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Editorial on Research Topic

Advances in the Integration of Brain-Machine Interfaces and Robotic Devices

Recent advances in noninvasive Brain-Machine Interfaces (BMIs) have demonstrated the potential
impact of directly interfacing the brain with machines. The ultimate translational goal of BMI
systems is to enable people suffering from severe motor disabilities to control a new generation of
neuroprostheses and, thus, (re)gain their own independence.

Many studies have already demonstrated the feasibility of the BMI technology with different kinds of
assistive devices, designed to restore communication (e.g., virtual keyboard) or to enable the control of
robotic applications (e.g., wheelchairs, telepresence robots, robotic arms, and drones). However, despite
great progress, the integration of the BMI and robotics is still in its infancy and translational impact is low.

The BMI community has predominantly focused on exploring novel algorithms to decode the
user’s intentions from neural patterns with a focus on enhancing the robustness and the reliability of
the BMI system. However, the process of how the estimated intentions of the user are translated by
the intelligent robotic device into real and daily-based situations is often neglected. This largely
affects the translational impact of the BMI technology. The latest advances in the field of robotics
may help address this challenge by exploiting novel human–robot interaction theories and by
providing insights and solutions from a new and different perspective.

This special topic sought original contributions that explicitly take into account the cross-cutting
aspects in BMI and robotics research including but not limited to BMI control of navigation robots,
BMI control of robotic prosthetic limbs, BMI-driven assistive technology for end users, translational
aspects in BMI-controlled devices, shared-control strategies for the BMI, contextualized robotic
behaviors, long-term human–robot interaction (BMI–robot interaction), semi-autonomous robot
behaviors, evaluation of BMI-driven robotics in real-world scenarios, and real-time detection of
possible targets in real-world scenarios. All typologies of closed-loop BMI systems (e.g., based on
exogenous stimulation or self-paced paradigms) were solicited if they focused on the integration of
BMI and robotics devices. We are pleased with the interest in the topic and the collection of studies
presented, which include two state-of-the-art reviews, one on neural driven rehabilitation robotics
for lower limb gait rehabilitation and another human affective states when interfacing with robotic
devices, as well as five novel studies investigating a range of BMI robotic learning scenarios and signal
decoding in invasive and noninvasive BMIs, all of which highlight opportunities and challenges to
advance the integration of Brain-Machine Interfaces and Robotic devices.

In their review, Alirmardani and Hiraki focused on the current employment of BMIs in
human–robot interaction applications. They illustrated the state of the art of passive BMIs and
the current challenges to monitor and decode cognitive load, attention level, perceived errors, and
emotional states in real time.
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Kim et al. investigated the influence and the effect of human
supervision on robot learning during pick-and-place tasks. In the
proposed experimental scenario, two human–robot interfaces
were provided: the first one based on human gestures to
decode the human’s intent and the second based on error-
related potentials to provide the human’s intrinsic feedback of
the performed robot action. They demonstrated that such a
human–robot interaction promoted robotic learning and the
concurrent online adaptation, especially when prior knowledge
about the task was provided.

Monitoring robot behavior through the evaluation of possible
mistakes may be not the only way to foster the learning process of
intelligent devices. Wirth et al. showed the possibility of
exploiting a single-trial P300-based BMI to discriminate when
a virtual robot has reached a predefined destination during
navigation tasks. They proposed this approach as part of a
learning-based system to enhance the efficacy and efficiency of
BMI-driven applications for navigation.

Similarly, Kolkhorst et al. showed that a robotic agent could
improve the usability of an event-related potential BMI by
obviating the traditional need of an external screen for
stimulus presentation. They exploited a robotic arm to present
stimuli by highlighting objects in a realistic environment with a
laser pointer. The proposed classification method, based on
specialized classifiers in the Riemann tangent space, reported
not only high accuracy but also robustness to both heterogeneous
and homogeneous objects.

Beyond exploiting the “human-in-the-loop” approach to
monitor robot behaviors, BMI systems can be also used to
directly control the movement of robotic actuators. While
most studies to date demonstrated the feasibility of mentally
driving a single assistive device, Huang et al. proposed a hybrid
BMI system to control an integrated wheelchair-robotic arm
system. A motor imagery BMI was used to deliver navigation
commands to the wheelchair and an electrooculogram-based
interface for the control of the robotic arm. Interestingly, the
system allows the users to voluntarily renew the classification
parameters during online operations by means of a specific
sequence of commands.

In Kim et al., authors proposed a new decoding algorithm
based on deep canonical correlation analysis and neuronal firing
rate activities that improves the kinematic reconstruction in a 2D

arm reaching task performed by nonhuman primates. The
algorithm was designed to identify the best kinematics-related
canonical variables of neuronal activity via deep learning–based
approaches. As highlighted in the study, the prediction of
kinematic parameters of a prosthetic device from neural
activities can have profound consequences in BMI clinical
applications.

Finally, Lennon et al. conducted a systematic review of the
current state of the art and limitations of neural driven robotic
gait devices in stroke rehabilitation. Despite identifying a limited
number of promising studies to date, the review highlighted wide
heterogeneity in the reporting and the purpose of neurobiosignal
utilization during robotic gait training after a stroke and the lack
of standardized protocols. A quick reference guide (the DESIRED
Checklist) is proposed to identify a minimum reporting data set
as a standard for future studies in order to maximize the
translational impact of the technology.

In summary, in the BMI field, the role of the robotic
intelligence is often underestimated by relegating the robotic
device to a mere actuator of the user’s commands. This
collection highlighted challenges to be addressed and potential
solutions, standards to adhere to when undertaking studies, and
the importance of further investigating the potential bidirectional
human–robot interactions in BMI applications in order to
improve the overall efficiency of these novel interfaces and to
design a new generation of neuroprosthetic devices.
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Most existing brain-computer Interfaces (BCIs) are designed to control a single assistive

device, such as a wheelchair, a robotic arm or a prosthetic limb. However, many daily

tasks require combined functions which can only be realized by integrating multiple

robotic devices. Such integration raises the requirement of the control accuracy and

is more challenging to achieve a reliable control compared with the single device

case. In this study, we propose a novel hybrid BCI with high accuracy based on

electroencephalogram (EEG) and electrooculogram (EOG) to control an integrated

wheelchair robotic arm system. The user turns the wheelchair left/right by performing

left/right hand motor imagery (MI), and generates other commands for the wheelchair

and the robotic arm by performing eye blinks and eyebrow raising movements.

Twenty-two subjects participated in a MI training session and five of them completed

a mobile self-drinking experiment, which was designed purposely with high accuracy

requirements. The results demonstrated that the proposed hBCI could provide satisfied

control accuracy for a system that consists of multiple robotic devices, and showed the

potential of BCI-controlled systems to be applied in complex daily tasks.

Keywords: brain-computer interface (BCI), hybrid BCI, electroencephalogram (EEG), electrooculogram (EOG),

wheelchair, robotic arm

1. INTRODUCTION

An Electroencephalogram (EEG)-based brain-computer interface (BCI) records electrical signals
of brain cells from scalp and translates them into various communication or control commands
(Wolpaw et al., 2000). Common modalities used in EEG-based BCIs include steady-state visual
evoked potentials (SSVEP) (Cheng et al., 2015), event-related potentials (ERPs) (Blankertz et al.,
2011; Jin et al., 2017), and mu (8–12 Hz)/beta (18–26 Hz) rhythms related to motor imagery (MI)
(Lafleur et al., 2013).

A main focus of the EEG-based BCIs is to combine them with existing assistive devices, such
as a prosthesis or a wheelchair, to support motor substitution of the user’s limb functions, e.g., the
grasping function and the walking function (Millán et al., 2010). While SSVEP- and ERP-based
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BCIs only provide discrete commands, MI-based ones can
generate nearly continuous outputs in real time, which makes
them a good fit for manipulating assistive devices that require
highly accurate and continuous control. Several purely MI-based
BCIs have been developed to realize basic control of external
devices (Wolpaw andMcFarland, 2004; Lafleur et al., 2013; Meng
et al., 2016). However, MI-based BCIs still suffer from limited
number of distinguishable MI tasks (Yu et al., 2015).

To overcome the limitation of using a single MI paradigm,
many excellent works have been established in recent years
to realize multidimensional control of external devices by
combining the MI with other EEG modalities (Rebsamen et al.,
2010; Long et al., 2012; Li et al., 2013; Bhattacharyya et al.,
2014; Ma et al., 2017) or other bioelectrical signals (Punsawad
et al., 2010; Jun et al., 2014; Witkowski et al., 2014; Ma et al.,
2015; Soekadar et al., 2015; Minati et al., 2016), i.e., using a
hybrid brain-computer interfaces (hBCIs) (Pfurtscheller et al.,
2010; Hong and Khan, 2017). For example, in Long et al. (2012)
and Li et al. (2013) the user continuously controlled the direction
(left/right turn) of a wheelchair using the left- or right- imagery,
and used the P300 potential and SSVEP to generate discrete
commands, such as acceleration/deceleration and stopping; in
Ma et al. (2017), the users generated MI to control the moving
of a robotic arm, and stop it by detecting the P300 potential.

Other than with different EEG modalities, MI can
also be combined with other bioelectrical signals, such as
Electrooculogram (EOG) signals and functional near infrared
spectroscopy (fNIRS) (Khan and Hong, 2017), to build a
hBCI. EOG signals are generated by eye movements and
usually maintain a higher signal-to-noise ratio (SNR) compared
with EEG signals (Maddirala and Shaik, 2016). In Witkowski
et al. (2014), MI-related brain activities were translated into
continuous hand exoskeleton-driven grasping motions which
could be interrupted by EOG signals, aiming to enhancing the
reliability and safety of the overall control. In Soekadar et al.
(2015), Soekadar et al. demonstrated that the inclusion of EOG in
a MI-based hand exoskeleton system could significantly improve
the overall performance across all participants.

Prior studies have well-demonstrated the feasibility of using
an hBCI to control a single assistive device, such as a wheelchair
or a robotic arm. However, it is still unknown whether multiple
devices can be integrated together and controlled by a single
hBCI. Such integration is challenging because it requires higher
control accuracies (i.e., the positional accuracy and the angular
accuracy) and more control degrees than a single BCI-controlled
device system. Also, the time and efforts consumed to control
an integrated system are usually higher than that of any of
its single component, which may reduce the reliability. In this
study, we integrate a wheelchair and a robotic arm into a unified
system, aiming to help the user move from a random place to
approach and grasp a target object which is also randomly placed
far away from the user. A novel hBCI based on EEG (the MI
paradigm) and EOG signals is proposed to control the system.
Specifically, for the wheelchair, users can continuously steer the
wheelchair left/right by imagining left/right hand movements.
Users generate discrete wheelchair commands, such as moving
forward and backward and stopping, by implementing eye blinks

FIGURE 1 | The 10–20 electrode distribution of a 32-channel Quik-cap.

Eleven electrodes (green color) are employed in this study.

and eyebrow movements. For the robotic arm, the eye blinks and
eyebrow movements are utilized along with two cameras in a
shared control mode. There were 22 healthy subjects participated
in a MI training session, after which five of them (with accuracy
over 80%) were asked to complete a tricky self-drinking task
using the proposed system. The experimental results showed that
the proposed hBCI could provide satisfied accuracy to control the
integrated system and had the potential to help users complete
daily tasks.

The remainder of this paper is organized as follows: section
2 is the methodologies, including the signal acquisition, the
system framework and the hBCI; sections 3 and 4 describe
the experiments and present the results; further discussions are
included in section 5; and section 6 concludes the paper.

2. METHODS

2.1. Signal Acquisition
As shown in Figure 1, the EEG signals are recorded from nine
electrodes (“FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,” “CP3,” “CPz,”
and “CP4”) attached on a 32-channel Quik-cap and amplified by
a SynAmps2 amplifier [Neuroscan Compumeidcs, USA] with a
sampling rate of 250 Hz. One electrode attached on the forehead
(“FP2”) is used to record the EOG signals which are resulted from
eye movements. The amplifier is grounded on the forehead, and
“A2” is the reference electrode which is placed near the right ear
lobe. The impedances between the scalp and all electrodes are
maintained below 5 k�.

2.2. System Components
The system consists of into two parts: (i) the control unit; and
(ii) the execution unit. The control unit is a novel hBCI that
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processes the recorded EEG and EOG signals and translates
them into various control commands. The execution unit is
an integrated wheelchair robotic arm system which was built
to help paralyzed people in Huang et al. (2019). As shown
in Figure 2B, the hardware components include a laptop to
present the GUI, a wheelchair [0.8 × 0.6 m, UL8W, Pihsiang
Machinery Co. Ltd.], a six-degree intelligent robotic arm [JACO6
DOF-S, Kinova Robotics] and two motion-sensing cameras
[Kinect v2, Microsoft].

2.3. GUI and Control Strategy
The graphical user interface (GUI) of the hBCI consists of two
separate panels: (i) the wheelchair panel (Figure 3A); and (ii) the
robotic arm panel (Figure 3B). When the system is turned on,
the wheelchair panel is presented. As shown in Figure 3A, the
progress bar is used to control the wheelchair direction. The value
of the bar represents the classification result of the user’s left-right
MI imagery. Two green lines are set at somewhere on the left and
right sides of the bar as the left and right threshold, respectively.
Initially, the value of the progress bar is 0 and the bar stops in
the middle. The user can grow the bar to the left/right side by
continuously imagining left/right handmovement. As long as the
value of the bar exceeds the left/right threshold, the wheelchair
is continuously turned to the left/right at an angular velocity of
0.1π/s (18◦/s) (see details in the EEG signals processing section).

In the wheelchair panel, there are nine buttons placed around
the progress bar that flash one by one in a predefined sequence.
The interval between the onset of two continuous button flashes
is 100 ms. Thus, the period of a complete round (i.e., each button
flashes once) is 900 ms. To select a target button, the user first
performs an intended blink in response to a flash of the target
button. The system detects the intended blink and pre-selects a
potential target button according to the timing of blinking. Next,
if the pre-selected button is correct, the user needs to raise his/her
eyebrows once to verify it. Only when a button is pre-selected
and verified can the corresponding command be triggered (see
details in the EOG signals processing section). The “Move” and
“Back” buttons represent moving forward and backward at 0.2
m/s, respectively. The “Stop” button is used to stop the moving
and turning of the wheelchair immediately. Other buttons in the
wheelchair panel are active only when the wheelchair is stopped.
For example, the user can increase/decrease the left and right
threshold values by selecting the “+”/“−” buttons on the left
and right sides, and renew the MI classification parameters (see
details in the EEG signals processing section). The “Switch” button
is used to switch the GUI to the robotic arm panel.

In the robotic arm panel, there are 6 buttons which flash one
by one with an interval of 150 ms, as shown in Figure 3B. Thus,
the round period is also 900 ms. The three object buttons (“Item
1,” “Item 2,” and “Item 3”) represent three target objects that
can be grasped. Once the user selects an object button, the two
cameras (Camera A and B) would return the coordinates of the
object as well as the user’s mouth to the robotic arm, and then
the arm automatically plan the path to grasp the target and bring
it to the user’s mouth. The “Init” button is used to initiate the
arm’s internal parameters andmove it to the home position. After
the target has been brought to the mouth, the user can select the

“Back” button to ask the arm to put the target back automatically.
The “Switch” button is used to switch to the wheelchair panel. The
system flowchart is illustrated in Figure 2A.

2.4. EEG Signals Processing
A supervised machine learning process was implemented to
process the multichannel EEG signals, which included two
parts: (i) the offline model training process; and (ii) the online
classification process. In the offline model training process, each
user was asked to complete several left/right hand MI tasks. The
recorded and labeled (left or right) EEG signals from the nine
electrodes (“FC3,” “FCz,” “FC4,” “C3,” “Cz,” “C4,” “CP3,” “CPz,”
and “CP4”) were first referenced with the signals from “A2.”
Then, the signals were band-pass filtered around 8–30 Hz (α and
β bands). For the feature extraction, the common spatial pattern
(CSP) method was applied. Specifically, a covariance matrix was
achieved by the following formula:

Ri =
Xi × Xi

T

trace(Xi × Xi
T)

(1)

where Xi ∈ RM×N denotes the filtered EEG data matrix of the
ith trial, M is the number of channels (9 in this case), N is the
number of samples in each trial.

Then, the covariance matrixes that belong to the same class
(left or right) were added up as SUMl or SUMr . The goal of CSP
was to find a spatial filter W ∈ Rm×N (m is the order of the
spatial filter) that maximized the band power difference between
SUMl and SUMr , and this W could be constructed using the
eigenvectors of SUMl and SUMr (Li and Guan, 2008). The MI
feature used in this study was defined in MATLAB as below:

Fi = log
diag(W × Ri ×WT)

sum(diag(W × Ri ×WT))
(2)

where Fi ∈ Rm×m denotes the MI feature of the EEG data of
the ith trial. Further, the features of all trials and their labels were
used to learn a MI classifier based on the support vector machine
(SVM) algorithm.

In the online classification process, the MI classifier evaluated
a 2-s real-time EEG data epoch every 0.2 s, and generated a score
c, which represents the comparative similarity between the input
data epoch and the two classes. The mean score for the idle state
(i.e., when the user did not imagine) was termed as the idle score
Cidle. Each newly generated score c was compared to Cidle, and
the result was used to steer the wheelchair as below:

Turn left:

{

c < Cidle

|c− Cidle| > THl
(3)

Turn right:

{

c > Cidle

|c− Cidle| > THr
(4)

where THl and THr denote the left and right threshold,
respectively. As mentioned in the GUI and control strategy
section, once the “Renew” button was selected when the
wheelchair was stopped, the system updated Cidle by averaging
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FIGURE 2 | The system flowchart (A) and the basic components (B) which include the hBCI, a wheelchair, a six-degree intelligent robotic arm and two

motion-sensing cameras.

FIGURE 3 | The GUI of the proposed hBCI consists of two separate panels: the wheelchair panel (A) and the robotic arm panel (B).

the scores of the next 3 s, during which the user was supposed to
be in the idle state. If Cidle was renewed, the threshold values THl

and THr also needed to be adjusted, which could be realized by
selecting the “+”/“−” buttons on the wheelchair panel, as shown
in Figure 3A.

2.5. EOG Signals Processing
To select a button on the GUI, users were asked to perform
two kinds of eye movements: one intended blink and one
eyebrow raising movement. Specifically, after each button flash,
the algorithm evaluated a 600-ms EOG data epoch (i.e., 150
samples) which started from the onset of that flash to examine
whether it contains an intended blink. A blink was detected and
recognized as intended if two conditions were satisfied: (i) The
600-ms data epoch passed a multi-threshold waveform check (as
described in Huang et al., 2018), which implied that there was
a blink waveform (either intended or unintended) contained in

this epoch; (ii) The detected blink waveform was regarded as
intended if it was occurred within a certain delay window after
the flash onset, and also the peak of the waveform should passe an
intended amplitude threshold, as shown in Figure 4. The second
condition was based on experimental observations: although the
response time to a flash varied among individuals, it was relatively
stable for a particular user (e.g., 280–320 ms after the flash), and
intended blinks usually had a higher amplitude than unintended
ones due to the more strong eye movement. For example, if a

blink waveform with enough amplitude was detected about 280
ms after the flash onset of “MOVE,” it would be recognized as an
intended blink in response to “MOVE.” For other buttons, the
delay should be extended or shortened by at least 100 ms due to

the button flash interval.
However, there was still a possibility that an unintended blink

was mistakenly detected to be intended. Thus, a verification
process was implemented to further exclude the unintended
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FIGURE 4 | Typical EOG waveform of an intended blink (A) and unintended blinks (B). The peak of the intended waveform should be located within a predefined

timing window and pass an amplitude threshold THa.

inference. Specifically, when an intended blink was detected in
the EOG epoch after a button flash, the system just preselected
the button and highlighted it in blue as feedback without any
command activated. The user was asked to judge the feedback
and raise eyebrows to verify if it was what he/she wanted.
Only when a button was preselected and verified, was the
corresponding command triggered. The detection algorithm for
the eyebrow raising movement was similar with the multi-
threshold waveform check used in the blink detection, which
aimed to recognize different eye movements by checking
particular waveform parameters, such as the amplitude, the speed
(i.e., the differential value) and the duration of the movement
(Huang et al., 2019).

3. EXPERIMENTS

Twenty-two healthy subjects (6 female and 16 males, aged
between 22 and 37 years) participated in a MI-based training
session and an EOG-based training session without actual control
of the wheelchair and the robotic arm. The MI-based training
session was designed to help subjects learn and improve the
ability of voluntarily modulating the sensorimotor EEG in the
motor cortex by performing left-right hand MI task; The EOG-
based training session was supposed to help subjects learn how
to select a flashing button using the proposed EOG paradigm.
Next, five of the 22 subjects with satisfied performance were
asked to complete a mobile self-drinking experiment. The
experiments were approved by the Ethics Committee of Sichuan
Provincial Rehabilitation Hospital. Written informed consent for
experiments and the publication of individual information was
obtained from all subjects.

3.1. MI-Based Training Session
All of the 22 subjects participated in aMI-training section on each
of three different days in 2 weeks, each section consists of three
sessions (i.e., nine sessions for each subject). Each MI-training
session consisted of an offline run without feedback and an online

run with feedback. In an offline run, the subjects performed 40
random left-/right-hand MI trials according to the cue presented
on screen. A trial began with a 5-s rest period, in which subjects
relaxed and remained in an idle state. Then, a fixation cross
was presented at the center of the screen for 2 s, prompting
subjects to concentrate on the upcoming task cue. After the cross
disappeared, an arrow randomly pointed to either the left or the
right was appeared for 5 s. Subjects were asked to imagine the
movement of the left or right hand, as indicated by the cue arrow.
The recorded EEG data were then used to build a classifier and
calculate the offline MI classification accuracy based on a 10-fold
cross validation process.

It has been reported that feedback paradigm can enhance MI
training (Yu et al., 2015). Thus, after each offline run, subjects
completed an online run with visual feedback. Specifically,
the subject was asked to change the state of the progress
bar by performing left-/right-hand MI task. The left/right MI
thresholds were set properly in this session to separate the
bar into left, middle (idle), and right parts, ensuring that the
subject could effectively control the bar to switch between the
three parts. Any out-of-control situation implied the need of
adjustment in the rest MI-training sessions, such as adjustment
of the imagined hand movement. Subjects with an offline MI
classification accuracy over 80% and showed a good control
effect of the progress bar were selected to participate in the
following experiments.

3.2. EOG-Based Training Session
In this session, five of the 22 subjects with satisfied MI
performance were selected to complete 3 EOG-based training
sessions, each of which consisted of 30 trials. In a trial, a random
target button on the wheelchair panel was first highlighted in
blue for 2 s. Then, all buttons started flashing as described in the
GUI section. Subjects were asked to perform blinks and eyebrow
movements to select the target button as soon as possible. The
break between two continuous trials was 2 s. After the three
sessions, each subject was asked to keep in the idle state for 10min

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 124310

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Huang et al. hBCI for Integrated System Control

during which he/she just relaxed. Indicators, such as the selection
accuracy, the selection delay and the false positive rate (FPR),
were calculated to evaluate the EOG performance of the system.

3.3. Mobile Self-Drinking Experiment
Five of the 22 subjects that completed both the MI- and EOG-
based training sessions participated in this experiment. As shown
in Figures 5A,B, in an indoor experimental field (8 × 5 m),
several obstacles were placed between the starting point and a
randomly placed table, on which there were two different bottles
with a straw and some water in each of them. To complete an
experimental run, subjects were asked to control the system to
complete three concatenated tasks: (i) Driving the system from
the starting point to reach the table through the obstacles; (ii)
Manipulating the robotic arm to grasp a target bottle, drink water
with the straw and then put the bottle back; (iii) Driving the
system to go through obstacles and a door (width: 1.15 m). Each
subject completed three runs with the proposed hBCI.

4. RESULTS

4.1. MI Training Results
In this study, each of the 22 subjects completed 9 MI training
sessions. According to the binominal test theory, a significant
statistical difference is supported if the p-value is smaller than
0.0056 (0.05/9). We use the following formula in MATLAB to
calculate the p-value:

p = 1− cdf (′bino′, a, num, 0.5) (5)

where num is the number of trials in a session (40 in this case),
and a is the number of the correctly predicted trials in a session.
By this formula, we can achieve that a should be larger than 27
to ensure that p-value is smaller than 0.0056. Thus, the smallest
required number of correct trials in a session is 28, which means
the accuracy is around 70% (28/40). Considering the high control
precisions required in this study, we set 80% as a minimum
passing accuracy to invite potential subjects to participate in
more MI training sessions.

According to the experimental results, five of the 22 subjects
achieved a highest accuracy above 80% in an optimal session, as
shown inTable 1. The average accuracies and standard deviations
of these five subjects are presented in Figure 6. Among them,
two subjects (S1 and S2) had prior experience with the MI
paradigm, and the other three (S3, S4, and S5) were the first
time to perform MI tasks. The highest MI accuracies for these
five selected subjects in an optimal session were higher than
80%, and the average accuracies for each of them were higher
than 70%. For the two subjects with prior MI experience,
the highest accuracies were 95 and 100%, respectively. Except
for the five selected subjects, six of the 22 subjects did not
generate accuracy higher than random level (70% in this case,
determined by the binominal test) in any session, which implied
that no significant modulations of the sensorimotor rhythms
were observed among them. The rest eleven subjects achieved
a highest accuracy between 70 and 80% in an optimal session,
which was higher than random level but might not be satisfied to
realize a reliable control.

4.2. EOG Training Results
As shown in Table 1, all of the five subjects participated in
this session could achieve an EOG accuracy (the highest value
of all sessions) above 95% for the button selection task. The
average EOG accuracy for these subjects was 96.2 ± 1.3%, which
demonstrated that the individual variance of the proposed EOG
paradigm was much smaller than that of the MI paradigm.
According to the results, it took 1.3 ± 0.3 s in average to
generate a command through the EOG paradigm, which was
faster than that proposed in some EOG-based state-of-the-art
works (typically 2–3 s) (Ma et al., 2015; Huang et al., 2018). In
this study, the FPRwas evaluated without the verification process,
aiming to verify the effectiveness of the proposed method based
on the peak amplitude and timing (see details in the EOG signals
processing section to distinguish intended and unintended blinks.
For these five subjects, the average FPR was 1.5± 1.2 events/min.
Since a healthy person with normal eye movements usually
performed 10–20 unintended blinks per minute, the probability
that an unintended blink was mistakenly regarded as an intended
one in this work was∼7.5–15%. This probability was considered
to be acceptable since there was a verification process (i.e., raising
eyebrows) after the blink recognition, which could ensure that
the error recognition of unintended blinks would not result in
any output command.

4.3. Mobile Self-Drinking Experiment
Results
The average number of collisions for each subject in the three
concatenated tasks (Task 1: reaching the table; Task 2: grasping
the bottle to drink and put it back; Task 3: passing the door)
in this experiment were illustrated in Table 2. For Task 2, a
failed grasp was counted as a collision. According to the results,
S1 successfully completed the three runs without any collision.
S2 completed the first two tasks in all three runs but failed to
pass through the door in one run. Thus, the average number of
collisions for S2 to complete a run of Task 3 was around 0.3.
S4 completed Task 1 without any collision, and generated 1/0.3
collisions averagely in Task 2/Task 3. For S3 and S5, the average
numbers of collisions in Task 1 were 1.3 and 1.7, respectively,
which might be resulted from the relatively unstable direction
control of the wheelchair.

5. DISCUSSION

Previous wheelchair systems controlled by BCIs were generally
tested by asking the subject to drive the wheelchair from one
place to another without accurate requirements of the distance
and direction control accuracy. In this study, the subjects need to
accurately control and stop the wheelchair in front of a table with
a certain distance range and direction. Otherwise the grasping
task will fail. Thus, a main purpose of this work is to prove that
a hybrid BCI can provide satisfied control precisions (both the
distance and direction) for the wheelchair and the robotic arm to
handle tricky daily tasks.

In this study, the moving task was concatenated with the
grasping task. To ensure a successful grasp, the target bottle has
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FIGURE 5 | (A) The actual view of the experimental field. (B) A typical route that a subject (S1) drove through during the experiment.

TABLE 1 | Results of the five subjects in the MI-/EOG-Based sessions.

Subjects Gender Age MI accuracy (%) EOG accuracy (%) EOG RT (s) EOG FPR (events/min)

S1 Male 25 95 95 1.4 1.5

S2 Male 33 100 95.3 1.3 3.5

S3 Male 27 82.5 97.7 1.8 1.5

S4 Male 25 80 97.5 1.1 0.2

S5 Male 26 82.5 95.5 1.1 1

Mean ± SD / / 88±8.9 96.2±1.3 1.3±0.3 1.5±1.2

FIGURE 6 | The average accuracies and standard deviations of the five

selected subjects in the 9 MI training sessions.

to be located within a limited rectangular space 0.4 m ahead
of Camera A (length: 0.8 m; width: 0.4 m; height: 0.6 m).
Thus, the required positional accuracy of this task is 0.4 m.
There are no reports of any BCI-controlled wheelchair systems
achieving such accuracy. In this study, considering that the

TABLE 2 | Results of the mobile self-drinking experiment.

Subjects Task 1 Task 2 Task 3

S1 0 0 0

S2 0 0 0.3

S3 1.3 0.3 0.7

S4 0 1 0.3

S5 1.7 1 0

Mean 0.6 0.5 0.7

wheelchair speed is 0.2 m/s and the stop RT is ∼1.15 s, the
proposed system achieves a positional accuracy of 0.23 m, which
is satisfied compared with the required accuracy. Moreover, since
the proposed system generates nearly continuous directional
control outputs, the user can accurately adjust the wheelchair
to ensure it is facing almost directly to the target. According to
the experimental results, three of the five subjects successfully
completed the Task 1 of the mobile self-drinking experiment,
and all of the five subjects completed Task 2 and Task 3 with
no more than 1 collision in average, which demonstrated the
proposed hBCI provided sufficient accuracies to control the
integrated system.

In the proposed hybrid BCI, we attempt to use the EOG signals
to handle the out-of-control problem ofMI-based systems, which
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is caused by the time-varying characteristic of the EEG signals
and is more serious in an integrated system task, since it usually
consumed more time and efforts than a single device task does.
Specifically, users could select the corresponding buttons through
the EOG paradigm to renew the MI parameter Cidle using real-
time EEG signals and adjust the left/right turning threshold THl

and THr . To renew Cidle, the user first stopped the wheelchair
and then perform eye movements to select the “Renew” button.
After the button was selected, the user kept in idle state for at
least 10 s. The algorithm averaged the scores during this period
and used it as an offset compensation for Cidle. Moreover, if some
unreliable issues caused an offset in the left/right classification,
the user could increase/decrease the left/right threshold with a
step of 0.2 by selecting the “+”/“−” buttons on the wheelchair
panel. According to the observations during the experiments,
the three subjects without prior MI experience (S3, S4, and S5)
could extend the time of effective control through this strategy,
which supported that this strategy might be a feasible solution to
utilize the reliability of EOG signals to overcome the time-varying
characteristic of the EEG signals.

For subjects maintaining normal eye movements, EOG may
be a better choice for developing HMIs since it usually has
a higher signal-to-noise ratio. However, EOG-based HMIs can
only provide discrete commands, which hurts the control
precision in scenarios that require continuous control, such as
the direction control of the wheelchair. Compared with EOG,
the motor imagery (MI) paradigm used in BCI has a better
real-time response performance (usually a few hundreds of
millisecond). In this work, the timing window length of an EEG
signal epoch for the MI classification was 2 s, and the interval
between the starting points of two temporal adjacent epochs
was 0.2 s (i.e., the algorithm generated a MI classification result
for every 0.2 s). Moreover, the left/tigh threshold conditions
were applied to further smooth the outputs. Other wheelchair
commands and all of the robotic arm commands were generated
by EOG.

Other functions of the wheelchair, such as moving
forward/backward and stopping, can be realized in a discrete
control mode. Thus, we used an EOG-based button selection
paradigm similar with the one proposed in Huang et al.
(2018). In Huang et al. (2018), users performed 3-4 blinks to
select a button and resulted in a RT of 3.7 s. In this study,
users performed one blink and one eyebrow movement for
button selection, and the average RT was reduced to ∼1.4 s.
For the robotic arm, since the required positional accuracy
of a grasping task usually reaches centimeter-level, it is
challenging to use a single BCI to realize the full control
of the arm. Therefore, we implemented a shared control
mode to combine the intelligence of the robotic arm with
the EOG paradigm. Once the user selects a button which
represents a target bottle, the robotic arm automatically
plans the path between the target object and the user’s
mouth according to the accurate coordinates obtained by
the two cameras.

