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Editorial on the Research Article

The Impact of Open Science for Evaluation of Volcanic Hazards

The Open Science paradigm addresses the scientific process of producing and sharing knowledge
and data as early as possible in the research development, through digital and collaborative
technology. It includes findable and interoperable data, access to data processing platforms, and
sharing of research products within the scientific community and with stakeholders. Open
Science increases the quality and impact of science by fostering reproducibility and
interdisciplinarity.

The growing interest for more Open Science in the Earth Sciences has stimulated this Research
Topic that aimed at collecting contributions from the Volcanological scientific community.
Anticipating volcanic eruptions and mitigating their associated hazards and risks can greatly
benefit from the Open Science approach. In particular, proper management of volcanic crises,
such as during unrest and eruption, needs rapid access to scientific data and results by stakeholders
and decision-makers.

The contributions of this issue range from data-driven applications for volcanic hazard mitigation
(Beauducel et al.; Coppola et al.; Fujita et al.; Tierz; Whitty et al.) to original research studies
(Aranzulla et al.; Bignami et al.).

Fujita et al. present a new database and management system of volcanological information in
Japan. It includes four themes focusing on observational data, forecasting of events, implementation
of hazard mitigation measures, and a data-sharing system. This data-sharing system is named the
Japan Volcanological Data Network and will serve as a platform for the analysis of branch nodes of
probabilistic event trees for volcanic crises in the coming decades in Japan.

In a prospective-type article, Tierz discusses the importance of open databases for the
volcanological community to be able to perform robust probabilistic volcanic hazard
assessments. Given the complexity of volcanic processes and the relative scarcity of information
on past eruptions, it is critical to have systems in place that allow for discoverability and accessibility
to volcanological data. The author also clarifies some misunderstanding of the use and meaning of
long term probabilistic volcanic hazard assessment.

Beauducel et al. have developed an open source software system called WebObs aimed at
facilitating the tasks of data storage, visualization, and interpretation of volcanological observatories.
The system allows efficient real-time access to monitoring data, metadata, modeling and estimation
of uncertainties, which are fundamental for an efficient interpretation of the monitored signals. It
supports data analysis and exchange between researchers, engineers, and technicians during periods
of volcanic unrest or quiescence. WebObs is also open for further development and enhanced data
processing.
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Aranzulla et al. present new methodology for modeling
tropospheric delays with the aim of calculating tropospheric
corrections for DInSAR (Differential Interferometric Synthetic
Aperture Radar) data. Removal of atmospheric artifacts from
interferograms remains a challenging task - especially in areas
with highly variable weather conditions and steep topography,
such as in the vicinity of stratovolcanoes. The authors test an
improved tomography algorithm to estimate the wet-refractivity
field on a synthetic dataset and also apply the method to correct
Sentinel-1 interferograms at Mt Etna during 2015, incorporating
water vapor measurements derived from MODIS instruments
on-board Terra and Aqua satellites. The inclusion of MODIS data
improves the tomographic resolution and the technique is
successful in modeling the large-scale atmospheric effects.

Whitty et al. analyze open access data from the permanent
air quality monitoring networks at the Island of Hawai’i,
obtaining measurements of SO2 and PM2.5 for about
12 years. Additional air quality data were collected during
the 2018 lower East Rift Zone eruption of Kilauea through a
low-cost PM2.5 network. The 2018 eruption caused severe
excess of the air quality threshold for PM2.5 even 100 km
away from Kilauea. Data from the low-cost sensor network
correlated well with data from permanent instruments,
confirming that these low-cost sensors provide robust
monitoring means with the added value of being an open
access source of readily-available information to the public for
community awareness toward air quality.

Coppola et al. present a web-based and open source system
called MIROVA (Middle Infrared Observation of Volcanic
Activity) that allows automatic volcano hot spot detection
using Moderate Resolution Imaging Spectroradiometer. The
system is able to detect, locate and quantify thermal anomalies
in near real-time on over 200 volcanoes worldwide. MIROVA is
currently used by several volcano observatories for daily
monitoring activities and reporting.

Bignami et al. exploit multi-sensor images from mostly open
access missions to retrieve key elements for volcanic crises
management, such as lava flow patterns and volcanic source
parameters related to the effusive eruption of Fogo volcano, Cape
Verde, between November 2014 and January 2015. The main

outcome of the work is the application of a new automatic change
detection technique for estimating the lava field and its temporal
evolution, combining the SAR intensity and the interferometric
SAR coherence. These data are applied for the first time for lava
mapping, providing an example of using the multi-temporal
interferometric SAR coherence to automatically monitor lava
flow evolution during an emergency phase.

The papers included in this Research Topic highlight the
importance of making a bigger effort in global sharing of data
and methods in an open way, showing the criticality for volcanic
risk management in all its phases (e.g., before and during
eruptions). Terrestrial and satellite monitoring techniques offer
timely measurements for detecting volcanic activity at a global
scale. Access to data, along with the availability of open
processing tools and environments, and rapid sharing of
results are vital for volcanic hazard assessment today and for
growing future applications of data integration.
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5 Engineering Ingegneria Informatica S.p.A., Rome, Italy, 6 Icelandic Meteorological Office, Reykjavík, Iceland, 7 Servicio
Nacional de Geología y Minería, Santiago, Chile, 8 Instituto GeofÍsico del Perú, Lima, Peru, 9 Vanuatu Meteorology
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Volcanic activity is always accompanied by the transfer of heat from the Earth’s crust
to the atmosphere. This heat can be measured from space and its measurement is a
very useful tool for detecting volcanic activity on a global scale. MIROVA (Middle Infrared
Observation of Volcanic Activity) is an automatic volcano hot spot detection system,
based on the analysis of MODIS data (Moderate Resolution Imaging Spectroradiometer).
The system is able to detect, locate and quantify thermal anomalies in near real-time, by
providing, on a dedicated website (www.mirovaweb.it), infrared images and thermal flux
time-series on over 200 volcanoes worldwide. Thanks to its simple interface and intuitive
representation of the data, MIROVA is currently used by several volcano observatories
for daily monitoring activities and reporting. In this paper, we present the architecture
of the system and we provide a state of the art on satellite thermal data usage for
operational volcano monitoring and research. In particular, we describe the contribution
that the thermal data have provided in order to detect volcanic unrest, to forecast
eruptions and to depict trends and patterns during eruptive crisis. The current limits
and requirements to improve the quality of the data, their distribution and interpretation
are also discussed, in the light of the experience gained in recent years within the
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volcanological community. The results presented clearly demonstrate how the open
access of satellite thermal data and the sharing of derived products allow a better
understanding of ongoing volcanic phenomena, and therefore constitute an essential
requirement for the assessment of volcanic hazards.

Keywords: thermal remote sensing, global volcano monitoring, MIROVA, MODIS, thermal unrest, eruption
forecasting

INTRODUCTION

Volcano monitoring consists of continuous, real-time,
acquisition and processing of numerous data that describe
the behavior of a volcano (e.g., earthquakes, ground movement,
gas emissions, remote-sensed data) in order to detect any sign of
change that may precede an eruption (Sparks et al., 2012; Pallister
and McNutt, 2015; Newhall et al., 2017). It likely represents the
only scientifically valid approach for short-term forecasts of a
future eruption, or possible changes during an ongoing eruption
(Tilling, 2008).

Volcanic monitoring can be viewed as a form of continuous
learning by the scientific community, in which the greater the
amount of information available, the greater the understanding
of the volcanic phenomena in progress, and the better the
ability to forecast future eruptive scenarios (Winson et al.,
2014). In this context, satellite data are a reliable source of
information, especially for monitoring the large number (∼50%)
of potentially active volcanoes (∼1400) still lacking conventional
ground-based instruments (Brown et al., 2015; Pritchard et al.,
2018; Delgado et al., 2019). Nonetheless, even at well-monitored
volcanoes, satellite data offer a spatio-temporal view of eruptive
phenomena that may fill gaps left by ground based instruments
(Ebmeier et al., 2018).

The acquisition of satellite images and data for volcanological
applications is continuously and rapidly growing (Ramsey and
Harris, 2013; Furtney et al., 2018; Pritchard et al., unpublished),
so that big data analysis techniques (i.e., artificial intelligence and
machine learning) are progressively used for research purposes
and for monitoring activity (Piscini and Lombardo, 2014;
Anantrasirichai et al., 2018; Valade et al., 2019). In particular, with
the advent of the new millenium, and with the development of
internet, the dissemination and sharing of satellite data/products
can be considered a pillar of open science in volcanology, also
thanks to the growing availability of open data by space agencies
(Delgado et al., 2019).

At present, four main types of Remote Sensing Observations
(RSO) provide different insights into the key processes occurring
within a volcanic system. These are: (i) ground deformation, from
microwaves; (ii) SO2 degassing, from ultraviolet and infrared; (iii)
ash emission, from infrared; and (iv) heat flux, from infrared.

Recent scientific pilot projects, as the European Volcano
Observatory Space Services, EVOSS (Tait and Ferrucci, 2013)
and the Committee on Earth Observation Satellite (CEOS)
Volcano Pilot Project (Delgado et al., 2019), demonstrated the
potential of integrating these space-based data for forecasting
eruptions (Furtney et al., 2018), stressing the need to develop
a volcanic monitoring system to support volcano observatories
(Pritchard et al., unpublished). The Monitoring Unrest From

Space (MOUNTS) project1, although in an embryonic stage,
can be considered a first prototype of such integrated system,
since it includes near-real time multi-parametric analysis (UV,
IR and microwaves) derived from the ESA Sentinel constellation,
at several volcanoes (Valade et al., 2019). However, apart
from this example, a comprehensive integration of space-based
datasets into an operational system for global volcano monitoring
is at this time only envisioned, with several distinct groups
working on a single RSO (deformation, degassing, ash, thermal;
Reath et al., 2019a).

During the past two decades, numerous volcanic hot-spot
detection systems have been developed in order to detect,
localize and quantify the presence of thermal anomalies produced
by volcanic activity (Harris, 2013; Ramsey and Harris, 2013).
In Supplementary Table S1, we have compiled a list of all
the systems currently operating in real time of which we
are aware, although other systems may be operated locally.
These systems are based on different sensors having distinct
spatial, temporal and radiometric resolution so that each of
them is different from the others in terms of performance
and usability for research and volcano monitoring (Steffke
and Harris, 2011). The scientific results achieved thanks to
the open data elaborated by these systems are remarkable
and in continuous growth (Harris, 2013; Ramsey and Harris,
2013). However, their use from an operational point of view,
that is, during the daily monitoring or during an eruptive
crisis, remains little known and poorly described. In particular,
what information is most useful to the observatories and how
this information should be communicated/interpreted in (near)
real time remains a topic of broad interest, especially for
the future development of these systems and their integration
with other satellite- or ground-based monitoring networks
(Pritchard et al., unpublished).

In this work, we describe the architecture of the system named
Middle Infrared Observations of Volcanic Activity (MIROVA)
and its use by more than 17 volcano observatories/Institutions
in charge of monitoring more than 650 volcanoes around the
globe (Supplementary Table S2). Based on the experiences of
the individual observatories (summarized in the Supplementary
Appendix), we then deduced what is the contribution of the
satellite thermal data to the daily monitoring of volcanoes in
extremely different geological and socio-economic contexts. The
use of the results provided by MIROVA makes it possible
to understand the current limits of thermal remote sensing
systems and the requirements to further develop an open science
tool to support the assessment and mitigation of volcanic risk
at global scale.

1http://mounts-project.com/
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THE MIROVA SYSTEM

Architecture of the System
Middle Infrared Observations of Volcanic Activity is an
automatic system for detecting thermal anomalies at high
temperatures (>500K), based on the analysis of MODIS
(Moderate Resolution Imaging Spectroradiometer) data. MODIS
is a sensor mounted on board two NASA satellites, called
Terra and Aqua, in sun-synchronous polar orbit since March
2000 and May 2002, respectively. The main features of
MODIS, useful for volcano thermal monitoring, consist of
its global coverage with spatial resolution of 1 km, temporal
resolution of about four images/day (at the equator) and the
presence of a dual channel in the mid-infrared (centered
at 3.959 microm) with low/high gain settings (providing an
extended range of unsaturated data). The general architecture
of the MIROVA system can be divided into two main parts:
(a) data download and processing (developed on a local
computer) and (b) data dissemination (developed on a website:
www.mirovaweb.it).

Unlike other systems that use MODIS data (e.g., MODVOLC;
FIRMS; Supplementary Table S1) MIROVA is not strictly
a global monitoring system. In fact, although the algorithm
can be applied in any environmental context (Coppola et al.,
2016a), the data processing chain actually operates only for
a list of selected target volcanoes for which the near real
time observation is requested. This list of selected targets is
compiled from the list of the Holocene volcanoes (more than
1400) of the Global Volcanism Program (2013) by setting
an “operational flag” to all the volcanoes that need to be
monitored. Volcanoes are also given an identification number
in accordance with the Global Volcanism Program. The number
of monitored volcanoes has gradually increased since the start
of the operational phase (in 2014) and has now reached
a number equal to 216 units. These targets were gradually
added to the MIROVA list based on a scientific interest, or
following specific requests from the observatories. They now
cover the most active volcanoes on the globe (Global Volcanism
Program, 2013) with the current number actually limited by
the hardware resources of the system and by the amount of
data to be downloaded and processed daily (about 25 Gb per
day). Despite this limitation, this architecture makes it possible
to add other specific targets in case of need (i.e., unrest of a
new volcano) without compromising the total system efficiency
in terms of processing time, memory, storage capacity, etc.
Access to archived MODIS data (available since 2000 and 2002
for Terra and Aqua, respectively) also allows analysis and
reconstruction of 20-year time series for any volcano. However,
building a complete thermal database for all the volcanoes
currently monitored by MIROVA takes time and is in the
development phase.

Download, Data Processing, and
Sensibility
The original MODIS data (Level 1b – calibrated radiances) are
downloaded from the LANCE system, which provides them

with a latency of less than 3 h2. The continuous screening of
the LANCE daily remote folders (every 5 min), allows timely
downloading in the local computer of any newly acquired
MODIS granule imaging at least one target volcano. The
downloaded granules are then processed following several steps
fully described in Coppola et al. (2016a).

For each analyzed volcano, the original spectral radiance data
(recorded by MODIS in the Middle Infrared [MIR] at 3.959 µm
and Thermal Infrared [TIR] at 12.02 µm) are resampled in
regular grids of 50 × 50 km (in UTM coordinates) and
processed in order to identify the pixels containing thermal
anomalies. This step, or rather the hotspot detection algorithm,
comprehends the application of spectral and spatial principles
that, combined together, increase the ability to automatically
detect hotspots. In particular, the MIROVA algorithm uses the
middle infrared MIR bands at 3.959 µm and thermal TIR at
12.02 µm to calculate different spectral indices (such as the
Normalized Thermal Index – NTI, Wright et al., 2004, and the
Enhanced Thermal Index – ETI, Coppola et al., 2016a) that
enhance the presence of hot objects inside the pixels. In addition,
a series of spatial operations allow us to highlight the pixels
having these indices in excess with respect to their surroundings,
thus constituting a hybrid and contextual approach for any
environmental condition.

Once the contaminated pixels have been identified, the
volcanic radiative power (VRP) is calculated using the MIR-
method (Wooster et al., 2003). Specifically, the VRP is
calculated as:

VRP=18.9·Apixel·
∑npix

i=1 (LMIR,alert−LMIR,bk)i

where npix is the number of alerted pixels, LMIR,alert is the
pixel integrated MIR radiance of the ith alerted pixel, LMIR,bk
is the MIR radiance of the background (average radiance of
pixels surrounding the anomaly), Apixel is the pixel size (1 km2

for the resampled MODIS pixels), and 18.9 is a constant of
proportionality (see Wooster et al., 2003).

The VRP is the main parameter calculated by the MIROVA
system and represents the combined effect of the hotspot
area (Ahot) and its integrated temperature (Thot) according to
Stephan Boltzmann’s law (VRP = σεAhotThot

4; being σ and ε the
Boltzmann constant and emissivity, respectively).

It is important to underline that the application of the MIR
method on hotspots of volcanic origin represents the thermal
flux radiated exclusively from the surfaces with T > 500 K
(only the portion of the warmer surface produces sufficient MIR
radiances to be detected by MODIS) and returns the VRP with an
error of± 30%.

As a whole MIROVA may detect thermal anomalies with VRP
spanning from less than∼1 MW to about∼50 GW. According to
the Stephan-Boltzmann’s law, the lower detection limit (1 MW)
would correspond to two end-member cases: (i) a hot case
characterized by a vent of ∼7 m2 and a temperature of 1000◦C,
or (ii) a cold case characterized by a fumarole field having an area
of∼143 m2 and a temperature of 300◦C.

2https://lance-modis.eosdis.nasa.gov/
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Website and Data Dissemination
In order to easily and quickly share the real-time observations of
the system, a dedicated website3 summarizes, and continuously
updates, a series of tables and graphical outputs for any
monitored volcano.

The home page (Figure 1) of this website is constituted by a
world map showing all the monitored volcanoes, and by a table
summarizing the latest thermal anomalies detected by the system
(in chronological order). In order to quickly identify the “thermal
magnitude” of the hotspot listed in this table, we represent each
detection through a color scale, proportional to the logarithm of
the detected VRP. This scale is divided into five distinct levels and
each thermal detection is classified into these subdivisions, based
on the recorded VRP (Figure 1).

The interactive map and table take the user to the page
dedicated to each individual volcano, where specific graphical
outputs are updated approximately four times per day (according
to the number of MODIS overpasses) and available online from 1
to 4 h after image acquisition. These outputs consist of the “Latest
IR Images,” “VRP time series,” “Distance from the summit,” and a
“Google Earth overlap” which are described in more detail below.

Latest IR Images
The latest IR Images screen summarizes the latest 10 MODIS
acquisitions over the target volcano (Figure 2). This display
provides an intuitive and fast overview of the thermal state of
the volcano during the past 48 h (assuming four images per day).
Each image displays a grayscale map according to the NTI relative
to each pixel. When a hotspot is detected, the VRP (in MW) is
reported below each image, and the frame colored according to
the VRP Scale. The satellite zenith and azimuth are also displayed
at the bottom of each image in order to permit a quick evaluation
of the viewing geometry conditions. This information allows the
user, who knows the topography of the volcano, to assess whether
the observation conditions are favorable or unfavorable to the
detection of a hotspot. For example, if a lava dome emerges
at the bottom of a deep crater, the observation conditions are
quite restricted, since in this case (high zenith angle over a
deep crater) the crater’s rim could block the line of sight of the
sensor and, therefore, the sensor would not detect the hot dome.
Similarly, a lava flow descending on a steep flank of a volcano
will be poorly imaged by a satellite looking from the opposite
side and with a high zenith angle. In this case the VRP could be
underestimated and would not correspond to a real lowering of
the thermal activity.

The visualization of the last 10 NTI maps allows also a first-
order evaluation of the cloud fraction, essential for a correct
interpretation of the data (e.g., presence/absence of hotspots,
intensity and location of the thermal anomaly). In a general way,
during the course of an eruption user can refer to the latest images
(Figure 2) to follow the detection of thermal activity level and
evaluate the quality of each VRP related to the weather conditions
and the geometry of the satellite acquisition. It is however
important to emphasize that the VRP and the color code provided
by MIROVA are not corrected automatically for the acquisition

3www.mirovaweb.it

conditions (i.e., clouds/geometry) but they simply represent a
measurement of the thermal radiation reaching the sensor.

VRP Time Series
The VRP time series can be displayed in both Log and Linear
scale, which summarizes the detected VRP values within the
previous month and year of the MODIS observation (upper and
lower panel, respectively in Figure 3). Each stem represents a
single detection (one MODIS passage) with a distinction between
proximal (hotspots located within 5 km from the summit are
represented by blue stems) and distal anomalies (far hotspots
located at more than 5 km from the summit, are represented
by black stems).

The time series are displayed in a logarithmic scale (Figure 3)
to allow the visualization of the large variations in the thermal
intensity that may accompany a single eruption (up to five
orders of magnitude). Also, the logarithmic scale permits to
recognize subtle long-term trends and patterns such as the
exponential decays (appearing linear in the log scale plot) that
often accompany the waning phase of an eruption (Wadge,
1981). The extrapolation of these trends offers a rapid method
to qualitatively detect a change from the expected values, possibly
associated with a variation of the behavior of the ongoing volcanic
activity (see section “Eruptive Evolution, Trends and Patterns”).
The same VRP time series are also shown with a linear scale (“Rad
Power” button on the left menu; Figure 3) in order to better
visualize real intensity changes in thermal activity.

Distance From the Summit
This screen named “Distance from summit” shows the distance
from the farthest hot pixel to the summit of the volcano, during
the last month and last year of activity (upper and lower panel,
respectively in Figure 4). This graph has the dual purpose of (i)
identifying gradual displacements of the thermal anomaly, for
example during the advancement of a lava front, or (ii) detecting
sudden changes in the hot spot location, likely associated with
the occurrence of forest fires or false alerts (in distal areas
of the volcano).

Although the location accuracy remains significant (± 1 km),
in the case of km-long lava flows, this automatic analysis provides
a useful estimate of lava front advancement. As an example, in
Figure 4 we show the case of the eruption of Erta Ale (Figure 4)
during which the flow front advanced by 12 ± 1 km in 4 months
(June–September 2017), with an average speed of 100 m day−1.
Isolated spikes showing thermal anomalies more than 25 km
away from the summit (Figure 4), can be easily identified and
associated with possible fires.

Google Earth Overlap
The Google Earth overlap screen shows the last processed image
superimposed on google map which allows to locate the thermal
anomaly and estimate its dimensions (Figure 5). In many cases,
the overlap of the thermal images on google map can be used to
verify if the hotspot is located inside or outside a summit crater,
for hazard evaluation of the ongoing activity. The estimation
of hotspot location is also very useful to verify if the thermal
anomaly is possibly associated to a forest fire (e.g., located over
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FIGURE 1 | Snapshot of the home page of the MIROVA website (www.mirovaweb.it; accessed on 19 November 2018).

FIGURE 2 | Snapshot of the Latest IR Images display posted on MIROVA website for the Fuego volcano, Guatemala (accessed on 19 November 2018).

a vegetated area), anthropogenic source (e.g., located over an
urban/industrial area), or it is a false alert (e.g., located above
a body of water).

All the outputs described in the previous section are
exclusively made up of static graphs that are continuously
overwritten as newer data are processed. The original images
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FIGURE 3 | Snapshot of the “Log Radiative Power” screen posted on the MIROVA website for the Fuego volcano, Guatemala (accessed on 19 November 2018).
Note the fluctuations in thermal activity in the last month (top right panel), with an evident increase in VRP (almost 2 orders of magnitude) recorded from 14 to 19
November 2018. The trend of thermal anomalies recorded during the past year (lower panel) shows that after the eruption of the June 3, 2018 the thermal activity of
Fuego was very low for at least 3 months. However, since September 2018 the radiate heat flux gradually intensified by means of repeated pulses culminating with
the high VRP recorded on November 19, 2018.

(i.e., 50 × 50 km maps) and time series (numerical tables)
are not archived on a web database and cannot be query and
downloaded. Although this limitation prevents any direct data
download, the management of the complete MIROVA database
(that currently include a total of more than 2 million images)
would require a large bandwidth and greatly slow down the
use of the website.

Data sharing is currently done by request through email by
the observatories. This practice, although slow and impractical
from an operational point of view, allows a continuous exchange
of information and discussions between the system developers
and the end users, not necessarily experts in the interpretation
of remote-sensed thermal data.

OPERATIONAL USE OF MIROVA FOR
VOLCANO MONITORING: EXPERIENCES
FROM THE OBSERVATORIES

The MIROVA system was developed in 2013 in collaboration
with the University of Firenze (Italy) for monitoring Italian
volcanoes on behalf of the Italian Department of Civil Protection
(DPC). Since then, the satellite thermal data have been integrated
with the ground-based data of the Laboratorio di Geofisica
Sperimentale (LGS) of the University of Firenze to provide to
the DPC daily/weekly and monthly reports regarding the activity

of Stromboli and Etna (Italy) volcanoes4. During major eruptive
crises of these volcanoes, the effusion rate and erupted volume
calculated from MIROVA were presented and discussed at the
daily briefing organized by the Volcano Risk management of
the Italian Civil Protection Department (DPC) together with
the scientific staff of the Istituto Nazionale di Geofisica e
Vulcanologia (INGV).

In recent years, and thanks to its easy application on diverse
volcanic environments, the MIROVA system has gradually
turned into a small pilot project testing the capabilities for global
volcano monitoring, with the observations now covering the full
range of volcanic activities in near real time at 216 volcanoes
(Coppola et al., 2016a). Currently, the website is routinely used
by 17 volcanological observatories or other institutions in charge
of volcano monitoring (Figure 6 and Supplementary Table S2),
supporting their daily monitoring duties and management
during eruptive crises. Since 2016, MIROVA is included in the
list of websites consulted by the ARISTOTLE2 program (All
Risk Integrated System TOward Trans-boundary hoListic Early-
warning – European Natural Hazards Scientific Partnership)
for volcanic surveillance on a global scale by the Emergency
Response Coordination Centre (ERCC5). Together with other
remote sensing systems, MIROVA is currently used by the

4http://lgs.geo.unifi.it/
5http://aristotle.ingv.it/tiki-index.php
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FIGURE 4 | Snapshot of the “Distance from summit” figure posted on MIROVA website for the Erta Ale volcano (accessed on 08 June 2018). Note the lengthening
phase of the lava flow occurred between June and October 2017 with an average flow advancement velocity of 100 m day−1.

FIGURE 5 | Snapshot of the Google Map’s overlay posted on MIROVA website for the Piton de la Fournaise volcano, La Réunion Island (accessed on 14 June
2019). The overlay image represents the Brightness Temperature (BT) recorded by MODIS in the MIR channel, resampled to a spatial resolution of 500 m. Yellow to
red pixels indicate higher BT values associated to the presence of a cooling lava flow on the upper eastern flank of the volcano.

Frontiers in Earth Science | www.frontiersin.org 7 January 2020 | Volume 7 | Article 36212

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00362 January 27, 2020 Time: 15:23 # 8

Coppola et al. Thermal Remote Sensing for Volcano Monitoring

FIGURE 6 | Volcanoes currently observed by MIROVA (red triangles) with distribution of observatories (logos within insets) that use MIROVA in support of monitoring
activities (see Supplementary Table S2 for details).

Volcano Disaster Assistance Program (VDAP), formed in 1986
to assist foreign partners in mitigating hazards at their country’s
threatening volcanoes (Lowenstern and Ramsey, 2017).

In order to understand user’ experiences and motivation
in using the MIROVA system, a survey (see Supplementary
Appendix) was recently conducted, whose results can be
summarized in the following four main points.

State of the Art of Operational Thermal
Remote Sensing Systems Currently Used
by Volcano Observatories
None of the participating observatories has its own automatic
detection/quantification hot spot system, but they rely on systems
developed and maintained by external groups. Although there
are many thermal remote sensing data available online (see
Supplementary Table S1), most of them are not operational in
near real time and in the area of interest. The most used remote
sensing thermal monitoring systems are those based on moderate
resolution sensors, such as MODIS data (MIROVA, MODVOLC,
REALVOLC) or VIIRS (FIRMS), which provide approximately
2/4 images daily, at a resolution of 1 km. Some observatories
also use automatic systems based on higher sampling rate data
(e.g., HOTVOLC, HOTSAT based on SEVIRI data), which are
particularly useful for tracking volcanic plumes or for detecting
high-radiating effusive eruptions. Others use the available ASTER
data (i.e., ASTER Image database for Volcanoes), based on
TIR observations, which enable to detect low-level thermal
activity (such as fumarole fields) but with longer revisit time
(e.g., >15 days; Reath et al., 2019a). The lack of a near-real
time data dissemination system makes this resource less used

for monitoring purposes despite the fact that since 2011 the
ASTER Urgent Request Protocol (URP) system has allowed the
continuous increase of acquisitions of new volcanic activity as
quickly as possible (Ramsey, 2016). Due to the lack of operational
monitoring systems to analyze high-spatial resolution Short-
Wave Infrared (SWIR) images, no observatory uses automatic
systems focused on Sentinel 2 or Landsat 8, which have a typical
revisit time of 5 to 16 days (see Supplementary Table S1). Only
recently this gap has started to be covered by the MOUNTS pilot
project that provides automatic Sentinel 2 hotspot detections
alerts (together with other remote sensed parameters) on specific
volcanic targets (Valade et al., 2019).

Frequency of Use of MIROVA Website
and Volcano Alert Levels
The experiences reported by the observatories during the past
5 years allow us to state that the frequency of use of a satellite
thermal monitoring system such as MIROVA strongly depends
on the specific alert level of each monitored volcano. Many
alert level systems exist in the world, with the majority based
on four levels, e.g., the US system developed by the USGS
(Normal, Advisory, Watch, and Warning). Each country (or
volcano) has a specific scale which is adapted to the particular
volcanological, environmental, social, political and economic
context (Fearnley et al., 2012). For each level there is therefore
a different need/urgency to have up-to-date data on the thermal
state of the volcano which can be summarized as follows:

Normal
Volcano is in typical background, non-eruptive state or, after
a change from a higher level, volcanic activity has ceased and
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volcano has returned to non-eruptive background state. The
thermal state of volcanoes at this level is typically checked
on a monthly basis (e.g., Vesuvius, Italy) or occasionally, for
example to verify reports or rumors (e.g., Cumbal, Colombia;
Mt. Scenery, Saba Island – Netherlands). Automatic alerting
systems (for example, by sending emails) can facilitate the
immediate detection of hotspots. This is especially useful in
remote volcanoes in a quiescent state (Normal alert level), when
thermal state is irregularly controlled and for which there are no
other operational monitoring systems.

Advisory
Volcano is exhibiting signs of elevated unrest above known
background level or, after a change from a higher level, volcanic
activity has decreased significantly but continues to be closely
monitored for possible renewed increase. Several volcanoes may
persist at this levels for several months or years showing
persistent thermal anomalies (e.g., Stromboli, Italy; Villarrica,
Chile). The typical frequency of use in this case is one to several
times per week, in accordance with the reporting tasks of each
observatory. In these cases, automatic alert systems, by setting
up specific thresholds, can be used to warn the end-user(s)
of a sudden increase in thermal activity that may lead to a
higher alert level.

Watch
Volcano is exhibiting heightened or escalating unrest with
increased potential of eruption, timeframe uncertain, or eruption
is underway but poses limited hazards. In this case, the thermal
data are typically checked on a daily basis, just before briefing or
to write the daily reports (e.g., Etna, Italy, during major lava flows
or paroxysms; Piton de la Fournaise, Réunion Island, during
eruptions). At this alert level, the daily comparison of thermal
data with other parameters (seismic, outgassing, deformation) is
usually an integral part of the discussions within the observatory,
and for analysis and evaluation of the ongoing volcanic activity.

Warning
Hazardous eruption is imminent, underway, or suspected. During
imminent eruptions or ongoing eruptions, the thermal data
are checked daily or hourly during crisis (e.g., Bardarbunga,
Iceland [August 2014]; Agung, Indonesia [August 2017]; Kilauea,
United States [May 2018]). In these warning conditions, each
dataset must be more frequently updated. A screen grab of the
MIROVA website is often displayed in the monitoring acquisition
rooms during eruptive crisis (e.g., Nevado del Ruiz, Colombia;
Manam, Papua New Guinea).

What Kind of Information Is Retrieved
From MIROVA
The most useful information to get from a hotspot detection
system such as MIROVA, according to volcano observatories, is
summarized in the following four parameters:

Presence or Absence of Thermal Anomalies
The first and most direct information obtainable from a hotspot
detection system is the presence/absence of thermal anomalies.

During volcanic unrest, the appearance of a hotspot is indicative
of the breaking of the magmatic system through the surface.
In the case of MIROVA, which only detects high-temperature
features, such appearance is commonly ascribed to the presence
of magma at the surface, or at very shallow depths (Laiolo et al.,
2019). For example, during the eruptive crisis of Ubinas in 2014,
the detection of a small thermal anomaly inside the deep crater
signaled the first appearance of a lava dome (confirmed only
later by observations on the ground) after several days of seismic
unrest. The opening of a magma path marked the beginning
of an intense explosive activity that culminated few weeks later
in a series of major explosions (Coppola et al., 2015). The fast
detection of thermal anomalies is therefore very important to
indicate the opening of the system, and coupled with other
geophysical parameters often leads the rise of the alert level,
as recently occurred at Sabancaya (Perù) (Reath et al., 2019b).
On the other hand, the absence of a thermal anomaly is also
important, and may help to discard any possible surface activity
associated with deep seismic activity. This occurred for example
at the Galeras and Chiles-Cerro Negro (Colombia) volcanoes,
which experienced some seismic swarms in the last 4 years (2015–
2019) without showing any kind of surface activity (Ebmeier
et al., 2016). In other cases, and especially during clear waning
phase, the persistence of thermal anomalies is useful to determine
the thermal state of the associated lava bodies. At Momotombo
(Nicaragua), where lava flowed down the flank during the 2015
eruption, from visual observation it appeared like the eruption
had ceased and that the optically black lava had cooled. However,
thermal data showed that the lava near the summit and along
the flow was still hot. Thermal anomalies, combined with seismic
activity, suggested that the lava extrusion was still feeding the flow
and that the potential advancement for lava flow front/perimeter
was still present. Generally, the presence or absence of thermal
anomalies is often used to depict the beginning and the end
of eruptive episodes, especially for which direct or indirect
observations from other monitoring systems are not available.

Intensity
The intensity of the thermal anomaly, referred to as VRP, is
the fundamental parameter of MIROVA and constitutes the
main added value compared to other systems able to detect
the presence/absence of hotspots, without quantifying their
intensity in terms of radiated energy. Besides being a direct
measurement of radiated thermal energy, the VRP can be used
to calculate the area or the temperature of the lava body
using Stephan-Boltzmann law (see details in section “Download,
Data Processing, and Sensibility”), if at least one of the two
variables can be estimated (or assumed) independently. The
area or temperature of a lava dome is a parameter that can
be easily understandable even by non-experts, and provides a
clear idea of the size of the phenomenon underway. Moreover,
during effusive eruptions, the VRP can be used to calculate the
Time Averaged lava Discharge Rate (TADR) and the volume of
erupted lava, subject to a calibration of the conversion factors
or a basic knowledge of the type of erupted lava (Coppola
et al., 2016a; Bernard et al., 2019). These second level products
(Area, Temperature, TADR, Volume) are important for hazard
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evaluation and communication, and require data independent of
the satellite monitoring system as well as interpretation skills by
the end-user. Finally, the quantification of the thermal activity
by means of a parameter that compute in a standardized and
consistent way (such as the VRP), allows for the comparison
between different volcanoes or between different eruptions
of the same volcano. Statistical analysis of the VRP allows
identification of distinct thermal regimes (Coppola and Cigolini,
2013) and may be used to detect change of activity, such as
from Strombolian activity to effusive activity (Coppola et al.,
2013, 2019a; Naismith et al., 2019; see section “Forecasting
Eruptive Trends”), or the occurrence of episodes of dome growth
(Werner et al., 2017). During the growth of a new spatter cone
on February 29, 2016 inside the Nyiragongo Crater, MIROVA
data were used to eventually advise about anomalous large
thermal emissions within the lava lake and/or the presence of
active lava flows in areas around the volcano (see details in the
following section).

Location/Dimension of the Hotspot and Its Distance
From the Volcanic Summit
Locating the thermal anomaly with precision is fundamental
to recognize the type of activity in progress, to assess the
areas at risk and possibly to be able to run forecast models
(for example, forecasting flooding of lava flows; Harris et al.,
2016). The ability to promptly locate these anomalies is closely
linked to the spatial and temporal resolution of the sensor used.
With its 1 km pixel, the MIROVA system does not have the
spatial resolution sufficient to locate the eruptive vents precisely.
However, in most cases, this moderate resolution was found
to be sufficient to discriminate between intra-crater anomalies
(produced, for example, by the fissure opening, lava dome
extrusion, development of high-temperature fumarole fields,
appearance of lava lakes) and lateral anomalies (associated with
lava flows or large pyroclastic flows descending the flanks of
the volcano). This information, supplied in a relatively short
time (e.g., few hours), was fundamental for hazard evaluation
and to timely forecast the eruptive scenarios. It is also useful
tool to detect lava flows generated from more distal flank
fissures, although naturally, there are many false positives (i.e.,
fires). At effusive eruptions, thermal data can be used to
map (at low resolution, e.g., 1 km) lava flow emplacement
in order to detect the position of the flow front and track
the formation of lava tubes (Coppola et al., 2019a). At dome-
forming volcanoes, such as Sinabung (Indonesia), the spatial
distribution/extension of the thermal anomalies allows for an
assessment of stable dome growth, indicated by cluster of
hot pixels at the summit, while for collapsing dome materials
(large rock fall or pyroclastic density currents) and viscous lava
flow, the hot pixels will be aligned with a channel down the
flank. In the case of hot pixels down a channel, the sector
and distance of furthest pixels provides a rapid estimate of
hazardous areas that ought to be maintained as part of an
exclusion zone. This becomes critical as eruption duration
spans years and societal pressure on local officials to re-open
evacuated areas increases (see Supplementary Appendix –
VDAP Survey).

Eruptive Evolution, Trends, and Patterns
In conjunction with seismic, gas geochemistry, visual change
and deformation data, MIROVA provides an initial check for
level and type of activity at volcanoes, e.g., the occurrence of
lava flows, domes or simply hot, degassing open vents. Being
able to track relative changes in thermal output (i.e., VRP) as
a time series, provides a useful assessment of any changes in
activity, although a lack of thermal data does not necessarily
means a volcano is cooling off (it can be due to cloud or thick ash
cloud cover). Stationary, waning or intensifying trends obviously
have different implications on the evaluation of the hazards and
can be used (modeled) to define future eruptive scenarios, and
possibly to make forecasts. At Piton de la Fournaise (La Réunion
Island), the knowledge of the effusion rate trend (derived from
thermal data), in combination with previously generated models
of the likely lava flow path, has been useful to predict whether
the flow will tend to lengthen or shorten, and whether the
lava flows will reach the sea, cutting the national road that
goes around La Réunion Island (Harris et al., 2017, 2019).
Moreover, by comparing this variable with the gas flux and
deformation rate, it is possible to analyze the balance of the
erupted/degassed material and eventually to quantify magmatic
intrusions or endogenous growth (Coppola et al., 2017, 2019a).
During the Holuhraun (Iceland) eruption 2014–2015, MIROVA
was regularly checked to monitor the level of activity at the
eruption site (Barsotti et al., 2019), to estimate of lava discharge
rate and, eventually, to declare the end of the eruption based
on the observed eruptive trend (Coppola et al., 2017). In the
case of Nevado del Ruiz (Colombia), MIROVA’s thermal anomaly
data matched very well with shallow seismicity increments, ash
emissions (seismically associated to volcanic tremor), large SO2
fluxes, tiltmeters inflationary trends, etc. The largest VRP values
have been clearly associated with magma ascent to shallower
levels of the volcanic conduit and surface magma extrusion
process (lava dome emplacement within the inner part of crater).
During the 2018–2019 Manam (Papua New Guinea) eruptions
(Global Volcanism Program, 2019), the thermal trends provided
confirmation that increased RSAM was due to renewed activity
and that the activity involved the effusion of lava flows, and
in what direction the flows were moving. After reaching the
climax, the thermal data also indicated the waning of the activity,
suggesting that the effusive event was coming to an end. Similarly,
during the 2014 eruption of Ubinas (Peru), the increasing VRP
values were compared with the state of seismicity, as well as with
other parameters (such as ash or SO1 missions, etc.; Coppola
et al., 2015) to provide, eventually, recommendations to the civil
protection authorities for the evacuation of the population.

How Thermal Data Are Used
The use of the observations/images/data obtained from MIROVA
is highly varied and depends fundamentally on four factors:
(i) the presence and (quality) of a ground-based monitoring
network; (ii) the accessibility of the volcano; (iii) the alert level;
and (iv) the type of activity in progress.

Remote-sensed thermal observations clearly provide
invaluable information for volcanoes not monitored in other
ways, and may represent the only evidence of ongoing volcanic
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activity (Coppola et al., 2016a). These data may provide
fundamental indications on the evolution of the unrest/eruption
(e.g., stationary, increasing, decreasing), although incomplete.

