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Editorial on the Research Topic

Cardiorespiratory Coupling-Novel Insights for Integrative Biomedicine

In recent years, integrative physiology is gaining increased attention; novel findings in the area
of molecular and systemic cardiopulmonary interaction overgrow the classical opinion that the
adoption and transport of oxygen and elimination of carbon dioxide are their only functions.
Mechanical, molecular, endocrine, and neural subsystems of the autonomic nervous system are
integrative scales of these two mutually dependent organs, providing a wider range of adaptation of
the organism to the growing requirements of the environment, fitness, and pathological changes.

In the present Frontiers Research Topic, an international selection of investigators contributed
original data to increase our current understanding about the complex cardiorespiratory
interactions, providing novel findings about physiologic and pathogenic mechanisms and possible
therapeutic advancement concerning the area of cardiorespiratory medicine.

Several contributions focused on newmethods in order to properly investigate cardiorespiratory
interactions, especially considering that cardiac and respiration signals have periodic oscillatory
dynamics that can also be time-varying, so this increasing complexity have to take into account
that frequency, coupling strength and coupling function are also varying in time.

In this view, Lukarski et al. developed a procedure for determination of the time window based
on data analyses, as opposed to the previous practice of arbitrary choice. This study shows that the
cardiorespiratory coupling strength and the similarity of form of coupling functions continuously
change according to the breathing frequency, with greater values for slower breathing.

Cui et al. provided a further contribution in developing quantitative measures for respiratory
sinus arrhythmia (RSA). RSA has profound significance in physiology and pathology and is usually
evaluated by means of two techniques, the time and the frequency domain. By mathematically
modeling this modulation, the authors proposed a quantitative measurement of RSA by means of
the cardiopulmonary resonance function (CRF) and cardiopulmonary resonance indices (CRI) that
are derived by disentanglement of the RR-intervals series into respiratory-modulation component
(R-HRV), and non-respiratory component (NR-HRV), using Granger causality function. Their
results suggest a superior representation ability of this technique in comparison with heart rate
variability (HRV) and cardiopulmonary coupling index, with profound significance in physiology,
pathology, and in possible future clinical applications.
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The analysis of fluctuations in blood pressure and heart period
represents another parameter of clinical importance as risk
marker for cardiovascular morbidity and mortality (La Rovere
et al., 2011), especially in some cardiac (Malberg et al., 2002) and
non-cardiac diseases (Bär et al., 2007) or after specific therapeutic
procedures (Acampa et al., 2011), that are able to determine
changes at different levels, including arterial vascular walls,
mechanosensitive ion channels, and voltage-gated ion channels
(Tu et al., 2019). However, spontaneous baroreflex indices don’t
clearly reflect arterial baroreflex gain (Lipman et al., 2003);
for this reason, Wessel et al. tested whether the xBRS method
(Wesseling et al., 2017) is suitable to quantify the baroreflex
sensitivity from non-invasive, non-interventional measurements
under resting conditions. According to their analysis, xBRS
method seems to have a potentially large bias in characterizing
the capacity of the arterial baroreflex under resting conditions
and seems to be exclusively dominated by the heart rate to systolic
blood pressure ratio.

In this Frontiers topic, other studies focused on the important
change of different cardiopulmonary parameters in different
physiologic states such as wake and sleep, exercise and rest,
circadian rhythms, as well as pathologic conditions.

One of these conditions, the deep sleep, is typically associated
with an increased cardio-respiratory coupling, that corresponds
to a maximal RSA. Based on that assumption, Zorko et al.
evaluated HRV data, quantifying the (self)similarity among
shapelets (that are short chunks of HRV time series), whose
“shapes” are related to the respiration cycle; their results
show distinctive patterns stable across age and sex, that are
not only indicative of sleep and awake, but that are able to
identify one more, potentially more sensitive indicator of sleep
initiation. Additional studies are necessary that would involve
contemporary classic polysomnography and novel, proposed
index. In case of positive results, one of the possible applications
of this approach could be related to public and general safety, by
developing alarm systems that are able to recognize drowsiness
in the person under the observation.

Another study by Limanskaya et al. examined a specific
sleeping alteration, the central sleep apnea, by evaluating
electroencephalogram, ECG, eye movements, air flow, thoracic
respiratory muscle movements and myoelectric activity of the
stomach and the duodenum in cats with sudden arrest of
breathing during sleep. Their results suggest that the stereotypic
coupling of activities in various visceral systems during episodes
of central sleep apnea most likely reflects a complex adaptive
behavior rather than an isolated respiratory pathology.

Another study by Matić et al. explored the physiological
background of the non-linear operating mode of
cardiorespiratory oscillators as the fundamental question of
cardiorespiratory homeodynamics and as a prerequisite for the
understanding of neurocardiovascular diseases. Their results
show that cardiac and respiratory short-term and long-term
complexity parameters have different state-dependent patterns
supporting the hypothesis of a hierarchical organization of
complexity regulatory mechanisms. In particular, a specific
and comprehensive cardiorespiratory regulation in standing
with 0.1Hz breathing suggests that this state could represent

the potentially most beneficial maneuver for cardiorespiratory
conditioning, critically important for intensive care rehabilitation
of artificially ventilated patients, as most actual in this moment-
COVID 19 patients.

The interaction between breathing alterations and autonomic
nervous system activity is another important subject, especially
considering their possible pathogenic role in the pathogenesis
of ventricular arrhythmias (Lai et al., 2019; Stavrakis et al.,
2020); in this view, Schüttler et al. investigated the link
among hyperventilation, sympathetic activity, and periodic
repolarization dynamics (evaluated by means of beat-to-beat
variations of the T wave vector on ECG). Their results
suggest increased PRD values after hyperventilation, providing
further insights about the alteration of ventricular repolarization
associated to the hyperventilation.

Other two studies focused on the cardiopulmonary
interactions during physical activity. Uryumtsev et al.
investigated the mechanisms of oxygen supply regulation, which
involves the respiratory and cardiovascular systems, during
human adaptation to intense physical activity. Their results show
that highly qualified athletes enhance intersystem integration in
response to hypoxia, with a decreased oxygen consumption and
a higher cardiorespiratory coherence in comparison with middle
level athletes. In the second study, Abreu et al. evaluated healthy
cyclist during and after inspiratory muscle training (IMT), that is
a technique capable of improving cardiorespiratory interactions.
In particular, they observed the effect of different degrees of IMT
in amateur cyclists, analyzing electrocardiograms, non-invasive
arterial pressures, and thoracic respiratory movements and
quantifying cardiorespiratory coupling by means of squared
coherence function, and causal model-based transfer entropy. In
this way the authors demonstrated that the post-training increase
of cardiorespiratory coupling might be the genuine effect of
some rearrangements at the level of central respiratory network
and its interactions with sympathetic drive and vagal activity.

The interaction between cardiorespiratory coupling and
singing is the focus of another study of this Research Topic.
Previous investigations about the effects of singing together
focused on the synchronization of HRV, experienced by choir
singers (Pearce et al., 2015). Ruiz-Blais et al. specifically evaluated
HRV (using time-frequency coherence analysis) in pairs of non-
experts in different vocalizing conditions; their results show that
HRV becomes more coupled when people make long (>10 s)
sounds synchronously and this synchronization persists when
the effect of respiration is removed: these results suggest that
since autonomic physiological entrainment is observed for non-
expert singing, it may be exploited as part of interventions
in music therapy or social prescription programs for the
general population.

In this Research Topic other clinical studies show the
relevance of the complex relationships between respiratory
system and neurohormonal cardiac modulation involving both
neural autonomic and humoral factors (hormonal factor,
inflammatory cytokines). These complex mechanisms suggest
particularly important implications in some diseases and during
rehabilitation treatment. An unbalanced autonomic nervous
system activity associated with different diseases can represent an
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important factor contributing to the occurrence of many specific
cardiovascular complications (Goldberger et al., 2019). In this
view, schizophrenia is a mental disorder that is associated with an
increased cardiovascular mortality rate that could be determined
by autonomic alterations (Laursen et al., 2014); on that basis,
Schulz et al. assessed instantaneous cardiorespiratory couplings
by quantifying the casual interaction between heart rate and
respiration, in patients suffering from schizophrenia, compared
with healthy first-degree relatives and control subjects. Their
results clearly point to an underlying disease-inherent genetic
component of the cardiac system for subjects with schizophrenia
and first-degree relatives, while respiratory alterations seem to be
only clearly present in patients with schizophrenia and correlated
to their mental emotional states.

Obesity is another pathological condition that is associated
with an increasing occurrence of cardiovascular complications
even in childhood and adolescence: in this condition
autonomic nervous system alterations can represent an
important factor contributing to the initiation and progression
of many cardiovascular disorders. However, the impaired
parasympathetic control in obese patients seems to be associated
with a different relative contribution of baroreflex and non-
baroreflex (central) mechanisms underlying the origin of RSA. In
particular, Javorka et al. applied a recently proposed information-
theoretic methodology (partial information decomposition) to
the time series of HRV, systolic blood pressure variability and
respiration pattern, demonstrating that obesity is associated
with blunted involvement of non-baroreflex RSA mechanisms
and with a reduced response to postural stress (but not to
mental stress).

The relationship between neural autonomic and humoral
factors seems to be particularly important during rehabilitation
of patients with chronic obstructive pulmonary disease (COPD):
(Paulin et al., 2020) in a secondary analysis of a previous
randomized trial (Paulin et al., 2017) point out for the first
time for the relevance of Vitamin B12 on cardiovascular health
in COPD subjects. Supplementation with vitamin B12 appears
to lead to discrete positive effects on exercise tolerance in
groups of subjects with more advanced COPD, significantly

changing the time course of NT-proBNP responses during
treatment. Even if their final analysis could not support a
significant change in NT-proBNP levels owing to high-intensity

constant work-rate exercise, the association between slower
initial V’O2 adjustments toward a steady-state during rest-
to-exercise transitions and more severe ventricular chamber
volume/pressure stress recruitment, expressed by higher NT-
proBNP secretion, suggest that vitamin B12 supplementation
could modulate NT-proBNP secretion.

Furthermore, inflammatory markers can have a role in
modulating autonomic nervous system in specific conditions,
especially after surgery. It is well-known the association among
cardiac and extracardiac surgery, inflammation and autonomic
nervous system activity (Amar et al., 1998; Acampa et al.,
2016). Clinical evidence shows that surgical procedures weaken
the vagal tone, favoring a number of different complications
such as sepsis, cardiac arrhythmias. In this view, Grote et al.
demonstrated that orthopedic rehabilitation has the potential
to strengthen the vagal activity and hence boost inflammatory
control, also suggesting that a vagal reinforcement procedure
prior to the surgery (“prehabilitation”) might be a beneficial
strategy against post-operative complications.

In conclusion, the high-quality contributions of this Research
Topic significantly enriched our knowledge about the field of
Integrative Physiology, shedding light on complex physiologic
and pathogenic mechanisms, with relevant clinical implications
for patients’ management. These studies also provide important
suggestions for further investigation in this emerging area.
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Background: Vagal activity is critical for maintaining key body functions, including the
stability of inflammatory control. Its weakening, such as in the aftermatch of a surgery,
leaves the body vulnerable to diverse inflammatory conditions, including sepsis.

Methods: Vagal activity can be measured by the cardiorespiratory interaction known as
respiratory sinus arrhythmia or high-frequency heart-rate variability (HRV). We examined
the vagal dynamics before, during and after an orthopedic surgery. 39 patients had their
HRV measured around the period of operation and during subsequent rehabilitation.
Measurements were done during 24 h circadian cycles on ten specific days. For each
patient, the circadian vagal activity was calculated from HRV data.

Results: Our results confirm the deteriorating effect of surgery on vagal activity. Patients
with stronger pre-operative vagal activity suffer greater vagal withdrawal during the peri-
operative phase, but benefit from stronger improvements during post-operative period,
especially during the night. Rehabilitation seems not only to efficiently restore the vagal
activity to pre-operative level, but in some cases to actually improve it.

Discussion: Our findings indicate that orthopedic rehabilitation has the potential to
strengthen the vagal activity and hence boost inflammatory control. We conclude that
providing a patient with a vagal reinforcement procedure prior to the surgery (“pre-
habilitation”) might be a beneficial strategy against post-operative complications. The
study also shows the clinical usefulness of quantifying the cardiorespiratory interactions.

Keywords: circadian rythm, surgery, vagal tone, inflammatory control, rehabilitation

INTRODUCTION

Vagus nerve is the longest nerve of the autonomic nervous system (ANS) and the key component
of parasympathetic nervous system. Its baseline activity, often refered to as vagal activity, is
crucial for maintaining several body functions at rest, including heart, lungs, and digestion.
Vagal activity is stronger during sleep, stabilizing the body’s circadian rhythms, which are key
for good general health (Mundigler et al., 2002; Moser et al., 2006a; Kastner et al., 2010; Rocha
et al., 2011; Scheiermann et al., 2013; Curtis et al., 2014; Papaioannou et al., 2014; Alamili, 2015;
Madrid-Navarro et al., 2015; Wright et al., 2015).

Vagal activity is also the critical factor behind the functionality of the inflammatory reflex,
mechanism responsible for resolving the inflammation once its purpose has been served
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(Tracey, 2002, 2007; Moser et al., 2008; Rosas-Ballina and Tracey,
2009; Leslie, 2014; Mayer, 2015). Actually, the vagal inflammatory
reflex involves 80% vagal afferents and 20% efferents, which
means that four times more information is collected by the
brain than transmitted to the periphery: macrophages in the
inflamed tissue produce inflammation signals such as TNF-alpha
and interleukin 1 (Andersson and Tracey, 2012; Olofsson et al.,
2012), which attract other monocytes from nearby blood vessels.
Vagal afferents carry receptors for these signals and communicate
with certain stem brain areas transmitting the information on
inflammation location and strength (Andersson and Tracey,
2012). Upon processing this information, vagal efferents respond
by release of acetylcholine at the location of the inflamed
tissue (Olofsson et al., 2012). Nicotinergic acetylcholine receptors
have been identified on the surface of the macrophages, which
down-regulate their cytosine production as a response to the
cholinergic stimulation (Rosas-Ballina and Tracey, 2009), thereby
reducing the attraction of additional inflammatory immune
cells. This inflammatory reflex loop prevents over-activity of the
immune system enabling the brain to locally control the immune
activity. It also represents the “first line” of inflammation control
(Olofsson et al., 2012).

In addition to improving the effectiveness and usefulness
of the inflammatory reflex, a strong vagal activity protects
against several serious or chronic conditions. They include
atherosclerosis, ulceral colitis, Hashimoto’s disease, type 2
diabetes, cancer (Donchin et al., 1992; Moser et al., 2006a; Das,
2011; Huston and Tracey, 2011; Chow et al., 2014), and sepsis,
which is know to be related to weakening of body’s natural ability
to resolve the inflammation (Tracey, 2002; Nguyen et al., 2006;
Nathan and Ding, 2010). The vagus nerve can be electrically
and pharmacologically stimulated, while its overall activity can
be improved via acupuncture, nutritional therapies, and physical
exercise (Huang et al., 2005; Moser et al., 2017).

Measuring vagal activity can be reliably done by analyzing
the heart rate variability (HRV). In fact, HRV is created by the
interaction between ANS and the sinus node of the heart (Moser
et al., 1995). Its main component, originating in vagal activity,
is respiratory modulation of the heart frequency. Through a
gating process that takes place in the brainstem, vagal activity
is responsible for speeding up the heart when we breath in, and
slowing it down when we breath out (Langhorst et al., 1983). The
amplitude of this respiratory sinus arrhythmia is proportional
to the vagal activity. This cardiorespiratory interaction mediated
by the vagus nerve is faster (approximately 0.25 Hz) than other
influences of the ANS (0.1 Hz or slower). Actually, postsynaptic
vagal activity is mediated by acetylcholine, which is rapidly
degraded in the synaptic gap by its esterase, an enzyme that
warrants fast decay of neurotransmitters after release. This makes
the parasympathetic synapses much faster than the sympathetic
ones, which use norepinephrine postsynaptically (Moser et al.,
1998). Norepinephrine is eliminated mainly by presynaptic
reuptake, which results in transmitters remaining longer in the
synaptic gap. In short, the intensity of this cardiorespiratory
interaction can be used as a reliable measure of vagal activity
(Moser et al., 1994).

Surgery is a situation where it is paramount to preserve
the strong vagal activity. There is aboundant evidence that

surgical procedures weaken the vagal activity (Donchin et al.,
1992; Munford and Tracey, 2002; Williamson et al., 2010), while
surgery is a notorious trigger of sepsis. With this in mind we
performed a clinical study aimed at testing the effects of surgery
on patient’s vagal activity. Our study relies on a longitudinal
measurement and comparison of circadian dynamics (24 h
recordings) of vagal activity in patients before, during and after a
surgical procedure. This includes measurements during and after
rehabilitation, for up to 1 year after the surgery. Vagal activity is
computed from HRV data as described in Moser et al. (1994),
Moser et al. (1995), Lehofer et al. (1999).1 We report our results
in what follows.

MATERIALS AND METHODS

Patients and Ethics
Thirty-nine patients (23 female of age 32–83 and 16 male of
age 32–81) were recruited for our study. They were hospitalized
at the Orthopedic Rehabilitation Center at Humanomed Center
in Althofen, Austria for total endoprosthetic orthopedic surgery
(replacement of hip or knee joints). Inclusion criteria were age
30–90 and completion of 3 week rehabilitation within 3 months
after the surgery. Exclusion criteria were usage of pacemaker
and clinically identified complications (thrombosis, pulmonary
embolism, or wound healing disorders). Patients were informed
about the nature and the purpose of the study, signed the
informed consent and participated voluntarily. After the study,
personal results were given to all patients with adequate expert
explanation. The study was authorized by the Ethical Committee
of the Carinthian Government, authorization number A 02/05,
01 February, 2005. Methods were chosen in accordance with the
relevant guidelines and regulations.

Measurement Protocol
In order to investigate the behavior of vagal activity in
relation to the surgery and the subsequent recovery, we
divided the operation-rehabilitation process into the following
four phases: immediately before the surgery (pre-operative
phase), immediately after the surgery (peri-operative phase),
rehabilitation, and long-term recovery (post-operative phases). On
ten specific days each patient had his/her vagal activity measured
over the entire day, i.e., the 24 h circadian cycle. These are
referred to as “measurement days” and denoted as T1,T2,. . .T10.
They are “time periods” chosen to best reflect each phase of the
operation-rehabilitation process as follows.

• Immediately before the surgery (“pre-operative”; measurement
days T1 and T2). Patients were measured on 2 days, sometime
between 8 and 2 days prior to the surgery.
• Immediately after the surgery (“peri-operative”; measurement

day T3). Patients were measured on 1 day sometime between
2nd and 4th day after the surgery, depending on their
availability due to their medical state.
• Rehabilitation (“post-operative”; measurement days T4, T5,

and T6). Patients were measured on 2nd, 9th, and 16th day

1Actually, HRV is long known as a good marker for risk stratification, early
prognosis and prediction of post-operative complications.
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FIGURE 1 | Shematic representation of the division of operation-rehabilitation process into phases and measurement days for the purposes of our study.

of the inpatient rehabilitation process (rehabilitation started
26.6± 11.3 days after the surgery).
• Long-term recovery (measurement days T7, T8, T9, and T10).

Patients were measured at the beginning of 6th, 12th, 26th, and
52nd week after the end of the rehabilitation.
For better orientation we show in Figure 1 the schematic

representation of this division.
Since previous studies found a strong cure-treatment effects

to peak after 6 weeks (Moser et al., 1998; Lehofer et al., 1999),
we used this time period to perform the first post-rehabilitation
measurements. After this, we used approximate doubles of 6-
week-intervals until the end after 1 year, which is a reasonable
(almost) exponential frame for observing long-term effects. These
measurements are taken on as equidistant time-points as patients
compliance allowed.

HRV Measurements
On each measurement day we made precise circadian
measurements of heart-rate variability (HRV) for each patient.
That is to say, each patient had his/her instantaneous heart rate
recorded continuously for 24 h, using a mobile 8000 Hz Holter-
ECG with 16 bit A/D converter (ChronoCord, manufacturer:
Joysys, Austria), developed from space medical research
(Gallasch et al., 1997). The instrument was attached to a patient
in a way not to interfere with his/her regular daily activities.
Vagal activity was computed from these time series of around
100,000 heartbeats per patient/day as described below, and then
averaged over 5 min intervals distributed evenly over 24 h. After
this averaging, one circadian time series consisted of 1440 values,
i.e., 1 value per each minute of the measurement day. Thus, on
each measurement day we obtained for each patient a circadian
time series with 1440 HRV values. We defined the circadian time
from noon on a measurement day to noon on the following
day. Our study lasted for over an entire year (408 ± 34,3 days)
for each patient (not all patients participated simultaneously).
16 of them completed all the measurements (age 32–81, 11
female). For these 16 patients, some data points were still missing
(13.75%). We report the data here only from these 16 patients.

Pre-processing and Computation of the
Vagal Activity
Pre-processing steps included filtering and removal of the
artifacts, done according to Lehofer et al. (1999). R peaks were
detected from the ECG recordings by a digital filter described
in Moser et al. (1994), Lehofer et al. (1999) to more than 1 ms
accuracy. We then computed the vagal activity time series from
the cardiorespiratory arrhythmia by the robust time-domain
method named logRSArr. The method is described and evaluated

in Moser et al. (1994), Lehofer et al. (1999) and its relaton
with cardiorespiratory interactions is established in Topçu et al.
(2018). In short, we used the formula:

Vagal activity= log10
(
median(5 min) |RRi+1 − RRi|

)
,

where RRs are the consecutive inter-beat (RR) intervals, and
the median value is taken over the 5 min interval. This
logRSArr method acts as a filter emphasizing high-frequency
HRV components, and reflects the vagally mediated respiratory
component of HRV better than RMSSD or high frequency HRV
(Topçu et al., 2018). Also, the chosen method is more robust than
frequency-domain methods and allows a higher time-resolution.
Robustness is here important since it prevents the results from
disturbances by movement artifacts and ectopic heartbeats. Upon
computation, we focused our analysis on these data, which
consist of one circadian time series of vagal activity values for each
patient on each measurement day.

Statistical Analysis
General linear models (GLM) were used to perform a per
protocol analysis via repeated measures ANOVA. Within-subject
factor is “time period” [pre-operative (individual means of T1
and T2), peri-operative (T3), rehabilitation (T4, T5, and T6), and
long-term recovery (T7, T8, T9, and T10)] for three different
“activity periods” of vagal activity within a day (logRSArr during
“sleep,” “wake,” and “24 h mean”). The calculation of the used
periods “sleep” and “wake” is based on visual controlled activity
protocols of the patients, whereby transitions between wake and
sleep, the first and last 30 min of each activity period, were not
taken into account. For these statistical analyses, missings (in
already aggregated values) in “time period” had to be replaced
by individual means of nearby time points in 11 out of 192
cases (5.7%). Later we add pre-operative “vagal-type” as between-
subject factor, computed via median split of aggregated 24 h
means of logRSArr from T1 and T2 (pre-operative vagal activity)
to quantify a hypothesized interaction (time course x vagal-type)
for a different development in time course of subjects with a
constitutional high vs. low vagal activity.

RESULTS

Overall Circadian Dynamics of Vagal
Activity
We first present the overall circadian behavior of vagal activity
during operation-rehabilitation process. To this end, we averaged
the data over all 16 patients, obtaining one averaged circadian
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FIGURE 2 | The overall dynamics of the vagal activity during the operation-rehabilitation process. Each color represents the value of the vagal activity averaged over
all 16 patients on a given measurement day (horizontal axis, T1–T10) and at a given circadian hour (vertical axis, time runs from bottom to top). Clinical phases are
also indicated on the horizontal axis. Each averaged vagal activity value is represented as a color, where red means low and blue means high vagal activity (see color
bar). Phases of the operation-rehabilitation process are delimited by the dashed lines. Vagal activity is reduced during peri-operative phase (T3), especially during the
night. During the post-operative rehabilitation (T4–T6) original vagal activity values are gradually restored. See also our statistical analysis (Tables 1, 2), which
confirms the statistical significance of the vagal activity changes.

TABLE 1 | Statistical significance of vagal activity differences over time.

Repeated measures ANOVA [time (4)]† logRSArr [ms] Mean SD Post hoc (LSD) F P significance η2
p

Time (vagal activity; log RSArr) Sleep Pre-operative 1,152 0,175 Pre- vs. Peri-operative (p = 0.004∗∗) 4,124 0.025∗ 0,216

Peri-operative 1,021 0,172

Rehabilitation 1,106 0,233

Long-term recovery 1,119 0,271

Overall 1,099 0,195 Square time effect 12,739 0.003∗∗ 0,459

Wake Pre-operative 0,887 0,182 2,189 0.102 0,127

Peri-operative 0,808 0,183 Peri- vs. Long-term recovery (p = 020∗)

Rehabilitation 0,841 0,244

Long-term recovery 0,882 0,203

Overall 0,854 0,185 Square time effect 7,475 0.015∗∗ 0,333

Mean-24 h Pre-operative 0,980 0,155 Pre- vs. Peri-operative (p = 0.028∗) 3,243 0.046∗ 0,178

Peri-operative 0,885 0,170

Rehabilitation 0,935 0,225 Peri- vs. Long-term recovery (p = 010∗)

Long-term recovery 0,967 0,212

Overall 0,942 0,175 Square time effect 17,095 0.001∗∗ 0,533

†N = 16 (13.75% replaced missing values). Marked levels of significance: ∗p < 0.05 and ∗∗p < 0.01.
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time series for each measurement day. The results are shown
in Figure 2.

Natural oscillations of vagal activity from stronger (night)
to weaker (day) are visible on all measurement days, indicated
by a change of blue during the night to red during the day.
Clearly, peri-operative vagal activity (T3) is severely weakened
over the entire circadian cycle. In fact, on T3 a major decrease
was observed even during the night, when the immune system is
actually more active. During rehabilitation (T4–T6), vagal activity
is gradually restored to its pre-operative circadian rhythm and to
its usual circadian values. On T5 we observe a longer night time
interval of strong vagal activity, which increases their average
daily vagal activity. On T4–T6 we see a slight decrease between
7–9 am and 6–8 pm, most likely attributable to rehabilitation
treatments. During long-term recovery (T7–T10), previously
observed circadian pattern shifts to later in a day. This reduces
the overall daily vagal activity, restoring the normal circadian
oscillations and amplitudes, similar to pre-operative ones.

To confirm the statistical significance of these results, we
performed standard ANOVA on these vagal changes and show
the results in Table 1.

We find that the effect of the surgery on vagal activity
is most significant during sleep (repeated ANOVA: part. Eta2

[η2] = 0.216; Post hoclsd: pre- vs. peri-operative p = 0.004). The
vagal activity recovery after surgery is most pronounced in the
24 h mean values in the long-term recovery phase after finishing
the rehabilitation (0.885± 0.170 peri-operative vs. 0.967± 0.212
long-term recovery: η2 = 0.178; Post hoclsd: p = 0.010). The
dynamics can also be observed in vagal activity while the patient
is awake (η2 = 0.127), but this is probably more confounded by
various daily activities.

Scatter Plot Analysis
We next studied more closely how peri-operative, rehabilitation
(“post-operative”) and long-term recovery values of vagal
dynamics depend on the corresponding pre-operative
values. We investigated two specific time intervals: during
the day from noon to 8 pm (when vagal activity is
typically low) and during the night from 10 pm to 6
am (when vagal activity is usually strong). We averaged
the values of vagal activity over these two intervals, but
this time for each patient and on each measurement day
separately. This provides an average daily and an average
nightly vagal activity value for each patient and for each
measurement day.

First, to examine the change of vagal activity due to surgery,
the peri-operative vagal activity (measured on T3) was compared
to pre-operative vagal activity (taken as the mean between
measurements on T1 and T2). This comparison is shown as
two scatter plots in top panels on Figure 3 In both cases a
reduction of vagal activity can be observed due to the surgery,
especially in patients with larger pre-operative values. This is
even more pronounced for the nightly values. Second, in the
two middle panels in Figure 3 we repeat the same analysis,
but this time for post-operative values. They were taken as the
mean between measurements on T5 and T6 (we exclude T4
from this averaging to allow more time for rehabilitation to

FIGURE 3 | Scatter plots of vagal activity values. Peri-operative values (top
panels), post-operative values (middle panels), and long-term recovery
values (bottom panels) are reported on the vertical axis, as a function of
pre-operative values, which are in all panels reported on horizontal axis (each
dot represents one patient). They are computed, respectively, as values on T3,
average between T4 and T5, average between T9 and T10, average between
T1 and T2. Changes in day-time values (measured from noon to 8 pm) are
shown on the left and changes in the night-time values (measured from 10 pm
to 6 am) are shown on the right. Linear regression is shown as a full black line
and the line of identity is shown as a dashed black line. Correlation coefficient
r is reported for each plot separately. Significances are all p < 0.08. While the
event of surgery clearly reduces the vagal activity, the rehabilitation process
gradually restores it to the original values. In fact, in some cases final vagal
activity values are actually higher than the original pre-operative values. This
effect is especially pronounced during the night (due to logarithmic
representation of vagal activity values, real changes are actually more
pronounced than it appears). See text and Table 2. Figures have different
numbers of points, since for 16 patients that completed the study certain daily
and/or nightly values are missing.

make noticable effect), and scatter ploted agains pre-operative
values (as above). Both plots show that during rehabilitation, the
vagal activity values are gradually restored to the pre-operative
ones. This effect is very clear during the night: patients with
weaker pre-operative vagal activity show a very slow recovery,
whereas patients with strong pre-operative vagal activity in fact
show a noticable increase of vagal activity as a result of the
early rehabilitation process. Note that due to the logarithmic
representation of vagal activity values (see section “Materials and
Methods”), nightly increase in vagal activity is actually much
higher than immediately visible in these plots, and also higher
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TABLE 2 | Statistical analysis for interaction (time × vagal-type) according (Figures 2, 3).

Repeated measures ANOVA (N = 16)
[4 × 2 design (time × vagal-type)]†

logRSArr [ms]

Vagal-type Effects time
vagal-type

F P significance η2
p

Strong vagal Weak vagal

activity (n = 8) activity (n = 8)

mean SD mean SD

Sleep Pre-operative 1281 0,088 1022 0,139

Peri-operativ 1,114 0,151 0,927 0,145 Time 4,203 0.022∗ 0,231

Rehabilitation 1246 0,110 0,966 0,248 Vagal-type 13,803 0.002∗∗ 0,496

Long-term recovery 1287 0,120 0,951 0,279

Overall 1,232 0,083 0,967 0,184 Interaction 1,287 0.292 0,084

Wake Pre-operative 1,007 0,177 0,767 0,079

Peri-operativ 0,907 0,111 0,709 0,192 Time 2,224 0.099(∗) 0,137

Rehabilitation 1,007 0,155 0,675 0,201 Vagal-type 14,528 0.002∗∗ 0,509

Long-term recovery 1,007 0,112 0,757 0,200

Overall 0,982 0,118 0,727 0,148 Interaction 1,234 0.306 0,082

Mean-24 h Pre-operative† 1,097 0,125 0,863 0,066

Peri-operativ 0,986 0,109 0,783 0,162 Time 3,273 0.048∗ 0,190

Rehabilitation 1,095 0,118 0,775 0,190 Vagal-type 17,151 0.001∗∗ 0,551

Long-term recovery 1,089 0,111 0,844 0,222

Overall 1,067 0,090 0,816 0,146 Interaction 1,141 0.336 0,075

Time Time 4,432 0.042∗ 0,869

MANOVA Vagal-typ Vagal-type 5,208 0.016∗ 0,566

Interaction (Time × vagal-type) Interaction 5,900 0.021∗ 0,898

†A median split of pre-operative vagal activity was used to classify into vagal-types with strong of weak vagal activity (cut-off value: 0.9654). This classification was also
used for Figure 5. ∗p < 0.05 and ∗∗p < 0.01.

than the decrease for the patients with low pre-operative vagal
activity. Third, in the bottom panels of Figure 3 we scatter plot
the long-term recovery values against pre-operative values. The
former were taken as the mean between T9 and T10 (again, we
exclude T7 and T8 from averaging to give more time to long-term
recovery). We find a generally positive slope of the regression
line, indicating overall improvement of the vagal activity (recall
that the logarithmic representation of vagal activity is less faithful
toward larger values). Again, patients with stronger pre-operative
values benefit from stronger improvement, while patients with
lower pre-operative values show similar or slightly weaker values.
However, we must take into account here that several months
have passed since the surgery, so other life factors might have
influenced the vagal activity.

Table 2 shows the results of two-way ANOVA [within-factor
(time-course; 4-stage), between-factor (pre-operative-vagal
activity; 2-stage)] performed to detect differences (interactions)
in time course among the patients. Interestingly, while the
patients suffer from larger reduction of vagal activity due to
surgery (top panels of Figure 3), patients with strong pre-
operative vagal activity exhibit larger increase of vagal activity
during rehabilitation (middle panels Figure 3 and Table 2:
repeated MANOVA: Interaction: p = 0.021, η2 = 0.898), and
actually finish with vagal activity values even higher than the
pre-operative ones. This is the case, at least, in some patients. The
multivariate significant increase of the vagal activity (p = 0.042,
η2 = 0.869, see Table 2) after surgery is dependent on the

pre-operative values (time × vagal-type: p = 0.021, η2 = 0.898).
This is shown for individual cases later in Figure 4. Due to the
small and heterogeneous sample of patients, this significant
dependence on initial values (pre-operative) was not seen in
inference statistics via univariate testing (p > 0.292) for the used
aggregated time points.

Effects on the Entire Circadian Dynamics
Finally, we investigated the effects of surgery and rehabilitation
on the entire circadian dynamics of vagal activity. To that end we
selected two patients, one with a generally strong and the other
with generally weak pre-operative vagal activity (see also Table 2).
In Figure 4 top panel, we show three circadian time series for
the first patients. Both the reduction due to surgery (red) and
the improvement due to rehabilitation (green) are clearly visible
over almost the entire circadian cycle. During rehabilitation,
the improvement is especially pronounced during the first part
of the night: vagal activity increases beyond its pre-operative
values. Next we examine the same time series for the second
patient (with generally weak vagal activity) in Figure 4 bottom
panel. Similar patterns are found over the circadian cycle, but
the improvement due to rehabilitation is now almost entirely
absent. Weak pre-operative vagal activity seem to be connected
to weak vagal response during rehabilitation. This again confirms
that the rehabilitation process can enhance vagal activity to values
higher than normal, and particularly so for the patients with
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FIGURE 4 | Circadian dynamics of vagal activity (vagal tone) during the operation-rehabilitation process. A patient with a strong pre-operative vagal activity is shown
in the top panel and another patient with a weak pre-operative vagal activity is shown in the bottom panel. Three circadian time series for the entire 24 h cycle are
shown in each panel, measured on three specific days, pre-operative on T1, peri-operative on T3 and post-operative on T5. We remove the logarithmic scale for
better clarity (see section “Materials and Methods”) and use the moving average over a window of several minutes to avoid minute-to-minute fluctuation. While the
patient in the top panel shows a clear improvement of post-operative vagal activity, especially during the night, the patient in the bottom panel shows very little
improvement, and even during the night.

initially strong values. Our results suggest that if the patient’s
vagal activity could be boosted pre-operatively, this patient could
realistically expect a lesser risk of peri-operative sepsis and a
better outcome of rehabilitation. For completeness, we later make
a clearer separation between strong and weak vagal activity.

Analysis of Other HRV Parameters
As an addition to logRSArr we next examine further HRV
parameters in Table 3 over 24 h during the examined time
interval. Next to a lower vagal activity (logRSArr, p = 0.046)
and an increased heart rate (p = 0.072; RR: p = 0.011), HRV
is generally reduced immediately after surgery and it takes time
to recover (only in the follow-up after rehabilitation; “long-term
recovery”; all p < 0.10). Autonomic Balance (Ratio LF/HF) is not
affected by the orthopedic surgery (p = 0.830).

Next we compare our patients with age and gender matched
reference values from healthy controls at the pre-operative time.
Results are reported in Table 4. Overall, patients in our clinical
sample seem to have higher pre-operative heart rate (z = 0.43,
p = 0.096)2 with a slightly reduced vagal activity (z = –0.28,

2Standard scores, also called z-values (z) are calculated by subtracting the
population mean from an individual raw score and then dividing the difference by

p = 0.115), where the other HRV values are in general similar
to healthy individuals (all p ≥ 0.60, MANOVA with HR, SDNN,
TOT, LF, HF, VLF, VQ; pre-operative patients vs. healthy controls:
F = 0.674, p = 0.675; see Table 4 and Figure 5).3

Using above HRV parameters, we can now make a clearer
distinction between patients with strong as opposed to weak
vagal activity. To this end we perform MANOVA [calculated for
HR, SDNN, TOT, LF, HF, VLF, and VQ; F = 3.113, p = 0.062,
p.Eta2 = 0.675] and report the results in Figure 5. Patients
with a pre-operative “weak vagal activity” differ markedly from
patients with “strong vagal activity” in almost all HRV parameters
(effect size: mean absolute z-differences3 = 0.759, p = 0.011).
This confirms that vagal activity (logRSArr) is a good indicator
for differences in cardio-autonomic (HRV) status, as it reflects
different pattern of HRV markers and thus types of cardio-
autonomic profiles. It can also be useful as a marker for
different reaction types, e.g., to surgery, possible complications
like sepsis or different clinical courses. This also clarifies our

the population standard deviation (here: for healthy controls; e.g., age and gender
matched reference values for autonomic (HRV) parameters see Table 4). Similarly,
the deviations from zero or from mean-differences of z-values can interpreted as
effect size as presented in Figure 5 and Table 4.
3The data for healthy individuals were taken from a general database.
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choice of two patiens with weak vs. strong vagal activity in
earlier Figure 4.

Analysis of Results of Questionnaires
Further data relative to clinical information of patients
(standardized questionnaires; Zerssen, 1976; Hobi, 1985;
Grote, 2009) are shown in Table 5. Most patients report an
improvement of subjective well-being (p = 0.027), already
during “rehabilitation.” Only in the “long-term recovery”
period, the values (“well-being” and “sleep recovery”)
reach those of healthy reference data [0.00 ± 1.00; (z)3].
General symptoms of “complaints” appear to be less affected
over time (p = 0.139) and remain higher than in healthy
controls (z > 0.75) throughout the whole observation
period. Hence in general, no significant correlations between
autonomic (HRV) parameters and questionnaire results
can be observed.

DISCUSSION

Using the intensity of cardio-respiratory sinus arrhythmia
for determination of vagal activity, we showed that vagal
activity decreases around the time of (orthopedic) surgery,
and increases during rehabilitation and long-term recovery.
The former is an indicator of dangers accompanying
surgical procedures, including sepsis. We found that in the
wake of surgery vagal activity is impaired in essentially all
patients in our sample. This impairment is present during
both day and night, but is more prominent during the
night. The observed decrease of vagal activity implies the
breakdown of the inflammatory reflex. This hinders the
ability of the body to timely resolve inflammation, thus
leaving the patient considerably more vulnerable to diverse
inflammatory conditions after surgery. Given that surgery
and the associated tissue injury are both pro-inflammatory,
preserving the inflammation resistance is paramount during
this critical period. Moreover, weakening of vagal activity
could be unintentionally enhanced in other ways, such as via
narcotic treatments that are known to dampen ANS, including
its vagal component (Shapiro et al., 2010; Tarvainen et al.,
2012). Our findings suggest that caution must be observed when
using such narcotics.

Our next main result is that the rehabilitation process,
besides being clearly effective in restoring the vagal
activity, also seems to provide a way of boosting it, as
suggested by the larger than normal values observed
in several patients. This vagal activity increase was
particularly prominent during the night, which is normally
characterized by higher vagal activity compared to
the day-time values. In fact, sleep is well-known to
be important for general health and helpful in many
medical conditions (Reynolds et al., 2012; Moser and
Kripke, 2013). Therefore, rehabilitation appears to be
suited for restoring the autonomic regulation and thus
the inflammatory reflex, which persist even 1 year after
rehabilitation in our study.
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TABLE 4 | Age and gender matched reference values for pre-operative HRV parameters.

Heart rate variability (HRV) Healthy matched sample (n = 32)† Rehab sample (n = 16): “pre-operative”

parameters 24 h mean [normalized 24 h mean; (z)]

Mean ± SD Unit mean [z] ± SD T P

vagal activity (logRSArr) 1, 03 ± 0, 23 log(ms) −0, 28 ± 0, 67 −1,67 0.115

Consecutive inter-beat intervals (RR) 827, 85 ± 99, 76 ms −0, 37 ± 0, 89 −1,69 0.112

Heart rate (HR) 75, 08 ± 9, 02 bpm 0, 43 ± 0, 96 1,78 0.096(∗)

Standard deviation of RR (SDNN) 49, 64 ± 14, 68 ms −0, 01 ± 0, 72 −0,06 0.956

Total variability power (InTOTrr) 7, 30 ± 0, 61 ln(ms2) 0, 00 ± 0, 70 0,02 0.982

Low frequency power (InLFrr) 5, 83 ± 0, 72 ln(ms2) −0, 10 ± 0, 72 −0,53 0.604

High frequency power (InHFrr) 4, 55 ± 0, 92 ms2
−0, 03 ± 0, 90 −0,11 0.911

Very low frequency power (InVLFrr) 6, 61 ± 0, 56 ms2 0, 06 ± 0, 71 0,37 0.719

Ratio LF/HF 1, 28 ± 0, 55 [ ] −0, 08 ± 1, 00 −0,33 0.747

Respiratory rate (ATMFrsa) 16, 98 ± 2, 27 fpm 0, 02 ± 0, 57 0,15 0.884

†Age, 59.25 ± 10.34 (68.8% female).

FIGURE 5 | Pre-operative cardio-autonomic status - patients with weak vs. stronge vagal activity. Mean (absolute) z-difference (weak vs. strong vagal
activity) = 0.759, T = –2.936 (df = 14), p = 0.011∗ (MANOVA: F = 3.113, p = 0.062, η2

p = 0.675, calculated for HR, SDNN, TOT, LF, HF, VLF, and VQ).
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TABLE 5 | Statistics and Questionnaires.

Repeated measures ANOVA questionnaires –
psychometric scales [z]†

Mean† ± SD Post hoc (LSD;
p ≤ 05)

F P η2
p

Time course Well-being (n = 13)
(Hobi, 1985)

Pre-operative (1)‡

Peri-operativ (2)
Rehabilitation (3)
Long-term recovery (4)

−0,426 ± 0,780
−0,771 ± 0,879
−0,155 ± 0,852

0,033 ± 0,686

1 vs. 4
2 vs. 3, 4

4,201 0.027∗ 0,276

Complaints (n = 14)
(Zerssen, 1976)

Pre-operative (1)
Peri-operativ (2)
Rehabilitation (3)
Long-Term recovery (4)

1,094 ± 1,147
1,094 ± 1,109
0,811 ± 1,313
0,753 ± 1,278

1,949 0.139 0,140

Sleep recovery (n = 13)
(Grote, 2009)

Pre-operative (1)
Peri-operative (2)
Rehabilitation (3)
Long-Term recovery (4)

−0,253 ± 0,995
−0,802 ± 1,277
−0,258 ± 1,164
−0,018 ± 1,085

2 vs. 4 2,391 0.086(∗) 0,179

†Normalized with healthy controls [z-values]. ‡Correlation with vagal activity: r = 0.387, p = 0.155. MANOVA (n = 12) - time: F = 1.846, p-0.071(*), η2
p = 0.156 (Pillai).

Marked levels of significance: (∗)p < 0.1 and ∗p < 0.05.

Vice versa of this situation has been reported. For instance,
independent of the origin of inflammation, vagal activity is always
reduced in inflammatory conditions (Lujan and DiCarlo, 2013).
This may lead to a positive feedback loop or a vicious circle,
entangling the inflammation reflex, and the accompanying
pathology. Some forms of obesity are indeed known to
lead to inflammation, while at the same time the chronic
inflammation promotes obesity-associated diabetes (Wang et al.,
2003). This indicates that besides in the development of sepsis,
dysfunctional vagal control or circadian disturbance of the
ANS could play a role in several key diseases of modern
society, including cardiovascular diseases, metabolic syndrome
and/or even development of cancer (Moser et al., 2006b;
Eiró and Vizoso, 2012).

On the other hand, we realize that after surgery vagal activity
is bound to increase, regardless of whether the patient undergoes
rehabilitation or not. It is hard to identify which part of
vagal activity increase that we observed comes as a result of
rehabilitation, and which part can be attributed to natural bodily
regeneration mechanisms. Yet there is extensive evidence for the
positive influence of rehabilitation on a number of factors related
to general well-being (Strauss-Blasche et al., 2004), many of which
are directly associated with the strength of vagal activity. Our
findings indicate that rehabilitation generally does have a positive
effect on vagal activity, but the question of precise difference of
vagal activity between patients that undergo rehabilitation and
those that do not remains to be answered.

Is there a minimum value of vagal activity above which the
patient is protected against diseases (such as sepsis)? While
this interesting question calls for more research, we report
that none of the patients contracted sepsis. This suggests
that, at least for sepsis, this threshold value is below the
minimums observed here.

Clinical Applications of Our Findings
We suggest that in order to reduce the chances of inflammatory
conditions in the wake of surgery, it might be worthwhile
to provide some activities that increase the vagal activity
prior to the surgery (“pre-habilitation”). This would increase

the patient’s vagal inflammatory resistance allowing him/her
to cope with the event of surgery and the associated stress
more effectively (Geiss et al., 2005; Laitio et al., 2007; Mazzeo
et al., 2011; Bravi et al., 2012; Bohanon et al., 2015; Ernst
et al., 2017; Reimer et al., 2017; Yang et al., 2018). An
additional argument in favor of this conclusion comes from
our observation that patients with strong pre-surgery values
make the best use of the rehabilitation in improving their
vagal activity. Hence, strengthening the vagal activity of a
patient during the weeks before the planned surgery appears
to be a promising strategy to minimize the risk of vagal
fail and hence inhibit the developement of inflammatory
states. The aim of this paper was to provide more empirical
evidence for these hypotheses, which if ultimately proven
correct, may open new approaches, for example, in treating
or preventing sepsis. This study also shows the clinical value
of a quantified cardiorespiratory interactions, the respiratory
sinus arrhythmia.
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Automatically determining when a person falls asleep from easily available vital signals
is important, not just for medical applications but also for practical ones, such as traffic
safety or smart homes. Heart dynamics and respiration cycle couple differently during
sleep and awake. Specifically, respiratory modulation of heart rhythm or respiratory sinus
arrhythmia (RSA) is more prominent during sleep, as both sleep and RSA are connected
to strong vagal activity. The onset of sleep can be recognized or even predicted as the
increase of cardio-respiratory coupling. Here, we employ this empirical fact to design
a method for detecting the change of consciousness status (sleep/awake) based only
on heart rate variability (HRV) data. Our method relies on quantifying the (self)similarity
among shapelets – short chunks of HRV time series – whose “shapes” are related to the
respiration cycle. To test our method, we examine the HRV data of 75 healthy individuals
recorded with microsecond precision. We find distinctive patterns stable across age and
sex, that are not only indicative of sleep and awake, but allow to pinpoint the change
from awake to sleep almost immediately. More systematic analysis along these lines
could lead to a reliable prediction of sleep.

Keywords: respiratory sinus arrhythmia, time series analyses, shapelets, onset of sleep, heart rate variability,
logRSA

INTRODUCTION

Determining the status of consciousness (being awake or asleep) is usually done in a sleep lab by
sophisticated polygraphic recordings (Quintana-Gallego et al., 2004). Under real life conditions
it would be preferable to do this online from automated analysis of vital signs recorded with
minimally obtrusive sensor systems. In fact, several approaches have already been explored
(Canisius and Penzel, 2007; Romine et al., 2019; Sadek et al., 2019) to achieve this. Various medical
applications are easy to imagine, but perhaps more important are practical applications in which
vigilance plays an important role. An obvious example is transportation, where the driver of a bus,
train or a plane must stay awake at all times. Such an algorithm could be also translated into an
alarm system that activates when the algorithm ‘recognizes’ that the driver is at risk of falling asleep.
Statistics show that a significant number of car accidents were probably due to driver falling asleep
(Horne and Reyner, 1995; Royal, 2003; Ftouni et al., 2012).

Any algorithm that automatically determines whether a person is awake or asleep (awake
status) needs constant access to the body’s vital signals. Those signals (data) should be processed
continuously, so that patterns in the data that indicate sleep (or reduced vigilance) could be spotted
immediately. Of course, the practical interest is to detect the change in consciousness status as
soon as possible. Even more useful would be to predict the onset of sleep, so that the alarm can
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be triggered in a timely manner. In such a setting, false positives
(alarm goes off, but the driver is awake) are far less dangerous
than false negatives (the opposite).

The precision in determining consciousness status involves
two aspects: (i) correctly recognizing the onset of sleep or
reduction of vigilance and minimize the rate of false positives
(accuracy), and (ii) recognizing the onset as quickly as possible, or
even better, predicting it. Both depend on the quality of available
data as well as the sophistication of data analysis. A myriad of new
data analysis approaches rose in the last decades in response to
increased availability and richness of datasets in varying domains
of society, science, and technology. Modern methods of time
series analysis are able to identify, quantify and compare virtually
any pattern of interest with great accuracy and even from noisy
data (Richman and Moorman, 2000; Yaffee and McGee, 2000;
Bevington and Robinson, 2003; Small, 2005; Bendat and Piersol,
2010; Grote et al., 2019; Zou et al., 2019).

Besides data analysis, quality of this determination will also
depend on whether any prior data of vital signs for that person
are available. Ideally, an algorithm should establish the status of
consciousness without prior data from the same person, which is
a very challenging task given that body processes related to falling
asleep differ from person to person considerably (Ogilvie, 2001).
In contrast, with the prior data available, the awake status will
be identifiable faster and with better precision. Another factor is
the presence of noise and incompleteness in the vital sign data:
fortunately, these can be significantly reduced thanks to modern
measuring equipment.

Which vital signal or signals are most useful for such an
algorithm? The best choices to measure vigilance are vital
signals that are easy to measure with good precision and signals
that change in synchrony with the sleep and awake states or
at least indicate a transition between these states. One such
signal is the phase and frequency coordination (synchrony)
between respiratory and heart rhythm known as respiratory sinus
arrhythmia (RSA), which is observed in the sequence of time
intervals between consecutive heart beats (Moser et al., 1994, 1995;
Yasuma and Hayano, 2004; Bartsch et al., 2005; Denwer et al.,
2007). Modern Holter (or similar) devices can measure RSA with
microsecond precision, which more than suffices for application
to the problem considered here (Lynn et al., 2013; Barrett et al.,
2014; American Heart Association, 2015). Measuring RSA can be
done with minimal hinderance of the person’s normal activities
by belt or glue electrodes from a unipolar ECG taken from the
chest or hands. There are also other forms of coupling related to
cardio-respiratory phase synchronization and cardio-respiratory
time delay stability (Bartsch et al., 2014), but these involve the high
resolution and synchronized recordings of respiration, which is
usually not available in clinical settings. This suggests that RSA
is a more suitable choice of vital data for our study, where we
choose not to quantify vagal activity via RSA, but to investigate the
similarity of sequences of HRV data carrying different amounts of
RSA information.

But how to precisely define sleeping vs. awake from RSA
data? The gold standard for determination of being asleep
including sleep staging is polygraphy, including EEG, ECG,
EMG, respiration, and movement sensors (Kaplan et al., 2017;

National Institute of Neurological Disorders and Stroke, 2019).
On the other hand, first bodily signs of sleep are shown at
the autonomic level, as brainstem activity controls the sleep
stages and the brain centers for respiration and circulation are
anatomically close to sleep-induction centers. Additionally, heart
and respiratory cycle are coupled differently during the sleep and
awake states (Moser et al., 2006). While falling asleep, the heart
rhythm gets gradually more modulated by respiration, which
indicates increasing vagal control of the heart (Chouchou and
Desseilles, 2014; Niizeki and Saitoh, 2018). This is illustrated in
a sleep onset recording done on a 10-year-old boy (Figure 1),
measured before and after falling asleep.

During deep sleep, heart and respiratory oscillations are
maximally coupled to one another, which corresponds to
maximal RSA and is a reliable indicator of autonomic regulation
of sleep. RSA indicates the presence of strong vagal oscillations
synchronous to respiration, which regulates (speeds up or slows
down) the heart rhythm (Moser et al., 1994). The increase of
cardio-respiratory coupling (the increase of order of RSA) is
hence the first sign that the body is falling asleep. For the purpose
of this work, we identify the onset of sleep with the onset of RSA.
This onset is detectable from heart rate variability (HRV) data,
which is the main topic of this paper.

However, identifying the onset of RSA from HRV data alone is
challenging and requires a good choice of data analysis methods.
In contrast to previous studies (Billman, 2011; Billman et al.,
2015), rather than considering time and frequency domain
parameters of RSA, we employ shapelet analysis, which has
several advantages and was revealed as useful in analyzing
biomedical data (Xi et al., 2006; Ye and Keogh, 2009; Hills
et al., 2013, 2014; Rakthanmanon and Keogh, 2013). Shapelets
are short segments of HRV time series that are repetitively
compared to prior and past parts of the original time series. Their
self-similarity and pairwise distances can be precisely classified,
including the similarity to any pre-selected shapelet. Using this
framework, we identify the shapelet whose distances to all other
time intervals generates the best distinction between sleep and
awake. We examine how this self-similarity changes as the subject
transits from awake to sleep, which allows us to pinpoint the onset
of sleep (change of consciousness status) with good precision.

The aim of this paper is to propose a new methodology for
analyzing awake-to-sleep transition and discuss its merits for a
practical and useful algorithm. We construct a shapelets-based
method relying on standard approaches in non-linear time series
analysis. Then, using the statistics of shapelet comparison, we
define a similarity threshold that we show is a reliable indicator
of the change of awake status. As an intermediate step in our
analysis we identify the best shapelet – the most self-similar
shapelet in the HRV time series – and show that its length is
comparable to the multiple length of a typical respiration cycle.
This confirms that HRV time series at the onset of sleep are
most self-similar at the RSA time-scale, as expected from the
definition of RSA.

To test our methods, we use the data from 75 healthy
individuals of varying age and sex whose circadian (diurnal)
24 h HRV data were recorded with microsecond precision. Our
data also include the self-reported information about when the
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FIGURE 1 | Example of the transition from awake state to non-REM sleep and later to REM sleep in a 10-year-old boy. In this spectral analysis of HRV, one can
clearly see the gradual formation and increase of RSA as a band around 0.25 Hz. Although the total activity is higher during awake state, the activity in the RSA band
stands out during the non-REM sleep – falling asleep qualitatively resembles a phase transition normally studied in physics (Bartsch et al., 2012; Penzel et al., 2016).
This process is reversed when entering the REM stage (from minute 63 on). This figure is not a part of the study reported in this paper, but it was done
independently, as part of another study reported in Bonin et al. (2004).

subject fell asleep and when he/she woke up. This narrows our
search since we look for the onset of RSA close to the time when
subject declared going to sleep. We show that our method can
pinpoint the change of awake status with a good precision using
only HRV data – but of course, only as long as a representative
sample of a person’s 24 h HRV data was available. As our
subject sample is relatively small, we were unable to make any
substantial prediction of the onset of sleep. However, we were
able to identify that a subject was asleep almost immediately after
he/she fell asleep. We found that HRV self-similarity patterns
relevant for this identification are fairly stable across age and
sex. This suggests that a more systematic analysis with larger and
more diverse sample sets could lead to automating this procedure,
possibly even without prior data. Along the same lines, this is a
step toward an algorithm for early-warning of falling sleep.

SUBJECTS AND MEASUREMENTS

Subjects
The data was collected within the setting of workplace-related
health assessment. We made 24 h-measurements of HRV from
75 participants, 40 men (age 16–57, mean ± SD: 34.7 ± 11.0)
and 35 women (age 16–56, mean ± SD: 37.0 ± 13.5). All
subjects declared themselves to be in good general health, and
with no prior history of cardiologic problems or other medical
conditions that would influence heart or autonomic activity.
Each subject agreed to wear a portable Holter monitor for an
entire day, while carrying on with his/her routine activities on
that day, including sleeping during the night. Subjects had given
their written consent to participate in the study beforehand
and received feedback on their results after completion. The
study protocol complied with the guidelines of “good clinical
practice” (ICH-GCP) following the declaration of Helsinki and
with the regulations of the National Data Protection Act (Section
14 Abs. 1DSG 2000). Since this study involved only healthy
subjects without endangering their health, and since it involved

no medical diagnoses, interventions or treatments, according
to the local legislation in Austria the study did not require an
approval from the University’s ethics committee.

Heart Rate Variability Measurements and
Data
We used a single-channel high-precision ECG monitor
(ChronoCord1, 7th generation, Joysys, Weiz, Austria, sample
rate: 8000 Hz, resolution: 16 bit) (Joysys, 2018) to continuously
record intervals between heartbeats (Noble et al., 1990; Gallasch
et al., 1996, 1997; Pinnell et al., 2007; Surawicz and Knilans, 2008).
For the continuous measurements, three adhesive electrodes
were applied on the trunk of the participants (sternum, 5th
left intercostal space, and a reference electrode on the right
side of the trunk between 11th and 12th rib) (Klabunde, 2012;
Medical Training and Simulation LLC, 2017). The device was
then attached to a belt or the waistband of the subject. During a
24-h period, the device assessed the intervals between heart beats
with precision of several microseconds. Data have been stored on
an SD card for further evaluation. The subjects were instructed
to note the time of light off in the evening and light on in the
morning as a best available proxy for falling asleep. Heart beats
were detected from ECG by device during recording. For further
analysis, they were expressed as R-wave-to-R-wave (RR) intervals
(time intervals between two consecutive R waves of heart beat)
(Amani et al., 2011). Smaller (respectively, larger) RR values
indicate that heart works faster (respectively, slower; Hurst,
1998; Iaizzo, 2005). After the measurements were completed,
we extracted for each person the time series (sequence) of RR
values. Each of these 75 time series contained about 110,000 RR
values. For easier interpretability and with no loss of generality
we converted the data from RR intervals to heart rate, expressed
in beats per minute (b/min). To reduce above described errors,
we removed RR values that were smaller than the minimum ECG

1We confirm that we have obtained the permission from the copyright holder of
this device to use the name of the device (ChronoCord) in this manuscript.
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value (40 bmp) or higher than 180 bmp, in accordance with the
standard procedures in medical sciences (Perski et al., 1992; Krul
et al., 2013; Sarzynski et al., 2013). This resulted in removal of
the 0.63% of the data (basically negligible).

Preliminary Analysis
We first show some sample results to better illustrate the data. In
Figures 2A–D we show four examples of HRV beat-to-beat time
series. The values of heart rate (in bpm) are shown as function
of time during 24 h of recordings. We show two typical examples
for younger subject (male and female, above) and two for middle-
aged subjects (below). We indicate in each plot the part of the day
when the subject slept (according to self-reported information).
In general, the heart beats faster (higher bpm) when a person
is awake compared to asleep. While sleeping, heart beat meta-
oscillations seem steadier than while awake, especially during
non-REM phases. These meta-oscillations indicate autonomic
nervous system activity (Moser et al., 1994, 2008) mediated via
vagal and sympathetic branches to the sinus node. All plots
display quite intense fluctuations during the entire 24 h, which
is somewhat more prominent for younger subjects.

In Figures 2E,F we show scatter plots of mean heart rate (HR,
shown on y) vs. age (shown on x), for male and female subjects,
respectively. Sleep and awake mean HR are calculated separately
for each subject (according to self-reported information) and
shown by different colors in each scatter plot. Clearly, the heart
on average beats slower while asleep. This preliminary analysis
shows that while there are qualitative differences in heart activity
between sleep and awake, determining the status of consciousness
from HRV alone is not sufficient, since none of these simple
parameters discriminate it precisely. This stresses the need for
more sophisticated data analysis approaches, to which we devote
the rest of this paper.

SHAPELET ANALYSIS

In this section we introduce shapelet analysis as our main
methodological tool (Xi et al., 2006; Ye and Keogh, 2009; Hills
et al., 2013, 2014; Rakthanmanon and Keogh, 2013). In general,
our approach belongs to unsupervised learning from data (James
et al., 2013; Längkvist et al., 2014; Celebi and Aydin, 2016). We
search for the best way to divide a time series in two parts (classes)
such that self-similarity of the time series is maximal within each
class, and minimal between the classes. In fact, a long-standing
challenge in time series classification is how to find the most
efficient measure of similarity between two (or more) time series
or parts thereof. Many methods in the literature strive to meet
these criteria (Kin-Pong and Wai-Chee Fu, 1999; Costa et al.,
2005; Liao, 2005; Aboy et al., 2007; Ding et al., 2008; Batista
et al., 2011; Yentes et al., 2013), including shapelet analysis, which
we chose for its good record in recognizing physical activities
from biomedical time-resolved data. In this regard, shapelet
analysis is conceptually somewhat similar to wavelet analysis
(Daubechies, 1992). Shapelets rely on a simple quantification of
similarity/difference between time series, they are fast to compute
and provide easily interpretable results with very good accuracy.

We developed our own programing codes for the entire analysis
that follows without resorting to any specific software.

What Are Shapelets?
We explain the concept of shapelets by referring directly to
our HRV data. We take a time series of RR values (similar
analysis could be done with time series of frequencies). We
decompose this time series into segments (chunks) of 2 min in
length (duration). That yields about 700 segments during 24h,
depending on the subject. We assume that at least qualitatively,
the heart activity does not drastically change within 2 min, i.e.,
that it is (relatively) stationary during each segment2. This is our
starting resolution to detect changes of the consciousness status.

Now we consider one 2-min segment and divide it into smaller
parts that we call shapelets. In other words, a shapelet is a short
sub-interval of a 2 min segment and hence of the original 24 h
time series. When dividing a segment into shapelets, we do so in
three ways:

• Division into two equal halves, each 1 min long (“level 1”),
• Division into four equal quarters, each 30 s long (“level 2”),
• Division into eight equal eighths, each 15 s long (“level 3”).