6. CONCLUSION

In this paper, a novel hBCI based on EEG and EOG was
presented for the control of an integrated assistive system,
which consisted of a wheelchair and a robotic arm, aiming
to help users move from a random place and grasp a target
object that is placed far away. Users steered the wheelchair
left/right by performing motor imagery of the left/right hand,
and generated other wheelchair or robotic arm commands
by implementing two kinds of eye movements (blinking and
raising eyebrows). Five subjects were asked to use the system
to complete a mobile self-drinking experiment, which included
several tricky tasks, such as avoiding obstacles, grasping a target
bottle and passing through a door. The experimental results
demonstrated that the proposed hBCI could provide satisfied
control accuracy for controlling an integrated assistive system to
complete complex daily tasks. In a future work, we will improve
the hBCI paralyzed patients and expand its application range in
the medical rehabilitation process.
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Studies have established that it is possible to differentiate between the brain’s responses

to observing correct and incorrect movements in navigation tasks. Furthermore, these

classifications can be used as feedback for a learning-based BCI, to allow real or virtual

robots to find quasi-optimal routes to a target. However, when navigating it is important

not only to know we are moving in the right direction toward a target, but also to know

when we have reached it. We asked participants to observe a virtual robot performing a

1-dimensional navigation task. We recorded EEG and then performed neurophysiological

analysis on the responses to two classes of correct movements: those that moved

closer to the target but did not reach it, and those that did reach the target. Further,

we used a stepwise linear classifier on time-domain features to differentiate the classes

on a single-trial basis. A second data set was also used to further test this single-trial

classification. We found that the amplitude of the P300 was significantly greater in cases

where the movement reached the target. Interestingly, we were able to classify the EEG

signals evoked when observing the two classes of correct movements against each

other with mean overall accuracy of 66.5 and 68.0% for the two data sets, with greater

than chance levels of accuracy achieved for all participants. As a proof of concept, we

have shown that it is possible to classify the EEG responses in observing these different

correct movements against each other using single-trial EEG. This could be used as

part of a learning-based BCI and opens a new door toward a more autonomous BCI

navigation system.

Keywords: EEG, classification, BCI, human machine interaction, neurophysiology, P300, navigation, target

recognition

1. INTRODUCTION

Studies concerning robotic movement and navigation tasks have previously used
electroencephalography (EEG) to investigate the brain’s responses to observing correct and
erroneous movements. These studies have shown that it is possible to classify the responses
to correct movements against erroneous ones on a single-trial basis (Chavarriaga et al., 2014;
Iturrate et al., 2015; Zander et al., 2016; Kim et al., 2017). Furthermore, a few recent studies
have demonstrated the feasibility of using such correct-vs-error classification as feedback for
reinforcement-learning-based Brain-Computer Interfaces (BCI) (Iturrate et al., 2015; Zander et al.,
2016; Kim et al., 2017). Additionally, some studies have shown that different erroneous conditions
can be classified against each other (Iturrate et al., 2010; Spüler and Niethammer, 2015; Wirth et al.,
2019). These interesting advances have created the possibility of systems in which machines can
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control the low-level action decisions in order to navigate
semi-autonomously toward a target, with feedback provided
via implicit communication with a user through brain signals
spontaneously generated while observing the task (Iturrate et al.,
2015; Zander et al., 2016).

However, none of these previous studies have investigated
whether it is possible to classify EEG responses to different types
of correct actions against each other. In most navigation tasks, it
is crucial not only to know that you are moving in the correct
direction, but also to recognize when you have reached your
destination. As such, it is highly important to consider whether
there are significant neurophysiological differences between the
brain’s responses to observing different correct movements: those
that get closer to a target, compared to those that actually reach it.

To address this question, we evaluated data from a virtual
robotic navigation task. Participants were asked to observe
a virtual robot, represented by a cursor, navigating in a 1-
dimensional space and attempting to reach a target. We then
investigated the EEG responses to movements that reached the
target (hereafter referred to as the “TR condition,” short for
“target reached”), in contrast to the responses to movements
toward the target, but not reaching it (hereafter referred to as the
“TT condition,” short for “toward target”).

To explore neurophysiologicial distinctions between the TT
condition and the TR condition, we used time domain features
to compare the latency and amplitude of key features of
the event related potentials (ERPs). We also examined the
spatial distribution of EEG responses to each condition, using
topographical maps.

Our main focus was on the P300: a positive peak in an ERP
at ∼300 ms (Smith et al., 1970; Picton, 1992), known to be
elicited in the brain when a subject recognizes a target stimulus
in a sequence containing both target and non-target stimuli
(Polich et al., 1991, 1996; Picton, 1992). The P300 has been
successfully utilized in BCI, notably in spelling devices (Farwell
and Donchin, 1988; Sellers and Donchin, 2006; Krusienski et al.,
2008; Gugera et al., 2009; Fazel-Rezai et al., 2012). In these cases,
the “target” stimulus is the specific character the user wishes to
type. Each potentially desired character is typically highlighted a
number of times, with each time being referred to as a “subtrial.”
These subtrials are then averaged to increase the robustness of
classification (Farwell and Donchin, 1988; Sellers and Donchin,
2006; Lotte et al., 2007; Krusienski et al., 2008; Gugera et al.,
2009; Fazel-Rezai et al., 2012). Similar systems have also been
developed for the control of robots (Lüth et al., 2007; Bell et al.,
2008; Johnson et al., 2010; Bhattacharyya et al., 2014), cursors
(Polikoff et al., 1995; Li et al., 2010; Kanoh et al., 2011), and
wheelchairs (Rebsamen et al., 2006; Iturrate et al., 2009).

Unlike these previous studies utilizing the P300 for robotic
control, and similar applications, in our study each stimulus
(i.e., each movement) was only presented once, and so our
classification phase required single-trial classification. Single-
trial P300 classification is challenging, due in part to the low
signal-to-noise ratio of EEG data (Jansen et al., 2004; Lotte
et al., 2007), hence many systems presenting a number of
subtrials. One study investigated the effects of different numbers
of subtrials, and, while high accuracy was achieved with many

subtrials, classification accuracy of <50% was reported based
on a single subtrial, and 3 subtrials were required to achieve
over 60% accuracy (Lenhardt et al., 2008). More recently, studies
focusing on single-trial P300 classification have shown success,
with some reporting accuracies over 80% (Finke et al., 2009;
Korczowski et al., 2015; Lin et al., 2017). These studies were
classifying the presence of a P300 against its absence. Our goal
was to differentiate the P300s elicited in response to two slightly
different desired actions. This presents an extra challenge, as we
can expect the signals of the conditions to be more similar to
each other.

In one previous study, one version of a task presented 80%
standard stimuli and 20% target stimuli with all targets being
identical to each other, while another version presented 80%
standard stimuli and 20% target stimuli, with a pool of 25
different target stimuli; the latter case was found to elicit a
broader P300 (Breton, 1988). While the responses to the different
target stimuli were not compared to one another, this finding
suggests that the P300 is affected by how often a specific stimulus
appears in a task. Indeed, other literature has reported that
P300 amplitude increases for larger target-to-target intervals
(Gonsalvez and Polich, 2002). As well as this, the P300 has been
shown to be associated with positive outcomes (Hajcak et al.,
2005), and its amplitude has been shown to be affected by reward
magnitude (Yeung and Sanfey, 2004; Sato et al., 2005; Wu and
Zhou, 2009).

In this study, the desired stimulus is either a movement
toward the target or, in cases when the virtual robot is adjacent
to the target location, a movement that reaches the target. We
hoped to identify and exploit differences between responses to
these stimuli, arising from both the experimental differences
(i.e., reaching the target occurs less frequently than other correct
moves) and the participants’ cognitive response to the two
conditions (i.e., reaching the target may be considered more
important than other correct moves). We then aimed to use the
identified neurophysiological differences in order to classify the
EEG responses to the two conditions against each other on a
single-trial basis.

In order to classify responses to the conditions against each
other, we implemented a stepwise linear discriminant analysis
strategy, using time domain features from six electrode sites to
generate subject-specific classification models. A second publicly
available data set (Chavarriaga and Millán, 2010), gathered
from participants observing a similar 1-dimensional navigation
paradigm, was used to further validate the efficacy of the
classification strategy.We tested our approach using data from 10
healthy young adults from the first task, and a further five healthy
young adults from the second task.

2. METHODS

This study uses data from two tasks. Neurophysiological
analysis and single-trial classification were performed on data
from Task 1. These data were recorded at the University of
Sheffield, UK. Data from a Task 2 were used in order to
further validate the single-trial classification section of the study.
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FIGURE 1 | Task 1 paradigm. Participants were asked to observe as a blue cursor attempted to navigate toward, and select, a marked target square. If the cursor

was on the target, possible actions were either to select it by drawing a yellow box around the square, or take 1 step away from the target. If the cursor was not on

the target, possible actions were either to move 1 step toward the target, move 1 step further away from the target, or erroneously select the current square as the

target by drawing a yellow box around it. “TT” condition refers to “toward target,” i.e., movements toward, but not reaching, the target. “TR” condition refers to “target

reached,” i.e., movements that did reach the target.

This was an open access data set, obtained under a Creative
Commons Attribution—Non Commercial—No Derivatives 4.0
International license, based on a study by Chavarriaga andMillán
(2010).

2.1. Participants
Ten healthy adults (4 female, 6 male, mean age 27.30 ± 8.31)
were recruited to participate in Task 1. All of these participants
were included in all aspects of the study. All participants had
normal or corrected-to-normal vision. They reported no history
of psychiatric illness, head injury, or photosensitive epilepsy.
Written informed consent was provided by all participants
before testing began. All procedures were in accordance with the
Declaration of Helsinki, and were approved by the University
of Sheffield Ethics Committee in the Automatic Control and
Systems Engineering Department.

Six healthy adults (1 female, 5 male, mean age 27.83 ± 2.23)
performed Task 2. 1 participant was excluded from this study as
too few trials were available after artifact rejection.

2.2. Experimental Setup
2.2.1. EEG Setup
For Task 1, eight channels of EEG were recorded at 500 Hz using
an Enobio 8 headset. The electrode sites recorded were Fz, Cz,
Pz, Oz, C3, C4, P07, and PO8. A further reference electrode was
placed on the earlobe.

For Task 2, 64 channels of EEG were recorded at 512 Hz
using a BioSemi ActiveTwo system, and were referenced to the
common average. Electrodes were placed using the 10–20 system.

2.2.2. Task 1
In Task 1, participants were seated in front of a screen and
asked to observe a computer controlled cursor. Participants were
presented with nine squares, arranged in a horizontal line, on
a black background, as seen in Figure 1. The cursor’s current
square was colored blue. The target square was identified by a red
bullseye symbol on a white background. All other squares were
plain white.

At the beginning of each run, the cursor appeared 2 or 3
squares away from the target location, either to the left or the
right. Every 2 s, either the cursor would move to an adjacent

square, or a yellow box would be drawn around the cursor’s
current position in order to identify that the computer believed
that it had reached the target. Such target identification could
occur correctly or erroneously. Actions occurred with preset
probabilities, which depended on whether or not the cursor was
on the target. These probabilities are shown in Table 1.

After the target was identified, either correctly or erroneously,
the run finished and the screen was cleared. After 5 s, the next
run began. A beep sounded 1 s before the start of each run.
Participants were asked to refrain from movement and blinking
during each run, but told that they could move and blink freely
between runs, while the screen was blank. This process repeated
until the end of the block, with each block lasting∼4 min.

Each participant performed a single session of observations.
Participants were asked to observe blocks, with breaks of as
long as they wished between blocks, until they reported their
concentration levels beginning to decrease. Most participants
observed six blocks of trials. However, two participants observed
only 2 blocks. On average, Task 1 participants observed a total of
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TABLE 1 | Action probabilities for Tasks 1 and 2.

Task Cursor location Action Probability

Task 1

Not on target

Move toward target 0.7

Move further from target 0.2

Identify location as target 0.1

On target
Identify location as target 0.67

Step off target 0.33

Task 2 Not on target
Move toward target 0.8

Move further from target 0.2

Note that each run in Task 2 ended once the cursor reached the target. As such there were

no moves from an on-target position in Task 2. In both tasks, both TT and TR conditions

occurred as a result of “move toward target” actions. If these actions occurred when

the cursor was adjacent to the target, the result would be reaching the target (i.e., TR

condition). If the cursor was not adjacent to the target prior to the action, the result would

be moving closer to the target, but not reaching it (i.e., TT condition).

149.2 ± 40.0 (mean ± standard deviation) TT condition trials,
and 82.3± 20.0 TR condition trials.

2.2.3. Task 2
In Task 2, participants were similarly asked to observe the 1-
dimensional movement of a computer-controlled cursor. Twenty
locations were arranged in a horizontal line across a screen. The
cursor was displayed as a green square. The target was displayed
as a blue square when it appeared to the left of the cursor, or a red
square when it appeared to the right of the cursor.

At the beginning of a run, the target was drawn no more
than three positions away from the cursor. Every 2 s, the
cursor would move either toward or away from the target with
preset probabilities, shown in Table 1. Unlike Task 1, no target
identification was required by the computer. Instead, each run
ended when the cursor reached the target. After this, the cursor
stayed in its existing location, and a new target was drawn, again
no more than three positions away from the cursor. This process
repeated until the end of the block, with each block lasting 3 min.

Participants each performed two sessions of observations.
Each session consisted of 10 blocks. The number of days between
sessions varied between participants, from a minimum of 50
days to a maximum of more than 600 days. On average, Task 2
participants observed a total of 620.2 ± 10.6 TT condition trials,
and 277.7± 14.1 TR condition trials.

2.3. Neurophysiological Analysis
Data from Task 1 were used for neurophysiological analysis.
As we did not have control over the experimental paradigm
for Task 2, and so did not have a precisely detailed picture
of how the stimuli were presented, we opted not to perform
neurophysiological analysis on Task 2 data, instead using these
only to further validate the classification phase of this study.

Raw data from Task 1 were resampled to 64 Hz, and
then band-pass filtered from 1 to 10 Hz, using a zero-phase
Butterworth filter. TT and TR Trials were extracted from a time
window of 0 to 1,000 ms, relative to the movement of the cursor.
All extracted trials were baseline corrected relative to a period of
200 ms immediately before the movement of the cursor. Artifact
rejection was performed by discarding any trials in which the

range between the highest and lowest amplitudes, in any channel,
was >100µV.

Grand average time domain event related potential (ERP) data
were plotted using the extracted trials, showing the mean voltage
± 1 standard error, comparing responses to the TT condition
with those to the TR condition.

Peak analysis was performed in order to identify the latencies
at which the P300 occurred in the ERP data. Visual inspection
of time domain ERP and topographical plots indicated that
the highest P300 amplitude in this study occurred at electrode
site Cz, and that there was a difference in P300 amplitudes in
response to the two conditions at this site. As such, Cz was
chosen as the most suitable channel for peak analysis. This peak
analysis was carried out on the grand average ERP for responses
to each condition. Subsequently, the P300 was identified as
the highest positive peak, occurring between 200 and 500 ms.
This time window was selected based on a visual inspection of
the grand average time-domain data. To check for statistically
significant differences in peak latencies, the same analysis was
carried out to find the P300 peak in the average responses of each
individual participant, for both conditions. According to one-
sample Kolmogorov-Smirnov tests, we could not assume the data
to be normally distributed. Therefore, a Wilcoxon signed-rank
test was performed to compare the peak latencies identified for
the two conditions.

To check whether there was a statistically significant difference
in peak amplitude between responses to the two conditions,
the mean amplitude was calculated in the responses the average
responses of each individual participant, in a time window from
200 to 500 ms in order to encapsulate the full breadth of the
P300. According to one-sample Kolmogorov-Smirnov tests, we
could not assume the data to be normally distributed. Therefore,
a Wilcoxon signed-rank test was performed to compare the
amplitudes identified for the two conditions.

Topographical maps were then plotted for responses to each
condition, using a 50 ms window surrounding the P300 latency
(from peak −25 ms to peak +25 ms) as identified in the
pooled data from all trials of both conditions combined. All
topographical maps used the same scale, from the minimum
value to the maximum values across all grand averages.

2.4. Single-Trial Classification
Single-trial classification was performed on data from both tasks.
The same classification protocol was followed for both data sets,
and is described in this section.

2.4.1. Pre-processing and Feature Extraction
Data from six electrode sites were used for single-trial
classification: Fz, Cz, Pz, Oz, PO7, and PO8. These channels were
selected based on visual inspection of grand average time domain
ERPs, and considering prior knowledge related to these sites. The
P300 has shown to peak inmidline electrodes (Polich et al., 1997),
and posterior sites, such as PO7 and PO8 are associated with
visual processing (Deutsch et al., 1988; Wolber and Wascher,
2005; Schneider et al., 2012). As with the neurophysiological
analysis, data were resampled at 64 Hz, trials were baseline
corrected to a period of 200 ms immediately before presentation
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of the stimulus, and artifact rejection was performed to remove
any trials with a range of>100µV between the highest and lowest
amplitude in any channel. For the classification phase, data were
band-pass filtered between 1 and 32 Hz. This band was selected
after visual inspection of event-related spectral perturbation
(ERSP) data which showed that, while most activity occurred at
low frequencies, some potentially useful activity was also present
in higher frequencies (see Supplementary Figure 1). Trials were
extracted from 200 to 700 ms relative to the movement of the
cursor. This window was selected based on visual inspection of
grand average time domain ERPs. Selecting this window results in
33 samples per channel. Thus, in total, each trial was represented
by 198 (6× 33) features.

Previous literature has suggested that a minimum of 20 trials
are required to provide stability in the P300 (Cohen and Polich,
1997). As such, we implemented a minimum cut-off of 20
artifact-free trials per class, in order to ensure we had enough data
to produce a reliable training set. One participant was excluded
from the single-trial classification phase of this study due to
this cutoff.

2.4.2. Classification With Stepwise Linear

Discriminant Analysis
In order to classify the data based on the most relevant subset
of features, stepwise linear discriminant analysis was chosen as
our classification approach, as previous literature has shown this
strategy to be effective at both feature selection and classification
of both P300 (Donchin et al., 2000; Krusienski et al., 2006,
2008; Sellers and Donchin, 2006; Lotte et al., 2018) and motion-
onset visual evoked potential (mVEP) EEG data (Guo et al.,
2008). An individual classification model was generated for each
participant, using only the data from that individual participant’s
responses to the task. Firstly, for a given participant, an initial
subset of features was selected. The amplitudes of the training
trials for each condition were compared in each feature (i.e.,
each combination of channel and time point) using an unequal
variances t-test. Features whose p-value was<0.05 were included
in the initial feature set. The stepwise procedure was then
performed to select which features would be included in the final
model. At each step, a regression analysis was performed on
models with and without each feature, producing an F-statistic
with a p-value for each feature. If the p-value of any feature was
<0.05, the feature with the smallest p-value would be added.
Otherwise, if the p-value of any features already in the model had
risen to > 0.10 at the current step, the feature with the largest p-
value would be removed from the model. This process continued
until no feature’s p-value reached the thresholds for being added
to, or removed from, the model. If no features were added to
the model at all, a single feature with the smallest p-value would
be selected. Training and test trials were then reduced to the
selected features.

The training set for the condition with the fewest training
trials was oversampled in order to ensure that training occurred
with an equal number of trials per condition. A linear
classification model was then trained and tested. All classifiers
were trained and tested using leave-one-out cross validation.
To test statistical significance of the classification, a right-tailed
Fisher’s exact test was performed on the confusion matrix of each

participant’s results. In order to test whether the classification was
significant at a group level, individual p-values were combined
into a group p-value using Fisher’smethod (Loughin, 2004; Heard
and Rubin-Delanchy, 2018).

3. RESULTS

3.1. Neurophysiological Distinctions
In the responses to both conditions, grand average time
domain ERPs showed a broad P300 peak, as can be seen in
Figure 2A. Figures 2B,C show examples of time domain ERPs
from individual participants (1 and 10, respectively). In both
conditions, the shape of the broad P300 featured a peak shortly
prior to 300 ms, followed by a slight drop in amplitude, and
then a secondary peak, shortly after 400 ms. In responses to
the TR condition, the earlier peak was found to have the
highest amplitude, at a latency of 265 ms. The secondary peak
marked the highest amplitude in grand average responses to
the TT condition, with a latency of 420 ms. However, the
Wilcoxon signed-rank test did not find a significant difference
between the P300 peak latencies of responses to the two
conditions (p = 0.81).

A distinction was seen between the P300 amplitudes of
responses to the two conditions. The TR condition was observed
to elicit a P300 with a greater amplitude than that generated in
response to the TT condition. The Wilcoxon signed-rank test
comparing the amplitudes of the two conditions, based on a time
window from 200 to 500 ms in order to encapsulate the breadth
of the P300, found this difference in amplitude to be statistically
significant (p = 0.004).

Grand average time domain data for all eight electrode sites
recorded for Task 1 are shown in Supplementary Figure 2.

Topographical maps plotted at the P300 peak latency showed
the main activation to occur in the central midline, in response to
both conditions, as can be seen in Figure 3.

We observed some features in the ERP responses to both
conditions which may be related to motion-onset visual evoked
potentials (mVEP). Such mVEPs occur when users percieve the
beginning of movement of an object or symbol on a screen (Kuba
et al., 2007; Guo et al., 2008; Marshall et al., 2013; Beveridge et al.,
2019). Three main peaks have been identified inmVEP: a positive
peak (P1), followed by a negative deflection (N2), then another
positive peak with a latency of 240–500 ms (Kuba et al., 2007;
Guo et al., 2008; Marshall et al., 2013; Beveridge et al., 2019),
which has been described as a P2 (Kuba et al., 2007; Guo et al.,
2008; Marshall et al., 2013) or P300 (Beveridge et al., 2019). The
movements considered in this study were instantaneous steps
from one location to the next. However, along with the P300,
small P1 and N2 peaks were visible, with latencies of 78 and
125 ms, respectively, relative to the movement of the cursor.
These peaks did not appear to differ between responses to the
two conditions.

3.2. Classification
3.2.1. Classification of Task 1
The classification accuracies of each individual participant of
Task 1 are shown in Table 2. The mean overall accuracy for all
Task 1 participants was 66.5%. The mean accuracy for the TT
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FIGURE 2 | Time domain ERPs at electrode site Cz, from Task 1. Time shown is relative to movement of the cursor. Central lines represent mean signals. Shaded

areas cover 1 standard error. Blue lines show TT condition data. Green lines show TR condition data. (A) Shows grand average data from all Task 1 participants, (B)

shows data from participant 1, and (C) shows data from participant 10.

condition was 68.8%, and themean accuracy for the TR condition
was 62.4%. Statistically significant separation of the conditions
(p < 0.05) was found for all Task 1 participants. At a group level,
the classification results for Task 1 were found to be statistically
significant (p = 2.8× 10−54).

3.2.2. Classification of Task 2
The classification accuracies of each individual participant of
Task 2 are shown in Table 3. The mean overall accuracy for all
Task 2 participants was 68.0%. The mean accuracy for the TT
condition was 70.5%, and themean accuracy for the TR condition
was 61.0%. As with Task 1, statistically significant separation of
the conditions (p < 0.05) was found for all Task 2 participants.

At a group level, the classification results for Task 2 were found
to be statistically significant (p = 9.6× 10−62).

4. DISCUSSION AND CONCLUSION

4.1. Neurophysiological Distinctions
Between the Conditions
In this study, the key neurophysiological difference that
we identified between the two conditions was in the
amplitude of the P300. The amplitude of the P300 was
found to be greater in response to the TR condition (i.e.,
movements that reached the target) than the TT condition
(i.e., movements that were correct, but did not reach
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FIGURE 3 | Grand average topographical maps of Task 1 data. Maps were

plotted based on a 50 ms window surrounding the peaks identified as P300

from grand average data across all participants, and both conditions. Plots

shown represent (A) responses to the TT condition, and (B) responses to the

TR condition.

the target). This distinction was found to be statistically
significant (p = 0.004).

As discussed in section 1, a number of studies have reported
that P300 amplitude is affected by reward magnitude (Yeung
and Sanfey, 2004; Sato et al., 2005; Wu and Zhou, 2009). It
should be noted that, in this study, participants were not directly
rewarded based on the virtual robot’s performance. However, it
is certainly feasible that they regarded moves that reached the
target as being more important than moves that did not reach
it, which could be considered analogous to the TR condition
having a higher reward magnitude. Reports have been mixed
regarding the effects of valence on the P300. Some studies have
reported amplitude being affected by positive valence (Cano
et al., 2009; Wu and Zhou, 2009), while others have reported
valence either having no effect (Carretié et al., 1997; Yeung
and Sanfey, 2004), or an effect only in the case of negative
valence (Conroy and Polich, 2007). P300 amplitude has also
been shown to be dependent on whether feedback was expected
or unexpected (Hajcak et al., 2005), and on target-to-target
interval, with amplitude increasing when targets appeared less
frequently (Gonsalvez and Polich, 2002).

Taking into consideration previous findings on the P300,
and the experimental setup of our task, there are a number of
potential causes of this increase in amplitude for responses to the
TR condition, compared to the TT condition. It may represent a
cognitive response recognizing that amove that reaches the target
is a more important step than other correct moves. Alternatively,
while this study was designed as a navigation observation task,
it could also conceptually be considered as an oddball paradigm.
That is to say, the TR condition occurs less frequently than the
TT condition. Therefore, it is possible that the increased P300
amplitude is due to the relative rarity of the TR condition. It is
quite possible that the difference in amplitude may be the result
of a combination of these factors.

We also briefly investigated frontal theta power, and
asymmetry in alpha power, as these have been reported to vary
with regard to valence (Reuderink et al., 2013). However, no
significant differences in these markers were identified between
the conditions. It is certainly feasible that participants would not
have had a strong emotional reaction to reaching the target. In
Task 1, the goal was not fully achieved until the target was not
only reached but also identified. Furthermore, users knew they
were not controlling the virtual robot, and were not rewarded if it
performed well. It may be interesting to investigate whether these
valence markers indicate different reactions in future on-line
experiments, in which participants’ responses affect the actions
of the virtual robot.

4.2. Single-Trial Classification
Previous studies have successfully classified the brain’s responses
to correct movements against responses to erroneous movements
in navigation tasks, such as the ones explored in this study.
The original study for which the data of Task 2 were generated
reported classification accuracy of 75.8 and 63.2% for the correct
and erroneous movement classes, respectively (Chavarriaga and
Millán, 2010). Another study reported correct vs. erroneous
movement classification accuracy, in three similar navigation
tasks, of 73.8, 72.5, and 74.3% (Iturrate et al., 2015). It is
reasonable to expect that the classification of two different correct
movements against each other would be more challenging than
the classification of correct movements against erroneous ones;
we would expect to see more pronounced differences in the
brain’s responses in the latter case.

In this study, classifying EEG responses to correct movements
toward the target (but not reaching it) against responses to
movements that reached the target, we achieved mean overall
classification accuracy of 66.5 and 68.0% for the two tasks.
Indeed, these were only slightly below the levels previously
reported for erroneous vs. correct movements in similar tasks.
Interestingly, overall accuracy reached a high of 83.7% in the
best case. Crucially, statistically significant separation of the two
conditions (p < 0.05) was achieved for all participants from both
tasks, and highly significant separation of the classes was shown
at the group level (p = 2.8 × 10−54 and p = 9.6 × 10−62 for the
Task 1 and Task 2, respectively).

As a proof of concept, we have shown that it is possible
to classify responses to these two classes of correct movement
against each other using single-trial EEG. As discussed in
section 2.4.2, we chose to apply stepwise linear discriminant
analysis in this study, as it has previously been shown to be
successful in classifying similar data types (Donchin et al., 2000;
Krusienski et al., 2006, 2008; Sellers and Donchin, 2006; Guo
et al., 2008; Lotte et al., 2018). However, it is possible that
other methodologies, which could be explored in future, may
be able to provide further increases in classification accuracy. In
potential future systems, classifications of the human observer’s
EEG responses could be used to guide the movement of a real
or virtual robot, with the user being explicitly rewarded for good
performance of the robot. In such systems, adding information
from more frontal electrodes may be able to provide an increase
in classification accuracy, as the frontal cortex has been shown to
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TABLE 2 | Single-trial classification results of Task 1 data.

Subject
# TT # TR Mean # Features TT TR Overall

p-value
trials trials selected accuracy (%) accuracy (%) accuracy (%)

1 162 86 35.0 64.8 55.8 61.7 1.4× 10−3

2 73 40 44.8 68.5 60.0 65.5 3.1× 10−3

3 157 93 10.3 60.5 51.6 57.2 4.2× 10−2

4 163 89 50.9 76.1 70.8 74.2 4.1× 10−13

5 63 39 30.4 65.1 53.8 60.8 4.7× 10−2

6 155 88 6.3 67.7 63.6 66.3 1.9× 10−6

7 154 85 16.6 59.7 52.9 57.3 4.0× 10−2

8 156 81 15.9 67.3 61.7 65.4 1.7× 10−5

9 145 76 40.0 73.1 72.4 72.9 7.5× 10−11

10 169 89 37.7 85.2 80.9 83.7 5.0× 10−26

All < 0.05,

Mean 139.7 76.6 28.8 68.8 62.4 66.5 group p-value:

p = 2.8× 10−54

Overall accuracy calculated as the percentage of trials, of either class, correctly classified. Number of features selected calculated as the mean of all iterations of leave-one-

out cross-validation.

TABLE 3 | Single-trial classification results of Task 2 data.

Subject
# TT # TR Mean # Features TT TR Overall

p-value
trials trials selected accuracy (%) accuracy (%) accuracy (%)

1 448 105 44.3 75.0 60.0 72.2 1.9× 10−11

2 585 180 89.2 74.2 66.7 72.4 7.3× 10−23

3 259 128 64.7 67.6 60.9 65.4 8.4× 10−8

4 201 93 31.5 61.7 51.6 58.5 2.2× 10−2

5 603 250 71.8 74.0 66.0 71.6 1.4× 10−27

All < 0.05,

Mean 419.2 151.2 60.3 70.5 61.0 68.0 group p-value:

p = 9.6× 10−62

Overall accuracy calculated as the percentage of trials, of either class, correctly classified. Number of features selected calculated as the mean of all iterations of leave-one-

out cross-validation.

code prediction and reward (Schultz et al., 1997; Schultz, 2001;
McClure et al., 2004).

4.3. Implications for BCI
The P300 has a history of successful use in BCI, as discussed
in section 1. In particular, there have been many studies,
dating back over 30 years, regarding the use of P300 signals in
BCI spelling devices (Farwell and Donchin, 1988; Sellers and
Donchin, 2006; Krusienski et al., 2008; Gugera et al., 2009; Fazel-
Rezai et al., 2012). These systems have often been able to improve
the robustness and accuracy of their classifications by using
paradigms that allowed each stimulus to be presented multiple
times, and the responses to be averaged. P300-based BCIs have
also been created for other applications, such as video games
(Finke et al., 2009; Kaplan et al., 2013), virtual reality (Bayliss,
2003), and control of robots (Lüth et al., 2007; Bell et al., 2008;
Johnson et al., 2010; Bhattacharyya et al., 2014), cursors (Polikoff
et al., 1995; Li et al., 2010; Kanoh et al., 2011) and wheelchairs

(Rebsamen et al., 2006; Iturrate et al., 2009). Furthermore, the
P300 has been utilized alongside other modalities, such as motor
imagery (Su et al., 2011) and steady-state visual evoked potentials
(SSVEP) (Yin et al., 2013) to create hybrid BCIs (Pfurtscheller
et al., 2010; Müller-Putz et al., 2011; Amiri et al., 2013). The
navigation scenarios presented in this study provided a further
challenge compared to many previous P300-related systems, as
each stimulus (i.e., movement) was only presented once. This was
an important aspect of the paradigm, as we wished to simulate the
observation of real navigation, with a view to future applications
in which classifications could be made solely based on users’
responses to the actions they observe. In such real navigation,
each action occurs only once. While accurate single-trial P300
classification is challenging due to the low signal-to-noise ratio
of EEG (Jansen et al., 2004; Lotte et al., 2007), some recent studies
have shown that it can be achieved. One study using a video game
context reported mean offline classification accuracy of 85%,
and online accuracy of 66% (Finke et al., 2009). Another study
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reported single trial P300 classification accuracy of 70% (Jansen
et al., 2004). In other cases, the area under the receiver operating
characteristic curve (AUC) was reported for various possible
classifier parameters, rather than the classification accuracy for
a specific trained and optimized model. An AUC of over 0.8
has been reported for many participants (Korczowski et al.,
2015; Lin et al., 2017). In this study, rather than classifying
a condition eliciting a P300 against a condition that did not
elicit a P300, we were classifying two P300-generating conditions
against each other. As such the fact that statistically significant
separation of two different correct conditions was achieved for all
participants is encouraging for the use of the P300 in single-trial
BCI scenarios.