When an eruption begins, remote sensing methods allow the
surveillance of volcanic phenomena, and help minimizing the
risks associated with direct exposure of observers to the activity.
Often, it is very difficult, impossible, or too expensive to make
frequent observations of the volcanoes’ summit, as well as to
measure directly lava flows, domes or fumarole temperatures. It
is usually impossible to conduct frequent airborne observations
within the crater, so MIROVA data are useful to get a longer
time series for routine monitoring, to verify reports, rumors, or
provide observations for internal and wider discussions before
making a decision to assess the level of activity at the volcano.

At basaltic volcanoes equipped with a large ground-based
monitoring network, such as Stromboli, Etna, Piton de la
Fournaise, etc., MIROVA is commonly used to estimate time-
averaged lava discharge rates (TADR) and erupted volumes in
near real time (Coppola et al., 2019a; Laiolo et al., 2019), to define
imminent eruptive scenarios (Ripepe et al., 2017) and to model
the path and length of lava flows (Harris et al., 2017, 2019).

In summary, the processed data provided by MIROVA
are used by the observatories in different ways, but essential
for monitoring activities, internal discussions on the volcano’s
activity level and for real-time calculations of the erupted volume
and eruptive trend. This information actually converges to
activity reports (daily, weekly, monthly or extraordinary reports),
in which the thermal data are integrated with other monitoring
parameters in order to evaluate the state of activity and to
maintain situational awareness.

The Volcano Disaster Assistance Program (VDAP) also
includes the use of the website at trainings offered at volcano
observatories where they are just starting to use remote sensing
as part of their volcano monitoring. The MIROVA website is
freely accessible to observers who do not necessarily have the
background knowledge or funding support for more elaborate
remote sensing analysis. Furthermore, the website is reliable,
immediately accessible and requires no maintenance on their part
beyond reliable internet connectivity.

KEY-CASE STUDIES

Below we summarize some case studies for which MIROVA
satellite thermal data proved to be an essential element in the
detection and characterization of volcanic (thermal) unrest, in
the forecast of eruptions and in the recognition of particular
trends and patterns.

Thermal Unrest
Volcanic unrest is commonly defined as a change from “normal
state” at a volcano, or deviation from its background behavior
(Gottsmann et al., 2017). Seismic activity, surface deformation,
heat or gas emissions can be used as unrest indicators for a certain
volcano and need to be interpreted to be able to implement
timely mitigation actions (Phillipson et al., 2013). The appearance
of thermal anomalies before an eruption is often considered as

an important precursor and a clear symptom of volcanic unrest
(Reath et al., 2016). A recent review (Furtney et al., 2018) suggests
that about 19% of major eruptions are anticipated by thermal
precursors detected by satellites, although the mere presence of
thermal activity to a volcano does not necessarily constitute a
change from its background level.

The MIROVA archive now embeds 65 of 72 volcanoes
that after 2002 produced at least one VEI 3 eruption (Global
Volcanism Program database, accessed on 26 June 2019).
A preliminary analysis suggests that only 4 to 5 volcanoes of these
65 MIROVA targets, displays anomalies that can be considered as
a thermal precursor of the upcoming VEI 3 eruption (Figure 7).
This number possibly increases if we consider less explosive
eruptions and changes from background activity at persistently
active volcanoes. However, from our analysis, only 6–8% of the
volcanoes seem to develop thermal unrest before a VEI 3 eruption
detectable by MIROVA. It is interesting to note that the thermal
unrest observed at these volcanoes shows unique behavior in
terms of duration, pre- and post-eruption trends, as described
below (Figures 7a–e):

Sabancaya, Perú (Development of Fumarole Fields –
Figure 7a)
This is the archetype of thermal unrest consisting of the gradual
appearance of very low-level thermal anomalies (< 1MW)
localized at the bottom of a summit crater. It is associated with
the slow (∼860 days for Sabancaya) development of a fumarole
field within the crater area, showing a slight increase in the
area and temperatures of fumaroles and almost constant water-
vapor and SO2 plumes rising from the crater (Global Volcanism
Program, 2016). The explosive VEI 3 eruption definitely opened
the magma path and allowed the underlying magma to come
to the surface producing evident and more persistent thermal
anomalies (Figure 7a).

Santa Ana, El Salvador (Rupture of Hydrothermal
System – Figure 7b)
In this case the thermal unrest has a pre-eruptive phase
characterized by a long (∼376 days) and gradual development
of a high-temperature fumarole field developing on the border
of an acidic crater lake. Possibly, this type of thermal precursor
develops in response to a magmatic injection at very superficial
levels, which causes the rupture of the hydrothermal system
feeding the acidic lake (Laiolo et al., 2017). Notably, the
interaction between the fumarolic field and the crater lake may
eventually cause a “decrease” in thermal activity due to self-
sealing phenomena that may precede a major explosion (Laiolo
et al., 2017). Unlike the previous case, the explosive event is
not followed by a magmatic eruption (with lava dome extrusion
and/or recurrent ash-explosions), but it is characterized by the
almost total, definitive absence of a thermal anomaly (Figure 7b).

Llaima, Chile (Rise of Magmatic Column – Figure 7c)
This type of thermal precursor may occur in basaltic and
basaltic-andesitic volcanoes characterized by the reactivation of
the central vent after a period of quiescence. The unrest phase
is typically characterized by an evident increase in thermal
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FIGURE 7 | Five cases of thermal unrest detected by MIROVA: (a) Sabancaya, (b) Santa Ana, (c) Llaima, (d) Bezymianny, (e) Tinakula. The red dashed line indicates
the occurrence of a large explosion (VEI 3). The gray fields indicate the periods showing precursory thermal activity. The duration of each thermal unrest phase is
indicated with arrows. Note how each volcano shows different behavior of thermal unrest in terms of duration, pre-eruptive level and trend, as well as post-eruptive
pattern. See the text for more details.

anomalies inside the summit crater, corresponding to the opening
of the system, followed by the ascent of the magmatic column
and by increasing explosive activity (Franco et al., 2019), that
culminates with a paroxysmal phase (Figure 7c). The explosive

activity is followed by a further intensification of the effusive
activity with the consequent emission of lava flows along
the flanks of the volcano (Global Volcanism Program, 2008;
Bouvet de Maisonneuve et al., 2012).
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Bezymianny, Kamchatka (Increase in Dome Extrusion
Rate – Figure 7d)
Activity of Bezymianny consists of ongoing lava-dome growth
inside a large horseshoe-shaped crater, accompanied by
intermittent explosive activity and pyroclastic flows. As already
advised by previous works (van Manen et al., 2010, 2013), some
major explosions of Bezymianny are preceded by weeks of
gradual increase of the thermal anomaly, thus constituting one
of the most robust precursors for this remote volcano. In this
case the thermal precursor occurred at a volcano characterized
by a persistent, low level thermal activity, associated with
the presence of degassing hot cracks and minor explosions.
The increase of VRP prior to large explosions (Figure 7d)
has been attributed to an increase in the dome extrusion rate
(van Manen et al., 2010, 2013).

Tinakula, Solomon Islands (Sudden Opening of
Magma Path – Figure 7e)
After more than 5 years of quietness, on 19 October 2017, a
low thermal anomaly was detected by MIROVA at the Tinakula
volcano. This small thermal precursor was the unique sign of
renewed eruptive activity at this remote volcano and preceded
by only 2 days the large VEI 3 explosion which occurred on
21 October (Global Volcanism Program, 2018; Laiolo et al.,
2018). This short unrest is probably a limit case for MIROVA-
type systems (i.e., based on Moderate Resolution data) and
suggests that the first thermal anomaly, detected after a several
year-long period of quiescence, must be seriously evaluated and
can represent a solitary short-term precursor of an incoming
major eruption. On the other hand, it also outlines the need
to have thermal satellite data with a high temporal resolution
by keeping a high efficiency and a very limited number of
false alerts. In the specific case of Tinakula it was necessary
the post-event supervision (e.g., after the VEI 3 explosion) of
the image of October 19, in order to exclude that it was a
false alert. Actually, one real problem is how to assess the
accuracy of each thermal alert, since there will always be a
possibility of false or non-volcanic alerts. Fires constitute non-
volcanic heat sources frequently detected in volcanic areas, but
their distinction from volcanic hotspots cannot currently be
done on a spectral basis. In addition, a smaller but variable
percentage of false alerts, generally comprised between 0 and
3% (number of false alerts/number of MODIS overpasses), is
detected by the MIROVA system at different volcanoes (Coppola
et al., 2016b). These false alerts depend on the regional and local
environmental conditions as climate, elevation, topography and
land cover type.

With the exception of these five cases, our data suggest that
most of VEI 3 eruptions are not preceded by thermal anomalies
detectable by monitoring systems such as MIROVA. This is
possibly due to the sensitivity of this type of systems that fail
to detect small, low-intensity thermal anomalies. Indeed, the
percentage of thermal unrest rises considerably if thermal data
with higher spatial resolution are used as suggested by Furtney
et al. (2018) and Reath et al. (2019a). On the other hand, it cannot
be excluded that the appearance of thermal precursors and the
explosivity index of the subsequent eruption are somehow related

to the degree of openness of the shallow magmatic system.
A more detailed analysis, which also considers the possible
appearance/variation of thermal anomalies before the numerous
VEI 1-2 eruptions that have occurred in the MODIS era, will
surely help to clarify whether there is a correlation between the
timing and intensity of thermal unrest and the magnitude of the
explosive eruption.

Forecasting Eruptive Trends
Forecasting the time and scale of a volcano eruption is the
goal of several monitoring and research efforts (see Marzocchi
and Bebbington, 2012 for a review). Generally, with eruption
forecasting we mean the ability to evaluate the occurrence of
a volcanic eruption on the basis of a probabilistic approach.
Forecasting what happens after eruption onset, or when
an eruption will come to an end is also critical for the
decision-making procedure and for updating eruptive scenarios
(Bebbington and Jenkins, 2019).

As illustrated in the previous paragraph, in most cases, the
MIROVA data do not record thermal precursors before > VEI
3 eruptions and therefore in many cases do not allow to make
forecasts of imminent major explosive eruptions (with some
important exceptions; Figure 7). However, thermal data show
their strength during the course of eruptions, allowing, in some
cases, the generation of forecasts of future activity based on the
analysis of eruptive trends (Bonny and Wright, 2017).

Many effusive eruptions show a characteristic exponential
decrease of effusion rates over time, ascribed to elastic or inelastic
processes occurring within the decompressing magmatic system
(Wadge, 1981; Coppola et al., 2017). In Figure 8a we show the
TADR and erupted volumes, reconstructed through the MIROVA
data, for the April 2018 eruption of Piton de la Fournaise (Harris
et al., 2019) that can be considered as archetypal for this type of
trend. Taking into account the uncertainty in the TADR estimates
(typically between 30 and 50%; Coppola et al., 2019b), several
types of predictions are possible. For example, the initial flow rate
(Q0) can be used (as soon as the MODIS data has been processed)
within an effusive response protocol (Harris et al., 2017, 2019),
to timely provide the observatory flow path projections and
maximum run-out of the emplacing lava flow (Figure 8b).

Once the exponential trend has become recognizable, as in
the case of the Bárðarbunga-Holuhraun (Iceland) 2014–2015
eruption, extrapolation from initial data can be used to evaluate
final (or intermediate) erupted volumes (Figure 9a), useful, for
example, to run simulation codes for lava flow invasion maps
(Tarquini et al., 2019).

Projection of effusion rate trends to the future (black line
Figure 9b) may also be used to forecast/predict the end of this
type of eruptions (Coppola et al., 2017). In fact, before the
end of the Bárðarbunga-Holuhraun eruption there was a drastic
decrease in the effusion rates with respect to the model based
upon the exponential curve. In this case, the phenomenon was
attributed to the gradual closure of the dike, once the effusion
rates (or driving pressure) dropped below a critical value (yellow
star in Figure 9b). The detection in real-time of a change from the
expected trend can therefore be useful information to estimate
when the eruption end (Coppola et al., 2019a).
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FIGURE 8 | (a) Middle Infrared Observations of Volcanic Activity-derived TADR (blue circles) and cumulative volume (red circles) provided to the Observatoire
Volcanologique du Piton de la Fournaise (OVPF) during the April 2018 eruption. Q0 is the initial flow rate, used to model the maximum runout of the emplacing lava
flow (modified from Harris et al., 2019). (b) Lava flow inundation map derived from ingestion of MIROVA-derived TADR into DOWNFLOW-PyFLOWGO models. The
numbers (in m3 s−1) next to each star correspond to maximum and minimum estimate of Q0 measured on 28 April 2018. Overlain are the limits of the flow field
defined from InSAR incoherence (blue outline) and field mapping (yellow outline) on the same dates. Background shows the DOWNFLOW inundation area (modified
from Harris et al., 2019).

FIGURE 9 | (A) Extrapolation of the cumulative erupted volume during the Holuhraun 2014–2015 eruption, based on the initial 5 weeks of observations (modified
from Tarquini et al., 2019), (B) Time-averaged lava discharge rate (TADR) measured during Holuhraun eruption (Iceland) (black circles; modified from Coppola et al.,
2017) shows exponential decay of effusive activity. Departure from exponential trend began on 27 January 2015 and preluded the end of the eruption on 27
February. The yellow star indicates the critical flow rate Qc of ∼50 m3 s−1 when dike started to close. Numbered circles indicate main steps of eruption: (1) start of
rifting episode and lateral magmatic injection; (2) start of caldera subsidence; (3) start of effusive eruption; (4) closure of lateral dike; and (5) end of eruption (modified
from Coppola et al., 2017).

At persistently active volcanoes, such as Etna or Stromboli,
the long-term analysis of MIROVA data has allowed the
determination of specific thresholds (Figure 10) that separates
the typical open-vent activity (with continuous degassing and
intermittent strombolian activity), from more intense phases
characterized by effusive activity and/or fountaining episodes
(Coppola et al., 2013, 2019a). According to the authors, these
thresholds represent a critical magma flux (about 0.1–0.3 m3 s−1)

above which the ascending magma can no longer be recycled
in the conduit, and must be partially or completely extruded
through effusive activity. The definition of these thresholds (blue
dashed lines in Figure 10), allows the separation of the different
regimes of activity, making it possible to track the rise of magma
within the conduit and to advise about potential transitions
toward magma effusion (Valade et al., 2016; Ripepe et al., 2017;
Laiolo et al., 2019).
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FIGURE 10 | Two-years long time-series of MIROVA-derived TADR for Etna (A1) and Stromboli (B1) volcanoes (modified from Valade et al., 2016 and Laiolo et al.,
2019, respectively). A threshold separating the Strombolian and the effusive regime, is calculated from the statistical analysis of log-transformed TADRs (A2,B2) that
outline the bimodal behaviors of magma flux.

LIMITS AND FUTURE DEVELOPMENTS

The surveys carried out by the observatories (Supplementary
Appendix) highlight the current limits of the MIROVA system
and provide guidelines for future development of an optimal
satellite thermal monitoring system. In particular, the following
points were highlighted:

Image Quality Assessment
Providing an evaluation of cloudiness and image/data quality
is fundamental. In particular, any hot spot detection system
should be able to quantify the effects of clouds and viewing
geometry condition, within each acquired image (Coppola
et al., 2016a). This fundamental step is currently absent in all
the operational systems (Supplementary Table S1) and surely
requires further efforts. One particular goal is to be able to
determine automatically if the absence of a hotspot is real (no sign
of thermal anomaly) or if it is due to the presence of clouds or to
unfavorable viewing geometry. Typical estimates of the average
cloud fraction within a region of interest may be useful for
long-term analysis but not practical for operational monitoring
in real time, where every single image must be interpreted.
Moreover, when considered over large areas, the quantification
of cloud fraction may cause misinterpretation of thermal data.
In fact, in many cases thermal anomalies within high-altitude
summit craters may be discarded or classified as strongly
attenuated, because the surroundings pixels are cloudy (although
the crater is actually without cloud cover). Quantification of cloud
attenuation on a pixel per pixel basis would be an ideal solution

(Koeppen et al., 2011), but this would require the collection
and analysis of many more bands, including ancillary metadata
and other atmospheric properties for every acquired image.
Although this approach may provide excellent results, it remains
time- and resource- consuming, especially for real time analysis.
Similarly, as several volcanoes have steep slopes, the influence
of topography on lava flow quantification from satellite thermal
data may be important and require case by case correction
models (Zakšek et al., 2017). An apparent decrease in heat flux
may be due to unfavorable viewing conditions. This information
must be accessible to users in order to correctly interpret each
individual image. A promising solution is provided by machine
learning (i.e., Valade et al., 2019), where an artificial intelligence is
instructed on the basis of a supervised manual selection of cloud
free images acquired in optimal viewing conditions.

Improve Spatial Resolution
The spatial resolution of the satellite thermal detection system is
fundamental in every aspect of volcanic monitoring. In particular,
it has been proved that the integration of high spatial resolution
data in the TIR (i.e., ASTER; Landsat8-TIRS) as well as in
the NIR/SWIR (i.e., Landsat8-OLI; Sentinel2) greatly improves
the ability to detect smaller or low intensity thermal anomalies
(Jay et al., 2013; Reath et al., 2019a; Valade et al., 2019). From
an operational point of view, this translates into detecting a
thermal precursor with respect to days/months earlier than
moderate-resolution systems (Reath et al., 2019b). Nevertheless,
integration of multisensor thermal data into a single volcanic
hotspot detection system is still matter of development (Laiolo
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et al., 2019), and currently no operative system exists that
systematically provide this integrated information on the web
(Supplementary Table S2).

Moreover, given the variability of wavelengths at which
these sensors operate (from SWIR to MIR and TIR), the
thermal information retrieved display different sensitivities to
the wide range of temperatures of volcanological interest (i.e.,
from 50 to 1200◦C) and is often inhomogeneous between the
different datasets (for example, spectral radiance, hotspot area,
temperature, radiative power).

A preliminary comparative study between MODIS-MIROVA
and SENTINEL2 (Massimetti et al., 2018; Valade et al., 2019)
showed that the two systems provide extremely coherent and
complementary information. The example of Figure 11 shows
what could be an integrated output of these two datasets
(Massimetti et al., 2018) for the case of Agung volcano. The
frequent acquisition of SENTINEL2 images (every 5 days) allows
the tracking of the evolution of the area of the thermal anomaly
inside the Agung crater, with a discrete temporal detail (red
circles in Figure 11). The latter is in excellent agreement with the
thermal flux measured by the MODIS (blue stem in Figure 11) to
which it adds a high spatial resolution (20 m in the NIR/SWIR)
that allows the location and mapping of the thermal anomaly
inside the crater with great detail. Small changes in the location,
area and or temperature of the hot feature are thus easily tracked
by SENTINEL 2 data, and are coherent with MIROVA dataset.
An additional improvement can be obtained by integrating also
the data provided by Landsat8-OLI sensor (30 m), considering
the appropriate spectral bands in NIR/SWIR.

Moving toward the TIR-based systems, it has been shown that
sensors such as ASTER (Ramsey et al., 2004) and LANDSAT8-
TIRS (Blackett, 2014) allow the monitoring of low temperature
thermal anomalies, such as fumaroles, hydrothermal systems,
temperature of crater lakes, otherwise undetectable via systems
using the NIR, SWIR or MIR bands. The integration of these data
is certainly an opportunity that has not been currently exploited.

Improve Temporal Resolution of MIR
Data
The temporal resolution is also extremely important to promptly
detect a thermal anomaly, as well as to follow the course of an
eruptive crisis. Increasing the frequency of thermal observations
can be achieved through two ways: (i) adding new coherent
datasets, from other similar polar sensors, and (ii) processing
geostationary data.

The acquisition, processing and integration of thermal data
from other sensors having MIR channels, such as the VIIRS or the
SENTINEL 3, constitutes a relatively simple step to implement
the VRP time series provided by MIROVA. In fact, these sensors
have spatial and spectral characteristics very similar to MODIS
(Blackett, 2015) that allow the direct application of the algorithms
behind MIROVA on the new acquired data. Their processing
would therefore allow thermal anomalies to be detected more
frequently and with a greater probability of acquisition in optimal
conditions. The main obstacle for such implementation remains
the quantity of data to be analyzed and the storage capacity

of the local server. These problems require the development
of a more complex infrastructure than the existing one or,
alternatively, the use of cloud computing services such as those
provided by Google Earth Engine6 or Amazon Web Services7.
However, the products useful for the application of the MIROVA
algorithm (geolocated, corrected spectral radiances) are not yet
available on these platforms in near real time, making this option
currently impossible.

Given the low spatial resolution of geostationary platforms
(Supplementary Table S1), the hot spot detection systems based
on these sensors are generally not able to detect low intensity
thermal precursors. However, once an eruption has begun, it
is possible to follow the event with temporal resolutions up
to 5–15 min which make them extremely useful during crisis
management (i.e., Ganci et al., 2011; Schneider et al., 2014;
Gouhier et al., 2016; Lombardo, 2016; Patrick et al., 2016).
The analysis of these data at high temporal frequency and
their integration with systems based on polar satellites (such as
MODIS) is not trivial and requires the processing of data in
virtually streaming mode. The recent availability of geolocated
and radiometrically pre-processed geostationary image data,
provided by systems like EUMETVIEW8 in near real time, is
certainly a first fundamental step which needs further efforts and
development to integrate these high-frequency datasets into an
multiplatform satellite volcanic monitoring systems.

It is hoped that with the continuous technological
development, future satellite missions will be specifically
dedicated to volcanic monitoring, or at least will be characterized
by sensors with appropriate features that would make a
breakthrough in volcanic monitoring. In particular, it is
absolutely necessary to maintain the continuity of observations
in the MIR (such as MODIS and VIIRS), to continue the almost
20-years-long dataset, provided by MIROVA and MODVOLC,
possibly improving both spatial and temporal resolution. The
presence of SWIR and TIR data, co-registered with MIR and not
saturated, would also be a significant improvement for future
sensors that would permit the coverage, in a single system, of
the wide range of temperature observed on volcanoes. This
would allow a detailed characterization of thermal anomalies,
potentially useful for real-time determination of the eruption
style and composition of terrestrial lavas (Wright et al., 2011).

Data/Image Availability, Archive and
Sharing
The availability of data and the possibility of them being searched,
displayed and downloaded in real time is another important
element to make a volcanic hot spot detection system fully
operational. Currently, MIROVA does not allow this possibility,
which is compensated by sharing data via email in the case
of need. This step requires considerable and continuous efforts
by the system developers, but allows the checking of the
dataset for the presence of any false alerts, to remove other
thermal emitters, such as fires, and to provide support for

6https://earthengine.google.com/
7https://aws.amazon.com
8https://eumetview.eumetsat.int/mapviewer/
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FIGURE 11 | Example of integration of MODIS-MIROVA (1 km) and SENTINEL2 (20 m) thermal data. The panels on the left show the SENTINEL 2 image of 18 May
2019 (combination of bands 12, 11, 8A) acquired over Agung volcano (Indonesia). On the top-left is shown a zoomed view of the crater area (2 km × 2 km)
enhancing the presence of a hot lava body. The panels on the right show the MIROVA thermal flow time series (stems) and SENTINEL 2 hot pixel number (circles) of
the last 2 months (high) and 2 years (low). The red circles represent the extension of the thermal anomaly within the Agung crater (N Pixel × 106). Note the excellent
correlation between the volcanic radiative power, measured by the MODIS, and the extent of the anomaly (number of hot pixels), detected by SENTINEL 2.

the interpretation of the data, which in some cases can be
ambiguous for non-experts. It can therefore be considered a
sort of quality control service of the data that reduces the
uncertainty (including cleaning of data sets of unreliable or
untrustworthy data points) and any indirect, incidental or
consequential damages arising out of any use of, or inability
to use, the data.

Nevertheless, the creation of a web-based database for the
entire MIROVA archive (time series) remains a task for future
development to ensure faster information flow. The development
of the apps (for mobiles and desktop pc) is an additional data
sharing method, which would allow each individual user to select
only the volcanoes of interest observed by MIROVA. Updates
could be available through real-time notifications.

The system could be also improved by providing a
simple display of daily, monthly and annual values (including
cumulative curves) that could be easily accessed by volcano
observatories for research/monitoring purposes.

Although the time series plots of VRP and distance are very
useful for ongoing situation information, visualization of the
image is useful to get the full sense for the spatial pattern of
the thermal anomaly, or to verify the presence of clouds or ash
plumes above the volcano. MIROVA offers the ability to check

the latest 10 images on the web site, but is not possible to
go back days, months, years and visualize the archived images,
thermal alerts and hotspots. In addition to the time series, a
data archive of thermal images, searchable and downloadable
on line, is certainly a useful tool for the post-event analysis,
but also for real-time assessments. Comparison of older data to
the near-real time scenes allows for a quick reality check of the
current situation to the last thermal events to see whether this is
a repeat of normal behavior of whether this new thermal pattern
is anomalous and atypical.

The integration of the thermal dataset with the satellite
image viewing capabilities offered by cloud platforms such as
WorldView9 could be a particularly interesting solution to greatly
simplify the visualization of MODIS images by local systems
(such as MIROVA), by maintaining the possibility of linking the
VRP time series with an independent image browser. However,
building an online archive requires a major upgrade of the system
and improved storage capacity (millions of images to manage).
MODVOLC (Wright et al., 2004) offers an efficient ability to
go back days, months, years and still get a quick plot of the
distribution of thermal alerts, but it does not store the images.

9https://worldview.earthdata.nasa.gov/
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True Global Detection Capabilities
Keeping High Sensitivity
A final limit that could be overcome is the transformation of
a system like MIROVA into a real global volcanic monitoring
system. In fact, many observatories have shown interest in
extending the satellite observations currently provided by
MIROVA to many more volcanoes. However, the current limit
of download and storage capacity of the system does not allow
for such expansion, making MIROVA a potentially global system
only. Hotspot detection systems that are really global, such
as MODVOLC or FIRMS, offer effective coverage over the
entire earth’s surface, but at the expense of less efficiency in
detecting low-intensity thermal anomalies (due to the simplicity
of the algorithm). Moreover, they do not allow the display of
original images, which we have seen to be fundamental for the
correct interpretation of the thermal anomalies in real time.
This major limitation, essentially technological, could possibly
be overcome by a hardware upgrade of the current system,
allowing the inclusion of all the Holocene volcanoes (about
1500) currently present in the Global Volcanism Database. This
option would limit the amount of data to be analyzed only
to areas of volcanic interest (not to the whole Earth’s surface
as it is done for MODVOLC or for FIRMS), retaining the
possibility to add, in few hours at most, new targets in areas
not yet covered. Alternatively, the development of 5 or 6 local
systems (MIROVA clones), hosted by respective volcanological
observatories, and focused only on regions (e.g., Asia, Africa,
Europe, etc.) or countries can be a technologically easier solution
to implement (it simply requires settling MIROVA on different
targets in each region), which however involves an adaptation of
the system to the specific hardware and networking requirements
of each observatory.

CONCLUSION

Middle Infrared Observations of Volcanic Activity is a system
that provides satellite observations, in near real time, regarding
the thermal state of more than 200 volcanoes worldwide. The
system provides on a specific website10 thermal images and
time series of VRP that are examined daily by more than 15
volcanological observatories. This information is being used
daily to assess the presence/absence of thermal activity and
eventually to locate and quantify these anomalies during phases
of unrest or during eruptions. The recognition of particular
thermal data trends or patterns, and the integration with
other geophysical/geochemical parameters, permits an improved
evaluation of the activity of a volcano. In many cases, the thermal
data have been fundamental for the detection of the appearance of
lava domes at the bottom of deep craters, or to quantify effusion
rates and volumes erupted during effusive eruptions. In open vent
volcanoes, the thermal data also permit to track the rise of the
magmatic column that precedes effusive eruptions, although the
detection of thermal precursors before major explosions remain
currently a challenge for MIROVA.

10www.mirovaweb.it

All these applications are the result of a long chain of data
sharing which, starting from the raw data generated by satellite
and delivered by the space agency (NASA) via an open-data
policy, finally reaches the observatories, as a useful product for
volcanic monitoring.

The current system is, however, limited in a series of aspects
that include: (i) the moderate spatial and temporal resolution
of the data, (ii) the limited capacity to download and explore
the entire archive of time series images, and (iii) the non-
global coverage.

Several improvements can be made to partially overcome
these limits. However, all these enhancements require human
effort, as well as financial and technological resources that can
be only partially supported by individual observatories or small
research groups. As envisioned by Pritchard et al. (unpublished),
the future development of a global volcano remote sensing
observatory requires international support at each stage of the
processing chain, from the acquisition and elaboration of the
data, to their interpretation and dissemination to the volcano
observatories or civil protection agencies.

Middle Infrared Observations of Volcanic Activity is a small
pilot project, originally created to monitor only a few volcanoes.
However, thanks to the sharing of open data and the growing
collaboration with volcanological observatories, it has become
a useful tool for monitoring hundreds of volcanoes around the
world. Thanks to this experience, we are convinced that the
role of thermal remote sensing will grow in the coming years,
due to the great contribution provided by this open data to the
comprehension of volcanic phenomena, and in particular for the
hazard evaluation of volcanoes worldwide.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

DC conceived and wrote the work. DC and ML have developed
and analyzed the MIROVA data. FM analyzed the Sentinel2
images. All authors listed have made a substantial, direct
and intellectual contribution to the work, and approved it
for publication.

FUNDING

This research has benefited from funding provided by the
Italian Presidenza del Consiglio dei Ministri, Dipartimento della
Protezione Civile (DPC) as part of the DEVnet Program (2014–
2016) that includes a collaborative project between the Earth
Sciences departments of the University of Florence and the
University of Turin. This research was partially supported by the
Italian Ministry for Universities and Research (MIUR).

Frontiers in Earth Science | www.frontiersin.org 18 January 2020 | Volume 7 | Article 36223

http://www.mirovaweb.it
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00362 January 27, 2020 Time: 15:23 # 19

Coppola et al. Thermal Remote Sensing for Volcano Monitoring

ACKNOWLEDGMENTS

We thank the three reviewers for their constructive comments
and for the attention paid to revising this work. We
acknowledge the LANCE-MODIS system (http://lance-
modis.eosdis.nasa.gov/) for providing Level 1B MODIS
data in near-real time. We thank many collaborators
and students of the University of Turin who have
contributed to the development and maintenance of the
MIROVA system.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.
2019.00362/full#supplementary-material

TABLE S1 | Thermal Remote sensing systems available on the web, for
operational volcano monitoring.

TABLE S2 | Synthesis of observatories currently using MIROVA in support of
monitoring activity. From Global Volcanism Program (2013).

REFERENCES
Anantrasirichai, N., Biggs, J., Albino, F., Hill, P., and Bull, D. (2018). Application

of machine learning to classification of volcanic deformation in routinely
generated InSAR data. J. Geophys. Res. Solid Earth 123, 6592–6606.

Barsotti, S., Oddsson, B., Gudmundsson, M. T., Pfeffer, M. A., Parks, M. M., et al.
(2019). Operational response and hazards assessment during the 2014–2015
volcanic crisis at Bárðarbunga volcano and associated eruption at Holuhraun,
Iceland. J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2019.106753

Bebbington, M. S., and Jenkins, S. F. (2019). Intra-eruption forecasting. Bull.
Volcanol. 81:34. doi: 10.1007/s00445-019-1294-9

Bernard, B., Gibson, S., Ramon, P., Gleeson, M., Stock, M., Hernandez, S., et al.
(2019). Chronology and phenomenology of the 1982 and 2015 wolf volcano
eruptions, Galápagos Archipelago. J. Volcanol. Geotherm. Res. 374, 26–38. doi:
10.1016/j.jvolgeores.2019.02.013

Blackett, M. (2014). Early analysis of landsat-8 thermal infrared sensor imagery of
volcanic activity. Remote Sens. 6, 2282–2295. doi: 10.3390/rs6032282

Blackett, M. (2015). An initial comparison of the thermal anomaly detection
products of MODIS and VIIRS in their observation of Indonesian volcanic
activity. Remote Sens. Environ. 171, 75–82. doi: 10.1016/j.rse.2015.10.002

Bonny, E., and Wright, R. (2017). Predicting the end of lava flow-forming eruptions
from space. Bull. Volcanol. 79:52. doi: 10.1007/s00445-017-1134-1138

Bouvet de Maisonneuve, C., Dungan, M. A., Bachmann, O., and Burgisser, A.
(2012). Insights into shallow magma storage and crystallization at Volcán
Llaima (Andean Southern Volcanic Zone, Chile). J. Volcanol. Geotherm. Res.
211-212, 76–91. doi: 10.1016/j.jvolgeores.2011.09.010

Brown, S. K., Loughlin, S. C., Sparks, R. S. J., Vye-Brown, C., Barclay, J., Calder, E.,
et al. (2015). “Global volcanic hazard and risk,” in Global Volcanic Hazards and
Risk (Cambridge, MA: Cambridge University Press).

Coppola, D., Barsotti, S., Cigolini, C., Laiolo, M., Pfeffer, M. A., and Ripepe,
M. (2019a). Monitoring the time-averaged discharge rates, volumes and
emplacement style of large lava flows by using MIROVA system: the case of
the 2014-2015 eruption at Holuhraun (Iceland). Ann. Geophys. 61:VO221. doi:
10.4401/ag-7812

Coppola, D., Campion, R., Laiolo, M., Cuoco, E., Balagizi, C., Ripepe, M., et al.
(2016a). Birth of a lava lake: Nyamulagira volcano 2011-2015. Bull. Volcanol.
78, 1–13. doi: 10.1007/s00445-016-1014-7

Coppola, D., and Cigolini, C. (2013). Thermal regimes and effusive trends at
Nyamuragira volcano (DRC) from MODIS infrared data. Bull. Volcanol. 75:744.
doi: 10.1007/s00445-013-0744-z

Coppola, D., Laiolo, M., Cigolini, C., Donne, D. D., and Ripepe, M. (2016b).
Enhanced volcanic hot-spot detection using MODIS IR data: results from the
MIROVA system. Geol. Soc. Lond. Spec. Publ. 426, 181–205. doi: 10.1144/sp
426.5

Coppola, D., Laiolo, M., Massimetti, F., and Cigolini, C. (2019b). Monitoring
endogenous growth of open-vent volcanoes by balancing thermal and SO2
emissions data derived from space. Sci. Rep. 9:9394. doi: 10.1038/s41598-019-
45753-4

Coppola, D., Macedo, O., Ramos, D., Finizola, A., Delle Donne, D., Del Carpio,
J., et al. (2015). Magma extrusion during the Ubinas 2013–2014 eruptive crisis
based on satellite thermal imaging (MIROVA) and ground-based monitoring.
J. Volcanol. Geotherm. Res. 302, 199–210. doi: 10.1016/j.jvolgeores.2015.07.005

Coppola, D., Piscopo, D., Laiolo, M., Cigolini, C., Delle Donne, D., and Ripepe, M.
(2013). Radiative heat power at stromboli volcano during 2000–2011: twelve

years of MODIS observations. J. Volcanol. Geotherm. Res. 215–216, 48–60.
doi: 10.1016/j.jvolgeores.2011.12.001

Coppola, D., Ripepe, M., Laiolo, M., and Cigolini, C. (2017). Modelling satellite-
derived magma discharge to explain caldera collapse. Geology 45, 523–526.
doi: 10.1130/G38866.1

Davies, D. K., Ilavajhala, S., Wong, M. M., and Justice, C. O. (2009). Fire
information for resource management system: archiving and distributing modis
active fire data. IEEE Trans. Geosci. Remote Sens. 47, 72–79. doi: 10.1109/tgrs.
2008.2002076

Dean, K. G., Jon, D., Kevin, E., Pavel, I., and Ken, P. (2002). “Operational satellite
monitoring of volcanoes at the alaska volcano observatory,” in Monitoring
Volcanic Hotspots Using Thermal Remote Sensing, Advances in Environmental
Monitoring and Modelling, eds A. J. H. Harris, E. Wooster, and D. A. Rothery,
(Anchorage: Alaska Volcano Observatory).

Delgado, F., Poland, M., Biggs, J., Ebmeier, S., Sansosti, E., Lundgren, P., et al.
(2019). lessons learned from the ceos volcano pilot in latin american and the
ongoing volcano demonstrator project. Geophys. Res. Abstr. 21, EGU2019–
EGU14981.

Ebmeier, S. K., Andrews, B., Araya, M. C., Arnold, D. W. D., Biggs, J., Cooper, C.,
et al. (2018). Synthesis of global volcano deformation observations: implications
for volcano monitoring and the lateral extent of magmatic systems. J. Appl.
Volcanol. 7:2.

Ebmeier, S. K., Elliott, J. R., Nocquet, J.-M., Biggs, J., Mothes, P., Jarriìn, P., et al.
(2016). Shallow earthquake inhibits unrest near chiles–cerro negro volcanoes,
ecuador–colombian border. Earth Planet Sci. Lett. 450, 283–291. doi: 10.1016/
j.epsl.2016.06.046

Elvidge, C. D., Zhizhin, M., Hsu, F., and Baugh, K. E. (2013). VIIRS nightfire:
satellite pyrometry at night. Remote Sens. 5, 4423–4449. doi: 10.3390/rs5094423

Fearnley, C. J., McGuire, W. J., Davies, G., and Twigg, J. (2012). Standardisation
of the USGS volcano alert level system (VALS): analysis and ramifications. Bull.
Volcanol. 74, 2023–2036. doi: 10.1007/s00445-012-0645-6

Franco, L., Palma, J. L., Lara, L. E., Gil-Cruz, F., Cardona, C., Basualto, D.,
et al. (2019). Eruptive sequence and seismic activity of llaima volcano (Chile)
during the 2007–2009 eruptive period: inferences of the magmatic feeding
system. J. Volcanol. Geotherm. Res. 379, 90–105. doi: 10.1016/j.jvolgeores.2019.
04.014

Furtney, M. A., Pritchard, M. E., Ebmeier, S. K., Jay, J. A., Carn, S. A., McCormick,
B. T., et al. (2018). Synthesizing multi-sensor, multi-satellite, multi-decadal data
sets for global volcano monitoring. J. Volcanol. Geotherm. Res. 365, 38–56.
doi: 10.1016/j.jvolgeores.2018.10.002

Ganci, G., Vicari, A., Fortuna, L., and Del Negro, C. (2011). The HOTSAT volcano
monitoring system based on combined use of SEVIRI and MODIS multispectral
data. Ann. Geophys. 54, 544–550.

Global Volcanism Program, (2008). “Report on llaima (Chile),” in Bulletin of the
Global Volcanism Network, ed. R. Wunderman, (Washington, DC: Smithsonian
Institution), BGVN200801–BGVN357110.

Global Volcanism Program, (2013). “East diamante (284201),” in Volcanoes of the
World, v. 4.8.0, ed. E. Venzke, (Washington, DC: Smithsonian Institution).

Global Volcanism Program, (2016). “Report on sabancaya (Peru),” in Bulletin of the
Global Volcanism Network, 41:5, ed. E. Venzke, (Washington, DC: Smithsonian
Institution).

Global Volcanism Program, (2018). “Report on tinakula (Solomon Islands),” in
Bulletin of the Global Volcanism Network, 43:2, ed. E. Venzke, (Washington,
DC: Smithsonian Institution).

Frontiers in Earth Science | www.frontiersin.org 19 January 2020 | Volume 7 | Article 36224

https://www.frontiersin.org/articles/10.3389/feart.2019.00362/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2019.00362/full#supplementary-material
https://doi.org/10.1016/j.jvolgeores.2019.106753
https://doi.org/10.1007/s00445-019-1294-9
https://doi.org/10.1016/j.jvolgeores.2019.02.013
https://doi.org/10.1016/j.jvolgeores.2019.02.013
https://doi.org/10.3390/rs6032282
https://doi.org/10.1016/j.rse.2015.10.002
https://doi.org/10.1007/s00445-017-1134-1138
https://doi.org/10.1016/j.jvolgeores.2011.09.010
https://doi.org/10.4401/ag-7812
https://doi.org/10.4401/ag-7812
https://doi.org/10.1007/s00445-016-1014-7
https://doi.org/10.1007/s00445-013-0744-z
https://doi.org/10.1144/sp426.5
https://doi.org/10.1144/sp426.5
https://doi.org/10.1038/s41598-019-45753-4
https://doi.org/10.1038/s41598-019-45753-4
https://doi.org/10.1016/j.jvolgeores.2015.07.005
https://doi.org/10.1016/j.jvolgeores.2011.12.001
https://doi.org/10.1130/G38866.1
https://doi.org/10.1109/tgrs.2008.2002076
https://doi.org/10.1109/tgrs.2008.2002076
https://doi.org/10.1016/j.epsl.2016.06.046
https://doi.org/10.1016/j.epsl.2016.06.046
https://doi.org/10.3390/rs5094423
https://doi.org/10.1007/s00445-012-0645-6
https://doi.org/10.1016/j.jvolgeores.2019.04.014
https://doi.org/10.1016/j.jvolgeores.2019.04.014
https://doi.org/10.1016/j.jvolgeores.2018.10.002
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00362 January 27, 2020 Time: 15:23 # 20

Coppola et al. Thermal Remote Sensing for Volcano Monitoring

Global Volcanism Program, (2019). “Report on manam (Papua New Guinea),”
in Bulletin of the Global Volcanism Network, 44:2, eds A. E. Crafford, and E.
Venzke, (Washington, DC: Smithsonian Institution).