So, each following level is made of shapelets with half-length
of the previous level. At level 1 we obtain 2 shapelets from
each segment, each covering a half of the segment, without
overlapping. Similarly, at levels 2 and 3 we obtain 4 and
8 shapelets, respectively, jointly covering the entire segment,
without overlapping. Besides this main division, at each level we
also consider an additional set of shapelets, obtained by shifting
the shapelets by half-length at that level. That is to say, at level
1 we obtain one additional shapelet of 1 min length, which is
centered at mid-point between the two main shapelets. Similarly,
at levels 2 and 3 we obtain 3 and 7 more shapelets, respectively,
centered at mid-points between the main set shapelets at each
level. We clarify this scheme by illustration in Figure 3, where
different shapelets are illustrated by varying tones of gray. We
considered additional levels of division, but found them not to
contribute to the results: heart activity varies too much on the
time scale above 2 min, while below 15 s the resolution becomes
too poor. We also examined shapelets down to 1/128 of segment
and found no improvement of results.

Choosing the shapelet level defines the resolution of our
analysis. For example, at average respiratory rates during sleep,
one shapelet of level three will contain about 3–4 respiratory
cycles of 4 s duration. Selecting one of the possible resolutions,
we can divide all segments of a given time series into shapelets.
We can do that also for all levels, obtaining a large ensemble of
shapelets, to which we refer as pool of shapelets.

Measuring Distances Between Shapelets
Since we wish to construct a framework for comparing time series
(or parts of them, shapelets and segments), we next introduce

2Choice of 2 min as the fundamental segment length is somewhat arbitrary. This
choice involves two factors. Too short segments increase the computational cost,
while too long segments deteriorate the resolution of analysis. By carrying out the
shapelet analysis (described in rest of the manuscript) we found 2 min to be the
best compromise.
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FIGURE 2 | (A) Time series of beat-to-beat HRV data (heart rate as function of time) over a day (24 h) for a male subject, 21 years of age. Part of the day when the
subject slept is indicated in blue (self-reported information). (B) The same data but for a female subject, 23 years of age. (C) The same data for another male subject,
49 years of age. (D) The same data for another female subject, 50 years of age. (E) Scatter plot of age (shown on x) vs. mean heart rate (HR, shown on y) for all
male subjects in our sample. Each male subject is represented as two points, one for sleep mean HR and the other of awake mean HR. Mean value and standard
deviation are indicated by the cross symbol next to the scatter plot. (F) The same as in (E) but for all female subjects in our sample.

FIGURE 3 | Dividing a 2 min segment of the original 24h time series into shapelets. The length of the entire interval in figure is 2 min, as indicated. Each level contains
equally sized adjacent shapelets without overlapping. The original set of shapelets is illustrated as the top sequence at each level. Additional set of shapelets
obtained by shifting by half shapelet length is illustrated as bottom sequence at each level. For clarity, shapelets show different shades of gray. In later computations
we consider all these shapelets equally, no matter to which level they belong. We call ‘pool of shapelets’ this entire ensemble of shapelets cumulatively.

a distance between a shapelet and a segment. Segments and
shapelets can be seen as two time series of different length
(duration): a segment is always 2 min long, while shapelet length

depends on the level (15 s, 30 s, or 60 s). We first equip ourselves
with a measure of similarity between a pair of time series of equal
length. We adopt the general Euclidean measure and define the
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FIGURE 4 | Searching for best matching location between the shapelet S
(red) and the segment T (black). Shapelet is translated (shifted) along T from
the start to the end, step by step (point by point). At each location we
measure the distance D between S and the corresponding chunk
(sub-segment) of the whole segment T, which we generically denote with T’.
The length of T’ is always equal to the length of S. In this illustration the best
matching location of T’ is shown, where the distance D is minimal. This
minimal distance D is then taken as the distance δ between S and T.

distance D between time series T1 and T2 as (Faloutsos et al.,
1994; Goldin et al., 2004; Deza and Deza, 2009):

D(T1, T2) =

√∑
i

(xi − yi)2,

where xi are the values belonging to the time series T1, and yi to
the time series T2. The sum runs along the index i for the entire
length of T1 and T2. Distance D is zero if the time series are
identical to one another at each point. In any other case the
distance is greater than zero.

Now we generalize this into a distance between a shapelet and
a segment called δ. Let us (generically) denote the shapelet with
S and the segment with T. Based on the above definition of D,
we introduce δ by aligning the shapelet’s first data point with
the segment’s first data point. When S and T are positioned like
this, we can use D to measure the distance between S and the
initial chunk (sub-segment) of T that is of the same length as S
(we denote this chunk with T’). This will yield some value for
the distance. Now we shift S along T by one data point (toward
later time). S is now aligned with a different chunk of T (which
overlaps with the previous chunk except in one point on the left
and one on the right). We measure that distance and obtain a
new value. We keep repeating this procedure: translate (shift) S
along T point by point and measure the distance D at each step.
We finish this when the end point of S aligns with the end point
of T. The process is illustrated in Figure 4. We now define the
distance δ between S and T simply as the minimal distance found
during this shifting process (Xi et al., 2006; Ye and Keogh, 2009;
Hills et al., 2013):

δ(S, T) = minT′ [D(S, T′)].

Here, we denote with T’ the consecutive chunks of the segment
T, so that δ is the minimal distance D when all possible T’ are
considered. Thus defined δ meets the requirements for distance
in the mathematical sense.

Note that this minimal distance is found when S is aligned with
a specific chunk of T. In other words, the distance δ between S and
T is actually the distance D between S and the chunk of T that
is most similar to S. Therefore, there is a specific best matching

location for S along T, at which it overlaps with chunk T’ to which
it has minimal distance, as illustrated in Figure 4. So, when some
S and some T are close, it means that T includes a chunk that is
very similar to S. Note that the interpretation of δ also depends on
the level of shapelet S. It is easier for δ to be small when S is short.

Now, for each member in the pool of shapelets we can measure
the distance to all segments in the time series. Note that the
distance between a shapelet and the segment to which it belongs
is always zero, for all levels. Shapelets having small distances
to other segments will be more “characteristic” for that time
series. For example, shapelets belonging to sleep segments will
typically have small distances to other sleep segments, since many
HRV patterns recur during sleep. Similarly, “awake” segments
will typically be similar to other awake segments. The relevance
of these distances can be tuned by varying the resolution,
i.e., changing the shapelet level. This property can be used
to put together all segments belonging to sleep in one class
and segments belonging to awake in another class, i.e., make
classification of segments.

Circadian (Diurnal) Patterns in Heart
Rate Variability Data From Shapelet
Distance Matrices
We next look at all-to-all distances between segments (for
simplicity we call it distance between segments, even though by
definition the distance is measured only between a shapelet and
a segment). We create a matrix of distances between all pairs of
segments as follows. We take a shapelet from the first segment of
the measurement, and calculate the distance from that shapelet
to all other segments in 24 h. These values fill up the first row in
our matrix. Then, we take a shapelet from the second segment,
and calculate the distances to all other segments in 24 h, filling up
the second row in our matrix. Repeating this process, we arrive
to the last segment and pick one of its shapelets, whose distances
to all other segments fill up the last row in our matrix. Note that
this is a square matrix and its size is the number of segments in
24 h. In our matrix, the element i-j reports the distance from a
shapelet belonging to the i-th segment to the j-th segment (which
we here confuse with the distance between i-th and j-th segment).
Meanwhile, the element j-i will report the distance from a
shapelet belonging to j-th segment to the i-th segment. Note that
this matrix is not (necessarily) symmetric, since it depends on the
choices of shapelets. However, in further analysis this matrix will
be considered as symmetric, since our calculations indicate that
this non-symmetry mismatches are negligible.

This setup depends on the choice of shapelet, specifically
since we wish our distances to be interpretable as distances
between pairs of segments. To this aim we consistently take an
equivalently positioned shapelet in every segment. Specifically,
we chose the last one in the first row of level 2 (cf. Figure 3).
We tried several options for this analysis and this choice gave
the most interpretable results (we do not report the entire
choosing procedure).

Proceeding with the computations as described above, we
obtain a distance matrix for each subject. We represent it as a
heat-map (color-map), where the color in each matrix element
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FIGURE 5 | Distance matrices for four selected subjects visualized as heat-maps. (A) Male subject, 21 years of age, (B) Female subject, 23 years of age. (C) Male
subject, 49 years of age. (D) Female subject, 50 years of age. All matrices have 24 h of measurements indicated both horizontally and vertically. The color of each
matrix element indicates the distance between the two segments, identifies as x and y coordinate of that matrix element (we neglect the asymmetry of this matrix,
see section “Discussion” in the text). Darker colors represent shorter distances and brighter colors larger distances, so that darker cells indicate that two segments
have similar heart activity, while brighter colors connect segments with different heart activity. It can be noted that sleep shows more self-similarity than awake.

i-j indicates the distance between the i-th and j-th segment. In
Figure 5 we show matrices for the same four typical subjects
from Figure 2. All matrices offer a clear picture of sleep/awake
difference: (almost) all sleep segments are similar to most other
sleep segments (dark), but different from most awake segments
(light), with corresponding comparisons obtaining for awake
segments. The timing of falling asleep and waking up can also
be identified for all four subjects and it agrees well with the self-
reported information. Some qualitative patterns vary between
younger subjects (top two panels) and middle-aged subjects
(bottom panels). Of course, segments that are far apart have
different heart activity, whereas those that are close have similar
heart activity. In addition to the main sleep and awake stages,
we see many short periods of opposite stage within both sleep
and awake. For example, the person can relax or “take a nap”
for a short period of time during the day, which is visible
as different coloring within otherwise awake stage. Similarly,
shallow sleep, arousals or even shortly waking up is seen in all
panels. Interestingly, besides these intermittent changes of status,
sleep state shows distinct patterns that might reflect various

sleep phases (REM vs. deep sleep). This suggest the presence of
short arousals/awakenings during sleep, possibly in relation to
(Dvir et al., 2018).

DETERMINING THE ONSET OF SLEEP
VIA BEST SHAPELET

We now extend the above analysis and construct a method to
pinpoint precisely the onset of sleep using shapelet analysis. That
amounts to finding in a time series the point (or points) during
24h where the time series (heart activity) qualitatively changes
the most. We can safely claim that these points correspond to the
changes of awake status. Namely, since the subjects observed their
normal daily routines (refraining from sport and exercises) we do
not expect these changes to reflect anything else. There are at least
two such points in 24 h, one for falling asleep and one for waking
up. However, as noted earlier with Figure 5, there could be more
such points. In practice, we wish to classify all 2 min segments
into two distinct groups based on the similarities of their time
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series patterns quantified via shapelet analysis. These two classes
should (roughly) correspond to the parts of distance matrices
colored differently. Note that this information on the onset of
sleep will be independent from the self-reported information.

Identifying the Best Split Point Between
Sleep and Awake
Below we describe our procedure step by step. First, we take one
shapelet, belonging to any segment and any level. We compute
the distance δ from this shapelet to all segments in the time series.
We put all those distances in a histogram. An example for a
typical subject is shown in Figure 6. In such a histogram, small
distances will cluster in one (or more) peaks near zero, whereas
large distances will accumulate in other peak(s) away from zero.
In fact, such grouping is seen in Figure 6, one peak around
0.03 and the other around 0.45. The reason for this grouping is
clear: segments with short distances are chiefly those belonging
to the same consciousness state as the chosen shapelet (sleep,
for illustration), whereas segments with large distances are by
and large belonging to the opposite state (awake, for illustration).
What we want in our histogram, is that these two peaks are as
separated as possible, so that the corresponding segments can be
classified in two distinct groups as clearly as possible.

How to split the histogram into two optimally distinct
parts? In formal terms we are looking for the optimal split
point: the point on the horizontal axis at which the histogram
can be most meaningfully divided into two parts. This is an
optimization/classification problem that can be approached in
several ways. We resort to information theory (MacKay, 2005;
Cover and Thomas, 2006; Delgado-Bonal and Martín-Torres,
2016) and proceed as follows. We examine a tentative split point
between two adjacent bins and compute the information gain (IG)

for the corresponding division. IG quantifies how meaningful it
was to split the histogram this way. To compute IG we label the
two classes of segments with A and B. Segments with distances
smaller than the split point belong to class A, and segments with
larger distances to class B. To compute IG, we first define the
entropy E of such a division as (Uğuz, 2011; Sonka et al., 2015;
Shapiro, 2019):

E(D) = −p(A) · log2(p(A))− p(B) · log2(p(B)).

Proportions of the segments in class A and B are p(A) and
p(B), respectively. We have p(A) + p(B) = 1. That is to say, for
each division of segments into two classes, we can define the
entropy E of such a division via the above formula. Naturally, the
above defined entropy is maximal when the segments are split
in two equal classes, while it is minimal when all segments are
in one class and none in the other class. Entropy will be used to
determine information gain.

Before proceeding further, we recall that sleeping and awake
segments are not homogeneous time-wise, since subjects can
briefly change their consciousness status during “formal” sleep
and awake. However, we are interested in distinguishing the sleep
from awake states, regardless of when and in how many pieces
it occurs. That is to say, “taking a nap” during the day is to be
classified as sleep. A typical situation is illustrated in Figure 7.

Still, our focus is determining the onset of the real sleep, when
the subject intentionally fell asleep. Namely, other changes of the
awake status are not intentional and it is not clear how will they
be reflected in the data. Hence, our next step is to improve the
way we determine the optimal split point by including the self-
reported information.

FIGURE 6 | Example of a histogram of all distances between the selected shapelet (taken from sleep, just for illustration) and all segments in a time series. Two main
peaks mentioned in the text are visible, one for smaller distances, one for larger distances (denoted as “sleep” and “awake” for easier orientation). To find the optimal
split point we test all tentative split points between each two histogram bins. We do so by computing the information gain corresponding to each tentative split point
and choose the one that gives the best (maximal) information gain. The optimal split point for the histogram above is marked by a vertical red line. Segments whose
distances are smaller (respectively, larger) than the optimal split point are defined as belonging to the first (respectively, second) class. After repeating this procedure
for the entire pool of shapelets we define the best shapelet as the one, whose optimal split point gives the maximal information gain. We call this best split point and
consider it the output of our method for determining the onset of sleep.
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FIGURE 7 | Conceptual (illustrative) representation of the classification of
segments. Red and blue lines represent sleep and awake stages, respectively,
obtained via our classification. Self-reported information is indicated in boxes.
Actual sleep and awake stages overlap only partially with the stages as
reported by the subject.

Considering a tentative split point, most segments classified
as A belong to either self-reported sleep or self-reported awake
stage. Let us assume for a moment that A belong to sleep. Then,
most segments classified as B will belong to self-reported awake,
but not all (see Figure 7). Similarly, there will be some segments
classified as A, which will according to self-reported information
belong to awake. We wish our optimal split point to account
for this as best possible. We want to minimize the number of
“misclassified” segments, or at least to have them as similar
as possible to “correctly” classified segments of the same kind.
In other words, we want to improve the information provided
by the subject. We thus define IG starting with the general
formula (Mitchell, 1997; Carmel et al., 2002; Ye and Keogh, 2009;
Rakthanmanon and Keogh, 2013):

IG = E(D)before − E(D)after,

which states that IG is the difference in entropy before and
after the splitting. More precisely, IG, as the difference of these
two entropy values, is also weighted average entropy of both
subsets after splitting, and can be expressed via formula:

IG = E(D)−
nawake

ntotal

∗

E(Dawake)−
nsleep

ntotal

∗

E(Dsleep).

Here, E(D) is calculated via previous formula, ntotal is the
total number of segments in 24h, nawake and nsleep are the total
number of segments classified in the class where majority of
segments, respectively, belong to awake and sleep according to
self-reported information. Values E(Dawake) and E(Dsleep) are
obtained by considering the fact that “misclassified” segments
represent a splitting of its own within self-reported sleep and
awake stage. Hence, we calculate them using the earlier formula
for Entropy, but now considering “correctly” classified vs.
“misclassified” segments.

To sum up, for any tentative split point, IG quantifies how
much are we better off considering that split point than self-
reported split point. Then, the optimal split point is defined as
the one for which the information gain is maximal. Such split
point represents the best improvement of information obtained
via splitting with respect to the self-reported information. With
this in mind, we try each tentative split point, calculate the IG
associated with it, and identify the split point leading to maximal
IG as the optimal split point.

Furthermore, we note that the above procedure allows us
to find the optimal split point for any shapelet in the pool

of shapelets. Each optimal split point comes with its own IG.
But these values of IG can be compared, and in particular, the
maximum among them can be identified. We call it best split point
and the shapelet corresponding to it the best shapelet. It is the
shapelet whose optimal split point comes with the maximal IG
compared to IGs associated with all other shapelets. Such shapelet
provides a natural way to divide the original time series into two
groups (classes) of segments with qualitatively distinct properties.
It is in accordance with the best shapelet that we make the definite
classification of segments into sleep and awake in what follows.

But before proceeding, we note that the above procedure could
depend on the choice of bin size in our histogram. A histogram
bin may be larger or smaller, so to test how appropriate was
our choice, we employ the Levene’s test (Bland and Altman,
1996; Zimmerman, 2010; NIST, 2017). This test will assess the
equality of variances for two groups with respect to bin size.
The first group consists of 1%, 2%, 3% grades and the second
10%, 20%, 30% grades. Data in first group and in second group
have different variance (p-value 0,029). Next we perform the
Levene’s test and establish the difference in variance of group with
histogram resolutions (1%, 2%, and 3%). In short, we found that
the choice of bin size plays little or no role for our analysis. To
close this description, we illustrate this entire procedure in a block
diagram for easier orientation.

Classification of Time Series via Best
Shapelet
To illustrate the classification into sleep and awake via best
shapelets we consider the same four subjects as in Figure 2.
Of course, computation on each of their HRV data leads to a
different best shapelet, characteristic for their time series. We
obtain the classification as described above explained in more
details in Figure 8 and show the results in Figure 9 (left panels).
Consciousness status determined by our approach is shown
vertically (red line) as a function of time during 24 h. The green
dashed line denotes the self-reported information. Our method
correctly indicates that the subject is sleeping when (most likely)
he/she is indeed sleeping, with some exception in Figure 9A,
where the subject has had somewhat erratic sleep. In contrast,
awake status is determined less precisely, since we see many
intermittent intervals of sleep stage, which possibly account for
subject relaxing or resting with reduces vigilance. Actually, this
“conservatism” in establishing wakefulness is desirable in the
context of, for example, traffic applications, where one needs an
alarm system that goes off at the initial stage of fading vigilance.

To see how our method’s output aligns with shapelet distance,
we show the distance from the best shapelet for the same four
subjects in Figure 9 (right panels, blue line). Noisy profiles
are smoothed for better clarity (black line). Indeed, the first
subject seems to have had “shallow” sleep, as his heart activity
seems less qualitatively different during sleep. This conclusion
comes from observation that even the best shapelet was not
discriminatory enough to establish a clear separation in distance
statistics, which explains why the method found his sleep to be
less stable. However, even in this case, our method identified
many (potential) changes of awake status, even if some of them
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FIGURE 8 | Schematic representation (block diagram) of the entire procedure
of our shapelet analysis and identification of best shapelet. It is shown here for
easier orientation. Illustration is again done for a shapelet selected from sleep.

are identified incorrectly. Other subjects’ sleep was more stable,
as correctly found by our method. This confirms that our method
is made to indicate awake status only when that status is perfectly
clear and that all intermediate stages of subject’s consciousness
are defaulted as sleep.

Pinpointing and Predicting the Onset of
Sleep
The simplest way to put our method to practical use is to
make the alarm go off each time the above analysis indicates
that the subject is asleep. Since our method robustly predicts
wakefulness, we can reliably claim that a subject is indeed awake
whenever our method indicates him/her to be awake. In formal
terms this means we have many false positives – instances of
the method indicating sleep while subject is (most probably)
awake. Of course, from the practical viewpoint, false positives are
more desirable than false negatives – instances when the method
indicates wakefulness while the subject is asleep. Nevertheless,
for our method to be of practical use, we need to examine how
false positives can be reduced. To this aim we study more closely

the performance of our method in the vicinity of the onset of
sleep. We report again the data from Figure 9 but this time
zooming to the time window of 2 h around the self-reported
time of falling asleep (1 h before and 1 after). The results are
shown in Figure 10, where we magnify the information from the
panels on the left side of Figure 9, around the onset of sleep.
Recall that this determination of awake status is independent
from subject’s self-reported information. For the case (a), our
method indicates that subject is classified asleep much before he
reported to be asleep. While such a conservative determination
is in principle desirable for practical purposes, this situation
is a false positive that can hinder the operation of the alarm
system. On the other hand, our method performs best in case
(c), where the subject’s status comes out as awake almost entire
actual awake time and as sleep almost immediately after the
subject (most likely) fell asleep. Cases (b) and (d) are again
showing the conservative performance of our method, indicating
that subjects are asleep before they (most likely) were actually
sleeping. This could be due to them relaxing for the bed time,
which is reflected in their cardiorespiratory interaction that
gradually becomes more “sleep-like.” Nevertheless, in the context
of realistic applications of our method, excessive relaxation can
lead to fading of vigilance so triggering an alarm in such a
situation could be a good strategy.

To further improve the precision of detecting the exact
moment of fading vigilance, we note that above results are
obtained using only one shapelet. And even if this shapelet is
the best shapelet, it is likely that classification via other shapelets
will also contain useful information. Therefore, it makes sense
to average the results obtained via several different shapelets
(not necessarily best), expecting that each of them (depending
on its size and position) will contribute additional information.
To this aim we re-do the analysis from Figure 10, but now we
average over 50 randomly chosen shapelets. Randomization is
done not just via level, but we also introduce a random shift
(not just half length as in Figure 3), and take shapelets from
random location during 24 h. Averaging over all 50 thus obtained
classifications, we obtain the results shown in Figure 11, where
consciousness state is a continuous value ranging between 0
(sleep) and 1 (awake). Lines, colors and time window are as
in Figure 10.

This insight clearly gives more flexibility in determining
the consciousness status. For example, one could adjust the
alarm to go off at a prescribed value between 0 and 1, when
the vigilance level is deemed too low. Note that pure sleep
and awake in these plots mean that almost all 50 shapelets
indicate them as such, which offers a more stable classification.
But still, confronting with self-reported information (green
curve), the actual correlation is weak. This suggests that
focusing on the timing of the onset of sleep might not be
so useful for practical applications. Perhaps simply quantifying
the vigilance might be a better defined and more useful
problem to solve. We carried out the same analysis for all
75 subjects in our sample. Findings were similar to the four
representative subjects in above two figures. Our method
is systematically quick to signals sleep. What is also very
clear, is that the heart activity at the onset of sleep strongly
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FIGURE 9 | (A, left) Sleep and awake stages determined by our method for the case of a male subject, 21 years of age. Red lines indicate consciousness status as
a binary value (sleep or awake) as a function of time over 24 h of measurement. (A, right) Raw data of distances from the best shapelet as function of time for the
same subject (blue line), smoothed via Butterworth filter (black line) for better clarity. Green dashed line shows the self-reported information in both plots. (B) The
same plots for a female subject, 23 years of age, (C) a male subject, 49 years of age, and (D) a female subject, 50 years of age.

depends on the particularities of each individual. Universal
trends that could be used to standardize our method are
very hard to find.

We next examine how good our method is in predicting
(anticipating) the moment of a subject falling asleep. It is clear
from the previous figure that this is hard, since at the onset
of sleep our method indicates frequent transitions between
sleep and awake. Yet for practical purposes the first such
transition is important, since it suggests that the subject is
definitely less vigilant, if not already asleep. Hence, we use our
method to approximate the time of falling asleep as follows:
We take the self-reported time of falling asleep and search
for the nearest continuous interval composed of at least five
consecutive segments of sleep (10 min). The beginning of
such an interval is taken as the approximation for the time
of falling asleep. If subject falls asleep exactly as he/she has
indicated, the values will coincide. Now, we scatter plot the

self-reported time of falling asleep against the time approximated
as just described. The results for men are shown in Figure 12A
and for women in Figure 12B. In most cases our method
correctly identifies the transition (almost) immediately after it
has occurred or even slightly before. However, in some cases
our method is significantly too early or too late in determining
the onset of sleep. As already discussed, that is due to large
differences in sleeping transition from person to person. Our
method (at this stage of development) is not sensitive to it.
Yet, the fact that most subjects still lie along the diagonal
is a promising sign. Our approach can, at least in principle,
establish the onset of sleep for man and woman of any age and
confirms that the increase of cardiorespiratory interaction starts
before sleep occurs.

To finalize our analysis, we define a measure to quantify
the discriminative power of our shapelet-based classification.
To this end we consider again the histogram of distances from
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FIGURE 10 | (A) Zoom to the onset of sleep for male subject, 21 years of age. Red line indicates the consciousness status determined by our method as a binary
value (sleep or awake) within time window of 1 h prior and 1 h after the self-reported time of falling asleep. Green dashed line is the self-reported information. (B) The
same for female subject, 23 years of age. (C) The same for male subject, 49 years of age. (D) The same for female subject, 50 years of age.

FIGURE 11 | Zoom to the onset of sleep as in Figure 10, but this time calculated via 50 randomly chosen shapelets as described in the text (not via single best
shapelet). The consciousness status is no longer binary (0 or 1), but a continuous value ranging between sleep (0) and awake (1). (A) Male subject, 21 years of age.
(B) Female subject, 23 years of age. (C) Male subject, 49 years of age. (D) Female subject, 50 years of age.

best shapelet (as shown earlier). Such histogram has two peaks,
corresponding to two consciousness states, separated by the
optimal split point. Now, for each subject we calculate the
separation between those two peaks. Large separation means
that heart activity is very different during sleep as opposed to
awake, whereas small separation means the contrary. We scatter
plot the values of this separation against the age for all subjects
are show the results in (Figure 13). As expected, we find a
good correlation for men. Interestingly, a negative correlation
is significant for men, but not for women. It appears that the
discriminatory power of heart activity to differentiate between

sleep and awake decreases a lot more with age for men than
for women.

DISCUSSION

We proposed a new method for automatically determining the
consciousness status (sleep or awake) of a person from heart rate
data only. Our method is based on shapelet analysis which looks
for self-similarities in the data. By finding the best shapelet – the
chunk of time series whose self-similarity properties allow for
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FIGURE 12 | (A) Scatter plot of self-reported time of falling asleep (shown horizontally) vs. time of falling asleep calculated via best shapelet as described in the text
(shown vertically) for male subjects. Each subject is shown as one point. The diagonal is marked for easier orientation. For simplicity and easier comparison, we took
only subjects who fell asleep between 19:00 and 00:00. (B) The same for female subjects.

FIGURE 13 | The value of mean distance from the best shapelet for one class minus the mean distance from the best shapelet for the other class (shown on y) is
scatter plotted against the age (plots A for men and B for women). Regression lines are indicated in black, along with the respective values of R2 and p-value.

the best split of time series into two classes – we determine the
awake and sleep states independently of information provided
by the subjects, i.e., relying on HRV data only. The length of
the best shapelet for most subjects is close to three lengths of a
typical respiration cycle. This was somewhat expected, since RSA
(synchronous modulation of heart by respiration rhythms) is
known to be a reliable indicator of strong vagal activity and hence
a reliable indicator of autonomic state (Moser et al., 2008). The
method is developed to offer an individually optimal detection,
but it can probably be extended to a longitudinal analysis of
patterns, so that changes in behavior can be detected.

One of the applications of the approach is foreseen
in public and general safety. Namely, our method can be
developed into an alarm system that is triggered in case the
system recognizes that the person under observation could
be falling asleep. The paramount interest here is to have
zero rate of false negatives. Our method seems to have
covered this aspect rather well. In contrast, another goal

is to minimize the number of false positives, but in this
aspect, we encountered several limitations where there is room
for improvement.

First, the proper way of calibrating our method would mean
to have access to the precise timing of a subject falling asleep
(“ground truth”). Note that while self-reported information is
useful in narrowing our search, it is really not the ground
truth: subjects can only report the time when the wanted to
fall asleep, but not the time when they actually did. More
complex experiments are needed to establish a reliable ground
truth of the onset of sleep. A subject in a sleep laboratory
could be simultaneously measured by Holter and by another
device capable of independently determining the consciousness
status. However, this will inevitably involve equipment that can
disturb the sleep itself and the HRV measurements. Also, it is
unlikely that any ground truth will be available in any practical
(applicative) situation, so the ultimate interest are the methods
that operate only with HRV data.
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Second, further improvements of our method are possible
through novel data analysis approaches. Specifically, note that
in this work we used only the best shapelet to compute self-
similarities. However, as a side result we found that splitting
into just two classes of sleep and awake does not depend
heavily on the choice of shapelet. In fact, many other shapelets
have similar classification power. This means that one could
cumulatively use several shapelets for classification, which would
allow classification not as a binary value, but also to classify
intermediate stages. Moreover, instead of 2 min segments,
one can start with segments of shortened initial length and
improve the resolution.

Third, another limitation of our method revolves around
using prior data for individual subjects. In commercial
applications this might be difficult, since the market might
need an alarm system to work immediately and without prior
data. This, however, is a very challenging task, especially due to
particularities of each individual’s heart activity as he/she is falling
asleep. On the other hand, having prior data for a period even
longer than 24 h would allow for far more precise determination
of consciousness status. In fact, this should also enable to predict
the onset of sleep minutes ahead, rather than establishing the
onset after it had happened.

Fourth, we realize that there are two different way of looking at
the problem of determining the consciousness status. One way is
to make determination for individuals only based on their prior
data. Another is the search for universal patterns in everyone’s
data and try to extract a universal method from those. Our work
has shown that the first approach might be more promising in
the short term. For any serious approach to the second approach
one would need a far larger and more diverse sample of subjects.
However, it is clear that the second way is more promising in
terms of applications.

Fifth, we stress that we have focused on just one possible
method of determining the onset of sleep from many conceivable
methods. Clearly, a pressing issue revolves around comparing
such methods and establishing which works best depending on
the situation and the available information. Detailed comparison
of these methods, while very important, is beyond the scope
of this paper. But we note that such comparison might not be
simple, since it will involve methods that operate on different
foundations, for example, with or without ground truth.

Finally, our work has confirmed that shapelet analysis of
cardiorespiratory interactions as present in HRV data is a useful
tool. Except for methodological improvements mentioned above,

this opens up further research questions. One of them has been
mentioned already, namely, sleep phases could be studied via
shapelet analysis. Shapelet distance matrices in Figure 5 reveal
distinct patterns within sleep for all subjects, whose more detailed
study is warranted.
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tijanabojic@vinca.rs;

bojictijana@gmail.com

Specialty section:

This article was submitted to

Autonomic Neuroscience,

a section of the journal

Frontiers in Physiology

Received: 29 September 2019

Accepted: 14 January 2020

Published: 14 February 2020

Citation:
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Objective: We explored the physiological background of the non-linear operating

mode of cardiorespiratory oscillators as the fundamental question of cardiorespiratory

homeodynamics and as a prerequisite for the understanding of neurocardiovascular

diseases. We investigated 20 healthy human subjects for changes using electrocardiac

RR interval (RRI) and respiratory signal (Resp) Detrended Fluctuation Analysis (DFA, α1RRI,

α2RRI, α1Resp, α2Resp), Multiple Scaling Entropy (MSERRI1−4, MSERRI5−10, MSEResp1−4,

MSEResp5−10), spectral coherence (CohRRI−Resp), cross DFA (ρ1 and ρ2) and cross

MSE (XMSE1−4 and XMSE5−10) indices in four physiological conditions: supine with

spontaneous breathing, standing with spontaneous breathing, supine with 0.1Hz

breathing and standing with 0.1 Hz breathing.

Main results: Standing is primarily characterized by the change of RRI parameters,

insensitivity to change with respiratory parameters, decrease of CohRRI−Resp and

insensitivity to change of in ρ1, ρ2, XMSE1−4, and XMSE5−10. Slow breathing in supine

position was characterized by the change of the linear and non-linear parameters of

both signals, reflecting the dominant vagal RRI modulation and the impact of slow

0.1Hz breathing on Resp parameters. CohRRI−Resp did not change with respect to

supine position, while ρ1 increased. Slow breathing in standing reflected the qualitatively

specific state of autonomic regulation with striking impact on both cardiac and respiratory

parameters, with specific patterns of cardiorespiratory coupling.

Significance: Our results show that cardiac and respiratory short term and long

term complexity parameters have different, state dependent patterns. Sympathovagal

non-linear interactions are dependent on the pattern of their activation, having different

scaling properties when individually activated with respect to the state of their joint

activation. All investigated states induced a change of α1 vs. α2 relationship, which can

be accurately expressed by the proposed measure—inter-fractal angle θ . Short scale

(α1 vs. MSE1−4) and long scale (α2 vs. MSE5−10) complexity measures had reciprocal

interrelation in standing with 0.1Hz breathing, with specific cardiorespiratory coupling

pattern (ρ1 vs. XMSE1−4). These results support the hypothesis of hierarchical organization
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of cardiorespiratory complexity mechanisms and their recruitment in ascendant

manner with respect to the increase of behavioral challenge complexity. Specific and

comprehensive cardiorespiratory regulation in standing with 0.1Hz breathing suggests

this state as the potentially most beneficial maneuver for cardiorespiratory conditioning.

Keywords: complexity, RR interval variability, respiration rhythm variability, cardiorespiratory coupling, slow

breathing, orthostasis

INTRODUCTION

The interaction of cardiac RRI and respiratory signal is a
complex, mutually interrelated phenomenon. Related modern
research poses questions like: why do RRI and respiratory
signal values vary and what generates their complexity when
forming a meaningful, structural richness (Grassberger, 1991)?
Lack/decrease of RRI variability has been observed as a sign
of pathology (Task Force Guidelines, 1996; Platiša and Gal,
2010; Valencia et al., 2013; Voss et al., 2013; Platiša et al.,
2016a). Complementing homeostatic assumption, the lack of
RRI oscillations (“oscillation death,” Stankovski et al., 2017)
outlines a danger resulting from serious cardiac problems (Task
Force Guidelines, 1996; Neves et al., 2012; Platiša et al., 2016b).
Classical data on HRV refer to the changes of HRV in the linear
domain, while more than 80% of HRV fluctuations belong to
non-linear complex patterns (Yamamoto and Hughson, 1994).
Although a few studies have pointed to increased complexity
in the disease (Buccelletti et al., 2012; Valenza et al., 2017),
it seems that the pathogenesis is most often followed by “de-
complexification” (an increase of regular patterns in biological
rhythm, Buccelletti et al., 2012; Sassi et al., 2015). So, complex
and high rhythm variability refers to homeodynamics (Ernst,
2014) as a biophysical background of allometric physiological
regulation (long termmemory and multiscale correlations, West,
2010). Therefore, homeodynamics is a fundamental property of
advanced biological sophistication.

Cardiac homeodynamics is a result of multilevel coupling:
excitation-contraction coupling in the heart (Bers, 2018);
hormonal regulation (Bai et al., 2009); thermoregulation
(Fleisher et al., 1996); with autonomic nervous system (ANS)
regulation as the dominant factor of this phenomenon. ANS
regulation of cardiac homeodynamics is obtained by:

(i) sympathetic and parasympathetic effectors, with
prevalently antagonistic, synchronous, synergetic, simultaneous
(in-coupled) action on the heart (Zoccoli et al., 2001; Bojić, 2003,
2019; Silvani et al., 2003; Paton et al., 2005; Gierałtowski et al.,
2013), and

(ii) coupling of cardiac rhythm with other biological
oscillations, especially with the ones generated from breathing
(i.e., central coupling of neural oscillators in ventrolateral
medulla Porta et al., 2012; Schulz et al., 2013, 2018; Del Negro
et al., 2018 and peripheral coupling dominated by the Bainbridge
reflex (Bainbridge, 1930; Billman, 2011; Kapidžić et al., 2014).

Cardiopulmonary coupling is an intriguing phenomenon
whose principal role, the energetic efficacy of oxygen transport,
was recently found to extend to the adaptive capacity of the

organism to internal and external challenges (Porges, 2007). This
capacity for adaptation is investigated by the measurements of
cardiopulmonary complexity by non-linear domain techniques
(Goldberger, 2006). In the context of fundamental research, the
majority of data on cardiovascular and respiratory autonomic
patterns is based on the analysis of parameters of HRV linear
domain. On the basis of these results, we deduce the antagonism
of autonomic effectors on RRI regulation (change of posture, i.e.,
supine vs. standing, Montano et al., 1994; Levy and Martin, 1996;
Jasson et al., 1997) or their synergism of action (i.e., supine vs.
standing with slow breathing, de Paula Vidigal et al., 2016). These
interrelated patterns of sympathetic vs. parasympathetic activity
on RRI regulation are not confirmed for non-linear domain
dynamics (Sassi et al., 2015).

Physiological states as RRI and respiration regulatory
patterns include:

Supine position (supin), considered the standard baseline
for all cardiopulmonary physiological investigations. It
is characterized by sympathetic withdrawal and small
parasympathetic dominance on RRI regulation (Levy and
Martin, 1996).

Active standing (stand), a typical, well-characterized
cardiocirculatory pattern of sympathetic dominance and vagal
withdrawal on RRI regulation (Levy and Martin, 1996). The
respiration pattern is characterized by increased ventilation
and unchanged mean respiratory frequency with respect to
supine position (Chang et al., 2005). With respect to supine
position, this state is known for its beneficial effects on a number
of neurocardiovascular (i.e., heart failure) and respiratory
disturbances (Chang et al., 2004a,b; Zafiropoulos et al., 2004).
The effect of active standing, to the best of our knowledge, has
not been investigated with respect to the parameters of RRI,
respiration and cardiopulmonary coupling in the non-linear
domain, that could be of critical importance for the evaluation of
RRI and respiratory adaptability on internal (i.e., disease state)
or external (i.e., microgravity) challenges.

Slow 0.1 Hz breathing, a specific breathing frequency
resulting from the maximum effect of respiration on RRI
modulation (RSA, Eckberg, 1983; max Total Power of HRV,
Cooke et al., 1998). This effect is vagally mediated and most
probably obtained by system resonance effects of respiratory
oscillatory drive on heart rate regulatory networks modulated
by baroreflex (Julien, 2006; Castiglioni and Parati, 2011). This
is, to the best of our knowledge, the maximal respiratory
mediated physiological vagal drive on the heart. Its functional
meaning was primarily attributed to energetic efficiency of the
cardiorespiratory system, but also to the adaptability of the
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organism to unexpected environmental demands (Porges, 2007).
Increased cardiorespiratory synchrony in slow 0.1Hz breathing
supports the energetic efficiency theory (Goldberger, 2006), but
until now the question of cardiopulmonary adaptability was
not addressed.

Specifically, regarding respiratory complexity, the change of
posture and breathing regime are significantly interrelated with
the breathing pattern (Mortola et al., 2016; Hernandez et al.,
2019; Mortola, 2019). These two conditions, both individually
and jointly, could give an insight into the contribution of (a) the
peripheral factor for changed respiratory mechanics (horizontal
vs. vertical plane) during orthostatic challenge, and (b) the impact
of slow, voluntary 0.1Hz control of breathing to the complexity
regimes of the respiratory signal. Variability of the respiratory
signal in the non-linear domain is of critical importance for
the recovery of intensive care patients on artificial ventilation
(Papaioannou et al., 2011). To the best of our knowledge, there
are no data on the non-linear dynamics of respiratory signal in
the conditions of peripheral respiratory drive change (change
of posture) combined with the change of slow 0.1Hz frequency
respiratory drive. This interaction could be one of the critical
mechanisms for the beneficial effect of posture change and slow
breathing on critical care situations like weaning from artificial
ventilation (Stiller, 2013).

Finally, as it goes for the simplest non-linear systems,
RRI and respiratory regulation in coupled behavioral states
like supination with slow 0.1Hz breathing (supin01) and
standing with slow 0.1Hz breathing (stand01), most probably
contravene the principles of proportionality and superposition
(Goldberger, 2006). Slow 0.1Hz breathing in two specific
body postures could potentially have completely different
effects on cardiorespiratory complexity parameters with respect
to the predicted simple summation. Additionally, contrary
to the previously investigated pharmacological joint blockade
of sympathetic and parasympathetic activity on the RRI
regulation (Silva et al., 2017a), to the best of our knowledge,
cardiopulmonary complexity measures were not investigated
in the state of joint physiological enhancement/synergy of
sympathetic and vagal modulation of RRI (standing with slow
0.1Hz breathing). This state was identified in the intensive care
practice as the state of particular benefit for cardiopulmonary
rehabilitation (Cooke et al., 1998; Bruton and Lewith, 2005; Dick
et al., 2014; Russo et al., 2017).

Cardiorespiratory Variables as an Insight
Into Cardiorespiratory Cross Talk
Several studies have shown DFA exponent α to have a great
power for probing complexity, as self-similarity across scale
(Peng et al., 1995a,b, 2002; Ivanov et al., 1999; Fadel et al.,
2004; Gierałtowski et al., 2013; Kristoufek, 2015; Barbiery et al.,
2017). The advantages of fractal scaling exponents α1 and α2 over
conventional methods like spectral analysis and Hurst exponent
include the possibility of detecting long range correlations
embedded in non-stationary/non-ergodic time series and of
avoiding spurious detection of long range correlations that
are the consequence of non-stationarities (Peng et al., 2002;

Sassi et al., 2015). This method is validated (Peng et al., 1994)
and successfully applied on both RRI (Peng et al., 1995a,
2002; Francis et al., 2002; Castiglioni et al., 2009, 2011) and
respiratory interval time series (Peng et al., 2002; Fadel et al.,
2004; Papaioannou et al., 2011). It quantifies information self-
similarity across scale on both short term (α1) and long term time
scales (α2).

MSE is anothermeasure of signal complexity (i.e., irregularity)
successfully applied on physiological signals (Costa et al., 2003)
and in specific RRI (Silva et al., 2016, 2017a,b). It quantifies
information irregularity (unpredictability) of sequence structural
evolution in signal on both short term (MSE1−4) and long term
time scales (MSE5−10).

Measures of self-similarity (DFA) and irregularity
(MSE) are critical parameters of cardiovascular and
respiratory system adaptability and physiologic plasticity
(Goldberger, 2006). Fractal dynamics and irregularity in
spontaneous RRI and respiratory signal fluctuations have
implications for:

a. Understanding physiological cardiopulmonary regulation
b. Recognition of life-threatening cardiovascular events (i.e.,

heart failure—Silva et al., 2017a; Huikuri et al., 2000;
Goldberger et al., 2002)

c. Recognition of respiratory disturbances (i.e., adaptability of
critically ill patients to spontaneous breathing—Papaioannou
et al., 2011)

d. Evaluation of detrimental effects of respiratory pathologies
on neurocardiovascular physiology (Goulart et al., 2016).
This ultimate factor unequivocally speaks in favor of the
importance of understanding the cardiopulmonary coupling
and its physiological background.

Finally, physiological non-linear signals like RRI (Peng et al.,
1995a) and respiratory signal (Peng et al., 2002) couple
(Moser et al., 2006; Schulz et al., 2018). The pattern and
degree of the coupling can be evaluated both by means
of linear and non-linear analytical methods (Podobnik and
Stanley, 2008; Horvatic et al., 2011; Podobnik et al., 2011;
Zebende, 2011; Blinowska and Zygierewicz, 2012; Kristoufek,
2014, 2015; Kwapien et al., 2015; Sassi et al., 2015). In
accordance with that preposition, we applied spectral coherence
(CohRRI−Resp, in the linear domain), cross DFA and cross
MSE (ρ and XMSE in the non-linear domain, respectively) as
the tools for estimating the level of cardiorespiratory coupling
in four different physiological states. In order to investigate
scale dependent changes of cardiopulmonary coupling of both
complexity patterns, we separately analyzed cross DFA and cross
MSE for short term and long term time scales (ρ1, ρ2 and
XMSE1−4, XMSE5−10, respectively).

On the basis of the above facts we formulated the following
working hypotheses:

a. Individual posture changes and breathing regime changes
differently affect RRI and respiratory complexity measures due
to different mechanisms of regulation;

b. Slow 0.1Hz breathing could have posture dependent effect on
RRI and respiration complexity measures;
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c. Standing with slow 0.1Hz breathing could be regarded
from the standpoint of cardiopulmonary complexity
evaluation as a state of particular interest for cardiopulmonary
adaptive conditioning;

d. Different forms of cardiopulmonary coupling (CohRRI−Resp,
ρ, and XMSE) could have different, state-dependent patterns
and these patterns could scale in dependent and mutually
interrelated ways.

The scope of this comprehensive analysis was to analytically
investigate complex state-specific synergetic and/or antagonistic
patterns of RRI regulation, state-specific impact of body
plane and breathing regime on respiratory regulation and
to provide synthetic conclusions regarding the patterns of
cardiopulmonary coupling. The four physiological states were
chosen as typical patterns of RRI vegetative effectors’ activity and
respiratory regulation.

METHODS

Subjects
We conducted the study protocol on 20 healthy adult human
subjects (13 males, age 34.4 ± 7.4). The protocol was approved
by the Ethical Committee of the Faculty of Medicine, University
of Belgrade (No. 2650/IV-24). Criteria for inclusion of subjects
into the study were: absence of any health problems and an age
between 20 and 45 years. Exclusion criteria were: subjugation
to any therapy (acupuncture, medications, etc.); a history of
cardiovascular, pulmonar or any other diseases; presence of any
health disorders at the time of the assessment or in the time
leading up to the performance of the experimental measurements
(such as cold, flu, pollen allergy, high temperature, migraines,
etc.) and pathological symptoms during the experimental
procedures (high blood pressure, arrhythmias, headache, fatigue,
etc.). For female participants, an additional criterium of exclusion
was the second part of menstrual cycle (because of its substantial
and diverse cardiovascular autonomic regulation in females, Bai
et al., 2009; Javorka et al., 2018). All participants were advised
to refrain from food and drink from about 4 h before the
experiment, not to exercise (running, gym, yoga, other), to be
restful and alert.

Five participants (out of 25) were excluded because of
pathological symptoms discovered during the recordings.

Study Protocol
The study protocol was performed under controlled laboratory
conditions at the Laboratory for Biosignals, Institute for
Biophysics, Faculty of Medicine, University of Belgrade. It was
conducted in a quiet, refreshing environment at a constant
temperature (22 ± 1◦C) during the experimental procedures
for all subjects. Experiments were undertaken between 8 and
12 a.m., in order to control the circadian rhythm variability
stemming from autonomic regulation (Bojić, 2003). All subjects
were subjected to 10min of relaxation in a supine position before
recording. There was no restriction imposed on the air flow
rate. Instead, subjects were advised to adjust the ventilation at
the rate that felt most comfortable for them. They were also

strictly instructed not to talk during the experimental procedures.
The ECG (RRI) and respiration signals were simultaneously
recorded in four conditions/sessions: supine and standing
positions at spontaneous breathing rates, and in supine and
standing positions with the slow paced 0.1Hz breathing rates
(supine, stand, supin01, and stand01, respectively). Session
recordings lasted for 20min, with a 5min pause between the
supine and standing position, in order to meet the criteria
for cardiorespiratory complexity analysis (Peng et al., 1995a,
2002) and to obtain the stabilization of autonomic regulation
in each state (Bojić, 2003). The sequence of these four sessions
was randomly chosen, aiming at avoiding possible sequence
influence on the experimental results. Slow breathing with
a paced rhythm of 0.1Hz was dictated by a computer web
metronom sound1. Subjects adjusted each start of inhalation
and exhalation according to the beap sound of the metronome.
Thus, inhalation and exhalation in slow breathing sessions had
equal durations. Subjects were trained and instructed for slow
breathing regime before the recording sessions.

Data Acqusition
ECG and respiration signal acquisition was done by means of
Biopac MP100 system (Biopac System, Inc, Santa Barbara, CA,
USA; AcqKnowledge 3.91 software). Main ECG lead registration
electrodes were attached on the projections of clavicle bones and
the grounding on the right ankle. The belt with resistive strain
gauge transducer for continuous recording of breathing was
placed slightly above the costal line. Both signals were sampled
with 1,000Hz frequency rate. We adjusted filters according to
biopack instructions for general measurements: gain setting 10,
low pass filter with 10Hz and without high pass filter (DC-
absolute respiratory measurement).

Data Processing
We maintained controlled conditions during the recordings.
Subjects were instructed to take a comfortable position which
would allow them not to make any movements during the 20min
recording session. By visual analysis we agreed that there was no
need for additional filtering of ECG signals. Respiration signal
was low pass filtered (4th order Chebyshev filter) in order to
erase little jitters physiologicaly appearing in the minimum level
of expiration, but unrelated to research results (Kapidžić et al.,
2014; Supplementary Data Sheet 1). The corresponding cut-off
frequency was 1Hz. RRIs were extracted from the ECG signal
using Pick Peak tool in Origin (Microcal, Northampton, MA,
USA; missed R peaks we added manually). Since the sample
rate of the respiration signal was uniform (1,000Hz), while RRI
values form signals with unequally positioned samples (sampling
frequency lower frequency than 1,000Hz), a resampling of
respiration signal was performed, according to the samples of
RRIs. It was done using our custom Matlab program (Kapidžić
et al., 2014; Supplementary Data Sheet 1).

The indices for our examination were: (a) linear measures
of heart rate variability: mean value and standard deviation
(Task Force Guidelines, 1996) (b) short term exponent α1 as

1https://www.webmetronome.com/
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a fractal measure which in heart rate strongly correlates with
changes in low and high frequency oscillations (sympathetic and
parasympathetic activity) (Weippert et al., 2015; Shiau, 2018);
(c) long term exponent α2 as a fractal measure which in heart
rate spectrum corresponds to a very low frequency band (Francis
et al., 2002); (d) multiscaling entropy at short time scales (1–
4 samples, MSE1−4), related to fast oscillations, respiratory and
predominately vagal control (Silva et al., 2016); (e) multiscaling
entropy at long time scales (5–10 samples, MSE5−10), related
to slow oscillations, predominately of sympathetic control (Silva
et al., 2016); (f) spectral coherence (CohRRI−Resp), reflecting the
presence (Daoud et al., 2018) and degree (Faes and Nollo, 2011)
of linear cardiac and respiratory oscillatory synchronization; (g)
short scale and long scale cross DFA (ρ1 and ρ2, respectively
Podobnik and Stanley, 2008; Horvatic et al., 2011; Podobnik et al.,
2011; Zebende, 2011; Kristoufek, 2015; Kwapien et al., 2015 as
the parameters of cross correlations of fractal RRI and respiratory
variations; and (h) short and long scale cross MSE (XMSE1−4 and
XMSE5−10, respectively) as the measure of cross correlation in
MSE domain (Costa et al., 2005). Programs for Cross DFA and
cross MSE are available within Supplementary Data Sheet 1.

Non-linear indices of RRI and respiration were calculated
using Matlab 2007b (Mathworks, Natick, USA). Applying an
algorhithm for detrended fluctuation analysis, we obtained two
numerical series: one with values of log (F(n)), the other for
log (n). After ploting log (F(n)) vs. log (n), linear fit (regression
line) was computed for the first 8 sample points (corresponding
to n = 4–13). The slope of this regression line is regarded
as the short term fractal scaling exponent α1. The same was
done for the rest of the samples (following 16 points—n > 13),
regarded as the long term fractal scaling exponent α2 (Peng et al.,
1995a; Perakakis et al., 2009; please see Figure 4 in Appendix II).
The number of points for short term α1 and long term α2 are
not accidently chosen. They reflect two specific scaling regimes
which are usually separated by a specific crossover point (discrete
change of slope) in regression line (Peng et al., 1995b; Perakakis
et al., 2009). In several subjects, the crossover was not positioned
at the 9th point; for some subjects it was at an earlier point, such
as the 6th, 7th, 8th, and for other subjects at a later point, such
as the 10th and 11th point. Thus, in these cases we considered
less points for obtaining α1 (5, 6, and 7 points, respectively) or
later points for α2 (after 11th, 12th, etc). This occurred especially
in sessions with slow breathing. Peng and co-workers noted that
not all subjects exhibit crossover (and separation on two scaling
regimes, Peng et al., 1995b), just as there were few cases of this
kind in our sample. Characteristic crossover patterns are not
just a feature of a healthy or diseased state, as Peng and co-
workers pointed out (Peng et al., 1995b). Breathing frequency
exerts influence on the crossover point as well (Perakakis et al.,
2009; Platiša and Gal, 2010).

Moreover, we introduce here one additional measure, inter-
fractal angle θ which reflects the relationship between two
scaling regimes; in other words, it is an angle that short term
and long term regression lines form between each other. In
order to explain inter-fractal angle θ we conducted an angular
analysis (detailed explanation in Appendix II). Instead of slopes
of regression lines α1 and α2, angles that regression lines form

with x-axis αA1 and αA2 were taken into account for the purpose
of direct physical and physiological interpretation. Inter-fractal
angle θ is directly proportional to the difference between αA1 and
αA2 (θ = αA1 – αA2).We defined αA1 and αA2 as short term fractal
angle and long term fractal angle with the abscissa, respectively.
Additionally, our analytic tool characterizes the inter-fractal
angle θ as a random variable, as well as its changes under the
influence of orthostasis and slow breathing, which was analyzed
using a probability density estimate procedure (PDE, supplied
with Matlab, 2007b). In order to perform this analysis, the
choice of inter-fractal angle θ with respect to the α1/α2 relation
bypassed the possible calculation error for the case where slopes
converge to infinite values (see Appendix II). Four numerical
series (supine, stand, supin01, stand01), with 20 inter-fractal
angle values each, were subjected to PDE analysis. Thus, we
obtained four PDE profiles for four physiological conditions, in
which distributions could be calculated (for detailed description
please see Kalauzi et al., 2012). Additionally, we estimated PDE of
the fractal angles αA1 and αA2. The aim of this was to try to elicit
a physiological explanation of inter-fractal angle changes (please
see Appendices II and III).

Multiscale entropies (MSE1−4 on short scales andMSE5−10 on
long scales) were calculated as additional non-linear measures.
They are based on the concept of sample entropy which
by definition represents a “negative natural logarithm of the
conditional probability that two sequences similar for m point
intervals remain similar at the next point within a tolerance
r” (Richman and Moorman, 2000). MSE algorithm makes
estimation of sample entropy for each course-grained time series
(averaged values from the data points within non-overlapping
windows of increasing length/scale factor, Costa et al., 2005).
Input criteria parameters for the sample entropy used had fixed
values for all subjects: size of the window (pattern length)m= 2,
and similarity criterion (standard deviation of a signal sequence)
r = 0.15. The output of the algorithm consisted of two numerical
series; one representing values of sample entropy for each scale
factor and the other consisting of scale factor values (n = 1,
. . . , 20). MSE1−4 was calculated as mean value from 1 to 4th
sample points (sample entropy vs. scale factor), and MSE5−10 as
mean value from 5 to 10th sample points (sample entropy vs.
scale factor).

RRI-respiratory coherence (CohRRI−Resp) was calculated
using the following procedure: equidistant resampled RRI and
respiration signals were imported in OriginPro 8.6 (OriginLab
Corporation, Northampton, MA, USA). Within the Origin
toolbox Analysis/Signal Processing/FFT/Coherence we made the
following parameter settings: mean RRI for sampling interval of
signals and Welch method for power spectral density estimation
were chosen [decomposition of signal by Hanning window into
smaller parts (256 points long), with 50% overlap (128 points)].
After the execution of the algorithm, two numerical rows were
generated; one with values of frequency [Hz], the other with
values of RRI-respiration cross power (variance) distributed
over frequency ranges [s2/Hz]. Then, we plotted them as x
vs. y coordinates, respectively, to get cross power spectrum
as a function of frequency (see Figure 7 in Appendix IV).
Using visual observation and peak pick tool, we determined the
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maximum value (peak) on the cross power spectrum diagram
(CohRRI−Resp). This usually corresponds with or near the
location of breathing frequency (on the x-axis). We considered
then that CohRRI−Resp represented the strength of the linear
cardiorespiratory coupling. Values of CohRRI−Resp over 0.8 were
assumed as high level/strong cardiorespiratory coupling. For a
more detailed explanation of the application of the mentioned
coherence method see Appendix IV (and/or Platiša et al., 2016a;
Radovanović et al., 2018).

The short term and long term cross DFA (ρ1 and ρ2,
respectively) parameters were calculated using the procedure
described in Podobnik et al. (2011) and Kristoufek (2015)
(see Supplementary Data Sheet 1). For every scale s, detrended
cross-correlation coefficient was given by

ρDCCA (s) =
F2DCCA(s)

FDFA,x (s) FDFA,y(s)

where F2DCCA(s) is a detrended covariance between partial sums
(profiles) of the two signals, while FDFA,x (s) and FDFA,y(s) are
square roots of detrended variances of their partial sums. For each
scaling range, both short (s = 4–13) and long (s = 14–108), this
coefficient was averaged within the corresponding limits. Short
term and long term scale cross MSE’s (XMSE1−4 and XMSE5−10,
respectively) were obtained by applying our custom made
MATLAB program for calculating conventional cross sample
entropy on signals previously prepared by coarse-graining

procedure (Costa et al., 2005) (see Supplementary Data Sheet 1).
For each scale range, these values were averaged (n = 1–4 for
XMSE1−4 and n= 5–10 for XMSE5−10).

Statistical Analysis
We stored all calculated results in a dataset crated with SPSS
19 (Statistical Package for the Social Sciences, 14, IBM, New
York, USA). Statistical analysis was subsequently done by means
of SPSS 19 toolboxes. We applied both visual checking of
Gaussian distribution [by means of the frequency distributions
(histograms), stem-and-leaf plot, boxplot, P-P plot (probability-
probability plot) and Q-Q plot (quantile-quantile plot)] and
Shapiro-Wilk normality test. Both visual checking and Shapiro-
Wilk normality test of each parameter in 20 subjects confirmed
that our data had non-Gaussian distribution. Therefore, we
applied the non-parametric Kruskal Wallis test with post-hoc
Mann Whitney test with Bonferroni’s correction for multiple
measurements to compare all samples (Table 2).

RESULTS

It is obvious even from visual observation (Figure 1) that changes
of body posture and breathing frequency affect RRI variability.
While orthostasis causes a decrease in mean value and linear
variability (standard deviation) of RRI, orthostasis with slow
breathing results in the decrease of the RRI mean value only

FIGURE 1 | Segments (600 s) of RRI (left) and respiratory (right) signals recorded at supine position and standing with spontaneous (supin and stand, respectively) and

0.1Hz breathing (supin01 and stand01, respectively).

Frontiers in Physiology | www.frontiersin.org 6 February 2020 | Volume 11 | Article 2442

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
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TABLE 1 | Linear and non-linear parameters (mean, SD) of 20 healthy subjects.

Group Parameter Supin Stand Supin01 Stand01

Cardiac parameters mRRI [s] 0.9937 ± 0.1377 0.7263 ± 0.1021 1.0592 ± 0.1257 0.7480 ± 0.0867

sdRRI [s] 0.0621 ± 0.0237 0.0465 ± 0.0175 0.0905 ± 0.0347 0.0702 ± 0.0225

α1RRI 0.8975 ± 0.1925 1.3114 ± 0.1379 1.0342 ± 0.1421 1.3408 ± 0.1005

α2RRI 0.8232 ± 0.1244 0.7874 ± 0.1249 0.6922 ± 0.1647 0.5545 ± 0.1463

θRRI [
0] 2.2 ± 8.3 14.5 ± 5.6 11.5 ± 8.7 24.6 ± 6.7

αA1RRI [
0] 41.4 ± 5.9 52.5 ± 3 45.7 ± 4 53.2 ± 2.1

αA2RRI [
0] 39.2 ± 4.4 38 ± 4.5 34.2 ± 6.7 28.6 ± 6.3

MSERRI1−4 1.7936 ± 0.1783 1.5583 ± 0.2974 1.6713 ± 0.2463 1.4715 ± 0.1784

MSERR5−10 1.7706 ± 0.2138 1.8951 ± 0.2391 1.4991 ± 0.1848 1.9123 ± 0.1732

Respiratory parameters mResp [s] 4.55 ± 1.45 4.56 ± 1.78 10 10

sdResp 0.89 ± 0.61 1.09 ± 1.35 0 0

α1Resp 0.3679 ± 0.2603 0.4975 ± 0.2728 0.9268 ± 0.3133 1.1387 ± 0.2357

α2Resp 0.5848 ± 0.2319 0.6119 ± 0.2132 0.4850 ± 0.2003 0.3759 ± 0.1028

θResp [0] −10.3 ± 18.8 −5.5 ± 18.5 16 ± 16.1 27.5 ± 7.2

αA1Resp [0] 19.1 ± 11.4 25.2 ± 11.8 41.3 ± 12.1 47.9 ± 8.2

αA2Resp [0] 29.4 ± 10.6 30.7 ± 9.3 25.3 ± 10 20.4 ± 5.6

MSEResp1−4 1.4456 ± 0.2631 1.3185 ± 0.4117 1.3772 ± 0.3074 1.0995 ± 0.2837

MSEResp5−10 1.1396 ± 0.2532 1.0423 ± 0.3523 1.3040 ± 0.3065 1.3382 ± 0.3132

Cardio-pulmonary coupling CohRRI−Resp 0.8983 ± 0.0563 0.7397 ± 0.1986 0.8703 ± 0.1137 0.8663 ± 0.1363

ρ1 −0.2419 ± 0.1905 −0.2002 ± 0.1916 −0.0096 ± 0.2665 −0.0697 ± 0.2787

ρ2 −0.1346 ± 0.1314 −0.0190 ± 0.1234 −0.0232 ± 0.2471 0.0097 ± 0.2429

XMSE1−4 2.2733 ± 0.20298 2.2719 ± 0.40199 2.1490 ± 0.24829 1.9344 ± 0.21773

XMSE5−10 2.1765 ± 0.21385 2.1253 ± 0.27514 2.3176 ± 0.15034 2.4292 ± 0.46726

Supin, supine position; stand, standing; supin01, supine position with paced 0.1Hz breathing; stand01, standing with paced 0.1Hz breathing; mRRI, mean value of RRI signal; sdRRI,

standard deviation of RRI signal; α1RRI, short term fractal scaling exponent of RRI signal; α2RRI, long term fractal scaling exponent of RRI signal; θRRI, inter-fractal angle of RRI signal;

αA1RRI, short term fractal angle of RRI signal; αA2RRI, long term fractal angle of RRI signal; MSERRI1−4, short term multiscaling entropy of RRI signal (for 1–4th sample); MSERRI5−10,

long term multiscaling entropy of RRI signal (for 5–10th sample); mResp, mean value of respiration signal; sdResp, standard deviation of respiration signal; α1Resp, short term fractal

scaling exponent of respiration signal; α2Resp, long term fractal scaling exponent of respiration signal; θResp, inter-fractal angle of respiration signal; αA1Resp, short term fractal angle of

respiration signal; αA2Resp, long term fractal angle of respiration signal; MSEResp1−4, short term multiscaling entropy of respiration signal (for 1–4th sample); MSEResp5−10, long term

multiscaling entropy of respiration signal (for 5–10th sample); CohRRI−Resp, RRI-respiration coherence; ρDCCARRI−Resp, RRI-respiration detrended cross correlation coefficient; ρ1, short

term scaling RRI-respiration detrended cross correlation coefficient; ρ2, long term scaling RRI-respiration detrended cross correlation coefficient; XMSE1−4, short term RRI-respiration

cross multiscaling entropy; XMSE5−10, long term RRI-respiration cross multiscaling entropy.