In recent years, there have been interesting advances in BCIs
based on signals that are generated spontaneously in the brain,
without the need of a conscious effort to generate them on
the part of the user. These systems, making use of implicit
communication, have been described in two groups, referred to
as “reactive BCI,” in which a spontaneous response is triggered
by a stimulus, and “passive BCI,” whereby arbitrary mental states
are measured (Zander et al., 2010, 2014; Zander and Köthe,
2011). Some particularly interesting recent studies have been
those exploring reactive BCI in robotic movement and navigation
tasks. Classification of error-related potentials (ErrP) in order
to differentiate correct movements from erroneous ones has
been combined with reinforcement learning in order to allow
machines to perform a desired action (Kim et al., 2017) or
navigate toward a desired target (Chavarriaga and Millán, 2010;
Iturrate et al., 2015; Zander et al., 2016). By obtaining more
detailed information from spontaneously generated signals, we
can provide these systems with more context, and allow them to
learn more efficiently and act more appropriately. The ability to
classify when a target has been reached specifically and separately
from other correct movements, as has been demonstrated in this
study, would be an important aspect of a navigation system, and
thus could enhance the usability and effectiveness of navigation-
based BCI.

4.4. Conclusion
In this study, we compared the ERPs generated in EEG data,
in response to observing two types of correct movements by a
virtual robot: those that moved the robot closer to the target
without reaching it, and those in which the robot reached the
target. We were able to show that both correct movement

conditions elicited a P300, and we identified a significantly higher
P300 amplitude in cases in which the target was reached.

Interestingly, we were able to classify the responses to these
two types of correct actions against each other with mean overall
accuracies of 66.5 and 68.0% for two tasks, achieving statistically
significant separation of the conditions for all participants. This
single-trial classification could be used as part of a learning-based
BCI, and opens a new door toward a more autonomous BCI
navigation system.
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Brain signals represent a communication modality that can allow users of assistive

robots to specify high-level goals, such as the object to fetch and deliver. In this paper,

we consider a screen-free Brain-Computer Interface (BCI), where the robot highlights

candidate objects in the environment using a laser pointer, and the user goal is decoded

from the evoked responses in the electroencephalogram (EEG). Having the robot present

stimuli in the environment allows for more direct commands than traditional BCIs that

require the use of graphical user interfaces. Yet bypassing a screen entails less control

over stimulus appearances. In realistic environments, this leads to heterogeneous brain

responses for dissimilar objects—posing a challenge for reliable EEG classification. We

model object instances as subclasses to train specialized classifiers in the Riemannian

tangent space, each of which is regularized by incorporating data from other objects. In

multiple experiments with a total of 19 healthy participants, we show that our approach

not only increases classification performance but is also robust to both heterogeneous

and homogeneous objects. While especially useful in the case of a screen-free BCI,

our approach can naturally be applied to other experimental paradigms with potential

subclass structure.

Keywords: brain-machine interface, screen-free brain-computer interface, subclass structure, human-robot

interaction, event-related potentials, service robots

1. INTRODUCTION

Robotic service assistants can help impaired users gain autonomy by performing physical tasks,
such as fetching objects or serving a meal. While the robots should perform low-level actions
without supervision, the human should be able to exert high-level control, such as deciding
which object to fetch and deliver. Non-invasive brain signals can be used to deliver such
control commands—especially for users who cannot reliably communicate using other modalities.
For example, event-related potentials (ERPs) form one class of possible control signals from
electroencephalography (EEG). Traditionally, computer screens with graphical user interfaces
present stimuli in order to elicit ERP responses and to map brain responses to application
commands. However, the required association between elements of the user interface and objects
or actions in the real world can be ambiguous (e.g., in the presence of multiple identical objects).

Yet user goals in human–robot interaction are often related to tangible objects of the
environment that the robot can manipulate. Hence, interaction with objects offers an alternative to
screen-based selection. For instance, the robot can highlight candidate objects in the environment

26
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using a laser pointer as introduced in Kolkhorst et al. (2018).
The ERP responses elicited by each laser highlighting allow to
identify the target of a user’s visual attention among multiple
candidate objects (c.f., Figure 1). This novel approach avoids
the indirection of an additional screen and permits changing
environments while utilizing the robot that is needed anyhow for
user assistance. Screen-free object selection was shown to work
reliably in an online setting in Kolkhorst et al. (2018). Yet, the
original evaluation was limited to candidate objects that shared
similar surface properties and consequently looked similar upon
illumination with the laser.

In more realistic application environments, possible
candidate objects have heterogeneous optical properties.
These could affect the elicited brain responses and lead to
different ERP distributions across objects. In screen-based brain-
computer interfaces (BCIs), such heterogeneous stimuli could
be considered a—correctable—design flaw. In contrast, a high
variance in surfaces and therefore stimuli is inherent to an in-
the-scene highlighting approach and cannot be easily mitigated
by modifying the experimental paradigm. Instead, it is desirable
to address this problem from a machine-learning perspective.

One strategy is to treat each object—corresponding to a
partition of the original classification task—as a separate subclass
problem. A simple method would be to train separate classifiers
for each subclass (e.g., object). However, as such a specialization
entails reduced training data, it may be detrimental when applied
to objects with similar optical properties. A more data-efficient
treatment of subclass structure has been proposed by Höhne
et al. (2016). While using traditional mean electrode potentials
as ERP features, the authors proposed to regularize each subclass
classifier toward other subclasses.

In this work, we address the problem of heterogeneous
subclasses in the context of screen-free BCIs by training subclass-
regularized classifiers in a Riemannian-geometry framework.
Our contributions are threefold: First, we show that different

FIGURE 1 | Setup of our screen-free BCI: While the user attends to her goal object (the Rubik’s cube in this example), the robot sequentially highlights candidates in

the environment using a laser pointer mounted adjacent to the end effector. As depicted by the grand averages in the top, the EEG responses to the highlighting

stimuli (marked by green bars) differ between the target object of the user (the Rubik’s cube, red curve) and the other non-targets (blue curves). However, the optical

properties cause dissimilar responses across objects for both classes. Our approach is able to robustly handle these differences in brain responses when predicting

the user goal from the EEG response to each highlighting.

object and stimulation properties lead to heterogeneous EEG
responses in a screen-free BCI. Second, we propose to
use subclass-regularized linear discriminant analysis (LDA)
classifiers in a centered Riemannian tangent space to handle this
heterogeneity. This can be viewed as a weighted incorporation
of data from other subclasses. Third, we show on data from
experiments with 19 participants observing homogeneous and
heterogeneous stimuli that our approach improves classification
performance compared to subclass-specific as well as subclass-
agnostic classifiers while not deteriorating performance for non-
relevant subclass information. Our improvements also hold for
small amounts of training data.

This paper extends our earlier conference contribution
(Kolkhorst et al., 2019b) in several ways: We corroborate the
results of our earlier pilot study (which included 6 participants)
on data from 19 participants. Additionally, we propose to center
subclasses using parallel transport and regularize each classifier
toward other objects rather than applying separate object-specific
classifiers—allowing a more efficient use of data. We also provide
a more comprehensive description of the approach and an
extended discussion.

After reviewing related work in section 2, we describe
our experimental paradigm—using a robot equipped with
a laser pointer to elicit ERPs for candidate objects—in
section 3.1. Subsequently, we explain our approach to handle
subclass information in a Riemannian-geometry classification
framework in section 3.2. After reporting results both regarding
neurophysiology of responses and classification performance in
section 4, we close with a discussion and conclusion in sections 5
and 6.

2. RELATED WORK

As non-invasive brain-computer interfaces promise to offer
communication capabilities to users who cannot reliably
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use other modalities, a wide range of command-and-control
applications has been investigated. While multiple signal
categories such as mental imagery can provide information,
here we focus on experimental paradigms utilizing event-related
potentials in response to a presented stimulus. Examples include
spelling using visual (Sellers and Donchin, 2006; Hübner et al.,
2017; Nagel and Spüler, 2019), auditory (Schreuder et al.,
2010) or tactile (van der Waal et al., 2012) information and
control of devices (Tangermann et al., 2009). In order to
classify individual ERP responses, mean electrode potentials in
suitable time intervals after the stimulus can be combined with
linear classification methods (Blankertz et al., 2011). Recently,
approaches based on deep learning (Schirrmeister et al., 2017;
Behncke et al., 2018; Lawhern et al., 2018) or covariance
representations leveraging Riemannian geometry (Barachant
et al., 2013; Barachant and Congedo, 2014; Congedo et al., 2017)
have gained popularity—both for ERPs and other signal classes—
and can be considered state of the art.

Since the stimulus presentation is key for reliable analysis
and classification of ERPs, consistent differences in presentation
also affect the distribution of elicited ERPs. For example,
variations in the target-to-target interval or habituation effects
have been found to cause non-identically distributed ERP
responses and affect classification performance (Citi et al.,
2010; Hübner and Tangermann, 2017). These aspects can be
viewed as subclasses of the data. Höhne et al. addressed the
subclass structure in neuroimaging applications by training
separate LDA classifiers for each subclass while regularizing
them toward other subclasses using multi-target shrinkage (Bartz
et al., 2014; Höhne et al., 2016). In principle, adapting subclass-
specific classifiers to other subclasses can also be interpreted
as a special case of transfer learning (e.g., Jayaram et al.,
2016), which aims to improve performance by leveraging data
from related tasks or datasets. In the context of Riemannian
geometry (unsupervised), parallel transport of covariance
matrices to a common point on the manifold (Zanini et al.,
2018; Yair et al., 2019) as well as additional (supervised)
geometric transformations (Rodrigues et al., 2019) have been
proposed to reduce the differences in distributions between
related datasets.

In the context of human-robot interaction—e.g., with service
robots—the user should typically be able to deliver (high-level)
commands to the robot (e.g., which object to fetch). Different
modalities such as screens, speech (e.g., Shridhar and Hsu,
2018) or manually marking target objects using a laser pointer
(Gualtieri et al., 2017) can be used to deliver these commands.
However, impaired users might not be able to reliably control the
robot using common modalities.

Brain signals as a feedback modality have also been used for
command-and-control scenarios in robotics environments, e.g.,
to control wheelchairs or telepresence robots (Iturrate et al., 2009;
Leeb et al., 2015), in fetch-and-carry tasks (Burget et al., 2017) or
for grasp selection (Ying et al., 2018). These approaches typically
use screens for stimulus presentation.While approaches based on
mental imagery do not strictly require stimulus presentation, they
would be limited in practice to only a small number of different
commands in the absence of a mediating user interface.

A smaller number of publications utilized informative EEG
signals from users who were passively observing a moving
robot. Examples include the identification of erroneous actions
(Salazar-Gomez et al., 2017; Behncke et al., 2018) or user
preferences for robot motion (Iwane et al., 2019; Kolkhorst
et al., 2019a). While this allows to infer user judgment of
robotic actions, it requires the robot to first perform a candidate
action (e.g., moving to the object with the highest prior
probability). As goals of the user will often be outside of the
robot’s workspace, this strategy is typically more time-consuming
than screen-based strategies. In addition, robotic motion is
not instantaneous, which lowers the classification performance
obtainable from event-locked evoked signals. Consequently,
highlighting of objects with a laser pointer can be viewed as
a combination of a natural user task with the ability to query
many candidates and the precise stimulus timing known from
traditional ERP paradigms.

3. MATERIALS AND METHODS

In this section, we describe our screen-free BCI setup with
heterogeneous objects as well as the data collection process.
Subsequently, we present the covariance-based classification
pipeline and specifically our approach to subclass-regularized
classification of ERP signals in the Riemannian tangent space.

3.1. Screen-Free Stimulus Presentation
Using Highlighting in the Environment
The idea of our screen-free BCI is to keep the user’s attention on
the environment while presenting stimuli—eliciting informative
event-related potentials that allow decoding of the user goal. In
our setup, the stimuli are presented by highlighting candidate
objects with a laser pointer, which results in a temporally precise
onset and an—ideally—salient stimulus.

3.1.1. Experimental Setup for Robotic Object

Selection
In order to highlight the candidate objects of the user, we used
a KUKA iiwa robotic arm with a 1mW green laser pointer
mounted next to the end effector. As depicted in Figure 1, in
our experiments the robot was positioned in front of a table
with objects. Since robot movements are needed to orient the
laser pointer to different objects, the robot highlighted the same
object multiple times in a sequence lasting 3 s before switching to
the next. For each highlighting, the laser pointer was turned on
for 100ms.

Highlighting poses for the robot were determined based on
the positions of objects in the scene (in our ROS implementation,
we expect a TF coordinate frame (Foote, 2013) for each object).
In pilot experiments, we obtained these positions from a vision-
based object detector and tracker (SimTrack, Pauwels and Kragic,
2015), which allows for the scene to change between different
highlighting sequences. In the EEG experiments, we fixed object
positions to reduce potential failures due to tracking errors.
We obtained the desired robot configuration for highlighting
an object based on the kinematics of the robot by minimizing
required joint motion during the transition from the previous
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highlighting configuration while requiring the beam direction of
the laser pointer to intersect with the object’s position.

As depicted in Figure 1, we used eight candidate objects as
potential user goals: four homogeneous ones with similar surfaces
(the same as in Kolkhorst et al., 2018), and four heterogeneous
ones, for which we used everyday objects with differing optical
surface properties. The different appearances of the highlightings
with a laser pointer are depicted in Figure 2. The homogeneous
objects (using obj. 1 as a representative) consisted of semi-
transparent plastic, resulting in a salient spatially confined point.
Despite varying shape, all homogeneous objects (three plastic
cups and a plate; see Figure 1) resulted in similar stimulus
intensities upon highlighting.

The heterogeneous objects caused different appearances of the
laser upon illumination. Two objects (obj. 5 and obj. 6) induced
large and salient points, whereas the laser points on obj. 7 and
obj. 8 were less salient. Note that the materials and shapes of
objects affected multiple optical properties. For example, obj.
5 (and, to a lesser degree, obj. 6) partially reflected the light,
leading to an additional visible spot on the surface of the table.
Although optical properties differed between objects, the effects
(e.g., reflections) are not necessarily detrimental as they may
increase stimulus salience. For an additional impression of the
experiment setup and the appearance of stimuli, we refer the
reader to the Supplementary Video.

We acquired the brain signals using a cap holding Nc = 31
Ag/AgCl gel-based passive EEG electrodes (EasyCap) positioned
according to the extended 10–20 system (Chatrian et al., 1985, see
Figure S2) with a nose reference. We kept channel impedances
below 20 k�. The amplifier (Brain Products BrainAmp DC)
sampled the EEG signals at 1 kHz.

3.1.2. Experiments and Datasets
In this work, we report results from experiments with 19
healthy participants. The recorded EEG data is publicly available
(Kolkhorst et al., 2020). Following the Declaration of Helsinki,
we received approval by the Ethics Committee of the University

Medical Center Freiburg and obtained written informed consent
from participants prior to the session.

Each experiment consisted of multiple trials, in which the user
had a constant goal object and four candidate objects (either
the homogeneous or the heterogeneous ones) were highlighted.
Each trial consisted of three repetitions, where one repetition
corresponds to highlighting each candidate object in turn with a
3 s stimulus sequence. A schematic overview of the experiment
structure can be found in Figure S1. We performed online
experiments, i.e., after each trial we provided visual feedback on
the decoded target object of the user. For the online feedback, we
used a classifier without subclass handling which was trained at
the beginning of the experiment (see Kolkhorst et al., 2018 for
details on the online setup).

We asked the participants to put themselves in the condition
of a user of an assistive robotic arm and that they could decide
which object the robot should fetch by attending the object.
We instructed participants to attend the goal object throughout
the trial. While we did not mandate it, we expect that most
participants maintained visual focus on the goal (i.e., used
overt attention). We asked participants to sit relaxed and to
minimize eye movements during a trial. In order to support the
performance evaluation, we determined the goal object according
to the experimental protocol and gave it as a cue to the participant
prior to the start of every trial.

To investigate the influence of different object types and show
applicability to varying stimulus-onset asynchronies (SOAs, the
time between the start of subsequent laser highlightings), we
performed three series of experiments: In the first, sessions with
7 participants were each split equally into two conditions: In
each trial, either the four heterogeneous objects were highlighted
using an SOA of 250ms (the corresponding data is subsequently
denoted by HET1) or the homogeneous objects were highlighted,
also with an SOA of 250ms (denoted by HOM1). In the second
series with 6 participants—which has previously been used in
Kolkhorst et al. (2019b)—each session was split into trials with
heterogeneous objects and 250ms SOA (HET2), and trials with
homogeneous objects and an SOA of 500ms (HOM2). The third

FIGURE 2 | Close-up photos of candidate objects during highlighting in our experiments. The differing optical properties cause dissimilar appearances (using identical

laser pointer illumination). Object 1 is a representative of the homogeneous objects (see Figure 1 for all objects), for which the highlighting appears similar. Objects 5

to 8 correspond to the heterogeneous objects. Note the reflection on the table surface for objects 5 and 6, and the low salience of the laser point at the top right

of object 8.
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series with 6 participants was originally described in Kolkhorst
et al. (2018) and contains solely trials with the homogeneous
objects and an SOA of 500ms (HOM3). Hence, objects and
stimulus parameters are identical between HET1 and HET2 as
well as between HOM2 and HOM3. The SOAs affect the overlap
between ERP responses to subsequent stimuli. Differences in
SOA lead to variations in discriminability of individual stimuli,
information transfer rate as well as usability (c.f., Höhne and
Tangermann, 2012).

Each individual highlighting k can be associated with the
target or non-target class y(k) ∈ {t, nt}. We investigated different
definitions for subclasses of stimuli: The prime categorization
is the mapping of stimuli to object instances o(k) ∈ {1, . . . , 8}.
Since we performed multiple sequential highlightings for a single
object before moving to the next, we can also identify each
highlighting with the position within the stimulus sequence
q(k) ∈ {1, . . . , 12}. As we expect most variation between the first
and subsequent stimuli, stimulus positions can be aggregated to
q̃(k) with q̃(k) = initial if q(k) = 1 and q̃(k) = subsequent for
q(k) > 1. For a more general notation, we use j to denote the
index of a subclass (i.e., representing a value of either o, q or q̃ in
this paradigm) and useNsub for the number of subclasses (i.e., the
number of unique values of j for a given subclass definition). The
index setKj denotes the indices of highlightings belonging to this
subclass. The number of highlightings for each of the data subsets
and for each subclass in the different experiment conditions can
be found in Table 1.

3.2. EEG Decoding
Identifying the goal object of the user reduces to a binary
classification problem on the EEG data: Since we know the
highlighted object for each brain response, we want to decode
whether the user attended the highlighted object (for which we
expect a target response) or not (non-target response). Hence, the
target object can be predicted by choosing the object for which
the target scores of the corresponding highlightings are highest.
Figure 3 shows the overall processing pipeline for selecting the
target from multiple candidates in the scene.

We use a classification pipeline based on Riemannian
geometry: Covariances matrices of each time window are used
as a signal representation, projected into the tangent space
(TS) and classified using linear discriminant analysis (LDA).
In order to handle heterogeneous subclasses in the data,

we investigated three different classification approaches (as
illustrated in Figure 4): The simplest way is to ignore subclass
information and train classifiers on the pooled data (TS+LDA).
Alternatively, specialized classifiers can be trained separately for
each subclass (sep. TS+LDA). Third, we propose to perform
subclass-specific centering and train specialized classifiers that
are regularized toward other subclasses (cTS+reg-LDA), utilizing
the full data.

3.2.1. Segmentation and Preprocessing
As depicted in Figure 3, we perform preprocessing steps before
estimating covariances: We filter the continuous EEG to the
range of 0.50Hz to 16Hz before downsampling to 100Hz. For
classification, we extract one time window Xk ∈ R

Nc×Nt of 1 s
duration for each highlighting k, starting at the onset of the laser
light (Nt = 101). To remove offsets, we subtract themean activity
of the preceding 200ms. Note that most windows contain the
response to multiple stimuli (four in the case of 250ms SOA,
two in the case of 500ms). We reject windows in which the
peak-to-peak amplitude exceeded 100 µV in any channel.

To capture the temporal course of the ERPs, we follow
Barachant and Congedo (2014) and augment each window Xk

with prototype responses. This leads to a block structure of the
covariance that also captures temporal information: Aside from
the covariance of the measured signal, two blocks correspond
to the cross-covariance of the signal with the ERP prototypes,
providing information on the phase difference of signal and
prototypes. As prototypes, we use the Euclidean mean X̄i of
responses for the target and non-target classes in the training
data (i ∈ {t, nt}). To reduce dimensionality, we project the data
based on spatial filtering components obtained from xDAWN
decompositions (Rivet et al., 2009). We select two components
per class corresponding to the largest eigenvalues, resulting in
filter matricesW i ∈ R

2×Nc . This leads to augmented windows

X̃k =









WtX̄t

WntX̄nt

WtXk

WntXk









∈ R
Nc′×Nt (1)

with Nc′ = 8 surrogate channels out of which the first four are
the prototypes (these are constant across windows).

TABLE 1 | Dataset Characteristics: Number of participants and stimuli for the different datasets, grouped by subclass definition.

Subclass n/a Obj (o) Stim (q̃)

obj. type het hom het hom het hom

SOA 250ms 250ms 500ms 250ms 250ms 500ms 250ms 250ms 500ms

No. of participants 13 7 12 13 7 12 13 7 12

Targets/subclass 864 864 648 216;216;216;216 216;216;216;216 162;162;162;162 72;792 72;792 108;648

Non-targets/subclass 2,592 2,592 1,938 648;648;648;648 648;648;648;648 484;484;484;484 216;2,376 216;2,376 323;1,938

The group consisting of the first three columns (the subclass denoted by “n/a”) corresponds to the complete data, while the other two groups correspond to the data when using
objects (“obj”, o) or stimulus position (“stim”, q̃) as a subclass definition. The columns for heterogeneous objects with an SOA of 250ms apply to datasets Het1 and Het2, homogeneous
objects with an SOA of 250ms to Hom1 and the columns for homogeneous objects with an SOA of 500ms to Hom2 and Hom3. The number of stimuli per subclass are separated by
semicolons and correspond to a single experiment session. Note that the number of stimuli per subclass is uniform in the case of objects while it varies for the two subclasses based
on q̃ (“stim”).
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FIGURE 3 | Overall architecture of the screen-free BCI: In order to identify user intentions, candidate objects—corresponding to possible actions of the robot—are

highlighted sequentially. Time windows aligned to each stimulus are preprocessed and their covariance representation is used for classification (see lower part of the

figure and Figure 4). Based on the predicted probabilities that the user attended the object in a given time window (i.e., whether it was the target), the most likely

candidate is identified and the appropriate action is taken. In a future application setting, we see this pipeline combined with scene perception and object manipulation

(marked by dashed boxes). In this work, however, we fixed candidate objects and gave purely visual feedback on the decoded target object rather than executing

a grasp.

FIGURE 4 | Illustration of our covariance-based classification approaches. Covariances Ck ⊂ S++ are projected into the Riemannian tangent space T|Cm (A). In the

tangent space, classification is performed using linear discriminant analysis (B). Either a single classifier is trained on the data (i, corresponding to TS+LDA), separate
classifiers are trained for each subclass (ii, sep. TS+LDA), or the class means of subclass-specific classifiers are regularized toward other subclasses (iii, cTS+reg-LDA).
This can be seen as a weighted inclusion of data from other subclasses. Note that for the latter case, we also perform centering by parallel transport of the members

of each subclass in covariance space. In the figure, classes (target and non-targets) are indicated by color and subclasses (object instances) by different markers.
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3.2.2. Covariance-Based Decoding Pipeline
In this section, we give a brief description of our Riemannian
geometry-based classification pipeline. For more details and
motivation, we refer the reader to Pennec et al. (2006), Congedo
et al. (2017), and Yger et al. (2017). For each augmented time
window X̃k (i.e., each highlighting event), we calculate window-
wise covariances Ci ∈ S++(Nc′ ) that lie in the cone of Nc′ × Nc′

symmetric positive-definite matrices. Note that we regularize
covariances using analytically determined shrinkage (Ledoit-
Wolf). While Euclidean distances are ill-suited in S++ (c.f.,
Yger et al., 2017)—hindering the use of standard classification
approaches—each element Cref of the manifold can be associated
with a tangent space T|Cref at this point (Barachant et al., 2013).

Covariance matrices C are mapped to their
tangent space representation S using LogmCref (C) =

logm
(

(Cref)−1/2C(Cref)−1/2
)

. Here logm denotes the matrix

logarithm. The matrix logarithm and the square root of a matrix
C ∈ S++ can be calculated by applying the corresponding scalar
operation to the elements of the diagonal matrix 3 obtained
from the decomposition C = Q3QT . As a reference point, we
use the Fréchet mean Cm of the training data with regard to the
affine-invariant Riemannian metric (c.f., Congedo et al., 2017).
The reverse operation—mapping from T|Cref to S++—is denoted
by ExpmCref .

While not necessarily positive definite, tangent space
matrices S ∈ S(Nc′ ) are symmetric and can hence be
vectorized into s ∈ R

Nc′ (Nc′−1)/2 (c.f., Barachant et al.,
2013). In principle, an arbitrary classifier can be used
in the tangent space. In this work, we choose linear
discriminant analysis (LDA). Note that in preliminary
tests we found LDA to yield a classification performance
similar to logistic regression [which was used in Kolkhorst
et al. (2018)]. The weight vector of an LDA is given by
wLDA = C−1

LDA(µt − µnt) for class means µt, µnt and the
total within-class covariance matrix CLDA. This classification
pipeline—training a single classifier on the training data—is
denoted by TS+LDA.

3.2.3. Classifiers for Subclasses
In order to handle the heterogeneous subclasses in the data
(primarily different objects), we explore the use of separate
classifiers for each subclass. These can either be separate (using
only data from a single subclass) or include regularization
toward other subclasses (i.e., incorporating data from
other subclasses).

As a first approach, we train separate subclass-specific
classifiers (similar to Kolkhorst et al., 2019b). We apply the
same classification approach as described above, but only
on the data {Xk | k ∈ Kj} of the corresponding subclass
j. The Fréchet mean Cm

j of the covariances belonging

to j is used as the reference point for the tangent space
projection of each subclass. Similarly, LDA classifiers
are trained separately, leading to Nsub classifiers per
participant. This classification pipeline is denoted by sep.
TS+LDA.

3.2.3.1. Subclass-regularized LDA
As a second way to leverage the subclass information, we adapt
the regularization approach proposed by Höhne et al. (2016)
(denoted by RSLDA in their paper): Rather than calculating
the class means µt,µnt for the LDA classifier of subclass j
only on the subset of the data corresponding to Kj, data from
other subclasses j′ 6= j is also used by calculating a weighted
class mean.

This can be formalized as multi-target shrinkage of the mean
(MTS, Bartz et al., 2014; Höhne et al., 2016): For the classifier
of subclass j, the shrunk mean of class i can be obtained by
a convex combination of the corresponding class’s means on
all subclasses.

µMTS
i,j (α) =



1−
∑

j′ 6=j

αj′



 µi,j +
∑

j′ 6=j

αj′µi,j′ (2)

Here, µi,j =
∑

{k∈Kj|y(k)=i} sk corresponds to the mean

of the vectorized tangent space representations of the given
class and subclass. The coefficients α can be obtained by
minimizing the expected mean square error, leading to a
quadratic program based on the variance and bias of the
different means. Intuitively, weights for other subclasses j′ should
be small if distances between subclass means are large or if
there is a high variance in the samples of j′ for the given
class. For details, we refer the reader to Bartz et al. (2014)
and Höhne et al. (2016).

3.2.3.2. Parallel transport of subclasses
In order to regularize µi,j toward the class mean of another
subclass µi,j′ , both should be located in the same tangent space.
However, in the case of separate subclass classifiers, the reference
points would also differ: The first class mean would be located
in T|Cm

j
, while the second would be in T|Cm

j′
. One possibility to

address this would be to map the mean tangent vectors back
into the manifold S++ before projecting them in the correct
tangent space:

µMTS
i,j (α) =



1−
∑

j′ 6=j

αj′



µi,j +
∑

j′ 6=j

αj′ LogmCm
j
ExpmCm

j′
µi,j′

(3)
As an alternative, we center each subclass using parallel
transport on S++ before tangent space projection, which has
previously been proposed in the context of transfer learning
(c.f., Zanini et al., 2018; Yair et al., 2019): A symmetric positive
definite matrix (e.g., of subclass j) can be transported along
the geodesic from Cm

j to the identity using ŴCm
j →I(C) =

(Cm
j )

−1/2 C (Cm
j )

−1/2. Afterwards, Cm
j = I for all subclasses j

and the matrix logarithm and matrix exponential in Equation 3
cancel since all means are located in the same tangent
space. Hence, Equation 3 reduces again to Equation 2.
We denote the resulting classification pipeline—consisting
of centering subclasses using parallel transport combined
with subclass-regularized LDA classifiers—with cTS+reg-LDA.
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FIGURE 5 | Grand average responses at electrode Cz for heterogeneous objects. Each column corresponds to the responses to the highlighting of a single object.

The top row depicts the response to the initial stimulus of a 3 s stimulation sequence, while the bottom row depicts the average response to the 11 subsequent ones

(see Figure 1 for averages over the full stimulation sequence). Time 0 corresponds to the onset of highlighting, with all stimulation intervals marked with green bars.

For ease of comparison, the averages for other objects of the same row are shown with thin lines. The averages are calculated on the combined data of the 13

participants of datasets HET1 and HET2 using an SOA of 250ms. The target (non-target) averages are calculated based on 234 (702) and 2,574 (7,722) time windows

for the plots in the top and bottom row, respectively (before artifact rejection).

An overview of all classification approaches can be found
in Figure 4.

3.2.4. Evaluation
For each participant, classifiers were trained and tested in a
five-fold chronological cross-validation. In order to evaluate the
influence of data set size, we also report results on 33% of
the data (we used the first of three repetitions in each trial).
Note that due to the interleaved design, data for both different
objects and dataset sizes is temporally balanced within each
experiment session. We evaluated the classification performance
using the area under the receiver operating characteristic
(AUC). The decoding pipeline was implemented in Python,
building upon MNE-Python (Gramfort et al., 2013), scikit-
learn (Pedregosa et al., 2011) and pyRiemann (Barachant and
Congedo, 2014).

4. RESULTS

In this section, we report participants’ feedback on the paradigm
before describing the influence of subclasses—different objects
and position in stimulation sequence—on the elicited ERPs.
Subsequently, we report classification performances for the
different proposed subclass handling strategies.

4.1. Behavioral Feedback From
Participants
In order to get insight into the feasibility and usability of
the screen-free approach from a user perspective, we gathered
feedback from participants in post-session questionnaires.
Participants reported that the task induced a low stress level
(24± 19 on a visual analog scale from “relaxed,” which is
represented by 0, to “stressed,” represented by 100) and required
low mental demand (24± 16 on a scale from “easy” to
“demanding”). While answers reveal medium required effort
(46± 25 on a scale from “few” to “much”), verbal feedback from
participants indicated that this was influenced by our instruction
to avoid blinking. Overall, participants were satisfied with their
task performance (76± 19 on a scale from “unsatisfied” to
“satisfied”). Answers of individual participants can be found
in Figure S3.

4.2. Grand Average Responses to Laser
Highlighting
The highlighting of objects with a laser pointer elicited various
event-related potentials (ERPs) starting approximately 100ms
after stimulus onset. Similar to common screen-based visual
ERP paradigms, responses appear to be a combination of early
sensory and later cognitive components (c.f., Blankertz et al.,
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TABLE 2 | Performance of the different classification approaches on the evaluated datasets.