Gordeev, E. I., Girina, O. A., Lupyan, E. A., Sorokin, A. A., Kramareva, L. S.,
Efremov, V., et al. (2016). The volsatview information system for monitoring
the volcanic activity in Kamchatka and on the Kuril Islands. J. Volcanol. Seismol.
10, 382–394. doi: 10.1134/s074204631606004x

Gottsmann, J., Komorowski, J.-C., and Barclay, J. (2017). “Volcanic unrest and
pre-eruptive processes: a hazard and risk perspective,” in Volcanic Unrest: from
Science to Society. Advances in Volcanology, (Berlin: Springer).

Gouhier, M., Guéhenneux, Y., Labazuy, P., Cacault, P., Decriem, J., and Rivet, S.
(2016). HOTVOLC: a web-based monitoring system for volcanic hot spots.
Geol. Soc. Lond. Spec. Publ. 426, 223–241. doi: 10.1144/sp426.31

Harris, A. (2013). Thermal Remote Sensing of Active Volcanoes: A User’s Manual.
Cambridge, MA: Cambridge university press.

Harris, A. J. L., Carn, S., Dehn, J., Del Negro, C., Guðmundsson, G., Cordonnier,
B., et al. (2016). Conclusion: recommendations and findings of the red seed
working group. detecting, modelling and responding to effusive eruptions. Geol.
Soc. Lond. Spec. Publ. 426, 567–648. doi: 10.1144/SP426.11

Harris, A. J. L., Chevrel, M. O., Coppola, D., Ramsey, M., Hrysiewicz, A., Thivet,
S., et al. (2019). Validation of an integrated satellite-data-driven response to
an effusive crisis: the April-May 2018 eruption of Piton de la fournaise. Ann.
Geophys. 61:2018. doi: 10.4401/ag-7972

Harris, A. J. L., Villeneuve, N., Di Muro, A., Ferrazzini, V., Peltier, A., Coppola, D.,
et al. (2017). - Effusive crises at piton de la fournaise 2014-2015: a multi-national
response model. J. Appl. Volcanol. 6:11. doi: 10.1186/s13617-017-0062-9

Jay, J. A., Welch, M., Pritchard, M. E., Mares, P. J., Mnich, M. E., Melkonian, A. K.,
et al. (2013). Volcanic hotspots of the central and southern andes as seen from
space by ASTER and MODVOLC between the years 2000-2010, remote sensing
of volcanoes and volcanic processes: integrating observation and modelling.
Geol. Soc. Lond. Spec. Publ. 380, 161–185. doi: 10.1144/SP380.1

Kaneko, T., Yasuda, A., Aoki, Y., Kajiwara, K., and Kitagawa, S. (2010). Realtime
monitoring of active volcanoes in East Asia using MODIS and MTSAT data its
advancement by GCOM-C1 SGLI. Int. Arch. Photogramm. Remote Sens. Spatial
Inform. Sci. 38, 209–212.

Koeppen, W. C., Pilger, E., and Wright, R. (2011). Time series analysis of infrared
satellite data for detecting thermal anomalies: a hybrid approach. Bull. Volcanol.
73, 577–593. doi: 10.1007/s00445-010-0427-y

Laiolo, M., Coppola, D., Barahona, F., Benítez, J. E., Cigolini, C., Escobar, D., et al.
(2017). Evidences of volcanic unrest on high-temperature fumaroles by satellite
thermal monitoring: the case of Santa Ana volcano, El Salvador. J. Volcanol.
Geotherm. Res. 340, 170–179. doi: 10.1016/j.jvolgeores.2017.04.013

Laiolo, M., Massimetti, F., Cigolini, C., Ripepe, M., and Coppola, D. (2018).
Long-term eruptive trends from space-based thermal and SO2 emissions: a
comparative analysis of Stromboli, Batu Tara and Tinakula volcanoes. Bull.
Volcanol. 80 doi: 10.1007/s00445-018-1242-0

Laiolo, M., Ripepe, M., Cigolini, C., Coppola, D., Della Schiava, M., Genco, R.,
et al. (2019). Space- and ground-based geophysical data tracking of magma
migration in shallow feeding system of mount etna volcano. Remote Sens.
11:1182. doi: 10.3390/rs11101182

Linick, J. P., Pieri, D. C., and Sanchez, R. M. (2014). “The JPL ASTER Volcano
Archive: the development and capabilities of a 15 year global high resolution
archive of volcano data,” in Proceedings of the Abstract ID. GC51E-0482
Presented at Fall Meeting 2014, (San Francisco, CA: American Geophysical
Union).

Lombardo, V. (2016). The AVHotRR: near-real time routine for volcano
monitoring using IR satellite data. Geol. Soc. 426, 73–92. doi: 10.1144/sp426.18

Lowenstern, J. B., and Ramsey, D. W. (2017). The volcano disaster assistance
program—helping to save lives worldwide for more than 30 years. U.S. Geol.
Survey Fact Sheet 6, 2017–3071. doi: 10.3133/fs20173071

Marzocchi, W., and Bebbington, M. S. (2012). Probabilistic eruption forecasting at
short and long time scales. Bull. Volcanol. 74, 1777–1805. doi: 10.1007/s00445-
012-0633-x

Massimetti, F., Coppola, D., Laiolo, M., Cigolini, C., and Ripepe, M. (2018).
“First comparative results from SENTINEL-2 and MODIS-MIROVA volcanic
thermal dataseries,” in Proceedings of the CoV10 IAVCEI General Assembly,
Naples, Italy, 2–7.

Naismith, A., Watson, I., Quinillo, C. C., Chigna, G., Escobar-Wolf, R., Coppola,
D., et al. (2019). Eruption frequency patterns through time for the current
(1999 – 2018) activity cycle at Volcán de Fuego derived from remote sensing
data: evidence for an accelerating cycle of explosive paroxysms and potential
implications of eruptive activity. J. Volcanol. Geotherm. Res. 371, 206–219.
doi: 10.1016/j.jvolgeores.2019.01.001

Newhall, C. G., Costa, F., Ratdomopurbo, A., Venezky, D. Y., Widiwijayanti, C.,
Win, N. T. Z., et al. (2017). WOVOdat – an online, growing library of worldwide
volcanic unrest. J. Volcanol. nd Geotherm. Res. 345, 184–199. doi: 10.1016/j.
jvolgeores.2017.08.003

Pallister, J., and McNutt, S. R. (2015). “Synthesis of volcano monitoring,” in The
Encyclopedia of Volcanoes, 2nd Edn, ed. H. Sigurdsson, (Cambridge, MA:
Academic Press), 1151–1171. doi: 10.1016/b978-0-12-385938-9.00066-3

Patrick, M., Kauahikaua, J., Orr, T., Davies, A., and Ramsey, M. (2016).
“Operational thermal remote sensing and lava flow monitoring at the hawaiian
volcano observatory,” in Detecting, Modelling and Responding to Effusive
Eruptions, eds A. J. L. Harris, T. De Groeve, F. Garel, and S. A. Carn, (London:
Special Publications), 426.

Pergola, N., Coviello, I., Filizzola, C., Lacava, T., Marchese, F., Paciello, R., et al.
(2016). A review of RSTVOLC, an original algorithm for automatic detection
and near-real-time monitoring of volcanic hotspots from space. Geol. Soc. Lond.
Spec. Publ. 426:55. doi: 10.1144/SP426.1

Phillipson, G., Sobradelo, R., and Gottsmann, J. (2013). Global volcanic unrest in
the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264,
183–196. doi: 10.1016/j.jvolgeores.2013.08.004

Piscini, A., and Lombardo, V. (2014). Volcanic hot spot detection from optical
multispectral remote sensing data using artificial neural networks. Geophys. J.
Int. 196, 1525–1535. doi: 10.1093/gji/ggt506

Pritchard, M. E., Biggs, J., Wauthier, C., Sansosti, E., Arnold, W. D., Delgado,
F., et al. (2018). Towards coordinated regional multi-satellite InSAR volcano
observations: results from the latin America pilot project. J. Appl. Volcanol. 7:5.
doi: 10.1186/s13617-018-0074-70

Ramsey, M., Flynn, L., and Wright, R. (2004). Volcanic observations from space:
new results from the eos satellite instruments. J. Volcanol. Geotherm. Res. 135,
1–219.

Ramsey, M. S. (2016). Synergistic use of satellite thermal detection and science:
a decadal perspective using ASTER. Geol. Soc. Lond. Spec. Publ. 426, 115–136.
doi: 10.1144/sp426.23

Ramsey, M. S., and Harris, A. J. L. (2013). Volcanology 2020: how will thermal
remote sensing of volcanic surface activity evolve over the next decade? (invited
review article). J. Volcanol. Geotherm. Res. 249, 217–233. doi: 10.1016/j.
jvolgeores.2012.05.011

Reath, K., Pritchard, M., Moruzzi, S., Alcott, A., Coppola, D., and Pieri, D. (2019a).
The. (AVTOD)(ASTER Volcano Thermal Output Database) latin america
archive. J. Volcanol. Geotherm. Res. 376, 62–76. doi: 10.1016/j.jvolgeores.2019.
03.019

Reath, K., Pritchard, M., Poland, M., Delgado, F., Carn, S., Coppola, D., et al.
(2019b). Thermal, deformation, and degassing remote sensing time series (A.D.
2000-2017) at the 47 most active volcanoes in Latin America: implications
for volcanic systems. J. Geophys. Res. Solid Earth 124, 195–218. doi: 10.1029/
2018JB016199

Reath, K. A., Ramsey, M. S., Dehn, J., and Webley, P. W. (2016). Predicting
eruptions from precursory activity using remote sensing data hybridization.
J. Volcanol. Geotherm. Res. 321, 18–30. doi: 10.1016/j.jvolgeores.2016.04.027

Ripepe, M., Pistolesi, M., Coppola, D., Delle Donne, D., Genco, R., Lacanna,
G., et al. (2017). Forecasting effusive dynamic and decompression rates by
magmastatic model at open-vent volcanoes. Sci. Rep. 7:3885. doi: 10.1038/
s41598-017-03833-3

Schneider, D. J., Randall, M., and Parker, T. (2014). “Volcview: a web-based
platform for satellite monitoring of volcanic activity and eruption response,”
in Proceedings of the Abstract ID IN41D-05 Presented at Fall Meeting 2014,
(San Francisco, CA: American Geophysical Union).

Sparks, R. S. J., Biggs, J., and Neuberg, J. W. (2012). Monitoring volcanoes. Science
335, 1310–1311.

Steffke, A. M., and Harris, A. J. L. (2011). A review of algorithms for detecting
volcanic hot spots in satellite infrared data. Bull. Volcanol. 73, 1109–1137.
doi: 10.1007/s00445-011-0487-487

Frontiers in Earth Science | www.frontiersin.org 20 January 2020 | Volume 7 | Article 36225

https://doi.org/10.1134/s074204631606004x
https://doi.org/10.1144/sp426.31
https://doi.org/10.1144/SP426.11
https://doi.org/10.4401/ag-7972
https://doi.org/10.1186/s13617-017-0062-9
https://doi.org/10.1144/SP380.1
https://doi.org/10.1007/s00445-010-0427-y
https://doi.org/10.1016/j.jvolgeores.2017.04.013
https://doi.org/10.1007/s00445-018-1242-0
https://doi.org/10.3390/rs11101182
https://doi.org/10.1144/sp426.18
https://doi.org/10.3133/fs20173071
https://doi.org/10.1007/s00445-012-0633-x
https://doi.org/10.1007/s00445-012-0633-x
https://doi.org/10.1016/j.jvolgeores.2019.01.001
https://doi.org/10.1016/j.jvolgeores.2017.08.003
https://doi.org/10.1016/j.jvolgeores.2017.08.003
https://doi.org/10.1016/b978-0-12-385938-9.00066-3
https://doi.org/10.1144/SP426.1
https://doi.org/10.1016/j.jvolgeores.2013.08.004
https://doi.org/10.1093/gji/ggt506
https://doi.org/10.1186/s13617-018-0074-70
https://doi.org/10.1144/sp426.23
https://doi.org/10.1016/j.jvolgeores.2012.05.011
https://doi.org/10.1016/j.jvolgeores.2012.05.011
https://doi.org/10.1016/j.jvolgeores.2019.03.019
https://doi.org/10.1016/j.jvolgeores.2019.03.019
https://doi.org/10.1029/2018JB016199
https://doi.org/10.1029/2018JB016199
https://doi.org/10.1016/j.jvolgeores.2016.04.027
https://doi.org/10.1038/s41598-017-03833-3
https://doi.org/10.1038/s41598-017-03833-3
https://doi.org/10.1007/s00445-011-0487-487
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00362 January 27, 2020 Time: 15:23 # 21

Coppola et al. Thermal Remote Sensing for Volcano Monitoring

Tait, S., and Ferrucci, F. (2013). “A real-time, space borne volcano observatory to
support decision making during eruptive crises: european volcano observatory
space services,” in proceedings of the 2013 UKSim 15th International Conference
on Computer Modelling and Simulation, (Washington, DC: IEEE Computer
Society).

Tarquini, S., de’ Micheli Vitturi, M., Jensen, E., Pedersen, G. M. B., Barsotti, S.,
Coppola, D., et al. (2019). Modeling lava flow propagation over a flat landscape
by using MrLavaLoba: the case of the 2014-2015 eruption at holuhraun, Iceland.
Ann. Geophys. 62:228. doi: 10.4401/ag-7812

Tilling, R. I. (2008). The critical role of volcano monitoring in risk reduction. Adv.
Geosci. 14, 3–11. doi: 10.5194/adgeo-14-3-2008

Urai, M. (2011). “Volcano observations with aster and ASTER Image Database
for Volcanoes,” in Proceedings of the IEEE International Geoscience and Remote
Sensing Symposium, (Piscataway, NJ: IEEE).

Valade, S., Lacanna, G., Coppola, D., Laiolo, M., Pistolesi, M., Delle Donne, D., et al.
(2016). Tracking dynamics of magma migration in open-conduit systems. Bull.
Volcanol. 78:78.

Valade, S., Ley, A., Massimetti, F., D’Hondt, O., Laiolo, M., Coppola, D., et al.
(2019). Towards global volcano monitoring using multisensor sentinel missions
and artificial intelligence: the MOUNTS monitoring system. Remote Sens.
11:528.

van Manen, S. M., Blake, S., Dehn, J., and Valcic, L. (2013). Forecasting large
explosions at Bezymianny Volcano using thermal satellite data. Geol. Soc. Lond.
Spec. Publ. 380, 187–201. doi: 10.1144/sp380.3

van Manen, S. M., Dehn, J., and Blake, S. (2010). Satellite thermal observations
of the Bezymianny lava dome 1993–2008: precursory activity, large explosions,
and dome growth. J. Geophys. Res. 115:B08205.

Wadge, G. (1981). The variation of magma discharge during basaltic eruptions.
J. Volcanol. Geotherm. Res. 11, 139–168. doi: 10.1016/0377-0273(81)90020-2

Werner, C., Kern, C., Coppola, D., Lyons, J., Kelly, P., Wallace, K., et al.
(2017). Magmatic degassing, lava dome extrusion, and explosions from mount
cleveland volcano, alaska, 2011-2015: insight into the continuous nature of

volcanic activity over multi-year timescales. J. Volcanol. Geotherm. Res. 337,
98–110. doi: 10.1016/j.jvolgeores.2017.03.001

Winson, A. E. G., Costa, F., Newhall, C. G., and Woo, G. (2014). An analysis of the
issuance of volcanic alert levels during volcanic crises. J. Appl. Volcanol. 3:14.
doi: 10.1186/s13617-014-0014-6

Wooster, M. J., Zhukov, B., and Oertel, D. (2003). Fire radiative energy for
quantitative study of biomass burning: derivation from the BIRD experimental
satellite and comparison to modis fire products. Remote Sens. Environ. 86,
83–107. doi: 10.1016/s0034-4257(03)00070-1

Wright, R., Flynn, L. P., Garbeil, H., Harris, A. J. L., and Pilger, E. (2004).
MODVOLC: near-real-time thermal monitoring of global volcanism. J. Volc.
Geotherm. Res. 135, 29–49. doi: 10.1016/j.jvolgeores.2003.12.008

Wright, R., Glaze, L., and Baloga, S. M. (2011). Constraints on determining the
eruption style and composition of terrestrial lavas from space. Geology 39,
1127–1130. doi: 10.1130/g32341.1

Zakšek, K., Pick, L., Coppola, D., and Hort, M. (2017). Influence of topography on
lava flow quantification from satellite thermal data. EGU Gen. Assem. Geophys.
Res. Abstr. 19, EGU2017–EGU12016.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Coppola, Laiolo, Cigolini, Massimetti, Delle Donne, Ripepe, Arias,
Barsotti, Parra, Centeno, Cevuard, Chigna, Chun, Garaebiti, Gonzales, Griswold,
Juarez, Lara, López, Macedo, Mahinda, Ogburn, Prambada, Ramon, Ramos, Peltier,
Saunders, de Zeeuw-van Dalfsen, Varley and William. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 21 January 2020 | Volume 7 | Article 36226

https://doi.org/10.4401/ag-7812
https://doi.org/10.5194/adgeo-14-3-2008
https://doi.org/10.1144/sp380.3
https://doi.org/10.1016/0377-0273(81)90020-2
https://doi.org/10.1016/j.jvolgeores.2017.03.001
https://doi.org/10.1186/s13617-014-0014-6
https://doi.org/10.1016/s0034-4257(03)00070-1
https://doi.org/10.1016/j.jvolgeores.2003.12.008
https://doi.org/10.1130/g32341.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00022 February 7, 2020 Time: 15:13 # 1

ORIGINAL RESEARCH
published: 11 February 2020

doi: 10.3389/feart.2020.00022

Edited by:
Nico Fournier,

GNS Science, New Zealand

Reviewed by:
Thomas R. Walter,

German Research Centre for
Geosciences, Helmholtz Centre

Potsdam, Germany
Eisuke Fujita,

National Research Institute for Earth
Science and Disaster Resilience

(NIED), Japan

*Correspondence:
Christian Bignami

christian.bignami@ingv.it

Specialty section:
This article was submitted to

Volcanology,
a section of the journal

Frontiers in Earth Science

Received: 02 September 2019
Accepted: 24 January 2020

Published: 11 February 2020

Citation:
Bignami C, Chini M, Amici S and

Trasatti E (2020) Synergic Use
of Multi-Sensor Satellite Data

for Volcanic Hazards Monitoring:
The Fogo (Cape Verde) 2014–2015

Effusive Eruption.
Front. Earth Sci. 8:22.

doi: 10.3389/feart.2020.00022

Synergic Use of Multi-Sensor
Satellite Data for Volcanic Hazards
Monitoring: The Fogo (Cape Verde)
2014–2015 Effusive Eruption
Christian Bignami1* , Marco Chini2, Stefania Amici1 and Elisa Trasatti1

1 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2 Luxembourg Institute of Science and Technology,
Esch-sur-Alzette, Luxembourg

Monitoring volcanic eruptions provides key information for hazard assessment and
its time evolution. Satellite remote sensing data are nowadays essential to perform
such task, thanks to their capability to survey disastrous events also in remote and
under-monitored regions, with frequent revisit time and accurate spatial resolution. Even
though satellite imageries are presently used to analyze several phenomena related to
eruptions, automatic methods and synergic exploitation of different sensors are rarely
considered. In this work, we have analyzed satellite images coming from both synthetic
aperture radar (SAR) and optical sensors, to study the effusive eruption of Fogo volcano,
Cape Verde, which took place between November 2014 and January 2015. In particular,
we have exploited multi-sensor images from Sentinel-1, COSMO-SkyMed, Landsat-
8, and Earth-Observing-1 missions, to retrieve lava flow patterns and volcanic source
parameters related to the eruption. The main outcome of our work is the application
of a new automatic change detection technique for estimating the lava field and its
temporal evolution, combining the SAR intensity and the interferometric SAR coherence.
The innovative algorithm is able to take full advantage of the Sentinel-1 mission’s 6-
day repeat cycle. Such data are here used for the first time for lava mapping, thereby
providing an unprecedented example of using the multi-temporal interferometric SAR
(InSAR) coherence to automatically monitor lava flow evolution in emergency phase.
This new technique, jointly used with optical satellite images, is capable of resolving
with spatial and temporal detail the evolution of lava flows. We have also performed
differential SAR interferometry (DInSAR) to map the ground deformation and retrieve the
feeding dyke by inverting syn-eruptive signals. Results from source modeling show a
SW-NE oriented dyke, located inside Chã das Caldeiras, SW of the Pico do Fogo. Our
work highlights how multidisciplinary and satellite open data, along with innovative and
automatic processing techniques, may be adopted for real-time hazard estimates in an
operational environment.

Keywords: lava, volcanic source modeling, synthetic aperture radar, optical images, change detection,
hierarchical-split-based approach, DInSAR coherence, Fogo volcano
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INTRODUCTION

Hazards assessment in volcanic areas requires the combination
and the coordination of many instruments, techniques, and
expertise, in different fields such as volcanology, geology,
seismology, data analysis, meteorology, human sciences, and
so on. All these fields of knowledge support decision makers
and authorities to address risk reduction and improve crises
management capabilities when volcanic eruptions occur.
Volcanic eruptions are complex natural events that involve
several phenomena: lava flows, gas emission, ash dispersal
and ash fall, and other secondary effects, e.g., earthquakes,
pyroclastic flows, landslides, and lahars, producing a wide
spectrum of impacts (e.g., Bosi and MIAVITA group, 2012). In
this heterogeneous scenario, satellite remote sensing data and
the associated techniques, with their intrinsic multidisciplinary
capability, represent very powerful tools. Especially in the
present era, many sensors, in particular optical and synthetic
aperture radar (SAR), are available on several platforms
and constellation missions [e.g., European Space Agency
(ESA)—Sentinel missions, and Agenzia Spaziale Italiana (ASI)—
COSMO-SkyMed (CSK) mission], and can provide supporting
information for monitoring ongoing eruptions. However,
even though satellite imageries are intensely used, automatic
methods and synergic exploitation of different sensors are
rarely considered. Our case study is the eruption that began on
November 2014 in Fogo Island, Cape Verde. We mapped the
lava flow and its evolution with time using satellite imagery.
In particular, we exploited the complementarity of SAR and
optical images acquired by the new SAR sensor on board of
Sentinel-1mission (S1), and by optical sensors of Landsat-8 (L8)
and Earth-Observing-1 (EO-1) missions (from NASA/USGS),
plus the high-resolution capability of CSK SAR sensor. We tested
the capability of a novel change detection algorithm, based on
multiscale tiling approach, for deriving automatic surface change
maps from SAR data. Secondarily, we complemented the lava
flow analysis, with geodetic observations by means of differential
SAR interferometry (DInSAR). DInSAR data coming from
Sentinel-1 and CSK missions, have allowed mapping the ground
deformation due to the lava ascent and, by inverting them, the
estimation of the eruption source. We show how the synergic
use of multi-sensor data gathers useful information for hazards
during volcanic crisis related to both internal (i.e., the feeding
dyke) and external (e.g., lava flow) processes.

THE FOGO ERUPTION (CAPE VERDE)

Located in the NW Atlantic Ocean, at about 500 km far from
the coast of Senegal, Cape Verde is composed of 10 main islands,
some of which are inhabited. Since the first settlements in 1460,
only Fogo Island experienced volcanic eruptions. Fogo Island has
nearly conical shape, with a diameter of about 30 km, an area
of 471 km2, and a population of about 37,000 inhabitants (Faria
and Fonseca, 2014). The island is cut at about 2000 m a.s.l. by a
lateral collapse (Day et al., 1999) that formed a plateau known as
Chã das Caldeiras. About 700 farmers live in Chã das Caldeiras,

close to cone of Pico do Fogo that with its summit, reaching
2898 m a.s.l., dominates the caldera. In the last five centuries,
the eruptions occurred in the caldera, both at the summit of Pico
do Fogo and, since 1785, from fissures near its base, and were
characterized by an average recurring period of about 20 years,
and an average duration of 2 months (Ribeiro, 1960; Day et al.,
2000). The most relevant hazard in Fogo is the lava flow, in
particular inside Chã das Caldeiras, and in the steep eastern coast
where 30% of inhabitants live (Faria and Fonseca, 2014 and the
references therein). Indeed, in 1951, the lava flow destroyed a
village on the eastern coast, and in 1995 (Amelung and Day,
2002) and lastly in 2014 the villages inside Chã das Caldeiras were
destroyed. In such hazardous context, the monitoring of lava flow
and its evolution in time can be of crucial importance to provide
useful information for planning rescue activities and save lives.

The last eruption in Fogo started on 23 November 2014 and
lasted 78 days, and was characterized by an effusive activity
originated from a fissure located at the base of Pico do Fogo,
spreading the lava in Chã das Caldeiras. The lava flow traveled to
the SW, and then was split into two main lobes toward NW and S
(González et al., 2015; Cappello et al., 2016; Calvari et al., 2018).

DATA AND METHODS

A total of 21 images were used to map the lava emplacement in
Chã das Caldeiras, nine from Sentinel-1A (S1A), six from CSK,
and the remaining six from multispectral sensors on board of
EO-1 (three images) and L8 (three images). Table 1 shows the
available dataset, divided by type and by orbit.

The optical dataset was used to perform the analysis of lava
filed that occurred in Chã das Caldeiras. SAR imagery was used
for a twofold objective: the automatic change detection by means
of hierarchical-split-based approach (HSBA, Chini et al., 2017), to
map the lava occurrence, and the retrieval of the volcanic source
by taking advantage of SAR interferometry technique.

LAVA EMPLACEMENT ANALYSIS

SAR Data Exploitation
Synthetic aperture radar data occupy a privileged place as regards
change detection algorithms thanks to the sensitivity of the
backscattering toward differences in land covers and their quasi-
all weather, day/night observation capacity. For these reasons,
SAR-based change detection (SAR-CD) was developed over many
years to provide useful and reliable information on land surface
changes that occur across different temporal and spatial scales
(Bovolo and Bruzzone, 2005). SAR-CD usually finds different
domain of application, and in particular for all concerns natural
hazard related to floods (Chini et al., 2013), volcanoes (Bignami
et al., 2013; Valade et al., 2019), earthquakes (Pierdicca et al.,
2018), and tsunamis (Chini et al., 2008). SAR-CD algorithms
typically generates the difference image and then classifies it,
which consists of a binary classification problem, aiming at
separating the change and the no change classes (hereafter CC
and NCC) (Ajadi et al., 2016). To do this, histogram thresholding
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TABLE 1 | Available satellite dataset.

Mission Sensor Date of acquisition Orbit direction

Sentinel-1 SAR 2014/11/03* Ascending

Sentinel-1 SAR 2014/11/08* Descending

Sentinel-1 SAR 2014/11/27* Ascending

Sentinel-1 SAR 2014/12/02* Descending

Sentinel-1 SAR 2014/12/09 Ascending

Sentinel-1 SAR 2014/12/14 Descending

Sentinel-1 SAR 2014/12/21 Ascending

Sentinel-1 SAR 2014/12/26 Descending

Sentinel-1 SAR 2015/01/02 Ascending

Lansat-8 OLI 2014/10/23 Descending

Lansat-8 OLI 2014/11/24 Descending

Earth-Observing-1 ALI 2014/12/16 Descending

Earth-Observing-1 ALI 2014/12/18 Descending

Earth-Observing-1 ALI 2014/12/24 Descending

Lansat-8 OLI 2015/01/11 Descending

COSMO-SkyMed SAR 2014/11/21* Ascending

COSMO-SkyMed SAR 2014/11/29* Ascending

COSMO-SkyMed SAR 2014/11/30 Ascending

COSMO-SkyMed SAR 2014/11/21* Descending

COSMO-SkyMed SAR 2014/11/29* Descending

COSMO-SkyMed SAR 2014/12/07 Descending

OLI: Operational Land Imager; ALI: Advanced Land Imager. The * identifies the
images of the interferograms used for the geodetic modeling.

is one of the most commonly used methods (Rosin, 2002),
having as a critical step the selection of an adequate threshold,
affecting directly the classification results. Parametric approaches
usually fit the probability density function (PDF) of CC and NCC
(PDFCC and PDFNCC), which are assumed Gaussian, and then set
the threshold where the two PDFs intersect (Bruzzone and Prieto,
2002). The classification accuracy heavily depends on the classes
proportions within the scene and the overlap between the two
PDFs. When CC and NCC are strongly unbalanced, it is difficult
to robustly parameterize their PDFs, while the amount of overlap
between PDFs directly affects the under- and over-detection.
Here, to overcome the two aforementioned drawbacks, we used
an adaptive threshold approach previously developed to map
floodwater (Chini et al., 2017), and also applied to map buildings
(Chini et al., 2018). The approach is composed of two main steps.
It first parameterizes the PDFCC and PDFNCC, and then based on
the two PDFs iteratively applies thresholding and region-growing
to find the best threshold for seeds (THS) and the one for stopping
the region growing (THSRG). The PDFs parameterization is
performed by HSBA (Chini et al., 2017), which identifies regions,
or tiles, of the image where the PDFCC and PDFNCC can be fitted
more reliably and accurately. The size of the tiles depends on the
possibility of parameterizing the PDFs attributed to two different
classes. HSBA starts with bigger tiles, which reduce successively,
depending on the spatial extension of changes on the surface with
respect to the entire image. HSBA starts from the entire image
and then reduce the tile size following a quad-tree decomposition
of the image. In the second step, in order to reduce class overlap
effects on the final classification, spatial information is introduced

on the selection of the best threshold (Haralick and Shapiro,
1985). The latter is done by a region-growing approach assuming
that pixels constituting CC are clustered rather than randomly
spread out over the entire image (Giustarini et al., 2013; Chini
et al., 2017). Therefore, we first classify as CC those pixels that
have high magnitude of change and then we add to CC those
pixels with a lower magnitude of change but which are spatially
contiguous to the first guesses. To do this, we use the region-
growing algorithm, where the PDFCC and PDFNCC will drive
the selection of THS and THSRG. THS selects seeds, i.e., pixels
with high change of magnitude. We can set THS to the mean
value of PDFCC, which are pixels with a high probability to
belong to CC. In order to select THSRG, different thresholds are
tested. The choice is based on the minimization of the root-mean-
squared error between the PDFCC and the histogram resulting
from the region growing. The two thresholds are automatically
selected in those areas defined by HSBA, and then they are
applied to the entire image to get the final classification. This
SAR-CD algorithm is applied to the intensity difference image
(hereafter IDI), which is the difference between the two log-
transformed images acquired on two different instants. The IDI
registers changes in the roughness and the dielectric constant of
the surface. In this particular case, the images acquired after the
event onset were subtracted to the images acquired before the
event, and the change image was mainly detecting an increase
of the backscattering on those areas where new lava was flowing
from the vent down to Chã das Caldeiras. This was probably due
to the increased of roughness of the surface.

Another import SAR-related feature frequently used as change
detector is the InSAR coherence. This quantity is mostly
influenced by the phase difference between radar returns, a
distinctive parameter measured by a coherent sensor such as
SAR, and it is particularly related to the spatial arrangement of
the scatterers within the pixel and thus to their possible random
displacements. Its high sensitivity to surface changes is well-
documented and enables the detection of damages caused by
catastrophic events such as volcano eruptions, earthquakes, and
floods (e.g., Hoffmann, 2007; Chini et al., 2012; Valade et al.,
2019). Compared to the SAR intensity, the coherence sensitivity
to surface changes is much higher, because even a target rotation
can create a temporal decorrelation, while to detect changes in
the intensity, it is necessary that the roughness and the dielectric
properties of surface change. We compared the IDI with an
InSAR coherence image (hereafter ICI) computed using the same
couple of images, and although both localize the change in the
same region, in Figure 1 is possible to appreciate that the spatial
extensions are not the same. The ICI (Figure 1B) is showing
more changes with respect to the IDI (Figure 1A), and this could
be due to the surface sliding of the lava flow without producing
a substantial change to the surface roughness detectable by the
intensity. It is worth noting that the change depicted by coherence
includes the change detected by intensity, having a bigger extent.
Moreover, the spatial transition of coherence values from low to
high is quite sharp, and this is because the incoherent surface
movement produced by the lava flow is quite important. Based on
these evidences, we integrated the InSAR coherence information
to that one provided by intensity reapplying a region growing
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FIGURE 1 | Inputs, intermediate products, and final change map. (A) False color combination of SAR intensity images: R = pre-eruption SAR image on 2014/11/03,
G = B = post-eruption SAR image on 2015/01/02. (B) ICI. (C) Detail of false color combination in A. (D) Detail of ICI. (E) IDI. (F) Intermediate HSBA output using IDI
only. (G) Final HSBA output using IDI and ICI.

on the ICI. In this case, the seeds are those pixels depicted as
change by the intensity and the rule to stop the growing is the
standard deviation of seeds plus an epsilon. The rule to use the
change maps from intensity as seed for the region growing on the
coherence is motivated by the fact the coherence drop-off occurs
also for reasons other than lava flow, e.g., vegetated areas (Valade
et al., 2019). Indeed, looking at the coherence map in Figure 1B,
the effect of the vegetation is quite evident in many areas (NNE
zones of the volcano). Therefore, it is necessary to circumscribe
the coherence loss only to those areas where a change in the
SAR intensity has also occurred. In Figure 1, the inputs, the
intermediate products, and the final change map are depicted.
The latter obtained as a combination of IDI and ICI features. The
increase in the intensity values is shown in Figure 1C (cyan areas)
and in Figure 1E (white areas), while the decrease of coherence is
in Figure 1D (dark areas), where it is highlighted that the InSAR
coherence is detecting more changes than the only intensity.
Figure 1F shows the intermediate product resulting from the IDI,
while the final map is shown in Figure 1G, where the ICI was
also integrated. The overall scheme for integrating ICI and IDI is
reported in Figure 2.

It is worth to recall the S1 enhanced observational capabilities
which reduce the drawbacks of previous moderate resolution
SAR images and potentially enable the fully exploitation
of the InSAR coherence capabilities for identifying surface
changes. The high repeat cycle (i.e., small temporal baseline)
and the relatively narrow orbit tube (i.e., small perpendicular
interferometric baseline) of S1 mission reduce the temporal and
the spatial decorrelation in vegetated areas and in the presence
of structures with geometrical complexity, respectively. These
peculiar characteristics of S1 have recently even enabled the
detection of floodwater in urban areas using InSAR coherence
(Chini et al., 2019), areas so far blind at 20 m spatial resolution.

Finally, SAR images captured by S1A spacecraft have been
used for the first time to map the lava field in the caldera
during the Pico do Fogo eruption. The dataset is composed of
images in the innovative Terrain Observation with Progressive
Scans SAR—TOPSAR—acquisition mode [aka Interferometric
Wide (IW) swath]. The Fogo eruption is the first volcanic event
captured by S1A mission in TOPSAR mode, and it was the first
case study where SAR interferometry was applied to this very
new imaging scan (González et al., 2015). Both ascending and
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FIGURE 2 | Workflow of the change detection algorithm based on HSBA. See main text for acronyms definition.

descending orbit data were processed to estimate the lava flow
coverage in the period between the eruption’s onset and the last
S1A image dated 2 January 2015. In addition to S1A data, we have
taken advantage of CSK imageries. These data are high-resolution
SAR images, at 3 m per pixel (full resolution). The TOPSAR
images allowed the generation of seven change detection maps,
four for the ascending data, and three for the descending ones.
It is worth to note that the CSK were used to obtain some
additional change maps but, unfortunately, they did not provide
more information than those already provided by the S1 dataset.

The resulting change detection maps, from SAR intensity
and phase coherence features, allowed the generation of the
time series of lava emplacement (Figure 3). To do this, we
computed the change maps using separately ascending and
descending orbits, respectively. The change intensity images were
all calculated with respect to the first available image of the time
series (SARi–SAR0), which is the one acquired before the event
started. Instead, the InSAR coherence maps were calculated using
two consecutive SAR images in order to reduce the temporal
baseline, then the temporal decorrelation in vegetated areas.

Optical Data Exploitation
Multispectral satellite data, at medium spatial resolution (30 m)
pixel, were acquired by EO-1 and L8 satellites. The EO-1 satellite
was 1-year technology validation/demonstration mission that
was extended due to its successful results. EO-1 is equipped
with an Advanced Land Imager (ALI) instrument to validate and
demonstrate technology for the Landsat Data Continuity Mission
(LDCM) and Hyperion hyperspectral sensor1. L82 is a joint
initiative between NASA and USGS, and it is equipped with two
push-broom instruments: the Operational Land Imager (OLI)
and the Thermal Infrared Sensor (TIRS). We have employed the

1https://eo1.gsfc.nasa.gov/
2http://landsat.gsfc.nasa.gov/landsat-8

bands positioned in visible (VIS), near infrared (NIR), and short
wave infrared (SWIR) of the electromagnetic spectrum, to map
the flow-field evolution.

In particular, the SWIR (2.2 µm), VNIR (1.6 µm), VNIR-
Green (0.56 µm) of both L8-OLI and EO-1-ALI data were used to
create a false color composite for Red, Green, and Blue channels,
respectively (Figure 4). These false color images (similar to
natural colors) visually enhance some features allowing to outline
lava flows which appear black and brown in the images while
vegetated areas appear green. Active lava flows (hot lava) show
a change in color from red to yellow as a result of an increase
in the temperature of the crustal component and/or an increase
in the areas of high temperature fractures (Wright et al., 2001).
In addition, clouds appear white in the images, while the plumes
colored in blue can be related to gases emitted by the volcano
(e.g., SO2) (Flynn et al., 2000; Flynn et al., 2001; Lee et al., 2015).
Figure 4B shows the active flow field on 24 November 2014, 1 day
after the beginning of the eruption. Active lava flows from the
eruptive fissure bifurcate originating two lava flows, one moving
to the North in the direction of Portela and Bangaeira villages,
and a second flow directed to South. The red haze surrounding
the flows is a combined effect of smearing, i.e., high radiant pixels
into adjacent pixels (Rothery et al., 1988), leading to an over
representation of the size of the anomaly (Wright et al., 2001).

Lava flow mapping by using multispectral sensors relies
generally on near-IR bands (1.6–2.2 µm) to map hot lava flow,
and on Thermal IR bands (10–11 µm) to map cooling lava which
tends to form lava tubes (Flynn et al., 1994). In this context,
because of ALI sensor has not thermal infrared bands and L8-
TIRS bands have a spatial resolution of 100 m per pixel, we
have used two different approaches to map active and cooling
lava flows. L8 and ALI images were synergically used to produce
the chrono-contour of active lava flow (Figure 5) by visually
inspecting the images at their best zoom (Flynn et al., 2001). The
change detection was produced to explore the possibility to derive
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FIGURE 3 | Temporal evolution of the deposited lava obtained by using HSBA algorithm applied to S1 images. The figure shows the area affected by erupted lava at
each S1 overpass, in different colors, on ascending and descending orbit. Both intensity and phase coherence data were processed.

additional information on cooling flow-fields besides hot lava
characterization obtained by the optical multi-sensors time series.

In order to implement the change detection, the images
were previously converted into reflectance, and to improve
the spatial resolution of multispectral channels, we adopted
the pan-sharpening Graham–Smidth method implemented in
ENVI© software for resampling the bands originally at 30 m
resolution into the 15 m resolution of L8-OLI panchromatic
channel (band 8).

