	2.0	1.33	0.96
CO ₂ USERS				
Callitriche cophocarpa	15	9.0	3.32	2.46
	25		2.14	1.91
Sparganium simplex	15	9.3	4.24	1.91
	25		4.16	1.54

The ratio GP_{max} (high CO₂):GP_{max} (low CO₂) is shown. Leaf values are from Sand-Jensen (1983) and community values from Sand-Jensen et al. (2007).

afternoon after several hours of planktonic photosynthesis (Sand-Jensen and Frost-Christensen, 1998; Christensen et al., 2013), CO2 plays a stronger regulatory role for photosynthesis particularly in open plant stands of low self shading (Sand-Jensen and Frost-Christensen, 1998). Moreover, the species rich group of terrestrial plants in lowland streams would be unable to survive if the water had not been greatly supersaturated as their CO₂ compensation points resemble or exceed the CO₂ concentrations at air equilibrium (Sand-Jensen and Frost-Christensen, 1999). Recent use of open water measurements of O2 and pH in shallow, alkaline ponds dominated entirely by charophytes documents that high biomass densities in late summer are attained by sustained slow growth over the preceding 3 months at very low nutrients concentrations in the water, and that daily photosynthesis is mostly limited by light (Figure 4) and only briefly by DIC at high pH (>9.5), and with virtually no CO2 available in the afternoon (Christensen et al., 2013). Only submerged aquatic plants capable of using HCO_3^- and concentrating CO₂ internally at the site of Rubisco can thrive in this environment (Sand-Jensen et al., 2010). Plant species forming dense communities in shallow ponds must also be able to tolerate substantial diurnal variations in temperature (e.g., 18-32°C) and O₂ (hypoxic to twice air equilibrium) (Christensen et al., 2013). Daily photosynthesis and respiration were high in the pond and closely interrelated showing that newly produced organic matter was mostly rapidly respired by plants and bacteria.

Overall, the analyses of individual phytoelements, communities, and ecosystems confirm that the relative roles of light and DIC for determining photosynthesis are closely interrelated and highly dependent on plant density and species affinities for CO₂

and HCO_3^- . Maximum photosynthetic rates under light and inorganic carbon saturation are quite variable both between and within species depending on selected strategies and the investment in catalytic machinery coupled to supply of resources (e.g., nutrients). While photosaturated photosynthetic rates are strongly dependent on species, acclimation, and temperature, light limited rates are rather temperature independent and relatively similar among species (Frost-Christensen and Sand-Jensen, 1992). As the importance of light limitation for community photosynthesis increases in dense plant stands, the influence of species, temperature, and DIC supply decline and enable us to predict community photosynthesis primarily from the overall distribution and absorptance of light in the canopy (Binzer and Sand-Jensen, 2002a; b; Binzer et al., 2006).

RECENT ADVANCES IN UNDERWATER PHOTOSYNTHESIS IN TERRESTRIAL WETLAND PLANTS

Terrestrial wetland plants grow in waterlogged soils and/or sediments with shallow standing water, so that a large proportion of the shoot is in contact with air. So, aerial photosynthesis predominates but these plants can experience episodes of complete submergence during floods. Although much more tolerant of submergence than non-wetland terrestrial species, submergence is regarded as a serious abiotic stress for terrestrial wetland plants, but species (and genotypes within a species) differ markedly in submergence tolerance (Bailey-Serres and Voesenek, 2008; Colmer and Voesenek, 2009). The impeded gas exchange under water restricts respiration and photosynthesis (See Challenges Under Water - Reduced Gas Diffusion and Light Penetration); photosynthesis can also be limited by low light when submerged (See Challenges Under Water - Reduced Gas Diffusion and Light Penetration and Underwater Photosynthesis in Submerged Aquatic plants and Recent Advances). Thus, submergence disrupts energy metabolism of terrestrial plant species as a result of a reduced O₂ supply (at least during the night, in some tissues) and/or diminished carbohydrate status because of the restricted photosynthesis when under water.

Terrestrial wetland species lack most of the adaptive leaf features for inorganic carbon acquisition for photosynthesis as described in Section "Underwater Photosynthesis in Submerged Aquatic Plants and Recent Advances" for aquatic and acclimated amphibious plants. Thus, when compared with leaves of aquatic plants, those of terrestrial plants generally have larger overall apparent resistance to diffusion of CO_2 from the bulk medium to chloroplasts, so that slow CO_2 uptake restricts underwater photosynthesis. Underwater photosynthesis by leaves of terrestrial wetland species is lower than that achieved by aquatic species, when compared per unit of leaf dry mass (Sand-Jensen et al., 1992; Colmer et al., 2011).

The few studies available show, however, that the low photosynthesis when under water enhances survival of submerged terrestrial plants (Vervuren et al., 1999; Mommer et al., 2006b; Vashisht et al., 2011). Both the sugars and O_2 produced would likely contribute to enhanced survival when submerged (Mommer and Visser, 2005), and in the case of sugars especially when submergence lasts more than a few days and internal carbohydrates become depleted. Depletion of carbohydrates during submergence is considered a major factor influencing survival of submerged rice (Setter and Laureles, 1996) and determining recovery following desubmergence and ultimately grain yield in flood-prone areas (Bailey-Serres et al., 2010; Mackill et al., 2012). The O₂ produced in photosynthesis can travel from leaves to roots via aerenchyma, and so this endogenously produced O2 improves the internal aeration of submerged plants (e.g., rice; Pedersen et al., 2009; Winkel et al., 2013).

A recent review (Colmer et al., 2011) highlighted there are few studies of underwater photosynthesis by terrestrial wetland plants,

and few of these compared rates underwater with those achieved by leaves in air. Similarly, a quantitative understanding of the potential role of underwater photosynthesis to whole plant carbon budgets during submergence seems to be lacking for terrestrial wetland species, whereas carbon budgets for several aquatic species (e.g., van der Bijl et al., 1989) and systems (e.g., Christensen et al., 2013) have been evaluated. For some terrestrial wetland species, only a few crude leaf level estimates of carbon budgets have been considered (e.g., in Colmer and Pedersen, 2008), but the potential contribution of underwater photosynthesis to carbon gain was demonstrated in growth studies of completely submerged rice, albeit under controlled conditions (e.g., Pedersen et al., 2009). Studies of whole plant carbon budgets in field conditions are generally lacking, even understanding of this aspect for the important wetland crop rice submerged in various field scenarios appears to be incomplete.

Detailed studies of underwater photosynthesis of terrestrial wetland species have focused on production and performance of submergence acclimated leaves. New leaves produced when under water by some terrestrial wetland species are better acclimated for underwater photosynthesis than the aerial leaves (Mommer et al., 2007). The acclimated leaves have a thin cuticle and overall are also thinner and of less breath (Mommer and Visser, 2005). These morphological and anatomical differences as compared with the usual leaves produced in air, reduce the resistance to CO₂ (and O_2) diffusion between the bulk medium and chloroplasts in submerged leaves, owing to narrower DBLs (suggested by Colmer et al., 2011), lower cuticle resistance (Mommer et al., 2006b), and shorter internal diffusion path lengths (Mommer et al., 2006a). However, although a reduced cuticle that enhanced underwater gas exchange occurs in several terrestrial wetland species (few species have been evaluated to date), the magnitude of the reduction in apparent resistance to gas exchange with the medium was not correlated with submergence tolerance for the species tested (Mommer et al., 2007), highlighting the need for further experimental investigations.

Some recent work on underwater photosynthesis by submerged terrestrial wetland plants has evaluated the contribution of gas films on superhydrophobic leaf surfaces to gas exchange with floodwaters. Leaf surface hydrophobicity (i.e. water repellence) is a feature that sheds off water in wet aerial environments (Smith and McClean, 1989; Brewer and Smith, 1997) and promotes "self cleansing," enhancing leaf performance and reputably lowering susceptibility to pathogens (Neinhuis and Barthlott, 1997). Some terrestrial wetland species have super hydrophobic leaves that when submerged retain a gas film, e.g., rice (Raskin and Kende, 1983) and Phragmites australis and others (Colmer and Pedersen, 2008). Gas films enhance CO₂ uptake for underwater photosynthesis (Raskin and Kende, 1983; Colmer and Pedersen, 2008; Pedersen et al., 2009) and O₂ entry for respiration in darkness (Colmer and Pedersen, 2008; Pedersen and Colmer, 2012). The enhancement by leaf gas films of CO₂ uptake (in light) and of O₂ (in darkness) was demonstrated by the marked declines in underwater photosynthesis and respiration when the films were experimentally removed (Colmer and Pedersen, 2008; Pedersen et al., 2009; Pedersen and Colmer, 2012). In addition, leaves produced in air by terrestrial wetland species that did not form gas films when submerged (i.e. leaves of these species were not sufficiently hydrophobic), had lower rates of underwater photosynthesis than those that did form gas films (Colmer and Pedersen, 2008; Colmer et al., 2011). As one example, leaf segments of rice with dissolved CO₂ set as in a field pond and with underwater photosynthesis measured as described in Section "The Rotating Wheel Incubator," showed rates four- to fivefold higher for leaf segments with intact gas films compared to those with the films experimentally removed (Winkel et al., 2013). Moreover, a field study using in situ monitoring of O₂ in rhizomes of Spartina anglica demonstrated the benefit of having leaf gas films to internal aeration during complete submergence, both during day and night tides (Winkel et al., 2011). Summing up, leaf gas films enhance underwater photosynthesis and internal aeration of some terrestrial wetland plants when submerged, with benefits also demonstrated to growth when submerged in controlled experiments (e.g., rice; Pedersen et al., 2009).

UNDERWATER PHOTOSYNTHESIS – APPROACHES AND METHODS

Conventional infrared gas analyzer (IRGA) systems following CO2 exchange in air do not work under water, so dedicated measuring systems are required to quantify underwater net photosynthesis and dark respiration. DIC can be measured by injection of small aliquots of water into concentrated acid in a bubble chamber purged with gaseous N2 carrying the released CO2 into an IRGA (Vermaat and Sand-Jensen, 1987). However, photosynthesis measurements based on DIC determinations are thus based on discrete measurements at selected times and can be complicated because of the large and variable combined pool of DIC in water (See Underwater Photosynthesis in Submerged Aquatic plants and Recent Advances and The CO₂ Equilibria in Water). Indirect methods to track DIC changes can be based on continuous measurements of pH in solution (Maberly, 1996). The DIC technique to measure photosynthess has potential errors if: (i) DIC is removed by external carbonate precipitation, (ii) internal DIC accumulates in tissues or colony gels, (iii) DIC dissolution of solid carbonates occurs, or (iv) DIC is released from internal pools (McConnaughey et al., 1994; Sand-Jensen et al., 2009). External measurements of pH to estimate DIC changes have the same potential errors as above and, moreover, also due to direct exchange of protons from tissues not always being closely coupled to DIC exchange. Therefore, most methods for studies of underwater net photosynthesis are based upon O₂ detection.

In contrast to gas exchange measurements of photosynthesis by leaves in air using open systems and CO₂ detection, underwater measurements commonly use closed systems and detection of O₂. In addition to the rationale for O₂ detection described in the preceding paragraph, O₂ detection also enables measurements in waters of substantially different DIC concentrations (e.g., softwater lakes up to 100 μ mol L⁻¹, ocean approximately 2000 μ mol L⁻¹ and hardwater lakes up to 10000 μ mol L⁻¹). The drawback of closed systems is that these are non-steady-state (i.e. DIC declining and O₂ increasing with time). Use of open systems with O₂ detection is constrained by reliable continuous detection of differences in O₂ concentrations between incoming and outgoing solutions from an appropriate chamber.

Changes in O₂ concentration over time are straightforward to measure with Clark type amperometric electrodes or more recently by use of O₂ sensitive optodes. Oxygen partial pressure (pO₂) or dissolved O₂ can be continuously monitored in water with an accuracy of 0.01 kPa or 0.2 μ mol L⁻¹ (Strickland and Parsons, 1972). Photosynthesis determined from changes in O₂ and DIC pools dissolved in the surrounding water requires that those are much greater than changes in such pools within the plant tissue (Sand-Jensen and Prahl, 1982). This is best achieved by having large incubation volumes relative to plant volumes. Alternatively, changes in tissue pools can be measured (Sand-Jensen et al., 2005) or be deduced by establishment of true steady state where tissue concentrations remain constant or quasi steady state where tissue concentrations changes proportionally to external concentrations (Sand-Jensen and Prahl, 1982). Measurements of underwater photosynthesis based upon O2 evolution can include great error when plants with highly porous tissues (perhaps variable in volume and having much higher "solubility" of O₂ than water; See Medium and Tissue) are incubated in small chambers (Hartman and Brown, 1967; Richardson et al., 1984). On the other hand, measurements of underwater photosynthesis based upon changes in DIC can include extreme error when plant tissues (or colony matrices in the case of algae and cyanobacteria) hold very large pools of DIC that do not change in concert with those in the surrounding water. For example, DIC in the colony gel of Nostoc zetterstedtii continues to support photosynthesis after water pools have been exhausted, and in darkness respiratory CO₂ replenishes this internal pool before being released to the water (Sand-Jensen et al., 2009).

Measurements of radioactive labeling of the DIC pool with ${}^{14}C$ and the use of pulse amplitude modulated (PAM) fluorometry are also methods to measure photosynthetic performance under water; these technique are beyond the focus of the present paper so readers are referred to e.g., Adams et al. (1978) or Kemp et al. (1986) for methods on ${}^{14}C$ and to Silva et al. (2009) or Suggett et al. (2011) and chapters therein for PAM approaches.

THE CO₂ EQUILIBRIA IN WATER

Understanding the chemistry of dissolved DIC and the proportional changes in its three constituents (CO_2 , HCO_3^- and CO_3^{2-}) depending on ionic strength, temperature, and primarily pH (Mackereth et al., 1978) is essential because it determines the availability of the preferred CO_2 source and the supplementary HCO_3^- source for underwater net photosynthesis. When CO_2 dissolves in water, the following equilibrium is established:

$$CO_{2(aq)} + H_2O \leftrightarrow (H_2CO_3) \leftrightarrow HCO_3^- + H^+ \leftrightarrow CO_3^{2-} + 2H^+$$
(4)

 CO_2 's reaction with water (H₂O) forming carbonic acid (H₂CO₃) is a time dependent process which in some organisms is catalyzed by the enzyme carbonic anhydrase. H₂CO₃ can dissociate immediately into a proton (H⁺) and bicarbonate (HCO₃⁻) so the dissolution of CO₂ into water causes pH to drop. At high pH, HCO₃⁻ can further dissociate into a second H⁺ and carbonate (CO₃²⁻). The relative distribution of the three main inorganic carbon species with pH is shown (**Figure 5**). The pKa₁ is 6.532 and

is referred to as the apparent pKa₁ as only little CO₂ is converted into carbonic acid (hence the brackets in Eq. 4) while the majority remains in solution as CO₂(aq) also referred to as free CO₂; pKa₂ is 10.329 (Schwarzenbach and Meier, 1958; Stumm and Morgan, 1996; Gutz, 2012). Below pH 6, most of the DIC is present as CO₂, which is usually more readily used for underwater photosynthesis than HCO₃⁻. Between pH 7 and 10, HCO₃⁻ dominates, a carbon species that can be used as an additional carbon source among species in most taxonomic groups of aquatic plants except for pteridopytes and mosses (Raven and Hurd, 2012). Only at pH higher than 10, a significant proportion of the DIC is in the form of CO₃²⁻ which apparently is not taken up by any phototrophs in ionic form but can perhaps be made available in acid zones on plant surfaces by back titration with released protons (conversion toward the left in Eq. 4).

In freshwaters and seawater, the alkalinity (sum of alkaline ions buffering added H⁺; units in mequiv. L⁻¹ or mmol L⁻¹ for monovalent HCO₃⁻ in water which is in air equilibrium of negligible OH⁻ and CO₃²⁻) is almost entirely controlled by the carbonate systems with insignificant contribution from silicate and phosphate, and with some contribution by borate in seawater. At pH above 9, OH⁻ has a significant contribution to alkalinity being 0.074 mmol L⁻¹ at pH 10 and 0.74 mmol L⁻¹ at pH 11 at an alkalinity of 2 mmol equivalents L⁻¹ (**Table 3**). It is thus convenient to distinguish between the total alkalinity (TA) and the CA (Dickson, 1981; Stumm and Morgan, 1996). The chemical species contributions to the two alkalinities are:

$$CA = (HCO_3)^{-} + 2(CO_3)^{2-}$$
(5)

$$TA = CA + (H_2BO_3)^- + 2(HBO_3)^{2-} + (OH)^- - (H)^+$$
(6)

Purging an aqueous solution with pure CO_2 alters the CA through the addition of ionic carbon species and also through pH related shifts in the partitioning of carbon species already present in the solution (Eqs 4 and 5). However, the TA is not affected by bubbling with CO_2 as every negatively charged ion is balanced by

a proton (Eq. 6). For example, water fresh from the tap often contains CO_2 above air equilibrium and so bringing it to equilibrium by purging with atmospheric air would thus lower pCO₂ until a new equilibrium has been reached. According to Eq. 5, CA would decrease slightly as both CO_3^{2-} and HCO_3^{-} decrease equivalent to the rise of OH⁻ and pH.

For experimental purposes, an aqueous photosynthesis solution is usually prepared with a certain amount of DIC and then pH is adjusted with acid or base to that required to achieve the desired concentration of "free" (i.e. dissolved) CO_2 and HCO_3^- . **Table 3** lists the relationship between pH and amounts of CO_2 , HCO_3^- , CO_3^{2-} , and OH^- at 20°C and a fixed TA, calculated from Gutz (2012). The examples provided in the sections below demonstrate how to apply all the above information in practice.

In the next sections (See "The Rotating Wheel Incubator" to "The Open Natural System") we describe methods in use for measurements of underwater photosynthesis. The methods scale from phytoelements to communities. The approaches involve laboratory and field techniques and so have different levels of control of key environmental variables influencing photosynthesis.

THE ROTATING WHEEL INCUBATOR

Principle: Leaf samples or algal thalli are incubated in glass vials of a known concentration of CO₂ in an aqueous medium, and the sealed vials of known volume are rotated on an incubator under well defined light and temperature conditions. O₂ produced during incubation is measured by an electrode/optode and underwater net photosynthesis can be calculated based on e.g., leaf area, fresh mass, dry mass, and/or chlorophyll. Alternatively, consumption of DIC can be used as a photosynthetic measure. Incubation in darkness provides data on dark respiration.

Medium and tissue

The choice of medium is basically between an artificial medium with a well defined ion and gas composition or ambient water with the ion and gas composition of natural habitats (essential chemical parameters such as pH, DIC, and alkalinity should be characterized). An example of an artificial medium is the Smart and Barko (1985) general purpose culture medium. This medium contains (mmol L⁻¹) 0.62 Ca²⁺, 0.28 Mg²⁺, 0.28 SO₄²⁻, and 1.24 Cl⁻ and KHCO3 (sometimes mixed with NaHCO3) is used to generate the required DIC. HCl, NaOH (or KOH), atmospheric air or gas mixtures of known pCO₂ can be used to adjust pH to a required value based on the desired amount of free CO₂. Since all incubations are short term, there are no micro nutrients or vitamins in this medium. Some studies have also used submergence solutions or "ambient" water from streams or lakes in order to establish a rate of photosynthesis under specific conditions (Sand-Jensen et al., 1992; Nielsen, 1993; Sand-Jensen and Frost-Christensen, 1998) and these can also be adjusted to predefined pH, CO₂ and/or O₂ levels. Any production of O₂ by microalgae or consumption by microbial organisms in ambient water is accounted for in the blanks; micro-filtration of water is commonly used to remove background microflora.

Photorespiration, as previously demonstrated for rice (Setter et al., 1989) and the aquatic pteridophyte, *Isoetes australis*, (Pedersen et al., 2011), during incubation is a potential issue as the

Table 3 Distribution of DIC, CO ₂ , HCO $_3^-$, CO $_3^{2-}$, and OH $^-$ as a function	on of pH at constant total alkalinity of 2 mmol H $^+$ equivalents L $^{-1}$ at 20°C.
--	---

рН	DIC (mmol L ⁻¹)	CO_2 (mmol L ⁻¹)	HCO_3^- (mmol L ⁻¹)	CO_3^{2-} (mmol L ⁻¹)	OH [–] (mmol L ^{–1}
6.00	6.5073	4.5074	1.9998	0.0001	0.0000
6.05	6.0170	4.0172	1.9997	0.0001	0.0000
6.10	5.5801	3.5803	1.9997	0.0001	0.0000
6.15	5.1907	3.1909	1.9997	0.0002	0.0000
6.20	4.8436	2.8438	1.9996	0.0002	0.0000
6.25	4.5343	2.5345	1.9996	0.0002	0.0000
6.30	4.2586	2.2588	1.9995	0.0002	0.0000
6.35	4.0128	2.0131	1.9995	0.0002	0.0000
6.40	3.7938	1.7941	1.9994	0.0003	0.0000
6.45	3.5986	1.5990	1.9994	0.0003	0.0000
6.50	3.4246	1.4250	1.9993	0.0004	0.0000
6.55	3.2696	1.2700	1.9992	0.0004	0.0000
6.60	3.1313	1.1318	1.9991	0.0004	0.0000
6.65	3.0082	1.0087	1.9990	0.0005	0.0000
6.70	2.8983	0.8989	1.9988	0.0006	0.0000
6.75	2.8004	0.8011	1.9987	0.0006	0.0000
6.80	2.7132	0.7139	1.9985	0.0007	0.0000
6.85	2.6354	0.6362	1.9984	0.0008	0.0001
6.90	2.5661	0.5670	1.9982	0.0009	0.0001
6.95	2.5042	0.5053	1.9979	0.0010	0.0001
7.00	2.4491	0.4503	1.9977	0.0011	0.0001
7.05	2.3999	0.4013	1.9974	0.0012	0.0001
7.10	2.3561	0.3576	1.9971	0.0012	0.0001
7.15	2.3169	0.3186	1.9968	0.0016	0.0001
7.20	2.2820	0.2839	1.9964	0.0018	0.0001
7.25	2.2509	0.2530	1.9959	0.0020	0.0001
7.30	2.2230	0.2254	1.9954	0.0022	0.0001
7.35 7.40	2.1982	0.2008	1.9949	0.0025	0.0002
7.40	2.1760	0.1789	1.9942	0.0028	0.0002
7.45	2.1561	0.1594	1.9935	0.0031	0.0002
7.50	2.1383	0.1420	1.9927	0.0035	0.0002
7.55	2.1223	0.1265	1.9919	0.0039	0.0003
7.60	2.1080	0.1127	1.9909	0.0044	0.0003
7.65	2.0951	0.1004	1.9898	0.0050	0.0003
7.70	2.0835	0.0894	1.9885	0.0056	0.0004
7.75	2.0730	0.0796	1.9871	0.0062	0.0004
7.80	2.0635	0.0709	1.9856	0.0070	0.0005
7.85	2.0548	0.0632	1.9838	0.0078	0.0005
7.90	2.0469	0.0562	1.9819	0.0088	0.0006
7.95	2.0396	0.0501	1.9797	0.0098	0.0007
8.00	2.0328	0.0446	1.9772	0.0110	0.0007
8.05	2.0265	0.0397	1.9745	0.0123	0.0008
8.10	2.0205	0.0353	1.9714	0.0138	0.0009
8.15	2.0149	0.0314	1.9680	0.0155	0.0010
8.20	2.0094	0.0279	1.9641	0.0173	0.0012
8.25	2.0041	0.0248	1.9598	0.0194	0.0013
8.30	1.9989	0.0221	1.9550	0.0217	0.0015
8.35	1.9937	0.0196	1.9497	0.0243	0.0017
8.40	1.9884	0.0174	1.9437	0.0272	0.0019
8.45	1.9830	0.0155	1.9371	0.0304	0.0021
		0.0138	1.9297	0.0340	0.0023

(Continued)

Table 3 | Continued

рН	DIC (mmol L ⁻¹)	CO_2 (mmol L ⁻¹)	HCO_3^- (mmol L ⁻¹)	CO ₃ ^{2–} (mmol L ^{–1})	OH [–] (mmol L ^{–1})
8.55	1.9716	0.0122	1.9214	0.0380	0.0026
8.60	1.9655	0.0108	1.9122	0.0424	0.0029
8.65	1.9590	0.0096	1.9020	0.0474	0.0033
3.70	1.9520	0.0085	1.8907	0.0528	0.0037
3.75	1.9445	0.0075	1.8781	0.0589	0.0041
3.80	1.9364	0.0067	1.8642	0.0656	0.0047
3.85	1.9277	0.0059	1.8489	0.0729	0.0052
3.90	1.9182	0.0052	1.8319	0.0811	0.0059
3.95	1.9079	0.0046	1.8133	0.0901	0.0066
9.00	1.8967	0.0040	1.7928	0.0999	0.0074
9.05	1.8846	0.0036	1.7703	0.1107	0.0083
9.10	1.8714	0.0031	1.7457	0.1225	0.0093
9.15	1.8570	0.0027	1.7189	0.1353	0.0104
9.20	1.8415	0.0024	1.6898	0.1493	0.0117
9.25	1.8246	0.0021	1.6582	0.1643	0.0131
9.30	1.8065	0.0018	1.6241	0.1806	0.0147
9.35	1.7870	0.0016	1.5874	0.1981	0.0165
9.40	1.7661	0.0014	1.5480	0.2167	0.0185
9.45	1.7438	0.0012	1.5061	0.2366	0.0208
9.50	1.7201	0.0012	1.4615	0.2576	0.0233
9.55	1.6950	0.0009	1.4144	0.2797	0.0262
9.60	1.6686	0.0008	1.3649	0.3028	0.0294
9.65	1.6408	0.0007	1.3132	0.3269	0.0329
	1.6118	0.0006	1.2594	0.3518	0.0329
9.70					
9.75	1.5817	0.0005	1.2039	0.3773	0.0415
9.80	1.5506	0.0004	1.1469	0.4033	0.0465
9.85	1.5186	0.0003	1.0887	0.4295	0.0522
9.90	1.4858	0.0003	1.0297	0.4559	0.0586
9.95	1.4525	0.0002	0.9703	0.4820	0.0657
10.00	1.4188	0.0002	0.9109	0.5077	0.0738
10.05	1.3847	0.0002	0.8519	0.5327	0.0828
10.10	1.3505	0.0001	0.7936	0.5568	0.0929
10.15	1.3162	0.0001	0.7364	0.5797	0.1042
10.20	1.2820	0.0001	0.6807	0.6012	0.1169
10.25	1.2478	0.0001	0.6267	0.6211	0.1312
10.30	1.2138	0.0001	0.5747	0.6391	0.1472
10.35	1.1800	0.0001	0.5249	0.6550	0.1651
10.40	1.1462	0.0000	0.4776	0.6686	0.1853
10.45	1.1124	0.0000	0.4327	0.6797	0.2079
10.50	1.0786	0.0000	0.3905	0.6881	0.2333
10.55	1.0446	0.0000	0.3508	0.6937	0.2617
10.60	1.0101	0.0000	0.3138	0.6963	0.2937
10.65	0.9750	0.0000	0.2794	0.6956	0.3295
10.70	0.9389	0.0000	0.2475	0.6914	0.3697
10.75	0.9017	0.0000	0.2181	0.6835	0.4148
10.80	0.8628	0.0000	0.1910	0.6718	0.4654
10.85	0.8220	0.0000	0.1662	0.6558	0.5222
10.90	0.7788	0.0000	0.1435	0.6353	0.5859
10.95	0.7327	0.0000	0.1228	0.6099	0.6574
11.00	0.6831	0.0000	0.1039	0.5792	0.7377

Calculated from Mackereth et al. (1978) and Gutz (2012). See **Figure 5** for the relative distribution between CO_2 , HCO_3^- and CO_3^{2-} versus pH. The yellow highlight refers to Example 1, Section "Medium and Tissue."

evolved O₂ is trapped in solution of the closed glass vial. The risk of photorespiration is increased during experiments at high temperature (Long, 1991) and with very low DIC and CO₂ concentrations leading to low ratios of CO2 to O2 at the site of Rubisco (Maberly and Spence, 1989; Sand-Jensen and Frost-Christensen, 1999). Therefore, the starting partial pressure of O_2 (p O_2) should be brought down to approximately 50% of air equilibrium, i.e., 10 kPa. This is sufficient to address the issue of photorespiration (provided that incubation do not last long periods so that O₂ produced increases above air equilibrium) and at the same time there is still enough O₂ in the medium to prevent tissue anoxia before photosynthesis starts producing O₂ (Colmer and Pedersen, 2008). In practice, equal volumes of medium (including all ions) are bubbled with either air or N₂. After mixing the two solutions, the pO₂ will be approximately 10 kPa and HCO₃⁻ can be added to the medium and pH adjusted accordingly to achieve the desired amount of free CO2 (see example below).

In some situations, an organic buffer may be used to maintain a constant pH in the medium during incubation. In practice, however, HCO₂ is a natural and often sufficient buffer in itself and we do not recommend using buffers if the CA is above 1 mmol L^{-1} as HCO₃⁻ would be sufficient to buffer against large pH fluctuations during incubation (Sand-Jensen et al., 1992; Colmer and Pedersen, 2008). Moreover, organic buffers can also modify membrane porters and pH at plant surfaces modifying HCO₃⁻ use and influx/efflux of CO2 (Price and Badger, 1985; Larsson and Axelsson, 1999; Moulin et al., 2011). pH of the medium should be measured in a sample taken of the initial solution and then also in vials after incubations. With the ongoing advancement of optodes, pH may even be measured without opening the vials if applying pH sensitive microdots (See "O2 Measurements" for description of O2 sensitive microdots). If additional buffering is required, i.e. pH measurements after incubation show unacceptable drift in pH, then MES or TES buffers may be used, e.g., at a concentration of 5 mmol L^{-1} (Pedersen et al., 2009, 2010), though the possible influence of these buffers on HCO_3^- use must be kept in mind.

The vials (10–100 mL glass vials with ground glass stoppers) are filled with medium using a siphon. By siphoning the medium into the bottom of each vial, exchange of O₂ and particularly CO₂ with the atmosphere is minimized; prepare sufficient medium to flush the vials at least twice the volume, and fill the vials completely. An air bubble can hold 36-fold more O₂ as the same volume of deionized (DI) water at 25°C, so bubbles in the vials introduce significant error to the net photosynthesis measurements. A set of vials without tissue serves as blanks and is incubated along with the vials containing tissue samples in the rotating incubator. The blanks serve to provide the starting pO₂ in the vials and also to correct for any O₂ production or consumption (e.g., by algae, bacteria, or chemical processes) if ambient water is used as medium. Glass beads ($\emptyset = 3-5$ mm; two in each 25 mL vial) are added to each vial to provide mixing as the vials are rotating in the incubator.

The amount of tissue added to each vial depends on the activity of the tissue, the amount of DIC and free CO₂, the light level (PAR), and the temperature. At saturating light and CO₂ levels and at 25°C, 0.5 mg fresh mass mL⁻¹ medium is often a good choice as this will result in a rise of pO₂ by approximately 2–5 kPa within an hour of incubation providing reproducible and accurate determination of O_2 regardless of the technique employed (see below). However, both microelectrodes and optodes have a resolution of approximately 0.01 kPa so a change in 1 kPa could also be sufficient. At lower CO_2 and/or light levels, more tissue may be required or alternatively, longer incubation times are needed. However, small tissue samples are preferred to prevent self shading and to promote good mixing in the vials so that tissues are well exposed to light and chemicals during incubation.

Example 1: Preparation of artificial floodwater with CA of 2.0 mmol L⁻¹ and 200 μ mol free CO₂ L⁻¹. Prepare a solution of DI water containing Ca²⁺, Mg²⁺, SO₄²⁻, and Cl⁻ at the concentrations described above. Divide the solution into two containers and bubble one half of the solution with air and the other half with N₂ for 20 min and then mix the two solutions. Add the required amount of DIC (**Table 3**, highlighted in yellow for this example) which is 2.2 mmol L⁻¹. Add the DIC in the form of KHCO₃, NaHCO₃ or a mixture, and acidify the solution to pH 7.35 using HCl. This results in a solution with a CA of 2 mmol L⁻¹ (in mmol L⁻¹: 1.995 HCO₃⁻ + 0.002 CO₃²⁻) and 200 μ mol L⁻¹ CO₂ (**Table 3**).

Incubator with light and temperature control

The incubator provides constant temperature and mixing throughout the incubation. It consists of a vertically rotating wheel where glass bottles or vials can be clipped on facing the light source. The wheel rotates at about 10 rpm in a tank with temperature controlled water and a transparent glass or Perspex wall for illumination at various irradiances (**Figure 1C**).

The rotating wheel incubator was originally invented for photosynthesis measurements in phytoplankton (Steemann Nielsen, 1952) and the typical light source in commercially available models consists of a rack of fluorescent tubes. However, it is hard to achieve PAR levels much above 500 μ mol photons m⁻² s⁻¹ with fluorescent light so high pressure metal halide lamps (mercury or sodium) or light emitting plasma lamps are required to provide the levels of light needed to light saturate net photosynthesis by leaves of many terrestrial species and some macroalgae with thick thalli.

Photosynthesis *versus* light curves (i.e. light response curves) are obtained by: (i) regulating light intensities by varying the distance of the light source to the incubator, (ii) placing neutral shading filters in front of the light source, (iii) placing a box with neutral shading filters of variable transmission in front of individual vials, or (iv) by wrapping the vials in layers of neutral shading mesh, or by a combination of these various approaches.

0₂ measurements

The O_2 produced or consumed during incubation can be measured directly in the glass vials using O_2 electrodes or optodes. In the absence of good electrodes or optodes, the Winkler titration can also be applied; see Strickland and Parsons (1972) for details.

Contemporary methods for O_2 measurements in water involve either Clark type electrodes or optodes. A Clark type O_2 electrode measures pO_2 as molecular O_2 transverses a membrane before the electrochemical reaction on the cathode results in a current which is linearly proportional to the pO_2 of the medium. Since the electrode consumes O_2 , a conventional large O_2 electrode is quite stirring sensitive and it is thus much more convenient to use an O₂ microelectrode which consumes little O₂ to address the stirring issue during measurements; O₂ microelectrodes can have a stirring sensitivity of less than 1% (Revsbech and Jørgensen, 1986; Revsbech, 1987). Oxygen microelectrodes typically have a temperature coefficient of approximately 1–3% °C⁻¹ (Revsbech, 1987; Gundersen et al., 1998) so temperature control during measurements is essential. The temperature effect on electrodes (and optodes, see below) is primarily caused by changes in diffusion and electrochemistry. In addition, temperature also influences solubility of gases, and metabolic rate of the tissues.

The measuring principle of optodes is quite different from that of a Clark type electrode. In the optode, light excites a fluorophore coated onto the tip of fiber optics and the excited light is subsequently transmitted back and measured by a spectroradiometer (Klimant et al., 1997). Alternatively, the fluorophore can be coated onto tiny plastic patches which (microdots) can be mounted directly in the medium where O_2 is to be measured; the microdot with the fluorophore is then illuminated from the outside through the transparent wall of the container. Molecular O₂ quenches the florescence so that the transmitted signal can be calibrated toward O_2 in the medium; the relationships between quenching and pO₂ is non-linear. Optodes do not consume O₂ and are thus completely insensitive to stirring. However, O₂ optodes can have higher temperature coefficients than Clark type microelectrodes and require even better temperature control during measurements (Kragh et al., 2008). On the other hand, optodes can be built into the individual glass vials (microdots glued onto the glass wall inside the vial) and the O₂ concentration can be measured in a non-destructive manner (Kragh et al., 2008). The great advance of this approach is that vials can remain sealed and be returned to the rotating wheel if a preliminary reading shows that longer incubation is required in order to obtain the necessary accuracy, or O₂ evolution can be followed over time to ensure quasi steady state measurements or to elucidate possible temporal patterns.

Supporting measurements and calculations

After measuring O_2 of each vial, the tissue must be processed according to standard procedures to establish the area, the fresh mass or dry mass, the chlorophyll concentration, or all of the above. The underwater net photosynthesis is calculated as the net O_2 evolution rate per unit tissue per unit time. In practice, the change in O_2 content in each vial (change in O_2 concentration multiplied by the volume of the vial; individual volumes of vials (i.e. minus the volume of the glass beads, etc.) must be established) divided by the incubation time and divided by the amount of tissue (i.e., mass, area or any other of the above mentioned parameters used to scale photosynthesis per sample unit). An example of a CO_2 response curve established with the technique described here in Section "The Rotating Wheel Incubator" is shown in **Figure 6**.

THE CLOSED CHAMBER WITH INJECTION PORTS

Principle: a leaf or algal thalli sample is incubated in a closed chamber with internal mixing and possessing injection ports and fitted with an electrode/optode that follows O_2 concentration. The amount of free CO_2 can be manipulated by injection of acid or base while a fitted pH electrode allows calculation of the exact

FIGURE 6 | Underwater net photosynthesis versus CO₂ concentration in the medium for excised leaf segments of *Hordeum marinum***. Leaf segments (30 mm) were incubated in 35 mL glass vials with various well defined CO₂ concentrations on a rotating wheel with PAR of 350 µmol photons m⁻² s⁻¹ at 20°C (see Figure 1C**). O₂ evolution was measured with a Clark type O₂ microelectrode and underwater net photosynthesis was calculated as O₂ evolution per projected area per unit time (See "The Rotating Wheel Incubator"). Data (mean \pm SE, n = 5) from (Pedersen et al., 2010). Note: leaves of *H. marinum* are superhydrophobic and so possess a gas film when underwater.

 CO_2 level. The approach enables production of a complete light or CO_2 response curve based on the same sample, and underwater net photosynthesis can be calculated based on e.g., leaf area, fresh mass, dry mass, and/or chlorophyll concentration. Incubation in darkness can provide data on dark respiration.

Chamber with light and temperature control

The chamber for measurements of underwater net photosynthesis enables measurements with light, temperature, and CO₂ manipulations in water, with monitoring of O2 with time. Chambers are commercially available for underwater photosynthesis measurements on macro algae, phytoplankton, or isolated chloroplasts and these are made from glass, acrylic glass, or acetal. These chambers can also be custom built to match specific electrodes, light sources, and fitted with extra ports for temperature and PAR sensors and injection of acid/bases or inhibitors. The chamber must be made from a material the can be sterilized and also have a least one transparent side to enable illumination of the sample. The light source can be diode based (650 nm red diode) or "full spectrum" halogen light to simulate white sunlight. Pay attention to the fact that some lighting devices are unable to produce sufficient light to saturate the photosynthesis of some terrestrial leaves or thick macroalgae thalli. Illumination (even by means of fiber optics) produces heat, so cooling of the chamber by a water jacket is crucial.

A light sensor small enough to measure inside the chamber is also essential. The spherical PAR sensor US-SQS/L (Walz, Effeltrich, Germany) is of a size ($\emptyset = 3.7$ mm) that enables permanent installation in most chambers.

Finally, the issue of mixing must be addressed. The simplest solution is to use a glass coated stir bar (avoid Teflon coated stir bars as these can hold O_2) which is isolated from the sample with a coarse mesh to prevent contact with the tissue. It may be necessary

to fix the tissue in the swirling current; if the tissue rotates with the water current in the chamber, the DBL will be larger than if the tissue is fixed. The thicker DBL increases the apparent resistance to CO_2 uptake or O_2 escape.

O2 and pH measurements

O₂ measurements in the closed chamber are similar to O₂ measurements in the vials described in Section "O2 Measurements." An O₂ sensor (Clark type electrode or optode) is fixed in the chamber in one of the ports, or if an optode is used, a patch with fluorophore can be glued onto the interior wall. A pH electrode is fitted in a second port and the signals from both sensors are logged onto a computer with data acquisition software. Calibration of both O₂ and pH sensors should be performed in the chamber to avoid stirring related artifacts to the calibrations. Remember to pay extra attention to temperature if using O₂ optodes. It may take a while for the temperature of the solution inside the chamber to equilibrate with that of the cooling jacket, and working in a constant temperature room or keeping solutions in a thermostated water bath will significantly reduce the time it takes before a temperature steady state is obtained; always measure temperature directly in the chambers. Temperature influences electrode or optode performance, solubility of gases, and metabolic rate of the tissues (see Section "O2 Measurements"). After insertion of tissue and filling of the chamber with medium (see below), pH can be manipulated by injection of small amounts of acid or base through one of the injection ports. Fit a 27G needle in one of the injection ports and let it function as "over pressure valve" to prevent pressurization during injection of acid or base (or inhibitors); the needle may be left in the stopper during the experiment as diffusion of gases in water is too slow to result in experimental artifacts.

As described in Section "The Rotating Wheel Incubator" for incubations of tissues in closed vials on the wheel, substantial photorespiration can occur if O₂ is allowed to build up in the medium. Therefore, the susceptibility to photorespiration should initially be established for each tissue type. The linearity of O2 production with increasing external pO₂ is easily tested the following way: a medium with total DIC of 5.0 mmol L^{-1} is prepared from KHCO₃ in a 5.0 mmol L^{-1} TES buffer adjusted to pH 8.00 and with a pO₂ of 10 kPa. The tissue is then allowed to photosynthesize up to a pO₂ of 30 kPa. Here, approximately 500 µ mol O₂ has been produced from 500 µmol CO2 and because of the TES buffer the pH has remained at 8.0. Although the DIC pool has declined to 4.5 mmol L^{-1} , free CO₂ has changed by only 10% from 110 to 100 μ mol L⁻¹. If the O₂ evolution occurs linearly in this range, it means that the approximately threefold lower CO₂:O₂ in the medium, with likely even greater changes in internal CO₂:O₂, has not increased photorespiration. If the curve exhibits a saturation tendency (i.e. declining rate of net O₂ production with increasing pO₂), photorespiration has probably increased with increasing pO_2 in the chamber.

Medium and tissue may be prepared as described in Section "Medium and Tissue." However, as a CO_2 response curve in the closed photosynthesis chamber often involves conversion of HCO_3^- into free CO_2 (dissolved), e.g., by manipulation of pH, enough HCO_3^- must initially be present in the medium to produce the required levels of free CO_2 . Following injection of small

amounts of acid or base to manipulate free CO_2 , the rate of net photosynthesis changes accordingly so that a new rate of net O_2 production (slope of dissolved O_2 with time) is established at each dissolved CO_2 . However, pH may also change slightly in the time interval because CO_2 is extracted from the system as it is fixed via photosynthesis (Eqs 1 and 4). Hence, for every rate of underwater net photosynthesis determined in a time interval, the mean CO_2 concentration must be calculated in order to present the CO_2 response curve of the tissue.

Example 2: average free CO₂ concentration in the pH range from 7.25 to 7.30 in a medium with total DIC of 2.0 mmol L⁻¹. According to Gutz (2012), CA of such a solution at pH 7.25 would be 1.77 mmol L⁻¹ having 223 μ mol CO₂ L⁻¹; at pH 7.30 CA would be 1.80 mmol L⁻¹ and have 203 μ mol CO₂ L⁻¹. Consequently, the average free CO₂ concentration in the pH range was 213 μ mol CO₂ L⁻¹.

After each experiment, the incubated tissue must be characterized to enable calculation of underwater net photosynthesis rates; the supporting measurements are as those described in section "Supporting Measurements and Calculations."

PH DRIFT APPROACH TO ESTABLISH CO₂ COMPENSATION POINTS

Principle: Leaf or algal thalli samples are incubated in glass vials for 16–18 h where after pH and CA or DIC are measured. CO_2 compensation points and carbon extraction capacity of tissues can be calculated. The method is also used as a diagnostic test for bicarbonate (HCO₃⁻) use in underwater photosynthesis.

These long term incubations are used to test how far net photosynthesis of a given plant sample at saturating light can extract DIC, i.e. to deplete CO_2 and HCO_3^- and drive up pH. Because the objective is to determine the ultimate DIC extraction capacity and maximum upper pH in a standardized way, all incubation vials are prepared to have an equal standard DIC concentration (usually $1-2 \text{ mmol } L^{-1}$ for alkaline waters and 0.1–0.3 mmol L^{-1} for softwaters) and a pH, CO₂, and O₂ concentration corresponding to air equilibrium (Sand-Jensen et al., 1992, 2009). Artificial media and natural waters can be applied. However, to minimize O₂ build up and the risk of photorespiration during extended incubation the initial O_2 can be reduced to 20–50% of air equilibrium. To ensure the maximum possible DIC depletion, the amount of plant material is typically three times larger than in the incubations described in Sections "The rotating Wheel Incubator" and "The Closed Chamber with Injection Ports" though it must still be able to move freely in the vials to ensure adequate mixing.

The initial and final DIC and pH must be determined in order to calculate the DIC extraction capacity during incubation and the CO₂ compensation point after incubation. Provided no internal pools of DIC and protons interfere with conditions in the water/medium and no precipitation or dissolution of carbonates takes place, DIC can be determined in the medium from CA, pH, temperature, and ionic strength; CA in turn can be determined by acidimetric titration (Stumm and Morgan, 1996). The risk of carbonate precipitation is small in artificial media of KHCO₃ and much larger in natural waters and artificial media where $Ca(HCO_3)_2$ dominates, the reason being that K₂CO₃ is highly soluble and CaCO₃ is poorly soluble. Calcium carbonate precipitation is likely to take place in pH drift experiments where final pH exceeds 10. Therefore, it is always recommended to directly measure DIC. This can be done by injecting of small water samples into concentrated acid in a bubble chamber purged with N₂ gas carrying the released CO₂ into an IRGA (Vermaat and Sand-Jensen, 1987). Water samples may need to be filtered (with no atmospheric contact) if minute CaCO₃ crystals have been formed in the external water of high pH. It is generally recommendable to determine (or check) CO₂ compensation points by depletion experiments in media of low initial DIC (<50 μ mol L⁻¹) and low pH (<6.5) where the interference by HCO₃⁻ is low and CaCO₃ is not formed.

The pH drift technique has also been used to determine DIC consumption at intervals during the ongoing drift of pH upwards (Maberly and Spence, 1983; Spence and Maberly, 1985). DIC, pH, the proportion of carbon species and O₂ change during the time of incubation. Because all parameters may influence photosynthesis, and exchange with internal DIC and proton pools in the incubated tissue may interfere with calculations, we cannot recommend the procedure for determining rates of net photosynthesis considering the much more accurate and straightforward methods being available today (as described in this review).

COMMUNITY PHOTOSYNTHESIS IN LARGE CHAMBERS

Principle: Community photosynthesis is measured in large closed chambers with linear dimensions of 0.5-0.6 m, or larger, to minimize edge effects and make certain that natural changes of plant density, tissue capacity and irradiance through the canopy are maintained. Photosynthetic rates are measured by O₂ and DIC, as for phytoelements in small chambers (See The Closed Chamber with Injection Ports), but photosynthetic parameters and their dependence on DIC and temperature are markedly different for communities than phytoelements.

Submerged aquatic plants grow in communities of variable density where the spatial structure and self shading are prominent features (Sand-Jensen, 1989). Light limitation is substantial and the efficiency of photosynthesis at low light is therefore important (Binzer and Sand-Jensen, 2002a,b). The photosynthetic chamber needs to be large enough to include tall communities (Binzer et al., 2006; Middelboe et al., 2006). It is made of glass or transparent acrylic glass and viewed from above, the shape of photosynthetic chambers can be cylindrical, rectangular, or quadratic. The cylindrical shape can be advantageous because the surface area of side walls relative to chamber volume is smaller than in rectangular or quadratic chambers, and these two latter types may also have "dead corners" with stagnant waters. The light sources are high pressure metal halide lamps (mercury or sodium) or light emitting plasma lamps because only those provide a sufficiently high irradiance (>1000 μ mol photon m⁻² s⁻¹). The light sources must be placed more than 0.5 m above the photosynthetic chamber and the light path both above the chamber and around the chamber walls are surrounded by totally reflecting material to reduce the influence of distance with depth in the chamber both when plants are absent or present. Irradiance is measured with depth in the water and through canopies of different densities using a small spherical PAR sensor. To ensure statistically reliable determinations of vertical attenuation a series (e.g., 10) of measurements are performed at different positions (Middelboe et al., 2006). Temperature, O₂,

DIC, and pH are set and measured as described in Section "The Closed Chamber with Injection Ports," while mixing is provided by large submersible pumps ensuring current velocities above 2 cm s⁻¹. Temperature control is attained by direct cooling and warming of the water in the incubation chamber or by placing it in a larger temperature controlled holding tank. In the latter case some temperature variations (1–3°C) is difficult to avoid between light and darkness.

Algal communities for measurements can be collected attached to stones or established over a period of one or several years on artificial tiles of desired size set out in the field and later brought to the laboratory for measurements in the photosynthetic chamber (Binzer et al., 2006; Middelboe et al., 2006). Rooted submerged plants can be harvested from natural stands with the 3D structure kept intact when roots and rhizomes are interwoven. In other cases, individual plants are placed in a homogeneous pattern on the chamber bottom in small plastic bags surrounding the root system. Alternatively the individuals are tied to a frame on the chamber bottom. Plant density is determined as fresh mass, dry mass, or plant surface area normalized to bottom area. Leaf area indices (LAI) ranging from 1 to 12 are useful for comparisons among species. Vertical distribution of plant biomass and surface can be determined by cutting the plants sequentially in well defined strata starting at the top of the canopy.

The setup is suited to evaluate the influence on community photosynthesis by variable irradiance, temperature, DIC (including variable CO_2 and HCO_3^-), canopy density, and spatial structure (Sand-Jensen et al., 2007).

Community photosynthesis can also be determined over longer periods of time by employing the large chambers in an open mode. This allows for exchange of O_2 and CO_2 with the atmosphere to prevent that the chambers undergo too extensive accumulation and depletion in the water during several days of alternating light or dark periods. For calculation of photosynthesis and respiration, exchange rates between air and water must be determined. The flux (F_{exch} , mol m⁻² s⁻¹) between water and air for O_2 is given by the equation:

$$F_{\text{exch}} = K \left(C_{\text{act}} - C_{\text{equ}} \right) \tag{7}$$

where *K* is the exchange coefficient (piston velocity, ms⁻¹), C_{act} is the actual and C_{equ} is the equilibrium concentration of O₂ (mol m⁻³) in water at the actual temperature (Staehr et al., 2012b). Piston velocity is controlled by surface turbulence and can, therefore, be considered a constant for a given mixing regime determined by the strength and location of the pumps and the dampening influence of the plant community. Thus, *K* must be directly measured for a given plant density and mixing regime. This is best done in the dark, where only dark respiration (mol m⁻² s⁻¹) takes place, by modifying C_{act} to for example 10 or 30 kPa and measuring the total O₂ flux (F) over time as a result of respiration and exchange with the atmosphere above from time changes in O₂ concentrations in the water:

$$F = R + K(C_{act} - C_{aqu})$$
(8)

From 30 kPa the actual pO_2 will first rapidly decline as a combined result of respiration and loss to the atmosphere and gradually decline less rapidly as pO_2 approaches equilibrium with the atmosphere and respiration alone drives pO_2 further downwards. Calculations of pO_2 changes over time in relation to differences in the pO_2 gradient between water and air produces a straight line (Eq. 8) permitting calculation of *R* and *K* assuming that they remain constant for a given mixing intensity and plant density.

Community measurements operated in an open mode have the main advantage for future application that fluxes of O_2 , DIC, Ca^{2+} , H⁺, and nutrient ions (NH₄⁺, NO₃^{--,} and PO₄³⁻) can be determined during repeated diel light dark cycles for several weeks while the submerged plants may also grow. Combined field measurements have been operated in open chambers and mesocosms under a strict mixing regime under natural temperature and light conditions both for phytoplankton (e.g., Markager and Sand-Jensen, 1989), submerged aquatic plants (e.g., Liboriussen et al., 2005), and flooded terrestrial plants (e.g., Setter et al., 1988).

THE OPEN NATURAL SYSTEM

Principle: Natural ecosystems dominated by submerged aquatic plants have free undisturbed gas exchange with the atmosphere and input/output of water. Determination of ecosystem metabolism by open water measurements requires accurate calculations of atmospheric exchange of O_2 and CO_2 . The main advantages of the ecosystem approach is that environmental conditions and processes are natural and temporal patterns can be followed over months or years, while allowing plant density and acclimation to gradients in light, DIC, and other environmental variables to develop.

Photosynthesis of submerged aquatic plants derived from analysis of ecosystems can only be determined when rooted plants or macroalgae are the main phototrophs responsible of more than 90% of ecosystem photosynthesis. Only then can the patterns obtained be referred to the metabolism of macrophytes accepting that a minor error (<10%) due to photosynthesis of microalgae may be present. The dominance of submerged aquatic plants can be realized in shallow plant rich ponds, lakes, streams, and coastal lagoons. Open water measurements are used to follow changes in O2, DIC, pH, temperature, and irradiance, and enable calculation of ecosystem net production, plant gross production, and community respiration assuming fully mixed conditions (Odum, 1956; Staehr et al., 2012a). Meteorological observations of wind direction, wind velocity, atmospheric pressure, etc., in standing waters and current velocity, water depth, slope, and bed roughness in flowing waters, can be used to estimate physical exchange coefficients of gases (i.e. piston velocities) and thus calculate fluxes between water and atmosphere using empirical models (Sand-Jensen and Staehr, 2011). Flow chambers, floating chambers, inert gases, and coverage of water surfaces by impermeable floating plastic can be used for direct determination of exchange coefficients which are critical in all determinations of ecosystem metabolism (Staehr et al., 2012a,b). Rooted plants with gas filled lacunae formation and release of gas bubbles can introduce error. Oxygen storage may delay establishment of steady state exchange of O2 following dark light switches by some 10-20 min for most rooted

plants (Westlake, 1978) and loss of bubbles is negligible in swift flowing waters, while bubble release may account for 10% of net O_2 release in slow flowing waters (Kragh et al., unpublished data).

The strength of these measurements is that they provide natural rates under fully realistic and undisturbed environmental conditions. They can reveal the coupling between O₂ and carbon metabolism, the natural precipitation and dissolution of carbonates and the direct involvement of accumulation and release of acids in the photosynthetic process. Measurements have shown fast exchange rates of protons between macrophytes and water following diurnal light dark switches partly uncoupled from exchanges of DIC during photosynthesis and respiration; a phenomenon that is not unraveled in short term laboratory measurements with detached phytoelements (Kragh et al., unpublished data). Ecosystem measurements can also reveal how early summer growth in biomass and late summer senescence influence plant metabolism and how ongoing desiccation of ponds may suddenly stop photosynthesis and accelerate decomposition, while refilling may restart photosynthesis and growth (Christensen et al., 2013). Modeling approaches, as successfully used for canopy level understanding of terrestrial systems systems (Ainsworth and Long, 2005), should also be applied more widely in studies of aquatic systems (e.g., Binzer and Sand-Jensen, 2002a,b). All techniques for measuring and calculating ecosystem process are basically available (Staehr et al., 2012a) and awaits broad scale application.

OUTLOOK

Studies of photosynthesis by aquatic and submerged wetland plants are few compared with research on photosynthesis in air, but underwater systems are attracting more attention. Light and CO_2 availability under water are often low to submerged plants. Low CO_2 together with impeded escape of O_2 can result in high photorespiration as a component determining net photosynthesis. Focus studies of contrasting species and systems are required to develop our understanding of "models" since the environment under water is more complex than in air and there is a diversity of photosynthetic mechanisms (i.e. C_3 , C_4 , CAM, and bicarbonate use) in aquatic species.

The physical and chemical environments of overland floods are only poorly known and few data exist on light extinction and CO_2 and O_2 concentrations in floodwaters. Such data are crucial to design relevant laboratory experiments on submergence tolerance of terrestrial plants and to establish, for example, carbon budgets during submergence on leaf lamina as well as for whole plants. Also, studies on leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water are also only in their infancy; these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence.

Finally, a challenge also exists to assess the influence of light, inorganic carbon, and temperature on natural aquatic communities of variable density instead of only studying detached leaves in the scenarios of rising CO_2 and temperature. Use of mathematical modeling, both at the leaf and community levels, will provide valuable additional understanding of underwater photosynthesis. Improved knowledge of plant and environmental factors determining rate of underwater net photosynthesis at various scales (leaf-to-community) is essential for understanding aquatic plant ecophysiology, submergence tolerance of terrestrial plants, and productivity of the many aquatic and flood-prone ecosystems worldwide.

REFERENCES

- Adams, M. S., Guilizzoni, P., and Adams, S. (1978). Relationship of dissolved inorganic carbon to macrophyte photosynthesis in some Italian lakes. *Limnol. Oceanogr.* 23, 912–919.
- Ainsworth, E. A., and Long, S. P. (2005). What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytol. 165, 351–372.
- Arens, K. (1933). Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. I. *Planta* 20, 621–658.
- Armstrong, W. (1979). Aeration in higher plants. *Adv. Bot. Res.* 7, 225–332.
- Bailey-Serres, J., Fukao, T., Ismail, A. M., Heuer, S., and Mackill, D. J. (2010). Submergence tolerant rice: SUB1's journey from landrace to modern cultivar. *Rice* 3, 138–147.
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. *Annu. Rev. Plant Biol.* 59, 313–339.
- Binzer, T., and Sand-Jensen, K. (2002a). Importance of structure and density of macroalgae communities (*Fucus serratus*) for photosynthetic production and light utilisation. *Mar. Ecol. Prog. Ser.* 235, 53–62.
- Binzer, T., and Sand-Jensen, K. (2002b). Production in aquatic macrophyte communities: a theoretical and empirical study of the influence of spatial light distribution. *Limnol. Oceanogr.* 47, 1742–1750.
- Binzer, T., Sand-Jensen, K., and Middelboe, A. L. (2006). Community photosynthesis of aquatic macrophytes. *Limnol. Oceanogr.* 51, 2722–2733.
- Black, M. A., Maberly, S. C., and Spence, D. H. N. (1981). Resistances to carbon dioxide fixation in four submerged freshwater macrophytes. *New Phytol.* 89, 557–568.
- Borum, J., Pedersen, O., Greve, T. M., Frankovich, T. A., Zieman, J. C., Fourqurean, J. W., et al. (2005). The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, *Thalassia testudinum. J. Ecol.* 93, 148–158.

- Brewer, C. A., and Smith, W. K. (1997). Patterns of leaf surface wetness for montane and subalpine plants. *Plant Cell Environ.* 20, 1–11.
- Christensen, J. P. A., Sand-Jensen, K., and Staehr, P. A. (2013). Fluctuating water levels control water chemistry and metabolism of a charophyte pond. *Freshw. Biol.* doi:10.1111./fwb.12132
- Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. *Ecosystems* 10, 172–185.
- Colmer, T. D., and Pedersen, O. (2008). Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO₂ and O₂ exchange. *New Phytol.* 177, 918–926.
- Colmer, T. D., and Voesenek, L. A. C. J. (2009). Flooding tolerance: suites of plant traits in variable environments. *Funct. Plant Biol.* 36, 665–681.
- Colmer, T. D., Winkel, A., and Pedersen, O. (2011). A perspective on underwater photosynthesis in submerged terrestrial wetland plants. *AoB Plants* 2011, lr030.
- Dickson, A. G. (1981). An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. *Deep Sea Res. A* 28, 609–623.
- Duarte, C. M. (1991). Seagrass depth limits. *Aquat. Bot.* 40, 363–377.
- Frost-Christensen, H., and Sand-Jensen, K. (1992). The quantum efficiency of photosynthesis in macroalgae and sumberged angiosperms. *Oecologia* 91, 377–384.
- Gundersen, J. K., Ramsing, N. B., and Glud, R. N. (1998). Predicting the signal of O₂ microsensors from physical dimensions, temperature, salinity, and O₂ concentration. *Limnol. Oceanogr.* 43, 1932–1937.
- Gutz, I. G. R. (2012). CurTiPot pH and Acid-base Titration Curves: Analysis and Simulation Software, Version 3.6.1 [Online]. Available at: http://www2.iq.usp.br/docente/ gutz/Curtipot.html [accessed 16 Dec 2012 2013].

ACKNOWLEDGMENTS

The present work was carried out with support of the Danish Council for Independent Research grant no. 09-072482 and under the Lake Restoration Centre, a Villum Kann Rasmussen Centre of Excellence. Timothy D. Colmer acknowledges support from the Australian Research Council (Discovery Grant).

- Hartman, R. T., and Brown, D. L. (1967). Changes in internal atmosphere of submersed vascular hydrophytes in relation to photosynthesis. *Ecology* 48, 252–258.
- Helder, R. J. (1985). Diffusion of inorganic carbon across an unstirred layer: a simplified quantitative approach. *Plant Cell Environ.* 8, 399–408.
- Holmer, M., Pedersen, O., Krause-Jensen, D., Olesen, B., Petersen, M. H., Schopmeyer, S., et al. (2009). Sulfide intrusion in the tropical seagrasses *Thalassia testudinum* and *Syringodium filiforme. Estuar. Coast. Shelf Sci.* 85, 319–326.
- Johnson, F. H., Eyring, H., and Stover, B. J. (1974). The Theory of Rate Processes in Biology and Medicine. New York: Wiley.
- Kelly, M. G., Thyssen, N., and Moeslund, B. (1983). Light and the annual variation of oxygen- and carbonbased measurements of productivity in a macrophyte-dominated river. *Limnol. Oceanogr.* 28, 503–515.
- Kemp, W. M., Marlon, R. L., and Jones, T. W. (1986). Comparison of methods for measuring production by the submersed macrophyte, *Potamogeton perfoliatus L. Limnol. Oceanogr.* 31, 1322–1334.
- Kirk, J. T. O. (1994). Light and Photosynthesis in Aquatic Ecosystems. New York: Cambridge Univ Press.
- Klimant, I., Kühl, M., Glud, R. N., and Holst, G. (1997). Optical measurement of oxygen and temperature in microscale: strategies and biological applications. *Sens. Actuators B Chem.* 38, 29–37.
- Kragh, T., Søndergaard, M., and Tranvik, L. (2008). Exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organicmatter (CDOM) in freshwater. *FEMS Microbiol. Ecol.* 64, 230–239.
- Lambers, H., Chapin, F. S. III, and Pons, T. L. (2008). *Plant Physiological Ecology*. Heidelberg: Springer Verlag.
- Larsson, C., and Axelsson, L. (1999). Bicarbonate uptake and utilization in marine macroalgae. *Eur. J. Phycol.* 34, 79–86.
- Liboriussen, L., Landkildehus, F., Meerhoff, M., Bramm, M. E., Søndergaard, M., Christensen, C., et al.

(2005). Global warming: design of a flow-through shallow lake mesocosm climate experiment. *Limnol. Oceanogr. Methods* 3, 1–9.

- Long, S. P. (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO₂ concentrations: has its importance been underestimated? *Plant Cell Environ.* 14, 729–739.
- Lucas, W. J., and Smith, F. A. (1973). The formation of alkaline and acid regions at the surface of *Chara corallina* cells. J. Exp. Bot. 24, 1–14.
- Maberly, S. C. (1990). Exgenous sources of inorganic carbon for photosynthesis by marine macroalgae. *J. Phycol.* 26, 439–449.
- Maberly, S. C. (1996). Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. *Freshw. Biol.* 35, 579–598.
- Maberly, S. C., and Madsen, T. V. (2002). Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. *Funct. Plant Biol.* 29, 393–405.
- Maberly, S. C., and Spence, D. H. N. (1983). Photosynthetic inorganic carbon use by freshwater plants. *J. Ecol.* 71, 705–724.
- Maberly, S. C., and Spence, D. H. N. (1989). Photosynthesis and photorespiration in freshwater organisms: amphibious plants. *Aquat. Bot.* 34, 267–286.
- Mackereth, F. J. H., Heron, J., and Talling, J. F. (1978). *Water Analysis: Some Revised Methods for Limnologists*. Cumbria: Freshwater Biological Association.
- Mackill, D. J., Ismail, A. M., Singh, U. S., Labios, A. V., and Paris, T. R. (2012). Development and Rapid Adoption of Submergence-Tolerant (Sub1) Rice Varieties. San Diego: Academic Press, 299–352.
- Madsen, T. V., and Sand-Jensen, K. (1991). Photosynthetic carbon assimilation in aquatic macrophytes. *Aquat. Bot.* 41, 5–40.
- Madsen, T. V., Sand-Jensen, K., and Beer, S. (1993). Comparison of photosynthetic performance and carboxylation capacity in a range of aquatic macrophytes of different growth forms. *Aquat. Bot.* 44, 373–384.

- Markager, S., and Sand-Jensen, K. (1989). Patterns of night-time respiration in a dense phytoplankton community under a natural light regime. *J. Ecol.* 77, 49–61.
- McConnaughey, T. A. (1991). Calcification in *Chara corallina*: CO₂ hydroxylation generates protons for bicarbonate assimilation. *Limnol. Oceanogr.* 36, 619–628.
- McConnaughey, T. A., La Baugh, J. W., Rosenberry, D. O., Striegl, R. G., Reddy, M. M., Schuster, P. F., et al. (1994). Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. *Limnol. Oceanogr.* 39, 1319–1332.
- Middelboe, A. L., and Markager, S. (1997). Depth limits and minimum light requirements of freshwater macrophytes. *Freshw. Biol.* 37, 553–568.
- Middelboe, A. L., Sand-Jensen, K., and Binzer, T. (2006). Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light. *Oecologia* 150, 464–476.
- Mommer, L., Lenssen, J. P. M., Huber, H., Visser, E. J. W., and De Kroon, H. (2006a). Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. *J. Ecol.* 94, 1117–1129.
- Mommer, L., Pons, T. L., and Visser, E. J. W. (2006b). Photosynthetic consequences of phenotypic plasticity in response to submergence: *Rumex palustris* as a case study. *J. Exp. Bot.* 57, 283–290.
- Mommer, L., and Visser, E. J. W. (2005). Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. *Ann. Bot.* 96, 581–589.
- Mommer, L., Wolters-Arts, M., Andersen, C., Visser, E. J. W., and Pedersen, O. (2007). Submergenceinduced leaf acclimation in terrestrial species varying in flooding tolerance. *New Phytol.* 176, 337–345.
- Moulin, P., Andría, J. R., Axelsson, L., and Mercado, J. M. (2011). Different mechanisms of inorganic carbon acquisition in red macroalgae (Rhodophyta) revealed by the use of TRIS buffer. *Aquat. Bot.* 95, 31–38.
- Neinhuis, C., and Barthlott, W. (1997). Characterization and distribution of water-repelent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677.
- Nielsen, S. L. (1993). A comparison of aerial and submerged photosynthesis in some Danish amphibious plants. *Aquat. Bot.* 45, 27–40.

- Nielsen, S. L., and Sand-Jensen, K. (1989). Regulation of photosynthetic rates of submerged rooted macrophytes. *Oecologia* 81, 364–368.
- Odum, H. T. (1956). Primary production in flowing waters. *Limnol. Oceanogr.* 1, 102–117.
- Olesen, B., and Madsen, T. V. (2000). Growth and physiological acclimation to temperature and inorganic carbon availability by two submerged aquatic macrophyte species, Callitriche cophocarpa and *Elodea canadensis. Funct. Ecol.* 14, 252–260.
- Opdyke, B. N., and Walker, J. C. G. (1992). Return of the coral reef hypothesis: basin to shelf partitioning of CaCO₃ and its effect on atmospheric CO₂. *Geology* 20, 733–736.
- Parolin, P. (2009). Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann. Bot. 103, 359–376.
- Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E. (eds) (2007). Climate change 2007: impacts, adaptation and vulnerability. *Contribution* of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press), 982.
- Pedersen, O., and Colmer, T. D. (2012). Physical gills prevent drowning of many wetland insects, spiders and plants. J. Exp. Biol. 215, 705–709.
- Pedersen, O., Malik, A. I., and Colmer, T. D. (2010). Submergence tolerance in *Hordeum marinum*: dissolved CO₂ determines underwater photosynthesis and growth. *Funct. Plant Biol.* 37, 524–531.
- Pedersen, O., Pulido, C., Rich, S. M., and Colmer, T. D. (2011). *In situ* O₂ dynamics in submerged *Isoetes australis*: varied leaf gas permeability influences underwater photosynthesis and internal O₂. *J. Exp. Bot.* 62, 4691–4700.
- Pedersen, O., Rich, S. M., and Colmer, T. D. (2009). Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice. *Plant J.* 58, 147–156.
- Pedersen, O., Vos, H., and Colmer, T. D. (2006). Oxygen dynamics during submergence in the halophytic stem succulent *Halosarcia pergranulata*. *Plant Cell Environ*. 29, 1388–1399.
- Pilon, J., and Santamaría, L. (2001). Seasonal acclimation in the photosynthetic and respiratory temperature responses of three submerged

freshwater macrophyte species. New Phytol. 151, 659–670.

- Price, G. D., and Badger, M. R. (1985). Inhibition by proton buffers of photosynthetic utilization of bicarbonate in *Chara corallina. Aust. J. Plant Physiol.* 12, 257–267.
- Prins, H. B. A., Snel, J. F. H., Helder, R. J., and Zanstra, P. E. (1980). Photosynthetic HCO₃⁻ utilization and OH⁻ excretion in aquatic angiosperms: light-induced pH changes at the leaf surface. *Plant Physiol.* 66, 818–822.
- Raskin, I., and Kende, H. (1983). How does deep water rice solve its aeration problem? *Plant Physiol.* 72, 447–454.
- Raven, J. A., and Hurd, C. L. (2012). Ecophysiology of photosynthesis in macroalgae. *Photosyn. Res.* 113, 105–125.
- Revsbech, N. P. (1987). An oxygen microelectrode with a guard cathode. *Limnol. Oceanogr.* 34, 474–478.
- Revsbech, N. P., and Jørgensen, B. B. (1986). "Microelectrodes: their use in microbial ecology," in Advances in Microbial Ecology, ed. K. C. Marshall (New York: Plenum Press), 293–352.
- Rich, S. M., Pedersen, O., Ludwig, M., and Colmer, T. D. (2013). Shoot atmospheric contact is of little importance to aeration of deeper portions of the wetland plant *Meionectes brownii*; submerged organs mainly acquire O₂ from the water column or produce it endogenously in underwater photosynthesis. *Plant Cell Environ.* 36, 213–223.
- Richardson, K., Griffiths, H., Reed, M. L., Raven, J. A., and Griffiths, N. M. (1984). Inorganic carbon assimilation in the Isoetids, *Isoetes lacustris* L. and *Lobelia dortmanna* L. *Oecologia* 61, 115–121.
- Sand-Jensen, K. (1983). Photosynthetic carbon-sources of stream macrophytes. J. Exp. Bot. 34, 198–210.
- Sand-Jensen, K. (1989). Environmental variables and their effect on photosynthesis of aquatic plantcommunities. Aquat. Bot. 34, 5–25.
- Sand-Jensen, K., Baastrup-Spohr, L., Winkel, A., Moller, C. L., Borum, J., Brodersen, K. P., et al. (2010). Plant distribution patterns and adaptations in a limestone quarry on Oland. *Svensk Botanisk Tidskrift* 104, 23–31.
- Sand-Jensen, K., Binzer, T., and Middelboe, A. L. (2007). Scaling of photosynthetic production of aquatic macrophytes - a review. *Oikos* 116, 280–294.
- Sand-Jensen, K., and Frost-Christensen, H. (1998). Photosynthesis of amphibious and obligately

submerged plants in CO_2 -rich lowland streams. *Oecologia* 117, 31–39.

- Sand-Jensen, K., and Frost-Christensen, H. (1999). Plant growth and photosynthesis in the transition zone between land and stream. *Aquat. Bot.* 63, 23–35.
- Sand-Jensen, K., and Gordon, D. M. (1984). Differential ability of marine and fresh-water macrophytes to utilize HCO₃⁻ and CO₂. *Mar. Biol.* 80, 247–253.
- Sand-Jensen, K., and Krause-Jensen, D. (1997). Broad-scale comparison of photosynthesis in terrestrial and aquatic plant communities. *Oikos* 80, 203–208.
- Sand-Jensen, K., Pedersen, M. F., and Nielsen, S. L. (1992). Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. *Freshw. Biol.* 27, 283–293.
- Sand-Jensen, K., Pedersen, O., Binzer, T., and Borum, J. (2005). Contrasting oxygen dynamics in the freshwater isoetid *Lobelia dortmanna* and the marine seagrass *Zostera marina*. *Ann. Bot.* 96, 613–623.
- Sand-Jensen, K., and Prahl, C. (1982). Oxygen-exchange with the lacunae and across leaves and roots of the submerged vascular macrophyte, *Lobelia dortmanna* L. New Phytol. 91, 103–120.
- Sand-Jensen, K., Raun, A. L., and Borum, J. (2009). Metabolism and resources of spherical colonies of Nostoc zetterstedtii. Limnol. Oceanogr. 54, 1282–1291.
- Sand-Jensen, K., and Staehr, P. (2011). CO₂ dynamics along Danish lowland streams: water–air gradients, piston velocities and evasion rates. *Biogeochemistry* 111, 615–628.
- Santamaría, L., and van Vierssen, W. (1997). Photosynthetic temperature responses of fresh- and brackishwater macrophytes: a review. Aquat. Bot. 58, 135–150.
- Schwarzenbach, G., and Meier, J. (1958). Formation and investigation of unstable protonation and deprotonation products of complexes in aqueous solution. J. Inorg. Nuclear Chem. 8, 302–312.
- Sculthorpe, C. D. (1967). *The Biology* of Aquatic Vascular Plants. London: Edward Arnold Ltd.
- Setter, T. L., Kupkanchanakul, T., Waters, I., and Greenway, H. (1988). Evaluation of factors contributing to diurnal changes in O₂ concentrations in floodwater of deepwater rice fields. *New Phytol.* 110, 151–162.
- Setter, T. L., and Laureles, E. V. (1996). The beneficial effect of reduced
elongation growth on submergence tolerance of rice. *J. Exp. Bot.* 47, 1551–1559.

- Setter, T. L., Waters, I., Wallace, I., Bekhasut, P., and Greenway, H. (1989). Submergence of rice. I. Growth and photosynthetic response to CO₂ enrichment of floodwater. *Aust. J. Plant Physiol.* 16, 251–263.
- Silva, J., Sharon, Y., Santos, R., and Beer, S. (2009). Measuring seagrass photosynthesis: methods and applications. *Aquatic Biol.* 7, 127–141.
- Smart, R., and Barko, J. (1985). Laboratory culture of submersed freshwater macrophytes on natural sediments. *Aquat. Bot.* 21, 251–263.
- Smith, W. K., and McClean, T. M. (1989). Adaptive relationship between leaf water repellency, stomatal distribution, and gas exchange. *Am. J. Bot.* 76, 465–469.
- Spence, D. H. N., and Maberly, S. C. (1985). "Occurence and ecological importance of HCO₃⁻ use among aquatic higher plants," in *Carbon Uptake by Aquatic Photosynthetic Organisms*, eds W. J. Lucas, and J. L. Berry (Rockville: American Society of Plant Physiologists), 125–143.
- Staehr, P., Testa, J., Kemp, W. M., Cole, J., Sand-Jensen, K., and Smith, S. (2012a). The metabolism of aquatic ecosystems: history, applications, and future challenges. *Aquatic Sci.* 74, 15–29.
- Staehr, P. A., Baastrup-Spohr, L., Sand-Jensen, K., and Stedmon,

C. (2012b). Lake metabolism scales with lake morphometry and catchment conditions. *Aquat Sci* 74, 1–15.

- Steemann Nielsen, E. (1946). Carbon sources in the photosynthesis of aquatic plants. *Nature* 158, 594–596.
- Steemann Nielsen, E. (1952). The use of radioactive carbon (C^{14}) for measuring organic production in the sea. *J. Conseil* 18, 117–140.
- Stirling, C. M., Davey, P. A., Williams, T. G., and Long, S. P. (1997). Acclimation of photosynthesis to elevated CO₂ and temperature in five British native species of contrasting functional type. *Glob. Chang. Biol.* 3, 237–246.
- Stirling, C. M., Heddell-Cowie, M., Jones, M. L., Ashenden, T. W., and Sparks, T. H. (1998). Effects of elevated CO₂ and temperature on growth and allometry of five native fast-growing annual species. *New Phytol.* 140, 343–354.
- Strickland, J. D. H., and Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Ottawa: Bulletin of Fisheries Reseach Board of Canada.
- Stumm, W., and Morgan, J. J. (1996). Aquatic Chemistry. New York: John Wiley & Sons.
- Suggett, D. J., Prásil, O., and Borowitzka, M. A. (2011). Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Dordrecht: Springer.
- van der Bijl, L., Sand-Jensen, K., and Hjermind, A. L. (1989).

Photosynthesis and canopy structure of a submerged plant *Potamogeton pectinatus* in a Danish lowland stream. *J. Ecol.* 77, 947–962.

- Vashisht, D., Hesselink, A., Pierik, R., Ammerlaan, J. M. H., Bailey-Serres, J., Visser, E. J. W., et al. (2011). Natural variation of submergence tolerance among *Arabidopsis thaliana* accessions. *New Phytol*. 190, 299–310.
- Vermaat, J. E., and Sand-Jensen, K. (1987). Survival, metabolism and growth of Ulva lactuca under winter conditions - a laboratory study of bottlenecks in the life-cycle. Mar. Biol. 95, 55–61.
- Vervuren, P. J. A., Beurskens, S. M. J. H., and Blom, C. W. P. M. (1999). Light acclimation, CO₂ response and long-term capacity of underwater photosynthesis in three terrestrial plant species. *Plant Cell Environ.* 22, 959–968.
- Vervuren, P. J. A., Blom, C. W. P. M., and De Kroon, H. (2003). Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. *J. Ecol.* 91, 135–146.
- Vogel, S. (1994). Life in Moving Fluids: The Physical Biology of Flow. Princeton: Princeton University Press.
- Westlake, D. F. (1978). Rapid exchange of oxygen between plant and water. Verh. Int. Verein. Limnol. 20, 2363–2367.
- Winkel, A., Colmer, T. D., Ismail, A. M., and Pedersen, O. (2013). Internal

aeration of paddy field rice (*Oryza* sativa L.) during complete submergence – importance of light and floodwater O_2 . New Phytol. 197, 1193–1203.