Obj. type het hom

SOA 250ms 250ms 500ms

data size 33% 100% 33% 100% 33% 100%

Subclass classifier

n/a TS+LDA 0.79 ± 0.09 0.82 ± 0.07 0.88 ± 0.07 0.91 ± 0.06 0.79 ± 0.10 0.84 ± 0.07

Obj (o) sep. TS+LDA 0.76 ± 0.08 0.83 ± 0.06 0.80 ± 0.11 0.89 ± 0.07 0.71 ± 0.09 0.80 ± 0.08

cTS+reg-LDA 0.82 ± 0.08 0.86 ± 0.05 0.89 ± 0.06 0.92 ± 0.05 0.79 ± 0.10 0.85 ± 0.07

Stim (q̃) sep. TS+LDA 0.78 ± 0.08 0.82 ± 0.07 0.87 ± 0.07 0.91 ± 0.05 0.78 ± 0.09 0.84 ± 0.06

cTS+reg-LDA 0.79 ± 0.09 0.82 ± 0.07 0.88 ± 0.07 0.92 ± 0.06 0.80 ± 0.10 0.85 ± 0.07

Rows correspond to different classifiers, trained on the given subclass definition (“n/a” corresponds to training a single subclass-agnostic classifier). Columns correspond to the different
datasets (see Table 1 for the sample counts using 100% of the data). Performance is reported as the mean and standard deviation of the area under the receiver operating characteristic
(AUC, higher is better). For each dataset, the bold AUC values highlight the classifier with the best performance.

2011). Class-discriminative differences between target and non-
target responses could be observed from approximately 200ms
after the onset of highlighting.

Looking separately at the grand average ERPs for different
objects and stimulus positions within the sequence on the
combined data of HET1 and HET2 as depicted in Figure 5, we
can observe heterogeneous responses to these different subclasses:
First, the initial highlighting of each sequence (depicted in
the top row) resulted in an ERP with a higher amplitude—
specifically around 300ms, which is in line with the expected
P300 response for target stimuli—than subsequent highlightings
(bottom row; note the different axis limits). Second, we find that
the ERPs differed between the four heterogeneous objects, both
in amplitude and waveform. For example, amplitudes of both
target and non-target ERPs for obj. 7 and obj. 8 were smaller
than for the other objects. We observed, that latencies for obj. 8
varied stronger between participants than for other objects (data
not shown). In contrast, differences in waveform between objects
were smaller for the homogeneous objects in HOM1, HOM2, and
HOM3, while the amplitude differences between the responses
corresponding to first and subsequent stimuli are consistent with
the differences for heterogeneous ones. The corresponding grand
average plots for dataset HOM1 can be found in Figure S4.

4.3. Classification Results
Next, we investigate the classification performance on individual
time windows corresponding to a single highlighting event.
After comparing the subclass-agnostic classification performance
(TS+LDA) on different object types, we report results on using
separate subclass-specific classifiers (sep. TS+LDA) and the
proposed subclass-regularized classifiers (cTS+reg-LDA).

First, we investigate how the difference between homogeneous
and heterogeneous objects translates into classification
performance. For this, the data of the 7 participants in
datasets HET1 and HOM1 is well-suited, since they observed
both heterogeneous and homogeneous objects with an SOA
of 250ms. We find that classification using the TS+LDA
pipeline (i.e., disregarding subclass information) worked well
for all participants and would be adequate for control. Yet on
the time windows corresponding to heterogeneous objects,

this pipeline achieved an AUC of 0.82 compared to 0.91 for
homogeneous objects. This shows that the heterogeneity of
objects described in the previous subsection also translates into
reduced classification performance (see Table 2 for results on the
different data subsets).

Using separate classifiers (sep. TS+LDA) for every object o
to handle the heterogeneity, we observe improvements when
ample training data is available: As depicted in Figure 6A,
AUC performance on HET1 and HET2 (13 participants)
improved slightly to 0.83 compared to 0.82 for the object-
agnostic classifier when training on 100% of the data.
However, these improvements vanished if not enough (subclass-
specific) training data was available: Using only 33% of the
data, performance dropped to 0.76 for separate subclass-
specific classifiers compared to 0.79 for the subclass-agnostic
classification. This reflects the smaller amount of training data
(c.f., Table 1).

Using the proposed subclass-regularized classifiers in a
centered tangent space (cTS+reg-LDA), we can observe improved
performance over the baseline classifiers in the presence of
heterogeneous objects: As the regularization takes into account
information of other subclasses (i.e., objects o), cTS+reg-LDA
resulted in gains over TS+LDA on the reduced data (mean
AUC of 0.82 vs. 0.79) and the full data (0.86 vs. 0.82, a
stronger improvement than sep. TS+LDA). Equally important,
the proposed approach is also applicable to data where we do
not expect a strong subclass structure: As depicted in Figure 6,
when training subclass-regularized object classifiers on the full
data of homogeneous objects, the proposed approach achieved a
mean AUC of 0.87 and slightly outperformed TS+LDA, whereas
training separate classifiers resulted in a drop to 0.83.

Using the stimulus positions q̃ as subclasses resulted in smaller
effects: For sep. TS+LDA, we observed performance similar to a
global classifier on the full data and a small deterioration on 33%
of the data. On the other hand, cTS+reg-LDA performed better or
on the same level as TS+LDA when using the stimulus position
(q̃) as subclasses. Detailed results for the separate subclasses and
datasets can be found in Table 2.

Examining individual participants (as depicted in panel
B of Figure 6), classification results using cTS+reg-LDA with
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FIGURE 6 | Performance of the different classification pipelines for classifying individual responses: Riemannian tangent space classification ignoring subclass

information (TS+LDA), separate tangent space classifiers for each subclass (sep. TS+LDA) and the proposed separate subclass-regularized classifiers in centered

tangent spaces (cTS+reg-LDA). For the latter two approaches, each object corresponds to a separate subclass. (A) shows the results for heterogeneous objects

(combining the 13 participants of datasets HET1 and HET2) and for homogeneous objects (combining the 19 participants of datasets HOM1, HOM2, and HOM3). (B) plot

compares the performance of cTS+reg-LDA and TS+LDA on the level of individual participants (colors indicate differing object types and SOA). Markers above the

diagonal indicate that the proposed cTS+reg-LDA outperforms TS+LDA. Results are reported using the area under the receiver operating characteristic (AUC, higher

is better) and error bars correspond to bootstrapped 95% confidence intervals. Detailed results can be found in Table 2.

objects as subclasses were better than the ones using TS+LDA
for all 13 participants in the case of heterogeneous objects
(HET1 and HET2) as well as for 14 of 19 participants in
the case of homogeneous objects (HOM1, HOM2, and HOM3).
For heterogeneous objects, the proposed approach resulted
in a median absolute improvement in AUC of 0.04 across
participants (minimal and maximal improvements of 0.01 and
0.10, respectively). To test the significance of differences in AUC
between cTS+reg-LDA and TS+LDA in the presence of different
object types and SOAs, we used a two-sided Wilcoxon signed-
rank test at significance level α = 0.05 with a conservative
Holm-Bonferroni correction. We can reject the null hypothesis
both for heterogeneous objects with an SOA of 250ms (adjusted
p = 0.004) and—interestingly—also for homogeneous objects
with an SOA of 500ms (p = 0.030). We could not reject it for
the 7 participants in the setting with homogeneous objects and
an SOA of 250ms (p = 0.398). As expected, effect sizes are larger
in the presence of heterogeneous objects than for homogeneous
ones (c.f., Figure 6).

The weights α of the subclass regularization allow
introspection into the classification: As depicted in Figure 7,
the weights for heterogeneous objects show a clear block
structure, with obj. 5 and obj. 6 as well as obj. 7 and obj. 8
being regularized to each other—reflecting similarities in the
optical properties (c.f., Figure 2) and average responses (c.f.,
Figure 5). The classifier means for the non-target class were
regularized more than the target ones. Regularization toward
other subclasses was stronger when only 33% of data was
available. When applying cTS+reg-LDA to homogeneous objects,
we also observed larger weights for other subclasses, indicating

a smaller influence of the subclass structure on the classifier
means (c.f., Figure S5).

5. DISCUSSION

Building a screen-free BCI for robotic object selection by
highlighting objects in the environment removes a level of
indirection for the user. However, this benefit in terms of usability
comes at the price of reduced stimulus homogeneity: When
optical properties across candidate objects vary—as frequently
encountered in real-world environments—the differences in
appearance of the laser highlighting result in different feature
distributions. While this can partly be attributed to a varying
salience of stimuli, it is hard to mitigate by modifying the
experimental design since we do not want to constrain or
exchange the objects. In principle the laser parameters could
be automatically adapted to different surfaces, yet this would
pose a substantial challenge in practice. Whereas vision-
based approaches can model optical properties such as the
diffuse reflectance of surfaces (e.g., Krawez et al., 2018), we
encountered combinations of translucency as well as diffuse and
specular reflections.

Hence, we decided to approach this problem from a
machine-learning perspective by modeling object instances as
subclasses and training separate subclass-regularized classifiers
that combine data from different subclasses in a weighted
manner. We achieved strong performance gains by combining
multi-target shrinkage of the mean (as proposed in Höhne
et al., 2016) with both subclass-specific centering using parallel
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FIGURE 7 | Mean regularization weights α for heterogeneous objects. Each row corresponds to the weights of a single subclass-specific classifier. On the left,

regularization weights for the mean of the non-target class are shown whereas the corresponding weights for the target class are shown on the right. Entries can be

viewed as sample weights of the data of the corresponding subclass. Note the object similarities indicated by the block structure in this figure compared to the

stimulus appearances in Figure 2. The weights have been averaged across all participants of datasets HET1and HET2 with classifiers trained on 100% of the data.

transport and the state-of-the-art performance of covariance-
based Riemannian tangent space classifiers. Our approach is
applicable to arbitrary subclasses and experimental paradigms.
Note that the information about subclasses (e.g., objects) is
readily available at test time. We found that the proposed
pipeline significantly outperformed the baseline in the case of
relevant subclasses, while being robust to irrelevant subclasses.
Notably, we could observe smaller performance gains even when
distributions do not substantially differ between subclasses (e.g.,
homogeneous objects). Performance did not deteriorate in the
presence of a large amount of subclasses (e.g., for every position
q in the stimulus sequence, data not shown). The effect sizes—
gains of three or more points in AUC compared to ignoring
the subclass information—were substantial and are relevant in
practical applications. Introspection of the learned regularization
weights (Figure 7) as a measure of subclass similarity mirrors the
differences in visual appearance of the highlighting (Figure 2).
While ERP amplitudes differed based on the position of a
stimulus in the sequence (initial vs. subsequent), using this as
a subclass resulted in smaller improvements in classification
performance. This indicates that the Riemannian classification
pipeline may be more robust to changes in amplitude rather than
ERP waveform.

Exploring possible alternative classification approaches, in
additional experiments (data not shown), we found the proposed
specialized (i.e., subclass-regularized) classifiers to achieve
higher classification performance than using subclass-specific
normalization with a global classifier: While we found that
subclass-specific centering of covariance matrices using parallel
transport already improved classification, performance was lower
than using our proposed approach (especially with sufficient
training data). While additional geometric transformations [such
as rotation to another subset of the data as proposed by
Rodrigues et al. (2019)] could in principle be an alternative
to the convex combination of subclass means, we observed
reduced performance on our data. Applying subclass-regularized
LDA on features based on mean electrode potentials in

suitable time intervals (as reported in Höhne et al., 2016;
results not shown) performed consistently worse than using
Riemannian tangent space features (which matches the results
in Kolkhorst et al., 2018).

A limitation of our current approach is the assumption that
we have observed all subclasses in the training data. While this
would likely not hold in practice, the subclass of a novel object
could be assigned either based on visual similarity to known
objects or using proximity of EEG signals in covariance space.
Generally, it could be useful to use clusters of objects with similar
optical properties as subclasses in the presence of a large number
of objects. While we performed the analyses in this paper in an
offline manner, the approach is applicable online. Compared to
the subclass-agnostic classifiers during the online experiments
(c.f., Kolkhorst et al., 2018), the additional computational burden
of centering matrices is small, hence we are confident that results
would translate to an online application.

The use of screen-free stimuli is not limited to specific
stimulation parameters. In this work, we opted for stimulation
aimed at eliciting ERPs as different candidate objects were
highlighted sequentially rather than in parallel. The two
representative SOAs in our experiments indicated robustness to
different stimulus parameters. It would also be interesting to
evaluate parallel screen-free stimuli with a higher frequency—
more closely resembling broadband (Thielen et al., 2015) or
steady-state (e.g., Chen et al., 2015) visual evoked potentials—
as it is likely that different optical properties would also induce
heterogeneous responses in such a setting. In this work, we
used a constant stimulation sequence length for simplicity, yet
information transfer rate could be increased by committing to a
goal once a required confidence has been reached (i.e., dynamic
stopping), which would also increase robustness to non-control
states (Schreuder et al., 2013; Nagel and Spüler, 2019).

The proposed cTS+reg-LDA classification approach is also
applicable outside of our screen-free BCI setting. While here the
problem of non-identically distributed ERP responses induced
by subclasses is especially relevant, subclasses are also frequently
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encountered in traditional, screen-based visual or auditory
stimulus presentation. For example, varying locations of stimuli
or different target-to-target intervals can also lead to dissimilar
subclasses (c.f., Höhne et al., 2016; Hübner and Tangermann,
2017). Furthermore, the small improvements of our approach
on homogeneous objects indicate that subclass information can
be helpful even when no differences between subclasses are
expected. Based on the found robustness it can be applied without
risking a decline in classification performance.

Considering screen-free stimulus presentation in general,
we view it as a building block that can be integrated into
assistive human–robot interaction scenarios. Given that a robot
is available to assist the user, it can also be used to present
stimuli corresponding to possible assistive actions. As examples,
it can be adapted to arbitrary goals that are related to spatial
locations (e.g., where to place objects or how to avoid an obstacle)
or it could be used for interactive teaching of the robot (e.g.,
where to grasp an object). Illuminating objects with a robot
makes screen-free stimuli feasible in a changing environment
with novel objects, as opposed to using active light sources
on candidates. Combining the screen-free BCI with computer
vision and manipulation modules (c.f., Figure 3), we envision
that candidate (manipulation) actions are determined based on
detected object affordances or anticipated user commands in
a scene (e.g., Kaiser et al., 2016; Koppula and Saxena, 2016).
As actions can be translated to appropriate highlightings of the
corresponding objects, our BCI paradigm can then be used to
choose between the candidates. Consequently, a screen-free BCI
can be seen as a disambiguation module giving users direct
control in a shared-autonomy setting.

6. CONCLUSION

In this work, we presented a screen-free brain-computer interface
for an object selection task that allows robust decoding of user
goals. Using the robot to present stimuli by highlighting objects
in the environment with a laser pointer avoids the indirection of
a graphical user interface but results in heterogeneous responses
to objects in realistic environments. Our approach addresses this
by training specialized classifiers for the object subclasses that are
regularized based on the data of other objects.

In extensive experiments with 19 participants, we show
that different optical properties of candidate objects induced
distinct distributions of the corresponding brain responses.
We find that our approach significantly improved classification
performance in the presence of heterogeneous objects while
not deteriorating in the presence of homogeneous ones. This
increased robustness enables the application of screen-free BCIs
in more diverse environments.

For future work, it would be interesting to also incorporate
vision-based information on stimulus similarity for novel

objects as well as increase communication bandwidth and
applicability by using dynamic stimulus sequences and
hierarchical goal selection.
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Background: Stroke is a disease with a high associated disability burden.

Robotic-assisted gait training offers an opportunity for the practice intensity levels

associated with good functional walking outcomes in this population. Neural interfacing

technology, electroencephalography (EEG), or electromyography (EMG) can offer new

strategies for robotic gait re-education after a stroke by promoting more active

engagement in movement intent and/or neurophysiological feedback.

Objectives: This study identifies the current state-of-the-art and the limitations in direct

neural interfacing with robotic gait devices in stroke rehabilitation.

Methods: A pre-registered systematic reviewwas conducted using standardized search

operators that included the presence of stroke and robotic gait training and neural

biosignals (EMG and/or EEG) and was not limited by study type.

Results: From a total of 8,899 papers identified, 13 articles were considered for the

final selection. Only five of the 13 studies received a strong or moderate quality rating as

a clinical study. Three studies recorded EEG activity during robotic gait, two of which

used EEG for BCI purposes. While demonstrating utility for decoding kinematic and

EMG-related gait data, no EEG study has been identified to close the loop between

robot and human. Twelve of the studies recorded EMG activity during or after robotic

walking, primarily as an outcome measure. One study used multisource information

fusion from EMG, joint angle, and force to modify robotic commands in real time, with

higher error rates observed during active movement. A novel study identified used EMG

data during robotic gait to derive the optimal, individualized robot-driven step trajectory.
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Conclusions: Wide heterogeneity in the reporting and the purpose of neurobiosignal

use during robotic gait training after a stroke exists. Neural interfacing with robotic gait

after a stroke demonstrates promise as a future field of study. However, as a nascent

area, direct neural interfacing with robotic gait after a stroke would benefit from a more

standardized protocol for biosignal collection and processing and for robotic deployment.

Appropriate reporting for clinical studies of this nature is also required with respect to the

study type and the participants’ characteristics.

Keywords: stroke rehabilitation, robot-assisted gait trainer, electromyography, electroencephalography, human–

machine interface, brain–computer interface

INTRODUCTION

Stroke, a disease with substantial personal and societal
consequences, remains the leading cause of acquired disability
worldwide. With 13.7 million new cases each year, the associated
economic costs of treatment and post-stroke care are significant
(Wilkins et al., 2017; Johnson et al., 2019). At 3 months after
a stroke, 20% of people remain wheelchair dependent and
∼70% walk with a reduced capacity (Mehrholz et al., 2017).
Task-specific training is critical for recovery, and the intensity
of practice is strongly associated with improved functional gait
outcomes (Kwakkel et al., 2004; Veerbeek et al., 2014).

Providing high intensity restorative exercises for a larger share
of the stroke population is part of the Action Plan for Stroke
in Europe 2018–2030 (Norrving et al., 2018), yet the delivery
of an adequate dosage of gait training for physically dependent
patients is challenging in the rehabilitation sector, from manual
handling and human resource perspectives. Robotic gait devices,
which enable people to walk with electromechanical assistance to
achieve a healthy gait trajectory, can potentially overcome some
of these practical difficulties (Mehrholz et al., 2017; Cervera et al.,
2018) and allow an intensive, high repetition of the gait cycle with
reduced therapist involvement (as they no longer need to set the
paretic limbs or assist trunk movements) (Sarasola-Sanz et al.,
2017). The addition of robotic-assisted gait training (RAGT) to
usual rehabilitation has been shown by a systematic review to
improve the likelihood of regaining independent walking after
a stroke [odds ratio 1.94, 95% confidence interval (CI), 1.39 to
2.71], with a subgroup analysis suggesting that people in the
acute phase and non-ambulatory individuals benefit most from
the intervention (Mehrholz et al., 2017). Of note is that the
improvements in walking velocity and walking capacity did not
match the observed improvements in independence in gait.

At present, RAGT alone has not been shown to be superior
to equally dosed routine rehabilitation despite the increased
intensity of stepping in RAGT (Taveggia et al., 2016; Bruni et al.,
2018). When motor function is considered specifically as an
outcome, the upper limb robotic devices have proven efficacy in
contrast to the lower limb robotic training, where no treatment
effect for motor function has been demonstrated (Lin et al.,
2019). Current RAGT therapies have focused on providing high-
intensity training and repetition but not on patient engagement,
motivation, and reward, which are important factors for inducing

cortical plasticity (Hogan et al., 2006; Goodman et al., 2014).
Limitations in randomized controlled trials (RCTs) in this area
to date have been identified (Molteni et al., 2018) and many
RAGT protocols were criticized for allowing the trainee to
be too passive, with lower metabolic costs, muscle activations,
and subject effort reported in comparison to therapist-assisted
treadmill training (Cai et al., 2006; Israel et al., 2006; Krishnan
et al., 2013). However, rehabilitative robotics, when deployed
correctly, have the ability to generate bottom up and top down
complex and controlled multisensory stimulation to modify
the plasticity of neural connections through the experience of
movement (Molteni et al., 2018).

Direct human machine interfaces (HMIs) can translate
electrical, magnetic, or metabolic activity at the brain or the
muscle level into control signals for external devices (e.g.,
computers or neuroprosthetic and robotic devices) to replace,
restore, or enhance the natural neural output (Wolpaw, 2012;
Soekadar et al., 2015). Brain interfacing technology, primarily
electroencephalography (EEG)-based brain computer interfaces
(BCI,) can offer new strategies for robotic gait re-education after
a stroke that can promote more active engagement in movement
intent and/or by neurophysiological feedback. In stroke, BCI
exploitation has mainly used motor imagery to drive brain
activity levels (with no overt motor output) in combination
with visual, auditory, or haptic feedback or to control an
external device which executes the movement and provides
proprioceptive feedback (Prasad et al., 2010; Van Dokkum et al.,
2015). Of the nine upper limb studies identified in a recent
systematic review of BCI for motor rehabilitation after a stroke,
only three used BCI to control a robotic or orthotic device
with large to moderate effect sizes noted for improved motor
impairment (Cervera et al., 2018) and emerging evidence in
upper limb rehabilitation now points to the superiority of BCI
robotic training after a stroke to robotic training alone in motor
recovery (Varkuti et al., 2013; Ang et al., 2014). No lower limb
robotic RCT studies using BCI were reported in this review
(Cervera et al., 2018).

Motor intent can also be determined non-invasively by
electromyography (EMG) activity and responded to in triggered
motion (Hussein et al., 2009) and thus has potential to enhance
RAGT. EMG-based robotic movement has emerged as a well-
developed field in upper limb rehabilitation in stroke (Ho et al.,
2011; Vaca Benitez et al., 2013; Hu et al., 2015), and when used in
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robot-assisted rehabilitation has achieved a significantly higher
completion rate compared to torque control for the participants
with severe to moderate impairment in the upper limb (Paredes
et al., 2015). EMG has also been combined with EEG in
human–machine interactive force to improve the recognition of
movement intent (Mrachacz-Kersting et al., 2012; Jiang et al.,
2014; Bhagat et al., 2016).

As reported in a 2018 review of human intent-based control
in motor rehabilitation after a stroke, most studies are in the
laboratory stage (Li et al., 2018), and a systematic review of
RCTs of BCI interfaces after a stroke identified no RAGT studies
(Cervera et al., 2018). Therefore, the aim of this systematic
review was to establish the current state-of-the-art in EMG
and/or EEG neural biosignal deployment during robotic gait
training post-stroke as described in the literature (with no
limitation by study design applied). Contributing to this review is
a panel of relevant stakeholders from the fields of rehabilitation,
neurology, biomedical engineering, and BCI engineering who,
in providing a summary of available data, comment and
make important recommendations to standardize reporting and
advance this important and emerging area in robotic-assisted gait
rehabilitation in stroke.

The primary question that this review asks is:
what is the current state-of-the-art in neural–exoskeleton

interface (non-invasive EEG and/or EMG) during robotic gait
training after a stroke?

The secondary review questions asked are the following:

1. What is the profile of the stroke patients in the
included studies?

2. What robotic gait devices are deployed?
3. What biosignals are measured in conjunction with the robotic

gait devices and what devices (hardware and/or software) are
used to capture these biosignals?

4. What protocols are used for recording and processing
these biosignals?

5. For what purpose is the acquired biosignal data collected?

As a nascent area, the inclusive approach to study type was
taken in this review to allow a true reflection of bioengineering
translational research in gait rehabilitation robotics in a
clinical population. A compendium of current data collection
and signal processing procedures will be developed to allow
recommendations for the standardization of future research in
this field.

The systematic review was pre-registered with PROSPERO
(PROSPERO 2018 CRD42018112252) (Heilinger et al., 2018).

METHODS

Definitions
Prior to conducting the review, several operational definitions
were defined by the research teamwhich included an experienced
information science researcher and experts in rehabilitation, BCI,
and medical engineering. The methodology was based on the
Cochrane handbook for systematic reviews of interventions and
the PRISMA statement (Preferred Reporting Items for Systematic

Reviews andMeta-Analyses) (Higgins andGreen, 2011) and used
the PICOS acronym to guide the search strategy development. In
line with best practice, screening for inclusion at the abstract and
the manuscript stages and during data extraction of the included
studies was conducted independently by two researchers. Where
disagreements arose, they were discussed among the reviewers
first and then with an independent third party until a consensus
was achieved.

The inclusion criteria for the review population were adults
(>18 years) with confirmed diagnosis of stroke and at any stage
of stroke recovery. No limitation by stroke etiology, first or
recurrent event, or symptom presentation were applied. Adults
with other known neurological diseases (e.g., spinal cord injury
and multiple sclerosis) were excluded.

The interventions included in the review, broadly termed
as “robotic gait training,” must comprise exoskeleton or other
electromechanically assisted gait devices and be implemented
in conjunction with biosignal (EEG and/or EMG) data capture
as part of the study. For the purpose of this review, robotic
devices could be either end-effector (electromechanically driven
footplates simulating the phases of gait) or exoskeleton (robot-
driven orthosis) gait devices.

Comparator populations were not a mandatory inclusion
criterion, but studies that include a control group or a matched
comparator group were considered eligible for inclusion. RCTs,
cross-over, or quasi-randomized control studies, case–control
studies, cohort studies, cross-sectional studies, case series, and
case reports were all eligible for inclusion. Reviews, opinion
pieces, editorials, and conference abstracts were excluded. This
review was not designed to specifically examine the efficacy of
the robotic gait interventions on stroke outcomes; rather, we
were interested in the neural biosignals of EEG and or EMG
themselves when recorded during robotic gait training after a
stroke and how these signals interface with the robotic device.

Information Sources
A systematic search and review of the literature was completed,
which was compliant with the PRISMA guidelines (Moher et al.,
2010). The following databases were searched from inception up
to the 30th of November 2018: PubMed (1949–2018), EMBASE
(1947–2018), Web of Science (1945–2018), COMPENDEX
(1967–2018), CINAHL (1982–2018), SPORTDiscus (1985–
2018), ScienceDirect (1997–2018), and Cochrane Library (1974–
2018). No language, publication year, or publication status
limits were applied to the database searches. Each database
was searched using a comprehensive search strategy which was
devised in conjunction with a librarian, including controlled
vocabulary terms specific to each database and employing
Boolean operators AND andOR. Gray literature was searched for
in the following websites: http://bnci-horizon-2020.eu/database/
data-sets and OpenGrey. A sample search strategy is provided as
part of Figure 1.

Study Identification and Selection
The citations identified were subjected to the following review
process. Duplicate records were removed. The remaining studies
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FIGURE 1 | PRISMA flow chart with sample search strategy.
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were then reviewed independently by two reviewers against the
established eligibility criteria in three stages: screening by title,
screening by abstract, and screening by full text. An inclusive
approach was taken, whereby if it was not clear whether a study
fulfilled the necessary criteria for inclusion, it progressed to the
next more in-depth review stage.

Methodological Quality of the Included
Studies
The reviewers independently documented the methodological
quality of the included studies using the Effective Public
Health Practice Public tool (EPHPP) in conjunction with the
EPHPP dictionary for standardization. The EPHPP tool has been
established as a reliable and valid tool in health research and is
suitable to use across a range of differing study methodologies
(Thomas et al., 2004, 2008). The disparity in ratings was discussed
until a final decision was agreed.

Eight different sections of study quality to be applied as
appropriate to the study type were addressed: selection bias,
study design, confounders, blinding, data collection methods,
withdrawals and dropouts, intervention integrity, and analysis.
The tool provides an overall rating of either strong, moderate, or
weak quality for each study.

Data Extraction, Synthesis, and Analysis
Data were extracted from the included studies using a pre-agreed,
standardized data collection form. The data extracted included
(1) the characteristics of stroke study participants (including
number, age, stroke type, stroke severity, and ambulatory ability),
(2) type of robotic gait devices employed, (3) neural biosignal/s
captured, (4) protocol reported for signal capture and processing,
and (5) purpose and use of biosignal capture. Discrepancies in
extraction, mainly related to the criteria for reporting biosignal

processing, were resolved through a group discussion until a
consensus was reached.

Narrative and tabular syntheses of data were proposed due
to the heterogeneity of the study methodologies included. An
overview of the studies meeting the inclusion criteria is initially
provided, summarizing across the studies the stroke patient
profiles, robotic devices, neural biosignal/s captured during
robotic gait training after a stroke, and the purpose of the
signal capture.

A summary of current integration of EEG and/or EMG data
during robotic walking is presented next, with the current state
of the art in closing the BCI/HMI loop in robotic gait training
after a stroke being delineated.

The protocols for EEG and EMG signal collection are reported
in a tabular format, with a narrative summary identifying the
hardware and the software utilized where reported, the number
of channels/leads used, and the sites chosen for signal capture.

EEG and EMG signal processing, as employed in the included
studies, are again reported in a tabular format, with a summary
identifying the frequency of signal capture, filtering processes,
and software and algorithms used.

RESULTS

Overall Summary of Studies Identified
The database searches were completed by end of November 2018.
Figure 1 provides the PRISMA flow chart of the studies identified
through database searching and through each stage of the review
process. From 8,899 articles identified by the search strategy, 13
full papers fitting the inclusion criteria were included.

Tables 1, 2, which report the EEG and the EMG studies,
respectively, detail the characteristics of the stroke participants,

TABLE 1 | Electroencephalography (EEG)-based robotic studies (participants and purpose).

References Robotic

device

Stroke patients Mobility

level

Outcome

measures

Purpose of EEG

recording

Feedback to

robot (Y/N)

Real-time

feedback (Y/N)

Adverse

events

(Y/N)

Calabrò et al.

(2018)

EKSO N = 40 H-C

69.0 ± 4.0 yrs RGT

67.0 ± 6.0 yrs OGT

Type: I

Side: 8L + 12R

FAC < 5

MRC < 4

10 MWT, RMI,

TUG, sEMG, CSE,

SMI, FPEC

Identify the cortical

activations

induced by gait

training

N N Y

Contreras-Vidal

et al. (2018)

H2 and

continuous-

time Kalman

decoder

N = 6C

53.5 ± 12.5 yrs

Type: 2 I; 2 He; 2M

Side: 2L + 4R

NS BBS, FGA, 6

MWT, TUG, FM, BI

(pre/post)

Decoding gait

kinematics

N N NS

He et al. (2014) X1 N = 1 US

51 yrs

Type: NS Side: 1L

FM-LL 12/34

BBS 38/56

FGA 13/30

EEG decoding

accuracies for

kinematics and

EMG

Feasibility of

decoding joint

kinematics and

muscle activity

patterns

N N NS

Patient data reported: sample number (N), stroke classified as (A) acute, (SA) subacute, (C) chronic, (US) undefined stroke and (H) hospitalized; age in years (yrs); robot gait training

(RGT) and overground gait training (OGT); stroke type classified in (I) ischemic stroke, (He) hemorrhagic, (M) mixed; L, affected side—left; R, affected side—right. Control subject sample

(CTRL) is reported, if any. NS: not specified in the manuscript.

Outcomes and mobility: 10 MWT, Ten-Meters Walking Test; RMI, Rivermead Mobility Index; TUG, Timed Up and Go; sEMG, surface electromyography; CSE, Corticospinal Excitability;

SMI, Sensory-Motor Integration; FPEC, Fronto-Parietal Effective Connectivity; BBS, Berg Balance Score; FGA, Functional Gait Assessment; 6MWT, Six-Minute Walking Test; FM,

Fugl–Meyer assessment; BI, Barthel Index; FAC, Functional Ambulation Classification; MRC, Medical Research Council scale for muscle strength; FM-LL, Fugl–Meyer Lower Limb Scale.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 57844

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lennon et al. Stroke: Neural Interfaced Robotic Walking

TABLE 2 | Electromyography (EMG)-based robotic studies (participants and purpose).

References Robotic

device

Stroke Patients Disability

level

Outcome

measures

Purpose of EMG

recording

Feedback to

robotic (Y/N)

Real-time

feedback (Y/N)

Adverse

events (Y/N)

Androwis et al.

(2018)

EKSO GT

(EXO)

N = 5A (first event)

51.0 ± 17.0 yrs

Type: NS

Side: 2L + 3R

FIM 26 ± 4 FIM Test a novel EMG

analysis (Burst

Duration Similarity

Index) and assess

the neuromuscular

adaptations in

lower extremities

muscles

N N NS

Calabrò et al.

(2018)

EKSO (EXO) N = 40 H-C

69.0 ± 4.0 yrs RGT

67.0 ± 6.0 yrs OGT

Type: I

Side: 8L + 12R RGT

9L + 11R OGT

FAC < 5

MRC < 4

10 MWT, RMI,

TUG, sEMG, CSE,

SMI, FPEC

Quantify gait

parameters and

compare mean

muscle activity

pre/post robotic

and standard

therapy

N N Y

Chisari et al.

(2015)

Lokomat

(EXO)

N = 15H

62.0 ± 10.0 yrs

Type: 10 I, 5 He

Side: NS

Ability to walk

for a few

meters

FMMS, BBS, 10

MWT, TUG, 6

MWT

Strength and

motor unit firing

rate of vastus

medialis

N N NS

Coenen et al.