The pan-sharpened SWIR channel of L8-OLI was used to
calculate a change detection map between the images captured

on 23 October 2014 and 11 January 2015 (Figure 6) using
the automatic co-registration option offered by ENVI©. Several
bands were tested and best result was obtained by using the
band 7. The change detection map highlights in gray scale the
subsequent lava flows. The color of lava flow from light gray pixels
to dark pixel can indicate a combined effect of lava thickness,
composition and cooling areas. The thermal L8-TIRS band, at
10 µm and with a spatial resolution of 100 m, acquired on 11
January 2015 was used to support the interpretation regarding the
cooling effect, although the TIR imagery is affected by reflectance
component being acquired at daytime (see Figure 6 inset).
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FIGURE 4 | False color representations of optical dataset (see main text for RGB assignment). (A) pre-eruptive (23 October 2014) image acquired by L8. (B) L8
acquired on 24 November 2014: it shows two active fresh lava flows. Bright yellow-orange pixels illustrate areas of very high temperature of crustal component
and/or an increase in the areas of high temperature fractures and bright green pixels within the lava flow are related to saturated signal. (C) EO-1 image acquired on
16 December 2014; shows the advancement of the lava flow on west and north. (D) EO-1 acquired on 18 December 2014. (E) EO-1 acquired on 24 December
2014. (F) L8 image acquired on 11 January 2015.
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FIGURE 5 | Active lava perimeters derived by visual delineation of L8-OLI and
EO1-ALI SWIR bands and change image from October 2014–January 2015
L8 data provide the flow fields evolution.

FIGURE 6 | The results of SWIR pan-sharp change detection between pre-
(October 2014) and post-eruption (January 2015) data. The inset (top right)
shows the L8-TIRS thermal band at 10 µm (January 2015). The variation of
the gray tones mainly results by chronology, and cooling phases. The yellow
polygon was drawn to highlight the detected whole change by visual
inspection.

Lava Field Emplacement Evolution
The results about emitted lava estimated by SAR and optical
images were compared in order to assess their capability to

monitor the temporal evolution of the event. The plot reported
in Figure 7 shows four lines indicating the lava coverage in
square km at each satellite time acquisition. The green and yellow
lines refer to SAR data results, the blue line is the analysis
performed with optical dataset, and the red one corresponds to
the evaluation done by the Emergency Mapping Service (EMS) of
Copernicus3 by exploiting satellite images acquired by very high
resolution sensors from many space missions.

Optical analysis has a very similar trend with respect to EMS
data, showing a very close effusion rate (0.10 km2/day for our data
and 0.083 km2/day for EMS) and few square km of bias (about
1 km2) at the early stage of the effusion. These small discrepancies
can be attributed to the ground resolution of the images used for
the two estimates, i.e., medium resolution sensors in our dataset
vs. very high resolution sensors in EMS study.

Synthetic aperture radar intensity only estimates the
superficial effusion rate and lava total area smaller with respect
to the one estimated from the other two datasets (green curve
in Figure 7). The lava flow is a complex surface scenario, which
cannot be explained with only change in roughness of the
surface, which is the ground parameter that strongly affects SAR
intensity signal. We think that the new emitted lava does not
completely change the roughness of the soils, because the area
of Chã das Caldeiras was already covered by lava (from previous
eruptions) that can be characterized by similar texture. This can
partially explain why the SAR intensity is underestimating it.
Considering the SAR intensity and coherence results (yellow
trend in Figure 7), two different temporal phases on the
evolution of the surface changes are highlighted. The first section
concerns the coverage estimation before the third SAR image
taken on 9 December 2014. In this phase, SAR change detection
underestimates the coverage with respect to the EMS maps.
Actually, these set of data do not take into account the InSAR
coherence information because the first two change coherence
maps are related to SAR pairs that have a high temporal baseline,
i.e., 24 days of separation (either ascending or descending pairs).
For these maps, the coherence loss is not only due to changes in
surface scattering because of lava emplacement, but also because
of the effects of temporal decorrelation due to changes in the
vegetation cover (Zebker and Villasenor, 1992). Moreover, in this
first phase, the volcanic cloud was still present, and it represents
another source of coherence loss (Jung et al., 2016). Therefore,
we omitted the first two coherence maps because the decrease
of coherence was also due to reasons other than lava within
the caldera of Fogo Island (see Supplementary Figure S1). The
second section of the trend (after 9 December 2014) concerns
the merged information coming from both SAR intensity and
coherence change maps. In this part, SAR results overestimate
EMS results, and the total area coverage is 4 km2 larger than the
one measured by SAR intensity only (green line). Maps reported
in Figure 3 show where the overestimation occurred, and
probably it is due to the InSAR coherence feature. The pictures
highlight that the algorithm identifies some changes on the Pico
do Fogo flanks (north sector) and few “false alarm” pixels in the
northwest of Chã das Caldeiras (see lava coverage for dates 9 and

3https://emergency.copernicus.eu/
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FIGURE 7 | Lava coverage trend from 24 November 2014 to 11 January 2015.

14 December 2014, in Figure 3). We calculated, by manually
delineating “false alarms” areas, that the surface extension of
these areas is about 2 km2, which basically corresponds to the
overestimation with respect to EMS maps and optical analysis.
These changes, which were detected by S1 InSAR coherence drop
off, are not mapped using other datasets. It is worth considering
that here a “real ground truth” is not available, hence, in case
we assume that S1 intensity and coherence method overestimate
the surface effusion rate, a possible reason for coherence loss is
still the presence of the volcanic cloud4 (multispectral images
in Figure 4), as discussed by Jung et al. (2016). Although SAR
coherence seems to overestimate the lava emplacement, the
information carried out by such feature is extremely useful to
compensate the systematic underestimation of SAR intensity
data only. This is clearly reported in Figure 7, where the line
related to the SAR intensity only (in green) is constantly below
the estimates from optical and EMS data. It is also important
to point out that the results from S1 data are obtained using a
completely automatic procedure and with lower resolution data,
with respect to those from other datasets. Results clearly show
the synergic role of SAR intensity and SAR InSAR coherence
for lava mapping.

VOLCANIC SOURCE MODELING

Beside the change detection approach, S1 and CSK images were
also exploited to map the ground deformation caused by the

4https://volcano.si.edu/volcano.cfm?vn=384010

eruption. The master–slave images for each sensor and orbit are
evidenced in Table 1, and they are all syn-eruptive. For this
purpose, we processed the data by means of classical DInSAR
(Zebker et al., 1994), and we calculated four interferograms.
The SRTM DEM (Farr et al., 2007) was used to remove the
topographic phase contribution, and the multi-looking technique
was applied to reduce noise and to obtain products sampled
at a square pixel size of 20 × 20 and 15 × 15 m2 for S1 and
CSK, respectively. Even though the two SAR systems operate
with different bands (C and X band) and with different incidence
angles (S1 at about 43.5◦ on ascending orbit and 35◦ on
descending orbit; CSK at about 20◦ for both ascending and
descending images), the patterns of the ground displacement
are coherent (Figure 8). Indeed, inside the caldera, two lobes
of deformation are visible on both S1 and CSK ascending
interferograms. It is also worth to note the fringe pattern that is
present on the south flank of Pico do Fogo on both S1 and CSK
descending data. Of course, the fringe rate is different because of
the different wavelengths.

These ground deformation estimates were exploited to retrieve
the volcanic source modeling and to constrain the syn-eruptive
feeding dyke. The four interferograms are subsampled with a
step of 180 m in the inner caldera of Fogo, and 540 m outside,
for a total of about 13,000 datapoints. The inversions were
performed by means of the Volcano and Seismic source Modeling
(VSM) tool (Trasatti, 2019). The code allows considering
several analytical models of volcanic source, whose parameters
are retrieved by non-linear inversion. The inversion is then
followed by an appraisal stage based on a Bayesian approach
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FIGURE 8 | Wrapped interferograms obtained from S1 ascending (A), S1 descending (B), CSK ascending (C), and CSK descending (D) images. Two lobes of
deformation are visible on both S1 and CSK ascending interferograms within the caldera. The south flank of Pico do Fogo is characterized by a very similar fringe
arrangement, on S1 and CSK descending data.

aimed at finding the most probable parameters (instead the
single best-fit model), obtaining posterior PDF (Sambridge,
1999). Several attempts were computed in order to find the
most suitable geometrical source to reproduce the observed
data. We find that pressurized sources such as a sphere or a
spheroid are not suitable since they are unable to reproduce
the wide negative line of sight (LOS) area in the eastern

sector of the volcano. Instead, an opening dyke (Okada, 1992)
reproduces the highest LOS values reaching 9–12 cm (opposite
signs in the ascending/descending orbits, being the movement
horizontal) and the corresponding opposite lobes (Figure 9 and
Supplementary Figure S2 for CSK data). The misfit obtained,
based on the chi-squared function, amounts to 14.8, while
the null solution relating data to their uncertainties is 25.5.
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FIGURE 9 | Results of the VSM inversion. Comparison between observed (a,d) and modeled (b,e) data, and residuals (c,f) in ascending and descending orbits of
S1 satellites. The black line is the surface projection of the feeding dyke. E and N are UTM projection, zone 27. The brownish transparency is the lava from SWIR
pan-sharp change detection. Similar results for CSK mission are shown in Supplementary Figure S2.

The dyke, whose trace is represented with the black line in
Figure 9, is SW-NE oriented, and it is located inside Chã das
Caldeiras, SW of the Pico do Fogo. Our results show that it
slightly dips of 86◦ toward SE, and opens about 60 cm, for a
total volume change of 2.0 ± 0.6 106 m3 in the observation
time span (i.e., one month baseline and up to 8 days after
the start of the eruption). The mean parameters’ values are
reported in Table 2, while the posterior PDFs are reported
in Supplementary Figure S3. The top depth of the dyke was
fixed at 100 m below the Fogo’s mean altitude. Figure 9 also
shows the agreement between the constrained lava flow and
the surface projection of the feeding dyke retrieved by an
independent technique.

DISCUSSION

We have presented the results of a novel automatic technique to
estimate the lava flow propagation during the effusive eruption
of Fogo, adopting a multi-sensor approach. The area coverage
obtained by visual analysis of medium resolution imagery (L8
and EO-1) is estimated equal to 4.97 km2, in line with the results

of EMS and by Cappello et al. (2016). This value is very close
to the one estimated with more sophisticated techniques that
require more computational efforts or in situ measurements,
such as differential DEM (Bagnardi et al., 2016), and Terrestrial
Laser Scanner (TLS) combined with structure from motion data
(Richter et al., 2016). Bagnardi et al. (2016) and Richter et al.
(2016) estimate a lava coverage for this eruption of 4.8 and
4.85 km2, respectively, i.e., about 0.1 km2 of difference with
respect our results. This demonstrates that optical moderate
resolution data are quite informative for this kind of application
and are able to provide a cinematic estimate of lava emplacement.
The temporal evolution information provided by the proposed
approach can be delivered during an emergency phase. On
the contrary, techniques such as DEM difference that require
stereoscopic optical images, or TLS, that is based on field
campaigns, are often prevented when an eruption is ongoing
(e.g., with volcanic clouds and active lava flows). SAR data,
on the other side, play a key role in such context, when
prompt information is important for human rescue purposes,
because of their all-weather and day-night capabilities, and their
intrinsic suitability for a full automatic generation of change
detection product. The HSBA presented in our work is more
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TABLE 2 | Mean values of the dyke parameters as retrieved by the VSM tool.

E (km) N (km) L (m) W (m) Strike (◦) Dip (◦) Opening (m)

138.85 ± 0.2 1654.45 ± 0.2 1330 ± 150 2560 ± 250 48 ± 3 86 ± 5 0.58 ± 0.05

E and N are UTM projection, zone 27. L and W are the length and width of the dyke, respectively.

than a proof of concept of an operational tool, as in the case
of flood mapping (Chini et al., 2017). The accuracy of SAR
intensity and InSAR coherence lava maps seems to be lower than
other approaches, giving under- and over-estimation of the total
lava, at the beginning and at the end of the eruption (about
2 km2), respectively. Of course, results from other methods
based on earth observation data too are affected by errors as
well. Moreover, it is worth to note that S1 mission was not
fully operational at the time of Fogo eruption. Indeed, only one
satellite was orbiting at that time, so that the temporal baseline
between two consecutive acquisitions was twelve days (with two
satellites it is reduced to 6 days). This latter is an important
parameter for reducing false alarms caused by vegetation when
InSAR coherence is used. The opportunity offered by SAR
constellation missions, as in the case of ESA’s S1, with weekly
delivered acquisitions (or even more frequent as in the case of
the CSK mission) was shown. Still some efforts have to be put in
place to improve the results, correcting false alarms, and tuning
algorithms, considering that volcanic areas during an eruption
phase are quite challenging scenarios since different phenomena
occur (e.g., ash and gas emissions). In synthesis, the comparison
between the lava mapping results obtained from optical and SAR
data suggests their possible automatic integration for supporting
a crisis phase. Indeed, more complex approaches, such as DEM
difference or TLS, even though they are expected to be more
accurate (e.g., giving volume estimates too) cannot be applied
easily or automatically when an eruption is ongoing. Despite
some discrepancies are present in the analysis shown above,
the synergic use of optical and SAR data could provide high-
rate (almost daily) temporal information about lava evolution,
thanks to the complementarity of such sensors, and automation
of data processing.

The feeding dyke constrained by the geodetic inversion is
located SW of the Pico do Fogo summit, in accordance with
the area of the lava flow mapped by SAR change detection
and optical images. The eruptive vent location follows the
favorable calculated post-collapse stress field within the local
crust (Maccaferri et al., 2017). The retrieved dyke shares position
and dimension with previous analyses (González et al., 2015;
Bagnardi et al., 2016) of the 2014–2015 eruption, and of the 1995
eruption (Amelung and Day, 2002). The volumes of the retrieved
inflating dykes are comparable within uncertainty, being 3 ± 2
106 m3 that inferred by González et al. (2015). The syn-eruptive
dyke is referred for the 3–8 days of the eruption, being the
SAR slave images taken on the 27th, 29th November, and 2nd
December (Table 1), while the eruption lasted for 78 days. Even
considering the area and volumes related to the first days of
the eruption (one to few tens of 106 m3, Bagnardi et al., 2016;
Cappello et al., 2016; Calvari et al., 2018), the magma volume
intruded is still only a small fraction of the erupted volume. This

suggests that the shallow dyke inferred from SAR data is the
lateral, sub-vertical pathway of the magma to be erupted and it
is not representative of the volume actually extruded. From one
hand, this is confirmed by the lack of pre-eruptive deformation
and deflation after the end of the eruption (González et al.,
2015), and from other hand, by the development of tubes (Calvari
et al., 2018). We can conclude that the lava flow extension and
volume, and the retrieved feeding dyke volume are not directly
connected. Instead, we demonstrate that the full exploitation
of SAR data allows quantifying multi-hazards in volcanic areas
during eruptions.

As a final remark, a deeper magmatic source feeding the
eruption was not retrieved both for the 1995 and 2014–
2015 events (Amelung and Day, 2002; González et al., 2015).
The eruptions at Fogo are fed by mantle-lithospheric source,
according to petrological and geochemical data, assumed
to be located below 16 km depth (Hildner et al., 2011;
Calvari et al., 2018).

CONCLUSION

The present work is a multidisciplinary and multi-sensor study
of the main hazards related to the 2014–2015 Fogo Island
effusive eruption. In particular, we propose an innovative and
automatic method to exploit SAR data, and their joint use
with optical imageries to map the lava field emplacement. For
these purposes, we have used the images acquired by the ESA’s
S1, ASI’s CSK, and NASA/USGS L8 and EO-1 missions. The
comparative and synergic use of this multi-sensor dataset has
allowed estimating the temporal evolution of lava coverage in
the Chã das Caldeiras by applying visual inspection of optical
imagery and by testing the capability of a novel automatic change
detection algorithm using SAR data. Our improved change
detection algorithm is based on multiscale tiling approach to
identify changes occurred on the SAR intensity and it combines
information from the InSAR coherence to detect changes which
are not directly related to changes on surface roughness. The
approach is completely automatic and adaptive, showing high
capability to detect different extent of lava flows. The lava flow
analysis was then complemented by the geodetic observations.
Indeed, thanks to DInSAR we have mapped the whole ground
deformation due to the lava ascent. By inverting them, we have
also identified the dyke feeding the eruption. The achieved
results are in agreement with previous findings, even if based
on different dataset and methods. We demonstrate how open
access multi-sensor satellite imagery can be used in synergy to
provide hazard information in an operational environment, when
volcanic activity limits the use of single sensor data and/or on
field measurements.
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Among the hazards posed by volcanoes are the emissions of gases and particles that can

affect air quality and damage agriculture and infrastructure. A recent intense episode of

volcanic degassing associated with severe impacts on air quality accompanied the 2018

lower East Rift Zone (LERZ) eruption of Kı̄lauea volcano, Hawai’i. This resulted in a major

increase in gas emission rates with respect to usual emission values for this volcano,

along with a shift in the source of the dominant plume to a populated area on the lower

flank of the volcano. This led to reduced air quality in downwind communities. We analyse

open-access data from the permanent air quality monitoring networks operated by the

Hawai’i Department of Health (HDOH) and National Park Service (NPS), and report on

measurements of atmospheric sulfur dioxide (SO2) between 2007 and 2018 and PM2.5

(aerosol particulate matter with diameter <2.5 µm) between 2010 and 2018. Additional

air quality data were collected through a community-operated network of low-cost PM2.5

sensors during the 2018 LERZ eruption. From 2007 to 2018 the two most significant

escalations in Kı̄lauea’s volcanic emissions were: the summit eruption that began in 2008

(Kı̄lauea emissions averaged 5–6 kt/day SO2 from 2008 until summit activity decreased

in May 2018) and the LERZ eruption in 2018 when SO2 emission rates reached a monthly

average of 200 kt/day during June. In this paper we focus on characterizing the airborne

pollutants arising from the 2018 LERZ eruption and the spatial distribution and severity

of volcanic air pollution events across the Island of Hawai’i. The LERZ eruption caused

the most frequent and severe exceedances of the Environmental Protection Agency

(EPA) PM2.5 air quality threshold (35µg/m3 as a daily average) in Hawai’i in the period

2010–2018. In Kona, for example, the maximum 24-h-mean mass concentration of

PM2.5 was recorded as 59µg/m3 on the twenty-ninth of May 2018, which was one of eight

recorded exceedances of the EPA air quality threshold during the 2018 LERZ eruption,

where there had been no exceedances in the previous 8 years as measured by the

41
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HDOH and NPS networks. SO2 air pollution during the LERZ eruption was most severe

in communities in the south and west of the island, as measured by selected HDOH and

NPS stations in this study, with a maximum 24-h-mean mass concentration of 728µg/m3

recorded in Ocean View (100 km west of the LERZ emission source) in May 2018.

Data from the low-cost sensor network correlated well with data from the HDOH PM2.5

instruments, confirming that these low-cost sensors provide a robust means to augment

reference-grade instrument networks.

Keywords: Kı̄lauea, volcano, PM2.5, SO2, emissions, air quality, Hawai’i

1. INTRODUCTION

Volcanic clouds are complex, evolving mixtures of volcanic and
atmospheric gases, primary and secondary aerosol particles, ash
and dust (Oppenheimer and McGonigle, 2004; Pfeffer et al.,
2006b; von Glasow et al., 2009; Oppenheimer et al., 2010;
Langmann, 2014). As well as the potential for global climatic
consequences from explosive or large-scale volcanic emissions,
low altitude volcanic clouds can have important impacts on air
quality, human and animal health, and the environment on the
local to regional scale (Hansell and Oppenheimer, 2004; Barsotti
et al., 2010; Mather, 2015; Schmidt et al., 2015; Andronico and
Del Carlo, 2016; Tam et al., 2016; Ilyinskaya et al., 2017).

Gaseous sulfur dioxide (SO2) is usually highly concentrated
in volcanic emissions compared to the background atmosphere
and is often the focus of gas emission monitoring due to the
relative ease of its measurement and its important environmental
and air quality consequences (Cadle et al., 1971; Lambert et al.,
1988; Loughlin et al., 2012; Schmidt et al., 2015). Population
sub-groups including children, asthmatics and cardiac- or
respiratory-compromised individuals are particularly vulnerable
to exposure to SO2 (ATSDR, 1998; CRI, 2004). For example,
exposure to mass concentrations of 1,310µg/m3 SO2 for 3 min
can induce respiratory attacks in asthmatic individuals (Balmes
et al., 1987; ATSDR, 1998). In 2010 the U.S. Environmental
Protection Agency (EPA) set the National Ambient Air Quality
Standard (NAAQS) for SO2 mass concentration exposure limits
at 195 µg/m3 as an hourly average (EPA, 2010). Persistent
volcanic SO2 emissions on the Island of Hawai’i led the state
of Hawai’i being designated as unclassifiable for the EPA 2010
NAAQS, and as such Hawai’i uses the pre-2010 EPA SO2

exposure limit of 366 µg/m3 as 24-h average (EPA, 2013). The
European Commission (EC) air quality standards recommend a
SO2 mass concentration threshold of 350 µg/m3 for a 3-h average,
and 125 µg/m3 as a daily average (EC, 2018).

Particulate matter (PM) in volcanic clouds is also significant
in the context of environment and health. The chemical
composition of volcanogenic PM2.5 (PMwith diameter<2.5 µm)
is highly heterogeneous. Typical chemical species include sulfates
(primary emissions or formed via oxidation of sulfur gases)
(Cadle et al., 1971; Stockwell and Calvert, 1983; Allen et al., 2002;
Mather et al., 2003; Langmann, 2014) and halides, with an array
of metals and metalloids including environmentally-harmful
species such as lead and cadmium (Longo, 2013; Langmann,
2014). PM2.5 is a well-established indicator for air quality,

since it commonly includes particulates derived from transport
and industrial sources, fine wind-blown mineral dust, ambient
matter, and volcanic material (Lim et al., 2012; Tam et al., 2016;
Holgate, 2017; Butwin et al., 2019). It has been estimated that
the health burden due to exposure to ambient PM2.5 globally
amounts to more than three million premature deaths each
year (Lim et al., 2012), and is especially linked to increases in
death from cardiovascular and respiratory diseases in vulnerable
individuals (Holgate, 2017). EPANAAQS thresholds recommend
a PM2.5 mass concentration exposure limit of 35 µg/m3 as a
daily average (EPA, 2013). This is higher than the 24-h mean
exposure guideline of 25 µg/m3 established by the World Health
Organization (WHO, 2005).

2. KĪLAUEA ERUPTIVE ACTIVITY,
2007–2018

Kı̄lauea volcano on the Island of Hawai’i consists of a summit
caldera at 1,200 m a.s.l. and rift zones to the south-west and
east. From 1983 until 2008, activity at Kı̄lauea was concentrated
on the middle East Rift Zone (ERZ), primarily near the
Pu‘u ‘Ō‘ō vent (Elias and Sutton, 2007; Poland et al., 2008)
(Figure 1A). Between 2002 and 2006, average SO2 flux from
the ERZ was 1.7 ± 0.7 kt/day, while emissions from the
summit were low at 0.1 kt/day (Elias and Sutton, 2007). From
November 2007 to March 2008, SO2 emissions at the summit
increased to levels 10 times the long-term background (Wooten
et al., 2009) (Figure 2A). On the twelfth of March 2008, a
new vent opened within the Halema‘uma‘u summit crater,
leading to sporadic explosive eruptions and increased degassing
of SO2.

Kı̄lauea’s SO2 emissions peaked in the summer of 2008, when
a total emission rate of up to 20 kt/day was measured by satellite
sensors (Beirle et al., 2014). At this time, emissions from both
the ERZ and the summit were significant, with the two sources
contributing variable amounts to the total degassing rate (Elias
and Sutton, 2012). For the period 2009–2017, the dynamic
activity at Kı̄lauea was reflected in variable emissions, with a long-
term average of 5–6 kt/day based on satellite and ground-based
measurements (Eguchi et al., 2011; Elias and Sutton, 2012; Carn
et al., 2016; Elias et al., 2018) (Figure 2A). Lava was first observed
in the Halema‘uma‘u summit crater in September 2008, with a
permanent lava lake visible from February 2010 until May 2018
(Patrick et al., 2013; Neal et al., 2019).
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FIGURE 1 | Island of Hawai’i. (A) Ground-based sampling networks; HDOH and NPS stations indicated with black stars. Kı̄lauea summit, Pu‘u ‘Ō‘ō vent and 2018

lower East Rift Zone eruption site indicated with red triangles. Selection area of community-operated PM2.5 instruments indicated with blue highlight. Wind directions

at Kona International Airport (KIA, empty black cross) and Hilo International Airport (HIA, empty black square) displayed as seasonal wind roses for period 2007–2018

(NOAA, 2019). Note "Volcano Ob." stands for Volcano Observatory. (B) Population density per square kilometer on the Island of Hawai’i, based on 2010 Census data.

Highest population density is located in the east-coast city of Hilo (population ~45,700) and the west-coast city of Kailua-Kona (population ~28,500) (Hawai’i

Department of Business Economic Development and Tourism, 2011).

The 2018 Kı̄lauea eruption in the lower East Rift Zone (LERZ)
began following the collapse of the Pu‘u ‘Ō‘ō vent on the thirtieth
of April (Neal et al. 2019; HVO, 2018). Twenty-four fissures
opened over a distance of 6.8 km in the vicinity of Leilani
Estates (Figure 1A). During the first week of the LERZ eruption,
spattering activity at individual fissures was typically short-lived
(minutes to hours in duration) and lava was viscous with spatter
deposition within tens of meters of individual fissures. On the
eighteenth of May, the eruptive style evolved to less viscous lava
and resulted in fast-moving lava flows which reached the ocean
2 days later (HVO, 2018). By the end of May 2018, activity had
become focused at Fissure 8, and this remained the dominant
fissure for the remainder of the LERZ eruption (Neal et al.,
2019). Lava fountains from Fissure 8 reached heights of 80 m,
and lava effusion rates ranged from 50 to 200 m3/s (Neal et al.,
2019). Lava from Fissure 8 flowed in a semi-stable channel to
the ocean and eventually covered an area of land 35.5 km2 in
size (Neal et al. 2019; HVO, 2018). This eruption was the largest
along Kı̄lauea’s LERZ in the last two centuries and had far-
reaching impacts around the Island of Hawai’i. With the collapse
of the Pu‘u ‘Ō‘ō vent and draining of Kı̄lauea’s summit magma
reservoir, the dominant source of volcanic SO2 became the LERZ
eruptive vents. SO2 emissions reached an average of 200 kt/day in
June 2018 (Kern et al. 2019), severely impacting island-wide air
quality. The eruption declined rapidly at the end of July and lava
effusion ceased on the fourth of August 2018 (Neal et al., 2019).

2.1. Downwind Processes and Impacts
Since initiation of intermittent fountaining activity at Kı̄lauea
in 1983, SO2 emissions have been a health concern among
downwind communities on the Island of Hawai’i. As emissions

from Kı̄lauea are dispersed downwind, communities are exposed
to volcanic smog, locally known as vog, predominantly composed
of SO2 and fine particles of sulfuric acid aerosol (Longo, 2009;
Longo et al., 2010; Halliday et al., 2015; Tam et al., 2016; Elias
and Sutton, 2017). Prevailing trade winds from the north-east,
particularly during the period from April to October, carry
Kı̄lauea’s emissions over the communities to the south and west
(Longo et al., 2005, 2008; Michaud et al., 2007; Tam et al., 2016;
Elias and Sutton, 2017) (Figure 1A). The Island of Hawai’i has
relatively low population density in the south (Figure 1B), with
~4,400 residents in Ocean View and ~1,300 residents in Pāhala.
Trade winds from the north-east are influenced by the high
topography of Mauna Loa and Mauna Kea, generating more
localized air movement in the lee of the island on the west coast
(Michaud et al., 2007) (Figure 1A). This wind shadow allows a
potentially longer residence time for air pollutants (volcanogenic
or otherwise) along the densely-populated western coastline
(Figure 1B). During the winter months (November to March),
the trade winds weaken and southerly and westerly winds may
distribute vog toward the densely-populated eastern coastline
of the island (Wyrtki and Meyers, 1976; Mannino et al., 1996;
Michaud et al., 2004) (Figure 1B).

Numerous studies have investigated the impact of Kı̄lauea’s
SO2 emissions on the health of island residents, even at the
relatively low levels of degassing prior to the emergence
of the lava lake in 2008. Mannino et al. (1996) reviewed
the frequency of visits to emergency departments and
hospitalizations for respiratory issues during periods of
continuous and discontinuous SO2 emissions throughout
the 1980s. Communities on the western side of the island
frequently exposed to vog were found to have higher rates of
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FIGURE 2 | SO2 mass concentrations relative to health guidelines in selected populated areas of Island of Hawai’i. (A) SO2 emissions from Kı̄lauea summit indicated

with black stars; from ERZ indicated with red triangles; from 2018 LERZ eruption indicated with blue square. Note logarithmic scale. (B–D) SO2 air quality (24-h mean)

in communities from 2007 to the end of 2018. Solid red line: Hawai’i Standard air quality threshold (24-h mean of 366µg/m3 ); dashed orange line: European

Commission (EC) air quality threshold (24-h mean of 125µg/m3). Dashed black line: 2008 initiation of summit activity; blue highlight: 2018 LERZ eruption duration. (A)

SO2 emissions data sourced from Elias and Sutton (2012), Beirle et al. (2014), Elias et al. (2018), and Elias et al. (in preparation). Summit emissions for 2008–2012 are

from Beirle et al. (2014). LERZ data-point represents the average SO2 emission from the LERZ eruption for June 2018, taken from Kern et al. (2019). (B) Note that

“Volcano Ob.” stands for Volcano Observatory; (D) seasonal average for Hilo between 2007 and 2017 indicated by orange bars.

hospitalizations for chronic obstructive pulmonary disease than
the east-coast city of Hilo, which is rarely exposed to vog. Periods
of weakened north-easterly trade winds coincided with a 15 %
increase in emergency department visits for asthma in Hilo
(Mannino et al., 1996). In 2004, the health of Hawai’i residents in
vog-exposed and -unexposed communities was surveyed (Longo
et al., 2008; Longo, 2009). Those in exposed communities were
found to have a significantly increased prevalence of cough,
phlegm, sinus congestion, rhinorrhoea, wheezing, eye irritation,
and bronchitis than those in unexposed communities. Following
the increase in SO2 flux from Kı̄lauea’s summit in 2008, Longo
(2013) reassessed the vog-related health impacts on the residents
of the Island of Hawai’i. The magnitude of cardio-respiratory
issues in vog-exposed communities was found to have increased

as compared to 2004 (Longo et al., 2008), with the risk factor
of acute cardiac events in persons aged >50 years increased by
12 % (Longo, 2013). A study by Tam et al. (2016) investigated the
effects of vog on the respiratory health of school children across
Hawai’i, finding that chronic exposure to vog was associated with
increased prevalence of cough and potential decrease in lung
function, but not with the prevalence of asthma or bronchitis.
The unprecedented emission rates of the 2018 LERZ eruption
has presented a continued motivation to further characterize the
severity and distribution of volcanic air pollution during elevated
volcanic activity.

The 2018 Kı̄lauea LERZ eruption provided a unique
opportunity to study the impacts arising from a large low-altitude
cloud rich in SO2 in a populated and well-instrumented part
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of the world. Here we used open-access data from a network
of reference-grade instruments in populated areas around the
Island of Hawai’i to determine the severity of SO2 and PM2.5

impact on air quality from the LERZ eruption. We compare
air quality during the LERZ eruption to that from a lower
emission period, defined to be January 2007 to December 2017
for SO2 and January 2010 to December 2017 for PM2.5. We
examine a network of community-operated PM2.5 instruments
and compare their measurements to those from reference-grade
instruments. From these data, we demonstrate that SO2 and
PM2.5 mass concentrations during the 2018 LERZ eruption
in selected communities around the island were of a higher
magnitude than during volcanic activity from Kı̄lauea during
2007 to 2017.

3. DATA AND METHODS

3.1. Continuous SO2 and PM2.5 Air Quality
Monitoring
Hawai’i Department of Health (HDOH) ambient air
quality stations continuously monitor SO2 and PM2.5 mass
concentrations around the Island of Hawai’i (Figure 1A).
Automated SO2 monitoring stations have been operational since
1997 in Hilo, 2005 in Kona, 2007 in Pāhala and 2010 in Ocean
View. A National Park Service (NPS) ambient air quality station
monitors SO2 inside of Hawai’i Volcanoes National Park at the
Volcano Observatory. PM2.5 has been autonomously monitored
since 2005 in Mountain View and Kona, 2008 in Hilo and Pāhala
and since 2010 in Ocean View.

SO2 is measured by a pulsed fluorescence spectroscopy
analyzer (model 43i manufactured by Thermo Scientific) that
is designated by the EPA for measurements in the range of
0–1,000 ppb, with a lower detectable SO2 limit of 0.5 ppb
and a precision of 1 ppb (Thermo Scientific 2010; EPA,
2016). FEM-designated instruments (Forum for Environmental
Measurements), such as this SO2 analyzer, promote consistency
in measurements and laboratory conditions ensuring that
the instruments are of reference-grade quality (EPA, 2016).
Following EPA regulations, the analyzers undergo in-situ
calibration checks weekly, with a multi-point calibration run
every 6 months. PM2.5 mass concentrations are measured by
a Beta Attenuation Monitor (BAM) with a 60-min sampling
rate. The BAM instrument (model BAM-1020, manufactured
by Met One Instruments) is FEM-designated for measurements
of particles in the size range of 0–1,000µm (with PM2.5 being
a small subset of the measured particle size range), with a
resolution of 1 µm particle diameter and a lower detection limit
of 4 µg/m3 (MetOne 2008; EPA, 2016). The BAM instruments
undergo calibration and auditing every 6 months. Permanent
HDOH ambient air quality stations are kept in air-conditioned
enclosures to maintain long-term stability. Data from the
air quality stations are streamed in near-real time to the
HDOH website, which is open-access and publicly-available
(HDOH, 2019).

Data from the HDOH and NPS station networks used in this
study have been categorized into regions for the purpose of data

analysis. The western region includes Kona HDOH station on
the west coast of the Island of Hawai’i. The southern region
includes VolcanoObservatoryNPS station and Pāhala andOcean
View HDOH stations. The eastern region includes the Hilo and
Mountain View HDOH stations. We compare the HDOH and
NPS SO2 timeseries data against the European Commission 24-h
air quality threshold (125 µg/m3) and the Hawai’i 24-h ambient
air quality standard (366 µg/m3). The HDOH PM2.5 timeseries
data is compared to the World Health Organization 24-h
exposure limit (25 µg/m3) and the Environmental Protection
Agency NAAQS 24-h limit (35 µg/m3).

3.2. Community-Operated PM2.5

Instruments
PurpleAir (Utah, USA) instruments are low-cost (approximately
$250 per unit) particulate sensors that are purchased and
operated by individuals and provide open access data online
(PurpleAir, 2019). PurpleAir instruments contain Plantower
PMS5003 nephelometer sensors, which use a small fan to draw
air through a laser-induced light, and a photo-diode detector
converts 90°-scattered light into a voltage pulse (Kelly et al.,
2017). PMS5003 sensors have a 10 s response time and detect
particles between 0.3 and 10 µm in diameter (Kelly et al., 2017;
Sayahi et al., 2019). The maximum consistency error of the
sensors is stated by the manufacturer to be ± 10 µg/m3 between
0 and 100 µg/m3 (Plantower, 2016). The instruments are factory
calibrated prior to sale (PurpleAir, 2019). PMmass concentration
measurements are calculated using an atmospheric calibration
factor, details of which are not provided by the manufacturer
(Kelly et al., 2017; Zheng et al., 2018; Sayahi et al., 2019).
PurpleAir instruments contain two Plantower PMS5003 sensors
mounted in one housing, allowing self-consistency checks to alert
when significant differences are reported between the internal
sensors. An ESP8266 wireless chip is included in PurpleAir
instruments to upload data via WiFi to an online cloud database,
which is open-access (Sayahi et al., 2019).

Prior to the 2018 LERZ eruption, six community-operated
PurpleAir instruments were located on the Island of Hawai’i,
three of which were in the Kona area in the western region.
Installation dates ranged from August 2017 to February 2018.
Following the onset of the LERZ eruption and island-wide
increase in atmospheric pollutants, the number of PurpleAir
instruments increased, with a further twenty instruments
installed across the western region of the island over the course
of May to July 2018.

We carried out fieldwork during the 2018 LERZ eruption
and co-located PurpleAir instruments with HDOH ambient air
quality stations at Kona and Ocean View (Figure 1A). Two
PurpleAir instruments were installed at the Kona station, one
from the fifth of June to September 2018 and a second from
the nineteenth of July to the third of August, and one PurpleAir
instrument was installed at the Ocean View station from the
nineteenth of July to the third of August 2018. The PurpleAir
instruments were installed close to the inlet for the BAM
instruments, on the roofs of the air quality shelters and away
from obstructions. Other than the coordinates of the instrument,
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no environmental information is provided in association with
the PurpleAir instruments. For this reason, measurement
uncertainty arising from factors such as installation in proximity
to potential contamination sources in community-operated
PurpleAir instruments should be considered significantly higher
than those placed in optimal conditions near HDOH stations.
Community-operated PurpleAir instruments were selected for
analysis along the region highlighted in blue in Figure 1A.

4. RESULTS

4.1. SO2 Mass Concentrations 2007–2018
4.1.1. Western Region: Kona
During 2007–2017, the west-coast city of Kailua-Kona was
commonly exposed to low mass concentrations of SO2, with a
maximum recorded 24-h-mean mass concentration of 79 µg/m3

recorded at the Kona HDOH station (Table 1). SO2 air pollution
in Kona increased with the onset of summit activity in
2008 (2008–2017 average mass concentrations were 7.7 µg/m3

compared to 3 µg/m3 in 2007) (Figure 2B). During 2007–
2017 there were no 24-h periods where SO2 mean mass
concentrations at the HDOH Kona station exceeded Hawai’i or
EC recommended thresholds (Figure 2B).

Kona experienced elevated SO2 mass concentrations during
the 2018 LERZ eruption, with a peak 24-h-mean mass
concentration of 136 µg/m3 measured at the Kona station.
During the 2018 LERZ, SO2 mass concentrations in Kona
did not exceed the Hawai’i SO2 threshold of 366 µg/m3

(Figure 2B), but did exceed the 125 µg/m3 EC threshold on one
occasion (Table 1).

4.1.2. Southern Region: Volcano Observatory, Pāhala

and Ocean View
Following initiation of Kı̄lauea’s summit activity in 2008, the
HDOH-operated Pāhala station and the NPS-operated Volcano
Observatory station routinely recorded high concentrations of
SO2 (Figure 2C), with SO2 mass concentrations exceeding the
Hawai’i 366 µg/m3 24-h-mean threshold 0.7 % of the time at
both Volcano Observatory (twenty-eight exceedance events) and
Pāhala (thirty exceedance events) (Table 1). The maximum 24-
h-mean mass concentration recorded by the NPS station at
Volcano Observatory during 2007–2017 was 1,068µg/m3, and
by the HDOH station in Pāhala was 776 µg/m3. The Ocean View
HDOH station is located farther to the south-west than Pāhala
and Volcano Observatory, at a greater distance from Kı̄lauea’s
summit and the ERZ (Figure 1A). During the period 2010–2017,
SO2 mass concentrations recorded at Ocean View exceeded the
Hawai’i 24-h-mean threshold 0.1 % of the time (three exceedance
events). The maximum 24-h-mean mass concentration recorded
at Ocean View was 403 µg/m3, significantly lower than measured
at Volcano Observatory and Pāhala (Table 1).

In comparison, during the 3-months of the 2018 LERZ
eruption, SO2 mass concentrations exceeded the Hawai’i
366 µg/m3 threshold 2.1 % of the time at Volcano Observatory
(two exceedance events), 5.3 % of the time at Pāhala (five
exceedance events) and 4.2 % at Ocean View (four exceedance
events). Maximum 24-h-mean mass concentrations at Volcano

Observatory and Pāhala were lower than those measured during
2008–2017 (450 and 555 µg/m3, respectively), but the relative
frequency of exceedance events increased (Table 1). During the
2018 LERZ eruption, the Ocean View station recorded a peak
24-h-mean mass concentration of 728 µg/m3, almost double the
previous peakmeasurement of 403 µg/m3 recorded at that station
in January 2016.