Winkel, A., Colmer, T. D., and Pedersen, O. (2011). Leaf gas films of *Spartina anglica* enhance rhizome and root oxygen during tidal submergence. *Plant Cell Environ.* 34, 2083–2092.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 17 February 2013; accepted: 24 April 2013; published online: 21 May 2013.

Citation: Pedersen O, Colmer TD and Sand-Jensen K (2013) Underwater photosynthesis of submerged plants – recent advances and methods. Front. Plant Sci. 4:140. doi: 10.3389/fpls.2013.00140

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Pedersen, Colmer and Sand-Jensen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

REVIEW ARTICLE published: 22 May 2013 doi: 10.3389/fpls.2013.00150

Fermentation metabolism and its evolution in algae

Claudia Catalanotti¹*, Wenqiang Yang¹, Matthew C. Posewitz² and Arthur R. Grossman¹

¹ Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA

² Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, USA

Edited by:

Pierdomenico Perata, Scuola Superiore Sant'Anna, Italy

Reviewed by:

Michael Hippler, University of Muenster, Germany Elena Loreti, Consiglio Nazionale delle Ricerche, Italy

*Correspondence: Claudia Catalanotti, Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.

e-mail: ccatal1@stanford.edu

Fermentation or anoxic metabolism allows unicellular organisms to colonize environments that become anoxic. Free-living unicellular algae capable of a photoautotrophic lifestyle can also use a range of metabolic circuitry associated with different branches of fermentation metabolism. While algae that perform mixed-acid fermentation are widespread, the use of anaerobic respiration is more typical of eukaryotic heterotrophs. The occurrence of a core set of fermentation pathways among the algae provides insights into the evolutionary origins of these pathways, which were likely derived from a common ancestral eukaryote. Based on genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism has been examined in more detail in Chlamydomonas reinhardtii (Chlamydomonas) than in any other photosynthetic protist. This green alga is metabolically flexible and can sustain energy generation and maintain cellular redox balance under a variety of different environmental conditions. Fermentation metabolism in Chlamydomonas appears to be highly controlled, and the flexible use of the different branches of fermentation metabolism has been demonstrated in studies of various metabolic mutants. Additionally, when Chlamydomonas ferments polysaccharides, it has the ability to eliminate part of the reductant (to sustain glycolysis) through the production of H_2 , a molecule that can be developed as a source of renewable energy. To date, little is known about the specific role(s) of the different branches of fermentation metabolism, how photosynthetic eukaryotes sense changes in environmental O2 levels, and the mechanisms involved in controlling these responses, at both the transcriptional and post-transcriptional levels. In this review, we focus on fermentation metabolism in *Chlamydomonas* and other protists, with only a brief discussion of plant fermentation when relevant, since it is thoroughly discussed in other articles in this volume.

Keywords: anoxic, anaerobiosis, hypoxic, fermentation, pyruvate metabolism

INTRODUCTION

Chlamydomonas AS A MODEL ORGANISM

Chlamydomonas reinhardtii (Chlamydomonas throughout) is a soil-dwelling, unicellular green alga that is considered a model organism for studying photosynthetic energy metabolism, and the production of molecular hydrogen (H₂) under anoxic conditions (Melis and Happe, 2001, 2004; Ghirardi et al., 2007). This alga has several metabolic features in common with those of vascular plants, although it also has structures and activities (e.g., flagella and eyespot) that were lost during vascular plant evolution. Chlamydomonas represents a robust system for probing biological processes with sophisticated molecular tools. The sequencing of all three Chlamydomonas genomes (nuclear, chloroplast, and mitochondrion; Lilly et al., 2002; Maul et al., 2002; Merchant et al., 2007) has facilitated the capture of information about gene and genome structure and potential regulatory sequences, including promoter regions, 3'- and 5'-UTRs and intron-exon junctions. Forward and reverse genetic screens have been developed to generate mutant strains with specific phenotypes, or that are disrupted for specific genes (Dent et al., 2005; Pootakham et al., 2010; Gonzalez-Ballester et al., 2011). Most information discussed in this manuscript on responses of algae to hypoxia/anoxia was derived from studies of Chlamydomonas, although information for other algae has been used to strengthen generalizations. Furthermore, we briefly discuss the evolution of the fermentation processes in prokaryotes and non-photosynthetic eukaryotes, but do not discuss plants since other contributions in this volume detail the responses of plants to hypoxic conditions.

BASIC ENERGY-GENERATING PROCESSES

Whether in aerobic or anaerobic environments, the challenge for organisms to maintain viability can only be met if they can stay far from equilibrium. To achieve this situation, they must use energy to satisfy their metabolic demands, which includes continuous synthesis of the cellular energy currency (mostly ATP) along with maintenance of redox and ionic balances. Aerobic metabolism is used by several eukaryotic and prokaryotic organisms to efficiently synthesize ATP through oxidative phosphorylation; O₂ serves as the terminal electron acceptor of the respiratory electron transport chain (Bailey-Serres and Chang, 2005). Nevertheless, life in low O₂ (hypoxia) environments, or even in environments totally devoid of O₂ (anoxia), is common on our planet. Diminished levels of O2 in various biotopes can result from geochemical or physical conditions, including flooding, excess rainfall, and winter ice encasement, but may also be a consequence of high metabolic activity of bacteria in habitats that are not well aerated. While anoxia is often transient, it can also be protracted, extending from diurnal periods, to months or years, and even to millennia or more (Grieshaber et al., 1994; Burnett, 1997; Danovaro et al., 2010). Furthermore, even though an organism may live in an oxic habitat, it may still perform anoxic metabolism under certain circumstances. For example, in the presence of sufficient levels of a fermentable substrate, many yeast strains will forego using O₂ as a terminal electron acceptor and maintain vigorous fermentation of available substrates (van Dijken and Scheffers, 1986; Pronk et al., 1996).

REDOX BALANCE THROUGH FERMENTATION

For cells to sustain viability during hypoxia/anoxia they must produce ATP and recycle the NAD(P)H and FADH₂ generated by catabolic pathways, usually glycolysis. These compounds must be re-oxidized in a process involving the transfer of electrons to suitable terminal acceptor molecules, which are then typically secreted. Among eukaryotes, there are only two processes for maintaining redox balance and conserving energy when organisms experience anoxic conditions: (i) fermentation, which usually entails substrate-level phosphorylation (SLP), and (ii) anaerobic respiration which involves terminal electron acceptors like NO₃⁻⁻ and SO₄²⁻⁻ instead of O₂ (Atteia et al., 2013). Anaerobic metabolism provides cells with low levels of chemical bond energy, generating \sim 2–3 ATP molecules per molecule of glucose metabolized; this compares to the over 30 ATP molecules generated by the oxidative metabolism of glucose.

METABOLIC ENERGY GENERATION INTRODUCTORY REMARKS

Glycolysis oxidizes glucose to two molecules of pyruvate while generating two ATP molecules. During the oxidation of glucose there is also the production of two NADH molecules (four reducing equivalents). To maintain glycolytic flux and energy production, the cells must re-oxidize the NADH. In the absence of a functional TCA cycle under anaerobic conditions, *Chlamydomonas* places reducing equivalents into partially oxidized metabolic intermediates. The following section reviews the main anaerobic pathways activated in many organisms, including prokaryotic bacteria, eukaryotic fungi, and animals, when they are exposed to hypoxic/anoxic conditions.

IN BACTERIA (Figure 1)

In the absence of O_2 and under conditions that favor catabolite repression (e.g., excess glucose), *Escherichia coli* does not utilize a complete TCA cycle. However, it can use enzymes of this cycle to synthesize succinyl-CoA and 2-oxoglutarate; these metabolites represent the reductive and oxidative branches of the TCA cycle, respectively (Wolfe, 2005). This branched form of the TCA cycle does not generate energy but instead provides the precursor metabolites needed for cell viability. Therefore, ATP must come from glycolysis and SLP is associated with the phosphotransacetylase-acetate kinase pathway (Brown et al., 1977).

FIGURE 1 | Fermentation pathways of *E. coli*. The enzyme designations are: Ack for acetate kinase; AdhE for alcohol dehydrogenase; Aldh for aldehyde dehydrogenase; Fhl for formate hydrogen lyase; FrdABCD for fumarate reductase; FumB for fumarase B (anaerobic); FumC for fumarase C;

Ldh for lactate dehydrogenase; Mdh for malate dehydrogenase; Pfl for pyruvate formate lyase; Ppc for phosphoenolpyruvate carboxylase and Pat for phosphotransacetylase. In *Chlamydomonas*, Aldh and AdhE activities are fused in the enzyme ADH1.

To sustain the flow of glycolytic metabolites when O₂ availability severely limits aerobic respiration, the cells must re-oxidize NADH. In many bacteria the sugars are fermented to a mixture of ethanol and organic acids. This is achieved by reducing partially oxidized metabolic intermediates and forming, predominantly, the metabolites D-lactate, succinate, and ethanol, which are excreted into the environment along with formate and acetate (Wolfe, 2005; Figure 1). During anaerobiosis, pyruvate is the major metabolite synthesized as a consequence of glycolysis. The pyruvate can be converted to formate and acetylcoenzyme A (acetyl-CoA) by pyruvate formate lyase (Pfl; Wolfe, 2005; Figure 1). This conversion is a non-oxidative reaction, which contrasts with oxidative decarboxylation that is mediated by the pyruvate dehydrogenase complex (Pdh, also sometimes designated Pdhc), which functions during respiratory metabolism. Pfl and its activating enzyme are widespread in facultative and obligate anaerobic eubacteria, as well as in archaea (Sawers and Watson, 1998). Mutants of E. coli devoid of Pfl do not grow anaerobically on glucose, but can grow if the medium is supplemented with acetate (Varenne et al., 1975). Under such conditions, pfl mutants maintain glycolytic ATP synthesis by reducing pyruvate to lactate. The generation of an *ldh* mutant in the *pfl* strain eliminates the remaining fermentation pathway for sustaining glycolysis. The formate derived from the Pfl reaction may be further metabolized to H₂ and CO₂ through the activity of formate hydrogen lyase (Fhl; Gottschalk, 1985) while the acetyl-CoA generated in this reaction can be converted to acetate or reduced to ethanol. Full conversion of acetyl-CoA to ethanol would not allow for redox balance since a single NADH is generated for each pyruvate that is synthesized from sugars, and two NADH molecules are required to convert pyruvate to ethanol. In order to achieve redox balance, E. coli must also synthesize additional products from the pyruvate, such as acetate and/or succinate (Dien et al., 2003).

The type and amount of fermentation end products excreted by bacteria, and the level of NADH generated for recycling, are highly dependent upon the substrate being metabolized by the bacterium. For example, bacteria using sorbitol, a highly reduced carbon compound, produce three NADH molecules per molecule of substrate, while a highly oxidized carbon compound such as glucuronic acid generates no NADH. To regenerate NAD⁺ from the NADH formed during the oxidation of sorbitol, bacteria synthesize and excrete ethanol (Wolfe, 2005). In contrast, cells growing on glucuronic acid are redox balanced and therefore no ethanol will be synthesized; instead, most pyruvate will be converted to acetate (Alam and Clark, 1989). The composition of excreted fermentation products also depends on the oxidation state of the cells and the pH of the medium. At neutral or higher pH, the main end products are acetate, ethanol, and formate, with moderate levels of succinate (Belaich and Belaich, 1976). However, as the pH becomes more acidic, cells produce lactate instead of acetate and formate (Bunch et al., 1997).

The conversion of acetyl-CoA to acetate is catalyzed by the phosphoacetyltransferase–acetate kinase (Pat–Ack also known as Pta-AckA) pathways. The Pat–Ack pathway generates one ATP per molecule of pyruvate metabolized, but consumes no NADH (**Figure 1**). In contrast, reduction of acetyl-CoA to ethanol is

catalyzed by the bifunctional acetaldehyde/alcohol dehydrogenase (AdhE). While this reaction consumes reducing equivalents, it does not result in the generation of ATP (Wolfe, 2005). By coordinating the amount of ethanol and acetate (and other organic acids) synthesized and excreted into the medium, bacteria can efficiently balance their energy requirement with the need to recycle redox carriers (as reviewed by Wolfe, 2005).

There are two major acetate-producing pathways in *E. coli*; these are pyruvate oxidase (PoxB) and Pat–Ack (mentioned above). While PoxB decarboxylates pyruvate to acetate aerobically, the Pat–Ack complex is active under both aerobic and anaerobic conditions, converting acetyl-CoA to acetate (Hahm et al., 1994; Yang et al., 1999). The Pat–Ack reactions are sequential, reversible, and considered important for balancing the cellular carbon flux during exponential, aerobic and anaerobic growth (Chang et al., 1999; Avison et al., 2001). Pat converts acetyl-CoA and inorganic phosphate to acetyl phosphate (acetyl-P) and CoA, while Ack catalyzes the formation of ATP and acetate from acetyl-P and ADP (Rose et al., 1954). In *E. coli*, the *pat* and *ack* genes are organized in an operon (Kakuda et al., 1994). Mutants defective for Pat can neither synthesize acetate nor grow anaerobically (Gupta and Clark, 1989).

Under conditions in which anaerobically maintained E. coli cells are accumulating high levels of pyruvate or growing in a low pH medium, they can convert pyruvate to lactate through the activity of lactate dehydrogenase (Ldh; Clark, 1989; Figure 1). Alternatively, pyruvate or phosphoenolpyruvate (PEP) can be converted to a C4 intermediate of the TCA cycle by the catalytic addition of CO₂ (Clark, 1989; Figure 1). In some cases, malic enzymes can carboxylate pyruvate forming malate, while phosphoenolpyruvate carboxylase (Ppc) can catalyze the formation of oxaloacetate (OAA) from PEP and CO₂ (Clark, 1989; Figure 1). Both OAA and malate are then further reduced to succinate (Clark, 1989; Figure 1). This conversion is catalyzed by the sequential action of malate dehydrogenase (Mdh), fumarase (FumB and FumC), and fumarate reductase (FrdABCD; Clark, 1989; Figure 1); the gene encoding fumarase B is induced under anaerobic conditions (Woods et al., 1988). Since the amount of NADH generated varies with the nature of the substrate and the composition of the fermentation products generated, the redox balance and recycling of the NADH can be achieved by modulating the activities of the various fermentation pathways, which would result in a mix of end products, including ethanol, formate, acetate, and lactate (when necessary). Hence, E. coli mutants of ldh show no growth defects under anaerobic conditions because of compensatory pathways (Mat-Jan et al., 1989). Tarmy and Kaplan (1968) reported that fermentative Ldh is allosterically regulated and that its activity increases as the cellular pyruvate concentration increases; when pyruvate concentrations are low, the enzyme has very low activity. In contrast, E. coli adhE mutants do not synthesize alcohol dehydrogenase and cannot grow anaerobically on sorbitol, glucose, or gluconate since they cannot maintain redox balance, but they are able to ferment glucuronate (as reviewed by Clark, 1989).

IN ALGAE (Figure 2)

Fermentation of stored organic compounds by phototrophic microorganisms can represent a significant part of their overall

Catalanotti et al.

FIGURE 2 | Fermentation pathways in *Chlamydomonas.* In wild-type (WT) *Chlamydomonas* cells, the major fermentative products are formate, acetate, and ethanol, with CO₂ and H₂ generated as minor products. The pathway leading to fermentative succinate generation is not readily detected in WT cells grown under laboratory conditions, but becomes prominent in the *hydEF.1* mutant (Dubini et al., 2009). An increase in lactate production, which is almost undetectable in fermenting WT cells, is observed in the *pfl1* mutants (Philipps et al., 2011; Burgess et al., 2012; Catalanotti et al., 2012). Glycerol accumulation occurs in the *adh1* single and the *pfl1–1adh1* double mutants (Catalanotti et al., 2012; Magneschi et al., 2012). The protein designations in this figure are: FMR for fumarate

reductase; MME4 for malic enzyme 4; PDC3 for pyruvate decarboxylase 3; PEPC for phosphoenolpyruvate carboxylase; PYC for pyruvate carboxylase; PYK for pyruvate kinase; PFR for pyruvate ferredoxin oxidoreductase; ACS for acetyl-CoA synthase; FDX for ferredoxin; HYDA1 and HYDA2 for the hydrogenases; GK for glycerol kinase; GPD for sn-glycerol-3 phosphate dehydrogenases and GPP for glycerol 3-phosphate phosphatase. See **Figure 1** for ACK1; ACK2; ADH1; ALDH; FUM; LDH; MDH; PAT1; and PAT2 designations. The enclosure delineated by a green line represents the chloroplast while the enclosure delineated by a red line represents the mitochondrion. The placement of some of the enzymes into specific subcellular compartments is speculative. energy budget as many of these ecologically important organisms spend much of their lifecycle under light-limited, hypoxic/anoxic conditions. Several species of water-oxidizing, photosynthetic algae can metabolize endogenous polysaccharides or secondary metabolites when the environment becomes anoxic, enabling them to generate the ATP necessary to drive metabolic and energyrequiring processes (Gfeller and Gibbs, 1984, 1985; Kreuzberg, 1984; Gibbs et al., 1986; Ohta et al., 1987). During dark fermentation, cellular polysaccharide reserves are catabolized, generating the needed ATP, while the co-produced NADH must be reoxidized. The primary fermentation pathways used during anoxia vary among different algal species (Ohta et al., 1987; Atteia et al., 2013). Green algae such as Chlamydomonas reinhardtii, Chlamydomonas moewusii, Chlorogonium elongatum, and Chlorella fusca ferment starch to a variety of end products including acetate, ethanol, formate, glycerol, lactate, H₂, and CO₂ (Gaffron and Rubin, 1942; Ben-Amotz, 1975; Klein and Betz, 1978; Grossman et al., 2007; Mus et al., 2007). The heterofermentation patterns vary among green algal species (and sometimes among strains) and can also significantly vary with changes in environmental conditions, including the medium composition and carbon source. For Chlamydomonas, dark fermentation leads to the production of formate, acetate, and ethanol in a 2:1:1 ratio (Mus et al., 2007; Figure 2). In contrast, Chlamvdomonas moewusii cells do not excrete formate during exposure to dark anoxic conditions; the major end products synthesized by this organism are acetate, glycerol, and ethanol (Klein and Betz, 1978; Meuser et al., 2009).

Some algae do not excrete fermentation products, but instead store them (reviewed by Müller et al., 2012; Atteia et al., 2013). *Euglena gracilis* synthesizes ATP when maintained under anoxic conditions with the concomitant accumulation of up to 60% fatty acids by dry weight (Inui et al., 1982). When the cells are returned to oxic conditions, the stored fatty acids can be converted back to acetyl-CoA, which can then be oxidized to CO_2 or used to form paramylon reserves (Inui et al., 1982).

Diatoms and dinoflagellates are present in anoxic marine sediments (Jewson et al., 2006). The diatoms that inhabit these sediments accumulate high concentrations of nitrate (Lomstein et al., 1990), which is used as an electron acceptor in respiratory metabolism (e.g., generating ammonium) allowing these organisms to survive under dark anoxic condition (Kamp et al., 2011).

Enzymes of fermentation in Chlamydomonas (Figure 2)

Currently, most information on fermentation metabolism in algae comes from studies of *Chlamydomonas* (Gfeller and Gibbs, 1984, 1985; Kreuzberg, 1984; Gibbs et al., 1986; Ohta et al., 1987; Hemschemeier and Happe, 2005; Grossman et al., 2007, 2011; Mus et al., 2007; Hemschemeier et al., 2008; Dubini et al., 2009; Philipps et al., 2011; Burgess et al., 2012; Catalanotti et al., 2012; Magneschi et al., 2012). Genes encoding proteins associated with a diverse set of fermentative pathways have been identified on the *Chlamydomonas* genome, while a number of biochemical studies have revealed various fermentation circuits. The flexibility among the different pathways for catabolism of stored carbon under dark, anoxic conditions has been demonstrated through analyses of

various mutants perturbed for these pathways (Mus et al., 2007; Dubini et al., 2009; Philipps et al., 2011; Burgess et al., 2012; Catalanotti et al., 2012; Magneschi et al., 2012). This flexibility allows *Chlamydomonas* to satisfy its energy requirements as O₂ from the surrounding environment is depleted.

Over the course of the day there is a natural cycle for storage and utilization of fixed carbon. In phototrophic organisms, polysaccharides (sometimes lipids) accumulate in cells during daylight hours when photosynthetic CO₂ fixation is a dominant metabolic process. During the evening, much of the starch reserve can be hydrolyzed to sugars by amylase activity (Ball, 1998; Dauvillee et al., 2001a,b; Zabawinski et al., 2001) and then, through the activity of glycolysis, be converted to pyruvate (Figure 2). As in bacteria, pyruvate fuels fermentation processes, serving as substrate for pathways that generate various organic acids, acetyl-CoA, alcohols, CO₂, and H₂. Chlamydomonas has multiple pathways for converting pyruvate to acetyl-CoA (Hemschemeier and Happe, 2005; Atteia et al., 2006; Grossman et al., 2007; see Figure 2 for details). Three enzymes involved in these pathways are pyruvate formate lyase (PFL1), pyruvate ferredoxin oxidoreductase (PFR, often referred to as PFOR), and the pyruvate dehydrogenase (PDH) complex. As PDH generates NADH, a product that must be re-oxidized to sustain fermentation metabolism, it is presumed that PFL1 and PFR are the favored pathways for pyruvate catabolism in hypoxic/anoxic cells (Figure 2). While PFL1 catalyzes the conversion of pyruvate to acetyl-CoA and formate, in the PFR reaction pyruvate is oxidized to acetyl-CoA and CO₂ with the concomitant generation of reduced ferredoxin (FDX). FDX can then pass reducing equivalents to hydrogenases to generate H₂ (Happe and Naber, 1993; Ghirardi et al., 1997, 2000, 2007; Melis et al., 2000; Melis and Happe, 2001; Müller, 2003). However, the reduced FDX can also serve as a substrate for nitrite and sulfate/sulfite reductases (Ghirardi et al., 2008).

The acetyl-CoA produced by PFL1 and PFR reactions is either reduced to ethanol by alcohol/aldehyde dehydrogenase 1 (ADH1; Hemschemeier and Happe, 2005; Atteia et al., 2006; Dubini et al., 2009), or metabolized to acetate by the PAT–ACK (Atteia et al., 2006). An alternative pathway for ethanol production may be direct decarboxylation of pyruvate to CO_2 and acetaldehyde through the activity of pyruvate decarboxylase (PDC3). The acetaldehyde generated in this reaction can be reduced to ethanol by ADH (either the same enzyme that catalyzes acetyl-CoA reduction or a distinct enzyme, e.g., ADH2). While the conversion of acetyl-CoA to ethanol by ADH1 oxidizes two NADH molecules, only a single NADH is oxidized in the PDC pathway.

Mutants in specific branches of fermentative metabolism have proven extremely valuable for elucidating the various routes of fermentation metabolism in *Chlamydomonas*, which are shown in **Figure 2**.

Formate production

Formate was demonstrated to be the dominant, secreted organic acid synthesized by *Chlamydomonas* maintained in anoxic conditions at near neutral pH in dark (Kreuzberg, 1984; Gibbs et al., 1986). The synthesis of formate by PFL1 uses a free-radical mechanism to catalyze the homolytic cleavage of pyruvate into formate and acetyl-CoA. This reaction depends upon a radical *S*-adenosyl methionine-dependent <u>activating enzyme</u>, designated PFL-AE (Atteia et al., 2006; Hemschemeier et al., 2008), which is usually present as an inactive form in aerobic cells, and is allosterically activated by pyruvate. In *Chlamydomonas*, PFL1 appears to be located in both mitochondria and chloroplasts (Kreuzberg et al., 1987; Atteia et al., 2006).

Algal strains deficient for PFL1 activity were isolated by independent groups (Philipps et al., 2011; Catalanotti et al., 2012) using different strategies (Burgess et al., 2012). The elimination of PFL1 activity in *Chlamydomonas* led to a marked accumulation of extracellular lactate, elevated pyruvate decarboxylation, and extracellular ethanol accumulation (**Figure 2**). The accumulation of lactate in the medium of *pfl1* mutants allows for recycling of NADH as a consequence of pyruvate reduction by LDH. Catalanotti et al. (2012) also demonstrated that the *pfl1* mutant accumulates elevated intracellular levels of lactate and alanine. Additionally increased intracellular levels of succinate, malate, and fumarate were observed, suggesting operation of the left branch of the reverse TCA reactions to recycle NADH.

Ethanol production

Acetyl-CoA produced by PFR/PFL1 activities can be metabolized to generate ATP by conversion to acetate or to help maintain redox balance by conversion to ethanol (Mus et al., 2007). *Chlamy-domonas* possesses three distinct enzymes potentially important for ethanol production when the cells become anoxic: ADH1 (putative dual-function alcohol/acetaldehyde dehydrogenase; Mus et al., 2007; Hemschemeier et al., 2008; Magneschi et al., 2012), and two other putative alcohol dehydrogenases that were identified based on protein homology, designated ADH2 (Augustus version 5.0 protein identifier 516421) and ADH3 (Augustus version 5.0 protein identifier 516422). ADH1 has been localized to chloroplasts (Terashima et al., 2010).

A Chlamydomonas mutant devoid of ADH1 was unable to synthesis either ethanol or CO2 when the cells were transferred to anoxic conditions (Magneschi et al., 2012). The inability of the adh1 mutant to accumulate ethanol and CO₂, while synthesizing low levels of formate, suggests that the acetaldehyde synthesized by PDC3 and the acetyl-CoA synthesized by PFL1 and PFR cannot be rapidly reduced in the mutant. These findings also indicate that ADH1 is the only acetaldehyde-alcohol dehydrogenase in Chlamydomonas capable of reducing acetyl-CoA or acetaldehyde to ethanol under the conditions used in this study. Interestingly, the *adh1* strain was able to compensate for its inability to reduce acetyl-CoA or acetaldehyde to ethanol by reducing a significant amount of pyruvate to lactate. This elevated lactate accumulation was not as high as the level measured in *pfl1* (Philipps et al., 2011; Burgess et al., 2012; Catalanotti et al., 2012). However, the adh1 mutants also accumulated high extracellular and intracellular levels of glycerol relative to anoxic wild-type (WT) cells. This acclimation response removes a significant amount of the C3 metabolites at the dihydroxyacetone phosphate (DHAP) step of the glycolytic pathway, which is prior to the reduction of NAD⁺ to NADH; the DHAP is then used as a substrate to re-oxidize NADH in the synthesis of glycerol (**Figure 2**).

Acetate production

The acetyl-CoA that is produced by PFL1 or PFR activities can be converted to acetate by PAT and ACK (Mus et al., 2007). Two parallel pathways have been identified in *Chlamydomonas*; PAT1–ACK2 appear to be mitochondrial while PAT2–ACK1 are in the chloroplast (Atteia et al., 2006, 2009; Terashima et al., 2011; **Figure 2**). Interestingly, the *PAT2* and *ACK1* genes are contiguous on the genome while *PAT1* and *ACK2* are far apart on the same chromosome (http://genome.jgi-psf.org/Chlre4/ Chlre4.home.html).

While PAT-ACK activities comprise the predominant pathways for acetate formation under dark anaerobiosis, other enzymes are present on the Chlamydomonas genome that may play a role in acetate synthesis. Four genes encoding homologs of acetyl-CoA synthase (ACS) and eight genes encoding homologs of aldehyde dehydrogenase (ALDH) have been identified on the Chlamydomonas genome (Kirch et al., 2004, 2005; Brocker et al., 2012). The ACSs catalyze the putatively reversible conversion of acetate to acetyl-CoA (dash line in Figure 2). The ALDH reaction produces NAD(P)H during the conversion of acetaldehyde to acetate, therefore it is unlikely that these enzymes are active in fermentative metabolism when the cells require regeneration of reducing power (Kirch et al., 2004, 2005; Brocker et al., 2012). To date, there is no biochemical evidence to demonstrate that these alternative pathways for acetate generation are active in Chlamydomonas. In bacteria, the two pathways active under aerobic conditions that generate acetate are the Pat-Ack pathway, which is active in exponentially growing cells, and the PoxB pathway, which dominates during late exponential and stationary phase (Dittrich et al., 2005). It is uncertain whether or not similar regulatory features occur in Chlamydomonas.

The presence and/or production of acetate as Chlamydomonas cells become anoxic was found to be critical for maintenance of anoxic conditions in the light since acetate assimilation promotes O₂ utilization (Kosourov et al., 2007; Morsy, 2011). The level of acetate accumulation during fermentative metabolism has proven to be difficult to predict, probably because it can also be used for the biosynthesis of key metabolites in anoxic cells, provided sufficient ATP and NAD(P)H is available. The *adh1* mutant exhibits a higher ratio of acetate production under anoxic conditions compared to WT cells, which reflects the elimination of ethanol production from the acetyl-CoA that is generated by PFL1 and PFR activities in the mutant strain; glycerol and lactate production serve as the primary NADH re-oxidation mechanisms in this mutant (Magneschi et al., 2012). In contrast, the pfl1 mutant strains exhibit strongly reduced acetate accumulation (Burgess et al., 2012; Catalanotti et al., 2012); this decrease is likely due to a diminished intracellular acetyl-CoA pool.

H₂ production

The mitochondria of cells maintained in aerobic conditions use PDH to convert pyruvate to acetyl-CoA; the acetyl-CoA generated can be metabolized to CO₂ by the TCA cycle. In some animals PDH can function under anaerobic conditions (reviewed by Tielens and van Hellemond, 1998; Tielens et al., 2002; Hoffmeister et al., 2005; Tucci et al., 2010; Atteia et al., 2013). However, in many prokaryotes and eukaryotes, pyruvate oxidation in the absence of O₂ is typically mediated by PFR. PFR belongs to a large family of thiamine pyrophosphate (TPP)-dependent enzymes. It catalyzes the oxidative cleavage of the carbon-carbon bond of the carboxyl group of pyruvate to liberate CO₂ and reducing equivalents, with the attachment of the resulting acetyl group to CoA. However, unlike PDH, PFR can also function in the reverse direction catalyzing the production of pyruvate from CO₂ and acetyl-CoA (Evans et al., 1966; see below), with FDX or flavodoxin serving as electron donors (Charon et al., 1999; Ragsdale, 2003; Figure 2). In Chlamydomonas, the reduced FDX generated from pyruvate oxidation by PFR activity can be re-oxidized by hydrogenases, generating H₂ (Müller, 2003), or by reactions that enzymatically reduce nitrite and sulfate/sulfite. Hydrogenases are widespread among prokaryotes, whereas they are not as common among eukaryotes, and are restricted to a subset of unicellular eukaryotes, including photosynthetic algae (Meuser et al., 2011; Müller et al., 2012). Chlamydomonas hydrogenases belong to the class of [FeFe]-hydrogenases in which a [4Fe4S] cluster is linked through a cysteine residue to a 2Fe- cluster (Peters et al., 1998; Mulder et al., 2011).

Hydrogen production in algae is likely to have significant impacts on redox poising, photoprotection, and fermentative energy metabolism. Hydrogen production is coupled to cellular metabolism in a variety of ways, all of which are associated with O2 limitation: (i) direct biophotolysis, (ii) indirect biophotolysis, and (iii) dark fermentative metabolism (Figure 3). Direct biophotolysis involves light-dependent oxidation of water by photosystem II (PSII), the transfer of electrons from PSII to photosystem I (PSI), light-dependent excitation of PSI with the concomitant reduction of FDX and the subsequent transfer of electrons from FDX to hydrogenase (Benemann et al., 1973; Greenbaum, 1982; Happe and Naber, 1993; Miura, 1995; Ghirardi et al., 2007). During direct biophotolysis, the O2 generated by PSII must be reduced in order to prevent the accumulation of O2 to levels that would inhibit the hydrogenase. Indirect biophotolysis involves non-photochemical reduction of the PQ pool by NAD(P)H generated as a consequence of catabolic metabolism, followed by light-dependent FDX reduction by PSI and the subsequent transfer of electrons from FDX to hydrogenase (Cournac et al., 2000; Kosourov et al., 2003; Mus et al., 2005; Chochois et al., 2009). In the third H₂-production pathway, starch catabolism provides electrons to the hydrogenases under dark fermentative conditions (Gfeller and Gibbs, 1984; Kreuzberg, 1984; Ohta et al., 1987; Happe et al., 1994; Ghirardi et al., 1997; Melis and Happe, 2001; Posewitz et al., 2004; Mus et al., 2007; Dubini et al., 2009).

FIGURE 3 | Metabolic pathways associated with hydrogenase activity. Five distinct metabolisms are depicted: (1) H₂ production dependent on the complete photosynthetic electron transport system (PSII, PSI, FDX, H₂ase; green and blue lines); (2) H₂ production requiring starch catabolism and PSI activity (starch, glycolysis, PQ, PSI, FDX, H₂ase; brown and blue lines); (3) H₂ production in the dark from pyruvate oxidation (starch, glycolysis, pyruvate, FDX, H₂ase; brown and magenta lines); (4) H₂ oxidation coupled to CO₂ reduction, with respiratory O₂ uptake used to generate ATP (H₂, H₂ase, FDX, FNR, NAD(P)H, CO₂ fixation; orange line);

(5) H₂ oxidation coupled to PSI-driven cyclic electron flow and ATP production (H₂, H₂ase, FDX, PSI, FDX and continued cycling; blue line). Abbreviations are: Cytb₆f, cytochrome b₆f complex; FDX, ferredoxin; FNR, ferredoxin NAD(P)⁺ reductase; H₂ase, hydrogenase enzyme; PC, plastocyanin; PFR, pyruvate ferredoxin oxidoreductase; PQ, plastoquinone pool; P700, reaction center of photosystem II. For simplicity we have not tried to scale the energy potential of the electron carriers downstream of FDX.

Hydrogenases also function in H₂ uptake, with two distinct uptake pathways described in Chlamydomonas (Gaffron, 1944; Kessler, 1974; Maione and Gibbs, 1986a,b; Chen and Gibbs, 1992a; Figure 3). In the first pathway, H₂ oxidation and cyclic PSI activity in the light are linked to RuBisCO-mediated anaerobic CO2 fixation. Electrons from H₂ are used to reduce FDX, which then reduces FDX-NAD(P) oxidoreductase (FNR), leading to the generation of NAD(P)H which, along with the ATP generated by cyclic electron flow, can be used to fix CO₂. This pathway requires the absence of O₂ evolution from PSII. In the second pathway, termed the oxyhydrogen reaction, H₂ oxidation occurs concomitantly with the uptake of low levels of O_2 in a process that can be coupled to CO₂ fixation (Gaffron and Rubin, 1942; Gaffron, 1944; Russell and Gibbs, 1968; Kessler, 1974; Chen and Gibbs, 1992a). Although not well characterized, it is posited that H₂ oxidation provides the reducing equivalents for CO₂ fixation and that the low levels of O2 present are respired to provide ATP (Gaffron and Rubin, 1942; Gaffron, 1944; Maione and Gibbs, 1986a; Chen and Gibbs, 1992a).

Recently, mutants were obtained in each of the two *HYDA* genes of *Chlamydomonas*, *HYDA1* and *HYDA2* (Meuser et al., 2012). The phenotypes of the single (*hydA1* and *hydA2*) and double (*hydA1–hydA2*) mutants were analyzed under both light and dark anoxic conditions. Both single mutants could catalyze H_2 production from reductant generated from either fermentative or photosynthetic metabolism. However, the contribution of the HYDA2 enzyme to H_2 photoproduction under the conditions tested was approximately 25% of that of HYDA1 (Godman et al., 2010; Meuser et al., 2012).

The impact of the *hydEF-1* lesion on fermentation is more interesting since it demonstrates the flexibility of *Chlamydomonas* anaerobic metabolism (see below). This mutant is unable to assemble the inorganic constituents of the hydrogenase active site, and consequently cannot catalyze H_2 synthesis (Posewitz et al., 2004).

Succinate production

Anoxic cultures of the Chlamydomonas hydEF-1 mutant exhibit lower CO₂ evolution and reduced extracellular formate, acetate, and ethanol accumulation. Interestingly, the mutant synthesizes elevated levels of extracellular succinate (Dubini et al., 2009; Figure 2), indicating activation of a fermentative pathway that is not operating at significant levels in WT cells. Microarray data and metabolite analyses suggest that carboxylation of pyruvate in the hydEF-1 mutant leads to the synthesis of either malate or OAA (or both), which is subsequently converted to succinate via reverse reactions of the TCA cycle. Activation of the reductive TCA branch as a means of recycling NADH was previously observed in anaerobic bacteria (Gray and Gest, 1965; Schauder et al., 1987; Buchanan and Arnon, 1990; Beh et al., 1993; Yoon et al., 1999), in the green alga Selenastrum minutum (Vanlerberghe et al., 1989, 1990) and in vascular plants (Sweetlove et al., 2010), but was not known to occur in Chlamydomonas.

The alternative pathway suggested by Dubini et al. (2009) not only explains succinate accumulation under anaerobic conditions, but also raises the possibility that *Chlamydomonas* could potentially operate a complete reverse TCA cycle. This would require that PFR functions in the direction of pyruvate synthesis under the appropriate metabolic conditions. Various researchers have suggested that PFR could function in the synthesis of pyruvate in Chlamydomonas (Chen and Gibbs, 1992b; Melis et al., 2007; Terashima et al., 2011; Figure 2). Chen and Gibbs (1992b) detected ATP-citrate lyase, as well as PFR and α -ketoglutarate synthase activities in Chlamydomonas cell extracts, speculating that the existence of these three key enzyme activities indicated that the reverse TCA cycle could operate in Chlamydomonas. These authors showed that a Chlamydomonas mutant with a compromised Calvin-Benson cycle takes up CO₂ in the dark under minimal aerobic conditions (1% O_2), and that the CO_2 uptake is coupled to H₂ oxidation (Chen and Gibbs, 1992a), suggesting that the reverse TCA cycle could be a significant pathway for CO₂ assimilation when the Calvin-Benson cycle is compromised (Chen and Gibbs, 1992b). Hence, under these conditions H₂ oxidation would provide the reducing equivalents to drive the reverse TCA cycle and to allow PFR to synthesize pyruvate, leading to the accumulation of an array of biosynthetic precursors. The possibility of PFR-dependent synthesis of pyruvate has also been observed in many hydrogenosome-containing eukaryotic organisms experiencing anaerobic conditions (Lindmark and Müller, 1973). Furthermore, in the unicellular microaerophilic eukaryote Trichomonas vaginalis, MME and PFR are central to carbohydrate metabolism in the hydrogenosomes (Müller, 1993). In addition, PFR and MME activities have been linked to malate production in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, also suggesting reductive carboxylic acid cycle activity (Fukuda et al., 2005). The association of PFR and MME with pyruvate metabolism in hydrogenosome-containing anaerobic eukaryotes, the findings that a similar set of anoxic-induced proteins are associated with Chlamydomonas chloroplasts, and the metabolite data obtained with various Chlamydomonas strains exposed to anoxic, reductant-rich conditions, all suggest that the TCA cycle may operate in the reverse direction in Chlamydomonas chloroplasts in anoxic cells that have sufficient reducing equivalents and ATP.

Lactate and glycerol production

Glycerol and lactate are usually minor end products of green algal fermentation (Gfeller and Gibbs, 1984; Kreuzberg, 1984). Glycerol is synthesized from DHAP, and its synthesis results in recycling of one NADH. The reaction precedes the formation of pyruvate and the C3 oxidation (NADH formation) step in glycolysis. Hence, glycerol and lactate production in the adh1 mutant would allow for efficient recycling of NADH, maintenance of redox balance and sustained glycolytic production of ATP even though the cells are unable to reduce acetaldehyde or acetyl-CoA to ethanol (Magneschi et al., 2012; Figure 2). The pfl1-1adh1 double mutant cannot synthesize either formate or ethanol (Catalanotti et al., 2012; Figure 2). This strain, like pfl1, secretes significant levels of lactate, however, like the *adh1* mutant, it also synthesizes and secretes high levels of glycerol and acetate. Hence, this mutant exhibits a complete rerouting of glycolytic carbon to lactate and glycerol, transforming Chlamydomonas cells from a formate/acetate/ethanol to a glycerol/lactate fermenter (Catalanotti et al., 2012; Figure 2).

IN OTHER EUKARYOTES

Eukaryotes specialized to thrive under aerobic conditions generally possess simple cytosolic fermentation pathways that enable them to tolerate short-term anoxia; these pathways facilitate accumulation of end products such as lactate, ethanol, and glycerol (reviewed by Müller et al., 2012). Some eukaryotes, including many algae, experience frequent exposure to anoxic conditions, where they are unable to use O_2 as a terminal electron acceptor. These organisms have evolved a modest set of energy-generating pathways, which are reviewed below.

Ethanol, lactate, and glycerol fermentation (Figures 4 and 5)

When O_2 in the environment is depleted, plants can use PDC to convert pyruvate to acetaldehyde, which is metabolized to ethanol by ADH (Gibbs and Greenway, 2003; Bailey-Serres and Voesenek, 2008). The ethanol generated in plant roots can rapidly diffuse into the rhizosphere, which limits its toxicity. Plants can also synthesize lactate under conditions of low O_2 . The transition from lactic to ethanolic fermentation appears to be controlled by the pH of the cytoplasm of the cell. A ~0.6 unit decrease in cytosolic pH favors PDC activity, which promotes ethanol production and limits lactate synthesis (reviewed by Bailey-Serres and Voesenek, 2008). This lactic to ethanolic switch is critical for maintaining cytosolic pH (Roberts et al., 1989). In addition to eliciting metabolic changes, low O_2 can trigger alterations in plant morphology which include petiole or internode elongation, altered anatomy and cell ultrastructure in leaves and roots, development of lateral or adventitious roots and the formation of aerenchyma cells (Bailey-Serres et al., 2012).

Ethanol, lactate, and glycerol are common end products of fermentative metabolism in many organisms. The synthesis and excretion of ethanol allows carp to survive anaerobiosis for up to \sim 5 months (van Warde et al., 1993) and goldfish to withstand anoxia for several weeks (van den Thillart et al., 1983). It is notable

FIGURE 4 | Mixed-acid fermentative metabolism of the hydrogenosome-bearing anaerobic chytridiomycete fungus *Piromyces.* The circuitry is drawn based on data reported by Wang et al. (2001) and Boxma et al. (2004). This fungus uses pyruvate formate lyase for pyruvate catabolism in their hydrogenosomes. Glucose can also be metabolized in the cytosol to the end products succinate, lactate, formate, and ethanol. Bifunctional alcohol dehydrogenase (Adh), having both alcohol dehydrogenase and acetaldehyde dehydrogenase activities, mediates the cytosolic formation of ethanol. The protein designations in this figure are: Asct for acetate succinyl-CoA-transferase; Me for malic enzyme; Pepck for phosphoenolpyruvate carboxykinase; Scs for succinyl-CoA synthase; See **Figure 1** for Adh; Fum; Ldh; Mdh; and Pfl designations and **Figure 2** for Fmr; Gpd; Gpp; and Pdc designations. DHAP, dihydroxyacetone phosphate; G3P, glycerol-3-phosphate; PEP, phosphoenolpyruvate.

FIGURE 5 [(A) Major metabolic pathways in the anaerobic intestinal parasite *Entamoeba histolytica*. The map is adapted from Müller et al. (2012). The energy metabolic pathways are localized in the cytosol. Pyruvate ferredoxin oxidoreductase is used for pyruvate decarboxylation/oxidation, ATP is synthesized through SLP via acetyl-CoA synthase (ADP forming). **(B)** Major pathways of anaerobic, molecular H₂-producing, fermentative metabolism in

Trichomonas vaginalis. Hydrogenosomal pyruvate breakdown involves PFR and functional [FeFe]-hydrogenase (HYD) in *Trichomonas.* Additional major end products of cytosolic fermentation in *Tvaginalis vaginalis* include alanine, lactate, ethanol, and glycerol. The protein designations in this figure are: ALAT for alanine aminotransferase and PPDK for pyruvate:orthophosphate dikinase. See **Figures 1–3** for the other protein designations.

that the fermentation pathways used for these reactions appear to have their origins in a typical yeast-type PDC and ADH (van Warde et al., 1993; **Figure 4**). The fungi, a highly diverse group, can also ferment carbohydrates to lactate, glycerol, and ethanol. Glycerol acts as a redox valve under anaerobic conditions since it enables re-oxidation of NADH that is generated during the conversion of sugars into biomass. While fungi may also excrete organic acids, the levels are generally low; these acids include formate, acetate, lactate, and succinate (**Figure 4**). Formate production is not uncommon in fungi as a result of the activity of a cytosolic (and hydrogenosomal) PFL, which provides the acetyl-CoA for ethanol production (Boxma et al., 2004; **Figure 4**).

Finally, pathogenic amoebozoa such as *Entamoeba histolytica* often experience anaerobic conditions; their main end products of anaerobic energy metabolism are alanine, CO₂, ethanol, and

acetate (Müller et al., 2012). The enzymes responsible for generating these products are exclusively in the cytosol (Müller, 2003). The initial reactions of the pathway involve conversion of PEP to pyruvate by pyruvate orthophosphate dikinase (PPDK; Reeves, 1968; **Figure 5A**), which also generates ATP. The pyruvate is then oxidized via PFR to CO₂ and acetyl-CoA, with the latter converted into a mixture of acetate and ethanol (**Figure 5A**). Alternatively the PEP can be carboxylated to OAA by PEP carboxytransferase, reduced to malate by malate dehydrogenase (MDH) and the malate then converted to pyruvate by the malic enzyme (ME; **Figure 5A**; as reviewed by Müller et al., 2012). *Entamoeba* possesses a bifunctional aldehyde/alcohol dehydrogenase (ADH), which represents a fusion protein that contains an N-terminal aldehyde dehydrogenase domain and a C-terminal alcohol dehydrogenase domain. This enzyme regenerates 2 NAD⁺, is present in many eukaryotes, and has been found to be highly expressed in *Chlamydomonas* (Mus et al., 2007; Catalanotti et al., 2012; Magneschi et al., 2012), other green algae and protozoan parasites such as *Giardia intestinalis*, *Trichomonas*, and euglenids.

Trichomonas vaginalis synthesizes ethanol from pyruvate in the cytosol via PDC and ADH. However, the main end products of *T. vaginalis* fermentative metabolism are distributed between the cytosol (glycerol, lactate, and ethanol) and the hydrogenosome (CO_2 , H_2 , and acetate; **Figure 5B**). Similarly, *Chlamydomonas* can synthesize glycerol from DHAP, which is catalyzed by glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase, and LDH can catalyze lactate accumulation. However, while both reactions in *T. vaginalis* occur in the cytosol, their locations in *Chlamydomonas* are not clear.

Malate dismutation and acetate and propionate production (Figure 6)

Fermentation in animals often involves malate dismutation. It is not uncommon for parasitic worms to switch to complete anaerobic metabolism once they are established in the host tissue. In parasitic mode they convert the PEP generated by glycolysis to OAA, which is then reduced to malate via a cytosolic malate dehydrogenase (**Figure 6**). This reaction results in re-oxidation of one molecule of NADH. The malate is then imported into the mitochondrion where dismutation occurs; a portion of the malate is oxidized to acetate (via pyruvate), and another is reduced to succinate. In the latter reaction, malate is converted to fumarate by FUM and the fumarate is reduced to succinate (**Figure 6**); this pathway is similar to the alternative fermentation pathway activated in the *Chlamydomonas hydEF-1* mutant. Many organisms excrete succinate produced by malate dismutation rather than decarboxylating the succinate to generate propionate plus an extra molecule of ATP (Pietrzak and Saz, 1981; Müller et al., 2012; **Figure 6**). Interestingly, in the parasite system, fumarate reduction is performed by a membrane-associated, anaerobiosis-specific enzyme (FRD) that is coupled to an electron transport chain that functions specifically under anaerobic conditions. Electrons are transferred from NADH to fumarate via rhodoquinone (RQ; **Figure 6**) instead of ubiquinone (UQ, which is normally used under oxic conditions); the lower redox potential of RQ (relative to UQ) allows for the thermodynamically favorable use of electrons in the synthesis of succinate by FRD (as reviewed by Müller et al., 2012).

Intracellular metabolite accumulation

 O_2 deficiency is often associated with a wide range of excreted metabolites, but may also trigger more complicated responses involving sequestration of specific end products. Plants experiencing low O_2 accumulate alanine and γ -aminobutyric acid (GABA; reviewed by Bailey-Serres and Voesenek, 2008). Upon re-oxygenation, alanine can be recycled back to pyruvate, and GABA can be converted to succinate. This set of amino acid oxidation reactions may minimize the decline in cytosolic pH and reduce the loss of fixed carbon as ethanol or lactate. Alanine also accumulates in *T. vaginalis* and in many animals belonging to the Excavata taxa (Edwards et al., 1989) as a minor end product.

A less common fermentation process, but largely used in marine environments, involves opine formation. This pathway is localized to the cytosol and involves pyruvate condensation with an amino acid in a redox reaction that regenerates NAD⁺. A possible advantage of this alternative pathway for balancing cellular redox is that opine is less acidic than lactate. Moreover the process maintains an osmotic equilibrium since one amino acid is consumed per opine synthesized (Ballantyne, 2004).

Denitrification (Figure 7)

The capacity for nitrate respiration is widespread among bacteria, fungi, and other eukaryotic organisms (Morozkina and Kurakov, 2007). Details of the denitrification pathway have been studied in fungi and bacteria (see previous paragraphs). On the other hand, the enzymes required for nitrogen metabolism in foraminifera and diatoms are not well characterized, although the occurrence of the pathway was noted (Risgaard-Petersen et al., 2006; Kamp et al., 2011).

Numerous reports have demonstrated the presence of two main pathways for denitrification; one is localized in the mitochondrion and usually occurs under low O_2 conditions, while the other, often referred to as ammonia fermentation, is localized in the cytosol (Zhou et al., 2001; Takasaki et al., 2004; Morozkina and

acetogenic oxidation of ethanol and substrate-level phosphorylation. The protein designations in this figure are: Ald, alcohol dehydrogenase; Adda, acetaldehyde dehydrogenase; Nar, nitrate reductase; and Nir, nitrite reductase. Kurakov, 2007; **Figure 7**). The latter pathway appears to be activated under strict anoxic conditions and involves reduction of nitrate to ammonia using reductant generated by the catabolic oxidation of ethanol (the donor of electrons) to acetate, which is coupled to SLP. As shown in **Figure 7**, the ethanol is oxidized to acetaldehyde by an alcohol dehydrogenase (designated Ald), which is converted to acetyl-CoA by acetaldehyde dehydrogenase (AddA). The acetyl-CoA is then converted to acetate and CoA, with the concomitant production of ATP by Ack (Zhou et al., 2001). Under hypoxic conditions the ethanol is oxidized to acetate and the electrons generated in the reaction are used to reduce nitrite to N₂O, which is excreted from cells (Zhou et al., 2001; **Figure 7**). Nitrate and nitrite reductases catalyze the reduction of nitrogen oxides to ammonia using NADH as the electron donor, and are assimilatory enzymes.

H₂ and CO₂ production

 H_2 and CO_2 are generated in an ancestral anaerobic pathway that is present in many green algae. The generation of H_2 in algae often serves as a redox valve. This pathway can be in chloroplasts, as in *Chlamydomonas* and other algae, in mitochondria-like organelles, as in the Stramenopiles, or in the hydrogenosomes of the amoebozoa, some opisthokonta and Excavata. H_2 production is often associated with PFR activity, which oxidizes pyruvate to acetyl-CoA and CO₂. Reduced ferredoxin transfers electrons to a hydrogenase that can convert protons and electrons into H_2 (**Figure 5B**).

METABOLITE PARTITIONING, ORGANELLE COMMUNICATION AND ITS EVOLUTION

CARBON PARTITIONING BETWEEN ORGANELLES

Glycolysis is the backbone of eukaryote carbon and energy metabolism, leading to the production of pyruvate, ATP, and NADH. Further metabolism of the pyruvate can occur in the cytosol, mitochondrion, or plastid. For some eukaryotic organisms fermentation occurs entirely in the cytosol; the organisms included in this group are the protistan parasites such as *Giardia* and *Entamoeba* (Müller, 1996). Fermentations can also occur partly in hydrogenosomes, as is the case for *Trichomonas* (Müller, 1993). Among animals, fermentation often entails malate dismutation, involving segments of the mitochondrial electron transport chain, as in the case of the anaerobic mitochondria of many marine invertebrates and parasitic worms (Tielens et al., 2002; Tielens and van Hellemond, 2009).

A number of metabolic reactions can occur in more than one compartment in the cell and some enzymes may be routed to more than one cellular location; one example of this is PFL, which appears to occur in both chloroplasts and mitochondria, but dual localizations of proteins is not uncommon in eukaryotes (Atteia et al., 2006; Martin, 2010; Müller et al., 2012). Examining the network of activities in *Chlamydomonas* exposed to anoxic conditions raises some fundamental questions; one very important question is "How can an entire metabolic pathway be transferred to a new compartment?" This issue is still far from being resolved and more detailed biochemical and evolutionary analyses are necessary. However, it is becoming evident that over evolutionary time, enzymes and pathway can readily undergo re-compartmentation among subcellular locations in the cell including the mitochondrion, cytosol, hydrogenosome, and chloroplast. Small changes in targeting sequences might result in mistargeting, which could explain how individual activities, as well as entire pathways are found in more than one cellular compartment (Martin, 2010).

EVOLUTIONARY INSIGHTS

This review presents information indicating that overall, the different groups of eukaryotic organisms share the same core pathways for hypoxic/anoxic energy metabolism. Although distinct mechanisms are used by obligate and facultative anaerobes, there is a certain set of enzymes consistently associated with fermentation metabolism among a variety of organisms ranging from the bacteria to algae, fungi, and metazoans. The heterofermentation that is associated with the algae differs from lactate or ethanol homofermentation that occurs in yeast and various multicellular organisms including plants and animals; fermentation patterns in Chlamydomonas show some similarities to mixed-acid fermentation, which is common in the enteric bacteria (Neidhardt et al., 1990). The Chlamydomonas genome appears to contain a complete (or near complete) spectrum of genes involved in anaerobic energy metabolism across all eukaryotes (Müller et al., 2012; Atteia et al., 2013). However, the ancestry of these genes, whether from single or multiple origins, remains to be established. Müller et al. (2012) in a recent review favor the hypothesis that many of the enzymes associated with anaerobic energy metabolism in eukaryotes share a common ancestor, which is supported by the finding that different eukaryotic lineages possess different subsets of the same ancestral collection of genes. Furthermore, if the various genes for anaerobic metabolism in protists were derived from multiple ancestral genes, then evidence for the lateral transfer of genes from multiple sources should be apparent. The fact that no eukaryotes perform sulfate reduction, ammonium oxidation, or methane oxidation suggests that the independent lateral transfer of anoxic pathway genes to eukaryotes is not a common occurrence. Instead, different lineages of eukaryotic anaerobes use distinct enzyme combinations selected from a limited core inventory of fermentative pathways. Although a common origin of these pathways is speculative at this point, Müller et al. (2012) observes that there is no pattern of lineage specific acquisition, and it remains unclear why alternative anoxic strategies are not widely observed in eukaryotes.

REFERENCES

- Alam, K. Y., and Clark, D. P. (1989). Anaerobic fermentation balance of *Escherichia coli* as observed by in vivo nuclear magnetic resonance spectroscopy. *J. Bacteriol.* 171, 6213–6217.
- Atteia, A., Adrait, A., Brugière, S., Tardif, M., van Lis, R., Deusch, O., et al. (2009). A proteomic survey of *Chlamydomonas reinhardtii* mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α proteobacterial mitochondrial ancestor. *Mol. Biol. Evol.* 26, 1533–1548.
- Atteia, A., van Lis, R., Gelius-Dietrich, G., Adrait, A., Garin, J., Joyard, J.,

et al. (2006). Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in *Chlamydomonas* mitochondria. *J. Biol. Chem.* 281, 9909– 9918.

- Atteia, A., van Lis, R., Tielens, A. G. M., and Martin, W. F. (2013). Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. *Biochim. Biophys. Acta* 1827, 210–223.
- Avison, M. B., Horton, R. E., Walsh, T. R., and Bennett, P. M. (2001). *Escherichia coli* CreBC is a global regulator of gene expression that responds to growth in minimal media. J. Biol. Chem. 276, 26955– 26961.

CONCLUSION

Chlamydomonas is a metabolically versatile organism that can perform photosynthetic CO₂ fixation, aerobic respiration, and anaerobic fermentation. This alga has served as a model system to examine many aspects of photosynthetic metabolism and recently has been used in studies of anaerobic metabolism; these latter studies have shown that Chlamvdomonas contains a large and complex repertoire of anaerobic enzymes that are distributed among the different compartments of the cell. Initial characterizations have demonstrated that Chlamydomonas has flexible, mixed-acid fermentation, with features common to bacterial-, plant-, and yeast-type fermentation. Many pathways and enzymes associated with fermentation metabolisms in this alga are just being defined, and there is almost nothing known about the mechanisms by which these pathways are regulated and the trafficking of fermentation products among the different compartments in the cell. In general, photosynthetic algae appear to have a broad inventory of fermentative enzymes and, based on evidence discussed in this review, it appears that anaerobic respiration among eukaryotic algae is comparatively rare while anaerobic fermentation is widespread. Most enzymes for fermentative metabolism in the algae, often inferred from genomic and metabolic studies, have not been characterized biochemically. Expression patterns of genes encoding these enzymes and the biochemical properties of these enzymes and pathways need further characterization in a broader spectrum of algal systems. In addition, the diversity of end products that the various algae can synthesize during anaerobic fermentation is still mostly unknown. This information will be critical for developing a clear understanding of the metabolic diversity both within and among the different algal groups and the ways in which fermentation pathways have evolved and are shaped by environmental conditions. Finally, fermentation metabolism in the algae appears to represent a significant ecological component of carbon flux in soils (and sediments) that has a strong impact on its content of organic acids, alcohols, and H₂; more focus on fermentation in the future is likely to unmask a relatively unexplored aspect of carbon cycling in the environment.

ACKNOWLEDGMENT

The work reported here was supported by the Department of Energy, Grant No. DE-FG02-12ER16338.

- Bailey-Serres, J., and Chang, R. (2005). Sensing and signalling in response to oxygen deprivation in plant cells and other organisms. *Ann. Bot.* 96, 507–518.
- Bailey-Serres, J., Fukao, T., Gibbs, D. J., Holdsworth, M. J., Lee, S. C., Licausi, F., et al. (2012). Making sense of low oxygen sensing. *Trends Plant Sci.* 17, 129–123.
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. *Annu. Rev. Plant Biol.* 59, 313–339.
- Ball, S. (1998). "Regulation of starch biosynthesis," in The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas,

- Vol. 7, eds J. D. Rochaix, M. Goldschmiidt-Clermont, and S. Merchant (Dordrecht: Kluwer Academic Publishers), 549–567.
- Ballantyne, J. S. (2004). Mitochondria: aerobic and anaerobic design – lessons from molluscs and fishes. *Comp. Biochem. Physiol. B Biochem. Mol. Biol.* 139, 461–467.
- Beh, M., Strauss, G., Huber, R., Stetter, K. O., and Fuchs, G. (1993). Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol. 160, 306–311.

- Belaich, A., and Belaich, J. P. (1976). Microcalorimetric study of the anaerobic growth of *Escherichia coli*: growth thermograms in a synthetic medium. *J. Bacteriol.* 125, 14–18.
- Ben-Amotz, A. (1975). Adaptation of the unicellular alga *Dunaliella parva* to a saline environment. *J. Phycol.* 11, 50–55.
- Benemann, J. R., Berenson, J. A., Kaplan, N. O., and Kamen, M. D. (1973). Hydrogen evolution by a chloroplastferredoxin-hydrogenase system. *Proc. Natl. Acad. Sci. U.S.A.* 70, 2317–2320.
- Boxma, B., Voncken, F., Jannink, S., Van Alen, T., Akhmanova, A., Van Weelde, S. V. H., et al. (2004). The anaerobic chytridiomycete fungus *Piromyces* sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. *Mol. Microbiol.* 51, 1389–1399.
- Brocker, C., Vasiliou, M., Carpenter, S., Carpenter, C., Zhang, Y., Wang, X., et al. (2012). Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. *Planta* 237, 189–210.
- Brown, T. D. K., Jones-Mortimer, M. C., and Kornberg, H. L. (1977). The enzymic interconversion of acetate and acetyl-coenzyme A in *Escherichia coli. J. Gen. Microbiol.* 102, 327–336.
- Buchanan, B. B., and Arnon, D. I. (1990). A reverse KREBS cycle in photosynthesis: consensus at last. *Photosynth. Res.* 24, 47–53.
- Bunch, P. K., Mat-Jan, F., Lee, N., and Clark, D. P. (1997). The ldhA gene encoding the fermentative lactate dehydrogenase of *Escherichia coli. Microbiology* 143, 187–195.
- Burgess, S. J., Tredwell, G., Molnar, A., Bundy, J. G., and Nixon, P. J. (2012). Artificial microRNA-mediated knockdown of pyruvate formate lyase (PFL1) provides evidence for an active 3hydroxybutyrate production pathway in the green alga *Chlamydomonas reinhardtii. J. Biotechnol.* 162, 57–66.
- Burnett, L. E. (1997). The challenges of living in hypoxic and hypercapnic aquatic environments. *Am. Zool.* 37, 633–640.
- Catalanotti, C., Dubini, A., Subramanian, V., Yang, W., Magneschi, L., Mus, F., et al. (2012). Altered fermentative metabolism in *Chlamydomonas reinhardtii* mutants lacking pyruvate formate lyase and both pyruvate formate lyase and

alcohol dehydrogenase. *Plant Cell* 24, 692–707.

- Chang, D. E., Shin, S., Rhee, J. S., and Pan, J. G. (1999). Acetate metabolism in a *pta* mutant of *Escherichia coli* W3100: importance of maintaining acetyl coenzyme A flux for growth and survival. *J. Bacteriol.* 181, 6656– 6663.
- Charon, M. H., Volbeda, A., Chabrière, E., Pieulle, L., and Fontecilla-Camps, J. C. (1999). Structure and electron transfer mechanism of pyruvate: ferredoxin oxidoreductase. *Curr. Opin. Struct. Biol.* 9, 663–669.
- Chen, C., and Gibbs, M. (1992a). Coupling of carbon dioxide fixation to the oxyhydrogen reaction in the isolated chloroplast of *Chlamydomonas reinhardtii. Plant Physiol.* 100, 1361– 1365.
- Chen, C., and Gibbs, M. (1992b). Some enzymes and properties of the reductive carboxylic acid cycle are present in the green alga *Chlamydomonas reinhardtii* F-60. *Plant Physiol.* 98, 535–539.
- Chochois, V., Dauvillee, D., Beyly, A., Tolleter, D., Cuine, S., Timpano, H., et al. (2009). Hydrogen production in *Chlamydomonas*: photosystem IIdependent and -independent pathways differ in their requirement for starch metabolism. *Plant Physiol.* 151, 631–640.
- Clark, D. P. (1989). The fermentation pathways of *Escherichia coli. FEMS Microbiol. Rev.* 63, 223–234.
- Cournac, L., Redding, K., Ravenel, J., Rumeau, D., Josse, E. M., Kuntz, M., et al. (2000). Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J. Biol. Chem. 275, 17256– 17262.
- Danovaro, R., Dell'Anno, A., Pusceddu, A., Gambi, C., Heiner, I., and Kristensen, R. M. (2010). The first metazoa living in permanently anoxic conditions. *BMC Biol.* 8:30. doi: 10.1186/1741-7007-8-30
- Dauvillee, D., Colleoni, C., Mouille, G., Buleon, A., Gallant, D. J., Bouchet, B., et al. (2001a). Two loci control phytoglycogen production in the monocellular green alga *Chlamydomonas reinhardtii. Plant Physiol.* 125, 1710– 1722.
- Dauvillee, D., Colleoni, C., Mouille, G., Morell, M. K., d'Hulst, C., Wattebled, F., et al. (2001b). Biochemical characterization of wild-type and mutant isoamylases of *Chlamydomonas reinhardtii*

supports a function of the multimeric enzyme organization in amylopectin maturation. *Plant Physiol.* 125, 1723–1731.

- Dent, R. M., Haglund, C. M., Chin, B. L., Kobayashi, M. C., and Niyogi, K. K. (2005). Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of *Chlamydomonas reinhardtii. Plant Physiol.* 137, 545–556.
- Dien, B. S., Cotta, M. A., and Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production: current status. *Appl. Microbiol. Biotechnol.* 63, 258–266.
- Dittrich, C. R., Bennett, G. N., and San, K. Y. (2005). Characterization of the acetate-producing pathways in *Escherichia coli. Biotechnol. Prog.* 21, 1062–1067.
- Dubini, A., Mus, F., Seibert, M., Grossman, A. R., and Posewitz, M. C. (2009). Flexibility in anaerobic metabolism as revealed in a mutant of *Chlamydomonas reinhardtii* lacking hydrogenase activity. *J. Biol. Chem.* 284, 7201–7213.
- Edwards, M. R., Gilroy, F. V., Jimenez, B. M., and O'Sullivan, W. J. (1989). Alanine is a major end product of metabolism by *Giardia lamblia*: a proton nuclear magnetic resonance study. *Mol. Biochem. Parasitol.* 37, 19–26.
- Evans, M. C., Buchanan, B. B., and Arnon, D. I. (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. *Proc. Natl. Acad. Sci. U.S.A.* 55, 928–934.
- Fukuda, W., Ismail, Y. S., Fukui, T., Atomi, H., and Imanaka, T. (2005). Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon *Thermococcus kodakaraensis* KOD1. *Archaea* 1, 293–301.
- Gaffron, H. (1944). Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. *Biol. Rev. Cambridge Philos. Soc.* 19, 1–20.
- Gaffron, H., and Rubin, J. (1942). Fermentative and photochemical production of hydrogen in algae. *J. Gen. Physiol.* 2, 219–240.
- Gfeller, R. P., and Gibbs, M. (1984). Fermentative metabolism of *Chlamydomonas reinhardtii*: I. Analysis of fermentative products from starch in dark and light. *Plant Physiol.* 75, 212–218.
- Gfeller, R. P., and Gibbs, M. (1985). Fermentative metabolism of *Chlamydomonas reinhardtii*: II. Role of plastoquinone. *Plant Physiol.* 77, 509–511.

- Ghirardi, M. L., Maness, P. C., and Seibert, M. (2008). "Photobiological methods of renewable hydrogen production," in *Solar Generation of Hydrogen*, eds K. Rajeshwar, R. McConnell, and S. Licht (New York, NY: Springer), 229–271.
- Ghirardi, M. L., Posewitz, M. C., Maness, P. C., Dubini, A., Yu, J., and Seibert, M. (2007). Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. *Annu. Rev. Plant. Biol.* 58, 71–91.
- Ghirardi, M. L., Togasaki, R. K., and Seibert, M. (1997). Oxygen sensitivity of algal H₂-production. *Appl. Biochem. Biotechnol.* 63, 141–151.
- Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., et al. (2000). Microalgae: a green source of renewable H₂. *Trends Biotechnol.* 18, 506–511.
- Gibbs, J., and Greenway, H. (2003). Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. *Funct. Plant Biol.* 30, 1–47.
- Gibbs, M., Gfeller, R. P., and Chen, C. (1986). Fermentative metabolism of *Chlamydomonas reinhardtii*: III. Photoassimilation of acetate. *Plant Physiol.* 82, 160–166.
- Godman, J. E., Molnar, A., Baulcombe, D. C., and Balk, J. (2010). RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga *Chlamydomonas reinhardtii. Biochem J.* 431, 345–351.
- Gonzalez-Ballester, D., Pootakham, W., Mus, F., Yang, W., Catalanotti, C., Magneschi, L., et al. (2011). Reverse genetics in *Chlamydomonas*: a platform for isolating insertional mutants. *Plant Methods* 7, 24.
- Gottschalk, G. (1985). *Bacterial Metabolism*, 2nd Edn. New York: Springer-Verlag.
- Gray, C. T., and Gest, H. (1965). Biological formation of molecular hydrogen. *Science*. 148, 186–192.
- Greenbaum, E. (1982). Photosynthetic hydrogen and oxygen production: kinetic studies. *Science* 215, 291–293.
- Grieshaber, M. K., Hardewig, I., Kreutzer, U., and Portner, H. O. (1994). Physiological and metabolic responses to hypoxia in invertebrates. *Rev. Physiol. Biochem. Pharmacol.* 125, 43–147.

- Grossman, A. R., Catalanotti, C., Yang, W., Dubini, A., Magneschi, L., Subramanian, V., et al. (2011). Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga *Chlamydomonas reinhardtii. New Phytol.* 190, 279–288.
- Grossman, A. R., Croft, M., Gladyshev, V. N., Merchant, S. S., Posewitz, M. C., Prochnik, S., et al. (2007). Novel metabolism in *Chlamydomonas* through the lens of genomics. *Curr. Opin. Plant. Biol.* 10, 190–119.
- Gupta, S., and Clark, D. P. (1989). Derivatives of *Escherichia coli* lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. *J. Bacteriol.* 171, 3650–3655.
- Hahm, D. H., Pan, J. G., and Rhee, J. S. (1994). Characterization and evaluation of a pta(phosphotransacetylase) negative mutant of *Escherichia coli* HZB101 as a production host of foreign lipase. *Appl. Microbiol. Biotechnol.* 42, 100–107.
- Happe, T., Mosler, B., and Naber, J. D. (1994). Induction, localization and metal content of hydrogenase in the green alga *Chlamydomonas reinhardtii. Eur. J. Biochem.* 222, 769–774.
- Happe, T., and Naber, J. D. (1993). Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga *Chlamydomonas reinhardtii. Eur. J. Biochem.* 214, 475–481.
- Hemschemeier, A., and Happe, T. (2005). The exceptional photofermentative hydrogen metabolism of the green alga *Chlamydomonas reinhardtii. Biochem. Soc. Trans.* 33, 39–41.
- Hemschemeier, A., Jacobs, J., and Happe, T. (2008). Biochemical and physiological characterization of the pyruvate formate-lyase PFL1 of *Chlamydomonas reinhardtii*, a typically bacterial enzyme in a eukaryotic alga. *Eukaryot. Cell* 7, 518–526.
- Hoffmeister, M., Piotrowski, M., Nowitzki, U., and Martin, W. (2005). Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from *Euglena gracilis* defines a new family of enzymes involved in lipid synthesis. *J. Biol. Chem.* 280, 4329–4338.
- Inui, H., Miyatake, K., Nakano, Y., and Kitaoka, S. (1982). Wax ester fermentation in *Euglena gracilis. FEBS Lett.* 150, 89–93.

- Jewson, D. H., Lowry, S. F., and Bowen, R. (2006). Co-existence and survival of diatoms on sand grains. *Eur. J. Phycol.* 41, 131–146.
- Kakuda, H., Hosono, K., Shiroishi, K., and Ichihara, S. (1994). Identification and characterization of the *ackA* (acetate kinase A)-*pta* (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of *Escherichia coli. J. Biochem.* 116, 916–922.
- Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., and Stief, P. (2011). Diatoms respire nitrate to survive dark and anoxic conditions. *Proc. Natl. Acad. Sci. U.S.A.* 14, 5649–5654.
- Kessler, E. (1974). "Hydrogenase, photoreduction and anaerobic growth," in Algal Physiology and Biochemistry, ed. W. D. P. Steward (Berkeley: University of California Press/Blackwell Scientific Publications Ltd), 456–473.
- Kirch, H. H., Bartels, D., Wei, Y., Schnable, P. S., and Wood, A. J. (2004). The ALDH gene superfamily of *Arabidopsis*. *Trends Plant Sci.* 9, 8.
- Kirch, H. H., Schlingensiepen, S., Kotchoni S, Sunkar, R., and Bartels, D. (2005). Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in *Arabidopsis thaliana. Plant Mol. Biol.* 57, 315–332.
- Klein, U., and Betz, A. (1978). Fermentative metabolism of hydrogen-evolving *Chlamydomonas moewusii. Plant Physiol.* 61, 953–956.
- Kosourov, S., Patrusheva, E., Ghirardi, M. L., Seibert, M., and Tsygankov, A. (2007). A comparison of hydrogen photoproduction by sulfur-deprived *Chlamydomonas reinhardtii* under different growth conditions. J. Biotechnol. 128, 776–787.
- Kosourov, S., Seibert, M., and Ghirardi, M. L. (2003). Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H₂-producing *Chlamydomonas reinhardtii* cultures. *Plant Cell Physiol.* 44, 146–155.
- Kreuzberg, K. (1984). Starch fermentation via formate producing pathway in *Chlamydomonas reinhardtii*, *Chlorogonium elongatum* and *Chlorella fusca. Physiol. Plant.* 61, 87–94.
- Kreuzberg, K., Klöck, G., and Grobheiser, D. (1987). Subcellular distribution of pyruvate-degrading

enzymes in *Chlamydomonas reinhardtii* studied by an improved protoplast fractionation procedure. *Physiol. Plant.* 69, 481–488.

- Lilly, J. W., Maul, J. E., and Stern, D. B. (2002). The *Chlamy-domonas reinhardtii* organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli. *Plant Cell* 14, 2681–2706.
- Lindmark, D. G., and Müller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate *Tritrichomonas foetus*, and its role in pyruvate metabolism. *J. Biol. Chem.* 248, 7724–7728.
- Lomstein, E., Jensen, M. H., and Sørensen, J. (1990). Intracellular NH4+ and NO3- pools associated with deposited phytoplankton in a marine sediment (Aarhus Bight, Denmark). *Mar. Ecol. Prog. Ser.* 61, 97–105.
- Magneschi, L., Catalanotti, C., Subramanian, V., Dubini, A., Yang, W., Mus, F., et al. (2012). A mutant in the ADH1 gene of *Chlamydomonas reinhardtii* elicits metabolic restructuring during anaerobiosis. *Plant Physiol.* 158, 1293–1305.
- Maione, T. E., and Gibbs, M. (1986a). Association of the chloroplastic respiratory and photosynthetic electron transport chains of *Chlamydomonas reinhardii* with photoreduction and the oxyhydrogen reaction. *Plant Physiol.* 80, 364–368.
- Maione, T. E., and Gibbs, M. (1986b). Hydrogenase-mediated activities in isolated chloroplasts of *Chlamydomonas reinhardii. Plant Physiol.* 80, 360–363.
- Martin, W. (2010). Evolutionary origins of metabolic compartmentation in eukaryotes. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 365, 847–855.
- Mat-Jan, F., Alam, K. Y., and Clark, D. P. (1989). Mutants of *Escherichia coli* deficient in the fermentative lactate dehydrogenase. *J. Bacteriol.* 171, 342–348.
- Maul, J. E., Lilly, J. W., Cui, L., de Pamphilis, C. W., Miller, W., Harris, E. H., et al. (2002). The *Chlamydomonas reinhardtii* plastid chromosome: islands of genes in a sea of repeats. *Plant Cell* 14, 2659–2679.
- Melis, A., and Happe, T. (2001). Hydrogen production. Green algae as a source of energy. *Plant Physiol.* 127, 74–748.
- Melis, A., and Happe, T. (2004). Trails of green alga hydrogen research

- from Hans Gaffron to new frontiers. *Photosynth. Res.* 80, 401–409.

- Melis, A., Seibert, M., and Ghirardi, M. L. (2007). Hydrogen fuel production by transgenic microalgae. Adv. Exp. Med. Biol. 616, 110–121.
- Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., and Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga *Chlamydomonas reinhardtii. Plant Physiol.* 122, 127–136.
- Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., et al. (2007). The *Chlamydomonas* genome reveals the evolution of key animal and plant functions. *Science* 318, 245–250.
- Meuser, J. E., Ananyev, G., Wittig, L. E., Kosourov, S., Ghirardi, M. L., Seibert, M., et al. (2009). Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. *J. Biotechnol.* 142, 21–30.
- Meuser, J. E., Boyd, E. S., Ananyev, G., Karns, D., Radakovits, R., Narayana Murthy, U. M., et al. (2011). Evolutionary significance of an algal gene encoding an [FeFe]hydrogenase with F-domain homology and hydrogenase activity in *Chlorella variabilis* NC64A. *Planta* 234, 829–843.
- Meuser, J. E., D'Adamo, S., Jinkerson, R. E., Mus, F., Yang, W., Ghirardi, M. L., et al. (2012). Genetic disruption of both *Chlamydomonas reinhardtii* [FeFe]-hydrogenases: insight into the role of HYDA2 in H₂ production. *Biochem. Biophys. Res. Commun.* 417, 704–709.
- Miura, Y. (1995). Hydrogen production by biophotolysis based on marine microalgal photosynthesis. *Process Biochem.* 30, 1–7.
- Morozkina, E. V., and Kurakov, A. V. (2007). Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: a review. Appl. Biochem. Microbiol. 43, 607–613.
- Morsy, F. M. (2011). Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by *Chlamydomonas reinhardtii* and *Spirulina platensis*: two different organisms and two different mechanisms. *Photochem. Photobiol.* 87, 137–142.
- Mulder, D. W., Shepard, E. M., Meuser, J. E., Joshi, N., King, P. W., Posewitz, M. C., et al. (2011). Insights into

[FeFe]-hydrogenase structure, mechanism, and maturation. *Structure* 19, 1038–1052.