(Tables 1, 2). Supine position with slow breathing induced the
highest values of mean linear RRI variability (sdRRI, Table 1).

Mean values and standard deviations of non-linear
parameters of RRI and respiratory signal variability are reported
in Table 1. From the results calculated for 20 subjects, we
calculated the horizontal mean value estimation in each sample
of the non-linear parameter. Then, we plotted these mean values
with their standard deviation as error bars (Figures 2, 3). On
these plots we were able to observe changes of inter-fractal
angle θ , a new quantity for y1 vs. y2 relationship, with superior
accuracy with respect to the existing relations of slopes (De Souza
et al., 2014, for details see Appendix II). Statistical significance
of changes induced by body posture and breathing frequency on
RRI and respiratory signal linear and non-linear parameters for
20 subjects are reported in Table 2.

State dependent changes of the coefficients are reported
in Table 2. Due to the non-Gaussian distribution of the data
confirmed by visual inspection and Shapiro-Wilk normality
test, we applied the non-parametric Kruskal Wallis test. The
variables that manifested significant state dependent change

were compared with supine values (as the baseline) by Mann-
Whitney test using the Bonferroni correction of the statistical
significance from multiple permuted measurements (p·m < 0.5,
for m = 3, where m is the number of comparisons2). The
mean value of RRI (mRRI) was significantly changed just
under the influence of orthostasis and the standard deviation
of RRI (sdRRI) was significantly changed in supine with 0.1Hz
breathing. The short term scaling exponent α1 of RRI signal
(α1RRI) was significantly increased under the influence of body
posture (supin-stand), slow breathing (supin-supin01) and in
the state of standing with 0.1Hz breathing (supin-stand01). The
long term scaling exponent α2 was significantly decreased in
supine with slow breathing and in standing with slow breathing
positions, while during orthostasis alone α2 was not significantly
changed. The inter-fractal angle θRRI significantly increased in
all three statistical conditions. This change was a consequence of
the individual and joint change of αA1RRI and αA2RRI (Table 1,
for detailed analysis see Appendix III). αA1RRI increases both

2https://www.ibm.com/support/pages/post-hoc-comparisons-kruskal-wallis-test
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TABLE 2 | Change of linear and non-linear cardiorespiratory parameters in

different conditions.

Group Parameter Supin-

stand

Supin-

supin01

Supin-

stand01

Cardiac parameters mRRI 0.001↓ 0.306 0.001↑

sdRRI 0.072↓ 0.021↑ 0.831

α1RRI 0.001↑ 0.030↑ 0.001↑

α2RRI >0.99 0.027↓ 0.001↓

θRRI [
0] 0.001↑ 0.006↑ 0.001↑

MSERRI1−4 0.015↓ 0.471 0.001↓

MSERRI5−10 0.120 0.001↓ 0.063↑

Respiratory parameter mResp >0.99 –

sdResp >0.99 –

α1Resp* 0.273 0.001↑ 0.001↑

α2Resp* 2.775 0.273 0.001↓

θResp [0] 0.942 0.001↑ 0.001↑

MSEResp1−4 >0.99 >0.99 0.001↓

MSEResp5−10 >0.99 0.258 0.054↑

Cardio-pulmonary coupling CohRRI−Resp 0.018↓ >0.99 >0.99

ρ1 1.194 0.003↑ 0.072↑

ρ2 0.015 0.228 0.105

XMSE1−4 >0.99 0.402 0.001↓

XMSE5−10 0.981 0.189 0.051↑

post-hoc Mann-Whitney test for independent samples with Bonferroni corrected p-value

(p·m < 0.5, for m = 3, where m is the number of comparisons) after Kruskal-Wallis test

for multiple comparation for 20 healthy subjects;↓-decrease of the change; ↑-increase

of the change); supin-stand, supine position (with spontaneous breathing) vs. standing

position (with spontaneous breathing); supine-supin01, supine position (with spontaneous

breathing) vs. supination with paced 0.1Hz breathing; supine-stan01, supine position

(with spontaneous breathing) vs. standing with paced 0.1Hz breathing; bolded numbers,

results with statistical significance (p < 0.05); *Statistical significances of the respective

angles were identical; mRRI, mean value of RRI signal; sdRRI, standard deviation of

RRI signal; α1RRI, short term fractal scaling exponent of RRI signal; α1Resp, short term

fractal scaling exponent of respiratory signal; α2RRI, long term fractal scaling exponent of

RRI signal; α2Resp, long term fractal scaling exponent of respiratory signal; MSERRI1−4,

short term multiscaling entropy of RRI signal (for 1–4th sample); MSERRI5−10, long

term multiscaling entropy of RRI signal (for 5–10th sample); MSEResp1−4, short term

multiscaling entropy of respiratory signal (for 1–4th sample); MSEResp5−10, long term

multiscaling entropy of respiratory signal (for 5–10th sample); CohRRI−Resp, RRI-respiration

coherence; ρ1, short term scaling RRI-respiration detrended cross correlation coefficient;

ρ2, long term scaling RRI-respiration detrended cross correlation coefficient XMSE1−4,

short term RRI-respiration cross multiscaling entropy, XMSE5−10, long term RRI-respiration

cross multiscaling entropy; grayshaded variables: variables which were not confirmed by

Kruskal Wallis test as state dependent.

as a consequence of posture change (supin-stand) and a change
of breathing regime (supin-supin01). αA2RRI was decreased by
slow breathing in two statistical cases (supin-supin01 and supin-
stand01). Change of posture alone (supin-stand) did not result
with a joint (opposite) change of αA1RRI and αA2RRI, but by
increase of αA1RRI only.

Short term multiscaling entropy of RRI (MSERRI1−4) was
significantly decreased under the influence of body posture
(supin-stand) and the change of body posture combined with
the slow breathing regime (supin01-stand01). The long term
multiscaling entropy (MSERRI5−10) was increased by slow
breathing in standing position (supin01-stand01, a significance
level of p = 0.063), and decreased by slow breathing in supine
position (supin-supin01). Joint (opposite) changes of MSERRI1−4

and MSERRI5−10 happened in the case of orthostasis with
controlled breathing regime (supin01-stand01). The change of
breathing regime (supin-supin01) only occurred when there was
a change in MSERRI5−10 (decrease). Of particular interest was
the result that in stand01 both fractal (α1RRI vs. α2RRI) and
irregularity properties of RRI (MSERRI1−4 vs. MSERRI5−10) are
reciprocally regulated. The analysis of scale dependent patterns
revealed that both short scale (α1RRI vs. MSERRI1−4) and long
scale (α2RRI vs. MSERRI5−10) parameters were also reciprocally
regulated (Table 2).

In the respiratory signal, mean value and standard deviation
(mResp and sdResp) changed only with the change of breathing
regime (supin-supin01) and not with the change of posture
(supin-stand). We also visually evaluated the respiratory signal
DFA plot for the crossover point (Figure 3A) and applied
the inter-fractal angle θResp analysis analogous to the RRI
signal analysis (Tables 1, 2). Detailed PDE analysis of the
inter-fractal angle θResp and its components are presented in
Appendix III, Figure 6. α1Resp did not change significantly
with the posture change (supin-stand), but it increased in the
case of controlled breathing regime (supin-supin01). α2Resp
did not change significantly either with the change of posture
(supin-stand, p = 0.99) and in the condition of controlled
breathing in supination (supin-supin01, p= 0.273). A significant
decrease of α2Resp was registered during the condition of
standing with controlled breathing regime (supin-stand01).
Joint changes of α1Resp and α2Resp were in the opposite
direction. The inter-fractal angle θResp did not change as a
result of body posture change (supin-stand), but only under
the controlled breathing regime (supin-supin01, supine-stand01,
increase, p < 0.001).

The angle αA1Resp did not change as the result of a body
posture change (supin-stand), but significantly increased in all
conditions with the controlled breathing regime (p < 0.001). The
angle αA2Resp also did not respond to the posture change (supine-
stand) and slow breathing regime in supine position (supine-
supin01, p= 0.273). αA2Resp significantly decreased in the regime
of slow breathing combined with standing (supin-stand01).
Joint changes of αA1Resp and αA2Resp (supine-stand01) were in
the opposite direction. State dependent, statistically confirmed
changes of angles αA1Resp and αA2Resp were identical to the
changes of the respective slopes (i.e., α1Respand α2Resp; Table 2).

Change of α1Resp (1α1Resp, Table 3) was positive in all
physiological conditions. Change of α2Resp (1α2Resp, Table 3)
was negative only in conditions of slow 0.1Hz breathing. Change
of inter-fractal angle θ (1θResp, see Table 3 andAppendix II) was
always significant and positive in the conditions of controlled
breathing regime (supin-supin01,), while insensitive to posture
changes only (supin-stand).

Short term multiscaling entropy (MSEResp1−4) was
significantly decreased in conditions of combined standing
position with slow breathing (supin-stand01). Long term
multiscaling entropy (MSEResp5−10) increased only in the
condition of combined standing and slow breathing regime
(supin-stand01, significance level of p = 0.054). In the condition
of joint MSEResp1−4 and MSEResp5−10 change, the parameters
changed in opposite directions.
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FIGURE 2 | Graphic representation of non-linear properties of RRI variability in 20 healthy subjects expressed through: (A) fractal indices: full dark colored squares

(dots) represent samples of short term fractal scaling exponent α1; empty squares represent samples for long term fractal scaling exponent α2; RRI inter-fractal angles:

θRRIsup, supine position with spontaneous breathing; θRRIst, standing with spontaneous breathing; θRRIsup01, supine position with paced 0.1Hz breathing; θRRIst01,

standing with paced 0.1Hz breathing; F(n), root-mean-square fluctuations, n, window size; (B) multiscaling entropy (1–20 samples); mean value of the first four

samples (dark colored squares) is short term multiscaling entropy MSE1−4; mean value of 5–10th sample (light colored squares) is long term multiscaling entropy

MSE5−10; supin, supine position; stand, standing; supin01, supine position with paced 0.1Hz breathing; stand01, standing with paced 0.1Hz breathing.
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FIGURE 3 | Graphic representation of non-linear properties of respiration signal in 20 healthy subjects expressed through: (A) fractal indices; full colored squares

(dots) represent samples of short term fractal scaling exponent α1; empty (uncolored) squares represent samples for long term fractal scaling exponent α2; RRI

inter-fractal angles: θRRIsup, supine position with spontaneous breathing; θRRIst, standing with spontaneous breathing; θRRIsup01, supine position with paced 0.1Hz

breathing; θRRIst01, standing with paced 0.1Hz breathing; F(n), root-mean-square fluctuations, n, window size; (B) multiscaling entropy (1–20 samples); mean value of

the first four samples (dark colored squares) is short term multiscaling entropy MSE1−4; mean value of 5–10th sample (light colored squares) is long term multiscaling

entropy MSE5−10; supin, supine position; stand, standing; supin01, supine position with paced 0.1Hz breathing; stand01, standing with paced 0.1Hz breathing.
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TABLE 3 | Change (arithmetic difference) of detrended fluctuation analysis parameters between physiological states.

Parameter Supin-stand Supin-supin01 Stand-stand01 Supin01-stand01

1αlRRI 0.4139 ± 0.20127 0.1367 ± 0.15330 0.0294 ± 0.12612 0.3066 ± 0.16099

1α2RRI −0.0358 ± 0.16469 −0.1311 ± 0.20205 −0.2329 ± 0.12008 −0.1377 ± 0.19485

1θRRI [
0] 12.4 ± 10.3 9.3 ± 9.9 10 ± 4.4 13.1 ± 10.8

1α1Resp 0.1296 ± 0.21130 0.5588 ± 0.36660 0.6412 ± 0.40181 0.2119 ± 0.39949

1α2Resp 0.0271 ± 0.20977 −0.0998 ± 0.19600 −0.2360 ± 0.17368 −0.1091 ± 0.20976

1θResp [0] 4.8 ± 12.4 26.4 ± 20.3 32.9 ± 21.5 11.5 ± 20.8

Supin, supine position; stand, standing; supin01, supine position with paced 0.1Hz breathing; stand01, standing with paced 0.1Hz breathing; 1α1RRI, change of short term fractal

exponent α1 of RRI signal; 1α2RRI, change of long term fractal exponent α2 of RRI signal; 1θRRI, change of inter-fractal angle of RRI signal; 1α1Resp, change of short term fractal

exponent α1 of respiration signal; 1α2Resp, change of long term fractal exponent α2 of respiration signal; 1θResp, change of inter-fractal angle of respiration signal.

We underline the result that in standing with 0.1Hz
breathing both fractal (α1Resp vs. α2Resp) and irregularity
properties of respiratory signal (MSEResp1−4 vs. MSEResp5−10)
were reciprocally regulated. The analysis of scale dependent
patterns revealed that in this state both short scale (α1Resp vs.
MSEResp1−4) and long scale (α2Resp vs. MSEResp5−10) parameters
were also reciprocally regulated (Table 2).

RRI-respiratory coherence (CohRRI−Resp) was decreased
under the influence of orthostasis (supin-stand). ρ1 significantly
increased during slow breathing in supine position (p = 0.003)
and standing with slow 0.1Hz breathing (significance level of
p = 0.072). Our statistical approach could not confirm state-
dependent ρ2 changes. XMSE1−4 and XMSE5−10 decreased and
increased, respectively, in the condition of orthostasis combined
with slow breathing.

DISCUSSION

In recent years influence of slow breathing on heart rate
variability (HRV) has been the focus or research (Russo et al.,
2017). An increase of HRV has been recognized as one of
the important physiological indicators of positive therapeutic
effects of slow breathing techniques on the cardiovascular
system (Bruton and Lewith, 2005; Dick et al., 2014; Russo et al.,
2017) and the physiological indicator of cardiovagal function
(Shields, 2009). Also, the research on the orthostasis effect
on HRV has been well-documented (De Souza et al., 2014;
Zaidi and Collins, 2016; Valente et al., 2018) and is routinely
used as a sensitive test for the evaluation of “physiological
adaptive mechanisms” generated by the autonomic nervous
system (head up tilt, Zygmunt and Stanczyk, 2010; Hoshi
et al., 2019). Most of the studies that evaluate HRV in these
physiological conditions (supine position, standing, supine
position with 0.1Hz breathing and standing with 0.1Hz) focused
on linear properties of HRV (Kabir et al., 2011; de Paula Vidigal
et al., 2016; Javorka et al., 2018; Jha et al., 2018). However,
non-linear properties quantify and explain up to 80% of total
RRI variability (Vandeput, 2010) and reflect physiological
mechanisms of multiinteracting cardiovascular control, mostly
exerted through sympatho-vagal effectors operating in non-
linear fashion (de Godoy, 2016). Regarding the respiratory
signal, a higher variability and complexity of respiratory rhythm
was found in healthy subjects, while complexity decreases in

the presence of diseases (Papaioannou et al., 2011; Reulecke
et al., 2018). This is the first study which aimed to analyze
parallel changes of RRI and respiratory rhythm complexity
during individual and combined posture and breathing pattern
changes. Ultimately the goal of this approach was to provide
an insight into cardiorespiratory coupling in physiological
conditions characterized by typical cardiac autonomic patterns,
identifying the condition potentially most beneficial for
cardiopulmonary adaptability.

As stated above, the actual evaluations of physiological RRI
complexity measures were performed in the conditions of
selective and total pharmacological blockade of sympathetic and
parasympathetic system (Castiglioni et al., 2011; Silva et al.,
2017a), posture change, mental stress (Castiglioni et al., 2009;
Javorka et al., 2018), exercise and aging (Castiglioni et al.,
2009). To the best of our knowledge, our approach is the first

one to evaluate the physiologic background of RRI complexity
measures in the conditions of physiological selective and joint
enhancement of sympathetic (orthostasis) and parasympathetic
(0.1Hz breathing) activity on RRI regulation.

Changes of posture and slow 0.1Hz breathing are also
significantly interrelated with the breathing pattern (Mortola
et al., 2016; Hernandez et al., 2019; Mortola, 2019), and, both
individually and jointly, provide an insight into the contribution
of (a) the peripheral factor of changed respiratory mechanics
(horizontal vs. vertical plane, Mortola, 2019) during orthostatic
challenge, and (b) the impact of central, slow 0.1Hz breathing
control on the complexity regimes of the respiratory signal
(Papaioannou et al., 2011; Mortola et al., 2016; Reulecke et al.,
2018). Finally, parallel evaluation of cardiorespiratory parameters
and cardiorespiratory coupling by the RRI-Resp coherence, cross
DFA and cross MSE provides an insight into cardiorespiratory
integrative mechanisms in these conditions.

In order to verify the reproducibility of an autonomic
pattern characteristic for supin, stand, supin01, and stand01
we calculated the following linear parameters: absolute values,
changes of mean, and standard deviation of RRI. The absolute
values and their changes were in accordance with the literature
(Javorka et al., 2018; Valente et al., 2018), where supin was
characterized by slight parasympathetic dominance (Levy and
Martin, 1996), stand by sympathetic dominance (Table 1,
decrease of mean RRI and SD with respect to supin, Table 2,
Sobiech et al., 2017), supin01 with maximized parasympathetic
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dominance (Table 1, increase of SD with respect to supine,
Shields, 2009) and stand01 with combined situation of higher
sympathetic tone on mean RRI regulation (decrease of mRRI
with respect to supin01, Table 1) with variability, most probably
parasympathetically mediated, comparable to the supin values
(Table 1, supin-stand01, Table 2, p= 0.831).

α1RRI
A change of body posture (Table 1, supin-stand, sympathetic
domination with parasympathetic withdrawal) determines a
change in the α1RRI parameter, from the value characteristic for
the presence of long range correlations (supin, 0.5 < α1RRI < 1,
Peng et al., 1995a) toward Brownian noise (stand, α1RRI → 1.5,
Peng et al., 1995a). Changes of breathing pattern (Table 1, supin-
supin01, parasympathetic domination) affect α1RRI, causing a
shift from the value characteristic for long range correlations
(supin, 0.5 < α1RRI < 1, Peng et al., 1995a) toward 1/f
noise (supin01, α1RRI → 1, Peng et al., 1995a). Combined
changes of body posture and slow breathing (Table 1, supin-
stand01, α1RRI → 1.5, Peng et al., 1995a) further increase
α1RRI toward Brownian noise. With respect to supin01, this
change was even higher, shifting the quality of correlations
from 1/f noise (Table 1, supin01, α1RRI → 1, Peng et al.,
1995a) toward Brownian noise (stand01, α1RRI → 1.5, Peng
et al., 1995a). The overall conclusion is that sympathovagal
non-linear interactions might be dependent on the pattern
of their activation, having different scaling properties when
individually activated (i.e., sympathetic activation in stand,
α1RRI → 1.5, Brownian noise, vs. parasympathetic activation
on supin01, α1RRI < 1, 1/f noise, Table 2, p < 0.05 and p
< 0.05, respectively) with respect to the state of their joint
activation in stand01, where their non-linear RRI modulation
appears to be additive, in the sense of Brownian noise
(Table 2, p < 0.001).

α2RRI
Change of body posture (Table 1, supin-stand, sympathetic
domination with parasympathetic withdrawal) diminishes α2RRI
from the pattern of long range correlations (supin, 0.5 < α2RRI
< 1, Peng et al., 1995a) toward randomness (α2RRI → 0.5, Peng
et al., 1995a). This change was not significant (Table 2, p > 0.05).
Change of α2RRI by the change of breathing pattern (Table 1,
supin-supin01, parasympathetic domination) significantly affects
α2RRI value toward that of a random pattern (Table 2). Combined
changes of body posture with slow breathing (Table 1, stand-
stand01) significantly decrease α2RRI value toward randomness
(Table 1, α2RRI → 0.5, Peng et al., 1995a; Table 2, p <

0.05), both with respect to stand and with respect to supin01
(Table 1, α2RRI → 0.5, supin01-stand01, Table 2, p < 0.05).
The overall conclusion is that sympathetic and parasympathetic
drive in the state of combined orthostasis and slow breathing
(stand01) synergistically contribute to the increase of α2RRI
randomness, with greater contribution of parasympathetic drive
with respect to sympathetic (Table 1, supin-supin01: p < 0.01;
stand-stand01: p < 0.001, regarding the parasympathetic change,
and supin-stand: p > 0.05; supin01-stand01: p > 0.05, regarding
the sympathetic change).

1α1RRI
Change of α1RRI was always positive in all body and breathing
pattern changes with maximal change between supin-stand
(Table 1, sympathetic dominance with parasympathetic
withdrawal) and minimal change between stand-stand01,
implying a potential additive effect of sympathetic activation and
parasympathetic withdrawal on 1α1RRI in the orthostasis on one
side, and on the other side, potentially antagonistic action on
1α1RRI of joint parasympathetic and sympathetic activation in
stand01 condition (Table 3).

1α2RRI
Change of 1α2RRI was always negative with minimum (absolute
values) between supin-stand (sympathetic dominance with
parasympathetic withdrawal) and maximum between supin01-
stand01 (Table 3), implying a potential additive effect on
1α2RRI of joint parasympathetic and sympathetic activation in
stand01 condition.

These results of 1α1RRI and 1α2RRI (Table 3) imply that
α1RRI and α2RRI are reciprocally regulated and mutually
interdependent. This phenomenon was first noticed by Peng
et al. (1995a) as a different α1RRI vs. α2RRI relationship between
normal subjects and patients with congestive heart failure. This
relationship was quantified as the α1/α2 ratio in physiological
circumstances (women, change of posture, De Souza et al.,
2014) but did not succeed in distinguishing state dependent RRI
complexity changes. For this reason, we considered the angular
values (θ , Appendices II and III), as more sensitive to individual
and combined changes of the angle rays compared to the change
of the α1/α2 index.

θRRI
In order to quantify the observed interdependence, we propose
the inter-fractal angle θRRI between the linear regression lines
of α1RRI and α2RRI, with the vertex at the crossover point
(Appendix II, Figures 2, 4). The angle θRRI has its minimal value
in the supine position (Table 1, sympathetic withdrawal with
slight domination of parasympathetic drive). θRRI significantly
increased both with the change of body posture (Table 1, supin-
stand) and breathing pattern (supin-supin01), with a maximum
increase in a combined state (supin01-stand01). It is reasonable
to deduce that individual and joint physiological enhancements
of sympathetic and parasympathetic drive contribute to the
increase of the inter-fractal angle θRRI. We explored in detail
the individual behaviors of αA1RRI, αA2RRI, and θRRI in four
physiological conditions by PDE analysis (Appendix III). Figure
5A in Appendix III supports the view that supine state was
characterized by multimodality of αA1RRI generating regimes
(three regimes, with dominant one approximately at mean
39◦, with the greatest overall standard deviation). Change of
posture shifted αA1RRI toward unimodality (mean ∼53◦ and
decrease of overall standard deviation). Voluntary slow breathing
induced lighter αA1RRI regime homogenization with respect to
the change of posture (shifting from trimodality to bimodality,
with dominant regime on ∼47◦ and with slightly decreased
standard deviation). The most distinguished regime of αA1RRI
unimodality was in the circumstance of joint orthostasis with
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slow breathing (mean value of dominant regime 54◦, the lowest
value of standard deviation). αA2RRI showed fewer characteristic
changes, though bimodality could be observed both in orthostasis
and slow breathing (Appendix III, Figure 5B) and the dominant
regime in stand01 condition. A large θRRI standard deviation
was characteristic of all four conditions. Inter-fractal angle
θRRI reflected the PDE pattern and changes similar to αA1RRI
(trimodality in supin and the shift toward unimodality in stand,
supin01 and stand01) with the most distinct unimodality in stand
and stand01 conditions. These results are in accordance with
the results of Castiglioni et al. (2009) that a basic physiologic,
healthy regime (supin) was characterized by the spectrum of
α1RRI and α2RRI coefficients, the non-linear variables analogous
to the angles αA1RRI and αA2RRI, as described by our analysis. To
the best of our knowledge this is the first time that the spectrums
of α1RRI and α2RRI are described by PDE and that the PDE pattern
change was observed in four physiological conditions (supin,
stand, supin01, stand01).

MSERRI1−4 and MSERRI5−10 also showed opposite changes in
stand01 condition, suggesting that orthostasis with slow 0.1Hz
breathing was the determinant factor of this type of change. The
pattern of joint MSERRI1−4 andMSERRI5−10 change was opposite
to the pattern of joint α1RRI and α2RRI change (MSERRI1−4

decrease and MSERRI5−10 increase) indicating that these non-
linear parameters do not reflect the same, but potentially
complementary information on non-linear variability (Costa
et al., 2003; Perakakis et al., 2009). Body posture reversed the
direction of MSERRI5−10 change induced by slow breathing
(decrease for supin-supin01 and increase for supin-stand01,
significance level of p = 0.063), which was suggestive of the
hypothesis that the body posture might be the crucial factor
for the direction of change of MSERRI5−10. To the best of our
knowledge, these are the first results on individual and joint
effects of body posture and breathing regime on MSERRI1−4

and MSERRI5−10.
Regarding the respiratory signal, body posture did not change

the linear parameters of breathing pattern (mResp and sdResp),
while their change was obvious and expected with the change
of breathing frequency. The same pattern, regarding the three
statistical cases, was observed for mean values of all non-linear
parameters (α1Resp, α2Resp, θResp, αA1Resp, αA2Resp, MSEResp1−4,
MSEResp5−10; Table 2), implying that body posture change by
itself cannot provoke the robust changes of mean values of
non-linear respiratory parameters. This finding supports the
opinion that mechanic changes (horizontal vs. vertical plane) and
cardiocirculatory patterns specific for the posture state (supin-
stand, Table 2) do not influence robustly the breathing pattern
in the non-linear domain. Slow breathing in both statistical
cases induced significant increases in θResp. In the supin-supin01
case, this increase was due only to the significant increase of
α1Resp, while in supin-stand01 the change was obtained by the
joint, opposite changes of α1Resp (i.e., αA1Resp) and α2Resp (i.e.,
αA2Resp) (Table 2). This result implies that short term (αA1Resp)
and long term (αA2Resp) respiratory complexities are influenced
in opposite directions by slow 0.1Hz breathing coupled with a
change in posture, making the change of θResp more enhanced

only with respect to the θResp change by orthostasis (supin-
stand; Table 2). This relationship between α1Resp and α2Resp
(θResp) could hypothetically represent the result of confluent
resonant cortical influences of posture maintenance motor
system and slow 0.1Hz respiration drive on brainstem autonomic
respiratory network, considered to be an informational integrator
of respiratory system (Feldman and McCrimmon, 2003).

PDE of αA1Resp (Appendix III, Figure 6A) reveals two
different bimodal distributions which changed the regime
dominance pattern by posture change (from unidominant
pattern in supin to equally represented bimodal regime in
stand). Bimodality was significantly changed by slow 0.1Hz
breathing in the sense of shifting the dominant regime with
the mean of ∼11◦ to the regime with dominant regime
at the mean of ∼45◦. The dominance of the unimodal
pattern was even more enhanced by joint slow breathing
in the standing position (mean αA1Resp ∼48◦). αA2Resp PDE
(Appendix III, Figure 6B) was less sensitive on the posture
change (multimodal regime pattern with low regime definition
and high value of standard deviation). Slow breathing in the
supine condition (supin01) defined two regimes of αA2Resp,
with the dominant regime at the mean value of 28◦ and
lower standard deviation with respect to the supine condition
alone. Joint standing with slow breathing manifested clear
regrouping of the two regimes into one, with mean of 22◦

and lower overall standard deviation. This data reveal that
subtle, fine changes on breathing pattern in non-linear domain
also happen during the postural change, but it appears that
posture plays a role of secondary, enhancing factor of slow
breathing impact on respiratory complexity. PDE analysis of
inter-fractal angle θResp (Appendix III, Figure 6C) illustrates
the increase in multimodalities of the θResp from prevailingly
bimodal, with the dominant peak at −19◦ (supin), to potentially
5-modal regime in orthostasis (stand). Slow 0.1Hz breathing
introduced the shift of dominant pattern toward the regime of
θResp with mean of∼18◦ (supin vs. supin01). Standing with slow
breathing induced dramatic regrouping of θResp values into one
dominant regime with a mean value of 26◦ and a low value
of the standard deviation. The general conclusion is that the
individual change of posture increases the number of modalities
of all three angle parameters of respiratory complexity, while
the individual slow breathing regime restricts this number. The
maximal, apparent synergistic reductive effect onmultimodalities
of Resp angles was registered in the combined (stand01)
state. This was in accordance with the fact that demanding
posture requirements necessitate more adaptable respiratory
patterns, also in non-linear domain, while cortical influences of
slow breathing impose the inhibitory effect on the brainstem
respiratory neural network chaotic properties and dictate a
monomodal pattern of their non-linear operating mode. The
state of stand01 could represent a qualitatively specific state,
typical for the behavior of non-linear systems (Goldberger, 2006).
Multimodality of Resp angles, only specific for the orthostasis
in the function of respiratory adaptability to the diversity of
expected environmental (i.e., behavioral) challenges, with one
and only one imposed behavior (slow 0.1Hz breathing), could
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Matić et al. RRI-Respiratory Complexity and Cardiorespiratory Coupling

become a qualitatively changed enhancer of 0.1Hz breathing
impact on Resp angles monomodal pattern.

MSEResp1−4 and MSEResp5−10 were parameters less sensitive
to the change of breathing frequency, but were jointly modified
in the condition supin-stand01.

Also in the case of respiratory signal complexity, in
standing with 0.1Hz breathing, both fractal (α1Resp vs. α2Resp)
and irregularity properties of respiration (MSEResp1−4 vs.
MSEResp5−10) were reciprocally regulated. The analysis of scale
dependent pattern revealed that in this state both short scale
(α1Resp vs. MSEResp1−4) and long scale (α2Resp vs. MSEResp5−10)
parameters were also reciprocally regulated (Table 2). Opposite
fractal patterns were evident also for the state supin01 (α1RRI
increase, α2RRI decrease, p < 0.05; α1Resp increase, α2Resp
decrease, not significant), while this state was not characterized
by the opposite change of the respective MSE scale pattern. This
was also the case of the respective RRI parameters.

These results show that:

a. The result of the scale dependent reciprocal pattern (α1
vs. MSE1−4) (α2 vs. MSE5−10) of both RRI and the
respiratory signal in stand01 was not the consequence of
calculation bias;

b. Mechanisms responsible for the changes of self-similarity
and irregularity properties of RRI and respiratory signal are
independently regulated in the state supin01;

c. The same RRI and respiratory complexity mechanisms are
jointly and reciprocally regulated in the state stand01.

Cardiorespiratory regulation is integrated all along brainstem-
hypothalamic axes up to limbic subcortical and cortical structures
(Feldman and Ellenberger, 1988; Feldman and McCrimmon,
2003; Dampney, 2015). Behavioral control of breathing, with its
specific voluntary component, is a state dependent, hierarchically
organized dynamic system (Orem and Kubin, 2005; Kiselev and
Karavaev, 2019; Noble andHochman, 2019) with state dependent
impact on cardiovascular regulation (best illustrated by the
cardiovascular consequences of sleep apnea, Somers et al., 2008).
These fundamental conclusions were drawn from the analysis of
linear parameters of cardiorespiratory regulation.

The state specific pattern of both RRI and respiratory
complexity regulation support the view that also RRI and
respiratory complexity mechanisms are:

a. Hierarchically regulated (loosely coordinated (“dual control,”
Feldman and Ellenberger, 1988) cardiorespiratory control in
individual behavioral tasks stand and supin01, transformed
into well-defined and coordinated (“unitary control” Feldman
and Ellenberger, 1988) cardiorespiratory response in the state
of joined orthostasis with slow 0.1Hz breathing).

b. That hierarchical recruitment of regulatory complexity
mechanisms most probably increases “bottom-up” with
respect to the increment of the behavioral challenge
(i.e., from medullar level toward higher diencephalo-
telencephalic structures). The behaviorally most complex state
in our experimental design, stand01, was characterized
by reciprocal scale dependent and pattern specific
cardiorespiratory response.

Regarding cardiopulmonary coupling, our data report for the
first time that these linear and non-linear mechanisms are
independently and differently engaged with respect to the
behavioral state, where linear coupling (CohRRI−Resp) appears to
be sensitive on body posture change, while non-linear coupling
(ρ1, XMSE1−4, and XMSE5−10) jointly and most dynamically
change in the state of standing with 0.1 Hz breathing.

Cross DFA parameters ρ1 and ρ2 register anticross correlation,
or 180◦ phase shift of RRI and respiratory signal in all four
physiological states, with the exception of ρ2 in stand01 (Table 1).
State dependent change was statistically confirmed only for ρ1
(Table 2). In the supine position, as the baseline state of reference,
we registered maximal negative phase shift of RR and respiratory
signal both for short and long scales. Minimal negative phase shift
of RR and respiratory signal on short scales (ρ1) was noted in
supin01 (Tables 1, 2, p = 0.003). This phenomenon was most
probably the consequence of increased synchrony of RRI-Resp
on short scales, due to the potentially maximal values of RSA in
this condition.

Cross MSE parameters XMSE1−4 and XMSE5−10 report positive
cross correlation in all four physiological states. Maximal degree
of positive MSE cross correlation both for short and long scales
was detected in supination, as the baseline state of reference.
XMSE1−4 and XMSE5−10 were insensitive to individual posture
and breathing pattern change, but jointly and oppositely changed
in the condition of orthostasis combined with slow breathing
(decrease and increase, respectively, Table 2) in the state of
combined orthostasis and slow breathing. In that state ρ1 this
manifests an increase of borderline significance (p = 0.072).
A general conclusion might be that (a) ρ1, ρ2, XMSE1−4 and
XMSE5−10 are not dependent on the body posture change; (b)
cross DFA and cross MSE coupling regimes are most probably
independently regulated, referring to different patterns of change
with respect to the physiological state (supin01: ρ1 increase and
XMSE1−4, XMSE5−10 not significant; stand01: ρ1 increase and
XMSE1−4, XMSE5−10 decrease and increase, respectively). The
results speak for the ρ1 positive correlation with the increase
of vagal modulation to the heart, while XMSE1−4 and XMSE5−10

could correlate with synergic slow breathing and posture control.
Even though we are speaking about borderline significances

(pρ1 = 0.072, pXMSE5−10 = 0.051) and solid statistical
confirmation for XMSE1−4 (p < 0.0001), a general picture
of state dependent changes of cardiopulmonary complexity
identifies standing with slow 0.1Hz breathing as the most
composite but the best defined state. Regarding cardiopulmonary
coupling, this state was characterized by a decrease of short
scale irregularity coupling (XMSE1−4) and increase in short
scale self-similarity coupling (ρ1). This opposite pattern of
short scale cardiopulmonary coupling for ρ1 and XMSE1−4 was
statistically confirmed only for the state of joint orthostasis with
slow 0.1Hz breathing, suggesting that only joint enhancement
of volitional 0.1Hz drive with sympathovagal modulation on
the RRI could result in specific short scale coupling pattern.
This cannot be attributed to vagal modulation only (traditional
short scale RRI variability interpretation), but to the action
of hierarchically higher structures on the sympatho-vagal
pattern that potentiates short scale coupling in self-similarity
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and reduces short scale coupling in irregularity. The pattern
of short scale cardiopulmonary coupling specific for the
state stand01 could be a feedback information of particular
importance for the higher order cardiopulmonary network (locus
coeruleus, central nucleus of amygdala, paraventricular nucleus
of hypothalamus, Noble and Hochman, 2019), dorsomedial
hypothalamus and midbrain periaqueductal gray (Dampney,
2015). These structures are of essential importance for the
organization of cardiopulmonary response to environmental
threatening stimuli, i.e., cardiopulmonary adaptability to the
challenges (Dampney, 2015). Long lasting stressful threats
inevitably induce pathological plasticity changes at the functional
level of integrative networks (Bajić et al., 2010; Dampney, 2015),
and these changes are initially observed on the short scale
feedback RRI regulatory processes (i.e., impairment of baroreflex
function, Bajić et al., 2010; Park et al., 2017). Scale dependent
change of cardiopulmonary coupling in different behavioral
conditions has not investigated previously, to the best of our
knowledge. Still, our results offer a solid basis for the hypothesis
that, together with quiet sleep (Zoccoli et al., 2001), the state
of combined standing with 0.1Hz breathing could be (one of?)
the state of short scale functional recovering process of the
cardiopulmonary pathologic plasticity.

The role and the presence of long range components in
this pattern of cardiopulmonary coupling could be followed by
statistically discrete increases of MSERRI5−10, MSEResp5−10 and
finally their increased coupling (XMSE5−10, p = 0.051). These
results need further evaluation.

Finally, non-linear parameters of cardiorespiratory coupling
had different patterns of state dependent change with respect
to a linear effect; CohRRI−Resp, suggesting that state dependent
cardiopulmonary interaction is a multilevel, dynamically
controlled phenomenon.

As a limited view, when speaking about cardiorespiratory
coupling, we speak about mutual, bidirectional interaction
between cardiac and respiratory oscillations (Porta et al., 2012;
Dick et al., 2014; Radovanović et al., 2018). Besides neuro-
humoral, there are also physical circumstances involved as a
part of indirect cardiorespiratory coupling (Porta et al., 2012).
Though it exerts small influence (Billman, 2011; Porta et al.,
2012), it should not be completely underestimated. Bearing this
in mind, multifactorial physical and neuro-humoral interplay
contribute to state dependent heart-lung interrelations as a
unique biophysical model of dynamic, coupled oscillators (Dick
et al., 2014).

LIMITATION OF THE STUDY

The ratio of spontaneous breathing inspirium vs. expirium
duration (i/e) is ∼1:2. In order to obtain sufficiently long RRI
and respiratory signals for selected analysis and in physiological
steady state of cardiorespiratory regulatory mechanisms, we
designed 20min registration sessions for each physiological state.
Controlled 0.1Hz breathing with i/e 1:2 was too fatiguing for
examinees and we were compelled to apply the paced breathing
in i/e relation 1:1.

The literature suggests that HF HRV and RSA are greater
when breathing with a regime of low compared to high i/e ratio

(Strauss-Blasche et al., 2000; Porges, 2007). In a study by Van
Diest et al. (2014), where the influence of i/e relation during
breathing frequency of 0.1Hz (frequency of paced breathing) was
specifically investigated, both 0.49 and 1.44 i/e ratio resulted in
significant increase of RSA and decrease of HR, with respect to
the baseline RSA and HR values for spontaneous breathing (Van
Diest et al., 2014). This means that in both (extreme) situations
of i/e relation we have parasympathetic dominance on HR
regulation, the condition that we aimed to achieve. We consider
useful to emphasize that our i/e condition (∼1) during 0.1Hz
breathing is lower than the i/e condition of Van Diest et al. (2014)
(1.44, an inverse relationship of i/e with respect to the value
1:2, typical for spontaneous breathing) and that consequently the
difference between the parasympathetic drives to the heart of
the two i/e conditions (0.49 vs. 1) could be negligible. Still, we
recognize the potential limitation of this approach for the fine
interpretation of respiratory mechanisms and we considered this
caveat in the interpretation of the results.

CONCLUSIONS

A major conclusion regarding parameters α1RRI and α2RRI
is that they are reciprocally regulated and interdependent in
four physiological conditions: supine, standing, supine with
0.1Hz breathing and standing with 0.1Hz breathing. That is in
agreement with the existing literature (Peng et al., 1995a). This
relationship can be described and quantified by the inter-fractal
angle θRRI, which was a sensitive parameter of the change of this
relationship in investigated physiological states.

Regarding α1RRI, an orthostatic sympathetic increase
contributes to α1RRI in the sense of Brownian noise, while
slow breathing parasympathetic increase contributes to the
increase of α1RRI in 1/f sense. In stand01 condition we report
the maximal similarity of α1RRI to Brownian noise, suggesting
that physiological sympathovagal influence on short scale RRI
self-similarity properties might be dependent on the pattern
of their activation (i.e., individual vs. joint activation) and
synergetic in the state stand01.

Regarding α2RRI, individual sympathetic and parasympathetic
activation contribute to the increase of α2RRI randomness, with
greater contribution of parasympathetic drive with respect to
sympathetic. In the state of combined orthostasis and slow
breathing (stand01) this contribution appears synergetic.

PDE analysis of αA1RRI, αA2RRI, and θRRI revealed that
baseline physiologic, healthy regime (supin) was characterized
by the widest population (group) spectrum of α1RRI, α2RRI, and
θRRI coefficients, which was in accordance with the results of
(Castiglioni et al., 2009). PDE of these values is characterized
by specific, state dependent changes of non-linear RR operating
regimes. Again, the state of standing with 0.1Hz breathing was
the state of the best defined, maximal unimodality of all RRI
angular parameters.

Additionally, in stand01 both fractal (α1RRI vs. α2RRI) and
irregularity properties of RRI (MSERRI1−4 vs. MSERRI5−10)
are reciprocally regulated. The analysis of scale dependent
patterns revealed that both short scale (α1RRI vs. MSERRI1−4)
and long scale (α2RRI vs. MSERRI5−10) parameters were also
reciprocally regulated (Table 2). All the results based on analysis
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of RRI complexity measurements speak in favor of stand01
being a qualitatively specific, regulatory well-defined state on
multidimensional levels, where we reported the inter-relation of
only two levels—horizontal (α1RRI vs. α2RRI and MSERRI1−4 vs.
MSERRI5−10 relationships) and vertical (α1RRI vs. MSERRI1−4 and
α2RRI vs. MSERRI5−10 relationships).

Non-linear parameters of respiratory signals (α1Resp, α2Resp,
θResp, αA1Resp, αA2Resp, MSEResp1−4, MSEResp5−10) were robustly
sensitive only to breathing regime change, while subtle PDE
changes were observed as the result of the posture change.
These changes were described mostly as a different number
of operating regimes induced both by the change of posture
and by the voluntary breathing regime. Demanding posture
requirements necessitate more adaptable respiratory patterns,
also in the non-linear domain, for the expected environmental
(i.e., behavioral) challenges. Only one constant, long lasting and
repetitive behavioral task, as was the slow 0.1Hz breathing,
qualitatively changed the feature of multimodality into a
dominant monomodal respiratory pattern. Cortical influences of
posture maintenance and slow breathing might jointly impose
the inhibitory effect on brainstem respiratory neural network
complexity properties and dictate monomodal pattern of their
non-linear operating mode (Feldman and McCrimmon, 2003).

As a concluding remark, we stress that cardiorespiratory
coupling in the non-linear domain is a highly dynamical,
complex, interactive, state dependent phenomenon of cross
talk between and within the cardiovascular and respiratory
systems. This dynamical multilevel cross talk was also scale
dependent, with different state dependent response patterns
with respect to the patterns of changes in linear domain. The
non-linear measures validating cardiopulmonary adaptability
identify the state of standing with 0.1Hz breathing as the most
dynamic state, characterized by a specific complexity pattern,
potentially beneficial for cardiopulmonary rehabilitation and
conditioning. Future studies, on larger statistical samples, should
address patterns of cardiopulmonary coupling in these and
other states [i.e., exercise (Młynczak and Krysztofiak, 2018),
sleep (Zoccoli et al., 2001), microgravity (Migeotte et al., 2003),
neurocardiovascular pathologies (Bojić, 2019)] and potential
parallel patterns of RR and respiratory variability changes both
in linear and non-linear domain.

CLINICAL IMPLICATIONS

One of the major implications of our research was the
potential for cardiopulmonary rehabilitation. As we addressed
in the Introduction, literature data report beneficial effects of
slow 0.1Hz breathing on cardiopulmonary rehabilitation. The
opposite pattern of short scale cardiopulmonary coupling for
ρ1 and XMSE1−4, statistically confirmed only for the state
of joint orthostasis with slow 0.1Hz breathing, suggests that
only joint enhancement of sympathetic and parasympathetic
modulation on the RRI could result in the specific short scale
coupling pattern. This pattern can be attributed to the resultant
sympatho-vagal pattern that recruits and potentiates short scale
cardiopulmonary coupling in self-similarity and reduces short
scale coupling in irregularity. Since this was the first time that

these results are reported, our statement is hypothetical and
needs further evaluation.

Regarding the patients, if this state specific pattern of
cardiopulmonary coupling was confirmed as the basis for
the beneficial effect of slow breathing in orthostasis, this
pattern could gain diagnostic value and become the scope
of medical treatments by different approaches. Even though
these phenomena were confirmed both for the respiratory
system (“short term” and “long term facilitation,” Feldman and
McCrimmon, 2003) and the cardiovascular system (Platiša et al.,
2016b, 2019), a detailed description of the analog phenomena
of cardiorespiratory interaction in healthy and patients needs to
be addressed.

Finally, evaluation of cardiovascular and respiratory
parameters of non-linear operational modes is of critical
importance in intensive care unit patients. It was observed that
low complexity of respiratory signal was a reliable prognostic
sign of unsuccessful weaning of surgical critically ill patients
from artificial ventilation (Papaioannou et al., 2011). Our data
propose the evaluation of the rehab protocol for conscious
artificially ventilated patients in the form of patient’s slow
voluntary breathing combined with orthostasis. On the basis of
our results, hypothetically, this maneuver would potentiate the
complexity of respiratory signal, promote the adaptive pattern of
cardiopulmonary coupling and improve the odds for a successful
weaning from artificial ventilation. This hypothesis necessitates
clinical trials. Data obtained on integratory cardiorespiratory
mechanisms might be of interest also for understanding the
cardiorespiratory consequences of microgravity exposure
(Migeotte et al., 2003; Prisk, 2014; Mandsager et al., 2015) and
their successful surpassing by cardiorespiratory conditioning
before and during the space flights.
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Bojić, T. (2003). Mechanisms of neural control and effects of acoustic stimulation

on cardiovascular system during the wake-sleep cycle (dissertation), Alma Mater

Università di Bologna, Bologna, Italy.
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The strength of cardiorespiratory interactions diminishes with age. Physical exercise
can reduce the rate of this trend. Inspiratory muscle training (IMT) is a technique
capable of improving cardiorespiratory interactions. This study evaluates the effect of
IMT on cardiorespiratory coupling in amateur cyclists. Thirty male young healthy cyclists
underwent a sham IMT of very low intensity (SHAM, n = 9), an IMT of moderate intensity
at 60% of the maximal inspiratory pressure (MIP60, n = 10) and an IMT of high intensity
at the critical inspiratory pressure (CIP, n = 11). Electrocardiogram, non-invasive arterial
pressure, and thoracic respiratory movement (RM) were recorded before (PRE) and after
(POST) training at rest in supine position (REST) and during active standing (STAND).
The beat-to-beat series of heart period (HP) and systolic arterial pressure (SAP) were
analyzed with the RM signal via a traditional non-causal approach, such as squared
coherence function, and via a causal model-based transfer entropy (TE) approach.
Cardiorespiratory coupling was quantified via the HP-RM squared coherence at the
respiratory rate (K2

HP−RM), the unconditioned TE from RM to HP (TERM→HP) and the
TE from RM to HP conditioned on SAP (TERM→HP|SAP). In PRE condition we found that
STAND led to a decrease of TERM→HP|SAP. After SHAM and CIP training this tendency
was confirmed, while MIP60 inverted it by empowering cardiorespiratory coupling. This
behavior was observed in presence of unvaried SAP mean and with usual responses
of the baroreflex control and HP mean to STAND. TERM→HP and K2

HP−RM were not
able to detect the post-training increase of cardiorespiratory coupling strength during
STAND, thus suggesting that conditioning out SAP is important for the assessment
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of cardiorespiratory interactions. Since the usual response of HP mean, SAP mean
and baroreflex sensitivity to postural stressor were observed after MIP60 training, we
conclude that the post-training increase of cardiorespiratory coupling during STAND in
MIP60 group might be the genuine effect of some rearrangements at the level of central
respiratory network and its interactions with sympathetic drive and vagal activity.

Keywords: multivariate linear regression model, sport medicine, breathing exercise, heart rate variability,
complexity, autonomic nervous system, cardiac control, baroreflex

INTRODUCTION

In the field of the analysis of spontaneous fluctuations of heart
period (HP) with the term cardiorespiratory coupling (CRC) is
intended the set of mechanisms responsible for a variable quote
of HP variability (HPV) driven by respiration. For example,
respiratory sinus arrhythmia (RSA) (Hirsch and Bishop, 1981) is
considered to be, at least partially, the genuine consequence of
the activity of respiratory centers modulating vagal motoneuron
responsiveness and activity (Eckberg and Karemaker, 2009).
The abovementioned definition has two important consequences
over CRC assessment: (i) both HPV and respiration need to be
acquired, namely at least a bivariate analysis framework should
be arranged (Bracic Lotric and Stefanovska, 2000; Bartsch et al.,
2007; Porta et al., 2012, 2015; Penzel et al., 2016; Mazzucco et al.,
2017); (ii) directionality of the interactions (i.e. from respiration
to HPV) must be taken into account, thus restricting signal
processing methods suitable to be exploited to those belonging
to the causal class (Porta et al., 2012, 2015; Iatsenko et al., 2013;
Widjaja et al., 2015).

The computation of the CRC strength (CRCS), namely the
degree of association between HP and respiration in the time
direction from respiration to HP, is of paramount importance
because it decreases with age (Iatsenko et al., 2013; Porta et al.,
2014) and this decline provides information complementary to
that derived from different autonomic control markers such
as RSA (Laitinen et al., 2004; Beckers et al., 2006), cardiac
baroreflex sensitivity (Laitinen et al., 1998; Milan-Mattos et al.,
2018), cardiac control complexity (Kaplan et al., 1991; Catai
et al., 2014) and the gain of the relation from respiration to
HP (Saul et al., 1991). The relevance of assessing CRCS is
further outlined by the well-known finding that it declines
in situations evoking a high sympathetic tone and/or modulation
such as during postural challenges (Porta et al., 2012, 2015)
and it is altered in pathological conditions (Garcia et al.,
2013; Schulz et al., 2013, 2015; Riedl et al., 2014; Penzel
et al., 2016). Improving CRCS might be advisable because it

Abbreviations: µ, mean; σ2, variance; BRS, baroreflex sensitivity; CIP, IMT at
the critical inspiratory pressure; CRC, cardiorespiratory coupling; CRCS, CRC
strength; ECG, electrocardiogram; HP, heart period; HPV, HP variability; IMT,
inspiratory muscle training; K2, squared coherence function; MEP, maximal
expiratory pressure; MIP, maximal inspiratory pressure; MIP60, IMT against
a respiratory resistance set to 60% of MIP; POST, after 11 weeks of IMT;
PRE, before 11 weeks of IMT; REST, at rest in supine position; RF, respiratory
frequency; RM, respiratory movement signal; RSA, respiratory sinus arrhythmia;
SAP, systolic arterial pressure; SEQ%, percentage of HP-SAP pattern of baroreflex
origin; SHAM, IMT against an inspiratory resistance of 6 cmH2O; STAND, active
standing; TE, transfer entropy; VO2, oxygen uptake.

would lead to a greater fraction of HPV driven by respiration
and, as such, a more powerful and efficient cardiac vagal
control might be in place irrespective of the efficiency of the
cardiac baroreflex.

Physical exercise might improve CRC. Indeed, a moderate
exercise training produces vagal control enhancement (Al-Ani
et al., 1996) and it is exploited as a countermeasure to limit the
decrease of the HPV magnitude with age (Albinet et al., 2010).
Among the possible exercises the inspiratory muscle training
(IMT) might be effective in improving CRCS. This position,
taken in this study as a working hypothesis, is supported by
numerous studies that suggested that IMT is able to improve
RSA in both healthy and pathological subjects (Ferreira et al.,
2013; Kaminski et al., 2015; Da Luz Goulart et al., 2016; Martins
de Abreu et al., 2017; Karsten et al., 2018; Rodrigues et al.,
2018). Even though the increase of RSA does not necessary
imply an increase of CRCS (Eckberg and Karemaker, 2009; Porta
et al., 2012, 2015), the unmodified cardiac baroreflex sensitivity
observed after IMT of moderate intensity (DeLucia et al., 2018)
prompts for a possible role of an empowered CRC to explain the
after training elevation of RSA.

The aim of the study is to assess the effect of IMT training on
CRCS in amateur cyclists. This population was chosen because
these non-professional sportsmen should have a high vagal basal
tone and CRCS that might be improved further with some
difficulty, thus stressing more evidently the potential of IMT.
The CRCS was measured using a more traditional non-causal
technique such as the squared coherence (Saul et al., 1991)
and more original causal methods based on the computation
of transfer entropy (TE) (Barnett et al., 2009; Porta and Faes,
2016). Both a causal bivariate (Porta et al., 2018) and a causal
trivariate (Porta et al., 2015) approach assessing the interactions
from respiration to HPV unconditioned and conditioned on
systolic arterial pressure (SAP) variability are exploited. This
comparison is carried out to better understand the need of
accounting for the influence of SAP variability when estimating
CRCS to eventually discard the effects of respiration on HPV that
are mediated by SAP changes at the respiratory frequency (RF)
via the activation of cardiac baroreflex (Baselli et al., 1994; Nollo
et al., 2005). CRCS is measured before (PRE) and after (POST)
11 weeks of IMT at rest in supine condition (REST) and during
sympathetic activation induced by acting standing (STAND).
Baroreflex control is monitored via sequence analysis (Bertinieri
et al., 1985; Parati et al., 1988) to better understand its role in
explaining the observed findings. Analysis was carried in three
groups of amateur cyclists undergoing different IMT intensities.
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MATERIALS AND METHODS

Characterization of the Population
The full description of the population, justification of the sample
size, description of the fitness state, characterization of the
IMT and experimental protocol was reported in Martins de
Abreu et al. (2019). Briefly, a total of 100 recreational male
cyclists were screened for eligibility. Subjects were apparently
healthy with age ranging from 20 to 40 years. They practiced
cycling for 150 min per week, for at least 6 months. We
excluded cyclists with alterations of the cardiac electric and/or
respiratory activity as detectable during incremental treadmill
exercise and cardiopulmonary tests, obese with body mass index
larger than 30 kg·m−2, subjects with cardiovascular risk factors,
smokers or former smokers with less than 1 year of interruption,
habitual drinkers, drug abusers or recreational drug users,
subjects who used drugs or medicines that could interfere with
cardiac control and autonomic function, and who performed
any type of IMT during the last 12 months. For the eligibility
and the characterization of the population, cyclists underwent
traditional anamnesis, conventional 12-lead electrocardiogram
(ECG) at rest, treadmill exercise test, cardiopulmonary test for
the assessment of peak oxygen uptake (peak VO2), and the
evaluation of maximal inspiratory pressure (MIP) and maximal
expiratory pressure (MEP).

The training protocol was registered in the ClinicalTrials.gov
(NCT02984189) and the study was approved by the Human
Research Ethics Committee of the Federal University of São
Carlos (UFSCar) (Protocol: 1.558.731). The study adhered to
the principles of the Declaration of Helsinki for research studies
involving humans. All participants provided a written informed
consent to participate in the study.

IMT Protocol
Only 50 individuals met the eligibility criteria and were
randomized into the three groups undergoing different
intensities of IMT. Randomization process was based on the
creation of groups formed by three subjects (i.e. triplets) with
similar age and aerobic functional classification. Random
allocation, performed via brown envelops, was carried out over
these triplets. One smaller group of two individuals was created
because 50 was not a multiple of 3. The three groups were
composed by 17, 17 and 16 subjects. The first group performed a
sham IMT (SHAM) of very low intensity against an inspiratory
resistance of 6 cmH2O. The second group followed an IMT of
moderate intensity against a respiratory resistance set to 60%
of MIP (MIP60). The third group was trained at the critical
inspiratory pressure (CIP) as determined in Rehder-Santos
et al. (2019) and corresponding to an optimized high intensity
IMT ranging from 80% to 90% of MIP (CIP). One subject was
moved from the CIP group to the MIP60 one to avoid the
retreat of this individual during the first session of the training.
Therefore, SHAM, MIP60 and CIP groups were formed by
17, 18, and 15 subjects respectively. Some of subjects were
excluded mainly because they did not conclude the training,
namely 8, 8 and 3 cyclists in the SHAM, MIP60 and CIP groups

respectively. Therefore, 9, 10, and 12 subjects concluded the
SHAM, MIP60 and CIP training and could undergo the POST
session of recording. Unfortunately, in 1 subject belonging to
the CIP group the signals were of poor quality, thus allowing the
analysis of the recordings of 9, 10, and 11 subjects in the SHAM,
MIP60 and CIP groups respectively. The SHAM, MIP60 and
CIP groups were similar in terms of age, body mass index, peak
VO2, MIP and MEP as tested via one-way analysis of variance,
or Kruskal–Wallis one-way analysis of variance on ranks when
appropriate, applied to continuous variables, or χ2 test applied to
aerobic functional classification (Martins de Abreu et al., 2019).

The subjects performed IMT for about 1 h, 3 days per week, for
11 weeks, using a linear inspiratory loading device PowerBreathe
(Ironman K5, HaB Ltd, United Kingdom). The protocol was
composed of a warm-up phase lasting 5 min during which each
participant performed a constant loading protocol at 50% of his
training load, followed by 3 consecutive IMT sessions of 15 min.
The second and the third IMT sessions were preceded by 1-
min recovery. During training, the subjects were instructed to
maintain the breathing rate at 12 acts per minute and this rate
was reinforced by a verbal command of the physiotherapist.
Volunteers who did not complete the 3 weekly IMT sessions or
the 11 full weeks of IMT, or modified their physical activities,
physical training or lifestyles, or started using any supplement or
medication during IMT were excluded.

Experimental Protocol and Data
Acquisition
The overall duration of the study was 13 weeks. Evaluation
of cardiovascular control markers were carried out during the
first and thirteenth weeks, just before and after IMT being
the PRE and POST conditions respectively. For cardiovascular
control assessment we acquired the ECG (lead MC5) via
a bioamplifier (BioAmp FE132, ADInstruments, Australia),
non-invasive continuous finger arterial pressure (Finometer
Pro, Finapres Medical Systems, Netherlands) and respiratory
movement (RM) through a thoracic belt (Marazza, Monza,
Italy). Signals were sampled at 1000 Hz (Power Lab 8/35,
ADInstruments, Australia). Recording sessions were carried out
at the Cardiovascular Physical Therapy Laboratory, Department
of Physical Therapy, UFSCar, São Carlos, Brazil according to
standardized criteria minimizing individual and environmental
factors that might increase the variance of cardiovascular control
markers (Milan-Mattos et al., 2018). Subjects were initially
maintained at REST for 10 min to stabilize the cardiovascular
variables. After this period, signals were recorded for 15 min at
REST. Then, the subject was asked to change posture and signals
were acquired for additional 15 min during STAND. STAND
session followed always REST. Throughout the procedure,
subjects were instructed to breathe spontaneously and were not
allowed to talk.

Extraction of Beat-to-Beat Variability
Series
The HP was determined over the ECG as the temporal distance
between two consecutive R-wave peaks. The ith SAP was detected
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as the maximum of arterial pressure signal within the ith HP. The
RM signal was sampled at the first R-wave delimiting the onset of
the ith HP. Delineations of the R-wave peak and arterial pressure
maximum were carefully checked to avoid erroneous detections
or missed beats. If isolated ectopic beats affected HP and SAP,
these measures were linearly interpolated using the closest values
unaffected by ectopies. Since we were interested in short-term
cardiac control, analyses were carried out over sequences of 256
consecutive HP, SAP and RM values (Task Force, 1996). The
sequences were selected in a random position within REST and
STAND periods. The random position was decided according
to an automatic routine randomly extracting the onset of the
segment from a uniform distribution of integers ranging from
the session onset to the session offset (minus 256). The operator
has no possibility to intervene on the selection. The procedure
avoided the selection of the first 3 min of STAND. We computed
the mean and variance of HP and SAP series, labeled as µHP,
σ2

HP, µSAP and σ2
SAP and expressed in ms, ms2, mmHg and

mmHg2 respectively. With the exception of the means, all the
other markers were computed over linearly detrended sequences.

Squared Coherence Analysis
The degree of linear coupling between HP and RM series as a
function of the frequency f was computed via squared coherence
function K2

HP−RM(f). The K2
HP−RM(f) is defined as the ratio

between the square HP-RM cross-spectrum modulus divided by
the product of the HP and RM power spectra.K2

HP−RM(f) ranges
from 0 to 1, where 0 indicates perfect uncorrelation between HP
and RM at the frequency f, while 1 indicates full correlation.
The cross-spectrum and power spectra were estimated according
to a parametric approach based on the bivariate autoregressive
model (Porta et al., 2000). The coefficients of the model were
identified via a traditional least squares technique and the order
was fixed at 10 (Porta et al., 2000). K2

HP−RM(f) was sampled in
correspondence of the weighted average of the central frequency
of the RM spectral components in high frequency (HF, from 0.15
to 0.4 Hz) band. This frequency was taken as an estimate of the
RF. The sampling of the K2

HP−RM(f) at the RF was referred to as
K2

HP−RM(RF) and it is dimensionless.

Model-Based Conditional and
Unconditional TE
The degree of association in the temporal direction from a cause
signal to an effect one was computed via TE measuring the
amount of information transferred from the cause to the effect
(Schreiber, 2000). Defined the restricted universe of knowledge
as the set formed by the effect and all the possible confounding
factors, the TE computes the reduction of information carried
by the target signal when the restricted universe of knowledge
is completed by including the presumed cause to become the
full universe of knowledge. The greater the TE, the higher the
association from the cause to the effect, the larger the coupling
strength from the cause to the effect.