4.1.3. Eastern Region: Hilo
During the period 2007–2017, SO2 mass concentrations in Hilo
followed a distinct seasonality (Figure 2D). Peak SO2 mass
concentrations were commonly observed in Hilo in November
to March (average monthly concentration of 11 µg/m3) with
low mass concentrations in the intervening months of April to
October (average monthly mass concentration of 3.6 µg/m3, as
calculated from 2007 to 2017) (Figure 2D). Exceedances of the
EC 24-h-mean threshold (125 µg/m3) rarely occurred outside this
peak season. In the period 2007–2017 there were twenty-one
exceedance events during November to March, compared with
just three between April to October. The seasonal variations in
SO2 mass concentrations observed in Hilo can be explained by
the strong prevalence of northeasterly trade winds during April
to October (Wyrtki andMeyers, 1976) (Figure 1A). During these
months, emissions from Kı̄lauea’s summit and the ERZ were
dispersed predominantly to the south-west of the Island. The
trade winds weaken between November to March, allowing SO2

to be dispersed to the east of the island (Mannino et al., 1996;
Michaud et al., 2004; Elias and Sutton, 2017).

During the third of May to fourth of August LERZ eruption,
the HDOH station in Hilo recorded a maximum 24-h-mean
mass concentration of 144 µg/m3, which was recorded on the
twenty-first of June (Table 1), and was the only exceedance of
the EC 24-h-mean threshold during the 3-month eruption. The
SO2 mass concentrations measured during the LERZ eruption
were lower than the averagemeasurements during the 2007–2017
period. SO2 mass concentrations in Hilo are usually low during
the months when the LERZ eruption occurred. Nevertheless,
during the 2018 LERZ eruption, SO2 mass concentrations in
Hilo rose significantly above the average for the season (average
24-h-mean SO2 mass concentration during 2018 LERZ eruption
was 6.9 µg/m3, in comparison to the usual seasonal average
of 3.6 µg/m3).

4.2. PM2.5 Mass Concentrations 2010–2018
4.2.1. Western Region: Kona
In the period 2010–2017, PM2.5 recorded by HDOH Kona
station never exceeded the EPA 24-h-mean threshold of 35 µg/m3

(Figure 3A). The WHO 24-h-mean guideline of 25 µg/m3 was
exceeded 1.2 % of the time at the Kona site (33 exceedance
events). The maximum PM2.5 24-h-mean mass concentrations
was 33 µg/m3, recorded in April 2016 (Table 1).

During the 2018 LERZ eruption, PM2.5 exceeded the 24-
h-mean 35 µg/m3 EPA threshold 8.4 % of the time at the
Kona station (eight exceedance events). The lower guideline of
25 µg/m3 established by the WHO was exceeded 34.7 % of the
time at the Kona site (33 exceedance events). The maximum
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TABLE 1 | Impact of the 2018 LERZ eruption on concentrations of SO2 and PM2.5.

Station

location

Measurement

period

Sulfur dioxide (SO2) Particulates (PM2.5)

(SO2) (µg/m
3)

24-h mean

Exceedance Hawai’i threshold

(24-h > 366 µg/m3)

Exceedance EC threshold

(24-h > 125 µg/m3)

(PM2.5) (µg/m
3)

24-h mean

Exceedance EPA threshold

(24-h > 35 µg/m3)

Exceedance WHO guideline

(24-h > 25 µg/m3)

Hilo

Elevation: 121 m asl

40 km NE of summit

35 km NW of Fissure 8

Low Emission *

Average 7 Average –

σ 19
1 day

0%

24 days

0.6%
σ – [No Data] [No Data]

Max 403 Max –

High Emission

2018 LERZ **

Average 6 Average 5

σ 21
0 days

0%

1 day

1.1%
σ 2

0 days

0%

0 days

0%

Max 144 Max 15

Mountain View

Elevation: 426 m asl

26 km NE of summit

23 km NW of Fissure 8

Low Emission ***

Average – Average 4

σ - [No Data] [No Data] σ 4
1 day

0%

3 days

0.1%

Max – Max 35

High Emission

2018 LERZ **

Average – Average 7

σ – [No Data] [No Data] σ 6
0 days

0%

0 days

0%

Max - Max 18

Volcano Observatory

Elevation: 1,161 m asl

2 km NW of summit

35 km W of Fissure 8

Low Emission *

Average 24 Average –

σ 67
28 days

0.7%

204 days

5.1%
σ – [No Data] [No Data]

Max 1068 Max –

High Emission

2018 LERZ ***

Average 56 Average

σ 106
2 days

2.1%

10 days

10.5%
σ – [No Data] [No Data]

Max 450 Max –

Pāhala

Elevation: 320 m asl

30 km SW of summit

66 km SW of Fissure 8

Low Emission *

Average 81 Average 6

σ 72
30 days

0.7%

729 days

18.1%
σ 5

2 days

0.1%

3 days

0.1%

Max 776 Max 97

High Emission

2018 LERZ **

Average 129 Average 10

σ 108
5 days

5.3%

34 days

35.8%
σ 5

0 days

0%

0 days

0%

Max 555 Max 24

(Continued)
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TABLE 1 | Continued

Station

location

Measurement

period

Sulfur dioxide (SO2) Particulates (PM2.5)

(SO2) (µg/m
3)

24-h mean

Exceedance Hawai’i threshold

(24-h > 366 µg/m3)

Exceedance EC threshold

(24-h > 125 µg/m3)

(PM2.5) (µg/m
3)

24-h mean

Exceedance EPA threshold

(24-h > 35 µg/m3)

Exceedance WHO guideline

(24-h > 25 µg/m3)

Ocean View

Elevation: 862 m asl

61 km W of summit

100 km W of Fissure 8

Low Emission ***

Average 26 Average 12

σ 39
3 days

0.1%

93 days

3.5%
σ 5

4 days

0.1%

25 days

0.9%

Max 403 Max 42

High Emission

2018 LERZ **

Average 117 Average 26

σ 114
4 days

4.2%

27 days

28.4%
σ 8

10 days

10.5%

44 days

46.3%

Max 728 Max 56

Kona

Elevation: 517 m asl

67 km W of summit

106 km W of Fissure 8

Low Emission *

Average 7 Average 12

σ 7
0 days

0%

0 days

0%
σ 5

0 days

0%

33 days

1.2%

Max 79 Max 33

High Emission

2018 LERZ **

Average 39 Average 24

σ 25
0 days

0%

1 days

1.1%
σ 9

8 days

8.4%

33 days

34.7%

Max 136 Max 59

All units in µg/m3. Exceedances of air quality standards are indicated for 24 h means, and calculated as percentage of total measurement duration. Distances between emission points and measurements sites are straight line distances;
the emissions will not always follow the most direct route from near- to far-field. Note: no data available for PM2.5 at Volcano Observatory, or Hilo for 2010–2017; no data available for SO2 at Mountain View. *Low emission period for SO2

from the first of January 2007 to the thirty-first of December 2017 and for PM2.5 from the first of September 2010 to the thirty-first of December 2017; **high emission 2018 LERZ period for SO2 and PM2.5 from the third of May 2018
to the sixth of August 2018. ***Exceptions due to data availability: Mountain View low emission for PM2.5 from the first of December 2010 to the thirty-first of December 2017; Volcano Observatory high emission 2018 LERZ period for
SO2 from the third of May 2018 to the third of July 2018; Ocean View low emission for SO2 from twenty-third of August 2010 to the thirty-first of December 2017.
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FIGURE 3 | PM2.5 mass concentrations relative to health guidelines in select populated areas of Island of Hawai’i. (A–C) Concentrations of PM2.5 (24-h mean) in

populated areas from 2010 to the end of 2018. Solid red line: EPA Federal Standard air quality threshold (24-h mean of 35µg/m3 ); dashed orange line: World Health

Organization (WHO) air quality guideline (24-h mean of 25µg/m3 ); blue highlight: 2018 LERZ eruption duration.

PM2.5 24-h-mean mass concentration at the site was recorded as
59 µg/m3 on the twenty-ninth of May 2018.

4.2.2. Southern Region: Pāhala and Ocean View
During the period 2010–2017, the southern region of the Island
of Hawai’i experienced variable levels of PM2.5 (Figure 3B). The
maximum PM2.5 24-h-mean mass concentration recorded in
Ocean View was 42 µg/m3, recorded in March 2016. In Pāhala
the maximum recorded PM2.5 24-h-mean mass concentration
was 97 µg/m3, recorded on the eighteenth of June 2012, and
coincident with two brush fires in the vicinity of Pāhala
which burned approximately 5,600 acres (Hawai’i Emergency
Management Agency, 2018). The EPA 35 µg/m3 PM2.5 threshold
was exceeded 0.1 % of the time at both Ocean View and Pāhala
(four exceedance events and two exceedance events, respectively).

The lower PM2.5 guideline of 25 µg/m
3 established by the WHO

was exceeded 0.9 % of the time at Ocean View (25 exceedance
events) and 0.1 % of the time at Pāhala (three exceedance events).

Mean PM2.5 mass concentrations in Pāhala during the
2018 LERZ eruption were higher than the 2010–2017 average
(10 µg/m3 with respect to 6 µg/m3) (Table 1), however there
were no 24-h periods which exceeded either the EPA or

WHO 24-h-mean thresholds. During the 2018 LERZ eruption,
PM2.5 recorded in Ocean View exceeded the 35 µg/m3 EPA

threshold 10.5 % of the time (ten exceedance events) and
exceeded the WHO 24-h-mean guideline 46.3 % of the time (44

exceedance events). In mid-June 2018, the Ocean View HDOH
station recorded 3 consecutive days where 24-h-mean mass
concentrations exceeded 35 µg/m3, unprecedented in the period
2010–2017. The maximum 24-h-mean mass concentration
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FIGURE 4 | Exceedances of (A) 24-h Hawai’i Standard for SO2 during 2018 LERZ eruption and (B) EPA threshold for PM2.5 during 2018 LERZ eruption. Note: data

were unavailable for PM2.5 at Volcano Observatory and SO2 at Mountain View.

recorded in Ocean View during the 2018 LERZ eruption was
56 µg/m3, somewhat higher than the peak 24-h-mean mass
concentration recorded at Ocean View in 2016 (42 µg/m3).

4.2.3. Eastern Region: Hilo and Mountain View
HDOH stations in the eastern region of the Island of Hawai’i
recorded variable levels of PM2.5 during 2010–2017 (Figure 3C).
The maximum PM2.5 24-h-mean mass concentration in
Mountain View was 35 µg/m3, which was recorded in December
2015, and was the only exceedance of the 35 µg/m3 24-h-mean
EPA threshold during the period 2010–2017 (Figure 3C). The
lower PM2.5 24-h-mean guideline of 25 µg/m3 established by the
WHO was exceeded 0.1 % of the time at Mountain View (three
exceedance events).

During the 2018 LERZ eruption, PM2.5 mass concentrations
in Mountain View were higher than the average mass
concentrations for 2010–2017 (7 and 4 µg/m3, respectively)
(Table 1). However, during the 2018 LERZ eruption, PM2.5

mass concentrations did not exceed either the EPA threshold of
35 µg/m3 or the WHO guideline of 25 µg/m3.

5. DISCUSSION

5.1. Dispersal of Volcanic Emissions
Time series of SO2 mass concentrations were analyzed in
five populated areas on the Island of Hawai’i; Hilo, Volcano
Observatory, Pāhala, Ocean View and Kona, for the period 2007–
2018 (Figure 2). Time series of PM2.5 were analyzed in Hilo,
Mountain View, Pāhala, Ocean View, and Kona for the duration
2010–2018 (Figure 3). Significant escalations in emissions from

Kı̄lauea volcano can be identified (Figure 2A), which were
registered by the air quality monitoring instruments around the
Island of Hawai’i (Table 1, section 4.1 and 4.2).

High mass concentrations of SO2 and PM2.5 generally
occurred in the southern and western parts of the Island of
Hawai’i. Prevailing trade winds from the north-east dispersed
SO2 emissions from Kı̄lauea volcano toward communities in the
south and west of the island, as reported in previous studies
(Longo et al., 2005, 2008; Michaud et al., 2007; Tam et al.,
2016). During the 2018 LERZ eruption, the EPA 24-h-mean
threshold for PM2.5 (35 µg/m

3) and the Hawai’i threshold for SO2

(366 µg/m3) were exceeded in the south and west of the island
(Figure 4). HDOH stations in the south of the island, 35–100 km
away from Fissure 8, recorded 24-h events where SO2 exceeded
Hawai’i thresholds (note that there were no HDOH or NPS
permanent monitoring stations for SO2 in proximal location to
the 2018 LERZ eruption site), but PM2.5 EPA exceedance events
only occurred at HDOH stations 100 km or further away from
Fissure 8 (Figure 4). This spatial variance between distribution
of PM2.5 and SO2 is well-documented and thought to reflect the
timescale of oxidation of sulfur dioxide gas into sulfate aerosol
during dispersion (Cadle et al., 1971; Stockwell and Calvert, 1983;
Porter et al., 2002; Ilyinskaya et al., 2017).

Volcanic emissions at source commonly consist of a mixture
of silicate ash particles, various gases and non-silicate aerosol
(Oppenheimer and McGonigle, 2004; von Glasow et al., 2009;
Langmann, 2014). The lifetime of SO2 in the lower troposphere
is generally considered to be on the order of 1–3 days to a
week (Allen et al., 2002; Rotstayn and Lohmann, 2002; Pfeffer
et al., 2006a; Pattantyus et al., 2018), the rate of conversion
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depending on relative humidity and temperature, the availability
of oxidants, and interaction with cloud or fog (Saxena and
Seigneur, 1987; Oppenheimer et al., 1998). However, the SO2

oxidation pathways in a volcanic cloud are not necessarily the
same as under background conditions (Galeazzo et al., 2018).
Through a variety of reaction pathways (including oxidation
with the hydroxyl radical, OH, and with hydrogen peroxide,
H2O2, and O3), SO2 in volcanic clouds is gradually converted
to sulfate aerosol (Stockwell and Calvert, 1983; Allen et al.,
2002), which is a dominant component of volcanic PM2.5 (Tam
et al., 2016; Pattantyus et al., 2018). The conversion rate of
SO2 to sulfate aerosol is important for estimating the potential
hazard of volcanic PM2.5 to human health and the downwind
environments (Kroll et al., 2015).

HDOH stations measure the ambient air, which contains SO2

and PM2.5 derived from anthropogenic sources as well as natural
non-volcanic and volcanic sources. In order to determine the
influence of the volcanic eruption on the measured SO2 and
aerosol abundances, it is first necessary to calculate the volcanic
component of the HDOHmeasurements. During the 2018 LERZ
eruption, Fissure 8 was the dominant source of volcanic SO2

emissions on the island, and following the decline of the eruption,
the SO2 and PM2.5 mass concentrations decreased to below
pre-LERZ eruption levels at all HDOH stations analyzed in
this study (Figures 2, 3). The mass of pollutants recorded at
HDOH stations during this post-LERZ eruption period (mid-
August 2018 to the first of February 2019) are therefore used to
define the background abundances arising from all other non-
volcanic sources. During this time there was some SO2 emitted
from Kı̄lauea’s summit but at the lowest rate measured in decades
at 0.1 kt/year (Nadeau et al., 2019). The volcanic component
of the HDOH measurements was calculated by subtracting the
average PM2.5 and SO2 mass concentration following the end
of the 2018 LERZ eruption for each station from the mass
concentrations measured during the LERZ eruption, to estimate
the volcanogenic component. The sulfate aerosol component
within the volcanic PM2.5 mass concentration was then estimated
to be in the range 77–92 %, following the methods of Mather
et al. (2012) and Kroll et al. (2015), of PM2.5 composition
from Kı̄lauea.

Estimating the conversion rate of SO2 to sulfate from SO2 and
SO4

2– datasets is not straightforward because several processes
can occur simultaneously, including SO2 oxidation to sulfate,
dispersion-dilution and deposition of SO2 and/or SO4

2– to
the surface.

Here, a first-order decay constant for SO2 is estimated by the
relationship between volcanic components of SO2 and SO4

2–,
as follows;

ln

(

Sgas

Stotal

)

= −kt (1)

where Sgas is the sulfur component of the volcanic SO2 mass
concentration (µg/m3), Stotal is the sum of sulfur components of
the volcanic SO4

2– and SO2 mass concentrations (µg/m3), t is
the age of the volcanic cloud (seconds) and −k is a first-order
decay constant.

FIGURE 5 | Relationship between the age of the volcanic cloud and the

volcanic sulfur components measured at Pāhala, Ocean View and Kona

HDOH ambient air quality stations. Sgas is the sulfur component of the volcanic

SO2 mass concentration, Stotal is the sum of sulfur components of the volcanic

SO4
2– and SO2 mass concentrations. Age is derived from HYSPLIT

back-trajectory simulations (Ilyinskaya et al., in preparation). Y axis error bars

indicate range of SO4
2– component in volcanic PM2.5 composition from

Kı̄lauea. X axis error bars indicate one standard deviation of HYSPLIT

back-trajectory results specific to Kona, Ocean View and Pāhala. Correlation

trendline based on the data points, with a first-order decay constant of

3.8 x 10–6 s–1 with a 95 % confidence interval of ± 1.26 x 10–6 s–1.

The age of the volcanic cloud is here considered to be the
time between emission of the cloud at the LERZ eruption source
point and subsequent measurement at the HDOH station. From
back-trajectory HYSPLIT simulations run between the HDOH
ambient air quality stations and Fissure 8, the average age of
the emissions and dispersal distance was calculated for dates
between the eighteenth of July to the second of August 2018
(Ilyinskaya et al., in preparation). An estimate of the average
first-order decay constant from our data-set is indicated in
Figure 5. Although there is considerable scatter in the data,
a broad trend of decreasing S fraction in the gas phase is
apparent and a linear fit allows us to estimate a first-order rate
constant of 3.8 × 10–6 s–1 with a 95 % confidence interval of ±
1.26 × 10–6 s–1. This first-order decay constant for SO2 relative
to total sulfur can represent an estimate of the average rate of
SO2 oxidation to sulfate only if negligible sulfur deposition has
occurred. Nevertheless, our value is similar to the SO2 oxidation
rate calculated by Kroll et al. (2015) from direct measurements
of sulfur in gas and particle phase in Kı̄lauea’s emission cloud
from the summit to Pāhala. Kroll et al. (2015) identified a diurnal
cycle in measured sulfate as a fraction of total sulfur, from which
they calculated a noontime instantaneous SO2 oxidation rate
of 2.4× 10–6 s–1.

5.2. Reliability Assessment of
Community-Operated PM2.5 Instruments
A subset of the community-operated PurpleAir instruments
on the Island of Hawai’i were selected for intercomparison
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FIGURE 6 | Hawai’i Department of Health ambient air quality stations and community-operated PurpleAir instruments along the western region of the Island of

Hawai’i selected for analysis in this study. (A) Distribution of publicly-owned PurpleAir instruments, indicated by blue stars with reference numbers, distribution of Kona

and Ocean View HDOH stations indicated by green circles. PurpleAir instruments within 10 km radius of Kona HDOH station indicated by dashed yellow circle. (B–D)

24-h average mass concentration measurements from 20 PurpleAir instruments during the 2018 LERZ eruption; (E) 24-h average PM2.5 from BAM instruments at

Kona and Ocean View HDOH ambient air quality stations during the 2018 LERZ eruption. (F) Size and morphology of the PurpleAir instruments, seen from the front

(left image) and side (right image). Photos by kind permission of PurpleAir LLC.

with the established institutional data-sets across the western
region of the island. The low-cost and portable nature of the
PurpleAir instruments (Figure 6F) facilitated installation of a
monitoring network across the western region (Figure 6A), with
a high spatial resolution of measurements in comparison to the
locations of HDOH ambient air quality sites (Figure 6A). This
can be advantageous to capture the effects of local topographic
and meteorological factors, which may influence dispersion of
and deposition from volcanic plumes. Mass concentrations from

PurpleAir instruments andHDOHPM2.5 instruments during the
course of the 2018 LERZ eruption are presented in Figures 6B–E.

Small differences were found between individual PurpleAir
instruments in the same location. Two PurpleAir instruments
(Figure 6A, PurpleAir references 10 and 11) were co-located
at the Kona HDOH station, and the PurpleAir instruments
ran together for 16 days. During this time, the maximum
absolute differences in 24-h average measurements between the
PurpleAir instruments was 2.3 µg/m3; which was 6 % of the total
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FIGURE 7 | PurpleAir and HDOH PM2.5 comparison. (A) Two PurpleAir instruments co-located with Kona HDOH station. (B) One PurpleAir instrument co-located

with Ocean View HDOH station. (C) Comparison of all PurpleAir instruments along the western region of the Island of Hawai’i compared with Kona HDOH

measurements. PurpleAir instruments within 10 km of Kona HDOH indicated by dark gray stars, PurpleAir instruments at greater distances are indicated by light gray

circles. Linear regression and 95 % confidence interval fit to instruments <10 km from Kona HDOH ambient air quality station. Measurement periods vary with earliest

PurpleAir data from August 2017 and most recent from January 2019. (A,B) PurpleAir error bars show measurement variations between the two sensors within a

single PurpleAir instrument, and therefore indicate the minimum error.

measured concentration. Correlation between the two PurpleAir
instruments was very strong (Pearson’s r = 0.99). Similar results
were found by Malings et al. (2019) with co-location of nine
PurpleAir instruments at a site in Pennsylvania for a period of 66
days (Pearson’s r > 0.9). The high correlation between co-located
individual PurpleAir instruments indicates high standardization.
With this being the case, relative PM2.5 mass concentrations
measured by PurpleAir instruments over a wider geographical
area should be comparably reliable.

Three PurpleAir instruments were co-located with HDOH
PM2.5 instruments (BAM) to determine the accuracy of
PurpleAir instrument PM2.5 measurements in relation to
reference-grade instruments (Figure 6A, PurpleAir references
10, 11, and 20). The co-located PurpleAir measurements
correlated well with the BAM measurements, with Pearson’s r
values of 0.99, 0.97, and 0.91 (Figures 7A,B). However, PurpleAir
instruments did record higher mass concentrations of PM2.5

in comparison to the BAM analyzers (Figures 7A,B). PurpleAir
reference 10 (co-located with Kona HDOH station) (Figure 6A)
recorded the greatest measurement off-set, with up to 40 %
higher mass concentrations of PM2.5 relative to the Kona BAM
analyzer measurements (Figure 7A). This trend was also found
when the community-operated PurpleAir instruments across the
western region of the island were compared to the BAM at Kona
HDOH station (Figure 7C), with strong correlation between
PurpleAir instruments and BAM (Pearson’s r = 0.92) but an
average 30 % higher mass concentrations measured by PurpleAir
instruments within 10 km of the Kona BAM instrument.

Previous testing of PurpleAir instruments in Pennsylvania and
California has yielded similar findings (AQ-SPEC, 2017; Malings
et al., 2019), with over-estimation of PM2.5 mass concentrations
measured by PurpleAir instruments relative to BAM reference-
grade analyzers.

Some discrepancy between PurpleAir and BAM
measurements may be expected, as it is well-known that
low-cost instruments measuring PM2.5 with light scattering
methods have not historically agreed with measurements
obtained from reference grade instruments with different
operating principles (Watson et al., 1998; Wilson et al., 2002;
Chow et al., 2008; Burkart et al., 2010). In comparison with
sensors of other operating principles, light-scattering optical
particle sensors have been shown to suffer effects of relative
humidity (Wang et al., 2015; Crilley et al., 2018), since the
operating principle relies on indirect measurement of particle
size and shape based on scattered light, and an assumed particle
shape and refractive index. Conversely, BAM instruments
measure direct changes in aerosol mass concentrations based
on the loss of electrons on a filter which the aerosol has been
deposited on (Watson et al., 1998; Manikonda et al., 2016), and
so are not influenced by the hygroscopic growth of individual
particles. Zheng et al. (2018) analyzed the performance of
Plantower PMS3003 (an earlier version of the Plantower
PMS5003 housed in PurpleAir instruments used in this study)
against a reference grade scattered light spectrometer (with
good correlation of R2 = 0.8) and a BAM instrument (with
lower correlation of R2 = 0.5). They concluded that a likely
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explanation contributing to the discrepancy is the potential for
hygroscopic growth of aerosol particles due to ambient humidity,
which alters the light-scattering properties of the aerosol and
therefore the measurement made by the optical sensor (Watson
et al., 1998; Cabada et al., 2004; Spinetti and Buongiorno, 2007;
Jayaratne et al., 2018). In this instance, Zheng et al. (2018)
found that the low-cost light-scattering sensor correlated best
with the reference-grade instrument of the same operating
principle, finding a lower correlation against the reference-grade
instrument operating on principles other than light-scattering.
The PurpleAir instrument over-estimation of PM2.5 relative to
the BAM reference-grade instrument may therefore be due to
influences of humidity acting on the light scattering (Zheng
et al., 2018).

An additional consideration in explaining the overestimation
of PM2.5 by the PurpleAir instruments relative to the reference-
grade BAM is the particle density of the measured particulates.
The Plantower PMS5003 sensors contained within the PurpleAir
instruments provide mass concentration measurements which
are calculated by an unreported atmospheric calibration factor
(Zheng et al., 2018). We assume that this calibration factor
uses an average particle density, likely similar to that for an
urban environment, such as 1.65 g cm–3 (Pitz et al., 2003; Liu
et al., 2015; Crilley et al., 2018). If the Plantower PMS5003
sensor measures ambient air with a particle density dissimilar to
the average particle density used in the atmospheric calibration
factor, the resulting sensor output would be biased. For example,
introduction of volcanic aerosol, primarily sulfate with an average
particle density of 1.77 g cm–3 (Sarangi et al., 2016), into
the air measured by the sensor could result in sensor output
bias as a result of dissimilarity between the real and assumed
particle density.

Despite the PM2.5 over-estimation, the strong correlation
between the PurpleAir and BAM instruments indicates that
the PurpleAir instruments provided qualitatively valuable
measurements of the atmospheric conditions. The high degree
of intra-instrument performance, similar to findings by Malings
et al. (2019), indicates that the PurpleAir instruments are reliable
for determining relative variations in PM2.5. The dense network
of instruments with a high spatial resolution along the western
region of Hawai’i during the 2018 LERZ eruption gives a good
indication of the relative amounts of PM2.5 across the region,
at a finer spatial resolution than available from the sparsely-
located BAM instruments (Figure 6A). Low-cost community-
operated networks, such as the PurpleAir instruments across
the western region of Hawai’i during the 2018 LERZ eruption,
can therefore be invaluable in providing insights into smaller-
scale heterogeneities in air quality across a regional area at a
scale inaccessible by the usually more disperse reference-grade
instruments (Figures 6B–E). Additionally, as far as the authors
are aware, this is the first validation of PurpleAir instruments
in a volcanic environment. Their strong correlation to the BAM
instruments along the west coast of the Island of Hawai’i during
the 2018 LERZ eruption indicates that they are suitable for
augmenting reference-grade instrument networks in periods of
volcanic unrest. Considering that these instruments also provide
a source of open-access data to the public, they present an

opportunity to improve community awareness and inclusion of
the general public in hazard assessment of downwind volcanic
PM2.5 air pollution.

6. CONCLUSIONS

Kı̄lauea’s 2018 eruption was the largest LERZ eruption in the
last two centuries. SO2 emissions reached a monthly average of
200 kt/day during June (Kern et al. 2019), significantly exceeding
emissions from Kı̄lauea during 2008–2017, which averaged 5–
6 kt/day (Eguchi et al., 2011; Beirle et al., 2014; Carn et al.,
2016; Elias et al., 2018). During the 2018 LERZ eruption, SO2

mass concentrations exceeding the Hawai’i 24-h-mean threshold
(366 µg/m3) primarily occurred in the south of the island, at
Volcano Observatory and in Pāhala and Ocean View (2.1, 5.3,
and 4.2 % of the time during the 3-month long eruption,
respectively). SO2 mass concentrations were elevated at the
HDOH Kona station (average 24-h-mean mass concentration of
39 µg/m3 during the LERZ eruption, relative to 7 µg/m3 during
2007–2017), but mass concentrations were highest in Ocean
View, Pāhala and at Volcano Observatory (average 24-h-mean
mass concentrations of 117 , 129 , and 56 µg/m3, respectively).
The Hawai’i 24-h-mean threshold was exceeded five times
in Pāhala and twice at Volcano Observatory, but peak mass
concentrations did not exceed those from the period 2007–
2017. In Ocean View, the Hawai’i 24-h-mean threshold was
exceeded four times and 24-h-mean mass concentrations peaked
at 728 µg/m3, almost double the previous peak measurement of
403 µg/m3 recorded at that station in January 2016.

PM2.5 mass concentrations recorded at HDOH stations
around the island from 2010 to 2017 rarely exceeded the EPA 24-
h-mean threshold of 35 µg/m3 (0.1 % of the time at both Ocean
View and Pāhala). The lower 24-h-mean PM2.5 limit (25 µg/m3)
set by the World Health Organization was exceeded with greater
frequency, particularly in Kona and Ocean View (1.2 and 0.9 % of
the time, respectively). During the 2018 LERZ eruption, PM2.5 air
pollution was significantly higher than 2010–2017 levels in Kona
and Ocean View, exceeding WHO guidelines 34.7 and 46.3 %
of the time, respectively. Peak 24-h-mean mass concentrations
in Ocean View were recorded at 56 µg/m3, and 3 consecutive
days in June were recorded with mean 24-h mass concentrations
exceeding 35 µg/m3. The Kona HDOH stations recorded eight
24-h periods which exceeded EPA thresholds, unprecedented in
the 2010–2017 period.

Following the decline of the 2018 LERZ eruption, mass
concentrations of both SO2 and PM2.5 measured at the HDOH
stations decreased to below pre-LERZ eruption levels, indicating
that a large proportion of the air quality anomalies measured
during the eruption were volcanogenic. The post-LERZ HDOH
measurements are here assumed to be representative of
the background (non-volcanically-perturbed) atmosphere, and
subtracting these abundances from those recorded during
the LERZ eruption provides an estimate of the purely
volcanogenic PM2.5 and SO2. The sulfate aerosol component
within the volcanic PM2.5 is calculated as between 77 and
92 %, following Mather et al. (2012). HYSPLIT back-trajectory
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simulations provide an estimate of emission age following
dispersion from source to measurement point (Ilyinskaya et al.,
in preparation), and a first-order SO2 decay constant is estimated
at 3.8× 10–6 s–1.

Community-operated PurpleAir instruments provided a
high spatial resolution network across the western region
of the island, informing the public regarding PM2.5 mass
concentrations in their locality. Low measurement variability
(Pearson’s r = 0.99) was found between co-located individual
PurpleAir instruments, indicating a high level of intra-
instrument performance. Observations recorded by co-located
PurpleAir and BAM instruments correlated well (Pearson’s
r = 0.99, 0.97, and 0.94), but PurpleAir instruments were
found to overestimate the PM2.5 mass concentration by up
to 40 %, relative to the BAM instrument. This likely reflects
inherent differences in instrument operating principles and may
be associated with changes in optical-properties of aerosol arising
from hygroscopic growth in ambient humidity. Nevertheless,
the PurpleAir instruments are suitable for providing a low-
cost network to augment reference-grade instruments, and
contribute an open-access source of readily-available information
to the public leading to development of community awareness
toward air quality.

This study has assessed the impacts to air quality in downwind
communities around the Island of Hawai’i from 2007 to 2018.
Spatial variability of air quality around the island during the 2018
LERZ eruption was comparable to patterns identified over the
previous decade, but PM2.5 and SO2 pollution levels resulting
from the 2018 LERZ eruption were significantly higher in western
and southern regions of the island. A study of the potential
health burden of these significant impacts on air quality might
further illuminate aspects of the dose-response to volcanogenic
emissions in addition to the impacts of public health protection
measures put in place during the eruption.
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Volcanological observatories have common needs and often common practical issues

for multi-disciplinary data monitoring applications. Real-time access to integrated data,

technical metadata, modeling and estimation of uncertainties are fundamental for an

efficient interpretation. But in fact, the heterogeneity of instruments or acquisition systems

and the inherent problems to produce rapidmodels using real-time data lead to difficulties

that may hinder crisis management. In an attempt to globally address these questions,

the French volcanological and seismological observatories have developed a specific

operational software system over the past 19 years. Based on GNU/Linux open source

tools and a Web interface, the WebObs system mainly offers: (1) a modular database

for equipment network management; (2) a dozen of evolving dedicated periodic tasks

for each monitoring technique like seismology, deformations and geochemistry that

use standard data formats with automated execution of periodic tasks that produce

high-quality graphs on preset moving time intervals, data exports, optional event

notifications including e-mail alerting, instruments status controls based on their data

validity; (3) web-form interfaces for manual data input/editing and export; (4) a user

request form to adjust the tasks parameters for a single execution and to produce

customized graphs and data exports. This system hence constitutes a web-based tool

that performs integrated, centralized and automated real-time volcano monitoring. It has

therefore become a strong support for data analysis and exchange between researchers,

engineers, and technicians during periods of unrest as well as periods of long-term

quiescence. WebObs is also widely open for development of interdisciplinary modeling

and enhanced data processing. This allows scientists to test new methods with real-time

data flux and to instantaneously share their results in the community.

Keywords: volcanology, seismology, monitoring, real-time, modeling, database, metadata, web-services

1. INTRODUCTION

Any operational volcano observatory faces the complex mission of: (1) detecting changes in the
behavior of the volcano through the acquisition of continuous as well as periodic long time-series
of instrumental observations produced by multidisciplinary techniques in real-time as much
as is possible; (2) quantifying and monitoring the spatio-temporal dynamics of those changes
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with respect to parameter and process critical thresholds; (3)
assessing the short-term potential hazard for the population; and
(4) informing the authorities and the population of the state of
activity of the volcano and the potential hazards. This implies
a good understanding of natural phenomena, i.e., through
the use of interpretative models, ideally with quantitative
physical parameters like seismic energy, pressure source depth,
fluid composition and thermodynamics or potential eruptive
volumes. Although today this quantitative approach is still
strongly limited by our current knowledge of complex non-
linear volcanic processes and their uncertainties, volcanological
fundamental research anchored in high-resolution observations
and monitoring data provides a framework to continuously
improve this knowledge. A volcano observatory hence
constitutes a unique environment where fundamental and
applied sciences must coexist and where academic researchers
necessarily have to intimately collaborate with engineers and
technicians to correctly interpret the observations.

But in the real world, during phases of volcanic unrest as
well as periods of long-term quiescence, observatories have
to face common practical issues for multi-disciplinary data
monitoring applications. Indeed, accessing to integrated data
in real-time and estimating uncertainties are fundamental tasks
to achieve in order to guarantee efficient interpretation and
decision making. However, the variety of instruments, the wide
range of data sampling, the heterogeneity of acquisition systems
and the challenges and constraints of technical maintenance
lead to practical difficulties that may hinder efficient and timely
crisis management. Moreover, during unrest, scientists must
produce manually interpretative models that should ideally use
data in real-time. Only few hours of delay in the updating of
data processing can generate interpretations that might have
serious consequences.

On the other hand, researchers that have developed new
ideas and models might want to finally apply them on real-time
data in order to contribute to observatory task in addition to
other standard monitoring methods. Testing models on real-
time data may be also a robust way to validate them. But this
implementation is not straightforward if the monitoring system
has not been designed at an early stage for integrating new
modules that use the input and output data streams.

Furthermore, a volcanological observatory must record the
activity of one or more volcanoes for very long periods of
time. Beyond the preservation of scientific measurements and
observations, an observatory is a structure that must transmit
a lot of information of different kinds to the people who work
there and elsewhere in collaboration. The centralization and
the perpetuation of these scientific, technical and administrative
data is a long-term challenge because the actors of observatories
need to access rapidly and in a user-friendly interface to past
knowledge and data; a task that turns out to be fundamental in
case of crisis management, for example.

To address the needs of real-time data monitoring and
long-term research in such a context, most observatories have
developed their own dedicated solutions. Some are focused on
single scientific method while others are concentrated on access
to data through a global database. Noteworthy among these are

the pioneer software PC-BOB for time series data management
(Murray, 1990), µGRAPH utility for data analysis (Beauducel,
1998), FFM software for eruption forecasting (Cornelius and
Voight, 1995), VALVE system for multidisciplinary database
(Cervelli et al., 2002, 2011), SWARM tool for real-time seismic
data streams (Cervelli et al., 2004), dMODELS software package
for supervised deformation modeling (Battaglia et al., 2013), and
the WOVODat platform for worldwide volcanic unrests datasets
(Newhall et al., 2017).

In the French volcanological and seismological observatories
which are responsible for La Soufrière de Guadeloupe, La
Montagne Pelée, Piton de la Fournaise and recently the new
Mayotte submarine volcano, we have developed since late 2000
an operational system named WebObs (WO) that attempts to
address these common questions in the context of a generic
pluri-instrumental volcanological and seismological observatory
(Beauducel and Anténor-Habazac, 2002; Beauducel et al., 2004,
2010; Beauducel, 2006).

2. MATERIALS AND METHODS

2.1. Ambivalence Between Research and
Monitoring
Researches that use observations of natural phenomenamust lead
to a gradual characterization of a conceptual model of physical,
chemical, and geological processes. During crisis management,
operational scientific advisories (i.e., forecast) have to be based
on the real-time observations through the use of such an
interpretative model, in a context that leaves no time to spend
on fundamental research. Thus, any instrumental network in
an observatory has, besides the apparently unique objective of
monitoring, a second implicit objective which is to constrain and
maintain up-to-date conceptual models.

Figure 1A shows this approach using the example of ground
deformations study: here the model is for instance the hypothetic
location of the magma reservoir. Used as an a priori information,
scientists implement a GNSS network optimized to detect any
pressure changes at depth, then they perform the measurements
at the surface, process the raw data to compute displacements,
search for source models that are consistent with the data,
interpret the results in terms of a new plausible depth, and finally
confirm or re-assess the initial location of the magma reservoir.
A single loop of this experiment might take months or years, and
each of the different steps is important and must be undertaken
while keeping in mind the overall purpose of improving the
model toward a better quantitative representation of reality.
Figure 1B transposes this long-term research cycle in general
terms adapted to any scientific domain that uses instrumental
data or observations.

The action of monitoring is not such a separated task in
this framework. Using validated data in real-time, monitoring
also constitutes an interpretation of the data through the
current conceptual model. Any volcano monitoring service
uses an interpretative conceptual model, explicitly or not: an
experimented scientist looking at time series on a screen is using
his own interpretative model in his mind to make the raw data

Frontiers in Earth Science | www.frontiersin.org 2 February 2020 | Volume 8 | Article 4859

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Beauducel et al. The WebObs System

FIGURE 1 | Long-term research and real-time monitoring coexistence for instrumental approach in observatories. (A) Shows an example of long-term research cycle

for volcano ground deformation studies, (B) extends the concept to any scientific method. The monitoring is using real-time validated data and the current

phenomenological model to interpret them. Dashed arrow places the automatic unsupervised modeling as a new tool for monitoring.

meaningful. An automatic system that could produce real-time
unsupervised modeling with clearly identified hypothesis would
help scientists in achieving their tasks by providing a rational,
structured, accountable and quantitative framework to interpret
the data.

2.2. Objectives
The overall objective ofWO is to design an integrated operational
tool, through a centralized web-based interface, that addresses
most of the observatory daily needs from technical management
to scientific analysis of real-time data even with quantitative
modeling. In fact, especially during a crisis management,
scientists must have a broad and exhaustive view of the whole
acquisition chain, in order to correctly evaluate the effective
uncertainty of any observations, especially when the results are
not straightforward if an anomaly is detected in the data. In
order to accomplish these goals, we propose a system with the
following specifications:

• instant access to raw and processed data, to quantitative
parameters from unsupervised data modeling, all techniques,
and over any time period in real-time and/or upon request;

• access to all technical characteristics of the acquisition systems,
as metadata, including to equipment maintenance data that
may affect a measurement;

• a unique level of information, technical, scientific and
operational, shared with all the people involved;

• a robust, efficient, and light standalone system open for
development and fast integration of new multidisciplinary
data streams and innovative monitoring methods.

2.3. Strategy and Pragmatic Solutions
In order to reach these objectives, elegant overall solutions
obviously exist but they rely on extensive technical means and
long-term investment particularly in the case of: (1) building
a single, huge, multidisciplinary new database for all the data;
(2) upgrading all sensors, telemetry and acquisition systems to
make them homogeneous in standard data formats; (3) making
automatic the manual measurements, when technically possible;
and finally (4) using a large computer to process any user’s
requests without delay. Thus, in the project we have discarded
from the beginning the perspective of structurally reforming
existing overall solutions and opted for the development of a
more pragmatic and less costly solution.