- Müller, M. (1993). The hydrogenosome. J. Gen. Microbiol. 139, 2879–2889.
- Müller, M. (1996). "Energy metabolism protists, of amitochondriate evolutionary puzzle," in an Christian Gottfried Ehrenberg-Festschrift anläßlich der 14. Wissenschaftlichen Jahrestagung der Deutschen Gesellschaft für Protozoologie. 9-11 Marz 1995 in Delitzsch (Sachsen), eds M. Schlegel and K. Hausmann (Leipzig: Leipziger Universitätsverlag), 63-76
- Müller, M. (2003). "Energy metabolism. Part 1: anaerobic protozoa," in *Molecular Medical Parasitology*, eds J. J. Marr, T. W. Nilsen, and R. W. Komuniecki (Amsterdam: Academic Press) 125–139.
- Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., et al. (2012). Biochemistry and evolution of anaerobic. Energy metabolism in eukaryotes. *Microbiol. Mol. Biol. Rev.* 76, 444.
- Mus, F., Cournac, L., Cardettini, V., Caruana, A., and Peltier, G. (2005). Inhibitor studies on non-photochemical plastoquinone reduction and H₂ photoproduction in *Chlamydomonas reinhardtii. Biochim. Biophys. Acta* 1708, 322–332.
- Mus, F., Dubini, A., Seibert, M., Posewitz, M. C., and Grossman, A. R. (2007). Anaerobic acclimation in *Chlamydomonas reinhardtii*: anoxic gene expression, hydrogenase induction, and metabolic pathways. *J. Biol. Chem.* 282, 25475–25486.
- Neidhardt, F. C., Ingraham, J. L., and Schaechter, M. (1990). *Physiology of the Bacterial Cell*. Sunderland, MA: Sinauer.
- Ohta, S., Miyamoto, K., and Miura, Y. (1987). Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. *Plant Physiol.* 83, 1022–1026.
- Peters, J. W., Lanzilotta, W. N., Lemon, B. J., and Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from *Clostridium pasteurianum* to 1.8 angstrom resolution. *Science* 282, 1853–1858.
- Philipps, G., Krawietz, D., Hemschemeier, A., and Happe, T. (2011).A pyruvate formate lyase-deficient *Chlamydomonas reinhardtii* strain

provides evidence for a link between fermentation and hydrogen production in green algae. *Plant J.* 66, 330–340.

- Pietrzak, S. M., and Saz, H. J. (1981). Succinate decarboxylation to propionate and the associated phosphorylation in *Fasciola hepatica* and *Spirometra mansonoides*. *Mol. Biochem. Parasitol.* 3, 61–70.
- Pootakham, W., Gonzalez-Ballester, D., and Grossman, A. R. (2010). Identification and regulation of plasma membrane sulfate transporters in *Chlamydomonas. Plant Physiol.* 153, 1653–1668.
- Posewitz, M. C., King, P. W., Smolinski, S. L., Zhang, L., Seibert, M., and Ghirardi, M. L. (2004). Discovery of two novel radical S-adenosyl methionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279, 25711–25720.
- Pronk, J. T., Steensmays, H. Y., and Van Dijkent, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607–1633.
- Ragsdale, S. W. (2003). Pyruvate ferredoxin oxidoreductase and its radical intermediate. *Chem. Rev.* 103, 2333–2346.
- Reeves, R. E. (1968). A new enzyme with the glycolytic function of pyruvate kinase. *J. Biol. Chem.* 243, 3202–3204.
- Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S. M., Op den Camp, H. J. M., et al. (2006). Evidence for complete denitrification in a benthic foraminifer. *Nature* 443, 93–96.
- Roberts, J. K. M., Chang, K., Webster, C., Callis, J., and Walbot, V. (1989). Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips. *Plant Physiol.* 89, 1275–1278.
- Rose, I. A., Grunberg-Manago, M., Korey, S. R., and Ochoa, S. (1954). Enzymatic phosphorylation of acetate. *J. Biol. Chem.* 211, 737– 756.
- Russell, G. K., and Gibbs, M. (1968). Evidence for the participation of the reductive pentose phosphate cycle in photoreduction and the oxyhydrogen reaction. *Plant Physiol.* 43, 649–652.
- Sawers, G., and Watson, G. (1998). A glycyl radical solution: oxygen-dependent interconversion of pyruvate

formate-lyase. Mol. Microbiol. 29, 945–954.

- Schauder, R., Widdel, F., and Fuchs, G. (1987). Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic *Desulfobacter hydrogenophilus. Arch. Microbiol.* 148, 218–225.
- Sweetlove, L. J., Beard, K. F., Nunes-Nesi, A., Fernie, A. R., and Ratcliffe, R. G. (2010). Not just a circle: flux modes in the plant TCA cycle. *Trends Plant Sci.* 15, 462–470.
- Takasaki, K., Shoun, H., Yamaguchi, M., Takeo, K., Nakamura, A., Hoshino, T., et al. (2004). Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis. J. Biol. Chem. 279, 12414–12420.
- Tarmy, E. M., and Kaplan, N. O. (1968). Kinetics of *Escherichia coli* B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation. *J. Biol. Chem.* 243, 2587–2596.
- Terashima, M., Specht, M., and Hippler, M. (2011). The chloroplast proteome: a survey from the *Chlamydomonas reinhardtii* perspective with a focus on distinctive features. *Curr. Genet.* 57, 151–168.
- Terashima, M., Specht, M., Naumann, B., and Hippler, M. (2010). Characterizing the anaerobic response of *Chlamydomonas reinhardtii* by quantitative proteomics. *Mol. Cell. Proteomics* 9, 1514–1532.
- Tielens, A. G. M., Rotte, C., van Hellemond, J. J., and Martin, W. (2002). Mitochondria as we don't know them. *Trends Biochem. Sci.* 27, 564–572.
- Tielens, A. G. M., and van Hellemond, J. (1998). The electron transport chain in anaerobically functioning eukaryotes. *Biochim. Biophys. Acta* 1365, 71–78.
- Tielens, A. G. M., and van Hellemond, J. J. (2009). Surprising variety in energy metabolism within Trypanosomatidae. *Trends Parasitol.* 25, 482–490.
- Tucci, S., Vacula, R., Krajcovic, J., Proksch, P., and Martin, W. (2010). Variability of wax ester fermentation in natural and bleached *Euglena gracilis* strains in response to oxygen and the elongase inhibitor flufenacet. J. Eukaryot. Microbiol. 57, 63–69.
- van den Thillart, G., van Berge-Henegouwen, M., and Kesbeke,

F. (1983). Anaerobic metabolism of goldfish, *Carassius auratus* (L.): ethanol and CO_2 excretion rates and anoxia tolerance at 20, 10 and 5°C. *Comp. Biochem. Physiol. A Comp. Physiol.* 76, 295–300.

- van Dijken, J. P., and Scheffers, W. A. (1986). Redox balances in the metabolism of sugars by yeasts. (NAD(H); NADP(H); glucose metabolism; xylose fermentation; ethanol; Crabtree effect; Custers effect). FEMS Microbiol. Rev. 32, 199–224.
- Vanlerberghe, G. C., Feil, R., and Turpin, D. H. (1990). Anaerobic metabolism in the N-limited green alga *Selenastrum minutum*: I. Regulation of carbon metabolism and succinate as a fermentation product. *Plant Physiol.* 94, 1116–1123.
- Vanlerberghe, G. C., Horsey, A. K., Weger, H. G., and Turpin, D. H. (1989). Anaerobic carbon metabolism by the tricarboxylic acid cycle: evidence for partial oxidative and reductive pathways during dark ammonium assimilation. *Plant Physiol.* 91, 1551–1557.
- Varenne, S., Casse, F., Chippanx, M., and Pascal, M. C. (1975). A mutant of *Escherichia coli* deficient in pyruvate formate lyase. *Mol. Gen. Genet.* 141, 181–184.
- van Warde, A., Van den Thillart, G., and Verhagen, M. (1993). "Ethanol formation and pH regulation in fish," in *Surviving Hypoxia*, eds P. W. Hochachka, P. L. Lutz, T. Sick, M. Rosenthal, and G. van den Thillart (Boca Raton: CRC Press), 157–170.
- Wang, Z. X., Zhuge, J., Fang, H., and Prior, B. A. (2001). Glycerol production by microbial fermentation: a review. *Biotechnol. Adv.* 19, 201–223.
- Wolfe, A. J. (2005). The acetate switch. *Microbiol. Mol. Biol. Rev.* 69, 12–50.
- Woods, S. A., Schwartzbach, S. D., and Guest, J. R. (1988). Two biochemically distinct classes of fumarase in *Escherichia coll. Biochim. Biophys. Acta* 954, 14–26.
- Yang, Y. T., Aristidou, A. A., San, K. Y., and Bennett, G. N. (1999). Metabolic flux analysis of *Escherichia coli* deficient in the acetate production pathway and expressing the *Bacillus subtilis* acetolactate synthase. *Metab. Eng.* 1, 26–34.
- Yoon, K. S., Hille, R., Hemann, C., and Tabita, F. R. (1999).

Rubredoxin from the green sulfur bacterium *Chlorobium tepidum* functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. *J. Biol. Chem.* 274, 29772–29778.

Zabawinski, C., Van Den Koornhuyse, N., D'Hulst, C., Schlichting, R., Giersch, C., Delrue, B., et al. (2001). Starchless mutants of *Chlamydomonas reinhardtii* lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J. Bacteriol. 183, 1069–1077.

Zhou, Z., Takaya, N., Sakairi, M. A. C., and Shoun, H. (2001). Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. Arch. Microbiol. 175, 19–25.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 March 2013; accepted: 02 May 2013; published online: 22 May 2013.

Citation: Catalanotti C, Yang W, Posewitz MC and Grossman AR (2013) Fermentation metabolism and its evolution in algae. Front. Plant Sci. 4:150. doi: 10.3389/fpls.2013.00150 This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Catalanotti, Yang, Posewitz and Grossman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any thirdparty graphics etc.

Sulfide as a soil phytotoxin—a review

Leon P. M. Lamers¹*, Laura L. Govers², Inge C. J. M. Janssen³, Jeroen J. M. Geurts⁴, Marlies E. W. Van der Welle⁵, Marieke M. Van Katwijk², Tjisse Van der Heide^{1,6}, Jan G. M. Roelofs¹ and Alfons J. P. Smolders 1,4

¹ Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands

² Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands

³ Peel and Maasvallei Regional Water Authority, Venlo, Netherlands

⁴ B-WARE Research Centre, Radboud University Nijmegen, Nijmegen, Netherlands

⁵ Roval HaskoningDHV Rotterdam Netherlands

⁶ Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, Netherlands

Edited by:

Pierdomenico Perata, Scuola Superiore Sant'Anna, Italy

Reviewed by:

Stanislav Kopriva, John Innes Centre, UK Marianne Holmer University of Southern Denmark, Denmark

*Correspondence:

Leon P. M. Lamers, Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands e-mail: I.lamers@science.ru.nl

In wetland soils and underwater sediments of marine, brackish and freshwater systems. the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance. It is concluded that sulfide is a potent phytotoxin, profoundly affecting plant fitness and ecosystem functioning in the full range of wetland types including coastal systems, and at several levels. Traditional toxicity testing including hydroponic approaches generally neglect rhizospheric effects, which makes it difficult to extrapolate results to real ecosystem processes. To explain the differential effects of sulfide at the different organizational levels, profound knowledge about the biogeochemical, plant physiological and ecological rhizosphere processes is vital. This information is even more important, as anthropogenic inputs of sulfur into freshwater ecosystems and organic loads into freshwater and marine systems are still much higher than natural levels, and are steeply increasing in Asia. In addition, higher temperatures as a result of global climate change may lead to higher sulfide production rates in shallow waters.

Keywords: global change, iron, microorganism, oxygen, plant, roots, sulfur, symbiosis

INTRODUCTION: ANAEROBIOSIS AND SOIL SULFUR TRANSFORMATIONS

Although sulfur (S) is one of the six macronutrients for plant growth and low availability of S may therefore limit primary production (Marschner, 1995; Leustek and Saito, 1999), the accumulation of reduced sulfur in sediments of aquatic systems and permanent or riparian wetlands (including estuarine and marine) generally causes physiological toxicity stress for the community involved, including its plants, animals and micro-organisms (Bagarinao, 1992). Unlike the first billion years of life on earth, when sulfide oxidation was an integral part of life generating energy, sulfide accumulation has become much less common as a result of biogenic oxygen production, and sulfide has become toxic to many organisms inhabiting the top layer of soils, including plants (Olsen, 2012). Atmospheric oxygen levels started to increase 2.5 billion years before present (BYBP), and reached levels above 15% since 0.6 BYBP. Oscillations in oxygen and reciprocal oscillations in sulfide levels may even have contributed to mass extinctions (Olsen, 2012).

During flooding and waterlogging of wetland soils, hydrogen sulfide (H₂S) is produced as a metabolic end product by prokaryotes that oxidize organic compounds using sulfate as a terminal electron acceptor. This group of dissimilatory sulfate reducers includes both Bacteria (e.g., Desulfovibrio, Desulfobacter) and Archaea (e.g., Archaeoglobus). If the sulfide produced cannot be sufficiently sequestered in the soil by metals such as iron, free (dissolved) sulfide will accumulate. Sulfide concentrations in sediment porewaters show a large range up to $15 \text{ mmol } L^{-1}$ in marine sediments (Bagarinao, 1992). The reduced sulfur compound acts as a potent phytotoxin (equally toxic as cyanide), by inhibiting the activity of cytochrome *c* oxidase in mitochondria, leading to a subsequent blocking of energy production, and by negatively affecting a range of other metal containing enzymes (Koch et al., 1990; Bagarinao, 1992; Raven and Scrimgeour, 1997). The chemical speciation of sulfide (H_2S , HS^- and S^{2-}) depends on soil pH (pK1 = 7.2; pK2 = 13.7 for freshwater). Although all forms seem to be equally toxic (Armstrong and Armstrong, 2005), the gaseous H₂S will normally prevail over both ionic forms in

freshwater systems as the pH of most anaerobic soils is buffered around 6–7 as a result of the HCO_3^- - CO_2 buffering mechanism, resulting in relative H₂S abundances of 95–60%. In marine systems, however, pH is often around 7.5, leading to a relative abundance of only 30% for H₂S, and 70% for HS⁻. As a result of the release of acidic compounds and oxygen from roots, pH in the rhizosphere may, however, be lower than in the bulk soil, and the proportion of H₂S consequently be higher.

In marine and brackish ecosystems, sulfate concentrations are 10 to 1000 times higher compared to freshwater systems (Marschner, 1995), stimulating sulfate reducers that play an imminent role in decomposition (Jørgensen, 1982) and concomitant sulfide production. Hence, the role of sulfide as a potential natural toxin in saline sediments has been well-established (Carlson and Forrest, 1982; Ingold and Havill, 1984; Webb and Mendelssohn, 1996; Raven and Scrimgeour, 1997; Koch and Erskine, 2001; Pedersen et al., 2004). Sulfide toxicity may also occur when levels and inputs of sulfur remain unchanged, but increased loading with organic matter boosts sulfate reduction rates by providing electron donors from its decomposition (Jørgensen, 1982; Armstrong and Armstrong, 2001; Ruiz-Halpern et al., 2008; Van der Heide et al., 2012). In many coastal systems worldwide, organic loading has strongly increased as a result of land use change in the catchment of rivers (Ver et al., 1999). In addition, increased inorganic nutrient loading (from rivers, runoff, urbanization, atmospheric deposition) fuels local organic matter production (e.g., Van Beusekom and De Jonge, 2002). This makes sulfide-related questions here even more urgent than in more pristine areas.

As a result of anthropogenic forcing, plants in freshwater wetlands and aquatic systems are facing much higher concentrations of sulfur at a global scale nowadays (Lamers et al., 1998). The emission of sulfur to the atmosphere and airborne inputs of anthropogenically-derived sulfur into freshwater wetlands have increased considerably over the last decades as a result of extensive mining for fossil fuels and associated combustion (Gorham, 1976; Schindler et al., 1980; Benkovitz et al., 1996; Schlesinger, 1997). Although S deposition has decreased in Europe and North America during the last decade as a result of effective legislation, rates are still much higher than natural background levels, and in Asia, South America and South Africa, S emission and deposition rates are still strongly increasing (Shah et al., 2000; Vallack et al., 2001). Moreover, sulfate loading of groundwater has increased due to aerobic oxidation of deposited sulfide minerals as a result of water table lowering for agriculture (Schuurkes et al., 1988; Heathwaite, 1990; Lamers et al., 1998), and from anaerobic oxidation of reduced sulfur compounds by chemolithoautotrophic coupling of sulfide oxidation and nitrate reduction in nitrateloaded catchments and wetlands (Haaijer et al., 2006; Burgin and Hamilton, 2008; Smolders et al., 2010). As a result of the discharge of this groundwater and run-off from pastures and shores suffering from drought, surface waters have become richer in sulfate too. The S in terrestrial soil and subsoil originates in part from increased anthropogenic airborne inputs (S legacy), but also from natural marine and estuarine deposits in the Quaternary or in earlier periods. In addition, recent hydrological changes such as increased inputs of riverine water to compensate for

water shortage in both agricultural areas and nature reserves (Roelofs, 1991; Smolders and Roelofs, 1993; Lamers et al., 1998), as well as the intrusion of seawater (salinization; Fogli et al., 2002; Chambers and Pederson, 2006) have contributed to increased S inputs into freshwater wetlands.

DIFFERENTIAL SENSITIVITY THRESHOLDS FOR SULFIDE

Research on sulfide toxicity and physiological stress originally focused on rice (*Oryza sativa*) as a crop plant in relation to acid sulfate soils that accumulate high concentrations of sulfide during anaerobiosis (Okajima and Takagi, 1955; Vámos, 1959; Hollis et al., 1972). Seedlings appeared to be particularly sensitive to sulfide (Joshi et al., 1975). Since then, sulfide toxicity has also been reported for many other wetland species in both freshwater and saline systems, with a wide range of threshold levels for different species.

In Table 1, a literature overview is given for sulfide toxicity of different plant species, grouped by ecosystem type, showing the differential threshold levels and ecophysiological responses to sulfide. As high levels of free sulfide are only present in wetland soils (including aquatic systems), dryland species are not represented in this table. In addition, no data are available on phytotoxic effects for macroalgae and phytoplankton. As phytoplankton only occurs in the photic zone of the water column that contains oxygen, sulfide toxicity is very unlikely to play an important role. Sulfide toxicity will be much less common for macroalgae than for vascular plants, because they only possess rhizoids and do not protrude into the anoxic sediment, but are often attached to substrates such as rock and coral. At low tide, however, sulfide may well accumulate under dense mats of macroalgae. As an example, anoxic conditions and high ammonium levels were measured in Cladophora mats, hampering seagrass growth (Hauxwell et al., 2001). Although sulfide was not measured in this study, it can be expected to have led to sulfide accumulation as well, as shown for Ulva mats in coastal lakes (Viaroli et al., 1996). Direct effects of sulfide on macroalgae have, as far as we know, not been tested yet. Algal cover can, however, lead to increased sulfide toxicity to seagrasses (Holmer et al., 2011; Thomsen et al., 2012). Sulfide may only accumulate to high concentrations in the surface water if the water is anoxic and its oxidation is prevented, for instance by the cover of floating-leaved vascular plants such as Eicchornia crassipes, Pistia stratiotes, Lemna spp., and floating ferns such as Salvinia spp. and Azolla spp. Dense layers of these plants effectively block oxygen intrusion from the atmosphere (e.g., Van Kempen et al., 2012). Phytoplankton is lacking in this dark layer, due to photon deficiency.

As can be expected in sulfate-rich environments (particularly when they are permanently submerged), seagrass species are relatively tolerant to sulfide (thresholds generally 2000–6000 μ mol L⁻¹), although negative effects on growth rates have also been reported at levels of 200–500 μ mol L⁻¹, especially for small species (**Table 1**). The saltmarsh species *Spartina alterniflora* is also known to survive high concentrations of sulfide up to 8000 μ mol L⁻¹ (Lee, 1999; Van der Heide, unpubl. results), but lower concentrations may already impair its growth (King et al., 1982). For mangroves, *Rhizophora* seedlings appeared to be more tolerant than those of *Avicennia*, but adult trees of the latter

Table 1 | Overview of sulfide toxicity effects reported in marine, brackish and freshwater plants.

Ecotype Species	Concentration (μ mol L ⁻¹)	Observation	Method	References
SEAGRASS MEADOWS				
Halodule wrightii	2000	AD	Glucose add. to increase SO ₄ red.	Koch et al., 2007
Posidonia oceanica	>1800	AD	Glucose add. to increase SO ₄ red.	Frederiksen et al., 2008
Halophila ovalis	>150	AP, RP,	Raised T (25–30°C) in aq. exp.	Holmer et al., 2011
Posidonia oceanica	1500	AP, AD	Field Fe addition to lower HS ⁻	Marbà et al., 2007
Thalassia testudinum	>500	AD	Field observation	Borum et al., 2005
Thalassia testudinum	5500	AD	Glucose add. to increase SO ₄ red.	Koch et al., 2007
Thalassia testudinum	6000	AD (only high T and Sal.)	H ₂ S in hydroponic culture	Koch and Erskine, 2001
Thalassia testudinum	5000	AD	org. matter to increase SO ₄ red.	Ruiz-Halpern et al., 2008
Zostera marina	600/1000	NP (low/high light)	H ₂ S inject. microcosm sediment	Goodman et al., 1995
Zostera marina	>1800	No indication of AD	Glucose add. to increase SO ₄ red.	Frederiksen et al., 2008
Zostera noltii	>200	AP	Omission of <i>Loripes</i> bivalves	Van der Heide et al., 2012
Zostera noltii	>500	LE (from patches)	org. matter to increase SO ₄ red.	Govers et al. pers. observ.
Zostera marina	600	AP, AD	Raised T (18°C) in aq. exp.	Hoffle et al., 2011
SALT MARSHES		7.077.0		
Agrostis stolonifera	500	AP, NU	H_2S in hydroponic culture	Van Diggelen et al., 1987
Halimione portulacoides	500	AP, NU	H_2S in hydroponic culture	Van Diggelen et al., 1987
Salicomia dolichostachya	>500	AP	H_2S in hydroponic culture	Van Diggelen et al., 1987
Salicomia brachystachya	>500	AP	H_2S in hydroponic culture	Van Diggelen et al., 1987
Spartina alterniflora	1000	AP	Field observation	King et al., 1982
Spartina alterniflora	1130	AP, RD	H_2S in hydroponic culture	Koch and Mendelssohn, 1989
Spartina alterniflora	2000–3000	AP, RA, NU	H_2S in hydroponic culture H_2S in hydroponic culture	Koch et al., 1990
		AP, NA, NU AP		
Spartina alterniflora	8000	AP	Field observation	Lee, 1999 Ven Diggelen et el. 1097
Spartina anglica MANGROVES	500	Ar	H ₂ S in hydroponic culture	Van Diggelen et al., 1987
	E00 1000		LL Cipiest misrossom andiment	Makaa 1002
Avicennia marina (sl)	500-1000	AP, RP AP	H ₂ S inject. microcosm sediment Field observation	McKee, 1993
Avicennia marina Rhizophoro monglo (all	>4000			McKee, 1993
Rhizophora mangle (sl)	>1000	AP	H ₂ S inject. microcosm sediment	McKee, 1993
Rhizophora mangle FRESHWATER AQUATIC SY	>1000	AP	Field observation	МсКее, 1993
				Country at al. 2000
Ceratophyllum demersum	>500	AP	SO ₄ addition mesocosms	Geurts et al., 2009
Elodea nutallii	100	AP	SO ₄ addition enclosures	Van der Welle et al., 2007a
Elodea nutallii	150-500	AP	SO ₄ addition mesocosms	Geurts et al., 2009
Hydrilla verticulata	100	NP	H ₂ S in root hydroponic culture	Wu et al., 2009
Nitella flexilis	50	AP	H ₂ S injection aquarium sediment	Van der Welle et al., 2006
Potamogeton compressus	150-500	AP	SO ₄ addition mesocosms	Geurts et al., 2009
Statiotes aloides	10–100	RD	H ₂ S in root hydroponic culture	Smolders and Roelofs, 1996
Stratiotes aloides	100–600	AP	SO ₄ addition enclosures	Van der Welle et al., 2007a
Stratiotes aloides	500	AP	SO ₄ addition mesocosms	Geurts et al., 2009
FRESH WATER WETLANDS				
Calamagrostis epigejos (sl)	30–50	AP	Natural production in microcosm	Grootjans et al., 1997
Calla palustris	150	AP	SO ₄ addition mesocosms	Geurts et al., 2009
Caltha palustris	170	AP, Y	H ₂ S injection microcosm sed.	Van der Welle et al., 2007b
Carex disticha	10–20	AP	SO ₄ addition mesocosms	Lamers et al., 1998
Carex disticha	25	LC, RD	H_2S injection microcosm sed.	Lamers, 2001
Carex nigra	10–20	AP	SO ₄ addition mesocosms	Lamers et al., 1998
Cladium jamaicense	220/690/920	LE/NP/AD, RD	H ₂ S in hydroponic culture	Li et al., 2009
Equisetum fluviatile	50/500	AP (unfertilized/fertilized)	SO ₄ addition mesocosms	Geurts et al., 2009
Juncus acutiflorus	25/250	RD/AP	H ₂ S injection microcosm sed.	Lamers, 2001
Juncus alpinoarticulatus (sl)	30–50	AP	Natural production in microcosm	Grootjans et al., 1997
Juncus effusus	500	AP	SO ₄ addition mesocosms	Geurts et al., 2009

(Continued)

Ecotype	Concentration	Observation	Method	References
Species	(μmol L ^{_1})			
Menyanthes trifoliata	150/>150	AP (unfertilized/fertilized)	SO ₄ addition mesocosms	Geurts et al., 2009
Menyanthes trifoliata	>235	AP	Field observation	Armstrong and Boatman, 1967
Panicum hemitomon	630	AP, RD	H ₂ S in hydroponic culture	Koch and Mendelssohn, 1989
Panicum hemitomon	1000	AP, RA, NU	H ₂ S in hydroponic culture	Koch et al., 1990
Phragmites australis	1400	AD, SR, B	H ₂ S in hydroponic culture	Armstrong et al., 1996
Phragmites australis	1500	AP	SO ₄ + C addition mesocosms	Howes et al., 2005
Phragmites australis	400	AP	Field observation	Chambers, 1997
Oryza sativa	170	RP, B, RO, NU(Fe), WU	H ₂ S in anaerobic agar	Armstrong and Armstrong, 2005
Oryza sativa	160–310	AP	H ₂ S in hydroponic culture	Tanaka et al., 1968
Oryza sativa	30	AP	H ₂ S in hydroponic culture	Hollis et al., 1972
<i>Oryza sativa</i> (sl)	10–60	NU (acute), RO	H ₂ S in hydroponic culture	Joshi et al., 1975
Ranunculus lingua	500	AP	SO ₄ addition mesocosms	Geurts et al., 2009
Sphagnum cuspidatum	60	AD	SO ₄ addition mesocosms	Lamers et al., 1999
Thelypteris palustris	150	AP	SO ₄ addition mesocosms	Geurts et al., 2009
Typha domingensis	920	LE, NP, AD, RD	H ₂ S in hydroponic culture	Li et al., 2009

Concentrations are in μ mol L⁻¹, (sl), seedling. Observations: AP, decreased aboveground productivity; AD, aboveground die-off; B, blockage of gas pathways and vascular blockage; LC, leaf chlorosis; LE, decreased leaf elongation rate; NP, decreased net photosynthetic rate; NU, decreased nutrient uptake; RD, root (and rhizome) die-off; RO, decreased radial oxygen loss; RA, decreased root ADH activity; RP, decreased belowground production; SR, stunted roots; WU, reduced water uptake; Y, decreased photosynthetic yield (PAM fluorescence).

species tolerate much higher concentrations. The high tolerance of saltmarsh and mangrove species makes sense, as they grow on soils that are rich in both organic electron donors (derived from decomposition of the large flux of litter) and the alternative terminal electron acceptor sulfate. This may also suggest that early-successional species (including a number of seagrass species) may be more sensitive to sulfide than late-successional species, as the latter generally live on sites with higher organic matter accumulation in the sediment. In addition, different ecotypes of the same species can be expected to exist due to strong selection, each adapted to their specific habitat.

Most of the larger freshwater helophyte species such as *Phragmites australis* and *Typha domingensis* also show tolerance to relatively high sulfide concentrations (500–1500 μ mol L⁻¹; Armstrong et al., 1996; Chambers, 1997; Armstrong and Armstrong, 2001; Adema et al., 2003). Sulfur amendment in order to try to control the unbridled expansion of *P. australis* in the USA at the expense of other species, led to sulfide concentrations of 1500 μ mol L⁻¹, a level that this species demonstrated survival even at higher salinities (Howes et al., 2005).

In contrast, smaller wetland species and aquatic macrophytes show much lower toxicity thresholds between 10 and 250 μ mol L⁻¹ (**Table 1**). Some rootless aquatic macrophytes, growing on highly organic soils, such as *Ceratophyllum demersum*, tolerate relatively high concentrations up to 500 μ mol L⁻¹. *Oryza sativa* shows intermediate levels of tolerance, although the actual level differs among varieties.

EFFECTS OF EXPERIMENTAL SET-UP AND DIFFERENT FIELD MEASUREMENTS

Concentrations of dissolved sulfide can be measured colorimetrically, with S^{2-} selective electrodes in immediately fixed and

alkalized porewater, *in situ* using micro-electrodes, or by gas chromatography analysis after gas stripping of acidified porewater. In addition, sulfide-selective optodes, which neither need additional reagents nor consume sulfide, have been developed for direct sulfide measurement (Choi, 1998). As sulfide is easily oxidized and correct sulfide measurements depends on accurate pH measurements for a number of methods, the analytical methods used may show differences in accuracy.

The interpretation of results from literature is strongly confounded by the myriad of methods used in the field and in experiments. For field observations, low sulfide concentrations may also indicate high tolerance to microbial sulfide production due to high oxidation rates supported by oxygen supply from roots. For laboratory tests, the experimental set-up may therefore well-interfere with toxicity levels and attendant effects. As we will discuss, the ability or inability of plants to generate an oxidized rhizosphere strongly determines their sensitivity to reduced phytotoxic compounds including ammonium (NH_4^+) , ferrous iron (Fe²⁺) and H₂S, (Laan et al., 1989, 1991; Lamers et al., 2012). Therefore, great care has to be taken in the interpretation of hydroponic experiments to the actual effect of the suggested stress conditions under natural conditions. To test the potential toxicity of reduced compounds and separate ecophysiological responses from those related to direct anoxia effects, we therefore stress the importance of an experimental set-up using a realistic substrate in which plants are able to potentially realize a protective rhizospheric environment to cope with both primary (anoxia-related) and secondary (toxicity-related) stress during anaerobiosis. Pezeshki (2001), in his review on wetland plant responses to soil flooding, also pleaded for research differentiating between these effects.

FIGURE 1 | Example of an experimental set-up using rhizotrons showing inflow, outflow, and the tubes of samplers to collect soil porewater (photo: L. Lamers).

On the other hand, the type of soil used in other types of setup will be very important for the outcome, as this determines the extent of the oxygen sink and diffusion rates. This means that the use of artificial solid substrates, like gels, may also generate experimental artifacts. We therefore suggest using a different approach as an experimental set-up, which includes more realistic edaphic conditions and rhizospheric effects (**Figure 1**). The actual optimal set-up will depend on the particular questions involved (see, e.g., Van der Heide et al., 2012).

SULFUR UPTAKE AND INTERNAL DETOXIFICATION

Sulfur concentrations in shoots of terrestrial plants are, on average 30 μ mol g⁻¹ (Gruhlke and Slusarenko, 2012), but values may be higher for freshwater wetland plants $(35-150 \,\mu mol g^{-1}, Van)$ der Welle et al., 2007a,b) and marine plants (100–400 μ mol g⁻¹; Holmer and Kendrick, 2013), most probably related to the level of S availability in the different environments, but possibly also as a result of the presence of sulfides in the soil. Sulfate is actively taken up by roots and distributed in the plant, with transport through membranes by proton-sulfate cotransporters driven by a proton gradient (Trust and Fry, 1992; Leustek and Saito, 1999). Studies on the abundance ratios of natural S isotopes in Spartina alterniflora revealed that most of the sulfate in these marsh plants was derived from sulfide that had partly been oxidized within the plant (Carlson and Forrest, 1982). For seagrasses including Zostera marina and Thalassia testudinum, isotopic analysis revealed that 50-96% of the S in plants was derived from different sediment sulfides (Frederiksen et al., 2006; Holmer et al., 2009), even when dissolved sulfide concentrations were low (Holmer and Kendrick, 2013). In small seagrass species, sulfur easily enters the roots, and is transported through rhizomes and stems into the leaves, but in taller species its transport seems to be more limited (Holmer and Kendrick, 2013). It is therefore quite probable that in addition to sulfide oxidation in the rhizosphere and subsequent sulfate uptake, gaseous H₂S is transported to the leaves through the aerenchyma, especially during the night (Pedersen et al., 2004; Holmer and Kendrick, 2013). As the uptake of sulfate after rhizospheric and internal sulfide oxidation generates similar δ^{34} S values in plants as direct sulfide uptake, it may be difficult to differentiate between both uptake pathways (Trust and Fry, 1992).

Studies related to S uptake and metabolism have generally been conducted with terrestrial plants species, and differences between sulfide and sulfate uptake and their metabolic pathways are not entirely clear yet. The internal toxicity of sulfide will depend on the species' ability to rapidly metabolize this compound to thiols (organosulfur compound, chemical formula R-SH) such as the amino acids cysteine and methionine and, subsequently, glutathione which is the most abundant thiol in plants (Trust and Fry, 1992; Leustek and Saito, 1999; Hawkesford and De Kok, 2006; Nakamura, 2009). Next, S may be built in a range of different plant tissues. A small number of estuarine plant species, including Spartina spp. and Wollastonia biflora also produce dimethylsulfoniopropionate (DMSP) from methionine, like a number of marine algal species (Stefels, 2000). This compound may act as a constitutive osmoticum, although its concentration in Spartina spp. does not respond to changes in salinity. Alternatively, the production may also provide a mechanism to keep cysteine and methionine levels sufficiently low, and redistribute nitrogen to other amino acids (Stefels, 2000; Otte et al., 2004). In addition, a number of secondary metabolites contain sulfur, including antibiotic substances and odorous compounds (giving flavor to garlic, onions and cabbage) (Leustek and Saito, 1999). The capacity to internally detoxify sulfide is therefore related to cysteine synthesis, catalyzed by the enzyme O-acetylserine(thiol)lyase (OAS-TL) that is present in cytosol, plastids and mitochondria, and an as yet unknown other detoxifying mitochondrial mechanism (Birke et al., 2012). Lee (1999) even hypothesized that low sulfide concentrations might be used by plants to generate energy in mitochondria, similar to the process in microbes and animals. In addition, there is a range of reactive sulfur species next to thiols, such as disulfide-S-oxides (RS(O)_xSR), sulfenic acids (RSOH), and thiyl radicals (RS) (Gruhlke and Slusarenko, 2012). Although it seems likely that plant hemoglobin (Hb; Igamberdiev et al., 2005) and other metalloproteins may be related to internal sulfide detoxification, similar to Hb in vertebrates and invertebrates (Beauchamp et al., 1984; Weber and Vinogradow, 2001), this is yet to be studied. Next to the metabolic conversion of sulfide, the emission of sulfide from plants, as shown during the exposition to high sulfide concentrations (roots) or SO₂ concentrations (shoots) (Trust and Fry, 1992), may offer protection. For Spartina alterniflora it has been shown that leaves show substantial loss of DMSP during high tide (Pakulski and Kiene, 1992), which provides a mechanism to dissipate excess S. Additionally, the loss of dimethylsulfide (DMS), a volatile metabolite of DMSP, may also offer protection against high S accumulation in a number of estuarine plants (Stefels, 2000).

EFFECTS ON NUTRIENT UPTAKE

Sulfide is known to be able to hamper plant nutrient uptake, which is not surprising given its basic disturbance of cell metabolism and energy transfer. In addition, root loss due to die-off and concomitantly decreased root to shoot ratios lead to an unbalanced nutrient uptake. Sulfide can impair the uptake of nitrogen (N) (Koch et al., 1990), phosphorus (Van der Heide et al., 2012) and Fe (Smolders and Roelofs, 1996; Armstrong and Armstrong, 2005). Depending on the type of nutrient limitation, growth rates may be impaired, while Fe deficiency may lead to lower photosynthetic rates as a result of hampered chlorophyll synthesis. The effects of sulfide on the uptake of Fe and other metals can, however, also be the result of precipitation (Lamers et al., 2012). Although MgS is highly reactive in water and MgSO₄ is quite soluble, it has been shown that Mg and Ca concentrations in acid sulfate soils are generally undersaturated and governed by cation exchange rather than by their activities. It is well-known that this phenomenon can lead to Mg and Ca deficiency of Oryza sativa growing on these soils (Tanaka et al., 1968; Moore and Patrick, 1989). Next, acid production as a result of sulfide oxidation can lead to loss of Mg and Ca from soil cation exchange sites in the rhizosphere, and concomitant lower availability of these macro-ions. For field measurements, however, negative correlations between nutrient uptake and sulfide do not prove sulfide toxicity, as salinity, soil organic matter concentration, and oxygen and nutrient availability are often changing as well along the gradient. Effects of sulfide on soil biogeochemistry affecting plant performance and fitness will be explained further in sections below.

An interesting, but as yet unknown mechanism of sulfide toxicity on plant nutrient uptake might act through its effects of mycorrhizal activity. Although lead sulfides are known to seriously decrease the vitality of ectomycorrhizae (Fomina et al., 2005), the effect of free sulfide on mycorrhizae, and thereby on plant fitness, remains to be elucidated.

PHYSICO-CHEMICAL PROTECTION: SEQUESTRATION IN THE SOIL AND VOLATILIZATION

Even with high rates of sulfate reduction in the field, the accumulation of dissolved sulfide and its phytotoxic effects can be moderate, or largely absent due to metal sequestration, mainly by Fe. For Fe this leads to the formation of FeS and FeS₂ (pyrite), detoxifying sulfide (Figure 2; Smolders et al., 1995; Lamers et al., 2002b; Van der Welle et al., 2006, 2007a; Marbà et al., 2007). This mechanism was proposed for Spartina alterniflora already in 1982 by King et al., who showed for marshes on the barrier island Sapelo (GA, USA) that in spite of similar sulfate reduction rates, sulfide accumulation showed large variations related to Fe availability. In the same way, discharge of Fe-rich groundwater in wetlands and aquatic systems effectively protects against sulfide toxicity (Lamers et al., 2002a). In marine systems, where sediment Fe concentrations are generally low, the experimental addition of Fe has been shown to counteract sulfide toxicity to seagrass (Posidonia oceanica) in a similar way (Holmer et al., 2003, 2005; Marbà et al., 2007; Ruiz-Halpern et al., 2008). However, even if total Fe concentrations (i.e., in destruates) in the soil are high, H₂S accumulation may still occur if the amorphous Fe pool is sulfidesaturated by present or past high S reduction rates. This is clearly indicated by low total Fe:S ratios of the soil. Other metals, including Mn, Zn, Hg, Pb, Cd and Cu, may also precipitate sulfide, but are quantitatively much less important in S biogeochemistry (Bagarinao, 1992). Finally, the accumulation of dissolved sulfide can also be toned down by the activity of microbial communities

production of *Caltha palustris.* Although both compounds may be toxic for plant growth, they detoxify one another as a result of FeS_x precipitation (quadratic correlation, p = 0.014). Adapted from Van der Welle et al. (2006).

using nitrate or ferric iron as electron acceptor (Friedrich et al., 2001; see above).

As H_2S is a gas, not only sequestration in the soil but also volatilization to the atmosphere determines sulfide concentrations in sediments (Bagarinao, 1992). In addition, sulfide can be methylated in organic marine and freshwater sediments, and released as dimethylsulfide and methanethiol into the atmosphere (Lomans et al., 2002).

BIOLOGICAL PROTECTION: RADIAL OXYGEN LOSS FROM ROOTS

Many flooded or waterlogged plants show radial oxygen loss (ROL) from their roots, and the level and pattern of ROL is determined by photosynthetic rate, root architecture and root morphology (Armstrong, 1979; Jackson, 1985; McKee et al., 1988; Laan et al., 1991; Jackson and Armstrong, 1999; Visser et al., 2003; Frederiksen and Glud, 2006; Visser and Bögemann, 2006; Voesenek et al., 2006; Deborde et al., 2008). During nighttime, sulfide intrusion into roots and rhizomes is highest (Borum et al., 2005). Rhizosphere oxidation provides an obvious potential defense mechanism against the toxicity of reduced components such as sulfide (Pitts et al., 1972; Mendelssohn and McKee, 1988; Armstrong et al., 1996; Smolders and Roelofs, 1996; Hemminga, 1998; Armstrong and Armstrong, 2001, 2005; Holmer and Storkholm, 2001; Deborde et al., 2008), provided that soil aerobic microbial respiration and concomitant consumption of oxygen do not counteract this effect.

Spatial differences in oxygen release can not only be attributed to differences in aerenchyma structure, but also to lignine and/or suberine in the epidermis of the roots of different species, preventing loss of all oxygen in the upper soil layer. As an example, the rush species *Juncus acutiflorus* is able to oxidize its rhizosphere, even for the deeper roots, unlike the sedge species

Carex disticha (Lamers et al., 2012; Figure 3). Although both species did release oxygen from their roots, the relatively high ROL in the top layer solely proved to be insufficient to detoxify sulfide for C. disticha, leading to almost complete die-off of deeper roots (Lamers, 2001). In contrast, J. acutiflorus was able to completely oxidize its rhizosphere, even in deeper layers where a strong O₂ demand results from both soil respiration and S oxidation. Observed root loss correlated well with the differences in spatial ROL patterns for both species (Lamers et al., 2012). Sulfide is even known to induce additional suberization (Armstrong and Armstrong, 2005), which can be either an advantage or a disadvantage depending on the location in the roots. This indicates that the specific pattern of ROL, rather than its overall rate, determines the sensitivity of plant species to reduced phytotoxins such as sulfide. For sufficient ROL, the meristematic oxygen content fuelled by photosynthesis during daytime must also be high enough to prevent oxygen depletion by respiration during nighttime. Particularly at higher temperatures, e.g., as a result of climate change in shallow waters,

FIGURE 3 | Rhizotron scans for a control (A) and 250 μ mol L⁻¹ (B) sulfide treatment (darker soil due to FeS_x deposits). The oxidation potential is clearly visible from the yellow-gray halo of metallic sulfur and other products of oxidation. In each scan, *Carex disticha* is positioned left (only shallow S oxidation halos) and *Juncus acutiflorus* right (deep S oxidation halos). On (B), two white soil moisture samplers are visible. Bars represent 40 mm. Adapted after Lamers (2001) and Lamers et al. (2012).

high respiration rates could exceed photosynthetic O₂ production (Greve et al., 2003).

SULFIDE OXIDIZERS AND SOIL FAUNA AS RHIZOSPHERIC GUARDS

As H₂S is readily taken up and causes root toxicity, in contrast to sulfate, the activity of sulfide oxidizing prokaryotes in the rhizosphere is expected to influence both uptake rates and toxicity of S. As the spontaneous chemical oxidation of sulfide is more than 10,000 times slower than biological catalysis (Jørgensen and Revsbech, 1983; Millero, 1986), this rhizosperic sulfur oxidation by prokaryotes (see Friedrich et al., 2001; Ghosh and Roy, 2006) is essential, and the community should comprise large numbers of these organisms living in symbiosis with plants (oxygen supply as a "reward" for detoxification). Sulfur oxidizing microorganisms may be either free living inside or on top of the sediment, in the surface water layer, or associated with roots. Sulfide oxidizers comprise chemolithoautotrophic Proteobacteria such as Beggiatoa and Thiobacillus, photolithoautotrophic bacteria (e.g., Rhodovulum, Chromatium), and chemolitho-autotrophic Archaea (e.g., Sulfolobales) (Ghosh and Dam, 2009). Sulfideoxidizing prokaryotes may be expected to live inside the root and rhizome aerenchyma as sulfide and oxygen are both present, and Beggiatoa presence has indeed been shown inside the rhizomes of seagrass (Zostera marina) (Elliott et al., 2006). The oxidation of sulfide in the rhizosphere will, however, also generate acidity in the rhizosphere, slowing down sulfate reduction (Starkey, 1966; Connell and Patrick, 1968) even in the layers beyond the influence of radial oxygen loss by proton diffusion. In this way a second "protective shell" against the adverse effects of sulfate reduction is generated. In addition, the availability of Fe, mobilized by partial FeS_x oxidation, may be higher as a result of lower pH values even at a higher redox potential, although a large part will re-precipitate with sulfide. On the other hand, strong acidification of the rhizosphere may also be detrimental to plant roots, e.g., via NH₄⁺ toxicity (Lucassen et al., 2003; Van den Berg et al., 2005). The outcome of these different rhizospheric processes is determined by the interplay between the rates of ROL, oxygen consumption, sulfide oxidation and acid buffering in the soil.

In addition, next to prokaryotes, a range of eukaryote animal species including invertebrates and fish, have been shown to be able to oxidize sulfide in their mitochondria (whether or not ancient endosymbionts; Gray et al., 1999; Emelyanov, 2003; Olsen, 2012), or by sulfide-oxidizing prokaryotes on internal organs, generating energy (Bagarinao, 1992; Ghosh and Dam, 2009). As sediment bioturbation leads to higher rates of oxygen intrusion, sulfate reduction rates are suppressed even though the availability of readily decomposable organic matter may increase, as was shown for the burrow-forming marine polychaete Arenicola marina (lugworm; Nielsen et al., 2003). This not only leads to lower concentrations and toxicity of sulfide, but also to higher availability of Fe³⁺ as an alternative electron acceptor (Nielsen et al., 2003). For this effect, however, the level of bioturbation has to be strong enough to affect rhizospheric sulfide concentrations, especially if organic matter is accumulating in burrows as a result of foraging. Even though fiddler crabs (Uca

interactions among seagrasses, lucinid bivalves and sulfide oxidizing bacteria in their gills generate a higher fitness of all species involved under sulfidic conditions. See text for explaining mechanisms. Adapted after Van der Heide et al. (2012).

spp.) were able to oxidize the rhizosphere of young mangrove plants (*Laguncularia racemosa*), sulfide levels remained similar (Smith et al., 2009).

Recently, it was shown in tropical seagrass systems that mutualisms related to rhizospheric S biogeochemistry can be even more complex. Lucinid bivalves containing sulfide-oxidizing symbionts appear to globally occur in tropical and subtropical seagrass meadows (Fisher and Hand, 1984; Van der Heide et al., 2012) and seem strongly associated with these systems ever since seagrasses evolved in the Cretaceous (Van der Heide et al., 2012 and references herein). These lucinids were experimentally shown to play an essential role in seagrass sulfide tolerance, as the sulfide oxidizing prokaryotes living within the gills of the bivalves detoxify sulfide, stimulating seagrass production (Figure 4; Van der Heide et al., 2012). ROL by the seagrass species Zostera noltii was only able to reduce the added sulfide concentration from 2700 to 2200 μ mol L⁻¹, whereas the inclusion of the bivalves led to very low sulfide concentrations of only 15 μ mol L⁻¹. Simultaneously, the sulfide oxidizers and their host bivalves benefit from the oxygen supplied by ROL from seagrass, and from its organic matter production. It is very likely that similarly elegant mutualistic symbioses involving multiple species have evolved during evolution enabling other plant species to thrive and have higher fitness under sulfidic conditions. We therefore believe that inclusion of plant-symbiont interactions may be a step forward in our ability to explain sulfide tolerance rather than traditional plant physiology alone.

INDIRECT TOXICITY DURING DROUGHT OF SULFIDIC WETLANDS

Periodic water level fluctuations and severe droughts lead to profound biogeochemical changes in wetlands, due to the strong temporal variation in oxygen concentrations in the soil. Sulfides

(free sulfide and metal sulfides) may become toxic in an indirect way in these riparian systems, as the aerobic microbial and chemical oxidation of sulfides generates sulfuric acid (Smolders et al., 2006; Lamers et al., 2012). The actual balance between acid producing and acid consuming processes determines whether this acidification (proton production) leads to an actual drop in pH (increased proton concentration in the porewater). The acid neutralizing capacity (ANC) of soils is determined by the successive extent of bicarbonate and carbonate buffering, the exchange of base cations such as calcium and magnesium at cation binding sites of organic matter and clay, and dissolution of Fe and Al compounds (Scheffer and Schachtschabel, 2002). The total S/(Ca + Mg) ratio of soils may provide an easy proxy to determine the acidification potential of soils during drought (Lucassen et al., 2002). The strong acidification of coastal acid sulfate soils (high concentrations of iron sulfides, low ANC) during droughts, leading to pH values below 4 and concomitant mobilization of aluminum and iron, is a well-known phenomenon, and a problem for rice production and shrimp farming (Dent, 1986; Sammut et al., 1995). Especially in estuarine systems such as marshes, but also in S-rich freshwater systems, massive plant dieoff during drought may therefore not only be caused by water deficiency, but also by strong acidification. For the marsh plant Spartina spp., it has been shown that the combination of proton toxicity and concomitant mobilization of Al may have contributed to die-off events during droughts (McKee et al., 2004). It has been suggested that acid-tolerant arbuscular mycorrhizal fungi may play an important role in the establishment of pioneer species (grasses, forbs and shrubs) on dry acid sulfate soils (Maki et al., 2008).

OTHER BIOGEOCHEMICAL PROCESSES RELATED TO SULFIDE AFFECTING PLANT GROWTH

The anthropogenically increased availability of sulfate as an electron acceptor in anaerobic freshwater wetland soils potentially results in eutrophication (Lamers et al., 1998). This is not only caused by increased decomposition and nutrient mineralization rates as a result of the increased availability of sulfate as an electron acceptor, but also by the accumulation of sulfide that lowers phosphate binding to iron oxides and iron hydroxide, thereby increasing phosphate availability in the soil (Ohle, 1954; Sperber, 1958; Caraco et al., 1989; Lamers et al., 1998). Enhanced concentrations of ammonium and phosphate may, however, also result from increased decomposition rates due to greater availability of sulfate as an alternative electron acceptor (Roelofs, 1991; Koerselman et al., 1993; Smolders and Roelofs, 1993; Lamers et al., 1998, 2002b; Zak et al., 2006). For Thalassia hemprichii, a seagrass species, it was shown that 80% of its P demand was covered by the activity of sulfate reducers (Holmer et al., 2001). Oxidized sulfur may also be recycled and rereduced in anaerobic parts of the soil, stimulating decomposition. Under fluctuating oxygen conditions, e.g., in riparian wetlands, reduction and oxidation will therefore alternate (Lucassen et al., 2005).

Sulfate reduction rates can be governed either by the availability of electron donors such as acetate and lactate produced by decomposition of organic matter, or by the availability of sulfate (Lamers et al., 2002b). If, however, high concentrations of a more favorable electron acceptor are available, sulfatereducing prokaryotes may be partly or completely outcompeted. Wetlands receiving high nitrate loads through discharge of groundwater originating from arable land and fertilized pastures, show low iron and sulfate reduction rates, with concomitantly low phosphate mobilization rates (Lucassen et al., 2004).

In semi-aquatic plants, sulfide toxicity was found to be less pronounced at a higher nutrient availability, possibly as a result of dilution effects by increased growth and increased ROL (Geurts et al., 2009) suggesting that eutrophication may be "masking" sulfide toxicity in polluted areas. For submerged macrophytes, however, eutrophication is expected to aggravate the effects of sulfide, as increased growth of algae and cyanobacteria will directly impair their photosynthetic rates and ability to oxidize the rhizosphere. Filamentous mats of algae on seagrass meadows, resulting from eutrophication, have also been shown to lead to reduced oxygen concentrations in the sediment and increased S uptake and sulfide toxicity in seagrass (Holmer and Nielsen, 2007).

SULFIDE AND INTERSPECIFIC INTERACTIONS: COMPETITION, FACILITATION

Field observations in sulfate-polluted freshwater wetlands suggest that the loss of biodiversity and dominance of a small number of highly competitive plant species may not only be attributed to sulfate-induced eutrophication, but may additionally, or perhaps primarily be triggered by sulfide toxicity (Lamers et al., 2002a). The differential toxicity of hydrogen sulfide provides an additional explanation for changes in competitive strength leading to severe changes in vegetation development in sulfur-loaded wetlands, or in naturally S-rich wetlands that receive higher loads of organic matter. In addition, differences in sulfide accumulation along a gradient may explain vegetation gradients next to salinity effects, e.g., in marshes where Salicornia spp. live at the lower, marshes, and high salt marsh species such as Pucinellia maritime, Atriplex patula and Festuca rubra inhabit less sulfidic spots (Ingold and Havill, 1984). Although Spartina alternifolia lives at higher marshes than Salicornia, the organic content of its sediment is generally higher, potentially leading to higher sulfide accumulation. In freshwater systems, interspecific competition between macrophytes has been shown to depend on the interplay between sulfide and iron in sediments (Van der Welle et al., 2007a). Multiple positive feedback loops therefore increase and stabilize both toxicity and non-toxicity states (Figure 5).

The first constraint on the establishment and competitive strength of wetland plants in sulfur-rich areas, naturally or anthropogenically enhanced, may therefore be sulfide toxicity. As a result, plants that are able to provide their root apices with oxygen without losing all oxygen along the root surface, such as a number of larger graminoids, have a strong competitive advantage, especially if high sulfide oxidation rates are sustained by microbial activity in soils and soil macrofauna. If the growth rate is high, the toxicity effects may be "diluted" and ROL is supported by high photosynthetic rates of the highly competitive species. As

FIGURE 5 | Conceptual model showing positive feedback loops on plant-rhizophere processes under scenarios of sulfide toxicity (left) and non-toxicity (right). See text for further explanation. Unlike in other studies, impaired uptake of N or Fe was not found in this study. Impaired gas transport by sulfide has been shown by Armstrong et al. (1996). Sulfide oxidation is carried out by free-living prokaryotes in sediment and water, symbiotic prokaryotes of roots and soil fauna, and mitochondrial metabolism in soil fauna and plants.

a result of these feedbacks, eutrophication and sulfide accumulation in concert may rapidly lead to vegetation changes. From their differential responses to sulfide, Li et al. (2009) argued that the undesirable strong expansion of Typha in the Florida Everglades, at the expense of Cladium, could partially be explained by the high levels of sulfide $(250-375 \,\mu \text{mol } \text{L}^{-1})$ in this region. These resulted from a combination of high rates of sulfate reduction and low levels of iron to sequester the produced sulfide. For dune slacks it was hypothesized that elevated sulfide concentrations in combination with higher nutrient levels induce a shift to highly productive Phragmites stands (Adema et al., 2003). In a recent study on the biogeochemical drivers of species composition in a groundwater-fed freshwater wetland, sulfide appeared to be the most important explaining variable (Simkin et al., 2013). However, in addition to gaining a higher competitive strength, sulfide-detoxifying plant species might also act as ecosystem engineers (sensu Jones et al., 1994) by their facilitation of sulfidesensitive plants, provided that the latter group is not outcompeted for light by fast-growing species. However, high sulfide levels, in addition to those of other phytotoxins, may have contributed to the large scale Phragmites die-back in wetlands loaded with organic compounds (Armstrong and Armstrong, 2001), and to large-scale seagrass die-back events (Carlson et al., 1994; Terrados et al., 1999; Borum et al., 2005). Such massive die-off events have also been shown in constructed wetlands receiving high organic fluxes and showing high sulfide concentrations (above 1000 μ mol L⁻¹; Wiessner et al., 2008).

GLOBAL EFFECTS ON WETLANDS

The risks of sulfide toxicity are an important issue at a global scale, as sulfur concentrations have risen in many freshwater waters and wetlands, including natural vegetation types and rice paddies, due to high anthropogenic S emissions (Smith et al., 2011)

and geochemical oxidation processes including the effect of nitrate pollution (Smolders et al., 2010). Although global emissions decreased between 1970 and 2000 due to legislation, they are now increasing significantly again due to the high S emissions of fast-developing regions such as Asia (particularly China) where SO₂ emissions, as a result of the large-scale use of coal as a fuel, may soon equal the combined emissions of North America and Europe (Shah et al., 2000; Smith et al., 2011). In addition, salinization of coastal freshwater wetlands due to the intrusion of saline groundwater or surface water, and salinization due to the increased frequency of drought episodes in more arid regions increase the risk of sulfide-related vegetation changes during anaerobiosis. To determine the exact causes of salinization on vegetation changes, it is, however, important to experimentally test the effects of sulfide and NaCl separately and in concert. In saline systems (in which sulfate is normally not limiting), increased organic loads will stimulate sulfate reduction rates and lead to higher sulfide levels, especially if temperatures become higher (in shallow waters) as a result of global change (Hoffle et al., 2011; Holmer et al., 2011). Accumulated FeS_x in riparian wetlands will massively become oxidized to sulfate during drought (Lucassen et al., 2002), which is prone to renewed reduction during flooding. Even in soils that had not been flooded for more than 10 years, an unexpected diversity of sulfate reducers still appeared to be present and become active after one or two

REFERENCES

- Adema, E. B., Van Gemerden, H., and Grootjans AP. (2003). Is succession in wet calcareous dune slacks affected by free sulfide? *J. Veget. Sc.* 14, 153–162. doi: 10.1111/j.1654-1103.2003.tb02140.x
- Armstrong, J., AfreenZobayed, F., and Armstrong, W. (1996). *Phragmites* die-back: sulphideand acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems. *New Phytol.* 134, 601–614. doi: 10.1111/j.1469-8137.1996.tb04925.x
- Armstrong, J., and Armstrong, W. (2001). An overview of the effects of phytotoxins on *Phragmites australis* in relation to die-back. *Aquat. Bot.* 69, 251–268. doi: 10.1016/S0304-3770(01)00142-5
- Armstrong, J., and Armstrong, W. (2005). Rice: sulfide-induced barriers to root radial oxygen loss, Fe²⁺ and water uptake, and lateral root emergence. *Ann. Bot. Lond.* 96, 625–638. doi: 10.1093/aob/ mci215
- Armstrong, W. (1979). Aeration in higher plants. Adv. Bot. Res. 7, 225–332. doi: 10.1016/S0065-2296(08)60089-0
- Armstrong, W., and Boatman, D. J. (1967). Some field observations relating the growth of bog plants to

conditions of soil aeration. *J. Ecol.* 55, 101–110. doi: 10.2307/2257719

- Bagarinao, T. (1992). Sulfide as an environmental factor and toxicant – Tolerance and adaptations in aquatic organisms. *Aquat. Toxicol.* 24, 21–62. doi: 10.1016/0166-445X(92)90015-F
- Beauchamp, R. O., Bus, J. S., Popp, J. A., Boreiko, C. J., Andjelkovich, D. A., and Leber, P. (1984). A critical review of the literature on hydrogen sulfide toxicity. *Crit. Rev. Toxicol.* 13, 25–97. doi: 10.3109/10408448409029321
- Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., et al. (1996). Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101, 29239–29253. doi: 10.1029/96JD00126
- Birke, H., Haas, F. H., De Kok, L. J., Balk, J., Wirtz, M., and Hell, R. (2012). Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of *Arabidopsis thaliana*. *Biochem. J.* 445, 275–283.
- Borum, J., Pedersen, O., Greve, T. M., Frankovich, T. A., Zieman, J. C., Fourqurean, J. W., et al. (2005). The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, *Thalassia*

weeks of anaerobiosis (Lamers et al., 1998; Miletto et al., 2008). This shows that the microbial community is very persistent with respect to S biogeochemistry, and able to resuscitate although they have to be classified as "delayed responders" (sensu Placella et al., 2012). As a result, the S legacy of a soil is expected to contribute to sudden die-off of plants in riparian wetlands during anaerobic events.

GENERAL CONCLUSION

As our overview shows that even low concentrations of sulfide are able to 1) affect the ecophysiological functioning individual plants, 2) affect plant competition and facilitation, 3) influence complex rhizospheric mutualisms, and 4) interact with nutrient biogeochemistry, it is clear that sulfide can be a strong driver of ecosystem processes and functioning, also in relation to changing global S balances. Future research should include interactions between plants, microbial communities, soil fauna and soil chemistry, to fully understand and explain differences among plant, vegetation and ecosystem responses to sulfide.

ACKNOWLEDGMENTS

The authors would like to thank Dr. M. A. Vile for her valuable comments on an earlier version of the manuscript, and Mr. J. Eygensteyn for his help with chemical analyses.

testudinum. J. Ecol. 93, 148–158. doi: 10.1111/j.1365-2745.2004.00943.x

- Burgin, A. J., and Hamilton, S. K. (2008). NO₃⁻-driven SO₄₂ production in freshwater ecosystems: implications for N and S cycling. *Ecosystems* 11, 908–922. doi: 10.1007/s10021-008-9169-5
- Caraco, N. F., Cole, J. J., and Likens, G. E. (1989). Evidence for sulphatecontrolled phosphorus release from sediments of aquatic systems. *Nature* 341, 316–318 doi: 10.1038/341316a0
- Carlson, P. R. Jr., and Forrest, J. (1982). Uptake of dissolved sulfide by *Spartina alterniflora*: evidence from natural sulfur isotope abundance ratios. *Science* 7, 633–635. doi: 10.1126/science.216.4546.633
- Carlson, P. R., Yarbro, L. A., and Barber, T. R. (1994). Relationship of sediment sulfide to mortality of *Thalassia testudinum* in Florida Bay. *Bull. Mar. Sci.* 54, 733–746.
- Chambers, R. M. (1997). Porewater chemistry associated with *Phragmites* and *Spartina* in a Connecticut tidal marsh. *Wetlands* 17, 360–367. doi: 10.1007/BF03161425
- Chambers, R. M., and Pederson, K. A. (2006). Variation in soil phosphorus, sulfur, and iron pools among south Florida wetlands.

Hydrobiologia 569, 63–70. doi: 10.1007/s10750-006-0122-3

- Choi, M. M. F. (1998). Fluorimetric optode membrane for sulfide detection. Analyst 123, 1631–1634. doi: 10.1039/A801702F
- Connell, W. E., and Patrick, W. H. Jr., (1968). Sulfate reduction in soil: effects of redox potential and pH. *Science* 159, 86–87. doi: 10.1126/science.159.3810.86
- Deborde, J., Gwenael, A., Mouret, A., Jezequel, D., Thouzeau, G., Clavier, J., et al. (2008). *Mar. Ecol. Prog. Ser.* 355, 59–71. doi: 10.3354/meps07254
- Dent, D. (1986). Acid Sulphate Soils: a Baseline for Research and Development. Wageningen: ILRI Publ.
- Elliott, J. K., Spear, E., and Wyllie-Echeverria, S. (2006). Mats of *Beggiatoa* bacteria reveal that organic pollution from lumber mills inhibits growth of *Zostera marina. Mar. Ecol. Evol. Persp.* 27, 372–380. doi: 10.1111/j.1439-0485.2006.00100.x
- Emelyanov, V. V. (2003). Mitochondrial connection to the origin of the eukaryotic cell. *Eur. J. Biochem.* 270, 1599–1618. doi: 10.1046/j.1432-1033.2003.03499.x
- Fisher, C. R., and Hand, S. C. (1984). Chemoautotrophic symbionts in the bivalve Lucina floridana

from seagrass beds. *Biol. Bull.* 167, 445–459. doi: 10.2307/1541289

- Fogli, S., Marchesini, R., and Gerdol, R. (2002). Reed (*Phragmites australis*) decline in a brackish wetland in Italy. *Mar. Environ. Res.* 53, 465–479. doi: 10.1016/S0141-1136(02)00091-0
- Fomina, M. A., Alexander, I. J., Colpaert, J. V., and Gadd, G. M. (2005). Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. *Soil Biol. Biochem.* 37, 851–866. doi: 10.1016/j.soilbio.2004.10.013
- Frederiksen, M. S., Holmer, M., and Perez, M., Invers, O., Ruiz, J. M., and Knudsen, B. B. (2008). Effect of increased sediment sulfide concentrations on the composition of stable sulfur isotopes (delta S-34) and sulfur accumulation in the seagrasses *Zostera marina* and *Posidonia oceanica*. J. Exp. Mar. Biol. Ecol. 358, 98–101.
- Frederiksen, M. S., and Glud, R. N. (2006). Oxygen dynamics in the rhizosphere of Zostera marina: a twodimensional planar optode study. *Limnol. Oceanogr.* 51, 1072–1083. doi: 10.4319/lo.2006.51.2.1072
- Frederiksen, M. S., Holmer, M., Borum, J., and Kennedy, H. (2006). Temporal and spatial variation of sulfide invasion in eelgrass (*Zostera* marina) as reflected by its sulfur isotopic composition. *Limnol. Oceanogr.* 51, 2308–2318. doi: 10.4319/lo.2006.51.5.2308
- Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A., and Fischer, J. (2001). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Minireview. Appl. Environ. Microb. 67, 2873–2882. doi: 10.1128/AEM.67.7.2873-2882.2001
- Geurts, J. J. M., Sarneel, J. M., Willers, B. J. C., Roelofs, J. G. M., Verhoeven, J. T. A., and Lamers, L. P. M. (2009). Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: a mesocosm experiment. *Environ. Pollut.* 157, 2072–2081. doi: 10.1016/j.envpol. 2009.02.024
- Ghosh, W., and Dam, B. (2009). Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. *FEMS Microbiol. Rev.* 33, 99–1043. doi: 10.1111/j.1574-6976.2009.00187.x
- Ghosh, W., and Roy, P. (2006). Ubiquitous presence and activity of sulfur-oxidizing lithoautotrophic microorganisms in the rhizospheres

of tropical plants. Curr. Sci. 91, 159-161.

- Goodman, J. L., Moore, K. A., and Dennison, W. C. (1995). Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquat. Bot. 50, 37–47. doi: 10.1016/0304-3770(94)00444-Q
- Gorham, E. (1976). Precipitation and its influence upon aquatic ecosystems – overview. Water Air Soil Poll. 6, 457–481. doi: 10.1007/BF00182886
- Gray, M. W., Burger, G., and Lang, B. F. (1999). Mitochondrial evolution. *Science* 283, 1476–1481. doi: 10.1126/science.283.5407.1476
- Greve, T. M., Borum, J., and Pedersen, O. (2003). Meristematic oxygen variability in eelgrass (*Zostera marina*). *Limnol. Oceanogr.* 48, 210–216. doi: 10.4319/lo.2003.48.1.0210
- Grootjans, A. P., Van den Ende, F. P., and Walsweer, A. F. (1997). The role of microbial mats during primary succession in calcareous dune slacks: an experimental approach. J. Coast. Cons. 3, 95–102. doi: 10.1007/BF02908184
- Gruhlke, M. C. H., and Slusarenko, A. J. (2012). The biology of reactive sulfur species (RSS). *Plant Physiol. Biochem.* 59, 98–107. doi: 10.1016/j.plaphy.2012.03.016
- Haaijer, S. C. M., Van der Welle, M. E. W., Schmid, M. C., Lamers, L. P. M., Jetten, M. S. M., and Op den Camp, H. J. M. (2006). Evidence for the involvement of betaproteobacterial thiobacilli in the nitratedependent oxidation of iron sulfide minerals. *FEMS Microbiol. Ecol.* 58, 439–448. doi: 10.1111/j.1574-6941.2006.00178.x
- Hauxwell, J., Cebrián, J., Furlong, C., and Valiela, I. (2001). Macroalgal canopies contribute to eelgrass (*Zostera marina*) decline in temperate estuarine ecosystems. *Ecology* 82, 1007–1022.
- Hawkesford, M. J., and De Kok, L. J. (2006). Managing sulphur metabolism in plants. *Plant Cell Environ*. 29, 382–395. doi: 10.1111/j.1365-3040.2005.01470.x
- Heathwaite, A. L. (1990). The effect of drainage on nutrient release from fen peat and its implications for water quality - a laboratory simulation. *Water Air Soil Poll.* 49, 159–173. doi: 10.1007/BF00279518
- Hemminga, M. A. (1998). The root/rhizome system of seagrasses: an asset and a burden. J. Sea Res. 39, 183–196. doi: 10.1016/S1385-1101(98)00004-5

- Hoffle, H., Thomsen, M. S., and Holmer, M. (2011). High mortality of *Zostera marina* under high temperature regimes but minor effects of the invasive macroalgae *Gracilaria vermiculophylla. Estuar. Coast. Shelf Sci.* 92, 35–46. doi: 10.1016/j.ecss.2010.12.017
- Hollis, J. P., Allam, A. I., and Pitts, G. (1972). Sulfide diseases of rice. *Phytopathology* 62, 764–765.
- Holmer, M., Andersen, F. O., Nielsen, S. L., and Boschker, H. T. S. (2001). The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. *Aquat. Bot.* 71, 1–17. doi: 10.1016/S0304-3770 (01)00170-X
- Holmer, M., Duarte, C. M., and Marba, N. (2003). Sulfur cycling and seagrass (*Posidonia* oceanica) status in carbonate sediments. *Biogeochemistry* 66, 223–229. doi: 10.1023/B:BIOG. 0000005326.35071.51
- Holmer, M., Duarte, C. M., and Marba, N. (2005). Iron additions reduce sulfate reduction rates and improve seagrass growth on organic-enriched carbonate sediments. *Ecosystems* 8, 721–730. doi: 10.1007/s10021-003-0180-6
- Holmer, M., and Kendrick, G. A. (2013). High sulfide intrusion in five temperate seagrasses growing under contrasting sediment conditions. *Estuar. Coast.* 36, 116–126. doi: 10.1007/s12237-012-9550-7
- Holmer, M., and Nielsen, R. M. (2007). Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). J. Exp. Mar. Biol. Ecol. 353, 245–252. doi: 10.1016/j.jembe.2007.09.010
- Holmer, M., Pedersen, O., Krause-Jensen, D., Olesen, B., Petersen, M. H., Schopmeyer, S., et al. (2009). Sulfide intrusion in the tropical seagrasses *Thalassia testudinum* and *Syringodium filiforme. Estuar. Coast. Shelf S.* 85, 319–326. doi: 10.1016/j.ecss.2009.08.015
- Holmer, M., and Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: a review. *Freshw. Biol.* 46, 431–451. doi: 10.1046/j.1365-2427.2001.00687.x
- Holmer, M., Wirachwong, P., and Thomsen, M. S. (2011). Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. *Mar. Biol.* 158, 297–309. doi: 10.1007/s00227-010-1559-5
- Howes, B. L., Teal, J. M., and Peterson, S. (2005). Experimental *Phragmites* control through

enhanced sediment sulfur cycling. *Ecol. Eng.* 25, 2929–303. doi: 10.1016/j.ecoleng.2005.04.004

- Igamberdiev, A. U., Baron, K., Manac'h-Little, N., Stoimenova, M., and Hill, R. D. (2005). The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signaling. *Ann. Bot. Lond.* 96, 557–564. doi: 10.1093/aob/ mci210
- Ingold, A., and Havill, D. C. (1984). The influence of sulphide on the distribution of higher plants in salt marshes. J. Ecol. 72, 1043–1054. doi: 10.2307/2259550
- Jackson, M. B. (1985). Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. Plant Mol. Biol. 36, 145–174. doi: 10.1146/annurev.arplant.36.1.145
- Jackson, M. B., and Armstrong, W. (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. *Plant Biol.* 1, 274–287. doi: 10.1111/j.1438-8677.1999.tb00253.x
- Jones, C. G., Lawton, J. H., and Shachak, M. (1994). Organisms as ecosystem engineers. *Oikos* 69, 373–386 doi: 10.2307/3545850
- Jørgensen, B. B. (1982). Mineralization of organic matter in the sea bed – The role of sulfate reduction. *Nature* 296, 643–645. doi: 10.1038/296643a0
- Jørgensen, B. B., and Revsbech, N. P. (1983). Colorless sulfur bacteria, *Beggiatoa* spp. and *Thiovulum* spp., in O₂ and H₂S microgradients. *Appl. Environ. Microbiol.* 45, 1261–1270.
- Joshi, M. M., Ibrahim, I. K. A., and Hollis, J. P. (1975). Hydrogensulfide – effects on physiology of rice plants and relation to straighthead disease. *Phytopathology* 65, 1165–1170. doi: 10.1094/Phyto-65-1165
- King, G. M., Klug, M. J., Wiegert, R. G., and Chalmers, A. G. (1982). Relation of soil water movement and sulfide concentration to *Spartina alterniflora* production in a Georgia salt marsh. *Science* 218, 61–63. doi: 10.1126/science.218.4567.61
- Koch, M. S., and Erskine, J. M. (2001). Sulfide as a phytotoxin to the tropical seagrass *Thalassia testudinum*: interactions with light, salinity and temperature. *J. Exp. Mar. Biol. Ecol.* 266, 81–95. doi: 10.1016/S0022-0981(01)00339-2
- Koch, M. S., and Mendelssohn, I. A. (1989). Sulfide as a soil phytotoxin:

differential responses in two marsh species. *J. Ecol.* 77, 565–578. doi: 10.2307/2260770

- Koch, M. S., Mendelssohn, I. A., and McKee, K. L. (1990). Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. *Limnol. Oceanogr.* 35, 399–408. doi: 10.4319/lo.1990.35.2.0399
- Koch, M. S., Schopmeyer, S. A., Kyhn-Hansen, C., and Madden, C. J. (2007). Synergistic effects of high temperature and sulfide on tropical seagrasses. J. Exp. Mar. Biol. Ecol. 341, 91–101. doi: 10.1016/j.jembe.2006.10.004
- Koerselman, W., Van Kerkhoven, M. B., and Verhoeven, J. T. A. (1993). Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water Level. *Biogeochemistry* 20, 63–81. doi: 10.1007/BF00004135
- Laan, P., Smolders, A., Blom, C. W. P. M., and Armstrong, W. (1989). The relative roles of internal aeration, radial oxygen loss, iron exclusion and nutrient balances in flood tolerance of *Rumex* species. *Acta Bot. Neerl.* 38, 131–145.
- Laan, P., Smolders, A. J. P., and Blom, C. W. P. M. (1991). The relative importance of anaerobiosis and high iron levels in floodtolerance of Rumex species. *Plant Soil* 136, 153–161. doi: 10.1007/ BF02150046
- Lamers, L. P. M. (2001). Tackling Biogeochemical Problems in Peatlands. Ph.D. thesis, University of Nijmegen, Nijmegen, 161. Available online at: http://webdoc.ubn.kun.nl/mono/l/ lamers_l/tackbiqui.pdf
- Lamers, L. P. M., Smolders, A. J. P., and Roelofs, J. G. M. (2002a). The restoration of fens in the Netherlands. *Hydrobiologia* 478, 107–130. doi: 10.1023/A:1021022529475
- Lamers, L. P. M., Falla, S. J., Samborska, E. M., Van Dulken, I. A. R., Van Hengstum, G., and Roelofs, J. G. M. (2002b). Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. *Limnol. Oceanogr.* 47, 585–593. doi: 10.4319/lo.2002.47.2.0585
- Lamers, L. P. M., Farhoush, C., Van Groenendael, J. M., and Roelofs, J. G. M. (1999). Calcareous groundwater raises bogs; the concept of ombrotrophy revisited. J. Ecol. 87, 639–648. doi: 10.1046/j.1365-2745.1999.00380.x
- Lamers, L. P. M., Tomassen, H. B. M., and Roelofs, J. G. M. (1998).

Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. *Environ. Sci. Technol.* 32, 199–205. doi: 10.1021/es970362f

- Lamers, L. P. M., Van Diggelen, J. M. H., Op den Camp, H. J. M., Visser, E. J. W., Lucassen, E. C. H. E. T., Vile, M. A., et al. (2012). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. *Front. Microbiol.* 3:156. doi: 10.3389/fmicb.2012.00156
- Lee, R. W. (1999). Oxidation of sulfide by Spartina alterniflora roots. Limnol. Oceanogr. 44, 1155–1159. doi: 10.4319/lo.1999.44.4.1155
- Leustek, T., and Saito, K. (1999). Sulfate transport and assimilation in plants. *Plant Physiol.* 120, 637–644. doi: 10.1104/pp.120.3.637
- Li, S., Mendelssohn, I. A., Chen, H., and Orem, W. H. (2009). Does sulphate enrichment promote the expansion of *Typha domingensis* (cattail) in the Florida Everglades? *Freshw. Biol.* 54, 1909–1923. doi: 10.1111/j.1365-2427.2009.02242.x
- Lomans, B. P., Van der Drift, C., Pol, A., and Op den Camp, H. J. M. (2002). Microbial cycling of volatile organic sulfur compounds. *Cell. Mol. Life Sci.* 59, 575–588. doi: 10.1007/s00018-002-8450-6
- Lucassen, E. C. H. E. T., Bobbink, R., Smolders, A. J. P., Van der Ven, P. J. M., Lamers, L. P. M., and Roelofs, J. G. M. (2003). Interactive effects of low pH and high ammonium levels responsible for the decline of *Cirsium dissectum* (L.) Hill. *Plant Ecol.* 165, 45–52. doi: 10.1023/A:1021467320647
- Lucassen, E. C. H. E. T., Smolders, A. J. P., and Roelofs, J. G. M. (2002). Potential sensitivity of mires to drought, acidification and mobilisation of heavy metals: the sediment S/(Ca+Mg) ratio as diagnostic tool. *Environ. Pollut.* 120, 635–646.
- Lucassen, E. C. H. E. T., Smolders, A. J. P., and Roelofs, J. G. M. (2005). Effects of temporary desiccation on the mobility of phosphorus and metals in sulphur-rich fens: differential responses of sediments and consequences for water table management. *Wetl. Ecol. Manag.* 13, 135–148. doi: 10.1007/s11273-004-0314-4
- Lucassen, E. C. H. E. T., Smolders, A. J. P., Van der Salm, A. L., and Roelofs, J. G. M. (2004). High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. *Biogeochemistry* 67, 249–267.

doi: 10.1023/B:BIOG.0000015342. 40992.cb

- Maki, T., Nomachi, M., Yoshida, S., and Ezawa, T. (2008). Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. *Plant Soil* 310, 55–65. doi: 10.1007/s11104-008-9628-y
- Marbà, N., Calleja, M. Ll., Duarte, M., Álvarez, E., Díaz-Almela, E., and Holmer, M. (2007). Iron additions reduce sulfide intrusion and reverse seagrass (*Posidonia* oceanica) decline in carbonate sediments. *Ecosystems* 10, 745–756. doi: 10.1007/s10021-007-9053-8
- Marschner, P. (1995). *Mineral Nutrition* of Higher Plants. London: Academic Press.
- McKee, K. L. (1993). Soil physicochemical patterns and mangrove species distribution – Reciprocal effects. J. Ecol. 81, 477–487. doi: 10.2307/2261526
- McKee, K. L., Mendelssohn, I. A., and Hester, M. W. (1988). Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of *Rhizophora mangle* and *Avicennia germinans*. *Am. J. Bot.* 75, 1352–1359. doi: 10.2307/2444458
- McKee, K. L., Mendelssohn, I. A., and Materne, M. D. (2004). Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? *Glob. Ecol. Biogeogr.* 13, 65–73. doi: 10.1111/j.1466-882X.2004.00075.x
- Mendelssohn, I. A., and McKee, K. L. (1988). Spartina alterniflora dieback in Louisiana: time-course investigation of soil waterlogging effects. J. Ecol. 76, 509–521. doi: 10.2307/2260609
- Miletto, M., Loy, A., Antheunisse, A. M., Loeb, R., Bodelier, P. L. E., and Laanbroek, H. J. (2008). *FEMS Microbiol. Ecol.* 64, 395–406. doi: 10.1111/j.1574-6941.2008.00490.x
- Millero, F. J. (1986). The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. *Mar. Chem.* 18, 121–147. doi: 10.1016/0304-4203(86)90003-4
- Moore, P. A., and Patrick, W. H. (1989). Calcium and magnesium availability and uptake by Rice in acid sulfate soils. *Soil Sci. Soc. Am. J.* 53, 816–822. doi: 10.2136/sssaj1989. 03615995005300030032x
- Nakamura, M. (2009). Increased thiol biosynthesis of transgenic poplar expressing a wheat O-acetylserine(thiol) lyase enhances resistance to hydrogen sulfide and sulfur dioxide toxicity. *Plant Cell Rep.* 28, 313–323. doi: 10.1007/s00299-008-0635-5

- Nielsen, O. I., Kristensen, E., and Holmer, M. (2003). Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat. Microb. Ecol. 33, 95–105. doi: 10.3354/ame033095
- Ohle, W. (1954). Sulfat als 'Katalysator' des limnischen Stoffkreislaufes. *Vom Wasser* 21, 13–32.
- Okajima, H., and Takagi, S. (1955). Physiological behavior of hydrogen sulfide in the rice plant. *Tohoku J. Agricult. Res.* 6, 89–99.
- Olsen, K. R. (2012). Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. *J. Comp. Physiol.* B 182, 881–897. doi: 10.1007/s00360-012-0654-y
- Otte, M. L., Wilson, G., Morris, J. T., and Moran, B. M. (2004). Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. *J. Exp. Bot.* 55, 1919–1925. doi: 10.1093/jxb/erh178
- Pakulski, J. D., and Kiene, R. P. (1992). Foliar release of dimethylsulfonioproprionate from Spartinaalterniflora. *Mar. Ecol. Prog. Ser.* 81, 277–287. doi: 10.3354/meps081277
- Pedersen, O., Binzer, T., and Borum, J. (2004). Sulfide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ. 27, 595–602. doi: 10.1111/j.1365-3040.2004.01173.x
- Pezeshki, S. R. (2001). Wetland plant responses to soil flooding. *Environ. Exp. Bot.* 46, 299–312. doi: 10.1016/S0098-8472(01)00107-1
- Pitts, G., Allam, I. A., and Hollis, J. P. (1972). Beggiatoa – occurrence in rice rhizosphere. *Science* 178, 990–991. doi: 10.1126/science.178.4064.990
- Placella, S. A., Brodie, E. L., and Firestone, M. K. (2012). Rainfallinduced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. P. Natl. Acad. Sci U.S.A. 109, 10931–10936. doi: 10.1073/pnas.1204306109
- Raven, J. A., and Scrimgeour, C. M. (1997). The influence of anoxia on plants of saline habitats with special reference to the sulphur cycle. Ann. Bot. London 79, 79–86. doi: 10.1093/oxfordjournals.aob.a010309
- Roelofs, J. G. M. (1991). Inlet of alkaline river water into peaty lowlands: effects on water quality and on *Stratiotes aloides* stands. *Aquat. Bot.* 39, 267–293. doi: 10.1016/0304-3770(91)90004-O
- Ruiz-Halpern, S., Macko, S. A., and Fourqurean, J. W. (2008). The effects of manipulation of sedimentary iron and organic matter on

sediment biogeochemistry and seagrasses in a subtropical carbonate environment. *Biogeochemistry* 87, 113–126. doi: 10.1007/s10533-007-9162-7

- Sammut, J., Melville, M., Callinan, R., and Fraser, G. (1995). Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils. *Aust. Geogr. Stud.* 33, 89–100. doi: 10.1111/j.1467-8470.1995.tb00687.x
- Scheffer, F., and Schachtschabel, P. (2002). Lehrbuch der Bodenkunde. Heidelberg, Berlin: Spektrum Akademischer Verlag.
- Schindler, D. W., Wageman, R., Cook, R. B., Ruszcynski, T., and Prokopowich, J. (1980). Experimental acidification of Lake 223, Experimental Lakes Area: background data and the first three years of acidification. *Can. J. Fish. Aquat. Sci.* 37, 342–354. doi: 10.1139/f80-048
- Schlesinger, W. H. (1997). Biogeochemistry – An Analysis of Global Change. San Diego, CA; London, UK: Academic Press.
- Schuurkes, J. A. A. R., Kempers, A. J., and Kok, C. J. (1988). Aspects of biochemical sulphur conversions in sediments of a shallow soft water lake. J. Freshw. Ecol. 4, 369–381. doi: 10.1080/02705060.1988.9665186
- Shah, J., Nagpal, T., Johnson, T., Amann, M., Carmichael, G., Foell, W., et al. (2000). Integrated analysis for acid rain in Asia: policy implications and results of RAINS-ASIA model. Annu. Rev. Energy Environ. 25, 339–375. doi: 10.1146/annurev.energy.25.1.339
- Simkin, S. M., Bedford, B. L., and Weathers, K. C. (2013). Phytotoxic sulfide more important than nutrients for plants within a groundwaterfed wetland. *Ecosystems*. doi: 10.1007/s10021-013-9671-2
- Smith, N. F., Wilcox, C., and Lessmann, J. M. (2009). Fiddler crab burrowing affects growth and production of the white mangrove (*Laguncularia racemosa*) in a restored Florida coastal marsh. *Mar. Biol.* 156, 2255–2266. doi: 10.1007/s00227-009-1253-7
- Smith, S. J., Van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Arias, S. D. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116. doi: 10.5194/acp-11-1101-2011
- Smolders, A. J. P., Lucassen, E. C. H. E. T., Bobbink, R., Roelofs, J. G. M., and Lamers, L. P. M. (2010). How nitrate leaching from agricultural

lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. *Biogeochemistry* 98, 1–7. doi: 10.1007/s10533-009-9387-8

- Smolders, A. J. P., Moonen, M., Zwaga, K., Lucassen, E. C. H. E. T., Lamers, L. P. M., and Roelofs, J. G. M. (2006). Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents. *Geoderma* 132, 372–383. doi: 10.1016/j.geoderma.2005.06.002
- Smolders, A. J. P., Nijboer, R. C., and Roelofs, J. G. M. (1995). Prevention of sulphide accumulation and phosphate mobilization by the addition of iron (II) chloride to a reduced sediment: an enclosure experiment. *Freshw. Biol.* 34, 559–568. doi: 10.1111/j.1365-2427.1995.tb00913.x
- Smolders, A. J. P., and Roelofs, J. G. M. (1993). Sulphate mediated iron limitation and eutrophication in aquatic ecosystems. *Aquat. Bot.* 46, 247–253. doi: 10.1016/0304-3770(93)90005-H
- Smolders, A. J. P., and Roelofs, J. G. M. (1996). The roles of internal iron hydroxide precipitation, sulphide toxicity and oxidizing ability in the survival of *Stratiotes aloides* roots at different iron concentrations in sediment pore water. *New Phytol.* 133, 253–260. doi: 10.1111/j.1469-8137.1996.tb01892.x
- Sperber, J. I. (1958). Release of phosphate from soil minerals by hydrogen sulphide. *Nature* 181, 934. doi: 10.1038/181934a0
- Starkey, R. L. (1966). Oxidation and reduction of sulphur compounds in soils. *Soil Sci.* 101, 297–306. doi: 10.1097/00010694-196604000-00009
- Stefels, J. (2000). Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Review paper. J. Sea Res. 43, 183–197. doi: 10.1016/S1385-1101(00)00030-7
- Tanaka, A., Ranjit, P., Mulleriyawa, R. P., and Yasu, T. (1968). Possibility of hydrogen sulfide induced iron toxicity of the rice plant. *Soil Sci. Plant Nutr.* 14, 1–6. doi: 10.1080/00380768.1968.10432000
- Terrados, J., Duarte, C. M., Kamp-Nielsen, L., Agawin, N. S. R., Gacia, E., Lacap, D., et al. (1999). Are seagrass growth and survival constrained by the reducing conditions of the sediment? *Aquat. Bot.* 65, 175–197. doi: 10.1016/S0304-3770(99)00039-X
- Thomsen, M. S., Wernberg, T., Engelen, A. H., Tuya, F., Vanderklift, M. A.,

Holmer, M., et al. (2012). A metaanalysis of seaweed impacts on seagrasses: generalities and knowledge gaps. *PLoS ONE* 7:e28595. doi: 10.1371/journal.pone.0028595

- Trust, B. A., and Fry, B. (1992). Stable sulfur isotopes in plants – A review. *Plant Cell Environ.* 15, 1105–1110. doi: 10.1111/j.1365-3040.1992.tb01661.x
- Vallack, H. W., Cinderby, S., Kuylenstierna, J. C. I., and Heaps, C. (2001). Emission inventories for SO2 and NOX in developing country regions in 1995 with projected emissions for 2025 according to two scenarios. Water Air Soil Pollut. 130, 217–222. doi: 10.1023/A:1013802916582
- Vámos, R. (1959). 'Brusone' disease of rice in Hungary. *Plant Soil* 11, 65–77. doi: 10.1007/BF01394754
- Van Beusekom, J. J. E., and De Jonge, V. N. (2002). Long-term changes in Wadden Sea nutrient cycles: importance of organic matter import from the North Sea. *Hydrobiologia* 475, 185–194 doi: 10.1023/A:1020361124656
- Van den Berg, L. J. L., Dorland, E., Vergeer, P., Hart, M. A. C., Bobbink, R., and Roelofs, J. G. M. (2005). Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol.166, 551–564. doi: 10.1111/j.1469-8137.2005. 01338.x
- Van der Heide, T., Govers, L. L., De Fouw, J., Olff, H., Van der Geest, M., Van Katwijk, M. M., et al. (2012).
 A three-stage symbiosis forms the foundation of seagrass ecosystems. *Science* 336, 1353–1472.
- Van der Welle, M. E. W., Cuppens, M., Lamers, L. P. M., and Roelofs, J. G. M. (2006). Detoxifying toxicants: interactions between sulphide and iron toxicity. *Environ. Toxicol. Chem.* 25, 1592–1597. doi: 10.1897/05-283R.1
- Van der Welle, M. E. W., Smolders, A. J. P., Op den Camp, H. J. M., Roelofs, J. G. M., and Lamers, L. P. M. (2007a). Biogeochemical interactions between iron and sulphate in freshwater wetlands and their implications for interspecific competition between aquatic macrophytes. *Freshw. Biol.* 52, 434–447. doi: 10.1111/j.1365-2427.2006.01683.x
- Van der Welle, M. E. W., Niggebrugge, K., Lamers, L. P. M., and Roelofs, J. G. M. (2007b). Differential responses of the freshwater wetland species *Juncus effusus* L. and *Caltha palustris* L. to iron supply in sulfidic environments. *Environ. Pollut.* 147,

222–230. doi: 10.1016/j.envpol. 2006.08.024

- Van Diggelen, J., Rozema, J., and Broekman, R. (1987). "Growth and mineral relations of salt-marsh species onnutrient solutions containing various sodium sulphide concentrations," in Vegetation between Land and Sea, eds A. H. L. Huiskes, C. W. P. M. Blom, and J. Rozema (Dordrecht/Boston/Lancaster: Dr. W. Junk Publishers), 260-269. 10.1007/978-94-009-4065doi: 9 20
- Van Kempen, M. M. L., Smolders, A. J. P., Lamers, L. P. M., and Roelofs, J. G. M. (2012). Microhalocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean. *PLoS ONE* 7:e50159. doi: 10.1371/journal.pone.0050159
- Ver, L. M. B., Mackenzi, F. T., and Lerman, A. (1999). Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. *Chem. Geol.* 159, 283–304. doi: 10.1016/S0009-2541(99)00042-X
- Viaroli, P., Bartoli, M., Bondavalli, C., Christian, R. R., Giordani, G., and Naldi, M. (1996). Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. *Hydrobiologia* 329, 105–119. doi: 10.1007/ BF00034551
- Visser, E. J. W., and Bögemann, G. M. (2006). Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol. 171, 305–314. doi: 10.1111/j.1469-8137.2006.01764.x
- Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B., and Jackson, M. B. (2003). Flooding and plant growth. Ann. Bot. Lond. 91, 107–109. doi: 10.1093/aob/mcg014
- Voesenek, L. A. C. J., Colmer, T. D., Pierik, R., Millenaar, E. E., and Peeters, A. J. M. (2006). How plants cope with complete submergence. *New Phytol.* 170, 213–226. doi: 10.1111/j.1469-8137.2006. 01692.x
- Webb, E. C., and Mendelssohn, I. A. (1996). Factors affecting Vegetation dieback of an oligohaline marsh in coastal Louisiana: field manipulation of salinity and submergence. *Am. J. Bot.* 83, 1429–1434. doi: 10.2307/2446098
- Weber, R. E., and Vinogradow, S. N. (2001). Nonvertebrate hemoglobins: functions and molecular adaptations. *Physiol. Rev.* 81, 569–628.

- Wiessner, A., Kuschk, P., Jechorek, M., Seidel, H., and Kastner, M. (2008). Sulphur transformation and deposition in the rhizosphere of *Juncus effusus* in a laboratory-scale constructed wetland. *Environ. Pollut.* 155, 125–131. doi: 10.1016/j.envpol. 2007.10.027
- Wu, J., Cheng, S., Liang, W., and Wu, Z. (2009). Effects of organicrich sediment and below-ground sulfide exposure on submerged macrophyte, *Hydrilla verticillata. B. Environ. Contam. Tox.* 83,

497–501. doi: 10.1007/s00128-009-9800-y

Zak, D., Kleeberg, A., and Hupfer, M. (2006). Sulphate-mediated phosphorus mobilization in riverine sediments at increasing sulphate concentration, River Spree, NE Germany. *Biogeochemistry* 80, 109–119. doi: 10.1007/s10533-006-0003-x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 16 March 2013; accepted: 02 July 2013; published online: 22 July 2013. Citation: Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM and Smolders AJP (2013) Sulfide as a soil phytotoxin—a review. Front. Plant Sci. 4:268. doi: 10.3389/fpls. 2013.00268 This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Lamers, Govers, Janssen, Geurts, Van der Welle, Van Katwijk, Van der Heide, Roelofs and Smolders. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (*Oryza sativa* L.)

Berta Miro and Abdelbagi M. Ismail*

Crop and Environmental Sciences Division, International Rice Research Institute, Manila, Philippines

Edited by:

Pierdomenico Perata, Scuola Superiore Sant'Anna, Italy

Reviewed by:

Angelika Mustroph, University Bayreuth, Germany Ole Pedersen, University of Copenhagen, Denmark Leonardo Magneschi, Alexander von Humboldt Stiftung/Foundation, Germany

*Correspondence:

Abdelbagi M. Ismail, Crop and Environmental Sciences Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Manila, Philippines e-mail: a.ismail@irri.org

Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops.

Keywords: anaerobic germination, alcoholic fermentation, ALDH, pyruvate dehydrogenase bypass, hypoxia, direct seeding, flooding, submergence tolerance

INTRODUCTION

Waterlogging and floods cause considerable yield losses of major food crops worldwide. For dryland cereals such as maize, wheat, rye and barley, yield losses in rainfed and irrigated areas can reach 20% in some regions (Setter and Waters, 2003). Among cereal crops, rice is unique in being capable of growing well in waterlogged and submerged soils because of its well-developed aerenchyma system that facilitates aeration of the roots and the rhizosphere, thus alleviating most of the stresses experienced under low oxygen (Setter et al., 1997; Jackson and Ram, 2003). However, this escape mechanism is inadequate when floods are partially covering the plants for longer durations of a few weeks to months, as in stagnant, semi-deep (25-50 cm) and deepwater areas (over 50 cm to several meters), or when floods are transient but cause complete inundation for shorter durations of up to 2 weeks as in flash-flood-affected areas. These types of floods are common in rainfed lowlands and flood-prone areas worldwide, and cause considerable losses in grain production each year (Singh et al., 2009, 2011; Mackill et al., 2012; Ismail et al., 2013; Colmer et al., 2014). Floods are therefore

considered major challenges for rice production, especially in South and Southeast Asia, where the majority of the world's rice farmers live and depend on rice and rice-based farming as their major source of food, income and livelihood. Moreover, the impacts of these floods seem to be worsening in recent years, due to effects commonly attributed to climate change, such as sea-level rise, the uneven distribution of rains and periodic changes in frequencies and intensities of floods caused by extreme weather events (Coumou and Rahmstorf, 2012). Nonetheless, the enormous diversity and plasticity in adaptation to contrasting hydrological conditions, ranging from aerated soils in uplands to areas with water depths exceeding 5 m in deepwater areas, has made rice one of the most amenable crops for genetic manipulation to develop varieties suitable for excess water conditions (Ismail and Mackill, 2013; Kirk et al., 2014). Several landraces that can withstand different types of floods have been identified and characterized (Table 1). Some of these landraces have subsequently been used to breed high yielding modern varieties (Mackill et al., 2012; Ismail et al., 2013).

Developmental stage	Type of flood	Tolerant varieties*	Sensitive varieties*	Main traits associated with tolerance	Major QTLs/Genes	References
Germination and early seedling growth	Flash floods/submergence Waterlogging	Khao Hlan On Ma-Zhan (Red) Khaiyan Kalonchi Kharsu Nanhi	IR42 IR64 FR13A	 Fast germination and coleoptile elongation Ability to break down and use starch under low O₂ High anaerobic respiration to avoid energy crises when oxygen is low 	qAG.71 qAG-9-2	Ismail et al., 2009, 2012; Angaji et al., 2010; Septiningsih et al., 2013
Vegetative stage	Flash flood Complete submergence	FR13A FR43B Kurkaruppan Goda Heenati Thavalu	IR42 IR64	 Reduced elongation Slow carbohydrate consumption during submergence Underwater photosynthesis Chlorophyll retention underwater Fast recovery 	SUB1A-1	Jackson and Ram, 2003; Sarkar et al., 2006; Xu et al., 2006; Mackill et al., 2012; Winkel et al., 2013 Ismail et al., 2013
	Stagnant, medium-deep (30-50 cm), longer duration (weeks to months)	IRRI 119 IRRI 154	Swarna IR64, most modern varieties	 Partial, slow elongation of the shoot High tillering ability underwater Strong culms, resistant to lodging Sufficient leaf area above water Large fertile panicles 	Not genetically characterized	Singh et al., 2011
	Deep-water (>50 cm to > 5 m)	Jalmagna Baisbish Rayada 16-3 Nang Dum To Sudu Gries	All modern lowland varieties	 Fast internode elongation with rising water 20 cm per day) Sufficient leaf area above water Kneeing ability when water recedes Large fertile panicles 	SNORKEL1 SNORKEL2	Catling, 1992; Hattori et al., 2007, 2009

*Tolerant and sensitive varieties in the table are representative examples. Modified from Ismail and Mackill (2013).

Table 1 | Examples of rice genotypes identified as tolerant or sensitive of different types of floods and main traits associated with tolerance.

Notwithstanding its tolerance of waterlogging and shallow floods during the vegetative stage, rice is extremely sensitive to anaerobic conditions during germination (anaerobic germination) and early growth of the embryo (Yamauchi et al., 1993; Ismail et al., 2009; Angaji et al., 2010). Rice seeds can germinate, and to some degree, extend their coleoptiles under hypoxic and even anoxic conditions, but fail to develop roots and leaves (Taylor, 1942; Biswas and Yamauchi, 1997; Ella and Setter, 1999). Tolerance of anaerobic conditions at these early stages is a prerequisite for effective direct-seeded rice in rainfed and flood-affected areas. Soil waterlogging or flooding can be encountered when it rains immediately after seeding or when the land is not welllevelled in irrigated areas (Kirk et al., 2014). In either case severe reductions in or failure of crop establishment can be experienced (Ismail et al., 2012). Varieties that can germinate in flooded soils could be beneficial for direct-seeded systems in these areas and even for intensive irrigated systems, where early flooding can suppress weeds (Ismail et al., 2012). This will consequently result in enormous savings in production costs as opposed to when rice is transplanted. It can also reduce the cost of manual or mechanical weeding or the use of hazardous chemicals for weed control.

Considerable progress has been made in understanding the genetics and physiology of tolerance of flooding during vegetative stage in rice and also during germination as compared with other crops, and this has been comprehensively reviewed over the recent past (e.g., Jackson and Ram, 2003; Magneschi and Perata, 2009; Bailey-Serres and Voesenek, 2010; Bailey-Serres et al., 2010, 2012; Ismail et al., 2012, 2013; Colmer et al., 2014). Genetic variation in the ability to germinate and establish in flooded soils has recently been observed in rice, and a few landraces were identified that are tolerant (Angaji et al., 2010). Here, we attempt to review some of the main physiological and molecular mechanisms studied over the past few decades that can likely explain this genetic variability in tolerance of flooding during germination within rice. We focus on alternative pathways and genes that are suggested to play a role in situations when energy crises arise in germinating seeds or other systems under low oxygen stress. Examples and evidences from studies conducted on rice and other plant species are highlighted in an attempt to recognize the traits and pathways possibly involved in tolerance. We also attempt to pinpoint gaps in knowledge to direct future studies on germination under water. Adequate understanding of the adaptive traits and pathways will help in designing effective breeding strategies to develop tolerant rice varieties for direct-seeding systems, and could guide efforts to improve tolerance of waterlogging in other crop species facing similar challenges.

PLANT RESPONSES TO FLOODING DURING GERMINATION

Several adverse conditions occur in the root zone when plants germinate under water: oxygen becomes scarce hindering root respiration and growth and gases such as CO_2 and ethylene build up. Low oxygen causes a reduction in root growth and function, thus reducing nutrient and water uptake. In addition, several phytotoxic substances such as reduced iron (Fe⁺²), manganese (Mn⁺²), hydrogen sulphide (H₂S), and intermediates of anaerobic carbon metabolism—e.g., organic acids—accumulate

to toxic concentrations. These alter the soil pH and further affect the availability and uptake of nutrients by the plant. Together, these changes cause injury to roots and the whole plant, and can lead to plant death in severe cases (Drew and Lynch, 1980; Kirk et al., 2014). Even though some genetic diversity in waterlogging tolerance has been found within some crops, as in maize, wheat, barley and rye, this diversity has not been sufficiently exploited through breeding (Drew, 1997; Setter and Waters, 2003).

Plants adapted to waterlogged or submerged conditions during germination and establishment develop different strategies to cope with these adversities. These tactics include morphological adjustments such as mesocotyl root development in Echinochloa (Everard et al., 1991), adventitious root development in Rumex palustris (Visser et al., 1997), petiole elongation also in Rumex palustris (Voesenek et al., 1990) and Ranunculus sceleratus (Horton, 1993), and coleoptile elongation in some rice varieties (Pearce and Jackson, 1991; Ismail et al., 2009). The discovery of rice genotypes with better tolerance of flooding during germination facilitated mechanistic studies to decipher some of the traits likely associated with tolerance (Ismail et al., 2009; Angaji et al., 2010; Ella et al., 2010, 2011; Septiningsih et al., 2013). Furthermore, good progress was made in developing breeding lines that are more suitable for direct-seeded systems. Major QTLs (quantitative trait loci) associated with tolerance of flooding during germination have been recently identified and are being targeted for cloning and for use in marker-assisted breeding (Angaji et al., 2010; Septiningsih et al., 2013). Despite this progress, little is known about the molecular basis of tolerance of low oxygen stress in these contrasting rice genotypes.

When flooding occurs just after direct seeding, tolerant rice genotypes germinate faster and their coleoptiles grow at a relatively faster rate to emerge from flooded soils. These genotypes are also capable of forming roots and leaves in shallow water depths (Ismail et al., 2009; Angaji et al., 2010; Figure 1). Some progress has been made in unraveling the metabolic processes that are likely associated with tolerance. These include the ability to initiate and maintain carbohydrate catabolism in germinating seeds, anaerobic respiration to sustain energy supply and maintenance of cellular extensibility of the growing embryo. As the seedling elongates to more aerated zones, aerenchyma tissue develops to provide oxygen for the submerged plant parts, especially to roots, through what is frequently referred to as the snorkel effect (Alpi and Beevers, 1983; Kawai and Uchimiya, 2000). Progressive detoxification of oxygen radicals generated in seeds and of other toxins that develop in anoxic soils also helps in preventing further injury (Ismail et al., 2009, 2012; Colmer et al., 2014; Kirk et al., 2014).

COLEOPTILE ELONGATION; AN ESCAPE STRATEGY

Rice can germinate under hypoxic or anoxic conditions, but only tolerant genotypes have the ability of fast coleoptile elongation and root formation under submerged conditions in the field (Ismail et al., 2009) (**Figure 1**). Conversely, the coleoptile growth is slow in sensitive genotypes, and they fail to develop further.

Coleoptile elongation is usually targeted for selection of tolerant rice genotypes germinating under submergence because it is easy to phenotype. Coleoptile length increases mainly through cell elongation. Cell division is active during the first 48 h of submergence, and that is the period when oxygen is mostly required (Atwell et al., 1982). Since cellular expansion consumes less energy than cell division, the latter is the main process governing elongation under anoxia (Atwell et al., 1982; Magneschi and Perata, 2009). However, no apparent variation in growth has been found between seedlings of tolerant and sensitive genotypes when seeds were pre-soaked or primed through soaking in water and dehydration before sowing and submergence (Ella et al., 2011). Presumably most rice genotypes are capable of initiating germination but cannot elongate further, probably because of bottlenecks in using energy reserves when oxygen is limiting.

Coleoptile elongation is thought to be related to the role of specific expansins under anaerobic conditions for their action in cell wall loosening (Huang et al., 2000; Choi et al., 2003; Ismail et al., 2009; Magneschi and Perata, 2009). Firstly, EXPA2 and EXPA4 were found to be expressed in submerged coleoptiles but not in aerobic or anoxic ones (Huang et al., 2000). A later study correlated EXPA4 with coleoptile and mesocotyl length (Choi et al., 2003). Moreover, EXPA7 and EXPB12 were observed to be highly expressed in elongating coleoptiles under anoxia (Lasanthi-Kudahettige et al., 2007). This would agree with previous results that EXPA2 and 4 are specific to hypoxia and therefore were not detected in the anoxic study by Lasanthi-Kudahettige et al. (2007). Another 3 expansins were also reported to be induced under submergence by Takahashi et al. (2011). These expansins EXPA1, EXPB11, and EXPB17 were differentially expressed in the rad mutant in comparison with the control, and were affected by deficiency in ADH1. Therefore, these expansins may also be related to elongation under submergence. The importance of expansins for coleoptile extension under submergence seems clearly justified in all these studies. However, all expansins seem equally important and their

activity may depend on the kind of stress or genotype being studied.

Another group of enzymes known to be associated with cell wall extensibility are peroxidases (EC 1.11.1), whose activities reduce cell extensibility (Ismail et al., 2009 and citations therein). The association of increased activities of peroxidases with reduction in elongation has been reported in some species, as in mung bean (Goldberg et al., 1987), peanuts (Zheng and van Huystee, 1992) and rice (Ismail et al., 2009). In the latter, higher peroxidase activity was reported to be negatively correlated with seed germination and seedling survival under submergence, and peroxidase concentration was significantly higher in the sensitive genotypes FR13A and IR42. Peroxidase activities, especially the cell bound forms, are negatively correlated with coleoptile elongation (Ismail et al., 2009). Yet other classes of structural proteins and enzymes were recently implicated. The action of tubulin a-1 chain (TUBA1) and actin depolymerizing factor 4 (ADF4) were suggested to be involved in fast coleoptile elongation under anaerobic conditions, as both genes are upregulated under anoxia during germination in rice (Sadiq et al., 2011). Tubulins are involved in the formation of microtubules and are important for both cell division and elongation, and ADF4 is involved in regulating actin assembly (Mayer and Jürgens, 2002; Augustine et al., 2008; Sadiq et al., 2011); therefore both are speculated to play a role in fast growth of the coleoptiles under low oxygen. However, further studies are required to ascertain the actual roles of these genes in coleoptile growth and tolerance of hypoxia or anoxia.

Phytohormones Involved in Germination and Coleoptile Elongation Under Submergence

Mechanisms of tolerance of complete submergence during vegetative stage are fairly established following the discovery of the SUB1 genes and their further characterization (Bailey-Serres and Voesenek, 2010; Bailey-Serres et al., 2010). SUB1A, an ethylene response factor (ERF; Xu et al., 2006) induces "quiescence" state marked by reduction of elongation and slowing of relevant metabolic processes (Bailey-Serres et al., 2010; Schmitz et al., 2013). In addition to SUB1A, some wild rice genotypes belonging to the C-genome group showed a similar tolerance mechanism involving a SUB1 ortholog with high similarity to SUB1C (Niroula et al., 2012). Recently, another two ERFs, SNORKEL1 and SNORKEL2, that control fast elongation under deepwater conditions were cloned and characterized (Hattori et al., 2009). Differential response to the content of the gaseous hormone ethylene thus seem to be an important aspect of submergence tolerance, either through inhibiting elongation or through promoting active growth. Indeed ethylene was shown to be involved in internode elongation in deepwater rice (Metraux and Kende, 1983). Coleoptile elongation was also reported to be regulated by ethylene (Atwell et al., 1982; van der Straeten et al., 2001; Zhou et al., 2002; Jackson, 2008). However, an ethyleneindependent anoxia response was proposed (Pearce and Jackson, 1991; Pearce et al., 1992), since ethylene and its precursor 1aminocyclopropane-1-carboxylic-acid (ACC) would not function without oxygen (reviewed in Bailey-Serres et al., 2010). While coleoptile elongation under submergence does not occur under
anoxic, but rather under hypoxic conditions in the field, the action of ethylene may still be relevant in such conditions. Other studies suggested that the importance of ethylene may be geno-type dependent (Dubois et al., 2011). Ismail et al. (2009) argued that the involvement of ethylene in coleoptile elongation under submergence probably occurs at the later stages, after active cell division and when cell expansion is predominant. Ethylene could therefore become mainly involved in coleoptile elongation when they are in contact with relatively more aerated layers of the floodwater (Ismail et al., 2012).

The phytohormones ABA and GA also seem to play important roles in submergence tolerance during germination. A recent in silico analysis identified patterns of co-expression of different genes under anoxia (Mohanty et al., 2012). This revealed ABA as a positive regulator of rice germination under submergence and its plausible interaction with ethylene for coleoptile elongation. The authors also speculated that GA may be related to inhibition of the coleoptile response to submergence during germination. These results are an apparent contradiction with the known functions of ABA and GA, which are involved in seed dormancy (Hoffmann-Benning and Kende, 1992) and seed germination, respectively. A QTL for tolerance of anaerobic conditions during germination (qAG12, Septiningsih et al., 2013) contains candidate genes that are possibly involved in promoting ABA synthesis during early stages of seed development. However, these genes-containing PIL5 (LOC_Os12g40700) and bHLH (LOC_Os12g40730) motifs, were identified within the QTL qSD12 for seed dormancy (Gu et al., 2010). Both QTLs are located close to another QTL for GA (qGAR-12) and for seedling height (qSPH-12; Septiningsih et al., 2013). The authors suggested that the QTL for GA may regulate the QTL for anaerobic germination, since GA could promote coleoptile elongation under submergence according to Horton (1991). They also suggested that alleles governing the QTL for anaerobic germination may be different from those of *qSD12* since an opposite function for ABA is expected. Further research on the qAG12 will identify the genes governing this QTL and inform on the complex role of plant hormones in anaerobic germination. Whether the hormones exchange roles as suggested by Mohanty et al. (2012) or that different alleles with opposite function govern these QTLs as suggested by Septiningsih et al. (2013) will need to be unraveled. Based on Mohanty et al. (2012), if anaerobic germination is positively regulated by ABA, the genotype Nipponbare they studied should not follow an escape strategy, but rather become quiescent under anoxic conditions. Additional results of Mohanty et al. (2012) suggest that sugar, oxygen and ethylene are part of the same activation cascade and also involve ABA and expansins during germination under flooded conditions. A similar network, which also included CIPK15 was invoked by Bailey-Serres and Voesenek (2010), except for the activation of coleoptile elongation. If the ethylene dependent and independent pathways could be linked at the ABA level and not at the shoot elongation level, then the two networks would be rather similar. However, ABA is linked to seed dormancy, suggesting high levels of the hormone would send the seed in a quiescence mode rather than activating growth of the embryo.

These divergent evidences observed in different studies could probably be partially related to experimental conditions, such as the seeds being tested under different oxygen levels or the use of varieties with variable tolerance. For example, varieties with different coping strategies may have different signaling responses involving antagonistic hormones. Such environmental and/or genetic variability could lead to diverse sets of data that should be integrated to predict the most relevant mechanisms. New studies should bring more insights into the regulatory and signaling pathways involving these hormones in different genetic backgrounds adapted to specific environments, yet contrasting in germination and early growth under submergence. According to Ismail et al. (2009, 2012) the roles of different hormones under submergence are difficult to interpret without a standardized phenotyping strategy that addresses the genetic and environmental variables such as O₂ and CO₂ concentrations, temperature and floodwater conditions. Light regime is also an important aspect of the content and interplay between ABA and GA both of which, despite classical associations with dormancy and germination, respectively, are still not definitively associated with the respective process in all plants.

Oxygen deprivation under submergence is one of the key elements that trigger different coping responses to overcome the stress. Direct oxygen signaling, sugar, calcium and pH status are some of the rudiments thought to play major roles in the signaling cascade during germination under submergence (reviewed in Bailey-Serres et al., 2012). Signaling molecules such as nitric oxide (NO), peroxide and reactive oxygen species are also linked to these processes (Finkelstein, 2010; Liu et al., 2010; Hill, 2012). Clearly, several metabolic processes are involved in the tolerant phenotype in rice, which are coordinated in a manner that facilitates germination and fast growth of the embryo to emerge from flooded soils. Since both ethylenedependent and -independent mechanisms activate a signaling cascade, whether these are truly two independent mechanisms or they are simultaneously coordinated at a specific level remains to be known. Further work is necessary to untangle the regulatory and signaling mechanisms that facilitate these two processes.

OTHER TRAITS ASSOCIATED WITH ANAEROBIC GERMINATION SELECTABLE TRAITS

One of the main areas of research in anaerobic germination of rice is the identification of traits indicative of the tolerance phenotype. The main trait used is seedling survival after 21 days of submergence under 10 cm water head. Surviving seedlings are those that emerge from the water by fast germination and coleoptile elongation (Ismail et al., 2009; Angaji et al., 2010). Another important trait is the activity of enzymes such as the α -amylases, anaerobic respiration enzymes and others from the TCA cycle, in the anaerobic pathways. Colorimetric reactions for many enzymes including dehydrogenases and peroxidases have been developed for high-throughput screening, making enzyme analysis a valid screening methodology for anaerobic germination. Moreover, new digital imaging techniques interlinking colorimetric assays with imaging spectroscopy make the screening much more straightforward.

Seed longevity is also related to anaerobic germination as shown by Ella et al. (2010) and Septiningsih et al. (2013). The first paper reported a decrease in germination under submergence when using older seeds. It also suggested increased lipid peroxidation and decreased superoxide dismutase and catalase activities as the reasons for the reduction in seed viability. Septiningsih et al. (2013) discussed the co-location of QTLs for anaerobic germination with QTLs related to seed ageing traits and suggested a relation between seed dormancy, longevity and germination under submergence. Traits associated with seed aging such as the extent of lipid peroxidation, could potentially be used as markers for indirect selection. Other morphological traits worth the attention are coleoptile diameter, days to emergence of first leaf, and the first leaf width and length. Also root characteristics such as root length, diameter, secondary root development and root hairs may be monitored. These traits may be relevant when studying genotypes with intermediate tolerance or when comparing different groups such as *indica*, aus, and temperate and tropical *japonica*. However, their relevance as selectable traits still needs to be assessed especially in relation to survival and/or coleoptile elongation.

ENZYMES RELATED TO ENERGY PRODUCTION UNDER LOW OXYGEN

Limitations of energy supply under oxygen deficient conditions caused by submergence are a major bottleneck for seed germination and seedling survival. The main adjustment is the shift from the aerobic to the anaerobic metabolism. The anaerobic fermentative processes normally generate 2-3 ATP per molecule of glucose, compared with the 36-38 molecules generated through aerobic metabolism (Fox et al., 1994; Greenway and Setter, 1996). It is also known that Pasteur Effect, involving accelerated rates of carbohydrate catabolism can provide up to 37.5% of the ATP generated under aerobic conditions in the coleoptiles of tolerant rice genotypes (Gibbs and Greenway, 2003). Hence, supplementing the energy supply through aerobic metabolism via respiration with that from anaerobic metabolism may be useful under hypoxic conditions for coleoptile growth. Some enzymes active under anoxia can use PPi instead of ATP to adapt to the low-energy environment (Carystinos et al., 1995). This suggestion was supported by the results of Huang et al. (2005a), showing up-regulation of nucleoside diphosphate kinase under anoxia, an enzyme associated with coleoptile elongation under submergence.

Another study implicating enzymes of the anaerobic pathway in rice coleoptile growth under anoxic conditions assessed the genetic variation in ATP production in six different rice genotypes; two tolerant ("Khao Hlan On" and "Khaiyan"; Ismail et al., 2009), two moderately tolerant ("Nipponbare" and "Kinmaze") and two mutant lines (*rad* lacking the ADH gene and a *PDC* insertion mutant). The study found that under both hypoxic and anoxic conditions an ATP production rate of about 10% that of the aerated conditions was maintained in the tolerant and moderately tolerant lines. The *PDC* insertion mutant maintained close to 7% and the *rad* mutant only 3.7% of the ATP produced under normoxia (Edwards et al., 2012).

ENZYMES RELATED TO CYTOPLASMIC ACIDOSIS

At the cellular level, changes in cytoplasmic pH have been considered important for cell integrity and function, energy consumption and the activation or inactivation of enzymes involved in anaerobic metabolism (Magneschi and Perata, 2009). These changes have also been considered an adaptive advantage of varieties tolerant of anoxia vs. sensitive varieties (reviewed in Greenway and Gibbs, 2003). Studies comparing pH changes under anoxia in rice and wheat reported that the cytoplasmic pH quickly recovered from low pH, and is therefore somehow regulated (Menegus et al., 1991; Kulichikhin et al., 2009). Vacuolar pH increased in tolerant rice (Menegus et al., 1991; Kulichikhin et al., 2007, 2009), but not in sensitive wheat roots under submergence (Menegus et al., 1991; Kulichikhin et al., 2007). The usual pH under aerobic conditions is about 5.6 in vacuoles of rice coleoptiles, but it becomes increasingly basic under anoxic conditions, reaching 6.0 after 14 h (Menegus et al., 1991). This pH shift in the vacuole in particular was suggested to favor a reduction in cellular energy consumption by decreasing the pH difference between the cytoplasm and the vacuole (Menegus et al., 1993). This is in agreement with later results suggesting the higher vacuolar pH is a response to a new metabolic state of energy crisis, and it is not related to cell injury under anoxia (Felle, 2005; Kulichikhin et al., 2009). Kulichikhin et al. (2009) observed that tolerant tissues under anoxia maintain a stable pH for up to 4 days. Thus, the ability to maintain the cytoplasmic pH and avoid acidosis may be an important component of tolerance of low oxygen stress. Davies et al. (1993) reported that cytoplasmic acidification as a consequence of anoxia would increase the release of energy through PPi, but would have an opposite effect on ATP synthesis. Both energy and pH maintenance in submerged rice coleoptiles have been shown to be directly related to ethanolic fermentation rates (Gibbs et al., 2000), however, association with genetic variation in germination under anaerobic conditions within rice awaits further studies.

A reduction in cytoplasmic pH has been associated with the lactic acid fermentation pathway, where lactate is produced from pyruvate through the activity of lactate dehydrogenase (LDH, EC 1.1.1.27.). The role of lactate in anoxic rice coleoptiles has been discussed and some studies suggested that it is related to a pH decrease that would then activate alcoholic fermentation as in maize root tips (Roberts et al., 1992). This reaction would generate protons that decrease the cytosolic pH by less than 1 unit. However, this role was later rebutted since lactate concentrations alone could not account for the total pH decrease in either rice coleoptiles (Menegus et al., 1991) or maize root tips (Saint-Ges et al., 1991). The ratio of succinate:lactate was also found to be relevant to the final cytoplasmic acidosis and could differentiate between tolerant and non-tolerant species depending on their ability to produce more succinate than lactate to survive anoxia (Menegus et al., 1989). Further, proton-consuming reactions in rice, such as glutamate decarboxylation could maintain the cytoplasmic pH (Menegus et al., 1989). Glutamate decarboxylation was shown to occur under anoxia in rice (Fan et al., 2003). Felle (2005) and Wang et al. (2007) discussed the role of nitrate as a proton acceptor and thus as a pH regulator. Reggiani et al. (1993, 1995) suggested that nitrate is assimilated in rice seeds germinating under anaerobic conditions. This hypothesis was supported by the studies of Fan et al. (1997) in rice coleoptiles and recently, Greenway et al. (2012) reported that nitrate is converted to ammonium in anoxic rice coleoptiles, which would maintain the pHstat. However, nitrate is quickly reduced in anaerobic soils and its implication in the internal pH balance of rice under anoxic stress is not clear (Greenway et al., 2012). The authors also attempted to assess if a lower pH would compromise plant survival or if anaerobic metabolism would be a durable supplement as suggested by Huang et al. (2005b). However, they found that the pH decrease was balanced by nitrate reduction to ammonium, organic acid pHstat and decreased permeability coefficient of the plasma membrane for protons. The implications of pH regulation under flooding have been reported in various studies, showing that tolerant species are capable of controlling cytoplasmic and vacuolar pH, and can therefore survive longer periods of anoxia (Felle, 2005; Kulichikhin et al., 2009; Greenway et al., 2012). However, the role of this pH regulation in causing higher tolerance within rice needs to be established in contrasting genotypes. Since different substrates may be involved in cytoplasmic acidosis and pH status regulation in submerged rice coleoptiles, a holistic analysis of all reactions that affect cellular pH under anoxia is necessary.

HAEMOGLOBINS IN THE HB/NO CYCLE

The nitrite oxidation product is nitric oxide (NO), which is linked to haemoglobins (Hb) through the Hb/NO cycle. Hypoxic stress activates Hb, probably through nitrite and oxygen levels that increase NO, which may then reduce metabolic activity in stressed cells (Hill, 2012). The NO and Hb are interlinked under hypoxia or anoxia in rice plants and may provide an alternative pathway for the electron transport chain under limiting oxygen conditions (Igamberdiev and Hill, 2004). Furthermore, the Hb/NO cycle maintains energy levels under anoxia and Hb may activate some signaling cascade through NO and ethylene, which in turn could trigger the development of root aerenchyma (Igamberdiev and Hill, 2004). NO may also act as an electron acceptor under oxygen deprivation, since Hb/NO cycle and glycolysis showed similar ATP production rates (15–17 nmol min⁻¹ mg⁻¹ protein) and that these were 3-5% of the aerobic ATP generated in the mitochondria (Stoimenova et al., 2007). The authors also proposed that ATP is synthesized from succinate. Both Igamberdiev and Hill (2004) and Stoimenova et al. (2007) compared rice with other species such as maize and barley, but there have been no extensive studies within rice on Hb and NO, particularly looking at contrasting rice genotypes under anoxia or hypoxia.

ADJUSTMENTS OF CARBOHYDRATE METABOLISM UNDER LOW OXYGEN

Carbohydrate metabolism is strongly inhibited when oxygen is limiting, especially the steps involved in the breakdown of starch into simple sugars for use in glycolysis, mainly because most of the enzymes involved are less active under low oxygen. A major reason for this inhibition is the activation of energy conserving steps by changing enzyme activities. However, some of these enzymes are active in rice genotypes that are tolerant of hypoxia during germination; among them are α-amylases (especially RAmy3D), sucrose synthase and aldolase, but inhibited in sensitive genotypes (Ismail et al., 2009). The second limiting step causing energy crises under low oxygen stress is the breakdown of pyruvate to generate energy through the TCA cycle. This cycle is inhibited by lack of oxygen, which acts as a terminal electron acceptor. Under such conditions, most plants, including rice, activate alternative pathways to supply substrates and sustain energy generation through glycolysis. Fermentative metabolism or anaerobic respiration in submerged coleoptiles uses alcohol, lactate and alanine fermentation pathways to regenerate NAD⁺ required for glycolysis. Among the three main pathways, alcoholic fermentation is considered the most important, since about 92% of the pyruvate generated through glycolysis is directed to ethanol production, and only 7% to lactate and 1% to alanine pathways (Kato-Noguchi, 2006). Alcoholic fermentation is strongly activated in rice during germination under oxygen deprivation, as reflected in the induction of the key enzymes, pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH) and aldehvde dehvdrogenase (ALDH). The rest of this review will discuss some of the enzymes involved in carbohydrate metabolism that are differentially activated in contrasting rice genotypes germinating under anaerobic conditions, especially those involved in the two critical steps where oxygen is limiting. Alanine metabolism under anoxia is also relevant in rice, especially as related to glutamine and glutamate synthesis for aminoacid accumulation (Reggiani et al., 2000); however, this will not be discussed in this review.

ROLE OF ANAEROBIC RESPIRATION IN SEEDS GERMINATING UNDER AEROBIC AND ANAEROBIC CONDITIONS

In aerobic (normal) conditions, seeds of cereal crops like wheat and rice, have some hypoxic or even anoxic tissues where respiration and therefore energy production become limiting during germination (van Dongen et al., 2004). Rice seeds germinating in aerobic conditions obtain energy from lipid and carbohydrate catabolism. Lipid mobilization is an important part of seed germination in aerobic conditions. Lipid degradation, βoxidation, glyoxylate cycle and related enzymes were found in germinating rice seeds after 24 h of imbibitions (He et al., 2011). During carbohydrate catabolism, both respiration and alcoholic fermentation are induced, as observed by transcript analysis of particular enzymes in germinating rice seeds (Howell et al., 2006, 2009). This is supposedly to regulate respiration and avoid internal anoxia, which would jeopardize embryo growth (Zabalza et al., 2009). Alcohol dehydrogenase (adh) deficient rad mutant accumulated pyruvate, which could accelerate respiration and lead to anoxia and irreparable cell damage. The anaerobic pathway may therefore be needed under aerobic conditions to avoid this internal crisis. Also, during the first hours of germination between 0 and 48 h after imbibition, mitochondria will be developed and respiration begins. Until 48 h after imbibition, the pyruvate dehydrogenase (PDH) complex and the tricarboxylic acid (TCA) cycle enzymes are not fully active, and energy is obtained through an alternative NADH dehydrogenase (Howell et al., 2006). A similar pattern was found for the cytochrome c, suggesting that aerobic respiration does not start until 48 h after

seed imbibition. However, under submergence, limited oxygen poses several bottlenecks in the aerobic carbohydrate metabolism. The two major bottlenecks are degradation of starch and complex carbohydrates into simple sugars and pyruvate catabolism to generate energy.

First bottleneck: degradation of starch and complex carbohydrates to soluble sugars

Continuation of carbohydrate metabolism is essential for seed germination and seedling establishment under submergence as has been highlighted in several studies (e.g., Ella and Setter, 1999; Ismail et al., 2009; Magneschi and Perata, 2009). Seeds with large carbohydrate storage reserves have an adaptive advantage under stress and pre-germinated seeds have an advantage over non-germinated seeds when oxygen is limiting (Ella et al., 2011), suggesting that the early processes during germination, especially cell division, are probably more sensitive to low oxygen stress. The only cereal with the necessary set of enzymes needed to break down starch under submergence is rice (Atwell and Greenway, 1987; Perata et al., 1992, 1993; Ismail et al., 2012). Furthermore, Ismail et al. (2009) observed that tolerant rice genotypes had greater ability to break down starch into soluble sugars than sensitive genotypes and therefore, their coleoptiles could sustain higher elongation rates. They further showed that tolerant "Khaiyan" also sustained higher soluble sugar concentrations in germinating seeds. It was later demonstrated that these tolerant landraces also store relatively more soluble sugars in their endosperm than sensitive genotypes (Ismail et al., 2012).

This initial step in starch catabolism provides soluble sugars for glycolysis and subsequent metabolic processes. Seemingly, this step is the one that mostly hinders the ability of intolerant rice varieties and other cereals such as wheat, to germinate under anaerobic conditions (Ismail et al., 2009; Magneschi and Perata, 2009). Two enzymes are considered important for carbohydrate catabolism in rice seeds germinating under low oxygen: sucrose synthase for the breakdown of sucrose, and α -amylases for starch breakdown. Sucrose synthase is functional in rice under submerged conditions at the same rate as in air, but not in wheat and barley seedlings (Magneschi and Perata, 2009). However, there is no apparent difference in the activity of sucrose synthase in seeds of tolerant and sensitive rice genotypes germinating under submergence (Ismail et al., 2009). Therefore, variation in the activity of this enzyme might not have an adaptive significance. Maintenance of higher activity of α-amylases, on the other hand, has been widely reported as an important step in carbohydrate catabolism under submergence, when oxygen is suboptimal (Guglielminetti et al., 1995; Perata et al., 1997; Hwang et al., 1999), and higher activity was observed in seeds of tolerant genotypes germinating in flooded soils. RAmy3D was differentially expressed in the tolerant genotype "Khaiyan" compared with the sensitive IR42. In addition, RAmy3D expression correlated positively with coleoptile elongation and seedling survival, especially in tolerant genotypes (Ismail et al., 2009, 2012). Since GA is apparently not produced in germinating seeds under anoxia, the GA activated α -amylase RAmy1A was not functional. Instead, RAmy3D was active in tolerant genotypes under anoxia and this

is probably because its activation is not regulated by GA as for its aerobic counterpart *RAmy1A* (Loreti et al., 2003a). That the expression of *RAmy3D* is GA independent was established in a GA mutant capable of germination under anoxia (Loreti et al., 2003b). Additional studies involving expression analysis using rice coleoptiles growing under anoxia also showed positive correlation between the expression of *RAmy3D* and starch degradation (Lasanthi-Kudahettige et al., 2007). This gene is activated during the first 2 days after submergence (Loreti et al., 2003a; Lasanthi-Kudahettige et al., 2007). Collectively, these studies suggest that this gene is important for tolerance of anaerobic conditions during germination in rice. However, since no *RAmy3D* mutant studies have been published so far, we can only speculate how indispensable the enzyme is for tolerance of submergence during germination.

RAmy3D is a glucose and sucrose sensor that is apparently activated by the protein kinase SnRK1A under glucose starvation (Lu et al., 2007). The SnRK1A in turn, gets activated by calcineurin B-like protein kinase CIPK15 (Lee et al., 2009; Kudahettige et al., 2010). Its target, the Calcineurin B-like protein 5 (CBL5) is upregulated both at the protein and mRNA levels under anoxia. CBLs contain the common calcium binding domain motif EF-hand. The up-regulation of CBL5 suggests that it may interact with CIPK15 to activate downstream signaling process involved in germination under anoxic conditions (Sadiq et al., 2011). Park et al. (2010) showed that regulation of α -amylases was disrupted by the inhibition of oxidative phosphorylation. They suggested that the removal of repression of the sugar effect on the transcription of CIPK1 is required for the activation of SnRK1A and in turn, the activation of RAmy3D during anaerobic germination of rice. Interestingly, CIPK15 has been shown to act beyond germination. It can sustain its activity until maturity under partial submergence (Lee et al., 2009). However, its role during complete submergence at the vegetative stage is not yet clear, and could either complement or conflict with the SUB1A pathway (Kudahettige et al., 2010).

Second bottleneck: metabolism of pyruvate

Three main pathways were identified for anaerobic catabolism of carbohydrates: alcoholic fermentation, lactate fermentation and alanine fermentation. Alcohol fermentation is by far considered the main alternative pathway under anaerobic conditions (Ricard et al., 1994) as the metabolic reactions occurring via the alcoholic or ethanolic fermentation does not decrease the cell pH (Geigenberger et al., 2003). The alcoholic fermentation pathway will be discussed in more details for the remainder of this review.

The first reaction in the alcoholic fermentation pathway is the conversion of pyruvate generated during glycolysis to acetaldehyde by the enzyme pyruvate decarboxylase (PDC, EC 4.1.1.1.). During this irreversible reaction, a CO_2 molecule is generated. Acetaldehyde is metabolized in one of two ways; conversion to ethanol by alcohol dehydrogenase (ADH, EC 1.1.1.1.) or conversion to acetate by mitochondrial aldehyde dehydrogenase (mALDH, EC 1.2.1.3.). When external oxygen decreases (hypoxia or anoxia), aerobic respiration is inhibited in a coordinated response that decreases the adenylate status, the TCA cycle and

glycolysis (Geigenberger et al., 2003). The response to low oxygen (a drop below 5%) has been found to act in two phases, firstly a pre-adaptation response to maintain energy levels through pdc1, pdc2, adh1, and aldh1 genes, and secondly detoxification of reactive oxygen species through e.g., catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and superoxide dismutase (Klok et al., 2002). Expression of ADH is sensitive to oxygen concentrations (van Dongen et al., 2009), and is usually the most up-regulated enzyme of the fermentative pathway. ADH quickly metabolizes acetaldehyde to reduce the risk of acetaldehyde-mediated cytotoxicity, and to generate NAD⁺ for glycolysis. Ismail et al. (2009) observed that the activity of ADH reached 100 times that of ALDH and about 10 times that of PDC in the tolerant genotype "Khao Hlan On" compared with the sensitive "IR42" (Table 2; Ismail et al., 2009; A.M. Ismail, unpublished).

Most reactions of the ethanolic fermentation seem to be substrate regulated to avoid buildup of toxic products, and also to regulate energy production and consumption (Gibbs and Greenway, 2003). For example, depletion of acetaldehyde through the two pathways of ADH and ALDH can swing the ADH reaction in the opposite direction to generate acetaldehyde, the replenishment of which can regulate the activity of PDC. Thus, ADH can indirectly regulate the pyruvate dehydrogenase (PDH) bypass under submergence by substrate regulation of acetaldehyde. Mitochondrial ALDH is activated instead of the cytoplasmic ALDH to avoid competition for NAD⁺ with glycolytic enzymes, as the cell stress regulation mechanisms involving energy saving are activated under submerged conditions (Nakazono et al., 2000). The mitochondria sequestered ALDH is not substrate inhibited.

A desaturation mechanism involving pyruvate consumption was invoked to justify the up-regulation of PDC and ADH (Ismail et al., 2009). Similarly the ADH activity was induced in germinating seeds of other cereals, but the highest induction was reported in rice (Guglielminetti et al., 2001; Shingaki-Wells et al., 2011). In anoxia-sensitive maize and pea the ADH activity increase was mostly in roots, whereas in tolerant species like rice and *Echinochloa* it increased in coleoptiles (Cobb and Kennedy, 1987). However, this trend was not found in barley (Kato-Noguchi, 1999).

Plants mutated for or overexpressing ADH and/or PDC can be used to more clearly establish the role of alcohol fermentation during hypoxia or anoxia. For example, the rice cultivar "Taipei 309" over-expressing PDC had higher tolerance of anoxia due to an increase in alcohol metabolism (Quimio et al., 2000). However, over-expression of both PDC and ADH in the same cultivar did not improve anoxia tolerance, probably because of acetaldehyde accumulation (Rahman et al., 2001). Other studies with mutations in adh (Matsumura et al., 1995, 1998; Conley et al., 1999; Takahashi et al., 2011; Tougou et al., 2012) suggest that lack of ADH1 creates an energy deficit that affects seed germination, inducing responses similar to that of germination under submergence. Takahashi et al. (2011) concluded that the shortage of energy in the rad mutant when germinated under complete submergence affected both cell division and cell extension.

The formation of acetyl CoA and the PDH bypass. The most favorable pathway in anaerobic metabolism is probably the production of acetate to remove toxic acetaldehyde and to recycle carbon for use in other pathways such the glyoxylate cycle, and to feed TCA cycle intermediates. Acetate could then accumulate or be converted into TCA cycle intermediates like malate or citrate (Yamashita and Fujiwara, 1966). Under aerobic conditions, pyruvate is converted to acetyl-CoA by the pyruvate dehydrogenase enzymatic complex. However, the first acting enzyme of the complex is not functional under anaerobic conditions, preventing direct production of acetyl-CoA from pyruvate. Thus, an alternative pathway has been suggested to involve the conversion of pyruvate to acetyl-CoA by PDC, mALDH and acetyl-CoA synthase (ACS, EC 6.2.1.1). When oxygen levels decrease NADH accumulates, the pyruvate dehydrogenase complex unit is subsequently inhibited (Yamamoto, 1966) and pyruvate does not feed the TCA cycle, since the complex is feedback regulated by NADH (Randall and Miernyk, 1990). The unit of the complex being inhibited is E1-pyruvate dehydrogenase (PDH) (Howell et al., 2009). This resulted in reduction of energy production starting after about 2 h of submergence (Vigeolas et al., 2003).

The conversion of acetaldehyde to acetyl-CoA by ALDH and ACS results in the consumption of one NAD⁺, one CoA and one ATP molecule, generating a CO₂ molecule, NADH, AMP and PPi. This 3 step alternative pathway results in a loss of two carbon molecules in the anaerobic reaction compared with the 1 step aerobic reaction of the pyruvate dehydrogenase complex. In Echinochloa coleoptiles, it has been shown that lipid synthesis and accumulation continue under anoxic conditions (Kennedy et al., 1991). That could be explained by the continuation of fatty acid synthesis through the PDC-ALDH-ACS pathway (Figure 2). These authors also found that the mitochondria maintain their integrity and functionality under anoxia. This hypothesis of the PDC-ALDH-ACS pathway has been suggested to be operational in plants as in tobacco (Tadege et al., 1997, 1999), rice (Lu et al., 2005) and Arabidopsis (Wei et al., 2009). The pathway was wellstudied in yeast, Saccharomyces cerevisiae (Klein and Jahnke, 1979; Pronk et al., 1994; van den Berg and de Steensma, 1995). Lu et al. (2005) submerged 10-day-old seedlings of an indica variety "Guangluai 4" for durations of 12h to 3 days, and found an increase in ACS activity in submerged seedlings, confirming the conversion of acetate into acetyl-CoA under submergence. Moreover, they reported an increased expression of ALDH2a during the first hours of submergence and that of ALDH2b after 2 days of submergence.

Other alternatives for acetyl CoA production may arise from the nitrogen metabolism of ketogenic aminoacids like leucine (Leu), isoleucine (Ile), tyrosine (Tyr), phenylalanine (Phe) and tryptophane (Trp) (**Figure 2**). Accumulation of Leu has been reported to increase under anaerobic conditions in rice (Fan et al., 1997; Narsai et al., 2009; Shingaki-Wells et al., 2011), providing the needed substrate for acetyl CoA production under starved conditions by bypassing the steps of the TCA cycle. Reports on other aminoacids like Tyr, Phe and Trp were inconsistent, and showed either an increase or decrease in different studies. For example, Narsai et al. (2009) reported an increase in Phe and Tyr, whereas Shingaki-Wells et al. (2011) found a decrease in Tyr and

		ADH a	ctivity		PDC activity				
Day	Khao H	llan On	IR	42	Khao H	llan On	IR4	2	
	Нурохіа	Aerobic	Нурохіа	Aerobic	Нурохіа	Aerobic	Нурохіа	Aerobic	
0	5	5.0	4.0	4.0	0.5	0.50	0.40	0.40	
1	14	6.0	5.0	5.0	1.3	0.70	0.70	0.70	
2	18	5.0	6.0	5.0	2.0	0.60	1.00	0.60	
3	20	5.0	7.0	4.0	2.2	0.50	0.90	0.50	
4	21	4.0	8.0	4.0	2.5	0.55	1.00	0.50	
5	23	3.0	8.5	3.0	3.0	0.40	0.90	0.40	
6	25	3.0	10.0	3.0	2.7	0.40	0.80	0.40	
7	24	2.5	9.0	2.5	2.2	0.30	0.85	0.30	
8	23	2.0	9.0	2.0	2.2	0.30	0.80	0.30	
9	24	1.0	9.5	2.0	2.3	0.35	1.00	0.35	
10	24	1.0	10.0	1.5	2.2	0.40	1.00	0.30	

Table 2 | Activities (units min⁻¹ mg⁻¹ protein) of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) enzymes in the tolerant "Khao Hlan On" and the sensitive "IR42" from day 0 (dry seeds) to day 10 under aerobic conditions and under 10 cm of submergence (hypoxia) in darkness.

Data adapted from Ismail et al. (2009).

no changes in Phe, but also found an increase in Trp, which was not observed in the Narsai et al. (2009) study.

The importance of ALDH in anaerobic germination. Several studies have linked increase in ALDH activity to tolerance of submergence in rice (Nakazono et al., 2000; Tsuji et al., 2003). These studies reported that the mitochondrial ALDH family in particular had the most significant increase in activity in varieties able to germinate under anaerobic conditions (Nakazono et al., 2000; Tsuji et al., 2003). These studies also concluded that ALDH2a is more responsive to anaerobiosis and could therefore play a more important role in detoxifying acetaldehyde (Meguro et al., 2006). Similar observations were recently made in a proteomics study by Sadiq et al. (2011) using seeds of the variety "Arborio" imbibed prior to submergence. Lasanthi-Kudahettige et al. (2007) found that ALDH2a (Os02g49720) was up-regulated by 11-fold and ALDH2b (Os06g15990) was down-regulated by 22 fold in Nipponbare seeds subjected to anoxia since imbibition. A study by Lu et al. (2005) using the Oryza sativa indica cultivar "Guangluai 4" found that the expression of ALDH2a was activated between 12 and 72 h after the initiation of anoxia, whereas ALDH2b was expressed 48 h after the start of the treatment. Still in another study, Wei et al. (2009) tested Arabidopsis single, double and triple mutants for the three family 2 ALDH genes with ¹⁴C-ethanol. They developed Arabidopsis mutants each lacking one gene (cytosolic aldh2C4 alleles 1 and 2; mitochondrial aldh2B4 alleles 1 and 2 and aldh2B7) and their possible combinations, and subjected the mutants and wild types to different stress treatments, including 6 h of hypoxia. They found no differences between the mutants for aldh2C4 and the wild type, suggesting that the cytosolic enzymes are not relevant for the PDC-ALDH-ACS pathway. However, they found lower ¹⁴Cethanol incorporation in the mutants lacking ALDH activity, thus suggesting that the PDH bypass cycle functions in seedlings of

Arabidopsis when the PDH enzyme is not functional. Among the three ALDH genes, they found that the main ALDH involved in the PDH bypass is *ALDH2B4*, since the ¹⁴C-ethanol incorporation rate was the lowest in the *aldh2B4* mutant. They did not, however, find any significant phenotype with the different ALDH mutants (Wei et al., 2009).

Differences in gene expression between the varieties used in these studies may be due to various reasons as shown in Dubois et al. (2011). For example, the level of tolerance may be variable between varieties, even though they have a common phenotype (coleoptile elongation under submergence). Some varieties are either moderately tolerant or sensitive of anoxia during germination; however, they have the ability to extend their coleoptiles in hypoxic conditions (A. M. Ismail, personal communication). Moreover, some varieties showed moderate elongation of their coleoptiles under hypoxia or anoxia imposed prior to seed imbibition and these genotypes may use different survival strategies than that observed in "Khao Hlan On," "Khaiyan" and other tolerant genotypes. Also sensitive varieties may have different responses at the molecular level depending on their strategy, i.e., escape or quiescence. For example in a study with the two tolerant rice genotypes, "Khao Hlan On" and "Khaiyan," and two sensitive genotypes, "FR13A" and "IR42," dry seeds were germinated in 10 cm of water in darkness. Increased activity of both PDC and ADH was observed in all genotypes under submerged (hypoxic) conditions. However, PDC and ADH activities were substantially higher in the tolerant genotypes than in the sensitive ones under submerged conditions (Ismail et al., 2009; Table 2). A similar trend was noticed for ALDH2 (A.M. Ismail, pers. communication). This higher activity in the tolerant genotypes under submerged conditions would probably indicate that tolerance of hypoxic conditions during germination is related to the capacity of the plant to metabolize acetaldehyde and recycle carbon. It has previously been reported that alcoholic fermentation toxicity

is not due to the ethanol accumulation per se, but rather to the accumulation of acetaldehyde (Perata and Alpi, 1993, in carrot).

The role of ALDH in detoxifying reactive oxygen species (ROS) has also been suggested in animal systems (Ohsawa et al., 2003; Chen et al., 2007; Xue et al., 2012). These studies found a relationship between ROS accumulation and reduced activity of ALDH2, and vice versa, reduced ROS with increasing ALDH2 activity. They also found that ALDH2 is ethanol activated, leading to the activation of a particular NO synthase in humans. This action happens by reducing ROS accumulation (Xue et al., 2012). Moreover, Chen et al. (2007) suggested that oxidative stress inhibits ALDH2 either by oxidizing the enzyme or its cofactors. In plants, there are some enzymes known to use fermentation products to produce ROS—xanthine oxidase can use acetaldehyde as

an electron donor and generate O_2^- and H_2O_2 (Harrison, 2002). Therefore, the direct action of ALDH may not detoxify ROS, but reduction in its production by metabolizing acetaldehyde may regulate ROS content. Additionally, ALDH could inhibit enzymes related to lipid peroxidation and scavenging of ROS (Kotchoni et al., 2006). Since ALDH activity is much higher in "Khao Hlan On" under submergence while ROS concentrations are lower in the same genotype, we hypothesize that ALDH has a detoxifying function for both acetaldehyde and ROS. More research is under way to provide further evidences for the role of ALDH in these processes.

Experiments at the protein level using cultivar "Arborio" (Sadiq et al., 2011) showed the expression of both ALDH2a and ALDH2b under submerged conditions. Different trends were

observed for "Khao Hlan On" and "IR42." "Khao Hlan On" maintained the same levels of both ALDH2a and ALDH2b under submergence, while "IR42" had almost negligible amounts of either protein after day 5 (A.M. Ismail, personal communication). Both rice ALDH2a and ALDH2b and *Arabidopsis* ALDH2B4 and ALDH2B7 were classified very closely in group 2 in a phylogenetic analysis by Kotchoni et al. (2010). This classification showed that rice ALDH2a (OsALDH2B5) and ALDH2b (OsALDH2B1) had similar evolution pathway as that of *Arabidopsis* ALDH2B4 and ALDH2B7. Wei et al. (2009) found that ALDH2B4 is more relevant to the PDH bypass than ALDH2B7. Apparently, further studies are needed to affirm the role of these enzymes in tolerant rice genotypes.

Regulation of alcohol fermentation and its enzymes. The upregulation of alcoholic fermentation under submergence could be associated with a decrease in oxygen (Nakazono et al., 2000; Ismail et al., 2012) or in the energy levels (Zabalza et al., 2009). It has also been suggested that Adh1 and Pdc1 genes are regulated by the concentrations of cytosolic calcium induced by low oxygen conditions (in maize, Subbaiah et al., 1994; in rice, Nakazono et al., 2000; Tsuji et al., 2000). However, the latter authors found that ALDH2a does not share the same mechanism, and there might be two signaling mechanisms under submergence: oxygen dependent and an oxygen independent one. Another hypothesis suggested that the activation of alcoholic fermentation is due to higher pyruvate concentration (discussed in Bailey-Serres and Voesenek, 2008). Based on Roberts et al. (1984) the activation of these enzymes in maize is caused by a decrease in cytoplasmic pH. The regulation of PDC and ADH activities by cellular pH under anoxia was also hypothesized earlier for rice (Davies, 1980), but it was later suggested that alcoholic metabolism is most likely regulated by pyruvate concentration than by cytosolic pH (Kato-Noguchi, 2006). Zabalza et al. (2009) also suggested that high pyruvate concentration activates alcoholic fermentation. They also argued that ADH expression is probably regulated by low oxygen, but later modified by the energy status of the tissue where it is expressed.

Some enzymes have isozyme forms in different organelles and compartmentalization of these isozymes facilitates continuation of some necessary processes in a sequestered manner. For example, the cytosolic enzyme ALDH1 is inhibited under submergence, whereas the mitochondrial enzyme ALDH2 is activated. Carystinos et al. (1995) suggested that the enzyme under stress is less effective than the enzyme active in the absence of stress, because of less efficient translation, less enzyme stability or lower activity. Results similar to those observed in rice showing higher up-regulation of the enzymes involved in alcoholic fermentation in the tolerant genotype were also reported in tolerant Echinochloa formosensis, where both PDC and ALDH were activated at much higher rates than in the sensitive E. praticola under submergence (Fukao et al., 2003). We recently observed that the 2 isozymes of ALDH are apparently co-regulated by the same activation/deactivation factor at least at the protein level (A.M. Ismail, personal communication), which seems to contradict results from Tsuji et al. (2003) and Sadiq et al. (2011), who suggested that different mechanisms are probably involved in the

regulation of ALDH2a vs. ALDH2b, since each enzyme is translated at a different time point. Higher concentration of ALDH2 under submergence suggests this enzyme is probably involved in the tolerance of rice genotypes of submergence during germination and early seedling growth, by catalyzing acetaldehyde detoxification, but further studies will be carried out to affirm this conclusion.

Another important regulatory mechanism relates to substrate concentration and saturation of the different enzymatic reactions involved (Tadege et al., 1999). The higher activities of ADH and PDC observed in the tolerant rice genotypes "Khaiyan" and "Khao Hlan On" than in the sensitive genotypes (Ismail et al., 2009), could possibly be explained by the ability of these tolerant genotypes to metabolize acetaldehyde to acetate, and thus extend the saturation point for acetaldehyde accumulation, which would otherwise be cytotoxic. Besides, tolerant genotypes might have evolved efficient mechanisms to either remobilize or sequester acetaldehyde to avoid both saturation and toxic build-up in the cell cytoplasm. It is also noteworthy mentioning a possible role of ALDH in reducing the ethanol accumulation in cells to avoid post-anoxic damage upon re-aeration. This could involve reactions of ethanol mediated by catalases forming hydrogen peroxide and also oxidation to acetate. As depicted in Meguro et al. (2006), ethanol accumulated in cells during submergence is oxidized to acetaldehyde or hydrogen peroxide when oxygen becomes available upon shifting to aerobic conditions.

Other bottlenecks: the tricarboxylic acid cycle and beyond

Some enzymatic changes also occur in the tricarboxylic acid (TCA) cycle leading to important changes favoring plant survival of anaerobic conditions (Fox and Kennedy, 1991; Fox et al., 1994; Fan et al., 2003; Howell et al., 2006; Nakamura et al., 2012). Fox and Kennedy (1991) reported that 2-oxoglutarate dehydrogenase activity decreased under anoxia and the conversion of 2-oxoglutarate to succinate was identified as the limiting step in the TCA cycle under these conditions. They also found that enzyme activities generally declined after 7 days of anoxia. Conversely, a recent study involving metabolic profiling of rice and wheat coleoptiles under anoxia reported higher concentrations of succinate and also citrate, aconitate, and fumarate under anaerobiosis (Shingaki-Wells et al., 2011). These authors further observed synthesis of the amino acids lysine, methionine, threonine and isoleucine, indicating that the TCA cycle is probably functioning to a certain extent. On the other hand, Wei et al. (2009) suggested that acetyl-CoA is likely converted into fatty acids in the plastid in Arabidopsis.

Based on Lu et al. (2005), acetyl-CoA enters the glyoxylate cycle in rice coleoptiles under anaerobic conditions. This cycle is a short version of the TCA cycle that takes place in the glyoxysome, where isocitrate is converted to glyoxylate by isocitrate lyase and glyoxylate to malate by malate synthase. By the action of these two enzymes, the cycle omits two steps of the TCA cycle: from isocitrate to α -ketoglutarate, and then to succinyl-CoA, which is then converted to succinate. By skipping these two steps, the glyoxylate cycle avoids the loss of two carbon molecules, thus giving a net of 4-carbon malate or oxaloacetate (**Figure 2**). To

prove these processes, the authors analyzed mRNA transcripts of the different enzymes involved, and they reported higher expression of isocitrate lyase and malate synthase under submergence. They then concluded that this is the pathway that rice seedlings use to keep their metabolism ongoing under submerged conditions (Lu et al., 2005). Fan et al. (2003) found evidence that the TCA cycle is maintained at least up to the α -oxoglutarate step in rice. However, analyzing the rate of malate production, they also found that malate was mainly being produced by the glyoxylate cycle. Malate could be converted to succinate in this cycle, which could then enter the mitochondrion. Fan et al. (2003) tested pre-germinated seeds of the japonica rice variety "M201" after submergence in darkness. They then followed the metabolic reactions taking place under hypoxia in vivo with ¹³C nuclear magnetic resonance. In this scenario, both cycles maintain carbohydrate catabolism and also support protein biosynthesis. A similar hypothesis was proposed by Tadege et al. (1999) in tobacco pollen. They suggested that both the TCA and glyoxylate cycles were functional, and that the two cycles were simultaneously generating substrates and energy for the cells. In the tolerant "Khao Hlan On," effective ethanol fermentation involving pyruvate decarboxylase, alcohol dehydrogenase and, more importantly, aldehyde dehydrogenase would confer an adaptive advantage for germination under submerged conditions. That could possibly be coupled with the reducing power of the glyoxylate cycle, which could sustain both carbohydrate catabolism and protein biosynthesis.

THE ROLE OF FATTY ACID β -OXIDATION IN AEROBIC CONDITIONS

Glyoxylate cycle in the glyoxysomes carries out lipid metabolism during germination (Donaldson et al., 2001). Conversion of triacylglycerols into sugars by β -oxidation, in the glyoxysomes for energy supply during germination is particularly well-studied in oilseed plants. Rice seeds contain an average of 20% lipids in bran and germ, nearly half that of an oilseed, and could be a possible source of energy under submerged conditions. This pathway can also produce more acetyl-CoA besides generating net energy. This would generate substrates via the glyoxylate cycle to continue with the partial TCA cycle and feed gluconeogenesis metabolism. In turn, it would replenish carbon in the process, thus making metabolism more efficient. The degradation of triglycerides into free fatty acids and glycerol is supposedly carried out under anoxia by ACS (Lu et al., 2005). Moreover, 28 transcripts of proteins involved in lipid metabolism have been found in comparative studies between rice seeds germinating under aerobic and anaerobic conditions (Narsai et al., 2009). However, lipid metabolism in rice germinating under anoxia or hypoxia seems to be shifted toward biosynthesis, since a large proportion of the ATP generated is allocated to maintain membrane integrity (Edwards et al., 2012). In addition, fatty acids do not seem to serve as electron acceptors under submergence in rice coleoptiles (Generosova and Vartapetian, 2005). Other glyoxysome ezymes up-regulated under anoxia, such as the ascorbate peroxidase (metabolizes H₂O₂ into H₂O) and monodehydroascorbate reductase (regenerates NAD+ from NADH; Donaldson et al., 2001) could have a role in the detoxification of reactive oxygen species (Lasanthi-Kudahettige et al., 2007). Higher activities of superoxide dismutase and catalase were also observed in seeds of tolerant rice genotypes germinating in water (Ella et al., 2011). This was associated with lower lipid peroxidation and higher survival. The definitive association of variation in expression or activities of these genes with flood tolerance in rice awaits further investigation.

CONCLUSIONS AND PERSPECTIVES

Rice is the only cereal capable of germination under submerged conditions, with substantial variation in tolerance of submergence at this stage, within cultivated varieties and landraces. Rice has been used extensively in studies of tolerance of anoxia and hypoxia and also used as a model plant when comparing different crop species. However, the regulatory and signaling mechanisms controlling tolerance of anaerobiosis during germination in tolerant rice genotypes are yet to be revealed. Some progress has been made in uncovering the major traits associated with tolerance of submergence during germination in some rice genotypes, some of which provided evidence supporting the role of the PDC-ALDH-ACS pathway in tolerance. Further studies are needed to elucidate the critical roles of the enzymes of carbohydrate, fatty acid and energy generating metabolic processes associated with tolerance. For example, RAmy3D and ALDH2 are good candidates for studies involving gene silencing or knock-out and complementation. Furthermore, identifying functional alleles associated with tolerance in major anaerobic pathways will help in speeding up breeding programs to develop tolerant rice varieties and varieties of other crops for which waterlogging is a serious problem during crop establishment as in wheat, barley and maize. These findings could also facilitate developing strategies that can help in managing and controlling aquatic weeds and weeds that are becoming problematic in paddy fields because of the evolution of new ecotypes that are more adapted to flooded conditions (Ismail et al., 2012).