In this specific application the presumed cause is RM, the
effect is HP and the possible confounding factor is SAP. At
difference with K2

HP−RM(f) the TE has the inherent advantage

to be an asymmetric function, namely the TE from RM to HP is
different from the TE from HP to RM. This feature makes TE to
be particularly attractive in quantifying CRCS whether the degree
of association in the temporal direction from HP to RM is present
and larger than that in the reverse temporal direction. Indeed, in
this situation K2

HP−RM(f) would be dominated by mechanisms
operating in the temporal direction that have nothing to do with
CRC. The TE from RM to HP was computed in two different full
universes of knowledge �2 = {HP, RM} and �3 = {HP, RM, SAP}
respectively. Assigned�2 and�3 we defined�2\RM = {HP} and
�3\RM = {HP, SAP} as the two restricted universes of knowledge
built from �2 and �3 after excluding the presumed cause RM.
The TE from RM to HP in�2, termed TERM→HP, was computed
as a half of the logarithm of the prediction error variance of HP
in �2\RM to that of HP in �2 (Barnett et al., 2009; Porta et al.,
2018). The TE from RM to HP in�3 conditioned on SAP, termed
TERM→HP|SAP, was computed as a half of the logarithm of the
prediction error variance of HP in �3\RM to that of HP in �3
(Barnett et al., 2009; Porta et al., 2015). Both TERM→HP and
TERM→HP|SAP were dimensionless.

In this specific application a model-based approach based on
multivariate linear regression models, namely the class of the
autoregressive model with exogenous input (Baselli et al., 1997),
was exploited to fit the series in �2, �2\RM, �3, and �3\RM.
After normalizing HP, SAP, and RM series to have zero mean and
unit variance by subtracting the mean and by dividing the result
by the standard deviation, the coefficients of the models were
identified via traditional least squares approach and Cholesky
decomposition method (Baselli et al., 1997). In the computation
of TERM→HP and TERM→HP|SAP the model order was optimized
in the range from 8 to 16 according to the Akaike’s figure of
merit (Akaike, 1974) computed in �2 and �3 respectively. The
prediction error was computed as the difference between the
current value of the HP series and its best prediction provided
by the model. Immediate effects (i.e. within the current HP)
from SAP and RM to HP were considered in agreement with
the fastness of the vagal actions characterizing both cardiac
baroreflex, namely the link from SAP to HP, and CRC, namely
the pathway from RM to HP (Eckberg, 1976; Porta et al., 2013b).
All the regressions have the same number of coefficients equal to
the optimal model order. The models in�2\RM and�3\RM were
separately identified using the optimal model order estimated in
�2 and�3 respectively (Porta et al., 2015).

Cardiac Baroreflex Evaluation
The sequence technique is one of the most utilized methods
for the characterization of cardiac baroreflex from spontaneous
HP and SAP variability series (Bertinieri et al., 1985; Parati
et al., 1988). We applied the sequence technique as implemented
in Porta et al. (2000, 2013a). More specifically, we defined as
HP-SAP pattern of baroreflex origin an HP-SAP joint scheme
featuring three consecutive and contemporaneous HP and
SAP increases or decreases. Therefore, an HP-SAP pattern of
baroreflex origin is characterized by same-sign HP and SAP
ramps with a delay between them equal to 0 beats, thus focusing
on the fast vagal arm of the cardiac baroreflex featuring very short
latencies compatible with the measurement convention adopted
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in this study (Eckberg, 1976; Milan-Mattos et al., 2018). All the
detected HP-SAP patterns of baroreflex origin were retained in
this analysis regardless of the magnitude of total, or partial, SAP
and HP variations and the strength of the linear association
between HP and SAP values (Porta et al., 2013a). The baroreflex
sensitivity (BRS) was computed as the mean of the slopes of
the regression lines of HP on SAP calculated over all HP-SAP
patterns of baroreflex origin. BRS was positive by definition
and expressed in ms·mmHg−1. The percentage of the HP-SAP
patterns of baroreflex origin with respect to the overall amount
of HP-SAP joint schemes (SEQ%) was assessed as well and taken
as a measure of the degree of involvement of cardiac baroreflex
control. By definition, SEQ% ranged between 0 and 100.

Statistical Analysis
Normality was tested via Shapiro–Wilk test. The assessment of
the effect of IMT on time domain, cardiac baroreflex and CRCS
indexes was carried out within an assigned group of athletes via
two-way repeated measures analysis of variance (Holm–Sidak
correction for multiple comparisons). The significance of the
effect of training within the same experimental condition (i.e.
REST or STAND) and the response to postural challenge within
the same period of analysis (i.e. PRE or POST) was tested.
Assigned the group of subject, if the null hypothesis of normal
distribution of a given variable was rejected in some experimental
condition or period of analysis, the values of that variable
in all experimental conditions and periods of analysis were
log-transformed before performing two-way repeated measures
analysis of variance. No formal statistical analysis was carried
out among different groups (i.e. SHAM, MIP60 and CIP).
Comparison among different groups was qualitative and based
on the observation of significances detected by the previously
mentioned two-way repeated measures approach. Data are
expressed as mean ± standard deviation. Statistical analysis was
carried out using a commercial statistical program (Sigmaplot,
v.14.0, Systat Software, Inc., Chicago, IL, United States).
A p< 0.05 was always considered statistically significant.

RESULTS

Time domain markers are summarized in Table 1. The effect of
STAND was significant over µHP regardless of the training status
(i.e. PRE and POST) and type of training (i.e. SHAM, MIP60,
and CIP). SHAM and MIP60 trainings lengthened µHP at REST
respectively, while CIP training shortened µHP during STAND.
σ2

HP and µSAP were not influenced by experimental condition
and training status. This finding held irrespective of the type of
training. σ2

SAP did not vary with the training status but it was
affected by the postural challenge. Indeed, in both PRE and POST
sessions σ2

SAP increased during STAND and this result held only
in the MIP60 group. In the SHAM and CIP groups RF was
not affected by either experimental condition or training status.
A post-training decrease of RF was observed in the MIP60 group
at REST, while no effect of training was visible during STAND.
In the same group orthostatic challenge did not influence the RF
regardless of the training status.

The grouped vertical bar graphs of Figure 1 show BRS
and SEQ% computed over SHAM (Figures 1A,D), MIP60
(Figures 1B,E), and CIP (Figures 1C,F) groups in PRE
(black bars) and POST (white bars) sessions as a function of
the experimental condition (i.e. REST and STAND). STAND
decreased BRS and increased SEQ%. This tendency held
regardless of the training condition (i.e. PRE and POST) and was
observed in all the groups (i.e. SHAM, MIP60 and CIP). However,
the effect of STAND over BRS and SEQ% was more powerful
in MIP60 (Figures 1B,E) and CIP (Figures 1C,F) groups than
in the SHAM one (Figures 1A,D). IMT did not influence
BRS and SEQ% given that no significant PRE-POST difference
was observed either at REST or during STAND irrespective of
the IMT intensity.

Figure 2 shows an example of the K2
HP−RM and TE analyses

performed over series recorded at REST and during STAND
in a subject belonging to the SHAM group. The series of
HP, RM and SAP acquired at REST and during STAND are
shown in Figures 2A,C,E and Figures 2B,D,F respectively.
During STAND µHP decreases and σ2

SAP increases. The
corresponding K2

HP−RM functions are reported in Figures 2G,H
respectively with the indication of the inferior and superior
limit of the HF band (dotted lines) and sampling at the RF
(solid circle). The values of the K2

HP−RM(RF), TERM→HP, and
TERM→HP|SAP are given below the panels representing K2

HP−RM.
The values of K2

HP−RM(RF), TERM→HP, and TERM→HP|SAP at
REST are higher than the correspondent value during STAND,
thus indicating a reduced cardiorespiratory coupling with the
postural challenge. TERM→HP is larger than TERM→HP|SAP, thus
suggesting that a portion of the information transferred from RM
to HP is mediated by SAP changes.

The grouped vertical bar graphs of Figure 3 show
K2

HP−RM(RF) computed over SHAM (Figure 3A), MIP60
(Figure 3B), and CIP (Figure 3C) groups in PRE (black bars)
and POST (white bars) sessions as a function of the experimental
condition (i.e. REST and STAND). All the groups responded to
the orthostatic challenge by decreasing K2

HP−RM(RF) in both
PRE and POST sessions. However, the decrease was significant
solely in SHAM (Figure 3A) and CIP (Figure 3C) groups,
while in the MIP60 group the reduction was not significant
(Figure 3B). Regardless of the IMT intensity no effect of training
was visible over K2

HP−RM(RF) both at REST and during STAND.
Figure 4 has the same structure as Figure 3 but it shows

TERM→HP. This parameter did not change with either training
status (i.e. PRE and POST) or experimental condition (i.e. REST
and STAND). This conclusion held regardless of the type of
training, namely SHAM (Figure 4A), MIP60 (Figure 4B), and
CIP (Figure 4C).

Figure 5 has the same structure as Figure 3 but it
shows TERM→HP|SAP. Regardless of the training condition
(i.e. PRE or POST) STAND influenced TERM→HP|SAP. This
consideration held for all the groups. Remarkably, the sign
of the TERM→HP|SAP variation induced by STAND depended
on the intensity of the IMT training. Indeed, in POST
condition, while STAND decreased TERM→HP|SAP in SHAM
(Figure 5A) and CIP (Figure 5C) group, the postural challenge
significantly increased TERM→HP|SAP in the MIP60 group
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TABLE 1 | Time domain HP and SAP markers and RF during SHAM, MIP60, and CIP trainings.

Index Experimental condition SHAM MIP60 CIP

REST STAND REST STAND REST STAND

µHP [ms] PRE 990 ± 113 810 ± 135* 992 ± 181 815 ± 165* 946 ± 76 791 ± 71*

POST 1063 ± 133§ 876 ± 178* 1106 ± 175§ 849 ± 98* 928 ± 109 737 ± 95§*

σ2
HP [ms2] PRE 4289 ± 3631 3392 ± 1774 2607 ± 1850 3582 ± 3978 2859 ± 2745 2369 ± 1508

POST 5190 ± 3647 4695 ± 3980 4149 ± 2658 4000 ± 3821 1856 ± 1390 1650 ± 1388

µSAP [mmHg] PRE 111 ± 17 104 ± 16 112 ± 14 116 ± 18 110 ± 9 109 ± 14

POST 98 ± 38 95 ± 39 112 ± 23 114 ± 24 113 ± 16 115 ± 16

σ2
SAP [mmHg2] PRE 32 ± 22 52 ± 20 15 ± 5 41 ± 20* 23 ± 13 29 ± 12

POST 36 ± 25 38 ± 30 23 ± 13 46 ± 29* 30 ± 16 39 ± 25

RF [apm] PRE 15.9 ± 3.7 14.0 ± 3.4 18.3 ± 4.5 15.8 ± 4.9 17.0 ± 3.7 15.7 ± 3.2

POST 16.4 ± 1.8 15.9 ± 3.9 15.2 ± 5.0§ 16.4 ± 5.3 18.9 ± 4.2 17.9 ± 3.8

IMT, inspiratory muscle training; SHAM, sham IMT; MIP60, IMT at 60% of the maximum inspiratory pressure; CIP, IMT training at the critical inspiratory pressure; REST,
at rest in supine position; STAND, active standing; HP, heart period; SAP, systolic arterial pressure; µHP, HP mean; σ 2

HP, HP variance; µSAP, SAP mean; σ 2
SAP, SAP

variance; RF, respiratory frequency expressed in acts per minute (apm). Data are presented as mean ± standard deviation. The symbol * indicates p < 0.05 vs. REST
within the same period of analysis (i.e. PRE or POST) assigned the training group. The symbol § indicates p < 0.05 versus POST within the same experimental condition
(i.e. REST or STAND) assigned the training group.

FIGURE 1 | The grouped vertical bar graphs show BRS (A–C) and SEQ% (D–F) before (PRE, black bars) and after (POST, white bars) training as a function of the
experimental condition (i.e. REST and STAND) in the three considered groups, namely SHAM (A,D), MIP60 (B,E), and CIP (C,F). The values are reported as mean
plus standard deviation. The symbol ∗ indicates a statistically significant difference versus REST within the same training condition (i.e. PRE or POST) with p < 0.05.

(Figure 5B). At REST the decrease of TERM→HP|SAP in response
to STAND was significant regardless of the group (Figures 5A–
C). No PRE-POST difference was detected both at REST
and during STAND (Figures 5A–C) and this result held
for all the groups.

DISCUSSION

The main finding of this study can be summarized as follows: (i)
in PRE condition sympathetic activation and vagal withdrawal

induced by postural challenge reduced CRCS even though the
significance of the decrease depends on the CRC marker; (ii)
in MIP60 group a causal CRCS marker conditioning SAP
out can detect the post-training increase of CRCS during
STAND, while more traditional non-causal and simpler causal
CRCS indexes cannot; (iii) in MIP60 group the post-training
increase of TERM→HP|SAP induced by STAND was observed
without significant modifications of µSAP and RF and in
presence of the expected response of µHP and BRS to STAND;
(iv) CIP was not able to prevent the decrease of CRCS in
response to STAND.
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FIGURE 2 | The line plots show the series of HP (A,B), RM (C,D), and SAP
(E,F). The series are recorded from a SHAM subject at REST (A,C,E) and
during STAND (B,D,F). The K2

HP−SAP functions computed over the HP and
RM series at REST and during STAND are shown in (G,H). The sampling of
the K2

HP−SAP function at the RF is indicated by a solid circle in (G,H). The
limits of the HF band are given as dotted lines in (G,H). The values of the
K2

HP−RM(RF), TERM→HP, and TERM→HP|SAP are reported below the panels
representing K2

HP−RM.

On the Need of a Causal Approach
Conditioning SAP Variability Out for the
Evaluation of CRCS
The quantification of CRCS necessitates the computation of
the association between RM and HP dynamics in a specific
time direction (i.e. from RM to HP) and the possibility of
conditioning out any signal that might act as a confounding
factor masking or biasing the considered HP-RM association.
Signal processing tools assessing causality are suitable candidates
for the evaluation of CRCS because the temporal direction of
the dynamical interactions can be accounted for, confounding
factors can be easily conditioned out, and the computed metrics
might have attracting features such as being dimensionless and

bounded (e.g. TE is bounded between 0 and the Shannon entropy
of HP series) (Porta and Faes, 2016). In this study we exploited
a model-based approach assessing the information transferred
from RM to HPV as the reduction of information carried by
the HP series resulting from the acquisition of the RM signal
in addition to HP and SAP variability series (Barnett et al.,
2009; Porta et al., 2015). It can be argued that the possibility
of imposing a temporal direction of interactions (i.e. from RM
to HP) might be irrelevant in assessing CRC because it is
unlikely that modifications of HP could affect respiratory centers
because no anatomical feedback from HP to RM does exist.
However, given that the hypothesis of open loop relation from
RM to HP has been repeatedly rejected in experiment conditions
commonly exploited in cardiac autonomic control analysis and
with respiratory signals routinely acquired in many laboratories
(Yana et al., 1993; Porta et al., 2013b), some caution about the use
of non-causal tools such as K2

HP−RM(f) is advisable. An active
pathway on the reverse time direction (i.e. from HP to RM)
might be the mere consequence of the different rapidity of the
recorded variables to respond to respiratory center inputs (Yana
et al., 1993; Porta et al., 2013b). The possibility of conditioning
out confounding factors is even more important than that of
imposing causality. Indeed, it is well-known that the association
between RM and HPV might be mediated by cardiac baroreflex
(Porta et al., 2012) solicited by SAP fluctuations resulting
from modifications of the venous return driven by respiratory-
related changes of intrathoracic pressure (Toska and Eriksen,
1993; Caiani et al., 2000). Accounting for baroreflex influences
on the HP-RM link might be important in our experimental
protocol given that IMT generates remarkable modifications of
intrathoracic pressures (Lurie et al., 2002; Convertino et al.,
2004b; Vranish and Bailey, 2015), that might have some impact
on baroreflex responses (Angell James, 1971), and given that
sympathetic activation evoked by STAND is mediated by the
baroreflex engagement (Taylor and Eckberg, 1996; Porta et al.,
2011, 2012). If these influences were not accounted for, the
association between RM and HP dynamics might be biased by the
simultaneous action of pathways other than the directed action
of RM on HRV. Therefore, it is not surprising to find out that
the statistical power of the TERM→HP|SAP is greater than that of
a rougher causal marker that does not take into account SAP,
such as the TERM→HP. Even the modifications of K2

HP−RM(RF)
with STAND might be the sole consequence of disregarding
SAP dynamics. Indeed, the decrease of K2

HP−RM(RF) during
STAND might be the genuine result of the reduction of the
cardiac baroreflex sensitivity at the RF in response to the postural
stimulus (Cooke et al., 1999; De Maria et al., 2019) limiting the
strength of the HP-RM link mediated by SAP changes.

Effect of the Orthostatic Challenge on
CRCS in PRE Condition
This study confirms that orthostatic challenge determines a
reduction of CRCS. Indeed, in PRE condition all the considered
CRCS markers reached the same conclusion, even though with
different statistical power. Indeed, the reduction of TERM→HP
during STAND was less evident than that of K2

HP−RM(RF)
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FIGURE 3 | The grouped vertical bar graphs show K2
HP−RM(RF) before (PRE, black bars) and after (POST, white bars) training as a function of the experimental

condition (i.e. REST and STAND) in the three considered groups, namely SHAM (A), MIP60 (B), and CIP (C). The values are reported as mean plus standard
deviation. The symbol ∗ indicates a statistically significant difference versus REST within the same training condition (i.e. PRE or POST) with p < 0.05.

FIGURE 4 | The grouped vertical bar graphs show TERM→HP before (PRE, black bars) and after (POST, white bars) training as a function of the experimental
condition (i.e. REST and STAND) in the three considered groups, namely SHAM (A), MIP60 (B), and CIP (C). The values are reported as mean plus standard
deviation.

FIGURE 5 | The grouped vertical bar graphs show TERM→HP|SAP before (PRE, black bars) and after (POST, white bars) training as a function of the experimental
condition (i.e. REST and STAND) in the three considered groups, namely SHAM (A), MIP60 (B), and CIP (C). The values are reported as mean plus standard
deviation. The symbol ∗ indicates a statistically significant difference versus REST within the same training condition (i.e. PRE or POST) with p < 0.05.

and TERM→HP|SAP. A CRCS decrease, proportional to the
magnitude of the postural stimulus (i.e. the tilt table inclination
during graded head-up tilt test), was observed via a causal
method decomposing the variance of HP series using a
multivariate partial power spectral decomposition technique
(Porta et al., 2012) and via a model-based conditional

TE approach (Porta et al., 2015). The sympathetic activation
and vagal withdrawal associated to the orthostatic challenge
(Montano et al., 1994; Cooke et al., 1999; Furlan et al., 2000;
Marchi A. et al., 2016) is likely to be responsible for the
decoupling of the respiratory rhythm modulating vagal drive
and HP dynamics. This decoupling is favored by the decrease
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of the gain of the HP-RM transfer function (Saul et al., 1991;
Yana et al., 1993) and by the reduction of the RSA (Pomeranz
et al., 1985) known to occur when cardiac vagal control is
limited like during parasympathetic blockade performed via high
dose administration of atropine. The reduction of the CRCS is
robustly detected in presence of a shift of the sympathovagal
balance toward a sympathetic predominance even when this
unbalance is not evoked by an orthostatic challenge such as
during healthy aging (Iatsenko et al., 2013; Nemati et al.,
2013; Porta et al., 2014), thus stressing the inverse relationship
between markers of CRC and vagal control and the possibility
to use CRCS as a further marker of vagal responsiveness
of the sinus node.

Effect of the Orthostatic Challenge on
CRCS in POST Condition
The effects of IMT on CRCS seem to be of limited entity both
at REST and during STAND. Indeed, no significant difference
between PRE and POST was observed and this finding held
irrespective of the IMT intensity and type of CRCS marker.
However, some influences of IMT became visible when the
response to STAND was analyzed in POST condition. Indeed,
TERM→HP|SAP decreased during STAND compared to REST
in both SHAM and CIP groups, while it increased in the
MIP60 group. The post-training increase of CRCS induced by
STAND was not detectable via K2

HP−RM(RF) and TERM→HP
likely due to the limited ability of a non-causal index of CRC,
such as K2

HP−RM(RF), and of a simpler causal marker that
does not account for confounding factors such as TERM→HP.
It seems that after MIP60 training amateur cyclists could cope
with the postural stressor with an increased CRC in presence
of a usual response of sympathetic and vagal sympathetic
branches of the autonomic nervous system to the postural
stressor as denoted by the decrease of µHP and increase of
σ2

SAP. The mechanism underlying the improvement of CRCS
during STAND induced by the MIP60 training is unclear.
Breathing through an inspiratory resistance of limited value
decreases intrathoracic pressure and increases stroke volume,
cardiac output and SAP (Lurie et al., 2002; Convertino et al.,
2004b). Given the rhythmical nature of respiration, modifications
of intrathoracic pressure and, consequently, of stroke volume
(Toska and Eriksen, 1993; Caiani et al., 2000), periodically solicit
the stretch-sensitive areas of barosensory vessels located in thorax
(Angell James, 1971) and this dynamical stimulation might
be responsible for producing post-training beneficial effects in
terms of augmented vessel elasticity and reduced mechanical
stiffness. This mechanism was advocated to explain the improved
baroreflex control after IMT of light-to-moderate intensity in
patients suffering for orthostatic hypotension as a consequence of
spinal cord injury (Aslan et al., 2016). However, this baroreflex-
mediated mechanism cannot explain the complexity of our
results and findings present in literature. Indeed, if an IMT of
moderate intensity was able to empower baroreflex, we would
expect a greater after-training BRS. Conversely, no PRE-POST
variation of BRS was observed and the usual trend of baroreflex
markers with STAND was detected after MIP60 training. The

lack of influences on the baroreflex regulation is in agreement
with data derived during a session of breathing through an
inspiratory resistance of small value (Convertino et al., 2004a)
and with the long-term effects of an IMT training of moderate
intensity (DeLucia et al., 2018). We suggest that the post-training
changes of CRCS detected by TERM→HP|SAP during STAND in
MIP60 group are due to mechanisms unrelated to baroreflex.
Also modifications of RF cannot explain this finding given
that RF did not change in MIP60 group during STAND. We
speculate that the MIP60 training might have promoted central
respiratory network modifications (Spyer, 1995; Eckberg, 2003)
through the solicitation of the afferent pulmonary and atrial
stretch-activated neural circuits during training (Seals et al., 1990;
Taha et al., 1995; Eckberg and Karemaker, 2009; Crystal and
Salem, 2012). Remarkably, the post-training increase of CRCS
was detected only by TERM→HP|SAP likely because the unvaried
action of baroreflex might act as a confounding factor for the
direct relation from RM to HP. Moreover, since this effect of
the MIP60 training was visible solely during the sympathetic
activation induced by the orthostatic stimulus, we speculate
that this IMT might not produce exclusively modifications of
the interactions between respiratory centers and vagal activity
but also with central sympathetic drive. Remarkably, the post-
training increase of CRCS during STAND observed in the MIP60
group was not detected in SHAM and CIP groups likely because
the intensity of the SHAM training was too low to produce any
post-training modifications of the cardiac control, while the CIP
training might be ineffective. The ineffectiveness of CIP training
might be related to the inability, compared to MIP60, to produce
really important transmural pressures, namely the difference
between intramural atrial pressure and extramural intrathoracic
pressure being the net stimulus for the low pressure receptors in
the atria. We conjecture that this inability prevents the generation
of empowered variations of the afferent neural activity during
the CIP training and, consequently, the possibility to stimulate
some rearrangements at the level of central respiratory network.
This supposition needs to be corroborated by the observation of
additional variables during CIP session such venous return, atrial
and intrathoracic pressure and stroke volume.

Limitations of the Study and Future
Developments
We remark the exploratory value of this study and recommend
taking conclusions as hypotheses that should be tested over
groups of larger size. With the results of the present work
in mind future studies should be focused on a single type
of IMT to concentrate the experimental effort on a single
group of individuals. It is worth noting that at REST the
MIP60 training was able to evoke a significant bradycardia in
presence of an unvaried SAP. This finding is in contrast with
some studies suggesting that IMT of moderate intensity could
lower arterial pressure while leaving unmodified HP values in
both normotensive (Vranish and Bailey, 2015; DeLucia et al.,
2018) and hypertensive (Ferreira et al., 2013) subjects. Even the
improvement of arterial pressure regulation, reported in subjects
with orthostatic hypotension such as those after spinal cord
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injury (Aslan et al., 2016), it is not evident in our study
given that the baroreflex control is not affected by IMT.
These considerations suggest that, although belonging to the
class of IMT, our modality of IMT might lead to long-term
effects different from those reported in literature and/or long-
term consequences depending on the trained population, thus
stressing the need of standardization of the IMT to better control
its chronic effects according to the type of treated subjects. This
standardization appears to be mandatory especially whether IMT
of moderate intensity is to be proposed as a standard practice in
physiotherapy and sports medicine.

CONCLUSION

This study suggests that an IMT of moderate intensity, such
as MIP60, improves cardiac autonomic control by acting on
CRC and this improvement is visible using a causal tool
conditioning SAP out and only under a sympathetic stressor
such as STAND. This improvement appears to be independent
of cardiac baroreflex because the usual trends of BRS with
STAND are detected after the MIP60 training. The present
result indicates that the long-term effects of IMT of moderate
intensity might be not limited to lower arterial pressure and
vascular resistance (DeLucia et al., 2018) but they might be even
wider through the possible involvement of regulatory centers
in the brain stem that are not specifically devoted to arterial
pressure control. This improvement is associated exclusively
with an IMT training of moderate intensity. We suggest that
the favorable effects of IMT of moderate intensity observed in
patients featuring a high sympathetic drive (Ferreira et al., 2013;
Da Luz Goulart et al., 2016; Martins de Abreu et al., 2017)
and in healthy old subjects (Rodrigues et al., 2018) could be
related to an improved CRC more evident under sympathetic
stressor. The exploration of the mechanisms underlying the
effects of MIP60 training might favor its specific application
as a countermeasure of the progressive increase of sympathetic

drive contributing to the decrease of CRCS in physiological and
pathological situations.
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Autonomic nervous system (ANS) activity and imbalance between its sympathetic
and parasympathetic components are important factors contributing to the initiation
and progression of many cardiovascular disorders related to obesity. The results on
respiratory sinus arrhythmia (RSA) magnitude changes as a parasympathetic index
were not straightforward in previous studies on young obese subjects. Considering
the potentially unbalanced ANS regulation with impaired parasympathetic control in
obese patients, the aim of this study was to compare the relative contribution of
baroreflex and non-baroreflex (central) mechanisms to the origin of RSA in obese vs.
control subjects. To this end, we applied a recently proposed information-theoretic
methodology – partial information decomposition (PID) – to the time series of heart
rate variability (HRV, computed from RR intervals in the ECG), systolic blood pressure
(SBP) variability, and respiration (RESP) pattern measured in 29 obese and 29 age-
and gender-matched non-obese adolescents and young adults monitored in the resting
supine position and during postural and cognitive stress evoked by head-up tilt and
mental arithmetic. PID was used to quantify the so-called unique information transferred
from RESP to HRV and from SBP to HRV, reflecting, respectively, non-baroreflex and
RESP-unrelated baroreflex HRV mechanisms, and the redundant information transferred
from (RESP, SBP) to HRV, reflecting RESP-related baroreflex RSA mechanisms. Our
results suggest that obesity is associated: (i) with blunted involvement of non-baroreflex
RSA mechanisms, documented by the lower unique information transferred from RESP
to HRV at rest; and (ii) with a reduced response to postural stress (but not to mental
stress), documented by the lack of changes in the unique information transferred
from RESP and SBP to HRV in obese subjects moving from supine to upright, and
by a decreased redundant information transfer in obese compared to controls in the
upright position. These findings were observed in the presence of an unchanged RSA
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magnitude measured as the high frequency (HF) power of HRV, thus suggesting that
the changes in ANS imbalance related to obesity in adolescents and young adults are
subtle and can be revealed by dissecting RSA mechanisms into its components during
various challenges.

Keywords: respiratory sinus arrhythmia, obesity, autonomic nervous system, information decomposition,
multiscale analysis

INTRODUCTION

Obesity is a complex, multifactorial chronic disease associated
with many adverse health consequences (Laederach-Hofmann
et al., 2000; De Lorenzo et al., 2019). The prevalence of obesity in
adults but also in children and adolescents prominently increased
during last decades (World Health Organization [WHO], 2012).
In the European Union, over 20% of school-age children (around
12 million children) suffer from overweight or obesity (Bagchi
and Preuss, 2012). This results in an increasing occurrence
of obesity-related complications (dyslipidemia, atherosclerotic
changes, hypertension, impaired glucose tolerance, type 2
diabetes mellitus, etc.) even in childhood and adolescence
(Vanderlei et al., 2010; Juonala et al., 2011; Cote et al., 2013;
McCrindle, 2015; Ortega et al., 2016; Urbina et al., 2019).

Many cardiovascular disorders – including coronary artery
disease, ventricular arrhythmia, arterial hypertension, left
ventricular hypertrophy, and cardiomyopathy – are associated
with obesity (Karason et al., 1999; Poirier et al., 2006). Autonomic
nervous system (ANS) activity and imbalance between its two
main components (parasympathetic and sympathetic nervous
control) are important factors contributing to the initiation and
progression of many cardiovascular disorders related to obesity
(Ito et al., 2001; Cote et al., 2013; McCrindle, 2015; Ortega et al.,
2016; Urbina et al., 2019).

To assess cardiovascular autonomic control changes in
obese children and adolescents, heart rate variability (HRV)
analysis in frequency domain was traditionally performed.
High frequency (HF) HRV spectral power corresponding to
the magnitude of respiratory-related heart rate oscillations –
respiratory sinus arrhythmia (RSA) – was often analyzed
due to its straightforward interpretation as an index of
phasic parasympathetic activity, while the interpretation of
slower oscillations in terms of sympathetic activity is more
equivocal (Eckberg, 2000). Several studies demonstrated lower
parasympathetic activity (lower HF HRV power) in obese
children and adolescents (Paschoal et al., 2009; Thayer et al.,
2010; Liao et al., 2014). In contrast, no significant differences
in the HF power of HRV were observed in other studies
between young obese subjects and healthy age- and gender-
matched controls (Paschoal et al., 2009; Vanderlei et al., 2010;
Javorka et al., 2016). Previous studies also demonstrated an
impairment of arterial baroreflex (lower baroreflex sensitivity
expressed as heart rate changes related to arterial blood
pressure change) in obese children and adolescents, illustrating
an impairment of reflex parasympathetic control (Honzikova
et al., 2006; Krontoradova et al., 2008; Lazarova et al., 2009;
Honzikova and Zavodna, 2016).

In order to shed light on the physiological mechanisms
related to the controversial results reported above, this work
undertakes a different approach than frequency domain analysis.
Our motivation is the known fact that RSA results in humans
from two principal pathways, reflecting a central mechanism (i.e.,
the connection of respiratory and cardiac control centers) and
peripheral mechanisms (with a dominant role of high-pressure
baroreflex mechanism). Although both these pathways are
involved in the origin of RSA, their relative contribution varies
with physiological conditions (Krohova et al., 2018). In this study,
considering the potentially impaired parasympathetic control
in young obese patients, our goal was to compare the relative
contribution of baroreflex and non-baroreflex mechanisms in the
origin of RSA in obese vs. control non-obese adolescents and
young adults. To get insight into these mechanisms, we applied
a recently developed information-theoretic approach to dissect
causal interactions in multivariate time series, i.e., multiscale PID
(Williams and Beer, 2010; Faes et al., 2017, 2018), computing
the related measures on the cardiovascular and respiratory
oscillations obtained at rest and during the application of two
physiological stressors (i.e., orthostasis and cognitive load).

MATERIALS AND METHODS

The study group consisted of 58 adolescents and young adults,
including 29 obese (O group) participants (14 female, age
range: 12.4–22.7 years; median age: 15.4 years) and 29 age-
and gender-matched healthy control (C group) subjects (age
range: 12.5–22.1 years, median age: 15.8 years). The division
to the O and C groups was based on the Cole’s chart (Cole
et al., 2000), which takes age into account when the body
mass index (BMI) is used to diagnose overweight or obesity.
The majority of obese subjects (25 out of 29 participants) were
in the range of BMI 29–38 kg/m2 corresponding to obesity
classes I and II. The sample of subjects was recruited as a
part of larger project focused on the study of obesity-related
cardiovascular complications (e.g., see Czippelova et al., 2019).
All measurements took place in the morning hours (from 8
am to 11 am), in a quiet examination room with temperature
ranging between 22 and 25◦C. All subjects must not suffer from
any current or previous infectious disease (at least three weeks
prior to the examination date), cardiovascular disease including
hypertension (diagnosed using 24-h ambulatory blood pressure
monitoring following examination), diabetes mellitus, psychiatric
disorders, and hypothyroidism. All probands were instructed
not to use substances influencing ANS or cardiovascular system
activity during 24 h and not to perform strenuous physical
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activity during 48 h prior to examination. Fourteen female
subjects in each group were examined in the proliferative phase
(6th–13th day) of their menstrual cycle. All subjects or their legal
representatives (in participants under 18 years of age) provided
written informed consent to participate in the study. The study
was approved by the Ethics Committee of Jessenius Faculty of
Medicine, Comenius University. Detailed characteristics of obese
and control groups are shown in Table 1.

In this work we used a subset of continuous recordings of
ECG (horizontal bipolar thoracic lead; CardioFax ECG-9620,
NihonKohden, Japan), finger arterial blood pressure (volume-
clamp photoplethysmography method; Finometer Pro, FMS,
Netherlands) and respiratory volume (respiratory inductive
plethysmography; RespiTrace, NIMS, United States) measured
during four phases of the study protocol: supine rest (15 min),
head-up tilt (HUT) to 45 degrees for 8 min to evoke mild
orthostatic stress, supine recovery (10 min) and non-verbal
mental arithmetics (MA) in the supine position (6 min). As the
next step, the 300 beats lasing segments of RR interval, the systolic
blood pressure (SBP), and respiration volume signal (RESP) were
extracted from the continuous recordings. For more detailed
information about the protocol and time series extraction see
Javorka et al. (2017) and Krohova et al. (2019).

Data Analysis
As a first step, we calculated the spectral power of HRV in
the HF band (0.15–0.4 Hz) using fast Fourier transform. The
procedure started with resampling (cubic spline, 2 Hz) of the
HRV time series to obtain an equidistant time series. Then,
slower oscillations and trends were removed using the detrending
procedure of Tarvainen et al. (2002). Subsequently, the mean
power spectrum of the analyzed segment was computed and
spectral power in the HF band was obtained by integration.

As a second step, we applied a recently proposed method,
framed in information theory, to dissect causal interactions
in multivariate time series according to the so-called PID
(Williams and Beer, 2010; Faes et al., 2017, 2018; Krohova
et al., 2019). PID was used in order to dissect the information

TABLE 1 | The main characteristics of participants.

Control group Obese group P-value

Age (years) 16.5 (2.6) 16.4 (2.7) 0.898

Height (cm) 170 (12) 171 (9) 0.881

Weight (kg) 61.3 (12.1) 96.7 (15.1) <0.001

Body mass index (kg/m2) 21.0 (2.3) 33.2 (4.4) <0.001

Fat mass (%) 18.7 (7.2) 38.7 (7.3) <0.001

Skeletal muscle mass (kg) 27.81 (6.9) 33.31 (7.0) 0.004

Waist circumference (cm) 72 (7) 99 (12) <0.001

Waist to hip ratio (–) 0.76 (0.05) 0.84 (0.09) <0.001

Values are expressed as mean (SD). The fat mass and skeletal muscle mass were
evaluated using the InBody J10 device (Biospace, South Korea) which uses the
direct segmental multi-frequency bioelectrical impedance analysis method (DSM-
BIA). The differences between the groups of obese and healthy adolescents and
young adults were evaluated by Mann–Whitney U-test, in addition to assessing the
difference in body mass index that was evaluated using a t-test (with respect to
data normality).

transferred from SBP and RESP, considered as the sources of
causal interactions, to the RR interval considered as the target,
into contributions related to the information provided about
the target individually by each source (interactions SBP→
RR and RESP→ RR) and the information provided as a
result of the interaction between the two sources (interaction
RESP→ SBP→ RR). Specifically, PID decomposes the joint
transfer entropy (TE) from (RESP, SBP) to RR evidencing
the unique TEs representing information flowing from one
source to the target that is not affected by the other source
(measures URESP→RR and USBP→RR), and the redundant TE
(measure RRESP,SBP→RR) representing the amount of overlapped
information from the two sources. PID enables also to separate
redundant TE from the synergistic TE (SRESP,SBP→RR, related
to the excess of information that two sources transfer to the
target when they are considered together compared to the sum
of the information transferred by both sources separately) – in
this study analysis of synergy was not included in the results. The
computation of these measures is based on a linear parametric
modeling of the three time series which is described in detail
elsewhere (Williams and Beer, 2010; Faes et al., 2017, 2018;
Krohova et al., 2019).

From a physiological point of view, these measures represent
various phenomena: the unique TE USBP→RR can be thought
as reflecting the strength of the effects of SBP on RR unrelated
to RESP occurring along the cardiac chronotropic baroreflex
arm, while the unique TE URESP→RR represents the baroreflex-
independent effect of RESP on RR [i.e., the non-baroreflex
(mostly central) mechanism of RSA]. The redundant TE
RRESP,SBP→RR reflects the information transferred from RESP
to RR through SBP (along the indirect pathway RESP→
SBP→ RR), thus describing baroreflex-mediated respiratory
effects on heart rate.

Although in its original formulation PID analyzes the “raw”
original time series measured from ECG, arterial pressure, and
RESP signals, a recent development based on filtering the time
series in order to eliminate the short temporal scales allows
to compute the PID measures with reference to the slower
oscillations (long time scales) contained in the observed processes
(Williams and Beer, 2010; Faes et al., 2017, 2018; Krohova
et al., 2019). Thus, while interactions between cardiovascular and
respiratory time series are dominantly reflected at the short time
scales (Faes et al., 2012; Javorka et al., 2017) included in the raw
unfiltered time series, the advantage of multiscale PID is that all
the above mentioned information measures could be calculated
at any assigned time scale τ. In this study, in addition to raw
time series analyzed at a time scale τ1 = 1 which includes all
oscillations, we calculated PID measures also for a longer scale –
τ2 determined – for each subject and experimental condition –
as the time scale which removes the oscillations in the HF band
and thus evidences slower oscillations [we refer to Krohova et al.
(2019) for more detailed information].

Statistical Analysis
Due to the non-normal distribution of the data the statistical
comparison of a given measure (in both information and
frequency domains) across conditions (supine rest, HUT, supine
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recovery, MA) for both time scales was performed using the non-
parametric Friedman test with two post hoc pairwise comparisons
using the Conover test: supine rest vs. HUT, and supine recovery
vs. MA. The differences between the groups of obese and
healthy adolescents and young adults were evaluated by means
of the Mann–Whitney test for each measure of information
decomposition on a scale representing original data (τ1) and
slower oscillations (τ2), as well as for the spectral power of RR
interval computed in the HF band. The results were considered
statistically significant for P-values < 0.05. Results are reported
in terms of P-values and effect sizes. Effect sizes were quantified
by: Kendall’s coefficient of concordance W (comparison of supine
rest vs. HUT, and supine recovery vs. MA) and by dividing the
absolute (positive) standardized test statistic Z by the square root
of the number of pairs (n = 58) (between group difference).
According to Cohen’s classification of effect sizes, the value
0.1 represents small effect, 0.3 moderate effect, and 0.5 and
above large effect.

RESULTS

Respiratory Sinus Arrhythmia Magnitude
Figure 1 reports the estimated magnitude of RSA, expressed
as the distribution of the spectral power of HRV in the HF
band computed in the two groups during the four phases of the
experimental protocol. Both HUT and MA were accompanied
by a significant decrease in the HF power of HRV (P < 0.001
for HUT and MA in O and C groups, effect size: 0.524–1).
During the whole protocol we did not observe any significant
difference in the RR interval spectral power between the two
groups (0.460 ≤ P ≤ 0.692, effect size: 0.052–0.097).

Effects of Stress Condition on the
Interconnections Between
Cardiovascular and Respiratory Signals
The distribution across subjects of the three considered PID
measures computed on the raw data (without filtering, scale

FIGURE 1 | Distribution of HRV spectral power values in the HF band (y-axis
with a logarithmic scale) over four phases (supine rest, HUT, supine recovery,
and MA) for the groups of obese (O) and healthy (C) adolescents and young
adults. The distributions are shown as box plots. # represents a statistically
significant difference between preceding rest phase and physiological stress
(orthostasis or mental arithmetic task).

τ1 = 1) during the four phases of the protocol (supine rest, HUT,
supine recovery, and MA) are shown in Figure 2 for both obese
and control groups (O and C, respectively).

As the first step, we compared the impact of two types of
physiological stress (supine rest vs. HUT, and supine recovery vs.
MA) on the PID measures. For the C group, the transition from
rest to HUT was associated with a significantly higher unique TE
from SBP to RR (Figure 2A; P < 0.001, effect size: 0.655) and
a significantly lower unique TE from RESP to RR (Figure 2B;
P < 0.001, effect size: 0.596), while no significant changes
were observed comparing MA with the previous rest period
(USBP→RR: P = 0.252, effect size: 0.029; URESP→RR: P = 0.599,
effect size: 0.001). For the O group, no significant changes across
conditions were observed for either USBP→RR or URESP→RR. On
the other hand, the redundant TE RRESP,SBP→RR was significantly
higher during orthostasis in both groups (Figure 2C; P ≤ 0.001,
effect size: 0.524–0.629).

As the second step, we evaluated the differences in the PID
measures observed between the groups of obese and healthy
subjects. The unique TE from SBP to RR was significantly higher
in the O group compared to healthy controls (C group) at rest
(Figure 2A; P = 0.004, effect size: 0.374). In contrast, the unique
TE from RESP to RR was significantly lower in the obese group
during both resting conditions (Figure 2B; P ≤ 0.049, effect size:
0.259–0.340). The redundant TE from RESP and SBP to RR was
significantly lower during HUT in O group compared to controls
(Figure 2C; P = 0.036, effect size: 0.275).

No significant between groups differences in PID measures
were observed when only slower oscillations (τ2) were analyzed
(P ≥ 0.179, effect size: 0.011–0.177, results not shown).

DISCUSSION

The major findings of our study include: (i) the observation
of a well preserved parasympathetic nervous activity, expressed
by RSA magnitude, and its responsiveness to stressors in
young obese patients; (ii) the ability of PID to detect subtle
abnormalities in RSA-related indexes in young obese patients
compared to healthy controls, documented by reduced non-
baroreflex respiratory effects on HRV (unique information
transfer RESP→ RR) in the resting condition and reduced
baroreflex respiratory effects on HRV (redundant information
transfer RESP→ SBP→ RR) during postural stress; and (iii)
the ability of PID to reveal a reduced response to postural
stress in young obese patients, documented by the lack of tilt-
induced alterations of the cardiovascular and respiratory effects
on HRV (unique information transfer RESP→ RR and SBP→
RR) compared with healthy controls.

The ANS plays an important role in the pathogenesis of
cardiovascular disorders associated with obesity (Alam et al.,
2009). The ANS is a very important control mechanism
influencing energy balance and metabolic rate. Its activity is
under the control of hypothalamic structures closely connected
with the appetite control centers. Changes in the ANS activity
and a dysbalance of its components can contribute to the
obesity development but it is assumed that they are rather
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FIGURE 2 | The results of multiscale information decomposition during four phases (rest, HUT, supine recovery, and MA) calculated for the raw (non-filtered) data (τ1)
for the group of obese (O) and healthy non-obese control (C) adolescents and young adults. Graphs represent distribution of values in box plots for: (A) unique
transfer entropy from SBP to RR (USBP→RR) and (B) from RESP to RR (URESP→RR), and (C) redundant transfer entropy (RRESP,SBP→RR) * indicates a statistically
significant difference between the group of obese and healthy subjects and # represents a statistically significant difference between preceding rest phase and
physiological stress (orthostasis or mental arithmetics task).

its consequence (Karason et al., 1999; Nagai and Moritani,
2004). A shift in cardiovascular autonomic control balance
toward sympathetic nervous system dominance could contribute
to the progression of serious cardiovascular complications in
obese patients and significantly increase the risks of ventricular
arrhythmia and sudden cardiac death in this population
(Grassi et al., 1995; Muscelli et al., 1998). In previous studies,
autonomic cardiovascular dysregulation in young obese patients
was analyzed using linear and non-linear HRV analysis but the
results of these studies were not consistent.

In accordance with several previous studies (Paschoal et al.,
2009; Vanderlei et al., 2010; Javorka et al., 2016), no significant
differences between young obese patients and controls were
observed in this work in the RSA magnitude expressed as
HRV HF power – an index reflexing the phasic cardiac
parasympathetic activity. Our results extend the previous
observations by the demonstration that HF power changes as
a response to an application of two stressors (orthostatic test,
MA) were similar in young obese patients and healthy controls.
This finding indicates a well preserved parasympathetic nervous
system reactivity in young obese subjects.

Applying PID analysis on the raw measured cardiovascular
and respiratory time series, the orthostatic stress induced by
HUT (but not the cognitive load induced by MA) resulted
in an increased involvement of the high-pressure baroreflex
as expressed by an increase in unique TE from SBP to RR

in control group. This observation is in concert with the
results of previous studies where the effect of orthostasis on
the strength of the cardiac chronotropic baroreflex arm was
analyzed in the frequency domain (Nollo et al., 2005) and
using information-theoretic methods (Faes et al., 2013; Javorka
et al., 2017). Higher baroreflex influence on heart rate was
demonstrated also in both groups during orthostasis by an
increase of the redundancy between respiratory and arterial
pressure effects on HRV, indicating an increased importance of
the indirect pathway RESP→ SBP→ RR during the unloading
of baroreceptors associated with HUT. Moreover, considering
the non-baroreflex mechanisms in the generation of RR intervals
oscillations, their importance decreased during parasympathetic
inhibition associated with orthostasis (decreased unique TE from
RESP to RR during HUT in controls).

Although HF HRV power including its reactivity to
physiological stressors was not able to distinguish between
obese subjects and controls, the results of PID focused on
disentangling basic mechanisms of RSA revealed some subtle
between group differences. We applied multiscale PID to
non-invasively assess the contribution of baroreflex (SBP→ RR
connection) and non-baroreflex (mostly central; RESP→ RR
connection) mechanisms to RSA. In our previous study, the
relative contribution of these mechanisms was analyzed in
young healthy subjects. At rest – both supine rest phase before
HUT and recovery supine rest phase preceding MA – a lower
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contribution of non-baroreflex RSA mechanisms was found in
the obese group, as reflected by the decreased unique TE from
RESP to RR (URESP→RR) in comparison with controls. This was
accompanied by a slightly higher baroreflex contribution to RSA
(USBP→RR) at rest. This novel observation reveals the shift in
the relative contribution of RSA mechanisms associated with
obesity. Interestingly, this shift in RSA mechanisms is in the
same direction as the shift observed during HUT (Krohova et al.,
2018), probably mirroring a shift of the sympathovagal balance
toward sympathetic activation and vagal withdrawal.

In response to the physical stress, another between-groups
difference was detected: the orthostatic load was connected with
a significantly lower redundancy between influences of RESP and
SBP on RR in obesity. This finding indicates that the indirect
connection between RESP and HRV – cascade RESP→ SBP→
RR – is partially suppressed in obese group compared to controls.
It could reflect the initial impairment of cardiac chronotropic
baroreflex function in this group – the observation found in
previous studies by a decreased baroreflex sensitivity (Honzikova
et al., 2006; Lazarova et al., 2009).

The observed differences in URESP→RR could be also related
to ventilatory pattern differences (Javorka et al., 2018). Therefore,
we also measured tidal volume and respiratory rate from
a calibrated RESP signal. Significantly higher tidal volume
(P ≤ 0.036) and no significant differences in respiratory rate
(P ≥ 0.129) were found in the obese patients compared
to the control group. These differences – being mostly in
favor of stronger respiratory influence on HRV – cannot
be responsible for the observed between-group differences in
the unique TE from RESP to RR. It should be noted that
tidal volume reflects the amplitude of the respiratory input
while information transfer reflects the involvement of the
RSA-related mechanisms; therefore, the increased tidal volume
(stronger input) together with the decreased information transfer
(weaker link) could balance each other, possibly contributing

FIGURE 3 | Proposed causal interaction models of RSA mechanisms during
supine rest, HUT, and MA. The arrow thickness reflects the strength of the
causal coupling in the given direction, with changes in thickness
corresponding to statistically significant variations between groups or
conditions. The gray arrow represents the direct effects of RESP on RR
(URESP→RR; strength of non-baroreflex RSA mechanisms) and the black
arrows represent the effects of RESP on RR mediated through SBP
(RRESP,SBP→RR; strength of baroreflex RSA mechanism).

to explain the preserved RSA magnitude found in obese
patients across all experimental conditions. Taken together,
our results indicate a slightly decreased parasympathetic HRV
influence in young obese patients at rest. The results of
the present study are summarized in the causal interaction
models of RSA mechanisms during supine rest, HUT, and
MA separately for healthy and obese adolescents and young
adults (Figure 3).

Importantly, between-groups differences in PID parameters
were not detectable when HF oscillations were removed and we
analyzed the cardiovascular and respiratory time series on scale
τ2 representing oscillations slower than those contained in the
HF band. This indicates that observed subtle differences between
groups reflected RESP-related oscillations.

From the clinical point of view, the results of our study
point toward three important conclusions. Firstly, it is important
to stress that while RSA magnitude (HF HRV) was not
influenced by obesity, novel measures of the coupling strength
between signals revealed subtle differences. We suggest that
the coupling measures focused on the more detailed analysis
of RSA mechanisms could be used in future for a detection
of the subjects with impaired autonomic control not only
associated with obesity. Secondly, significant differences between
groups (obese vs. controls) were revealed mostly at stress
conditions (orthostasis) pointing toward an importance of
ANS testing during different physiological states (not only at
rest). Lastly, we suggest that the analysis of interconnections
between physiological signals can improve our understanding
of the mechanisms underlying the oscillations. In our case, HF
HRV (RSA) oscillations origin included both baroreflex and
non-baroreflex mechanisms. The better understanding of the
HRV mechanisms can improve the interpretability of the HRV
analysis results.

CONCLUSION

We conclude that the RSA magnitude and its responsiveness
to physical and cognitive stress are well preserved in young
obese subjects. However, the information domain analysis of
cardiovascular and cardiorespiratory interactions contributing
to the origin of RSA revealed subtle differences mostly
during orthostasis pointing toward evidence of an initial
parasympathetic nervous system impairment.
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Interacting dynamical systems abound in nature, with examples ranging from biology and

population dynamics, through physics and chemistry, to communications and climate.

Often their states, parameters and functions are time-varying, because such systems

interact with other systems and the environment, exchanging information and matter. A

common problem when analysing time-series data from dynamical systems is how to

determine the length of the time window for the analysis. When one needs to follow

the time-variability of the dynamics, or the dynamical parameters and functions, the

time window needs to be resolved first. We tackled this problem by introducing a

method for adaptive determination of the time window for interacting oscillators, as

modeled and scaled for the cardiorespiratory interaction. By investigating a system of

coupled phase oscillators and utilizing the Dynamical Bayesian Inference method, we

propose a procedure to determine the time window and the propagation parameter of

the covariance matrix. The optimal values are determined so that the inferred parameters

follow the dynamics of the actual ones and at the same time the error of the inference

represented by the covariance matrix is minimal. The effectiveness of the methodology

is presented on a system of coupled limit-cycle oscillators and on the cardiorespiratory

interaction. Three cases of cardiorespiratory interaction were considered—measurement

with spontaneous free breathing, one with periodic sine breathing and one with a-periodic

time-varying breathing. The results showed that the cardiorespiratory coupling strength

and similarity of form of coupling functions have greater values for slower breathing,

and this variability follows continuously the change of the breathing frequency. The

method can be applied effectively to other time-varying oscillatory interactions and carries

important implications for analysis of general dynamical systems.

Keywords: time-series analysis, dynamical systems, dynamical Bayesian inference, coupled oscillators, coupling

functions
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1. INTRODUCTION

Dynamical systems are widespread in nature, with examples
including biological, chemical, climatological and social systems.
Often they interact with other systems and the environment,
exchanging information and matter (Winfree, 1980; Haken,
1983; Kuramoto, 1984; Pikovsky et al., 2001; Strogatz, 2001).
This makes their states, parameters and functions time-
varying (Kloeden and Rasmussen, 2011; Stankovski, 2013;
Suprunenko et al., 2013; Lehnertz et al., 2014).

Biological dynamical systems form an important group of
such systems. They are the central focus to medicine and
biomedicine. Different physiological systems reflect the function
of human bodily organs and processes, directly linked to
various states and diseases (Peskin, 1981; Levy et al., 2006).
Understanding and being able to detect certain physiological
characteristics of such systems and functions is thus of great
importance and relevance to science with direct implications for
the human well-being.

Such biological systems are usually not isolated, but interact
between each other (Bashan et al., 2012). The cardiorespiratory
interaction, as central mechanism of the cardiovascular system,
has been studied extensively in relation to different states
and diseases (Schäfer et al., 1998; Stefanovska et al., 2000;
Stankovski et al., 2012; Iatsenko et al., 2013; Kralemann
et al., 2013a; Schulz et al., 2018; Grote et al., 2019).
The cardiac and the respiration signals can be acquired
by non-invasive measurements, making the investigations of
cardiorespiratory interaction easily accessible. Both systems have
periodic oscillatory dynamics, which makes them also very
convenient for modeling in terms of their phase dynamics
(Rosenblum et al., 2002; Stankovski et al., 2012; Kralemann
et al., 2013a; Ticcinelli et al., 2017). Similarly to the other
open biological systems, the dynamics of the cardiorespiratory
system can also be time-varying, including a situation where
the frequency, the coupling strength or the coupling function
are varying in time—which adds a challenging complexity when
analysing such data.

Different aspects of the cardiorespiratory interaction have
been studied, including phase synchronization, coupling

strength/directionality and the coupling functions (Rosenblum
et al., 2002; Paluš and Stefanovska, 2003; Voss et al., 2008;
Stankovski et al., 2012; Kralemann et al., 2013a; Hagos et al.,
2019). The latter describe the functional mechanism of how the
interactions occur and develop (Stankovski et al., 2017). As such,
the coupling functions have attracted much attention recently,
with many publications describing novel aspects of interaction
mechanisms of the cardiorespiratory and other interactions
across different scientific fields (Kiss et al., 2007; Ranganathan
et al., 2014; Stankovski et al., 2014b; Ashwin et al., 2019; Moon
andWettlaufer, 2019; Rosenblum et al., 2019). The main focus of
the current paper will be also on coupling functions and how to
infer optimally their time-variability.

Even though physiological dynamical systems, including the
all-important cardiorespiratory interaction, are of great value
and importance, when analysing their data, inevitable, one faces
a problem of how to determine the length of the time window.

Namely, when analysing the time-series data one needs to be able
to follow the time-variability of the dynamics, i.e., the dynamical
parameters and functions, but in order to do so, one needs to
determine first the length of the time window. Then the data
are usually analyzed through consecutive time windows, i.e.,
data portions of the time-series. Here, the length of the window
will determine the time-resolution of the resulting parameters
and functions. The main requirement for the window length is
usually a tradeoff between (i) long enough time window to have
the required amount of data for the methods to work correctly
and (ii) short enough time window to get as good as possible
time-resolution of the resulting parameters and functions. These
conflicting requirements, (i) and (ii), make the choice for the
window length very difficult and ambiguous, hence, usually, the
time window length is a free parameter and it is chosen based on
the subjective experience and intuition of the expert analyst.

In this paper, we developed a procedure for determination
of the time window based on data analyses, as opposed
to the previous practice of arbitrary choice. We extend a
method for Dynamical Bayesian Inference of time-varying
dynamics in the presence of noise, to utilize the inferred
covariance matrix in order to determine the best choice of
the time window. The choice is based on the inferred results
as a tradeoff between low parameter error and low noise
strength error. The method is tested and demonstrated on
numerical phase and limit-cycle oscillators and on time-varying
cardiorespiratory interactions.

2. METHODS AND MODELING RESULTS

2.1. Dynamical Bayesian Inference
In the context of the method of interest, the dynamical inference
refers to a model inference that will describe the solution
of a system of differential equations via time series analysis.
When two oscillators interact sufficiently weakly, their motion is
effectively approximated with their phase dynamics (Kuramoto,
1984; Nakao et al., 2014). If we describe the system phase as a
generic monotonic change of the variables, the dynamical process
can be presented as:

ϕ̇i = ωi + qi(ϕi,ϕj)+ ξi, (1)

where ϕi is the phase of the i-th oscillator, ωi is its phase velocity,
qi is the coupling function between the two oscillators, and
ξi is the noise. It is assumed that the noise is white Gaussian
ξi(t)ξj(τ ) = δ(t − τ )Eij, where the symmetric matrix Eij
incorporates the information about the correlation between the
noises of the different oscillators.

The periodic behavior of the system indicates that the coupling
function can be represented by a Fourier decomposition:

qi(ϕi,ϕj) =

∞
∑

k=1

∞
∑

s=1

ci;k,se
i2πkϕiei2πsϕj (2)
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Usually, the dynamics will be well-described by a finite number K
of Fourier terms, hence Equation (1) can be written as:

ϕ̇i =

K
∑

k=−K

ck
i8i,k(ϕi,ϕj)+ ξi(t), (3)

where i = {1, 2},81,0 = 82,0 = 1, c0
i = ωi and the rest 8i,k

and ck
i are the K most important Fourier components (in this

work we used K = 2). If a white Gaussian noise is assumed
〈ξi(t)ξj(τ )〉 = δ(t − τ )Eij, the task is than reduced to inference
of the unknown parameters of the model:

M =
{

ck
i,Eij

}

. (4)

For a given time series of observed phases χ =
{

ϕi,n ≡ ϕi(tn)
}

, (tn = nh, i = 1, 2), the Bayesian statistics
allows us to determine the posterior density, using the prior
density pprior(M) as well as a likelihood function l(χ |M):

pχ (M|χ) =
l(χ |M)pprior(M)

∫

l(χ |M)pprior(M)dM
. (5)

In the Dynamical Bayesian Inference (Smelyanskiy et al., 2005;
Duggento et al., 2012; Stankovski et al., 2012, 2014a) one makes
certain initial assumptions about the parameters of the model
that describes the observed time series. Then, the Bayesian
theorem is successively applied in a recursive stepwise manner
and in each following step of the inference, the inferred model
parameters are getting closer to their real value. With each step of
the inference, one obtains the value of the concentration matrix
4 (which is the inverse of the covariance matrix 4 = 6−1).

2.1.1. The Challenge of the Time Window and the

Propagation Parameter
When using the aforementioned method, the time series of the
phases of the oscillators are acquired by measurements followed
by signal processing. The time series can be considered as time
sequences of blocks of samples. Each block incorporates the
samples in a certain time interval, hence the duration of the
block determines the time window tw. The Bayesian inference
is performed for each block and values for the parameters of
the model and the couplings of the oscillators are obtained. The
output values of the previous block are used as input values for
the inference of the current block.

The method comprises a dynamical inference, so it needs
to follow the time evolution of the set of parameters c and
at the same time to enable separation of the dynamical effects
from the noise. To achieve such separation, in the propagation
sequence of the method, the input covariance matrix for the

following block 6
(n+1)
prior is not taken as simply equal to the

output covariance matrix of the current block 6n
post , but it is

modified by the diffusion matrix 6diff . The diffusion matrix
is defined by the normal diffusion of each of the parameters.
Hence, the input covariance matrix for the following block is a

convolution of the two current normal distributions 6
(n+1)
prior =

6n
post + 6diff (Duggento et al., 2012; Stankovski et al., 2012). The

covariance matrix 6diff describes which part of the dynamical
field defined by the oscillators is changed and the intensity
of those changes. The elements of this matrix are given by
(6diff )(i,j) = ρijσiσj, where σi is the standard deviation of
the diffusion of the parameter ci, after time window tw from
the previous to the next block of samples, and ρ(i,j) gives the
correlation between the changes of the parameters ci and cj. A
special case is investigated, when there is no correlation between
the parameters, i.e., ρ(i,j) = 0, for i 6= j and each standard
deviation σi is a known fraction of the corresponding parameter
ci: σi = pwci, where pw, called the propagation parameter, is
a constant parameter. The index w in pw emphasizes that the
propagation parameter is determined for a time window of length
tw. In this way the propagation parameter defines how much
variability should the method search for and infer. Being an
input in the covariance matrix 6diff it expresses our belief about
which part of the dynamics has changed, and the extent of that
change. This is a tradeoff between inferring correctly the time-
varying parameters and not inferring too much random noise
perturbations. In the earlier works, this propagation parameter
pw was a free parameter chosen arbitrarily.

In the method of Dynamical Bayesian Inference (Duggento
et al., 2012; Stankovski et al., 2012) the time window and
the propagation parameter are free parameters and they are
arbitrarily selected. The purpose of this research is to propose a
method to determine the values of these two parameter in order
to optimize the inference of the parameters and the noise.

As an indicator of quality of the inference the covariance
matrix 6 is used. By definition, this is a matrix whose element
in the (i, j) position is the covariance between the i-th and j-
th element of a multidimensional random vector. The elements
on the main diagonal of the covariance matrix are the variances
of the variables, i.e., the covariance of each element with itself.
Since the square of the variance is the standard deviation, by
minimizing the sum of squares of the elements of the covariance
matrix we are minimizing the standard deviations of the inferred
model parameters. Therefore, we use the sum of squares of all
the elements of the covariance matrix Q6 = Sumi,j(6i,j

2), called
quadrature covariance matrix, as an indicator of deviations of the
inferred parameters from the real intrinsic parameters.