The strategy that we have proposed has been efficient on the
short-term in order to:

• keep existing acquisition systems and data archives as they are,
• connect and make accessible all data in their native formats,

even though we promote standard formats and protocols since
WO has implemented many,

• process the data through dedicated scheduled tasks to
anticipate the most common real-time requests,

• facilitate manual data edition and access through simple
text databases.
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2.3.1. Technical Specifications
WO can run on a single computer server under the GNU/Linux
operating system on IA-32 (i386) or x86-64 architectures. It is
an installable package of bash scripts and using a combination
of several languages: Perl and Javascript for the web interface,
Matlab standalone binaries (no license needed), Python and
some C binaries for the data processings, but any other Linux-
compatible language are compatible welcome.

In account of the obvious heterogeneity of acquisition systems,
data formats and the specificity of data archiving in every
observatory, we decided that for automatic systems WO should
not recreate a database of existing monitoring data but will
be able to read the raw data in their native format, on-the-
fly, adapting itself to existing archives or data streams. This
concept is consistent with real-time needs but had also the
advantage to not impose extensive data conversion or migration
to observatories. Presently, the available data formats include
seismological standards for waveforms and hypocenters (SEED,
Earthworm, Hypo71, FDSN web-services, QuakeML, . . . ), GNSS
solutions (Gipsy,Gamit/GlobK, . . . ), some data loggers (Campbell
Sci.), any delimiter-separated values files, and customisable SQL
requests. New data formats can be easily added with little
development. Data export of validated data or any processing
results is made in simple text format (delimiter separated values).

However, observatories also still have to deal with manual
data besides automatic acquisitions, such as the results of
chemical analysis of water or gas samples, laser distance
measurements, data from geophysical surveys (e.g., gravimetry,
electrical resistivity, spontaneous potential, magneto-telluric).
Due to very low sampling rate, these data account for a negligible
size of storage but they still are of primary importance and must
be equally considered in the monitoring system. WO proposes
few web-form interfaces to input/edit and export this kind of
data, and each are associated to a dedicated process to also
produce automatic graphs, in the same way as high sampling rate
automatic methods.

Although there are some internal databases in sqlite3 format
for the system management itself, most of the system uses text
files for configuration parameters and symbolic links under a
basic folders architecture, easy to edit or share with other systems.

WO provides a web portal using a HTTP server for the
graphical user interface and web services, and provides user
authentication associated with an extended resources access
management. WO can be used as an internal web portal, and/or
connected to the internet for external access, restricted or even
public. But the main goal is to be able to run standalone, even
under offline internet conditions. This aim leads to voluntarily
limit the use of any external internet services.

The web pages use a customizable menu with sub-menus
using HTML and CSS facilities. The welcome page contains fixed
areas with customizable content: a title banner, an information
area, a news area, an extract of agenda events. Additional free
text-content web pages can be created and accessed through the
main menu. All text zones can use theMarkDown syntax.

One of the main tools of WO is a modular databank to
manage information on site measurements, stations, sensors, any
equipment or observations. The proposed network architecture
can be adapted to various objects with a very broad concept

of what is metadata: interactive maps, log history, customizable
features, photos, documents. Any object can be linked to some
data channels, data processing, manual web-form editing, and
any feature can be linked to the features of an object. The network
management can handle any type of multidisciplinary method,
permanent or temporary experiments, instrumental or not (i.e., a
journal of observations or activity).

Geolocation and network maps are usually a good base for
discussion. WO will automatically produce individual maps of
stations or sites using global digital elevation models (DEM)
downloaded when necessary and stored locally. This allows to
have up-to-date offline maps available at any time. Background
maps are built using an automatic merge of SRTM and ETOPO1
global topography files, or any user defined DEM. Coordinates
are defined in latitude and longitude in the WGS84 referential,
and will be automatically converted to UTM and cartesian ECEF,
with text file and KML export facilities.

For the data processing, we have adopted a near real-time
solution which consists of producing static images (PNG and EPS
formats), automatically updated by periodic tasks under control
of a dedicated jobs scheduler. Pre-set moving time windows
are defined for each method, from hours to decades, so all the
standard graphs are instantaneously accessible for users, without
additional server solicitation. User manual requests of any other
time interval are available at any time but will have lower priority
than periodic tasks.

For historical reasons, the most advanced data processing
modules have been written in the Matlab language, a choice
justified by the native matrix computing capabilities perfectly
suited to signal processing, numerical modeling, inverse problem
and high-quality graphical outputs. Take note of the fact that
no license is needed since these modules have been compiled
in standalone and freely distributable binaries. Source codes are
also available for development, running under compatible free
environment like GNU Octave, or translation to other languages.
Note that the job scheduler is able to run any GNU/Linux
compatible program or code. Besides the Matlab library, a
package of bash functions is available to import WO parameters
into any external programs.

2.3.2. Relational Structure

2.3.2.1. Nodes
WO relational structure is built around one basal element named
a “node.” A node is an object with a list of characteristics, mostly
optional, all user-editable: name, alias (short name), lifetime
dates, geographical location, text-content user-defined features
that can be linked to other node(s), sensor(s) and channels
description (calibration file), data processing related format
and parameters, radio transmission path, photos, documents,
dated events and sub-events with additional images and links to
features and channels, text-content project. In practice, a node
can be, while this is not an exhaustive list:

• an instrumental multi-parameter station,
• a measurement or sampling site,
• a mobile equipment,
• spare parts of an equipment,
• a journal of observations,
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TABLE 1 | Example of nodes, associated feature list (any of them can be linked to

an other node), types of documents and events.

Node Features Documents Events

Instrumental Station

Acquisition

Sensor

Power

Infrastructure

Transmission

User’s manual

Sensor’s calibration
Maintenance log

Mobile Equipment
Description

Protocole
User’s manual

Calibration

Maintenance log

Sampling Site
Infrastructure

Protocole
–

Sampling log

Site layout

Volcanic Eruption

VEI

Seismicity

Deformations

Gas

Deposits

Casualties

Data

Technical Reports

Scientific Papers

Chronology

Journal of Observations – Press release
Observations

Testimonies

Building

Description

Furniture

Land

Equipments

Vehicles

Staff

Any related
Maintenance log

Inspection

The list is non-exhaustive and completes the common characteristics of any node which
are: name, alias, type, lifetime, coordinates, installation, access, information, photos and
schemes.

• a description of historical event like an eruption.

Some examples of nodes, associated features and possible
documents and events content are given in Table 1 and
Figure S4.

2.3.2.2. Grids and domains
Nodes can be combined into a “grid,” a higher level object ofWO.
There are 3 types of grids:

• a “view” is a simple group of nodes for display purposes,
like a network of stations or sites, that will produce a table
list, location maps, and descriptive text-contents (purpose,
references, dated events). Association or disassociation of
nodes to a view is immediate and will produce easy
customizable lists and maps.

• a “proc” is a group of nodes for dedicated data processing
purpose. It has the same characteristics as a view, but in
addition has the capacity of producing graphs and data export,
as a periodic task and/or upon user request, through a generic
processing named a “superproc” (see the detailed list in section
3.2). Association or disassociation of nodes to a proc has
immediate incidence on data processing outputs.

• a “form” is a manually editable small database, adapted to
non-automatic data acquisitions. A form has a table data
display with search parameters, editable form inputs with

value checking, data export, and can be linked to a proc to
produce automatic graphs.

Views and procs are associated with a “domain,” a higher
level object to group several grids into general categories,
mainly for retrieval and display purposes. Default domains are
Seismology, Deformation, Geochemistry, Geophysics, Imagery,
Phenomenology, and Acquisition. This list is fully customizable,
for example: domains can be a list of different volcanoes.
Examples are given in Tables S1, S2.

A global search tool allows to find any event contents in all
grids and nodes.

2.3.2.3. Users, groups and authorizations
WO uses its own authorization system in addition to the HTTP
server authentication, to identify its users and control their
individual access level to WO resources (e.g., files, processes, web
pages, etc).

Users can be managed individually and/or as members of
groups. A user or group is given an explicit access level
to a given resource. Possible access levels are “admin” (full
control including creation and deletion), “edit” (modifiable)
or “read” (only readable). Lack of access level for a resource
means no access to this resource; there is no explicit restriction
level concept.

Default groups provided on first installation are: ADMIN,
DUTY, OBSERVER, VISITOR with adapted and editable
resource access levels. The main web menu can be extended by
user or group individual menus that will appear only for the
corresponding user or group.

2.3.2.4. The gazette
Management of the time schedule of an observatory team is
one of the pillars of work efficiency, while activity archives are
very useful to make reports. Since its creation in 2001, WO
includes a shared agenda named The Gazette, that provides
such observatory’s logbook and calendar functions. It can be
considered as a collection of timestamped and categorized
articles. Default pre-defined categories are: Duty Scientist, Staff
Missions, Off/Holiday, Field work, Meeting/Officials, Medias,
Outreach, Teaching, Visitors, Students Training, Buildings,
Miscellaneous. An option allows to include node’s and grid’s
events. The Gazette is fully customizable, including the
definitions of local day-off dates, and exportable.

Each category is considered as a resource and can be associated
to specific access level for user/group. For example, access to staff
leaves of absence data can be restricted to superiors.

Figure 2 resumes the WO structure, objects and links
between them.

2.3.3. Principles of Procs
A proc drives the processing of any available data from its
associated nodes using one of the available superproc as its
processing core. The proc’s configuration file defines parameters
that apply to all nodes, including a default data format, preset
moving time windows, filtering options or specific processing
variables. Each node has its own configuration file, possible
specific data format and channels description (names, unit, offset,
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FIGURE 2 | Overview of WebObs structure and objects: dashed line stands for editable association between two objects, solid line stands for preset attribute to an

object (see text for explanation).

gain, min/max values, location, . . . ). Once imported, data from
nodes have the same variable structure: a vector of timestamps
and a matrix of corresponding data values. Some types of
data may have a matrix of errors and a matrix of text-content
additional data. The proc uses data samples as dated numerical
values and the current time as a reference. Because of the required
real-time context, all the signal processing must be causal, i.e.,
outputs will depend only on past and present inputs. Time zones
are taken into account individually for each node, and one for the
proc outputs.

A proc is constructed to produce, for each time window, one
graph per node and a series of “summary” graphs that combine
all the nodes and/or make elaborated calculation that uses all
nodes together, e.g., for an integrated model. Each graph is
written in vectorial format (EPS or PDF), converted to raster
image (PNG) for fast display and a thumbnail (JPG), and is
associated with an exportable data file in simple text format.
Automatic tasks overwrite the outputs to keep them up-to-date
with constant names, and display them on standard web pages
with automatic refresh (see an example at Figure S5). An other
output of procs is the status of a node: the last valid data
timestamp is compared to a time delay to set if the node is
active or not, while the amount of valid data on a certain period
is compared to the theoretical acquisition period to compute a
sampling rate performance. These indicators are displayed in the
main proc’s table to give an overview of a network health status.
Some specific procs may produce per-event outputs, e.g., for

earthquake events, in that case all former outputs will be stored
and accessible by date.

Any user may submit a proc request after filling a web-form
of dates interval, graphical options and some selected proc’s
parameters. This request will run exactly the same proc code and
data as used for periodic task, but the outputs (graphical and data
exports) will be written in a separated folder and an email will
notify the user of the end of the job. This functionality is also
useful to test proc’s parameters and adjust the configuration of
periodic tasks.

2.3.4. System Administration, Install and Upgrade
WO is distributed with a single binary package, a detailed
README file, and a user manual. A bash script creates
the disk structure, detects missing dependencies and
installs the system with default jobs, examples of views
and procs. The same setup script is used to upgrade code,
documentation and configuration to a new version. The results
presented in this paper correspond to version v2.1.4, dated
November 2019.

System administration can be achieved using shell commands
after logging in on the server, while some important tools
can be handled through the web interface: grids and
nodes management, tasks scheduler (see Figure S8), user
administration, configuration files editor, wiki pages. Each proc
can activate a debug mode to increase log verbosity.
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WO is delivered with English and French interface, but
the system is open to other languages as the code uses an
internationalization system.

Finally, the code development, projects and issues tracking is
achieved through a GIT repository (see Data Availability section).

3. RESULTS

In the French observatories, WO has become a key tool for data
monitoring but also for most of the everyday use as it centralizes
any information on technical equipments, teammanagement and
other observatory activities. Over the years, scientists have used
the WO environment to develop their own procs dedicated to
each monitoring method. Here we describe how observatories
are using the WO system and what are the main outputs in the
light of observatory goals. An overview ofWO screenshots is also
available in the Supplementary Materials.

3.1. Observatory Equipment and Team
Management
The combination of nodes and grids is mainly used for
instrumental stations and sites of measurement on the volcano
or for regional tectonic surveys. For a station, the node regroups
all the technical information on the equipment, including
the log of maintenance, exploiting node’s features to describe,
for example, sensor(s), digitizer, power supply, transmission,
firmware version, network addresses, monument dimensions,
serial numbers, connector types, length of cables, etc. For
instrumental stations, the calibration table stores the gain or
offset changes in time for each channel or sensor component,
using simple linear formula:

D = G× F × d + O (1)

where d is the raw data, G the instrumental gain, F a calibration
factor in physical unit per count or raw data unit),O an offset, and
D the calibrated data in physical unit. There is also the possibility
to filter raw values using minimum and/or maximum thresholds
in order to exclude outliers.

A station can be also a simple radio repeater, a satellite hub,
without any sensor. Since any node’s feature can be linked to
another node’s feature, it is possible for example to link two
stations that use the same power or same transmission system.
A text description of how to access the station, eventually with
contact numbers or site opening hours, completes the list. The
aim of a node page for stations is to include all the necessary
information for a technician who must act on the equipment (see
an example of instrumental node full page in Figure S3).

For a measurement or sampling site like an EDM reflector, a
hot spring or a fumarole, the node also describes the access and
environment of each site. Accessing the WO page from the field,
or bring a hard copy is one of the good practices to improve the
field work efficiency. Of course, the staff must fill out the forms
after each maintenance task.

The nodes are also used for non-instrumental equipments
like data archive collections, buildings, electricity (power
generator, inverter, . . . ), pool of computers, vehicles, health

and safety procedures (hurricane season, safety equipment, . . . ).
Other important uses of non-instrumental nodes are journals
of phenomenological observations, like historical volcanic
unrests, major earthquakes, tsunamis or volcano-related visual
observations or meteorological events, especially to collect
testimonies. This is a fundamental feature because it allows
to constitute an electronic log-book of all events occurring
and actions taken during a crisis event with the ability to
have keywords in the observation made and a time stamp. A
search for keywords can then later be done. In these cases,
the node’s features are adapted to describe each “object” and
the dated events and associated photos and documents are the
main utilities.

When a node has geographical coordinates, an automatic
location map will be associated with it (see Figure 3). A global
interactive map of all the grid’s nodes is also updated.

Additional web pages offering static content have been
created for more specific uses, when a list of nodes is not
necessary, e.g.,:

• team members contact address and number,
• assistance, maintenance and local suppliers contacts,
• crisis management instructions,
• publication list.

3.2. Periodic Data Processing
Besides the management of sites, sensors, equipment, and
measurements, the second pillar of WO is the capacity to make
periodic data processing with dedicated automatic scripts for
some standard techniques of monitoring.

3.2.1. Seismic Chart and Bulletin
For the seismic continuous and high frequency data flux, WO
proposes an innovative combination of a digital stripchart
paper for multiple data streams, a manual and semi-
automatic detection and classification of events, and a bulletin
with dynamic graphs of event types: hourly/daily/moving
histogram, cumulated number of events, cumulated seismic
moment and Gutenberg-Richter diagram. The system accepts
SEED and Earthworm data protocols, some basic filtering
(median/trend removal, low/high/band pass or bandstop
Butterworth/Bessel/Chebyshev N-order filters) and the catalog
can be linked to external earthquake databases (local QuakeML
or any web-service FDSN compatible) and a raw data access in
miniSEED format.

The objective of these tools is to construct and update a
human-controlled earthquake bulletin, offering the possibility
to visually detect and/or check automatic triggered events,
and classifying the type from a customized list. The system
offers a synthetic view of up to 15 simultaneous channels at
different time scales, an efficient way to immediately detect and
recognize the origin of events (see Figure 4 and Figure S7). The
seismic bulletin named “main courante” (handtrail) can be linked
to multiple stripcharts ‘sefran’ (named after a former French
seismograph system), allowing for example one stripchart with
volcano stations and one for the regional tectonic activity. The

Frontiers in Earth Science | www.frontiersin.org 7 February 2020 | Volume 8 | Article 4864

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Beauducel et al. The WebObs System

FIGURE 3 | Example of a node location map: Four levels of zooms around the station (red circle) using automatic downloading and merging of SRTM1 and ETOPO1

data for global topography and bathymetry. Cross sections to look at possible topography incidence and estimation of altitude value interpolated from the DEM itself.

The right frame might use a user-defined DEM if available.

sefran includes a broom-wagon process that fills up the gaps due
to real-time data packet loss.

At Piton de la Fournaise volcano, La Soufrière of Guadeloupe
volcano, and Mayotte volcano, we have also implemented an
automatic classification method based on the machine learning
approach, and tested the possible integration into WO as an
automatic suggestion of event types during the human validation
(Maggi et al., 2017).

3.2.2. Seismic Swarms
This superproc uses seismic catalogs and bulletins to compute
and plot the seismic rate, the cumulated moment, and to detect
seismic swarms using thresholds over moving intervals (see an
example in Figure S6).

3.2.3. Generic Time Series
This superproc will produce time series graphs of any node
channels, with some filtering possibilities (moving median,
moving average, picks cleanup, decimation), plotted as one
graph per node and one summary graph with selected common
channels. Combined with input data formats capabilities, these
procs allow the basic generic plot of any non-specific real-time
data (see Figure 5).

3.2.4. Seismic Helicorders
WO proposes its own drum helicorder graphs, from single
component and customizable time sheet length, rotating speed
and colors (see Figure 6).

3.2.5. Hypocenter Maps
Hypocenter maps operate earthquake catalogs at customizable
geographic scales with vertical cross-sections, magnitude and

quality filters, depth or time color scale (see Figure 7), and
possible time series of earthquake location, depth andmagnitude.
For this superproc, the associated nodes are the catalogs, so it is
possible to merge different formats, e.g., some Hypo71 files for
historical catalog and a FDSNweb-service request for recent data.

3.2.6. Felt Earthquake Reports
This superproc produces automatic reports for earthquakes
that are potentially felt. Based on a catalog of events defined
by the associated nodes, it uses location and magnitude to
compute theoretical ground acceleration and macroseismic
intensities through a combination of ground motion prediction
equation and ground motion intensity conversion equation. The
report includes a map of average and maximum peak ground
accelerations and intensities, considering potential site effects,
for selected local towns (see Figure 8). The text content and
language is fully customizable (templates are in English and
French). This report is produced automatically at each new event
or reassessment of the epicenter, depth or magnitude, so it is
possible to send it to medias and authorities within few minutes
after the event (Beauducel et al., 2011).

The seismic bulletin media contains a link to the existing
reports when applicable.

3.2.7. RSAM
Real-time Seismic Amplitude Measurement (RSAM) is a useful
tool to follow the time evolution of a seismic crisis (Endo and
Murray, 1991). At the moment WO does not compute the
RSAM values since standard acquisition systems are able to
produce RSAM data streams efficiently. The superproc imports
RSAM channels from standard data streams to make time-
series plots (linear and log scales) for each station. A dedicated
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FIGURE 4 | Continued
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FIGURE 4 | Seismic stripchart and bulletin: (A) real-time last hours of the multichannel seismogram as hourly thumbnails, indication of events, statistics on channels.

(B) Seismic bulletin table of classified events and graphs, red background stand for automatic unclassified events. (C) Form to edit and submit an event with

high-speed scale seismograms, channels are North-South sorted, colors have been set to areas related to the volcano (data from BPPTKG/CVGHM and OVPF/IPGP).
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FIGURE 5 | Example of a generic time series proc: channels from a very broadband seismic station (STS-2 3-component, atmospheric temperature and pressure)

using SeisComP3 Arclink data request. Station codes, data format and data source are defined in the node configuration, channels description and codes are set in

the calibration file. Each subplot has 10-sample moving average as lighter color lines. Channel subplot order and relative height is configurable in the proc parameters

(data from GEOSCOPE).
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FIGURE 6 | Example of seismic helicorder with an analog short-period station: (A) smoked-paper colors and pen-rotating effect, (B) screen-shot of daily thumbnails

page over one full month of recording (data from BPPTKG/CVGHM).
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FIGURE 7 | Example of seismic hypocenter maps: (A) regional map with

oblique cross-section, and mouse pointer showing an event details, (B)

zoomed map on a volcano with time colormap and two vertical cross-sections

(data from OVSG/IPGP and OVPF/IPGP).

graph computes time-dependent maps of the seismic source from
spatial RSAM amplitudes, a simple and efficient method to locate
the origin of an eruptive tremor (Figure 9).

3.2.8. Tilt
Tiltmeter data can be processed using a dedicated superproc
that plots time series of the two components and a soil
temperature, per node and integrated in a summary graph,
a map of vector trends, and a source modeling using an
isotropic point of inflation/deflation through exhaustive grid
search to determine the spatial probability of a source and volume
variation (Beauducel and Carbone, 2015). It is possible to add an
a priori target location to plot tilt amplitudes vs. distances from
the target.

3.2.9. GNSS
For GNSS solution data, WO proposes enhanced processing
and graphs that includes (Beauducel et al., 2014): tectonic
trend correction, absolute or relative velocity referencing (using
one or more stations as reference), per node and summary
time series plots of the three components (East, North, Up),
principal component analysis, customizable baselines between
pairs of stations, velocity vectormap, particle motionmap, source
modeling using an isotropic point of inflation/deflation through
exhaustive grid search to determine the spatial probability of
a source and volume variation, and finally, time series of the
best model parameters using different periods of integration
for trend estimation (see Figure 10). Among the large number
of parameters, it is possible to model only the horizontal
components, to add an a priori target location to plot
displacement amplitudes vs. distances from the target, and to
constrain the source location using a gaussian-shape distance
probability function.

This superproc is able to read several GNSS solution formats
like Gipsy-Oasis/GipsyX (Desai et al., 2014), Gamit/Globk
(Herring et al., 2010), and USGS “rneu” GPS files. When the
orbit type is available, it is indicated on the graphs as shaded
colors (e.g., final, rapid and ultra orbits fromGipsy/JPL software).
Node’s calibration file can be used to apply offset corrections due
to antenna or benchmark changes or to correct local earthquake
co-seismic displacements.

3.2.10. Extensometry
Extensometers are useful to monitor active cracks and fractures.
The superproc makes time series of linear distance, air
temperature andwind strength for each station, a summary graph
of all distances grouped in geographic zones and a map showing
extensive or compressive oriented arrows of displacements
(Tamburello et al., 2019). A specific form is available to manage
manual data input in a dedicated database (see section 3.3.3).

3.2.11. Volcanic Gas
This superproc plots simple time series of physical and chemical
parameters from fumarole sampling on-site measurements and
laboratory analysis: temperature, pH, velocity, major elements,
isotopes and sulfur/carbon ratio. A specific form is available
to manage manual data input in a dedicated database (see
section 3.3.1).
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FIGURE 8 | Example of automatic report for a potentially felt earthquake: Epicenter, mean macroseismic intensities and exhaustive list of towns or neighborhood

islands where the event could be felt, with maximum intensity in case of site amplification (data from OVSG/IPGP).
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FIGURE 9 | Example of seismic amplitude measurement (RSAM) plots: time series in log scale and arbitrary threshold level, timeline source mapping to locate the

eruptive tremor source (data from OVPF/IPGP).
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FIGURE 10 | Example of graphs produced by a GNSS proc: (A) single node time series of original and relative components, and principal component analysis; (B)

baselines node pairs time series; (C) velocity trend vectors map with amplitude vs. distance from target plot; (D) displacement motion map. Background map is made

from user-defined bathymetry DEM (Feuillet, 2019) (data from ReVoSiMa). (E) Source modeling map using an isotropic point and grid search exploration; (F) best

models time series showing source flux, depth, and location.
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FIGURE 11 | Example of meteorological station graph: wind rose azimuthal histogram, wind direction and speed polar plot, battery voltage vs. solar irradiation, rain

gauge using moving sum daily curve, cumulated and alert threshold, other parameters as simple time series (data from OVSG/IPGP).
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3.2.12. Hot Springs
This superproc operates physical and chemical parameters
from hot springs water sampling on-site measurements and
laboratory analysis: air and water temperature, sampling
condition, pH, conductivity, cation and anion concentrations,
some isotopes. The superproc is able to plot time series of
single element or element ratio time (like chlorine/sulfur or
carbon/sulfur) and ternary plots (magnesium/calcium/sodium
and chlorine/sulfate/carbonate). A specific form is available to
manage manual data input in a dedicated database (see Figure 12
and section 3.3.2).

3.2.13. Weather Station
This superproc is able to handle data from multi-sensor weather
station: raingauge, temperature, pressure, humidity, wind speed
and direction, irradiation, battery voltage. The plot content can
be adapted to the available data. There is a special tool to send an
alert based on a rain threshold (in mm/day) and to send an end-
of-alert after a delay, using the notification facility of WO (see
Figure 11).

3.3. Manual Data Forms
The objective of the forms is to handle manual data from human
input, edit and validate values associated with a node, i.e., a
sampling or measurement site. Each form is adapted to the type
of data and scientist needs, but has in common the date and time
and the associated node. In particular, input values are checked
using specific tests to alert the operator on possible typing error.
A table presents the data with date interval, individual node or
proc selection, filter on the comments using regular expression,
optional ratios, also display the check flag with background
colors. Selected data can be exported in simple coma separated
value text files.

A web form fits particularly well the observatory needs since it
offers the possibility to enter on-site measurement values from or
after the field work, then complete the entry when receiving the
laboratory analysis, days or weeks after. All authorized operators
can view or edit the sample data, while the associated proc
produces updated graphs for final check and interpretation.

3.3.1. Volcanic Gas Analysis
This form is dedicated to fumarole physical and chemical
parameters from on-site measurements and laboratory analysis.
Each data sample has the following channel: temperature, pH,
velocity, type of vial sampling (P2O5, NaOH, void), major
elements (H2, H2S, He, Ar, CO, CO2, CH4, SO2, N2, O2), isotopes
(δ13C, δ18O,

222Rn). The form computes the ratio total sulfur over
carbon content.

3.3.2. Water Chemical Analysis
This form is dedicated to water physical and chemical parameters
from on-site measurements and laboratory analysis. Each data
sample has the following channel: air and water temperature,
sampling condition (e.g., primary or secondary griffon, water
piping, reservoir, condensate), pH, conductivity, flow rate, water
level, cation content (Li+, Na+, K++, Mg++, Ca++), anion (F−,
Cl−, Br−, NO−

3 , SO
−−

4 , HCO−

3 , I
−), silicate (SiO2), and isotopes

(δ13C, δ18O, δD). The typing check consists in calculating total
H+ ions and the NICB (see Figures 12A,B).

3.3.3. Extensometer, Fissurometer, and Electronic

Distance Measurement
These forms are dedicated to a specific type of manual
measurement on-site, in order to compute an average value and
associated uncertainty from repeated measurements by operators
on one or three components of displacements. The database
stores every measurement and computes the mean and standard
deviation value. Checking consists in alerting on abnormal
standard deviation values.

4. DISCUSSION

The first years of development, starting in late 2000, have been
spent constructing a dedicated solution for the Volcanological
and Seismological Observatory of Guadeloupe, which has around
25 different monitoring networks for La Soufrière volcano and
the Lesser Antilles regional seismicity and geodesy monitoring
network. Early development had been using modest means that
might explain some of our initial technical choices. This first
relatively stable alpha version has been used efficiently for years
and has been specifically adapted to some other observatories
(Truong et al., 2009; Cole et al., 2010). A second age of the project
started in 2012 and allowed us to expand the concept to other
observatories in a more open way, focusing the development on
coding barriers breakdown in order to built a real open-source
participative software project, as described in this paper.

We can summarize the benefits of the WO system usage that
we experienced during the last 19 years in three main points.

4.1. Everyday, Long-Term Monitoring
For daily use, WO has become a hub and unique tool in the
French volcanological and seismological observatories (IPGP)
for network, equipment, analysis, interpretation and some
administrative management. It is the backbone of scientific
crisis response during the numerous unrest and eruptive phases
that have been experienced by all of the French observatories
over the past two decades. It centralizes phenomenological
observations as journals and technical maintenance as logs and
data catalogs. Manual forms are edited simultaneously from
overseas and mainland France analytical laboratories. Periodic
graphs are displayed on large screens in the monitoring room
and serve as discussion support for weekly meetings, including
with distant participants via videoconferencing. Manual requests
are extensively used to produce figures for monthly or annual
reports as well as for technical and crisis response meetings with
authorities, and for public outreach and community awareness.
Data export is used by researchers to make their own processing
and journal figures.

4.2. Crisis Management
The first application of WO as a support for crisis management
was not for a volcanic unrest but a local crustal earthquake, a
magnitude 6.3 shallow event that occurred in the Lesser Antilles
in 2004 (Bazin et al., 2010). WO helped the Volcanological
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FIGURE 12 | Hot springs data form and associated proc for water chemical analysis: (A) table of data samples with search tools, component ratio calculation and

colored check flags, (B) example of a data form edition (data from OVSG/IPGP); (C) summary graph over a 50-year period (data from OVSG/IPGP).
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and Seismological Observatory of Guadeloupe in following the
aftershocks sequence that lasted for years after the main shock,
and in the daily communication with authorities and population
after each of the felt event. It has been also easy to develop
new dedicated graphs for Omori’s law and Gutenberg-Richter
statistics and integrate them in the system.

At Piton de la Fournaise (La Réunion), we experienced a
typical situation where the observatory had developed already its
own dedicated applications for each monitoring techniques, but
faced some long-term software maintenance issues. Thus, WO
has been installed later and progressively, as a replacement of
the obsolete tools, has contributed to improve them with new
functionalities and taking advantage of the collaborative open-
source project. WO is presently used during each of the eruptions
for detecting precursors and following the eruption progress,
mainly with seismic and deformations data. In addition, the WO
platform is perfectly adapted to allow remote duty scientists from
mainland France to assist in real-time to the crisis response on
La Réunion thus giving scientists locally time to rest and take
some distance from the ongoing unrest and or crisis. This applies
also to any unrest and potential eruptive activity at La Soufrière
of Guadeloupe (Moretti et al., 2020) or La Montagne Pelée
in Martinique.

At Mt. Agung (Bali), WO was installed and used for
GNSS data processing during the 2017 crisis paradigm, in
order to estimate the magma source volumes at depth from
deformation modeling. We were able to adapt data format
and some processing strategy due to network specificity and
deliver the results to Indonesian authorities within only a few
days. Modeling results have contributed to alert level decrease
and exclusion zone reduction decision-making (Syahbana et al.,
2019).

In 2018, WO was installed very rapidly and used extensively
to follow the seismic activity and abnormal deformation due
the submarine eruption of a new volcano offshore Mayotte
island (REVOSIMA, 2019). Given that a national consortium
(REVOSIMA) of many French institutions and universities
managed this major crisis, WO gave the possibility to set
up a daily monitoring of the activity. Indeed, on-duty
scientists performed a check-up of the various parameters
using self-generated product graphics of WO. Thus, a wide
range of specialists in various fields and from different
national institutions participated in the day-today monitoring.
Moreover, WO facilitated the share of tasks, like the analysis
and localization of seismic signals among different institutes
and universities, as it is able to collect data and products
from different databases and merge them into one single
database (e.g., SeisComP3 catalog of earthquake events).
WO has been pivotal in the complex daily and structured,
collegial efficient scientific response to the ongoing Mayotte
crisis, especially to create synergies among the scientific
response team and to report to authorities in charge of civil
protection decisions.

4.3. Research Development Environment
Through the concept of procs and superprocs, the WO
environment allows scientists to focus on the testing of ideas

and innovative processing on the real-time data, as the import
of the source data and the access and export of the results are
handled by the system. To develop a new superproc, scientists
can use a library of generic functions that read any parameters
from the associated proc and import the node’s data as numerical
vector and matrix, then export graphs in the WO structure.
Scientists thus do not have to care about the inputs and outputs
and can focus on the processing itself, to create dedicated and
complex figures.

In the recent cases of Mt. Agung eruption, the La Soufrière
of Guadeloupe unrest, and the ongoing Mayotte eruption,
we demonstrated that it was relatively easy to adapt existing
superprocs and develop innovative functionalities to answer
new requirements. The corresponding developments,
made in runtime, have been committed to the open-
source repository and became immediately available to
other observatories.

DATA AVAILABILITY STATEMENT

The open-source codes, documentation, developers forum
and free access to installation packages can be found at
the IPGP/WebObs repository: https://github.com/IPGP/webobs.
Global elevation models are a merge of SRTM Non-Void Filled:
https://doi.org/10.5066/F7K072R7 and ETOPO1: http://doi.org/
10.7289/V5C8276M. Sample data are available at Volobsis IPGP
data portal: http://volobsis.ipgp.fr, IGN RGP: http://rgp.ign.fr,
and Geoscope: http://geoscope.ipgp.fr.
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A New Japan Volcanological
Database
Eisuke Fujita* , Hideki Ueda and Setsuya Nakada

National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan

For the purpose of the development of volcanology and its practical application to
volcanic hazard mitigation, we are conducting a new project named the Integrated
Program for Next Generation Volcano Research and Human Resources Development
(INeVRH). This project began in 2026 and will end in 2025 and consists of four themes
focusing on observation, forecasting, countermeasures, and a data-sharing system.
This data-sharing system is named the Japan Volcanological Data Network (JVDN),
which will serve as a platform that combines observation, forecast, and countermeasure
data to provide information for the judgment at branch nodes of event trees for volcanic
crises in the coming decades in Japan.

Keywords: event tree for volcanic crises, INeVRH, JVDN, observation, numerical simulation, countermeasures,
database

INTRODUCTION

In Japan, there are 111 active volcanoes (Figure 1), many of which potentially produce hazards
and pose risks due to future eruption. Both for mitigation and research purposes, we operate
volcano monitoring networks at 50 volcanoes that are managed by various agencies, universities,
and institutions. As a consequence, data obtained through monitoring are dispersed across
various institutions and in various data formats; therefore, we need to build a common platform
to share these various datasets to improve mitigation techniques and to better understand
volcanic processes. Doing so will allow us to enhance eruption forecast, hazard evaluation, and
risk mitigation.

Our main goal is to build event tree frameworks during volcanic crises to estimate probabilities
of possible outcomes of volcanic unrest, which is supported by observational datasets and numerical
simulation results, as well as taking into account exposure and vulnerability data. We will construct
event trees for volcanic crises using the method proposed by Newhall and Hoblitt (2002) as
a standard tool for evaluating volcanic activity to assess hazards and risks as a part of crisis
management planning. The event tree systematizes a way to estimate the probabilities of various
volcanic phenomena, of which nodes and branches express the subsequent relationships from prior
events to final outcomes. In this way, we try to provide more information more quantitatively
about the probability of branching at the nodes, i.e., which way the situation will develop. We
categorize the event tree into three sections: observation, forecast, and countermeasures (Figure 2).
The observation section corresponds to the evaluation of volcanic activity, the forecast section
corresponds to the branching of volcanic hazards, and the countermeasures section corresponds
to the risk evaluation based on exposure and vulnerability.
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FIGURE 1 | Distribution of active volcanoes in Japan.

The Ministry of Education, Culture, Sports, Science
and Technology (MEXT), Japan, has recently launched a
new research project, entitled the “Integrated Program for
Next Generation Volcano Research and Human Resource
Development (INeVRH)” to run from 2016 to 2025. This
project consists of four themes, A: Developing a Data-Sharing
System of Volcano Observation Data, B: Development of
Cutting-edge Volcano Observation Technology, C: Development
of Forecasting Technologies for Volcanic Eruptions, and D:
Development of Volcano Disaster Countermeasure Technology.
The data-sharing system distributed by theme A is the Japan
Volcanological Data Network (JVDN). JVDN plans to archive
various kinds of data, that is, seismic, geodetic, geochemical,
geological, and petrological data. The design for the JVDN
system and the data flow is shown in Ueda et al. (2019).
Details of the JVDN system are introduced in the next
section. Theme B produces the observational data in various
categories, namely, Muon, InSAR, optical remote sensing,
volcanic gas, and geophysical campaign observation. These
are also stored within JVDN. For the forecasting topic,
theme C focuses on geological, petrological data, and also
numerical simulation of volcanic phenomena, the details of
which are explained in sections “Geological and Petrological
Data” and “Numerical Simulation Data” of this paper. For
the countermeasure information, real-time evaluation of
volcanic activity and outreach information such as movies of
lectures will be provided based on the research in theme D
(Nakada et al., 2019).

Currently, we are in the initial development stage of the
JVDN database linking all of the observations, forecasting,
and countermeasures, encompassing themes of A–D. We have

developed a basic platform to share and to realize static linkage
of these for risk management (e.g., hazard maps) and dynamic
linkage for crisis management (e.g., updating information about
ongoing damage). In this paper, we will summarize the outline of
our ongoing project of JVDN database development.

OBSERVATION DATA

We have various kinds of data from observation networks. The
Japan Meteorological Agency (JMA) is responsible for issuing
warnings and conducts volcanic observation at 50 volcanoes for
the purposes of monitoring. Universities also operate observation
networks at some active volcanoes for academic research. The
National Research Institute for Earth Science and Disaster
Resilience (NIED) manages a V-net at 16 volcanoes as a standard
volcano observation network, equipped with a borehole high-
sensitivity velocity seismometer, borehole tiltmeter, broadband
seismometer, and Global Navigation Satellite System (GNSS).
The Geospatial Information Authority of Japan (GSI) is
responsible for GEONET, the GNSS network encompassing all of
Japan. These data are shared between the related organizations,
and some data are open to the public or can be used for
scientific purposes through registration with each individual
system (Ueda et al., 2019).

For the evaluation of volcanic activity and scientific
research, the analysis of multi-disciplinary data is pertinent
for understanding the state of volcanoes. Our new data platform,
JVDN, mainly provides these various kinds of volcanological
data, some of which are raw data, while others are meta-data
such as the indices about the location, data owner, and their
instrument information (Figure 3).

For example, raw seismic data is distributed in WIN or WIN32
format, a standard format in Japan (Urabe, 1994). WIN/WIN32
data can be converted into international standard formats, like
SAC, SUDS, ASCII, etc., using conversion tools, and users can
treat the data as they wish. Ground deformation data from
tiltmeters and strainmeters are also stored in WIN/WIN32
format, while GNSS data are stored in RINEX or in meta-data.
Discussions are currently underway for other observation data
such as magnetic, electric, and gravity observations to determine
the most effective methods for analysis and storage.

All these data are designed to be compliant with WOVOdat
(Newhall et al., 2017), which has been prepared mainly by
the Earth Observatory of Singapore, Nanyang Technological
University. WOVOdat distributes data and also analysis
visualization, query, and analysis tools with GUI interfaces.
Experiences in each volcano observatory and historical
volcanic eruptions at a singular volcano are not sufficient
to judge forthcoming activity. Therefore, the sharing and
comparison of such information between observatories
worldwide provide more evidence upon which to judge
volcanic activity. The JMA sets the threshold for volcanic
warning levels. If we share the unrest/precursory data of a
volcanic eruption, we can compare it to other similar events
at other volcanoes to estimate the probabilistic outcome of
the ongoing observation data for the unrest in question. For
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FIGURE 2 | Example of event tree for volcanic crises. We categorize this event tree into three parts: observation, forecast, and countermeasures. The quantitative
threshold to judge the branching at each node is investigated by the new project, the Integrated Program for Next Generation Volcano Research and Human
Resources Development. Our objective is to deal with all three categories and to propose an adequate countermeasure scheme.

example, at Aso Volcano, Japan, the threshold from level 2
(Do not approach the crater) to level 3 (Do not approach
the volcano) is defined as: volcanic tremor amplitude of
4 micro m/s in average tilt change, suggesting volcanic body
expansion above 0.02 micro rad/h, and rapid increase in SO2
gas in excess of 2,000 tons/day (Japan Meteorological Agency,
2016). WOVOdat aims to support this data-sharing concept
to improve eruption forecasting and for reaching a better
understanding of volcanic processes, and our new JVDN
database conforms to WOVOdat.

GEOLOGICAL AND PETROLOGICAL
DATA

Geological and petrological studies provide important
information about long-term volcanic activity. We obtained
many drilling cores during the installation of V-net borehole
sensors (Nagai et al., 2011, 2012, 2013a,b) and by geological
surveys conducted at many volcanoes by universities and other
institutions (Nakagawa et al., 2019). In addition, the INeVRT
project is providing new drilling core data at other volcanoes.
Precious core samples have to be preserved physically and
archived digitally because they disintegrate easily.