Despite the efforts devoted for understanding the different mechanisms associated with tolerance of submergence during germination, development of improved varieties has not yet been possible. Steady progress has, however, been made while bottlenecks continue to be unveiled. One difficulty is the lack of homogeneity of data in the studies available. For example, there is currently little information on integrative data from studies using different approaches or addressing different mechanisms for germination under submerged conditions. Many studies on germination under submergence compare rice to other crops, with rice being the tolerant species. In some cases, studies used rice genotypes that are not particularly tolerant of anaerobic conditions during germination. Only a limited number of comparative studies have included reasonably tolerant rice genotypes, meaning those that germinate under water and develop into mature plants with little or no negative effects on crop establishment. Moreover, the experimental plans for such studies lack a unified approach in most cases, where different testing protocols are followed. Importantly, these protocols do not reflect field conditions, thereby negating the value of the results obtained toward varietal development. These are important obstructs since they lead to a major divergence of opinions in the classification of genotypes for tolerance of submergence

during germination. Furthermore, germination under submergence is a complex trait based on current evidences, which suggests that differences exist between anoxic and hypoxic treatments and different rice genotypes probably respond differently to such treatments. Environmental factors also seem to interact with tolerance, e.g., floodwater temperature, seed and seedbed conditions (Ella et al., 2010, 2011). Hence, variations in the experimental conditions may lead to different results, which are not necessarily contradictory but basically not applicable in standardizing genotype-specific tolerance mechanisms. Future research should be based on appropriately selected genotypes and experimental

REFERENCES

- Alpi, A., and Beevers, H. (1983). Effects of O₂ concentration on rice seedlings. *Plant Physiol.* 71, 30–34. doi: 10.1104/pp.71.1.30
- Angaji, S., Septiningsih, E. M., Mackill, D. J., and Ismail, A. M. (2010). QTLs associated with tolerance of anaerobic conditions during germination in rice (*Oryza sativa L.*). *Euphytica* 172, 159–168. doi: 10.1007/s10681-009-0014-5
- Atwell, B. J., and Greenway, H. (1987). The relationship between growth and oxygen uptake in hypoxic rice seedlings. J. Exp. Bot. 38, 454–466. doi: 10.1093/jxb/38.3.454
- Atwell, B. J., Waters, I., and Greenway, H. (1982). The effect of oxygen and turbulence on elongation of submergence-tolerant and -intolerant rice cultivars. *J. Exp. Bot.* 33, 1030–1044. doi: 10.1093/jxb/33.5.1030
- Augustine, R. C., Vidali, L., Kleinman, K. P., and Bezanilla, M. (2008). Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. *Plant J.* 54, 863–875. doi: 10.1111/j.1365-313X.2008.03451.x
- Bailey-Serres, J., Fukao, T., Gibbs,
 D. J., Holdsworth, M. J., Lee,
 S. C., Licausi, F., et al. (2012).
 Making sense of low oxygen sensing. *Trends Plant Sci.* 17, 1360–1385. doi: 10.1016/j.tplants.2011.12.004
- Bailey-Serres, J., Fukao, T., Ronald, P. C., Ismail, A. M., Heuer, S., and Mackill, D. J. (2010). Submergence tolerant rice: *SUB1*'s journey from landrace to modern cultivar. *Rice* 3, 138–147. doi: 10.1007/s12284-010-9048-5
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339. doi: 10.1146/annurev. arplant.59.032607.092752
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2010). Life in the balance:

a signaling network controlling survival of flooding. *Curr. Opin. Plant Biol.* 13, 489–494. doi: 10.1016/j.pbi.2010.08.002

- Biswas, J. K., and Yamauchi, M. (1997). Mechanism of seedling establishment of direct-seeded rice (*Oryza* sativa L.) under lowland conditions. *Bot. Bull. Acad. Sin.* 38, 29–32.
- Carystinos, C. D., MacDonald, H. R., Monroy, A. F., Dhindsa, R. S., and Poole, R. J. (1995). Vacuolar H⁺-translocating pyrophosphatase is Induced by anoxia or chilling in seedlings of rice. *Plant Physiol.* 108, 641–649. doi: 10.1104/pp.108.2.641
- Catling, D. (1992). *Rice in Deepwater*. (London: Macmillan).
- Chen, Y.-R., Nie, S.-D., Shan, W., Jiang, D.-J., Shi, R.-Z., Zhou, Z., et al. (2007). Decrease in endogenous CGRP release in nitroglycerine tolerance: role of ALDH-2. *Eur. J. Pharmacol.* 571, 44–50. doi: 10.1016/j.ejphar.2007.05.042
- Choi, D., Lee, Y., Cho, H. T., and Kende, H. (2003). Regulation of expansin gene expression affects growth and development in transgenic rice plants. *Plant Cell* 15, 1386–1398. doi: 10.1105/tpc.011965
- Cobb, B. G., and Kennedy, R. (1987). Distribution A. of alcohol-dehydrogenase in roots and shoots of rice (Oryza sativa) and Echinochloa seedlings. Plant Cell Environ. 10, 633-638. doi: 10.1111/j.1365-3040.1987.tb01845.x
- Colmer, T. D., Armstrong, W., Greenway, H., Ismail, A. M., Kirk, G. J. D., and Atwell, B. J. (2014). "Physiological mechanisms of flooding tolerance of rice: transient complete submergence and prolonged standing water," in *Progress in Botany*, Vol. 75, eds U. Lüttge, W. Beyschlag, and J. Cushman (Berlin; Heidelberg: Springer-Verlag), (in press). doi: 10.1007/978-3-642-38797-5_9
- Conley, T. R., Peng, H. P., and Shih, M. C. (1999). Mutations affecting

conditions to provide more insightful results on the mechanisms of tolerance of submergence during germination.

ACKNOWLEDGMENTS

We acknowledge Bill & Melinda Gates Foundation and the German Federal Ministry for Economic Cooperation and Development (BMZ) for partially supporting some of our research summarized in this review. We thank the anonymous reviewers whose comments helped improve the manuscript, Ajay Kohli for critical reading of the manuscript and Bill Hardy for editorial assistance.

induction of glycolytic and fermentative genes during germination and environmental stresses in *Arabidopsis*. *Plant Physiol*. 119, 599–607. doi: 10.1104/pp.119.2.599

- Coumou, D., and Rahmstorf, S. (2012). A decade of weather extremes. *Nat. Clim. Change* 2, 491–496.
- Davies, D. D. (1980). "Anaerobic metabolism and the production of organic acids," in *The Biochemistry* of Plants, Vol. 2, ed D. D. Davies (New York, NY: Academic Press), 581–611.
- Davies, J. M., Poole, R. J., and Sanders, D. (1993). The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP: apparent significance for inorganicpyrophosphate-driven reactions of intermediary metabolism. *Biochim. Biophys. Acta* 1141, 29–36. doi: 10.1016/0005-2728(93)90185-I
- Donaldson, R. P., Assadi, M., Karyotou, K., Olcum, T., and Qiu, T. (2001). Plant cells: peroxisomes and glyoxysomes. eLS. doi: 10.1038/npg.els. 0001677. Available online at: http:// www.javeriana.edu.co/Facultades/ Ciencias/neurobioquimica/libros/ celular/celula_archivos/plantglyoxy somes.pdf
- Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250. doi: 10.1146/annurev.arplant.48.1.223
- Drew, M. C., and Lynch, J. M. (1980). Soil anaerobiosis, microorganisms and root function. Annu. Rev. Phytopathol. 18, 37–66. doi: 10.1146/annurev.py. 18.090180.000345
- Dubois, V., Moritz, T., and Garcia-Martinez, J. L. (2011). Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba. *J. Plant Physiol.* 168, 233–241. doi: 10.1016/j.jplph.2010.07.023

- Edwards, J. M., Roberts, T. H., and Atwell, B. J. (2012). Quantifying ATP turnover in anoxic coleoptiles of rice (*Oryza sativa*) demonstrates preferential allocation of energy to protein synthesis. *J. Exp. Bot.* 63, 4389–4402. doi: 10.1093/jxb/ers114
- Ella, E. S., Dionisio-Sese, M. L., and Ismail, A. M. (2010). Proper management improves seedling survival and growth during early flooding in contrasting rice (*Oryza sativa* L.) genotypes. *Crop Sci.* 50, 1997–2008. doi: 10.2135/cropsci2009.09.0492
- Ella, E. S., Dionisio-Sese, M. L., and Ismail, A. M. (2011). Seed pretreatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. *AoB-PLANTS*, plr007. doi: 10.1093/aobpla/plr007
- Ella, E. S., and Setter, T. L. (1999). Importance of seed carbohydrates in rice seedling establishment under anoxia. *Acta Hort.* 504, 209–216.
- Everard, J. D., Lecain, D. R., Rumpho, M. E., and Kennedy, R. A. (1991). Mesocotyl root formation in *Echinochloa phyllopogon* (Poaceae) in relation to root zone aeration. *Am. J. Bot.* 78, 462–469. doi: 10.2307/2445255
- Fan, T. W. M., Higashi, R. M., Frenkiel, T. A., and Lane, A. N. (1997). Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. *J. Exp. Bot.* 48, 1655–1666.
- Fan, T. W. M., Lane, A. N., and Higashi, R. M. (2003). *In vivo* and *in vitro* metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. *Russ. J. Plant Physiol.* 50, 787–793. doi: 10.1023/B:RUPP. 0000003276.14947.16
- Felle, H. H. (2005). pH regulation in anoxic plants. *Ann. Bot.* 96, 519–532. doi: 10.1093/aob/mci207
- Finkelstein, R. R. (2010). "The role of hormones during seed development and germination. biosynthesis, signal transduction,

action!" in *Plant Hormones*, ed P. J. Davies (Dordrecht: Kluwer Academic Publishers), 549–573. doi: 10.1007/978-1-4020-2686-7_24

- Fox, T. C., and Kennedy, K. A. (1991). Mitochondrial enzymes in aerobically and anaerobically germinated seedlings of *Echinochloa* and rice. *Planta* 184, 510–514. doi: 10.1007/BF00197900
- Fox, T. C., Kennedy, R. A., and Rumpho, M. E. (1994). Energetics of plant-growth under anoxia metabolic adaptations of Oryza sativa and Echinochloa phyllopogon. Ann. Bot. 74, 445–455. doi: 10.1006/anbo.1994.1140
- Fukao, T., Kennedy, R. A., Yamasue, Y., and Rumpho, M. E. (2003). Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of *Echinochloa crus-galli* varieties tolerant and intolerant of anoxia. *J. Exp. Bot.* 54, 1421–1429. doi: 10.1093/jxb/erg140
- Geigenberger, P., Fernie, A. R., Gibon, Y., Christ, M., and Stitt, M. (2003). Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. *Biol. Chem.* 381, 723–740.
- Generosova, I. P., and Vartapetian, B. B. (2005). On the physiological role of anaerobically synthesized lipids in Oryza sativa seedlings. Russ. J. Plant Physiol. 52, 481–488. doi: 10.1007/s11183-005-0071-0
- Gibbs, J., and Greenway, H. (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. *Funct. Plant Biol.* 30, 1–47. doi: 10.1071/PP98095
- Gibbs, J., Morrell, S., Valdez, A., Setter, T. L., and Greenway, H. (2000). Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J. Exp. Bot. 51, 785–796. doi: 10.1093/jexbot/51.345.785
- Goldberg, R., Liberman, M., Mathieu, C., Peirron, M., and Catesson, A. M. (1987). Development of epidermal cell wall peroxidase along the mung bean hypocotyls: possible involvement in the cell wall stiffening process. *J. Exp. Bot.* 38, 1378–1390. doi: 10.1093/jxb/38.8.1378
- Greenway, H., and Gibbs, J. (2003). Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. *Funct. Plant Biol.* 30, 999–1036. doi: 10.1071/PP98096
- Greenway, H., Kulichikhin, K. Y., Cawthray, G. R., and Colmer, T. D. (2012). pH regulation in anoxic rice

coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NO₃⁻. *J. Exp. Bot.* 63, 1969–1983. doi: 10.1093/jxb/err395

- Greenway, H., and Setter, T. L. (1996). "Is there anaerobic metabolism in submerged rice plants? A view point," in *Physiology of stress tolerance in rice*, eds V. P. Singh, R. K. Singh, B. B. Singh, and R. S. Zeigler. (Manila: Narendra Deva University of Agriculture and Technology and International Rice Research Institute). 11–30.
- Gu, X.-Y., Liu, T., Feng, J., Suttle, J. C., and Gibbons, J. (2010). The *qSD12* underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. *Plant Mol. Biol.* 73, 97–104. doi: 10.1007/s11103-009-9555-1
- Guglielminetti, L., Busilacchi, H. A., Perata, P., and Alpi, A. (2001). Carbohydrate-ethanol transition in cereal grains under anoxia. *New Phytol.* 151, 607–612. doi: 10.1046/j.0028-646x.2001.00218.x
- Guglielminetti, L., Perata, P., and Alpi, A. (1995). Effect of anoxia on carbohydrate-metabolism in rice seedlings. *Plant Physiol.* 108, 735–741.
- Harrison, R. (2002). Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33, 774–797. doi: 10.1016/S0891-5849(02)00956-5
- Hattori, Y., Nagai, K., Furukawa, S., Song, X. L., Kawano, R., and Sakakibara, H. (2009). The ethylene response factors *SNORKEL1* and *SNORKEL2* allow rice to adapt to deep water. *Nature* 460, 1026–1030. doi: 10.1038/nature08258
- Hattori, Y., Nagai, K., Furukawa, S., Song, X.-J., Kawano, R., Sakakibara, H., et al. (2007). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. *Nature* 460, 1026–1030. doi: 10.1038/nature08258
- He, D., Han, C., Yao, J., Shen, S., and Yang, P. (2011). Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. *Proteomics* 11, 2693–2713 doi: 10.1002/pmic.201000598
- Hill, R. D. (2012). Non-symbiotic haemoglobins—What's happening beyond nitric oxide scavenging? AoB-PLANTS, pls004 doi: 10.1093/aobpla/pls004
- Hoffmann-Benning, S., and Kende, H. (1992). On the role of abscisic acid and gibberellin in the regulation of growth in rice.

Plant Physiol. 99, 1156–1161. doi: 10.1104/pp.99.3.1156

- Horton, R. F. (1991). The effect of ethylene and other regulators on coleoptile growth of rice under anoxia. *Plant Sci.* 79, 57–62. doi: 10.1016/ 0168-9452(91)90069-K
- Horton, R. F. (1993). Peroxidase, ethylene, and submergencepromoted growth of petiole of *Ranunculus sceleratus* L. *J. Plant Physiol.* 141, 690–693. doi: 10.1016/S0176-1617(11)81575-0
- Howell, K. A., Millar, A. H., and Whelan, J. (2006). Ordered assembly of mitochondria during rice germination begins with promitochondrial structures rich in components of the protein import apparatus. *Plant Mol. Biol.* 60, 201–223. doi: 10.1007/s11103-005-3688-7
- Howell, K. A., Narsai, R., Carroll, A., Ivanova, A., Lohse, M., Usadel, B., et al. (2009). Mapping metabolic and transcript temporal switches during germination in *Oryza sativa* highlights specific transcription factors and the role of RNA instability in the germination process. *Plant Physiol.* 149, 961–980. doi: 10.1104/pp.108.129874
- Huang, J. Y., Chang, T., Chang, C. Y., and Chen, C. J. (2005a). Crystal structure of nucleoside diphosphate kinase required for coleoptile elongation in rice (*Oryza sativa L.*). *J. Struct. Biol.* 150, 309–318. doi: 10.1016/j.jsb.2005.02.010
- Huang, S., Ishizawa, K., Greenway, H., and Colmer, T. D. (2005b). Manipulation of ethanol production in anoxic rice coleoptiles by exogenous glucose determines rates of ion fluxes and provides estimates of energy requirements for cell maintenance during anoxia. *J. Exp. Bot.* 56, 2453–2463. doi: 10.1093/jxb/eri238
- Huang, J., Takano, T., and Akita, S. (2000). Expression of α -expansin genes in young seedlings of rice. *Planta* 211, 467–473. doi: 10.1007/s004250000311
- Hwang, Y. S., Thomas, B. R., and Rodriguez, R. L. (1999). Differential expression of rice alpha-amylase genes during seedling development under anoxia. *Plant Mol. Biol.* 40, 911–920. doi: 10.1023/A:1006241811136
- Igamberdiev, A. U., and Hill, R. D. (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. *J. Exp. Bot.* 55, 2473–2482. doi: 10.1093/jxb/erh272
- Ismail, A. M., Ella, E. S., Vergara, G. V., and Mackill, D. J. (2009).

Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (*Oryza sativa*). *Ann. Bot.* 103, 197–209. doi: 10.1093/aob/mcn211

- Ismail, A. M., Johnson, D. E., Ella, E. S., Vergara, G. V., and Baltazar, A. M. (2012). Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. *AoB-PLANTS*, pls019 doi: 10.1093/aobpla/pls019
- Ismail, A. M., and Mackill, D. J. (2013). "Response to flooding: submergence tolerance in rice," in *Plant Genetic Responses and Climate Change, Chapter 15*, eds M. Jackson B. Ford-Lloyd and M. Parry (London: CABI International), (in press).
- Ismail, A. M., Singh, U. S., Singh, S., Dar, M. H., and Mackill, D. J. (2013). The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone areas. *Field Crops Res.* (in press). doi: 10.1016/j.fcr.2013. 01.007.
- Jackson, M. B. (2008). Ethylenepromoted elongation: an adaptation to submergence stress. *Ann. Bot.* 101, 229–248. doi: 10.1093/aob/mcm237
- Jackson, M. B., and Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 91, 227–241. doi: 10.1093/aob/mcf242
- Kato-Noguchi, H. (1999). Flooding induction of alcohol dehydrogenase in shoots and roots of barley seedlings. Acta Physiol. Plant. 21, 17–20. doi: 10.1007/s11738-999-0022-z
- Kato-Noguchi, H. (2006). Pyruvate metabolism in rice coleoptiles under anaerobiosis. *Plant Growth Regul.* 50, 41–46. doi: 10.1007/s10725-006-9124-4
- Kawai, M., and Uchimiya, H. (2000). Coleoptile senescence in rice (*Oryza sativa* L.). Ann. Bot. 58, 405–414. doi: 10.1006/anbo.2000.1199
- Kennedy, R. A., Rumpho, M. E., and Fox, T. C. (1991). Anaerobic metabolism in plants. *Plant Physiol.* 100, 1–6. doi: 10.1104/pp.100.1.1
- Kirk, G. J. D., Greenway, B. J., Atwell, B. J., Ismail, A. M., and Colmer, T. D. (2014). "Adaptation of rice to flooded soils," in *Progress in Botany*, Vol. 75, eds U. Lüttge, W. Beyschlag, and J. Cushman (Berlin; Heidelberg: Springer-Verlag), (in press). doi: 10.1007/978-3-642-38797-5_8

- Klein, H. P., and Jahnke, L. (1979). Effects on formation and localization of the acetyl-coenzyme A synthetases of *Saccharomyces cerevisiae*. J. Bacteriol. 137, 179–184.
- Klok, E. J., Wilson, I. W., Wilson, D., Chapman, S. C., Ewing, R. B., Somerville, S. C., et al. (2002). Expression profile analysis of the low-oxygen response in *Arabidopsis* root cultures. *Plant Cell* 14, 2481–2494. doi: 10.1105/tpc.004747
- Kotchoni, S. O., Jimenez-Lopez, J. C., Gao, D., Edwards, V., Gachomo, E. W., Margam, V. M., et al. (2010). Modeling-dependent protein characterization of the rice aldehyde dehydrogenase (ALDH) superfamily reveals distinct functional and structural features. *PLoS ONE* 5:e11516. doi: 10.1371/journal.pone.0011516
- Kotchoni, S. O., Kuhns, C., Ditzer, A., Kirch, H. H., and Bartels, D. (2006). Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ. 29, 1033–1048. doi: 10.1111/j.1365-3040.2005.01458.x
- Kudahettige, N. P., Pucciariello, C., Parlanti, S., Alpi, A., and Perata, P. (2010). Regulatory interplay of the *Sub1A* and *CIPK15* pathways in the regulation of α -amylase production in flooded rice plants. *Plant Biol.* 13, 611–619. doi: 10.1111/j.1438-8677.2010.00415.x
- Kulichikhin, K. Y., Aitio, O., Chirkova, T. V., and Fagerstedt, K. V. (2007). Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (*Oryza sativa*) and wheat (*Triticum aestivum*) root tips: *in vivo* ³¹P-NMR study. *Physiol. Plant.* 129, 507–518. doi: 10.1111/i.1399-3054.2006.00819.x
- Kulichikhin, K. Y., Greenway, H., Byrne, L., and Colmer, T. D. (2009). Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral conditions. *J. Exp. Bot.* 60, 2119–2128. doi: 10.1093/jxb/erp090
- Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., et al. (2007). Transcript profiling of the anoxic rice coleoptile. *Plant Physiol*. 144, 218–231. doi: 10.1104/pp.106.093997
- Lee, K. W., Chen, P. W., Lu, C. A., Chen, S., Ho, T. H. D., and Yu, S. M. (2009). Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate

flooding. Sci. Signal. 2, ra61. doi: 10.1126/scisignal.2000333

- Liu, Y. G., Ye, N. H., Liu, R., Chen, M. X., and Zhang, J. H. (2010). H₂O₂ mediates the regulation of ABA catabolism and GA biosynthesis in *Arabidopsis* seed dormancy and germination. *J. Exp. Bot.* 61, 2979–2990. doi: 10.1093/ ixb/era125
- Loreti, E., Alpi, A., and Perata, P. (2003a). Alpha-amylase expression under anoxia in rice seedlings: an update. *Russ. J. Plant Physiol.* 50, 737–742. doi: 10.1023/B:RUPP. 0000003271.64810.16
- Loreti, E., Yamaguchi, J., Alpi, A., and Perata, P. (2003b). Gibberellins are not required for rice germination under anoxia. *Plant Soil* 253, 137–143. doi: 10.1023/A:1024539011641
- Lu, C. A., Lin, C. C., Lee, K. W., Chen, J. L., Huang, L. F., Ho, S. L., et al. (2007). The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. *Plant Cell* 19, 2484–2499. doi: 10.1105/tpc.105.037887
- Lu, Y., Wu, Y.–R., and Han, B. (2005). Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle. Acta Biochim. Biophys. Sin. 37, 406–414. doi: 10.1111/j.1745-7270.2005.00060.x
- Mackill, D. J., Ismail, A. M., Singh, U. S., Labios, R. V., and Paris, T. R. (2012). Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. *Adv. Agron.* 115, 303–356. doi: 10.1016/B978-0-12-394276-0.00006-8
- Magneschi, L., and Perata, P. (2009). Rice germination and seedling growth in the absence of oxygen. Ann. Bot. 103, 181–196. doi: 10.1093/aob/mcn121
- Matsumura, H., Takano, T., Takeda, G., and Uchimiya, H. (1998). *Adh1* is transcriptionally active but its translational product is reduced in a *rad* mutant of rice (*Oryza sativa* L.), which is vulnerable to submergence stress. *Theor. Appl. Genet.* 97, 1197–1203. doi: 10.1007/s001220051010
- Matsumura, H., Takano, T., Yoshida, K. T., and Takeda, G. (1995). A rice mutant lacking alcoholdehydrogenase. *Breed. Sci.* 45, 365–367.
- Mayer, U., and Jürgens, G. (2002). Microtubule cytoskeleton: a track record. *Curr. Opin. Plant Biol.* 5, 494–501. doi: 10.1016/S1369-5266(02)00302-3

- Meguro, N., Tsuji, H., Tsutsumi, N., Nakazono, M., and Hirai, A. (2006). "Involvement of aldehyde dehydrogenase in alleviation of postanoxic injury in rice," in *Abiotic Stress Tolerance in Plants*, eds A. K. Rai and T. s. Takabe (Dordrecht: Springer), 111–119. doi: 10.1007/1-4020-4389-9_7
- Menegus, F., Cattaruzza, L., Chersi, A., and Fronza, G. (1989). Differences in the anaerobic lactate-succinate production and in the changes of cell sap pH for plants with high and low resistance to anoxia. *Plant Physiol.* 90, 29–32. doi: 10.1104/pp.90.1.29
- Menegus, F., Cattaruzza, L., Mattana, M., Beffagna, N., and Ragg, E. (1991). Response to anoxia in rice and wheat seedlings: changes in the pH of intracellular compartments, glucose-6-phosphate level, and metabolic rate. *Plant Physiol.* 95, 760–767. doi: 10.1104/pp.95.3.760
- Menegus, F., Cattaruzza, L., Molinari, H., and Ragg, E. (1993). "Rice and wheat seedlings as plant models of high and low tolerance to anoxia," in *Surviving Hypoxia*, eds P. W. Hochachka, P. L. Lutz, T. Sick, M. Rosenthal, and G. van den Thillart (Boca Raton, FL: CRC Press), 53–64.
- Metraux, J. P., and Kende, H. (1983). The role of ethylene in the growth response of deepwater rice. *Plant Physiol.* 72, 441–446. doi: 10.1104/pp.72.2.441
- Mohanty, B., Herath, V., Wijaya, E., Yeo, H. C., Reyes, B. G., and Lee, D. -Y. (2012). Patterns of *cis*-element enrichment reveal potential regulatory modules involved in the transcriptional regulation of anoxia response of japonica rice. *Gene* 511, 235–242. doi: 10.1016/j.gene.2012.09.048
- Nakamura, T., Yamamoto, R., Hiraga, S., Nakayama, N., Okazaki, K., Takahashi, H., et al. (2012). Evaluation of metabolite alteration under flooding stress in soybeans. *Jpn. Agric. Res. Q.* 46, 237–248. doi: 10.6090/jarq.46.237
- Nakazono, M., Tsuji, H., Li, Y. H., Saisho, D., Arimura, S., Tsutsumi, N., et al. (2000). Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. *Plant Physiol*. 124, 587–598. doi: 10.1104/pp.124.2.587
- Narsai, R., Howell, K. A., Carroll, A., Ivanova, A., Millar, A. H., and Whelan, J. (2009). Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings.

Plant Physiol. 151, 306–322. doi: 10.1104/pp.109.142026

- Niroula, R. K., Pucciariello, C., Ho, V. T., Novi, G., Fukao, T., and Perata, P. (2012). SUB1Adependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. *Plant J.* 72, 282–293. doi: 10.1111/j.1365-313X.2012.05078.x
- Ohsawa, I., Nishimaki, K., Yasuda, C., Kamino, K., and Ohta, S. (2003). Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells. *J. Neurochem.* 84, 1110–1117. doi: 10.1046/j.1471-4159.2003.01619.x
- Park, M., Yim, H. K., Park, H. G., Lim, J., Kim, S. H., and Hwang, Y. S. (2010). Interference with oxidative phosphorylation enhances anoxic expression of rice alphaamylase genes through abolishing sugar regulation. J. Exp. Bot. 61, 3235–3244. doi: 10.1093/ jxb/erq145
- Pearce, D. M. E., Hall, K. C., and Jackson, M. B. (1992). The effects of oxygen, carbon-dioxide and ethylene on ethylene biosynthesis in relation to shoot extension in seedlings of rice (Oryza sativa) and barnyard grass (Echinochloa oryzoides). Ann. Bot. 69, 441–447.
- Pearce, D. M. E., and Jackson, M. B. (1991). Comparison of growth responses of barnyard grass (*Echinochloa oryzoides*) and rice (*Oryza sativa*) to submergence, ethylene, carbon-dioxide and oxygen shortage. *Ann. Bot.* 68, 201–209.
- Perata, P., and Alpi, A. (1993). Plant responses to anaerobiosis. *Plant Sci.* 93, 1–17. doi: 10.1016/0168-9452(93)90029-Y
- Perata, P., Geshi, N., Yamaguchi, J., and Akazawa, T. (1993). Effect of anoxia on the induction of α-amylase in cereal seeds. *Planta* 191, 402–408. doi: 10.1007/BF00195699
- Perata, P., Guglielminetti, L., and Alpi, A. (1997). Mobilization of endosperm reserves in cereal seeds under anoxia. Ann. Bot. 79, 49–56. doi: 10.1093/oxfordjournals.aob.a010306
- Perata, P., Pozuetaromero, J., Akazawa, T., and Yamaguchi, J. (1992). Effect of anoxia on starch breakdown in rice and wheat seeds. *Planta* 188, 611–618. doi: 10.1007/BF00197056
- Pronk, J. T., Wenzel, T. J., Luttik, M. A. H., Klaassen, C. C. M., Scheffers, W. A., Steensma, H. Y., et al. (1994). Energetic aspects of glucose metabolism in a pyruvatedehydrogenase-negative mutant

of Saccharomyces cerevisiae. Microbiology 140, 601–610. doi: 10.1099/00221287-140-3-601

- Quimio, C. A., Torrizo, L. B., Setter, T. L., Ellis, M., Grover, A., Abrigo, E. M., et al. (2000). Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. *J. Plant Physiol.* 156, 516–521. doi: 10.1016/S0176-1617(00)80167-4
- Rahman, M., Grover, A., Peacock, W. J., Dennis, E. S., and Ellis, M. H. (2001). Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust. J. Plant Physiol. 28, 1231–1241.
- Randall, D. D., and Miernyk, J. A. (1990). "The mitochondrial pyruvate dehydrogenase complex" in *Methods in Plant Biochemistry* Vol. 3, ed P. Lea, (London: Academic Press) 175–192. doi: 10.1016/B978-0-12-461013-2.50017-4
- Reggiani, R., Bertini, F., and Mattana, M. (1995). Incorporation of nitrate nitrogen into amino acids during the anaerobic germination of rice. *Amino Acids* 9, 385–390. doi: 10.1007/BF00807275
- Reggiani, R., Mattana, M., Aurisano, N., and Bertani, A. (1993). The rice coleoptiles: an example of anaerobic nitrate assimilation. *Physiol. Plant.* 89, 640–643. doi: 10.1111/j.1399-3054.1993.tb05227.x
- Reggiani, R., Nebuloni, M., Mattana, M., and Brambilla, I. (2000). Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. *Amino Acids* 18, 207–217. doi: 10.1007/s007260050018
- Ricard, B., Couee, I., Raymond, P., Saglio, P. H., Saintges, V., and Pradet, A. (1994). Plant metabolism under hypoxia and anoxia. *Plant Physiol. Biochem.* 32, 1–10.
- Roberts, J. K. M., Callis, J., Wemmer, D., Walbot, V., and Jardetzky, O. (1984). Mechanism of cytoplasmic pH regulation in hypoxic maize root-tips and its role in survival under hypoxia. *Proc. Natl. Acad. Sci. U.S.A.* 81, 3379–3383. doi: 10.1073/pnas.81.11.3379
- Roberts, J. K. M., Hooks, M. A., Miaullis, A. P., Edwards, S., and Webster, C. (1992). Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using nuclearmagnetic resonance spectroscopy. *Plant Physiol.* 98, 480–487. doi: 10.1104/pp.98.2.480
- Sadiq, I., Fanucchi, F., Paparelli, E., Alpi, E., Bachi, T., Alpi, A., et al.

(2011). Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. *J. Plant Physiol.* 168, 2234–2243.

- Saint-Ges, V., Roby, C., Bligny, R., Pradet, A., and Douce, R. (1991). Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. *Eur. J. Biochem.* 200, 477–482. doi: 10.1111/j.1432-1033.1991.tb16207.x
- Sarkar, R. K., Reddy, J. N., Sharma, S. G., and Ismail, A. M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement. *Curr. Sci.* 91, 899–906.
- Schmitz, A. J., Flson, J. J., Jikamaru, Y., Ronald, P., and Walia, H. (2013). SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteriod pathway. New Phytol. 198, 1060–1070. doi: 10.1111/nph.12202
- Septiningsih, E. M., Ignacio, J. C. I., Sendon, P. M. D., Sanchez, D. L., Ismail, A. M., and Mackill, D. J. (2013). QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. *Theor. Appl. Gen.* 126, 1357–1366. doi: 10.1007/ s00122-013-2057-1
- Setter, T. L., Ellis, M., Laureles, C. V., Ella, E. S., Senadhira, D., Mishra, S. B., et al. (1997). Physiology and genetics of submergence tolerance in rice. *Ann. Bot.* 79, 67–77. doi: 10.1093/oxfordjournals.aob.a010308
- Setter, T. L., and Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. *Plant Soil* 253, 1–34. doi: 10.1023/A:1024573305997
- Shingaki-Wells, R. N., Huang, S., Taylor, N. L., Carroll, A. J., Zhou, W., and Millar, A. H. (2011). Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. *Plant Physiol*, 156, 1706–1724. doi: 10.1104/pp.111.175570
- Singh, S., Mackill, D. J., and Ismail, A. M. (2009). Responses of Sub1 rice introgression lines to submergence in the field: yield and grain quality. *Field Crops Res.* 113, 12–23. doi: 10.1016/j.fcr.2009.04.003
- Singh, S., Mackill, D. J., and Ismail, A. M. (2011). Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice.

Field Crops Res. 121, 311–323. doi: 10.1016/j.fcr.2010.12.021

- Stoimenova, M., Igamberdiev, A. U., Gupta, K. J., and Hill, R. D. (2007). Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. *Planta* 226, 465–474. doi: 10.1007/s00425-007-0496-0
- Subbaiah, C. C., Zhang, J., and Sachs, M. M. (1994). Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. *Plant Physiol*. 105, 369–376. doi: 10.1104/pp.105.1.369
- Tadege, M., Brandle, R., and Kuhlemeier, C. (1997). Anoxia tolerance in tobacco roots: effect of overexpression of pyruvate decarboxylase. *Plant J.* 14, 327–335. doi: 10.1046/j.1365-313X.1998.00130.x
- Tadege, M., Dupuis, I., and Kuhlemeier, C. (1999). Ethanolic fermentation: new functions for an old pathway. *Trends Plant Sci.* 4, 320–325. doi: 10.1016/S1360-1385(99)01450-8
- Takahashi, H., Saika, H., Matsumura, H., Nagamura, Y., Tsutsumi, N., Nishizawa, N. K., et al. (2011).
 Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Ann. Bot. 108, 253–261. doi: 10.1093/aob/mcr137
- Taylor, D. L. (1942). Influence of oxygen tension on respiration, fermentation and growth of wheat and rice. *Am. J. Bot.* 29, 721–738. doi: 10.2307/2437726
- Tougou, M., Hashiguchi, A., Yukawa, K., Nanjo, Y., Hiraga, S., Nakamura, T., et al. (2012). Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. *Plant Biotechnol.* 29, 301–305. doi: 10.5511/plantbiotechnology.12.0301a
- Tsuji, H., Meguro, N., Suzuki, Y., Tsutsumi, N., Hirai, A., and Nakazono, M. (2003). Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice. *FEBS Lett.* 546, 369–373. doi: 10.1016/S0014-5793(03)00631-8
- Tsuji, H., Nakazono, M., Saisho, D., Tsutsumi, N., and Hirai, A. (2000). Transcript levels of the nuclearencoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene. *FEBS Lett.* 471, 201–204. doi: 10.1016/S0014-5793 (00)01411-3
- van den Berg, M. A., and de Steensma, H. Y. (1995). *ACS2*, a *Saccharomyces cerevisiae* gene encoding

acetyl-coenzyme essential for growth on glucose. *Eur. J. Biochem.* 231, 704–713. doi: 10.1111/j.1432-1033.1995.tb20751.x

- van der Straeten, D., Zhou, Z., Prinsen, E., Van Onckelen, H., and Van Montagu, M. (2001). A comparative molecular-physiological study of submergence response in lowland and deepwater rice. *Plant Physiol.* 125, 955–968. doi: 10.1104/pp.125.2.955
- van Dongen, J. T., Frohlich, A., Ramirez-Aguilar, S. J., Schauer, N., Fernie, A. R., Erban, A., et al. (2009). Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of *Arabidopsis* plants. *Ann. Bot.* 103, 269–280. doi: 10.1093/aob/mcn126
- van Dongen, J. T., Roeb, G. W., Dautzenberg, M., Froehlich, A., Vigeolas, H., Minchin, P. E. H., et al. (2004). Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds. *Plant Physiol.* 135, 1809–1821. doi: 10.1104/pp.104.040980
- Vigeolas, H., van Dongen, J. T., Waldeck, P., Huhn, D., and Geigenberger, P. (2003). Lipid storage metabolism is limited by the prevailing low oxygen concentrations oilseed rape. *Plant Physiol.* 33, 2048–2060. doi: 10.1104/pp.103.031963
- Visser, E. J. W., Nabben, R. H. M., Blom, C. W. P. M., and Voesenek, L. A. C. J. (1997). Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. *Plant Cell Environ.* 20, 647–653. doi: 10.1111/j.1365-3040.1997.00097.x
- Voesenek, L. A. C. J., Perik, P. J. M., Blom, C. W. P. M., and Sassen, M. M. A. (1990). Petiole elongation in *Rumex* species during submergence and ethylene exposure—the relative contributions of celldivision and cell expansion. *J. Plant Growth Regul.* 9, 13–17. doi: 10.1007/BF02041936
- Wang, R., Xing, X., and Crawford, N. (2007). Nitrite acts as a transcriptome signal at micromolar concentrations in *Arabidopsis* roots. *Plant Physiol.* 145, 1735–1745. doi: 10.1104/pp.107.108944
- Wei, Y., Lin, M., Oliver, D. J., and Schnable, P. S. (2009). The roles of aldehyde dehydrogenases (ALDHs) in the PDH bypass of Arabidopsis. BMC Biochem. 10:7. doi: 10.1186/1471-2091-10-7
- Winkel, A., Colmer, T. D., Ismail, A. M., and Pedersen, O. (2012).

Internal aeration of paddy field rice (*Oryza sativa*) during complete submergence: importance of light and floodwater O₂. *New Phytol.* 197, 1193–1203. doi: 10.1111/nph.12048

- Xu, K., Xia, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., et al. (2006). Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708. doi: 10.1038/nature04920
- Xue, L., Xu, F., Meng, L., Wei, S., Wang, J., Hao, P., et al. (2012). Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanolinduced eNOS activation. *FEBS Lett.* 586, 137–142.
- Yamamoto, Y. (1966). Variation of nicotinamide adenine dinucleotide

phosphate level in bean hypocotyls in relation to O_2 concentration. *Plant Physiol.* 41, 519–522. doi: 10.1104/pp.41.3.519

- Yamashita, T, and Fujiwara, A. (1966). Metabolism of acetate-1-1⁴C in rice leaves. *Soil Sci. Plant Nutr.* 12, 14–18. doi: 10.1080/00380768.1966.10431961
- Yamauchi, M., Aguilar, A. M., Vaughan, D. A., and Seshu, D. V. (1993). Rice (*Oryza sativa* L.) germplasm suitable for direct sowing under flooded soil surface. *Euphytica* 67, 177–184. doi: 10.1007/BF0004 0619
- Zabalza, A., van Dongen, J. T., Froehlich, A., Oliver, S. N., Faix, B., Gupta, K. J., et al. (2009). Regulation of respiration and fermentation to control the plant internal oxygen concentration.

Plant Physiol. 149, 1087-1098. doi: 10.1104/pp.108.129288

- Zheng, X., and van Huystee, R. B. (1992). Peroxidase-regulated elongation of segments from peanut hypocotyls. *Plant Sci.* 81, 47–56. doi: 10.1016/0168-9452(92)90023-F
- Zhou, Z., de Almeida Engler, J., Rouan, D., Michiels, F., Van Montagu, M., and Van Der Straeten, D. (2002). Tissue localization of a submergence-induced 1-aminocyclopropane-1-carboxylic acid synthase in rice. *Plant Physiol.* 129, 72–84. doi: 10.1104/pp.001206

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 March 2013; accepted: 02 July 2013; published online: 23 July 2013. Citation: Miro B and Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front. Plant Sci. 4:269. doi: 10.3389/fpls. 2013.00269

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Miro and Ismail. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Reactive oxygen species mediate growth and death in submerged plants

Bianka Steffens¹*, Anja Steffen-Heins² and Margret Sauter¹

¹ Plant Developmental Biology and Plant Physiology, Kiel University, Kiel, Germany ² Micro- and Nanostructures in Food, Kiel University, Kiel, Germany

Edited by:

Rens Voesenek, Utrecht University, Netherlands

Reviewed by:

Eric J. W. Visser, Radboud University Nijmegen, Netherlands Kurt Fagerstedt, University of Helsinki, Finland

*Correspondence:

Bianka Steffens, Plant Developmental Biology and Plant Physiology, Kiel University, Am Botanischen Garten 5, 24118 Kiel, Germany e-mail: bsteffens@bot.uni-kiel.de Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.

Keywords: reactive oxygen species, adventitious root growth, epidermal cell death, aerenchyma formation, ROS detection, electron paramagnetic resonance spectroscopy, ethylene

INTRODUCTION

In aerobic cells about 1% of metabolically consumed O2 goes into reactive oxygen species (ROS) generation (Puntarulo et al., 1988). ROS are generated from molecular oxygen by a number of reductive steps. Superoxide anions $(O_2^{\bullet-})$, hydroxyl radical ($^{\bullet}OH$), singlet oxygen $({}^{1}O_{2})$, hydroperoxyl radical (HO_{2}^{\bullet}) , and ozone (O_{3}) are generated by a one-electron to three-electron reduction of oxygen with reductive power being provided by electron carriers in mitochondria and chloroplasts (Blokhina and Fagerstedt, 2010a; Chang et al., 2012; reviewed in Shapiguzov et al., 2012). Hydrogen peroxide (H_2O_2) is a non-radical that can cross membranes by diffusion and it can be transported by specific aquaporins (Bowler et al., 1992; Bienert et al., 2007; Borisova et al., 2012). H₂O₂ is produced by a two-electron reduction of molecular oxygen catalyzed by the respiratory burst NADPH oxidase (RBOH) at the plasma membrane. RBOH proteins in plants are homologs of NADPH oxidase 2 of mammals (Torres et al., 1998) and belong to the cytochrome b family. H₂O₂ can also be produced spontaneously by dismutation of either $O_2^{\bullet-}$ or HO_2^{\bullet} .

Protection of mitochondria from unwarranted ROS production is provided by the alternative oxidase (AOX) and by an alternative type II, non-proton-pumping, Ca^{2+} -dependent NADPH dehydrogenase (ND; reviewed in Blokhina and Fagerstedt, 2010b). While AOX and ND protect mitochondria from oxidative stress the oxidized state of intermediates of the electron transport chain at the same time results in a decrease in ATP synthesis (Borecký et al., 2006). Antioxidant activity is provided throughout the cell by low molecular mass components such as reduced glutathione, reduced ascorbic acid, tocopherols, tannins, ubiquinol, and phenolic compounds, and by ROS scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX). Non-enzymatic ROS scavenging proteins such as thioredoxin and metallothioneins also contribute to ROS homeostasis. The type of ROS that accumulates is ultimately determined by the balance between ROS producing and ROS scavenging activities. For instance SOD determines the rate of H_2O_2 production and CAT the rate of H_2O_2 metabolism. A change in either activity affects H_2O_2 steady-state levels. Generation and detoxification mechanisms of the main ROS are summarized in **Figure 1A**. This review focuses on ROS as signaling intermediates in submergence adaptation and it summarizes methods used to identify the ROS involved.

SUBMERGENCE-INDUCED AND ROS-MEDIATED GROWTH AND CELL DEATH RESPONSES

As explained above, the balance between production and scavenging of ROS controls cellular ROS levels in plants. Oxidative stress occurs when these processes are imbalanced. High light, heat, pathogen invasion, wounding, low oxygen, and re-aeration after a phase of low oxygen stress increase ROS generation while low light conditions that arise for example during submergence decrease ROS production (Suzuki et al., 2012; Szarka et al., 2012). ROS are generated via enzymatic as well as non-enzymatic reactions. Which of the two mechanisms take place is influenced by

FIGURE 1 | Reactive oxygen species homeostasis in plants. (A) ROS are generated enzymatically or non-enzymatically depending on internal O2 levels. In photosynthetic tissues, the main sources of ROS are the chloroplasts and peroxisomes (reviewed in Shapiguzov et al., 2012). In photosynthetically active chloroplasts, $O_2^{\bullet-}$ is generated at photosystems I and II. In the dark, at low light conditions or in photosynthetically inactive tissues ROS are produced mainly in mitochondria. $\mathrm{O}_2^{\bullet-}$ is produced by the flavin mononucleotide binding subunit of NADH dehydrogenase in complex I and by ubiquinol-cytochrome bc1 reductase in complex III of the mitochondrial electron transport chain (mETC), or by RBOH at the plasma membrane. O₂ is dismutated to H2O2 non-enzymatically, by a manganese-containing isoform of the superoxide dismutase (MnSOD) in the matrix (Møller, 2001), or by FeSOD in chloroplasts and Cu/ZnSOD in the cytosol. •OH is a highly reactive ROS that is produced in the Fenton reaction from H_2O_2 in the presence of metals such as Fe²⁺. The uncoupling protein (PUMP), the alternative oxidase (AOX) and an alternative NAD(P)H dehydrogenase protect mitochondria from unwarranted ROS production. Antioxidants such as reduced glutathione,

metallothioneins; and enzymes such as superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), and glutathione peroxidase (GPX) exist in different cellular compartments to detoxify ROS. (B) Stem sections of deepwater rice cultivar Pin Gaew 56 were treated with 150 μ M ethephon or left untreated as a control for 20 h. Internodal tissue was collected 10 mm above the third node for EPR analysis. (C) The double integral of the low-field peak (AUC, area under peak) was determined to compare ROS levels detected with the spin probe TMT-H (2,2,6,6-tetramethylpiperidinium) in control sections and after ethephon treatment. (D) Typical EPR spectra of the spin probe after the reaction with ROS. Two hundred microliters of a 1-mM spin probe solution were added to 100 mg of tissue and incubated for 10 min. EPR measurements were performed on a Bruker Elexsys E500 spectrometer at room temperature with the following settings: center field 3513 G, sweep width 65 G, microwave frequency 9.84 GHz, microwave power 2 mW, modulation amplitude 1.2 G, conversion time 20.01 ms, time constant 40.96 ms (A. Steffen-Heins, B. Steffens, unpublished)

the cellular oxygen concentration. Non-enzymatic one-electron O_2 reduction occurs at 10^{-4} M and higher concentrations of O_2 while enzymatic reactions take place at lower oxygen concentrations. The same holds true for mitochondrial electron transport and respiration establishing a link between oxygen concentration, mitochondrial ATP production, and oxidative stress.

Soil water logging and partial or complete submergence limit gas diffusion which results on one hand in oxygen shortage and on the other hand in the accumulation of the volatile hormone ethylene in flooded tissues. In rice, ethylene promotes adventitious root growth, death of epidermal cells overlaying adventitious root primordia, and parenchymal cell death which results in aerenchyma formation. All of these responses are mediated by ROS. In deepwater rice, ethylene-induced adventitious root growth is abolished when RBOH activity is inhibited indicating that root growth in response to flooding is controlled by ROS that are generated at the plasma membrane (Steffens et al., 2012). RBOH activity is regulated by small G proteins (Baxter-Burrell et al., 2002; Wong et al., 2007). Inhibition of CAT enhances internal ROS levels and results in growth promotion revealing that either superoxide anion or H_2O_2 are the active ROS. Scavenging of H_2O_2 by potassium iodide partially reduces ethylene-dependent root growth supporting this finding.

Epidermal cells that overlay adventitious root primordia at the stem node of rice plants undergo cell death prior to the emergence of the adventitious root. Epidermal cell death is induced by ethylene which promotes cell death via H_2O_2 (Steffens and Sauter, 2009). The metallothionein MT2b is a non-enzymatic H_2O_2 scavenger in rice. Genetic downregulation of *MT2b* elevates endogenous ROS levels in rice cells (Wong et al., 2004). In

epidermal cells that undergo cell death MT2b is downregulated by ethylene suggesting that ethylene promotes ROS accumulation and hence cell death induction via MT2b. In fact, constitutive genetic downregulation of MT2b enhances epidermal cell death constitutively showing that modulation of ROS scavenging by MT2b is sufficient to alter cell death rates (Steffens and Sauter, 2009). MT2bis downregulated in epidermal cells overlaying adventitious roots not only by ethylene but also by H_2O_2 itself revealing a feedback loop that autoamplifies H_2O_2 accumulation. While induction of adventitious root growth by ethylene is also promoted by ROS, downregulation of MT2b does not alter root growth rate suggesting that regulation of epidermal cell death and of adventitious root growth rely on different ROS signaling pathways.

Aside from the formation of adventitious roots, the development of internal gas spaces by way of programmed cell death is another major adaptation that helps plants to cope with flooding stress. Aerenchyma are constitutively formed in deepwater and lowland rice stems and leaf sheaths. Aerenchyma formation is enhanced in internodes of deepwater rice by ethylene which promotes formation of $O_2^{\bullet-}$ (Steffens et al., 2011). In lowland rice varieties aerenchyma formation in leaf sheaths is increased upon submergence (Parlanti et al., 2011). In the lowland rice variety FR13A, the ETHYLENE RESPONSE FACTOR (ERF) SUBMERGENCE 1A (SUB1A) is induced by ethylene during submergence and suppresses ethylene biosynthesis by feedback inhibition (Fukao et al., 2006; Xu et al., 2006). In FR13A, ROS accumulate independent of ethylene signaling but are none the less responsible for submergence-induced aerenchyma formation in leaf sheaths (Parlanti et al., 2011). The lowland rice variety Arborio Precoce does not possess SUB1A and ROS do not accumulate during leaf sheath aerenchyma formation. However, Parlanti et al. (2011) postulate that an early transient ROS accumulation that occurs prior to ethylene signaling promotes aerenchyma formation. Hence, aerenchyma formation in response to submergence appears to be controlled by ROS in lowland and deepwater rice varieties. In some but not all varieties ROS accumulation is controlled by ethylene signaling which may influence the timing of cell death induction. In conclusion, ROS are central regulators of plant adaptation to submergence.

ROS HOMEOSTASIS AND SIGNALING IN HYPOXIC PLANTS

At low oxygen conditions, ROS production in Arabidopsis occurs predominantly at the plasma membrane through RBOH and in mitochondria. RbohD one of the 10 RBOH genes of Arabidopsis is induced at low oxygen (Pucciariello et al., 2012). Activation of RBOH occurs furthermore at the protein level by small G proteins such as ROP in Arabidopsis (Baxter-Burrell et al., 2002) and OsRac1 in rice (Wong et al., 2007). In mitochondria $O_2^{\bullet-}$, $^{\bullet}OH$, $^{1}O_{2}$, HO₂, and O₃ are generated as a result of an overreduction of the redox chain during anoxia (Chang et al., 2012). In Arabidopsis, ROS originating in mitochondria activate the mitogen-activated protein kinase MAPK6 to improve survival at hypoxic conditions (Chang et al., 2012). In plant mitochondria, the AOX transfers four electrons from ubiquinone to oxygen thereby preventing ROS production from an overreduced ubiquinone pool (Umbach et al., 2005). AOX is encoded by five genes of the multigene families AOX1 and AOX2 in Arabidopsis (Considine et al., 2002; Borecký et al., 2006). Constitutive activation of AOX in *Arabidopsis* or overexpression of *Arabidopsis AOX1a* in tobacco decreases mitochondrial ROS production (Maxwell et al., 1999) while inhibition of AOX increases ROS production (Maxwell et al., 1999; Umbach et al., 2005). In barley roots, AOX activity is elevated at anoxic conditions (Skutnik and Rychter, 2009). Detoxification of ROS serves to prevent oxidative damage but at the same time may alter a ROS signal. Future work is required to consolidate or distinguish between the two pathways.

The dismutation of $O_2^{\bullet-}$ to H_2O_2 is mediated by FeSOD in chloroplasts, MnSOD in mitochondria, and by Cu/ZnSOD in chloroplasts and in the cytoplasm. The enzymatic reaction is 10,000-fold faster than spontaneous dismutation. H₂O₂ is detoxified to H₂O and O₂ by CAT. In addition, soluble, extracellular, or cell wall-associated peroxidases detoxify H2O2. Peroxidases also generate $O_2^{\bullet-}$ and H_2O_2 (Mika et al., 2010). Anoxia and hypoxia increase SOD activity in wheat and Iris pseudacorus (Monk et al., 1987; Biemelt et al., 1998) but not in barley roots (Szal et al., 2004) while in maize flooded for 7 days $O_2^{\bullet-}$ levels increase due to reduced SOD activity possibly pointing to a regulatory role. In the wetland species Alternanthera philoxeroides and Hemarthria altissima, SOD and CAT activities are differentially regulated during flooding depending on the survival strategy (Luo et al., 2012). In Alternanthera philoxeroides that shows the "escape" strategy (Bailey-Serres and Voesenek, 2008), SOD and CAT activities are downregulated in leaves but recover after de-submergence. H. altissima pursues a "quiescence" strategy and displays high SOD and CAT activities in submerged leaves. This differential response is compatible with the view that ROS contribute to shoot growth control.

Lipoxygenases catalyze the hydroperoxidation of polyunsaturated fatty acids. In wheat roots and in corn leaves levels of $O_2^{\bullet-}$ and H_2O_2 increase after re-aeration resulting in elevated lipid peroxidation and loss of membrane integrity (Albrecht and Wiedenroth, 1994). Lipoxygenase activity in anoxia-treated potato cells correlates with the duration of the low oxygen treatment (Pavelic et al., 2000). Lipids are protected from oxidative damage by tocopherols and tocotrienols known as vitamin E. Anoxia-intolerant I. germanica has more β -tocopherol as compared to anoxia-tolerant I. pseudacorus while a-tocopherol content does not differ (Blokhina et al., 2000). Anoxia induces tocopherol deprivation in both Iris species. However, the decline in tolerant I. pseudacorus sets in later than in I. germanica possibly contributing to the observed tolerance (Blokhina et al., 2000). Along the same line, the submergence-tolerant rice variety FR13A protects lipids during submergence while the anoxia-sensitive variety CT6241 displays enhanced lipid peroxidation (Santosa et al., 2007). The protective mechanism of FR13A is, however, not understood.

In conclusion, regulation of ROS levels in flooded plants relies on the regulation of ROS producing and ROS scavenging mechanisms. It is not always clear if changes in ROS levels exclusively cause or prevent damage or if and how they contribute to signaling. What has become clear, however, is that ROS abundance is regulated at different levels in different plant species. Mechanisms of ROS regulation are numerous and have not been fully analyzed in any one species or been compared stringently between flooding-resistant and flooding-prone ecotypes. This should be achieved in future research to identify unifying mechanisms that characterize flooding-resistant plants. The following paragraph summarizes and comments on methods currently used to detect ROS.

DETECTION OF ROS BY SPECTROPHOTOMETRICAL AND STAINING METHODS

It is challenging to monitor ROS abundance in plant cells due to their low concentration and short half-life. For example, $^{\bullet}OH$ has a half-life of a few nanoseconds and $O_2^{\bullet-}$ of tenths of microseconds. Another challenge is the spatial resolution as ROS can accumulate in different cell compartments. Detection must be sensitive and specific for defined ROS. Indirect measurement of ROS generation is possible by analyzing lipid peroxidation of unsaturated fatty acids in membranes. This method was used to investigate ROS production under low oxygen stress in oat and wheat roots, Iris rhizomes, and rice seedlings (Blokhina et al., 1999; Santosa et al., 2007), and after re-aeration in rice (Fukao et al., 2011). Methods commonly used for ROS detection are summarized in **Table 1** and described below.

Short-lived $O_2^{\bullet-}$ were measured by irreversible oxidation of epinephrine to adrenochrome (Chance et al., 1979) in hypoxic barley roots (Szal et al., 2004) and during ethylene-induced

aerenchyma formation in rice stems (Steffens et al., 2011). In cell cultures, $O_2^{\bullet-}$ concentration was determined by 4-methyl-beta-D-umbelliferyl glucopyranoside (4-MUF-glu) in a fluorometric assay (Kush and Sabapathy, 2001) to analyze a role of the annexin-like protein Oxy5 from *Arabidopsis* in the oxidative stress response. 4-MUF-glu is cleaved by $O_2^{\bullet-}$ to the fluorescent form 4-methylumbelliferone (4-MUF). A common disadvantage of spectrophotometrical methods is the relatively high demand for biological material.

Hydrogen peroxide can be quantified by recording the oxidation of *N*-acetyl-3,7-dihydroxyphenoxazine (Amplex Red), a derivative of dihydro-resorufin in the presence of horseradish peroxidase in an assay that uses plant tissue extract. During the reaction, Amplex Red is converted to the fluorescent resorufin. Amplex Red was used to analyze H_2O_2 production in hypoxic and anoxic wheat roots (Biemelt et al., 2000), in hypoxic and anoxic *Arabidopsis* seedlings (Pucciariello et al., 2012), and to compare differences in H_2O_2 production in two rice cultivars after 3 days of submergence (Parlanti et al., 2011). This probe is useful for *in planta* studies as it is membrane-permeable. This assay does, however, not provide spatial resolution.

Cell type-specific ROS detection is possible with histochemical approaches. Cerium chloride (CeCl₂) or 3,3'-diaminobenzidine (DAB, Bestwick et al., 1997; Thordal-Christensen et al., 1997;

ROS	ROS detection method	Condition/plant species	Reference
	Spectrophotometrical methods		
$O_2^{\bullet-}$	Irreversible oxidation of epinephrine	Hypoxia, barley roots	Szal et al. (2004)
		Submergence, rice internodes	Steffens et al. (2011)
	Cleavage of 4-MUF-glu	Oxidative stress, Arabidopsis	Kush and Sabapathy (2001)
H_2O_2	Oxidation of Amplex Red	Hypoxia and anoxia, wheat roots	Biemelt et al. (2000)
		Hypoxia and anoxia, Arabidopsis seedlings	Pucciariello et al. (2012)
		Submergence, rice	Parlanti et al. (2011)
	Histochemical approaches		
$O_2^{\bullet-}$	Oxidation of NBT	Submergence, rice leaves	Fukao et al. (2011)
		Submergence, rice internodes	Steffens et al. (2011)
		Submergence, adventitious roots	Steffens et al. (2012)
		Submergence, nodal epidermis	Steffens and Sauter (2009)
H_2O_2	Cerium perhydroxide	HR, lettuce cells	Bestwick et al. (1997)
	Oxidation of DAB	Submergence, Alternanthera philoxeroides, H. altissima	Luo et al. (2012)
		Submergence, rice leaves	Fukao et al. (2011)
		Submergence, rice internodes	Steffens et al. (2011)
		Submergence, adventitious roots	Steffens et al. (2012)
		Submergence, nodal epidermis	Steffens and Sauter (2009)
	Live cell imaging		
ROS/RNS	DCFH ₂ -DA	Submergence, rice leaves	Parlanti et al. (2011)
		Arabidopsis roots	Chang et al. (2012)
		Arabidopsis leaves	Umbach et al. (2012)
H_2O_2	Amplex red	Tobacco leaves	Snyrychová et al. (2009)
¹ O ₂	Singlet Oxygen Sensor Green	Wounding, Arabidopsis leaves	Flors et al. (2006)

Table 1 | Common ROS detection methods.

Blokhina et al., 2001) are useful to visualize H_2O_2 . In the presence of CeCl₂, H₂O₂ produces stable precipitates of cerium perhydroxides with higher electron density that can be observed by transmission electron microscopy. Localization and quantification of H₂O₂ in different cell compartments is possible. DAB reacts with H₂O₂ in a peroxidase-catalyzed reaction resulting in an oxidized insoluble brown precipitate. For the microscopic detection of $O_2^{\bullet-}$, the nitro-substituted aromatic compound nitroblue tetrazolium (NBT) is useful. Oxidized NBT forms precipitates resulting in a blue staining. Detection of H_2O_2 and $O_2^{\bullet-}$ at the cellular level was used to analyze ROS accumulation during submergence in rice leaves (Fukao et al., 2011), ethylene-induced and ROS-mediated epidermal and parenchymal cell death in rice, and adventitious root growth in rice (Steffens and Sauter, 2009; Steffens et al., 2011, 2012). These precipitation techniques usually require removal of chlorophyll and are hence not suited for live cell imaging.

Fluorescent probes such as derivates of dichlorodihydrofluorescein diacetate can non-destructively detect ROS through live cell imaging. The probes permeate membranes in the non-fluorescent uncharged forms and are kept in the charged form in the cytosol, or in organelles after cleavage of the acetate groups by esterases (Kristiansen et al., 2009). Green fluorescence develops due to oxidation of the ROS-reactive charged form by $O_2^{\bullet-}$ or H_2O_2 but also by peroxyl radical (ROO[•]) and peroxynitrite (ONOO⁻; Tarpey and Fridovich, 2001). The fluorescent probe 2'-7'-dichloro-dihydrofluorescein diacetate (DCFH₂-DA) was used for ROS and reactive nitrogen species (RNS) detection in leaf sheath sections of submerged rice seedlings (Parlanti et al., 2011), in roots of Arabidopsis seedlings (Chang et al., 2012), and in Arabidopsis leaves (Umbach et al., 2012) through confocal laser scanning microscopy. Amplex Red can also be used for specific detection of H₂O₂ in cells by confocal laser scanning microscopy (Snyrychová et al., 2009). For ${}^{1}O_{2}$ detection the fluorescent dye Singlet Oxygen Sensor Green was used to monitor wound-induced production of this highly reactive ROS in Arabidopsis leaves (Flors et al., 2006).

Reactive oxygen species likely play an even more important role in the regulation of developmental events than has been recognized so far. The methods presented here will be important in unraveling this role.

ROS DETECTION WITH ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY – A SENSITIVE TECHNIQUE TO ANALYZE ROS *IN PLANTA*

A sensitive technique to identify, quantify and visualize shortlived ROS is electron paramagnetic resonance (EPR) spectroscopy.

REFERENCES

- Albrecht, G., and Wiedenroth, E. M. (1994). Protection against activated oxygen following re-aeration of hypoxically pretreated wheat roots. The response of the glutathione system. *J. Exp. Bot.* 45, 449–455. doi: 10.1093/jxb/45.4.449
- Bačić, G., and Mojović, M. (2005). EPR spin trapping of oxygen radicals in

plants. A methodological overview. *Ann. N. Y. Acad. Sci.* 1048, 230–243. doi: 10.1196/annals.1342.021

Bačić, G., Spasojević, I., Šećerov, B., and Mojović, M. (2008). Spin-trapping of oxygen free radicals in chemical and biological systems: new traps, radicals and possibilities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 1354– 1366. doi: 10.1016/j.saa.2007.09.047 ROS are detected by EPR using spin traps or spin probes with different properties including lipophilicity, reaction kinetic and stability of adducts. Spin traps including the nitrones DMPO (5,5-dimethyl-pyrroline-N-oxide) and its phosphorylated analog DEPMPO (5-diethoxyphosphoryl-5-methyl-1-pyrroline-Noxide) are diamagnetic and form stable adducts with transient radicals to transform them into longer-lived radical species (Bačić and Mojović, 2005). Suitable spin traps are defined by either the ability to exclusively trap one ROS as was shown for EMPO (5-ethoxycarbonyl-5-methyl-pyrroline-N-oxide) and BMPO (5tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide) that specifically detect $O_2^{\bullet-}$ (Bačić et al., 2008) or to lead to different specific signature EPR spectra. Improved spin traps like DEPMPO have a longer lifetime than DMPO-adducts, reduced degradation of the spin adducts and a faster reaction kinetic leading to a sufficient trapping of $O_2^{\bullet-}$ and \bullet OH. 4-POBN [α (4-pyridyl-1-oxide)-Ntert-butylnitrone] detects specifically •OH and has been used to analyze radicals in the medium surrounding growing maize roots (Liszkay et al., 2004) and in growing cucumber and Arabidopsis roots (Renew et al., 2005). In addition, specific EPR spectra of •OH were obtained from defined cucumber root zones (Renew et al., 2005) suggesting that this technique allows for spatial resolution of ROS detection.

Spin probes can be used either as endogenous nitroxides that are reduced by ROS to the EPR-silent hydroxylamines or vice versa. Endogenous cyclic hydroxylamines are oxidized by ROS to EPR-active nitroxides. The very fast reaction rates between ROS and hydroxylamine are a major advantage compared with spin traps. The efficiency of hydroxylamines to detect $O_2^{\bullet-}$ is very high so that very low concentrations of the hydroxylamines are necessary to detect $O_2^{\bullet-}$ (1 mM compared with 10-50 mM used in spin traps), and side effects can be minimized (Dikalov et al., 2011). This is mainly due to the high reactivity of radicals so that their reaction site is very close to their generation site (Heins et al., 2007). Since the reaction of hydroxylamines toward ROS is unspecific, ROS must be identified by alternative approaches. Additions of scavengers of defined ROS such as SOD are useful (Dikalov et al., 2011). The spin probe technique has been used to measure $O_2^{\bullet-}$ in Arabidopsis roots (Warwar et al., 2011) and in thylakoid membranes (Kozuleva et al., 2011; Borisova et al., 2012). Using the spin probe technique we showed that ethylene enhances ROS levels in rice internodes possibly related to parenchymal cell death and aerenchyma formation (Figures 1B-D; Steffens et al., 2011). EPR spectroscopy may turn out as a useful tool to analyze ROS in defined cells and to evaluate their contribution to submergence adaptation.

- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimation and genetic diversity. *Annu. Rev. Plant Biol.* 59, 313–339. doi: 10.1146/annurev.arplant.59.032607. 092752
- Baxter-Burrell, A., Yang, Z., Springer, P. S., and Bailey-Serres, J. (2002). RopGAP4-dependent Rop GTPase rheostat control of *Arabidopsis*

oxygen deprivation tolerance. Science 296, 2026–2028. doi: 10.1126/science.1071505

Bestwick, C. S., Brown, I. R., Bennett, M. H. R., and Mansfield, J. W. (1997). Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to *Pseudomonas syringae* pv *phaseolicola. Plant Cell* 9, 209–221.

- Biemelt, S., Keetman, U., and Albrecht, G. (1998). Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. *Plant Physiol.* 116, 651–658. doi: 10.1104/pp.116.2.651
- Biemelt, S., Keetman, U., Mock, H. P., and Grimm, B. (2000). Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. *Plant Cell Environ.* 23, 135–144. doi: 10.1046/j.1365-3040.2000.00542.x
- Bienert, G. P., Møller, A. L., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., et al. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183– 1192. doi: 10.1074/jbc.M603761200
- Blokhina, O., and Fagerstedt, K. V. (2010a). Oxidative metabolism, ROS and NO under oxygen deprivation. *Plant Physiol. Biochem.* 48, 359–373. doi: 10.1016/j.plaphy.2010.01.007
- Blokhina, O. B., and Fagerstedt, K. V. (2010b). Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. *Physiol. Plant.* 138, 447–462. doi: 10.1111/j.1399-3054.2009.01340.x
- Blokhina, O. B., Chirkova, T. V., and Fagerstedt, K. V. (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. *J. Exp. Bot.* 52, 1179–1190. doi: 10.1093/jexbot/52.359.1179
- Blokhina, O. B., Fagerstedt, K. V., and Chirkova, T. V. (1999). Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. *Physiol. Plant.* 105, 625– 632. doi: 10.1034/j.1399-3054.1999. 105405.x
- Blokhina, O. B., Virolainen, E., Fagerstedt, K. V., Hoikkala, A., Wähäla, K., and Chirkova, T. V. (2000). Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. *Physiol. Plant.* 109, 396–403. doi: 10.1034/j.1399-3054.2000.100405.x
- Borecký, J., Nogueira, F. T., de Oliveira, K. A., Maia, I. G., Vercesi, A. E., and Arruda, P. (2006). The plant energydissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. J. Exp. Bot. 57, 849–864. doi: 10.1093/jxb/erj070
- Borisova, M. M., Kozuleva, M. A., Rudenko, N. N., Naydov, I. A., Klenina, I. B., and Ivanov, B. N. (2012).

Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. *Biochim. Biophys. Acta* 1817, 1314–1321. doi: 10.1016/i.bbabio.2012.02.036

- Bowler, C., Van Montagu, M., and Inze, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116. doi: 10.1146/annurev. pp.43.060192.000503
- Chance, B., Sies, H., and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. *Physiol. Rev.* 59, 527–605.
- Chang, R., Jang, C. J., Branco-Price, C., Nghiem, P., and Bailey-Serres, J. (2012). Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in *Arabidopsis. Plant Mol. Biol.* 78, 109– 122. doi: 10.1007/s11103-011-9850-5
- Considine, M. J., Holtzapffel, R. C., Day, D. A., Whelan, J., and Millar, A. H. (2002). Molecular distinction between alternative oxidase from monocots and dicots. *Plant Physiol.* 129, 949–953. doi: 10.1104/pp.004150
- Dikalov, S. I., Kirilyuk, I. A., and Voinov, M., Grigor'ev, I. A. (2011). EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. *Free Radic. Res.* 45, 417–430. doi: 10.3109/10715762.2010.540242
- Flors, C., Fryer, M. J., Waring, J., Reeder, B., Bechtold, U., Mullineaux, P. M., et al. (2006). Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J. Exp. Bot. 57, 1725–1734. doi: 10.1093/jxb/erj181
- Fukao, T., Xu, K., Ronald, P. C., and Bailey-Serres, J. (2006). A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. *Plant Cell* 18, 2021–2034. doi: 10.1105/tpc.106.043000
- Fukao, T., Yeung, E., and Bailey-Serres, J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. *Plant Cell* 23, 412– 427. doi: 10.1105/tpc.110.080325
- Heins, A., McPhail, D. B., Sokolowski, T., Stöckmann, H., and Schwarz, K. (2007). The location of phenolic antioxidants and radicals at interfaces determines their activity. *Lipids* 42, 573–582. doi: 10.1007/s11745-007-3052-6
- Kozuleva, M., Klenina, I., Proskuryakov, I., Kirilyuk, I., and Ivanov, B. (2011). Production of superoxide

in chloroplast thylakoid membranes ESR study with cyclic hydroxylamines of different lipophilicity. *FEBS Lett.* 585, 1067–1071. doi: 10.1016/j.febslet.2011.03.004

- Kristiansen, K. A., Jensen, P. E., Møller, I. A., and Schulz, A. (2009). Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy. *Physiol. Plant.* 136, 369–383. doi: 10.1111/j.1399-3054.2009.01243.x
- Kush, A., and Sabapathy, K. (2001). Oxy5, a novel protein from Arabidopsis thaliana, protects mammalian cells from oxidative stress. Int. J. Biochem. Cell Biol. 33, 591–602. doi: 10.1016/S1357-2725(01)00040-1
- Liszkay, A., van der Zalm, E., and Schopfer, P. (2004). Production of reactive oxygen intermediates ($O_2^{\bullet-}$, H_2O_2 , and \bullet OH) by maize roots and their role in wall loosening and elongation growth. *Plant Physiol.* 136, 3114–3123. doi: 10.1104/pp.104.044784
- Luo, F. L., Thiele, B., Janzik, I., Zeng, B., Schurr, U., and Matsubara, S. (2012). De-submergence responses of antioxidative defense systems in two wetland plants having escape and quiescence strategies. *J. Plant Physiol.* 169, 1680–1689. doi: 10.1016/j.jplph.2012.06.015
- Maxwell, D. P., Wang, Y., and McIntosh, L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. *Proc. Natl. Acad. Sci. U.S.A.* 96, 8271–8276. doi: 10.1073/pnas.96.14.8271
- Mika, A., Boenisch, M. J., Hopff, D., and Lüthje, S. (2010). Membrane-bound guaiacol peroxidases from maize (*Zea mays* L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. *J. Exp. Bot.* 61, 831–841. doi: 10.1093/jxb/erp353
- Møller, I. M. (2001). Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561–591. doi: 10.1146/annurev.arplant.52.1.561
- Monk, L. S., Fagerstedt, K. V., and Crawford, R. M. (1987). Superoxide dismutase as an anaerobic polypeptide: a key factor in recovery from oxygen deprivation in *Iris pseudacorus? Plant Physiol.* 85, 1016–1020. doi: 10.1104/pp.85.4.1016
- Parlanti, S., Kudahettige, N. P., Lombardi, L., Mensuali-Sodi, A., Alpi, A., Perata, P., et al. (2011). Distinct mechanisms for aerenchyma formation in leaf sheaths of rice

genotypes displaying a quiescence or escape strategy for flooding tolerance. *Ann. Bot.* 107, 1335–1343. doi: 10.1093/aob/mcr086

- Pavelic, D., Arpagaus, S., Rawyler, A., and Brändle, R. (2000). Impact of post-anoxia stress on membrane lipids of anoxia-pretreated potato cells. A re-appraisal. *Plant Physiol.* 124, 1285–1292. doi: 10.1104/pp.124.3.1285
- Pucciariello, C., Parlanti, S., Banti, V., Novi, G., and Perata, P. (2012). Reactive oxygen species-driven transcription in *Arabidopsis* under oxygen deprivation. *Plant Physiol.* 159, 184– 196. doi: 10.1104/pp.111.191122
- Puntarulo, S., Sánchez, R. A., and Boveris, A. (1988). Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. *Plant Physiol.* 86, 626–630. doi: 10.1104/pp.86.2.626
- Renew, S., Heyno, E., Schopfer, P., and Liszkay, A. (2005). Sensitive detection and localization of hydroxyl radical production in cucumber roots and *Arabidopsis* seedlings by spin trapping electron paramagnetic resonance spectroscopy. *Plant J.* 44, 342–347. doi: 10.1111/j.1365-313X.2005.02528.x
- Santosa, I. E., Ram, P. C., Boamfa, E. I., Laarhoven, L. J., Reuss, J., Jackson, M. B., et al. (2007). Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon. *Planta* 226, 193–202. doi: 10.1007/s00425-006-0457-z
- Shapiguzov, A., Vainonen, J. P., Wrzaczek, M., and Kangasjärvi, J. (2012). ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. *Front. Plant Sci.* 3:292. doi: 10.3389/fpls.2012.00292
- Skutnik, M., and Rychter, A. M. (2009). Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia. *J. Plant Physiol.* 166, 926–937. doi: 10.1016/j.jplph.2008.11.010
- Snyrychová, I., Ayaydin, F., and Hideg, E. (2009). Detecting hydrogen peroxide in leaves in vivo – a comparison of methods. *Physiol. Plant.* 135, 1–18. doi: 10.1111/j.1399-3054.2008.01176.x
- Steffens, B., Geske, T., and Sauter, M. (2011). Aerenchyma formation in the rice stem and its promotion by H₂O₂. New Phytol. 190, 369–378. doi: 10.1111/j.1469-8137.2010.03496.x
- Steffens, B., Kovalev, A., Gorb, S. N., and Sauter, M. (2012). Emerging roots alter epidermal cell fate

through mechanical and reactive oxygen species signaling. *Plant Cell* 24, 3296–3306. doi: 10.1105/tpc.112. 101790

- Steffens, B., and Sauter, M. (2009). Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H_2O_2 through an autoamplified signal pathway. *Plant Cell* 21, 184–196. doi: 10.1105/tpc.108. 061887
- Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. *Plant Cell Environ*. 35, 259–270. doi: 10.1111/j.1365-3040.2011.02336.x
- Szal, B., Drozd, M., and Rychter, A. M. (2004). Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis. *J. Plant Physiol.* 161, 1339–1346. doi: 10.1016/j.jplph.2004.03.005
- Szarka, A., Tomassovics, B., and Bánheghyi, G. (2012). The ascorbateglutathione-(α-tocopherol triad in abiotic stress response. *Int. J. Mol. Sci.* 13, 4458–4483. doi: 10.3390/ijms13044458
- Tarpey, M. M., and Fridovich, I. (2001). Methods of detection of vascular

reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. *Circ. Res.* 89, 224–236. doi: 10.1161/hh1501.094365

- Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D. B. (1997). Subcellular localization of H_2O_2 in plants. H_2O_2 accumulation in papillae and hypersensitive response during the barleypowdery mildew interaction. *Plant J.* 11, 1187–1194. doi: 10.1046/j.1365-313X.1997.11061187.x
- Torres, M. A., Onouchi, H., Hamada, S., Machida, C., Hammond-Kosack, K. E., and Jones, J. D. (1998). Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365– 370. doi: 10.1046/j.1365-313X.1998. 00136.x
- Umbach, A. L., Fiorani, F., and Siedow, J. N. (2005). Characterization of transformed *Arabidopsis* with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. *Plant Physiol.* 139, 1806–1820. doi: 10.1104/pp.105.070763
- Umbach, A. L., Zarkovic, J., Yu, J., Ruckle, M. E., McIntosh, L., Hock, J. J., et al. (2012). Comparison of intact *Arabidopsis thaliana* leaf transcript profiles during treatment with

inhibitors of mitochondrial electron transport and TCA cycle. *PLoS ONE* 7:e44339. doi: 10.1371/journal.pone.0044339.

- Warwar, N., Mor, A., Fluhr, R., Pandian, R. P., Kuppusamy, P., and Blank, A. (2011). Detection and imaging of superoxide in roots by an electron spin resonance spinprobe method. *Biophys. J.* 101, 1529–1538. doi: 10.1016/j.bpj.2011. 07.029
- Wong, H. L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., et al. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its Nterminal extension. *Plant Cell* 19, 4022–4034. doi: 10.1105/tpc.107. 055624
- Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K., and Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. *Plant Physiol.* 135, 1447–1456. doi: 10.1104/pp.103. 036384
- Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., et al. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance

to rice. *Nature* 442, 705–708. doi: 10.1038/nature04920

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 22 February 2013; paper pending published: 18 March 2013; accepted: 17 May 2013; published online: 04 June 2013.

Citation: Steffens B, Steffen-Heins A and Sauter M (2013) Reactive oxygen species mediate growth and death in submerged plants. Front. Plant Sci. **4**:179. doi: 10.3389/fpls.2013.00179

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Steffens, Steffen-Heins and Sauter. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Does suberin accumulation in plant roots contribute to waterlogging tolerance?