(2012)

Lokomat

(EXO)

N = 10C

55.0 ± 11.0 yrs

CTRL = 10

47 ± 12 yrs Type: 5 I, 5

He Side: 8L + 2R

FAC = 5 sEMG during gait

cycle

Compare EMG

amplitude in

robotic walking,

overground

walking for stroke

patients, and

overground

walking for control

subjects

N N NS

Fan and Yin (2013) Lower

extremity

exoskeleton

with a

standing bed

frame (EXO,

non-

commercial)

N = 3H (2 SA, 1C)

50.7 ± 19.2 yrs

CTRL = 3

25.3 ± 1.5 Type: NS

Side: 2L + 1R

NS Exoskeleton forces

and angles, joint

ROM and active

flexion/extension

force

To decode

movement and

predict human

motion inattention

Y Y NS

Gandolfi et al.

(2017)

First mover

(EE)

N = 2 H-SA

74 yrs

CTRL = 10

65.4 ± 6.1 yrs

Type: I Side: L

FAC = 0

TCT < 12

sEMG, MI, MRC,

AS

Explore the

training effects on

lower limb function

and timing of

muscle activation

onset and offset

N N N

Gandolla et al.

(2018)

EKSO GT

(EXO)

N = 13 (8A, 5C)

52 ± 14 yrs

Type: 7 I, 6 He

Side: 8L + 5R

Tibialis

anterior MRC

< 4

MAS < 2 at

hip,

knee, ankle

GM, sEMG during

gait cycle

(1) Computational

calibration

procedure, (2) gait

cycle reference

Y N NS

He et al. (2014) X1 (NASA)

(EXO)

N = 1, 51 yrs

CTRL = 2

33.8 ± 0.1 yrs

Type: NS Side: L

FM-LL 12/34

BBS 38/56

FGA 13/30

EEG decoding

accuracies for

kinematics and

EMG

Assess muscle

activation pattern

N N NS

Hesse et al. (2010) G-EO-

Systems

(EE)

N = 6 SA

<75 yrs

Type: I Side: 3L + 3R

Independent

walker

(>20m,

>0.25 m/s)

Stair climber

(aids/hand

rails allowed)

sEMG activation

pattern during

floor walking and

stairs climbing;

FAC, RMI, MI, BI

Compare lower

limb muscle

activation with and

without the robot

N N NS

(Continued)
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TABLE 2 | Continued

References Robotic

device

Stroke Patients Disability

level

Outcome

measures

Purpose of EMG

recording

Feedback to

robotic (Y/N)

Real-time

feedback (Y/N)

Adverse

events (Y/N)

Ping et al. (2013) NaTUre-gaits

(EXO non-

commercial)

N = 1 H-C, 73 yrs

SCI=2, 32 and 67 yrs

CTRL = 4, age NS

Type: NS Side: L

Moderate

level of

assistance to

walk

sEMG during gait

cycle

Investigate the

timing and

intensity of activity

in the lower limb

muscles during the

use of the system

N N NS

Sloot et al. (2018) Exosuit (EE) N = 8, age NS Type:

NS

Side: NS

Walkers (level

of assistance:

NS)

sEMG, walking

speed, energy

cost of walking

Maximum EMG

values during

push-off and

swing during

walking with and

without EE

N N NS

Srivastava et al.

(2016)

ALEX II (EXO) N = 12 SA-C

(6 RGT, 6 BWSTT)

RGT: 62.7 ± 12.7 yrs

BWSTT: 58.8 ± 9.0 yrs

Type: NS Side: 4L + 2R

RGT 3L + 3R BWSTT

Walkers (level

of assistance:

NS)

TUG, 6 MWT,

FGA, FM

(pre/post)

Compare muscle

activation timing

during the gait

cycle in RGT and

BWTSS

Y N NS

Robotic devices: EXO, exoskeleton; EE, end-effector. Patient data are reported as: N, sample number; A, classified as acute stroke; SA, classified as subacute stroke; C, classified as

chronic stroke; H, hospitalized; SCI, spinal cord injury; RGT, robot gait training; BWSTT, body-weight supported treadmill training; OGT, overground gait training; I, stroke type classified

in ischemic stroke; He, stroke type classified in hemorrhagic stroke; M, stroke type classified in mixed; L, affected side—left; R, affected side—right; CTRL, control subject sample is

reported, if any; NS, not specified. Outcomes and mobility: FIM, Functional Independence Measure; FAC, Functional Ambulation Classification; MRC, Medical Research Council muscle

strength; TCT, Trunk Control Test; MAS, Modified Ashworth Scale; FM-LL, Fugl–Meyer Lower Limb Scale; BBS, Berg Balance Score; FGA, Functional Gait Assessment; 10 MWT, Ten-

Meter Walk Test; RMI, Rivermead Mobility Index; TUG, Timed Up and Go; sEMG, surface EMG; CSE, corticospinal excitability; SMI, sensory–motor Integration; FPEC, fronto-parietal

effective connectivity; FMMS, Fugl–Meyer Motor Scale; 6 MWT, Six-Minute Walk Test; MI, Motricity Index; AS, Ashworth Scale for spasticity; GM, Gait Motor Index; BI, Barthel Index;

FM, Fugl–Meyer assessment.

the robotic gait devices deployed, and the purpose of the neural
bio-signal recording.

A total of 96 out of the 122 individuals with stroke who were
recruited in the studies received robot-assisted gait training on
at least one occasion. Calabrò et al. recruited the largest cohort
(40 stroke subjects, 20 of whom underwent robotic training)
(Calabrò et al., 2018), whereas others reported a case study
(Ping et al., 2013). The stroke participants differed widely across
studies in terms of age profile, stroke type, stroke lateralization,
and disability levels. Where reported, the ages ranged from
29 to 81 years of age. The laterality of the stroke event was
described for 99 of the 122 stroke participants, 46 of whom
had a right-sided stroke (with left hemiplegia). Two studies did
not report stroke laterality (Chisari et al., 2015; Sloot et al.,
2018). Stroke etiology was reported in 92 cases: 72 of which
were ischemic in origin, 18 were hemorrhagic, and two were
ischemic/hemorrhagic. Six studies did not provide information
related to stroke type (Ping et al., 2013; He et al., 2014; Androwis
et al., 2018; Sloot et al., 2018). The time from stroke to study
participation was reported for 98 patients, with the majority (N
= 57) recruited in the chronic phase of stroke. Three studies,
comprising 13 subjects in total, selected stroke participants
during the acute/subacute phase (Hesse et al., 2010; Gandolfi
et al., 2017; Androwis et al., 2018). Three studies involved the
collection of data from both chronic and acute/subacute phases
of stroke (N = 10 in acute phase; N = 15 in chronic phase)
(Fan and Yin, 2013; Srivastava et al., 2016; Gandolla et al., 2018).
The stage of stroke recovery was not specified for the remaining
24 participants.

As noted in Tables 1, 2, a variety of methods were employed
to describe the walking ability of the participants and, where
comparable, the disability levels of the stroke study participants
varied. Three authors adopted the Functional Ambulation
Classification (FAC) as a standardized scale to describe the
dependence levels in walking. Coenen et al. included fully
independent walkers (FAC 5) (Coenen et al., 2012), Gandolfi
et al. selected people who were unable to walk (FAC 0), (Gandolfi
et al., 2017) and Calabrò et al. focused on stroke patients
with gait impairment (FAC ≤ 4) (Calabrò et al., 2018). Three
studies identified the participants as “walkers” but did not specify
the level of assistance required, if any (Chisari et al., 2015;
Srivastava et al., 2016; Sloot et al., 2018). Other studies described
the participants’ mean motor subscale score of the Functional
Independence Measure (Androwis et al., 2018) [26 ± 4; where
13–38 indicate low scores for motor independence as guided by
Itaya et al. (2017)], the Fugl–Meyer Lower Limb Scale (He et al.,
2014) [12/34; where a cutoff score of<21 indicates lowermobility
levels, as guided by Kwong and Ng (2019)], or strength of the
lower limb tibialis anterior muscles of <4 on the MRC scale
(Gandolla et al., 2018) or specified the level of assistance required
to walk (Hesse et al., 2010; Ping et al., 2013). Two studies did
not address the participants’ walking status (Fan and Yin, 2013;
Contreras-Vidal et al., 2018); however, one of these studies used
the 6 MWT as a baseline score.

Exoskeleton devices were the most frequent robotic gait
devices deployed in the studies included (n = 10 studies).
The Lokomat (Lokomat R© Hocoma, Switzerland) was used in
two studies, EKSO (Ekso bionics R©, USA) was used in three

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 57846

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lennon et al. Stroke: Neural Interfaced Robotic Walking

studies (two EKSO GT and one non-specified EKSO); the X1
(NASA, USA), the H2 (Technaid, Spain), the ALEX II (ROAR
Laboratory, USA), and NaTUre-gaits (Nanyang Technological
University, Singapore) devices were used in one study each.
Fan and Yin combined a non-commercial lower extremity
exoskeleton robot with a standing bed frame (Fan and Yin,
2013). Three end-effector devices were reported in the included
studies [First Mover (Reha Technology AG, Switzerland), G-
EO-Systems (Reha Technology AG, Switzerland), and Exosuit
(Wyss Institute for Biologically Inspired Engineering, Harvard
University, USA)].

Closing the Loop Between Human and
Robotic Device
No studies included in this review closed the loop in real time
using EEG biosignals during robotic walking after a stroke,
indicating that this field has not sufficiently evolved in a patient
population such as stroke. One study described a multisensor,
real-time movement prediction model that included sEMG of
knee flexor and extensor muscles, joint angle, and force to
determine the rehabilitation mode and the parameter settings in
a bespoke exoskeleton (Fan and Yin, 2013). Errors in movement
prediction were evident however during active training, when
flexion and extension altered rapidly.

EEG-Based Studies
Three of the thirteen studies included in this review recorded and
analyzed EEG activity. As summarized in Table 1, two studies
used EEG during robotic gait to decode gait kinematics (He
et al., 2014; Contreras-Vidal et al., 2018) and muscle activity
during walking (He et al., 2014). One study used EEG to
determine frontoparietal connectivity as an outcome measure
of neuroplasticity following a robotic gait training intervention
(Calabrò et al., 2018).

Table 3 summarizes the EEG signal processing methods
employed by the researchers. Contreras-Vidal et al. identified
neural representation at the brain level for robotic gait using
a powered H2 exoskeleton. A wireless, 64-channel, active
electrode EEG-based system (BrainAmpDC, Brain Products,
Inc., Munich), with continuous-time Kalman decoder operating
on delta band, was utilized in five chronic stroke patients to
demonstrate the feasibility of an EEG-based BCI-controlled
rehabilitative robotic exoskeleton. The classification accuracy for
predicting joint angles during gait was noted to improve with
multiple training sessions and gait speed (Contreras-Vidal et al.,
2018). The pilot study conducted by He et al., using a 10th-order
unscented Kalman filter, demonstrated similar moderately high
online decoding accuracies for joint kinematics during robotic
gait but not for muscle activity patterns during robotic gait
training in two healthy participants and one stroke survivor (He
et al., 2014) using a multimodal interface comprising EEG [64-
channel EEG (actiCap system, Brain Products GmbH, Munich,
Germany)], EMG, and motion (goniometers), instrumented in
conjunction with the X1 exoskeleton employed during 5-min
overground walking sessions of three conditions: no robot, robot
off (X1 in passive mode), and robot on (X1 in active mode).
The final EEG-based study, an RCT by Calabrò et al. (N =

40 sub-acute and chronic stroke patients), employed 21-channel
EEG as a measure of neuroplasticity using frontoparietal effective
connectivity (FPEC) but did not interface with the robotic
device directly. EEG was recorded using a high-input impedance
amplifier (referential input noise<0.5µVrms at 1÷20,000Hz) of
Brain Quick SystemPLUS (Micromed; Mogliano Veneto, Italy),
wired to an EEG cap equipped with 21 Ag tin disk electrodes
positioned according to the international 10–20 system. An
electrooculogram (EOG) was also recorded for blinking artifact
detection. EEG and EOG were sampled at 512Hz, filtered
at 0.3–70Hz, and referenced to linked earlobes. The cortical
activations induced by gait training from the EEG recordings
were identified by using low-resolution brain electromagnetic
tomography (LORETAKEY alpha-software). Structural equation
modeling technique (or path analysis) was employed to measure
the effective connectivity among the cortical activations induced
by gait training. Improved FPEC was observed when robot-
assisted gait training was included in the rehabilitation in
comparison to conventional rehabilitation alone (r = 0.601, p <

0.001).

EMG-Based Studies
Table 4 summarizes the EMG measurements from 12 studies
included in this review. Only eight of the 12 studies defined the
EMG device used: two studies used a Noraxon, two a BTS, one
a DataLog, one a Motion Lab, and one a Porti system; one study
used a self-made signal acquisition processor. Among these, five
were wireless EMG devices.

The majority of the studies collected EMG data to assess
neuromuscular adaptations during robotic gait in stroke (Coenen
et al., 2012; Ping et al., 2013; Chisari et al., 2015; Srivastava
et al., 2016; Androwis et al., 2018; Calabrò et al., 2018; Sloot
et al., 2018) or as an outcome measure following robotic training
(Hesse et al., 2010; Chisari et al., 2015; Gandolfi et al., 2017). One
study employed EMG activity as a calibration tool to identify
individualized, optimal robotic parameters based on the gait
index score derived from a normalized dataset (Gandolla et al.,
2018). Every study used a symmetrical scheme for electrode
placement, collecting EMG signals from both stroke-affected and
contralateral sides, with the exception of one study (Srivastava
et al., 2016) that collected EMG data from the paretic leg only.
The number of muscle groups for EMG signal capture varied
from only one muscle site (Quadriceps) (Chisari et al., 2015) to
up to seven different muscle groups per limb (Hesse et al., 2010;
Coenen et al., 2012), with no clear rationale for themuscle groups
provided. Three studies referenced the guidelines used to identify
optimal electrode placement (SENIAM guidelines) (Chisari et al.,
2015; Gandolfi et al., 2017; Gandolla et al., 2018). Eleven out of
the 13 studies tested the dorsi-flexors and the plantar-flexors of
the ankle joint. Knee joint muscles were assessed by 12 studies.
One of these studies recorded rectus femoris only (Chisari et al.,
2015), whereas the others registered both flexor and extensor
muscle groups. The hip musculature was addressed in three
studies (Hesse et al., 2010; Coenen et al., 2012; Srivastava et al.,
2016).

Muscle activity and timing of onset were registered and
interpreted in relation to the gait cycle in 10 studies (Hesse et al.,
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TABLE 3 | Electroencephalography (EEG) signal processing in included studies.

References Protocol and analysis Channels Frequencies Filtering Reference Additional

Calabrò

et al. (2018)

High-input impedance amplifier (Brain Quick

SystemPLUS, IT)

Eyes open recording pre-post rehab session

Low-resolution brain electromagnetic tomography to

identify cortical activations induced by gait training

Structural equation modeling

21 (10–20 config) 512Hz BP, 0.3–70Hz Referenced to

linked earlobes

Electrooculogram

Contreras-

Vidal et al.

(2018)

Wireless, active electrode EEG (BrainAmpDC, DE)

Signals acquired during overground gait session

Peripheral channels removed

Detrend the remaining channels

Down-sample to 100Hz to match the frequency of H2

EEG and kinematics segmented in walk/stop epochs

Principal component analysis applied to EEG data matrix

to reduce the dimensionality

10th-order unscented Kalman filter to decode

joint kinematics

64 1,000Hz Butterworth

4th-order

Zero-phase

BP, 0.1–3Hz

FCz Kinematic data

acquired by H2

He et al.

(2014)

actiCap system (Brain Products GmbH, DE)

Data collected during robotic gait

Peripheral channels removed

Principal component analysis applied to the EEG data

matrix to reduce the dimensionality

Common average filter (CAR)

10th-order unscented Kalman filter to predict goniometer

and electromyography measurements

64 (10–20 config) 1,000Hz BP,

0.01–100Hz

FCz EMG

Biaxial

electrogoniometer

Hip and Knee

angles measured

by the X1

Filter type: BP, band-pass; LP, low-pass; HP, high-pass.

2010; Coenen et al., 2012; Ping et al., 2013; Srivastava et al., 2016;
Gandolfi et al., 2017; Androwis et al., 2018; Calabrò et al., 2018;
Gandolla et al., 2018; Sloot et al., 2018). A variety of methods
were employed, including instrumented gait analysis systems
(Androwis et al., 2018), synchronized video analysis (Coenen
et al., 2012; Ping et al., 2013), accelerometry (Calabrò et al., 2018),
shoe-mounted sensors (Hesse et al., 2010; Gandolfi et al., 2017),
or through the monophasic soleus muscle EMG activity and
deactivation during gait, where the signal portion between two
soleus muscle deactivations corresponds to a step cycle (Gandolla
et al., 2018). The detailed protocols, where provided by the
authors, are summarized in Table 5. Where explicitly reported,
all studies set the EMG sampling frequency at or over 1,000Hz
in accordance with the Nyquist sampling principle. This was
not specified in four studies (Fan and Yin, 2013; Ping et al.,
2013; Gandolla et al., 2018; Sloot et al., 2018). Impedance was
checked and kept below 5 k� by two studies (Hesse et al., 2010;
Gandolfi et al., 2017), while the other studies did not specify
impedance checking. The studies applied different signal filtering
methods (Butterworth, high/low/band-pass filtering, keeping
signals usually between 5/20–300/400/500Hz). The signals were
full-wave-rectified, and root mean square was applied to calculate
the EMG amplitude and to provide a global overview of the
muscle activity.

Co-registered EMG and EEG Data
Collection
Only two papers (He et al., 2014; Calabrò et al., 2018) captured
both EEG and EMG data. One study decoded the muscle
activation patterns by scalp EEG signals during robotic walking,

demonstrating reasonable success at decoding the hip and knee
EMG activity in the affected leg of a stroke survivor (He et al.,
2014). The authors cited difficulty with the EMG data collection,
however, as the exoskeleton device and its attachments, in many
cases, were located at the same anatomical sites as the EMG
electrodes. The second study reported EMG and EEG as separate
measures and was therefore not considered a co-registration of
neural signals (Calabrò et al., 2018).

Quality Review
As identified in Table 5, many studies were rated as “weak,”
using the EPHPP guidance tool, primarily due to a potential
selection bias during participant recruitment, thereby limiting
their representation of the stroke population. Here the majority
of studies failed to identify their recruitment strategy. Similarly,
the studies received a lower quality rating where the reliability
and the validity of the data collection methods were not
explicitly reported.

DISCUSSION

This systematic review compiled the current state of the art in
the use of neural biosignals during robotic gait training after a
stroke. No studies that used EEG signals to close the loop between
human and robotic gait device were identified. Two BCI studies
that show promise (with adequate training) were identified for
the classification of gait in an exoskeleton after a stroke with a
view toward a future BCI application (He et al., 2014; Contreras-
Vidal et al., 2018). The work presented by Contreras-Vidal
(Contreras-Vidal et al., 2018) builds on a previously published
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TABLE 4 | Electromyography (EMG) signal processing in included studies.

References Recording device and processing Muscles Hip Knee Ankle Wireless Frequencies Filtering Additional

devices

Androwis

et al. (2018)

Noraxon (AZ, USA)

Amplitude analysis: integrated EMG

Timing analysis: Burst Duration

Similarity Index

TA, SOL, RF, VL,

BF, gastrocnemius

N Y Y Y 2,520Hz Butterworth

4th-order

Zero-lag

BP,

20–300Hz

Notch, 60Hz

Retroreflective

markers

Calabrò

et al. (2018)

8-ch BTS (IT)

Root mean square for muscle activation

TA, SOL, RF, BF N Y Y Y 1,000Hz BP, 5–300Hz Accelerometer

Chisari et al.

(2015)

Noraxon, Telemyo 2400T V2

SENIAM guidelines

Reference electrode on the patella

Frequencies at 50, 75, and 95% of the

total power spectral density were

estimated

Root mean square normalized for the RMS

of the maximum voluntary contraction

VM N Y N Y 3,000Hz Zero-lag

BP,

20–500Hz

Isokinetic

dynamometer

Coenen

et al. (2012)

16-ch Porti (NL)

Envelope calculation: rectified EMG,

4th-order LP Butterworth 5 Hz

GM, TA, ST, RF,

AL, GLM, GLm

Y Y Y N 1,000Hz Butterworth

4th-order,

HP, 20Hz

Video gait analysis

Fan and Yin

(2013)

2-ch self-made sEMG acquisition

processor

BF and quadriceps N Y N NS NS BP,

10–500Hz

Notch, 50Hz

Force sensors,

angular encoders

Gandolfi

et al. (2017)

Device not defined

SENIAM guidelines

Envelope representation

TA, RF, BF,

gastrocnemius

N Y Y NS 1,000Hz LP, 480Hz Pressure sensor

(overshoes)

Gandolla

et al. (2018)

FREEEMG (BTS Bioengineering, IT)

SENIAM guidelines

No processing (activation timing only)

TA, SOL, RF, ST N Y Y Y NS Butterworth

6th-order,

HP, 20Hz

He et al.

(2014)

8-ch DataLOG MWX8 (Biometrics) TA, VL, BF,

gastrocnemius

N Y Y Y 1,000Hz BP,

20–460Hz

Biaxial

electrogoniometers,

hip and knee

angles measured

by the X1

Hesse et al.

(2010)

Device not defined

SENIAM guidelines

EMG mean onset and offset points of

activation determined by thresholding

the envelope

TA, VM, VL, RF,

BF, GLm,

gastrocnemius

Y Y Y NS 1,000Hz 1st-order LP,

500Hz

Overshoe force

sensors

Ping et al.

(2013)

Device not defined

EMG activity was acquired during the

robotic gait and referred to the % of the

gait cycle. Patients’ EMG was confronted

with the activity of a healthy control

Research focuses on the shape of EMG

profile, times of peak, or onset/cessation

of myoelectric activity

TA, GM, VL, RF,

ST, SM

N Y Y NS NS NS

Sloot et al.

(2018)

EMG device not defined

Compared maximum EMG values during

push-off and swing between with and

without robotic device

TA, GM, SOL N N Y NS NS NS

Srivastava

et al. (2016)

16-ch MA-416-003 Motion Lab System

(LA)

Signal normalization to its peak amplitude

Non-negative matrix factorization

(dimensionality reduction) to compute

muscle modes and understand the effects

of gait training on coordination

BF, VL, VM, RF,

GLm, SOL, GL,

GM, TA, medial

hamstrings

Y Y Y N 1,200Hz HP, 20Hz

Muscle abbreviations: TA, tibialis anterior; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; SOL, soleus; RF, rectus femoris; VL, vastus lateralis; VM, vastus medialis; BF,

biceps femoris; ST, semitendinosus; SM, semimembranosus; AL, adductor longus; GLM, gluteus maximus; GLm, gluteus medius (GLm). Filter type: BP, band-pass; LP, low-pass;

HP, high-pass.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 57849

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lennon et al. Stroke: Neural Interfaced Robotic Walking

TABLE 5 | Quality rating of included studies.

References Selection bias Study design Confounders Blinding Data collection methods Withdrawal and dropouts Total score

Androwis et al. (2018) Moderate Moderate N/A N/A Moderate Moderate Strong

Calabrò et al. (2018) Moderate Strong Strong Moderate Strong Strong Strong

Chisari et al. (2015) Moderate Moderate N/A N/A Moderate Weak Moderate

Coenen et al. (2012) Moderate Moderate Weak N/A Weak Weak Weak

Contreras-Vidal et al. (2018) Weak Moderate N/A N/A Strong Strong Moderate

Fan and Yin (2013) Weak Weak Weak N/A Weak Strong Weak

Gandolfi et al. (2017) Weak Moderate Weak Moderate Moderate Strong Weak

Gandolla et al. (2018) Moderate Weak N/A N/A Strong N/A Moderate

He et al. (2014) Weak Weak N/A N/A Moderate N/A Weak

Hesse et al. (2010) Weak Weak N/A N/A Weak Strong Weak

Ping et al. (2013) Weak Moderate Weak N/A Weak N/A Weak

Sloot et al. (2018) Weak Moderate N/A N/A Weak N/A Weak

Srivastava et al. (2016) Weak Strong Strong Weak Strong Weak Weak

N/A, not applicable.

framework proposed by this study group (Contreras-Vidal and
Grossman, 2013). Otherwise, as with the majority of the EMG
studies identified, the EEG signals were used as an outcome
measure to evaluate RGT devices in stroke rehabilitation, for
example, as an index of fronto-parietal connectivity to quantify
neuroplastic changes (Calabrò et al., 2018). A recent systematic
review of BCI rehabilitation in stroke supports this finding, where
EEG was used to trigger neuromuscular electrical stimulation in
the lower limb but not robotic gait devices to date (Cervera et al.,
2018).

Specifying a search strategy that must include individuals with
stroke in this systematic review yielded very limited EEG data.
While this is informative with respect to the current state of
the art in this area in stroke rehabilitation, it does not reflect
the broader field of EEG-based control for robotic gait devices
well. A recent systematic review by Al-Quraishi et al. (2018)
comprehensively reported on EEG-based control for upper and
lower limb exoskeletons and prostheses. In this review, 14 studies
that used EEG-based control for lower limbmovement, primarily
in healthy subjects and individuals with spinal cord injury,
were identified. Among those, nine studies targeted robotic
gait-assistive devices (alone or in conjunction with an avatar),
three used motor-imagery-only protocols with event-related
desynchronization/resynchronization (ERD) (Do et al., 2013;
Gordleeva et al., 2017; Lee et al., 2017), four used a movement-
based protocol—with the EEG signal analysis undocumented
in one (He et al., 2018b), and in the remaining three as ERD
(Garcia-Cossio et al., 2015), combined ERD and movement-
related cortical potential (MRCP) (López-Larraz et al., 2016),
and exogenous steady-state visually evoked potentials with the
visual stimuli representing robotic commands (Kwak et al., 2015).
Two studies identified used a combination of motor imagery
and movement using sensorimotor rhythms and MRCP (Liu
et al., 2017) and event-related spectral pertubations (Donati
et al., 2016). Notably, in one patient with a spinal cord injury,
EEG signals were used to detect gait initiation to trigger the
exoskeleton movement (López-Larraz et al., 2016). In another

study with healthy individuals, online control of an overground
exoskeleton using ERD in sensorimotor networks to train a
classifier to identify two different mental states of walking
forward intention or turning were demonstrated. In one body-
weight-supported exoskeleton system, the user’s intention was
classified into active and passive walking phases using 62-channel
EEG and power spectrum analysis in 8–30Hz, normalized to
the baseline condition to calculate ERD (Garcia-Cossio et al.,
2015). The classification accuracies for active and passive walking
with baseline were 94 and 93%, respectively, demonstrating the
capability of BCI-assisted robotic training. The majority of EEG-
based control in lower limb studies (N = 11; 79%) included in this
cited review (Al-Quraishi et al., 2018) were markedly published
from 2015 onwards, indicating a relatively new research area
and, in part, explaining the poor penetration in the stroke
population identified in this current systematic review. Another
review of brain–machine interfaces for controlling lower limb
powered robotic systems (He et al., 2018a) identifies that themost
common studies in this area are classification-based studies of
walk vs. stand tasks in healthy subjects and system performance
is not clearly presented in these studies. Several challenges were
summarized in this review, including EEG denoising, safety,
and responsiveness. Furthermore, it concluded that suitable
performance metrics and more clinical trials were required to
advance research and development in the field.

One study that investigated closed-loop control between
human and robotic gait device involving three stroke survivors
was identified in this systematic review (Fan and Yin, 2013). EMG
activity levels from knee flexor and extensor muscle groups were
measured and a multisystem decoding paradigm, which included
EMG in addition to joint angle and force production data,
allowed the robotic command to be altered. High error rates in
the commands generated during active movement were observed
when flexion and extension activity alternated rapidly, limiting
application in the clinical setting (Fan and Yin, 2013). EMG
methods for motor intent identification have previously been
noted to have significant limitations in stroke in that they are
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only appropriate for patients who can produce some voluntary
movement or high-enough levels of muscle activity and are not
suitable for individuals with severe motor impairment, profound
muscle fatigue, or abnormally coactivated muscles (Li et al.,
2018). Concerns have also been raised that continuous EMG
control may indeed reinforce pathological movement rather than
encouraging the recovery of normal motion patterns (Krebs et al.,
2003).

EMG has been combined with EEG to improve the
recognition of movement intent in the upper limb (Bhagat
et al., 2016) in the BCI literature. The current review identified
two studies that recorded EEG and EMG. However, the two
neural biosignals were not used in conjunction in either study to
decode movement. One study reported these measures separately
(Calabrò et al., 2018), while the other decoded EMG activity in
the lower limbs using EEG during robotic walking in one stroke
subject (He et al., 2014).

One example was identified in the literature where the best
power transfer between subject and robot was achieved through a
fine-tuning procedure for robotic parameters based on optimized
EMG activity during the gait cycle (Gandolla et al., 2018); in
this context, sEMG could prove to be a useful tool to optimize
the patient–robot interaction in the clinical setting. However,
the current lack of personalization of robotic gait command
derived from neural biosignals and the limited ability to tailor
robotic training to participant effort and to rehabilitative goals
aligned with motor (re)learning principles limit their capacity
as truly restorative devices in stroke rehabilitation. Robotic
gait devices and the technological advancements enabling
their continued development have been the preserve of the
field of engineering (Pons, 2010). Translational research that
examines deployment of devices in a clinical population must
now also draw from expertise in rehabilitation and clinical
research. This paper includes input from experts in the field of
neurology, rehabilitation, bioengineering, and BCI engineering,
discusses shortcomings in the papers identified, and makes
recommendations to advance this field of research. A quick
reference guide DESIRED (Table 6) has been developed by the
group to identify a minimum reporting data set as a standard for
future studies and the rationale and evidence base guiding these
recommendations are described in detail next.

The majority of papers identified reported methodologies
related to the devices, biosignals, and/or model development as
appropriate to the domain of engineering. As a consequence,
when considered as clinical studies in a stroke population and
assessed using a broadly applicable quality rating tool (Thomas
et al., 2004), the majority of studies were deemed to have a
weakmethodology. Consistent problems identified across studies
related to the selection of stroke subjects and to the reporting
of the validity and the reliability of the outcome measures
employed. Guidelines with quality control checklists are available
across a range of clinical study methodologies, for example,
RCTs (Campbell et al., 2012), observational studies (Von Elm
et al., 2014), and qualitative methodologies (Booth et al., 2014).
When introducing participants with stroke or other neurological
pathologies to robotic and/or neural signal-based studies, it is
recommended that the authors familiarize themselves with the

criteria expected based on the study type to be reported in
the paper.

It is interesting to note that none of the papers reviewed
provided a rationale for their selection of the stroke participants,
and limited details on stroke pathology, stroke laterality, and
stroke severity levels were documented. The time from stroke,
for example, is something that further warrants attention. After
focal damage, there is a brief, approximately 3 months, window
of heightened plasticity, the so-called opportunity windowwhich,
in combination with training protocols, leads to large gains in
motor function (Zeiler and Krakauer, 2013). Emerging evidence
now supports smaller, plastic, and non-compensatory recovery
in the chronic stages after a stroke also (Mrachacz-Kersting et al.,
2015; Carvalho et al., 2018). To compare the neural biosignals
and their utility in robotic gait training after a stroke across
studies and to allow the results to be interpreted correctly,
it is imperative to report this information. No consensus was
observed across studies with respect to the gait impairment level
of those included in the studies and ranged from those fully and
independently mobile to those who are wheelchair dependent,
again limiting the conclusions that can be drawn across studies.
To stratify the findings from future studies, a minimum data set
for participants with stroke is recommended and summarized as:
stroke type, laterality, time from stroke to inclusion in the study,
and functional ambulatory category (Mehrholz et al., 2007). The
impairment of sensation also needs to be taken into account,
given that accurate motor control can only be exerted with
correct sensory and proprioceptive input. An index of stroke
severity would also be a useful addition, for example, the National
Institutes of Health Stroke Scale score (Ortiz and Sacco, 2014),
as well as the level of cognitive function of the participants, if
this is not a stated inclusion/exclusion criterion. To best replicate
clinical application, it is advised that only the participants with
gait impairment are included in the research.