National Research Institute for Earth Science and Disaster
Resilience has established a drilling core center to manage
and store drilling core samples and data in the JVDN
database. Such cores can be utilized by researchers worldwide,
and the database includes information on the locations,

geologic and petrologic descriptions, column diagram,
photographs, related background, analysis of results, and
other information.

Geological data on units such as ashfall deposits provide
information about eruption histories, including sequences of
eruptions, modes and scales of eruption, and volumes and
temporal development of each eruption (e.g., Suzuki et al., 2013).
Drilling core and trench section analysis provide us with detailed
information about individual historical eruptions, and we can
estimate the branching probability based on multiple empirical
data (Nakagawa et al., 2019).

In addition, petrological and laboratory experiment
studies provide us with a great deal of information about
both the subsurface and surface characteristics of magma
behavior. For example, chemical compositions, water content,
vesicularity, texture, etc., are the keys to understanding magmatic
characteristics as well as the eruptive styles of each volcano. This
information can be stored in the database for comparative study
(Yoshimoto et al., 2004; Madarigal and Lucke, 2017).

FT-IR measurement of water content in a melt (Yasuda,
2014) is one example of datasets representing magma reservoir
characteristics of chemistry, mineralogy, temperature, and water
contents for 11 representative active volcanoes that have been
archived so far. These petrological data provide information
about the conditions and pressure under which magma was
stored and can be converted to depth information. From the
geophysical observation point of view, we can detect volcanic
earthquakes and volcanic tremors beneath volcanoes, as well as
their source depth.
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FIGURE 3 | Schematic concepts of the Japan Volcanological Data Network (JVDN).

Geophysical and petrological data give us information on
source depth individually. Then, we can choose plausible source
mechanisms, for example, vaporized fluid flow for shallow
regions and super-critical fluid flow for deeper regions. It may
be possible to employ more quantitative models.

Not only is the database designed for the analysis of historical
eruptions, it is also designed to help evaluation of ongoing
volcanic eruptions. One important objective is to identify the
type of eruption, whether it is magmatic or non-magmatic,
and to evaluate the possibility of a successive larger eruption
event. A quick analysis of volcanic ash, that is, whether it
includes juvenile magmatic particles or not, is the key to
forecasting the ongoing eruption (e.g., Gaunt et al., 2016). To
this end, equipment for automatic ash collection and analysis
is under development (Miwa et al., 2018). This enables the
precise sequence of the ashfall deposit to be analyzed with time
stamping. In addition, ash particles are automatically analyzed
and classified in terms of color and shape through an artificial
intelligence (AI) system, and the equipment automatically reports
the result of the component analysis, allowing the existence of
magmatic particles to be assessed in real time. These results
will also be uploaded to the JVDN database and will be used
for the evaluation of ongoing volcanic activity as well as for
countermeasure planning.

NUMERICAL SIMULATION DATA

Numerical simulation is used to evaluate complex volcanic
phenomena consisting of both subsurface magmatic processes
and surface hazards. In our project, we are building a volcanic
hazard evaluation system that enables parallel evaluation of
various volcanic hazards, including lava flow, ashfall, ballistics,
and others, based on common input parameters such as flux rate
(Fujita et al., 2019). Each numerical simulation code is being
developed, respectively, and the types of input parameters are
set for each individual simulation code. Some background data,
e.g., digital elevation maps (DEM) and wind profiles, can also be
stored and shared for use in various numerical simulations.

In many cases, numerical calculation is time-consuming,
especially for the simulation of complex phenomena like a
volcanic plume and multi-phase lava flow. These outputs should
also be stored in the relational SQL database associated with
the calculation conditions. To express probability in volcanic
hazard and risk, we conduct multiple sessions of numerical
simulation under plausible sets of input parameters and process
these results statistically.

This database of calculation results will also link volcanic
hazard to exposures and vulnerability (Fujita et al., 2019). The
hazard information is expressed as the inundated area, time,
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Mount Fuji
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FIGURE 4 | An example of Mount Fuji ashfall simulation by JMA-RATM. The eruption plume was assumed to have the parameters of the Hōei eruption, and the wind
profile in December 2016 was applied. The legend indicates the thickness of ashfall after 6 h from the onset of eruption. Gray makers show the buildings, while dark
gray markers show those covered by ashfall.

velocity, and other characteristic properties for each type of
hazard. As both databases are so-called big data, we need
high-speed databases. We convert all of the information in
these data into the OGC©, 2020 Moving Features Simple
CSV format1, which enables quick and easy handling. They
can also be visualized by using a Geographical Information
System (GIS) to plot and overlay them on exposures and
vulnerabilities, e.g., the distribution of residential areas, roads,
and infrastructure. Through this visualized information, we
can estimate the risk of volcanic hazard quantitatively at
the target location, and this information is also useful for
countermeasures such as the formulation of evacuation plans by
disaster mitigation authorities.

Here we introduce some case examples. One of the most
widespread and pernicious volcanic hazards is ashfall. Ashfall
dispersion is calculated by the JMA-RATM model (Shimbori,
2016). Here, we propose an example of an ashfall due to a
Mt. Fuji eruption (Figure 3) in which we assume the initial
condition of being the same size as the Plinian eruption of Hōei in
1707. Ashfall distribution is strongly controlled by the height of
plume and the local wind profile. In the JMA-RATM model, the
numerical simulation refers to the weather-forecasting program
and obtains detailed distributions. At present, the mesh size of
the calculation is 5 km × 5 km, and this will be reduced to a
2 km × 2 km area to provide more detailed information.

We obtain quantitative information of the ashfall deposit for
each mesh from the numerical simulation. For risk management,
this hazard information can be coupled with the exposure and

1http://www.ogc.org/ogc/Document

vulnerability information (Figure 4). In general, the simulation
mesh and archived mesh in the database are different from
each other, so we need to match these different geometries to
estimate the inundation area (Figure 4 in Fujita et al., 2019).
The building distribution database provided by the Center for
Spatial Information Science, The University of Tokyo (2010) is an
example of static objects, and it has a much higher resolution than
those of the numerical simulation. For the combination of hazard
simulation and exposure databases, we need to synchronize the
size and geometry of the meshes, applying intersection judgment
and interpolation. Our future plan is to provide more quantitative
information about the hazard and its risk, for example, using
an agent-based model to integrate the ashfall simulation with
dynamic information such as dynamic real-time data on humans
and transportation. By doing so, we can propose efficient plans
for logistics as part of crisis management.

In general, lava flows are less dangerous than the other
volcanic hazards, since generally, the flow velocity is not
very high, and the damage to human life itself is not very
serious. However, a lava flow destroys the surrounding terrain
permanently, so the damage inflicted on properties, public
facilities, roads, and other infrastructure can be catastrophic.
Some examples of lava flow simulation around Mount Fuji are
also overlaid on the building infrastructure map (Figure 5)
using LavaSIM (Hidaka et al., 2005). Most of the important
transportation facilities in Japan go through this area, so there
would be major economic ramifications if it is damaged by
lava flow. A very threatening lava flow occurs when lava flows
southward, destroying Shinkansen (bullet train) rail tracks and
the Tōmei highway, which are the logistics arteries of Japan.
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FIGURE 5 | An example of Mount Fuji lava flow simulation using LavaSIM (Hidaka et al., 2005). Blue markers indicate the location of buildings, and red markers
show the lava-inundated cells. Yellow markers show the buildings damaged by lava flow. Eruption vent is assumed at the southern flank of Mount Fuji, and the lava
flow runs toward the southern flank, damaging the important transportation facilities, Shinkansen (bullet train) and the Tōmei highway, the economic artery of
logistics in Japan.

We can delineate the impacted area and estimate the available
time before the lava flow impacts and formulate a plan for
countermeasures.

We experienced a tragedy caused by ballistics in the eruption
of Ontake, Japan, in 2014. Unfortunately, there were many
tourists around the summit crater when the phreatic eruption
suddenly occurred (Nagano Prefectural Police, 2014; Tsunematsu

et al., 2016). Even though it is difficult to issue a warning for
a sudden phreatic eruption, it will be essential to understand
the risk of ballistic impacts and to make plans for evacuation
and shelters around the summit area. We apply the ballistic
simulation model using Ballista (Tsunematsu et al., 2014), which
can produce outputs regarding the deposits’ distribution, energy,
and trajectories.

Frontiers in Earth Science | www.frontiersin.org 6 July 2020 | Volume 8 | Article 20585

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00205 July 10, 2020 Time: 16:40 # 7

Fujita et al. A New Japan Volcanological Database

Volcanoes are popular tourist hotspots, and it is important
to mitigate possible hazards that can affect volcano climbers.
Lessons learned from the tragic Ontake eruption initiated an
investigation to obtain real-time tracking of climbers along
trails on Mount Fuji trails performed at different times (Tanaka
et al., 2018). Tracking devices (beacons) were distributed to
each climber, whereby the receivers installed along the trails
detected the real-time location of climbers. This dataset shows
the speed of the climbers’ traffic flow during the most crowded
season. A combination of ballistic simulation and this dataset
provides a countermeasure plan against ballistics hazards, e.g.,
the adequate distribution and size of huts and the route to an
evacuation path.

We will also evaluate other volcanic hazards such as
pyroclastic flow, lahars, etc., and plan to add these to the volcanic
disaster evaluation system (Fujita et al., 2019).

COUNTERMEASURE INFORMATION
DATA

Volcanologists have information about observation and forecasts
for volcanic activities and hazards; however, these outputs are
too specialized and difficult to be understood by the general
public and therefore are not useful in practical volcanic hazard
mitigation procedures for authorities and the general public
(Nakada et al., 2019).

As an example, for the quick detection of ashfall distribution
and component analysis, NIED developed an information-
sharing system via SNS, named “Min’na de kazan,” meaning that
everyone reports about volcanic activity. Users can upload ashfall
information about thickness, ash color, etc., and plot this on a GIS
system. We can grasp the distribution of ashfall in real time and
can use this to produce contour maps to identify ashfall hazard
distribution. This information can be applied to evaluating the
damage by ashfall, e.g., against electric power supply lines, roads,
railways, and agriculture.

In addition, we are also developing digital volcanic hazard
maps, which are converted from the original paper-based
volcanic hazard maps issued by individual local governments and
are digitized in a GIS-applicable format. Using a combination of
hazard maps and social and infrastructure geospatial layers, we
can support the countermeasure planning of local governments.

Under our plan, the countermeasure database will also
include instructions on how to interpret the observation data
and numerical simulation results, some lecture materials about
volcanoes for the general public, digital contents including
movies of volcanic phenomena, and some standard operating
procedure (SOP) information for volcanic disaster management,
available for local governments.

CONCLUSION

The ultimate goal of the INeVRH project is to perform
evaluation of forthcoming volcanic activity and hazards through

the automatic assimilation of observation data. The observation
data and its primary data analysis will be stored in the JVDN
system. Together with geological and petrological data, these
data will be set automatically and/or manually as input to
execute various volcanic hazard simulations. Simulation results
will then be combined with exposure and vulnerability data
to evaluate the risk, which will be utilized on the system
as countermeasure information for risk reduction. Since, in
most cases, observation data are not sufficient to regulate all
input parameters required to run volcanic hazard simulation,
some assumptions are used. To obtain the uncertainty and the
applicability of the model, we first performed various simulations
using the possible range of input parameters. The hazard and
risk evaluation are performed using event tree analysis. The most
difficult but important part is to obtain threshold values that
define toward which branch of the event tree the activity will
continue, especially during volcanic crises. We must also remain
cognizant that the threshold may not work for a specific volcano,
so we should also obtain it at other volcanoes to determine the
general applicability. Developing the new Japan volcanological
database system capable of integrating observation, forecast, and
countermeasure strategy is a challenging task.
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Probabilistic volcanic hazard assessment (PVHA) has become the paradigm to quantify
volcanic hazard over the last decades. Substantial aleatory and epistemic uncertainties
in PVHA arise from complexity of physico-chemical processes, impossibility of their
direct observation and, importantly, a severe scarcity of observables from past
eruptions. One factor responsible for data scarcity is the infrequency of moderate/large
eruptions; other factors include lack of discoverability and accessibility to volcanological
data. Open-access databases can help alleviate data scarcity and have significantly
contributed to long-term PVHA of eruption onset and size, while are less common for
data required in other PVHA components (e.g., vent opening). Making datasets open
is complicated by economical, technological, ethical and/or policy-related challenges.
International synergies (e.g., Global Volcanism Program, WOVOdat, Global Volcano
Model, EPOS) will be key to facilitate the creation and maintenance of open-
access databases that support Next-Generation PVHA. Additionally, clarification of
some misconceptions about PVHA can also help progress. Firstly, PVHA should be
understood as an expansion of deterministic, scenario-based hazard assessments.
Secondly, a successful PVHA should sometimes be evaluated by its ability to deliver
useful and usable hazard-related messages that help mitigate volcanic risk. Thirdly,
PVHA is not simply an end product but a driver for research: identifying the most
relevant sources of epistemic uncertainty can guide future efforts to reduce the overall
uncertainty. Broadening of the volcanological community expertise to statistics or
engineering has already brought major breakthroughs in long-term PVHA. A vital
next step is developing and maintaining more open-access datasets that support
PVHA worldwide.

Keywords: probabilistic volcanic hazard assessment, uncertainty quantification, data scarcity, open data, global
databases

INTRODUCTION

Nearly 300,000 people died due to volcanic activity from 1600 to 2010 AD (Auker et al., 2013).
Unfortunately, several other deadly eruptions have shocked the world since then. Some because
of their lack of clear precursory evidence: Mayon, Philippines, in 2013 (Maeda et al., 2015).
Others because of the magnitude of their destructive toll: Fuego, Guatemala, in June 2018
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(Naismith et al., 2019) and Krakatau, Indonesia, in December
2018 (Grilli et al., 2019; Williams et al., 2019). One of the
most infamous examples of volcano tragedy was the eruption
of Mount Pelée, Martinique, in 1902, which claimed the life of
around 30,000 people at St Pierre and Morne Rouge (Lacroix,
1904; Fisher et al., 1980). At the time of the eruption, it
was assumed that “Mount Pelée would behave in 1902 as it
had in 1851 – when a rain of ash [...] did not harm those
living under its shadow” (Reed, 2002). However, the timing,
location, size and style of volcanic activity tend to change
from eruption to eruption and within the same eruption. Thus,
properly accounting for and quantifying this natural variability,
or aleatory uncertainty, of volcanic eruptions and their associated
hazardous phenomena is a basic requirement for volcanic hazard
assessment (e.g., Woo, 1999; Connor et al., 2001; Marzocchi
et al., 2004). Such assessments should also quantify the epistemic
uncertainty related to incomplete knowledge (e.g., Marzocchi
et al., 2004; Rougier and Beven, 2013; Tierz et al., 2016a). This
can be achieved through probabilistic analyses of the onset, size
and location of volcanic eruptions, as well as of the spatio-
temporal intensity of hazardous phenomena such as pyroclastic
density currents (PDCs) or lahars. Probabilistic volcanic hazard
assessment (PVHA) started to develop several decades ago (e.g.,
Newhall, 1982; Barberi et al., 1990; Connor and Hill, 1995;
Connor et al., 2001; Newhall and Hoblitt, 2002; Aspinall et al.,
2003; Sparks, 2003) and has now become the standard method
for robust, accurate and complete volcanic hazard assessment
worldwide (e.g., Marzocchi et al., 2008, 2010; Bayarri et al., 2009;
Sobradelo and Martí, 2010; Jenkins et al., 2012; Marzocchi and
Bebbington, 2012; Bebbington, 2013, 2014; Del Negro et al., 2013;
Hincks et al., 2014; Connor et al., 2015; Neri et al., 2015; Newhall
and Pallister, 2015; Whelley et al., 2015; Bevilacqua et al., 2016;
Biass et al., 2016; Mead and Magill, 2017; Tierz et al., 2017; Sandri
et al., 2018).

Carrying out PVHA requires the collection and use of
volcanological data (Figure 1) to select and parameterize
probability distributions to calculate volcanic hazard, including
the critical sources of uncertainty (e.g., Connor and Hill, 1995;
Aspinall, 2006; Marzocchi et al., 2008, 2010; Marzocchi and
Bebbington, 2012; Bebbington, 2013; Tierz et al., 2016a,b). While
these tasks are very data demanding, the vast majority of volcanic
systems in the world remain data scarce (e.g., Loughlin et al.,
2015). Open data are crucial to help alleviate the widespread issue
of data scarcity and, hence, support advancement of PVHA. For
instance, open data can be used to borrow useful information
from analogue volcanoes (i.e., volcanoes that have enough similar
characteristics as to be considered partially exchangeable) and
apply it to perform PVHA at a specific (data-scarce) target
volcano (e.g., Marzocchi et al., 2004; Bebbington, 2014; Sheldrake,
2014; Ogburn et al., 2016a; Sheldrake et al., 2016; Newhall
et al., 2017; Tierz et al., 2019). Some open-access volcanological
databases that contain the necessary data to compute PVHA are
currently available: Volcanoes of the world, Global Volcanism
Program (Siebert et al., 2010; hereinafter GVP)1; WOVOdat

1http://www.volcano.si.edu

(Newhall et al., 2017)2; Large Magnitude Explosive Volcanic
Eruptions (Crosweller et al., 2012; hereinafter LaMEVE)3 and
others. However, the majority of the volcanological community
still heavily relies on non-open data to perform PVHA (e.g.,
Bevilacqua et al., 2016; Jaquet et al., 2017; Tierz et al., 2018). The
predominant use of non-open data reduces the versatility and
scope of PVHA methods because researchers worldwide may find
it difficult to gain independent insights from the same datasets.
Conversely, open-access datasets permit such complementary
research to be developed (e.g., Deligne et al., 2010; Sheldrake and
Caricchi, 2017; Papale, 2018; Rougier et al., 2018).

In this contribution, I explore the use of open and non-open
data in long-term PVHA (i.e., volcanic hazard forecasts on the
timescale of years to decades, Marzocchi and Bebbington, 2012)
to evidence how the key issue of data scarcity manifests in the
predominant and uneven use of non-open data across different
components of the probabilistic assessment. Then, I discuss the
importance of data scarcity and misconceptions around PVHA
as current issues that collectively hinder further and wider
development in the field. Finally, I suggest a few potential future
directions in the view of an increased availability of open-access
datasets to perform long-term PVHA at the individual volcano,
regional and global scales.

OPEN AND NON-OPEN DATA IN
LONG-TERM PVHA

I have selected a collection of 100 peer-reviewed contributions
to analyze long-term PVHA research since 2001 (see
Supplementary Material). The collection covers, without
over-representation, the spectrum of different research groups,
volcanic systems, types of PVHA and hazardous phenomena.
Although it is not necessarily statistically representative in terms
of stratified random sampling, it nevertheless serves to illustrate
certain research trends in PVHA over the last two decades. This
collection, which I will henceforth denote as the “Sample” is
analyzed (Figure 2; and Supplementary Material), focusing on
the use of open, non-open and mixed (i.e., both open and non-
open) datasets (see Definitions) to assess different components
of the long-term forecast: (1) eruption onset and size; (2)
eruption vent location; (3) eruption impacts (by hazardous
phenomena); and (4) combinations of any of the three, which
I term integrated PVHA. In the Sample, studies that use either
non-open or mixed datasets dominate over those using open
datasets to compute long-term PVHA (Figures 2A,B). According
to the Sample, there have not been major changes in the use of
open, non-open and mixed datasets over time (Figure 2C).

Eruption Onset and Size
It is the only component of the hazard assessment where open
data have been used in isolation (Figure 2B) and non-open and
mixed data do not dominate (Figure 2A). Global databases of
the timing and size of volcanic eruptions (principally GVP and

2https://www.wovodat.org/
3https://www.bgs.ac.uk/vogripa/view/controller.cfc?method=lameve
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FIGURE 1 | Schematic showing the main types of data (ellipses) that are required to carry out long-term PVHA and some intermediate methods or steps (rectangles)
needed to obtain these data. Arrows indicate links between intermediate steps or with derived PVHA data types and variables (ellipses and text within parentheses).
Data types are classified according to their use in different components of the hazard assessment: eruption onset and/or size, eruption location and eruption
impacts. The majority of the data are generated, directly or indirectly, through geological fieldwork performed on the eruptive products of past volcanic eruptions.
Since historical times, direct observations and instrumental measurements of both eruptive parameters as well as external factors (e.g., wind, rainfall, topography)
have also become available. MER, Mass Eruption Rate; PDCs, Pyroclastic Density Currents; GPS, Global Positioning System; InSAR, Interferometric Synthetic
Aperture Radar; LiDAR, Light Detection And Ranging; UAV, Unmanned Aerial Vehicle.

LaMEVE) have been the key element required for the hazard
analysts to conduct PVHA. The Sample suggests that eruption
onset-size forecasts were more common during approximately
the first decade of the 21st century (Figure 2D). This relative
decrease could be partially explained by the incorporation of
onset-size assessments into integrated PVHA over the second
decade of the century (e.g., Sandri et al., 2012, 2014, 2018;
Bartolini et al., 2015; Bevilacqua et al., 2017). Recent advances
in PVHA of eruption onset and size have focused on alleviating
issues around under-recording (Mead and Magill, 2014; Rougier
et al., 2016; Sheldrake and Caricchi, 2017) and on the use of
covariates to inform the statistical modeling: e.g., open/closed-
conduit states (Bebbington, 2014; Whelley et al., 2015); rock
geochemistry (Passarelli and Brodsky, 2012); volcano type or
tectonic setting (Sheldrake, 2014; Sheldrake and Caricchi, 2017);
or a combination of volcanological observations (Dzierma
and Wehrmann, 2010, 2014). Moreover, advanced stochastic
models to incorporate the epistemic uncertainty in the rates
of eruption onsets, and model varied patterns of clustering

and recurrent behavior of volcanic eruptions, have been
proposed (e.g., Garcia-Aristizabal et al., 2012; Bebbington, 2013;
Bevilacqua et al., 2016, 2018).

Eruption Vent Location
It has been exclusively performed using non-open data, according
to the Sample (Figure 2A). This is strongly related to the fact
that the detailed geological data (Figure 1) required to derive
statistical models for the spatial occurrence of vent locations
(e.g., Cappello et al., 2012; Connor et al., 2012; Selva et al.,
2012b; Bevilacqua et al., 2015), are rarely available as open-access
datasets. The data are available at specific volcanic systems but
generalizations about the data-generating process for eruption
location are hindered because of the lack of cross-volcano, open-
access databases (NB. Le Corvec et al., 2013, could be considered
as a “non-open archetype” for such databases). Some recent
developments have looked at: (i) constraining the areal extent
of vent locations by matching it to potential magma sources
identified from geophysical imaging (Deng et al., 2017); or (ii)
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FIGURE 2 | Summary of patterns observed on a collection of 100 publications on long-term PVHA published since 2001. In (A,B): total number of publications
partitioned according to the use of open, non-open and mixed datasets (A); and the focus of the PVHA: eruption onset and/or size, eruption location, eruption
impacts or integrated PVHA (B). In (C,D): cumulative number of publications according to the same partitions: type of data (C) and focus of the PVHA (D).
Publications are sorted, in ascending order, by the year of publication and, for those with the same publication year, by alphabetical order. The x axis displays the
resulting ordinal numbering (ID variable in the Supplementary Material). Labels on the x axis are placed on the first publication of the corresponding publication
year.

assessing changes in vent locations due to spatial migration of
volcanism in geological time (Jaquet et al., 2017).

Eruption Impacts
Mixed datasets are more commonly used than non-open datasets
(Figure 2A). This may be due to an increased accessibility to
databases of some key elements for the PVHA such as wind
profiles for tephra fallout (Kalnay et al., 1996; Dee et al., 2011)
or digital elevation models for mass flows (e.g., Shuttle Radar
Topography Mission)4. Recent advances are linked with: (1)
the comprehensive quantification of inter- and intra-eruption-
size aleatory variability of quantities such as the mass eruption
rate, erupted mass or volume, column height, column-collapse
height, etc., (e.g., Biass et al., 2016; Sandri et al., 2016; Tierz
et al., 2016b); and (2) the recognition and quantification of
diverse sources of epistemic uncertainty, which significantly
affect the PVHA (e.g., Stefanescu et al., 2012a,b; Spiller et al.,

4https://www2.jpl.nasa.gov/srtm/

2014; Tierz et al., 2016a). The parallel development of detailed,
yet relatively fast, physical models and versatile statistical models
has aided the quantification of the aforementioned uncertainties.
Some examples include open-access numerical codes for granular
flows (TITAN2D, Patra et al., 2005; LaharFlow)5 and uncertainty
quantification techniques ranging from probabilistic graphical
models (e.g., Sobradelo et al., 2014; Tonini et al., 2015; Tierz et al.,
2017) to polynomial chaos methods (Dalbey et al., 2008; Tierz
et al., 2018) and stochastic-process emulators (Bayarri et al., 2009;
Spiller et al., 2014; Rutarindwa et al., 2019).

Integrated PVHA
According to the Sample, it has been the most common PVHA
over the last years (Figure 2D) and it predominantly uses
non-open data (Figure 2A). Notwithstanding, the range and
scope of open-access databases for integrated PVHA seems
to be increasing. Long-term programs like GVP have been

5https://www.laharflow.bristol.ac.uk/
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joined by other efforts such as LaMEVE, FlowDat (Ogburn,
2012)6, DomeHaz (Ogburn et al., 2015)7, the Eruption Source
Parameter database (Mastin et al., 2009)8, the Catalog of Icelandic
Volcanoes9, etc. Recent advances have used some of these datasets
to parameterize event trees in novel multi-volcano PVHA of
tephra fallout (Jenkins et al., 2012) or PDCs (Sandri et al., 2018).
Other advances, with potential applicability to integrated PVHA,
have designed: (a) community cyberinfrastructure platforms
that host or link to other open-access databases and provide
online tools to support hazard assessment (Vhub, Palma et al.,
2014; Volcanic Hazards Assessment Support System by G-EVER,
Takarada, 2017)10,11; or (b) methods to identify objective sets
of analogue volcanoes from global databases (VOLCANS,
Tierz et al., 2019).

DISCUSSION

In my view, further and wider development of long-term PVHA
is hindered by data scarcity as well as by some misconceptions
and criticism toward PVHA itself.

Data Scarcity in PVHA
Volcanological data (Figure 1) are the best possible source of
information to quantify aleatory uncertainty in volcanic hazard
(e.g., Newhall and Hoblitt, 2002; Marzocchi and Bebbington,
2012; Connor et al., 2015; Pallister et al., 2019). Data discovery
can alter this quantification by changing the experimental
concept (Marzocchi and Jordan, 2014) and this is especially
acute at the scale of individual volcanoes and for infrequent,
large-size eruptions. For instance, for some decades, the Campi
Flegrei caldera (Italy) was known to have undergone two caldera-
forming eruptions, one at ∼39 ka (the Campanian Ignimbrite
eruption; Fedele et al., 2003) and another at ∼15 ka (the Yellow
Neapolitan Tuff eruption; Deino et al., 2004). Recently, new
evidence for a third caldera-forming eruption at ∼29 ka (the
Masseria del Monte Tuff eruption) has been found (Albert et al.,
2019). This discovery has drastically reduced the expected repose
interval for caldera-forming eruptions at Campi Flegrei.

It is also important to distinguish between lack of data
discoverability (Loughlin et al., 2015) and lack of data
accessibility (see Definitions). At present, a number of
volcanological datasets, typically collected at specific volcanic
systems (e.g., Cioni et al., 2008; Thompson et al., 2015; Bevilacqua
et al., 2018), are stored in non-open-access publications and,
hence, are not freely available to the entire volcanological
community. Open-access publications are becoming more
customary, which increases the availability of open data to
perform PVHA (e.g., Sobradelo et al., 2011; Biass et al.,
2014; Jenkins et al., 2019), but there is still an urgent

6https://vhub.org/resources/2076
7https://vhub.org/resources/1742
8https://www.bgs.ac.uk/research/volcanoes/esp/search.cfc?method=viewHome
9http://icelandicvolcanos.is/
10https://vhub.org/
11http://volcano.g-ever1.org/

need to discover, assemble, digitize and store volcanological
data in open-access databases (e.g., Geyer and Marti, 2008;
Ogburn, 2012; Ogburn et al., 2015, 2016b; Newhall et al.,
2017) that help develop Next-Generation PVHA. International
synergies, such as GVP, the Global Volcano Model12, European
Plate Observing System13, European Open Science Cloud14 or
EarthCube15, can play key roles in facilitating the generation
and maintenance of such databases, as well as in the
transition toward open science in general, for which not
only open data but open models and workflows would
also be required.

There are significant and varied challenges that play a role
in the release of open data. For instance, individual researchers
or institutions may be reluctant to release their data until
fundamental research has been successfully conducted using
those data. Hence, a grace period of a few years (e.g., 2 years
in WOVOdat)16 can provide the scope for initial interpretation
and publication of results linked to the data. Other difficulties
might be: economical and/or logistical (e.g., availability of
long-term funding and tailored student supervision to help
make existing data accessible), technological (e.g., software and
hardware development) and/or legal and policy-related, ranging
from intellectual property rights to protection of personal
data. For instance, data-protection policies may be different
across countries and/or change over time, within a given
country or region (e.g., General Data Protection Regulation
of May 2018 in Europe17). Particularly in volcanology, expert
elicitation has become an important tool to extract data for
PVHA (e.g., Aspinall, 2006; Selva et al., 2012a; Hincks et al.,
2014; Thompson et al., 2015; Christophersen et al., 2018).
The elicitation process has ethical and legal implications (e.g.,
Hemming et al., 2018), such as anonymity of the generated
data, that need to be carefully considered while moving
toward more open-data and open-science environments that
facilitate PVHA worldwide.

Misconceptions Around PVHA
I focus here on three that I consider the most relevant. First,
probabilistic approaches are sometimes criticized because of their
overall complexity. However, it should be noted that PVHA
is an expansion of deterministic approaches (Marzocchi and
Bebbington, 2012). That is, a probabilistic hazard product can
be converted into a “deterministic” one while the contrary
does not hold. The versatility of PVHA should be an asset,
not a detriment. For instance, a collection of hazard curves
covering a spatial grid actually represents a set of probability
and hazard maps that can be derived from the hazard curves
by using thresholds in either the hazard-intensity measure (e.g.,
flow speed) or the probability of exceedance, respectively (e.g.,
Selva et al., 2014; Tonini et al., 2015; Tierz et al., 2018). The

12https://globalvolcanomodel.org/
13https://epos-ip.org/
14https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
15https://earthcube.org
16https://wovodat.org/about/about.php
17https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
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latter case is effectively equivalent to producing a scenario-
based hazard map with known probability of exceedance.
One key difference in deterministic, scenario-based hazard
maps is that the associated probability of exceedance is not
known (e.g., Esposti Ongaro et al., 2008; Charbonnier and
Gertisser, 2012; Capra et al., 2015). Nevertheless, it is also
important to acknowledge that probabilistic and deterministic
approaches should not be seen as an “either-or choice”
(e.g., Newhall and Pallister, 2015; Rouwet et al., 2017):
both methods are reciprocally informative and beneficial for
the goal of improving volcanic hazard assessments (e.g.,
Marzocchi et al., 2008; Marzocchi and Bebbington, 2012;
Newhall and Pallister, 2015).

Secondly, validation of probabilistic hazard forecasts is
necessary (Marzocchi and Bebbington, 2012; Marzocchi and
Jordan, 2014; Connor et al., 2015) but not always there are enough
data (Figure 1) available for such purpose (e.g., Marzocchi
et al., 2004, 2008). In this context, a successful volcanic hazard
assessment should be seen as one that efficiently delivers vital
messages that help mitigation of volcanic risk (Pallister et al.,
2019). Depending on the volcanological and socio-political
context, the nature of this message can vary remarkably: from
evidencing the possibility of far-reach PDCs during escalating
phases of unrest (e.g., Mount Pinatubo, in June 1991: Newhall
and Punongbayan, 1996; Newhall and Pallister, 2015) to raising
awareness of the relevance of volcanic hazard at under-studied
explosive volcanic systems with long repose intervals (e.g., Main
Ethiopian Rift: Vye-Brown et al., 2016). In densely populated,
heavily industrialized areas built on or surrounded by several
volcanoes (e.g., the metropolitan area of Napoli, Italy, ∼3
M inhabitants), long-term PVHA represents a vital asset to
deliver effective hazard-related messages. Considering Somma-
Vesuvius and Campi Flegrei separately, long-term PDC hazard
is most crucially controlled by different aspects at the two
volcanoes. At Somma-Vesuvius, the size of the next eruption
is a key factor controlling the volume and spatial reach of
PDCs (Gurioli et al., 2010; Tierz et al., 2016a,b; Sandri et al.,
2018) while vent-opening variability (Tadini et al., 2017) has
a limited influence, partly due to major topographic controls
on PDC propagation exerted by the stratocone and Mount
Somma (Esposti Ongaro et al., 2008; Tierz et al., 2016a, 2018).
At Campi Flegrei, eruption size has a more restricted effect
on the volume and spatial reach of PDCs, for the most-likely
explosive eruption sizes (Orsi et al., 2004, 2009; Neri et al.,
2015; Tierz et al., 2016b). However, the location of the next
eruptive vent (Selva et al., 2012b; Bevilacqua et al., 2015; Rivalta
et al., 2019) has a paramount importance, given the complex
intra-caldera topography and the smaller PDC invasion areas
at Campi Flegrei (Tierz et al., 2016b; Bevilacqua et al., 2017;
Sandri et al., 2018).

Finally, PVHA is often solely seen as an end product while
it should also be considered a driver for research. If epistemic
uncertainties are comprehensively quantified and ranked (e.g.,
Stefanescu et al., 2012a,b; Rougier and Beven, 2013; Spiller et al.,
2014; Tierz et al., 2016a), then sensitivity of PVHA outputs can be
explicitly explored (e.g., Tierz et al., 2016a; Bevilacqua et al., 2017;
Sandri et al., 2018), and data collection can be aimed at reducing

the overall uncertainty to improve volcanic hazard assessment
(e.g., Tierz et al., 2016a; Trolese et al., 2019). The above example
of PVHA of PDCs at the metropolitan area of Napoli exemplifies
how research can focus on the most critical, volcano-specific
aspects linked to PDC hazard: e.g., spatial probability of vent
opening at Campi Flegrei and probability of eruption size
at Somma-Vesuvius.

FUTURE DIRECTIONS

I propose four major steps to improve long-term PVHA in the
context of an increased availability of open-access datasets:

1. Unraveling the links between global and local frequency-
magnitude distributions: there is still debate about the
portability of global frequency-magnitude distributions
(Papale, 2018; Rougier et al., 2018) to regional (Sheldrake
and Caricchi, 2017) and individual-volcano scales
(Bebbington, 2014). Bayesian hierarchical models are
a structured approach to accommodate end-member
interpretations (Ogburn et al., 2016a) but different
exchangeability assumptions between analogue volcanoes
should be investigated to improve such models. Novel
tools to identify objective sets of analogue volcanoes will
facilitate such analyses (VOLCANS, Tierz et al., 2019);

2. Toward the use of data-generating processes to model
vent locations: it would be preferable to use the
data-generating process itself (i.e., magma transfer to
the surface), instead of mostly focusing of past-vents
data, to derive spatial PDFs of vent opening. Further
developments in: (a) testing the spatial distributions of
past vent locations against meaningful geological and
geophysical data (Martin et al., 2004; Runge et al., 2016);
and/or (b) applying hybrid physical-statistical approaches
to simulate dike propagation trajectories and calculate
spatial probabilities for future vent locations (Rivalta et al.,
2019) are promising ways forward;

3. Increased granularity in intra-eruption forecasting:
almost every PVHA of hazardous phenomena aggregates
volcanic activity at the level of the single eruption (e.g.,
Jenkins et al., 2012; Becerril et al., 2014; Sandri et al.,
2018) but very few incorporate the dynamic nature of
intra-eruption phenomenology (e.g., Wolpert et al., 2018;
Bebbington and Jenkins, 2019). More effort should be
put in this direction and open-access, global datasets will
be a fundamental resource for probabilistic models that
incorporate this level of granularity in eruption dynamics
(Cassidy et al., 2018);

4. From hazard summation to hazard interaction in multi-
hazard assessments at volcanoes: the majority of volcanic
multi-hazard assessments analyze hazardous phenomena
separately and then combine or add their resulting
hazard footprints (e.g., Sandri et al., 2014; Bartolini
et al., 2015). There are very few examples where the
hazard interaction is explicitly quantified (e.g., Volentik
et al., 2009; Tierz et al., 2017). Probabilistic graphical
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models (Koller and Friedman, 2009) can help quantify
such critical interactions and their construction could
strongly benefit from techniques such as machine
learning (Anantrasirichai et al., 2019), if enough open
volcanological data (Figure 1) were available.

The volcanological community has been able to enlarge its
collective expertise over the last decades by engaging with
scientists from diverse fields such as statistics, engineering
or computer science. This has already resulted in major
breakthroughs in long-term PVHA (e.g., Barberi et al., 1990;
Wadge et al., 1994; Connor and Hill, 1995; Newhall and Hoblitt,
2002; Bayarri et al., 2009; Marzocchi et al., 2010; Jenkins et al.,
2012; Bebbington, 2014, 2015; Jaquet et al., 2017; Tierz et al.,
2017; Sandri et al., 2018). A vital next step relates to creating,
expanding and maintaining more open-access volcanological
datasets, as well as open-source software and workflows (e.g., data
processing), that can support long-term PVHA worldwide.

DEFINITIONS

Open Data
Any type of data that any user can access and re-use, entirely free
of charge, through a device equipped with an Internet connection
(NB. Data in the GVP database is considered as open data, even
prior to its release as an open-access database in 2002, Siebert and
Simkin, 2002). Please note that fully open data would also imply
free availability of the software and workflows used to generate
these data. A simplified approach, where open data refers only to
data used to compute long-term PVHA (see Figure 1), was taken
here for the sake of facilitating the analysis shown in Figure 2 and
the Electronic Supplementary Material.

Non-open Data
Any type of data that does not comply with the definition given
for open data. For example, all data found in subscription-based
or pay-per-view articles is considered non-open. Please note
that many authors may be willing to grant open access to their
data upon publication. However, from the user point of view,
data accessibility ultimately depends on the specific access policy
associated with each published article.

Data Scarcity
General lack of data for any given volcano or group of volcanoes,
independently of the reason behind this scarcity.

Data Discoverability
Quality of any kind of data for a given volcano or group of
volcanoes of being able to be discovered through identification,
description, measurement, sampling, etc.

Data Accessibility
Quality of any kind of data for a given volcano or group of
volcanoes of being able to be accessed (and re-used) as open data.
Please note that the concept of data accessibility may contain finer
gradations (e.g., data in repositories, supplementary material files;

maps drawn on an article; data available from author upon
request, etc.), which would result in more data categories than
the three distinguished in this manuscript: open, non-open and
mixed. A simplified categorisation was chosen here for the sake
of facilitating the analysis shown in Figure 2 and the Electronic
Supplementary Material.

Data Availability
Quality of any kind of data for a given volcano or group of
volcanoes of being available for its re-use as open data. In the
context of the manuscript, synonym of data accessibility.