Kohtaro Watanabe⁺, Shunsaku Nishiuchi⁺, Konstantin Kulichikhin⁺ and Mikio Nakazono*

Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan

Edited by:

Rens Voesenek, Utrecht University, Netherlands

Reviewed by:

Hazem M. Kalaji, Warsaw University of Life Sciences, Poland Ole Pedersen, University of Copenhagen, Denmark William Armstrong, University of Hull, UK

*Correspondence:

Mikio Nakazono, Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan e-mail: nakazono@agr.nagoya-u.ac.jp † These authors have contributed equally to this work. Plants that are adapted to waterlogged conditions develop aerenchyma in roots for ventilation. Some wetland plant species also form an apoplastic barrier at the outer cell layers of roots that reduces radial oxygen loss (ROL) from the aerenchyma and prevents toxic compounds from entering the root. The composition of the apoplastic barrier is not well understood. One potential component is suberin, which accumulates at the hypodermal/exodermal cell layers of the roots under waterlogged soil conditions or in response to other environmental stimuli. However, differences in suberin content and composition between plant species make it difficult to evaluate whether suberin has a role in preventing ROL. In this article, we summarize recent advances in understanding apoplastic barrier formation in roots and, between various plant species, compare the chemical compositions of the apoplastic barriers in relation to their permeability to oxygen. Moreover, the relationship between suberin accumulation and the barrier to ROL is discussed.

Keywords: apoplastic barrier, exodermis, hypodermis, suberin, suberin composition, radial oxygen loss, waterlogging

INTRODUCTION

Waterlogging is defined as a condition of the soil in which excess water limits gas diffusion and inhibits plant growth. Oxygen diffusivity in water is approximately 10,000 times slower than it is in air, and the flux of O_2 into soils is approximately 320,000 times less when the soil pores are filled with water than when they are filled with gas (Armstrong and Drew, 2002). Moreover, oxygen in waterlogged soil is consumed rapidly by soil microorganisms and plant roots (Drew and Lynch, 1980). As a result, the growth of anaerobic soil microorganisms is accelerated, leading to the appearance of harmful microbial metabolic products such as organic acids (Jackson and Taylor, 1970; Conrad and Klose, 1999). Soil redox potential is also rapidly decreased, resulting in the accumulation of phytotoxic compounds such as sulfides and reduced forms of minerals (e.g., Mn²⁺ and Fe²⁺) (Laanbroek, 1990). Plants that are adapted to waterlogged soil conditions form aerenchyma, which permits ventilation between well-aerated shoots and waterlogged roots. Additionally, some waterlogging-tolerant species develop an apoplastic transport barrier at the outer cell layers in the root. This barrier can be also induced by other environmental stresses, such as elevated salinity and drought (Enstone et al., 2003), to reduce of the transport of water, solutes, and gases from the medium to the root and vice versa. When the soil is waterlogged, the barrier can minimize the loss of O₂ to the surrounding environment, called radial oxygen loss (ROL), thereby enhancing longitudinal diffusion of oxygen toward the root apex (Armstrong, 1979; Colmer, 2003a). The barrier also impedes the penetration of soil-derived toxins, such as reduced metal ions, into the roots (Armstrong and Armstrong, 2005; Greenway et al., 2006). Mathematical modeling suggests that oxygen diffusion to the apex largely depends on

the development of aerenchyma in the plant root (Armstrong, 1979; Armstrong and Beckett, 1987). Therefore, in the presence of extensive aerenchyma, the function of the apoplastic barrier may be more important for restricting the entry of phytotoxins than for improving oxygen diffusion to the apex (Armstrong, 1979).

The apoplastic barrier forms as the result of enhanced accumulation of suberin at hypodermal/exodermal cell walls (**Figure 1**). Suberin is one of the main barrier biopolymers in plants, and is deposited in cell walls to separate living plant tissue from unfavorable environments or to separate different tissues inside the plant during development (Kolattukudy, 2001; Enstone et al., 2003; Schreiber, 2010). Suberin was found to be deposited in the outer cell layers of roots in stagnant deoxygenated medium in several plant species (De Simone et al., 2003; Soukup et al., 2007; Garthwaite et al., 2008; Kotula et al., 2009a).

In this review, we summarize what is known about the induction and function of the apoplastic barrier in plant roots under waterlogged conditions, and examine the relation between the chemical composition of the barrier and its permeability to O_2 in several plant species. Finally, we discuss future directions for understanding the composition of the apoplastic barrier and the potential contribution of the apoplastic barrier to improvement of waterlogging tolerance of crops.

INDUCTION OF APOPLASTIC BARRIER IN PLANT ROOTS

Accumulation of suberin is manifested by the presence of a Casparian strip and the development of suberin lamellae in the hypodermis/exodermis or the endodermis. The maturation processes of the Casparian strip and suberin lamellae in the hypodermis/exodermis differ between plant species and between growth conditions (Enstone et al., 2003). Suberization of the

14 days. Basal parts (60 mm from root tip) of the adventitious roots were sliced into 80-um-thick sections. The sections were cleared by incubating them in lactic acid saturated with chloral hydrate at 70°C for 1 h. Suberin was stained

Scale bars = $50 \,\mu$ m. (C,D) Schematic diagram of longitudinal view of rice root under aerobic conditions (C) or under stagnant deoxygenated conditions (D). Suberized hypodermis/exodermis is shown by green line at (D).

outer cell layers in rice (Oryza sativa) root occurs under stagnant deoxygenated conditions (which mimic low-oxygen conditions in waterlogged soils) (Figure 1; Wiengweera et al., 1997; Kotula et al., 2009a) or after exposure to short-chain carboxylic acids (Armstrong and Armstrong, 2001) or sulfide (Armstrong and Armstrong, 2005). Short-chain carboxylic acids (Conrad and Klose, 1999) and sulfide (Jacq et al., 1991) are known to accumulate around plant roots by reduction reactions and by the activity of anaerobic bacteria under waterlogged soil conditions. Some short-chain carboxylic acids are phytotoxins that damage cell membranes and thus may induce the suberization of plant roots (Armstrong and Armstrong, 2001).

In the absence of suberin, the plant cell wall is porous with pore sizes of 3.5-5.2 nm (Carpita et al., 1979) that allow water, salts, and gases to move freely between the plant and surrounding environment. Increased amounts of suberin and lignin are thought to make strong barriers by reducing the diameter of pores in the apoplastic barriers (Hose et al., 2001). The Casparian strip and suberin lamella restrict apoplastic transfer of Ca²⁺ (hydrated ionic radius: approximately 412 pm; Volkov et al., 1997) and Mg²⁺ (hydrated ionic radius: approximately 428 pm; Volkov et al., 1997) in barley (Hordeum vulgare) (Ferguson and Clarkson, 1976) and maize (Zea mays) (Maas and Ogata, 1971; Ferguson

and Clarkson, 1975). Formation of an apoplastic barrier in the hypodermal/exodermal cells in roots of rice grown in stagnant deoxygenated solution for 17-27 days decreased the permeability of the outer part of the root to water and NaCl (Ranathunge et al., 2011). The decrease of permeability was greater for NaCl than for water, which suggests that the wall pore size in suberized cell walls is large enough to pass water (radius of an H₂O molecule: approximately 137 pm; Zhang and Xu, 1995) but not Na⁺ solvated by water molecules (hydrated ionic radius: approximately 358 pm; Volkov et al., 1997). The strengthened apoplastic barriers also appear to prevent the entry of reduced phytotoxic compounds [e.g., Fe2+ (approximately hydrated ionic radius 300 pm; Kielland, 1937) and H₂S (approximately radius 193 pm; Kammeyer and Whitman, 1972)] and diffusion of gases [e.g., O₂ (approximately radius 140 pm; Kammeyer and Whitman, 1972)] (Armstrong et al., 2000). However, it should be noted that the size and number of pores in suberized cell walls could be reduced with increasing level of suberization, and that other factors, such as the electrical charge of the cell wall, can limit the flow of substances. The permeability of the apoplastic barrier depends on growth conditions and the length of time in waterlogged soil.

Although suberin accumulation reduces the permeability of the apoplastic barrier to most substances, the tight apoplastic

barrier to ROL in root basal zones does not reduce NO_3^- uptake from aerobic solutions in rice grown in stagnant nutrient solution (Rubinigg et al., 2002). This may be because plasmodesmatal connections, as observed in electron micrographs, are still operational in suberized tissue of the exodermis of adventitious roots from rice grown in hydroponic culture (Clark and Harris, 1981; Rubinigg et al., 2002).

SOME ASPECTS OF THE CHEMICAL COMPOSITION OF APOPLASTIC BARRIER IN RELATION TO ITS ABILITY TO PREVENT ROL

Schreiber et al. (1999) developed a protocol for the analysis of the apoplastic barrier in plant roots consisting of enzymatic digestion of cortical tissue, mechanical isolation of the remaining hypodermal/exodermal tissue, solvent extraction, chemical degradation of lignin and suberin, and analysis of the released monomers by gas chromatography-mass spectrometry (GC-MS). The apoplastic barriers of several plant species have been analyzed with this protocol (De Simone et al., 2003; Soukup et al., 2007; Kotula et al., 2009a). The results of those studies, which also include ROL measurements, are summarized in **Table 1**. In the following, we briefly discuss some aspects of the chemical composition of the barrier in relation to its ability to prevent ROL.

TOTAL SUBERIN CONTENT

In several plant species [Phragmites australis (Table 1, rows 3-4), Glyceria maxima (Table 1, rows 5-6), and rice (Table 1 rows 9-10)], the suberin contents in the peripheral regions at several points along the root (Table 1, column 4) were inversely proportional to the ROL at those points (Table 1, column 13). On the other hand, if only the data obtained when ROL was not detectable are considered (gray rows in Table 1), the species differ dramatically in the amount of suberin. For example, the peripheral region of Tabernaemontana juruana root (Table 1, row 2, column 4) contained 5.5 times more suberin than that of G. maxima (Table 1, row 6, column 4), 4 times more suberin than the outer part of rice root (Table 1, row 10, column 4), and 1.5 times more suberin than in those tissues of *P. australis* (Table 1, row 4, column 4), whereas ROL was not measurable in all cases. This variation may be due to differences in spatial distribution of suberin among cell layers, as well as in chemical composition of suberin deposits in different species (Schreiber et al., 2005a).

SUBERIN COMPOSITION AND ABILITY OF BARRIER TO PREVENT ROL

Among the entries in **Table 1**, where ROL is below the detection limit (rows shaded gray), those with a higher percentage of aromatic suberin (**Table 1**, column 5) tend to have a lower total suberin content (**Table 1**, column 4). Pearson's correlation coefficient for these two variables calculated from the data in **Table 1** (total suberin content 62.1, 40.8, 11.9, 15.7 µg.cm⁻² and percentage of aromatic suberin 4.6, 42.2, 70.0, 77.7% for *T. juruana*, *P. australis*, *G. maxima*, and *O. sativa*, respectively) is -0.982. The absolute value of the coefficient is higher than the critical value for P = 0.05 and n = 4 (0.950), indicating that total suberin content and percentage of aromatic suberin are negatively correlated.

COMPOSITION OF ALIPHATIC DOMAIN OF SUBERIN

The permeability of suberin to water and solutes was found to be mostly determined by the aliphatic domain of suberin (Hose et al., 2001). In P. australis and G. maxima (Soukup et al., 2007), as well as in rice (Kotula et al., 2009a), the composition of aliphatic suberin isolated from the peripheral part of the root after incubation in stagnant deoxygenated medium was similar to that of suberin isolated from the peripheral part of the root of well-aerated plants. Most aliphatic monomers that are released after suberin decomposition belonged to one of the following five classes: monocarboxylic fatty acids, α,ω dicarboxylic fatty acids, ω -hydroxy fatty acids, α -hydroxy fatty acids, and fatty alcohols (Table 1, column 7-11). Similar sets of monomers were found in suberin isolated from various herbaceous plant sources, such as wound periderm of potato (Schreiber et al., 2005b; Yang and Bernards, 2006), Arabidopsis root tissues (Franke et al., 2005), and Arabidopsis and Brassica napus seeds (Molina et al., 2006). Among monomer classes, ω -hydroxy fatty acids (Table 1, column 9) were the most abundant class of suberin monomers for all plant species presented in Table 1, accounting for up to 64.5% of all suberin monomers. The abundances of other classes differ substantially among plant species, which makes it difficult to determine whether the composition of the aliphatic domain of suberin affects the permeability of the barrier to O₂.

DOES LIGNIN CONTRIBUTE TO THE ROL BARRIER?

The tight apoplastic barrier in T. juruana is almost exclusively built of suberin. On the other hand, in rice, the outer cell lavers have also a significant amount of lignin (5 times higher than those of suberin; Table 1, row 10, columns 3-4), although it is unclear whether the lignin contributes to the ROL barrier. In the outer part of the rice root, lignin is predominantly concentrated in lignified sclerenchyma. Lignin content was measured (Kotula et al., 2009a), but whether lignified sclerenchyma can act as the ROL barrier has not been evaluated experimentally. In roots of P. australis, sclerenchyma is represented by several layers of cells called a sclerenchymatous ring. Histochemical staining revealed that the walls of these cells were strongly lignified. Nevertheless, the sclerenchymatous ring did not provide a significant barrier to diffusion of periodic acid and is also unlikely to be a barrier to diffusion of smaller molecules such as O2 (Soukup et al., 2007).

RELATIONSHIP BETWEEN SUBERIN ACCUMULATION AND RESISTANCE TO ROL

Suberin accumulation has been suggested to increase the resistance to O_2 leakage. However, increased resistance to ROL is not always accompanied by an increase of suberin deposition in the plant root. Shiono et al. (2011) reported that when aerobically grown rice plants were treated under stagnant deoxygenated solution for 2 days, a tight ROL barrier was formed in long adventitious roots, whereas suberin and lignin deposits were undetectable by histochemical staining. Subsequently, suberin deposits increased prior to changes in lignin deposits. On the other hand, high-density granules were observed at intercellular spaces between the hypodermal/exodermal cells and also between

Antione Antione Antione Antione Purpose Concernence Concernence Concernence Concernence Purpose Concernence Concernence Concernence Concernence Concernence Purpose Concernence								Cubodi	a contont	oumoo puo	voition					
Methods Constrained Methods				;វពទព			(Suben (n content	and comp(osition iphatic sub (% of aliphat	erin fraction tic suberin	é			
International contractional contractinal contractional contractional contractional contract	Plant	species					hra⊦cm_ ₅	hra.cm_ ₅					elohools ytts	Other aliphatics	Radial oxygen loss ^c , ng.cm ⁻¹	References and source of data
emotorization D=0 C 0.28 C34 U1 261 UE 284 UE 592 UE 17 339 438 68 0.00 Not entencision feet D=0 S Not analyzed 711 267 G70 444 (62.4) 12.6 12.6 12.6 13.5 6.0 Not entencision feet D=0 S Not analyzed 40 12 23.6 14.4 12.6 12.6 13.5 6.0 Not entencision motored D=0 S Not analyzed 32.6 12.40 (38.7) 4.3 0.0 31.4 12.6 12.6 13.5 14.0 12.6 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6 13.0 13.6	Salix	martiana	0-30	s	0.18		9.30 (38.8)	14.7 (61.2)	17.4	24.0	49.1	3.5	6.0	0.0	Significant ROL (0–30) ^d	De Simone et al., 2003 (Table III, Figure 2)
5* 0-30 5 Not analyzed 711 267(376) 444(62.4) 126 126 135 84(10) 83 84(10) 83 84(10) 83 84(10) 83 84(10) 83 84(10) 83 84(10) 83 84(10) 83 84(10) 83 84(10) 84	Taber juruar	naemontana 1a	0-30	S	0.28	62.1	2.84 (4.6)	59.3 (95.4)	11.7	33.9	43.8	8.	6.8	0.0	Not detectable (5.0 and above) ^d	De Simone et al., 2003 (Table III, Figure 2)
Olt10 S Notantyzed 408 T2 (42.2) 236 (57.8) 9.4 49.6 14.6 14.6 14.7 Not detectable 0-30 S Notantyzed 362 223 (61.3) 140 (381) 14.6 14.6 14.6 14.6 14.6 14.6 14.0 10.0	Phra <u>c</u> austr	tmites alis ^e	0-30	S	Not analyzed	7.11	2.67 (37.6)	4.44 (62.4)	12.6	12.6	37.6	18.7	2:0	13.5	84 (10) 81 (20) 64 (30)	Armstrong and Armstrong, 2001 (Figure 4); Soukup et al., 2007 (Figure 3)
0-30 S Not analyzed 3.62 2.22 (61.3) 1.40 (38.7) 4.3 0.0 31.4 2.79 23.5 29 (10) 70-10 S Not analyzed 1.9 8.33 (70.0) 3.61 (30.0) 1.7 0 6.45 15.5 13.0 5.0 (0) 16 (20) 70-10 S Not analyzed 1.9 8.33 (70.0) 3.61 (30.0) 1.7 0 6.45 15.0			70–110	S	Not analyzed	40.8	17.2 (42.2)	23.6 (57.8)	9.4	23.0	49.4	14.6	2.4	1.2	Not detectable (70 and above)	
70-110 S Not detectable 0.0 64.5 15.6 13.0 5.70 Not detectable 6-35 A 16.5 1.37 0.38(70.0) 3.61(30.0) 1.7 0.0 64.5 15.0 5.70 Not detectable 6-35 A 16.5 1.37 0.38(27.1) 35.2 4.0 40.4 12.9 75 00 71(0) 35-65 A 50.1 12.3 0.06(13.1) 2.25(18.7) 30.8 15 49.7 75 00 74(0) 35-65 A 50.1 10.0(81.3) 2.25(18.7) 30.8 15 49.7 15.0 70 740 5-35 S 24.9 13.6 13.7 13 13 14 15 24.60 6-36 S 10.0 15.1 15.6 15 15 24.90 72.00 72.00 72.00 72.00 72.00 72.00 72.00 72.00 72.00 72.00 72.00	Glyce	rria maxima ^e	0-30	S	Not analyzed	3.62	2.22 (61.3)	1.40 (38.7)	4.3	0.0	31.4	27.9	7.9	28.5	29 (10) 15 (20) 2.0 (30)	Soukup et al., 2007 (Figures 3, 5)
5-35 A 16.5 137 0.38(27) 35.2 4.0 40.4 12.9 75 0.0 14(10) 35-65 A 50.1 12.3 10.0(81.3) 2.25(18.7) 30.8 15 49.7 15.0 30 0.0 17(20) 35-65 A 50.1 12.3 10.0(81.3) 2.25(18.7) 30.8 15 49.7 15.0 30 0.0 17(20) 5-35 S 24.6 3.35(68.2) 156(31.8) 33.7 13 48.7 11.5 4.9 0.0 7(40) 5-36 S 24.6 3.35(68.2) 156(31.8) 33.7 13 48.7 11.5 4.9 0.0 7(40) 5-36 S 80.4 15.7 126(31.8) 33.7 13 48.7 11.5 4.9 0.0 7(40) 55-45 S S 80.4 15.7 356(22.3) 356(22.3) 15 13 24 24 17 55-56 S S 80.4 15.7 15 15 13.0			70-110	S	Not analyzed	11.9	8.33 (70.0)	3.61 (30.0)	1.7	0.0	64.5	15.5	13.0	5.3	0.5 (70) Not detectable (80 and above)	
A 501 12.3 10.0(81.3) 2.25(18.7) 30.8 1.5 49.7 15.0 3.0 0.0 S 24.6 4.91 3.35(68.2) 1.56(31.8) 33.7 1.3 48.7 11.5 4.9 0.0 S 24.6 4.91 3.35(68.2) 1.56(31.8) 33.7 1.3 48.7 11.5 4.9 0.0 S 80.4 15.7 12.2(777) 3.56(22.3) 31.2 1.5 51.9 13.0 2.3 0.0	Oryzé (cv. A	<i>sativa</i> zucena)	5-35	A	16.5	1.37	0.99 (72.3)	0.38 (27.7)	35.2	4.0	40.4	12.9	75	0.0	14 (10) 17 (20) 22 (30)	Kotula et al., 2009a (Figures 3, 6–9)
S 24.6 4.91 3.35 (88.2) 1.56 (31.8) 33.7 1.3 48.7 11.5 4.9 0.0 S 80.4 15.7 12.2 (777) 3.56 (22.3) 31.2 1.5 51.9 13.0 2.3 0.0			35–65	A	50.1		10.0 (81.3)	2.25 (18.7)	30.8	1.5	49.7	15.0	3.0	0.0	17 (40) 14 (50) 5.4 (60)	
S 80.4 15.7 12.2 (777) 3.56 (22.3) 31.2 1.5 51.9 13.0 2.3 0.0			5-35	S	24.6	4.91	3.35 (68.2)	1.56 (31.8)	33.7	1.3	48.7	11.5	4.9	0.0	50 (10) 17 (20) 2.4 (30)	
			35-65	S	80.4		12.2 (77.7)	3.56 (22.3)	31.2	1.5	51.9	13.0	2.3	0.0	Not detectable (40 and above)	

For Phagmites australis and Glyceria maxima the results are for stagmant treatment only. For both species, the aliphatic suberin quantity and composition in plants growing in stagmant conditions were not significantly different from those in plants growing well aerated conditions. The profile of ROL for roots of P. australis plants growing in aerated conditions was similar to that of plants growing in stagnant conditions indicating that P. australis has a constitutive barrier to ROL. On the other

shows that if an apoplastic barrier was present, it would not be strong enough to prevent oxygen release from the root to anaerobic environment.

hand, roots of G. maxima plants growing in aerated conditions did not form a tight barrier to ROL.

Frontiers in Plant Science | Plant Physiology

the sclerenchymatous cells in long roots treated under stagnant deoxygenated conditions for 2 days, whereas such granules were absent in roots growing under aerated conditions. Shiono et al. (2011) speculated that microstructural packing of intercellular spaces at the hypodermis/exodermis may be involved in ROL barrier formation and that suberin deposition may be more important than lignin deposition.

In waterlogging-tolerant *Zea nicaraguensis*, stagnant deoxygenated growth conditions induced early development of hypodermal/exodermal suberin lamellae as well as deposition of lignin at the epidermis in adventitious roots (Abiko et al., 2012). On the other hand, in waterlogging-intolerant maize, many of the hypodermal/exodermal cells developed suberin lamellae, but an increase in lignin was not detected (Abiko et al., 2012). The absence of an ROL barrier in spite of suberin deposition in maize roots may be due to the presence of non-suberized passage cells in the hypodermal/exodermal cell layer (Armstrong et al., 2000) and/or the special arrangement of suberin deposition within cell walls (Schreiber et al., 2005a; Ranathunge et al., 2011).

Roots of *G. maxima* grown under stagnant deoxygenated conditions develop an ROL barrier (Soukup et al., 2007). However, the formation of the ROL barrier was not accompanied by an increase of suberin content in roots or by changes in suberin composition, which suggests that the net accumulation of suberin components in the hypodermal/exodermal layers do not necessarily reflect the barrier properties of impregnated cell walls (Schreiber et al., 2005a; Soukup et al., 2007).

Histochemical staining is less sensitive than quantitative chemical analysis (De Simone et al., 2003), and may depend on the composition, molecular and spatial arrangements, and differences in molecular context in suberin lamellae (Soukup et al., 2007). On the other hand, current suberin quantitative and qualitative data (**Table 1**) are insufficient to tell whether the chemical composition of the apoplastic barrier affects ROL. The contributions of lignification and cell wall proteins to the apoplastic barrier remain unclear (Schreiber et al., 2005a). Moreover, the arrangements as well as the contents of suberin monomers may play a role in the formation of the ROL barrier under waterlogged conditions in plants (Ranathunge et al., 2011). Thus, further analyses of the spatial arrangement of suberin deposition within the cell wall are required to elucidate the components of the ROL barrier.

Oxygen consumption by respiration in the outer part of the root also significantly affects ROL (Armstrong et al., 2000; Garthwaite et al., 2008; Kotula et al., 2009b). To determine the real effect of the barrier on ROL, the respiration rate or the number of respiring cell layers in the outer part of the root should be taken into account (Garthwaite et al., 2008; Kotula and Steudle, 2009). For example, when cell respiration was stopped by HCl treatment, the oxygen permeability coefficient of rice root segments was about twice that of non-treated roots (Kotula et al., 2009b), and in the case of *Hordeum marinum*, reducing cell respiration by cooling to 4°C revealed that the cell respiration reduces ROL and improves the apparent tightness of the barrier at 20°C (Garthwaite et al., 2008).

CHALLENGES AND PERSPECTIVES

Although the ROL barrier was first reported almost 50 years ago and was presumed to be due to suberin deposition (Armstrong, 1964, 1967), the chemical nature and induction of the barrier have been studied in detail only in the last 15 years. Suberin deposition in the outer cell layers of roots is presently suspected to take an important part in the formation of the apoplastic barrier to phytotoxins and gases, and thus it can contribute to waterlogging tolerance. However, differences in spatial patterns of suberin deposition and differences in suberin content and composition between plant species make it difficult to determine to what extent suberin deposition contributes to the barrier formation and how the chemical composition of suberin affects barrier properties. In addition, much remains to be learned about the molecular mechanism of suberin accumulation. One approach to answering these questions is to use model plants for which mutants and transformants that differ in suberin contents and compositions can be easily produced. Rice may be useful for this purpose because many molecular and genetic tools have been developed and it forms a tight barrier in roots under stagnant deoxygenated conditions (Colmer, 2003b; Kotula et al., 2009a; Shiono et al., 2011). Thus, genes related to suberin biosynthesis and ROL barrier formation could be identified and analyzed using rice. Another approach is to focus on the strengthening of the apoplastic barrier that can be induced by chemical stimulants, such as sulfides and shortchain organic acids, in the surrounding environment (Armstrong and Armstrong, 2001, 2005). This would allow suberin content and composition to be varied by chemical stimulants, which in turn would make it possible to determine the effects of suberin content and composition on the tightness of apoplastic barrier to ROL.

Many commercially important crops, such as wheat (Triticum aestivum) and maize, are not able to form a tight ROL barrier, which can result in a reduction of yield if the soil becomes waterlogged. On the other hand, wild plants, H. marinum and Z. nicaraguensis, which can be crossed with wheat and maize, respectively, accumulate suberin in response to waterlogged conditions and form a tight ROL barrier (Malik et al., 2011; Abiko et al., 2012). Some amphiploids between wheat (cv. Chinese Spring) and H. marinum were able to form an ROL barrier and were more tolerant to waterlogging than wheat (Malik et al., 2011). In addition, genetic analyses using a cross between Z. nicaraguensis and maize (inbred line Mi29) have revealed potential quantitative trait loci (QTL) related to waterlogging tolerance (Mano and Omori, 2008, 2009; Mano et al., 2009, 2012). Such genetic analyses provide a promising approach to understanding the mechanism of ROL barrier formation and to improving the waterlogging tolerance of crops.

ACKNOWLEDGMENTS

The authors are indebted to Prof. Lukas Schreiber (University of Bonn) for a critical reading of this paper and stimulating discussions. Shunsaku Nishiuchi and Konstantin Kulichikhin were supported by a JSPS Research Fellowship.

REFERENCES

- Abiko, T., Kotula, L., Shiono, K., Malik, A. I., Colmer, T. D., and Nakazono, M. (2012). Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of *Zea nicaraguensis* contribute to its waterlogging tolerance as compared with maize (*Zea* mays ssp. mays). Plant Cell Environ. 35, 1618–1630. doi: 10.1111/j.1365-3040.2012.02513.x
- Armstrong, J., and Armstrong, W. (2001). Rice and *Phragmites*: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. *Am. J. Bot.* 88, 1359–1370.
- Armstrong, J., and Armstrong, W. (2005). Rice: Sulfide-induced barriers to root radial oxygen loss, Fe²⁺ and water uptake, and lateral root emergence. *Ann. Bot.* 96, 625–638. doi: 10.1093/aob/mci215
- Armstrong, W. (1964). Oxygen diffusion from the roots of some British bog plants. *Nature* 204, 801–802. doi: 10.1038/204801b0
- Armstrong, W. (1967). The use of polarography in the assay of oxygen diffusing from roots in anaerobic media. *Physiol. Plant.* 20, 540–553. doi: 10.1111/j.1399-3054.1967.tb07195.x.
- Armstrong, W. (1979). "Aeration in higher plants," in Advances in Botanical Research, Vol. 7, ed H. W. Woolhouse (London: Academic Press), 236–332.
- Armstrong, W., and Beckett, P. M. (1987). Internal aeration and the development of stelar anoxia in submerged roots: a multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. *New Phytol.* 105, 221–245. doi: 10.1111/j.1469-8137.1987.tb00860.x
- Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W., and Beckett, P. M. (2000). Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with *Phragmites australis*. Ann. Bot. 86, 687–703. doi: 10.1006/anbo.2000.1236
- Armstrong, W., and Drew, M. C. (2002). "Root growth and metabolism under oxygen deficiency," in *Plant Roots: the Hidden Half, 3rd Edn,* eds Y. Waisel, A. Eshel, and U. Kafkafi (New York and Basel: Marcel Dekker), 729–761.
- Carpita, N., Sabularse, D., Montezinos, D., and Delmer, D. P. (1979).

Determination of the pore size of cell walls of living plant cells. *Science* 205, 1144–1147. doi: 10.1126/science.205.4411.1144

- Clark, L. H., and Harris, W. H. (1981). Observations on the root anatomy of rice (*Oryza sativa* L.). *Am. J. Bot.* 68, 154–161.
- Colmer, T. D. (2003a). Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. *Plant Cell Environ.* 26, 17–36. doi: 10.1046/j.1365-3040.2003.00846.x
- Colmer, T. D. (2003b). Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (*Oryza sativa* L.). *Ann. Bot.* 91, 301–309. doi: 10.1093/aob/mcf114
- Conrad, R., and Klose, M. (1999). Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. *FEMS Microbiol. Ecol.* 30, 147–155. doi: 10.1016/S0168-649600048-649600043
- De Simone, O., Haase, K., Müller, E., Junk, W. J., Hartmann, K., Schreiber, L., et al. (2003). Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four amazonian tree species. *Plant Physiol.* 132, 206–217. doi: 10.1104/pp.102.014902
- Drew, M. C., and Lynch, J. M. (1980). Soil anaerobiosis, microorganisms, and root function. Annu. Rev. Phytopathol. 18, 37–66. doi: 10.1146/ annurev.py.18.090180.000345
- Enstone, D. E., Peterson, C. A., and Ma, F. (2003). Root endodermis and exodermis: structure, function, and responses to the environment. *J. Plant Growth Regul.* 21, 335–351.
- Ferguson, I. B., and Clarkson, D. T. (1975). Ion transport and endodermal suberization in the roots of *Zea mays. New Phytol.* 75, 69–79. doi: 10.1111/j.1469-8137.1975.tb01372.x
- Ferguson, I. B., and Clarkson, D. T. (1976). Simultaneous uptake and translocation of magnesium and calcium in barley (*Hordeum vulgare* L.) roots. *Planta* 128, 267–269. doi: 10.1007/BF00393239
- Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., et al. (2005). Apoplastic polyesters in *Arabidopsis* surface tissues – A typical suberin and a particular cutin. *Phytochemistry* 66, 2643–2658. doi: 10.1016/j.phytochem.2005.09.027
- Garthwaite, A. J., Armstrong, W., and Colmer, T. D. (2008). Assessment of

 O_2 diffusivity across the barrier to radial O_2 loss in adventitious roots of *Hordeum marinum*. *New Phytol.* 179, 405–416. doi: 10.1111/j.1469-8137.2008.02467.x

- Greenway, H., Armstrong, W., and Colmer, T. D. (2006). Conditions leading to high CO₂ (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. *Ann. Bot.* 98, 9–32. doi: 10.1093/aob/mcl076
- Hose, E., Clarkson, D. T., Steudle,
 E., Schreiber, L., and Hartung,
 W. (2001). The exodermis:
 a variable apoplastic barrier.
 J. Exp. Bot. 52, 2245–2264. doi: 10.1093/jexbot/52.365.2245
- Jackson, P. C., and Taylor, J. M. (1970). Effects of organic acids on ion uptake and retention in barley roots. *Plant Physiol.* 46, 538–542. doi: 10.1104/pp.46.4.538
- Jacq, V. A., Prade, K., and Ottow, J. C. G. (1991). "Iron sulphide accumulation in the rhizosphere of wetland rice (Oryza sativa L.) as the result of microbial activities," in *Diversity* of Environmental Biogeochemistry, ed J. Berthelin (La Haye: Elsevier), 453–468.
- Kammeyer, C. W., and Whitman, D. R. (1972). Quantum mechanical calculation of molecular radii.
 I. Hydrides of elements of periodic groups IV through VII. J. Chem. Phys. 56, 4419–4421. doi: 10.1063/1.1677883
- Kielland, J. (1937). Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678. doi: 10.1021/ja01288a032
- Kolattukudy, P. E. (2001). "Polyesters in higher plants," in Biopolyesters (Advances in Biochemical Biotechnology, Engineering Volume 71), ed W. Babel and Steinbüchel A. (Berlin and Heidelberg: Springer), 1 - 49. doi: 10.1007/3-540-40021-4_1
- Kotula, L., Ranathunge, K., Schreiber, L., and Steudle, E. (2009a). Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (*Oryza sativa* L.) grown in aerated or deoxygenated solution. *J. Exp. Bot.* 60, 2155–2167. doi: 10.1093/jxb/erp089
- Kotula, L., Ranathunge, K., and Steudle, E. (2009b). Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration. *New Phytol.* 184, 909–917. doi: 10.1111/j.1469-8137.2009.03021.x

- Kotula, L., and Steudle, E. (2009). Measurements of oxygen permeability coefficients of rice (*Oryza* sativa L.) roots using a new perfusion technique. J. Exp. Bot. 60, 567–580. doi: 10.1093/jxb/ern300
- Laanbroek, H. J. (1990). Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aqua. Bot. 38, 109–125. doi: 10.1016/0304-377090101-P
- Maas, E. V., and Ogata, G. (1971). Absorption of magnesium and chloride by excised corn root. *Plant Physiol.* 47, 357–360. doi: 10.1104/pp.47.3.357
- Malik, A. I., Islam, A. K. M. R., and Colmer, T. D. (2011). Transfer of the barrier to radial oxygen loss in roots of *Hordeum marinum* to wheat (*Triticum aestivum*): evaluation of four *H*. marinumwheat amphiploids. New Phytol. 190, 499–508. doi: 10.1111/j.1469-8137.2010.03519.x
- Mano, Y., and Omori, F. (2008). Verification of QTL controlling root aerenchyma formation in a maize × teosinte "Zea nicaraguensis" advanced backcross population. Breed. Sci. 58, 217–223. doi: 10.1270/jsbbs.58.217
- Mano, Y., and Omori, F. (2009). Highdensity linkage map around the root aerenchyma locus *Qaer1.06* in the backcross populations of maize Mi29 \times teosinte "*Zea nicaraguensis*". *Breed. Sci.* 59, 427–433. doi: 10.1270/jsbbs.59.427
- Mano, Y., Omori, F., Loaisiga, C. H., and Bird, R. M. (2009). QTL mapping of above-ground adventitious roots during flooding in maize x teosinte "Zea nicaraguensis" backcross population. *Plant Root* 3, 3–9. doi: 10.3117/plantroot.3.3
- Mano, Y., Omori, F., and Takeda, K. (2012). Construction of intraspecific linkage maps, detection of a chromosme inversion, and mapping of QTL for constitutive root aerenchyma formation in the teosinte Zea nicaraguensis. Mol. Breed. 29, 137–146. doi: 10.1007/s11032-010-9532-z
- Molina, I., Bonaventure, G., Ohlrogge, J., and Pollard, M. (2006). The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry. 67, 2597–2610. doi: 10.1016/j.phytochem.2006.09.011
- Ranathunge, K., Lin, J., Steudle, E., and Schreiber, L. (2011). Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (*Oryza Sativa*, L.) roots. *Plant*

Cell Environ. 34, 1223–1240. doi: 10.1111/j.1365-3040.2011.02318.x

- Rubinigg, M., Stulen, I., Elzenga, J. T. M., and Colmer, T. D. (2002). Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. *Funct. Plant Biol.* 29, 1475–1481. doi: 10.1071/FP02081
- Schreiber, L. (2010). Transport barriers made of cutin, suberin and associated waxes. *Trends Plant Sci.* 15, 546–553. doi: 10.1016/j.tplants.2010.06.004
- Schreiber, L., Franke, R., Hartmann, K. D., Ranathunge, K., and Steudle, E. (2005a). The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (*Oryza* sativa L. cv. IR64) and corn (*Zea* mays L. cv. Helix). J. Exp. Bot. 56, 1427–1436. doi: 10.1093/jxb/eri144
- Schreiber, L., Franke, R., and Hartmann, K. (2005b). Wax and suberin development of native and wound periderm of potato

(*Solanum tuberosum* L.) and its relation to peridermal transpiration. *Planta* 220, 520–530. doi: 10.1007/s00425-004-1364-9

- Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J. (1999). Apoplastic barrier in roots: chemical composition of endodermal and hypodermal cell walls. *J. Exp. Bot.* 50, 1267–1280. doi: 10.1093/jxb/50.337.1267
- Shiono, K., Ogawa, S., Yamazaki, S., Isoda, H., Fujimura, T., Nakazono, M., et al. (2011). Contrasting dynamics of radial O₂-loss barrier induction and aerenchyma formation in rice roots of two Lengths. Ann. Bot. 107, 89–99. doi: 10.1093/aob/mcc221
- Soukup, A., Armstrong, W., Schreiber, L., Franke, R., and Votrubová, O. (2007). Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, *Phragmites australis* and *Glyceria maxima*. New Phytol. 173, 264–278. doi: 10.1111/j.1469-8137.2006.01907.x

- Volkov, A. G., Paula, S., and Deamer, D. W. (1997). Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. *Bioelectrochem. Bioenerg.* 42, 153–160. doi: 10.1016/S0302-459805097-0
- Wiengweera, A., Greenway, H., and Thomson, C. J. (1997). The use of agar nutrient solution to simulate lack of convection in waterlogged soils. *Ann. Bot.* 80, 115–123. doi: 10.1006/anbo.1996.0405
- Yang, W. L., and Bernards, M. A. (2006). Wound-induced metabolism in potato (*Solanum tuberosum*) tubers: biosynthesis of aliphatic domain monomers. *Plant Signal. Behav.* 1, 59–66.
- Zhang, Y., and Xu, Z. (1995). Atomic radii of noble gas elements in condensed phases. *Am. Mineralog.* 80, 670–675.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 09 March 2013; accepted: 17 May 2013; published online: 17 June 2013.

Citation: Watanabe K, Nishiuchi S, Kulichikhin K and Nakazono M (2013) Does suberin accumulation in plant roots contribute to waterlogging tolerance? Front. Plant Sci. 4:178. doi: 10.3389/fpls. 2013.00178

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Watanabe, Nishiuchi, Kulichikhin and Nakazono. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress

Angelika Mustroph¹*, Johanna Stock¹, Natalia Hess¹, Sophia Aldous^{2†}, Anika Dreilich² and Bernhard Grimm²

¹ Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany

² Department of Plant Physiology, Institute of Biology, Humboldt-University Berlin, Berlin, Germany

Edited by:

Rens Voesenek, Utrecht University, Netherlands

Reviewed by:

Sjef Smeekens, Utrecht University, Netherlands Shaobai Huang, The University of Western Australia, Australia

*Correspondence:

Angelika Mustroph, Department of Plant Physiology, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany. e-mail: angelika.mustroph@ uni-bayreuth.de

[†]Present address:

Sophia Aldous, Department of Developmental and Molecular Plant Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.

Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the ATP-dependent phosphofructokinase (PFK) and the pyrophosphate-(PPi) dependent pyrophosphate-fructose-6-phosphate-phosphotransferase (PFP). During oxygen deficiency ATP levels in rice seedlings are severely reduced, and it is hypothesized that PPi is used as an alternative energy source for the phosphorylation of fructose-6-phosphate during glycolysis. In this study, we analyzed the expression of 15 phosphofructokinaseencoding genes in roots and aerial tissues of anoxia-tolerant rice seedlings in response to anoxic stress and compared our data with transcript profiles obtained from microarray analyses. Furthermore, the intracellular localization of rice PFK proteins was determined, and the PFK and PFP isoforms were grouped in a phylogenetic tree. Two PFK and two PFP transcripts accumulated during anoxic stress, whereas mRNA levels of four PFK and three PFP genes were decreased. The total specific activity of both PFK and PFP changed only slightly during a 24-h anoxia treatment. It is assumed that expression of different isoforms and their catalytic properties differ during normoxic and anoxic conditions and contribute to balanced glycolytic activity during the low-oxygen stress. These characterizations of phosphofructokinase genes and the comparison to other plant species allowed us to suggest candidate rice genes for adaptation to anoxic stress.

Keywords: Oryza sativa, anoxia, submergence, phosphofructokinase, pyrophosphate

INTRODUCTION

The pronounced tolerance of oxygen deprivation during seed germination and vegetative development makes rice plants an interesting subject to elucidate mechanisms of response to low-oxygen stress. Oxygen deficiency results in inhibition of mitochondrial respiration, leading to NADH accumulation as well as ATP deficiency. Glycolytic production of ATP continues, when fermentative enzymes are induced and able to regenerate sufficient amounts of NAD⁺ (reviewed in Drew, 1997; de Sousa and Sodek, 2002; Geigenberger, 2003; Gibbs and Greenway, 2003).

Plant cells frequently enhance the rate of sucrose consumption under low-oxygen stress to compensate for the low energy yield during glycolysis (2–4 mol ATP per mol glucose), in comparison to aerobic mitochondrial respiration (30–36 mol ATP per mol glucose) (Summers et al., 2000). We have shown previously that rice plants sustain a higher fermentation rate during anoxia as compared to anoxia-sensitive wheat plants, but ATP levels still drop by two-third (Mustroph et al., 2006a). The decline in cellular ATP content during low-oxygen stress will impact the glycolytic phosphorylation reactions catalyzed by hexokinases and phosphofructokinases (Bouny and Saglio, 1996). Thus, it was hypothesized that plants might use pyrophosphate (PPi) instead of ATP as an

Abbreviations: ADH, alcohol dehydrogenase; PDC, pyruvate decarboxylase; PFK, ATP-dependent phosphofructokinase; PF2K, phosphofructo-2-kinase; PFP, pyrophosphate-fructose-6-phosphate-phosphotransferase; PPi, pyrophosphate.

alternative energy source for phosphorylation processes during ATP deficiency (Weiner et al., 1987; Stitt, 1998; Huang et al., 2008). PPi is a by-product of many biosynthetic processes like DNA and protein synthesis, and its levels are not changed during oxygen deficiency stress (Dancer and ap Rees, 1989; Mohanty et al., 1993; Mustroph et al., 2005).

Sucrose cleavage and subsequent phosphorylation of hexoses are usually catalyzed by the ATP-dependent invertase/hexokinase reaction, but can be replaced by the PPi-consuming sucrose synthase/UDP-glucose pyrophosphorylase reaction. The activation of this alternative pathway of sucrose catabolism upon oxygen deficiency stress was confirmed for several plant species, and the substitution of the ATP-dependent reactions by the UTP and PPidependent pair of enzymes is generally accepted (Springer et al., 1986; Ricard et al., 1991, 1998; Guglielminetti et al., 1995; Perata et al., 1996, 1997; Biemelt et al., 1999; Mustroph and Albrecht, 2003; Albrecht et al., 2004; Bailey-Serres and Voesenek, 2008).

The second phosphorylation step in the glycolytic pathway is the phosphorylation of fructose-6-phosphate to fructose-1,6bisphosphate via phosphofructokinase. The reaction can be performed by an ATP-dependent phosphofructokinase (PFK) or by the PPi-dependent form pyrophosphate-fructose-6-phosphatephosphotransferase (PFP). PFP consists of two different subunits (PFP-alpha, PFP-beta) that form a heterotetramer (Wong et al., 1990; Teramoto et al., 2000), whereas the subunit composition of a PFK complex is not known yet. The contribution of each phosphofructokinase enzyme to the phosphorylation step and their functions during different growth conditions remain unclear. While during hypoxic stress both enzyme activities are induced in wheat and maize roots (Mustroph and Albrecht, 2003), their activities do not change in roots of potato plants (Mustroph et al., 2005). Experiments with transgenic potato plants with a severe decrease in PFP activity revealed no change in aerobic (Hajirezaei et al., 1994) or anoxic metabolism (Mustroph, unpublished results). However, the PFP activity was increased in anoxically germinated rice coleoptiles (Mertens et al., 1990; Kato-Noguchi, 2002) and anoxic rice suspension cells (Mohanty et al., 1993), whereas PFK activity was unaffected.

Studies on genes encoding the ATP- and PPi-dependent phosphofructokinases have been previously limited by the lack of information on coding sequences for plant PFKs, which were only recently described (Mustroph et al., 2007; Winkler et al., 2007). The Arabidopsis thaliana phosphofructokinase gene family consists of 11 members, of which four members encode PFPs and seven encode PFKs (Nielsen et al., 2004; Mustroph et al., 2007; Winkler et al., 2007). Here, we identify 15 putative phosphofructokinase genes of rice, five encoding PFPs and 10 encoding PFKs, and perform transcriptomic and enzymatic studies to evaluate the contribution of phosphofructokinase genes to anoxic metabolism in roots, stems, and leaves of the highly anoxia-tolerant plant. The analysis includes evaluation of phosphofructokinase gene expression during darkness and illumination, since it was already demonstrated that illumination greatly enhances the tolerance of plants to anoxic stress due to the contribution of photosynthesis to energy production (Mustroph et al., 2006b). The findings indicate that individual members of the PFK and PFP gene families are induced by anoxia, although activities of these two enzymes are only slightly increased by the stress. Notably, the induction of PFP genes was greater in the shoots and leaves than in roots, leading to the suggestion that the induction of the PPi-utilizing phosphofructokinase may only occur in tissues with sufficient carbohydrate levels for consumption during the stress. During the study, mRNA sequences and intracellular localization of the proteins were analyzed, and several discrepancies to the annotated versions were found.

MATERIALS AND METHODS

PLANT MATERIAL AND ANOXIC TREATMENT

Rice seeds (*Oryza sativa* ssp. *indica* cv. Cigalon) were watered, germinated for 3 days in the dark at 27°C and transferred to pots containing Knop nutrient solution that was continuously aerated (Mustroph and Albrecht, 2003). After growth for 20 days in 16 h-light/8 h-dark cycles and 250 μ moles photons m⁻² s⁻¹ the plants were placed in desiccators, while their roots were immersed in nutrient solution. The gaseous and the aqueous phase (the nutrient solution) in the desiccator were continuously flushed with nitrogen gas and plants were treated for 0.5, 2, 8, or 24 h in the light (250 μ moles photons m⁻² s⁻¹) or in complete darkness. Additionally, light-grown plants were exposed to 24 h darkness in ambient air to distinguish between light-dependent and anoxia-independent gene expression regulation. For harvest, plants were removed from the desiccator, divided into roots, stem and leaf sheaths, and frozen immediately in liquid nitrogen within 60 s.

ISOLATION OF RNA, cDNA SYNTHESIS, AND SEMI-QUANTITATIVE REVERSE-TRANSCRIPTASE POLYMERASE CHAIN REACTION ANALYSIS

RNA from frozen tissues was extracted using the Trizol reagent (Bioline GmbH, Luckenwalde, Germany). cDNA was synthesized from 15 µg RNA with standard protocols using oligodT primers and MLV reverse transcriptase (Fermentas GmbH, St. Leon-Rot, Germany). The PCR reactions were performed using Taq polymerase (New England Biolabs GmbH, Frankfurt, Germany) according to the purchaser's protocol. The oligonucleotide primers used are listed in Table S1 in Supplementary Material. Because of the high GC content of rice cDNA, for each primer combination the optimal PCR conditions were tested using different concentrations of MgCl₂, DMSO, betaine, cycle numbers, and temperatures. The optimal conditions for the semi-quantitative amplification of each fragment from cDNA are summarized in Table S2 in Supplementary Material. PCR products were analyzed by electrophoresis in standard 1% agarose gels. DNA bands were quantified by use of the program AlphaEaseFC (Alpha Innotech Corporation).

CLONING AND SEQUENCING OF PFKs AND PFPs

For intracellular localization of the proteins and confirmation of nucleotide sequences, full-length *PFKs* were amplified from cDNA with VELOCITY DNA polymerase (Bioline, Germany) by use of the primers listed in Table S1 in Supplementary Material and cloned into the vector pDONR221 by use of the Gateway technology (Invitrogen, Germany). The resulting entry clones were completely sequenced by Sanger sequencing and compared to the reference sequences from the rice genome annotation project (Ouyang et al., 2007)¹. Subsequently, correct clones were transferred via the LR reaction into the vector pEarleyGate 103 (Earley et al., 2006), which had been modified by the addition of one base in order to put the C-terminal GFP into frame. The plasmids were sequenced again to verify the correct frame of the PFK-GFP fusion.

The two sequences *OsPFK07* and *OsPFK08* did not fully match the annotated mRNA sequences. In this case, several clones and fragments of cDNA as well as of genomic DNA were sequenced, not only from the variety Cigalon, but also from other varieties (Nipponbare, M202, FR13A, CT6241, Dongjin, Hwayoung). For *OsPFK07*, a new full-length construct was made based on the truncated version of the Cigalon variety.

After the first localization studies and the observation of aggregate formation in transiently transformed tobacco leaves, we also cloned the N-terminal ca. 100 amino acids to obtain truncated *PFK* sequences by use of the primers listed in Table S1 in Supplementary Material. Here, products were amplified with Phusion DNA Polymerase (Fermentas GmbH, St. Leon-Rot, Germany), and cloned by the Gateway technology into the vector pDONR221 (Invitrogen, Germany). After sequencing, correct sequences were subcloned by the LR clonase into the vector pK7FWG2,0 (Karimi et al., 2002).

For sequencing of *PFPs*, a major piece of each mRNA sequence was amplified by PCR from cDNA by use of the primers listed in Table S1 in Supplementary Material. The PCR products were directly sequenced and compared to the annotated sequences. Nucleotide sequences differing from the annotated versions were submitted to GenBank with the IDs KC620557-KC620559.

¹http://rice.plantbiology.msu.edu

TRANSIENT TRANSFORMATION OF TOBACCO LEAVES AND INTRACELLULAR LOCALIZATION OF PFKs

Binary expression vectors containing PFK-GFP fusion constructs were transformed into the Agrobacteria strains LBA4404 (full-length constructs) and GV3103 (N-terminal truncations). Tobacco leaves were transiently transformed by infiltration with Agrobacteria suspensions as described in Bendahmane et al. (2000) and Mustroph et al. (2007). About 3–4 days after infiltration, leaf disks were collected and protoplasts were isolated as previously described (Bayley et al., 1992; Mustroph et al., 2007). GFP fluorescence was analyzed on either protoplasts or undigested leaf disks by confocal laser scanning microscopy using Leica TCS SP2 (Leica, Germany, at λ_{ex} 488 nm, λ_{em} 530–555 nm for GFP and 650–720 nm for chlorophyll emission).

ENZYME ACTIVITIES

Plant tissue was ground in liquid nitrogen to a fine powder and extracted in 50 mM Hepes-KOH, pH 6.8 containing 5 mM Mg acetate, 5 mM β -mercaptoethanol, 15% (v/v) glycerol, 1 mM EDTA, 1 mM EGTA, 5 mM DTT, and 0.1 mM Pefabloc proteinase inhibitor (Boehringer Mannheim, Germany). The homogenate was centrifuged at 13,000 g at 4°C for 15 min. The resulting supernatant was used for spectrophotometric determination of PFK and PFP activities as well as the fermentative enzymes alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) at 340 nm using a UVIKON photometer (Kontron, Germany).

For the assay of PFK (EC 2.7.1.11), the reaction mixture was 0.1 M Hepes-KOH, pH 7.9 with 2 mM MgCl₂, 0.15 mM NADH, 7.5 mM fructose-6-phosphate, 1 U aldolase, 1 U triosephosphate isomerase, and 1 U glycerol-3-phosphate-dehydrogenase (Sigma-Aldrich, Germany). The reaction was started by addition of 2.5 mM ATP. For assay of PFP (EC 2.7.1.90), the same reaction mixture was used with the addition of 1 µM fructose-2,6bisphosphate, and initiation of the reaction with 1 mM NaPPi (modified from Gibbs et al., 2000). PDC (EC 4.1.1.1) was assayed in 50 mM MES, pH 6.8, with 25 mM NaCl, 1 mM MgCl₂, 0.5 mM thiamine pyrophosphate, 2 mM dithiothreitol, 0.17 mM NADH, 50 mM sodium oxamate, 10 U ADH (Sigma-Aldrich, Germany) and the reaction was initiated by addition of 10 mM pyruvate (Waters et al., 1991). ADH (EC 1.1.1.1) was assayed in 50 mM TES buffer, pH 7.5, with 0.2 mM NADH and the reaction was initiated by the addition of 10 mM acetaldehyde (Waters et al., 1991). Protein concentration was measured according to Bradford (1976).

BIOINFORMATICS AND STATISTICS

Nucleotide and protein sequences were analyzed by use of the program Bioedit (Tom Hall, Ibis Biosciences, Carlsbad, USA). ClustalW alignments were done with the website http: //www.genome.jp/tools/clustalw/. Phylogenetic trees were constructed by use of the website http://www.phylogeny.fr/version2_ cgi/phylogeny.cgi. Expression data from rice microarray experiments were obtained from Mustroph et al. (2010), and heat maps were drawn with TIGR-MeV (Saeed et al., 2006).

Polymerase chain reaction analyses were performed on three independent bioreplicates. Infiltration of tobacco leaves was repeated three to five times for each construct. Enzymatic measurements were done with three independent bioreplicates, and results were statistically analyzed with the package "multcomp" in R by use of the Tukey HSD test.

RESULTS

IDENTIFICATION OF GENES ENCODING PHOSPHOFRUCTOKINASES IN RICE AND COMPARISON OF THEIR SEQUENCES

The Arabidopsis phosphofructokinase-encoding gene sequences were used to perform a BLAST-search of the rice genome (Ouyang et al., 2007)² for homologous nucleotide sequences. This analysis identified 15 different sequences with high similarity to Arabidopsis phosphofructokinase-encoding genes. A phylogenetic tree based on the amino acid sequences was generated, including the sequence of phosphofructo-2-kinase/fructose-2,6-bisphosphatase, which is a similar, but unrelated protein (Figure 1). Four of the rice proteins (LOC_Os02g48360, LOC_Os06g22060, LOC_Os08g25720, LOC_Os09g12650) grouped with the two putative Arabidopsis PFP-alpha subunits (At1g20950, At1g76550) and known PFPalpha subunits from other plants. Surprisingly, two rice PFPalpha protein sequences (LOC_Os08g25720, LOC_Os09g12650) were found to be distinct from the PFP-alpha subunit sequences of dicotyledonous species known so far (Figure 1). One rice amino acid sequence (LOC_Os06g13810) showed high homology to the two putative Arabidopsis PFP-beta subunits (At1g12000, At4g04040) and the PFP-beta subunits from Citrus × paradisii, potato and Ricinus communis.

The remaining 10 rice phosphofructokinases grouped with seven Arabidopsis PFK proteins, indicating that both species have larger families of ATP-dependent than PPi-dependent phosphofructokinases. Based on the sequence similarities among the PFK family, three sub-clades were distinguished (Figure 1). One group includes five rice (LOC_Os01g09570, LOC_Os01g53680, LOC_Os05g10650, LOC_Os05g44920, LOC_Os06g05860) and five Arabidopsis PFKs, the two other groups have each one Arabidopsis member (At2g22480, At5g47810), and two (LOC Os04g39420, LOC Os09g30240), or three (LOC Os08g34050, LOC_Os09g24910, LOC_Os10g26570) rice members, respectively (Figure 1). Based on these results, we propose to distinguish the three PFK sub-clades as PFK_A, PFK_B, and PFK_C (Table 1). The amino acid alignment reveals distinct sequence patterns with high similarity among the members of each sub-clade that differentiate them from the other two sub-clades (Figure S1 in Supplementary Material). Besides other sequence differences, members of group B have shorter N- and C-termini, whereas members of group C have shorter C-termini compared to group A members. Furthermore, all members of group C are predicted to be localized to plastids (Table 1; TargetP, Emanuelsson et al., 2000; pSort, Horton et al., 2006).

EXPRESSION OF PHOSPHOFRUCTOKINASE GENES UNDER AERATION

To study the expression patterns of all representatives of the rice *phosphofructokinase* gene family, transcript abundance was analyzed by use of semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) using total RNA from roots, leaf sheaths, and stems of rice seedlings grown under non-stress conditions in

²http://rice.plantbiology.msu.edu

the light or after transfer to complete darkness for 24 h (labeled as 0 h* in Figure 2). The abundance of *actin* mRNA was used as a loading control (Ren et al., 2005). The accumulation of some transcripts encoding PFKs and PFPs were organ-specifically and/or light-dependently regulated, while others exhibited ubiquitous expression patterns. mRNAs for OsPFK01 - OsPFK03, OsPFK05 -OsPFK08, and OsPFK10 were detected in all analyzed organs of seedlings exposed to light, as well as transcripts of OsPFPA1 and OsPFPA4 (Figure 2). OsPFK04 and OsPFK09 mRNAs were present at low levels in tissues of non-stressed seedlings during both light and dark exposure (0 h anoxia). OsPFPA2 was strongly expressed in the stem, and OsPFPA3 as well as OsPFP-B showed lower expression in leaves than in roots and stems. The transfer of seedlings to darkness for 24 h resulted in a decrease in transcripts encoding OsPFPA4 in all tissues, and OsPFK07 and OsPFPA1 in leaves (0 h* in Figure 2). OsPFPA3 transcript levels were slightly enhanced during darkness, whereas transcripts of OsPFK01 - OsPFK03, OsPFK05, OsPFK06, OsPFK08, OsPFK10, OsPFKPFPA2, and OsPFKPFP-B accumulated to similar extent during dark and light growth.

EXPRESSION OF PHOSPHOFRUCTOKINASE GENES UNDER ANOXIA IN LIGHT AND DARKNESS

To identify the *phosphofructokinase* genes that may play a tissue specific role in the response to anoxic metabolism in rice seedlings, transcript levels of the 10 *PFK* and 5 *PFP* genes were quantified in seedling tissues following exposure to anoxia (30 min to 24 h), in the light or complete darkness. The *pyruvate decarboxylase* (*PDC1*, *LOC_Os05g39310*) transcript, which is known to significantly increase in abundance under low-oxygen conditions in rice seedlings, was monitored as positive control for anoxic stress (**Figure 2**). Under normoxic conditions, the *PDC1* mRNA was more abundant in roots as compared to stems and leaves. *PDC1* transcript level increased within 30 min of anoxia stress in roots, whereas the increase in stems and leaves was detected after 2 h of stress. *PDC1* transcripts were induced by anoxia in roots and leaves with similar kinetics in seedlings exposed to light or darkness. In stems, the induction of *PDC* was slightly faster in darkness than during light irradiation.

The evaluation of anoxic stress-responsive mRNA accumulation of the rice *PFK* and *PFP* genes identified three groups. Expression of group 1 *phosphofructokinase* genes (*OsPFK01*, *OsPFK02*, *OsPFK03*) did not change during stress treatment (**Figure 2**). Group 2 *phosphofructokinase* genes (*OsPFK06*, *OsPFK07*, *OsPFK08*, *OsPFK10*, *OsPFPA1*, *OsPFPA2*, *OsPFPA4*) showed a decrease in transcript levels in response to anoxia. Among these genes, *OsPFK10* and *OsPFPA2* transcripts were reduced in stems only after 24 h anoxia in darkness, whereas the transcript abundance of the other five genes reduced more rapidly. *OsPFK06* transcripts decreased in roots and stems, whereas *OsPFK07*, *OsPFK08*, *OsPFPA1*, and *OsPFPA4* transcripts decreased in all analyzed tissues. Interestingly, all *PFK* genes in group 2 that showed reduced expression under anoxia are predicted to be plastid-localized (**Table 1**).

Locus ID	Name	Length of mRNA	Length of protein	Predicted localization	RNAseq ex level from	-
					Maximum	Mean
PFK_A						
LOC_Os01g09570	OsPFK01	1596	531	Cytosolic	69.04	27.60
LOC_Os01g53680	OsPFK02	1683	560	Cytosolic	44.50	10.24
LOC_Os05g10650	OsPFK04	1629	542	Cytosolic	2.89	1.40
LOC_Os05g44922	OsPFK05	1704	567	Cytosolic	53.36	14.39
LOC_Os06g05860	OsPFK06	1677	558	Plastid (confirmed cytosolic)	118.48	33.60
PFK_B						
LOC_Os04g39420	OsPFK03	801	266	Cytosolic	46.80	6.89
LOC_Os09g30240	OsPFK09	1398	465	Cytosolic	48.42	5.79
PFK_C						
LOC_Os08g34050	OsPFK07	1590 (1608)	529 (535)	Plastid	7.98	2.10
LOC_Os09g24910	OsPFK08	1584 (1665)	527 (555)	Plastid	14.83	4.51
LOC_Os10g26570	OsPFK10	1575	524	Plastid	41.14	6.07
PFP-ALPHA						
LOC_Os02g48360	OsPFPA1	1854	617	Cytosolic	98.49	19.19
LOC_Os06g22060	OsPFPA2	1869	622	Cytosolic	171.15	53.64
LOC_Os08g25720	OsPFPA3	1854	617	Cytosolic	102.03	42.51
LOC_Os09g12650	OsPFPA4	1884 (1722)	627 (573)	Cytosolic	0.68	0.36
PFP-BETA						
LOC_Os06g13810	OsPFP-B	1704	567	Cytosolic	110.02	52.99

Table 1 | Rice *phosphofructokinase* genes, Locus identifier, length of coding sequence (number of bases), and protein size (number of amino acids).

Numbers for OsPFK07 are for the sequence of the variety FR13A. Numbers in brackets are annotated sizes from the rice genome annotation project (http: //rice.plantbiology.msu.edu; Ouyang et al., 2007). Intracellular localization was predicted by use of two online programs (TargetP, Emanuelsson et al., 2000; pSort, Horton et al., 2006). RNAseq expression data are from the Nipponbare variety from 16 tissues, summarized from the rice genome annotation project (http://rice.plantbiology.msu.edu/ expression.shtml).

Phosphofructokinase genes of group 3 were induced under anoxia (OsPFK04, OsPFK05, OsPFPA3, OsPFP-B). OsPFK09 is also included in group 3, but displayed a markedly delayed increase in mRNA accumulation in response to stress at an extremely low expression level. OsPFK04, predicted to encode a cytosolic enzyme, expresses the strongest anoxia-induced transcript of group 3. OsPFK04 mRNA content was below the detection level in seedlings grown under aerated conditions, but increased dramatically within 30 min of anoxia in roots resembling the pattern of PDC1 accumulation. OsPFK05 mRNA accumulated less dramatically only in leaves after 2-24 h of anoxia. Among the PFP genes, only the content of OsPFPA3 and OsPFP-B mRNAs slightly increased in leaves and stems after 2 h of anoxia (Figure 2), resembling the expression of OsPFK05. The group 2 and group 3 phosphofructokinase genes are highlighted in the phylogenetic tree with a minus or plus sign, respectively, for their low-oxygen stress responsiveness (Figure 1).

Exposure to light or darkness most dramatically altered mRNA content of group 2 genes of the *phosphofructokinase* family. These genes showed a higher decrease in transcript levels in response to anoxia in darkness as compared to anoxia during illumination. *OsPFPA1* and *OsPFPA4* mRNA content was reduced during dark anoxia most likely in response to the transfer to darkness, as 24 h dark incubation under constant aeration (sample 0 h* in **Figure 2**) caused a similar loss of the mRNA level. On the other hand,

OsPFK06, *OsPFK07*, *OsPFK08*, *OsPFK10*, and *OsPFPA2* transcript levels were decreased stronger during anoxia in darkness than in light, but not during darkness alone.

SEQUENCE VARIATIONS OF PHOSPHOFRUCTOKINASE GENES

Amplification and sequencing of PFK genes revealed in the OsPFK07 and OsPFK08 sequences a significant difference to annotated sequences. OsPFK08 was annotated with two splicing forms (Ouyang et al., 2007)³. The longer form LOC_Os09g24910.1 contained a sequence that was not present in any other sequence of the group PFK_C (Figure 3A; Figures S1 and S2 in Supplementary Material). Sequencing of several cDNA clones derived from RNA of different rice varieties revealed the unique presence of the shorter annotated splicing form, LOC_Os09g24910.2 (Figure 3A and data not shown). OsPFK07 surprisingly revealed the lack of 20 nucleotides in its mRNA sequence in comparison to the annotated version, leading to a frame shift in the translated protein sequence and a premature stop codon (Figure 3B). We re-sequenced the OsPFK07 cDNA and genomic DNA of several rice varieties in order to confirm the initial findings. Genomic clones of OsPFK07 of all varieties consistently resulted in the complete annotated

³http://rice.plantbiology.msu.edu

A A, light [h]	root 0 0,5 2 8 24	stem 0 0,5 2 8 24	leaf 0 0,5 2 8 24	B root A, dark [h] 0* 0,5 2 8 24	stem 0* 0,5 2 8 24	leaf 0* 0,5 2 8 24	No cycles
OsPFK01	83 88 94 107 107	82 86 83 85 78	90 104 112 80 91	64 70 75 75 98	69 79 65 47 67	106 102 93 86 77	35
OsPFK02	55 61 62 65 70	60 59 63 63 64	69 68 69 70 75		60 59 59 65 36	55 76 82 82 78	31
OsPFK03	97 105 104 97 105	94 98 99 93 94	96 90 100 82 75		82 76 66 64 68	60 55 62 46 52 	30
OsPFK04	4 167 158 157 178	14 27 99 54 37	0 5 39 0 25	17 128 116 42 94	0 3 49 68 14	12 22 13 0 80	41
OsPFK05	89 100 120 116 113	75 77 105 113 106	82 88 113 114 108	91 107 122 127 126	66 77 98 89 101	89 97 128 134 115	28
OsPFK06	75 81 78 54 52	84 78 85 78 68	83 86 83 79 94	63 68 66 63 20	94 79 80 24 0	117 106 100 93 91	28
OsPFK07	75 78 74 53 27	70 66 64 65 2	66 58 9 4 4	67 76 70 66 21	70 55 59 22 23	47 68 34 13 7	34
OsPFK08	63 59 57 25 31	61 57 57 56 56	48 46 36 11 16	70 78 77 66 39	66 70 63 6 6	48 61 50 16 12	34
OsPFK09			an anna anna anna				41
OsPFK10	76 88 86 88 92	83 87 84 86 75	88 116 99 87 86	88 98 94 103 122	103 101 93 63 46	129 123 128 115 98	36
OsPFPA1	82 100 84 74 3	90 88 81 56 69	69 49 45 20 17	72 98 96 86 20	77 90 85 20 0	10 60 47 3 0	36
OsPFPA2	17 14 12 0 20	59 59 70 72 74	45 45 54 23 43	15 27 3 0 0	59 63 46 6 9	59 76 53 41 13	32
OsPFPA3	84 89 102 95 101	71 75 109 107 103	9 17 104 103 94	84 106 110 110 125	81 85 105 97 59	65 43 128 144 143	40
OsPFPA4	69 77 77 26 46	67 61 71 70 63	68 85 51 61 20	12 88 90 37 77	12 55 73 11 7	8 91 111 114 28	40
OsPFPB	150 148 142 160 163	65 78 103 121 121	64 55 138 160 127	95 114 111 107 123	40 57 111 127 104	34 66 121 139 110	41
PDC1	43 60 71 71 65	0 3 66 66 69	19 0 48 61 65	21 50 56 61 61	0 24 50 46 29	0 0 46 65 59	28
Actin							28
	and and this film the	delle finne mone divise consecto	in the second second second	and this side this and		1999 And And And Add	

FIGURE 2 | Semi-quantitative RT-PCR analysis of transcript abundance of the rice *phosphofructokinase* genes. Total RNA was extracted from roots, stems, and leaves of 3-week-old rice plants under normoxia or after different durations of anoxic stress. Samples in (A) were treated in the light; samples in (B) were treated in the dark. The sample 0* was harvested after 24 h in darkness under normoxic conditions. *Actin* and *PDC1* (0s05g39310) transcript levels were used to control for equal loading and to confirm low-oxygen stress, respectively. RT-PCR product levels were quantified by use of the program AlphaEaseFC (Alpha Innotech Corporation), and normalized to the level of actin mRNA in the same sample. The relative transcript level is indicated above each band (% of light control). Gel images are representative of three independent biological replicate experiments. RT-PCR conditions are listed in Table S2 in Supplementary Material.

	PFK07	175	AIVTCGGLCPGLNDVIRQIVFTLETYGVKNIVGIPFGYRGFFEKGLKEMP	224
A				224
	PFK07_mod_Nipp	175		
	PFK07_mod_FR13A	175		224
	PFK08.1	173	AIVTCGGLCPGLNDVIRQIVFTLEIYGVKNIVGIQFGYRGFFEKGLKEMPVSMLFHILRC	
	PFK08.2	173	AIVTCGGLCPGLNDVIRQIVFTLEIYGVKNIVGIQFGYRGFFEKGLKEMP	
	PFK08_mod	173		222
	PFK10	170	GIVTCGGLCPGLNDVIRQIVLTLEKYGVKNIVGIQHGFRGFFEDHLAEVP	219
	Clustal Consensus	101	·*************************************	144
	PFK07	224	LSRHLVENINLAGGSFLGVSRGGAKTSEIVDSIQARRIDMLFV	267
	PFK07_mod_Nipp	224	LSRHLVENINLAGGSFLGVSRGGAKTSEIVDSIQARRIDMLFV	267
	PFK07_mod_FR13A	224	LSRHLVENINLAGGSFLGVSRGGAKTSEIVDSIQARRIDMLFV	267
	PFK08.1	233	SRVLDSIVELQFDDNLQLSRKVVENINLSGGSFLGVSRGGAKTSEIVDSIQARRIDMLFV	292
	PFK08.2	222	LSRKVVENINLSGGSFLGVSRGGAKTSEIVDSIQARRIDMLFV	265
	PFK08_mod	222	LSRKVVENINLSGGSFLGVSRGGAKTSEIVDSIQARRIDMLFV	265
	PFK10	219	LNRQVVQNINLAGGSFLGVSRGGANISDIVDSIQARRLDMLFV	262
	Clustal Consensus	144	* .* : : * : * * * * * * * * * * * * * *	185
В	PFK07	388	LKTKGFCVVCVAEAAGQLFYVHYRSLQKSGATDASGNVILSDIGVHMQQKIKMHFKDIGV	447
	PFK07 mod Nipp	388	LKTKGFCVVCVAEAAGQEFTKIRCNRCIWKCDT	420
	PFK07 mod FR13A	388	LKTKGFCVVCVAEAAGQELLQKSGATDASGNVILSDIGVHMQQKIKMHFKDIGV	441
	PFK08.1	413	LEKKGFCVVCVAEGAGQDLLQKSNATDASGNVILSDFGVHMQQKIKSHFKDIGV	466
	PFK08.2	386	LEKKGFCVVCVAEGAGQDLLQKSNATDASGNVILSDFGVHMQQKIKSHFKDIGV	439
	PFK08 mod	386		439
	PFK10	383	IETKGFALICVAEGAGOEHLOOSNATDASGNMILGDIGVHLHOKIKAHFKEIGV	436
	Clustal Consensus	300	::.***.::****	313
	PFK07	448	PADVKYIDPTYMVRACRANASDAILCTVLGQNAVHGAFAGFSGITSCICNTHYVYLPITE	507
	PFK07 mod Nipp	420		420
	PFK07 mod FR13A	442	PADVKYIDPTYMVRACRANASDAILCTVLGQNAVHGAFAGFSGITSCICNTHYVYLPITE	501
	PFK08.1	467	PADVKYIDPTYMVRACRANASDAILCTVLGQNAVHGAFAGFSGITSGICNTHYAFLPITE	526
	PFK08.2	440	PADVKYIDPTYMVRACRANASDAILCTVLGQNAVHGAFAGFSGITSGICNTHYAFLPITE	499
	PFK08 mod	440	PADVKYIDPTYMVRACRANASDAILCTVLGQNAVHGAFAGFSGITSGICNTHYAFLPITE	499
	PFK10	437	HSDVKYIDPTYMVRAVRANASDAILCTVLGQNAVHGAFAGFSGITTGICNTHNVYLPISE	496
	Clustal Consensus	313		313
C	PFPA4	355	NKVPENNIPSQLSPWATALYNYLPPFIRREIDTEQLLAHLVEAEM	399
	PFPA4 mod	355	NKVPENNIPSQLSPWATALYNYLPPFIRRELLLHQDSDNSAQLSQIDTEQLLAHLVEAEM	414
	PFPA3	345	NNVPVAEMPSQLSPWAAALFQFLPPFIRRELLLHQESDNSAQLSQIDTEQLLAHLVEAEM	404
	PFPA1	348	KGVSMENISSQLSPWASALFEFLPPFIRKQLLLHPESDDSAQLSQIETEKLLAQLVEDEM	407
	PFPA2	353	KGVSVENISSHLSPWASALFEFLPPFIRKQLLLHPESDDSAQLSQIETEKLLAQLVEAEM	412
	Clustal Consensus	287	: *. :.*:******************************	324
	PFPA4	400	NKRMKEGKYIGRKFSSVCHFFGYQARGSLPSNFDCDYAYAM	440
	PFPA4_mod	415	NKRMKEGKYIGRKFSSVCHFFGYQARGSLPSNFDCDYAYVLGHIC <mark>M</mark> HILAAGLNGYMA <mark>F</mark> A	474
	PFPA3	405	IKRTKEGRYKGRKFSSVCHFFGYQARGSVPSNFDCDYAYALG <mark>RISL</mark> HMIAAGLTGYMATV	464
	PFPA1	408	NRRMKEGTYKGKKFNAICHFFGYQARGSLPS <mark>KF</mark> DCDYAYVLGHVC <mark>Y</mark> HILAAGLNGYMATV	467
	PFPA2	413	NKRLKEGTYKGKKFNAICHFFGYQARGALPS <mark>KFDCDYAYVLGHVCYHILAAGLNGYMATV</mark>	472
	Clustal Consensus	324	* *** * * ****************************	359
	PFPA4	440	MSVKRHSRSPGAVPTGKPVIHPSPVDLQGKAYALLREKAS	480
	PFPA4_mod	475	TNLKEPT NKWRCAAVPLTAMMSVKRHSRSPGAVPT GKPVIHPSPVDLQGKAYALLREKAS	534
	PFPA3	465	ANLKDPVDKWRCAAAPLTAMMSVKRHLRGPGAIPIGKPAIHPSPIDLKGKAYELLREKAS	524
	PFPA1	468	TNLK <mark>SPANKWRCG</mark> AAPISSMMTVKR <mark>W</mark> SRGPAATQIGKPAVHMATVDLKGKAFELLRNNST	527
	PFPA2	473	TNLR <mark>SPVNKWKCG</mark> AAPITSMMTVKR <mark>W</mark> SRGPAA <mark>SQ</mark> IGKPAVHMASIDLKGKPYELLRQNSS	532
	Clustal Consensus	359	*:*** *.*.* ***.:* :.:**:**	387
FIGUR	E 3 Sections of protein align	ments	for different Full-length nucleotide and protein sequences can be found in Figure	S2
phosph	nofructokinase subgroups, wl	hose se	quences differ from the in Supplementary Material. (A) Two splicing forms of <i>OsPFK08</i> ; (B)	
annota	ted public sequences (http://	rice.pla	ntbiology.msu.edu, modified splicing for OsPFK07, leading to a frame shift in the protein	n,
_	g et al., 2007). New sequences			
sequen	cing of PCR products are indica	ated as	'modified" (mod). splicing of <i>OsPFPA4</i> .	
L				

sequence including the 20 nucleotide region, while sequencing of the *OsPFK07* cDNA of these varieties gave always rise to a truncated sequence lacking this stretch of 20 nucleotides. As result, a truncated protein lacking 120 amino acids at the C-terminus is predicted to be most likely non-functional. Supposedly, this mutation could occur in the rice genome since two other members of the PFK_C are available, while *Arabidopsis* only contains one isoform of this subgroup (**Figure 1**). In consistency with a putative non-functional gene, the expression level of *OsPFK07* is very low in many tissues, as derived for example from RNAseq analyses (**Table 1**). However, this finding was not confirmed in our experiments (**Figure 2**).

Interestingly, two rice varieties, FR13A and CT6241, revealed a second modification of the *OsPFK07* gene, an insertion of two bases in the genomic sequence close to the modified splicing site (Figure S2 in Supplementary Material). This altered sequence restores the reading frame comparable to *OsPFK08* and *OsPFK10* (**Figure 3B**). However, which of the two sequence variants evolved earlier during evolution remains to be explored in future.

Our sequencing revealed also a modified *OsPFPA4* nucleotide sequence. The annotated sequence lacks part of the final coding sequence leading to encoded PFP-alpha subunit with a truncated C-terminus in comparison to the other three isoforms. However, the sequencing results revealed another mRNA sequence that represents an un-annotated alternative splicing form, which more closely resembles the sequence of the other three homologous genes (**Figure 3C**; Figure S2 in Supplementary Material). Interestingly, the expression level of *OsPFPA4* was very low in rice tissues as observed by RNAseq analyses (**Table 1**), but in our analyses *OsPFPA4* was significantly expressed in detectable amounts in seedlings (**Figure 2**).