2.2. Determination of the Time Window
In order to developed and present the procedure for
determination of the time window we investigate first two
coupled phase oscillators in presence of noise:

ϕ̇1 = ω1(t)+ a1sin(ϕ1)+ a3(t)sin(ϕ2)+
√

E11ξ11(t)

ϕ̇2 = ω2 + a2sin(ϕ1)+ a4sin(ϕ2)+
√

E22ξ22(t).
(6)

Here, ω1 and ω2 are parameters for the angular frequency of
the corresponding oscillators, a1 and a4 are the parameters of
their own dynamics, and a2 and a3 are the coupling parameters
for the direct influence from the other oscillator. Two of the
parameters are varied periodically in time, the frequency ω1(t)
and the coupling parameter a3(t). Uncorrelated Gaussian white
noises are used. In this way the true values of the parameters of
the oscillatory systems are known in advance.
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From these oscillatory systems we generate numerical signals
which we then introduce as input data for the Dynamical
Bayesian Inference. As a result we obtain the inferred values of
the parameters and the noise, as well as the quadrature matrix
Q6 for each block of the inference. Apart from Q6 , we evaluate
the error difference between the inferred parameters ci and their
true values c̃i:1ci = ci− c̃i, and the same was done with the noise
strengths 1Ei = Ei − Ẽi. We investigate the dependance of Q6 ,
1ci and 1Ei on the time window tw, for different values of the
propagation parameter pw.

For the system of two coupled phase oscillators (Equation 6)
we simulated multiple time series of 2,000 s each, with sampling
step h = 0.01, corresponding to a 10 ms step. These time series
are the input data for the Dynamical Bayesian Inference. In the
study the parameters a1, a2, and a4 are constant: a1 = 0.8, a2 = 0,
and a4 = 0.6. The frequency ω2 was varied in the interval from
0.785 to 31.4. The time-varying parameters are given by:

ω1 = ω1,const − 0.5sin2π f1t

a3 = a3,const − 0.3sin(2π f3t + π/2),
(7)

where a3,const was either 0.8 or 1.3, ω1,const was varied in the
interval 0.785–62.8, and the oscillator frequencies f1 and f2 were
changed in the interval 0.001–0.02. For the noise (E11, E22)
values in the interval (0.01, 10) were taken. For these values we
investigated the dependence of Q6 , 1ci and 1Ei on the time
window tw and the propagation parameter pw.

The typical look of the dependance ofQ6 on the time window
tw and the propagation parameter pw is given in Figure 1A. The
function of the quadrature matrix Q6 on the time window tw
shows a maximum that depends on the value of the propagation
parameter pw. We have determined that the maximum is
obtained for the value of the time window tw,max = 1/pw. As the

relationship shows, with decreasing value of pw, the maximum is
shifted to greater values of tw (as shown on Figure 1B).

The performed analysis showed that for all combinations of
tw and pw that place the inference on the left of the maximum
(tw < tw,max) of the corresponding curve Q6(tw), the inference
does not follow the time change of the parameters—shown on
Figure 1C. It appears that such combinations of tw and pw do
not allow the inference to reach the amplitude of change of
the time-varying parameter. We will call this behavior as the
delayed-inference regime.

For tw > tw,max, the value of Q6 steadily decreases (as shown
in Figure 1) and the deviations of the inferred parameters from
their true values also decrease. However, values for the time
window that are too large also prevent appropriate inference of
the time changes of the parameters simply because there are too
few blocks for their representation.

Based on these results we conclude that the time window
should have a value as high as possible, in order for Q6 to
be as low as possible, but at the same time a value that is
still low enough to be able to accurately represent the dynamic
of the parameter that is changing with the highest frequency.
Therefore, in the analysis, we performed an initial estimation of
the time change of the parameters of the model by using a small
arbitrary value for the time window and an initial value of the
propagation parameter pw = 0.2. We use small time window
in order for inferred parameters to be able to describe the fast
changes of their true values. Then we performed a fast Fourier
transform on the initial estimation of the parameters from which
we determined the highest frequency of the time-varying change
of the parameters. We denote this frequency as fmax and the
corresponding period as Tmin = 1/fmax. From our analysis of
the time-varying ability we concluded that the minimal number
of blocks needed to accurately describe this fastest changing

FIGURE 1 | (A) Typical look of the dependance of Q6 on the time window tw and the propagation parameter pw for coupled phase oscillators (Equation 6). (B) Q6 as

a function of the time window tw for two different values of the propagation parameter pw. (C) The inferred value of a parameter ω1,inferred and the known value of the

same parameter ω1,known.
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parameter is eight blocks, i.e., the time window should be taken

as tw,opt =
Tmin
8 = 1

8fmax
. That will give a resolution of eight

points to describe the fastest oscillating inferred parameter. For
all the other parameters there will be more points describing
their oscillations.

2.3. Determination of the Propagation
Parameter
From the numerical analysis we determined that the inferred
covariance matrix Q6 increases with the increase of the
propagation parameter pw up to saturation for very big values
of pw (pw > 7 in our simulations). Hence, in order to get
the best possible inference, we should use the smallest possible
propagation parameter. However, as we have shown in Figure 1,
for small propagation parameter, smaller than pw,min = 1/tw,max

the inference does not follow the time change of the parameters
and is in the delayed-inference regime.

To determine the optimal value of the propagation parameter
we have investigated the difference between the inferred
parameters and their known value. We have evaluated this
difference in two different ways.

One was to look at the graphs like the one shown in Figure 1C
for different values of the time window tw and by evaluating the
difference between the inferred parameter and its known value
to determine the minimal value for tw for which the inferred
parameter starts to follow the change of the known parameter.
This will be the tw value when the 1ci stops manifesting periodic
changes in time.

The second way was to calculate the mean square error (MSE)
between the time series of the inferred parameter and the time
series of its known value (excluding the first two blocks of the
inference). The mean square error was calculated for different

values of the propagation parameter and a graph MSE = f (pw)
was constructed for different tw = tw,opt values. These graphs
showed a minimum that gives the pw value for which the
correspondence between the inferred and the known value of the
parameters is the best.

We have performed this evaluation for different frequencies
of change of the parameters of the model and for different
noises. The time window values used in these simulations were
the optimal values (tw,opt). From these analysis we have found
that the optimal value for the propagation parameter depends
both on the frequencies of the changes of the parameters (i.e.,
on the optimal time window) and on the noise. Further, we
have found that the optimal value of the propagation parameter
is approximately linearly dependent on the frequency of the
fastest changing parameter fmax (Figure 2A). The slope and
the intercept of the linear function were found to depend on
the noise. This dependence can approximately be described by
inverse power law (Figure 2A).

From the numerical analysis we have determined that we can
relate the optimal propagation parameter, pw,opt , to the optimal
time window, tw,opt . As a rule, the optimal propagation parameter
needs to be greater than the reciprocal optimal time window
pw,opt > 1/tw,opt . Further more, in the interval of frequencies and
noises that we investigated, which are of interest and corresponds
to cardiorespiratory interactions, the propagation parameter in
the Dynamical Bayesian Inference can be selected as follows. For
slow dynamics, when the optimal time window is >40 s, one can
use the value pw,opt = 0.1 as optimal propagation parameter.
For optimal time windows in the interval tw,opt ∈ (10s, 40s),
one can use the value pw,opt = 0.2 as optimal propagation
parameter. For fast dynamics, when the optimal time window is
<10 s, the optimal propagation parameter should be calculated
as pw,opt = 2/tw,opt . We emphasize that these values can be used

FIGURE 2 | (A) Optimal propagation parameter pw,opt as a function on the maximal frequency of the parameter change. (B) Optimal propagation parameter as a

function of the maximal frequency of parameter change and the noise for coupled phase oscillators and coupled Poincaré oscillators.
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for cardiorespiratory interactions when the noise is not too small.
With decreasing noise, one needs to take increasingly higher
values for the optimal propagation parameter.

2.4. Algorithm for the Optimization of Time
Window and Propagation Parameter
Values
Based on the results obtained in sections 2.2 and 2.3 we propose
the following algorithm for determining of the optimal time
window tw,opt and propagation parameter pw,opt .

Using a small arbitrary value for the time window and an
initial value for the propagation parameter of pw = 0.2 we
perform an initial inference. The arbitrary value for the time
window can be the smallest value at which the method gives
an output. For values smaller than this arbitrary value of tw
the Bayesian inference will not work (the execution of the code
will give a “Singular matrix error”, because the concentration
matrix will be too small). In this way we will obtain the initial
inferred parameters cij and noises Eij that describe the model.
This inference will have the best information on the parameter
dynamics in terms of time-variation, but the parameter noise
will be quite large. Then we perform a fast Fourier transform
of the inferred parameters cij. By observing both the dynamic
of each of the parameters and their fast Fourier transform, we
are able to determine what the highest frequency of change
of the parameters is. We denote this frequency as fmax. The
corresponding period is Tmin = 1/fmax. By assuming the
minimal number of blocks needed to accurately describe this
fastest changing parameter, the time window should be taken
as tw,opt = Tmin/8 = 1/8fmax. This will give a resolution of
eight points to describe the fastest oscillating inferred parameter.
For all the other parameters there will be more points describing
their oscillations.

Based on the value of the optimal time window, for the case
scaled around the frequencies in the cardiorespiratory range,
when the noise is not too small, we can determine the optimal
propagation parameter as:

pw,opt =











0.1, tw,opt > 40

0.2, tw,opt ∈ [10, 40]
2

tw,opt
, tw,opt < 10.

(8)

With these values for tw,opt and pw,opt we perform a second,
optimized inference. In this inference the covariance
matrix will have smaller value, thus resulting in an
improved inference.

2.5. Analysis of Coupled Limit-Cycle
Oscillators
To test the proposed algorithm for determination of the time
window and the propagation parameter, we investigate a system
of two coupled limit-cycle oscillators – Poincaré oscillators

FIGURE 3 | Typical look of the dependance of quadrature matrix Q6 on the

time window tw and the propagation parameter pw for coupled

Poincaré oscillators.

subject to white noise:

ẋ1 = −

(

√

x21 + y21 − 1
)

x1 − ω1(t)y1 + ε1(x2 − x1)+ ξ1(t)

ẏ1 = −

(

√

x21 + y21 − 1
)

y1 + ω1(t)x1 + ε1(y2 − y1)+ ξ2(t)

ẋ2 = −

(

√

x22 + y22 − 1
)

x2 − ω2y2 + ε2(t)(x1 − x2)+ ξ3(t)

ẏ2 = −

(

√

x22 + y22 − 1
)

y2 + ω2x2 + ε2(t)(y1 − y2)+ ξ4(t),

(9)

where periodic time-variability is introduced in the frequency of
the first oscillator ω1(t) = 1 − 0.4sin(2π f1t) and in the coupling
parameter from the first to the second oscillator ε2(t) = 0.2 −

0.1sin(2π f2t). The noises are again white and Gaussian, with no
correlations between them and were changed in the interval Ei ∈
[0.005, 0.05], i = {1, 2, 3, 4}. The other parameters are ω2 = 4.91
and ε1 = 0.05. The frequency of the time-variability was changed
in the interval fi ∈ [0.0015, 0.02], i = {1, 2}.

In Figure 3 we show the quadrature covariance matrix as a
function of the time window and the propagation parameter.

As in the case of the coupled phase oscillators, here as well
we see a maximum in the function of the quadrature covariance
matrix Q6 on the time window tw that depends on the value
of the propagation parameter as tw,max = 1/pw. Again, the
performed analysis showed that for values of tw smaller than the
value for the maximum of the curve, tw,max, regardless of the
value of the propagation parameter, the inference does not follow
the time change of the parameters.

The results for the propagation parameter also showed
increase in the inferred quadrature matrix Q6 with the increase
of the propagation parameter pw and by implementing the same
analysis as in the case of coupled phase oscillators, we found
that the optimal propagation parameter increases linearly with
the increase of the maximal frequency change of the parameters.
Again the slope and the intercept of the line pw,opt = k ∗

fmax + n showed decrease with increasing noise and the decrease
can be approximated with inverse power law. As expected, we
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determined different values for the coefficients of the inverse
power laws. However, these coefficients always yielded values
for the propagation parameter pw,opt smaller than the one for
the coupled phase oscillators, as shown in Figure 2B, hence the
determination of the propagation parameter according to the
Equation (8) will give satisfactory results.

3. APPLICATION TO
CARDIORESPIRATORY INTERACTION

It is well-appreciated that the cardiac and respiration dynamics
are oscillating, while being part of the multi-system body they are
not isolated, but they are open systems where their parameters
and functions are time-varying (Glass, 2001; Stankovski et al.,
2012; Kralemann et al., 2013b; Rosenblum et al., 2019). The
oscillatory nature makes them suitable to be represented with
the phase dynamics (Kuramoto, 1984; Nakao, 2016). These two
aspect of the cardiorespiratory dynamics, the oscillatory phase
dynamics and their time-variability, make the proposed method
of dynamical Bayesian inference with adaptive time window very
good fit for such analysis.

In order to demonstrate the potential of the method on
experimental data, we analyzed cardiorespiratory measurements
conducted on one male subject, age 35, non-smoker without
cardiovascular health issues. The study was reviewed and
approved by Ethical Committee, Faculty of Medicine, Saints
Cyril and Methodius, Skopje, Macedonia and the participant
provided written informed consent that the collected data might
be used and published for research purposes. The respiration
followed a predetermined pattern by following a visual and audio
computer simulation in which a ball was moved along a sine
line on a computer screen. The frequency of the movement of
the ball, together with the sine line, was changing according to
the law that we wanted the respiration to follow. When the ball
was reaching the maximum and minimum of the sine line, a
short sound beep was also generated. The measurements were
performed using Biopac equipment with the subject in supine
position. The respiration was measured by placing a respiratory
transducer on the chest of the subject measuring the changes in
the chest circumference, while the cardiac function was recorded
by performing a three-lead ECG measurement.

Three different patterns of respiration were studied and
compared: spontaneous free breathing, time-varying breathing
following a sine wave and time-varying breathing following a-
periodic signal. The average respiratory rates of the investigated
respiratory patterns were 14.7 BrPM (Breaths per Minute) for
the spontaneous free breathing, 15.5 BrPM for the respiration
following a sine law and 17.0 BrPM for the breathing following
the aperiodic signal. These average respiratory rates correspond
to average respiratory frequencies of 0.245, 0.258, and 0.283
Hz, respectively. The corresponding average heart rates were
found to be 68.3 BPM (Beats per Minute), 69.0 and 77.4
BPM for the spontaneous free breathing, periodic and aperiodic
respiration, respectively.

In Figure 4 we show first in detail the cardiorespiratory
measurements for a time varying respiration following a simple

sine law. The frequency of respiration is varied according to
the law f = 0.3 + 0.2sin(2π t/560), [Hz]. The time-varying
perturbed respiration signal is shown in Figure 4A and its
wavelet transform is given in Figure 4B. On Figure 4C we give
the corresponding ECG signal and on Figure 4D the wavelet
transform of the cardiac signal.

In Figure 5 we show the signals and their wavelet transforms
for the three different patterns of respiration that the subject
followed: (a) respiration signal recorded during free breathing,
(b) time-frequency wavelet transform of the free breathing
respiration, (c) wavelet transform of time varying respiration
following a simple sine law (the same as depicted in Figure 4B for
comparison), (d) wavelet transform of time varying respiration
following an a-periodic behavior and the signal itself (e). The
a-periodic signal was taken to be the z-component of a chaotic
Lorenz system (Lorenz, 1963).

After the wavelet power inspection of the measurements we
performed the phase extraction procedure. For robust phase
extraction, the oscillating intervals were estimated by standard
digital filtering procedures, including a FIR filter followed by
a zero-phase filtering procedure (filtfilt) to ensure that no time
or phase lags were introduced by the filtering. The boundary
of the interval for the respiration signal was r = 0.145–0.6 Hz;
and boundary of the interval for the heart activity from the
ECG signal was h = 0.6–2 Hz (Kralemann et al., 2008; Shiogai
et al., 2010; Stankovski et al., 2016). The phases of the filtered
signals were estimated by use of the Hilbert transform, and the
protophase-to-phase transformation Kralemann et al. (2008) was
then applied to the resultant protophases to obtain invariant
observable-independent phases.

In the case of free breathing, as can be seen in Figure 5B,
there was no single frequency dominating the time variance of
the parameters. Therefore, when we did the first inference of
our algorithm, higher frequencies emerged in the variance of the
parameters and in their Fast Fourier Transform. Since we wanted
to include the higher frequencies in the consequent investigation
we had to use smaller time windows, as our algorithm suggests
(tw,opt = 9s). This increased the covariance matrix, but at the
same time faster changes were included in the inference and we
were able to follow better the time evolution of the parameter
change and of the coupling functions. In the case of time varying
respiration according to the sine law, as is the case of Figure 4,
the frequency of change of the respiration dominated the first
inference. This led to higher optimal time window (tw,opt = 62s)
and to a second inference with reduced covariance matrix. In
the case of time varying respiration according to a-periodic law,
as is the case of Figures 5D,E, again the algorithm gave smaller
values for the optimal time window (tw,opt = 15.6s), that enabled
inclusion of different frequencies of change of the parameters at
the cost of increased covariance matrix.

Finally we present the application results of our method
for the cardiorespiratory coupling. Once we have determined
the optimal values for the time window and the propagation
parameter we can proceed with the inference of the parameters of
the model ci, from which we can calculate the coupling quantities
and characteristics. We evaluated the coupling functions on a
2π × 2π grid using the relevant base functions, i.e., Fourier
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FIGURE 4 | Cardiorespiratory measurements for a time-varying respiration following a sine law, (A) respiration signal, (B) wavelet transform of the respiration signal,

(C) ECG signal, (D) wavelet transform of the ECG signal.

components scaled by their inferred coupling parameters. We
calculated the coupling strength CPLi(t) as the Euclidian norm
of the inferred parameters for a particular coupling. Importantly,
we also calculated the index for similarity of coupling functions
ρ(t) which quantifies the similarity of the forms of two coupling
functions irrespectively of their coupling strength amplitudes.
The similarity index is unique measure of coupling functions
and it is calculated as correlation index between the vectors ci of
two coupling functions (Kralemann et al., 2013a; Ticcinelli et al.,

2017). It is important to note that the coupling strength and the
similarity index present two different dimensions of a coupling
function (Stankovski, 2017). In our analysis we calculated the
similarity index between the time-average coupling function and
every coupling function calculated from each time window—in
this way we got the time-variability of the form of the coupling
function as compared to the average coupling function.

In Figures 6A–D we present the results for the
cardiorespiratory interaction when the respiration varies
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FIGURE 5 | Time-varying nature of the respiration measurements. (A) Respiratory signal recorded during free breathing. (B) Wavelet transform of the free breathing

respiration. (C) Wavelet transform of time-varying respiration following a simple sine law (for comparison the same as depicted in Figure 4B). (D) Wavelet transform of

time-varying respiration following an a-periodic behavior, (E) the same recorded signal of time-varying respiration following an a-periodic behavior.

according to sine law. In Figure 6A we give the wavelet
transform of the respiration for comparison. In Figure 6B

the time-variation of the coupling strength from the first
oscillator (the respiratory system) to the second one (cardiac
system) is presented. We can see here that the coupling
strength has a minimum where the frequency of respiration
is maximal and a maximum where the frequency of the
respiration is minimal, i.e., the time-variability of the coupling
strength resembles an inverse of the sine wave respiration. This
confirms known results that the cardiorespiratory coupling
strength is higher on slower breathing (Stankovski et al.,
2012, 2013). In Figure 6C we present the time-variation of
the index for similarity of form of coupling functions, which
again follows the inverse of the sine wave respiration. This

demonstrates that the form of the coupling function, and thus
the underlaying cardiorespiratory mechanism, is time-varying
and is following the deterministic perturbation we induced
on the respiration. Again the higher similarity is associated
with lower respiration frequencies and slower breathing. In
Figure 6D we give the coupling functions at specific time
points that correspond to maximal and minimal frequencies
of respiration. Here we can also follow the time evolution
of the coupling function close to the minimal frequency of
respiration. The qualitative 3D representation of the coupling
functions in Figure 6D shows visually consistent values of the
coupling strength amplitude and similarity of the form of the
functions as compared to the quantitative values presented
in Figures 6B,C.
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FIGURE 6 | (A) Wavelet transform of time-varying respiration following a simple sine law, (B) the time variation of the coupling strength CPL2(t) from the first oscillator

(the respiratory system) to the second one (cardiac system), (C) time variation of similarity of form of coupling functions ρ(t), (D) coupling functions q2(φr ,φh) at specific

time points, indicated by the gray arrows, that correspond to maximal and minimal frequency of respiration, and (E) the mean, i.e., time-averaged coupling functions

for all three breathing patterns under investigation.

Finally, in Figure 6E we present the form of the time-
averaged coupling function for all three breathing patterns
under investigation. By comparison, we see that the form
of the three functions is qualitatively similar, with larger
deviations for the a-periodic breathing in comparison to the
free and sine breathing. From Figure 6 we can see that the
reconstructed cardiorespiratory coupling functions are described
by complex functions whose form changes quantitatively over
time and with the change of frequency of respiration. This
implies that the interactions of the cardiorespiratory system can
themselves be time-varying processes. In particular, the form
of the coupling function indicates that when it is high for the
respiration phase between 3π/2 and π/2 (Figure 6E), then the

respiration accelerates the cardiac oscillations. Similarly, when
the coupling function is low for respiration phase between
π/2 and 3π/2 (Figure 6E), then the respiration decelerates the
cardiac oscillations. These inferred coupling functions describe
in detail the cardiorespiratory interaction mechanism.

4. DISCUSSION AND CONCLUSION

In this study we have tackled the longstanding problem
of choosing the right size of time window when analyzing
dynamical time-series. We proposed new methodology for
determination of the time window and the propagation
parameter within the framework of the Dynamical Bayesian
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Inference method. We tested the method first on the case of
coupled phase oscillators and then for the case of coupled
limit-cycle oscillators. We then applied the methodology on
cardiorespiratory interaction for three cases of respiration—free
breathing, controlled breathing following sine law and controlled
breathing following an a-periodic time-variation. We obtained
the coupling functions and confirmed their complex form that
changes quantitatively over time.

To some extent the problem of time window determination
is an ill-posed question, especially in experimental analysis,
because in theory it is very hard to find a general solution.
There can be very different systems, with very different types
of time-variabilities acting on different parts of the systems.
Nevertheless, the reality is that often there is time-variability
and one needs not to ignore, but to do something about it. For
this reasons, the solution we proposed is modeled and scaled
to an important, albeit specific and not general, problem of
cardiorespiratory interaction. In particular we took the systems to
be oscillatory, hence we used the phase dynamics representation,
and we assumed that the time-variation are slowly changing in
respect to the oscillating frequencies. This allowed us to model
a dynamic situation often encountered in the cardiorespiratory
interaction. Additionally, by using second order Fourier
expansion for the model base functions, we encountered
limitations in inferring highly non-linear dynamics and very
slow trends.

On the analysis of a predefined interacting phase oscillators
we developed detailed conditions for the time window
determination. These could not be determined exactly in
an unknown system of coupled limit-cycle oscillators (like the
example of the Poincaré oscillators in section 2.5), however,
based on the phase oscillator acting as a limiting model, the
analysis showed that one can find the boundaries and inequalities
from which the time window can be determine in these cases.
The use of the inferred covariance matrix as an indicator of the
goodness of fit may become too strict and imprecise if there are
large variations arising from the noise. In such case one should
apply other stochastic methods in combination with this method
to determine the effect of the noise and to ascertain the role of the
covariance for determination of the time window. When dealing
with biological open oscillatory systems, one might encounter a
case where there is time-variability of the time-variability. In such
case, the presented methodology may be applied recursively, for
the different levels of time-variability observed.

The application to the cardiorespiratory interaction lead to
some novel results, some were extended, and some results were
consistent with previous findings. Namely the change of the
coupling strength with slower breathing is known, and now we
extended this to show that this variations appear continuously
and were following the sine perturbation. A new insight is that
the index for similarity of cardiorespiratory coupling functions is
also higher with slower breathing andwas following continuously
the sine perturbation. In fact, in this analysis set up of the
cardiorespiratory interaction, it was found that both the coupling
strength and the similarity index were changing similarly, and
in accordance with the perturbation (which is not the case in

general). The inferred form of the cardiorespiratory coupling
function, in the three types of breathing observed, was found to
be consistent with what has been observed in previous studies.
Interestingly, even though the window length determined for the
three different types of breathing was quite different in length
(free tw,opt = 9s, sine tw,opt = 62s and a-periodic tw,opt = 15.6s),
the form of the coupling functions (Figure 6E) were qualitatively
very similar.

During slower breathing, the form of the coupling functions
changes predominantly along the respiration phase axis and is
relatively constant along cardiac phase axis. The latter suggests
that this coupling is predominately determined by the direct
influence of respiration on the heart. This is most visible
on the coupling function during low frequency parts of the
breathing following sine law (Figure 6D) and not so visible
for the aperiodic breathing which is at higher respiration
frequencies. In physiology, this influence of the respiration
frequency to the variability of the heart rate has been attributed
to Respiratory Sinus Arrythmia (RSA) (Hirsch and Bishop,
1981), and various studies have linked the cardio-respiratory
coupling with RSA (Iatsenko et al., 2013; Schulz et al., 2013;
Kralemann et al., 2013a). Recent physiological studies discussed
that the main function of the RSA is to improve cardiac
efficiency while maintaining physiological levels of arterial CO2

(Elstad et al., 2018). Our findings confirm these previous
findings that RSA is more pronounced during slow deep
breathing (Hirsch and Bishop, 1981).

Needles to say, even though this study was presented for
oscillatory interactions and in particular for cardiorespiratory
interaction, its implications span much widely. Some of the
solutions proposed with this methodology for time window
determination are relevant and can be used for other oscillatory
interactions, for other methods of time-series analysis, and for
other dynamical systems with time-variability, more generally.
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Impaired heart rate- and respiratory regulatory processes as a sign of an autonomic
dysfunction seems to be obviously present in patients suffering from schizophrenia.
Since the linear and non-linear couplings within the cardiorespiratory system with
respiration as an important homeostatic control mechanism are only partially
investigated so far for those subjects, we aimed to characterize instantaneous
cardiorespiratory couplings by quantifying the casual interaction between heart rate
(HR) and respiration (RESP). Therefore, we investigated causal linear and non-linear
cardiorespiratory couplings of 23 patients suffering from schizophrenia (SZO), 20 healthy
first-degree relatives (REL) and 23 healthy subjects, who were age-gender matched
(CON). From all participants’ heart rate (HR) and respirations (respiratory frequency,
RESP) were investigated for 30 min under resting conditions. The results revealed
highly significant increased HR, reduced HR variability, increased respiration rates and
impaired cardiorespiratory couplings in SZO in comparison to CON. SZO were revealed
bidirectional couplings, with respiration as the driver (RESP → HR), and with weaker
linear and non-linear coupling strengths when RESP influencing HR (RESP → HR)
and with stronger linear and non-linear coupling strengths when HR influencing RESP
(HR→ RESP). For REL we found only significant increased HR and only slightly reduced
cardiorespiratory couplings compared to CON. These findings clearly pointing to an
underlying disease-inherent genetic component of the cardiac system for SZO and REL,
and those respiratory alterations are only clearly present in SZO seem to be connected
to their mental emotional states.

Keywords: cardiorespiratory coupling, Network Physiology, partial directed coherence, transfer entropy,
schizophrenia, relatives

INTRODUCTION

Schizophrenia represents a mental disorder along with increased cardiovascular mortality rate,
shorter life expectancy, higher risk of developing cardiovascular disease (CVD) in proportion to
the general population (Hennekens et al., 2005; McGrath et al., 2008; Laursen et al., 2014). One
reason in schizophrenia, besides others (Straus et al., 2004; Hennekens et al., 2005; Ringen et al.,
2014), seems to be an unbalanced autonomic nervous system (ANS) during the acute psychosis
state quantified by analyses heart rate variability (HRV) and respiratory variability (RESPV).
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Different studies suggested as a major contributing factor the
unbalanced sympathovagal balance for schizophrenic patients,
as well as for their healthy first-degree relatives (Valkonen-
Korhonen et al., 2003; Bär et al., 2005, 2007; Chang et al.,
2009; Schulz et al., 2013c). However, investigations of respiration
and cardiorespiratory couplings is becoming more of interest
in medicine and research (Peupelmann et al., 2009; Bär et al.,
2012; Schulz et al., 2012a,b, 2013b, 2014, 2018) for schizophrenia
since respiration plays a major part homeostatic regulatory
control processes. As far as we know there exist only a few
investigations dealing with causal couplings quantifying the
coupling strengths and coupling directions in these patients. The
field of Network Physiology aiming to identify and quantify
the dynamics within the (patho)physiological network with
their different sub-networks and their interactions between
them (Bashan et al., 2012) but seems to be a promising
multivariate concept to describe the cardiorespiratory system.
Moreover, Network Physiology quantifies healthy and diseased
states investigating the coupling between systems and sub-
systems by determining structural, dynamical and regulatory
changes. These new concepts allow getting a better understanding
of the complexity of physiological as well as pathophysiological
processes in health and disease by linking genetic and subcellular
levels with intercellular coupling pathways between integrated
systems and subsystems (Ivanov et al., 2016).

Studies investigating HRV generally showed an altered
sympathovagal balance pointing to dysregulation of heart rate
for schizophrenic patients and partially their first-degree healthy
relatives (Toichi et al., 1999; Valkonen-Korhonen et al., 2003; Bär
et al., 2005, 2007, 2010; Castro et al., 2009; Chang et al., 2009;
Voss et al., 2010). The pattern of an unbalanced ANS (heart rate)
in schizophrenic patients and their relatives seem to hallmark
a disease-inherent genetic feature of this disease. Busjahn et al.
(1998) highlighted that there exist a genetic dependency of
HRV indices. Studies analyzing respiration and cardiorespiratory
couplings in schizophrenia are exclusive (Peupelmann et al.,
2009; Bär et al., 2012; Schulz et al., 2012a,b, 2013b, 2015b, 2018)
and demonstrated significantly altered dynamic and variability
of respiration as well as impaired cardiorespiratory couplings
for schizophrenic patients but not for their healthy first-degree
relatives. Respiration is regulated in the brain stem primarily
for metabolic and homeostatic purposes, it also constantly
reacts to changes in emotions (Homma and Masaoka, 2008).
It seems that the altered psychotic states of schizophrenic
patients compared to healthy subjects have a great influence on
their cardiorespiratory system characterized by an interplay of
different linear and non-linear subsystems (Voss et al., 2009).
The respiratory sinus arrhythmia (RSA) occupies an important
part of cardiorespiratory couplings. RSA describes the rhythmic
fluctuation of heart rate in proportion to respiration. Under
normal physiological conditions RSA characterizes changes
between inspiratory heart rate acceleration and expiratory heart
rate deceleration (Eckberg, 2003). Studies have actually shown
that the coupling between cardiovascular system and respiration
is strongly non-linear (Novak et al., 1993). For the analysis
of the cardiorespiratory system as a complex physiological
regulatory network, a variety of methods have been proposed

(Schulz et al., 2013a; Bartsch et al., 2015; Faes et al., 2015; Liu
et al., 2015; Ivanov et al., 2016) basing on Granger causality, phase
synchronization, entropies, non-linear prediction, symbolization,
and time delay stability (TDS) (Schulz et al., 2018).

Investigating the coupling between heart rate and
respiration could provide potential clinically insights into
(patho)physiological autonomic processes in schizophrenia and
their relatives. In contrast to our preliminary work in this field,
we have applied a pool of different coupling methods from the
time and frequency domain that can quantify both linear and
non-linear causal couplings. This will allow us to gain more
insight into the regulatory processes of the cardiorespiratory
system, which will provide a better understanding of how
individual systems interact with each other in a healthy and
explored state. This study aimed to quantify instantaneous
cardiorespiratory couplings in schizophrenic patients and their
healthy first-degree relatives. Therefore, multivariate linear and
non-linear causal coupling approaches [normalized short time
partial directed coherence, multivariate transfer entropy, cross
conditional entropy, and respiratory sinus arrhythmia (peak-to-
valley)] were applied determining causal coupling strengths and
directions. We speculate that these new findings are important
for a full understanding of (patho)physiological regulatory
processes and possibly may help to improve treatment strategies
in schizophrenia and identify those patients at increased risk for
cardiovascular disease accompanied by ANS dysfunction.

MATERIALS AND METHODS

Subjects
Twenty-three untreated patients suffering from paranoid
schizophrenia (SZO), 20 healthy first-degree relatives (REL)
and 23 healthy controls subjects (CON) (age–gender matched)
(Table 1) were enrolled in this pilot study. Patients were included
only when they had not taken any medication for at least 8 weeks.
From all participants the serum drug levels were checked for legal
drugs (e.g., antipsychotics, antidepressants, and benzodiazepines)
and illegal drugs (e.g., cannabis). In accordance with the inclusion
criteria, only subjects with negative results were included in the

TABLE 1 | Clinical and demographic data of the study population.

Data Healthy
controls
subjects

(CON)

Healthy
first-degree

relatives (REL)

Schizophrenic
patients (SZO)

Number of participants 23 20 23

Gender (male/female) 13/10 12/8 12/11

Age (mean ± std in years) 30.3 ± 9.5 31.7 ± 10.7 30.4 ± 10.3

PANSS, mean (min-max) n.a. n.a. 85.7 (43–124)

SANS, mean (min-max) n.a. n.a. 49.6 (14–81)

SAPS, mean (min-max) n.a. n.a. 60.9 (6–108)

Psychotic symptoms for acute schizophrenia were quantified using the Scale for
the Assessment of Positive Symptoms (SAPS) and negative symptoms (SANS)
and positive and negative syndrome scales (PANSS); n.a., not applicable.
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study. Paranoid schizophrenia was diagnosed when patients
fulfilled DSM-IV criteria [Diagnostic and statistical manual of
mental disorders, 4th edition. Psychotic symptoms (positive
and negative) were quantified using the Positive and Negative
Syndrome Scale (PANSS (Kay et al., 1987)]. The semi-structured
clinical interview SCID-1 was used for patients to approve
the clinical diagnosis. Control subjects were recruited from
hospital staff, medical students and the local community. From
all healthy control subjects and relatives interview and clinical
investigation were performed to rule out any psychiatric or other
disease or disruptive medication. Additionally for all controls
the Structured Clinical Interview SCID II and a personality
inventory (Freiburger Persönlichkeitsinventar) were applied to
detect personality traits or disorders that could affect autonomic
function (LeBlanc et al., 2004), and if present they were not
included in this study.

The written informed consent to a protocol approved by the
local ethics committee of the Jena University Hospital (ethics
committee number: 1190-09/03) was provided by all participants.
This study complies with the Declaration of Helsinki.

Data Recordings and Pre-processing
A short-term ECG (1,000 Hz) and synchronized calibrated
respiratory inductive plethysmography signal (Bär et al., 2012)
(LifeShirt R©, VivoMetrics, Inc., Ventura, CA, United States) were
recorded for 30 min under resting conditions [between 3 and
6 p.m. in a quiet room which was kept comfortably warm (22–
24◦C)] after 10 min rest in supine position. Subjects were asked
not to talk, to relax and to breathe normally during the recording.
For the further analyses from the raw data.

– Time series of successive beat-to-beat intervals (BBI,
msec) and

– Time series of respiratory frequency (RESP, sec) as the
time intervals between consecutive breathing cycles were
automatically extracted.

These time series were afterward adaptively filtered (Wessel
et al., 2000) to exclude and interpolate ventricular premature
events and/or artifacts to obtain normal-to-normal beat time
series (NN). Linear interpolation procedure was applied to
filtered time series (BBI, RESP) for synchronization and
resampling (2 Hz).

Basic Data From the Heart Rate and
Respiration
Basic indices from heart rate and respiration were determined as:

– meanNN: mean value of the NN intervals of BBI (msec),
and RESP (sec) as respiratory cycle length;

– sdNN: standard deviation of the NN intervals of BBI
(msec), and RESP (sec);

– HR: basic heart rate as the number of heart beats per
minute (1/min), and

– BF: breathing frequency as the number of breaths per
minute (1/min).

Coupling Analyses
Different approaches can be used for the quantification of
linear and non-linear cardiorespiratory couplings (Schulz et al.,
2013a). In this study, we analyzed the coupling between BBI and
RESP applying the linear normalized short-time partial directed
coherence (NSTPDC) (Adochiei et al., 2013), the linear/non-
linear multivariate Transfer Entropy (MuTE) (Montalto et al.,
2014) and the non-linear cross conditional entropy (CCE)
(Porta et al., 1999) approaches as well as the respiratory sinus
arrhythmia (RSA).

Normalized Short-Time Partial Directed Coherence
NSTPDC represents an enhancement of the traditional partial
directed coherence (PDC) (Baccala and Sameshima, 2001)
approach assessing linear Granger causality in the frequency
domain quantifying direct and indirect couplings within a
set of multivariate time series. The fundamental basis of the
NSTPDC is the time-variant partial directed coherence approach
[tvPDC, πxy(f,n)] is allowing to determine causal short-term
couplings between non-stationary time series at certain frequency
f applying a window function (n is the number of windows)
(Milde et al., 2011). An m-dimensional autoregressive (AR)
model is used to calculate NSTPDC indices. The optimal model
order popt was determined by the stepwise least squares algorithm
(Neumaier and Schneider, 2001) and the Schwarz’s Bayesian
Criterion (SBC) (Schneider and Neumaier, 2001). The coupling
direction between two time series, x and y, (e.g., BBI and RESP)
was determined by a coupling factor (CF) which is determined by
the quotient of πxy(f,n) and πyx(f,n).

CF =
1
n
∑

πxy(f , n)
1
n
∑

πyx(f , n)
(1)

ā =
1
n

∑
πxy

(
f , n

)
b̄ =

1
n

∑
πyx(f , n)

The results of CF were normalized and result in the normalized
factor (NF), which characterizes the coupling direction.

max(ā, b̄)

NF =


2, if

(
max = ā & ā

b̄
> 5

)
1, if (max = ā & 2 < ā

b̄
≤ 5)

0, if (max = ā & 0 ≤ ā
b̄
≤ 2)

 and

NF =


−2, if

(
max = b̄ & b̄

ā > 5
)

−1, if (max = b̄ & 2 < b̄
ā ≤ 5)

0, if (max = b̄ & 0 ≤ b̄
ā ≤ 2)

 (2)

Thereby, NF (NF = {−2, −1, 0, 1, 2}) determinates the causal
coupling direction between the two time series (xBBI and yRESP)
as a function of frequency f.
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Coupling direction:

– NF = {−2| 2} (where −2 denotes yRESP as driver, +2
denotes xBBI as driver): Strong unidirectional coupling;

– NF = {−1.5– < −2} or NF = {1.5–<2}: Weak
unidirectional coupling;

– NF = {−1| 1} (−1 denotes yRESP as driver,+1 denotes xBBI
as driver): Strong bidirectional coupling;

– NF = {−0.5– <−1} or NF = {0.5–<1}: Weak bidirectional
coupling, and

– NF = 0: Equal influence in both directions and/or no
coupling with respect to coupling strengths (If both area
indices have equal values greater than zero, there is equal
influence in both directions; if both area indices have
equal values but are zero, there is no coupling).

Coupling strength:
In each window (f = 0–2 Hz) an area is made up of CF allowing

to assess the coupling strength. For xBBI and yRESP these areas
are:ABBI→RESP and ARESP→BBI [a.u.]. The values of these area
indices ranges between 0 and 1 [0,1]. Thereby, 1 points to that
from x all information is transferred (→) toward y (Ax→y = 1).
Hamming window with a length of 120 samples and a shift of
30 samples per each iteration step was applied. To ensure scale-
invariance all time series were normalized to zero mean and unit
variance (Schulz et al., 2015a).

Multivariate Transfer Entropy
Transfer Entropy (TE) introduced by Schreiber (Schreiber, 2000)
is able to quantify linear as well as non-linear information transfer
between time series, to detect driver-response-relationships, and
to assess asymmetries between information transfers. TE has the
big advantage that it is “model-free” approach (Schulz et al.,
2013a) making TE very sensitive to any types of dynamical
information transfer. Montalto et al. (2014) introduced the
Multivariate Transfer Entropy (MuTE) as a MATLAB toolbox
with different entropy estimators to transfer the classical TE from
a bivariate approach into a multivariate approach. The coupling
strength of a multivariate set of time series can be determined as:

MuTEX → Y (3)

with information transfer from X toward (→) Y, or vice versa.
In this study we wanted to quantify non-linear couplings within
the cardiorespiratory system with high specificity and sensitivity,
therefore, we applied the non-uniform embedding (NN NUE)
technique with the nearest neighbor estimator shown to be
most suitable to detect non-linearities with high specificity and
sensitivity (Montalto et al., 2014).

Cross Conditional Entropy
Porta et al. (1999) introduced the cross conditional entropy
(CEx/y) based on the conditional entropy (CE). Thereby, CEx/y
determines the level of coupling between the two time series x
and y,

CEx|y = −
∑
L−1

p
(
yL−1

) ∑
t|L−1

p
(
x (t)
yL−1

)
log p(x(t)/yL−1) (4)

with the pattern length L, the joint probability p(yL−1) of the
pattern yL−1(t) and the conditional probability p(x(t)/yL−1) of
the sample x(t), given that the pattern yL−1. CEx/y assesses
the amount of information contained in the sample x(t) in the
case that the pattern of L−1 samples of yL−1(t) is existing.
Moreover, CEx/y quantifies causality by determining direct
couplings regarding to cross-prediction approaches.

Finally, an uncoupling function UF can be estimated that
determines the information content that is transferred between
two time series (Porta et al., 1999). Here, we calculated the
UFx,y between HR and BF as UFHR,BF. The larger UF, the more
decoupled the two time series are (UF = 1, HR und BF are
completely independent from each other).

Respiratory Sinus Arrhythmia
Respiratory Sinus Arrhythmia (RSA) is used as an index of
cardiac parasympathetic activity derived by heart rate changes
(BBI) which correspond to inspiration and expiration (Grossman
et al., 1990a). RSA is characterized by the shortening of heart
rate intervals (BBI) during inspiration and the lengthening of
heart rate intervals during expiration. In this study, we assess
RSA in the time domain applying the peak-to-valley approach
(RSAP2V, msec). The LifeShirt R© automatically estimated RSA
using the peak-to-valley approach for each breathing cycle
(Grossman et al., 1990b).

Surrogate Data
To evaluate the significance of the cardiorespiratory couplings
between CON and SZO as well as REL a surrogate data approach
was applied (Schreiber and Schmitz, 2000). Here, from all original
time series 20 independent surrogates were derived for each
schizophrenic patient (SZOs), each relative (RELs), and each
healthy control (CONs). The temporal structure within the
original time series was destroyed by randomly permuting each
sample to derived new surrogate time series. Afterward, we tested
if significant couplings between the original time series were
confirmed by the surrogate data. Therefore, a statistical defined
coupling threshold level ts (defined as the mean + 2∗SD of the
resultant distribution derived from all surrogates SZOs, RELs,
and CONs) was introduced. Significant valid couplings were
present if no significant differences between two surrogate groups
exist and if couplings (original data) were higher than tsu.

In addition, a second surrogate approach was applied by
generating random phase surrogates to test for non-linearity
in the data. This surrogate approach is known as phase
randomization and preserves linear behavior (i.e., the power
spectrum/autocorrelation) but destroys any non-linear behavior.
Preserving the power spectrum while randomizing the Fourier
phases of the data providing surrogates in which any non-linear
structure is destroyed (Lancaster et al., 2018).

Statistics
For the statistical evaluation of the results between SZO,
REL and CON first the Kruskal–Wallis test followed by the
post hoc non-parametric exact two-tailed Mann–Whitney U-test
in combination with the Kolmogorov–Smirnov test (check for
equal distributions) (SPPS 21.0) were applied. The significance

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 61793

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00617 June 12, 2020 Time: 19:58 # 5

Schulz et al. Cardiorespiratory Network in Relatives and Schizophrenia

level was set to p < 0.01, and for highly significant different to
p < 0.004 (Bonferroni–Holm adjustment). In order to check, if
effects size have a relevant influence, effect sizes based on Cohen’s
d were applied to describe the magnitude of the differences
between the groups. The most popular effect size measure is
Cohen’s d (Cohen, 1988).

Results were expressed in median and 25 and 75% percentiles.

RESULTS

The Kruskal–Wallis test revealed for all indices, with the
exception of sdNN_RESP, significant differences (p < 0.01)
between all three groups.

Patients Suffering From Schizophrenia
vs. Healthy Subjects
Basic data from HR analysis revealed highly significant
differences between SZO and CON. SZO showed shortened mean
value of the NN intervals (meanNN_BBI) and reduced variability
(sdNN_BBI) and higher HR (Table 2).

Variability analyses of RESP showed a reduced (significant)
mean respiratory cycle length (meanNN_RESP) and consequently
an increased breathing frequency (BF) in SZO compared to
CON (Table 2).

Cardiorespiratory analysis revealed significant differences
between the couplings in SZO than CON (Table 2).

NSTPDC analyses revealed a highly significant NF (CON:
NF =−1.9± 0.2; SZO: NF =−1.0± 0.8) between SZO and CON.
For CON, the NF was approximately −2, suggesting a strong
unidirectional information transfer from RESP→ BBI. For SZO
the NF was approximately −1 pointing to a strong bidirectional
information transfer with RESP as the driver (RESP → BBI).
The coupling strengths were significantly different for both area
indices (ABBI → RESP, ARESP → BBI) between both groups. In the
case that BBI influenced RESP (ABBI → RESP), SZO demonstrated
a higher coupling strength in comparison to CON. In the case
that RESP influenced BBI (ARESP → BBI) we found a lower
coupling strength for SZO compared to CON (Figures 1, 2).

MuTE showed similar results as NSTPDC, but with non-
linear components, that in the case that BBI influenced
RESP (MuTEBBI → RESP) higher coupling strength with non-
linear components was present for SZO, and in the case
that RESP influenced BBI (MuTERESP → BBI) lower coupling
strength with non-linear components was found for SZO in
comparison to CON.

The uncoupling function quantifying the information transfer
between HR and BF revealed an increased value for SZO in
comparison to CON, pointing to stronger decoupling of the
cardiac and respiratory system in SZO.

Highly significantly lower RSA values (RSAP2V) were found
for SZO in compassion to CON.

All significant couplings were confirmed by surrogate analysis.
No significant differences in linear and non-linear coupling
indices were found between the groups for surrogate time series.

The results from phase randomization surrogate analysis
revealed highly significant differences in all three NSTPDC TA
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FIGURE 1 | Averaged NSTPDC plots for cardiorespiratory coupling analyses for (A) healthy subjects, (B) healthy first-degree relatives, and (C) schizophrenic
patients. Arrows indicating the causal coupling direction from one time series to another, e.g., RESP← BBI, indicating the causal information transfer from BBI to
RESP. Coupling strength ranges from blue (no coupling) to red (maximum coupling). BBI, beat-to-beat intervals; RESP, time intervals between consecutive breathing
cycles.

indices whereas MuTE only showed significant MuTEBBI → RESP
(Table 3) comparing CON with SZO.

Healthy First-Degree Relatives of
Schizophrenic Patients vs. Healthy
Subjects
Indices from cardiac variability demonstrated only a significant
increased HR in REL compared to CON and consequently
shortened mean value of the NN intervals (meanNN_BBI).

Respiratory variability analyses did not demonstrate
significant differences between REL and CON.

Results for cardiorespiratory couplings showed only
significant different for RSA analyses with decreased RSA values
(RSAP2V) for REL compared to CON (Table 2 and Figure 2).

All significant couplings were confirmed by surrogate analysis.
No significant differences in linear and non-linear coupling
indices were found between the groups for surrogate time series.

Phase randomization surrogate analysis showed significance
for ABBI → RESP comparing CON and REL (Table 3).

Patients Suffering From Schizophrenia
vs. Their Healthy First-Degree Relatives
Basic indices from HR and respiration did not contribute to a
differentiation of these groups.

Results for cardiorespiratory couplings revealed highly
significant differences for NSTPDC, CCE, and RSA analyses.

NSTPDC results demonstrated a highly significant NF value
and ARESP → BBI value between REL and SZO. Thereby, REL
showed −1.7 indicating to a weak unidirectional coupling with
RESP as the driver and BBI as the target variable. The coupling
strength (ARESP → BBI) was highly significant increased in REL
compared to SZO (Figures 1, 2).

The uncoupling function revealed highly significant decreased
value for REL in comparison to SZO, pointing to weaker

decoupling (=stronger coupling) between the cardiac and
respiratory system in comparison to SZO.

Significant higher RSA values (RSAP2V) for REL were found
for REL compared to SZO (Table 2 and Figure 2).

All significant couplings were confirmed by surrogate analysis.
No significant differences in linear and non-linear coupling
indices were found between the groups for surrogate time series.

Phase randomization surrogate analysis for NSTPDC
demonstrated a highly significant NF value and ARESP → BBI
value between REL and SZO (Table 3).

DISCUSSION AND CONCLUSION

In our study, we found highly significant increased HR, reduced
HRV, higher BF, and impaired cardiorespiratory couplings for
schizophrenic patients compared to healthy control subjects.
For SZO these couplings were characterized as bidirectional
ones, with a driver-responder relationship from RESP → BBI,
with weaker linear and non-linear coupling strengths when
respiration influencing heart rate and with stronger linear
and non-linear coupling strengths when HR influencing
respiration. For the healthy first-degree relatives we found only
significant increased HR and impaired RSA compared to healthy
subjects (Figures 2, 3).

The variability analyses of basic heart rate indices are
consistent with different studies that have shown an impaired
sympathovagal tone in untreated schizophrenic patients (Mujica-
Parodi et al., 2005; Boettger et al., 2006; Bär et al., 2007; Chang
et al., 2010; Schulz et al., 2013c, 2015a). These results suggest an
impairment of the ANS shown by a reduced HRV (sdNN_BBI↓,
meanNN_BBI↓) expressed by a higher sympathovagal activation
of the ANS. Furthermore, a predominant sympathetic activation
for SZO (2.94± 2.28) was additionally confirmed by significantly
increased LF/HF compared to CON (1.74 ± 1.57) and to
REL (1.78 ± 1.15). Impaired cardiac regulation, which is one
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FIGURE 2 | Box plots of significant cardiorespiratory indices from healthy subjects (CON), healthy first-degree relatives (REL), and schizophrenic patients (SZO) for
(A) heart rate (HR), (B) respiratory sinus arrhythmia (RSA), (C) the coupling strength from normalized short-time partial directed coherence (NSTPDC) analysis from
RESP to BBI, and (D) the coupling strength from multivariate transfer entropy (MuTE) analysis from RESP to BBI (BBI, beat-to-beat intervals; RESP, time intervals
between consecutive breathing cycles). Boxes indicate data between 25th and 75th percentile with the horizontal bar reflecting the median.

TABLE 3 | Results of phase randomization surrogate analyses for cardiorespiratory couplings between patients suffering from paranoid schizophrenia (SZO), healthy
first-degree relatives (REL), and healthy control subjects (CON).

Index CON vs. SZO CON vs. REL SZO vs. REL CON REL SZO

Median [25–75] Median [25–75] Median [25–75]

Couplings NF *** n.s *** −2.0 −2.0 −1.8 −1.8 −1.9 −1.5 −0.9 −1.5 −0.2

ABBI → RESP *** * n.s 0.03 0.02 0.04 0.05 0.04 0.06 0.06 0.04 0.07

ARESP → BBI *** n.s *** 0.34 0.24 0.40 0.26 0.21 0.33 0.14 0.09 0.21

MuTEBBI → RESP ** n.s n.s 0.002 0.000 0.008 0.005 0.002 0.012 0.008 0.003 0.016

MuTERESP → BBI n.s n.s n.s 0.004 0.002 0.006 0.006 0.003 0.008 0.007 0.004 0.011

BB, beat-to-beat intervals; RESP, time intervals between consecutive breathing cycles; A, area from NSTPDC for identifying the coupling strength; MuTE, multivariate
Transfer Entropy; p, univariate significance level: *<0.05, **<0.01, ***<0.004; n.s., not significant.

of the major contributors to changed sympathovagal balance,
represented by higher basic HR in the first episode and
during untreated conditions could clearly be demonstrated by
several studies and seems to be a hallmark in schizophrenic

patients. Bär et al. (2007) speculated that reduced HR seems to
be highlighting that the cardiac system is not able to adapt
to the different demands arising from posture or exertion,
and moreover, that patients are at higher risk of developing
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FIGURE 3 | Graphical representation of the cardiorespiratory network
structure with causal coupling strength and direction between the cardiac-
and the respiratory system for (A) healthy subjects, (B) healthy first-degree
relatives, and (C) schizophrenic patients. Arrows indicating the causal
coupling direction from one time series to another. The thickness of the lines
and arrows indicating the coupling strength and the direction between the two
variables. The thicker the line the stronger the coupling strength (BBI,
beat-to-beat intervals; RESP, time intervals between consecutive breathing
cycles).

arrhythmias. Valkonen-Korhonen et al. (2003) also demonstrated
significantly reduced RMSSD and HF performance in psychotic
patients and unchanged HRV in mental tasks than in healthy
controls. They concluded that patients could not adjust HRV
according to the task load. One could assume that acute
psychosis state in these subjects leads to a restricted ability
of the ANS to respond to external demands. Voss et al.
(2011) also demonstrated reduced linear and non-linear HRV
pointing to a higher sympathovagal activity in schizophrenic
patients and their relatives. Moreover, the impairment of cardiac
activity (complexity) confirms the assumption of an changed
sympathovagal HR regulation in schizophrenia (Voss et al.,
2009). Healthy first-degree relatives of patients showed only
increased HR supported by other studies (Bär et al., 2010; Berger
et al., 2010; Bär et al., 2012; Abhishekh et al., 2014).

Basic respiratory indices variability analysis showed
significantly increased BF in SZO compared to CON supporting
other findings dealing with untreated patients (Peupelmann
et al., 2009; Bär et al., 2012; Schulz et al., 2012a). Here, it was
shown that schizophrenia is accompanied by significantly
shorter inspiration and expiration times and a higher BF. For
healthy first-degree relatives we found no significant differences
in respiratory activity compared to healthy subjects. This is

in accordance to the findings of Bär et al. (2012), who only
observed alterations in respiration for schizophrenia but not
for relatives. They speculated that these findings could be a
sign of excitement in critically diseased patients. In other study
(Schulz et al., 2012a) we found significantly impaired respiratory
variability and respiratory dynamics in schizophrenic patients,
but neither for healthy first-degree relatives. This is a noteworthy
fact that for schizophrenic patients and their first-degree healthy
relatives comparable alterations in HRV (reduced) are present
(Castro et al., 2009; Bär et al., 2010, 2012; Voss et al., 2010).
These findings further leads to the assumption that an underlying
disease-related genetic susceptibility of cardiac regulatory activity
is obviously present in schizophrenia and relatives.

However, the entire cardiorespiratory system seems not to be
affected, and that the dysfunction of the ANS appears to have
a cardiac genetic basis. For example, it could also be shown
that a genetic dependency of HRV was evident in healthy twins
(Busjahn et al., 1998). In another study (Voss et al., 1996) HRV
in the time- and non-linear dynamics domains found significant
alterations between twin- and non-twin pairs (62, twin pairs:
30 monozygotic, and 32 dizygotic) leading to the assumption
that there exists a genetic component in cardiac system in the
generation of heart rate and its variability. Wang et al. (2009)
investigated the heritability of HRV under stress and at rest and
its dependency on ethnicity and gender (in 427 European and 308
African American twins). They found the same genes influenced
HRV under stress and at rest independent of ethnicity and
gender. Meda et al. (2014) investigated the genetic background
of schizophrenia and its relatives studying the brain’s default
mode network (DMN) of 296 schizophrenic patients (SZO), 179
unaffected first-degree relatives of SZO (SZREL) and 324 healthy
subjects. They showed changes of functional connectivity in SZO
and that these changes in DMN were selective only for SZREL
familial, with genes regulating specific neurodevelopmental and
transmission processes primarily mediating DMN discontinuity.

Personality anxiety has been shown to be associated with
altered breathing alterations and BF (Masaoka and Homma,
1997, 1999). The authors found that a higher BF was not
associated with metabolic factors and is coordinated with the
limbic system and the respiratory drive (Masaoka and Homma,
2001). Boiten et al. (1994) found that alterations in breathing
reflect the state a of emotional reaction connected with the
requirements to react to emotional situations. Furthermore,
symptoms of panic attacks and pulmonary patients overlap
that panic anxiety highlights a cardiopulmonary disorder and
that shortness of breath highlights an underlying anxiety
disorder (Smoller et al., 1996). Respiratory changes may
be explained by the fact that excitation disturbances in
prefrontal are of the amygdala as assumed in paranoid
schizophrenia could be responsible for the connection between
psychopathology and alterations of respiration (Bär et al., 2012;
Schulz et al., 2018, 2019). Therefore, chronic changes in HR and
respiration in schizophrenia appear to be associated with cardiac
dysfunction and not just a simple stress-related anxiety disorder
(Schulz et al., 2015a).

Linear cardiorespiratory coupling analysis revealed a
bidirectionally pronounced coupling direction (NF: −1.0) with
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respiration as the driver toward cardiac activity (RESP→ BBI)
in SZO vs. CON who demonstrating a more pronounced
RSA regulation. The linear coupling from heart to respiration
BBI→ RESP (significantly increased in SZO) is supposed to be
an RSA complementary biomarker as a reciprocal part of the
cardiorespiratory interrelationship (Dick et al., 2014). Dick et al.
(2014) stated that the joint interrelationship between the airways
and the ANS as a function of gas exchange is emphasized by the
fact that the ANS transmits information to the respiratory tract,
which generates beat-to-beat changes, while the information
transfer from respiration to the ANS is pronounced as a part of
the RSA control loop.

Results from phase randomization surrogate analysis
confirmed in general the underlying linear coupling structure for
the directions BBI→ RESP and RESP→ BBI when considering
NSTPDC results. But there was one exception, in the case when
CON was compared with REL; we found in phase randomization
surrogates a significant difference for ABBI → RESP that was not
present in the original time series. This can be a consequence of
the low absolute values for the coupling strength.

For cardiorespiratory couplings with non-linear components
significantly lower coupling strength was found in the direction
RESP → BBI suggesting impaired non-linear regulatory
pathways within the RSA-loop.

Phase randomization surrogates showed also significant
differences between CON and SZO in the case of that BBI
influenced RESP (MuTEBBI → RESP) as already found in the
original time series. This means that the found difference in
the coupling between CON and SZO (original time series) for
the direction BBI → RESP was of linear nature without non-
linear components. On the other side, we found no significant
difference in coupling for the direction RESP → BBI in phase
randomization surrogates (but in the original time series)
pointing to a strong non-linear coupling behavior when RESP
influenced BBI in the original time series.

In the study of Peupelmann et al. (2009), they found that the
severity of schizophrenia is connected to alterations in breathing,
and speculated that the vagal control within the brainstem does
not work properly and leads to these findings. In the case that
respiration transfers information toward the heart (RESP→ BBI)
is related to central respiratory driving mechanisms is respect to
responses of the cardiac system (Faes et al., 2011). These impaired
central respiratory driving mechanisms are assumed to be the
cause of the impairments in the cardiac system in SZO (Schulz
et al., 2015a, 2019). Bär et al. (2012) investigated cardiorespiratory
couplings in control subjects compared to schizophrenic patients
and their relatives. They observed impaired cardiorespiratory
coupling, which was characterized by increased decoupling
function (CCE) and complexity of cardiorespiratory couplings
in schizophrenic patients. Williams et al. (2004) stated “that
dissociation of amygdala prefrontal circuits and excitation leads
to inhibition of signal processing of threat-related signals in
SZO. In particular, dysregulation in the normal cycle of mutual
feedback between amygdala work processes and autonomic
regulatory activities is characterized by reduced amygdala activity
and excessive excitation in these patients.” In addition, our results

demonstrated that RSA is inhibited supported by other studies
(Bär et al., 2012; Schulz et al., 2015a) which showed altered
cardiorespiratory interactions and restricted RSA in untreated
SZO. Thus, we speculate that impaired vagal control in the
brain stem or restricted control pathways of higher centers is
responsible for these results. In other study, we found that
fractal structures of RSA were strengthened in SZO leading to
the assumption that the rhythmic components of the RSA time
series did fluctuated more randomly supporting the assumption
that cardiac control in heart rate regulation agrees less with
respiration in SZO leading to reduced RSAP2V in SZO (Schulz
et al., 2015a). We speculated that the impairment of cardiac
regulation is not a stress-related excitation but more chronic
and significant alterations in hear rate and breathing regulation
(Schulz et al., 2015a). The significant alterations within the
cardiorespiratory system seem clearly pointing to a disease-
related hallmark in SZO and could reflect responses of the
ANS during psychosis in acute schizophrenic patients. Due to,
that relatives are not in the same “emotional and psychotic
state” as patients it seems to be that the alterations within the
cardiorespiratory system are closely connected to the emotions
in SZO (Suess et al., 1980; Masaoka et al., 2001; Dimitriev et al.,
2014; Jerath et al., 2015) and occur mainly only in this disease
(Schulz et al., 2015b).

The novelty of this study, in contrast to our previous studies,
is that in this study we were able to use a variety of methods
from different domains, such as time domain, Granger causality
and entropy domain. Especially, the application of two different
causality approaches allowed us to assess coupling strength and
the direction of the cardiorespiratory couplings. These features
were not investigated and were possible so far. By determining
causal relationships, it is now possible to understand how
the cardiorespiratory system works in these patients. Schulz
et al. (2015b), we applied and tested the introduced high-
resolution joint symbolic dynamics approach to determine if with
this approach a differentiation of the three groups is possible
and to assess short-term non-causal couplings. We found a
significantly altered heart rate pattern, respiratory pattern and
cardiorespiratory couplings in SZO and only marginal alterations
for REL group comparison to CON. Here, in this study, we
are able to determine the causality of regulatory systems (heart
and respiration) for these participants giving new insides of
autonomic control.