A review of the brain–machine interface for lower limb
systems after a stroke, published in 2015, concluded that
additional research and development were required to advance
this field (Soekadar et al., 2015). This systematic review now
identifies that EEG data use during robotic gait after a stroke
remains sub-optimal to closing the loop between person and
robot. It is acknowledged that EEG activity during walking is
not well-understood in general and discordance exists in the
literature on the temporal and the spectral patterns of cortical
dynamics during walking (Wagner et al., 2012, 2014; Seeber et al.,
2014, 2015; Bradford et al., 2015; Bruijn et al., 2015; Bulea et al.,
2015; Storzer et al., 2016; Winslow et al., 2016; Artoni et al., 2017;
Luu et al., 2017; Oliveira et al., 2017). A number of research
groups (Bradford et al., 2015; Bruijn et al., 2015; Bulea et al., 2015;
Winslow et al., 2016; Artoni et al., 2017; Luu et al., 2017; Oliveira
et al., 2017) report event-related (de)synchronization (ERD/S)
(i.e., an event-related power change) in 8–12Hz (alpha/mu) and
12–28Hz (beta) oscillations after the onset of stepping/walking
task (Bradford et al., 2015; Bruijn et al., 2015; Bulea et al., 2015;
Winslow et al., 2016; Artoni et al., 2017; Luu et al., 2017; Oliveira
et al., 2017), while other research groups report ERS at 28–40Hz
(low gamma) during early and mid-swing and ERD toward the
end of the swing phase and during double support (Wagner et al.,
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TABLE 6 | The DESIRED checklist: minimal reporting dataset for neural biosignals during robotic gait after a stroke.

DESIRED Minimal requirement Recommended but not mandatory

Description of study

methodology

Adequate description of the clinical study type: e.g., randomized controlled

trial; observational study: case study; case series, cross-sectional, pre–post

design; mixed methods

Published guideline for study type referenced and checklist

completed

Explicit reporting of

stroke participant

recruitment strategy

Recruitment method stated. Focus of the study on acute/subacute/chronic

phases of stroke stated. Number of potential participants approached and

number who entered the study described

Participants’ location is described, e.g., in-patient acute or

rehabilitation center; out-patient rehabilitation center;

community dwelling and attending community services or no

current rehabilitation provided at the time of recruitment

Stroke participant

profile

Stroke pathology, e.g., ischemic or hemorrhagic, stroke side (at brain level);

time from stroke to study participation; provide an index of gait impairment,

e.g., functional ambulatory category; identify the presence and the type of

sensory impairment where relevant

Stroke severity described, e.g., National Institutes of Health

Stroke Scale (score included); cognitive level/s described

Intervention described

using FITT principles

Frequency, intensity, time, and type of intervention reported Report who delivered the intervention; the level of skill and

training of the interventionist and whether there was fidelity of

interventionist

Robotic gait training Device and manufacturer; exoskeleton vs. end-effector device; over-ground

vs. treadmill walking

Robotic mode settings described, e.g., whether step

trajectory is fully supported by the robotic device or whether

the device allows participant contribution to the step

generated

Electroencephalography

data capture

At minimum 32-electrode EEG with inclusion of activity from the central

pre-motor/motor/sensorimotor and posterior parietal cortical areas to

categorize walking from rest and ensuring frequency bands in 8–12Hz

(alpha/mu), 12–28Hz (beta), and 28–40Hz (low gamma) are represented in

the data collection

For motion trajectory prediction, global analysis to identify the most suitable

features (potential or band-power time-series, low-delta, mu, or beta

frequency band and all cortical areas) currently recommended

State if active electrodes are used and, if so, the planned data

filtering. Use of source-resolved EEG dynamics during

walking (mobile brain/body imaging)

Minimization of artifactual contamination of lateral electrode

signals by neck muscle electromyography during walking by

blind source separation (typically by independent component

analysis or frequency clustering)

Potential time-series of the low-delta EEG oscillations or

band-power time-series of the mu and beta EEG oscillations

may hold the most information for motion trajectory prediction

but further supporting research is required

Electromyography data

capture

Minimum of two agonist/antagonist paired muscles in the distal and

proximal compartment of stroke-affected and contralateral leg. Tibialis

anterior, soleus, rectus femoris, and vastus lateralis recommended where

stroke impairment and robotic gait device allow clean signal to be collected.

Identification of the minimal crosstalk area of the muscle for electrode

placement using the guidelines given by Basmajian and Blummenstein,

updated by Blanc and Dimanico, with the axis of the electrodes directed

parallel to the muscle fibers

Sensor placement checks for single muscles by checking for

crosstalk on the other collected traces is recommended

where spasticity or muscle shortening is present. Power

spectral density computation may be useful when using

exoskeleton gait devices to unravel unwanted electrical

interference from electrical actuators, battery packs, and

cables

2012, 2014; Seeber et al., 2014, 2015; Storzer et al., 2016). The
literature does call attention to the importance of the central pre-
motor/motor/sensorimotor and posterior parietal cortical areas
in neural signal generation during the walking tasks. Thus, for
the separation of walking from rest periods, we recommend
the above-described cortical areas and the frequency bands are
represented in the data collected and processed.

Decoding the 3D motion trajectory of the lower limbs is a
more challenging objective (Georgopoulos et al., 2005). In BCI,
this method poses an ideal solution for controlling a robotic
device as the applied signal processing algorithm reconstructs the
track of the intended movement. To date, most joint trajectory
decoding studies have focused on reconstructing the movement
of the upper limbs (Bradberry et al., 2010) and fingers (Paek et al.,
2014) using 0.5–2Hz slow cortical potentials (SCP) or band-
power time-series of mu and beta bands (Korik et al., 2015, 2016,
2018). Motion trajectory prediction has successfully been applied
to lower limb kinematics during treadmill walking in healthy

individuals by Presacco et al. (2011, 2012) using SCP time-series.
Here topographical analysis did not identify a significant pattern
of lower limb movement-related cortical areas. Two studies
included in this current review identified the utility of the 0.1–
3Hz frequency band for decoding kinematic data (He et al., 2014;
Contreras-Vidal et al., 2018) and EMG kinetics during robotic
walking after a stroke (He et al., 2014). One of these studies
primarily focused on the frontal, temporal, and parietal brain
regions (He et al., 2014), while others removed the peripheral
channels susceptible to facial/cranial movement-related noise
(Contreras-Vidal et al., 2018). Thus, as decoding the motion of
lower limbs during walking is a nascent area, we still recommend
a global analysis to identify the most suitable features (potential
or band-power time-series, low-delta, mu, or beta frequency
band and all cortical areas). However, the SCP/mu and beta
band-power time-series extracted from the central motor and
posterior parietal areas most likely contain maximal information
for decoding lower limb movement trajectories.
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From the present review, the lack of a standardized
EMG recording protocol when applied to people with stroke-
related disability in interaction with exoskeletons is evident.
This limitation hampers the constitution of shared database
repositories and pooling of data. A protocol and reported
methodology should include a minimum dataset of muscles,
dimensions, and positioning criteria of the surface EMG
electrodes, interelectrode distance, techniques to verify the
system selectivity, and technical sampling requirements (e.g.,
amplifier characteristics, electrode diameter, and impedance
limits). The guidelines also suggest the inclusion of additional
details relating to signal analysis pipelines, such as filtering and
signal quality checks (Blanc and Dimanico, 2010; Merletti and
Farina, 2016; Benedetti et al., 2017).

Currently, no consensus exists on targeting specific muscle
groups during gait analysis in stroke survivors. The surface EMG
of agonist and antagonist lower limb muscle activity during gait
is emerging as an effective way of defining motor control during
spontaneous movement in stroke (Srivastava et al., 2019). A
minimum set of agonist and antagonist muscles in the distal
and the proximal compartment of the leg needs to be defined to
provide comprehensive muscle recruitment patterns and muscle
synergies during the gait cycle after a stroke, which could be
helpful for future HMI. Additionally, for individuals after a
stroke, sEMG data from both legs (stroke affected and non-
affected sides) should be collected as motor deficits are not only
associated with the stroke-affected side but also of the non-
affected side during spontaneous walking (Parvataneni et al.,
2007; Bagnato et al., 2009; Tseng and Morton, 2010; Raja et al.,
2012). Recent reviews of muscle synergies in post-stroke gait and
robotic gait devices support the need for better standardization of
muscles chosen for EMG data capture (Molteni et al., 2018; Van
Criekinge et al., 2019). Tibialis anterior, soleus, gastrocnemius,
and rectus femoris were noted to be most commonly assessed
in all muscle synergy studies after a stroke (Van Criekinge
et al., 2019). Considering best clinical practice and the need to
record agonist and antagonist muscles during gait, a minimum
representative muscle set to be targeted in future studies is
recommended as bilateral: tibialis anterior, soleus, rectus femoris,
and vastus lateralis, where possible. Alternate muscle/s selection
may need to be defined by the participant’s stroke-related muscle
impairment/s or the robotic gait device and its positioning at
specific anatomical landmarks for sensor placement, leading to
muscle group exclusion.

Only three studies included in this review referred to a
guideline document used for the correct positioning of electrodes
on muscles. Failure to do this limits the reliable recording of
muscle signals and does not address the challenge of avoiding
“crosstalk” (diffused signal components coming from co-active
or inactive adjacent muscles) (Basmajian, 1983). Correct sensor
positioning aims to minimize this phenomenon and allows the
researchers to identify a real co-contraction of agonist and
antagonist muscle groups, which is common after a stroke.
Basmajian and Blummenstein provide instructions to identify
the minimal crosstalk area (MCA) for electrode placement on
superficial muscles during gait (Basmajian and Blumenstein,
1980; Basmajian, 1983; Campanini et al., 2007; Blanc and

Dimanico, 2010). Although the Surface EMG for Non-invasive
Assessment of Muscles (SENIAM) guidelines referenced in the
included studies are readily available and easy to use (www.
seniam.org; Merletti, 2000), the MCA locations defined by
Basmajian and Blummenstein, subsequently updated by Blanc
and Dimanico (Blanc and Dimanico, 2010), have been proven
to be superior to the SENIAM guidelines (Campanini et al.,
2007). MCA identification would now be a minimum standard
recommendation to follow in this field when studying the EMG
timing during gait (Campanini et al., 2007), with the axis of
the electrodes directed parallel to the muscle fibers to increase
selectivity (Blanc and Dimanico, 2010). Additional quality
assurance measures during robotic gait after a stroke, where
feasible with the constraints of the device itself, could include
sensor placement checks—performed by eliciting contractions of
a single muscle and checking for crosstalk on the other collected
traces (Benedetti et al., 2017) and strongly recommended where
spasticity or muscle shortening may alter placement accuracy—
and data check to ascertain the shape of the power spectral
density (PSD) of the signal to ensure meaningful content
(Merlo and Campanini, 2010), free of movement artifacts.
When recording surface EMG in sessions that include the
use of exoskeletons, electrical interference on EMG signals
coming from electrical actuators, battery packs, and cables is
not unexpected, and the PSD computation could prove to be a
powerful tool to unravel such unwanted events.

LIMITATIONS

The authors acknowledge that while no language limits were
applied when searching across databases, no papers were
returned in languages other than English. As such, it is possible
that additional manuscripts exist that were not identified through
this search strategy. The search also returned studies with
heterogeneous use of neural bio-signals, including as an outcome
measurement only.While these were included in the review, their
purpose was not in line with the primary focus of this review.
However, in unifying all studies in this area irrespective of their
set purpose, biosignal collection and interpretation in this field
could be generalized and commented on constructively.

CONCLUSION

Overall, while there are ever-growing technological advances
in robotics, actuators, and sensors, advances in applications
to entrain robotic commands with biosignals for gait training
in clinical populations such as stroke have been considerably
slower. EEG recording in stroke, where the pathology is at
the brain level, has been problematic when compared to other
neurological pathologies such as spinal cord injury (Castermans
et al., 2014), and similarly EMG recording on the stroke-affected
side can be problematic (Sarasola-Sanz et al., 2017; Li et al.,
2018). Uncertainty still exists in the literature on the best choice
of EEG metric (Goh et al., 2018) and in the ability of EMG
to respond accurately in real time (Fan and Yin, 2013). This
review, summarizing the current state of the art in neural

Frontiers in Neuroscience | www.frontiersin.org 14 June 2020 | Volume 14 | Article 57853

www.seniam.org
www.seniam.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lennon et al. Stroke: Neural Interfaced Robotic Walking

interface during robotic-assisted gait training after a stroke,
identifies a lack of standardization in data collection in this field
and provides guidance for study design and reporting future
studies. Promising findings for decoding movement during
robotic gait after a stroke and potential for EMG, in conjunction
with other measurement modes to close the loop, have
been elucidated.
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Brain-computer interfaces (BCIs) have long been seen as control interfaces that

translate changes in brain activity, produced either by means of a volitional modulation

or in response to an external stimulation. However, recent trends in the BCI and

neurofeedback research highlight passive monitoring of a user’s brain activity in order

to estimate cognitive load, attention level, perceived errors and emotions. Extraction of

such higher order information from brain signals is seen as a gateway for facilitation of

interaction between humans and intelligent systems. Particularly in the field of robotics,

passive BCIs provide a promising channel for prediction of user’s cognitive and affective

state for development of a user-adaptive interaction. In this paper, we first illustrate

the state of the art in passive BCI technology and then provide examples of BCI

employment in human-robot interaction (HRI). We finally discuss the prospects and

challenges in integration of passive BCIs in socially demanding HRI settings. This work

intends to inform HRI community of the opportunities offered by passive BCI systems for

enhancement of human-robot interaction while recognizing potential pitfalls.

Keywords: brain-computer interface (BCI), passive BCIs, human-robot interaction (HRI), cognitive workload

estimation, error detection, emotion recognition, EEG, social robots

INTRODUCTION

For generations, the idea of having intelligent machines that can read people’s minds and react
without direct communication had captured human’s imagination. With recent advances in
neuroimaging technologies and brain-computer interfaces (BCI), such images are finally turning
into reality (Nam et al., 2018). BCIs are the systems that decode brain activity into meaningful
commands for machines, thereby bridging the human brain and the outside world. BCIs are
primarily developed as a non-muscular communication and control channel for patients suffering
from severe motor impairments (Millán et al., 2010; Chaudhary et al., 2015; Lebedev and Nicolelis,
2017; Chen et al., 2019). For instance, a BCI-actuated wheelchair or exoskeleton can assist a patient
with ALS or spinal cord injury to regain mobility (Kim et al., 2016; Benabid et al., 2019). Similarly,
locked-in patients can be equipped with a BCI system in order to effectively communicate with
external world (Sellers et al., 2014; Hong et al., 2018; Birbaumer and Rana, 2019). Stroke patients
have also demonstrated effective restoration of motor functions and improvement of life quality
after they were trained with a BCI-control task in a neurological rehabilitation session (Soekadar
et al., 2015).

However, with the growing popularity of BCIs, new application corners outside of the medical
field have emerged for healthy users (Allison et al., 2012; Van Erp et al., 2012; Nam et al., 2018). One
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of the mainstream applications is the integration of BCIs with
other interactive technologies such as virtual reality (VR) and
computer games (Lécuyer et al., 2008; Coogan and He, 2018).
Several prototypes have already been developed that enable a
user to either navigate through a virtual space or manipulate
a digital object only by means of thoughts (Friedman, 2015).
The combination of immersive technologies and BCIs entails a
two-way benefit for researchers in that the BCI system provides
a new form of control channel over the environment, thus
changing the user experience, and virtual environments serve as
a suitable platform for BCI research as they offer a safe, engaging,
and cost-effective tool for the design of BCI experiments and
neurofeedback (Allison et al., 2012; Lotte et al., 2012).

In addition to immersive environments, BCIs have also been
utilized in combination with physical robots in order to induce a
sense of robotic embodiment and remote presence (Alimardani
et al., 2013; Beraldo et al., 2018). In these setups, users control
a humanoid robotic body and navigate through the physical
space by means of their brain activity while they can see through
the robot’s eyes. Such interactions often lead to a feeling of
telepresence and the experience of losing boundary between
the real body and the robot’s body (Alimardani et al., 2015),
paving the way for research in cognitive neuroscience and neural
prosthetics (Pazzaglia and Molinari, 2016).

In all the above-mentioned examples, the brain activity
features extracted for the BCI classifier are either voluntarily
induced by the user (active control) or measured as a response
to an external stimulus (reactive control). Such BCI systems that
require users to get involved in a cognitive task and provide
explicit commands are referred to as active BCIs (Zander and
Kothe, 2011; Lightbody et al., 2014). On the other hand, BCIs that
are event driven andmeasure brain responses to a visual, auditory
or haptic stimulus are called reactive BCIs (Zander and Kothe,
2011). However, there is a third group of BCIs that drive their
outputs from spontaneous brain activity without the need from
the user to perform specific mental tasks or receive stimuli. These
BCI systems, which normally monitor longer epochs of brain
activity for detection of a cognitive state change or emotional
arousal, are called passive BCIs (Zander and Kothe, 2011; Aricò
et al., 2018). An example of this is a system that monitors a
driver’s neural dynamics in real-time and alarms him/her in the
case of drowsiness detection (Lin C. T. et al., 2010; Khan and
Hong, 2015).

Passive BCIs primarily aim at detecting unintentional changes
in a user’s cognitive state as an input for other adaptive systems
(Zander et al., 2010; Aricò et al., 2016). For instance, in the
driving example, the output of the BCI system that evaluates
driver drowsiness can alternatively be used for administration of
the temperature in the car or the volume of the sound system
in order to increase alertness of the driver (Liu et al., 2013).
Similarly, a BCI that extracts information about a user’s ongoing
cognitive load and affective states offers numerous applications
in the design of adaptive systems and social agents that would
adjust their behavior to the user’s ongoing mental state, without
distracting the user from the main task, thereby enriching the
quality of interaction and performance (Szafir and Mutlu, 2012;

Alimardani and Hiraki, 2017; Zander et al., 2017; Ehrlich and
Cheng, 2018).

In this article, we mainly discuss passive BCIs in the context of
human-computer and human-robot interaction. In section BCIs
and Cognitive/Affective State Estimation, we first lay out the state
of the art in passive BCIs by briefly reviewing existing studies that
attempted detection of cognitive and affective state changes from
brain responses.We restricted our literature search to studies that
adopted electroencephalography (EEG) signals for development
of the BCI classifier. Given its mobility, high temporal resolution,
and relatively low price, EEG is considered as a feasible non-
invasive brain imaging technique that can be deployed into a wide
variety of applications including human-robot interaction. In
section BCIs and Human-Robot Interaction, we focus on passive
BCI-robot studies that used cognitive and affective statemeasures
as a neurofeedback input for a social or mechanical robot,
thereby optimizing their response and behavior in a closed-loop
interaction. In the last section, we discuss the prospects and
challenges that are faced in the employment of passive BCIs in
real-world human-robot interaction.

BCIs AND COGNITIVE/AFFECTIVE STATE
ESTIMATION

In neuroscientific literature, cognitive state estimation refers to
the quantification of neurophysiological processes that underlie
attention, working-memory load, perception, reasoning, and
decision-making, while affective computing targets assessment
of the emotional experience. BCI systems that decode covert
information in the brain signals regarding these internal
processes can establish an implicit communication channel for
an adaptive human-technology interaction, presenting novel
applications in the domains of education, entertainment,
healthcare, marketing, etc. (Van Erp et al., 2012; Blankertz et al.,
2016; Krol and Zander, 2017; Aricò et al., 2018). We identified
three main directions for assessment of cognitive and affective
states in EEG-based passive BCIs; (1) detection of attention
and mental fatigue, (2) detection of errors, and (3) detection of
emotions. In the following, we describe the current state of the
art in each of these domains, laying out a foundation for future
employment of passive BCIs in human-robot interaction.

Detection of Attention and Mental Fatigue
As discussed in the drowsy driver example, monitoring real-
time mental workload and vigilance is of particular importance
in safety-critical environments (Lin C. T. et al., 2010; Khan
and Hong, 2015; Aricò et al., 2017). Non-invasive BCIs that
detect drops in attention level and increased mental fatigue
can be utilized in a broad range of operational environments
and application domains including aviation (Aricò et al., 2016;
Hou et al., 2017) and industrial workspaces (Schultze-Kraft
et al., 2012) where safety and efficiency are important, as
well as educational and healthcare setups where the system
can provide feedback from learners to a teacher (Ko et al.,
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2017; Spüler et al., 2017), evaluate sustained attention in e-
learning platforms (Chen et al., 2017), and execute attention
training for clinical patients who suffer from attention deficit
hyperactivity disorder (ADHD) (Lim et al., 2019). It is even
suggested that detection of attention level can be employed
in a hybrid BCI system in which an attention classifier is
integrated with other BCI algorithms in order to confirm users’
focus on the BCI task and validate the produced response,
thereby yielding a more reliable and robust performance
(Diez et al., 2015).

Multiple algorithms have already been proposed to quantify
the level of alertness and mental workload within EEG brain
activity. A large number of these models rely on frequency
domain features such as theta, alpha and beta band powers, for
estimation of attention level and mental fatigue experienced by
the user (Lin C. T. et al., 2010; Roy et al., 2013; Diez et al.,
2015; Khan and Hong, 2015; Aricò et al., 2016; Lim et al., 2019).
On the other hand, some studies have examined non-linear
complexity measures of time series EEG signals such as entropy
(Liu et al., 2010; Min et al., 2017; Mu et al., 2017), promoting a
fast and less costly method for real-time processing. Although
not very common, a few studies have also proposed the usage
of event-related potentials (ERP), such as non-target P300, in
development of passive classifiers given that such brain responses
are affected by both attention and fatigue and thus can provide
a measure of target recognition processes (Kirchner et al., 2013;
McDaniel et al., 2018).

In addition to spectral and temporal information carried by
EEG signals, spatial features such as brain regions from which
the signals were collected have been shown important in the
detection of different mental state changes (Myrden and Chau,
2017). Although reported results are not always consistent, there
is a general consensus on the role of frontal lobe in discrimination
of cognitive workload and task difficulty (Zarjam et al., 2015;
Dimitrakopoulos et al., 2017), prefrontal and central lobes in
detection of fatigue and drowsiness (Min et al., 2017; Ogino
and Mitsukura, 2018), and posterior areas (particularly posterior
alpha band) in estimation of visuospatial attention (Ko et al.,
2017; Myrden and Chau, 2017). It is worth noting that functional
connectivity between different brain regions is also suggested
in the literature as an index for estimation of engagement and
attention (Dimitriadis et al., 2015; Dimitrakopoulos et al., 2017),
although due to computational cost it poses limitations on real-
time implementation.

Detection of Errors
Failures during technology usage and outputs that deviate from
expectation can become a source of dissatisfaction and additional
cognitive workload for the user. Unintentional mistakes made
by the human or erroneous behavior presented by the system
can generate user frustration and aggravate human-system
interaction (Zander et al., 2010). Such negative repercussions
can be prevented by automatic detection and feedback of errors,
as perceived by the user, for online correction or adaptation
of system characteristics while the user is still involved in the
interaction (Zander et al., 2010; Chavarriaga et al., 2014; Krol and
Zander, 2017).

When a user recognizes a mismatch from expectation, an
error-related potential (ErrP) is generated in the EEG signals.
A passive BCI system that extracts this information in real-time
can be used in development of hybrid and adaptive systems that
optimize the performance of the user either by removing the
erroneous trials (Ferrez and Millán, 2008; Schmidt et al., 2012;
Yousefi et al., 2019), or bymodifying the classification parameters
through online learning of the BCI classifier (Krol and Zander,
2017; Mousavi and de Sa, 2019), or by adjusting the task difficulty
level to different individuals in order to improve engagement and
motivation (Mattout et al., 2015). For instance, Ferrez andMillán
(2008) combined a motor imagery BCI with an error detection
algorithm that looked for an ErrP immediately after each trial and
filtered out trials that contained an error-related response. Their
results displayed a significant improvement of BCI performance
in real-time by reducing the classification error rate from 30 to
7%. Similarly, Schmidt et al. (2012) combined online detection
of ErrPs with a BCI speller and reported 49% improvement in
the mean spelling speed. In a recent report, Dehais et al. (2019)
presented a passive BCI classifier for prediction of auditory
attentional errors during a real flight condition, proposing future
smart cockpits that would adapt to pilots’ cognitive needs.

A unique feature of ErrPs is that they would arise in response
to any form of discrepancy during interaction/task execution
including when the user realizes a self-made error (response
ErrP), when s/he is informed about the error through some type
of feedback (feedback ErrP), and even when the user senses
an error made by a third party (observation ErrP) (Ferrez
and Millán, 2005; Gürkök and Nijholt, 2012; Vi et al., 2014).
This permits detection and management of errors in any form
and at any time during the interaction, promoting closed-loop
passive BCIs not only as an efficient and seamless tool for
online evaluation of user performance but also as a secondary
communication tool in multi-user collaborative environments
such as emergency rooms (Vi et al., 2014) where agile and
high-risk decision making is required (Poli et al., 2014).

Additionally, recent efforts suggest that different kinds of
errors generate different ErrPs, allowing discrimination of error
severity and error types (Spüler and Niethammer, 2015; Wirth
et al., 2019) based on temporal, spectral, and spatial information
in the EEG waveforms. However, the downside of this approach
is that, in most cases, the ErrP classifier relies on an event-locked
paradigm in which ErrPs can only be extracted within a fixed
window from a specified trigger. In real-world applications, the
information regarding stimulus time or origin of the error is
often unavailable and the latency of user responses may vary
across individuals and tasks. Therefore, future integration of
such passive BCIs with natural human-agent interactions calls
for further developments on self-paced algorithms that make
asynchronous error detection possible at any time during the
interaction (Lightbody et al., 2014; Spüler andNiethammer, 2015;
Yousefi et al., 2019).

Detection of Emotions
With advancement of commercially available wearable sensors,
estimation of human emotions from ongoing biosignals has
received increased attention in recent years (Al-Nafjan et al.,
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2017; Shu et al., 2018; García-Martínez et al., 2019; Dzedzickis
et al., 2020). Emotions are particularly important in the design
of intelligent and socially interactive systems as they enable the
digital agents to generate a well-suited behavior and establish
an affective loop with the human partner (Paiva et al., 2014;
Ehrlich et al., 2017). Compared to conventional methods
of social signal processing and affective computing (such as
voice and image processing), biosignals present the advantage
of containing spontaneous and less controllable features of
emotions. Emotions entail three aspects; physiological arousal,
conscious experience of the emotion (subjective feeling) and
behavioral expression (Alarcao and Fonseca, 2017). Voice and
face recognition technologies can only capture the third aspect,
i.e., overt behavioral expression of emotion, whereas brain
activity can inform us about the neurophysiological and cognitive
processes that generate and lead to such emotional states
(Mühl et al., 2014a).

A major challenge in classification of emotions from brain
activity is that there is not a unique computational method
for extraction and mapping of emotion-related features. There
are two theories in the modeling of emotions; discrete model
and dimensional model (Kim et al., 2013). The former defines
emotions as a set of categorical affective states that represent
core emotions such as happiness, sadness, anger, disgust, fear,
and surprise (Lin Y. P. et al., 2010; Jenke et al., 2014). The
latter maps emotions on either a two-dimensional valence-
arousal space (Posner et al., 2005; Atkinson and Campos,
2016) or a three-dimensional valence-arousal-dominance space
(Mehrabian, 1996; Reuderink et al., 2013). The discrete model is
more popular among BCI developers as it reduces the problem
of dimensionality, however it does not consider that the same
emotion may manifest on different scales of arousal, valence and
dominance. The dimensional model provides continuity as it
quantifies emotions on each dimension (valence ranging from
positive to negative, arousal ranging from calm to excited and
dominance ranging from in-control to submission). Particularly,
the 2D model has been previously used in multiple EEG studies
(Liberati et al., 2015; Al-Nafjan et al., 2017; Mohammadi et al.,
2017), however in these studies, the dimensionality is often
simplified again by means of clustering emotions across the
valence-arousal coordinates (e.g., fear as negative valence, high
arousal or happiness as positive valence, high arousal), which
bears the risk of grouping different emotions that share the same
valence and arousal levels (e.g., anger and fear) in one cluster
(Liberati et al., 2015).

Another challenge in the development of emotional BCIs
is the diverse elicitation strategies that exist in the affective
computing literature. Multiple types of stimuli including affective
pictures, sounds, video fragments and music have been used in
the past in order to induce emotional responses (Al-Nafjan et al.,
2017). In addition to the lack of consistency among reported
results and available EEG datasets, an inherent problem with
these forms of stimuli is that there is no evidence whether
the induced emotion is a natural affective state or just a
reactive response to the stimulus. To counter this issue, some
studies have employed a self-induced strategy such as recall
of autobiographical emotional memory (Chanel et al., 2009;

Iacoviello et al., 2015) or imagination of the emotion by means
of verbal narratives (Kothe et al., 2013). This method entails
other problems; the self-induced emotions are inevitably weaker
than those induced by external stimuli, and users are prone to
distraction during the task as it is difficult to maintain mental
imageries for a long period (Chanel et al., 2009).

It is worth mentioning that emotions are more than just an
affective state for social interaction and adaptive environments;
they may also influence other cognitive functions. For instance,
frustration can extend negative impacts on attention, decision-
making, learning, and response accuracy. Indeed, past research
has shown that affective states such as stress, anxiety and
frustration can influence BCI performance in estimation of
mental workload and attention (Mühl et al., 2014b; Myrden
and Chau, 2015; Lotte et al., 2018). Thus, it can be expected
that an adaptive multimodal BCI system that identifies users’
affective states and regulates tasks accordingly would improve
user performance and validity of the system in the long term
(Gürkök and Nijholt, 2012).

To sum up, there have been several BCI algorithms proposed
for detection of affective state changes from EEG signals
(Alarcao and Fonseca, 2017), however, automatic recognition of
emotions during ecologically valid tasks and natural interactions
remains a challenge, hindering deployment of affective BCIs
in other platforms such as human-robot interaction. Future
research should attend currently existing issues such as
insufficient classification accuracy, inconsistent computational
and elicitation techniques, as well as development of BCI models
that can extract emotions in an unobtrusive and asynchronous
manner over a long period of time.

BCIs AND HUMAN-ROBOT INTERACTION

With more integration of robots into our daily life, the necessity
for them to function as social and assistive companions in real-
world environments such as schools and healthcare facilities
becomes eminent. In addition to human’s intentions and control
commands, it is crucial for the robots to estimate the emotional
states of a human partner in order to be socially responsive,
engage longer with users and promote natural HRI (Ficocelli
et al., 2015). More importantly, estimation of workload, anxiety
and errors is crucial for ergonomic and safe human-robot
collaboration in both domestic and industrial spaces (Ajoudani
et al., 2018). In this section, we particularly discuss studies
that have employed BCIs for passive detection of cognitive and
affective states of a human user in order to effectively adapt the
behavior of a robot in a closed-loop interaction with the human
partner (Figure 1).

We restricted our literature search to only non-invasive BCI
studies that passively extracted user’s cognitive and affective states
during interaction with a physical robot, therefore, articles that
employed active BCIs for motion control (e.g., motor-imagery
based robot operation) or reactive BCIs for intentional selection
of behavior for a robotic interface (e.g., robot manipulation
triggered by event-related P300 or Steady State Visually Evoked
Potential SSVEP) were not included. Another inclusion criterion
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FIGURE 1 | Closed-loop human-robot interaction using passive BCIs.

TABLE 1 | The inclusion and exclusion criteria as used for the selection of

BCI-HRI studies in section BCIs and Human-Robot Interaction.

Parameters Inclusion criteria Exclusion criteria

Type of BCI Passive BCIs

(hybrid with other BCI types

acceptable)

Active or reactive BCIs

(e.g., motor imagery, ERP,

SSVEP)

Type of signal EEG

(hybrid with other signal types

acceptable)

fNIRS, fMRI, MEG

Type of interaction Interaction with physical robots

(e.g., social robots, arm robots)

Interaction with virtual

avatars, computer games

Type of analysis Real-time classification/

feedback to the robot

Offline analysis of brain

signals captured during HRI

was usage of AI-powered predictive models together with EEG
signals in the study, where a passive BCI classifier was used
(or its development was attempted) during real-time interaction
with a robot. Neuroscience research in which only brain
oscillation patterns associated with robot interaction are reported
were either excluded or already reported in section BCIs and
Cognitive/Affective State Estimation. Finally, the study should
have reported a passive BCI interaction with a physical robot;
interactions with virtual or simulated agents were excluded as the
definition of a simulated agent is very board and incorporates
human-computer interaction and game applications of passive
BCIs. The inclusion and exclusion criteria defined for review of
BCI-HRI studies in this section are summarized in Table 1.

Our search resulted in a total of 10 studies as shown in
Table 2. In the following, we briefly describe the methodology
and outcomes of each listed study.