AUTHOR’S NOTE

New data used in this study are shown in the figures presented
and available in the Supplementary Material. Figures were
generated using Inkscape software (Harrington, 2004–2005) and
R programming language (R Core Team, 2013) and color schema
were based on www.ColorBrewer.org (Brewer, 2018).
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Water Vapor Tomography of the Lower
Atmosphere from Multiparametric
Inversion: the Mt. Etna Volcano
Test Case
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Space techniques based on GPS and SAR interferometry allow measuring millimetric ground
deformations. Achieving such accuracy means removing atmospheric anomalies that
frequently affect volcanic areas by modeling the tropospheric delays. Due to the prominent
orography and the high spatial and temporal variability of weather conditions, the active volcano
Mt. Etna (Italy) is particularly suitable to carry out research aimed at estimating and filtering
atmospheric effects on GPS and DInSAR ground deformation measurements. The aim of this
work is to improve the accuracy of the ground deformation measurements by modeling the
tropospheric delays at Mt. Etna volcano. To this end, data from the monitoring network of 29
GPS permanent stations and MODIS multispectral satellite data series are used to reproduce
the tropospheric delays affecting interferograms. A tomography algorithm has been developed
to reproduce the wet refractivity field over Mt. Etna in 3D, starting from the slant tropospheric
delays calculated by GPS in all the stations of the network. The developed algorithm has been
tested on a synthetic atmospheric anomaly. The test confirms the capability of the software to
faithfully reconstruct the simulated anomaly. With the aim of applying this algorithm to real
cases, we introduce the water vapor content measured by the MODIS instrument on board
Terra and Aqua satellites. The use of such data, although limited by cloud cover, provides a
two-fold benefit: it improves the tomographic resolution and adds feedback for the GPS wet
delay measurements. A cross-comparison between GPS and MODIS water vapor
measurements for the first time shows a fair agreement between those indirect
measurements on an entire year of data (2015). The tomography algorithm was applied on
selected real cases to correct the Sentinel-1 DInSAR interferograms acquired over Mt. Etna
during 2015. Indeed, the corrected interferograms show that the differential path delay reaches
0.1 m (i.e. 3 C-band fringes) in ground deformation, demonstrating how the atmospheric
anomaly affects precision and reliability of DInSAR space-based techniques. The real cases
show that the tomography is often able to capture the atmospheric effect at the large scale and
correct interferograms, although in limited areas. Furthermore, the introduction of MODIS data
significantly improves by ∼80% voxel resolution at the critical layer (1,000 m). Further
improvements will be suitable for monitoring active volcanoes worldwide.
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INTRODUCTION

Measurements of ground displacements play a key role for
understanding geophysical processes, especially in active
volcanic areas. In volcano geodesy, the global positioning
system (GPS) is widely used for this purpose in
combination with the differential interferometry synthetic
aperture radar (DInSAR) technique. The interferograms are
obtained through the difference between two SAR images
acquired in two different periods with the same viewing
geometry. Expressed in values of phase rotation of the
backscattered radar wave, they are the measurement of the
differential path delays in the line of sight (LOS), imaged
according to a grid related to the sampling frequency (Ulabay
et al., 1981; Massonnet et al., 1993). The differential phase can
be estimated with an accuracy of a few degrees; therefore,
DInSAR can measure differential propagation delay with
millimetric accuracy as in the case of the C-band synthetic
aperture radars of the European Sentinel-1 satellites. Changes
in the delays can be due to ground deformation, changes in the
path delay in the troposphere, or other causes. When using
DInSAR to measure ground deformations, the tropospheric
delay is in general the most significant effect and the most
difficult to correct (Zebker et al., 1997; Delacourt et al., 1998;
Williams et al., 1998). It is an integrated function of pressure,
temperature, and humidity along the ray path. In the domain
of X-band, C-band, L-band, and GPS signals, it does not
depend on the frequency. GPS has amply demonstrated to
be applicable to measure the integrated amount of water vapor
in the atmosphere (Bevis et al., 1992; Tregoning et al., 1998;
Gradinarsky and Jarlemark, 2004; Nilsson and Elgered, 2007;
Champollion et al., 2009; Notarpietro et al., 2011; Chen and
Liu, 2014; Benevides et al., 2015b; Benevides et al., 2016).
Yuval et al. (2015) propose the use of dense regional GPS
networks for extracting tropospheric zenith delays and
ionospheric total electron content maps in order to
produce tropospheric and ionospheric correction maps,
respectively, for InSAR images. By measuring the
integrated amount of water vapor in several directions
from a number of locations in a local GPS network, it is
possible to estimate the 3-D structure of the atmospheric
water vapor by applying a tomographic method. This
technique is known as GPS tomography (e.g., Flores et al.,
2001; Champollion et al., 2009). Different works have
described GPS tomography experiments aimed at sounding
the atmosphere in time, that is, 4-D tomography (Flores et al.,
2000; Perler et al., 2011; Benevides et al., 2018). Others have
considered additional measurements (e.g., remote sensing
data from different types of satellites or different
constellations) to enhance the accuracy of the tomography
(e.g., Benevides et al., 2015a; Heublein et al., 2019; Zhao et al.,
2019). The orography of the studied area plays a key role in the
resolution capabilities of the technique (Flores et al., 2001).

Here, we focus on the case of Mt. Etna volcano (Italy). This
high volcano (more than 3,300 m a.s.l.) has a prominent and
complex topography. With the Mediterranean Sea to the east and
exposed to dominant winds from/on the west, it has varying

microclimates on its different flanks. Several studies have been
carried out on Mt. Etna to estimate and correct the tropospheric
delay in SAR interferograms, using various approaches: 1)
empirical data to predict atmospheric conditions through
numerical models (Delacourt et al., 1998; Webley et al., 2004),
2) use of the relation between InSAR phase and elevation
(Beauducel et al., 2000), 3) use of the tropospheric delays
derived from GPS analysis (Wadge et al., 2002; Aranzulla and
Puglisi, 2015).

In this work, for the first time, an entire year of GPS
tropospheric delays has been combined with integrated
water vapor contents measured with MODIS instruments on
board Terra and Aqua satellites in order to calculate the
tropospheric spatial and temporal variability delay. The use
of MODIS data in the tomographic modeling of the
troposphere has proved to be fruitful by Benevides et al.,
2015a. However, in this study, we expand this approach in
very harsh experimental conditions dominated by the
prominent topography of Mt. Etna. The Earth Observation
(EO) data are the only ones that can be systematically used for
water vapor content measurements over Mt. Etna. Following
Kämpfer (2012), operational techniques for water vapor
retrievals include ground-based instruments (microwave
radiometer, Sun photometer, Lidar, and FTIR spectrometer),
in situ methods (radiosonde and airborne instruments), and
remote sensing (IR, and visible and microwave sensors). This
last technique allows global coverage, but no retrievals can be
obtained during cloudy and rainy weather (for visible and IR
sensors) or over land (for microwave sensors). During a series
of weather conditions, it was recognized that the coverage by
terrestrial measurements is insufficient to correctly
characterize the three-dimensional water vapor field (Bernot
et al., 2014). Moreover, in the case of Mt. Etna, in situ
radiosonde data are not available, and the closest daily
soundings are performed at Trapani, 220 km to the west of
Mt. Etna (Wadge et al., 2002).

The fact that the SAR satellites are side-looking radar makes
the need for accurate tropospheric tomography more critical than
the case of radar systems measuring at nadir where the lateral
heterogeneities require only along track correction. In DInSAR,
the radar observes the scene through an off-nadir angle ranging
between 20° and 40°, depending on the satellite system used.
Starting from the previous studies (Bonforte et al., 2001; Bruno
et al., 2007; Aranzulla and Puglisi, 2015), we propose a refined
method to obtain an accurate tomography of the lower
troposphere, specifically tied to the delays measured by the
network of permanent GPS stations deployed around Mt.
Etna. We use an algorithm commonly used in tomography
based on linear regularized least squares (RLS) (Tarantola,
2005) to which we add an adaptive step to tune the algorithm
automatically and verify the tomography outcomes with
DInSAR data.

In the following, we first present the method to obtain the 3-D
refractivity field, and then the GPS analysis data and the MODIS
integration to obtain the tropospheric delay along any line of
sight, followed by the result and the comparison with Sentinel-1A
interferograms, from May to November 2015.

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 8 | Article 5105142

Aranzulla et al. Mt. Etna Volcano Water Vapor Tomography

100

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


THEORETICAL BACKGROUND AND
METHODS

The Refractivity
The refractive index n is a dimensionless complex number that
characterizes the velocity of light through a material. It is the
factor by which the speed of the radiation is reduced, at a given
wavelength, with respect to its speed in the vacuum. Its real part
corresponds to the propagation delay through the material, and
its imaginary part corresponds to the amount of absorption loss.
Its value depends on the frequency of the considered wave. For
the atmosphere, the highest values of n are reached for waves
between 50 and 70 GHz, and it remains almost constant for waves
below 20 GHz (Karmakar, 2017; Balal and Pinhasi, 2019). In the
domain of space geodetic instruments (below 20 GHz), the
refractivity index can then be considered frequency
independent. The absorption does not significantly affect the
propagation delay in GPS and DInSAR, and it can be neglected
(Curlander and McDonough, 1991; Hofmann-Wellenhof et al.,
2001). The refractive index n in the atmosphere assumes values
very close to 1; thus, it is usually replaced by the so-called
refractivity N which represents the departure of the refractive
index n from unity, expressed in parts per million:

N � 106(n − 1) (1)

In the neutral atmosphere (i.e., excluding the effects of charged
particles), the real part of the refractivity N is a function of
temperatures and densities of atmospheric gases (Debye, 1929;
Essen and Froome, 1951). The refractivity applied to GPS signal
has the following expression (Rueger, 2002a; Rueger, 2002b;
Healy, 2011):

N � k1
pd
T
+ k2

pw
T

+ k3
pw
T2

� Nh + Nw (2)

where pd is the total pressure of dry air (expressed in [hPa]), T
the atmospheric temperature (expressed in [K]), pw the partial
pressure of water vapor (expressed in [hPa]), and k1, k2, and k3
the empirical constants determined in the literature by
laboratory measurements (Thayer, 1974; Hill et al., 1982;
Bevis et al., 1994; Rueger 2002a; Rueger, 2002b). For k2 and
k3, we use the numerical values of 71.2952 K/hPa and 375463
K2/hPa, respectively (Rueger 2002a). The value of k1 �
77.6904 K/hPa was computed assuming the worst 2015 level
of carbon dioxide concentration of 400 ppm. Nh and Nw are
named hydrostatic refractivity and wet refractivity, respectively.
The hydrostatic refractivityNh depends only on the total density
of dry air, while the wet refractivity Nw depends on the partial
pressure of water vapor and the temperature. As the liquid water
droplets are very small (usually below 1 mm) compared to the
GPS wavelength (about 20 cm), their contribution to the
refractivity can be neglected even during heavy rains
(Solheim et al., 1999).

The Slant Path Delay
The optical path of an electromagnetic (EM) microwave in a
neutral heterogeneous medium, in the absence of free charges,
like the troposphere, is obtained from Maxwell equations

considering the spatial component of the wave (Helmholtz’s
equation), which yields the Eikonal equation (Nilsson et al.,
2013). The solution of the Eikonal equation therefore
corresponds to a geometric description of the propagation of
the wave. The slant path delay (SPD) is the difference between the
travel time of a signal from a satellite to a ground-based receiver
and the travel time that would occur if there were no atmosphere
affecting the signal propagation (Bevis et al., 1992; Hofmann-
Wellenhof et al., 2001). Considering that we can express the
delays in terms of variations in path length by dividing them for
the EM velocity, the SPD can be formulated as the following:

SPD � ∫
s
[n(s) − 1]ds + [S − G] (3)

where s is the actual path of the EMwave through the atmosphere
and n is the atmospheric refractive index, S is the geometric
length of the actual propagation path of the ray (Fermat principle
path), and G is the geometric length of the straight path of the ray
(vacuum path). The first term is due to the slowing effect, and the
second term is due to bending, which for an elevation angle
greater than 15° can be neglected (Ichikawa et al., 1995;
Hofmann-Wellenhof et al., 2001). We can use the straight ray
path and a linear inversion, which simplifies the tomographic
problem. Combining the Eqs. 1–3, the SPD can be expressed with
the following equation:

SPD � 10−6∫
s
Nds � 10−6∫

s
(Nh +Nw)ds � SDD + SWD (4)

where SDD and SWD are “slant dry delay” and “slant wet delay,”
respectively. The SWD is caused by tropospheric water vapor along
the ray path, and SDD (larger than the SWD) by all other
atmospheric constituents (Rocken et al., 1995). The SDD can be
accurately modeled by using the pressure and temperature at the
ground level and the altitude of the ground (Hopfield, 1969). The
SWD is much more variable in time and space and is therefore
complicated to model accurately. For these reasons, here we
assume that we can estimate the SDD, and thus we consider the
SWD observables only to compute the wet refractivity tomography.

The Tomography Algorithm
The algorithm to calculate the tomography consists of different
steps summarized in the block diagram of Figure 1. The first step
is the tomographic geometry setup. Three key elements are
considered: the GPS satellites, the receivers on the Earth
surface, and the volume of the atmosphere whose refractivity
we aim to investigate. The tomographic volume is discretized into
a number of boxes (voxel parameterization) in which the
refractivity is considered constant. According to Eq. 4, the i-th
wet refractivity delay amount along the ray of the
satellite–receiver pair can be described by linear combination
of the crossed voxels refractivity.

SWDi � 10−6 ∑
nvox

j�1
Aij(Nw)j (5)

where SWDi is the wet delay of the i-th receiver–satellite pair, nvox
is the number of voxels, Aij is the length of the i-th ray in the j-th
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voxel, and (Nw)j represents the wet refractivity value of the j-th
voxel. Summarizing the entire system of equations in a matrix
form, the following can be written:

SWD � 10−6ANw (6)

Although the number of rays crossing the voxels exceeds the
number of unknowns, the linear system in Eq. 6 is usually
underdetermined. This is so because, for example, a voxel in
the grid may not be crossed and thus be undetermined. Then, we
introduce a regularization process, namely, damped least squares
approach (Tarantola, 2005), that minimizes the following cost
function:

∣∣∣∣SWD − 10−6ANw

∣∣∣∣2 + c
∣∣∣∣10−6Nw

∣∣∣∣2 (7)

Minimizing the first term of the cost function (7) gives the
model that better fits the data in the least-squares sense. The
regularization term, although introducing biases in solutions,
penalizes large solution values; reduces variance, the mean
square error; and helps improve the prediction accuracy.

The “damping-factor” γ controls the reduction of variance
against an increase of bias (Tarantola, 2005). The damped least
square has a closed form solution given by:

10−6Nw � (ATA + cI)−1ATSWD (8)

Where I is the identity matrix.
The most important part in the data inversion algorithm is the

choice of the best damping factor that balances solution variance
and bias, given the available data.

The “damping-factor” is usually set empirically, by running a
series of single iteration inversions aimed at exploring a wide
range of damping values, and plotting data misfit vs. model
variance L-curve method (Tarantola, 2005; Hirahara, 2000).

To make this choice robust to data changes, a Monte Carlo
sampling was introduced in the inversion algorithm (see
Figure 1B). In particular, for an inversion, 100 synthetic cases
are produced at first. Each case consists of a new model generated
from the actual a priori model by randomly selecting half of the
voxels and modifying the refractivity by superimposing random
values whose standard deviation is 10% of their a priori
refractivity values (hence, simulating sparse anomalies, difficult
to retrieve). For each of the new models, new GPS data are
simulated. The simulated data are then added with a Gaussian
noise with standard deviation of the same order of magnitude as
the associated uncertainties of current measurements. The best
damping factor for each synthetic case is retrieved as the
coefficient with the minimum residual norm and the
minimum norm of refractivity model which corresponds to
the point with maximum curvature on the L-curve (Hirahara,
2000; Tarantola, 2005). The final damping factor is chosen as the
median of the best factors retrieved from the synthetic cases. This
choice allows us to avoid extreme scattered solutions and make
solutions robust against changes in data, either GPS network
configuration and/or measurement uncertainties, as shown in
Aranzulla and Puglisi, 2015.

The Nw refractivity values were finally selected by the method
of Toomey and Foulger (1989) and for the Mt. Etna test site
(Aranzulla and Puglisi, 2015).

The Atmospheric Model
The atmospheric a priori model we use is divided into layers
where atmospheric refractivity varies only with the altitude. In
ideal experimental conditions, we can initialize the tomographic
model, by computing the refractivity at an arbitrary altitude using
the atmospheric measurements of weather balloons, through Eq.
2. In the case of Mt. Etna, the radiosonde data performed in

FIGURE 1 | (A) Block diagram of the processing chain. In yellow, the blocks with external data; in violet, the processing blocks; in green, the blocks with calculated
parameters from GPS and the block of final inversion for tomography calculation. (B) Zoom of the “damping choice” block: flow diagram of the algorithm to estimate a
damping factor for a robust tomography. The damping factor followed an iterative process: for each iteration, we selected the best damping factor (by L-curve) to
reconstruct a randomly perturbed model where real measured noise was added. The single L-curve was calculated in a fixed set of 10 damping values. At the end
of the process, the damping factor used for the real data inversion was the median of the ones obtained from the iterations.
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Trapani station are therefore not suitable to describe the actual
atmosphere around the volcano, which is located too far away.
To overcome this problem, we used two strategies, depending
on the data availability for the studied period. For this study, we
use the NCEP GFS 0.25° global forecast grid historical archive
(NOAA http://dx.doi.org/10.5065/D65D8PWK). In particular,
we extract the parameters of Eq. 2 relevant to the 26 physical
levels of the NCEP GFS grids, and compute the refractivity at
each altitude by averaging the values of adjacent pixels within
the investigation volume. However, if NCEP GFS grids are not
available, the model is able to predict T, pd, and pw at any
altitude, and then compute the refractivity profile for the a priori
model of atmospheric refractivity, starting from the
atmospheric measurements of pressure (p0), temperature
(T0), and relative humidity (H0) at the ground level
(Saastamoinen 1972a; Saastamoinen, 1972b). Since we cannot
exactly know pw at a defined elevation, we estimated a variation
range for that value. Since the highest value of pw at each height

corresponds to the saturated water vapor pressure, we can
consider the two extreme cases: the first, called dry condition
(which estimates the hydrostatic refractivityNh) and the second,
called saturated condition (which estimates the Nh +Nw(saturated)

term of refractivity). Thus, it is possible to calculate the
refractivity and consequently the propagation velocity
corresponding to different heights from sea level, for the two
limit conditions: dry and saturated. Consequently, we are able to
evaluate whether or not the refractivity tomography results are
physically acceptable solutions.

The Global Positioning System
Measurements
Since 2000, a continuous GPS array has operated to monitor the
ground deformations of Mt. Etna volcano (Palano et al., 2010).
The actual array consists of 42 stations that provide a dense
coverage of the volcano (Figure 2).

FIGURE 2 | (A) The permanent GPS stations over Mt. Etna volcano. 1,000 m contour lines are shown. (B) IGS stations included in the International Terrestrial
Reference Frame (ITRF).
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Among the whole GPS array, we used a subset of 29 stations
where a full data archive is available for the studied period (2015).
The stations are equipped with low-multipath choke-ring
antennas, and we apply elevation-dependent corrections for the
antenna phase centers (Schmid et al., 2005). We processed the GPS
data using the GAMIT package developed by the Massachusetts
Institute of Technology (Herring et al., 2010). This software uses
double-differenced GPS phase observations to estimate for each
observing span (in our case 24 h) a single set of station coordinates
and orbital parameters together with piecewise linear models of
zenith tropospheric delay (ZTD) and gradients at each station.
Standard models for precession, nutation, Earth rotation, and solid
Earth and ocean tides are applied (IERS Conventions). The
motions of the GPS satellites are taken from the Final Orbits of
the International GNSS Service (https://www.igs.org/), which
typically have an accuracy of ∼2 cm. We processed our data
with the data from six surrounding IGS stations (Figure 2),
used as reference stations to tie our network to the
International Terrestrial Reference Frame (ITRF). Although
GAMIT’s output separately provides dry and wet tropospheric
delay, caused by the high spatial and temporal variability, only the
wet component is important for our purposes (Figure 1A). Zenith
wet delay (ZWD) is estimated during the GPS processing by
assuming a 2-h interval and interpolated through time by a
spline approach. Then, the delay along the line of sight between
the station and the satellite, slant wet delay (SWD), is computed by
properly mapping the zenith wet delay (ZWD) through the so-
called Vienna Mapping Function 1 (VMF1) which improves the
quality of GPS solutions (Boehm et al., 2006). This estimation
process is overall summarized as “Vienna MF” in Figure 1A. We
included only data with elevation angle above 15° in order to
minimize multipath effects and errors in the mapping functions
because, at such elevation, the ray bending effect is negligible. The
first-order ionospheric delay is removed by forming the
“ionosphere-free” combination of the L1 and L2 phases. After
estimating station coordinates and atmospheric parameters from
the modeling of the double-differenced phase, GAMIT can
produce residuals for the undifferenced phases by estimating
clock corrections that the double-difference observations cancel
(Alber, et al., 2000). Although the undifferenced post-fit phase
residuals and SWD are suitable for atmospheric tomography, we
chose to use only the SWD data in order to have a more reliable
and stable estimation of the atmospheric effect to EM signal.

Moderate Resolution Imaging
Spectroradiometer Data and Integration
The MODIS (Moderate Resolution Imaging Spectroradiometer)
instruments operate on board the Aqua and Terra satellites. The
sensors collect data in 36 spectral bands within the range
0.4–14.4 µm and at different spatial resolutions (2 bands at
250 m, 5 bands at 500 m and 29 bands at 1 km). The satellites
are operated by NASA (https://modis.gsfc.nasa.gov/) and cover the
entire Earth every 1–2 days; in particular, the Mt. Etna area is
covered two times per day, so these data are particularly suitable for
the aim of this study. NASA web services disseminateMODIS data
at different levels of processing as well as derived products for land,

ocean, and atmospheric applications. The MODIS has the
appropriate absorption bands to retrieve water vapor content in
the atmospheric column (Spinetti 2004 and Buongiorno, 2007).
Here, we use the IPWV (integrated precipitable water vapor)
product of the multispectral EO data series that is stored and
delivered at 5 km pixel resolution. Figure 3 shows one of MODIS
IPWV related to a night passage of the Aqua satellite for the day
August 22, 2015.

In order to add these IPWV as observable in our tomographic
model of Mt. Etna (Figure 1A), we must first verify that they are
consistent with the IPWV values estimated from the processing of
our GPS data. The ZWD is directly proportional to Precipitable
Water Vapor by a factor calculated during GPS processing (Bevis
et al., 1994). The comparison has been performed for the entire
year 2015 considering GPS and MODIS-retrieved water vapor
data at the same time as satellites pass. In particular, 612 Terra
and Aqua satellite acquisitions (both diurnal and nocturnal) were
employed in the comparison, and 33 stations of the overall
network were considered for GPS measurements.

The comparisonwasmade by averaging themeasurements within
a considered common area (box in Figure 3). The averages result
from all the pixels falling in the box for MODIS data and from all
acquisitions by the GPS stations within the same box. Figure 4 shows
the comparison results. MODIS data overestimate the GPS ones by
∼7%, and the resulting Pearson correlation is equal to 0.91.
Considering these differences, it can be stated that the IPWV
measurements derived by MODIS data are usable as input for the
tomographic model. Finally, it is worth to note that only the clear sky
condition enables obtaining reliable IPWV measurements.

We used the daily IPWV data from the MODIS as input for
model of Eq. 6 together with SWD from GPS measurements
gathered every epoch throughout the day. The SWDwas retrieved
every 2 h, and we considered the values interpolated by spline. In

FIGURE 3 | IPWV map acquired by the MODIS on August 22, 2015 at
01:10 UTC. The red box indicates the area defined to perform the comparison
between MODIS and GPS IPWV. White pixels correspond to no data (clouds).
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particular, we considered the mean value of the interpolated SWD
in the range ±15 min around the considered time of MODIS
acquisition.

Sentinel-1A DInSAR Image
We performed a DInSAR analysis of C-band Sentinel-1-A data
referring to selected images acquired between 18 May and
November 26, 2015. These data are acquired from the Sentinel-
1A satellite operating under the Copernicus program of the
European Space Agency (ESA) available from https://scihub.
copernicus.eu/dhus/. The processed images were acquired in
TopSAR (Terrain Observation with Progressive Scans SAR)
Interferometric Wide (IW) mode (VV polarization; vertical
transmit and receive polarization), along the descending orbit.

The Sentinel-1A data were processed by GAMMA software
(Wegmüller et al., 2015), using a spectral diversity method, and a
procedure able to co-register the image pairs with extremely high
precision (<0.01 pixel). The interferograms were produced by
applying a two-pass DInSAR processing and multi-looking pixels
(5 × 1 in range and in azimuth) in order to maintain the full ground
resolution (11× 13m). The topographic phase was removed from the
interferograms by using the SRTMV4 digital elevationmodel (DEM)
generated by Shuttle Radar Topography Mission (SRTM) with three
arc-second ground resolution (about 90 m) (Jarvis et al., 2008).

RESULTS AND DISCUSSION

The results are divided into two parts. The first subsection
concerns the synthetic tests aimed at evaluating if the problem
formulation is correct and if the implemented code is suitable to

map the refractivity field. In the second subsection, results of
selected test cases of 2015 are reported and discussed. Following
the results obtained in Aranzulla and Puglisi (2015), the
tomographies are computed by using a tomography volume of
54 × 54 × 10 km3, equally spaced in 7 × 7 × 5 voxels centered on
the summit craters of Mt. Etna. The tomographic volume setup is
shown in Figure 5. We set the lower layer at 1,000 m, rather than
2,000 m as in Aranzulla and Puglisi (2015), in order to maximize
the benefit of the use of MODIS data for improving the
information about the lowermost layer of the atmosphere
(i.e., that with the highest expected water vapor content). We
kept the same order of the tomographic matrix used in Aranzulla
and Puglisi (2015) (7 × 7 × 5 voxels) because it has proven to be
suitable for studying the atmosphere over Mt. Etna with a GPS
network composed by 30–40 stations.

The Synthetic Test
For applying the method described in The Tomography
Algorithm, we first need to compute the test’s tomography and
evaluate the quality of the results. The test has been carried out by
using GPS data only, by following the same approach adopted to
test a previous tomographic tool implemented by Aranzulla and
Puglisi (2015). Because water vapor circulates in the form of
bubbles or masses in the atmosphere, we assumed a bubble
anomaly structure (i.e., a discretized volume having a shape
similar to a bubble), in which the wet refractivity varies by
25% from the surrounding space, with respect to the
maximum allowed range (peak to peak value) of the modified
layer. Starting from the position of satellites, GPS receivers and
the refractivity field containing the “anomaly” (Nperturbed), for the
i-th ray, we computed the theoretical slant wet delay
(SWDperturbed) by using Eq. 5 and then, to simulate actual
data, adding the noise according to the following equation:

SWDnoisy � SWDperturbed + noise (%, nσ) (9)

We added a normally distributed random noise of 10% within
2σ, that is, about twice the typical GAMIT SWD error magnitude.
The SWDnoisy represents the perturbed and noised slant wet delay
value of the ith ray inside the tomography volume. Coming from
Nperturbed, SWDnoisy contains the effect of the set perturbation.

Figure 6 shows the tomography results of the bubble structure
synthetic test obtained, assuming the GPS array geometry of
October 8, 2014 (28 operational stations). By adopting the
approach described in Aranzulla and Puglisi (2015), the
damping factor value is 18,400, and the spread function (SF)
threshold above which the results are valid is 0.8. Figure 6A
shows the values of the wet refractivity field (tomography) for all
the voxels, while Figure 6B shows the matrices of the assumed
perturbation model (bubble) and the tomographic results.
Figure 6 allows comparing the tests performed in a synoptic
way. The result of the tomography is consistent with the assumed
model, that is, the tomography reveals the right perturbations in
the right place. The expected (modeled) and estimated
(tomographic) values of the refractivity are coincident at the
layers 1,000, 5,000, and 7,000 m. Robust conclusions cannot be
drawn at the highest and lowest layers. Indeed, at the layer
1,000 m, only one result is acceptable within the fixed

FIGURE 4 | Scatterplot of IPWV comparison between MODIS and GPS
of one year of data (2015).
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thresholds. The statistical reliability of remaining voxels is too
low, even though the results are close to the expected model (blue
line in Figure 6A). At layer 9,000 m, the estimated anomalies are
small as expected (because at that elevation, the temperature is
extremely low and the troposphere contains almost no water), but
too close to the associated uncertainties, thus preventing any
statistical assessment at this elevation.

The Actual Tests
The outcomes of the previous section allow us to apply the
tomography in real cases of Sentinel-1 interferograms. It is
worth noting that for each interferogram, we have to use two
tomographies. Five test cases have been selected from the
interferograms produced over Mt. Etna by using C-band
Sentinel-1A data. Due to the topography of Mt. Etna, the
atmospheric artefacts on the interferogram in general have a
concentric pattern and high-frequency local perturbation in the
north-northeastern flank of the volcano. To select the actual case,
we processed all Sentinel-1A available data for 2015 and then
identified, by visual inspection criterion, the interferograms with
the most evident atmospheric artefacts (Table 1). With reference
to the flowchart of Figure 1, starting from the GAMIT GPS ZWD
and gradients output, the GPS receiver and satellite positions, the
IPWVMODIS data, and the global numerical weather prediction
model computed by the U.S. NationalWeather Service (NWS), we
set the tomography volume and computed the A matrix of Eq. 6.
Table 1 shows the selected test cases together with GPS at the time
of Sentinel-1A passes, the IPWV MODIS data, and the available
GPS receiver data. The tomographies were computed considering
only the nocturnal acquisitions of the MODIS, as the closest in
time to the Sentinel-1A acquisition time. The cloudy sky of 21
October and 26 November compromised the possibility to
measure the water vapor content from MODIS data, excluding

cloudy areas as observables. This is why the damping factor c of
Eq. 7 is different for those two cases (see Table 1). As previously
mentioned, the SF and c thresholds govern the selection of the
representative voxels. The last column of Table 1 represents the
percentage of the resolved voxels where the 21 October and 26
November cases show the effect of the lack of MODIS data clearly.
Figure 7 shows the tomography results of the actual test cases with
the corresponding parameters in Table 1, where it is evident that
the number of resolved voxels, and hence the covered area, is
greater for 17 July and 22 August. The availability of the retrieved
MODIS data also allows computing the voxel refractivities of the
western flank of the volcano, especially in the lower layers where
the highest contribution of water vapor is expected.

The number of resolved voxels is statistically greater with the
introduction of MODIS data (18 May, 17 July and 22 August) as
shown in Table 1, which demonstrates how the addition of the
MODIS improves the overall resolution of the tomography. Indeed,
the average of the total resolved voxels ranges from 37.1% without
MODIS data (cloudy weather conditions) to 45% with MODIS data
(clear sky weather conditions), with an increase of 7.9%. In
particular, in the lowest layer (1,000 m), the resolved voxel
percentage increases on average by 10.2%, from 12.2% without
MODIS data to 22.4%withMODIS data. This percentage represents
an improvement of about 80% in resolving the voxels of the lowest
layer (1,000 m) in relation to the use of GPS data only (Figure 8).

In order to use the results of tomographies to correct SAR
interferograms, it is necessary to calculate the Sentinel-1A line of
sight (LOS) delay stored during the whole transition period of the
radar signals in the troposphere. To this end, we implemented a
specific routine in the tomographic tool, able to compute the LOS
delay by Eq. 5 using the obtained refractivity results. As the LOS
cannot be calculated without knowing the refractivity value of all
the voxels of the investigated volume, it is important to properly

FIGURE 5 | 3DTomographicmodel 3-D setup; the volume size of 54× 54× 10 km is equally spaced in 7× 7× 5 voxels centeredonMt. Etna’s summit craters: (A)whole
volcano (red dots represent GPS stations); (B) layers on the eastern flank; (C) layers on the northeastern flank; (D) Nadir view. The blue dots represent the voxel centers.
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set the refractivity values for the unresolved voxels, which were set
to the starting values, corresponding to the NCEP grid
parameters. Figure 9 shows the wet delay LOS maps referred
to Sentinel-1A descending orbit actual cases, computed by using
the tomography results.

Finally, we used those wet delay LOSmap results of Figure 9 to
correct the atmospheric effects in the real SAR interferograms. To
do so, such results were converted in four simulated
interferograms of differential delay (DInDelay) by adopting a
differential approach and by using 18 May as the reference date.
Figure 10 shows in the second row the resulting phase of

simulated interferograms (DInDelay) together with the
corresponding real Sentinel-1A interferograms shown in the
first row. In the end, we corrected the phase interferograms by
applying the DInDelay to the Sentinel-1A interferograms (third
row in Figure 10).

Results shown in Figure 10 allow drawing several observations
about the suitability of the proposed tomographic model to correct
the DInSAR data andmaking suggestions for future developments.
Besides the differences in the spatial resolution between the
Sentinel-1A data and the tomography, due to the intrinsic
differences in the pixel sizes in the two datasets, overall, the

FIGURE 6 | (A)Wet refractivity field vs. voxel, ranked according to the position of the voxel in thematrix (B). Dashedblack lines represent the physical constraints for the
tomographic solution (saturation at the different elevations). The blue line is thewet refractivity startingmodel. The green points are the numeric results of all the voxels inwhich
it is possible to calculate a refractivity value. The red points represent the refractivity values of the voxels considered to be acceptable according to the fixed thresholds
(damping and SF), that is, the result of the tomography. (B) tomography results: the first row refers to the reference model, and the second row is the reconstructed
tomography. The voxels are numbered from lower to upper layer and from south to north, in cardinal numbers. The tomography images show only the voxels over the SF
threshold, the others are blank. Results are plotted according to the color scale on the right. The considered volume refers to the model shown in Figure 5.

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 8 | Article 5105149

Aranzulla et al. Mt. Etna Volcano Water Vapor Tomography

107

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


DInDelay shows the same fringes pattern of the SAR
interferograms. It confirms that at the first order, the selected
SAR interferograms contain significant atmospheric contributions
as we supposed.

The corrected interferograms (third row of Figure 10) show
two notable characteristics. 1) The pattern of the fringes often
mimics the boundary of the voxels (“boxiness”); this is
particularly evident in the south-eastern (along the coast line),

TABLE 1 | Selected test cases (UTC hour ranges from 05:04 to 05:06 acquisition time of Sentinel-1A).

Date MODIS acquisition
time (UTC)

MODIS cloud
coverage(%)

GPS available
stations

Damping factor Total resolved
voxels

Resolved voxels
layer 1,000 m

May 18, 2015 (reference) 01:10 0 23 3,300 116/245 (47.3%) 11/49 (22.4%)
Jul 17, 2015 01:35 0 29 3,300 112/245 (45.7%) 13/49 (26.5%)
Aug 22, 2015 01:10 0 27 3,300 103/245 (42.0%) 9/49 (18.3%)
Oct 21, 2015 00:35 95 23 5,200 88/245 (35.9%) 5/49 (10.2%)
Nov 26, 2015 01:10 100 26 5,200 94/245 (38.4%) 7/49 (14.2%)

FIGURE 7 |Wet refractivity tomography of the selected actual cases. Each test case has a different color scale in order to appreciate the variations of the individual
test case.
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western and north-western flanks of the volcano. This effect,
which prevents the analysis of subtle “small” features such as local
faults, is somewhat expected due to the large dimension of the
voxels, and might be overcome in the future by reducing the voxel
dimensions. 2) There remains an evident spatial high-frequency
perturbation in the right and upper-right part of 18 May–21
October and 18May–26 November (corresponding to the eastern
and northeastern flanks of the volcano). This characteristic
indicates that only in these parts of the SAR interferograms
are the corrections not appropriate. This was somewhat
expected as strong turbulence of the lower atmosphere is often
visible in the interferograms of these parts of the volcano. It is
worth noting that also MODIS data showed the cloudy weather
conditions on those dates (Table 1). This characteristic was not
captured by the atmospheric tomography probably because the
spatial resolution of our tomography is too poor compared to the
small scale of this phenomenon. Just as for the “boxiness,” the
high-frequency perturbation can be properly estimated by the

reduction of the voxel dimensions to improve the effectiveness of
the tomographic correction.

Besides the high-frequency residuals in the eastern and
northeastern flanks of the volcano, the application of the
atmospheric correction mostly reduces the number of
concentric fringes in the corrected interferograms of 18
May–17 July, 18 May–21 October, and 18 May–26 November.
The most successful correction is visible in the images relevant to
18 May–21 October. While the original SAR interferogram shows
the highest number of fringes (about three fringes) of
deformation at the top of the volcano, the DInDelay mimics
the pattern of the experimental fringes well, and the corrected
interferograms show values varying by about one fringe,
especially in the western and southwestern flanks. Only in the
southeastern flank do we observe a voxel-shaped anomaly, likely
produced by the poor estimation of the atmospheric anomalies in
some voxels due to poor GPS network geometry in this area.
Indeed, the same voxel-shaped anomaly is observed in the
corrected interferograms of 18 May–17 July and 18 May–26
November. The latter shows a residual in the western flank,
indicating an approach of the ground surface to the radar sensor
which cannot be associated either to the inflation or to the
spreading of the volcano, both phenomena often observed in
this flank (Bonforte et al., 2008). Indeed, by independently
processing the GPS time series for the same period, with
GIPSY 6.4 software (https://gipsy-oasis.jpl.nasa.gov/), we
cannot observe any significant deformation consistent with
these residuals (Figure 11). The maximum deformation in
LOS among all the stations is in fact less than 1 cm and is
recorded at the ECHR station. Thus, the residuals might be
related to turbulent atmosphere that cannot be modeled by
the tomography.

It is worth noting that for all actual cases, except for the 18
May–22 August pair, the slope of the Sentinel-1A experimental
fringes is consistent with the slope of the fringes of the model. The
inconsistency relevant to the 18 May–22 August pair might be
due to non-modeled atmosphere conditions or to pitfalls in the
tomographic inversion. Indeed, we noticed that it includes the
tomography with the highest refractivity at the 3,000 m layer
(Figure 7) due possibly to inaccurate NCEP parameters on 22
August or to fast changes in the lower atmosphere that the time
delay between SAR and the MODIS passes cannot take into
account.

CONCLUSION

One of the sources of uncertainty in measuring deformation by
using satellite platforms (GPS and SAR) is the effect of the lower
atmosphere in the propagation of the EM signals, mainly due to
tropospheric water vapor contents. We implemented a new
algorithm to perform a 3-D tomography of the wet refractivity
by integrating data from GPS, MODIS, and weather models. This
algorithm is an improvement on the step forward from a previous
tool derived from the seismic tomography (Aranzulla and Puglisi,
2015). The algorithm has been tested and applied to Mt. Etna 2015
test cases. The study shows that by using GPS IPWV alone, the wet

FIGURE 8 | Resolved Voxels Statistics. In the upper histogram, the
averaged percentage of the resolved voxels are plotted, for the different layers
(1,000 m, 3,000 m, 5,000 m, 7,000 m, and 9,000 m) and the whole set of the
tomographies; the “clear sky” values refer to the 18 May, 17 July, and 22
August tomographies; the “cloudy” values refer to the 21 October and 26
November tomographies; “all set” values refer to all tomographies. In the lower
histogram, the relative difference between “clear sky” (GPS + MODIS) and
“cloudy” (GPS) vs. “cloudy” (GPS) tomographies, for the different layers
(1,000 m, 3,000 m, 5,000 m, 7,000 m, and 9,000 m) and the whole set of the
tomographies.
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refractivity tomography results in about 37% of resolved voxels.
Adding MODIS IPWV data increases on average the number of
resolved voxels by about 8%. In the lower critical layer (1,000 m),
the resolved voxels improve by about 80% in relation to the use of
GPS data only. Introducing the GRIB file from NOAA global
forecast analysis has allowed us to initialize the tomographic
computation with reliable atmospheric conditions and assign the
wet refractivity values in the remaining unresolved voxel. One of the
main advantages of the availability of a tomographic model of the

lower atmosphere is the possibility to estimate the LOS travel time
of the SAR signals. To this end, the tomographic tools have been
updated with a routine able to compute the LOS delay.

We tested the model by assuming a bubble-shaped anomaly at
the lower atmosphere. The simulation shows that the results are
consistent with the expected values. Furthermore, the tool has been
applied to real Sentinel-1A interferograms during 2015, for which
we computed the relevant tomographies, the corresponding wet
delays, and the simulated interferograms (DInDelay). The real

FIGURE 9 | Wet delay line of sight maps referred to the five actual cases selected according to Sentinel-1A descending orbit acquisitions.

FIGURE 10 | Sentinel-1 interferograms, DInDelay (Differential Interferograms Delay) and Sentinel-1 corrected interferograms. On the first row the DInSAR data are
shown, on the second and third rows the corresponding DInDelay and corrected interferograms. All the images are shown in phase (−π, π; 2π phase corresponds to
28 mm). In the 18 May–26 November interferogram the high-frequency atmospheric perturbation is in the northeastern flank.
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cases show that often, although in limited areas, the tomography is
able to capture the atmospheric effect at the large scale and correct
the Sentinel-1A interferograms. This work proves that the
proposed method can be used to correct atmospheric effects in
areas with prominent topography and on interferograms with
severe atmospheric artefacts, even in cloudy conditions. Future
studies will allow us to overcome themain limit of themethod (e.g.,
reduction of the voxel dimensions) and to improve its effectiveness,
also by including other GNSS constellation data.

Further improvements will be suitable for monitoring active
volcanoes worldwide where a local GPS network is operating.
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