For schizophrenia, this question has not yet been clarified as
to what the defined working mechanisms are that are responsible
for the obvious dysregulation of the ANS, since the number of
brain areas (cortical, subcortical, and brain stem) is involved in
autonomous regulatory processes. To sum up, we demonstrated
a significantly impaired heart- and respiratory regulation
expressed in their variability and dynamics and an impaired
cardiorespiratory interactions in schizophrenic patients, and only
a significantly altered heart rate regulation in healthy first-degree
relatives. These results are consistent with previous studies,
which also showed reduced HRV in schizophrenia and its
first-degree healthy relatives, which clearly indicate underlying
disease-related genetic vulnerability of the cardiovascular system
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(particularly within the cardiac subsystem). In schizophrenia,
the results might be a result of lower vagal control within the
brain stem, impaired communication between the brain stem
and higher centers, or panic and anxiety-related alterations in
the brain stem during the acute psychosis state in SZO (Schulz
et al., 2018, 2019). Moreover, relatives do not seem to be in the
same emotional and psychotic state as their sick schizophrenic
relatives. As a result of the fact that in relatives only the cardiac
system seems to be affected, it explains that the cardiorespiratory
couplings are not significantly altered compared to the sick
relatives (schizophrenia). Therefore, it seems that the alterations
within the cardiorespiratory system and the linkages between
the related subsystems that are apparent in schizophrenia are
closely related to psychotic emotions that are evident during the
acute phase of this disease (Schulz et al., 2015b), highlighted
by alterations within the cardiac- and the respiratory systems.
The interrelationship between the autonomous nerves system
(cardiovascular and cardiorespiratory) in neuropathological
diseases and the associated central control mechanisms are still
not fully addressed in research.
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Central sleep apnea is a sudden arrest of breathing during sleep caused by the central
commands to the thoracoabdominal muscles. It is a widespread phenomenon in both
healthy and diseased people, as well as in some animals. However, there is an ongoing
debate whether it can be considered as a pathological deviation of the respiratory
function or an adaptive mechanism of an unclear function. We performed chronic
recordings from six behaving cats over multiple sleep/wake cycles, which included
electroencephalogram, ECG, eye movements, air flow, and thoracic respiratory muscle
movements, and in four cats combined that with the registration of myoelectric activity
of the stomach and the duodenum. In these experiments, we observed frequent central
cessations of breathing (for 5–13 s) during sleep. Each of the sleep apnea episodes
was accompanied by a stereotypical complex of somatic and visceral effects. The heart
rate increased 3–5 s before the respiration arrest and strongly decreased during the
absence of respiration. The myoelectric activity of the stomach and the duodenum
also often demonstrated a strong suppression during the apnea episodes. The general
composition of the visceral effects was stable during all periods of observation (up to
3 years in one cat). We hypothesize that the stereotypic coupling of activities in various
visceral systems during episodes of central sleep apnea most likely reflects a complex
adaptive behavior rather than an isolated respiratory pathology and discuss the probable
function of this phenomenon.

Keywords: central sleep apnea, heart rate, respiration, stomach motility, duodenal motility, visceral theory of
sleep

INTRODUCTION

Sleep-related breathing disorders, including central sleep apnea in humans, currently are at the
focus of attention of many sleep studies. Generally, central apnea manifests as a short absence or
reduction of breathing during sleep (9–14-s in length) caused by the cessation or the attenuation of
the central respiratory drive from the breathing control center to the thoracoabdominal muscles.
This phenomenon, or rather a group of phenomena, has a complex manifestation. Apnea can occur
as an isolated disorder or as one of the numerous symptoms accompanying other illnesses (e.g.,
congenital heart failure and obstructive sleep apnea), or it can even be an intrinsic feature of the
normal breathing system of a healthy organism, for instance, in high-altitude conditions or in early
infancy (Hernandez and Patil, 2016; Baillieul et al., 2019).
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Although recent advances in sleep research provided valuable
descriptions of the various aspects of this phenomenon and of
its manifestation types (Eckert et al., 2007; Javaheri et al., 2017),
there is still no agreement regarding the possible functional role
of central sleep apnea. The noticed link between central sleep
apnea and the malfunction of the cardio-respiratory system led
some researchers to an assumption that central apnea represents a
pathological phenomenon related to a failure in breathing control
and therefore requires specific treatment, while others proposed
that it may have an important adaptive purpose (see e.g., Gay,
2008; Malhotra et al., 2008; Cowie, 2017). Similar effects with
common features to those described in human subjects were
also observed in kittens (McGinty et al., 1979), as well as in
rodent models (e.g., Sato et al., 1990; Nakamura et al., 2003;
Davis and O’Donnell, 2013).

During a series of studies not focused on apnea but devoted
to the exploration of cortical representations of the visceral
system in wakefulness and in sleep (Pigarev et al., 2013,
2016), which required a prolonged collection of somnographic
data over multiple sleep/wake cycles, we, to our surprise,
realized that central apnea is a frequent event of sleep in
cats. Moreover, we noted a correlation between changes of the
multiple parameters of visceral functioning surrounding the
apnea episodes. In this paper, we describe these patterns of co-
occurrence of visceral disturbances and discuss their possible
adaptive function. These results were partly presented in abstract
form (Limanskaya, 2019).

MATERIALS AND METHODS

In this study, we retrospectively analyzed recordings obtained in
the course of four different previous projects, and therefore we
had an opportunity to analyze data from six healthy adult cats.

All experiments with these cats were performed using our
modification of the painless head fixation approach (Noda
et al., 1971; Pigarev et al., 2009), necessary to record stable
polysomnography from animals during a long period of
time, up to 8 h a day. The recordings used for further
analysis covered periods of both wakefulness and sleep. The
number of experimental sessions analyzed in a single cat
varied from 20 to 78.

Surgery and day-to-day treatment of the animals were carried
out in accordance with the ethical principles for the maintenance
and use of animals in neuroscience research (Zimmermann,
1987), the NIH Guidelines for the Care and Use of Animals,
and the Declaration of Helsinki on Ethical Principles for
Medical Research. Current Russian laws do not bind scientific
institutes to have special ethic committees; the assessment of
research proposals is instead conducted by the institutional
scientific councils in the course of their discussion concerning
providing financial support to a particular study. According to
the rules of the foundations that distribute grants for scientific
research in Russia, ethics evaluation is done by the council of
reviewers prior to making a decision regarding the financial
support of a particular study. Both councils are guided by the
recommendations of the above-mentioned documents.

The preparation of the animals for the experiments included
an acclimatization of each animal to the laboratory environment
and either one (in two cats) or two separate surgeries (in four
cats), with recovery intervals after each of them. The general
approach to chronic studies conducted in behaving animals such
as cats is to purchase an animal of a reasonably young age
(∼1 year) and acclimatize it to the laboratory environment and
to the investigators involved in the experiments. This “shaping”
process was based on positive reinforcement techniques and
usually took a couple of weeks before any surgery was performed.

Both surgeries were conducted under deep anesthesia
(premedication with xylazine, 0.15 ml/kg; for the main
anesthesia, we used zoletil, 6 mg/kg, for the first injection, and
additional doses of 5 mg periodically with intervals of about
20 min to keep the appropriate level of animal sedation.

During the first surgery, a pre-fabricated halo frame for
subsequent painless head fixation during the recording session
was attached to the skull. The frame was manufactured using
a thin steel wire as a base, with acrylic dental cement as filling
and cover, and attached to the skull with eight 2.5-mm surgical-
grade steel screws. The skin and soft tissues were removed
from the top of the cranium (from the area inside the frame),
and the surface of the skull was covered with a thin layer of
acrylic dental cement [for a detailed description, see Pigarev
et al. (2009)]. At this stage, two electrodes manufactured from
thin (0.5 mm) Elgiloy wire for electroencephalogram (EEG)
monitoring were implanted epidurally over the frontal and the
occipital cortices.

After a complete recovery (at least 4 weeks), the animal was
trained to stay for a prolonged time with its head fixed to
ensure stable recordings over sleep/wake cycles. The duration
of this training depended on the individual behavior of an
animal. Usually within a couple of weeks, an animal gets
acclimatized to head fixation and begins sleeping with its
head fixed. After that, the second surgery can be performed.
During the second surgery, intramural bipolar electrodes were
implanted, allowing the recording of myoelectrical activity from
the stomach and the duodenum. Intramural electrodes were
implanted into the walls of these organs using the method
proposed by Papasova and Milenov (1965) and Papasova et al.
(1966b). The details of this procedure were previously described
in Pigarev et al. (2013) as well. The same type of anesthesia was
used for this procedure.

For the ECG recording, we used one lead from the stomach
wall, and the second was from the ground screw inserted in the
bone at the top of the skull. Since the recordings necessary to
investigate central sleep apnea were mainly done in sleep, when
the animal does not move, mostly there were no motion artifacts,
and the QRS complexes in ECG and the R maxima of the QRS
were automatically identified by Spike 2 built-in algorithms for
spike sorting by shape. In rare cases when intense muscle jerks
occurred during rapid eye movement (REM) sleep and resulted
in artifacts, the corresponding correction was done after a visual
inspection. Moments of R pick maxima were used to calculate the
heart rate mean over time. For this procedure, we also used Spike
2 built-in algorithm, which replaced each event with Gaussian
kernel (exponential time constant of 3 s).
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The experiments were conducted during daytime
in a diffusely illuminated room, with permanent video
monitoring of the animal.

All standard polysomnographic parameters were recorded:
cortical EEG, ECG, respiratory movements (using a
thoracoabdominal belt with a piezoelectric sensor), air flow (with
thermo-sensors placed in front of the nose), eye movements, and
opening/closing of the eyelids (with an infrared oculometer). In
addition to that, in four animals, we recorded the myoelectrical
activity of the stomach and the duodenum.

All these signals were amplified with NeuroBioLab amplifiers
stored on a hard drive using LabChart system (ADInstrument,
Australia) and analyzed offline using LabChart and Spike 2 (CED,
GB) programs. The ECG and duodenum myoelectric signals were
recorded with 1 kHz sampling rate. For all other parameters, the
sampling rate was 200 Hz.

DATA ANALYSIS

Polysomnograms and video recordings were visually examined
for the presence of respiratory cessation in sleep (apnea and
cessation of movements of the thoracoabdominal muscles longer
than 5 s), and the durations of respiratory arrests were estimated.

The separation of the states of vigilance was based on a visual
inspection of the polysomnograms and on video recordings. As
signs of slow wave (SW) sleep, we used the increase of delta wave
amplitudes in EEG, slowing of respiration, general decrease of
the animal’s motor activity, slow gaze drifts replacing saccadic
eye movements, and closing of the eyelids. After selecting the
intervals of SW sleep and wakefulness using these criteria, we
performed a quantitative comparison of the power spectral
density between these two conditions.

The EEG of the assumed SW sleep and wakefulness periods
was broken into 10-s intervals, and the EEG spectra were
calculated (Chronux data analysis toolbox for Matlab1). We
analyzed the EEG spectra within frequency ranges known to
depend on the state of vigilance: delta, sleep spindle, and gamma
ranges. We found that, in all recordings, the delta and the spindle
range power spectral density values in EEG were significantly
higher in SW sleep while power in gamma range was always
higher in wakefulness (Wilcoxon rank sum test p < 0.001).
These criteria commonly characterize sleep—wake differences
(Contreras and Steriade, 1996; Destexhe et al., 1999). Periods
of REM sleep could be easily determined as occurring just after
intervals of SW sleep desynchronization of the general EEG—the
presence of eye and lid movements and very typical jerks of facial
muscles as observed on video.

The myoelectrical activities of the stomach and the duodenum
were analyzed only for estimation of the reduction of their
motility-related features during apnea episodes. For stomach
activity, this manifested as an absence or a reduction of high-
amplitude myoelectrical waves during periods of respiratory
cessations (Figure 1, channel 2). For the duodenum, this
manifested as the absence of high-frequency spike potentials,

1http://chronux.org

as can be seen in Figure 1 (channel 3). For a detailed
description of the relationships between the myoelectrical activity
of the stomach and the duodenum and their motility, see
Papasova et al. (1966a), Costa and Furness (1982), Sarna (1989),
and Martinez-de-Juan et al. (2000).

RESULTS

The presented results were obtained from a retrospective analysis
of the polysomnograms recorded in six cats, which were used
in four different projects devoted to the investigation of various
aspects of sleep in chronic experiments.

In all six animals, episodes of central sleep apnea were found
in most of the analyzed experiments.

Figure 1 presents typical examples of central sleep apnea
episodes as recorded in the four cats. All of them were registered
in the transitional period from REM to SW sleep. Two vertical
lines mark the borders of each apnea episode. Respiration arrest
is seen in channels 4 and 6. Channel 4 represents nasal airflow
and channel 6 represents the movements of the thoracic cage.

The heart rate increased 3–5 s before the cessation of breathing
in all the observed sleep apnea episodes in all six cats. By the
onset of the apnea episodes, the heart rate always decreased
and remained at a low level until the first breath. During the
apnea episodes, the intervals between two sequential heartbeats
could sometimes be twice longer than during periods before the
respiration arrest (e.g., Figure 1, cat 4, channel 7).

An example of heart palpitations can be seen in the ECG
(channel 7) as well as in the heart rate curve (channel 8). During
the recorded sleep apnea episodes (e.g., 115 of 293 in one cat),
even the ones that happened during REM sleep, the eyes and the
eyelids remained practically immobile (channel 5).

Channels 2 and 3 demonstrate the myoelectrical activity
recorded from the walls of the stomach and the duodenum
correspondingly. It is seen that, at the time of apnea onset, the
myoelectric stomach activity (channel 2) gradually disappeared.
The periodic myoelectrical duodenal activity (channel 3) persists.
However, these periodic slow waves reflect the electrical activity
of the enteric nervous system and not the peristaltic intestinal
movements. Intestinal motility is more related to the higher-
frequency spike potentials superimposed on these slow waves
(Papasova et al., 1966a; Costa and Furness, 1982; Sarna, 1989;
Martinez-de-Juan et al., 2000). Such spike potentials are seen
in Figure 1, just before the apnea episodes in cats 1 and
2. However, the spike potentials were usually absent during
respiratory arrests. Thus, it seems that duodenal and stomach
motility might be decreased or absent during central sleep apnea.

In two cats (cats 1 and 2 in Figure 1), the results of all 78
daily experiment sessions (from 2 to 8 h in length) conducted
during 1 year (67 on the first and 11 on the second animal)
were analyzed for the presence of central sleep apnea episodes.
These episodes were detected in 59 out of 78 experiments on
the first cat (293 apnea episodes detected) and in 10 out of 11
experiments on the second cat (71 episodes). In these two cats, the
cardio-respiratory activity and the activity of the stomach and the
duodenum were recorded. For one of these two cats, with 78 daily
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FIGURE 1 | Examples of central sleep apnea episodes recorded in four cats. Channel 1—cortical electroencephalograph (EEG), µV; channel 2—myoelectric activity
of the stomach, µV; channel 3—myoelectric activity of the duodenum, µV; channel 4—nasal air flow in arbitrary units; channel 5—vertical eye movements, degrees
of the visual angle; channel 6—movements of the thoracoabdominal respiratory muscles in arbitrary units; channel 7—ECG in µV; and channel 8—heart rate curve,
heart beats per second. The horizontal axis shows the time scale in seconds.

TABLE 1 | Description of central sleep apnea episodes recorded in one cat
during 1 year.

Slow wave
sleep

(SWS)/rapid
eye

movement
(REM)

transition

REM sleep Slow wave
sleep

Total

Number of apnea
episodes

183 (62.4%) 63 (21.5%) 47 (16%) 293 (100%)

Mean duration of apnea
episode (s)

9.8 ± 2.26 9 ± 2.58 9.9 ± 2.49 9.7 ± 2.37

Number of episodes
with the absence of eye
movements

105 (57%) 37 (59%) 33 (70%) 175 (58%)

Number of apnea
episodes with the
reduction in myoelectric
activity of the stomach
and/or the intestine

115 (63%) 33 (52%) 34 (72%) 182 (62%)

Mean (±SEM) interval
between episodes (min)

13.1 ± 10.4 15.97 ± 14.4 16 ± 9.3 14.3 ± 10.1

experiments and 293 apnea episodes, the descriptive statistics of
the various aspects of central sleep apnea episodes distribution
over sleep–wake cycle are presented in Table 1. The common
features of central apnea episodes demonstrated in Figure 1 were
first identified and examined in these two animals.

In two cats (3 and 4 in Figure 1), the recorded visceral
parameters also included heart rate, respiration, and activity of
the stomach and the duodenum. In the remaining two cats (5
and 6), the visceral parameters included only the activity of the
heart and respiration. In these four cats (3, 4, 5, and 6), we

analyzed only quasi randomly selected experiments (20 in each
cat) that were uniformly distributed across the periods from the
beginning to the end of these studies (1–3 years). The goal of this
analysis was to determine whether central sleep apnea episodes
and their typical pattern were present in all animals during the
entire intervals of these studies.

Table 1 summarizes the numbers and the durations of apnea
episodes per sleep state and the frequencies of the effects co-
occurring with the apnea episodes for one cat’s recordings
performed during 1 year.

The table shows that the largest number of respiratory arrests
was observed during the transition periods between SW and
REM sleep (the direction of the transition period was not taken
into account and the data were pooled together). The durations
of apnea episodes obviously did not differ for the different
phases of sleep.

We noticed only one episode of central sleep apnea during the
transition from wakefulness to SW sleep.

DISCUSSION

Central apnea episodes during sleep were observed in all six
cats during natural sleep. This corresponds to the numerous
descriptions of these effects given in previous animal studies
on kittens, rats, and mice (McGinty et al., 1979; Sato et al.,
1990; Nakamura et al., 2003; Davis and O’Donnell, 2013). The
novel element of this study was the observation of cardio-
respiratory coupling in all observed apnea episodes. In addition,
in a substantial fraction of registered sleep apnea episodes, we
also noted stabilization of the eyes and eyelid movements, and the
changes of stomach and intestinal myoelectric activity suggested
a decrease in their motility.
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The co-occurrence of the changes in heart rate, the myoelectric
activity of the duodenum and the stomach, and ocular motions
with the breathing arrests, the stereotypical pattern of these
visceral changes in sleep, and the absence of such organized
changes in wakefulness seem indicative of the existence of
some coordinated central neural program that controls central
apneas specifically during sleep. A central apnea episode
therefore represents a complex effect involving multiple visceral
systems rather than an isolated one, happening only in the
respiratory system.

An obvious limitation of this study was in the number
of simultaneously recorded visceral parameters. It would be
important to enlarge this list in the future in order to see whether
other visceral systems also can be engaged in this coordinated
process. The other omission is the inability to correlate these
events to the activity of the brain structures closely involved in the
regulation of these parameters and thus to find the origin of such
stereotypically orchestrated changes of the visceral parameters.

In a cat observed for 3 years, the pattern of apnea episodes
remained constant during this prolonged period. The age of the
cats used in our study varied from 1 to 5 years, and episodes
of central apnea were noted at all ages. These animals passed
veterinary examinations and there were no indications on any
pathological deviations in their health.

The recorded episodes of central sleep apnea had a
characteristic pattern of coordinated changes occurring in
several visceral systems. Namely, cardiac changes preceded the
ones in breathing, and changes in breathing were frequently
accompanied by stereotypical changes of gastrointestinal activity.
What could be the functional role of such coordinated complex
which exists only in sleep?

Our previous studies demonstrated that, during sleep,
multiple cortical areas, which processed various exteroceptive
signals during wakefulness, switch to processing of the
interoceptive information [see, e.g., Pigarev (1994), Pigarev
et al. (2013)]. Thus, the cerebral cortex becomes substantially
visceral during sleep. We proposed that, during sleep, the
cerebral cortex is engaged in a diagnostic of the visceral state of
an organism and the restoration of the detected defects in various
visceral systems. For that reason, the cerebral cortex receives
and processes interoceptive signals during sleep (Pigarev, 2014;
Pigarev and Pigareva, 2014, 2015).

Note that the observed complex activity during central apnea
always starts from an increase of the heart rate. Together with
simultaneous deep respiratory movements, the increased heart
rate provides all tissues, first of all the brain, with a sufficient
amount of oxygen. Only after that, respiration stops and the
heart rate decreases, and the gastrointestinal motility slows down
as well. We hypothesize that such simultaneous visceral “dying
down” is necessary to synchronize the analysis of incoming
visceral information in the brain, the information that normally
represents organs of different rhythmicity. This mechanism
can presumably achieve a similar result to the one existing
in the visual system, namely, the saccadic suppression, when
information processing is severely diminished during saccadic
eye movements in order to achieve stability of visual perception
(Benedetto and Morrone, 2017). A similar idea is used in

stroboscopic methods of investigation of moving objects, e.g.,
in MRI investigations of the heart’s structure, when scanning
moments are synchronized with a particular phase of the heart
cycle. In the case of central apnea, the heart strongly reduces its
frequency in order to increase the time interval when it would
be possible to get a reading of information from stable heart
and respiratory systems. Other visceral systems, if necessary,
join this process of total stabilization. The stabilization of the
eyes also indicates a reduction of activity in the oculomotor
cortical areas which, in line with the visceral theory of sleep
(Pigarev, 2014), are also involved in the processing of visceral
information during sleep and potentially capable of sending
viscero-motor commands.

Our observations suggest that the selective elimination of
sleep apnea might lead to health problems, potentially starting
with the cardio-respiratory function but not limited to it.
A strong increase of the heart rate before respiratory arrest
potentially allows testing this assumption in a relatively simple
experiment. Using a permanent automatic monitoring of the
heart rate, it seems possible to detect increasing heart rate
frequency and deliver some alarming stimulation to interrupt
sleep and, consequently, respiratory arrest. A similar approach
to heart rate monitoring is used in some automatic devices
designed for vagus nerve stimulation because the heart rate was
found to be increased before epileptic seizures in many cases.
In epileptic patients, modern vagal stimulation devices detect
increasing heart rate during sleep and switch on a stimulation
of the vagus nerve to prevent the development of convulsive
activity [see, e.g., Dibue-Adjei et al. (2019)]. Elimination of
the entire visceral complexes accompanying the apnea episodes
would allow assessing the possible consequences of this action
for the health of the animals. However, considering that frequent
awakening might have a negative effect by itself, it would be
necessary to have a group of control animals that get the same
alarming signals irrespective of the presence of apnea in their
sleep. This approach is similar to the one successfully used in
the disk-over-water experimental devices for a sleep deprivation
research in the classical experiments conducted in the laboratory
of Allan Rechtschaffen (Bergmann et al., 1989).

Within the frame of the proposed functional role of
central sleep apnea, the increased number of these events may
indicate potential health problems related to cardio-respiratory
function. Attempts to eliminate central apneas by some artificial
manipulations may lead to aggravation of the existing problems.
In fact, the use of adaptive servo-ventilation to eliminate
the respiratory influences of central apnea was found to be
harmful rather than helpful in some cases, leading to increased
mortality—mainly of sudden death related to arrhythmic events
(Cowie et al., 2015), and a specific adaptive role of central
apnea was suggested (Cowie, 2017). The increased number of
sleep apnea episodes at high altitudes in healthy subjects (Mees
and de la Chaux, 2009) also fits well to the assumption of the
regulatory role of central apnea. The same logic explains the
increased number of central sleep apnea episodes in the case of
obesity or smoking (Block et al., 1979). We suggest that, during
unexpected alteration of cardio-respiratory function, the brain
needs information concerning the states of various organs in
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order to develop a strategy for survival, and this can be realized
during periods of central sleep apnea.
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Understanding the mechanisms of oxygen supply regulation, which involves the
respiratory and cardiovascular systems, during human adaptation to intense physical
activity, accompanied by hypoxemia, is important for the management of a training
process. The objectives of this study were to investigate the cardiorespiratory coherence
(CRC) changes in the low-frequency band in response to hypoxic exposure and to
verify a dependence of these changes upon sports qualification level in athletes. Twenty
male runners aged 17–25 years were exposed to acute normobaric hypoxia (10% O2)
for 10 min. Respiration, gas exchange, and heart rate were measured at baseline,
during hypoxia, and after the exposure. To evaluate cardiorespiratory coupling, squared
coherence was calculated based on 5-s averaged time series of heart and respiratory
rhythms. Based on sports qualification level achieved over 4 years after the experimental
testing, athletes were retrospectively divided into two groups, one high level (HLG,
n = 10) and the other middle level (MLG, n = 10). No differences in anthropometric traits
were observed between the groups. In the pooled group, acute hypoxia significantly
increased CRC at frequencies 0.030–0.045 Hz and 0.075 Hz. In response to hypoxia,
oxygen consumption decreased in HLG, and carbon dioxide production and ventilation
increased in MLG. At 0.070–0.080 Hz frequencies in hypoxia, the CRC in HLG was
higher than in MLG. Thus, highly qualified athletes enhance intersystem integration
in response to hypoxia. This finding can be a physiological sign for the prognosis of
qualification level in runners.

Keywords: athletes, hypoxia, cardiorespiratory coupling, squared coherence, cross-spectral analysis, heart rate,
training

INTRODUCTION

At rest and during sleep, the coupling of the cardiovascular and respiratory systems manifests
as respiratory sinus arrhythmia (RSA) and cardiorespiratory phase synchronization (clustering
of heartbeats within each respiratory cycle) (Moser et al., 1995; Kralemann et al., 2013; Bartsch
et al., 2014). When metabolic demand increases, the phase regulatory system is inhibited (review:
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Hayano and Yuda, 2019). Stress tests from a battery of Ewing
tests (handgrip static load and tilt test) have been shown to
lead to the disappearance of intersystem phase synchronization
(Sobiech et al., 2017). However, while moderate hypoxia does
not change RSA, hypercapnic stress increases RSA amplitude
in line with heart rate (HR) (Tzeng et al., 2007; Brown et al.,
2014) and declines with increasing hypoxia in dogs (Yasuma and
Hayano, 2000). Other work suggests that orthostatic challenge
and cognitive load enhance the role of the baroreflex-mediated
cardiorespiratory interaction (Krohova et al., 2018). Since the
effect of baroreflex is demonstrated in the low-frequency (LF)
band, it seems reasonable to suspect that stress induces a rise in
cardiorespiratory coupling in a lower frequency range rather than
in the range characterizing vagal tone.

Early data suggest that physical training changes patterns
of cardiorespiratory interaction. Mlynczak and Krysztofiak
(2019) used a Granger causality framework that parameterized
cardiorespiratory causal link structures and directions to
distinguish athletes from non-athletes at rest with 83% accuracy.
Increased cardiorespiratory coordination after training has also
been shown (Balagué et al., 2016). Training leads to a decrease
in the number of principal components in cardiorespiratory
response to acute physical exercise. For example, cardiovascular
and respiratory responses to incremental cycling testing, which in
most healthy individuals have two components, are simplified to
one component after 6 weeks of aerobic and resistance training in
more than half of the subjects (Balagué et al., 2016). Prima facie
then, training appears to increase coordination among systems.

Since the integrating factor for the respiratory and
cardiovascular anatomical systems is the oxygen supply,
acute hypoxia provides an appropriate paradigm within which
to assess how the integration between systems changes across
physical training. We have previously demonstrated that the
magnitude of the relationship between the hypoxic responses
of the systems depends on the kind of sport and the athlete’s
qualification level (Divert et al., 2015, 2017). In contrast to
less experienced swimmers, for example, high-level swimmers
show high intra-group correlations between cardiorespiratory
indices in response to acute hypoxia and hypercapnia (Divert
et al., 2017). Similarly, among ski racers, the highest results are
achieved in the case of highly correlating chemoreflex responses
of the respiratory and heart systems, assessed in hypoxic and
hypercapnic tests (Divert et al., 2015). Limiting these data is
the fact that findings were obtained by calculating correlations
among time-averaged values. Temporal coupling of heart and
respiratory waves under hypoxic stress in athletes with different
qualification levels remains unknown.

In many high-performance sports contexts, results depend
substantially upon oxygen supply and its regulation. Good
coordination between the cardiovascular and respiratory
systems under conditions of hypoxia can increase the physical
capacity and physiological reserves of energy exchange. In
particular, improvements in the mechanisms underlying the
complex regulation of gas exchange, manifested in greater
cardiorespiratory coherence (CRC) in the LF band, can be
expected in high-level athletes. Commensurately, the objectives
of the present study were to investigate CRC LF changes in

response to hypoxic exposure and to verify a dependence of these
changes upon sports qualification level in athletes.

MATERIALS AND METHODS

Subjects
The study sample included 20 non-smoking middle-distance
male runners aged 18–25 years. To complete the first objective,
we analyzed the pooled group of athletes (n = 20). Based on
sports qualification level achieved over 4 years after the hypoxic
experimental testing, athletes were retrospectively divided into
two groups, one high level (HLG, n = 10) and the other middle
level (MLG, n = 10). We assigned those runners who had
achieved the level of being a candidate for a master’s degree to
HLG, according to the Russian sports classification scale, and
those who had not to the MLG. Anthropometric characteristics
did not differ between the groups (Table 1). To complete the
second objective, we analyzed the dependence of the coherence
changes in response to hypoxic exposure taking into account
the HLG and MLG classification. All subjects provided written
informed consent prior to participation. The study was approved
by the Ethics Committee of the Scientific Research Institute of
Physiology and Basic Medicine (Protocol No. 1 of 21.01.2016)
and performed in accordance with the Declaration of Helsinki.

Procedure
All investigations were performed in the morning by the same
research assistant at an air temperature of 25◦C in three
functional states: at rest (baseline), during 10 min of breathing
a hypoxic mixture with 10% O2 content through a face mask, and
during the 10 min of breathing the ambient air (recovery). The
specific duration of stages varied depending on the physical well-
being of the subjects (range 8–10 min). The testing was conducted
in a sitting position. The hypoxic mixture was prepared using an
Armed 7F-3L (Russia) oxygen concentrator.

Data Recording
A spiroergometric system, Oxycon Pro (Erich Jaeger, Germany),
was used for recording the following respiratory parameters:
breath rate (BR), carbon dioxide production (VCO2), oxygen
consumption (VO2), and minute ventilation (VE). HR and
blood oxygen saturation (SpO2) data were recorded by Pulse
Oximeter BCI 3304 Autocorr (Smiths Medical, United States)
and then automatically transferred to the Oxycon Pro. The
Oxycon Pro software averaged data from the respiratory system
and heartbeats and presented them at a maximum frequency of
0.2 Hz (period, 5 s).

TABLE 1 | Anthropometric characteristics of the subjects, Mean (SD).

Group Height (cm) Body weight (kg) BMI (kg/m2)

Pooled 180.7 (5.7) 68.7 (8.0) 21.1 (1.6)

HLG 179.4 (6.7) 68.8 (8.9) 21.5 (1.8)

MLG 181.9 (4.6) 68.5 (7.5) 20.6 (1.4)
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Data Analysis
Data analysis was performed using the STATISTICA10 software
package (StatSoft). To meet the criterion of stationarity, we
visually identified non-stationary areas occurring just after the
onset of hypoxia and recovery period (1.5–2 min) and removed
these parts from the analysis. We marked the corresponding
items “remove trend” and “subtract the mean from the input
series” in the STATISTICA10 software settings. To evaluate
cardiorespiratory interaction, squared coherence was calculated
based on Time Series Bivariate Fourier (Cross Spectrum) analysis
of heart and respiratory rhythms (hereafter referred to as
coherence). To estimate the spectral density of HR and BR,
a Hamming window with a width of 5 points was used.
Missing data (4.9%) were replaced by averaging nearby time
points. For the group analysis, individual coherence values were
superimposed on the frequency grid in 0.005 Hz increments by
linear interpolation.

To analyze the effect of the hypoxia on dependent variables
(SpO2, HR, BR, VCO2, VO2, VE, coherence values at different
frequencies), two-way Repeated Measures Analysis of Variance
(ANOVA) was conducted. The between-subjects factor was
Group (two categories, HLG and MLG), and the within-
subject factor was State (baseline/hypoxia). The main effects
and interaction between factors (Group and State) were tested,
and Fisher LSD post hoc tests were employed. The inter-
group differences in anthropometric indices were assessed by
the Student t-test. For conclusions, p-values < 0.05 were
accepted to reject null hypotheses. However, p < 0.1 is also
indicated to show a tendency of statistical difference. The
calculated data are presented in figures as means and standard

errors (Mean, SE) and in the tables as means and standard
deviations (Mean, SD).

RESULTS

Hypoxic Responses of Mean Values for
Respiratory, Cardiac, and Gas Exchange
Parameters
Overall, during hypoxia, oxygen saturation decreased by 21%
and HR increased by 31%, but BR did not change significantly.
Two-way repeated-measures ANOVA showed neither an effect of
Group nor of Group × State on these parameters (Table 2). The
reaction of gas exchange and pulmonary ventilation to hypoxia
differed between groups. Oxygen consumption decreased only
in HLG, and carbon dioxide production and minute ventilation
increased only in MLG.

Cross-Spectral Analysis in the Pooled
Group
At baseline, in the frequency range 0.025–0.045 Hz, a plateau
zone is observed with a minimum coherence of approximately
0.23 and significantly higher coherence values at frequencies
0.050–0.070 Hz, with a group maximum value of 0.43 at a
frequency of 0.060 Hz (LSD post hoc, p < 0.001). In hypoxia,
the coherence values do not differ at all from the frequencies
studied and are close to the above-mentioned maximum baseline
level (Figure 1). At recovery, the coherence values are in an
intermediate position between baseline and hypoxic values. Thus,

TABLE 2 | Respiratory, cardiac, and gas exchange parameters at baseline and during hypoxia.

Baseline Hypoxia ANOVA, p

Parameter Group Mean SD Mean SD Group State Group × State

SpO2 (%) Pooled 97.5 (1.1) 76.8 (6.1) 0.000

HLG 97.3 (0.9) 74.9 (7.6) NS 0.000 NS

MLG 97.8 (1.2) 78.7 (3.4)

HR (beats × min−1) Pooled 65.3 (9.0) 85.4 (11.4) 0.000

HLG 61.3 (8.9) 83.4 (15.2) NS 0.000 NS

MLG 69.2 (7.7) 87.4 (5.8)

BR (breaths × min−1) Pooled 13.5 (4.0) 14.0 (5.1) NS

HLG 13.3 (4.1) 12.8 (3.4) NS NS NS

MLG 13.8 (4.1) 15.2 (6.2)

VCO2 (mL × min−1) Pooled 236.2 (40.2) 266.5 (76.4) 0.044

HLG 243.6 (43.5) 244.9 (83.9) NS 0.028 0.034

MLG 228.8 (37.4) 288.1 (65.0)*

VO2 (mL × min−1) Pooled 255.1 (35.8) 211.7 (59.0) 0.000

HLG 259.4 (35.2) 199.1 (68.7)* NS 0.000 0.082

MLG 250.8 (37.9) 224.3 (47.7)

VE (L × min−1) Pooled 10.3 (1.8) 12.2 (4.2) 0.026

HLG 10.4 (2,3) 10.8 (2.7) NS 0.018 0.066

MLG 10.2 (1,4) 13.6 (5.0)*

SpO2, blood oxygen saturation; HR, heart rate; BR, breath rate; VCO2, carbon dioxide production; VO2, oxygen consumption; VE, ventilation; NS, non-significant;
*significant difference between states at p < 0.01 (LSD post hoc) for the given group only.
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FIGURE 1 | Squared coherence between cardiac and respiratory rhythms by frequency at baseline, during hypoxia, and after hypoxia (recovery). Mean ± SE.
∗Significant difference between baseline and hypoxia (p < 0.050).

the subsequent statistical analysis was performed for two states
only (baseline and hypoxia).

The increase in coherence during hypoxia in comparison
with the baseline values is mostly evident at frequencies 0.030–
0.045 Hz (p < 0.050) and at a frequency of 0.075 Hz (p = 0.029).
In the range 0.080–0.090 Hz, the coherence tended to increase
(p = 0.053–0.066).

Cross-Spectral Analysis in HLG and MLG
In response to hypoxia, the CRC in the 0.075–0.085 Hz
range increases only in the HLG (interaction “Group × State,”
p = 0.010–0.021) (Figure 2). In the range of 0.070–0.080 Hz
during hypoxia, coherence was significantly higher in HLG than
in MLG (p = 0.008–0.023). At frequencies of 0.030–0.045 Hz,
the coherence gain during hypoxia does not differ significantly
between groups (State distinct effect p = 0.001–0.016; Group
effect and Group × State interaction effect did not reach a
borderline level of significance). No effects were established for
State, Group, or their interaction effects over frequencies 0.015–
0.025 Hz and 0.050–0.065 Hz.

DISCUSSION

The present study establishes two novel facts. First, at rest,
the peak CRC in the low–very LF band is around 0.060 Hz;
hypoxia enhances the coupling at frequencies 0.030–0.045 Hz

and 0.075 Hz. The second fact concerns differences related
to the degree of sports training (and by inference, fitness):
the hypoxic coherence at 0.070–0.080 Hz frequencies in
high-level runners is significantly higher than in middle-
level athletes.

The difference between highly trained versus moderately
trained runners in response to hypoxia was also expressed
in different dynamics of gas exchange and ventilation. In
HLG, oxygen consumption decreased, but minute ventilation
and carbon dioxide production did not change. In MLG,
ventilation and CO2 production increased, whereas oxygen
consumption did not change. Therefore, one can potentially
conclude that high-level runners are characterized by reduced
sensitivity to hypoxia. This allows them not to increase
energy expenditure for the work of respiratory muscles. In the
moderately trained group, however, there was an increase in
ventilation, suggesting that the work of the muscles increased
and, as a consequence, carbon dioxide production increased
without total changes in oxygen consumption. It can be
concluded that in more highly trained runners, there is a more
economical mode of operation during hypoxia at physical rest.
Increased CRC under hypoxic conditions probably plays a similar
role: «Tuning and synchronization of rhythms saves energy»
(Moser et al., 2006).

It has been shown previously that acute hypoxia causes an
increase in sympathetic activity and an increase in sympatho-
respiratory coupling in rodents (Dick et al., 2014). The enhanced
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FIGURE 2 | Squared coherence between cardiac and respiratory rhythms by frequency at baseline (solid lines) and during hypoxia (dashed lines) in MLG (red) and
HLG (blue). Mean ± SE. *significant difference between groups for the hypoxic state (p < 0.030).

respiratory-sympathetic coupling under these conditions is a
result of synchronized activation of respiratory and sympathetic
medullar neurons (Zoccal, 2015; Lindsey et al., 2018). In the
present study, the growth of CRC at rest in normobaric hypoxia
in humans is shown for the first time, and the prevailing
frequencies at which it occurs were highlighted. The frequency
component of HR variability, close to 0.076 Hz, is related
to the baroreflex control of blood pressure (Kuusela et al.,
2003). One can assume that an increase in CRC at this
frequency is associated with an increase in the influence of
baroreflex tuning in the heart and respiratory rhythms under the
influence of hypoxia.

A physiological network is known to undergo topological
transitions associated with rapid reorganization of interactions
on time scales of several minutes (Bashan et al., 2012). It
seems likely that higher coherence values during hypoxic
stress in the more highly trained group are associated with
a higher rate of network rearrangement. The 10-min hypoxia
was sufficient for the athletes from this group to form
new between-systems interactions, in contrast to less highly
trained runners. Otherwise, one can assume that higher-level
runners have developed more precisely coordinated responses to
the exposure.

Mlynczak and Krysztofiak (2018, 2019) have studied
cardiorespiratory links in sportsmen in normoxic conditions at
rest by various mathematical non-linear methods. In the latest
research, the authors were able to distinguish athletes from
non-athletes with an accuracy of 83% on average. Platiša et al.

(2019) have demonstrated modified neural control of heart-rate
behavior in athletes compared with untrained subjects. In our
study, runners differ in normoxia only in the qualification
level, but we were able to demonstrate differences between
moderately and highly trained runners in different reactions
to hypoxic stress, reflected in greater coherence at frequencies
of 0.07–0.08 Hz. It may be that greater training is reflected
not only in changes in the mean values of cardiorespiratory
parameters but also in alterations to the mechanisms that
provide optimal (precise) settings of chemoreceptor reactions to
developing hypoxemia. The less highly trained athletes may have
cardiovascular and respiratory values similar to those in higher-
skilled athletes at baseline, but the former may demonstrate
less cardiorespiratory coupling at certain frequencies under
conditions of hypoxia.

It has been shown earlier in our laboratory (Divert et al., 2015)
that cardiorespiratory reactions to hypoxic and hypercapnic
tests divide athletes into the clusters depending on the type
of sports performance they are specialized in. This finding has
initiated subsequent studies that led to the conclusion of a
close, mutually substitutional relationship between respiratory
and cardiovascular systems under hypoxic conditions (Melnikov
et al., 2017). For example, it has been shown that the parameters
of the training process and the features of the respiration
pattern that appear as a consequence of training modulate
the sensitivity of brain structures to hypoxia as reflected in
changes in the EEG α-rhythm under conditions of hypoxia
(Balioz and Krivoshchekov, 2012).
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The results of the present study suggest that progressive
training in sports performance improves the mechanisms of
cardiorespiratory integration, which results in the optimization
of response to changes in blood oxygen saturation. It seems
likely that there are optimal zones of these interactions for each
particular kind of sport. These zones can serve to identify athletes
with prospects for a high qualification level.

Limitations
Since these are our first results showing the effect of acute
hypoxia on CRC in humans, we cannot conclude definitely
whether the associations observed are specific features of the
runners or are peculiar to sportsmen of other types. The next
limitation is associated with the low time resolution of the
measured parameters and the possible transient nature of the
investigated phenomena.

Further Considerations
In the future, we consider it appropriate to confirm these findings
in more numerous groups and to investigate the effect of hypoxia
on cardiorespiratory coupling in other sports types.

CONCLUSION

Highly qualified runners have improved mechanisms of
intersystem integration through an increase in the accuracy
of cardiorespiratory regulation. In hypoxia, the improvement
manifests itself in the strengthening of CRC at frequencies
0.07–0.08 Hz. Strengthening cross-system integration provides
optimal responses to hypoxic exposure and reflects the adaptive
adjustment of the cardio-respiratory system in athletes during
intense aerobic training. Such an increase in coupling between
two systems, synergistically working on one function, can
serve as an additional sign for the prognosis of qualification
level in runners.
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Purpose: There is evidence of complex interaction between vitamin B12 (vB12) level,
hyperhomocysteinemia (HyCy), and natriuretic peptide secretion. Exercise training could
also modulate such interaction. In this secondary analysis of a Randomized Clinical Trial
performed in a chronic obstructive pulmonary disease (COPD) rehabilitation setting, our
primary objective was to investigate the interaction between vB12 supplementation,
exercise training, and changes in NT-proBNP levels after 8 weeks of intervention.
Secondary objectives were to explore the correlations between acute changes in NT-
proBNP levels with (i) acute exercise and (ii) oxygen uptake (V’O2) kinetics during
rest-to-exercise transition.

Methods: Thirty-two subjects with COPD were randomized into four groups:
Rehabilitation+vB12 (n = 8), Rehabilitation (n = 8), vB12 (n = 8), or Maltodextrin(n = 8).
They were evaluated at baseline and after 8 weeks, during resting and immediately
after maximal exercise constant work-rate tests (CWTs, T lim), for NT-proBNP
plasmatic levels.

Results: After interaction analysis, the supplementation with vB12 significantly changed
the time course of NT-proBNP responses during treatment (p = 0.048). However, the
final analysis could not support a significant change in NT-proBNP levels owing to
high-intensity constant work-rate exercise (p-value > 0.05). There was a statistically
significant correlation between V’O2 time constant and 1NT-proBNP values (T lim – rest)
at baseline (p = 0.049) and 2 months later (p = 0.015), considering all subjects (n = 32).

Conclusion: We conclude that vB12 supplementation could modulate NT-proBNP
secretion. Moreover, possibly, the slower the initial V’O2 adjustments toward a steady-
state during rest-to-exercise transitions, the more severe the ventricular chamber
volume/pressure stress recruitment, expressed through higher NT-proBNP secretion
in subjects with larger V’O2 time constants, despite unchanged final acute exercise-
induced neurohormone secretion.
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INTRODUCTION

In a recent Randomized Controlled Trial (RCT), we showed
a slight but significant increase in maximal exercise tolerance
(Tlim) in patients with chronic obstructive pulmonary disease
(COPD) supplemented with vitamin B12 during physical
training, but without effects on oxygen uptake (V ’O2) kinetics
beyond training alone (Paulin et al., 2017). Individuals with
COPD are at risk of vitamin B12 deficiency (Solomon,
2016) and hyperhomocysteinemia (HyCy) (Seemungal
et al., 2007; Fimognari et al., 2009). Accordingly, HyCy is
linked to numerous cardiovascular alteration (Ganguly and
Alam, 2015) including histological changes in the heart
(Piquereau et al., 2017), impaired global and segmental cardiac
contractility (Kaya et al., 2014), or increased N-terminal-
pro-B-type natriuretic peptide (NT-proBNP) secretion
(Herrmann et al., 2007; Guéant Rodriguez et al., 2013).
This prepropeptide is synthesized and stored as a high
molecular weight mass propeptide from both the atria and
ventricles, and released mainly under pressure/volume overload
of the cardiac chambers, after cleavage of the active form
of BNP, inducing natriuresis and vasodilatation (Calzetta
et al., 2016). However, NT-proBNP has a longer plasma
half-life and attains larger concentrations, besides being
described as a significant marker of prognosis in heart
failure (HF) (Cipriano et al., 2014). Moreover, vitamin B12
or folic acid supplementation reduced NT-proBNP levels
after 2 months of supplementation in subjects with NT-
proBNP > 40 pg/mL (Herrmann et al., 2007), mitigated
HyCy-induced cardiac dysfunction (Jeremic et al., 2018), and
proved to be protective for mitochondrial function and cardiac
contractile properties in a murine model, with lessening of
upregulated atrial brain natriuretic peptide (ANP) (Piquereau
et al., 2017). In contrast, an experimental study was negative
for cardiac morphological alterations during HyCy induction
(Taban-Shomal et al., 2009).

It is recognized that physical training causes a reduction
in cardiac natriuretic peptides in HF (Cipriano et al., 2014)
as well as which, a beneficial interaction between physical
training and vitamin B12 or folate supplementation in
reducing HyCy has been suggested (König et al., 2003; Tyagi
and Joshua, 2014). Of note, there is evidence of increased
secretion of BNP associated with increased pulmonary vascular
resistance during acute exercise in COPD (Fujii et al., 1999);
a mechanism which demonstrates potential for attenuation
through physical training. Thus, this secondary analysis aims
primarily to explore the interaction between vitamin B12
supplementation, physical training, and resting/exercise levels
for NT-proBNP in a stable population of COPD patients. In
addition, we sought to analyze possible associations between
acute changes in NT-proBNP levels during exercise with
Tlim, delivered power (watts, w), and oxygen uptake kinetics
(V ’O2 time constant) on an ergometer, in order to explore the
determinants of these possible changes.The central hypothesis
was that there would be attenuation of neurohormone
alterations with supplementation alone or combined with
physical training.

MATERIALS AND METHODS

As this is a secondary study of an already published RCT,
the entire methodology has been previously described in detail
(Paulin et al., 2017). Similarly, ethical considerations and
consent details are published and recorded in the Brasilian
Clinical Trials Registry (ReBEC number RBR-55f97c/2014).
Additional unpublished methods will be considered in this
exploratory study.

Participants and Study Design
In the final analysis, 32 stable COPD patients were consecutively
randomized to four groups: (1) 8-weeks physical rehabilitation
(REHA) group, (2) 8-weeks physical rehabilitation group with
daily vitamin B12 supplementation of 500 mg (REHA+B12),
(3) supplementation group as stand-alone with daily vitamin
B12 supplementation of 500 mg (B12), and (4) placebo group
(maltodextrin 500 mg) (P). All groups continued with their
usual optimized pharmacological treatment for COPD. Among
the subjects who completed the study, 28/32 were already
being followed up at the specialized COPD clinic and had
an echocardiogram performed within the previous 6 months.
Mild mitral or aortic reflux and ventricular hypertrophy were
accepted in the inclusion criteria. Patient history and further
detailed physical examinations did not show signs of associated
heart disease in the remaining subjects recruited without
echocardiography.

Standard Doppler Echocardiography
All transthoracic echocardiography followed standard guidelines
(Lang et al., 2005). Measurements of the cardiac cavities,
interventricular septum, and left ventricular posterior wall
thickness were collected by M-mode and two-dimensional
analysis. Left atrial volume used the biplane Simpson method
and was indexed by body surface. The ejection fraction was
measured by the Teichholz method. The tricuspid reflux velocity
was obtained by continuous Doppler in the right ventricle inlet,
and the sPAP value was calculated by adding 10 mmHg of
pressure in the right atrium.

Cardiopulmonary Exercise Testing
(CPET)
All subjects were invited to perform an incremental
cardiopulmonary exercise testing (CPET) and two equal constant
work-rate tests (CWTs, 75% of the maximum incremental CPET
load) to calculate time constants (tau, τ) for V ’O2 during the
rest-to-exercise transition. Detailed CWT methods and oxygen
uptake kinetics analysis were previously published (Paulin et al.,
2017; Müller et al., 2019). Blood samples were collected at rest
and Tlim during the first CWT, before and after 8 weeks, for
NT-proBNP plasmatic level analysis (Figure 1).

NT-proBNP Analysis
After a suitable rest period, before the CWT, a polyurethane
22G catheter (Injex-Cath, Ourinhos, Brazil) was inserted on
the back of the patient’s right hand for venous blood sample
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FIGURE 1 | Exercise protocol during constant work test (CWT) before and after 8 weeks.

TABLE 1 | Selected baseline clinical and physiological characteristic of the four groups of COPD patients.

REHA+B12 REHA+P B12 P p-value

Subjects, n 8 8 8 8 1.000

Antropometry

Age (years) 56.5 ± 5.0 65.2 ± 6.0 63.4 ± 5.2 58.1 ± 10.3 0.156

Gender (M/F) 3/5 3/5 5/3 5/3 0.289

BMI (kg/m2) 24.5 ± 2.9 25.1 ± 6.0 24.5 ± 4.0 28.3 ± 5.5 0.332

Lung function

FVC, % pred 65.2 ± 16.0 72.2 ± 10.0 66.0 ± 13.0 73.0 ± 13.1 0.534

FEV1, % pred 34.0 ± 11.0 39.2 ± 6.8 32.8 ± 7.6 41.7 ± 12.3 0.235

FEV1/FVC, % 40.7 ± 10.4 43.5±9.2 41.2±11.4 44.9±6.8 0.695

PaO2, mmHg, rest 66.2 ± 9.3 73.8 ± 9.1 76.4 ± 16.0 75.5 ± 7.6 0.348

CPET data

V’O2peak , % pred 50.5 ± 16.1 65.1 ± 17.7 68.8 ± 18.2 64.7 ± 18.2 0.191

Wpeak, % pred 43.6 ± 12.4 46.8 ± 13.1 34.7 ± 12.0 43.1 ± 15.2 0.324

T lim, s 410 ± 311 314 ± 230 259 ± 110∗ 436 ± 143 0.041

τ, s 65 ± 37 84 ± 39 69 ± 22 69 ± 25 0.617

k, 10−3/s
Blood analysis

17.7 ± 7.1 13.1 ± 6.2 14.3 ± 4.5 15.7 ± 4.4 0.443

Vitamin B12 (pre),
pg/mL

385 ± 207 454 ± 309 451 ± 215 467 ± 114 0.877

Vitamin B12 (post),
pg/mL

567 ± 227† 358 ± 177 544 ± 145 442 ± 204 0.148

1Vitamin B12,
pg/mL

182 ± 206 −71 ± 175 93 ± 262 −16 ± 103 0.060

Vitamin B12 < 300
pg/mL, n

3 4 3 1 0.340

Creatinine, mg% 0.8 ± 0.2 0.9 ± 0.2 0.8 ± 0.1 0.8 ± 0.1 0.314

Hematocrit, % 47 ± 3 46 ± 4 43 ± 5 43 ± 3 0.118

Hemoglobin, g % 15 ± 1 15 ± 1 14 ± 2 14 ± 1 0.102

Echocardiography

LVM, g/m2 156 ± 22 132 ± 21 108 ± 17 122 ± 35 0.332

EF, % 70 ± 3.8 66 ± 2.1 69 ± 4.8 65 ± 4.2 0.126

LA, mm 36 ± 1.4 37 ± 4.5 30 ± 1.2 31 ± 2.4 0.201

LVDD, mm 46 ± 2.1 49 ± 1.9 45 ± 2.1 44 ± 2.9 0.133

PAP, mmHg 32 ± 2.1 29 ± 1.7 32 ± 1.9 29 ± 2.3 0.070

Abbreviations: BMI, body mass index; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLco, carbon monoxide diffusion capacity; PaO2, partial pressure
of oxygen in arterial blood; V’O2peak ′ , peak oxygen consumption; Tlim, maximal tolerance exercise time; τ, time constant (tau); TD, time delay; k, rate of V’O2 increase
toward steady-state; LVM, left ventricular mass; EF, ejection fraction; LA, left atrium; LVDD, left ventricular diastolic diameter; PAP, pulmonary arterial pressure. *p < 0.05
B12 vs P; †p < 0.05 B12 pre vs B12 post (Group REHA+B12). The Bold is only to highlight significant values, i.e, p-value < 0.05.
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collections at rest and during exercise. The material was
collected in tubes containing a mixture of plasma-lithium,
as recommended by the manufacturer, and incubated at -
20◦C for 30 min. The electrochemiluminescence sandwich
immunoassay by COBAS e602 R© system (Roche Diagnostics,
Germany) measurement method was used, with a measurement
range of 5–35,000 pg/mL and predicted coefficient of
variation < 3.1%.

Data Analysis and Statistics
Data are expressed as mean ± standard deviation (SD)
or median (IQR), mirroring, respectively, Gaussian or non-
Gaussian distribution after the Shapiro–Wilk test. As τ

(time constant, tau)—representing the time to attain 63% of
the steady-state V ’O2 during a CWT—demonstrates marked
skewness, we performed a reciprocal transformation and used
k (k = 1/τ) instead of τ. In exponential growth, k is equal
to the reciprocal of the time constant tau, i.e., k = 1/τ
and represents the rate of increase in V ’O2 toward a steady-
state plateau. Hence, the faster the rate of adjustment (k) of
V’O2 toward the steady-state during rest-to-exercise constant
work-rate exercise transitions, the lower the time constant
tau. Thus, we chose to perform Pearson product-moment

coefficients for correlations using k, as k generates a more
robust Gaussian distribution (Bland and Altman, 1996) and
would imply similarly to a plausible physiological significance,
as we recently suggested (Müller et al., 2019). The slopes of
linear regression for pre- and post-training moments were
compared with Univariate ANCOVA. In the temporal analysis
of the effects of training and supplementation, we performed
three-way repeated measures (RM) ANOVA with two between-
subjects factors (training and supplementation) and four within-
subjects RM (NT-proBNP level at rest/Tlim at baseline and
rest/Tlim after 2 months), taking into account the sphericity
standard and the Greenhouse-Geisser correction. In addition,
one-way ANOVA for groups was performed for comparison
of baseline characteristics and one-way RM ANOVA for
time-dependent within-group NT-proBNP level changes. The
calculated study power > 0.8, with an alpha risk of 0.05
(two-tailed), was calculated from the placebo Group with their
respective SD differences. Thus, we considered the average
within-subjects SD difference of 1 pg/mL for NT-proBNP
and, two between-subjects factors, B12 and exercise, with
measured SD of the difference of 103 pg/mL and 100 s,
respectively, in a three-way RM ANOVA design. We defined a
p-value < 0.05 as statistically significant. The statistical program

TABLE 2 | NT-proBNP levels during acute exercise (rest and T lim) evaluated at baseline and after 2 months of intervention.

Group Test time One-way RM
ANOVA1 p-value

Three-way RM
ANOVA p-value

Baseline 2 Months

Rest Tlim Rest Tlim

REHA+B12 41.1 (25.8–77.1) 42.7 (23.7–82.3) 50.1 (30.1–64.1) 51.0 (30.2–69.4) 0.958 0.075

REHA+P 95.0 (43.9–140.4) 100.3 (45.2–146.8) 49.5 (21.8–157.1) 50.5 (25.9–157.0) 0.204 0.917

B12 55.9 (41.1–121.8) 60.9 (43.7–126.8) 72.9 (40.8–134.7) 75.7 (47.6–133.2) 0.639 0.048

P 20.7 (18.8–111.6) 22.1 (20.1–118.2) 74.4 (21.9–175.1) 75.3 (25.2–177.6) 0.120 0.525

Average (min-max) 49.5 (27.9–123.3) 51.0 (24.2–130.4) 64.0 (27.8–99.4) 68.9 (29.7–105.0) – –

One-wayANOVA2 p-value 0.090 0.127 0.400 0.372

Abbreviations: REHA, rehabilitation; B12, vitamin B12; P, placebo; Tlim, time for maximal exercise tolerance. 1within-subjects one-way RM ANOVA; 2between-subjects
one-way RM ANOVA. The Bold is only to highlight significant values, i.e, p-value < 0.05.

FIGURE 2 | NT-proBNP levels at rest and T lim, before and after 2 months. The time course is depicted in (A) (interrupted lines were constructed only to show the
time course of NT-proBNP level under vitamin B12 influence compared to control groups). Correlations for acute responses (T lim – rest, 1) vs individual time
constant for V’O2 (k or 1/tau) at baseline and 2 months later are represented in (B) and (C). During the rest-to-exercise transition following constant work-rate
exercise, there is an oxygen deficit that is inversely related to the rate of increase inV’O2 (k) toward the steady-state condition.
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SPSS 20.0 was used for all statistical analysis (SPSS, IBM Corp,
United States, 2011).

RESULTS

Selected baseline characteristics are described in Table 1 and
detailed data have been previously published (Paulin et al.,
2017). The groups were relatively balanced, with a significant
difference only for Tlim at baseline (p = 0.041, Table 1). Despite
a similar baseline PaO2, the groups as a whole (n = 32) presented
significantly reduced hemoglobin saturation through peripheral
oximetry post-exercise (p < 0.0001). After interaction analysis,
the supplementation with vitamin B12 significantly changed the
time course of NT-proBNP level during treatment (p = 0.048,
Table 2 and Figure 2A). In addition, the final analysis did not
support a significant change in NT-proBNP levels owing to high-
intensity constant work-rate exercise (three-way RM ANOVA
analysis and one-way RM ANOVA analysis with p-value > 0.05
for both, Table 2). A statistically significant correlation was
observed only between V’O2 time constant and 1NT-proBNP
level (Tlim – rest) at baseline (p = 0.049, Figure 2B) and
2 months later (p = 0.015, Figure 2C), considering all subjects
(n = 32), with an absence of significant correlations between
1NT-proBNP level and Tlim or delivered Power on the cycle
ergometer (p > 0.05 for both). The pre- and post-training slopes
representing the correlation between the V’O2 time constant and
1NT-proBNP (Figures 2B,C) were not significantly different for
the groups as a whole (p = 0.259).

DISCUSSION

This exploratory study suggests that B12 measurements and/or
supplementation should be considered in future studies on
cardiovascular morbidity in COPD subjects. This is in line
with the overall pathophysiology of cardiovascular morbidity in
COPD which has not yet been totally unraveled. In addition, we
did not detect acute changes in plasma levels for NT-proBNP
during high-intensity constant work-rate exercise. However,
during the rest-to-exercise transition, patients with slower V’O2
adjustments toward a steady-state appeared to secrete higher
NT-proBNP levels.

Normal levels of vitamin B12 do not rule out the possibility of
cobalamin deficiency, and low-normal levels (200–300 pg/mL),
when associated with risk factors for increased oxidative
stress, demonstrate metabolic evidence of deficiency, with
high levels of HyCy or methylmalonic acid (MMA), since
this vitamin is inactivated by oxidation (Solomon, 2016).
Our study population contained at least three subjects in
each group with levels < 300 pg/mL of vitamin B12 and
supplementation significantly increased their levels after 8 weeks
for the REHA+B12 group and not significantly for the B12 group
(Paulin et al., 2017).

Several previously cited animal and human studies have
described a relationship between vitamin B12 or folic acid
level, HyCy, and NT-proBNP levels. Although preliminary,

our study points to an attenuating effect on NT-proBNP
secretion with vitamin B12 supplementation, in agreement with
previous studies (Herrmann et al., 2007; Guéant Rodriguez
et al., 2013), despite weak evidence. In monitoring the evolution
of HF, attenuated or stable levels of NT-proBNP secretion
were associated with fewer total cardiovascular events (Franke
et al., 2011). Although the mechanisms underpinning this small
but significant effect are largely unexplored, downregulation
of natriuretic peptide production by reducing homocysteine
and MMA accumulation under certain conditions is possible
(Piquereau et al., 2017).

Two important secondary findings were described. Although
we did not find an acute change in NT-proBNP owing
to acute exercise during high-intensity CWT, there was a
small but significant relationship between an acute change
in this neurohormone (1) and oxygen uptake kinetics. Our
study differs from a previous study, which showed increased
secretion of BNP after exercise in a population similar to
ours during CWT (Fujii et al., 1999). These contradictory
results occurred despite both presenting significant hemoglobin
desaturation during exercise. Arterial hypoxemia is a known
trigger for natriuretic peptide secretion (Fujii et al., 1999).
Surprisingly, our study agrees with another study for NT-
proBNP also under CWT in mild-to-moderate COPD (Wang
et al., 2011). Differences may reflect other factors, such as
the secretion-to-metabolization ratio of natriuretic peptides
and differences in exercise protocol. Our data suggest that
much of the secretion of natriuretic peptides during CWT
occurs at the time of initial adjustment during rest-to-exercise
transitions, where the sudden change in the cardiac chamber
pressure/volume condition is additionally stressed by the direct
effect of transmural pressure, due to the abrupt increase in
intrathoracic respiratory pressure swings, following the kinetics
of the increase in pulmonary arterial pressure during the first
minute and posterior decay during exercise (Lonsdorfer-Wolf
et al., 2004). In this sense, our study is in agreement with a
previous study that showed a direct relationship between BNP
secretion and oxygen deficit during constant work-rate exercise
in HF (Brunner-La Rocca et al., 1999).

As a limitation of this study, we cite the small number
of individuals, notwithstanding this being partially tempered
by the strong study design. In addition, we did not measure
homocysteine and MMA levels. Four subjects were not evaluated
by echocardiography; however, clinical data, NT-proBNP levels,
and CPET analysis were not compatible with major heart disease.