INTRACELLULAR LOCALIZATION OF PFKs

The expression analysis under anoxia revealed decreased expression of several PFK genes, in particular those representatives that encode putative plastid-localized proteins. We therefore aimed to confirm the intracellular localization of PFK isoforms, and applied a similar approach as previously shown for Arabidopsis PFKs (Mustroph et al., 2007). Using the leaf infiltration technique for transient transformation of the rice PFK genes in tobacco leaves, we showed the clear localization of 5 out of 10 different PFK isoforms in the cytoplasm. Expression of the full-length PFKs of OsPFK01, OsPFK02, OsPFK04, OsPFK05, and OsPFK06 resulted in their cytosolic localization (Figure S3 in Supplementary Material), but the proteins formed cytoplasmic aggregates. Several modified protocols of transient transformation were tested, but resulted always in the production of aggregates: changes in incubation time of transiently transformed tobacco leaves, at different temperatures, use of different Agrobacteria strains and binary vectors, and ultimately stable transformation in Arabidopsis (data not shown). However, expression of fusion proteins containing the first 100 amino acids of the respective PFK protein resulted in even distribution throughout the cytosol (Figure 4). Surprisingly, OsPFK06, which was predicted to be plastid-localized, was clearly cytosolic (Figure 4E). As a very short transit peptide of only 10 amino acids was predicted (TargetP, Emanuelsson et al.,

FIGURE 4 | Subcellular localization of PFK isoforms from rice. Full-length mRNA sequences or the N-terminal part of the sequences were cloned in frame in front of a GFP-coding sequence and were transiently transformed into tobacco leaves by Agrobacterium infiltration. After 3–4 days, protoplasts or undigested leaf disks were isolated and

analyzed by confocal microscopy. Green color represents GFP
fluorescence, red color represents chlorophyll autofluorescence.
N-terminal part: (A) OsPFK01; (B) OsPFK02; (C) OsPFK04; (D) OsPFK05;
(E) OsPFK06; (K) OsPFK08, (L) OsPFK10. Full-length CDS: (F) OsPFK07;
(G) OsPFK08; (H) OsPFK10; (I) OsPFK03; (J) OsPFK09.
2000), it is suggested that the organellar localization is a false prediction.

OsPFK03 and *OsPFK09* are both members of the weakly expressed PFK_B subgroup and are mainly expressed in seeds (Figure S4 in Supplementary Material). Tobacco leaves infiltrated with the truncated or full-length constructs p35S::OsPFK03-GFP and p35S::OsPFK09-GFP did surprisingly not show GFP fluorescence in tobacco mesophyll cells in four independent experiments, although the same vectors, bacterial strains and conditions had been used as for the positive control p35S::OsPFK05-GFP. However, we observed GFP fluorescence in a few epidermal cells that demonstrate cytosolic localization of the proteins (**Figure 4**; Figure S3 in Supplementary Material). It can be concluded that both proteins are less stable during transient overexpression in tobacco leaves than members of the PFK_A group.

All members of the PFK_C group, *OsPFK07*, *OsPFK08*, and *OsPFK10*, were predicted to be localized in plastids, with a predicted transit peptide consisting of 30–50 amino acid residues. Our assay revealed localization of the full-length proteins in plastids, however associated with the formation of aggregates (**Figure 4**), as previously described for *Arabidopsis AtPFK4* and *AtPFK5* (Mustroph et al., 2007). Still, we observed clear association of the aggregates with chloroplasts, and not with other compartments (**Figure 4**; Figures S3S,T in Supplementary Material). Expression of the N-terminal part did not result in detectable plastidal GFP fluorescence (**Figures 4K,L**).

PHYLOGENETIC ANALYSIS AND EXPRESSION UNDER OXYGEN DEFICIENCY STRESS

The expression analysis of phosphofructokinase genes of rice under anoxia revealed differential gene expression of several members in roots and shoots of seedlings. For a wider comparison among species, we first identified phosphofructokinase genes in different plant species by use of the Phytozome genome collection⁴, and constructed a separate phylogenetic tree for PFK and PFP sequences (Figures 5 and 6). We selected phosphofructokinase genes from plant genomes, of which expression data are available under oxygen deficiency stress, and additionally used two other monocotyledonous species, Sorghum bicolor and Brachypodium distachyon. Comparison of the genome of the green algae Chlamydomonas reinhardtii revealed the presence of PFK_C genes only, hinting at a complex evolution of phosphofructokinase genes in higher plants. Gene expression data from published microarray experiments were added from rice (Lasanthi-Kudahettige et al., 2007; Narsai et al., 2009; Mustroph et al., 2010), Arabidopsis (Branco-Price et al., 2008; Hsu et al., 2011; Lee et al., 2011), poplar (Kreuzwieser et al., 2009), cotton (Christianson et al., 2010), and soybean (Nanjo et al., 2011). It was intended to obtain a first qualified overview about the potential role of phosphofructokinases under oxygen deficiency stress.

Interestingly, all analyzed monocotyledonous species only contained one gene for the beta-subunit of PFP, while dicotyledonous species usually contained more isoforms. In general, PFPbeta-encoding genes of either monocotyledonous or dicotyledonous species show only a low induction upon low-oxygen stress, among them the rice PFP-B-encoding gene being up to 3.8 times induced in the microarray experiments (Table S3 in Supplementary Material). This induced expression was shown to a similar extent in our experiments (Figure 2). Transcript levels of three PFP-alpha subunit-encoding genes were reduced or unchanged under oxygen deficiency stress in rice, while OsPFPA3 was moderately induced in leaves, as indicated by RT-PCR (Figure 2) and microarray analyses (Figure 5). This latter gene was grouped into a monocotyledonous-specific sub-clade of PFP-alpha subunit encoding sequences. The genes most similar to dicotyledonous species were down-regulated, similar to the PFP-alpha subunit encoding genes of other plant species, whose expression was hardly induced (Figure 5). It would be interesting to analyze if other members of this monocotyledonous-specific subgroup are also induced by oxygen deficiency stress, for example in Sorghum or Brachypodium, or if this induction is specific to the submergence-tolerant rice plant.

Among the *PFK* gene family, each plant species analyzed contained members that were induced by oxygen deficiency stress (**Figure 6**), indicating an important function in plant metabolism under the stress condition. Most of the induced genes, among them *OsPFK04*, *OsPFK05*, *AtPFK3*, and *AtPFK6*, belong to the subgroup PFK_A. The plastidal genes of subgroup PFK_C were generally down-regulated in rice, *Arabidopsis* and soybean (**Figure 6**; Table S3 in Supplementary Material). *OsPFK06* shows the strongest reduced mRNA content and its encoded PFK isoform is localized in the cytosol (**Figure 4E**). *OsPFK06* was grouped with two other genes from monocotyledonous species, whose expression under oxygen deficiency stress remains to be determined.

ACTIVITY OF PHOSPHOFRUCTOKINASES AFTER ANOXIC TREATMENT

To further evaluate the relative importance of PFK and PFP during the transition from aerated to anoxic growth conditions in rice seedlings, we measured the specific activities of these two distinct phosphofructokinases along with the fermentative enzymes ADH and PDC (Table 2). In comparison to anoxically treated plants, the ADH showed the lowest basal activity in leaves in ambient oxygen concentration, whereas PDC activity was low in all tissues. Illumination did not affect the basal ADH and PDC activity, but the anoxic induction of these enzymes was more pronounced in illuminated seedlings than in darkness. As expected, a significantly elevated ADH activity was observed after 24 h of anoxia in all tissues. ADH activity increased threefold to ninefold during the 24-h anoxic treatment. Thereby, the greatest increase of activity was observed in leaves relative to the low basal level in this organ. Also for PDC activity, a significant anoxia-induced elevation was determined after 24 h of anoxia (Table 2).

Evaluation of PFK activity revealed a decline of 20 and 50% PFK activity after 24 h dark incubation under normoxia in comparison to the illuminated control in stems and leaves, respectively. By contrast, PFP activity was not modified upon the transfer of seedlings to darkness (**Table 2**). In general, PFP and PFK activities did only moderately change during anoxic treatment. PFK activity in stems was significantly higher after 4 and 24 h of anoxia in light and in dark anoxic treatment as compared to the respective control (**Table 2**), which likely results from increased expression of *OsPFK05* in this tissue (**Figure 2**). PFK activity did not change

⁴http://www.phytozome.net/

significantly in response to anoxia in roots or leaves. The activity of PFP was slightly but not significantly increased in leaves only after 24 h of anoxia in light and darkness (**Table 2**), but not in roots or stems.

DISCUSSION

PHOSPHOFRUCTOKINASE GENES IN RICE AND THEIR EXPRESSION UNDER NORMOXIC CONDITIONS

In this report we analyzed the expression of 15 *phosphofructokinase* genes in rice (**Table 1**). Five gene sequences resemble *PFP* genes

derived from other plant species, which have been described earlier (Carlisle et al., 1990; Todd et al., 1995; Kapri et al., 2000; Suzuki et al., 2003). Genes encoding the two different subunits of the heterotetrameric PFP were found in the rice genome (**Figure 1**). Whereas *Arabidopsis* possesses two genes each encoding the PFP-alpha and PFP-beta subunits (Mustroph et al., 2007), available rice sequence data predicts four genes for PFP-alpha subunits, which represent the regulatory PFP subunit (**Table 1**), and one gene encoding the PFP-beta subunit (*PFP-B, LOC_Oso6g13810*) representing the catalytically active subunit of the PFP complex

FIGURE 6 | Phylogenetic tree of plant *PFK* genes, constructed by the platform http://www.phylogeny.fr (Dereeper et al., 2008). Protein sequences were obtained from Phytozome, with modifications after sequencing of rice genes. *Chlamydomonas reinhardtii phosphofructokinase* genes were added for comparison. Gene expression data were collected into a heat map, when available. Data are from the following sources: Hypoxia seedlings: *Arabidopsis* (Branco-Price et al., 2008, 2 and 9 h), rice (Narsai et al., 2009, 3 and 6 h); Submergence root/shoot: *Arabidopsis* (Lee et al., 2011, 7 and 24 h), rice (Mustroph et al., 2010, 24 h shoot); soybean (Nanjo et al., 2011, 6 and 12 h, roots only); Flooding root/shoot: *Arabidopsis* (Hsu et al., 2011, 3 and 12 h), cotton (Christianson et al., 2010, 4 h root and 24 h shoot), poplar (Kreuzwieser et al., 2009, 5 and 24 h root, 168 h shoot); Anoxic germination: rice (Narsai et al., 2009, 24 h; Lasanthi-Kudahettige et al., 2007, 96 h).

(Yan and Tao, 1984; Theodorou et al., 1992; Theodorou and Plaxton, 1996). It is suggested that rice uses several regulatory subunits with distinct properties that are activated under different growth conditions. Indeed, the four *OsPFPA* genes show diverse

expression patterns in plant tissues and under various light conditions (Figure 2). OsPFPA2 mRNA was detected primarily in stems, whereas OsPFPA1 and OsPFPA3 mRNAs were less abundant in leaves than in stems or roots (Figure 2). PFP activity was very low in leaf extracts compared to that of roots and stems (Table 2). Furthermore, OsPFPA1 and OsPFPA4 showed darkdependent decreases in mRNA accumulation in leaves (Figure 2), but the PFP activity after dark incubation was unchanged in comparison to light-grown leaves (Table 2). These observations in rice are consistent with the previous report of decreased abundance of two Arabidopsis PFP gene transcripts (At1g12000, At1g20950) after transfer to darkness, although no apparent change in PFP activity was determined (Gibon et al., 2004). We predict that the total in vitro enzymatic activity from whole cell extracts conceals the biologically significant differences in the assembly of PFP heterotetrameric complexes in response to the cell-specific variation of the expression of PFP isoforms.

The other 10 *phosphofructokinase* genes (**Table 1**) showed homology to the seven *AtPFK* genes (Mustroph et al., 2007) (**Figure 1**). Five of these proteins form a sub-clade, designated the PFK_A group, together with the five AtPFK proteins that are important for cytosolic glycolysis (**Figure 1**). The present study confirms that four of these rice genes are highly expressed in all observed tissues, with the exception of *OsPFK04* (**Figure 2**). Interestingly, the rice genome does not contain a true plastidal isoform in this subgroup, since the predicted plastidal *OsPFK06* of the PFK_A group was clearly cytosolic (**Figure 4E**), while AtPFK4 presents a plastidal isoform in the PFK_A group. The rice PFK_C group members apparently fulfill the sole plastidal PFK function (see below).

The protein sequences of the PFK_B and PFK_C groups markedly differ from the sequences of the group PFK A (Figure 1; Figure S1 in Supplementary Material). OsPFK03 and OsPFK09 were closely related to AtPFK2 (At5g47810), and form the PFK_B group (Figure 1). The protein sequences of the PFK_B group are shorter than the other PFK sequences (Table 1; Figure S1 in Supplementary Material). AtPFK2 is specifically expressed in seeds, but scarcely expressed in other tissues, and the same expression pattern was determined for both rice genes (Figure S4 in Supplementary Material; Winter et al., 2007). Nevertheless, in our transcript analysis OsPFK03 was expressed at considerable amounts, while OsPFK09 transcripts were present only at very low levels in vegetative tissues (Figure 2). All members of this sub-clade are localized to the cytosol (Figure 4, Mustroph et al., 2007). It is proposed that PFK_B members are characterized by distinct enzymatic properties for specific tissues, such as seeds and embryos. But, expression of AtPFK2 in tobacco leaves did not induce enhanced PFK activity under our assay conditions (Mustroph et al., 2007). Future analyses of Arabidopsis and rice mutants with deficiency in AtPFK2 and OsPFK03/09 expression could shed light on this topic.

The PFK_C subgroup proteins are targeted to plastids and include the rice genes *OsPFK07*, *OsPFK08*, and *OsPFK10* as well as *AtPFK5* (At2g22480; Mustroph et al., 2007; **Figure 4**). Indeed, PFK isoforms of various plant species were found in chloroplasts and in the cytosol (Cawood et al., 1988; Knowles et al., 1990; Turner and Plaxton, 2003). While cytosolic PFKs catalyze

		PFK	PFP	ADH	PDC
ROOT					
С	24 h Light	24.12 ± 5.45^{a}	94.98 ± 28.74^{a}	122.26 ± 30.56^{a}	$0.00\pm0.00^{\text{a}}$
С	24 h Dark	$20.98 \pm 1.32^{\rm a}$	84.27 ± 22.51^{a}	116.90 ± 34.21^{a}	$0.00\pm0.00^{\text{a}}$
A	4 h Light	$20.70\pm3.42^{\text{a}}$	110.76 ± 29.55^{a}	212.13 ± 25.83^{a}	1.12 ± 0.98^{a}
A	4 h Dark	23.03 ± 7.13^{a}	120.55 ± 39.30^{a}	256.62 ± 16.24^{a}	$0.75\pm1.30^{\rm a}$
A	24 h Light	31.33 ± 4.45^{a}	102.21 ± 11.92^{a}	980.43 ± 152.23^{b}	21.95 ± 2.32^{b}
A	24 h Dark	$20.23\pm0.99^{\rm a}$	75.16 ± 12.82^{a}	$692.15 \pm 121.28^{\circ}$	$14.75 \pm 3.26^{\circ}$
STEM					
С	24 h Light	16.55 ± 1.46^{bc}	135.34 ± 9.02^{a}	186.27 ± 17.02^{a}	1.45 ± 1.87^{a}
С	24 h Dark	$12.44 \pm 1.99^{\circ}$	132.30 ± 10.22^{a}	183.65 ± 11.22^{a}	2.29 ± 0.91^{a}
A	4 h Light	23.85 ± 2.72^{a}	141.81 ± 12.72^{a}	325.01 ± 33.06^{b}	5.47 ± 1.17^{a}
A	4 h Dark	18.33 ± 2.53^{b}	131.33 ± 9.61^{a}	207.26 ± 0.86^{a}	$4.38\pm1.50^{\rm a}$
A	24 h Light	$20.68 \pm 1.09^{\text{ab}}$	143.28 ± 4.50^{a}	$599.35 \pm 20.47^{\circ}$	$16.38\pm3.08^{\text{b}}$
A	24 h Dark	17.25 ± 1.73^{bc}	142.75 ± 7.48^{a}	475.82 ± 52.06^{d}	$16.63\pm2.20^{\text{b}}$
LEAF					
С	24 h Light	$11.23 \pm 3.46^{\rm ac}$	21.52 ± 0.98^{a}	26.58 ± 3.83^{a}	$0.00\pm0.00^{\text{a}}$
С	24 h Dark	$5.28 \pm 1.25^{\text{b}}$	19.94 ± 1.71^{a}	24.69 ± 1.94^{a}	$0.00\pm0.00^{\text{a}}$
A	4 h Light	$12.54\pm0.94^{\text{ac}}$	22.16 ± 1.86^{a}	75.60 ± 4.48^{b}	0.17 ± 0.21^{a}
A	4 h Dark	8.58 ± 1.54^{bc}	21.39 ± 2.88^a	55.81 ± 6.78^{ab}	0.06 ± 0.11^{a}
A	24 h Light	13.74 ± 1.06^{a}	25.55 ± 3.09^{a}	$258.36 \pm 31.83^{\circ}$	4.10 ± 0.51^{b}
A	24 h Dark	8.01 ± 0.90^{bc}	23.62 ± 0.21^{a}	156.41 ± 7.41 ^d	$2.76 \pm 0.34^{\circ}$

Table 2 | Specific activities of phosphofructokinases (PFK, PFP) and fermentative enzymes (ADH, PDC) (nmol \times mg protein⁻¹ \times min⁻¹) in roots, stems, or leaves of rice seedlings after 4 and 24 h of anoxic stress (A), or under normoxic conditions (C).

Data are mean values from three biological replicate samples ±SD. Values with the same letter within one organ are significantly different at P < 0.05.

a step in the normal cytosolic glycolysis for energy metabolism, plastidal glycolysis using plastidal PFK contributes to starch breakdown and generation of metabolites for biosynthetic processes in dark-adapted or non-photosynthetic plastids (Plaxton, 1996). We propose that plastidal PFKs are light-dependently inactivated to avoid breakdown of photosynthates. But, we found significantly lower PFK activity in 24 h dark-incubated leaves and stems of rice plants exposed to ambient air (50% activity in comparison to light-grown plants, **Table 2**). It is possible that the *in vitro* activity does not reflect the *in planta* activity which could be influenced by redox regulation and phosphorylation (Kachru and Anderson, 1975; Cséke et al., 1982; Heuer et al., 1982).

PFK AND PFP GENE EXPRESSION UNDER ANOXIA

The function of the two different phosphofructokinases in plants is still a matter of debate. It was hypothesized that plants might use PFP instead of PFK for the phosphorylation of fructose-6phosphate during ATP deficiency (Weiner et al., 1987; Mertens et al., 1990; Stitt, 1998). Our results show that anoxia-tolerant rice plants induce the expression of genes coding for both enzymes, PFK as well as PFP, during anoxia. *OsPFK04* is a *bona fide* inducible gene upon anoxia in all organs, whereas *OsPFK05* transcripts were moderately increased in stems and leaves (**Figure 2**). Induction of *OsPFK04* transcript occurred within 30 min of anoxic stress. This rapid induction resembles that of accumulating *PDC1* mRNA (**Figure 2**). It is suggested that rice has a sensitive and rapid signaling pathway for the detection of low-oxygen levels, most likely via post-translational and oxygen-dependent regulation of group VII ERF transcription factors (Gibbs et al., 2011; Licausi et al., 2011). However, such induction of *PFK* genes was also found for all other plant species observed (**Figure 6**), including low-oxygen-sensitive *Arabidopsis* (At4g26270, At4g32480) and soybean. Therefore, it can be proposed that induction of PFK is important for metabolism under oxygen deficiency in both, sensitive and tolerant plants.

Also OsPFPA3 and OsPFP-B transcripts were clearly increased in rice under anoxia in light and darkness (Figure 2), mainly in stems and leaves, which are the tissues with the highest tolerance to anoxia (Mustroph et al., 2006a,b). As stems and leaves store more carbohydrates and ferment them during anoxic periods, their cells survive anoxia better than root cells. Furthermore, these tissues might be able to produce more adaptive proteins, including PFP against stress through enhanced availability of photosynthetic energy. Interestingly, while PFPAs encoding the regulatory subunit were not induced in low-oxygen sensitive Arabidopsis or soybean plants, the OsPFPA3 was stronger induced in anoxic rice seedlings than the catalytic subunit OsPFP-B (Figures 2 and 5) indicating a high importance for modulation of enzyme activity under oxygen deficiency (Figure 5). These results favor the idea that PFP plays a role in the reorganization of metabolism during low-oxygen stress in anoxia-tolerant leaves, but not in sensitive Arabidopsis plants or rice roots. However, the particular role of PFP in plant metabolism remains open. This question should be addressed in transgenic rice plants displaying reduced PFP activity.

Transcripts of four *PFK* genes were found to be less abundant during anoxia compared to aeration (*OsPFK06*, *OsPFK07*, *OsPFK08*, *OsPFK10*; Figure 2). Remarkably, three of the four *PFK* genes are plastidic and belong to group PFK_C (**Table 1**). Also *Arabidopsis*, soybean and poplar PFK_C members were not induced under oxygen deficiency stress and hypothetically hint at reduced plastidal starch degradation and biosynthetic processes under oxygen deficiency. However, rice seeds are able to germinate under anoxia by making use of the amylase-degraded starch (Guglielminetti et al., 1995; Perata et al., 1997). It is not entirely excluded that either the degradation products of starch are translocated from plastids as hexoses, or plastidal PFK activity is mainly post-translationally stimulated despite the transcriptional reduction. Thus, more detailed studies are needed to elucidate the link between reduced *OsPFK* transcription of plastid-localized isoforms and the response and adaptation to anoxic stress.

Illumination during the anoxic period greatly enhances the plant survival rates due to photosynthesis-driven ATP production (Mustroph et al., 2006b). In our recent analysis, we did not find dramatic differences in the induction of phosphofructokinase genes (Figure 2) or enzyme activities (Table 2) in light versus dark anoxia. This suggests that phosphofructokinase activity has not a major role in the positive effect of illumination during oxygen deficiency stress. But, all phosphofructokinase genes with reduced expression during an anoxic stress period showed an even stronger decrease in darkness than in light, especially in stems and leaves (Figure 2) suggesting an energy-dependent decrease of transcription in anoxia. It is reasonable to speculate on the avoidance of unwanted transcription and translation to save valuable ATP. It is reported that the highly energy-consuming translation of house-keeping genes is especially tightly regulated under oxygen deficiency stress (Branco-Price et al., 2008; Mustroph et al., 2009). In consistency, ADH and PDC activities did not increase as much during anoxia in darkness as in light (Table 2; Mustroph et al., 2006a,b).

Complete analyses of the expression of phosphofructokinase gene family under oxygen deficiency are only now possible after the identification of the entire gene family in rice. Previously, the effect of oxygen deficiency on the content of a single phosphofructokinase transcript was studied by RNA blot analysis in rice (Umeda and Uchimiya, 1994; Minhas and Grover, 1999). Based on our classification of the phosphofructokinase genes, both research groups monitored OsPFP-B and concluded that the transcript level is strongly increased upon oxygen deprivation. This is in agreement with our results showing a two- to threefold increase in the OsPFP-B mRNA content (Figure 2). Data from recent microarray analyses using rice coleoptiles exposed to anoxic stress (Lasanthi-Kudahettige et al., 2007; Narsai et al., 2009), and of rice leaves to submergence (Mustroph et al., 2010) confirmed the highest accumulation of OsPFK04 and OsPFK05 transcript levels among the phosphofructokinase genes (Figure 6; Table S3 in Supplementary Material). The microarray data also show a moderate induction of OsPFPA3 and OsPFP-B (Figure 5), as shown in our experiments (Figure 2). Furthermore, the reduced accumulation of OsPFK06, OsPFK08, OsPFK10, and OsPFPA1 transcripts during anoxia in comparison to the aerated controls was congruently presented in the microarray profiles and our studies. When expression patterns, for example from OsPFK01 and OsPFPA4, differ between reported and our own studies, these differences likely refer to the use of

different plant tissues and rice cultivars as well as different growth conditions and stress applications.

INDUCED EXPRESSION OF PHOSPHOFRUCTOKINASE GENES DOES MODIFY ENZYME ACTIVITIES ONLY SLIGHTLY

Despite the fact that some PFK and PFP genes were strongly expressed during anoxia in rice compared to aeration, the activities of PFK and PFP in cell extracts were only slightly increased in response to anoxic treatment (Table 2). PFP activity increased slightly but not significantly after 24 h of anoxia in leaves, which correlated with increased OsPFPA3 transcript levels, while PFK activity was slightly induced in stems during illuminated anoxia. Although the translational activity of single mRNAs and the stability of individual isoforms are not known, it is proposed that the simultaneous increase of transcript amounts for two PFK and two PFP genes and the decrease of transcript amounts for four PFK and three PFP genes contribute to the maintenance of the activity of both enzymes during anoxia (Figure 2). However, rice shoots, the most tolerant tissue in this study, showed an increase in PFP enzyme activity during long-term anoxia. This elevated activity was never obtained for the anoxia-sensitive Arabidopsis plants (data not shown) and could presumably partly contribute to anoxia tolerance.

Increased activities of PFP, but not of PFK were reported for rice coleoptiles (Mertens et al., 1990; Kato-Noguchi, 2002) or suspension cells (Mohanty et al., 1993) in response to oxygen deficiency. Two reasons could explain the lower activation of enzyme activity in the present experiments. First, plant organs respond differently to oxygen deficiency stress. Coleoptiles possess the highest anoxia tolerance among the different plant tissues and can survive several days of anoxia. Therefore, it is possible that among other factors this tolerance is due to strong increase of PFP activity. Second, the experimental conditions differ in the studies. Rice suspension cells were exposed to 12 and 24 h of anoxia in darkness with carbohydrate addition, and a sixfold PFP activity increase was determined, but no increase of PFK activity (Mohanty et al., 1993). Without additional sugar supply, dark-incubated rice seedlings do not tolerate anoxia for more than 24 h before they die (Mustroph et al., 2006a). It is likely that the sugar supplement enables the strong increase in enzyme activity in the previous study (Mohanty et al., 1993).

We conclude that, although the overall in vitro activity of PFK and PFP was only slightly modified during anoxic treatment, the induction and repression of several of the PFK and PFP genes contributes to changes of the in planta metabolic activity. The encoded phosphofructokinases could have different affinities to substrates and cofactors, such as fructose-6-phosphate, ATP, and PPi. Furthermore, PFK and PFP activities are highly regulated by other metabolites like magnesium or phosphoenolpyruvate (summarized in Plaxton, 1996). Another possible factor is phosphate, a potent activator of cytosolic PFK activity that functions as an inhibitor of plastidic PFK activity (Kelly and Latzko, 1977). In conclusion, the distinct upregulation of PFP genes during anoxia in rice provides a means for the use of PPi instead of ATP for the conversion of fructose-6-P to fructose-1,6-BP. An increase in PFP transcript levels and PFP activity during anoxia in rice likely alleviates the energy crisis. These regulatory mechanisms were

not observed in low-oxygen sensitive plants, such as *Arabidopsis*, soybean, or poplar.

ACKNOWLEDGMENTS

We thank Dr. Gynheung An and Elena Iulia Boamfa for providing us with rice seeds. Dr. Julia Bailey-Serres is acknowledged for helpful discussion and editing of an earlier version of the manuscript. We thank Christina Kühn and Markus Hermann for technical support at the confocal microscope.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://www.frontiersin.org/Plant_Physiology/10.3389/ fpls.2013.00125/abstract

Figure S1 | Alignment of amino acid sequences of PFKs from Arabidopsis

and rice. The sequences were aligned by use of the ClustalW method (http://www.genome.jp/tools-bin/clustalw). Similar amino acids are marked with shadows. The letters A, B, and C mark the three PFK subgroups. For the alignment, the corrected protein sequences for LOC_Os08g34050 (*OsPFK07*) and LOC_Os09g24910 (*OsPFK08*) were used (see Figure S2 in Supplementary Material).

Figure S2 | Modified nucleotide and protein sequences for LOC_Os08g34050 (OsPFK07), LOC_Os09g24910 (OsPFK08), and LOC_Os09g12650 (OsPFPA4) after sequencing of several PCR products and comparison to the annotated sequences. For OsPFK07, two versions were

REFERENCES

- Albrecht, G., Mustroph, A., and Fox, T. C. (2004). Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. *Physiol. Plant* 120, 93–105.
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. *Annu. Rev. Plant Biol.* 59, 313–339.
- Bayley, C. C., Morgan, M., Dale, E. C., and Ow, D. W. (1992). Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. *Plant Mol. Biol.* 18, 353–361.
- Bendahmane, A., Querci, M., Kanyuka, K., and Baulcombe, D. C. (2000). Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. *Plant J.* 21, 73–81.
- Biemelt, S., Hajirezaei, M. R., Melzer, M., Albrecht, G., and Sonnewald, U. (1999). Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. *Planta* 210, 41–49.
- Bouny, J. M., and Saglio, P. H. (1996). Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pre-treatment. *Plant Physiol.* 111, 187–197.

- Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72, 248–254.
- Branco-Price, C., Kaiser, K. A., Jang, C. J., Larive, C. K., and Bailey-Serres, J. (2008). Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in *Arabidopsis thaliana*. *Plant J.* 56, 743–755.
- Carlisle, S. M., Blakeley, S. D., Hemmingsem, S. M., Trevanion, S. J., Hiyoshi, T., Kruger, N. J., et al. (1990). Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the alpha- and beta- subunits and with the ATP-dependent phosphofructokinase. J. Biol. Chem. 265, 18366–18371.
- Cawood, M. C., Botha, F. C., and Small, J. G. C. (1988). Properties of the phosphofructokinase isoenzymes from germinating cucumber seeds. J. Plant Physiol. 132, 204–209.
- Christianson, J. A., Llewellyn, D. J., Dennis, E. S., and Wilson, I. W. (2010). Global gene expression responses to waterlogging in roots and leaves of cotton (*Gossypium hirsutum L.*). *Plant Cell Physiol.* 51, 21–37.
- Cséke, C., Nishizawa, A. N., and Buchanan, B. B. (1982). Modulation

found in different varieties, one for Nipponbare (as well as Cigalon, M202, Dongjin, Hwayoung), and one for FR13A (as well as CT6241).

Figure S3 | Subcellular localization of PFK isoforms from rice. Full-length

mRNA sequences or the N-terminal part of the sequences were cloned in frame in front of a GFP-coding sequence and were transiently transformed into tobacco leaves by Agrobacterium infiltration. After 3–4 days, protoplasts or undigested leaf disks were isolated and analyzed by confocal microscopy. Green color represents GFP fluorescence, red color represents chlorophyll autofluorescence. Full-length CDS: (A) OsPFK01; (B) OsPFK02; (C) OsPFK04; (D) OsPFK05; (E) OsPFK06; (I,J) OsPFK03; (O) OsPFK09; (S) OsPFK08; (T) OsPFK10. N-terminal part: (F–H) OsPFK03; (K–N) OsPFK09; (P–R) OsPFK05.

Figure S4 | Expression of the PFK_B group members in different organs.

eFP browser pictures were obtained through http://bar.utoronto.ca (Winter et al., 2007). Red color intensity shows high expression level in the respective tissue type.

Table S1 | Primers used for the experiments. Actin primers were those used by Ren et al. (2005).

Table S2 | Semi-quantitative RT-PCR analysis of rice phosphofructokinase genes: conditions for the PCR reactions.

Table S3 | Data for differential gene expression of phosphofructokinase genes in rice under oxygen-deficient conditions, obtained by microarray analyses with the Affymetrix rice Microarray Chip (Lasanthi-Kudahettige et al., 2007; Narsai et al., 2009; Mustroph et al., 2010). The signal-log-ratio (SLR) of all probe-sets is shown for each sample set. Data had been analyzed previously by GC-RMA.

of chloroplast phosphofructokinase by NADPH: a mechanism for linking light to the regulation of glycolysis. *Plant Physiol.* 703, 658–661.

- Dancer, J. E., and ap Rees, T. (1989). Effects of 2,4-dinitrophenol and anoxia on the inorganic pyrophosphate content of the spadix of *Arum maculatum* and the root apices of *Pisum sativum*. *Planta* 178, 421–424.
- Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the nonspecialist. *Nucleic Acids Res.* 36, W465–W469.
- de Sousa, C. A. F., and Sodek, L. (2002). The metabolic response of plants to oxygen deficiency. *Braz. J. Plant Physiol.* 14, 83–94.
- Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250.
- Earley, K., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Keming, S., et al. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. *Plant J.* 45, 616–629.
- Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. *J. Mol. Biol.* 300, 1005–1016.

- Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6, 247–256.
- Gibbs, D. J., Lee, S. C., Isa, N., Gramuglia, S., Fukao, T., Bassel, G. W., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. *Nature* 479, 415–418.
- Gibbs, J., and Greenway, H. (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. *Funct. Plant Biol.* 30, 1–47.
- Gibbs, J., Morrell, S., Valdez, A., Setter, T. L., and Greenway, H. (2000). Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. *J. Exp. Bot.* 51, 785–796.
- Gibon, Y., Blaesing, O. E., Hannemann, J., Carillo, P., Höhne, M., Hendriks, J. H. M., et al. (2004). A robot-based platform to measure multiple enzyme activities in *Arabidopsis* using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. *Plant Cell* 16, 3304–3325.
- Guglielminetti, L., Perata, P., and Alpi, A. (1995). Effect of anoxia on carbohydrate metabolism in rice seedlings. *Plant Physiol.* 108, 735–741.

- Hajirezaei, M. R., Sonnewald, U., Viola, R., Carlise, S., Dennis, D., and Stitt, M. (1994). Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. *Planta* 192, 16–33.
- Heuer, B., Hansen, M. J., and Anderson, L. E. (1982). Light modulation of phosphofructokinase in pea leaf chloroplasts. *Plant Physiol.* 69, 1404–1406.
- Horton, P., Park, K.-J., Obayashi, T., and Nakai, K. (2006). "Protein subcellular localization prediction with WoLF PSORT," in *Proceedings of Asian Pacific Bioinformatics Conference 2006*, Taipei.
- Hsu, F. C., Chou, M. Y., Peng, H. P., Chou, S. J., and Shih, M. C. (2011). Insights into hypoxic systemic responses based on analyses of transcriptional regulation in *Arabidopsis. PLoS ONE* 6:e28888. doi:10.1371/journal.pone.0028888
- Huang, S., Colmer, T. D., and Millar, A. H. (2008). Does anoxia tolerance involve altering the energy currency towards PPi? *Trends Plant Sci.* 13, 221–227.
- Kachru, R. B., and Anderson, L. E. (1975). Inactivation of pea leaf phosphofructokinase by light and dithiothreitol. *Plant Physiol.* 55, 199–202.
- Kapri, R., Dahan, E., Zehavi, U., Goren, R., and Sadka, A. (2000). Cloning and characterization of PPi-phosphofructokinase from citrus fruit. Acta Hortic. 535, 113–118.
- Karimi, M., Inze, D., and Depicker, A. (2002). Gateway vectors for Agrobacterium-mediated plant transformation. *Trends Plant Sci.* 7, 193–195.
- Kato-Noguchi, H. (2002). The catalytic direction of pyrophosphate:fructose 6-phosphate 1-phosphotransferase in rice coleoptiles in anoxia. *Physiol. Plant* 116, 345–350.
- Kelly, G. J., and Latzko, E. (1977). Chloroplast phosphofructokinase. II. Partial purification, kinetic and regulatory properties. *Plant Physiol.* 60, 295–299.
- Knowles, V. L., Greyson, M. F., and Dennis, D. T. (1990). Characterization of ATP-dependent fructose 6-phosphate 1-phosphotransferase isozymes from leaf and endosperm tissues of *Ricinus communis*. *Plant Physiol*. 92, 155–159.
- Kreuzwieser, J., Hauberg, J., Howell, K. A., Carroll, A., Rennenberg, H., Millar, A. H., et al. (2009). Differential response of gray poplar leaves

and roots underpins stress adaptation during hypoxia. *Plant Physiol.* 149, 461–473.

- Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., et al. (2007). Transcript profiling of the anoxic rice coleoptile. *Plant Physiol.* 144, 218–231.
- Lee, S. C., Mustroph, A., Sasidharan, R., Vashisht, D., Pedersen, O., Oosumi, T., et al. (2011). Molecular characterization of the submergence response of the *Arabidopsis thaliana* ecotype Columbia. *New Phytol.* 190, 457–471.
- Licausi, F., Kosmacz, M., Weits, D. A., Giuntoli, B., Giorgi, F. M., Voesenek, L. A. C. J., et al. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. *Nature* 479, 419–422.
- Mertens, E., Laroundelle, Y., and Hers, H.-G. (1990). Induction of pyrophosphate:fructose 6phosphate 1-phosphotransferase by anoxia in rice seedlings. *Plant Physiol.* 93, 584–587.
- Minhas, D., and Grover, A. (1999). Transcript levels of genes encoding various glycolytic and fermentation enzymes change in response to abiotic stresses. *Plant Sci.* 146, 41–51.
- Mohanty, B., Wilson, P. M., and ap Rees, T. (1993). Effects of anoxia on growth and carbohydrate metabolism in suspension cultures of soybean and rice. *Phytochemistry* 34, 75–82.
- Mustroph, A., and Albrecht, G. (2003). Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. *Physiol. Plant* 117, 508–520.
- Mustroph, A., Albrecht, G., Hajirezaei, M. R., Grimm, B., and Biemelt, S. (2005). Low levels of pyrophosphate in transgenic potato plants expressing *E. coli* pyrophosphatase lead to decreased vitality under oxygen deficiency. *Ann. Bot.* 96, 717–726.
- Mustroph, A., Boamfa, E. I., Laarhoven, L. J. J., Harren, F. J. M., Albrecht, G., and Grimm, B. (2006a). Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings I: dark ethanol production is dominated by the shoots. *Planta* 225, 103–114.
- Mustroph, A., Boamfa, E. I., Laarhoven, L. J. J., Harren, F. J. M., Pörs, Y., and Grimm, B. (2006b). Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis. *Planta* 225, 139–152.

- Mustroph, A., Lee, S. C., Oosumi, T., Zanetti, M. E., Yang, H., Ma, K., et al. (2010). Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. *Plant Physiol.* 152, 1484–1500.
- Mustroph, A., Sonnewald, U., and Biemelt, S. (2007). Characterisation of the ATP-dependent phosphofructokinase gene family from *Arabidopsis thaliana. FEBS Lett.* 581, 2401–2410.
- Mustroph, A., Zanetti, M. E., Jang, C. J., Holtan, H. E., Repetti, P. P., Galbraith, D. W., et al. (2009). Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in *Arabidop*sis. Proc. Natl. Acad. Sci. U.S.A. 106, 18843–18848.
- Nanjo, Y., Maruyama, K., Yasue, H., Yamaguchi-Shinozaki, K., Shinozaki, K., and Komatsu, S. (2011). Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. *Plant Mol. Biol.* 77, 129–144.
- Narsai, R., Howell, K. A., Carroll, A., Ivanova, A., Millar, A. H., and Whelan, J. (2009). Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. *Plant Physiol.* 151, 306–322.
- Nielsen, T. H., Rung, J. H., and Villadsen, D. (2004). Fructose-2,6bisphosphate: a traffic signal in plant metabolism. *Trends Plant Sci.* 9, 556–563.
- Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., et al. (2007). The TIGR rice genome annotation resource: improvements and new features. *Nucleic Acids Res.* 35, D883–D887.
- Perata, P., Guglielminetti, L., and Alpi, A. (1996). Anaerobic carbohydrate metabolism in wheat and barley, two anoxia-intolerant cereal seeds. J. Exp. Bot. 47, 999–1006.
- Perata, P., Guglielminetti, L., and Alpi, A. (1997). Mobilization of endosperm reserves in cereal seeds under anoxia. *Ann. Bot.* 79, 40–56.
- Plaxton, W. C. (1996). The organization and regulation of plant glycolysis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 48, 185–214.
- Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., et al. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. *Nat. Genet.* 37, 1141–1146.
- Ricard, B., Rivoal, J., Spiteri, A., and Pradet, A. (1991). Anaerobic stress induces the transcription of sucrose

synthase in rice. *Plant Physiol.* 95, 669-674.

- Ricard, B., Van Toai, T., Chourey, P., and Saglio, P. (1998). Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. *Plant Physiol.* 116, 1323–1331.
- Saeed, A. I., Bhagabati, N. K., Braisted, J. C., Liang, W., Sharov, V., Howe, E. A., et al. (2006). TM4 microarray software suite. *Meth. Enzymol.* 411, 134–193.
- Springer, B., Werr, W., Starlinger, P., Bennet, D. C., Zokolica, M., and Freeling, M. (1986). The shrunken gene on chromosome 9 of *Zea mays L.* is expressed in various plant tissues and encodes an anaerobic protein. *Mol. Gen. Genet.* 205, 461–468.
- Stitt, M. (1998). Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. *Bot. Acta* 111, 167–175.
- Summers, J. E., Ratcliff, R. G., and Jackson, M. B. (2000). Anoxia tolerance in the aquatic monocot *Potamogeton pectinatus*: absence of oxygen stimulates elongation in association with an unusually large Pasteur effect. *J. Exp. Bot.* 51, 1413–1422.
- Suzuki, J., Mutton, M. A., Ferro, M. I. T., Lemos, M. V. F., Pizauro, F. M., Mutton, M. J. R., et al. (2003). Putative pyrophosphate phosphofructose 1-kinase genes identified in sugar cane may be getting energy from pyrophosphate. *Genet. Mol. Res.* 2, 376–382.
- Teramoto, M., Koshiishi, C., and Ashihara, H. (2000). Wound-induced respiration and pyrophosphate:fructose-6phosphate phosphotransferase in potato tubers. Z. Naturforsch. C 55, 953–956.
- Theodorou, M. E., Cornel, F. A., Duff, S. M., and Plaxton, W. C. (1992). Phosphate starvationinducible synthesis of the alphasubunit of the pyrophosphatedependent phosphofructokinase in black mustard suspension cells. J. Biol. Chem. 267, 21901–21905.
- Theodorou, M. E., and Plaxton, W. C. (1996). Purification and characterization of pyrophosphatedependent phosphofructokinase from phosphate-starved *Brassica nigra* suspension cells. *Plant Physiol.* 112, 343–351.
- Todd, J. F., Blakeley, S. D., and Dennis, D. T. (1995). Structure of the genes encoding the alpha- and beta-subunits of castor pyrophosphate-dependent phosphofructokinase. *Gene* 152, 181–186.

- Turner, W. L., and Plaxton, W. C. (2003). Purification and characterization of pyrophosphate- and ATP-dependent phosphofructokinases from banana fruit. *Planta* 217, 113–121.
- Umeda, M., and Uchimiya, H. (1994). Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (*Oryza sativa* L.) under submergence stress. *Plant Physiol.* 106, 1015–1022.
- Waters, I., Morell, S., Greenway, H., and Colmer, D. (1991). Effects of anoxia on wheat seedlings. II Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. J. Exp. Bot. 42, 1437–1447.
- Weiner, H., Stitt, M., and Heldt, H. W. (1987). Subcellular

compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. *Biochim. Biophys. Acta* 893, 13–21.

- Winkler, C., Delvos, B., Martin, W., and Henze, K. (2007). Purification, microsequencing and cloning of spinach ATP-dependent phosphofructokinase link sequence and function for the plant enzyme. *FEBS J.* 274, 429–438.
- Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., and Provart, N. J. (2007). An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. *PLoS ONE* 2:e718. doi:10.1371/journal.pone.0000718
- Wong, J. H., Kiss, F., Wu, M.-X., and Buchanan, B. B. (1990).

Pyrophosphate fructose-6-P lphosphotransferase from tomato fruit. Evidence for change during ripening. *Plant Physiol.* 94, 499–506.

Yan, T. F. J., and Tao, M. (1984). Multiple forms of pyrophosphate-fructose-6-phosphate 1-phosphotransferase from wheat seedlings. J. Biol. Chem. 259, 5087–5092.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 22 February 2013; paper pending published: 18 March 2013; accepted: 17 April 2013; published online: 14 May 2013. Citation: Mustroph A, Stock J, Hess N, Aldous S, Dreilich A and Grimm B (2013) Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Front. Plant Sci. 4:125. doi: 10.3389/fpls.2013.00125

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Mustroph, Stock, Hess, Aldous, Dreilich and Grimm. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity

Fanrong Zeng^{1,2}, Lana Shabala¹, Meixue Zhou¹, Guoping Zhang² and Sergey Shabala¹*

¹ School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
² Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China

Edited by:

Pierdomenico Perata, Scuola Superiore Sant'Anna, Italy

Reviewed by:

Omar Pantoja, Universidad Nacional Autonoma de Mexico, Mexico Stefano Mancuso, Università di Firenze, Italy

*Correspondence:

Sergey Shabala, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia e-mail: sergey.shabala@utas.edu.au Salinity and waterlogging are two major factors affecting crop production around the world and often occur together (e.g., salt brought to the surface by rising water tables). While the physiological and molecular mechanisms of plant responses to each of these environmental constraints are studied in detail, the mechanisms underlying plant tolerance to their combined stress are much less understood. In this study, whole-plant physiological responses to individual/combined salinity and waterlogging stresses were studied using two barley varieties grown in either vermiculite (semi-hydroponics) or sandy loam. Two weeks of combined salinity and waterlogging treatment significantly decreased plant biomass, chlorophyll content, maximal quantum efficiency of PSII and water content (WC) in both varieties, while the percentage of chlorotic and necrotic leaves and leaf sap osmolality increased. The adverse effects of the combined stresses were much stronger in the waterlogging-sensitive variety Naso Nijo. Compared with salinity stress alone, the combined stress resulted in a 2-fold increase in leaf Na⁺, but a 40% decrease in leaf K⁺ content. Importantly, the effects of the combined stress were more pronounced in sandy loam compared with vermiculite and correlated with changes in the soil redox potential and accumulation of Mn and Fe in the waterlogged soils. It is concluded that hypoxia alone is not a major factor determining differential plant growth under adverse stress conditions, and that elemental toxicities resulting from changes in soil redox potential have a major impact on genotypic differences in plant physiological and agronomical responses. These results are further discussed in the context of plant breeding for waterlogging stress tolerance.

Keywords: salinity, waterlogging, microelement toxicity, barley, breeding, manganese, potassium, sodium

INTRODUCTION

Excessive soil salinization is a major ecological and agronomic problem throughout the world. According to the FAO Land and Plant Nutrition Management Service (2008), more than 800 Mha of land throughout the world is affected by salinity, which accounts for over 6% of the world's total land area. Apart from natural salinity, secondary (human-induced) salinization of arable land has become a serious threat to agricultural production owing to improper cultivation practices and irrigation (Pannell and Ewing, 2004). Excessive quantities of ions (mainly Na⁺ and Cl⁻) in the soil solution decrease soil osmotic potentials and the availability of water to plant roots. When accumulated in the shoot, these ions induce ion toxicity by disrupting the structure of enzymes, damaging cell organelles and interfering with cell metabolism (Maathuis and Amtmann, 1999). Salinity stress also results in significant ROS accumulation, both in roots (Xie et al., 2011) and leaves (Tanou et al., 2009), and interferes with K⁺ homeostasis (Maathuis and Amtmann, 1999; Shabala and Cuin, 2008), triggering accelerated cell death (Shabala, 2009; Joseph and Jini, 2010).

Waterlogging occurs over a vast region of the world, adversely affecting about 10% of the global land area (Setter and Waters, 2003) and reducing crop yields by as much as 80% (Shabala, 2011). Under waterlogging condition, soil gas exchange is severely impeded. This results in a significant depletion of free oxygen (O_2) and accumulation of carbon oxide (CO_2) due to microbial and root respiration (Bailey-Serres and Voesenek, 2008). As soon as the free O2 surrounding the roots is depleted, hypoxia stress occurs, causing a transfer from aerobic to anaerobic metabolism in roots, with dramatic restrictions to ATP synthesis (Barrett-Lennard, 2003; Teakle et al., 2006). Waterlogging also causes a sharp decrease in the soil redox potential, resulting in very significant changes to the soil chemical profile. Effects include a changed availability of mineral substances, reduction of manganese (Mn^{4+}), iron (Fe³⁺), and sulfate (SO₄²⁻), increased solubility of potentially toxic metals and production of toxic compounds by plant roots and microbial anaerobic metabolism (Kozlowski, 1997; Shabala, 2011). As a consequence of these changes, plants show altered membrane transport, decreased stomatal conductance and leaf water potentials, enhanced root

senescence, reduced root and shoot growth, and eventually, death of the whole plant (Barrett-Lennard, 2003).

In recent years, an impressive amount of knowledge has accumulated on plant physiological and molecular responses to salinity or waterlogging stresses. However, studies dealing with the combined effects of these two stresses are much rarer and often controversial [reviewed by Barrett-Lennard (2003)]. Nonetheless, the occurrence of combined salinity and waterlogging stress is increasing throughout the world This is due to intensive irrigation in agricultural production systems (Smedema and Shiati, 2002), rise of saline water tables (Hatton et al., 2003), and seawater intrusion in coastal environments (Carter et al., 2006). When combined with waterlogging, salinity can cause even greater damage to plants, so having a major impact on agricultural production (Barrett-Lennard, 2003). Only a very few crop species can tolerate the combination of salinity and waterlogging (Bennett et al., 2009), and the physiological and molecular mechanisms conferring this tolerance remain elusive.

Barley (*Hordeum vulgare* L.) is one of the most important crop species in the world. Barley is tolerant to salinity (Chen et al., 2007), so is a good candidate for use in saline discharge areas. However, barley is sensitive to waterlogging (Zhou et al., 2012), and the co-occurrence of waterlogging with salinity may seriously decrease this potential. In this study, the physiological and ionic characteristics of two contrasting barley varieties, grown in two soil types, were investigated in response to combined salinity and waterlogging stress. Our results suggest that hypoxia is not the only factor affecting plant growth under adverse stress conditions and that elemental toxicities resulting from changes in the soil redox potential has a major impact on genotypic differences in plant physiological and agronomical responses.

MATERIALS AND METHODS

PLANT MATERIALS AND GROWTH CONDITIONS

Two barley (Hordeum vulgare L.) varieties contrasting in both waterlogging and salinity tolerance (CM72, tolerant to salinity and with medium tolerance to waterlogging, and Naso Nijo, sensitive to both waterlogging and salinity; Chen et al., 2007; Pang et al., 2007), were used in this work. Seeds were obtained from the Australian Winter Cereal Collection and multiplied using the TIA facilities in Launceston. Seeds were surface sterilized with 10% commercial bleach (NaClO 42 g/L, Pental Products, Shepparton, Australia), thoroughly rinsed with tap water, then sown at a 10 mm-depth in 2 L-pots. Two different types of growth mediasandy loam and vermiculite-were used. Sandy loam soil, which was taken from the University of Tasmania farm near Cambridge in southeast Tasmania, was first air-dried and then sieved through a 5 mm sieve. The soil was fertilized by adding all the essential macronutrients at the optimal field application rates, taking into account the pot factor (in g/10 L: 5.13 NH₄NO₃, 13.57 NaH₂PO₄, 4.88 K₂SO₄, 3.1 CaSO₄, and 1.42 MgCl₂) and watered to field capacity with tap water during the experiment. Plants grown in vermiculite were watered with half-strength Hoagland's nutrient solution. After germination, barley seedlings were thinned to 10 uniform and healthy plants in each pot. Plants were grown under controlled glasshouse condition (with a day-length of 14 h; light/dark temperatures, 25/15°C; and relative humidity, 65%) at the University of Tasmania (Hobart, Australia). The experiment was repeated twice in April and June 2012.

Treatments were imposed when plants were at the fully expanded first leaf stage (~1 week old). For treatments with waterlogging, pots were placed into large black tanks (6 pots in each tank). Four treatments were given: control (no NaCl; well drained), salinity (referred as "NaCl"; well drained pots watered with 200 mM NaCl solution), waterlogging ("WL"; submerged pots; no NaCl) and combined waterlogging and salinity ("NaCl/WL"; pots submerged in 200 mM NaCl solution). Waterlogged conditions were created by using either tap water or half-strength Hoagland's nutrient solution, depending on the soil type (i.e., whether sandy loam or vermiculate). The entire

FIGURE 1 | Effects of separate and combined salinity and waterlogging stresses on growth of two contrasting barley cultivars in sandy loam. Dark bars, Naso Nijo; light bars, CM72. One-week old barley seedlings were subjected to one of four treatments: Control (no NaCl; well drained), NaCl (well-drained pots watered with 200 mM NaCl solution), WL (submerged pots; no NaCl), NaCl/WL (pots submerged in 200 mM NaCl solution). Plants were harvested for morphological (A) and biomass analysis (**B–E**) 14 days after the onset of treatment. For growth condition and media composition, refer to the Materials and Methods section. Mean \pm SD (n = 5). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.01. Asterisks indicate the significant difference between cultivars within treatment at *P < 0.01, **P < 0.001, and ***P < 0.0001.

experiment was carried out in a split-plot design with tanks as the main plots and barley varieties as subplots. Six replicates were set up for each treatment \times variety combination.

Daily irrigation for drained treatments was artificially maintained with the same amount (150 mL) of different solutions, as described above. The water level of waterlogged treatments was kept 15 mm above the soil surface. Plants were subjected to different treatments for 14 days, after which the genotypic variance was clearly distinguished visually. The seedlings were then sampled randomly for the following analyses.

SPAD AND CHLOROPHYLL FLUORESCENCE

Leaf chlorophyll content and chlorophyll fluorescence were measured on the middle part of the oldest fully expanded leaves

FIGURE 2 | Effects of separate and combined salinity and wateriogging stresses on growth of two contrasting barley cultivars in vermiculite. Dark bars, Naso Nijo; light bars, CM72. One-week old barley seedlings were subjected to one of four treatments: Control (no NaCl; well drained), NaCl (well-drained pots watered with 200 mM NaCl solution), WL (submerged pots; no NaCl), NaCl/WL (pots submerged in 200 mM NaCl solution). Plants were harvested for morphological (**A**) and biomass analysis (**B–E**) 14 days after the onset of treatment. For growth conditions and media composition, refer to the Materials and Methods section. Mean \pm SD (n = 5). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.01. Asterisks indicate the significant difference between cultivars within treatment at *P < 0.01, **P < 0.001, and ***P < 0.001.

(which had been subjected to the treatment for a full 2 weeks), prior to sampling for other parameters. Leaf chlorophyll content was measured with a SPAD meter (SPAD-502, MINOLTA, Japan). Chlorophyll fluorescence was measured with a OS-30p chlorophyll fluorometer (OPTI-Sciences, Hudson, USA). Plants were dark-adapted for 30 min prior to measurement. The maximum quantum efficiency of photosystem II (*Fv/Fm* = (*Fm*–*Fo*)/*Fm*) was recorded at a saturating actinic light (660 nm) intensity of 1100 μ mol/m²/s. Twelve replicates were randomly taken for each treatment × variety combination.

RATIO OF CHLOROTIC AND NECROTIC LEAVES

Prior to harvest for biomass, the number (no.) of chlorotic, necrotic, and total leaves from each plant were counted. The ratio of chlorotic (or necrotic) leaves was then calculated according to the equation: ratio of chlorotic (or necrotic) leaves = no. of chlorotic (/necrotic) leaves/no. of total leaves. Twelve replicates were randomly taken for each treatment \times variety combination.

BIOMASS

For harvesting, plant roots were gently washed with running tap water, rinsed with distilled water, then blotted dry with soft tissue. Five replicates were taken for each treatment \times variety combination, and three plants were bulked together for each replicate. The fresh weights of shoots and roots were measured as soon as the seedlings were separated and the dry weights were measured after drying in a Unitherm Drier (Birmingham, England) for 2 days at 65°C.

LEAF WATER CONTENT

Leaf fresh and dry weights were used to calculate the leaf water content (WC) on a fresh weight basis using the following equation: WC% = (fresh weight - dry weight)/fresh weight × 100%. Fresh leaf blades of whole seedlings were collected and weighed immediately for their fresh weights. Dry weights were determined after drying for 2 days at 65°C. Five replicates were taken for each treatment × variety combination.

NA⁺ AND K⁺ CONTENTS AND OSMOLALITY IN PLANT TISSUE

Na⁺ and K⁺ contents were determined from the leaf and root sap. After harvesting as described above, plant roots and the oldest fully expanded leaves, which had been subjected to the treatment for a full 2 weeks, were collected and immediately stored in a 1.5 ml microcentrifuge tube at -20° C. Five replicates were taken for each treatment × variety combination. The sap from roots and leaves was extracted by the freeze-thaw method (Cuin et al., 2008). After centrifuged at 10,000 g for 3 min, the extracted sap sample was diluted 500 times with double distilled water and analyzed for its Na and K content using a flame photometer (PF97, VWR International, Murarrie, Australia).

The extracted leaf sap was also analyzed for its osmolality using a vapor pressure osmometer (Vapro, Wescor Inc. Logan, Utah, USA).

ROOT ATP CONTENT

Two weeks after commencing treatments, roots were harvested for ATP extraction according to a modified method of Yang et al. (2002). Briefly, 0.2 g of liquid nitrogen-homogenized root powder was rapidly mixed with 0.5 mL 0.0005% (v/v) HCl.O4 and heated in a boiling water bath for 10 min. After cooling on ice, the extraction mixture was centrifuged for 5 min at 10,000 \times g at 4°C. The supernatant was used for the ATP assay. The ATP content was quantified using the ATP Colorimetric Assay Kit (ab83355, ABCAM, Cambridge, UK) with a microplate reader (SPECTROstar Nano, BMG LABTECH, Mornington, Australia). The reaction mix contained 4% (v/v) ATP probe, 4% (v/v) ATP converter and 4% (v/v) developer in the ATP Assay Buffer (ab83355, ABCAM, Cambridge, UK). ATP standards (0-5 nmol range) and extracted samples were placed into a 96-well plate. The reaction mix was added at 1:1 (v/v) ratio, and plates were incubated at the room temperature in the dark for 30 min. The extraction solution without root tissue was used as a negative control. ATP concentrations in the samples were calculated by plotting the measured absorbance at 570 nm (OD_{570 nm}) vs. the standard linear curve.

NET ION FLUXES FROM THE ROOT EPIDERMIS

Net K⁺ and H⁺ fluxes were measured from the root epidermis of barley seedlings using non-invasive ion-selective vibrating microelectrodes (the MIFE technique, University of Tasmania, Hobart, Australia), essentially as described in our previous publications (Chen et al., 2007; Cuin et al., 2008). Barley seedlings were grown in an aerated Basic Salt Media (BSM) solution $(0.5 \text{ mM KCl} + 0.1 \text{ mM CaCl}_2, \text{ pH 5.6})$ in the dark for 3 days at room temperature ($25 \pm 1^{\circ}$ C). At that stage, 1 mM MnCl₂ was added to the BSM, and plants were grown for up to 3 more days in the presence of Mn. Roots of intact seedlings were mounted in a 10 mL perspex measuring chamber filling with the appropriate solution (BSM for control; $BSM + 1 \text{ mM MnCl}_2$ for Mn treatment) 1 h prior to measurement. Ion-selective microelectrodes were position 40 µm above the root surface, with their tips separated by ca. 2 µm. Ion fluxes were measured by a slow (5 s half-cycle) square-wave movement of electrodes between two positions, close to $(40 \,\mu\text{m})$ and away from $(80 \,\mu\text{m})$ the root surface. Net ion fluxes were measured from the mature root epidermis ~20 mm from the root tip. The potential difference between two positions was recorded by the MIFE CHART software and converted to the electrochemical potential difference using the calibrated Nernst slope of the electrodes. Net ion fluxes were calculated from the electrochemical potential difference using cylindrical diffusion geometry by the MIFEFLUX program. Net ion fluxes were measured for 10 min, and the

steady-state fluxes were calculated by averaging the values over the last 5 min.

SOIL REDOX POTENTIAL

Soil redox potential (or oxidation-reduction potential, ORP) was measured using an ORP electrode connected to a Handheld Multi-Parameter (LabNavigator, Forston Labs, Colorado, USA) before treatment ("drained control"), and after 3 and 14 days of waterlogging, both in the presence and absence of NaCl. To measure the ORP for drained controls, a 5 cm-deep hole was dug in the soil and the ORP electrode was carefully placed in the hole with the diaphragm touching the humid soil surface. All measurements were taken as close to roots as practically possible, without causing any damage. Each measurement was recorded for 180 s with one reading per second, and a reliable ORP value was achieved by averaging the readings from the last 120 s. These measurements were conducted about 1 h after watering.

Fe AND Mn CONCENTRATIONS IN THE SOIL SOLUTION

Soil solutions for determining Fe and Mn concentrations were sampled at the time of ORP measurement. For the WL and NaCl/WL treatments, soil solution was taken from five spots for each container, and combined into one collective sample for Fe and Mn determination. To determine Fe and Mn concentrations in the drained controls, a 1:2.5 (v/v) soil:solution mix was made (using tap water for clay, and $\frac{1}{2}$ Hoagland nutrient solution for vermiculite), stirred for 30 min at room temperature, then decanted. All samples were then filtered, and Fe and Mn concentrations were determined using the Atomic Absorption Spectroscopy (AAS) technique (Avanta Σ , GBC Scientific Equipment, Braeside, Australia). Five replicates of collective samples were taken for each treatment.

STATISTICAL ANALYSIS

Statistical analysis was performed by the statistical package, IBM SPSS Statistics 20 (IBM, New York, USA). All data in the figures and tables are given as means \pm SD. The Multivariate General Linear Model was used to confirm the significance of the factors (soil types, treatments, and varieties). Significant differences between treatments on the mean of the two varieties were compared using Duncan's multiple range tests.

RESULTS

PLANT GROWTH

Plant growth was significantly reduced by all stress treatments (**Figures 1**, **2**). The combined NaCl/WL treatment showed the most severe effect on plant growth. When grown in sandy loam, the average shoot FW and DW of the two varieties treated by NaCl/WL were reduced by 81 and 76% relative to the control, respectively, with the corresponding values for roots being 85

FIGURE 4 | Effects of separate and combined salinity and waterlogging stresses on maximum photochemical efficiency of PSII (Fv/Fm chlorophyll fluorescence values) of two contrasting barley cultivars. Measurements were taken 14 days after the onset of treatment. (A,B) Soil type effects. Dark bars, Naso Nijo; light bars, CM72. (C,D) Genotype effects. Dark bars, sandy loam; light bars, vermiculite. For growth conditions, details of treatments, and media composition, refer to the Materials and Methods section. Mean \pm SD (n = 12). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.01. Asterisks indicate the significant difference between cultivars within the treatment at *P < 0.01 and ***P < 0.0001.

and 77% (**Figures 1B–E**). Plants grown in vermiculite performed better under combined NaCl/WL treatment, with a 71 and 32% reduction in the shoot FW and DW and 78 and 73% reduction in root FW and DW, respectively (**Figures 2B–E**). The genotypic difference in tolerance to the combined stress was clearly visible when plants were grown in sandy loam. After 14 days of NaCl/WL treatment, most Naso Nijo plants had died, and the plant FW was only 12% of that of control (**Figures 1A,C**). However, in the CM72 plants, only some moderately stressed symptoms were observed and 25% FW of the control was maintained.

CHLOROPHYLL CONTENT AND FLUORESCENCE

After 2 weeks of treatment, NaCl alone had no significant (at P < 0.01) effect on the leaf chlorophyll content (SPAD value) for either variety grown in either growth media. However, WL and NaCl/WL treatments caused a massive reduction in the chlorophyll content (**Figure 3**) in both varieties. Sandy loam-grown plants were affected more than plants grown in vermiculite (ca. 40% more reduction in NaCl/WL treatment, **Figures 3C,D**). The combined NaCl/WL treatment was more detrimental compared with WL alone in both varieties (**Figures 3A,B**). The observed decline in chlorophyll content was genotype-specific, with chlorophyll content in CM72 plants being significantly higher than that in Naso Nijo plants for each treatment, except for the control (**Figures 3A,B**).

The maximum photochemical efficiency of PSII (chlorophyll fluorescence Fv/Fm value) was also significantly affected by WL and NaCl/WL treatments (**Figure 4**). A substantial decline in Fv/Fm value was reported for both treatments (**Figures 4A,B**). None of these parameters, however, was affected by NaCl alone (at P < 0.01, **Figures 4A,B**). On averaging the two varieties, the effect of the combined NaCl/WL stress was much more severe than WL alone (at P < 0.01, **Figures 4A,B**). CM72 plants were less sensitive to both WL and combined NaCl/WL stresses than Naso Nijo (**Figures 4A,B**). Stress effects were strongly influenced by the growth conditions (sandy loam vs. vermiculite), with a much stronger decline in Fv/Fm observed in sandy loam-grown plants (66% more reduction for Naso Nijo and 22% more for CM72 under sandy loam conditions than those grown in vermiculite, **Figures 4C,D**).

LEAF CHLOROSIS AND NECROSIS

Leaf chlorosis and necrosis are important visible symptoms associated with abiotic stresses. As shown in **Figure 5**, leaf chlorosis and necrosis were induced by WL treatment and exacerbated by the combined NaCl/WL stress. Variety CM72 performed much better compared with Naso Nijo. As such, no chlorotic or necrotic leaves were present in CM72 plants under WL treatment, while a substantial percentage of Naso Nijo leaves were affected by WL (**Figure 5A**). Under combined NaCl/WL stress, half the CM72 leaves showed visual stress symptoms, while in the more sensitive Naso Nijo, over 90% leaves were either chlorotic or nectrotic (**Figure 5A**). Visual stress symptoms were more pronounced in the sandy loam-grown plants (**Figure 5A**) compared with

those grown in vermiculate (**Figure 5B**). Taking the combined NaCl/WL treatment as an example, Naso Nijo had over 70% necrotic leaves when grown in sandy loam but only 18% in vermiculite; for CM72 the corresponding values were 22 and 0% (**Figure 5**).

LEAF WATER CONTENT AND SAP OSMOLALITY

Leaf WC was significantly decreased by NaCl and NaCl/WL treatments under both growth conditions (**Figure 6**). At the same time, WL treatment did not significantly affect leaf WC under sandy loam conditions (at P < 0.01, **Figure 6A**), and even slightly increased leaf WC in plants grown in vermiculite (**Figure 6B**). A significant (at P < 0.01) difference in leaf WC between the contrasting varieties was observed for each treatment except the control in this experiment (**Figures 6A,B**). The growth conditions

stresses on leaf water content of two contrasting barley cultivars. (A,B) Soil type effects. Dark bars, Naso Nijo; light bars, CM72. (C,D) Genotype effects. Dark bars, sandy loam; light bars, vermiculite. For growth conditions, details of treatments, and media composition, refer to the Materials and Methods section. Mean \pm SD (n = 5). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.01. Asterisks indicate the significant difference between cultivars within the treatment at *P < 0.01, ** P < 0.001, and *** P < 0.0001.

(sandy loam vs. vermiculite) showed a significant impact on leaf WC, but only in the sensitive variety Naso Nijo (Figures 6C,D).

To a large extent, changes in the leaf WC were mirrored by changes in leaf sap osmolality (Figure 7). Much higher leaf sap osmolality (significant at P < 0.01) was measured in plants grown in the presence of NaCl (i.e., in both NaCl and NaCl/WL treatments), while no significant change in leaf osmolality was found for WL treatment as compared to the control. The combination of waterlogging and salt stress not only induced a massive increase in leaf sap osmolality, but also allowed a clear differentiation between the contrasting varieties, with about a 2-fold difference (significant at P < 0.001) between them (**Figures 7A,B**). No significant (at P < 0.01) effect of growth media (sandy loam vs. vermiculate) on leaf sap osmolality was found (Figures 7C,D).

SAP Na⁺ AND K⁺ CONTENTS

As expected, NaCl treatment caused dramatic increases in the Na⁺ content (Figure 8) but a decrease in the K⁺ content (Figure 9) for both the leaf and root (at P < 0.01). Compared with NaCl alone, the combined NaCl/WL treatment further increased the leaf Na⁺ content (about a 1.7-2-fold increase on average of the two varieties, Figures 8A,B), but decreased leaf K⁺ content (about 27 to 44% decrease on average of the two

varieties, Figures 9A,B). However, the combined NaCl/WL treatment did not cause further changes to root Na⁺ (Figures 8C,D) and K⁺ (Figures 9C,D) contents. WL treatment induced a significant decrease in leaf K⁺ content and a significant increase in root K⁺ content (at P < 0.01, Figure 9) as compared to control, while no significant change was found in Na⁺ content (at P < 0.01, Figure 8). A clear differentiation in Na⁺ and K⁺ contents between the contrasting varieties appeared under the combined NaCl/WL treatment. Relative to Naso Nijo, the tolerant variety CM72 had a 27-33% lower Na⁺ content (at P < 0.01, Figures 8A,B) and 77–88% higher K⁺ content (at P < 0.0001, Figures 9A,B) in leaves. For roots, the corresponding values were 15–18% (at P < 0.0001, Figures 8C,D) and 94–150% (at *P* < 0.0001, Figures 9C,D). The growth conditions (sandy loam vs. vermiculite) showed a significant impact on both Na⁺ and K⁺ contents. The vermiculite-grown plants contained much more Na⁺ and K⁺ in both the leaves and roots compared to those grown in sandy loam under saline conditions (both NaCl and NaCl/WL treatments) (Figures 8, 9). Taking CM72 in the combined NaCl/WL treatment as an example, plants grown in vermiculite had a 54% higher leaf Na⁺ and 32% higher root Na⁺ contents than in sandy loam (Figure 8). For K⁺, the corresponding values were 50 and 27% (Figure 9).

ROOT ATP CONTENT

Under normoxic conditions, the ATP content in plant roots was not significantly (at P < 0.05) different between genotypes (**Figure 10**). ATP content was also not significantly (at P < 0.05) different between two soil types, ranging from 42 to 51 nmol ATP/g FW (**Figure 10**). Two weeks of hypoxia resulted in a 2–3-fold decrease in the root ATP content. No significant (P < 0.05) effect of soil type on ATP decline was observed (**Figure 10**). Hypoxia-exposed CM72 plants were capable of maintaining a slightly higher (significant at P < 0.05) root ATP level compared with Naso Nijo variety.

CHANGES IN SOIL CHEMISTRY

Development of hypoxia was accompanied by a progressive decline in the soil redox potential (ORP), from 391 \pm 1.5 mV to less than 50 mV, depending on the soil type and duration of waterlogging (**Figure 11**). No significant (at *P* < 0.05) differences were found for the ORP values between two soil types after 3 days of WL stress. When pots were submerged for 2 weeks however, ORP values were significantly (*P* < 0.01) lower in sandy loam compared with vermiculite (80 \pm 4.4 mV vs. 151 \pm 4.5 mV, respectively). The presence of salt further reduced the appropriate ORP values for each treatment by 30–40 mV, but the general trends remained the same.

Consistent with the decline in the ORP values, waterlogging induced a very substantial increase in both Mn and Fe content in the sandy loam soil (**Figure 12**). After 2 weeks of waterlogging, the Mn content rose from $2.8 \pm$ 0.01 to 15.4 ± 0.06 ppm in waterlogging treatment alone, and to 21.8 ± 0.08 ppm in combined NaCl/WL treatment, exceeding the threshold level considered to be toxic for cereals (10 ppm; Setter et al., 2009; shown as a dotted line). Also dramatic was the increase in solution Fe content (from 0.23 ± 0.02 ppm to 16.8 ± 0.05 ppm). No physiologically relevant increase in either Mn or Fe content was found in waterlogged vermiculite (**Figure 12**). The presence of NaCl in the media consistently increased the Mn and Fe content in the soil solution by around 2-fold for each treatment.

ROOT ION FLUX CHANGES

A strong net K⁺ uptake of 130–180 nmol m⁻²s⁻¹ (depending on gentotype) was measured from the barley root epidermis in the control (**Figure 13A**). After 1 days of root treatment with 1 mM Mn, K⁺ fluxes turned to a net efflux of 35–70 m⁻²s⁻¹ and remained negative (net K⁺ loss) for at least a few more days (**Figure 13A**). This Mn-induced K⁺ efflux was 2-fold higher in the waterlogging-sensitive Naso Nojo variety (significant at P < 0.05). Changes in H⁺

flux mirrored the changes in the K^+ flux. A strong net H^+ efflux of around 50 nmol $m^{-2}s^{-1}$ was measured from the control roots (**Figure 13B**). This efflux was sensitive to 1 mM vanadate, a known blocker of H^+ -ATPase (data not shown). Mn treatment reversed the H^+ efflux into a net H^+ influx after 1 day (**Figure 13B**). At day 3 of Mn treatment, the CM72 genotype was capable of restoring its net H^+ extrusion (albeit at a reduced rate), while the WL-sensitive variety Naso Nijo still displayed a net H^+ influx (**Figure 13B**).

DISCUSSION

DISTURBANCE TO K⁺/NA⁺ HOMEOSTASIS IS CENTRAL FOR THE SEVERE EFFECTS OF COMBINED SALINITY AND WATERLOGGING STRESS

In this study, a much more dramatic increase in Na⁺ and decrease in K⁺ content were observed in both roots and leaves of barley plants grown under a combined salinity and water-logging stress compared to plants grown with salinity under drained condition (**Figures 8**, **9**). Intracellular K⁺/Na⁺ home-ostasis is often named as a key determinant of plant salinity tolerance (Maathuis and Amtmann, 1999; Shabala and Cuin, 2008). The key players in this process are the plasma membrane SOS1 Na⁺/H⁺ antiporters that actively expel Na⁺ from the cytosol (Shi et al., 2002) and depolarization-activated

outward-rectifying (GORK in Arabidopsis; Ache et al., 2000) channels, responsible for K⁺ retention in the cytosol (Shabala and Cuin, 2008). The operation of both of these transporters is critically dependent on oxygen availability. Indeed, SOS1 activity relies on existence of steep H⁺ gradients across the plasma membrane, fueled by the plasma membrane H⁺-ATPase activity (Palmgren and Harper, 1999). The H⁺-pump is also the main electrogenic factor essential for maintaining a highly negative membrane potential value, thus keeping GORK channels closed. Salinity by itself causes a substantial membrane depolarization (by 60-80 mV; Shabala and Cuin, 2008). As the oxygen is gradually used up (under waterlogged conditions), root O₂ deficiency would restrict aerobic respiration, so the production of ATP would be dramatically reduced (from 30 to 36 mol ATP via mitochondrial oxidative phosphorylation to 2-4 mol ATP via glycolysis per hexose, Bailey-Serres and Voesenek, 2008). Indeed, the ATP content dropped 2-3-fold in waterlogging-affected roots (Figure 10). This reduction will compromise a plant's ability to fuel H+-ATPases, with major implications to both Na⁺ exclusion and K⁺ retention, as discussed above. Overall, unfavorable Na⁺/K⁺ ratios in plant will affect plant metabolism, resulting in a significant decrease in chlorophyll content (Figure 3) and photochemical efficiency of PSII (Figure 4); drastic increases in the number of chlorotic and necrotic leaves (Figure 5) and leaf sap osmolality

waterlogging stresses on tissue K⁺ content of two contrasting barley cultivars. (A,B) Soil type effects. Dark bars, Naso Nijo; light bars, CM72. (C,D) Genotype effects. Dark bars, sandy loam; light bars, vermiculite. For growth conditions, details of treatments, and media composition, refer to the Materials and Methods section. Mean \pm SD (n = 5). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.01. Asterisks indicate the significant difference between cultivars within treatment at *P < 0.01, **P < 0.001, and ***P < 0.0001.

(Figure 7); and ultimately reduced growth of roots and shoots (Figures 1, 2).

SOIL TYPE AFFECTS THE ADVERSE EFFECTS OF COMBINED WATERLOGGING AND SALINITY STRESS

As the soil redox potential is reduced under waterlogged conditions, manganese dioxide (Mn4+) and the insoluble ferric (Fe³⁺) hydroxides are reduced to the soluble manganous (Mn²⁺) and ferrous (Fe²⁺) ions (Khabaz-Saberi et al., 2006; Setter et al., 2009; Hernandez-Soriano et al., 2012). In our case, a substantial increase in both Mn and Fe content in the soil solution was observed for the sandy loam, but not the vermiculite soil (Figure 12). Despite its importance as an essential micronutrient, excess Mn is damaging to the photosynthetic apparatus, interferes with uptake of other nutrients and may cause oxidative stress, resulting in chlorosis and necrosis in leaves and subsequently death of whole plants (Millaleo et al., 2010). Visual symptoms of Mn toxicity such as chlorosis and necrosis were observed in barley leaves of hydroponicallygrown plants at concentrations as low as 50 µM (i.e., <5 ppm; Führs et al., 2010). In field experiments, the toxic threshold for cereals grown in drained soils was reported to be around 10 ppm of Mn (Setter et al., 2009). In our case, the Mn content in the sandy loam soil solution exceeded the latter threshold by day 14 for WL alone treatment, and was

FIGURE 10 | ATP content in barley roots grown under normoxic and hypoxic conditions for 14 days. Closed bars—Naso Nijo; open bars—CM72. Mean \pm SD (n = 4 plants). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.01. Asterisk indicate the significant difference between cultivars within the treatment at *P < 0.05.

close to it around day 3 in the combined NaCl/WL treatment (Figure 12). Mn treatment also had major implications for K^+ retention in barley roots within 24 h of exposure (Figure 13). Consequently, the dramatic increase in Mn concentration that

we found in sandy loam (up to 20 ppm, Figure 12) under waterlogged conditions would likely induce a high risk of Mn toxicity to barley plants. Interestingly, the presence of NaCl in the soil exacerbated the effect of waterlogging on Mn availability, in a full agreement with the ORP data (Figure 11). The Fe content in the soil solution also increased steadily, approaching toxic levels. Together, when delivered to the shoot by the transpiration flow, these two toxic micronutrients could lead to increased ROS formation in green tissues (Millaleo et al., 2010; Keunen et al., 2011), impairing the photosynthetic machinery (Figure 4), reducing chlorophyll content (Figure 3) and enhancing the senescence process (Figure 5). Such elemental toxicity may be an additional (to unfavorable Na⁺/K⁺ balance in leaf tissues) factor contributing to the poor plant performance under combined WL/NaCl conditions in sandy loam. Elemental toxicity, however, is not a factor for vermiculate-grown plants, explaining their much better performance (compared with loam-grown plants) under combined stress conditions (Figures 1, 2).