Szafir and Mutlu (2012) reported an interesting study in
which a humanoid robot monitored students’ EEG signals during
storytelling and gave them attention-evoking immediacy cues
(either in verbal or non-verbal form) whenever engagement
drops were detected. In doing so, they extracted EEG levels in
alpha, beta and theta frequency bands and smoothed them into
an engagement signal that would represent attention levels. Every

time the attention level went below a pre-defined threshold,
the robot displayed immediacy cues such as increased spoken
volume, increased eye contact, and head-nodding. Their results
showed that participants who experienced interaction with an
adaptive BCI-driven robot had a significantly better recall of the
story details than those who participated in an interaction with
randomly presented immediacy cues. In addition to this, female
participants reported a more favorable evaluation of the robot
behavior, in terms of improved motivation and rapport, in the
BCI condition compared to the random condition. The results of
this study highlight the benefits of BCIs in interactive educational
setups where real-time detection of user disengagement and
attention drop can be compensated by means of an embodied
social agent.

Kirchner et al. (2013) employed passive classification of event-
related potential P300 in an adaptive human-robot interaction.
They reported a brain reading (BR) system that implicitly
extracted p300 during teleoperation of an exoskeleton arm
whenever an important stimulus was presented to the user. They
used the evoked potential amplitude as an indicator of successful
stimuli recognition by the user. If the response did not contain
P300 or the potential was not strong enough, it implied that the
user had missed the important information that was presented
and thus the system repeated the stimuli. Authors found a
reduced stress level in subjects when BR was embedded in the
control interface, recommending their approach as a promising
way to improve the functionality of interactive technical systems.

Ehrlich et al. (2014) proposed an EEG-based framework for
detection of social cues such as gaze by a humanoid robot as
a measure for social engagement. They instructed subjects to
either wait for the robot to make eye-contact with them or to
intentionally generate brain patterns for the robot to initiate eye-
contact with them (influence the robot’s behavior). By extracting
frequency band powers as discriminating features in an offline
analysis, they could find high classification performance between
the two conditions. Such predictive model could be implemented
in a human-robot interaction in order to enable the robot to
estimate its social role and adapt its behavior to the expectations
of the human partner.

Iturrate et al. (2015) introduced a reinforcement learning (RL)
algorithm that learned optimal motor behavior of a robotic arm
based on observation ErrPs carried in the brain signals of a
human viewer. The BCI classifier decoded reaching actions as
erroneous whenever ErrPs were present. The non-ErrP trials
were then employed as an online reward for the RL algorithm.
Their approach improved the number of learned actions and
control policies compared to random rewards. Authors suggest
their algorithm for future application in neuroprosthetics in
which implicit input from the patient can optimize the behavior
of an artificial limb for goal-oriented movements.

Kim et al. (2017) conducted a study similar to Iturrate et al.
(2015) in which they trained a RL algorithm based on the
user’s ErrPs in a gesture recognition task. They prepared two
scenarios; (1) when a simulated arm robot recognized and copied
user’s gestures, and (2) when a real arm robot recognized and
copied user’s gestures. In both scenarios, the ErrP classifier used
the correct mappings as a reward for the RL algorithm. They
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TABLE 2 | List of articles in the literature that used a passive BCI classifier for extraction of user’s cognitive and affective state during interaction with a physical robot.

References EEG feature BCI classifier output Adaptive HRI

Szafir and Mutlu (2012) Spectral band powers Attention drops in user during storytelling by a robot The robot provided attention-evoking cues

Kirchner et al. (2013) Absence of P300 Stimuli recognition during teleoperation of an

exoskeleton arm

The robot controller repeated stimuli or

changed response window if the user missed

the stimuli

Ehrlich et al. (2014) Spectral band powers User intention to initiate eye-contact with a robot None

Iturrate et al. (2015) Error-related potential Erroneous motor behavior by an artificial robotic arm in a

reaching task

The robot arm controller learned correct and

incorrect behavior through reinforcement

learning

Kim et al. (2017) Error-related potential Wrong mapping between user’s gestures and robot’s

action

The robot updated action-selection strategy

and learned gesture meaning through

reinforcement learning

Salazar-Gomez et al. (2017) Error-related potential Erroneous robot motion in a binary reaching task The robot switched trajectory based on the

observer’s EEG response

Ehrlich and Cheng (2018) Error-related potential Mismatch in gaze behavior The robot adapted gaze behavior based on

decoded ErrPs

Ehrlich and Cheng (2019) Error-related potential Erroneous robot head movement as a response to a

directional key press by the user

None

Shao et al. (2019) Spectral asymmetry Emotional valence (positive vs. negative) during exercise

with a robot coach

The robot provided verbal and non-verbal

feedback based on the user’s affect and

engagement level

Lopes-Dias et al. (2019) Error-related potential Erroneous arm robot movement when the robot should

have imitated human hand movement.

The robot would give control to human again to

correct his/her movement

showed that both simulated and real robots could effectively
learn gestures from the human instructor with a high online
ErrP detection accuracy (90 and 91%, respectively). However,
not surprisingly, the learning curve was different across subjects
based on the performance of ErrP classifier. Past studies have
shown that ERP-based BCI performance varies across individuals
based on psycho-cognitive parameters (Sprague et al., 2016)
suggesting that ErrP-based BCIs may require subject-specific
calibration and training when integrated within an HRI setting.

Salazar-Gomez et al. (2017) introduced a closed-loop control
interface for automatic correction of reaching behavior of a
robotic arm. They recorded EEG signals from a human observer
while the robot was performing a binary object selection task
after a cue presentation. They used ErrP responses as a real-time
feedback for the robot to switch trajectory if the selected choice
was not compatible with the cue. Despite the soundmethodology
of this study, authors only reported classification results from
four subjects, which makes it difficult to draw firm conclusions.
Also, no reports were made regarding user perception of the
interaction and attitude toward the robot in open-loop vs. closed-
loop HRI. However, an interesting finding in this study was the
presence of a secondary ErrP in the closed-loop interaction when
the human observed an incorrect interpretation of the feedback
by the robot (robot not obeying the human or switching to
the wrong trajectory due to misclassification). This suggests the
design of new BCI paradigms where secondary and further ErrPs
can be incorporated in continuous interactions until an optimal
behavior is achieved (Cruz et al., 2018).

Ehrlich and Cheng (2018, 2019) reported two consecutive
studies in which they used ErrP signals for detection of mismatch
between user’s intended gaze and actual robot’s gaze (Ehrlich

and Cheng, 2018) and user’s intended head movement and
actual robot’s head movement (Ehrlich and Cheng, 2019). In
the former study, they used a closed-loop interaction (adaptive
behavior by the robot) where the user first guessed the direction
of robot gaze from three available choices and then the robot
performed a random gaze behavior which was followed by an
updated behavior based on the ErrP classifier outcome. Using a
learning paradigm for the robot’s gaze policy, they showed that
a mutual adaptation between the human and robot’s behavior
emerged, leading to a relatively high classification performance
and more efficient interaction. In the latter study (Ehrlich and
Cheng, 2019), authors again used a guessing game to compare
the observability and decodeability of ErrP responses to two
experimental stimuli; an incongruent robot movement vs. an
incongruent curser movement. In the first condition, participants
guessed the robot head movement from three possible directions
(left, right, up) using arrow key-presses, and watched the robot
perform a random action. In the second condition, they again
guessed a possible direction but watched a curser moving either
toward or away from that direction on a computer screen.
Although they found a satisfactory classification accuracy (69%)
in the HRI scenario, they observed that the classification accuracy
for ErrP responses was significantly higher in the cursor scenario
(90%), indicating more sensitivity of ErrPs to visually simple cues
compared to contextual robot actions.

Shao et al. (2019) used a low-cost EEG (InteraXon Muse
2016) together with heart rate and motion sensors during
interaction with a health coach humanoid robot. They extracted
EEG frequency band powers in order to classify the emotional
valence of the user during exercise with the robot. The robot
then presented an online positive or negative feedback (happy,
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interested, worried, and sad) based on the user’s affect (positive
or negative) and engagement level (engaged or not engaged).
The participants of their study reported a high acceptance
and perceived usability for the robot, however the robot was
tested in a non-controlled experiment (no other condition
was compared with the above scenario) and the classification
results for the affect recognition model was not particularly high
(71%), therefore it is possible that the reported results were
merely due to the novelty effect caused by the robot presence,
and not emotional awareness and adaptive feedback during
the interaction.

Finally, Lopes-Dias et al. (2019) attempted asynchronous
decoding of ErrPs during online control of an arm robot.
Participants had to move their own hand according to a
binary stimuli on the screen and using a motion capture
system, the robot was expected to copy the same movement
in the physical world. In case the hand movement was not
detected correctly, an ErrP signal was detected and the robot
allowed the user to correct the error. The major finding of this
study was the possibility of asynchronous detection of ErrPs
using a sliding window during online robot operation. Authors
do not discuss their results in the context of human-robot
interaction and a possible embodiment effect (Alimardani et al.,
2013), however similar to Salazar-Gomez et al. (2017), they
observed secondary ErrPs in some participants which confirms
the applicability of these later potentials in improvement of
robot performance.

Although, this section only focused on EEG-based passive
BCIs for the purpose of HRI, it is worth mentioning the
potential of other brain imaging techniques such as fNIRS
(Canning and Scheutz, 2013) in passive evaluation of user
responses during robot interaction, for instance, detection
of cognitive workload during multitasking with two robots
(Solovey et al., 2012) or detection of affinity and eeriness
in robot appearance (Strait and Scheutz, 2014). Additionally,
insights can be driven from passive BCI studies with simulated
agents and teleoperated robots (Esfahani and Sundararajan,
2011; Cavazza et al., 2015; Aranyi et al., 2016; Zander et al.,
2017) to further inform the HRI community of the possible
exploitation avenues.

Altogether, passive BCIs show promise in the design of
optimal robot behavior by means of indirect communication
from the human partner. Our literature review shows that
detection of erroneous robot behavior using ErrP signals is
the most popular paradigm for integration of passive BCIs
in HRI settings. Contrary to our expectation, there were very
few studies that employed detection of mental workload or
emotions for adaptive social behavior in HRI. This confirms that
despite the great effort of AI community in developing several
classification models for EEG-based emotion and cognitive state
prediction, real-time incorporation of these models in a closed-
loop interaction with physical robots are yet not adequately
explored. This gap should be addressed by BCI and HRI
researchers in the future, thereby creating a synergy between
the two domains for promotion of socially intelligent and
adaptive robots.

PROSPECTS AND CHALLENGES

As discussed in previous sections, passive BCIs offer a promising
means to objectively monitor cognitive and affective states of a
technology user either as an offline evaluation metric of the user’s
performance or as a communication modality for closed-loop
adaptive interaction. This puts forward application of passive
BCIs in neuroergonomic HRI (Lotte and Roy, 2019) where
potential mental overload, attention drops, negative emotions,
and human errors can be prevented or managed in an online and
unobtrusive manner, thereby increasing the interactivity between
the user and the robot and facilitating their collaboration (Krol
et al., 2018). Meanwhile, more research is required in the field
of HRI to formulate appropriate design principles for context-
aware alignment of the robot behavior with human expectations,
needs and conventions, once such higher order information
from the user is available (Rossi et al., 2017; Sciutti et al.,
2018).

Another direction toward future collaboration between
passive BCI and HRI research could be development of
social robots that assist neurofeedback training for augmented
cognition or sustenance of a desirable psychological state
(Anzalone et al., 2016; Alimardani and Hiraki, 2017; Alimardani
et al., 2018, 2020; Tsiakas et al., 2018; Cinel et al., 2019). One of
the main problems with the traditional neurofeedback training
paradigms is that the changes in brain features are usually
presented to the users through auditory or visual feedback. This
lacks engagement with the interface, which makes the training
after a short while tedious. Recent works have replaced the
old protocol with interactive computer games (Mishra et al.,
2016) and immersive virtual environments (Kosunen et al.,
2016). However, these applications require steady visual attention
toward a computer screen or placement of a head-mounted
display over the EEG electrodes that can be intrusive to the
user and cause cybersickness. A social robot on the other hand,
induces a feeling of co-presence, mind perception, and emotional
support (Alimardani and Qurashi, 2019), which can positively
influence performance, motivation, and social interaction during
a training program (Wiese et al., 2017; Sinnema and Alimardani,
2019; Alimardani et al., 2020). Past research has shown that
the physical embodiment of an agent generates a more natural,
efficient, and joyful communication during elderly cognitive
training (Tapus et al., 2009) as well as a higher learning
gain during tutoring interactions (Leyzberg et al., 2012).
Therefore, it is expected that a robot-guided cognitive training
would extend similar benefits compared to previous non-social
environments (Pino et al., 2019).

Although passive BCIs provide substantial opportunity for
optimization of performance and interactivity in HRI, their
advantages are often mitigated by several limitations with respect
to real-world implementation. One of the general challenges
in the usage of BCIs in real-world conditions is the high cost
and long preparation time that is required for the hardware
setup (electrode placement) and software tuning (individualized
calibration). Recent development of wireless EEG caps and low-
cost commercial headsets has substantially reduced the setup
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time for real-world recordings, however they often come at
the cost of precision and reliability. Also, there have been
attempts in reducing calibration time by means of machine
learning techniques and adaptive classifiers that extract common
features among all users (Lotte, 2015), known as inter-subject
associativity (Saha and Baumert, 2019). On the other hand, deep
learning methods have been suggested for automatic learning
of representations in the brain activity, thereby reducing the
pre-processing and manual feature extraction that is required
for BCI classifier training (Nagel and Spüler, 2019; Tanveer
et al., 2019). For BCI technology to become mainstream and
be employed by non-experts in other research domains, we
must reduce the cost of equipment use while improving the
quality of recording and precision of algorithms. Hence, further
advancement in wearable sensor technology as well as progress
in signal processing techniques and computational modeling of
brain activity is required for the BCIs to be finally deployed in
every-day use.

Another constraint in employing BCIs in real-world scenarios
is vulnerability of BCI output to external noise (Minguillon
et al., 2017). In most BCI studies, participants are instructed to
relax during the recording and avoid unnecessary movements;
nevertheless the online performance of these systems is yet
far from ideal due to uncontrolled concomitant stimulus
in the environment and diverse neurophysiological dynamics
across individuals. In the case of passive BCIs, this is an
even more severe issue as the user’s involvement in another
task or integration of the BCI system with other types of
technology introduces new artifacts from the environment
resulting in undesirable outcome (Zander et al., 2010). Such
misclassifications can become particularly critical in the HRI
scenarios, as poor performance from the system will produce
unwanted behavior from the robot, thereby harming the
interaction quality and diminishing the expected effects. A
proposed solution for this problem is combination of multiple
brain imaging modalities, such as fNIRS and EEG, to develop
hybrid BCIs that benefit from both high temporal and high
spatial resolution and hence can provide better accuracy and
process more commands from the user (Hong and Khan, 2017;
Dehais et al., 2018). Similarly, combination of brain signals with
other physiological data such as electromyography (EMG) or
electrooculography (EOG) can help detect and reduce the effect
of noise and increase the number of control commands necessary
for multi-task control (Hong and Khan, 2017; Zhang et al., 2019).

In the same vein, care must be taken when collecting
data for development of passive BCIs models in complex
environments where alternative sources of cognitive and affective
stimuli are available. Mappings between target mental states
and brain activity should clearly be defined and investigated
with careful consideration of confounding factors that might
affect neurophysiological variables (Brouwer et al., 2015). For
instance, when developing an affective BCI classifier for detection
of human emotions during interaction with a robot, the BCI
model should be trained and tested in an ecologically valid
HRI setting rather than with a set of affective visual stimuli.
Such new experimental paradigms may lead to unsuccessful
or inconsistent results compared to prior neuroscience studies,
however, this should not demotivate researchers from reporting

their findings as the BCI field is still in its infancy and the report
of negative results is equally valuable for its further progress
(Lotte et al., 2020).

Yet, another challenge with respect to integration of passive
BCIs in human-robot interaction studies is the high demand
for computational resources and data storage, which are
indispensible to real-time processing of brain activity as well as
real-time configuration of the robot controller. This means that
in practice, the two interfaces are often operated on different
computers/environments and hence need to communicate with
one another through proxy solutions (Müller-Putz et al.,
2011). In order to integrate BCIs and robots efficiently, future
developments is required to provide cost-effective BCI modules
that can be compiled and implemented in multiple environments
without requiring extensive programming and adaptation.

Last but not least, we should not lose sight on the emerging
ethical issues in real-world employment of passive BCIs such
as management of user expectation and sensitive data (Burwell
et al., 2017). Obviously, the idea of continuous monitoring
and access to someone’s thoughts is dreadful, particularly when
this information is collected and processed by a humanlike
entity such as a robot. Especially, in the case of affective BCIs,
there are unique challenges with respect to user autonomy as
they entail the risk of manipulation or inducement of affective
states without the user’s consent (Steinert and Friedrich, 2020).
Therefore, it is of high importance to scrutinize the ethical
implications of BCI-driven robots and develop educational
programs that communicate ethical guidelines to potential
users before such technologies are released into the wild.

CONCLUSION

Passive BCI technology holds promise in extracting affective and
cognitive states for an optimized human-technology interaction.
In this paper, we laid out the current state of the art
in passive BCIs and illustrated their implications for real-
world applications. We particularly reviewed their possible
employment in human-robot interaction with the intention to
inform the HRI community of the promises and challenges of
passive BCI technology. Future work should continue to advance
the synergy between the two domains and further explore the
impact and effectiveness of BCI-driven robots during closed-loop
interactions with humans.
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During human-robot interaction, errors will occur. Hence, understanding the effects

of interaction errors and especially the effect of prior knowledge on robot learning

performance is relevant to develop appropriate approaches for learning under natural

interaction conditions, since future robots will continue to learn based on what they

have already learned. In this study, we investigated interaction errors that occurred under

two learning conditions, i.e., in the case that the robot learned without prior knowledge

(cold-start learning) and in the case that the robot had prior knowledge (warm-start

learning). In our human-robot interaction scenario, the robot learns to assign the correct

action to a current human intention (gesture). Gestures were not predefined but the

robot had to learn their meaning. We used a contextual-bandit approach to maximize

the expected payoff by updating (a) the current human intention (gesture) and (b) the

current human intrinsic feedback after each action selection of the robot. As an intrinsic

evaluation of the robot behavior we used the error-related potential (ErrP) in the human

electroencephalogram as reinforcement signal. Either gesture errors (human intentions)

can be misinterpreted by incorrectly captured gestures or errors in the ErrP classification

(human feedback) can occur. We investigated these two types of interaction errors

and their effects on the learning process. Our results show that learning and its online

adaptation was successful under both learning conditions (except for one subject in

cold-start learning). Furthermore, warm-start learning achieved faster convergence, while

cold-start learning was less affected by online changes in the current context.

Keywords: human-robot interaction (HRI), error-related potentials (ErrPs), reinforcement learning, robotics,

long-term learning, learning with prior knowledge

1. INTRODUCTION

The “human-in-the-loop” approach, e.g., through human feedback, is an interesting approach
to learning in robots. Previous studies have used both explicit and implicit human feedback for
robot learning, such as active learning of rewards through the use of human ratings (Daniel et al.,
2014) or online generation of rewards through the use of EEG-based human feedback (Iturrate
et al., 2015; Kim et al., 2017). The most commonly used EEG components are error-
related potentials (ErrPs), which are evoked by the perception of unusual human or robot
actions (Falkenstein et al., 2000; Parra et al., 2003; van Schie et al., 2004; Iturrate et al., 2010,
2015; Kim and Kirchner, 2013, 2016; Chavarriaga et al., 2014; Kim et al., 2017, 2020; Salazar-
Gomez et al., 2017; Ehrlich and Cheng, 2018, 2019b). Single-trial detections of event-related
potentials (ERPs) are possible by using machine learning techniques and signal processing
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methods (Müller et al., 2004; Lotte et al., 2018), which has
been demonstrated in various application areas (review, Zhang
et al., 2018). In robot learning, single-trial detections are required
for online generation of EEG-based human feedback for each
robot’s actions. One issue in single-trial EEG detections is to
hardly achieve 100% classification accuracy (Kirchner et al.,
2013). Another issue is a high subject variability between
ErrP classification performance, which is well-known in brain-
computer interfaces (BCIs) (Blankertz et al., 2009; Vidaurre and
Blankertz, 2010; Ahn and Jun, 2015; Jeunet et al., 2015; Morioka
et al., 2015; Ma et al., 2019) and brain imaging (Seghier and
Price, 2018; Betzel et al., 2019). A relevant question when using
EEG-based human feedback in robot learning is the unknown
influence of human-robot interaction on the generation of EEG-
based human feedback. Indeed, it has not been systematically
investigated how human-robot interactions influence the online
generation of EEG-based human feedback in general and
especially when several interaction components play together in
human-robot interaction or cooperation.

The future cooperation with robots requires an intensive
investigation of interaction concepts and learning approaches
in robot systems with regard to their applicability in poorly
controlled environments, in case of faulty or changing human
behavior and when using several interaction options. This is
important because it is difficult and very strenuous or even
impossible for humans to repeatedly behave identically as a robot
can. A good example is the interaction with gestures. There
are individual differences even in the choice of gestures, not
to mention the fine to great differences in the execution of
exactly the same gesture by two different people. Depending
on the situation in which a person finds himself, the gestures
are also performed differently. The execution of gestures also
typically changes over time and depending on the frequency
of execution. Often, a person spontaneously thinks of another
gesture and executes a different gesture. People can cope well with
these changes in the behavior of the human interaction partner.
Robots or artificial learning processes have much more problems
with this.

A conceivable application is that a robot performs pick-and-
place tasks together with a human interaction partner. The task
is to sort objects differently depending on current situations
determined by human behavior (e.g., human gesture). The robot
therefore has no completely fixed predefined task procedure,
but does know for example which places are feasible for the
robot or the human to reach. On the other hand, the human
changes the desired places of objects (selection of the reachable
places) depending on current situation or task efficiency. For
example, the robot picks up objects and place them in locations
that correspond to the current human gesture. After the action
selection, the robot receives human feedback on the correctness
of action selection (e.g., the robot selects a correct position
for placing objects or not) and updates an action strategy
based on human feedback. In this way, the robot learns an
action that corresponds to the current situation determined by
human gesture and also adapts an action strategy depending on
online changes of human intention. Two interaction errors can
occur here: (a) human gestures, which can be easily changed
over time or which can vary between different interaction

partners (different people), can be misinterpreted by the robot
and (b) human implicit feedback in the form of EEG that
can be incorrectly decoded, since a decoder is not perfectly
trained. Such online learning and adaptation based on human
feedback can be beneficial in unknown situations or unknown
environments, e.g., space explorations. In this case, the robot
has only a little predefined knowledge about task solution before
explorations and can extend knowledge directly by learning from
human feedback. Further, it can also be relevant in more pre-
defined scenarios, i.e., assembly in production line, to adapt to
individual preferences.

In order to develop new interaction concepts and learning
procedures that can better deal with such changes in human
behavior, we first have to investigate which influence which
mistakes have on learning in the robot and which influence
misbehavior of the robot has on feedback from humans. In
this paper we want to use the example of implicit learning of
gesture-action pairs from intrinsic human feedback based on
brain activity to investigate the effect of errors in the recognition
of EEG signals and gestures on interactive learning.

We investigate interaction errors under two conditions. First,
the robot learns with prior knowledge and second, without
prior knowledge. Although almost all studies on robot learning
assume that the robot has no previous knowledge, this is
actually a completely unrealistic situation especially for humans.
Humans, like many other animals, almost always learn on the
basis of previous knowledge. With our study we want to show
that there are differences in the effects of interaction errors
depending on whether learning takes place with or without
previous knowledge.

1.1. Concept of Human-Robot Interaction
(HRI)
In our human-robot interaction scenario, the robot learns actions
that are best assigned to the current human intentions. Our
concept of human-robot interaction (HRI) is illustrated in
Figure 1. The subject interacts with the robot by selecting a
specific gesture that expresses the human intention. The robot
observes the current gesture and chooses an action based on
the policy from previous trials. The subject observes the chosen
action of the robot and evaluates it intrinsically. This intrinsic
evaluation is reflected in certain EEG activities, which are a
neuronal correlate of the implicit intrinsic evaluation of the
correctness of the action of the robot. The robot learns a policy
based on human feedback and updates the policy after every
other interaction with the subject where further experience
is gained. Finally, the robot learns correct mappings between
gestures and actions (i.e., correct gesture-action pairs), which is
updated in real time by human’s online feedback.

The learning algorithm used in our HRI concept is based on a
contextual bandit approach (e.g., Li et al., 2010). The contextual
bandit approach is well-suited for our HRI scenario, since a
robot learns to choose actions which are best assigned with the
given context (human’s current gestures). The contextual bandit
approach is a variant of reinforcement learning, in which only
one action is chosen per episode (details, see section 2.2).

Our HRI contains two interfaces between human and robot:
(a) gesture interface that encodes human’s intents in form of
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FIGURE 1 | The concept of our approach. Continuous lines represent the information flow of the learning process, and dotted lines represent the logs of the learning

process and markers of the EEG data. Solid lines: The subject communicates with the robot in the form of gestures and gesture features are sent to the learning

algorithm as human intention (1). Based on gesture features, the learning algorithm selects an action (2). The robot executes the chosen action (3). The subject

observes the executed actions of the robot (4). The test person gives an intrinsic feedback on the robot’s choice of action in the form of an EEG. The ErrP is evoked,

for example, when the action performed by the robot does not match the current human gesture. The output of ErrP decoder (binary classification: ErrP or No ErrP) is

sent to the learning algorithm as rewards (5). The learning algorithm updates the policy based on human feedback (6). Dotted lines: Feature vectors of human gesture

are written in the log file (r1). Executed actions of the robot are written in the log file (r2) and in the EEG as action markers (h1). EEG signals are continually recorded

and saved as EEG data (h2). The outputs of ErrP decoder (rewards) are written in the log file (r3). Payoffs of each gesture-action pair are written in the log file (r4).

Details, see sections 1.1 and 2.2.

gestures and (b) EEG interface that decodes human’s intrinsic
feedbacks on robot’s actions in form of EEGs. Both interfaces
provide inputs to the learning algorithm that triggers actions
in the robotic system (robot arm) that are best assigned with
the given gestures. Hence, learning performance depends on the
quality of inputs that are provided by both interfaces. In our
HRI scenario, misinterpretations of human intention (human
gesture) and human feedback (human evaluation) affect learning
performance. In other words, an incorrect coding of human
intention and an incorrect decoding of human feedback has an
impact on the learning performance of the robot.

1.2. HRI Errors: Gesture Errors and ErrP
Misclassifications
In our previous study (Kim et al., 2017) we investigated the
effect of ErrP classification performance on robot learning
performance, since the results of the ErrP classification are
directly used as a reward in the learning algorithm. Thus, we
focused on the analysis on ErrP-classification performance. In

our HRI scenario, however, the robot receives not only implicit
human feedback but also human gestures as explicit input for
the interaction. Thus, the robot has two kinds of inputs for
interactions with human: (a) human gestures in form of gesture
features and (b) human feedback in form of ErrPs, which
are neural correlates of human’s implicit evaluation on robot’s
actions. Both types of input can be incorrect in real applications
for different reasons.

Gesture errors can be generated when human gestures are not
correctly recorded for several reasons. First, hand positions of
the subjects are often out of range of sensors (infrared cameras)
due to changes of body posture of the subjects. In most cases,
the subjects are not aware of such large variances of their
own hand positions. Second, in a few cases, we have also a
general hardware problem. The gesture recording system called
Leap Motion does not accurately enough catch hand gestures
due to the limited range of infrared cameras. The accuracy
of gesture capture depends on how the subject’s hands enter
the camera’s sensors. Third, some subjects change their gesture
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TABLE 1 | (A) Four gesture types; (B) Errors in human-robot interaction (HRI) and their effects on learning performance.

Gesture type Feature vector Recorded feature vectors

(A)

Left [−1 0 0 0] [−0.85 0.11 0.15 0.21]

Right [ 1 0 0 0] [0.91 0.22 0.32 0.19]

Upward [ 0 1 0 0] [0.14 −0.84 0.15 0.93]

Forward [ 0 −1 0 1] [0.11 0.81 0.11 0.23]

Online robot learning Offline analysis

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Case Perception
Human Recorded Robot ErrP

Rewards
Gesture ErrP ErrP Impact on

gesture gesture action detection error error classification learning

(B)

1
Human

Left Left Left No ErrP 1 No No TN Positive
robot

2
Human

Left Left Left ErrP −0.25 No Yes FP Negative
robot

3
Human

Left Left Right No ErrP 1 No Yes FN Negative
robot

4
Human

Left Left Right ErrP −0.25 No No TP Positive
robot

5
Human

Left Right Left No ErrP 1 Yes
No TN

Negative
robot Yes FN

6
Human

Left Right Left ErrP −0.25 Yes
Yes FP

Positive
robot No TP

7
Human

Left Right Right No ErrP 1 Yes
Yes FN

Positive
robot No TN

8
Human

Left Right Right ErrP −0.25 Yes
No TP

Negative
robot Yes FP

The recorded feature vectors are presented as example. ErrP error stands for ErrP error classification. The positive class stands for faulty action of the robot. Only the cases in which
the test subjects perform the gesture to move the robot to the left are described as examples.

patterns during the experiments. For example, at the beginning
of the experiment, these subjects made gestures to move the
robot to the right with their hands open, but in the middle
of the experiment they closed their hands before finishing the
whole gesture. In this case, an additional gesture feature (e.g.,
closed hand) was added [1, 0, 0, 1], which is used for the gesture
forward [0, −1, 0, 1]. Again, the subjects are not aware of their
own changes of gesture pattern. An overview of the gesture
vector depending on the gesture type is shown in Table 1A. All
types of gesture errors provide wrong gesture features to the
robot and thus the robot perceives gesture features that are not
coherent with gestures that the subjects intended to perform.
Therefore, in our data analysis gesture errors are defined as
gesture incoherence between human and robot, i.e., incoherence
between gestures performed (by humans) and perceived (by
robots). Note that maximum values of feature vectors (second
column of Table 1A) cannot be reached by actually performed
human gestures. We observed individual differences in gesture
features within the same gesture type (inter-subject variability)
and differences in gesture characteristics between repeatedly

executed identical gesture types within the same test subjects
(inter-gesture variability).

Human feedback (reward) can also be wrong for various
reasons. We consider incorrect decoding of human implicit
feedback (ErrP) as the most common reason for incorrect human
feedback. In general, the accuracy of the trained ErrP decoder is
seldom achieved with 100%. Hence, ErrP misclassifications, i.e.,
both false positives (FP) and false negatives (FN) were counted
as erroneous human feedback in our data analysis. Erroneous
human feedback can in a few cases also be generated by gesture
errors, although there are no ErrP misclassifications (details in
section 2.1). Erroneous human feedback can also be caused if
the test subjects miss the robot’s actions due to lack of attention.
In this case, ErrP detections are incorrect and thus erroneous
feedbacks are sent to the robot. However, we have found that such
errors are indeed rare, since the task (observing the actions of
the robot) was actually very simple. This was also shown by the
oral feedback of the test persons to our questions, how often they
approximately missed the actions of the robot. For this reason,
we excluded this type of error from our data analysis.
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Both ErrP misclassifications and gesture errors can
occur together and influence each other. The interaction
of both types of errors can lead to erroneous feedback to
the robot, which affects robot learning. The interaction
between ErrP misclassifications and gesture errors and
their effects on robot learning is reported in detail
in section 2.1.

2. METHODS

2.1. Expected Effects of HRI Errors on
Learning Performance
Figure 2A shows a schematic overview of the effects of ErrP
classifications on the learning process of the robot, where there
are no gesture errors (no faulty recording of gestures). ErrPs are
used as implicit evaluation of robot’s action choice: when ErrPs
are detected, negative feedbacks are given to the robot, whereas
positive feedbacks are given to the robot when ErrPs are not
detected (solid red lines, in Figure 2A). There are two cases for
robot learning, when ErrP detections are correct: (a) a positive
feedback (No ErrP) is given to a correct gesture-action pair (a1 in
Figure 2A) and (b) a negative feedback (ErrP) is given to a wrong
gesture-action pair (b2 in Figure 2A). In both cases, the robot
learns correct gesture-action pairs (case 5 and 8 in Figure 2A and
Table 1B). However, when ErrP detections are wrong, erroneous
feedbacks are given to the robot: (a) a negative feedback (ErrP) is
given to a correct gesture-action pair (a2 in Figure 2A) and (b) a
positive feedback (No ErrP) is given to a wrong gesture action-
pair (b1 in Figure 2A). In both cases, the robot learns wrong
gesture-action pairs (case 6 and 7 in Figure 2A and Table 1B).
Hence, ErrP misclassifications can generate erroneous feedback
that negatively affect the learning process in two ways: (a) ErrPs
are detected although robot’s actions are correct, i.e., false positive
(FP) and (b) ErrPs are not detected although robot’s actions are
wrong, i.e., false negative (FN), where positive class stands for
erroneous actions.