CONCLUSION

We suggest that vitamin B12 supplementation could modulate
NT-proBNP secretion, but the effects are small and further
studies are needed. Moreover, we did not find an increase
in neurohormone level caused by acute exercise per se;
however, there was an association with slower V’O2 adjustment
during the rest-to-exercise transition. The significance
of this neurohormone dynamic warrants more detailed
studies, considering different modalities of exercise training,
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e.g., high-intensity 1-min bouts, with unexplored cardiac neuro-
hormone signaling and unknown cardiovascular consequences.
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Respiratory sinus arrhythmia (RSA) represents a physiological phenomenon of

cardiopulmonary interaction. It is known as a measure of efficiency of the circulation

system, as well as a biomarker of cardiac vagal and well-being. In this article, RSA is

modeled as modulation of heart rate by respiration in an interactive cardiopulmonary

system with the most effective system state of resonance. By mathematically modeling

of this modulation, we propose a quantitative measurement for RSA referred to

as “Cardiopulmonary Resonance Function (CRF) and Cardiopulmonary Resonance

Indices (CRI),” which are derived by disentanglement of the RR-intervals series into

respiratory-modulation component, R-HRV, and the rest, NR-HRV using spectral

G-causality. Evaluation of CRI performance in quantifying RSA has been conducted

in the scenarios of paced breathing and in the different sleep stages. The preliminary

experimental results have shown superior representation ability of CRF and CRI

compared to Heart Rate Variability (HRV) and Cardiopulmonary Coupling index (CPC).

Keywords: heart rate variability, respiratory sinus arrhythmia, spectral G-causality, cardiopulmonary interaction,

coupled resonance

INTRODUCTION

There is an urgent need for quantitative assessment of autonomic nervous function. Heart rate
variability (HRV) is widely used as a non-invasive method. Particularly, low-frequency (LF, 0.04–
0.15Hz) and high-frequency (HF, 0.15–0.4Hz) spectral components of HRV are used as the
separate metrics of sympathetic and vagal(parasympathetic) functions (Appel et al., 1989). But as
a simplified framework, HRV lacks solid physiological foundation, is not able to accommodate
varieties of clinical cases (Hayano and Yuda, 2019). For example, HRV measures will change

significantly in different physiologic states such as wake and sleep, exercise and rest, circadian
rhythms, as well as with pathologic conditions (Task Force of the European Society of Cardiology
the North American Society of Pacing Electrophysiology, 1996).

Cardiopulmonary interaction plays important role in the circulation system, and physiologically
presents as respiratory sinus arrhythmia (RSA) phenomenon. RSA is regarded as a non-invasive
measure of parasympathetic cardiac control (Katona and Jih, 1975; Topcu et al., 2018). The vagal
origin of RSA can be found in the vagal synapses, which are faster than the sympathetic ones
and are therefore able to translate central respiratory oscillations present in the brainstem to
changes of cardiac sinus node discharge rate, which is not capable for slow sympathetic synapses.
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Tracking the autonomic regulation in RSA using the
electrocardiogram and respiratory measurements is a feasible
and important approach to gain our knowledge toward
autonomic nervous system and its clinical applications.

The quantitative study of RSA has profound significance
in physiology and pathology, as well as extensive clinical
applications. Some studies have shown that RSA reaches a
relatively stable state in deep sleep (Bernston et al., 1997) and
a study of the hibernation of 37 polar bears in the University
of Minnesota found that RSA reached their peak during the
hibernation. At the same time, as a vagal inflammatory reflex
was discovered (Tracey, 2002), quantification of the HRV
components, which are not directly related to respiration, is
important for the analysis of long-range and scaling properties
of the cardiac dynamics (Ivanov et al., 1999; Schmitt and Ivanov,
2007). Examples of application of RSA analysis include clinical
psychology (Wielgus et al., 2016), treatment of substance use
disorder (Price and Crowell, 2016), prediction of the course of
depression (Panaite et al., 2016), quantification of cardiac vagal
tone and its relation to evolutionary and behavioral functions
(Grossman and Taylor, 2007), quantification of vagal activity
during stress in infants (Ritz et al., 2012), and even in cancer
patients (Moser et al., 2006), to name just a few.

A variety of data analysis techniques quantifying RSA have
been proposed in the literature, for a discussion of commonly
used metrics and their advantages and drawbacks see, e.g.
(Lewis et al., 2012). The techniques quantifying RSA can be
divided into two categories, the time domain and the frequency
domain. In time domain, continuous wavelet transform (WTC)
is used for its advantage to analyze transient and non-linear
signals. This method demonstrates the dynamic behavior of
respiration sinus arrhythmia through the analysis of the WTC
between heart rate and respiration signals (Jan et al., 2019).
Phase analysis technique could help to disentangling respiratory
sinus in heart rate variability records, but the final HRV index
obtained by this technique is complex to calculate in time
domain, and its physiological significance is not clear (Topcu
et al., 2018). There are works which use respiratory and RR
sequences to calculate G-causality and system gain as the
measure of RSA. Much further work is needed to make these
produced measures useful in clinical research and applications
(Fonseca et al., 2013). In the frequency domain, HF of HRV
indicators quantifies RSA on specific frequency bands, while
Cardiopulmonary Coupling (CPC) measures the correlation
between RR interval and respiratory sequence in the frequency
domain. Both are empirical, without solid theoretical foundation
and systematic design, therefore serious clinical applications are
not seen so far (Thomas et al., 2005).

In the rest of this article, our contributions in developing
quantitative measures for RSA are described as follows:

In section Cardiopulmonary Resonance Model (CRM), we
model RSA as modulation of heart rate by respiration in an
interactive cardiopulmonary system with the most effective
system state of resonance. Mathematically, it is described by
bivariate autoregressive model of respiration series and RR
intervals, and quantitatively it is assessed by Granger causality
function. The whole model is referred to as Cardiopulmonary
Resonance Model (CRM).

In section Cardiopulmonary Resonance Indices (CRI), based
on the cardiopulmonary resonance concept, and Granger
causality function which is referred to as cardiopulmonary
resonance function (CRF) after, a set of quantitative measures
for RSA is proposed, and named as Cardiopulmonary Resonance
Indices (CRI).

In section Applications Scenarios, to show the effectiveness of
CRM and CRI, two application scenarios, paced breathing and
sleep stage discrimination, are studied. It has been shown that
CRF and CRI provide ideal visual interpretation and numerical
measures for cardiopulmonary interactions toward resonance
state in paced breathing scenario as the paced breathing rate
coming down to 0.1Hz. The same is true as the sleep stage moves
to deep sleep.

CARDIOPULMONARY RESONANCE
MODEL (CRM)

We are committed to building a cardiopulmonary resonance
model for the purpose of quantitative assessment of RSA with
hypothesis that cardiopulmonary interaction is important
in circulation system to ensure efficient delivery of oxygen
and nutrient, and that the efficiency is optimized at the
state of cardiopulmonary resonance. Mathematically, we
present a bivariate autoregressive model of respiration series
and RR intervals, calculate respiratory and non-respiratory
related component on RR intervals in the frequency domain
using Granger-causality.

Bivariate Autoregressive Model of
Respiration Series and RR Intervals
The cardiopulmonary interaction can be interpreted as
functional connectivity analysis such as synchrony (Engel and
Singer, 2001) and phase coherence (Nunez et al., 2001) and so
on. Our model takes direct central respiratory modulation of
the parasympathetic cardiac signal as the main mechanism for
RSA. A powerful technique for extracting directed functional
connectivity from data is Granger causality (G-causality)
(Granger, 1969). According to G-causality, X2causes X1 if the
inclusion of past observations of X2 reduces the prediction error
of X1 in a linear regression model of X1 and X2, as compared to a
model which includes only previous observations of X1.

The change process of RR can be regarded as a Markov
process, ignoring other factors affecting heart rate in
short term, we described the RR intervals(X1(t)) and
respiration signal(X2(t)) (both of length T) by a bivariate
auto-regressive model:

X1(t) =
p

∑

j=1
A11,jX1(t − j)+

p
∑

j=1
A12,jX2(t − j)+ ξ1(t)

X2(t) =
p

∑

j=1
A21,jX1(t − j)+

p
∑

j=1
A22,jX2(t − j)+ ξ2(t)

where p is the maximum number of lagged observations included
in the model (the model order, p< T). A contains the coefficients
of the model, and ξ1, ξ2 are the residuals for each time series.
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In order to ensure RR intervals in the normal range and
without amutation, we use interpolation as a substitute for points
that do not meet the following conditions:

|RRIi − RRI| < 1.5 ∗ Std(RRI)
0.7 ∗ RRIi−1 < RRIi < 1.3 ∗ RRIi−1

where RRI is the RR intervals, RRIi−1and RRIi are
adjacent intervals.

For each record around 120 s, under the assumption of
stationary property of signals, and for efficiency of computation,
we normalize the RR intervals and respiration series to zero-
mean and unit variance. The magnitude of RSA can be measured
by the log ratio of the prediction error variances for the restricted
(R) and unrestricted (U) models:

G2→1 = ln
var(ξ1R(12))

var(ξ1U)

where ξ1R(12) is derived from the model omitting the A12,j(for
all j) coefficients in the first equation and ξ1U is derived from the
full model.

The estimation of the model of each record requires as
a parameter the number of time-lags (p) to include, i.e., the
model order. A principle means to specify the model order is
to minimize a criterion that balances the variance accounted
for by the model, against the number of coefficients to be
estimated. We chose the Akaike information criterion (Akaike,
1974) for n variables in which the

∑

denotes the noise
covariance matrix:

AIC(p) = ln(det(
∑

))+
2pn2

T

Spectral G-causality of Respiration Series
and RR Intervals
For the dynamics of the cardiopulmonary system are easier to
understand and interpret in the frequency domain, we calculate
the Spectral G-causality of respiration series and RR intervals.

The Fourier transform of the bivariate auto-regressive model
in time domain gives:

(

A11(f ) A12(f )
A21(f ) A22(f )

) (

X1(f )
X2(f )

)

=

(

E1(f )
E2(f )

)

in which the components of A are

Alm(f ) = δlm −

p
∑

j=1

Alm(j)e
(−i2π fj),

δlm = 0(l = m), δlm = 1(l 6= m)

E is the Fourier transform of the residual matrix.

For the sake of calculation, we rewrite it as

(

X1(f )
X2(f )

)

=

(

H11(f ) H12(f )
H21(f ) H22(f )

) (

E1(f )
E2(f )

)

where H is the transfer matrix. The spectral matrix S can now be
derived as

S(f ) =
〈

X(f )X∗(f )
〉

=

〈

H(f )
∑

H∗(f )
〉

in which the
∑

denotes the noise covariance matrix.
A split of U into sub-processes X and Y includes

a decomposition

S(f ) =

(

Sxx(f ) Sxy(f )
Syx(f ) Syy(f )

)

of the cross-power spectral density and a similar decomposition
for the transfer function H(f).
Then Sxx(f ) is the spectral density of X, which is given by

Sxx(f ) = Hxx(f )
∑

xxH
∗
xx(f )+ 2 Re{Hxx(f )

∑

xyH
∗
xy(f )} + Hxy(f )

∑

yyH
∗
xy(f )

Thus, we can get the Spectral G-causality of respiration series and
RR intervals:

GY→X(f ) = ln

(

|Sxx(f )|

|Sxx(f )−Hxy(f )
∑

y|xHxy(f )
∗|

)

∑

y|x ≡
∑

yy −
∑

yx

∑

−1
xx

∑

xy

where
∑

denotes the residual covariance matrix.
For the non-respiratory components, we get:

GN−RESP(f ) = 1-GY→X(f )

Now we have both the measurement of respiratory and the non-
respiratory components effects on RR intervals in the frequency
domain, R-HRV and NR-HRV, respectively. Here we focus on
the spectral G-causality of respiration series and RR intervals,
GY→X(f). For convenience, we simply write it as G(f), and
rename it as Cardiopulmonary Resonance Function (CRF) in the
rest of this article.

CARDIOPULMONARY RESONANCE
INDICES (CRI)

With cardiopulmonary resonance function (CRF), we are now
able to establish a quantitative measurement for RSA, referred

Frontiers in Physiology | www.frontiersin.org August 2020 | Volume 11 | Article 867125

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Cui et al. A Quantitative Measurement for RSA

to as Cardiopulmonary Resonance Indices (CRI), with the hope
that it will be able to play a role in quantifying cardiopulmonary
system efficiency, and as a biomarker for cardiac vagal tone
and well-being, on the basis of CRF and key concept of
cardiopulmonary resonance.

Figure 1A shows the power spectral curves of RR interval
series and respiration series, as well as the corresponding
cardiopulmonary resonance function, G(f). G(f) represent the
strength of RSA, the modulation of respiration to heart rate.
G(f) is a monotonic function of frequency f with single peak
around the main respiration frequency, can be considered as
the spectral energy distribution function of cardiopulmonary
resonance system. The cardiopulmonary resonance indices (CRI)
consists of the following numerical measure:

A) Cardiopulmonary Resonance Amplitude (CRA) is defined
as the maximum of Cardiopulmonary resonance function G(f):

CRA ≡ MaxCRF

Refer to Figure 1B, in consideration of the main frequency
bands of heart rate variability and respiration rate, G(f) is
plotted in the frequency range of 0.0033–0.5Hz. Denote the
frequency where the maxima ofG(f) appears as cardiopulmonary
resonance frequency fA. CRF is around main respiration rate.

FIGURE 1 | Illustration of Cardiopulmonary Resonance Function (CRF) and

Cardiopulmonary Resonance Indices (CRI). (A) the power spectral curves of

RR interval series and respiration series, as well as the corresponding

cardiopulmonary resonance function, G(f). (B) the schematic diagram of CRA

and CRW. CRA is taken from the maximum point of G(f) (CRF); CRW, the

bandwidth of CRF as indicated by the bi-directional arrow line.

In free breathing, respiration rate is around 0.20–0.30Hz, in the
range of HRV high frequency. That is the point of consistence
between HRV_HFmeasure and RSA strength in representing the
regal level. As we will see in the next section paced breathing
experiments, as paced breathing frequency down to 0.1Hz, both
RSA energy and HRV energy shall move and focus around 0.1Hz
as well. In this case, the hypothesis of HRV_HF representing regal
activity may not hold.

B) Cardiopulmonary Resonance bandWidth (CRW). As
shown in Figure 1B, CRW is defined as the CRF bandwidth, the
degree of RSA energy concentration. CRA and CRW are related.
While CRW is narrow, CRA is big.

C) Cardiopulmonary Resonance Quality factor (CRQ). CRQ
is defined to measure the merit of the cardiopulmonary
resonance system by adopting the quality factor measure
for inductor, capacitor, and resistor LCR oscillator where
interaction between lung and heart resemble the energy flow
between inductor and capacitor, while non-respiration factors are
equivalent to resistor, damping the resonance. Mathematically,
CRQ is defined as

CRQ =
fA

CRW

Considering the physiological functions, RSA serves to minimize
the energy expenditure of the heart while keeping arterial
CO2 levels at physiological tensions. CRQ measures the
energy conversion of the system. The lower the dissipation
energy, the higher the quality factor and metabolic efficiency.
High CRQ indicates high efficiency of cardiopulmonary
metabolic system and relatively healthy physiological and
psychological state.

APPLICATIONS SCENARIOS

In this section, two application scenarios are presented to
demonstrate the descriptive power of CRF and CRI, as well as
the application potentials.

Paced Breathing
Experiment Design
HRV biofeedback has been used for the treatment of depression
and other autonomic related problems. HRV biofeedback uses

TABLE 1 | Baseline Demographic Characteristics of 30 Participants and p-value

between 15 men and 15 women.

Characteristics Men(15) Women(15) p

Age (y) 24.40 ± 2.830 23.50 ± 2.134 0.631

Height (cm) 175.53 ± 4.872 163.31 ± 4.457 0.035

Weight (kg) 68.33 ± 8.205 57.81 ± 6.304 0.025

SBP (mm Hg) 110.50 ± 9.375 109.90 ± 6.845 0.302

DBP (mm Hg) 68.30 ± 6.521 64.40 ± 8.347 0.413

Data presented as mean ± standard deviation.
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HRV measures, mainly time domain and frequency domain,
as feedback cues to guide the subject performing slow paced
breathing in order to reach resonance state. The objectives
of paced breathing in HRV biofeedback is to gain level of
parasympathetic nerves activity and improve the autonomic
balance. As such, the measures of current status of the subject
play most important role in biofeedback process. So far in
the HRV biofeedback HRV measures are used, while HRV
measures have problems in representing autonomic regulation
status (Vaschillo et al., 2006).

The essential physiological phenomenon of the slow and
deep paced breathing in HRV biofeedback is respiration sinus
arrhythmia (RSA). The level of RSA should be the natural
measure as biofeedback cues. As the quantitativemeasure of RSA,
CRF and CRI provide the best visual cue and numerical cues
for biofeedback.

During the paced breathing, Cardiopulmonary Resonance
Amplitude (CRA) could help us find the optimal respiratory
rate for individuals which is usually around 0.1Hz. The process
of training is the process of making CRA keep approaching
1. As we go from the resting state to paced breathing rate
coming down to 0.1Hz, with the frequency decreases, CRA gets
bigger and the bandWidth CRW gets smaller. The frequency
of obtaining the maximum value of CRA is the personalized
resonance frequency of the subject and also the frequency
of biofeedback. As an indicator of cardiopulmonary system
metabolism, cardiopulmonary resonance quality factor (CRQ)

indicates efficiency of cardiopulmonary metabolic system and
relatively healthy physiological and psychological state.

This study was carried out in accordance with the
recommendations of guidelines of ethical review of clinical
research ethics committee of China-Japanese Friendship
Hospital. The number is 2019-GZR-138. The protocol was
approved by the clinical research ethics committee of Beijing
China-Japanese Friendship Hospital. All participants signed
informed consent forms. We collected data from 30 healthy
adults in ages of 20–30. The baseline demographic characteristics
of 30 participants are shown in Table 1. The subjects’ age, height,
weight, and mean systolic and diastolic blood pressure were
counted and presented as mean ± standard deviation. The
paired t-test showed there were no significant differences in
age, systolic and diastolic blood pressure between the male and
female groups.

The data is collected using one intelligent hardware, worn on
the wrist (Figure 2). We collected one-lead ECG and respiratory
signals of everyone from resting to biofeedback status. The
whole process is recorded. During the process of paced breathing
rate down to about 0.1Hz, we use our method to find the
individual resonant frequency for every trainee: Starting from
the resting state of the subjects, the breathing rate was gradually
reduced at 0.01Hz intervals guided by voice and image on the
computer. Each breathing rate was maintained for at least 1min.
It can be seen that Cardiopulmonary Resonance Amplitude
(CRA) gradually increases as the respiratory rate decreases

FIGURE 2 | The wearable hardware device used to collect ECG and respiration signals.

FIGURE 3 | G(f) (CRF) and corresponding HRV, R-HRV, and NR-HRV in frequency domain.
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and reaches its maximum value around 0.1Hz. The frequency
of obtaining the maximum value of CRA is the personalized
resonance frequency of the subject and also the frequency
of biofeedback.

Statistical Analysis
To demonstrate the advantage of CRI in paced breathing
compared to HRV, we calculated the Cardiopulmonary
Resonance Indices (CRI) and HRV in different statues. In order
to represent CRF and CRA visually, we draw the CRF curves
in the frequency domain with HRV in four status of paced
breathing from resting status to biofeedback status. The repeated
one-way ANOVA, followed by Dunnett’s post hoc test was used
to represent the significant difference from resting state to
biofeedback state of CRI in the breathing training.

CRF and CRI in Paced Breathing
CRF measures the effect of respiration on current heart rate
changes in the frequency domain. CRF and corresponding HRV,
R-HRV, and NR-HRV in the frequency domain are shown in
Figure 3.

Respiratory effects in different physiological states have
different effects on heart rate. These effects can be directly seen
from the power spectrum calculated by spectral G-causality,
which is closely related to the current breathing rate of the
subjects. CRF expresses the cardiopulmonary interaction at the
current time in the frequency domain.

To demonstrate the advantage of CRI in paced breathing
compared to HRV, the CRF, HRV, and respiratory power
spectral density of one subject of the 30 participants in the
experiment from resting to biofeedback status are illustrated
in Figure 4. The blue lines show respiratory power spectral

FIGURE 4 | A typical power spectral density curves of respiratory, HRV and corresponding cardiopulmonary resonance function CRF in the frequency domain of a

subject for 4 cases of breathing at resting state. From the top: free breathing, paced breathing at frequency of 0.33, 0.26, and 0.12Hz. It can be seen that paced

breathing increases the strength of RSA, and that as the frequency of paced breathing coming down toward, the cardiopulmonary resonance phenomenon becomes

stronger, which is very well-captured by the cardiopulmonary resonance function. It can also seen that as the paced breathing frequency approaches 0.1Hz, around

which there is an optimal resonance state for the subject, where HRV_HF is small. That is to say that CRI do represent level of parasympathetic nervus activity at

various cases, while HRV do not.
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density, orange lines show HRV and black lines show CRF.
From the top: free breathing, paced breathing at frequency of
0.33, 0.26, and 0.12Hz. It can be seen that paced breathing
increases the strength of RSA, and that as the frequency of paced
breathing coming down toward, the cardiopulmonary resonance
phenomenon becomes stronger, which is very well-captured by
the cardiopulmonary resonance function. We can also see that
as the paced breathing frequency approaches 0.1Hz, around
which there is an optimal resonance state for the subject, where
HRV HF is small. That is to say that CRI do represent level
of parasympathetic nervus activity at various cases, while HRV
do not.

The higher degree of cardiopulmonary coupling during paced
breathing, the respiration accounts for a higher proportion
of HRV. In the resting state, HRV produced by breathing
is weak, then NR-HRV can reflect the influence of other
physiological activities on heart rate through autonomic
nervous activity.

As can be seen from the figure, with the change of
respiratory rate, the distribution of CRF and HRV both shift
in the corresponding frequency bands. The distribution of
the frequency band of HRV is closely related to the change
of respiratory frequency, so the degree of biofeedback can
be observed from respiration frequency shift (Vaschillo et al.,
2006). However, there is no quantitative measure between
the peak value of HRV and the respiratory frequency within
HRV biofeedback to describe the intensity and depth of
cardiopulmonary interaction. Meanwhile, HRV cannot be used
as a measure of RSA due to its low repeatability and large
individual differences.

On contrary, CRF show a clear trend in paced breathing.
Generally, we calculated CRI in four different states from
resting to biofeedback status (from 1 to 4) in Table 2. The
repeated one-way ANOVA was used to test the differences of
CRI in the four states (p < 0.05). In Table 2, the p-values
of CRA, CRW and fAare smaller than 0.05, and the p-value
of CRQ is bigger than 0.05. The results showed that CRA,
CRW and fA have significant differences in the four status.
CRQ is defined to measure the merit of the cardiopulmonary
resonance system, and did not change significantly at different
respiratory rates. In order to confirm the significance and stability
of the differences between CRA and CRW in the four states
further, we performed Dunnett’s post hoc test shown in Table 3.
As we can see, CRA increases and CRB decreases during the
training. In the most of the pairwise comparisons of state
1, 2, 3, and 4, CRA and CRW show significant differences.
These two indicators together represent the intensity of a
person’s cardiopulmonary interaction and reflect the activity and
regulatory capacity of the human vagus nerve with repeatability
and stability.

We can see that CRF and CRI could provide ideal visual
interpretation and numerical measures for cardiopulmonary
interactions toward resonance state in paced breathing scenario.
CRF can be used to analyze the human body in different
physiological states, get cardiopulmonary coupling value
accurately, and analyze the regulation process of human
sympathetic and parasympathetic nerves.

TABLE 2 | Cardiopulmonary Resonance Indices for the 4 cases of breathing: free

breathing and 3 paced breathing at frequency of 0.33, 0.26, and 0.12Hz.

1 2 3 4 p

CRA 0.640 ± 0.004 0.710 ± 0.003 0.810 ± 0.005 0.991 ± 0.004 0.003

CRW 0.250 ± 0.030 0.170 ± 0.021 0.130 ± 0.020 0.075 ± 0.021 0.004

fA 0.360 ± 0.030 0.301 ± 0.030 0.201 ± 0.021 0.110 ± 0.020 0.002

CRQ 1.440 ± 0.375 1.760 ± 0.313 1.541 ± 0.240 1.470 ± 0.304 0.146

The p-value represents the result of the a repeated measures one-way ANOVA. P values

show that there is a significant difference between the groups in CRA, CRW and fA

(P < 0.05).

TABLE 3 | Dunnett’s post-hoc test of CRA and CRW for the 4 cases of breathing:

free breathing (1), and 3 paced breathing at frequency of 0.33Hz (2), 0.26Hz (3),

and 0.12Hz (4).

Comparative CRA CRW

group

Difference of LSR (p = 0.05) Difference of LSR(p = 0.05)

the mean the mean

4 and 1 0.351 0.097 0.175 0.047

4 and 2 0.281 0.096 0.095 0.045

4 and 3 0.181 0.096 0.055 0.045

3 and 1 0.170 0.095 0.120 0.042

3 and 2 0.100 0.095 0.040 0.040

2 and 1 0.070 0.095 0.080 0.040

If the value of Difference of the mean > LSR, there is a significant difference between the

groups being compared (p < 0.05).

Sleep Stage Discrimination
Experiment Design
Cardiopulmonary Coupling index (CPC) was proposed by
Thomas et al. (2005) in 2005, which measures the spectral
correlation between heart rate sequence and respiratory signal.
Therefore, CPC can be a candidate providing measures for RSA.
CPC is defined as the product of the average cross-spectral power
divided by the average power of each signal as below.

CPC(fn) =
〈

Ŵn(R,E)
〉2

3n

3n =
〈Ŵn (R,E)〉2
〈

R̂2n

〉 〈

Ê2n

〉

in which Ŵn(R,E) denotes the cross spectrum of RR intervals
and respiratory signals. CPC reflects the degree of sleep and
respiratory rhythm disorder through the high frequency, low
frequency and very low-frequency parts with a different energy.
It overcomes the shortcomings and defects of the HRV method
used in the analysis alone. At present, this method has been
widely used in the field of evaluating sleep quality and judging
sleep and breathing disorders (Yang et al., 2011).
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In sleep stage discrimination, we used data from the MIT-
BIH database (Ichimaru and Moody, 1999) which has sleep
stage labels from polysomnography (PSG). CRI in different sleep
stage was calculated and a comparative study was conducted by
using Cardiopulmonary Coupling index (CPC) in sleep stage
classification. Except for the heart rate, HRV, and respiratory
rate, CRA, CRW, and fA extracted from CRF, meanwhile LF, HF,
and LF/HF extracted from CPC are, respectively, used in the
classification task to test sleep stage of the subject.

In the experiment, the classifier needs to identify four different
sleep stages, including awake, REM, light sleep, and deep

FIGURE 5 | DTB-SVM model for classifying the sleep stages. First, a classifier

is used to separate the awake phase and the sleep phase, and then within the

sleep phase, the REM phase and the NREM phase are separated, and finally

the light sleep and deep sleep are separated by the last classifier.

sleep. SVM is not able to solve multi-category classification
problems directly, but the combination of SVM and decision tree
(called DTB-SVM) can be used to solve multi-class classification
problems. Based on the structural characteristics of the sleep
cycle and the physiological features used in sleep classification,
we used three SVM models to classify the sleep stages. As shown
in Figure 5, firstly, a classifier is used to separate the awake phase
and the sleep phase, and then within the sleep phase, the REM
phase and the NREM phase are separated, and finally the light
sleep and deep sleep are separated by the last classifier. RBF
kernel was used in the model. In order to prevent over-fitting,
we selected the optimal parameters in the way of K-fold cross-
validation and grid search. For the features of CPC and CRI,
classifiers of same structure were used to classify the sleep stages.

Statistical Analysis
The confusion matrix was used to explain the accuracy of sleep
classification results and to compare the performance of CRI and
CPC in classification tasks. Each row of the matrix represents the
prediction category, and the total number of each row represents
the number of data predicted for that category. Each column

TABLE 4 | Cardiopulmonary Resonance Indices of one subject in different sleep

stages of a whole night.

Wake REM Light Deep

CRA 0.648 ± 0.004 0.674 ± 0.004 0.734 ± 0.003 0.993 ± 0.004

CRW 0.280 ± 0.011 0.231 ± 0.011 0.163 ± 0.010 0.053 ± 0.013

fA 0.300 ± 0.020 0.290 ± 0.017 0.25 ± 0.016 0.230 ± 0.010

CRQ 1.071 ± 0.230 1.255 ± 0.227 1.534 ± 0.161 4.340 ± 0.102

Data presented as mean ± standard deviation.

FIGURE 6 | G(f) (CRF), CPC, power spectral density of HRV and respiration. By definition, cardiopulmonary resonance function CRF, reflects the strength of RSA, with

the peak near the mean of the respiration rate, while CPC is the correlation between HRV and respiration with respect to their power spectrum, having multiple peaks.

As the name indicated, CRF well capture the resonance nature of cardiopulmonary system.
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represents the true category to which the data belongs, and the
total number of data in each column represents the number of
data instances in that category.

The effectiveness of the features was measured by the ratio
of intra-class divergence and inter-class divergence. The ratio
between intra-class divergence and inter-class divergence is
defined and calculated as follows (Zhou et al., 2010):

Let (X, y)ǫ(Rn × y) be a sample, where Rn is an n-dimensional
feature space and y = {1,2,....,s} is the label set. Li is the number
of samples in the ith class, and l is the total number of samples.
Let Xij denote the jth sample in the ith class,mi the sample mean
of the ith class, and m the sample in the ith class, mi the sample
mean of the ith class, and m the sample mean of all class. The
within-class scatter matrix SW , between-class scatter matrix SB
are defined as

Sw =

s
∑

i=1

li
∑

j=1

(Xij −mi)(Xij −mi)
T

SB=

s
∑

i=1

li(mi −m)(mi −m)T

Large class separability means small within-class scattering and
large between-class scattering. A combination of two of them can
be used as a measure, |SW |/|SB|, where |·| denote the determinant
of a matrix. The smaller the ratio, the better the effect of the
feature on classification.

In order to demonstrate the good performance of CRI in sleep
classification task, we compared the confusion matrix of CRI and

TABLE 5 | The divergence analysis of the features of CPC and CRI in the sleep

classification task.

LF_CPC HF_CPC CRW CRA fA_CRI

|SB |/|SW | 7.290 5.365 0.302 1.930 2.311

LF_CPC and HF_CPC are the LF and HF features of CPC, CRW, CRA, and fA_CRI are

the features of CRI.

CPC classification results. Then, in order to express the role of
features further, we conducted the divergence analysis on the
features of CRI and CPC. The results showed that CRI was more
effective than CPC in sleep classification task, especially in the
deep sleep recognition.

CRI in Different Sleep Stages Compared to CPC
To visually compare the difference between CRI and CPC,
Figure 6 shows the CPC, HRV, and CRF of one subject.
It contains HRV (0.14Hz as the demarcation line between
high frequency and low frequency), respiration power spectral
density, CPC index and G(f), which are all discussed in the
frequency domain.

CPC represents the correlation of RR intervals and respiratory
signal. It shows that CPC has multiple peaks in the full
frequency band. In low-frequency band, for HRV analysis, people
usually think sympathetic nerve and parasympathetic nerve
interact together, and CPC also shows a spike which indicates
a high correlation between respiration and RR intervals, such
as blood pressure, etc. It is difficult to find an exact indicator
representing the cardiopulmonary coupling state from CPC.
Physiologically, RSA, the strength of respiration modulation
of heart rate should appear as CRF, cannot be multiple
peaks as CPC.

The indices of one subject in four different sleep stage of
one night are shown in Table 4. It shows that our indices could
express the cardiopulmonary interaction phenomenon and the
degree of cardiopulmonary coupling resonance in different sleep
stages.Table 5 shows the performance of CRI indicators and CPC
indicators on the whole data set in the classification task. CRW,
CRA, fAare smaller than LF_CPC and HF_CPC. The results

TABLE 7 | The divergence analysis of the features of CPC and CRI in the deep

sleep and light sleep.

LF_CPC HF_CPC CRW CRA fA_CRI

|SB |/|SW | 8.312 5.432 0.530 1.106 2.867

LF_CPC and HF_CPC are the LF and HF features of CPC, CRW, CRA, and fA_CRI are

the features of CRI.

TABLE 6 | Confusion matrix of sleep stage classification using CPC and CRI.

Actual predicted Wake REM Light Deep

CPC CRI CPC CRI CPC CRI CPC CRI

Wake 1557 1561 44 44 305 307 50 25

REM 27 30 356 355 97 100 8 12

Light 219 220 88 89 3994 4034 115 87

Deep 13 5 5 5 77 32 259 308

Total 1816 1816 493 493 4473 4473 432 432

Accuracy 85.74% 85.96% 72.21% 72.01% 89.29% 90.19% 59.95% 71.30%

Each value in the table represents the number of samples. At each position in the obfuscation matrix, the values on the left represent the results of CPC, and the values on the right

represent the results of CRI. CRI shows superiority in identifying deep sleep, more than 11% higher than CPC.
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FIGURE 7 | G(f) (CRF) and CPC in light sleep (top) and deep sleep (bottom).

show that the CRI features including CRW, CRA, fA performed
better than CPC features including LF_CPC and HF_CPC in the
classification task.

The classification results of CRI and CPC were statistically
analyzed, respectively, in Table 6. It shows that CRI shows
superior in distinguishing deep sleep stage than CPC. The overall
accuracy of the classification went up 1.28%. Particularly shown
in Table 6, great progress has been made in distinguishing
between deep sleep and light sleep, and the recognition rate
of deep sleep has been increased by 11.35%. It shows that
CRF performances better than CPC, especially in the distinction
between light sleep (NREM_1 and NREM _2) and deep sleep
(NREM_3 and NREM _4).

The performance of CPC and CRF in deep sleep and light
sleep is shown in Figure 7. In the deep sleep stage, CRF
shows more concentrated and indicators we proposed are good
indications of this phenomenon. It provides meaningful features
for the distinguishing of the two. To illustrate the role of CRI
in deep sleep recognition, divergence analysis of the features of
CPC and CRI in the deep sleep and light sleep was performed
in Table 7. It shows the performance of CRI indicators and
CPC indicators for distinguishing the deep sleep stage. CRW,
CRA, fAare much smaller than LF_CPC and HF_CPC. It shows
that CRI features CRW, CRA, fA performed much better than
CPC features LF_CPC and HF_CPC. In the deep sleep, the
cardiopulmonary system has the highest metabolic efficiency and
the smallest dissipated energy, and the body and mind of the
human body can fully rest and recover. This suggests that CRI
is a good indicator for different sleep status especially the deep
sleep of human body.

The shortcomings of the CPC are obvious. CPC calculates
the correlation between RR interval and respiratory signal,
with the shape of multiple peaks. Physiologically, RSA, the

strength of respiration modulation of heart rate should appear
as CRF, cannot be multiple peaks as CPC. Through the study
of CRI and Cardiopulmonary Coupling (CPC) in distinguishing
deep sleep stage, we got the conclusion that CRI does capture
physiologically meaningful characteristics of RSA, therefore, well
reflect autonomic status in sleep stages. CRI represents the degree
of cardiopulmonary resonance, and reflects parasympathetic
nerve activity level well.

CONCLUSION

Respiratory sinus arrhythmia (RSA) represents a physiological
phenomenon of cardiopulmonary interaction. It is known
as a measure of efficiency of the circulation system, and a
biomarker of cardiac vagal and well-being. In this article,
we model RSA as modulation of heart rate by respiration
in an interactive cardiopulmonary system with the most
effective system state of resonance. Mathematically, it is
described by bivariate autoregressive model of respiration
series and RR intervals, and quantitatively it is assessed by
Granger causality function. The whole model is referred to
as Cardiopulmonary Resonance Model (CRM). This method
has significant physiological significance in the frequency
domain and is convenient for us to explain the experimental
results. We suggest using this approach as a universal
prepossessing technique which allows a researcher to concentrate
on particular properties of the HRV data. Then based on
the cardiopulmonary resonance concept, and Granger causality
function which is referred to as cardiopulmonary resonance
function (CRF) here after, a set of quantitative measures for
RSA is proposed, and referred to as Cardiopulmonary Resonance
Indices (CRI).
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To show the effectiveness of CRM and CRI, two application
scenarios, paced breathing and sleep stage discrimination, are
studied. It is shown that CRF and CRI provide ideal visual
interpretation and numerical measures for cardiopulmonary
interactions toward resonance in paced breathing scenario
as the paced breathing rate coming down to biofeedback
status, and as the sleep stage moves to deep sleep. We
draw the conclusion that CRI well represents the degree of
cardiopulmonary resonance, and reflects parasympathetic nerve
activity level.We think it’s a good explanation of the physiological
function of RSA and it is also good way to quantify the well-being
of human body.

This study has certain limitations. As a measure of RSA under
static conditions, CRI was not compared with sympathetic and
parasympathetic activity indexes obtained by tilt experiment, nor
was it tested under different pathological conditions. We plan to
carry out relevant research in the future. In addition, we plan
to explore the clinical significance of CRQ and the effects of
other physiological activities on heart rate based on NR-HRV
data in time and frequency domain. We will gradually accurately
analyze the regulatory effects of the autonomic nervous system
on various physiological organs and activities through the
regulation activities of the autonomic nervous system. It is
of great significance for us to understand and monitor the
regulation process of the autonomic nervous system in different
physiological states.
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Singing and chanting are ubiquitous across World cultures. It has been theorized

that such practices are an adaptive advantage for humans because they facilitate

bonding and cohesion between group members. Investigations into the effects of singing

together have so far focused on the physiological effects, such as the synchronization

of heart rate variability (HRV), of experienced choir singers. Here, we study whether

HRV synchronizes for pairs of non-experts in different vocalizing conditions. Using

time-frequency coherence (TFC) analysis, we find that HRV becomes more coupled

when people make long (> 10 s) sounds synchronously compared to short sounds

(< 1 s) and baseline measurements (p < 0.01). Furthermore, we find that, although

most of the effect can be attributed to respiratory sinus arrhythmia, some HRV

synchronization persists when the effect of respiration is removed: long notes show

higher partial TFC than baseline and breathing (p < 0.05). In addition, we observe

that, for most dyads, the frequency of the vocalization onsets matches that of the

peaks in the TFC spectra, even though these frequencies are above the typical

range of 0.04–0.4Hz. A clear correspondence between high HRV coupling and the

subjective experience of “togetherness" was not found. These results suggest that

since autonomic physiological entrainment is observed for non-expert singing, it may

be exploited as part of interventions in music therapy or social prescription programs for

the general population.

Keywords: HRV, singing, togetherness, coherence, synchronization

1. INTRODUCTION

There is increasing interest in the effect of music on people’s well-being and health. Specifically, a
number of studies have shown the benefit of regular choral singing practice (Clift and Hancox,
2010; Dingle et al., 2013; Judd and Pooley, 2014; Pearce et al., 2015). Clift and Hancox (2010)
identified possible factors contributing to the health and well-being benefit of choir participation,
such as gaining more positive affects, focused attention, deeper breathing, social support, cognitive
stimulation, and regular commitment. Dingle et al. (2013) determined three major outcomes of
singing: personal (e.g., emotion regulation and spiritual experience), social (e.g., connectedness
with other choir members), and functional (e.g., health benefits) outcomes. It has also been
proposed that vocalizing together offers an efficient way to create bonds, which was likely an
important adaptive trait for our human ancestors (Dunbar, 2017). Singing can occur in a variety
of social contexts, such as amongst sport fans and within military and religious organizations. The
effects of singing can be appreciated in objective health and behavioral outcomes but also in terms
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of the subjective qualities associated with it. Specifically,
a subjective experience of togetherness is often reported
in ensemble music performance and improvization
(Nachmanovitch, 1990), particularly for singing (Hayward,
2014). Such experience has been described as a blurring between
the self-other boundaries (Nachmanovitch, 1990), which has
been linked to social bonding (Tarr et al., 2014).

Subjective experiences of togetherness have been previously
studied in the context of dance (Himberg et al., 2018) and
synchronized movement (Noy et al., 2015). These studies point
out that interpersonal movement synchrony plays an important
role in subjective experiences and aesthetic appreciation. A
plausible framework through which to understand togetherness
is the concept of interpersonal entrainment, which is a
commonly studied phenomenon in music. Entrainment involves
independent systems that become synchronized (Clayton, 2012).
Four levels of interpersonal entrainment have been proposed
for music (Trost et al., 2017): perceptual (the synchronization
that occurs between people attending to the same stimulus),
autonomic physiological [phase-locking in the activity of the
autonomic nervous system (ANS)], motor (the coupling of
physical actions), and social (the synchronization of social
behavior). For the specific case of singing, interpersonal
synchronization can occur at all the above levels: a motor
(making the same vocal actions using breath and vocal chords),
perceptual (listening to the same vocal sounds), autonomic
physiological (the relationship between breathing and autonomic
nervous system functions), and social (the communicative
aspects of using the voice).

The ANS relates to emotion and behavior by means of
the sympathetic and parasympathetic systems, which prepare
the organism for action and regulate responses (Porges, 2001).
Among relevant actions for individuals are those relating
to social interaction, such as facial and vocal expressions,
which are ubiquitous in singing interactions. One common
way of assessing ANS activity is by analyzing the patterns of
heart rate variability (HRV), which is “the degree to which
the time interval between successive heart beats fluctuates”
(Christou-Champi et al., 2015). HRV has a high frequency (HF)
component between 0.15 and 0.4Hz, which is linked to the vagal
parasympathetic activity, and a low frequency (LF) component
between 0.04 and 0.15Hz, which is related to both sympathetic
and parasympathetic influences (Saul, 1990). Respiration has an
important effect on HRV, called respiratory sinus arrhythmia
(RSA), with instantaneous heart rate increasing during inhalation
and decreasing during exhalation (Song and Lehrer, 2003;
Grossman and Taylor, 2007; Sin et al., 2010). Furthermore, the
magnitude of the effect depends on respiration frequency, with
lower frequencies showing greater RSA, with a maximum at four
breaths per minute (Song and Lehrer, 2003).

It has been proposed that to understand the complexities
of social interaction it is necessary to study the behavioral
and physiological dynamics of various individuals (De Jaegher
et al., 2010). For example, when tapping to a beat, participants
adapt one to another, which is an emergent property of dyadic
interactions and cannot be studied by looking at individuals
separately (Konvalinka et al., 2010; Spiro and Himberg, 2012).

Indeed, there is an increasing interest in studying interpersonal
autonomic physiology and connecting it with behavioral and
psycho-social constructs (Palumbo et al., 2017). In particular,
Noy et al. (2015) studied the relationship between dyadic
joint hand movements, physiological signals, and subjectively
reported togetherness by using a mirror game inspired by theater
practice (Noy et al., 2011). They found that periods of the
interaction when both participants reported high togetherness
where associated with increased cardiovascular activity and
with high correlation between the heart rate time series of
both participants (Noy et al., 2015). Their findings support the
hypothesis that subjective togetherness is linked to the coupling
between instantaneous heart rates of dyads, although the authors
cautioned that the coupling could be a by-product of motion
synchronization, for the specific task they used.

The significance of the autonomic nervous system (ANS)
entrainment in group singing has been shown by Müller and
Lindenberger (2011) and Vickhoff et al. (2013). Müller and
Lindenberger (2011) provided the first evidence that heart rate
variability (HRV) synchronizes between choir members and
their conductor and that the effect is greater when singing in
unison. Vickhoff et al. (2013) showed that HRV is coupled
between choral singers and is dependent on musical structure,
which constrains the respiration patterns. These studies suggest
that HRV synchronization between choir members occurs due
to RSA. However, given the link between entrainment and
affective responses (Trost et al., 2017) and the socio-biological
bonding responses to singing (Kreutz, 2014), it is possible that
mechanisms other than RSA play a role in the HRV coupling
occurring in singing interactions.

By comparing heart and respiration activity on various
vocalization and breathing tasks, this study tests whether there
is a mechanism beyond RSA mediating HRV coupling in
dyads. HRV coupling between participants can be studied using
a time-frequency coherence (TFC) analysis, which describes
the amount of coupling between two signals over different
frequencies (Orini et al., 2012b, 2017a). Furthermore, partial
time-frequency coherence (pTFC) provides a means to study
the coupling between two signals after removing the effects
of a third signal (Orini et al., 2012a,b; Widjaja et al., 2013).
We use pTFC to study the coupling between the HRV of
dyads beyond the effects of respiration. We expect that, by
removing the effect of respiration, there will be no differences
in pTFC between baseline and breathing conditions. We
propose that some differences might remain between breathing
and vocalization conditions, due to influences beyond RSA.
Furthermore, this study explores whether HRV synchronization
relates to the subjective experience of togetherness, by using
continuous subjective ratings of togetherness (Noy et al., 2015).
The differences between making short and long vocalizations
and making them in-sync or out-of-sync are also explored. We
thus attempt to provide insight into the physiological effects of
specific characteristics of vocalization, i.e., length and degree of
synchrony between people, which shape more complex forms of
vocalization such as choir singing. While choir singing involves
more elements than this specific case of dyadic vocalization, this
experimental design allows the study to isolate some aspects
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of singing (e.g., length and synchrony) while preserving the
singing experience to some extent (e.g., by giving participants
some freedom in the choice of their notes). Finally, HRV
synchronization has not been demonstrated for people without
singing experience. We aim to reproduce this phenomenon in a
non-expert population in order to contribute to research on the
use of singing in music therapy contexts.

2. METHODOLOGY

The study received ethical approval by the Research Ethics
Committee of Queen Mary University of London.

2.1. Participants
Twenty participants (10 male and 10 female) aged 20–43 were
paired in 10 dyads for a vocal interaction experiment. We
recruited participants who identified themselves as non-expert
singers to extend previous results to people without regular choir
or singing practice. Participants were given an information sheet
and provided written informed consent. Among the group of
20 participants, one dyad dropped out of the analysis because
the participants laughed intermittently, hence affecting the
physiological measurements. In addition, continuous subjective
ratings from two participants were lost due to technical issues.
We thus used data from 18 participants (nine dyads) for the
physiological analyses and data from 16 participants for the
subjective ratings analyses.

2.2. Procedure
Each dyad was guided through the following phases: briefing,
physiological sensors set-up, a warm-up phase, four tasks of vocal
interaction, a continuous subjective rating phase, a questionnaire,
and an interview. We performed baseline recordings for 1 min
before and 1 min after the interactive tasks. The whole procedure
lasted about 70 min and participants were compensated with £10
for their time. During the briefing, participants completed the
consent forms, and the experiment was explained.

For both the warm-up and the four interactive tasks,
participants sat on chairs about 1 m apart and both facing a
common central point. This configuration was chosen in part due
to the size constraints of the room and to encourage participants
to use their peripheral vision for the interaction while not facing
each other directly. Participants could thus choose whether or
not to make eye contact when interacting. For the subjective
ratings, questionnaire, and interviews, participants were each in
a different room.

The warm-up phase was designed to give participants
awareness of their own voice by exploring different sound
parameters, such as pitch, intensity, and duration. Participants
were guided through the warm-up one at the time. The
experimenter prompted the participants with vocal sounds that
they had to imitate immediately after hearing the sounds.
The warmup started with a short, mid-range tone, progressing
gradually to higher pitches followed by lower pitches. Next,
high and low intensities were presented following a similar
pattern. Finally, the participants heard and mimicked two long
notes; this was to make sure the participants could control their

breathing effectively. In all the vocalized tasks participants were
encouraged to explore different pitches and intensities freely to
give a greater sense of agency, showing in the different choices
made by different dyads. Furthermore, while participants were
asked to make short notes of about 0.5 s and long notes as long
as their breath, they had some freedom in their choices, both to
provide a sense of agency and simplify the task. Each task lasted
between 90 and 120 s. A short explanation was given before each
task, and participants were asked to return to normal breathing
at the end of the task.

In the first task (Br), participants were asked to synchronize
their breathing without previously agreeing on any strategy. The
second task (SNsync) consisted of synchronizing short duration
notes. Participants were asked to achieve synchronization
without explicitly agreeing to any kind of strategy. In the third
task (LN), participants were asked to make synchronized notes
of long duration, paying attention to both the beginnings and
ends of the notes. Participants were asked to vocalize pitched
sounds for the duration of the respiration and to prioritize
synchronization over note length, meaning that if a participant
would run out of air the other would have to stop as well. In
the fourth task (SNasync), participants produced out-of-phase
short notes with the constraint of not vocalizing at the same
time, but they were otherwise free to choose the timings of
their vocalizations.

2.3. Data Recording
2.3.1. Audio and Video
Audio was recorded using a ZOOM H4 recorder at a
standard 44,100Hz sampling rate, and video was recorded
with the in-built camera of a MacBook Air using the
Photobooth application. A frame where both participants were
visible was chosen. Both audio and video recordings were
started a few seconds after the beginning of the breathing
task and were stopped a few seconds after the end of
the asynchronous notes task. Audio and video signals were
synchronized using MATLAB’s “finddelay" function with a
maximum delay of 20 s.

2.3.2. Togetherness Continuous Subjective Ratings
Participants were asked to report the degree of togetherness they
experienced with their partner throughout the four interactive
tasks, as in previous studies (Noy et al., 2015). Togetherness
was defined to the participants as “the extent to which you
feel close or connected to your partner." Immediately after the
experimental tasks, participants were taken to separate rooms
and shown the video recording of the interaction. They were
asked to report how much togetherness they experienced during
the tasks, using continuous subjective ratings. A rating dial and
a visual interface were provided, and they recorded numeric
values between 0 and 255 and then normalized to the 0–1
range during the analysis. Participants were instructed to turn
the dial to the left side to register low togetherness values
and to the right side to register high values. The interface
provided visual feedback on the level of togetherness that was
reported. The interface was created using Arduino hardware and
Processing software. The software included timestamps to allow
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synchronization between the video and physiological data. See
Figure 1 for an example of continuous togetherness ratings for
one of the dyads.

2.3.3. Physiological Data
Physiological data was continuously recorded for each
participant, during the four interactive tasks and baselines,
using the BIOPAC MP150 system and software AcqKnowledge.
ECG was recorded using three leads (BN-EL30-LEAD3)
and a standard configuration with the white active electrode
on the right upper chest, the black ground electrode on
the left upper chest, and a red active electrode on the
left lower chest. Respiration depth was recorded using
the BIONOMADIX respiration belt. Signals from both
participants were simultaneously recorded using a sampling
rate of 1,000Hz. Timestamps were used to synchronize the
physiological data with audio, video, and continuous subjective
ratings. See Figure 1 for an example of the respiration and
ECG signals.

We recorded baseline physiological data for 1 min
before and after the block of four tasks, during which the
participants were asked to breathe normally and relax.
For each measure, we computed the average between the
initial and final baselines to get single baseline measures
(Bs). We also recorded about 20–25 s of data between
the tasks allowing the physiological signals to return
to baseline.

2.4. Analysis
2.4.1. Physiological Measures
Respiration signals were re-sampled at 4Hz and a band-pass
filter within [0.04–1]Hz was applied to reduce noise introduced
by the equipment. For each participant, the RR intervals were
obtained from the ECG data using a semi-automated MATLAB
GUI as in previous studies (Orini et al., 2017b), which allows for
revision and manual correction. Ectopic beats and artifacts were
rare, and they were interpolated when present. The RR interval
series was re-sampled at 4Hz and the heart rate variability signal
was obtained by high-pass filtering these series with a cut-off
frequency of 0.03Hz.

We computed the mean heart rate (HR) and the Root Mean
Square of Successive Differences (RMSSD) between adjacent
RR intervals for each participant and each condition (baseline,
breathing in synchrony, short notes in synchrony, long notes in
synchrony, and asynchronous short notes). HR is a measure of
cardiovascular activity, and RMSSD is as common measure of
HRV revealing how much the RR intervals fluctuate (Christou-
Champi et al., 2015).

We applied the same methodology used in Orini et al. (2012b)
to obtain the time-frequency coherence between two signals,
which gives the correlation between two signals at different
frequencies. The time-frequency coherence is defined as follows:

γxy(t, f ) =
|Sxy(t, f )|

√

Sxx(t, f )Syy(t, f )
, (1)

where Sxy(t, f ) is the cross-power spectral density of signals x(t)
and y(t), which in this study represent HRV or respiration signals

from each one of the participants, and is computed over time:

Sxy(t, f ) = F{E[x(t +
τ

2
)y∗(t −

τ

2
)]}, (2)

and F{·} and E[·] are the Fourier transform and the expectation
operators, respectively (Orini et al., 2012b).

Although the frequencies of interest to analyze HRV are
typically in the range 0.03–0.4Hz, we were also interested in
potential effects of short and fast vocalizations (up to one note
per second) and performed the analysis in the range of 0.03–1Hz.

In order to test the effect of respiration on HRV coupling,
we computed the arithmetic mean of the TFC in the respiratory
band, using the average of the respiratory frequency of both
participants. The respiration frequency was determined for
each participant as the peak frequency of the time-frequency
spectrum of respiration. The respiratory band was defined by
a window around the frequency of the respiration signal, with
a width twice the frequency resolution of the time-frequency
coherence analysis (0.078Hz), as in previous studies (Orini et al.,
2012c). The band was restricted to the [0.04–1]Hz range. An
arithmetic mean was then obtained over time for each condition
separately. This provided a coherence index for each condition
for each dyad.

We additionally computed a partial time-frequency coherence
(pTFC), which assesses the coupling of two signals after removing
the effects of a third signal (Orini et al., 2012a; Widjaja et al.,
2013). In this case, it was used to determine whether there was
coupling beyond the effects of respiration. The pTFC function is
defined as follows:

γxy/z(t, f ) =
|Sxy/z(t, f )|

√

Sxx/z(t, f )Syy/z(t, f )
, (3)

and Sxy/z(t, f ) is the partial cross-power spectral density, obtained
as follows:

Sxy/z(t, f ) = Sxy(t, f )−
Sxz(t, f )Szy(t, f )

Szz(t, f )
. (4)

For our purposes, the third signal z(t) was the respiration data
from one of the participants. Because the respiration signal from
either participant could be used to obtain the pTFC, we computed
a pTFC using respiration signals from each participant and then
averaged the two pTFCs.We averaged the pTFC over frequencies,
although in this case we used the full range (0.03 − 1Hz) rather
than the respiratory band. Then, as for the TFC, we averaged the
results over time to obtain one coherence index per condition.

2.4.2. Statistical Analyses
The measures we used in the statistical analyses were HR,
RMSSD of HRV, and average togetherness ratings for individuals
and TFC and pTFC for dyads. The Kolgomorov-Smirnov test
for normality showed that the distributions were not normal.
We thus used the non-parametric Wilcoxon sign rank tests
for all analyses, allowing for paired comparisons. We used the
Holm-Bonferroni method for multiple comparison correction
(Holm, 1979). This consists of ordering the p-values from lowest
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FIGURE 1 | A sample of the synchronized audio, respiration, and ECG signals and togetherness ratings for both participants in dyad 1 during the synchronized Long

Notes condition.

to highest (pk, with k = 1 :M, where M is the number
of comparisons), and then rejecting the null hypothesis for
comparisons for which pk < 0.05/(M − k + 1). Once a null
hypothesis is rejected the procedure is stopped. For HR, RMSSD,
TFC of respiration, and TFC of HRV we were interested in
seven comparisons:

(a) between baseline (Bs) and each condition (Br, SNsync, LN,
and SNasync) to test each condition relative to the control;

(b) between Br and LN to test the effect of voice;
(c) between SNsync and LN to test the effect of the length of the

vocalizations; and
(d) between SNsync and SNasync to test the synchrony of

the vocalizations.

For pTFC, we were only interested in the effect of voice, and
performed only three comparisons: LN with Br, LN with Bs, and
Br and Bs. The latter allowed us to ensure that there was no
coupling for the breathing condition. For the subjective ratings
of togetherness, we performed three comparisons: Br and LN,
SNsync and LN, and SNsync and SNasync.

2.5. Interviews and Questionnaire
Interviews were conducted to determine the strategies used by
the participants to accomplish the tasks and to better understand
the way people understand the concept of togetherness. During
the interviews, participants were asked to report the aspects
that made the tasks engaging, the differences between the

tasks regarding their experience of pleasure, engagement, and
connection with the other, and the aspects of the interaction
contributing to the experience of togetherness. A questionnaire
was also used to collect some information such as how
challenging the task was for the participants (on a scale from 1
to 10) and to what extent they knew each other.

3. RESULTS

Table 1 shows the mean and standard deviation for HR, RMSSD,
respiration frequency, TFC of respiration, and HRV signals
averaged in the respiration band, partial TFC of HRV, and
subjective togetherness values.

3.1. Heart Rate and RMSSD of HRV
Results for heart rate and RMSSD of HRV are summarized in
Table 2 and Figure 2. There was no difference in the averagedHR
between conditions (Br, SNsync, LN, and SNasync). We found
that RMSSDwas greater for Br (p = 0.0016), SNsync (p = 0.011),
LN (p = 0.0002), and SNasync (p = 0.0074) compared to
Baseline, for LN compared to Br (p = 0.0006), and for LN
compared to SNsync (p = 0.0002).

3.2. TFC of Respiration
The results of the TFC between respiration signals are shown in
Table 2. The TFC of respiration for Br and LN was significantly
higher than for Bs (p = 0.0078) and for LN than SNsync
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TABLE 1 | Means and standard deviations of heart rate (bpm), RMSSD of heart rate variability (ms), average respiratory frequency (Hz), time-frequency coherence of

respiration signals averaged in the respiration band, time-frequency coherence of HRV averaged in the respiratory band, partial TFC average, and subjective togetherness

for each experimental condition.

HR RMSSD Resp. freq. Resp TFC HRV TFC pTFC Together.

Baseline 76.4(7.9) 7.2(3.1) 0.63(0.27) 0.58(0.21) 0.32(0.10) 0.12(0.03) N/A

Breathing 75.8(9.4) 10.6(4.0) 0.25(0.08) 0.91(0.05) 0.86(0.06) 0.13(0.04) 0.52(0.24)

SNsync 76.4(8.9) 8.8(3.1) 0.36(0.20) 0.53(0.18) 0.52(0.13) 0.12(0.04) 0.66(0.14)

LN 74.8(7.3) 14.5(4.7) 0.11(0.04) 0.88(0.06) 0.87(0.09) 0.21(0.07) 0.70(0.14)

SNasync 78.4(9.0) 8.8(2.8) 0.17(0.08) 0.50(0.13) 0.53(0.07) 0.12(0.03) 0.67(0.20)

Togetherness values are normalized to the 0–1 range.

TABLE 2 | Comparisons between conditions for heart rate, RMSSD of heart rate variability, time-frequency coherence of respiration signals averaged in the respiration

band, time-frequency coherence of HRV averaged in the respiratory band, partial TFC average and subjective togetherness values.

HR RMSSD Resp TFC HRV TFC pTFC Togeth.

Comparison p-value p-value p-value p-value p-value p-value

Bs and Br 0.9133 0.0016* 0.0078* 0.0039* 0.5703 N/A

Bs and SNsync 0.8107 0.0108* 0.4961 0.0117* N/A N/A

Bs and LN 0.1701 0.0002* 0.0078* 0.0039* 0.0117* N/A

Bs and SNasync 0.0778 0.0074* 0.3594 0.0039* N/A N/A

Br and LN 0.4204 0.0006* 0.1641 0.4258 0.0078* 0.0174

LN and SNsync 0.2668 0.0002* 0.0039* 0.0039* N/A 0.1961

SNsync and SNasync 0.0778 0.8107 0.3008 1 N/A 0.3794

Number of comparisons 7 7 7 7 3 3

*Indicates statistical significance using Holm-Bonferroni correction.

FIGURE 2 | Mean (circles) and SD (bars) for the RMSSD of Heart Rate

Variability. *Represents statistically significant differences, using

Holm-Bonferroni correction.

(p = 0.0039). Respiration signals were not more synchronized
for SNsync or SNasync compared to Bs.

3.3. HRV Coherence in Respiratory Band
Figure 3 shows the time-frequency coherence between HRV
for dyad 1. It can be appreciated that there is an increase in

coherence in Br and LN conditions for a range of frequencies,
with peaks around 0.3 and 0.1Hz and harmonic components at
multiple frequencies. The average coherence in the respiratory
band was greater for Br, LN, and SNasync than Bs (p = 0.0039),
for SNsync than Bs (p = 0.0117), and for LN than SNsync
(p = 0.0039). All results are summarized in Table 2 and
Figure 4.

A stable component at very high frequency (between 0.4 and
0.9Hz) was present in the time-frequency coherence between
HRV for most dyads. To investigate this in more detail we
examined the relationship between the peak frequencies in the
time-frequency coherence between HRV and the frequency of
the vocal bursts (the inverse of the time between the beginnings
of successive bursts). Moving average was applied to the audio
signals to determine the onsets of the vocal bursts and thus
their frequency. In the SNsync condition, participants produced
notes every 1.6 s on average (range of 1–2.5 s), corresponding
to 0.64Hz. For seven out of nine dyads, the average frequency
of vocal bursts matched either the first or second peak in the
corresponding HRV coherence spectra averaged over time for the
SN and LN conditions (see Figure 5). This effect is even clearer
for LN, with 9 out of 9 dyads showing a correspondence between
the first peak in the HRV coupling and the frequency between
bursts. Because the vocal pattern imposes a respiratory rhythm,
we conclude that for SNsync and LN there is an effect of breathing
on HRV.

There was no significant difference between the TFC of
HRV of LN and Br. Additionally, when analyzing the time
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FIGURE 3 | The spectra of the RR intervals for both participants from dyad 1 (A,B) and their coherence spectrum (C). BS1 and BS2 refer to the 60-s baselines before

and after the tasks, respectively. Breathing refers to the breathing condition and LN to the long notes condition. SNsync and SNasync refer to the conditions with

synchronous and asynchronous short notes, respectively.

intervals between successive exhalations using the respiration
signals for both conditions, we found that, on average, the
period of respiration for the Br condition was of 2.8 s
(range of 3.5–5.5 s) vs. an average of 9.1 s (range of 5–
22 s) for the LN condition. Participants were thus having
longer breathing cycles for LN than for Br, which we discuss
in section 4.

3.4. HRV Partial Coherence
In order to determine changes in HRV coherence not related
to RSA, we computed the pTFC, which removes the respiratory
component from the TFC of the dyad’s HRVs (see Figure 6).
We hypothesized that a significant difference between the long
notes and breathing conditions after removing the respiration
component would indicate the presence of another mechanism
beyond RSA. Results are summarized in Table 2 and Figure 7.
Partial TFC was higher during LN than Bs (p = 0.0117)
and Br (p = 0.0078), suggesting that for long notes coupling
between HRV in the two participants occurred beyond the
effect of breathing. We also found no differences in pTFC
during Br vs. Bs conditions, which was expected since these
conditions only differ in the breathing pattern and partial
coherence removes the effect of breathing. For LN, the average
of the TFC on the 0–1Hz range decreased from 0.87 to

FIGURE 4 | Mean and SD for the TFC average on respiration band.