So far, most studies dealing with the combined effects of salinity and waterlogging stress have been conducted with deoxygenated solution (stagnant agar solution or N₂ aerated solution) or waterlogged sand (Barrett-Lennard, 2003; Teakle et al., 2006, 2010; Rogers et al., 2011). Being very useful to clarify the underlying mechanisms of this interaction, these results may be at some discrepancy with the real situation in the natural stressed environment, due to the lack of the factor of elemental toxicity, typically present in waterlogged soils. Therefore, for accurately evaluating and efficiently improving the tolerance of germplasm to combined salinity and waterlogging stress, it is

pots subjected to waterlogging (submerged; no NaCl) and combined salinity and waterlogging (submerged in 200 mM NaCl solution). Soil samples were taken on days 3 and 14 since commencement of treatment and compared with those taken from control treatment. Mean \pm SD (n = 5). Different lower case letters indicate the significant difference within the soil type at P < 0.01. Asterisk indicates the significant differences between sandy loam and vermiculite within variety at P < 0.01.

necessary to carry out investigations and screening with the soil from the target environment rather than with artificial growing methods.

GENOTYPIC DIFFERENCES IN RESPONDING TO COMBINED WATERLOGGING AND SALINITY STRESS AND THEIR POTENTIAL UTILIZATION IN SALTLAND

It is estimated that over 370,000 barley germplasms are preserved as *ex situ* collections in worldwide representative genebanks (Saisho and Takeda, 2011). The genetic diversity of either salinity or waterlogging tolerance has been well proved amongst cultivated and even wild barley germplasms (Wu et al., 2011). However, little information about the genetic variation in a combined waterlogging and salinity stress has been accumulated. In the present study, a significant genetic difference in response to combined waterlogging and salinity stress was observed between CM72 and Naso Nijo. Regardless of the soil type, CM72 showed a much higher tolerance to combined WL/NaCl stress than Naso Nijo, as reflected by the lower reduction in root and shoot growth (**Figures 1, 2**), higher chlorophyll content (**Figure 3**)

FIGURE 13 | Net steady-state K⁺ (A) and H⁺ (B) fluxes measured from mature barley root epidermis in control (day 0) and after one and three days exposure to 1 mM Mn. Mean \pm SD (n = 6). Different lower case letters indicate the significant difference between treatments (averaged for both genotypes) at P < 0.05. Asterisks indicate the significant difference between cultivars within treatment at *P < 0.05 and ***P < 0.001.

REFERENCES

- Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M. R. G., and Hedrich, R. (2000). GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K⁺-selective, K⁺-sensing ion channel. *FEBS Lett.* 486, 93–98. doi: 10.1016/S0014-5793(00)02248-1
- Bailey-Serres, J., and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. *Ann. Rev. Plant Biol.* 59, 313–339. doi: 10.1146/annurev.arplant.59. 032607.092752
- Barrett-Lennard, E. G. (2003). The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. *Plant Soil* 253, 35–54. doi: 10.1023/A:1024574622669
- Bennett, S. J., Barrett-Lennard, E. G., and Colmer, T. D. (2009). Salinity and waterlogging as constraints to saltland pasture production: a review. Agri. Eco. Environ. 129, 349–360. doi: 10.1016/j.agee.2008.10.013
- Carter, J. L., Colmer, T. D., and Veneklaas, E. J. (2006). Variable tolerance of wetland tree species to combined salinity and waterlogging

is related to regulation of ion uptake and production of organic solutes. *New Phytol.* 169, 123–134. doi: 10.1111/j.1469-8137.2005.01552.x

- Chen, Z., Zhou, M., Newman, I., Mendham, N., Zhang, G., and Shabala, S. (2007). Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. *Funct. Plant Biol.* 34, 150–162. doi: 10.1071/FP06237
- Cuin, T. A., Betts, S. A., Chalmandrier, R., and Shabala, S. (2008). A root's ability to retain K⁺ correlates with salt tolerance in wheat. *J. Exp. Bot.* 59, 2697–2706. doi: 10.1093/jxb/ern128
- FAO. (2008). FAO Land and Plant Nutrition Management Service. Available online at: http://www.fao. org/ag/agl/agll/spush
- Führs, H., Behrens, C., Gallien, S., Heintz, D., Van Dorsselaer, A., Braun, H. P., et al. (2010). Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (*Oryza sativa*) in comparison with barley (*Hordeum vulgare*). *Ann. Bot.* 105, 1129–1140. doi: 10.1093/aob/mcq046
- Hatton, T. J., Ruprecht, J., and George, R. J. (2003). Preclearing

and fluorescence (Figure 4), fewer chlorotic and necrotic leaves (Figure 5), higher leaf WC (Figure 6), lower Na⁺, and higher K⁺ content in root and leaf sap (Figures 8, 9). The vast collection of barley germplasms and the recent completion of the barley genome sequencing (The International Barley Genome Sequencing Consortium, 2012) makes it possible to thoroughly explore the potential mechanisms of tolerance of different barley cultivars to individual or combined stress conditions and utilize the more tolerant lines to breed suitable varieties for the corresponding environment. Up to now, saltland agriculture has relied heavily on the use of pasture halophylic species such as Atriplex, Maireana, Puccinellia, Thinopyrum, Lotus, and Melilotus (Teakle et al., 2006; Bennett et al., 2009; Rogers et al., 2011). Barley is a crop that can be used not only for animal feed, but also for alcoholic and non-alcoholic beverages and human food. It is already known for its tolerance to stresses such as cold, drought, and salinity (Saisho and Takeda, 2011). It can be predicted that barley will be a potential food source in future for the increasing world population under deteriorating environments. To achieve this goal, truly tolerant varieties capable of performing without, or with only little yield reduction, under hostile soil conditions, such as combined salinity and waterlogging, should be selected or created by breeders.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council Discovery (to Sergey Shabala) and ARC Linkage (to Sergey Shabala, Meixue Zhou, and Lana Shabala) grants.

hydrology of the Western Australia wheatbelt: target for the future. *Plant Soil* 257, 341–356. doi: 10.1023/A:1027310511299

- Hernandez-Soriano, M. C., Degryse, F., Lombi, E., and Smolders, E. (2012). Manganese toxicity in barley is controlled by solution manganese and soil manganese speciation. *Soil Sci. Soc. Am. J.* 76, 399–407. doi: 10.2136/sssaj2011.0193
- Joseph, B., and Jini, D. (2010). Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. *J. Plant Sci.* 5, 376–390. doi: 10.3923/jps.2010.376.390
- Keunen, E., Remans, T., Bohler, S., Vangronsveld, J., and Cuypers, A. (2011). Metal-induced oxidative stress and plant mitochondria. *Int. J. Mol. Sci.* 12, 6894–6918. doi: 10.3390/ijms12106894
- Khabaz-Saberi, H., Setter, T. L., and Waters, I. (2006). Waterlogging induces high to toxic concentrations of iron, aluminum, and manganese in wheat varieties on acidic soil. *J. Plant Nutr.* 29, 899–911. doi: 10.1080/01904160600649161
- Kozlowski, T. T. (1997). Responses of woody plants to flooding and salinity. Tree Physiol. Monograph 1, 1–29.

- Maathuis, F. J. M., and Amtmann, A. (1999). K⁺ nutrition and Na⁺ toxicity: the basis of cellular K⁺/Na⁺ ratios. *Ann. Bot.* 84, 123–133. doi: 10.1006/anbo.1999.0912
- Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., and Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 10, 476–494.
- Palmgren, M. G., and Harper, J. F. (1999). Pumping with plant P-type ATPases. J. Exp. Bot. 50, 883–893.
- Pang, J., Cuin, T. A., Shabala, L., Zhou, M., Mendham, N., and Shabala, S. (2007). Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. *Plant Physiol.* 145, 266–276. doi: 10.1104/pp.107.102624
- Pannell, D. J., and Ewing, M. A. (2004). Managing secondary dryland salinity: options and challenges. Agri. Water Manage. 80, 41–56. doi: 10.1016/j.agwat.2005.07.003
- Rogers, M. E., Colmer, T. D., Nichols, P. G. H., Hughes, S. J., Frost, K., Cornwall, D., et al. (2011). Salinity and waterlogging tolerance amongst accessions of messina

(*Melilotus siculus*). Crop Pasture Sci. 62, 225–235. doi: 10.1071/CP10270

- Saisho, D., and Takeda, K. (2011). Barley: emergence as a new research material of crop science. *Plant Cell Physiol.* 52, 724–727. doi: 10.1093/pcp/pcr049
- Setter, T. L., and Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. *Plant Soil* 253, 1–34. doi: 10.1023/A:1024573305997
- Setter, T. L., Waters, I., Sharma, S. K., Singh, K. N., Kulshreshtha, N., Yaduvanshi, N. P., et al. (2009). Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann. Bot. 103, 221–235. doi: 10.1093/aob/mcn137
- Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signaling. *J. Exp. Bot.* 60, 709–712. doi: 10.1093/jxb/erp013
- Shabala, S. (2011). Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. *New Phytol.* 190, 289–298. doi: 10.1111/j.1469-8137.2010.03575.x
- Shabala, S., and Cuin, T. A. (2008). Potassium transport

and plant salt tolerance. *Physiol. Plant.* 133, 651–669. doi: 10.1111/j.1399-3054.2007.01008.x

- Shi, H., Quintero, F. J., Pardo, J. M., and Zhu, J. K. (2002). The putative plasma membrane Na⁺/H⁺ antiporter SOS1 controls longdistance Na⁺ transport in plants. *Plant Cell* 14, 465–477. doi: 10.1105/tpc.010371
- Smedema, L. K., and Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. *Irrig. Drain. Systems* 16, 161–174. doi: 10.1023/A:1016008417327
- Tanou, G., Molassiotis, A., and Diamantidis, G. (2009). Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. *Environ. Exp. Bot.* 65, 270–281. doi: 10.1016/j.envexpbot.2008.09.005
- Teakle, N. L., Amtmann, A., Real, D., and Colmer, T. D. (2010). Lotus tenuis tolerates combined salinity and waterlogging: maintaining O₂ transport to roots and expression of an NHX1-like gene contribute to regulation of Na⁺ transport. Physiol. Plant. 139, 358–374.
- Teakle, N. L., Real, D., and Colmer, T. D. (2006). Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes *Lotus corniculatus* and *Lotus tenuis*. *Plant Soil* 289,

369-383. doi: 10.1007/s11104-006-9146-8

- The International Barley Genome Sequencing Consortium. (2012). A physical, genetic and functional sequence assembly of the barley genome. *Nature* 491, 711–716.
- Wu, D., Qiu, L., Xu, L., Ye, L., Chen, M., Sun, D., et al. (2011). Genetic variation of HvCBF genes and their association with salinity tolerance in tibetan annual wild barley. *PLoS ONE* 6:e22938. doi: 10.1371/journal.pone.0022938
- Xie, Y., Xu, S., Han, B., Wu, M., Yuan, X., Han, Y., et al. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. *Plant J.* 66, 280–292. doi: 10.1111/j.1365-313X. 2011.04488.x
- Yang, N. C., Ho, W. M., Chen, Y. H., and Hu, M. L. (2002). A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Ana. Biochem. 306, 323–327. doi: 10.1006/abio. 2002.5698
- Zhou, M. X., Johnson, P., Zhoua, G. F., Li, C. D., and Lance, R. (2012). Quantitative trait loci for waterlogging tolerance in a barley cross of Franklin × YuYaoXiangTian Erleng and the relationship between

waterlogging and salinity tolerance. *Crop Sci.* 52, 2082–2088. doi: 10.2135/cropsci2012.01.0008

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 February 2013; accepted: 25 July 2013; published online: 14 August 2013.

Citation: Zeng F, Shabala L, Zhou M, Zhang G and Shabala S (2013) Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Front. Plant Sci. **4**:313. doi: 10.3389/fpls. 2013.00313

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Zeng, Shabala, Zhou, Zhang and Shabala. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis

Reena Narsai¹* and James Whelan²

¹ Plant Energy Biology, Centre for Computational Systems Biology, University of Western Australia, Perth, WA, Australia ² Department of Botany, School of Life Science, La Trobe University, Melbourne, VIC, Australia

Edited by:

Pierdomenico Perata, Scuola Superiore Sant'Anna, Italy

Reviewed by:

Valeria Banti, Scuola Superiore Sant'Anna, Italy Abir U. Igamberdiev, Memorial University of Newfoundland, Canada

*Correspondence:

Reena Narsai, Centre for Computation Systems Biology, ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, MCS Building M316, 35 Stirling Highway, Perth 6009, WA, Australia

e-mail: reena.narsai@uwa.edu.au

Plants face a variety of environmental stresses and have evolved molecular mechanisms to survive these challenges. One of these stresses is low oxygen conditions, which can occur under flooding conditions. Rice (Oryza sativa) is somewhat unique for its ability to tolerate and even germinate under low to no oxygen conditions. In this study, we examined global transcriptomic responses over the course of germination and in response to low oxygen and other abiotic stress in rice and Arabidopsis (Arabidopsis thaliana). Over 150 microarray datasets were analyzed in parallel to determine just how unique the low oxygen response is in rice. Comparison of aerobic germination in rice and Arabidopsis, with anaerobic germination in rice revealed conserved transcriptomic responses that are not only conserved across both species but also occur in the absence of oxygen in rice. Thus, these genes may represent functions necessary for the developmental progression of germination, whether or not oxygen is present in rice. Analysis of genes that responded differently in rice compared to Arabidopsis revealed responses specific to anaerobic germination in rice, including the down-regulation of genes encoding redox functions and up-regulation of receptor kinases. Comparison of a range of hypoxia/anoxia studies within and across Arabidopsis and rice revealed both conserved and species specific changes in gene expression (e.g., Arabidopsis specific up-regulation of WRKYs and rice specific down-regulation of heme), unveiling unique transcriptomic signatures of the low oxygen response. Lastly, a comparison of the low oxygen response with cold, salt, drought and heat stress revealed some similarity with the response to heat stress in Arabidopsis, which was not seen in rice. Comparison of these heat-responsive, abiotic stress marker genes in Arabidopsis with their rice orthologs revealed that while low oxygen may be perceived as an abiotic stress in Arabidopsis, this is not the case in rice.

Keywords: low oxygen, transcriptomes, rice, Arabidopsis, microarrays

INTRODUCTION

Plants can experience low oxygen conditions at various times during the plant life cycle, from early development (such as germination) due to diffusional resistance to oxygen resulting from anatomical restrictions, or more commonly due to partial or complete submergence under flooding conditions. Several species of plants, including some varieties of rice (*Oryza sativa*), have the ability to germinate, grow and survive under oxygen limiting conditions. However, most other plant species including Arabidopsis (*Arabidopsis thaliana*) are highly intolerant of low oxygen conditions. Interestingly, despite the different levels of low oxygen

Abbreviations: ABA, abscisic acid; AGI, Arabidopsis gene identifier; CAREs, *cis*acting regulatory element(s); CHO, carbohydrate; DEG, differentially expressed genes; ERF, ethylene response factor; FA, fatty acid; FDR, false discovery rate; GC-RMA, GC content based Robust Multi-array Average; GI, gene identifier; HSF, heat shock factor; MSU, Michigan State University (rice database); PDDE, Posterior Probability of Differential Expression; PPR, pentatricopeptide repeat; ROS, reactive oxygen species; TAIR, The Arabidopsis Information Resource; TF, transcription factor.

tolerance across different plant species, common responses to oxygen limitation are also often observed (Mustroph et al., 2010) including the shift to fermentation from mitochondrial respiration, as well as other multi-level molecular changes that help limit energy demanding processes in an attempt to prolong survival (Bailey-Serres and Voesenek, 2008; Magneschi and Perata, 2008; Mustroph et al., 2010). By far the most well-characterized response to low oxygen is the activation of fermentation involving an increase in alcohol dehydrogenase abundance (Sachs et al., 1980). Additionally, an increase in glycolytic flux, lactate dehydrogenase and pyruvate dehydrogenase are also seen under low oxygen stress in plants (Rivoal et al., 1991; Gibbs et al., 2000). Sucrose degradation is also modified under low oxygen, whereby sucrose is metabolized by sucrose synthase in an attempt to conserve ATP (Ricard et al., 1991; Magneschi and Perata, 2008). Similarly, a switch to pyrophosphate (PPi) linked enzymes is also made as PPi is adopted over ATP as high-energy donor molecules under low oxygen conditions (Huang et al., 2008).

In both plants and animals, nitrite is also reduced to form nitric oxide (NO) under low oxygen conditions (Sturms et al., 2011). Studies in plants have implied a role for cytochrome oxidase, cytochrome bc1, and non-symbiotic hemoglobins in this reaction (Igamberdiev and Hill, 2009; Igamberdiev et al., 2010; Igamberdiev and Kleczkowski, 2011; Sturms et al., 2011). While the role of non-symbiotic hemoglobins has not been fully elucidated, there is increasing evidence for a function in NO scavenging, with a recent study even confirming significantly faster rates of hemoglobin activity under low oxygen conditions in rice plants compared to animals (Igamberdiev and Hill, 2009; Sturms et al., 2011). Thus, these changes in NO metabolism and ATP synthesis present an alternative method for supporting the redox and energy balance under low oxygen conditions in rice.

Given this general response of limiting energy demanding processes under low oxygen conditions, it is unique that rice has the ability to germinate under the complete absence of oxygen. Germination under aerobic conditions has been wellcharacterized at the transcript and protein levels in rice (Howell et al., 2006, 2009) and Arabidopsis (Gallardo et al., 2002; Nakabayashi et al., 2005; Narsai et al., 2011a). As a high energy demanding process, germination is often characterized by the significant up-regulation of mitochondrial respiratory chain and glycolysis components (Howell et al., 2007, 2009) in order to produce the energy required for development. While it may be expected that germination occurs more slowly under low oxygen conditions, in fact, under anaerobic germination in rice, morphological changes such as accelerated shoot elongation is observed and aerenchyma is developed to efficiently deliver oxygen from the shoot to the submerged organs (Magneschi and Perata, 2008). In addition to these morphological adaptations, the typical increases in alcohol dehydrogenase, pyruvate decarboxylase and lactate dehydrogenase also occurs (Magneschi and Perata, 2008). Thus, significant metabolic and molecular reprogramming must occur to generate the energy required for both germination and rapid shoot elongation under low oxygen in rice.

It has previously been shown that a significant amount of transcriptomic re-programming occurs under low oxygen conditions in various species (Mustroph et al., 2010; Narsai et al., 2011b). Thus, it is not surprising that transcription factors, such as ethylene response transcription factors (ERFs) have been shown to have a key role in the response to low oxygen in plants. The Sub1A locus encoding an ERF was the first gene shown to confer submergence tolerance in certain rice cultivars by altering the expression of specific low oxygen responsive genes including the alcohol dehydrogenase I encoding genes (Xu et al., 2006). Similarly, it was shown that group VII ERFs, containing a conserved N-terminal motif have an important role in oxygen sensing and mediating the low oxygen response in Arabidopsis (Gibbs et al., 2011). It was shown that the N-end rule pathway of targeted proteolysis acts as an oxygen sensor, where plants lacking the constituents of this pathway were more tolerant to hypoxia (Gibbs et al., 2011). This tolerance was also shown to occur as a result of an increase in the expression of core hypoxia response genes (Gibbs et al., 2011). Considering these findings, it is clear that transcriptional reprogramming is a core component of the

hypoxia response in plants, with many studies observing substantial transcriptomic changes in response to low oxygen in rice (Lasanthi-Kudahettige et al., 2007; Magneschi and Perata, 2008; Narsai et al., 2009), Arabidopsis (Loreti et al., 2005; Branco-Price et al., 2008; Christianson et al., 2009, 2010; Banti et al., 2010) and several other plant species (Mustroph et al., 2010; Banti et al., 2013).

While significant transcriptomic changes do occur under low oxygen conditions, it is important to note that many of these are not exclusively due to low oxygen stress. In fact, transcription factors can often regulate responses that confer tolerances to multiple abiotic stresses. For example, WRKY transcription factors, such as WRKY18 and WRKY60 have been shown to have a role under both salt and osmotic stress (Chen et al., 2010). Similarly, it has been shown that while the Sub1A locus confers submergence tolerance in rice, it also has a role in drought tolerance (Fukao et al., 2011). Likewise, it has been shown that the heat shock factor, HsfA2 also, has a role in enhancing anoxia tolerance in Arabidopsis (Banti et al., 2010). Notably, this gene was identified when the transcriptomic responses to heat and anoxia were compared to identify common responses (Banti et al., 2008, 2010).

In the present study, we aimed to gain insight into the specificity of the transcriptomic response to low oxygen in rice. Over 150 microarrays from various studies were analyzed in parallel, comparing the transcriptomic responses to low oxygen conditions within and across Arabidopsis and rice. Firstly, core transcriptomic changes during germination were examined under aerobic and anaerobic conditions in rice (Howell et al., 2009; Narsai et al., 2009) as well as under aerobic germination in Arabidopsis (Narsai et al., 2011a). Therefore, developmental responses could be identified and separated from the specific anaerobic responses during germination. Also, core oxygen dependent developmental responses over the course of anaerobic germination were identified. Furthermore, multiple hypoxia/anoxia datasets were combined for both rice and Arabidopsis to reveal common and distinct functional categories affected under low oxygen conditions between both species. Lastly, the expression of Arabidopsis abiotic stress marker genes were examined in response to hypoxia and cold, drought, salt and heat, revealing common responses between low oxygen and other abiotic stresses. The results presented here reveal unique responses to low oxygen conditions over germination compared to other abiotic stresses.

RESULTS

OXYGEN INDEPENDENT TRANSCRIPTOMIC CHANGES DURING RICE GERMINATION

In order to identify common changes in the transcriptomes of rice and Arabidopsis, we compared three germination studies; one from Arabidopsis (Narsai et al., 2011a), as well as aerobic germination (Howell et al., 2009) and anaerobic germination in rice (Narsai et al., 2009) (**Supplementary Tables 1**, 2 and **Supplementary Figure 1**). As these were all time course studies, step-wise differential expression analysis was carried out comparing each time point with the previous time point, only genes significantly differentially expressed by two or more fold were included (p < 0.05, PPDE > 0.96) (**Figure 1A**). These were

then analyzed for over-representation of functional categories using the Pageman tool (Usadel et al., 2006) and the overrepresented functional categories are shown for each comparison in **Supplementary Table 1**. By comparing the over-represented functional categories in each of these studies, it was possible to identify functions that showed a common response across all three germination studies (**Figures 1B,C**).

Common regulation of genes encoding several different functional categories was seen across these studies including the conserved down-regulation of transcripts encoding protein degradation functions, abscisic acid (ABA) responsive proteins, storage proteins, and late embryogenesis abundance proteins (Figure 1C). For some of these functions, it was seen that this regulation occurred at the same time in both aerobic and anaerobic germination in rice, denoted with an asterisk (Figure 1C). For example the up-regulation of protein synthesis functions such as protein elongation occurred between 3 and 12 h during rice germination (denoted with asterisk; Figure 1C; Supplementary Table 3). Similarly, the down-regulation of protein degradation functions also occurred between 3 and 12 h during rice germination (denoted with asterisk; Figure 1C; Supplementary Table 3). Note that the down-regulation of these functions is also well-known in other plant species during

germination (Catusse et al., 2008; Sreenivasulu et al., 2008). However, while the same up-regulation and down-regulation patterns were seen for these during germination in Arabidopsis as well, these occurred between 12 and 48 h of cold, dark stratification in Arabidopsis (Narsai et al., 2011a). Thus, the exact timing and conditions must be considered in these comparisons.

It is important to note that a number of light responsive genes were differentially expressed during Arabidopsis germination, whilst the rice orthologs to these did not show this expression pattern during rice germination, given that the rice germination studies were carried out in the dark. Nevertheless, some photosystem I polypeptide subunits were seen to be induced during germination in both rice and Arabidopsis (Figures 1A,C). However, closer examination reveals that this induction occurs between 3 and 12 h in rice, whilst this largely occurs after 12 h into the light (after 48 h stratification) in Arabidopsis. Thus, any common induction of light-responsive genes is likely to be due to a small amount of light exposure on the rice seeds, possibly occurring during the sample collection process. Whereas, if rice germination had occurred under light conditions, this induction may have taken place later, upon, and after radicle emergence (as is seen in Arabidopsis). Interestingly, despite the fact that rice is a starch seed and Arabidopsis is an oil seed, a conserved

FIGURE 1 | Oxygen independent transcriptomic changes during rice germination. (A) Step-wise comparisons were carried out over the course of aerobic germination in Arabidopsis (¹Narsai et al., 2011a) aerobic germination in rice (²Howell et al., 2009) and anaerobic germination in rice (³Narsai et al., 2009). (B) The differentially expressed genes (>2-fold, p < 0.05, PPDE > 0.96) were analyzed for common over-representation of functions in the up/down-regulated

gene-sets. **(C)** Functional categories seen to be commonly up/down-regulated across all three germination studies are shown. Red font indicates that genes encoding these function(s) are over-represented in the up-regulated gene-sets and blue indicates over-representation of functions in the down-regulated gene-sets. Categories responsive at the same time in both aerobic and anaerobic germination in rice are denoted with an asterisk. up-regulation of lipid metabolism functions was also seen, for example, genes encoding fatty acid (FA) synthesis and elongation functions, sphingolipid metabolism and peroxidases were up-regulated in both Arabidopsis and rice (aerobic and anaerobic germination) (**Figure 1C**). Thus, finding these functions to be responsive in the same manner under anaerobic conditions (and in the dark) in rice indicates that irrespective of the presence of oxygen, these represent conserved transcriptomic changes that may be necessary for germination progression.

IDENTIFYING TRANSCRIPTOMIC CHANGES UNIQUE TO ANAEROBIC GERMINATION

After comparing the over-represented functional categories in each of the germination datasets, it also became apparent that certain functional categories were only over-represented in each of the individual germination studies. Specifically, we were interested to see which functions may be responsive under anaerobic germination only. To do this, another dataset was included for comparison which encompassed a comparison of aerobic vs. anaerobic germination (Supplementary Table 4), as well as each of the step-wise germination comparisons (Figure 2A). These combined analyses revealed functional categories that were overrepresented not only compared to aerobic germination, but also over the course of anaerobic germination, showing core up-regulated and down-regulated functions specific to anaerobic germination (Figure 2A) (Supplementary Table 5). Foldchanges compared to aerobic germination, as well as over the course of anaerobic germination are shown (Figure 2B). In this way, it was revealed that there are a number of unique responses observed only during anaerobic germination in rice (Figure 2B).

For example, genes encoding redox functions showed significant down-regulation, not only over the course of anaerobic germination but also compared to aerobic germination indicating that the suppression of these occurs specifically during anaerobic germination (Figure 2B). Notably, when these categories were compared with those seen during Arabidopsis germination (Narsai et al., 2011a), it was seen that while redox functions were down-regulated in rice; several orthologous Arabidopsis genes even showed up-regulation during germination. This was particularly notable for the ascorbate glutathione cycle functions, for example while the rice gene encoding a monodehydroascorbate reductase (LOC Os08g44340.1) was down-regulated nearly 9-fold during anaerobic germination, its Arabidopsis ortholog (At3g09940) was up-regulated 30-fold (Figure 2B). Similarly, a rice gene encoding an L-ascorbate peroxidase (LOC_Os04g51300.1) was down-regulated over 5-fold under anaerobic germination, while its Arabidopsis ortholog (At4g09010) was up-regulated 32-fold (Figure 2B). In contrast, while genes encoding various major CHO metabolism and glycolysis functions showed unique up-regulation under anaerobic germination (compared to aerobic germination) in rice, these functions were also up-regulated during germination in Arabidopsis (denoted with ^ in Figure 2B). The up-regulation of major CHO metabolism and glycolysis functions specifically during anaerobic rice germination was not surprising as it a well-known response to anaerobic conditions in rice (Magneschi and Perata, 2008). Similarly, the up-regulation of protein folding functions as well

as receptor kinases was also seen in Arabidopsis, but was unique to anaerobic germination in rice (Figure 2B). Interestingly, transcripts encoding pentatricopeptide repeat (PPR) containing proteins, which are involved in organelle RNA processing functions were seen to be specifically up-regulated during anaerobic germination in rice (Figure 2B). This was particularly interesting given that many PPR genes are known to be essential in Arabidopsis, where knocking out these genes often results in embryo lethality (Tzafrir et al., 2003; Khrouchtchova et al., 2012). Furthermore, it has been shown that these are transiently expressed over the course of germination in Arabidopsis, whereby a strong increase in expression is seen in the early hours after germinating seeds are transferred into light, and this expression decreases substantially by 6 h into the light (Narsai et al., 2011a) (# indicates both up- and down-regulation of genes encoding these functions in Arabidopsis; Figure 2B). Thus, the specific expression of these genes during anaerobic germination in rice may be indicative of unique RNA processing demands necessary under anaerobic conditions.

HOW CONSERVED IS THE LOW OXYGEN RESPONSE?

It has been shown that there is cross kingdom conservation of specific responses to anaerobic conditions, such as the up-regulation of the fermentative pathway (Mustroph et al., 2010). Further evidence for this was shown in Figure 2B, whereby, despite some rice genes showing specific expression not seen during aerobic germination, these expression patterns were seen for some genes during (aerobic) Arabidopsis germination. Thus, in order to examine how conserved the low oxygen response is, we compiled data from multiple studies and comparisons and analyzed the transcriptomic responses to low oxygen within and between Arabidopsis and rice (studies outlined in Table 1; data shown in Supplementary Tables 4, 6). For the rice analysis; four sets of comparisons looking at the anoxia response were used from three studies, whilst five sets of comparisons of the hypoxia/anoxia response were used from five studies in Arabidopsis (references listed in Table 1). Over-representation analysis of functional categories within the differentially expressed datasets were compared and matched, and functional categories over-represented in one or both species were identified (Figure 3). In this way, it was possible to see the expected up-regulation of genes encoding pyruvate decarboxylase (involved in glycolysis) across multiple studies within and across both Arabidopsis and rice (Figure 3). A closer look at some other components of glycolysis revealed differences in the magnitude of responses between Arabidopsis and rice, for example, the pyruvate dikinase encoding gene (LOC_Os03g31750.1), was up-regulated 117-fold during anaerobic germination, and over 360-fold in the anaerobic coleoptile; (Lasanthi-Kudahettige et al., 2007), while the Arabidopsis ortholog (At4g15530) only shows between a 2- and 16-fold induction in response to low oxygen in Arabidopsis (Supplementary Table 2). In addition to these, a conserved upregulation of protein ubiquitination functions was also identified in both species (Figure 3). In contrast, cell wall and secondary metabolism functions were seen to be over-represented in one or more down-regulated gene sets in both species (Figure 3). Note that several of these trends were confirmed both in the individual

FIGURE 2 | Transcriptomic changes specific to anaerobic germination in rice. (A) Core up/down-regulated genes exclusive to anaerobic germination were identified by isolating genes encoding functions that were over-represented in comparison to aerobic germination (Aerobic v Anaerobic), as well as over the course of anaerobic germination (step-wise), whilst not being over-represented over the course of aerobic germination (step-wise). (B) Differential expression of genes encoding core over-represented functions unique to anaerobic germination only [as defined in **(A)**]. Significant fold-changes (>2-fold, $p < 0.05, \ {\rm PPDE} > 0.96$) are shown as a heatmap for genes both in comparison to aerobic germination (A v N—top rows) as well as over the course of anaerobic germination (step-wise—bottom rows). Categories showing similar responses during Arabidopsis germination are indicated with ^ and categories containing genes that showed transient responses in Arabidopsis e.g., up then down or down then up, are denoted with #.

studies that presented these microarray data (**Table 1**) and in the cross-kingdom analysis of responses to anoxia (Mustroph et al., 2010).

Thus, while there was some conservation in the response to low oxygen within and across Arabidopsis and rice, we also identified functional categories that appeared only to be specifically over-represented in only one species. These were highlighted as species specific when over-representation was seen in three out of four of the rice comparisons, or four out of five of the Arabidopsis comparisons (highlighted in **Figure 3**).

FIGURE 3 | Defining the core low oxygen response. Pageman over-representation analysis was carried out for the significantly differentially expressed genesets (>2-fold, p < 0.05, PPDE > 0.96) in response to low oxygen in rice and Arabidopsis. The gene sets used included four different comparisons in rice and five different comparisons in Arabidopsis of control vs. anaerobic treatment (details in **Table 1**). Only the functional categories over-represented in rice only, Arabidopsis only or both species are shown (z-scores indicate over/under-representation, indicated by the green/yellow colors, respectively).

For example, genes encoding NADPH type II dehydrogenases, phosphoglycerate dehydrogenase, glycine degradation (amino acid metabolism) and heme (redox) functions were seen to be specifically down-regulated in rice, whilst this was not seen for Arabidopsis (Figure 3). Of these, the opposite responses of heme (i.e. non-symbiotic hemoglobin) encoding genes was particularly noteworthy, as these are thought to have a role in NO scavenging and redox balance maintenance under low oxygen conditions in rice (Igamberdiev and Hill, 2009; Sturms et al., 2011). Specifically, the two genes encoding non-symbiotic hemoglobins were down-regulated by ~10-fold (LOC_Os03g12510.1) and ~90fold (LOC_Os03g13140.1), whilst their Arabidopsis ortholog (At2g16060) was induced up to 34-fold under low oxygen conditions (Supplementary Tables 4, 6). In contrast, sphingolipid metabolism, aspartate and homoserine metabolism, as well as DUF26 receptor kinases were only enriched in the up-regulated gene-sets in rice (Figure 3). Whereas, genes encoding pectin esterases and wax related functions were only significantly overrepresented in the down-regulated gene-sets from Arabidopsis, but this was not seen in rice (Figure 3). One of the most interesting observations was that the up-regulation of biotic stress-respiratory burst functions, heat shock factors, WRKY transcription factors and ARR transcription factors was also unique to the Arabidopsis response to hypoxia/anoxia (Figure 3). Given that these are typically up-regulated under various stress conditions, finding these specifically induced in Arabidopsis under low oxygen conditions suggests that the perception of low oxygen stress in Arabidopsis may overlap with its perception of other abiotic/biotic stresses.

HOW DOES THE LOW OXYGEN RESPONSE COMPARE TO THE ABIOTIC STRESS RESPONSES?

Given that the response to low oxygen stress showed some similarity to abiotic stress in Arabidopsis, we overlapped the lists of differentially expressed genes in response to low oxygen stress with abiotic stress including drought, salt, cold and heat stress. All data was analyzed in the same manner using the abiotic stress datasets outlined in Table 1 (Jain et al., 2007; Kilian et al., 2007; Hu et al., 2009). For each of the four anoxia comparisons individually in rice, the numbers of genes overlapping were mostly similar with the highest overlap seen with drought stress for three out of the four studies (Figure 4A). In contrast, the transcriptomic response to heat showed the highest number of overlapping genes across each of the five individual hypoxia/anoxia comparisons in Arabidopsis (Figure 4B). Given that this overlap is observed with heat stress in Arabidopsis, and the known link between the heat and anoxia response in Arabidopsis, we pursued this further by extracting at the heat responsive genes in Arabidopsis and examining these more closely. In an effort to see whether low oxygen conditions is perceived as an abiotic stress in Arabidopsis, particularly for heat stress, we extracted the differentially expressed genes in response to heat that were also known stress markers (Gadjev et al., 2006; Lu et al., 2007; Rasmussen et al., 2013) and viewed the expression changes in parallel with the responses to anoxia/hypoxia as well as other abiotic stresses (cold, drought, salt; Figure 4Ci). Specifically, these included the genes identified as abiotic stress marker genes (Lu et al., 2007) including, cold, drought, salt, and heat specific stress marker genes (Rasmussen et al., 2013) as well as oxidative stress markers genes (Gadjev et al., 2006). In this way 80 Arabidopsis genes are shown that are responsive to both low oxygen as well as abiotic

Experiment	No. of arrays	Treatment	Up-reg. (>2 FC)	Down reg. (>2 FC)	Age	References	Accession
RICE LOW OXYGE	N						
1. Rice germination	39	1, 3, 12, 24 h anoxia	3377	4927	1, 3, 12, 24 h	Howell et al., 2009; Narsai et al., 2009	E-MEXP-1766 E-MEXP-2267
2. Rice A to N	12	27, 30 h anoxia	2292	3290	27, 30 h	Narsai et al., 2009	E-MEXP-2267
3. Rice N to A	12	27, 30 h anoxia	3218	2453	27, 30 h	Narsai et al., 2009	E-MEXP-2267
4. Rice coleoptile	4	4 days anoxia	3779	3631	4-day old	Lasanthi-Kudahettige et al., 2007	GSE6908
ARABIDOPSIS LO	W OXYGE	N					
5. AT hypoxia	8	2 h and 9 h hypoxia	2309	3097	1-week old	Branco-Price et al., 2008	GSE9719
6. AT hypoxia	4	5 h hypoxia	1788	2070	3-week old	Christianson et al., 2010	GSE21504
7. AT anoxia	4	6 h anoxia	587	923	4-day old	Banti et al., 2010	GSE16222
8. AT anoxia	4	6 h anoxia	457	804	4- day old	Loreti et al., 2005	GSE2133
9. AT hypoxia	4	4 h hypoxia	4912	3535	3-week old	Christianson et al., 2009	GSE14420
AT germination	30	10 time points, dry seed to 48 h			0–48 h	Narsai et al., 2011a	GSE30223
ARABIDOPSIS AB	IOTIC STR	RESS					
Cold	12	0.5, 1, 3h	989	987	16-day	Kilian et al., 2007	GSE5621
Drought	12	0.5, 1, 3h	1068	571	16-day	Kilian et al., 2007	GSE5624
Salt	12	0.5, 1, 3h	985	953	16-day	Kilian et al., 2007	GSE5623
Heat	12	0.5, 1, 3 h	1585	2972	16-day	Kilian et al., 2007	GSE5628
RICE ABIOTIC STR	RESS						
Cold	6	3 h	1323	1272	7-day	Jain et al., 2007	GSE6901
Drought	6	3 h	3701	4259	7-day	Jain et al., 2007	GSE6901
Salt	6	3 h	2899	2290	7-day	Jain et al., 2007	GSE6901
Heat	6	10 h	3634	4244	14-day	Hu et al., 2009	GSE14275

Table 1 | Microarray data used for analysis.

For rice and Arabidopsis, various datasets examining the hypoxia/anoxia responses as well as abiotic stress responses were analyzed in parallel. The number of arrays involved in each of the comparisons/experiments, the treatments involved and the number of significantly differentially expressed genes (>2-fold) after false discovery rate correction (p < 0.05, PPDE > 0.96) are shown (up/down-regulated). The age of the plants, publications referring to these arrays and array accession numbers are shown.

stress (**Figure 4Ci**). Using sequence similarity [Gramene; (Jaiswal et al., 2006)] and Inparanoid (Ostlund et al., 2010), the 135 rice orthologs to the 80 Arabidopsis genes were also analyzed and shown in the same way (**Figure 4Ci**).

As expected, many of the rice orthologs were also induced under abiotic stress in rice (Figure 4Cii). However, it is also apparent that while many of these stress marker genes are also induced under the hypoxia/anoxia comparisons in Arabidopsis, this is not seen for rice, where many are in fact down-regulated in response to hypoxia (Figure 4C). Three examples of genes showing different/opposite responses between Arabidopsis and rice are indicated in the green boxes (Figure 4Cii) and closer examination of these is shown in Figures 4Di,ii, respectively. One of these genes encodes the cold-responsive marker gene in Arabidopsis (cold-regulated 47-COR47; At1g20440) (Guo et al., 1992; Lu et al., 2007), which is orthologous to LOC_Os02g44870.1 in rice and shows significant induction in both species under cold and other abiotic stresses (Figure 4D). However, while this gene was induced 2.5-fold under hypoxia in Arabidopsis, its ortholog was down-regulated between 2.5 and 4-fold in response to anoxia in rice (Figure 4D). Similarly, an oxidative stress marker gene in Arabidopsis (At4g24570) encoding a dicarboxylate carrier

was induced under hypoxia (2.6-fold), anoxia (3.7-fold), cold (454-fold) and drought stress (40-fold) in Arabidopsis while its rice ortholog (LOC_Os08g37370.1) was unchanging under abiotic stress and down-regulated up to 12-fold under anoxia (Figure 4D). This was particularly interesting as this gene, among others (Figure 4Ci), was down-regulated 15-fold under heatstress in Arabidopsis (Figure 4Di). Similarly another gene that was down-regulated 6-fold under heat stress, but up-regulated after hypoxia/anoxia (up to 6-fold), cold (31-fold), drought (41-fold), and salt (5-fold) stress in Arabidopsis was the jasmonate zim-domain containing gene (At1g19180) (Figure 4Di). Interestingly, the Gramene database (Jaiswal et al., 2006) shows eight zim-domain containing rice genes as orthologs to this Arabidopsis gene (Figure 4Dii). While seven out of eight of these were induced under abiotic stress and three were briefly induced in response to switching to anoxia, all eight genes were downregulated in two or more anoxia comparisons (Figure 4Dii).

It was particularly interesting to find that the rice orthologs to the Arabidopsis abiotic stress markers, which were down-regulated under heat stress in Arabidopsis, are in fact down-regulated under anoxia in rice (**Figures 4C,D**). Specifically, it was evidenced that oxidative stress marker genes (flu, O_3 , and

stress in rice and Arabidopsis. (A) Differentially expressed genes from each of the four low oxygen transcriptome datasets in rice (Lasanthi-Kudahettige et al., 2007; Narsai et al., 2009) were overlapped with the differentially expressed genes in response to cold, drought, salt, and heat stress (Jain et al., 2007; Hu et al., 2009). The numbers of genes showing overlapping responses are shown. The * indicates that the fold-changes were inversed for this comparison to show the response to anoxia. (B) Differentially expressed genes from each of the five low oxygen transcriptome datasets in Arabidopsis (Loreti et al., 2005; Branco-Price et al., 2008; Christianson et al., 2009, 2010; Banti et al., 2010) were overlapped with the differentially expressed genes in response to cold, drought, salt, and heat stress (Kilian et al., 2007). The number of genes showing overlapping responses is shown. (**Ci**) A heatmap showing differential expression of the 80 genes that were both significantly responsive to heat in Arabidopsis, as well as being previously identified as abiotic stress marker genes [by Gadjev et al. (2006), Lu et al. (2007), and Rasmussen et al. (2013) in Arabidopsis]. Expression is shown in response to low oxygen and abiotic stress. (**Ci**i) A heatmap showing the expression of the 135 rice orthologs to the 80 Arabidopsis abiotic stress responsive genes (from **Ci**). (**Di**) The expression of three Arabidopsis genes representing examples of common transcriptomic responses to low oxygen and one or more abiotic stress in Arabidopsis. (**Di**i) Expression of the rice orthologs to the three Arabidopsis genes, showing that these differ in the transcriptomic responses to low oxygen and one or more abiotic stress in rice.

MV) in particular were down-regulated under heat stress and up-regulated under hypoxia/anoxia in Arabidopsis (**Figure 4Ci**), whilst the rice orthologs to these genes are down-regulated under anoxia (**Figure 4Cii**). It has previously been shown that

under heat stress, there is a significant number of oppositely responsive orthologous genes between rice and Arabidopsis (Narsai et al., 2010). Specifically, it was shown that under heat stress, genes encoding redox functions are up-regulated in rice and down-regulated in Arabidopsis (Narsai et al., 2010). Thus, it was particularly interesting to see these genes were up-regulated under low oxygen conditions in Arabidopsis, whilst their rice orthologs are down-regulated (**Figure 4C**).

Using these parallel datasets to analyse the low oxygen response and other abiotic stress responses, it was possible to isolate and identify low oxygen marker genes in rice and Arabidopsis. To do this, the significantly differentially expressed genes were filtered to identify genes showing the highest fold induction in response to low oxygen in rice (>50-fold) in two or more out of the four low oxygen response studies/comparisons, whilst not showing up-regulation under abiotic stress (Table 2). Similarly, the significantly differentially expressed genes in Arabidopsis were filtered to identify genes showing the highest fold induction in response to low oxygen (>50-fold) in three or more out of the five low oxygen response studies/comparisons (Table 2). In this way, highly responsive low oxygen markers were identified in both rice and Arabidopsis (Table 2). Notably, pyruvate decarboxylase was identified as a marker of low oxygen stress in Arabidopsis, showing between a 17- and 586-fold induction under all five low oxygen comparisons (At4g33070; Table 2). Similarly, in rice, pyruvate decarboxylase was also induced under low oxygen, however, this was to a lower extent (not meeting the criteria as a marker) (Supplementary Table 4). Additionally, it was not surprising that an alpha amylase encoding gene (LOC_Os09g28340.1) was identified to be a low oxygen marker in rice, as these have been shown to have a crucial function in the metabolic changes that occur under low oxygen conditions in rice (Loreti et al., 2003). Similarly, it was not surprising to see a glycosyl hydrolase (LOC_Os11g47560.1) as a low oxygen marker gene in rice, as these are also known to be responsive under low oxygen conditions in rice (Table 2). Interestingly, no Arabidopsis orthologs were detected for the aforementioned alpha-amylase and glycosyl hydrolase using the Inparanoid method (Ostlund et al., 2010) or based on sequence homology using Gramene (Jaiswal et al., 2006), suggesting a more specific role for these in rice.

Notably, the Arabidopsis gene At1g35140 encoding the phosphate induced (exordium-like EXL1) gene was also identified as a low oxygen marker (Table 2). This was particularly interesting given that Arabidopsis mutants of this gene have recently been shown to have reduced hypoxia tolerance (Schroder et al., 2011). Interestingly, it can be seen that while eight out of the 18 Arabidopsis low oxygen markers had rice orthologs that were also induced under low oxygen (indicated by an asterisk in Table 2), only two of the 12 low oxygen markers in rice had Arabidopsis orthologs showing conserved inductions under low oxygen (asterisk next to rice genes in Table 2). In addition, it was also seen that two rice genes had orthologs that were in fact downregulated under low oxygen in Arabidopsis (Table 2). Namely; the fascilin domain containing gene LOC_Os03g57490.1 (induced between 18 and 116-fold; Table 2) is orthologous to At2g35860.1 (64% sequence similarity) which is down-regulated over 2.5 fold under low oxygen in two of the five Arabidopsis studies (Supplementary Table 6). Similarly, while the UDP-glucoronosyl transferase encoding gene At1g05680 was identified as a low oxygen induced marker in Arabidopsis (induced between 7 and 606-fold; Table 2), its rice ortholog LOC_Os04g12980.1 (41%

sequence similarity) is down-regulated over 2.2-fold in response to anoxia in all four rice studies (**Supplementary Table 4**).

DISCUSSION

Germination is a crucial, energy demanding stage of the plant life cycle. Rice can not only survive under low oxygen conditions but can also germinate in the complete lack of oxygen (Howell et al., 2007; Bailey-Serres and Voesenek, 2008; Magneschi and Perata, 2008). Despite significant differences in the life cycle lengths or storage reserves (e.g., oil seed vs. starch seed) of different plant species, the process of germination often occurs rapidly. When germination under aerobic conditions in Arabidopsis (Narsai et al., 2011a), aerobic conditions in rice (Howell et al., 2009) and anaerobic conditions in rice were compared (Narsai et al., 2011a), core functions was altered in the transcriptomic responses, revealing conserved down-regulation of ABA responsive proteins, seed storage proteins and protein degradation, as well as the upregulation of protein synthesis, lipid metabolism and cell wall functions (Figure 1). Thus, even under anaerobic conditions in rice, we found that there are several conserved transcriptomic responses that are likely to be crucial for germination progression in plants.

During anaerobic germination, in addition to the morphological adaptations including coleoptile elongation, it is known that carbohydrate metabolism is altered and fermentation is activated (Magneschi and Perata, 2008). As expected, closer examination under anaerobic germination also revealed an early induction of carbohydrate metabolism and glycolysis functions specific to anaerobic germination (Figure 2). Notably, in some cases, even when the induction of specific genes was seen between both species, the magnitude differed significantly. For example, while pyruvate decarboxylase was identified as a marker of low oxygen stress in Arabidopsis, showing a greater than 50-fold induction (Table 2), the induction of pyruvate decarboxylase in rice was much smaller. In contrast, pyruvate dikinase was also induced under low oxygen conditions in both species; however, this induction was much larger in rice compared to Arabidopsis. This was not entirely surprising, given that under low oxygen conditions in rice, it has been proposed that pyrophosphate may be used as an alternative energy currency over ATP, acting as a highenergy donor molecule (Huang et al., 2008; Igamberdiev and Kleczkowski, 2011). Hence, this alteration may help to maintain the energy balance, and tolerance of rice under low oxygen conditions.

Interestingly, a number of genes encoding PPR domain containing proteins were also found to be specifically induced under anaerobic germination in rice. In the past few years, the roles of PPR proteins have been better elucidated revealing functions in organelle RNA processing and editing (Saha et al., 2007). Interestingly, during Arabidopsis germination (i.e., under aerobic conditions) it was revealed that several PPR encoding genes show germination specific expression (Narsai et al., 2011a) and many of these are embryo lethal when a loss-of-function occurs (Tzafrir et al., 2003). Thus, the specific induction of these PPRs during anaerobic germination may be indicative of a crucial role for these PPRs during anaerobic germination in rice as well.

Probeset ID	MSU identifier	MSU putative function	1. Rice germ.	2. Rice A to N	3. Rice N to A	4. Rice coleop.	Cold	Drought	Salt	Heat	
Os.16456.1.S1_at	LOC_Os07g25690.1	subtilisin N-terminal Region family	161	64	-209	227					
Os.54891.1.S1_at	LOC_Os02g18650.1	pectinesterase-2 precursor	331	41	-157	68					
Os.28566.1.S1_at	LOC_Os03g19840.1	cysteine-rich repeat secretory protein	81	44	-94	121					
Os.25125.1.A1_at	LOC_Os03g57490.1^	fasciclin domain, putative, expressed	116	18	-70	67					
Os.12488.1.S1_at	LOC_0s04g43650.1	L-allo-threonine aldolase	263	119	-412	10			ကို		
Os.36919.1.S1_at	LOC_Os01g62010.1*	hydrolase, alpha/beta fold family protein	74	58	-61	6		-2	-2		
OsAffx.17379.1.S1_at	LOC_Os08g37470.1	cupin, RmlC-type, 2-aminoethanethiol dioxygenase	113	56	-105	00					
Os.17474.1.A1_at	LOC_Os02g11790.1*	OsFBK4: F-box domain/kelch repeat domain	64	27	-65	24					
Os.50837.1.S1_at	LOC_0s11g47560.1	glycosyl hydrolase, putative, expressed	82	29	-11	197					
Os.28903.1.S1_at	LOC_Os01g52900.1	expressed protein		31	-171	172					
OsAffx.6201.1.S1_at	LOC_Os09g08100.1	cysteine proteinase inhibitor precursor	60	62	-49						
Os.11391.1.S1_at	LOC_Os10g02750.1^		161	94	-45	ю		0			
Os.33211.1.S1_at	LOC_Os09g28430.1	alpha-amylase isozyme 3C precursor	87	2	-55			-19			
Probeset ID	AGI	TAIR annotation	5. AT hvpox.	6. AT hvpox.	7. AT anox.	8. AT anox.	9. AT (Cold	Drought	Salt	Heat Heat
			· vood ku	-voodk.			.vodk				1001
264846_at	AT2G17850*	Rhodanese-like	445	137	ო	116	56				
267024_s_at	AT2G34390^; AT2G29870	lactate transmembrane transporter/ MIP family protein	623	467	20	318	685				
245173_at	AT2G47520	AP2 domain-containing transcription factor	113	460	56		449				
250464_at	AT5G10040	similar to unknown protein	595	422	14	338	511				
263231_at	AT1G05680^	UDP-glucoronosyl/UDP-glucosyl transferase	61	606	64		7				
260741_at	AT1G15040*	glutamine amidotransferase-related	87	4	62		502				
245757_at	AT1G35140*	PHI-1 (PHOSPHATE-INDUCED 1)	85	137			128		-11	-13	-425
262124_at	AT1G59660	nucleoporin family protein	108	71	10	17	145				
261545_at	AT1G63530	similar to hydroxyproline-rich glycoprotein	324	55	13		127				
258930_at	AT3G10040*	transcription factor	64	15		59	140				
252746_at	AT3G43190*	SUS4;UDP-glycosyltransfer./suc.synthase	153	26	13	180	89				
255807_at	AT4G10270*	wound-responsive family protein	93	00	ю	61	53				
254200_at	AT4G24110	similar to unnamed protein product	158	48		80	168				
253616_at	AT4G30380	EXLB2 (EXPANSIN-LIKE B2 PRECURSOR)	58	64			141				
253416_at	AT4G33070*	pyruvate decarboxylase, putative	566	39	17	586	91				
253060_at	AT4G37710*	VQ motif-containing protein	9	880	50	16	279				
249384_at	AT5G39890	similar to unknown protein	96	19	2	87	06				

In addition, a specific suppression of genes encoding redox related functions were identified during anaerobic germination in rice, where these genes were not only down-regulated compared to aerobic germination but also down-regulated over the anaerobic germination time-course. This is particularly interesting given that cross-talk between NO and reactive oxygen species signaling has been shown to have a role in the lightand hormone-specific regulation of seed development and germination in plants [reviewed in Sirova et al. (2011)]. It has also been proposed that plant hemoglobins may modulate the effects of hormones that use NO as a signal transduction component (Hebelstrup et al., 2007). Thus, the specific suppression of redox functions, including hemoglobins in rice, may be part of the transcriptomic response to these signals coordinating anaerobic germination. Additionally, recent studies in rice are providing evidence supporting a crucial role of hemoglobins in NO scavenging, even reporting increased activity of these proteins in rice compared to their human counterparts under low oxygen conditions (Igamberdiev and Hill, 2009; Sturms et al., 2011). Furthermore, when the expression of hemoglobin genes were compared under low oxygen conditions in rice, Arabidopsis and poplar (which is also a flood tolerant species), it was seen that while the genes encoding non-symbiotic hemoglobins are suppressed in rice and poplar, they are significantly induced in Arabidopsis (Narsai et al., 2011b). This implies a controlled response to low oxygen, whereby suppressing hemoglobin gene expression may be more characteristic of low oxygen tolerant species.

Recent studies have shown a link between redox functions, anaerobiosis and heat stress in Arabidopsis (Pucciariello et al., 2012a). In 2008, it was shown that pre-treating Arabidopsis plants with heat stress resulted in the induction of heat shock factors and enabled greater hypoxia tolerance (Banti et al., 2008). Comparative analysis of the transcriptomic response to heat and anoxia/hypoxia in this study also confirmed this greater overlap with heat stress, compared to salt, drought and cold stress. In addition, a more Arabidopsis specific induction of heat shock factors was seen under the five Arabidopsis low oxygen studies, compared to rice (Figure 3). Confirmation for the role of heat shock factors in the low oxygen response also came when it was shown that HsfA2 enhances low oxygen tolerance by altering the expression of its target genes in Arabidopsis (Banti et al., 2010). Similarly, although the SUB1A locus was first described for its role in anoxia tolerance in rice (Xu et al., 2006), a more recent study has also revealed a role in drought tolerance (Fukao et al., 2011). Thus, there is cross-talk between the low oxygen and other abiotic stress responses.

Interestingly, when the expression of known heat-responsive abiotic stress marker genes in Arabidopsis (Gadjev et al., 2006; Lu et al., 2007; Rasmussen et al., 2013) were examined under low oxygen conditions in this study, strong induction of these was also seen under low oxygen conditions in Arabidopsis, whilst this was not seen for their rice orthologs. Specifically, it was seen that oxidative stress marker genes [flu, O₃, and MV—identified in Gadjev et al. (2006)] were down-regulated under heat stress and up-regulated under low oxygen in Arabidopsis, whilst the rice orthologs to these genes were down-regulated under anoxia. These divergent expression responses for oxidative stress marker genes, suggests differences in oxidative/ROS signaling under low oxygen conditions between Arabidopsis and rice. In Arabidopsis, it has been shown that ROS are produced under heat stress and low oxygen conditions, and a mechanism linking ROS signaling with ERFs has been also been shown (Pucciariello et al., 2012a,b).

Since the identification of the role of the SUB1A ERF in anoxia tolerance in rice (Xu et al., 2006), a link between anoxia and ERFs has been founded. Recently, a role for group VII ERFs (containing a conserved N-terminal motif) in oxygen sensing and mediating the low oxygen response was shown in Arabidopsis (Gibbs et al., 2011). It was determined that under low oxygen conditions in Arabidopsis, the N-end rule pathway of targeted proteolysis acts as an oxygen sensor, where Arabidopsis plants lacking the constituents of this pathway were more hypoxia tolerant (Licausi et al., 2011). Notably, in comparison to rice, genes encoding ethylene signaling functions were more specifically induced in Arabidopsis, supporting the role for ethylene signaling in the Arabidopsis hypoxia response.

CONCLUSIONS

In this study, core transcriptomic responses during germination in rice and Arabidopsis were identified. Comparison with other abiotic stress revealed some overlap with the low oxygen stress response, particularly for heat stress in Arabidopsis. Also, sets of low oxygen responsive markers were identified, both for Arabidopsis and rice, with two of the identified Arabidopsis markers (pyruvate decarboxylase-At4g33070 and phosphate induced EXL1-At1g35140) already known to function in the hypoxia response in Arabidopsis (Kursteiner et al., 2003; Schroder et al., 2011). The induction of HSFs and WRKY TFs were seen under heat and low oxygen stress in Arabidopsis, supporting the demonstrated role of these HSFs in heat and anoxia stress (Banti et al., 2008, 2010). While HSF functions were also first characterized for their role under other abiotic stresses, the crucial role of WRKY TFs under abiotic stress is also well-known (Chen et al., 2012). Thus, it is also worthwhile considering a potential role for these TFs in hypoxia tolerance in Arabidopsis as well. Overall, we have shown the different responses to low oxygen stress in rice and Arabidopsis and demonstrated the core transcriptional reprogramming that occurs as part of the hypoxia response in plants, including divergent responses between Arabidopsis and rice. Specifically, these findings revealed an interesting link between ROS and the anoxia response.

A ROLE FOR ROS IN THE ANOXIA RESPONSE

While many plants, and indeed organisms, display common responses to low or no oxygen conditions, these common responses alone are not sufficient to explain anaerobic tolerance. A comparison of the unique responses in rice over germination with Arabidopsis, reveal that the suppression of a variety of genes associated with redox balance is unique to rice. Furthermore, heat treatment in Arabidopsis, also results in a suppression of genes associated with redox functions, and heat has been shown to increase tolerance to anaerobic conditions (Banti et al., 2008, 2010). In recent years it has been shown that ROS play essential roles not only in stress responses, but in also maintaining growth (Foreman et al., 2003). A ROS gradient from

root tips defines proliferation and differentiation (expansion) (Tsukagoshi et al., 2010; Wells et al., 2010). To date this role is largely defined in roots, but the role of ROS, and different ROS species defining proliferation and expansion position them as key mediators between environmental stress signaling and growth promoting pathways. ROS have also been implicated in development in animals from Dictyostelium to mammals (Aguirre and Lambeth, 2010). From the analysis carried out above it is proposed that low oxygen conditions is not sensed as a stress in rice, in comparison to Arabidopsis where it is perceived as a stress. In Arabidopsis, this leads to an induction of stress and antioxidant defence systems, resulting in a cessation of growth. In rice, the suppression of transcripts for anti-oxidant defence systems will mean that ROS (or RNS) can still exist and act as an essential signal to drive the morphological changes that occur in rice under low oxygen conditions, thus, enabling growth to continue.

MATERIALS AND METHODS

PUBLICALLY AVAILABLE MICROARRAY DATASETS

Publically available microarrays were downloaded from the Gene Expression Omnibus or MIAME Array Express Databases (for each species) and these were normalized together. Affymetrix Expression Console software was used to first obtain present, absent, marginal calls for gene expression following MAS5.0 normalization. Genes that were called present (p < 0.05) were kept for further analysis. Data was GC-RMA normalized using Partek Genomics Suite and this was used for the differential expression analysis. The microarrays used for the germination analyses included an aerobic germination time course in rice-E-MEXP-1766 (Howell et al., 2009), anaerobic germination in rice-E-MEXP-2267 (Narsai et al., 2009) and aerobic germination time course in Arabidopsis-GSE30223 (Narsai et al., 2011a). For the hypoxia/anoxia datasets only the control (air) v hypoxia/anoxia microarrays were analyzed for both species (details, references and accession are shown in Table 1). For the differential expression analysis in response to abiotic stress in rice, these appear as shown in (Narsai et al., 2010), which compared the responses to drought, salt, cold and heat stress in Arabidopsis and rice. Details are also shown in Table 1.

DIFFERENTIAL EXPRESSION ANALYSIS

After all the arrays were pre-processed and normalized, differential expression analysis was carried out using the Cyber-T method (Baldi and Long, 2001; Long et al., 2001), as done in previous studies (Narsai et al., 2010, 2011a). Using the Cyber-T software for differential expression analysis, a gene was identified as significantly differentially expressed when p < 0.05 and the false discovery rate is less than 5% (PPDE > 0.96). For all the analyses shown in this study, this was further filtered to only include genes that were significantly differentially expressed by greater than 2-fold.

PAGEMAN ANALYSIS

All the differentially expressed genes were used for Pageman over-representation analysis (Usadel et al., 2006) as done in previous studies (Narsai et al., 2011a). ORA Fisher's test 2.0 was

used to determine significant over-representation which calculates a *z*-score showing the over/under-representation of specific functional categories. *Z*-scores greater than 1.96 indicate significant over-representation at p < 0.05.

ORTHOLOGY BETWEEN RICE AND ARABIDOPSIS GENES

In order to identify rice orthologs to the Arabidopsis genes, two methods were employed based on; (1) sequence identity [extracted from Gramenemart; Jaiswal et al. (2006)] and (2) the Inparanoid method (Ostlund et al., 2010). If one or both of these methods identified a gene as orthologous to the Arabidopsis gene, these were considered rice orthologs.

ACKNOWLEDGMENTS

The work was supported by an Australian Research Council Centre of Excellence grant to James Whelan (CEO561495) and the WA State Government funded Centre of Excellence for Computational Systems Biology.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: www.frontiersin.org/Plant_Physiology/ 10.3389/fpls.2013.00349/abstract

Supplementary Figure S1 | Pageman analysis of germination in rice (aerobic germination; Howell et al., 2009, anaerobic germination; Narsai et al., 2009) and Arabidopsis (Narsai et al., 2011a) using step-wise comparisons. Over-representation analysis was carried out for genes significantly differentially expressed (>2-fold, p < 0.05, PPDE > 0.96) over the course of germination. Common over-represented functional categories across the three germination studies are shown. The z-scores indicating over/under representation of genes in each functional category are indicated as a heatmap where red indicates over-representation and blue indicates under-representation.

Supplementary Table 1 | The step-wise comparisons used for rice under aerobic (Howell et al., 2009) and anaerobic (Narsai et al., 2009) germination. All microarrays for both species were GC-RMA normalized and analyzed in the same manner for differential expression using the Cyber-T method (p < 0.05, PPDE > 0.96).

Supplementary Table 2 | The step-wise comparisons used for

Arabidopsis germination (Narsai et al., 2011a). All microarrays for both species were GC-RMA normalized and analyzed in the same manner for differential expression using the Cyber-T method (p < 0.05, PPDE > 0.96).

Supplementary Table 3 | Pageman analysis of rice aerobic and anaerobic germination was carried out together and then matched with the Pageman analysis of Arabidopsis germination to show represented functional categories over the course of germination. All microarrays for both species were normalized and analyzed in the same manner for differential expression (i.e., FC = 2-fold, p < 0.05, PPDE > 0.96) and the same parameters were used for the Pageman analysis (i.e., ORA Fisher using 2.0 as a cut-off).

Supplementary Table 4 | The low oxygen and abiotic stress comparisons and used for rice from the sources outlined in Table 1. All microarrays for both species were GC-RMA normalized and analyzed in the same manner for differential expression using the Cyber-T method (p < 0.05, PPDE > 0.96).

Supplementary Table 5 | Pageman analysis (ORA Fisher using 2.0 as a cut-off) of rice aerobic vs. anaerobic germination, as well as step-wise germination was carried out to show represented functional categories unique to anaerobic germination. All microarrays were normalized and analyzed in the same manner for differential expression

REFERENCES

- Aguirre, J., and Lambeth, J. D. (2010). Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. *Free Radic. Biol. Med.* 49, 1342–1353. doi: 10.1016/j.freeradbiomed.2010. 07.027
- Bailey-Serres, J., and Voesenek, L. A. (2008). Flooding stress: acclimations and genetic diversity. *Annu. Rev. Plant Biol.* 59, 313–339. doi: 10.1146/annurev.arplant.59. 032607.092752
- Baldi, P., and Long, A. D. (2001). A Bayesian framework for the analysis of microarray expression data: regularized *t*-test and statistical inferences of gene changes. *Bioinformatics* 17, 509–519. doi: 10.1093/bioinformatics/17.6.509
- Banti, V., Giuntoli, B., Gonzali, S., Loreti, E., Magneschi, L., Novi, G., et al. (2013). Low oxygen response mechanisms in green organisms. *Int. J. Mol. Sci.* 14, 4734–4761. doi: 10.3390/ijms14034734
- Banti, V., Loreti, E., Novi, G., Santaniello, A., Alpi, A., and Perata, P. (2008). Heat acclimation and cross-tolerance against anoxia in Arabidopsis. *Plant Cell Environ.* 31, 1029–1037. doi: 10.1111/j.1365-3040.2008.01816.x
- Banti, V., Mafessoni, F., Loreti, E., Alpi, A., and Perata, P. (2010). The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. *Plant Physiol.* 152, 1471–1483. doi: 10.1104/pp.109.149815
- Branco-Price, C., Kaiser, K. A., Jang, C. J., Larive, C. K., and Bailey-Serres, J. (2008). Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J. 56, 743–755. doi: 10.1111/j.1365-313X.2008.03642.x
- Catusse, J., Job, C., and Job, D. (2008). Transcriptome- and proteomewide analyses of seed germination. *C. R. Biol.* 331, 815–822. doi: 10.1016/j.crvi.2008.07.023
- Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z., and Xu, X. (2010). Roles of Arabidopsis WRKY18, WRKY40

and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. *BMC Plant Biol.* 10:281. doi: 10.1186/1471-2229-10-281

- Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., and Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. *Biochim. Biophys. Acta* 1819, 120–128. doi: 10.1016/j.bbagrm.2011.09.002
- Christianson, J. A., Llewellyn, D. J., Dennis, E. S., and Wilson, I. W. (2010). Comparisons of early transcriptome responses to low oxygen environments in three dicotyledonous plant species. *Plant Signal. Behav.* 5, 1006–1009. doi: 10.4161/psb.5.8.12231
- Christianson, J. A., Wilson, I. W., Llewellyn, D. J., and Dennis, E. S. (2009). The low oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low oxygen treatment. *Plant Physiol.* 149, 1724–1738. doi: 10.1104/pp.108.131912
- Foreman, J., Demidchik, V., Bothwell, J. H., Mylona, P., Miedema, H., Torres, M. A., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. *Nature* 422, 442–446. doi: 10.1038/nature01485
- Fukao, T., Yeung, E., and Bailey-Serres, J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. *Plant Cell* 23, 412–427. doi: 10.1105/tpc.110.080325
- Gadjev, I., Vanderauwera, S., Gechev, T. S., Laloi, C., Minkov, I. N., Shulaev, V., et al. (2006). Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. *Plant Physiol.* 141, 436–445. doi: 10.1104/pp.106.078717
- Gallardo, K., Job, C., Groot, S. P., Puype, M., Demol, H., Vandekerckhove, J., et al. (2002).
 Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. *Plant Physiol.* 129, 823–837. doi: 10.1104/pp.002816

(i.e., FC = 2-fold, p < 0.05, PPDE > 0.96). Genes from these are shown in Figure 2.

Supplementary Table 6 | The low oxygen and abiotic stress comparisons and used for Arabidopsis from the sources outlined in Table 1. All microarrays for both species were GC-RMA normalized and analyzed in the same manner for differential expression using the Cyber-T method (p < 0.05, PPDE > 0.96).

- Gibbs, D. J., Lee, S. C., Isa, N. M., Gramuglia, S., Fukao, T., Bassel, G. W., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. *Nature* 479, 415–418. doi: 10.1038/nature10534
- Gibbs, J., Morrell, S., Valdez, A., Setter, T. L., and Greenway, H. (2000). Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J. Exp. Bot. 51, 785–796. doi: 10.1093/jexbot/51.345.785
- Guo, W., Ward, R. W., and Thomashow, M. F. (1992). Characterization of a cold-regulated wheat gene related to Arabidopsis cor47. *Plant Physiol.* 100, 915–922. doi: 10.1104/pp.100.2.915
- Hebelstrup, K. H., Igamberdiev, A. U., and Hill, R. D. (2007). Metabolic effects of hemoglobin gene expression in plants. *Gene* 398, 86–93. doi: 10.1016/j.gene. 2007.01.039
- Howell, K. A., Cheng, K., Murcha, M. W., Jenkin, L. E., Millar, A. H., and Whelan, J. (2007). Oxygen initiation of respiration and mitochondrial biogenesis in rice. J. Biol. Chem. 282, 15619–15631. doi: 10.1074/jbc.M609866200
- Howell, K. A., Millar, A. H., and Whelan, J. (2006). Ordered assembly of mitochondria during rice germination begins with pro-mitochondrial structures rich in components of the protein import apparatus. *Plant Mol. Biol.* 60, 201–223. doi: 10.1007/s11103-005-3688-7
- Howell, K. A., Narsai, R., Carroll, A., Ivanova, A., Lohse, M., Usadel, B., et al. (2009). Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. *Plant Physiol.* 149, 961–980. doi: 10.1104/pp.108.129874
- Hu, W., Hu, G., and Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in

rice. *Plant Sci.* 176, 583–590. doi: 10.1016/j.plantsci.2009.01.016

- Huang, S., Colmer, T. D., and Millar, A. H. (2008). Does anoxia tolerance involve altering the energy currency towards PPi? *Trends Plant Sci.* 13, 221–227. doi: 10.1016/j.tplants.2008.02.007
- Igamberdiev, A. U., Bykova, N. V., Shah, J. K., and Hill, R. D. (2010). Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. *Physiol. Plant.* 138, 393–404. doi: 10.1111/j.1399-3054.2009.01314.x
- Igamberdiev, A. U., and Hill, R. D. (2009). Plant mitochondrial function during anaerobiosis. *Ann. Bot.* 103, 259–268. doi: 10.1093/aob/mcn100
- Igamberdiev, A. U., and Kleczkowski, L. A. (2011). Magnesium and cell energetics in plants under anoxia. *Biochem. J.* 437, 373–379. doi: 10.1042/BJ20110213
- Jain, M., Nijhawan, A., Arora, R., Agarwal, P., Ray, S., Sharma, P., et al. (2007). F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. *Plant Physiol.* 143, 1467–1483. doi: 10.1104/pp.106.091900
- Jaiswal, P., Ni, J., Yap, I., Ware, D., Spooner, W., Youens-Clark, K., et al. (2006). Gramene: a bird's eye view of cereal genomes. *Nucleic Acids Res.* 34, D717–D723. doi: 10.1093/nar/gkj154
- Khrouchtchova, A., Monde, R. A., and Barkan, A. (2012). A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. *RNA* 18, 1197–1209. doi: 10.1261/rna.032623.112
- Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. *Plant J.* 50, 347–363. doi: 10.1111/j.1365-313X.2007.03052.x
- Kursteiner, O., Dupuis, I., and Kuhlemeier, C. (2003). The

pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. *Plant Physiol.* 132, 968–978. doi: 10.1104/pp.102.016907

- Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., et al. (2007). Transcript profiling of the anoxic rice coleoptile. *Plant Physiol*. 144, 218–231. doi: 10.1104/pp.106.093997
- Licausi, F., Kosmacz, M., Weits, D. A., Giuntoli, B., Giorgi, F. M., Voesenek, L. A., et al. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. *Nature* 479, 419–422. doi: 10.1038/nature 10536
- Long, A. D., Mangalam, H. J., Chan, B. Y., Tolleri, L., Hatfield, G. W., and Baldi, P. (2001). Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J. Biol. Chem. 276, 19937–19944. doi: 10.1074/jbc.M010192200
- Loreti, E., Poggi, A., Novi, G., Alpi, A., and Perata, P. (2005). A genomewide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. *Plant Physiol.* 137, 1130–1138. doi: 10.1104/pp.104.057299
- Loreti, E., Yamaguchi, J., Alpi, A., and Perata, P. (2003). Sugar modulation of alpha-amylase genes under anoxia. Ann. Bot. 91, 143–148. doi: 10.1093/aob/mcf117
- Lu, P. L., Chen, N. Z., An, R., Su, Z., Qi, B. S., Ren, F., et al. (2007). A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stressresponsive genes in Arabidopsis. *Plant Mol. Biol.* 63, 289–305. doi: 10.1007/s11103-006-9089-8
- Magneschi, L., and Perata, P. (2008). Rice germination and seedling growth in the absence of oxygen. *Ann. Bot.* 103, 181–196. doi: 10.1093/aob/mcn121
- Mustroph, A., Lee, S. C., Oosumi, T., Zanetti, M. E., Yang, H., Ma, K., et al. (2010). Cross-kingdom comparison of transcriptomic adjustments to low oxygen stress highlights conserved and plant-specific responses. *Plant*

Physiol. 152, 1484–1500. doi: 10.1104/pp.109.151845

- Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y., and Nambara, E. (2005). Genomewide profiling of stored mRNA in *Arabidopsis thaliana* seed germination: epigenetic and genetic regulation of transcription in seed. *Plant J.* 41, 697–709. doi: 10.1111/j.1365-313X.2005.02337.x
- Narsai, R., Castleden, I., and Whelan, J. (2010). Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biol. 10:262. doi: 10.1186/1471-2229-10-262
- Narsai, R., Howell, K. A., Carroll, A., Ivanova, A., Millar, A. H., and Whelan, J. (2009). Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. *Plant Physiol.* 151, 306–322. doi: 10.1104/pp.109.142026
- Narsai, R., Law, S. R., Carrie, C., Xu, L., and Whelan, J. (2011a). In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. *Plant Physiol.* 157, 1342–1362. doi: 10.1104/pp.111.183129
- Narsai, R., Rocha, M., Geigenberger, P., Whelan, J., and Van Dongen, J. T. (2011b). Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. *New Phytol.* 190, 472–487. doi: 10.1111/j.1469-8137.2010. 03589.x
- Ostlund, G., Schmitt, T., Forslund, K., Kostler, T., Messina, D. N., Roopra, S., et al. (2010). InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. *Nucleic Acids Res.* 38, D196–D203. doi: 10.1093/nar/gkp931
- Pucciariello, C., Banti, V., and Perata, P. (2012a). ROS signaling as common element in low oxygen and heat stresses. *Plant Physiol. Biochem.* 59, 3–10. doi: 10.1016/j.plaphy.2012.02.016
- Pucciariello, C., Parlanti, S., Banti, V., Novi, G., and Perata, P. (2012b). Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. *Plant Physiol.*

159, 184–196. doi: 10.1104/pp.111. 191122

- Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., Bressendorff, S., Friis, P., Costantino, P., et al. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. *Plant Physiol.* 161, 1783–1794. doi: 10.1104/pp.112.210773
- Ricard, B., Rivoal, J., Spiteri, A., and Pradet, A. (1991). Anaerobic stress induces the transcription and translation of sucrose synthase in rice. *Plant Physiol.* 95, 669–674. doi: 10.1104/pp.95.3.669
- Rivoal, J., Ricard, B., and Pradet, A. (1991). Lactate dehydrogenase in Oryza sativa L. seedlings and roots: identification and partial characterization. Plant Physiol. 95, 682–686. doi: 10.1104/pp.95.3.682
- Sachs, M. M., Freeling, M., and Okimoto, R. (1980). The anaerobic proteins of maize. *Cell* 20, 761–767. doi: 10.1016/0092-8674(80)90322-0
- Saha, D., Prasad, A. M., and Srinivasan, R. (2007). Pentatricopeptide repeat proteins and their emerging roles in plants. *Plant Physiol. Biochem.* 45, 521–534. doi: 10.1016/j.plaphy.2007.03.026
- Schroder, F., Lisso, J., and Mussig, C. (2011). EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis. *Plant Physiol.* 156, 1620–1630. doi: 10.1104/pp.111.177204
- Sirova, J., Sedlarova, M., Piterkova, J., Luhova, L., and Petrivalsky, M. (2011). The role of nitric oxide in the germination of plant seeds and pollen. *Plant Sci.* 181, 560–572. doi: 10.1016/j.plantsci.2011.03.014
- Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N., et al. (2008). Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. *Plant Physiol.* 146, 1738–1758. doi: 10.1104/pp.107.111781
- Sturms, R., Dispirito, A. A., and Hargrove, M. S. (2011). Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions. *Biochemistry* 50, 3873–3878. doi: 10.1021/bi2004312
- Tsukagoshi, H., Busch, W., and Benfey, P. N. (2010). Transcriptional regulation of ROS controls transition

from proliferation to differentiation in the root. *Cell* 143, 606–616. doi: 10.1016/j.cell.2010.10.020

- Tzafrir, I., Dickerman, A., Brazhnik, O., Nguyen, Q., McElver, J., Frye, C., et al. (2003). The Arabidopsis seedgenes project. *Nucleic Acids Res.* 31, 90–93. doi: 10.1093/nar/gkg028
- Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Blasing, O. E., Redestig, H., et al. (2006). PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. *BMC Bioinformatics* 7:535. doi: 10.1186/1471-2105-7-535
- Wells, D. M., Wilson, M. H., and Bennett, M. J. (2010). Feeling UPBEAT about growth: linking ROS gradients and cell proliferation. *Dev. Cell* 19, 644–646. doi: 10.1016/j.devcel.2010.10.017
- Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., et al. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. *Nature* 442, 705–708. doi: 10.1038/nature04920

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 June 2013; accepted: 19 August 2013; published online: 01 October 2013.

Citation: Narsai R and Whelan J (2013) How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis. Front. Plant Sci. 4:349. doi: 10.3389/fpls.2013.00349

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

Copyright © 2013 Narsai and Whelan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.