*Represents statistically significant differences using Holm-Bonferroni

correction.

0.21 when removing the effects of respiration (see Table 1),
suggesting the effect of RSA predominantly mediates the
HRV coupling.
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FIGURE 5 | Mean frequency of HRV coherence peaks and of vocal bursts for each dyad, for synchronous short (A) and long notes (B). The correspondence between

the frequency of vocal bursts and the first peak in the HRV coherence is striking for long vocalizations (B). For short vocalizations, there is a correspondence between

the frequency of onsets and one of the first two peaks in the HRV coherence for seven out of nine dyads (A).

3.5. Togetherness
We compared the mean values of togetherness’ subjective
ratings between Br and LN, SNsync and LN, and SNsync
and SNasync. We found no that subjective togetherness was
only greater for LN compared to Br (p = 0.017), although
this remains a trend as results were not significant after
correcting for multiple comparisons. The other comparisons
were not statistically significant. Participants generally agreed
regarding the preferred conditions, indicated by a higher mean
in the reported togetherness. LN had the highest mean for
nine participants, SNasync was preferred by five participants,
SNsync was preferred by two, and Br was preferred by
none. The differences between LN and Br suggest that the
presence of voice has an important effect on the subjective
experience of togetherness. The lack of a statistically significant
result might be due both to sample size and the noisy
nature of these subjective reports. Interestingly, the SNasync
condition was the second preferred condition, suggesting
factors other than synchrony are relevant for participants when
rating togetherness.

Three kinds of togetherness experiences emerged from the
interviews. First, some participants referred to the experience
with words such as “existential” or “meditative” and reported
it was an “intimate experience” allowing to have a joint
expression with someone else. For instance, some people

reported having felt more connected than they would by
means of conversation. Second, particularly with regards to the
asynchronous condition, some participants were engaged by the
fact that the interaction was “playful,” and that they could come
up with ideas more freely than in the synchronous ones. The
possibility of responding to each other asynchronously allowed
for a call and response game and hence appraised as more
interactive. Third, participants found that having a common goal
and pursuing it as a team contributed to their experience of
togetherness. Some participants reported that they experienced
less togetherness in more chaotic parts of the interaction, while
more “harmonic” parts gave rise to more togetherness. We
speculate that more chaotic interactions could be interpreted
as an absence of a common goal by some participants. The
previous themes indicate that the construct of togetherness
can be divided into at least three different components, which
we introduce here as the existential, playful, and common-
goal togetherness.

We were also interested in exploring how the self-
reported challenge level of the tasks could relate to the
experienced togetherness. We found no significant differences
in how the participants rated the challenge level of each
task and the correlation between the subjectively reported
challenge level and the average togetherness was very
weak (r = 0.19).
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FIGURE 6 | The spectra of the RR intervals for both participants from dyad 1 (A,B), the respiration signal from participant 1 (C), and their partial time-frequency

coherence (D). Name of the conditions is the same as in Figure 3.

FIGURE 7 | Mean and standard deviation of the average of time-frequency

coherence after removing the respiration component. *Represents statistically

significant differences using Holm-Bonferroni correction.

4. DISCUSSION

This study shows that synchronization of respiration mediates
HRV coupling when non-experts vocalize together, expanding
upon previous results (Müller and Lindenberger, 2011; Vickhoff

et al., 2013). By comparing the strength of the coupling before
and after removing the respiration signal, we conclude that RSA
accounts for a significant part of the effect. The finding that HRV
coupling was higher after analytically removing the respiration
component from the TFC for synchronized long notes but not
for synchronized breathing suggests that a mechanism other than
RSA also contributes to HRV coupling when vocalizing together.
The main difference between LN and Br is the presence of voice,
suggesting that either synchronization of vocal muscular action
or perception of voice might mediate HRV coupling. Since the
vagus nerve links the vocal chords, facial expressions, and heart
rate (Porges, 2001), it may be possible that the voice affects HRV
by means of the ANS.

The analysis of the audio recordings shows that the
frequency of vocal bursts and HRV peaks matched for both
synchronized, short, and long note conditions. Differences

between synchronized short and long vocalizations can be due
to various reasons, such as different physiological mechanisms
operating at different frequencies. For the specific tasks that
were used, when making long notes, people synchronized both
the beginnings and ends of the vocalizations; for short notes,
however, people inhaled at different times. In addition, very
short notes, made every 1 or 2 s, are likely to have a frequency
that is close to the heart rate, and hence are less likely to
appear in the spectral analysis due to the heart rate being the
natural sampling frequency. Our results show that although
frequencies above 0.4Hz are typically not considered in the HRV
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analyses, some coupling persists even at higher frequencies, and
the respiratory spectral band should be adjusted to respiration
(Orini et al., 2012c). An implication of these results is the
possibility to make vocal interventions targeting HRV coupling
at specific frequencies.

The time-frequency coherence of respiration and of HRV do
not match for SNsync and SNasync (see Table 2), suggesting
respiration synchrony does not mediate the observed HRV
entrainment for short notes. However, in the context of the tasks
that were used in this study, the breathing patterns were not
controlled and hence the quality of the respiration signals might
have been different for short and long notes. While for LN and
Br conditions, participants made deeper and more synchronized
breaths that fluctuated between two values, for the short notes
conditions (SNsync and SNasync), they had freedom to inhale
between each pair of vocalizations or to take longer breaths,
inhaling only occasionally. Furthermore, the fact that TFC of
HRVs was higher during SNasync than during Bs may indicate
that participants’ vocalizations were coupled, even if they were
explicitly asked to perform their notes at different times. We
observed that for most dyads and in the SNasync condition,
participants timed their short notes in response to their partners
(as in the call and response dynamic noted earlier), hence
producing some degree of synchrony in the TFC analyses, which
yields high values for phase-delayed signals.

Musical entrainment usually refers to the entrainment to a
musical beat, which is only possible for frequencies above 0.5Hz,
with a period between beats lower than 2 s (Repp and Doggett,
2007). In our study, only the synchronized short notes condition
allowed for such entrainment. Because we found a stronger HRV
coupling for vocalizations of longer duration, we conclude that
HRV entrainment is primarily due to RSA and is independent
of beat entrainment. This is consistent with the four levels of
entrainment proposed by Trost et al. (2017) and stresses that
aspects other than those related to musical tempo entrain during
music interaction and might play a role in affective states. This
makes a case for studying music with weak or no sense of
beat, as is found in many segments of traditional music and
some types of contemporary music, such as drone, ambient, and
soundscape genres.

HRV is affected by emotional arousal and valence (Orini
et al., 2010, 2019) and is considered a “biomarker of successful
emotional regulation,” which is the capacity of an individual
to maintain positive emotions despite unfavorable contexts
(Christou-Champi et al., 2015). Individuals regulate their
emotions using slow paced breathing (Song and Lehrer, 2003)
presumably by imposing a rhythm on the heart activity patterns,
affecting the rest of the body and the brain. The heart-
brain connection is being increasingly studied (Dunn et al.,
2010; Mather and Thayer, 2018) and RSA has been effectively
exploited to affect psychological states (Lehrer and Gevirtz,
2014). One of the possible implications of HRV entrainment
between people is a potential role in bonding, by simultaneously
affecting the psycho-physiological state (Bernardi et al., 2017)
or by facilitating coordination by means of synchronizing inner
rhythms (Vickhoff et al., 2013). These are yet to be supported
by research.

Contrary to our initial hypothesis, we did not find a strong
correlation/interaction between dyadic HRV coupling and a
subjective experience of togetherness. In fact, the subjective
experience of togetherness is a complex construct and unlikely
to be reducible to a physiological marker. We speculate that
at least three factors contribute to the subjective experience of
togetherness: having a common-goal, playfulness, and existential
togetherness. The common-goal factor likely operates at a more
abstract level, involving cognitive appraisals of joint success in
the task. We assume that this component is not related to
autonomic physiological synchrony, because all participants can
simultaneously have different appraisals of the same situation.
The playful aspect seems to be closely linked to language in the
sense that it relates to a call and response interaction. It was
mostly reported with regards to the asynchronous condition,
where HRV coupling was not significant. The playfulness
component is therefore also unlikely to be related to autonomic
physiological synchronization. Lastly, the existential aspect of
togetherness involves a sense of sameness, which may arise
when people are doing the same action [“we-agency”, as in
Vickhoff et al. (2013)]. This is associated with “oneness” and
“spiritual” experiences, typical of many singing contexts (Dingle
et al., 2013). We speculate that if HRV coupling is related
to a togetherness experience, the existential component of
togetherness would be the most relevant. Further research is
required to establish whether more specific subjective reports
of existential togetherness consistently correlate with autonomic
physiological synchrony.

5. CONCLUSION

This study shows that HRV of non-expert singing together
shows a higher level of coupling than during baseline. We
found that making synchronous long vocalizations produced
greater coupling in the respiration band of the heart rate
variability coherence compared to making short vocalizations.
In addition, for synchronized long vocalizations but not for
synchronized breathing, HRV coupling was greater than baseline
after removing the effect of respiration. These results suggest that
while HRV coupling was mainly driven by a synchronization
of the respiratory activity, joint vocalization also contributes to
HRV coupling beyond the effect of respiration.

Subjectively experienced togetherness did not show
correlations with physiological synchrony, likely due to
the complexity of the togetherness construct. Detailed
interviews identified three main components to subjective
togetherness, which we introduce here as the existential,
playful, and common-goal togetherness. Future research is
needed to assess the interaction between these components and
autonomic physiological synchrony and the potential benefit of
interventions resulting in HRV entrainment between people.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Physiology | www.frontiersin.org 10 September 2020 | Volume 11 | Article 762144

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ruiz-Blais et al. HRV Synchronization in Non-expert Vocalization

ETHICS STATEMENT

The studies involving human participants were
reviewed and approved by Queen Mary Ethics of
Research Committee. The participants provided
their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

SR-B, EC, and MO contributed conception and
design of the study. SR-B performed the statistical
analysis and wrote the manuscript. MO provided the
analysis tools. All authors contributed to discussion
and manuscript revision and read and approved the
submitted version.

FUNDING

This result is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant
agreement No. 788960). SR-B has also received support as
a doctoral student in the Engineering and Physical Sciences
Research Council (EPSRC) and the Arts and Humanities
Research Council (AHRC) Centre for Doctoral Training in
Media and Arts Technology at Queen Mary University of
London (EP/L01632x/1).

ACKNOWLEDGMENTS

We wish to thank the QMUL Experimental Psychology
Department for the use of their physiology equipment
and facilities.

REFERENCES

Bernardi, N. F., Codrons, E., Di Leo, R., Vandoni, M., Cavallaro, F., Vita, G., et al.

(2017). Increase in synchronization of autonomic rhythms between individuals

when listening to music. Front. Physiol. 8:785. doi: 10.3389/fphys.2017.00785

Christou-Champi, S., Farrow, T. F., and Webb, T. L. (2015). Automatic

control of negative emotions: evidence that structured practice

increases the efficiency of emotion regulation. Cogn. Emot. 29, 319–331.

doi: 10.1080/02699931.2014.901213

Clayton, M. (2012). What is entrainment? definition and applications in musical

research. Empir. Musicol. Rev. 7, 49–56. doi: 10.18061/1811/52979

Clift, S., and Hancox, G. (2010). The significance of choral singing for

sustaining psychological wellbeing: findings from a survey of choristers

in England, Australia and Germany. Music Perform. Res. 3, 79–96.

doi: 10.1386/jaah.1.1.19/1

De Jaegher, H., Di Paolo, E., and Gallagher, S. (2010). Can social

interaction constitute social cognition? Trends Cogn. Sci. 14, 441–447.

doi: 10.1016/j.tics.2010.06.009

Dingle, G. A., Brander, C., Ballantyne, J., and Baker, F. A. (2013). To be heard:

the social and mental health benefits of choir singing for disadvantaged adults.

Psychol. Music 41, 405–421. doi: 10.1177/0305735611430081

Dunbar, R. (2017). Group size, vocal grooming and the origins of language.

Psychon. Bull. Rev. 24, 209–212. doi: 10.3758/s13423-016-1122-6

Dunn, B. D., Galton, H. C., Morgan, R., Evans, D., Oliver, C., Meyer, M.,

et al. (2010). Listening to your heart: how interoception shapes emotion

experience and intuitive decision making. Psychol. Sci. 21, 1835–1844.

doi: 10.1177/0956797610389191

Grossman, P., and Taylor, E. W. (2007). Toward understanding respiratory

sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral

functions. Biol. Psychol. 74, 263–285. doi: 10.1016/j.biopsycho.2005.11.014

Hayward, G. (2014). Singing as one: community in synchrony (Ph.D. thesis).

Cambridge University, Cambridge, United Kingdom.

Himberg, T., Laroche, J., Bigé, R., Buchkowski, M., and Bachrach, A. (2018).

Coordinated interpersonal behaviour in collective dance improvisation: the

aesthetics of kinaesthetic togetherness. Behav. Sci. 8:23. doi: 10.3390/bs8020023

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J.

Stat. 6, 65–70.

Judd, M., and Pooley, J. A. (2014). The psychological benefits of participating in

group singing for members of the general public. Psychol. Music 42, 269–283.

doi: 10.1177/0305735612471237

Konvalinka, I., Vuust, P., Roepstorff, A., and Frith, C. D. (2010). Follow you, follow

me: continuous mutual prediction and adaptation in joint tapping. Q. J. Exp.

Psychol. 63, 2220–2230. doi: 10.1080/17470218.2010.497843

Kreutz, G. (2014). Does singing facilitate social bonding.Music Med. 6, 51–60.

Lehrer, P. M., and Gevirtz, R. (2014). Heart rate variability biofeedback: how and

why does it work? Front. Psychol. 5:756. doi: 10.3389/fpsyg.2014.00756

Mather, M., and Thayer, J. F. (2018). How heart rate variability affects

emotion regulation brain networks. Curr. Opin. Behav. Sci. 19, 98–104.

doi: 10.1016/j.cobeha.2017.12.017

Müller, V., and Lindenberger, U. (2011). Cardiac and respiratory patterns

synchronize between persons during choir singing. PLoS ONE 6:e24893.

doi: 10.1371/journal.pone.0024893

Nachmanovitch, S. (1990). Free Play: Improvisation in Life and Art. New York, NY:

Putnam.

Noy, L., Dekel, E., and Alon, U. (2011). The mirror game as a paradigm

for studying the dynamics of two people improvising motion together.

Proc. Natl. Acad. Sci. U.S.A. 108, 20947–20952. doi: 10.1073/pnas.11081

55108

Noy, L., Levit-Binun, N., and Golland, Y. (2015). Being in the zone: physiological

markers of togetherness in joint improvisation. Front. Hum. Neurosci. 9:187.

doi: 10.3389/fnhum.2015.00187

Orini, M., Al-Amodi, F., Koelsch, S., and Bailón, R. (2019). The effect of emotional

valence on ventricular repolarization dynamics is mediated by heart rate

variability: a study of QT variability and music-induced emotions. Front.

Physiol. 10:1465. doi: 10.3389/fphys.2019.01465

Orini, M., Bailón, R., Enk, R., Koelsch, S., Mainardi, L., and Laguna, P. (2010).

A method for continuously assessing the autonomic response to music-

induced emotions through HRV analysis.Med. Biol. Eng. Comput. 48, 423–433.

doi: 10.1007/s11517-010-0592-3

Orini, M., Bailón, R., Laguna, P., Mainardi, L. T., and Barbieri, R. (2012a). A

multivariate time-frequencymethod to characterize the influence of respiration

over heart period and arterial pressure. EURASIP J. Adv. Signal Process. 214:214.

doi: 10.1186/1687-6180-2012-214

Orini, M., Bailon, R., Mainardi, L. T., Laguna, P., and Flandrin, P. (2012b).

Characterization of dynamic interactions between cardiovascular signals

by time-frequency coherence. IEEE Trans. Biomed. Eng. 59, 663–673.

doi: 10.1109/TBME.2011.2171959

Orini, M., Laguna, P., Mainardi, L., and Bailón, R. (2012c). Assessment of the

dynamic interactions between heart rate and arterial pressure by the cross time–

frequency analysis. Physiol. Meas. 33:315. doi: 10.1088/0967-3334/33/3/315

Orini, M., Pueyo, E., Laguna, P., and Bailón, R. (2017a). A time-varying

nonparametric methodology for assessing changes in QT variability

unrelated to heart rate variability. IEEE Trans. Biomed. Eng. 65, 1443–1451.

doi: 10.1109/TBME.2017.2758925

Orini, M., Tinker, A., Munroe, P. B., and Lambiase, P. D. (2017b). Long-

term intra-individual reproducibility of heart rate dynamics during

exercise and recovery in the UK biobank cohort. PLoS ONE 12:e0183732.

doi: 10.1371/journal.pone.0183732

Frontiers in Physiology | www.frontiersin.org 11 September 2020 | Volume 11 | Article 762145

https://doi.org/10.3389/fphys.2017.00785
https://doi.org/10.1080/02699931.2014.901213
https://doi.org/10.18061/1811/52979
https://doi.org/10.1386/jaah.1.1.19/1
https://doi.org/10.1016/j.tics.2010.06.009
https://doi.org/10.1177/0305735611430081
https://doi.org/10.3758/s13423-016-1122-6
https://doi.org/10.1177/0956797610389191
https://doi.org/10.1016/j.biopsycho.2005.11.014
https://doi.org/10.3390/bs8020023
https://doi.org/10.1177/0305735612471237
https://doi.org/10.1080/17470218.2010.497843
https://doi.org/10.3389/fpsyg.2014.00756
https://doi.org/10.1016/j.cobeha.2017.12.017
https://doi.org/10.1371/journal.pone.0024893
https://doi.org/10.1073/pnas.1108155108
https://doi.org/10.3389/fnhum.2015.00187
https://doi.org/10.3389/fphys.2019.01465
https://doi.org/10.1007/s11517-010-0592-3
https://doi.org/10.1186/1687-6180-2012-214
https://doi.org/10.1109/TBME.2011.2171959
https://doi.org/10.1088/0967-3334/33/3/315
https://doi.org/10.1109/TBME.2017.2758925
https://doi.org/10.1371/journal.pone.0183732
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ruiz-Blais et al. HRV Synchronization in Non-expert Vocalization

Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O.,

McGee, H. A., Liu, S., et al. (2017). Interpersonal autonomic physiology:

a systematic review of the literature. Pers. Soc. Psychol. Rev. 21, 99–141.

doi: 10.1177/1088868316628405

Pearce, E., Launay, J., and Dunbar, R. I. (2015). The ice-breaker effect:

singing mediates fast social bonding. Open Sci. 2:150221. doi: 10.1098/rsos.

150221

Porges, S. W. (2001). The polyvagal theory: phylogenetic substrates

of a social nervous system. Int. J. Psychophysiol. 42, 123–146.

doi: 10.1016/S0167-8760(01)00162-3

Repp, B. H., and Doggett, R. (2007). Tapping to a very slow beat: a

comparison of musicians and nonmusicians. Music Percept. 24, 367–376.

doi: 10.1525/mp.2007.24.4.367

Saul, J. P. (1990). Beat-to-beat variations of heart rate reflect

modulation of cardiac autonomic outflow. Physiology 5, 32–37.

doi: 10.1152/physiologyonline.1990.5.1.32

Sin, P. Y., Galletly, D. C., and Tzeng, Y. (2010). Influence of breathing frequency

on the pattern of respiratory sinus arrhythmia and blood pressure: old

questions revisited. Am. J. Physiol. Heart Circ. Physiol. 298, H1588–H1599.

doi: 10.1152/ajpheart.00036.2010

Song, H.-S., and Lehrer, P. M. (2003). The effects of specific respiratory rates on

heart rate and heart rate variability. Appl. Psychophysiol. Biofeedback 28, 13–23.

doi: 10.1023/A:1022312815649

Spiro, N., and Himberg, T. (2012). “Musicians and non-musicians adapting to

tempo differences in cooperative tapping tasks,” in Proceedings of the 12th

International Conference on Music perception and Cognition and the 8th

Triennial Conference of the European Society for the Cognitive Sciences of Music

(Thessaloniki), 950–955.

Tarr, B., Launay, J., and Dunbar, R. I. M. (2014). Music and social bonding:

“self-other" merging and neurohormonal mechanisms. Front. Psychol. 5:1096.

doi: 10.3389/fpsyg.2014.01096

Trost, W., Labbé, C., and Grandjean, D. (2017). Rhythmic entrainment

as a musical affect induction mechanism. Neuropsychologia 96, 96–110.

doi: 10.1016/j.neuropsychologia.2017.01.004

Vickhoff, B., Malmgren, H., Åström, R., Nyberg, G., Ekström, S.-R., Engwall, M.,

et al. (2013). Music structure determines heart rate variability of singers. Front.

Psychol. 4:334. doi: 10.3389/fpsyg.2013.00334

Widjaja, D., Orini, M., Vlemincx, E., and Van Huffel, S. (2013). Cardiorespiratory

dynamic response to mental stress: a multivariate time-frequency analysis.

Comput. Math. Methods Med. 2013:451857. doi: 10.1155/2013/451857

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ruiz-Blais, Orini and Chew. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 762146

https://doi.org/10.1177/1088868316628405
https://doi.org/10.1098/rsos.150221
https://doi.org/10.1016/S0167-8760(01)00162-3
https://doi.org/10.1525/mp.2007.24.4.367
https://doi.org/10.1152/physiologyonline.1990.5.1.32
https://doi.org/10.1152/ajpheart.00036.2010
https://doi.org/10.1023/A:1022312815649
https://doi.org/10.3389/fpsyg.2014.01096
https://doi.org/10.1016/j.neuropsychologia.2017.01.004
https://doi.org/10.3389/fpsyg.2013.00334
https://doi.org/10.1155/2013/451857
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Frontiers in Physiology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 542183

BRIEF RESEARCH REPORT
published: 18 September 2020

doi: 10.3389/fphys.2020.542183

Edited by: 
Tijana Bojić,  

University of Belgrade, Serbia

Reviewed by: 
Michele Orini,  

University College London,  
United Kingdom

Evan L. Matthews,  
Montclair State University,  

United States

*Correspondence: 
Stefan Brunner  

stefan.brunner@med.uni-muenchen.de

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Autonomic Neuroscience,  
a section of the journal  
Frontiers in Physiology

Received: 11 March 2020
Accepted: 27 August 2020

Published: 18 September 2020

Citation:
Schüttler D, von Stülpnagel L, 

Rizas KD, Bauer A, Brunner S and 
Hamm W (2020) Effect of 

Hyperventilation on Periodic 
Repolarization Dynamics.

Front. Physiol. 11:542183.
doi: 10.3389/fphys.2020.542183

Effect of Hyperventilation on Periodic 
Repolarization Dynamics
Dominik Schüttler1,2,3, Lukas von Stülpnagel1,4, Konstantinos D. Rizas1,2, Axel Bauer  2,4, 
Stefan Brunner1*† and Wolfgang Hamm1,2†

1 Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludwig-Maximilians University Munich (LMU), Munich, 
Germany, 2 DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, 
Germany, 3 Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Munich, Germany, 
4 University Hospital for Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria

Heart and lung functions are closely connected, and the interaction is mediated by the 
autonomic nervous system. Hyperventilation has been demonstrated to especially activate 
its sympathetic branch. However, there is still a lack of methods to assess autonomic 
activity within this cardiorespiratory coupling. Periodic repolarization dynamics (PRD) is 
an ECG-based biomarker mirroring the effect of efferent cardiac sympathetic activity on 
the ventricular myocardium. Its calculation is based on beat-to-beat variations of the T 
wave vector (dT°). In the present study, we  investigated the effects of a standardized 
hyperventilation maneuver on changes of PRD and its underlying dT° signal in 11 healthy 
subjects. In response to hyperventilation, dT° revealed a characteristic pattern and 
normalized dT° values increased significantly compared to baseline [0.063 (IQR 0.032) 
vs. 0.376 (IQR 0.093), p < 0.001] and recovery [0.082 (IQR 0.029) vs. 0.376 (IQR 0.093), 
p < 0.001]. During recovery, dT° remained on a higher level compared to baseline 
(p = 0.019). When calculating PRD, we found significantly increased PRD values after 
hyperventilation compared to baseline [3.30 (IQR 2.29) deg2 vs. 2.76 (IQR 1.43) deg2, 
p = 0.018]. Linear regression analysis revealed that the increase in PRD level was 
independent of heart rate (p = 0.63). Our pilot data provide further insights in the effect 
of hyperventilation on sympathetic activity associated repolarization instability.

Keywords: hyperventilation, autonomic function, sympathetic nervous system, repolarization instability, T wave vector, 
periodic repolarization dynamics

INTRODUCTION

Our breathing and heart rate as well as heart function are linked and controlled by the 
autonomic nervous system. This close connection has been described earlier with heart rates 
slowing during expiration and a relative tachycardia evolving during inspiration due to vagolytic 
effects, the so called respiratory sinus arrhythmia (RSA; Yasuma and Hayano, 2004). It is 
hypothesized that the RSA facilitates efficient respiratory gas exchanges and decreases the 
workload of the heart while maintaining blood gases in physiological levels (Ben-Tal et al., 2012). 

147

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.542183﻿&domain=pdf&date_stamp=2020-09-18
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.542183
https://creativecommons.org/licenses/by/4.0/
mailto:stefan.brunner@med.uni-muenchen.de
https://doi.org/10.3389/fphys.2020.542183
https://www.frontiersin.org/articles/10.3389/fphys.2020.542183/full
https://www.frontiersin.org/articles/10.3389/fphys.2020.542183/full


Schüttler et al. Hyperventilation Alters Periodic Repolarization Dynamics

Frontiers in Physiology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 542183

Respiratory dysfunction can influence cardiovascular health, 
and cardiovascular diseases are often associated with respiratory 
diseases (Garcia et al., 2013). Breathing disorders and pulmonary 
diseases are tightly linked to autonomic dysfunction (van Gestel 
and Steier, 2010; Milagro et  al., 2019). On the other hand, it 
has been demonstrated that the maintenance of correct 
cardiorespiratory coupling exerts beneficial cardiovascular effects 
in patients with an attenuated RSA (Ben-Tal et  al., 2012).

Hyperventilation especially activates the sympathetic nervous 
system and results in physiological changes of the cardiovascular 
system: it increases heart rate and blood pressure most likely 
due to attenuated baroreceptor sensitivity (Alexopoulos et  al., 
1995; Van De Borne et  al., 2000). Concomitant loss of arterial 
carbon dioxide levels has been connected to various diseases 
including cerebral and cardiorespiratory disorders (Laffey and 
Kavanagh, 2002). Additionally, hyperventilation has been 
demonstrated to affect the repolarization phase of the cardiac 
cycle by inducing repolarization abnormalities including ST 
depression and T wave inversion (Alexopoulos et  al., 1996).

Respiratory changes exert influences on autonomic nervous 
activity and thus controlled breathing maneuvers have been 
used to evaluate autonomic activity and detect dysfunctional 
states in cardiovascular diseases (Badra et al., 2001). Hawkins 
et al. (2019), for example, found significantly reduced responses 
of heart rate in patients with heart failure and coronary 
heart disease during hyperventilation compared to a 
healthy cohort.

To non-invasively assess autonomic function, different heart 
rate and ECG-based biomarkers have been established so far. 
Here, especially parameters derived from beat-to-beat alterations 
of the T wave such as microvolt T wave alternans and periodic 
repolarization dynamics (PRD) have been of increasing interest 
as especially the repolarization phase is modulated by the 
sympathetic nervous system and these parameters have been 
shown to predict the risk for the development of malignant 
arrhythmias and mortality (Kaufman et al., 2006; Salerno-Uriarte 
et  al., 2007; Verrier et  al., 2011; Rizas et  al., 2014, 2017; Aro 
et al., 2016; Bauer et al., 2019). PRD is an ECG-based biomarker 
which most probably reflects the effect of sympathetic nervous 
activity on the ventricular myocardium. Its calculation is based 
on the quantification of low-frequency oscillations (≤0.1  Hz) 
of cardiac repolarization. In a first step, the angle between 
successive repolarization vectors (dT°) is determined. Subsequently, 
low-frequency components are assessed using wavelet analysis 
(Rizas et al., 2014). It is known that increased PRD is associated 
with increased mortality and cardiovascular mortality in patients 
with ischemic as well as non-ischemic cardiomyopathy 
(Rizas et  al., 2014, 2017; Bauer et  al., 2019).

In this manuscript, we  sought to investigate the effect of 
a standardized hyperventilation maneuver on PRD in a cohort 
comprised of healthy individuals.

MATERIALS AND METHODS

In the present study, we  included 11 healthy adults (nine men, 
two women, and mean age 31.0 years in a range of 25–49 years). 

We  performed a standardized hyperventilation maneuver that 
has been described in different studies before (Guensch et  al., 
2014; Fischer et  al., 2016; Roubille et  al., 2017): in brief, after 
a resting phase in a seated position for 10  min, volunteers 
performed hyperventilation at a respiratory rate of 30/min 
for 1  min followed by an apnea phase as long as tolerated. 
Afterward, study participants stayed in seated rest until the 
end of the study. During the entire study time of 20  min, 
we tracked the spatiotemporal properties of cardiac repolarization 
on a beat-to-beat basis via a high-resolution ECG (Schiller 
medilog AR4 plus, 1,000  Hz) in orthogonal Frank-lead 
configuration. Standardized ECG filter settings (high-pass 
0.1  Hz; low-pass 100  Hz) were used. The ECG-signals were 
analyzed using MATLAB with established algorithms for 
calculation of PRD. In particular, for the assessment of dT°, 
the spatiotemporal information of each T wave has been firstly 
integrated into a single vector T°. The instantaneous degree 
of repolarization instability was subsequently calculated by 
means of the angle dT° between two successive T° vectors 
and plotted over time (Rizas et  al., 2014). PRD is calculated 
by the use of wavelet analysis in the low-frequency spectrum 
(≤0.1  Hz). PRD was calculated out of 5  min ECG intervals: 
PRD before hyperventilation (baseline) was computed between 
5 and 10 min. PRD after hyperventilation was calculated within 
the 5-min interval directly following the apnea phase of each 
volunteer. The PRD calculation was performed as previously 
described (Rizas et  al., 2014).

Normalization of the dT° signal and illustration of data 
were performed using R-software. Additionally, we  recorded 
high-resolution ECGs (1,000 Hz) in Frank-lead configuration 
during spirometry-controlled ventilation at breathing rates 
of 10 and 20/min with constant and normal minute ventilation 
(tidal volume: 6–8 ml/kg; estimated dead space for adjustment 
at different breathing rates: 2  ml/kg) in 10 volunteers to 
check influences of breathing rates on dT° and PRD levels. 
Furthermore, we  performed an isometric handgrip (IHG) 
test in 10 individuals. The maximal voluntary contraction 
of the dominant forearm was estimated from three 3-s attempts 
by the use of a digital dynamometer (Takei Digital Hand 
Grip Dynamometer). After a 5-min baseline period, subjects 
had to perform a 2-min period of IHG at 30% of maximal 
voluntary contraction using their dominant forearm. This 
was followed by a 5-min recovery period. Throughout the 
test, we  continuously recorded high-resolution ECGs 
(1,000  Hz) in Frank-lead configuration and calculated PRD 
from the 5-min segments before and directly after the 
isometric exercise.

Values show median and interquartile ranges. Mann-Whitney-
Wilcoxon test was used to reveal statistical differences between 
dT° values before, during, and after hyperventilation as well 
as PRD values before and after hyperventilation. Significance 
was indicated by two-sided values of p  <  0.05. Spearman 
analyses were used to detect the correlation between dT° and 
heart rate as well as PRD and heart rate before and after 
hyperventilation. Linear regression analysis was performed to 
test the association between PRD and change in heart rate 
(dependent variable: PRD after hyperventilation; independent 
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variables: PRD at baseline before hyperventilation and differences 
in heart rate before and after hyperventilation).

RESULTS

Figure  1 visualizes the principle of dT° assessment from 
orthogonal ECG-leads. dT° signals showed a characteristic 
pattern in response to hyperventilation: after start of the 
breathing maneuver, dT° signals increased markedly with a 
noticeable delay. dT° signals peaked at the end or slightly 
after termination of hyperventilation. Figure  1 (lower panel) 
shows a schematic illustration of the dT° signal during our 
experimental setting. Figure  2A shows normalized dT° data 
for all 11 study participants. During hyperventilation, 
normalized dT° signals significantly increased compared to 
baseline [0.376 (IQR 0.093) vs. 0.063 (IQR 0.032), p  <  0.001] 
and recovery [0.376 (IQR 0.093) vs. 0.082 (IQR 0.029), 
p  <  0.001].

During recovery, dT° signals remained significantly elevated 
compared to levels detected in the resting phase before 
hyperventilation (p  =  0.019). Mean heart rate (MHR) changed 
concordantly to the increased dT° signals: MHR increased 
significantly during hyperventilation [91.1 (IQR 10.2) bpm] 
compared to resting phase [73.2 (IQR 5.7) bpm; p  <  0.001] 
and decreased in the recovery phase [72.6 (IQR 7.2) bpm; 
p  <  0.001 for hyperventilation vs. recovery]. The recorded dT° 
signal was further used to assess PRD in order to investigate 
sympathetic activity associated repolarization instability.

We detected significantly increased values of PRD after 
hyperventilation compared to baseline levels [3.30 (IQR 2.29) 
deg2 vs. 2.76 (IQR 1.43) deg2; p  =  0.018; Figure  3]. Moreover, 
there was no association between the difference of mean dT° 
and the differences of MHRs (R  =  0.17, p  =  0.61; Spearman 
correlation) as well as between the difference of mean PRD 
and the difference of MHRs before and after hyperventilation 
(R  =  −0.032; p  =  0.93; Spearman correlation). Furthermore, 
we  found no correlation between absolute levels of dT° and 
heart rate before (R  =  −0.33, p  =  0.33; Spearman correlation) 
or after hyperventilation (R  =  −0.23, p  =  0.5; Spearman 
correlation). Similar results were found for absolute levels of 
PRD and heart rate before (R  =  0.036, p  =  0.92; Spearman 
correlation) and after hyperventilation (R  =  0.39, p  =  0.24; 
Spearman correlation).

Of note, dT° signals remained stable when comparing 
respiratory rates of 10 and 20/min with constant minute 
ventilation in an additional experiment [7.16 (IQR 1.749) vs. 
6.86 (IQR 2.50), p  =  0.32]. Figure  2B shows an exemplary 
dT° signal of one study participant. Also, PRD levels during 
controlled breathing (10 vs. 20/min) with constant minute 
ventilation revealed no statistically significant difference  
[PRD10/min  =  3.17 (IQR 0.30) vs. PRD20/min  =  3.08 (IQR 0.36), 
p  =  0.275, n  =  10].

To further exclude heart rate changes as a confounding 
factor, we  performed linear regression analysis. The level of 
PRD after hyperventilation was not associated with baseline 
levels of PRD and change of heart rate before and after 
hyperventilation (p  =  0.63).

FIGURE 1 | Principle of dT° calculation: spatiotemporal information of each 
T wave is integrated into a single vector T°. The instantaneous degree of 
repolarization instability is calculated by the angle dT° between two 
successive T° vectors and plotted over time. During hyperventilation,  
dT° shows a characteristic pattern.

A

B

FIGURE 2 | Normalized dT° signals of each study participant (n = 11).  
(A) dT° signal at two different respiratory rates (10 and 20/min) and normal 
minute ventilation (B).
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Isometric handgrip tests at 30% of maximal voluntary 
contraction showed no significant difference between PRD 
levels before (2.82, IQR 1.74) and after (3.17, IQR 1.77) 
contraction (p  =  0.541).

DISCUSSION

In the present study, we  were able to detect a characteristic 
repolarization pattern in a cohort of healthy young adults during 
a standardized hyperventilation test. PRD levels were significantly 
higher after the breathing maneuver. Hyperventilation thus 
seems to represent a non-invasive method to induce efferent 
sympathetic activity on the ventricular myocardium.

T wave signals can be  affected by breathing patterns per 
se due to a shift in electrical axis. Nevertheless, we saw increased 
dT° signals with a delay after the onset of hyperventilation 
with the peak of dT° close to the end of hyperventilation. 
Additionally, spirometry-controlled changes of breathing rates 
with constant minute ventilation had no influence on dT° 
and PRD levels. Moreover, PRD explicitly quantifies 
low-frequency patterns of repolarization components (≤0.1 Hz). 
High-frequency components, as those observed because of 
electrical axis shift during hyperventilation are actively filtered 
out during calculation of PRD. This effect has been shown 
using cross-spectral analysis between PRD and respiratory rate 
in a swine model (Rizas et  al., 2014).

In the present study, there was no correlation between 
heart rate changes and dT° as well as PRD changes. Previous 
studies showed that an increase of heart rate by means of 
fixed atrial pacing had no relevant effect on dT° and PRD 
levels (Rizas et  al., 2014; Hamm et  al., 2019). Furthermore, 
linear regression analysis excluded heart rate as a confounding 
factor for increased sympathetic activity associated repolarization 
instability. Nevertheless, efferent cardiac sympathetic activity 
remained elevated when calculating PRD after hyperventilation 
compared to baseline levels. Our findings are in line with a 
recent study, where increased muscle sympathetic nerve activity 
(MSNA) could be  measured during the apnea phase following 

a short phase of hyperventilation (Eckberg et  al., 2016). 
We  additionally performed an IHG test as this maneuver has 
been demonstrated to increase sympathetic activity (Ray and 
Carrasco, 2000). Here, we  were not able to detect significant 
changes of PRD levels, indicating no influence on sympathetic 
activity mediated repolarization instability. Activation of the 
sympathetic nervous system via IHG has been demonstrated 
by the use of microelectrodes into the peroneal nerve (Victor 
et al., 1988; Ray and Carrasco, 2000) or pupil dilation responses 
(Nielsen and Mather, 2015). However, it should be  noted, that 
measurements of sympathetic arousal of the skeletal muscle 
might not be  representative of efferent cardiac sympathetic 
activity. In our experiments, we were not able to detect changed 
PRD levels after IHG but after hyperventilation indicating 
differences between those two provocation tests regarding 
sympathetic activation.

Our pilot data provide further insights in the effect of 
hyperventilation on sympathetic activity associated repolarization 
instability. This simple and easily reproducible test could be useful 
to detect underlying autonomic dysfunctions in patients with 
cardiovascular or pulmonary/breathing disorders such as heart 
failure or sleep apnea.
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Spontaneous baroreflex sensitivity (BRS) is a widely used tool for the quantification of the
cardiovascular regulation. Numerous groups use the xBRS method, which calculates
the cross-correlation between the systolic beat-to-beat blood pressure and the R-R
interval (resampled at 1 Hz) in a 10 s sliding window, with 0–5 s delays for the
interval. The delay with the highest correlation is selected and, if significant, the quotient
of the standard deviations of the R-R intervals and the systolic blood pressures is
recorded as the corresponding xBRS value. In this paper we test the hypothesis that the
xBRS method quantifies the causal interactions of spontaneous BRS from non-invasive
measurements at rest. We use the term spontaneous BRS in the sense of the sensitivity
curve is calculated from non-interventional, i.e., spontaneous, baroreceptor activity. This
study includes retrospective analysis of 1828 measurements containing ECG as well as
continues blood pressure under resting conditions. Our results show a high correlation
between the heart rate – systolic blood pressure variability (HRV/BPV) quotient and the
xBRS (r = 0.94, p < 0.001). For a deeper understanding we conducted two surrogate
analyses by substituting the systolic blood pressure by its reversed time series. These
showed that the xBRS method was not able to quantify causal relationships between the
two signals. It was not possible to distinguish between random and baroreflex controlled
sequences. It appears xBRS rather determines the HRV/BPV quotient. We conclude
that the xBRS method has a potentially large bias in characterizing the capacity of the
arterial baroreflex under resting conditions. During slow breathing, estimates for xBRS
are significantly increased, which clearly shows that measurements at rest only involve
limited baroreflex activity, but does neither challenge, nor show the full range of the
arterial baroreflex regulatory capacity. We show that xBRS is exclusively dominated
by the heart rate to systolic blood pressure ratio (r = 0.965, p < 0.001). Further
investigations should focus on additional autonomous testing procedures such as slow
breathing or orthostatic testing to provide a basis for a non-invasive evaluation of
baroreflex sensitivity.
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INTRODUCTION

The baroreflex is an important component of cardiovascular
regulation to maintain homeostasis. The idea of spontaneous
baroreflex sensitivity is to estimate the concomitant effect
of respiration on heart period and blood pressure based on
non-invasive and non-pharmacological driven measurements.
Originally, BRS has been assessed by the Oxford method,
based on analysis of heart rate response to drug-induced
blood pressure variations (Smyth et al., 1969). This method
is still the gold standard for assessing baroreflex control.
This method has, however, not found wide application in
clinical practice due to its laboriousness. It is invasive and
requires the administration of vasoactive substances, which is
potentially unsafe and costly. Furthermore, undesirable effects
of medications on the state of the ANS cannot be excluded.
To overcome these drawbacks, numerous methods for non-
invasive assessment of BRS have been developed, based on the
analysis of spontaneous fluctuations in systolic blood pressure
(SAP) and the RR interval (RR). Despite the fact that the
idea of using spontaneous heart rate and pressure variations
to assess baroreflex may seems desirable, several problems are
emerging: In addition to arterial baroreflex itself there are
many other sources for pressure and heart rate variations and
it is almost impossible to discern baroreflex-driven variations
from this mixture. There is no known possibility to isolate
specific sets of stimuli and their corresponding reactions. As
blood pressure fluctuations during rest in equilibrium are
tiny, the effects contributed to the baroreflex seem to be
extremely challenging (Lipman et al., 2003) and drastically
reducing the signal-to-noise ratio. The synchronous fluctuations
of heart rate with respiration, known as respiratory sinus
arrhythmia (RSA), are a consequence of the rapid fluctuations
of parasympathetic nerve activity toward the sinus node
(Blaber and Hughson, 1996). The origin of RSA is known
to have various mechanisms (Blaber and Hughson, 1996),
including arterial baroreflex and cardiopulmonary baroreceptor
responses due to fluctuations of cardiac stroke volume, a
direct influence of medullary respiratory neurons on the
vagal motor nucleus, and pulmonary stretch receptor response
to lung inflation.

Fluctuations in blood pressure and heart period can be of
clinical importance as risk markers for cardiovascular morbidity
and mortality (Bertinieri et al., 1985; Rothlisberger et al., 2003;
La Rovere et al., 2011). However, Lipman et al. (2003) show
that spontaneous baroreflex indices do not clearly reflect arterial
baroreflex gain. They mainly quantify vagal-mediated heart
period oscillations induced by cardiac output fluctuations, and
do not reflect barosensory vessel distensibility. Without a clear
and consistent relationship the baroreflex gain itself, one can
only conclude that spontaneous baroreflex sensitivity cannot be
used as proxy for baroreflex gain. Nevertheless, the quantification
of this reflex is of great relevance for understanding the
cardiovascular system and for risk stratification (Bertinieri
et al., 1985; Rothlisberger et al., 2003; La Rovere et al., 2011).
Recently (Wessel et al., 2020) we were able to show that the
spontaneous sensitivity of the arterial baroreflex (BRS) under

resting conditions cannot be estimated by the sequence method
(SME), which only quantifies the quotient of heart rate and
systolic blood pressure variability. In this paper we test whether
the xBRS method (Westerhof et al., 2004; Wesseling et al.,
2017) is suitable to quantify the baroreflex sensitivity from
non-invasive, non-interventional measurements under resting
conditions. Therefore, two surrogate analyses were performed in
which, due to the design, no causal relationships between blood
pressure and heart rate signal can be present. Furthermore, SME
and xBRS were calculated from data collected not only under
resting conditions but also under controlled breathing.

DATA

To allow comparison to the results in Wessel et al. (2020),
we reanalyzed the same data from 5 different studies in
obstetrics, genetics, cardiology and heart surgery (Faber et al.,
2004; Barantke et al., 2008; Retzlaff et al., 2009; Boyé et al.,
2011; Retzlaff et al., 2011) in a similar manner. Demographic
data of all sub-studies were given in Wessel et al. (2020):
“All patients gave written, informed consent, and all studies
were approved by the respective local ethics committees. From
obstetrics (Faber et al., 2004) 915 measurements of 304 pregnant
women were included (mean age 28.4 ± 5.4 years). The data
contain 398 recordings of healthy women, 120 from patients
with chronic hypertension, 38 from gestational hypertension,
152 from women who later developed pre-eclampsia, 88 from
pre-existing hypertension with pre-eclampsia, 12 with other
hypertensive disease and 78 from women with intrauterine
growth restriction. From genetics (Barantke et al., 2008) we
considered measurements from 367 subjects with an age of 10
to 88 years (45.0 ± 16.3 years), 157 were male (43%). From
cardiology (Boyé et al., 2011) we used the measurements from
75 patients with chronic cardiac diseases referred for primary
preventive implantable cardioverter-defibrillator implantation
following Multicenter Automatic Defibrillator Implantation Trial
study criteria, mean age 70.9 ± 10.1 years, body mass index
27.0 ± 3.5. From Retzlaff et al. (2009) 302 measurements from
patients before and after aortic (AV) or mitral valve (MV)
surgery were included for analysis. The mean age of the AV
patients and MV patients was 62 ± 13 years and 59 ± 2 years,
respectively. From Retzlaff et al. (2011) 169 measurements from
58 consecutive patients undergoing either trans-catheter aortic
valve implantation (TAVI) or surgical aortic valve replacement
(SAVR) with the heart-lung machine and being in stable sinus
rhythm were enrolled. Thirty four of them underwent SAVR and
24 of them TAVI, 28 males, mean age 64.6 ± 13.8 in the SAVR
group and 80.5 ± 7.3 in TAVI.

All measurements of the considered studies were performed
under supine resting position for 30 min using the Task Force
Monitor (CNSystems, Graz) or the PortaPres device (Finapres
Medical Systems, Enschede). In total we gathered 1,828 time
series containing the beat-to-beat values of heart rate (HR) as
well as systolic blood pressure (SBP). Exclusion criteria were
atrial fibrillation, pacemaker activity, technical artifacts, as well
as ectopy time greater than 10%, reducing the number of time
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TABLE 1 | Basic characteristics of considered parameters in the final data set
(Mean ± SD: mean value ± standard deviation) and the correlation coefficient r to
xBRS (R to xBRS, p < 0.001 for all coefficients).

Mean ± SD R to xBRS

xBRS [ms/mmHg] 8.4 ± 5.3 1

xBRSS1 [ms/mmHg] 8.4 ± 5.2 0.99

xBRSS2 [ms/mmHg] 7.9 ± 4.7 0.97

meanNN [ms] 761 ± 146 0.54

meanBP [mmHg] 129 ± 22.4 −0.2

sdNN [ms] 42.5 ± 18.6 0.67

sdBP [mmHg] 8.1 ± 2.9 −0.25

RMSSD [ms] 25.6 ± 14.7 0.84

RMSSDSBP [mmHg] 2.9 ± 1 −0.21

RMSSDRATIO [ms/mmHg] 9.5 ± 6.1 0.94

xBRSS1, surrogate 1 of xBRS; xBRSS2, surrogate 2 of xBRS; meanNN, mean beat-
to-beat-interval of HR; meanBP, mean blood pressure of SBP; sdNN, standard
deviation of HR; sdBP, standard deviation of SBP; RMSSD, root mean square
of successive differences of HR; RMSSDSBP, root mean square of successive
differences of SBP; RMSSDRATIO, Ratio of rmssd and rmssd_sbp.

series to 1,576 – careful visual inspection for further technical and
physiological artifacts reduced the subjects for reanalysis to 1,439.

In addition to this comprehensive data set of rest
measurements, recordings with certain autonomous testing
procedures were analyzed in this paper. We used 245
measurements of 44 healthy pregnant women, mean age
30 ± 5.4 years, from the Fetal Autonomic Cardiovascular

rEgulation (FACE) study which is currently in progress at the
University of Leipzig Medical Center in cooperation with the
TU Dresden and the Humboldt-Universität zu Berlin. The study
was approved by the committee of ethics of the University
of Leipzig Medical Center (357/17-ek). One aim of this study
was to characterize the reaction of fetal autonomic regulation
to maternal paced breathing based on a context dependent
biosignal analysis. The measurements were performed under
supine resting position using the PortaPres device (Finapres
Medical Systems, Enschede), the fetal ECG signal was recorded
from the abdomen of the pregnant woman. Our measurement
protocol included 10 min of measurement at rest in supine
position, 5 min of paced slow respiration (period 7.5 s – 8
respiration cycles per min), and 5 min of fast respiration (period
3 s – 20 cycles per min). Between both paced respiration
conditions was one break of 5 min at rest. Exclusion criteria were
rhythm disturbances (many of ventricular or supraventricular
ectopic beats), technical artifacts, and incomplete study
protocols. The data underwent a careful visual inspection for
further artifacts by experts which reduced the analyzed data
set to 184 records.

MATERIALS AND METHODS

Originally, BRS was measured by injecting vasoconstrictive
agents to raise blood pressure, i.e., quantifying the reflex-like
increased beat-to-beat intervals in the electrocardiogram

FIGURE 1 | Schematic illustration of the performed surrogate analysis. In (A) xBRS is calculated from the original heart rate (blue) and the systolic blood pressure
series (red) while in xBRSS1 analysis the systolic blood pressure series is time reversed (B). Adapted from Wessel et al. (2020).
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FIGURE 2 | Log-log-plot of xBRS and RMSSDRATIO: R2 = 0.898, p < 0.001.

(ECG). Later, attempts have been made to determine baroreflex
sensitivity non-invasively, most often using spontaneous heart
rate variability (HRV) and blood pressure variability (BPV)
obtained from continuous finger pressure measurement
(Bertinieri et al., 1985; Rothlisberger et al., 2003). The
underlying hypothesis is that there is always some spontaneous
variability in blood pressure that should allow an estimate
of BRS. In this paper, the BRS estimation method under
consideration was the xBRS method (Westerhof et al., 2004;
Wesseling et al., 2017).

xBRS is a time domain method designed for estimation of
BRS from non-invasively obtained SBP and beat-to-beat-interval
(BBI) data. The original time series is resampled to obtain
evenly sampled data at 1 Hz. Instead of sequences, xBRS uses
sliding windows with a fixed length of 10 seconds. For every
SBP window, there should exist at least one corresponding BBI
window (in a lag range of 0–5) with positive and significant
cross correlation (p < 0.05, two sided test for zero correlation).
The BBI window with highest cross correlation is then selected.
xBRS has two advantages: (a) it gives more valid “sequences”
for the same time series compared to SME and (b) it allows
to observe slow regulation circuits that are presumably arising

from sympathetic control. Usually, the resulting number of
valid “sequences” in the time series is large enough to enable
the calculation of an “instant” measure for xBRS. The xBRS
method was developed by Westerhof et al. (2004) and initially
it set strict constrains on p-value of the cross correlation
(p < 0.01). In the last revision (Wesseling et al., 2017), the
threshold for the p-value was increased to 0.05, it doubles
the percentage of necessary valid windows. Once sequences
are selected, the ratio between the standard deviations of BBI
and of SBP is used as a measure of baroreflex sensitivity.
The reasoning for this decision was that the measure based
on ratios of standard deviations does not differ significantly
from the slopes of the regressions but is computationally more
efficient. In our article we implemented the last revision of
the xBRS method; the geometric mean of the instant xBRS
values was used as BRS estimate per study period reflecting
the approximately log-normal distribution of xBRS values
(Wesseling et al., 2017).

Furthermore, different parameters from the time domain were
calculated to quantify short term HRV and BPV in this large
data set (Wessel et al., 2020, cf. Table 1). The RMSSDRATIO
defined as RMSSDHRV divided by RMSSDSBP showed the highest
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FIGURE 3 | Log-log-plot of original xBRS and surrogate xBRSS1: R2 = 0.979, p < 0.001.

correlation to the sequence method for BRS estimation there
(Wessel et al., 2020).

Analogous to (Wessel et al., 2020) we performed two surrogate
analyses in order to ascertain whether xBRS can quantify causal
relationships between heart rate and blood pressure and thusly
spontaneous BRS:

(a) Systolic blood pressure time-series were analyzed in
reversed order, i.e., the first blood pressure value is now
the last, the second now the second last etc. This results
in surrogate data with the same distribution as the original
data since the values of each point are the same, just in a
different time position. However, any causal relationship
between heart rate and blood pressure has been removed
by this procedure (cf. Figure 1).

(b) Beat-to-beat-intervals were shuffled using the IAFFT
approach (Schreiber and Schmitz, 1996). By applying this
procedure causal relationship between heart rate and blood
pressure has, again, been removed (xBRSS2).

Both surrogate tests are used to test the following hypothesis:
“xBRS does quantify causal relationships between heart rate and
blood pressure.”

Statistical analysis was performed using IBM SPSS
Statistics version 24. To quantify significant relations
between the parameters used in this study we applied
Pearson’s correlation as a measure of the linear relationship
between two continuous random variables. This measure
does not assume normality, but assumes finite variance
as well as covariance - properties which were assumed
for our data sets.

RESULTS

Table 1 shows the results of the correlation analysis between
xBRS and further HRV and BPV parameters in the final
data set (n = 1,439). The highest correlation coefficient r was
found between xBRS and short-term variability parameters
RMSSD (r = 0.84, p < 0.001). A more precise estimate yields
the highest correlation coefficient for RMSSDRATIO (r = 0.94,
p < 0.001, cf. Figure 2).

Surrogate analysis (a) between xBRSS1 and RMSSDHRV
showed high correlation coefficient (r = 0.84, p < 0.001),
i.e., reversing one time series does not affect the results of
xBRS. Moreover, the correlation coefficient between xBRSS1 and
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FIGURE 4 | xBRS and SME as BRS estimates for the FACE study. During rest and fast respiration procedure there are only small differences. xBRS and SME values
for slow respiration, however, are statistically significant higher as for resting and fast respiration.

RMSSDRATIO was equally high with r = 0.94, p < 0.001. Finally,
the correlation coefficient between original xBRS and surrogate
xBRSS1 was extremely high with r = 0.99, p < 0.001 (cf. Table 1
and Figure 3).

In the surrogate analysis (b) the correlation coefficient
between xBRSS2 and RMSSDHRV was r = 0.84, p < 0.001.
Moreover, the correlation coefficient between xBRSS2 and
RMSSDRATIO was equally high with r = 0.93, p < 0.001.
Finally, the correlation coefficient between the original xBRS
and surrogate xBRSS2 again was extremely high with r = 0.97,
p < 0.001 (cf. Table 1).

To overcome concerns for bias due to the presence of multiple
measurements per subjects, we repeated our procedures on a
reduced data set with only the first measurement per subject
(n = 733) and got similar correlations (xBRS vs. RMSSD: 0.83,
xBRS vs. RMSSDRATIO: 0.93, xBRSS1 vs. RMSSD: 0.83, xBRSS1
vs. RMSSDRATIO: 0.93, xBRS vs. xBRSS1: 0.98). We conclude that
the comparison of time series with different time bases has no
influence on the results of xBRS. xBRS as an estimate for the
spontaneous BRS shows a potentially large methodological bias.
This contradicts the hypothesis that xBRS at rest quantifies causal
relationships between heart rate and blood pressure.

In order to investigate whether any causal relationship could
be quantified by xBRS under slow breathing conditions, we
analyzed the data from the FACE study. Figure 4 shows the

xBRS and the SME values under rest conditions, under rapid
breathing as well as under slow breathing. There is a, clearly
significant, increase in xBRS and SME with slow breathing
(p < 0.001), showing that measurements at rest only involves
certain range baroreflex activation, but not the full capacity
of the arterial baroreflex. However, these estimates are, again,
exclusively dominated by the heart rate - systolic blood pressure
ratio (r = 0.965, p < 0.001). Moreover, after performing the
surrogate analyzes described above, the xBRS estimates do not
change between original and surrogate data: The correlation
coefficient at rest: xBRS to xBRSS1 r = 0.98, to xBRSS2 r = 0.96;
3 s (fast) breathing: xBRS to xBRSS1 r = 0.98, to xBRSS2 r = 0.94;
slow respiration: xBRS to xBRSS1 r = 0.99, to xBRSS2 r = 0.97.

In summary, we found that, even under controlled breathing
conditions, no causal relationship between beat-to-beat intervals
and the systolic blood pressures could be quantified by xBRS.

Nevertheless, Figure 5 shows that significantly more, as well
as more consistent, results are obtained under controlled slow
breathing compared to normal resting measurements. While
under resting conditions only 31% of all calculated correlations
are significant for this example and are included in the calculation
of the xBRS, during slow breathing, the percentage of valid xBRS
windows increases to 98%. Furthermore, the mean correlation
between heart rate and systolic blood pressure windows is
significantly higher during slow breathing. Taken together, these
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FIGURE 5 | xBRS results for one subject of the FACE study (SBP, systolic blood pressure; BBI, beat-to-beat intervals; x_BRS; x_BRS correlation, the correlation
coefficient at valid epochs). During rest (left panel) xBRS value is on average 5.5 ms/mmHg, the average correlation at valid epochs is 0.76, the percentage of valid
epochs is 31% only. The xBRS values for slow respiration (right panel) is on average 10.6 ms/mmHg, however, the average correlation at valid epochs is 0.88 and
the percentage of valid epochs is 98%. The red markers in the lower panels mark cross correlation values higher than 0.8.

values support the hypothesis that the xBRS values at slow
breathing are more consistent with the BRS. A higher BRS implies
a higher regulatory capacity, meaning large blood pressure
fluctuations can be balanced well by BBI changes which in turn
supports maintenance of homeostasis. However, a low baroreflex
sensitivity can lead to deviations from homeostasis and thus to
events such as a hypertensive crises or fainting spells due to
low blood pressure.

DISCUSSION

In this paper we test the hypothesis that the xBRS method
quantifies the causal interactions of spontaneous BRS from
non-invasive, non-interventional measurements at rest. For the
surrogate analysis we substituted the systolic blood pressure by its
reversed time series and thusly removed their causal relationship.
Our analysis showed that xBRS remains unchanged. Therefore,
we conclude that xBRS is not able to estimate causal relationship
between heart rate and systolic blood pressure. Our results of the
surrogate analysis show, that xBRS can be mostly explained by
the short-term HRV, quantified by the RMSSD. Minor deviations
of this univariate model are adequately explained by the simple
bivariate model RMSSDRATIO which is also based on non-
causal interactions.

In contrast, La Rovere et al. (1998) was able to show that
low values of pharmacologically determined baroreflex sensitivity

(pBRS < 3 ms per mmHg) carry a significant risk of cardiac
mortality after myocardial infarction. This indicates a difference
between the xBRS estimation at rest and an invasive pBRS,
which not only refers to respiration-induced fluctuations, but
also includes carotid extensibility (La Rovere et al., 2011).
We suspect that the estimation of baroreflex sensitivity is
unreliable in cases of relatively shallow breathing. In these
cases, there is also only a small respiratory induced blood
pressure variation, which leads to only small baroreceptor
activation and thus to a low HRV. Even then, in cases where
any BRS estimation would result in a spurious low result,
the baroreflex could still be fully functional and its sensitivity
in the normal range. The BRS could just be impossible to
estimate using the currently dominant protocol, i.e., relaxed
respiration in resting supine position (Lipman et al., 2003).
Goldstein et al. (1982) and Lipman et al. (2003) show that
baroreflex sensitivity varies greatly from patient to patient and
that different mechanical (neck chamber) and pharmacological
techniques for measuring baroreflex sensitivity are likely to
measure different aspects of baroreflex function. This contradicts
the idea of spontaneous baroreflex sensitivity in the sense that
the sensitivity should not be affected by the way it is being
measured. Recently developed sophisticated methods for BRS
estimation disentangle the effects of respiration from heart
period and blood pressure (Pinna et al., 2015; Maestri et al.,
2017; Bari et al., 2019), however, all methods fail to be reliable
estimates of BRS. An increase in SME values during slow
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breathing lead Tzeng et al. (2009) to systematically review the
baroreflex function. His hypothesis was that controlled slow
breathing, which causes higher blood pressure fluctuations,
increases cardiovagal baroreflex gain in young healthy subjects.
Baroreflex enhancement was investigated using both the classical
pBRS and the non-invasive SME method. Compared to breathing
at rest, slow breathing was associated with a significant increase
in the SME index, while the pBRS remained unchanged. The
SME values for slow breathing are higher than the pBRS values
in the study, which could be a result of overestimation or a
systematic error in the pBRS determination. However, Arica
et al. (2011) showed that pBRS values can be predicted from
non-pharmacological indices acquired during slow breathing.
From both studies we derive the opinion that autonomic testing
should allow a reliable, non-invasive, non-pharmacological
driven quantification of the baroreflex gain. This will require
large scale medical studies, where the BRS is measured invasively
according to the state of the art [modified Oxford method
(Ebert and Cowley, 1992)] and additional runs of autonomous
tests are performed.

To investigate whether a causal relationship between heart rate
and blood pressure exist under controlled breathing conditions,
we analyzed the data from the FACE study. We found a clearly
significant increase in xBRS and SME under slow breathing
conditions compared to rest or fast breathing, showing that the
latter ones involve only limited baroreflex activity. However,
for all conditions these estimates are exclusively dominated
by the heart rate – systolic blood pressure ratio. Moreover,
after performing the surrogate analyzes, the xBRS does not
vary between original and surrogate data. Thus, even under
controlled breathing conditions, no causal relationship between
beat-to-beat intervals and the systolic blood pressures could
be found.

In conclusion, we demonstrated for all short measurements,
under resting conditions and controlled breathing, that
RMSSDRATIO carries similar vagally mediated information
as xBRS. However, we found, under controlled breathing, a
potentially large methodological bias in xBRS and SME as
estimates for the baroreflex sensitivity. During slow breathing
estimates for SME and xBRS are significantly increasing,
which clearly shows that measurements at rest are only
accompanied by limited baroreflex activity, but not to the
full capacity of the arterial baroreflex. Further investigations
should focus on additional autonomic testing procedures (e.g.,
orthostatic test, carotid occlusion, neck suction) to provide a

better empirical foundation of non-invasive assessment of the
baroreflex sensitivity.
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