Figure 2B shows a schematic overview of the negative effects
of gesture errors on the robot’s learning performance, where
ErrP detections are correct per se. Gesture errors can have a
direct or indirect effect on the robot’s learning performance,
but their impact on the learning process is not straightforward,
since gesture errors affect ErrP error classifications that
further influence the learning process. This means that the
effects of gesture errors on the learning process cannot be
easily interpreted. When gestures are incorrectly recorded,
the performed gestures of human are not coherent with the
recorded gestures (green dotted line in Figure 2B). Hence, the
robot perceives gesture features that are incoherent with the
subject’s performed gestures and decides an action based on the
perceived gestures. On the other hand, human feedbacks are
generated based on the performed gestures of human. In fact,
the test subjects always compare their executed gestures (not the
recorded gestures) and the robot’s action choices (H-a and H-b in
Figure 2B). They are not aware of incorrectly recorded gestures,
because the test subjects perceive almost no false recordings
of their own gestures when interacting with the robot online.

Therefore, human feedback to the robot (No ErrP/ErrP) is
generated based on the gestures performed by the human, while
the robot receives characteristics of the recorded gestures. That
means, online-reward generations (ErrP detections) are based on
human perception, whereas action choices of the robot are based
on robot perception. In the end, erroneous recordings of gestures
lead to the generation of incorrect feedback: (a) ErrP with correct
gesture-action pairs (Ra in Figure 2B) and (b) No ErrP on an
incorrect gesture-action pair (Rb in Figure 2B), although the
ErrP detections are correct in themselves, i.e., there are no ErrP
misclassifications (Ha and Hb in Figure 2B).

For schematic overviews, we visualized the effect of ErrP
classifications (rewards) without gesture errors (Figure 2A) or
the effect of gesture errors without ErrP misclassifications
(Figure 2B). However, ErrP misclassifications and gesture errors
can occur together and interact.

Table 1B shows all theoretically possible cases of input errors
(gesture errors/ErrP misclassifications) and their combinations
in our HRI scenario. In Table 1B only the cases are exemplarily
described in which the subjects perform the gesture to move the
robot to left.

When there are no gesture errors (case 1, 2, 3, 4 in
Table 1B), ErrP-classification performances are same for both
human perception and robot perception (Table 1B-h). When
gesture errors are observed (case 5, 6, 7, 8 in Table 1B),
ErrP-classification performances are different between human
perception and robot perception (Table 1B-h). Gesture errors
have a negative effect on the robot’s learning process if they occur
without ErrP error classifications (case 5 and 8 in Table 1B),
because the robot learns gesture-action pairs based on the
recorded gestures and not on the executed human gestures
and receives erroneous feedback from the test persons (case
5: No ErrPs on right-left pairs; case 8: ErrPs on right-right
pairs). However, when gesture errors and ErrP misclassifications
occur together, learning performances of the robot are positively
affected, since gesture errors cancel out ErrP misclassifications
(case 6 and 7 in Table 1B) and the robot receives correct
feedbacks from the subjects (case 6: ErrP on right-left pairs; case
7: No ErrP on right-right pairs).

In summary, misinterpretations of human intention (gesture
errors) and human feedback (ErrP error classifications) can
separately influence the learning process as follows: Learning
process can be negatively affected by (a) ErrP misclassifications
without gesture errors (case 2 and 3 in Table 1B) or (b) gesture
errors without ErrP misclassifications (case 5 and 8 in Table 1B).
However, in a few cases, there is an interaction between
gesture errors and ErrP misclassifications, which positively
affects the learning process, since gesture errors cancel out ErrP
misclassifications (case 6 and 7 in Table 1B). Finally, the absence
of both error types (correct gesture recordings and correct ErrP
detections) has a positive impact on the learning process (case 1
and 4 in Table 1B).

2.2. Learning Algorithm
In our HRI scenario, a robot learns to choose actions which are
best assigned with the given context (human’s current gestures),
in which robot’s actions have single-state episodes and the
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FIGURE 2 | A schematic overview: (A) Effects of the ErrP classifications on the learning processes of the robot where there are no gesture errors (no faulty recording

of gestures). (B) Negative effects of gesture errors on robot learning processes where ErrP recognitions are correct. The cases of ErrP error classifications (case 6 and

7 in Table 1) are not shown. Note that ErrPs are generated based on human perception, while action decisions are based on the perception of the robot (TP, true

positive; FP, false positive; TN, true negative; FN, false negative).

context is independent of each other. Thus, the contextual bandit
approach is well-suited for our HRI scenario. Among state-of-
the art contextual bandits approaches, we chose LinUCB (Li
et al., 2010) as learning algorithm (see Algorithm 1). In principle,
LinTS (Agrawal and Goyal, 2013) is also suitable for our
HRI scenario. Although both algorithms are interchangeable,
empirical evaluation of both algorithms led to different learning
performances depending on application scenarios (Chapelle and

Li, 2011). Further, other state-of-art algorithms regarding multi-
arm bandits can also be implemented for contextual bandits
settings (Cortes, 2018). However, LinUCB (Li et al., 2010) is a
popular approach that has been evaluated in numerous scenarios
and proved as a fast and effective approach in contextual bandit
settings [e.g., HybridLinUCB (Li et al., 2010), GOB.Lin (Cesa-
Bianchi et al., 2013), CLUB (Gentile et al., 2014), CoLin
(Wu et al., 2016)].
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Contextual bandits (Langford and Zhang, 2008) have single-
state episodes, since they obtain only one immediate reward per
episode. This is similar to k-armed bandits (Auer et al., 2002)
that is the simplest form of reinforcement learning. However,
contextual bandits use the information about the state of the
environment (cf. k-armed bandits) and thus make decision
dependent on the state of the environment (context). Thatmeans,
the policy of context (state)-action pair is updated per episode
(trial) and the context is independent of each other. Accordingly,
the context is different for each episode (trial). For example, in
our HRI scenario, the subject performs different types of gesture
(left, right, forward, upward) for each episode, e.g., left gesture
(x1,1) for the first episode, right gesture (x2,2) for the second
episode, left gesture (x3,1) for the third episode, forward gesture
(x4,3) for the fourth episode, etc. Figure 3 shows a schematic
visualization of LinUCB (Li et al., 2010) in a given context in a
specific episode as an example.

In LinUCB (Li et al., 2010), it is assumed that the predicted
payoff (the expected payoff) of an arm a is linear in its d-
dimensional feature xt,a with some unknown coefficient vector
θ∗a : E[rt,a|xt,a] = xTt,aθ

∗
a . Note that the model is called disjoint,

since the parameters are not shared among different arms.
Ridge regression is applied to the training data (Da, ca) in
order to estimate the coefficients θ∗a (details, see below). The
algorithm observes feature vector xt and selects an action at
based on the predicted payoffs of all actions. After action selection,
the algorithm receives the current payoff rt,at and updates the
policy with the new observation (xt,at , at , rt,at ). The step-by-step
description follows below (see Algorithm 1).

The exploration parameter α is determined before the
learning was used as input (line 0). For each time, e.g., for
each trial (line 1), the algorithm observes all features (line 2).
When the action has not been observed before (line 4), one
d × d identity matrix (Id) and one zero vector of length d
(0d×1) are instantiated (line 5, line 6), where d is the number
of features. The coefficient θ̂a is estimated by applying ridge
regression to the training data (Da, ca), where Da is a m × d
design matrix and ca is the vector of length m (where m is
the number of observations): θ̂a = (DT

aDa + Id)
−1 DT

a ca. In
the Algorithm 1, DT

a Da + Id is rewritten as Aa and DT
a ca is

rewritten as ba (line 8). Accordingly, θ̂a can be rewritten as A−1a

ba. Payoffs Pt,a are estimated as the sum of ridge regression for
the current feature xt,a (i.e., the expected payoff: θ̂a xt,a) and

the standard deviation of the expected payoff (
√

xTt,a A
−1
a xt,a),

where the standard deviation is multiplied by the parameter
α that determines the degree of exploration (line 9). The
algorithm chooses the action with the highest expected payoff
(arg maxa∈At Pt,a) and observes the received current payoff rt
on the chosen action (line 11). Finally, the training data (Da,
ca) is updated in action space Aat and context space bat (line
12 and line 13), which is fitted by applying ridge regression to
estimate θ̂a for the next trial. Therefore, the expected payoff
is linear in its d-dimensional feature xt,a with some unknown
coefficient vector θ∗a : E[rt,a|xt,a] = xTt,aθ

∗
a . Payoffs pt,a are affected

by two parameters: the expected payoff (exploitation) and the
standard deviation of the expected payoff (exploration). The

optimum of action strategy is obtained by balancing exploration
and exploitation.

Algorithm 1 LinUCB (Li et al., 2010)

0: Inputs: α ∈ R+
1: for t = 1, 2, 3, . . . ,T do

2: Observe features of all arms a ∈At : xt,a ∈ R
d

3: for all a ∈At do

4: if a is new then

5: Aa← Id (d-dimensional identity matrix)
6: ba← 0d×1 (d-dimensional zero vector)
7: end if

8: θ̂a← A−1a ba

8: Pt,a← θ̂Ta xt,a + α

√

xTt,a A
−1
a xt,a

10: end for

11: Choose arm at = arg maxa∈At Pt,a with ties broken
arbitrarily and observe a real valued payoff rt

12: Aat ← Aat + xt,at x
T
t,at

13: bat ← bat + rt xt,at
14: end for

In our HRI scenario, the algorithm learns to select robot’s actions
at that are best assigned with the current context xt , i.e., the
current human intention in form of gesture feature recorded by
the Leap Motion. The current payoff, i.e., the immediate reward
is the ErrP-classification output (ErrP or No ErrP), which is given
to the action chosen by the LinUCB algorithm, i.e., the executed
action of the robot. As mentioned earlier, action selection
was made conditional on human gesture (left, right, forward,
upward). We call actions together with gesture features “gesture-
action pairs” (i.e., context-action pairs). The LinUCB algorithm
learns a correct mapping between human gesture features and
actions of the robot, i.e., a correct gesture-action pair. In fact,
the robot should learn which action is correctly executed. Hence,
our HRI scenario is designed that the predictions of correct
mappings (No ErrP) are highly rewarded [1] than the predictions
of wrong mappings (ErrP) that are minimally punished [−0.25].
To this end, we used two windows for the same action in
online ErrP detection and the predictions of correct mappings
(No ErrP) were sent to the learning algorithm, only when No
ErrP was predicted from both time windows (Table 2). As a
result, the rewards for predicted correct mapping (TN, FN)
were weighted more strongly than predicted wrong mapping
(FP, TN). Note that the reward values of [−0.25, 1] were
empirically determined. Further, the exploration parameter α

was also empirically determined [α = 1].
One of the key elements of our approach is to adapt the

previous learned policy when changing the current human
intention (i.e., when changing the semantics of gestures). Thus,
human gesture was not predefined, i.e., no initial semantics of
gestures was given to the robot. Rather, the robot learned the
current meaning of human gesture, which can be changed online.
That means, there were no fixed labels (no fixed semantics of
gestures) to train a model. For this reason, we did not train
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FIGURE 3 | A schematic visualization of LinUCB (Li et al., 2010). Action selection and policy update were depicted in the given context x1 for the 30th trial (episode)

as an example. In accordance with our HRI scenario, the subjects performed the left gesture (x30,1) among other gesture types (x30,2, x30,3, x30,4) in the current

episode (in the 30th episode). In this example, a correct action x1 (left action of the robot) is chosen in the given context x1 (left gesture). The policy [i.e., the expected

payoff that is equivalent to the upper confidence bound (UCB)] is updated for the chosen action, i.e., x1-a1 pair.

TABLE 2 | Use of ErrP detection as a reward in the learning algorithm.

(A) Actual label Correct Correct Wrong Wrong

(B1) Prediction (1st window) No ErrP No ErrP ErrP ErrP No ErrP No ErrP ErrP ErrP

(B2) Prediction (2nd window) No ErrP ErrP No ErrP ErrP No ErrP ErrP No ErrP ErrP

(C) Predicted label No ErrP (correct) ErrP (wrong) No ErrP (correct) ErrP (wrong)

(D) Rewards 1 −0.25 1 −0.25

(E) ErrP evaluation TN FP FN TP

Actual labels are obtained by comparing between gesture labels and action labels (gesture-action pairs). The outputs of ErrP decoder, i.e., predictions (B1 and B2) are obtained by two
windows with the same robot actions (same gesture-action pair). A decision was made from two windows, and this is used as predicted labels (C) for the confusion matrix. Rewards
(D) are sent to the learning algorithm (online learning). The evaluation of the ErrP classifications (ErrP detections) is based on the confusion matrix.

a classifier to distinguish different types of predefined gestures.
Instead, the robot received gesture feature vectors recorded by
the Leap Motion instead of classified gestures. Accordingly, no
classified gestures were sent to the robot. The chosen algorithm
called LinUCB enables to learn gesture-action pairs without prior
knowledge of gesture meaning.

In fact, we observed a variation of gesture feature vectors
between trials within the same subject (details, see section 1.2),
but this did not prevent robust learning of gesture-action pairs.
Learning remains robust due to the updates of context space per

trial: The current context, i.e., gesture feature vector (xt,a) was
added to the context space (ba,t) together with the corresponding
current payoff (rt,a) for each trial. This update of the context space
allows for robust learning despite of variations of gesture feature
vectors between trials (e.g., [−0.9, 0.15, 0.29, 0.37], [−0.8, 0.27,
0.41, 0.05], [−0.95, 0.29, 0.11, 0.88], etc.) for the left gesture type
(default value [−1, 0, 0, 0]). In this way, gesture feature vectors
were adapted per trial within a subject.

The main scope of this study was to analyze erroneous inputs
and their impacts on learning performance. The data analysis
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was based on the log files that were generated for each online
experiment. Note that learning was completed for each online
experiment (i.e., each online dataset). The following outputs were
logged online per trial within an online experiment:

• Updates of action space Aa and context space ba (line 5 and 6
in Algorithm 1)
• Gesture feature vector for the current trial xt,a (line 1 in

Algorithm 1, Figure 1-r1)
• The actionwith the highest expected payoff for the current trial

at (line 11 in Algorithm 1, Figure 1-r2)
• The current payoff, i.e., the immediate reward rt for the

current trial (line 11 in Algorithm 1, Figure 1-r3)
• The expected payoffs Pt,a (line 9 in Algorithm 1, Figure 1-r4)

Gesture feature vectors were logged automatically while online
learning (Figure 1-r1). That means, gesture feature vectors
recorded by Leap Motion was logged online. However, human
gestures, i.e., gestures performed by human could not be logged
online. Thus, we filmed human gestures and robot’s actions
during online experiments. After experiments, we investigated
which gesture feature vectors were perceived by the robot. To
this end, we reconstructed gestures per trial based on the logged
gesture feature vectors in the log file. Such reconstruction was
done only for offline data analysis. We used the following
decision criteria for reconstruction of gestures: (a) m = 1,
if m > 0.5 (b) m = −1, if m < −0.5 (c) m = 0, if
−0.5 < m < 0.5, where m is each component of vector.
The gesture feature vector consists of four components (details,
see section 2.3.4). In this way, we obtained filmed gestures and
reconstructed gestures. Finally, gesture errors were estimated
by comparing filmed human gestures (e.g., left gesture) and
the reconstructed gesture based on recorded gesture vectors
[e.g., −0.8, 0.1, 0.2, 0.1]. Further, filmed gestures were used to
determine the correctness of gesture-action pairs and to find a
true label to generate a confusion matrix for human’s perspective,
whereas the reconstructed gestures were used as a true label to
generate a confusion matrix for robot’s perspective (details, see
section 2.4).

2.3. Scenario and Dataset
We used the data that was recorded in the previous study
for investigation on flexible adaptation of learning strategy
using EEG-based reinforcement signals in real-world robotic
applications (Kim et al., 2020). In the previous study (Kim
et al., 2020), data was recorded from eight subjects (2 females,
6 males, age: 27.5 ± 6.61, right-handed, normal or corrected-to
normal vision). The experiments were carried out in accordance
with the approved guidelines. Experimental protocols were
approved by the ethics committee of the University of Bremen.
Written informed consent was obtained from all participants that
volunteered to perform the experiments.

In our HRI scenario (Kim et al., 2017), the subjects perform
gestures (left, right, forwards) and observe the robot’s actions
as response to the human gestures (Details, see section 1.1 and
Figure 1). In the extend HRI scenario (Kim et al., 2020), the
subjects add a new gesture (upwards) after about 30 trials, while
the robot still learns the mapping between human gestures and

its own actions. That means, the subjects determine the meaning
of the gesture (human intent) and select one of gestures. The
robots learns to select an action that is best assigned to the
current human intents (current gesture) based on human implicit
feedback in form of EEG. The goal of the previous study was
to investigate whether the robot can flexibly adapt the learning
strategy in real time, when the user changes the current intentions
(in form of EEG). For example, the subjects changed their control
strategy e.g., by adding a new context (gesture) to the previous
used gestures. Our results showed that the robot could adapt
the previously learned policy depending on online changes of
the user’s intention (Kim et al., 2020). This investigation was
validated under two learning conditions: (a) learning algorithm
was trained with a few samples (1 or 2 gesture-action pairs) before
online learning (pretraining) and (b) learning algorithm was not
trained before online learning (no-pretraining).

2.3.1. Scenario Description
In the previous study (Kim et al., 2020), we collected data in two
different scenarios: (a) observation scenario and (b) interaction
scenario. In the observation scenario, the subjects observed
the robot’s action. Here, the subjects were not required to
interact with the robot, e.g., by performing gestures, since human
gestures and robot’s action choice were already preprogrammed.
A hand gesture was displayed to the subjects as a word
(left, right, forward, or upward) on the monitor, which is
located on the left side of the robot. Then, a feature vector
of the displayed gesture (Table 1A, second column) was sent
to the pseudo-learning algorithm, where action selections were
preprogrammed. Gesture-action pairs are preprogrammed with
the class ratio of 8:1 (correct/wrong actions). The observation
scenario was designed to train a ErrP classifier in order to
detect ErrPs online in the interaction scenario. In the observation
scenario, the subjects did not perform gestures and the robot
did not learn any action selection strategy. In this way, we could
reduce the recording time for training data for ErrP decoder.
We trained a classifier for each subject to distinguish ErrP and
No ErrP, which was later used to detect ErrPs in the interaction
scenario. Such classifier transfer was successfully evaluated in our
previous studies (Kim andKirchner, 2013, 2016; Kim et al., 2017).

In the interaction scenario, the subjects performed one of four
gesture types (left, right, forward, and upward). As mentioned
before, we used the Leap Motion to record human gestures.
Gesture feature vectors recorded by Leap Motion were sent to
the LinUCB algorithm. Then, the algorithm selected an action
and sent this action selection to the robot. The subject observed
the action choice of the robot and at the same time the implicit
evaluation of the chosen action of the robot was measured by
using the EEG and the so called ErrP was detected online per
action choice.

Implicit human evaluations (ErrP/No ErrP) were sent to the
LinUCB algorithm as rewards.

2.3.2. Datasets for Training of ErrP Decoder

(Observation Scenario)
For training a classifier (ErrP decoder), we recorded data in
the observation scenario, in which the subjects observe the
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robot’s actions without performing a gesture to reduce the
recording time of EEG data. The subjects were instructed to
observe the gesture that was displayed as a word (left, right,
forward, or upward) on the monitor. After the display of the
gesture disappeared on the monitor, the robot started to move
the arm. The subjects were instructed to observe the actions
of the robot. Six datasets were recorded from each subject.
Each dataset consists of 80 correct actions of the robot and
10 wrong actions of the robot (90 instances in total). Gesture-
action pairs are preprogrammed with the class ratio of 8:1
(correct/wrong actions). We had a uniform number of training
dataset, i.e., all participants had the same number of training
dataset (six datasets).

2.3.3. Online Datasets During Robot Learning

(Interaction Scenario)
In the online application (i.e., online EEG-based RL learning),
the subjects performed gestures to communicate with the robot.
To this end, we used the interaction scenario. The subjects were
instructed to freely perform one of three gestures (left, right,
forward, see Table 1B) and add the fourth gesture (upward, see
Table 1B), when they heard a short tone that was given to the
subjects after 30 trials. Before the start of the online experiments
in the interaction scenario, all subjects had a short practice set to
train the correct use of Leap Motion.

The robot chooses an action as response of the current
human intention (human gesture) and receives an immediate
reward in form of ErrP-classification output [ErrP/No ErrP].
The robot updates the policy based on human feedback (details,
see section 2.2).

2.3.3.1. Learning condition
Two learning conditions were investigated in online learning:
warm-start learning (pre-training) and cold-start learning (no
pre-training). In warm-start learning, a few trials (# of trial
n < 4) were pre-trained, i.e., a few gesture-action pairs were
trained with the perfect human feedback (i.e., the perfect ErrP-
classifications). That means, the perfect human feedback was
given to the action choice of the robot that was preprogrammed.
Hence, we expected less erroneous actions of the robot (i.e., less
mapping errors) in the beginning of learning phase for warm-
start learning compared to cold-start learning. Note that the
three kinds of gestures (left, right, forward) were pre-trained, but
not the fourth gesture (upward) that was added during learning
process online. In cold-start learning, we did not pre-train any
gesture-action pairs. For all subjects, we started with the warm-
start learning condition before the cold-start learning conditions
to prevent the frustration of subjects, which can be caused by
a large number of erroneous actions of the robot in cold-start
learning. We did not alternate both learning conditions within
subjects.

2.3.3.2. Number of trials in both learning conditions
In warm-start learning, we used the same number of trials for
all subjects (90 trials). In cold-start learning, we used the same
number of trials for all subjects (90 trials) except for one subject
(60 trials, 90 trials, 120 trials for each online dataset). In fact, we

investigated a different number of trials to find the appropriate
number of trials. We aimed to find when the learning curve is
stabilized (no mapping errors). To this end, we started with 120
trials and reduced the number of trials (90 trials, 60 trials). We
did this evaluation on the first subject. In total, three datasets
with 120 trials were recorded from the first subject. We reduced
gradually the time to give a short tone for adding a new gesture.
In the first dataset, the short tone was given to the subject after 60
trials (Figure 7). In the second dataset, the short tone was given
to the subject after 50 trials (Figure 5). In the third dataset, the
short tone was given to the subject after 40 trials. Finally, we
decided to give a short tone for adding a new gesture after 30
trials. Based on this analysis, 60 trials were already enough for
convergence in this subject. However, we are aware of subject
variability in ErrP-classification performance and that for some
subjects more trials might be needed. Moreover, we also did not
intend to record on different days due to changes of electrode
positions. Actually, the duration of the dataset with 120 trials
was 32 min. This would have been too long for one session
in total. Hence, we determined 90 trials for online dataset in
both learning conditions. That means, there was no difference
in the number of trials between warm-start learning and cold-
start learning. Note that the first two datasets with 120 trials were
excluded for statistical analysis (inference statistics). However,
we included them for descriptive analysis and visualization
for three reasons: (a) descriptive visualization of the learning
curve in different number of trials (90 trials vs. 120 trials;
Figures 5A,B vs. Figures 5C,D), (b) descriptive visualization of
gesture errors (i.e., incoherence between human’s perspective and
robot’s perspective, see Figure 7, Table 5), and (c) descriptive
visualization of a few number of gesture errors (Figure 5,
Table 6) and a large number of gesture errors (Figure 7, Table 5).

2.3.3.3. Number of online datasets in both learning

conditions
In warm-start learning, we recorded three online datasets for
four subjects and two online datasets for four subjects. In total,
we recorded 20 datasets in warm-start learning. In cold-start
learning, two online datasets were recorded for five subjects
and three online sets were recorded for two subjects. For one
subject, we recorded only one online dataset. This participant
was very tired after recording the online dataset. Thus, we did
not record further online datasets, since this participant could
not concentrate on the task. In total, we recorded 17 datasets in
cold-start learning. It is worth noting that the number of online
datasets has no impact on the learning performance of the robot
or ErrP-classification performance, since the learning process is
completed within an online dataset (online experiment) and thus
the learning of online datasets is independent of each other.
It is thus enough to record only one online dataset (online
experiment) per subject. However, we recorded more than one
online dataset to obtain more data for this evaluation, in case that
a participant allowed us to record more than one online dataset.
The number of online datasets for each subject and each learning
condition was reported in Supplementary Table 1. As shown in
Supplementary Table 1, there was no high difference between
learning conditions within subjects. Note that the different
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number of datasets between learning conditions were taken into
consideration in inference statistics.

2.3.4. EEG Recording, Gesture Recording, and Robot

Arm
For both scenarios (interaction/observation), EEG were
continuously recorded using the with 64-channel actiCap system
(Brain Products GmbH, Munich, Germany), sampled at 5 kHz,
amplified by two 32 channel Brain Amp DC amplifiers (Brain
Products GmbH, Munich, Germany), and filtered with a low
cut-off of 0.1Hz and high cut-off of 1 kHz. Impedance was kept
below 5 k�. The EEG channels were placed according to an
extended standard 10–20 system.

For recording of human gesture, we used the Leap
Motion system (Leap Motion Inc., San Francisco, USA). The
Leap Motions uses a stereo image generated by using two
monochromatic infrared cameras. The positions of hand and
finger bones can be detected in x, y, and z coordinates relative
to the sensor. We used the x, y, z components of the palm normal
vector and a value from 0 to 1, which describes how far the
hand is opened or closed. (flat hand [0], fist [1]). We recorded
ten samples with the length of 100ms per gesture and averaged
them. Gesture feature vectors were used as inputs (human
intention) for the LinUCB algorithm. Four types of gestures
were used in the experiments: left, right, forward, and upward
(see Table 1A). Gesture features recorded by LeapMotion
were logged online (Figure 1-r1, details, see section 2.2).
Additionally, we filmed online experiments to record gestures
performed by human. In this way we received both gestures
performed by humans (gestures) and gestures perceived by the
robot (gestures).

The LinUCB algorithm selects actions, which were sent to a six
degree of freedom (6-DOF) robotic arm called COMPI (Bargsten
and Ferandez, 2015), which was developed at our institute (RIC,
DFKI, Germany). We implemented six predefined actions (left,
right, forward, upward, and back to start) in joint space, which
were triggered from the LinUCB algorithm.

2.4. Data Analysis
For analysis of EEG data, we used a Python-based framework
for preprocessing and classification (Krell et al., 2013). The EEG
signal was segmented into epochs from −0.1 to 1 s after the
start of the robot’s action for each action type (correct/wrong
trial). All epochs were normalized to zero mean for each channel,
decimated to 50Hz, and band pass filtered (0.5–10 Hz). We
used the xDAWN spatial filter (Rivet et al., 2009) for feature
extraction and 8 pseudo channels were obtained after spatial
filtering. Two windows were used for the same robot’s action
and thus features were extracted from two windows (8 pseudo
channels): [−0.1–0.6 s, 0–0.7 s] and normalized over all trials. A
total of 280 features (8 pseudo channels × 35 data points = 280
for each sliding window) were used to train a classifier. A linear
support vector machine (SVM) (Chang and Lin, 2011) was used
for classification.

In this study, we performed two main analyses: (a) learning
performance of the robot (mapping errors) and (b) ErrP-
classification performance (rewards for learning algorithm). For

evaluation of learning performance of the robot, we evaluate the
correctness of gesture-action pairs by comparing between human
gestures and robot’s actions. For evaluation of ErrP-classification
performance, we generated a confusion matrix based on the
outputs of ErrP decoder (predicted label) with the correctness of
gesture-action pairs (actual label).

For example, when gestures performed by human and actions
of the robot are identical (e.g., gesture: left; action: left), robot’s
actions are correct, i.e., gesture-action pairs (left-left pairs) are
correct. When ErrPs are detected on correct gesture-action pairs
(e.g., left-left pairs), predictions of the ErrP decoder are wrong
(FP). Otherwise, predictions of the ErrP decoder are correct (TP).
In contrast, if ErrPs are not detected on wrong gesture-action
pairs (e.g., left-right pairs), ErrP classifications are wrong (FN).
Otherwise, predictions of the ErrP decoder are correct (TN).
Note that the positive class stands for a wrong action of the robot.

Hence, evaluations of robot’s performance and ErrP-
classification performance are straightforward, when
gestures performed by human and gestures recorded by
LeapMotion are identical (i.e., there occur no gesture
errors). In this case, the logs of learning process (Figure 1-
dotted lines) are enough for evaluation of robot’s learning
performance and ErrP-classification performance. For
example, we can evaluate the correctness of robot’s
actions by comparing gesture features (Figure 1-r1) with
executed actions (Figure 1-r2). We can also evaluate ErrP-
classification performance by comparing the output of ErrP
decoder (Figure 1-r3) with gesture (Figure 1-r1)-action
(Figure 1-r2) pair.

However, there were incoherences between gestures perceived
by the robot (recorded gestures) and gestures performed by
human, which result in two different perspectives (Table 1B and
Figure 2B). Such incoherences between human perception and
robot perception can affect the robot’s learning performance,
since ErrPs are elicited by (performed) gesture-action pairs,
whereas the learning algorithm updates the current strategy
based on (perceived) gesture-action pairs (details, see section
1.2). For this reason, data was analyzed in both perspectives
(human/robot). For human’s perspective, the correctness of
robot’s actions was calculated by comparing filmed gestures
with robot’s actions, where we filmed human’s action while
performing gestures. For robot’s perspective, the correctness
of robot’s actions was calculated by comparing reconstructed
gestures with robot’s actions, where we reconstructed gestures
based on gesture features recorded by Leap Motion. Therefore
the ErrP classification performance was also different between
the human and the robot perspective, because the correctness
of the robot actions (actual marking) was different between both
perspectives (Table 1B).

Finally, four steps of data analysis were performed. First, we
evaluated learning performance of the robot (mapping errors)
and learning progress of the robot in the whole learning phase.
Further, we evaluated the changes of learning progress after
changing the current human intention. To this end, we divided
the whole learning phase in three learning phases according to
the time point of when a new gesture (changes of human intents)
was added. In this way, we determined three learning phases: (a)
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beginning phase (start-1/3), (b) phase after adding a new gesture
(1/3-2/3), and (c) final phase (2/3-end). Second, we evaluated
ErrP-classification performance in the whole learning progress.
Third we analyzed the effect of ErrP-classification performance
on learning performance by comparing the pattern of learning
progress in mapping errors and the pattern of learning progress
in ErrP-classification performance. Fourth, we computed gesture
errors by calculating incongruence between robot’s perception
and humans’ perception to analyze the effect of gesture errors
on learning performance of the robot. Finally, we analyzed the
interaction effect of gesture errors and ErrP misclassifications on
learning performance of the robot. All analyses were performed
under both learning conditions (warm-start learning and cold-
start learning) as well as under both perspectives (human’s
perspective and robot’s perspective).

2.5. Statistical Analysis
We investigated the effect of interaction errors (ErrP
misclassification, gesture errors) on robot’s learning performance
(mapping errors) in both learning conditions (cold-start
learning, warm-start learning), both perspectives (human’s
perspective, robot’s perspective), and three learning phases
(beginning phase, phase after adding a new gesture, final phase).
To this end, three factors were designed in statistics: learning
condition (two levels: cold-start learning, warm-start learning),
perspective (two levels: human’s perspective, robot’s perspective),
and learning phase (three levels: beginning phase, phase after
adding a new gesture, final phase).

For statistical analysis, we performed six investigations to
find out (a) effects of learning condition, learning phase, and
perspective on learning performance of the robot (mapping
errors), (b) effects of learning condition, learning phase,
and perspective on ErrP misclassifications (FN ∪ FP), (c)
effects of learning condition, learning phase, and perspective
on TP, (d) effects of learning condition, learning phase,
and perspective on FN, (e) effects of learning condition,
learning phase, and perspective on TN, and (f) effects of
learning condition, learning phase, and perspective on FP (see
Figures 4B, 6B,D,F,H; for a descriptive analysis of both robot’s
learning performance and ErrP-classification performance,
see Table 3).

To this end, a three-way repeated measures ANOVA
was performed with learning condition (2 levels: warm-start
learning, cold-start learning) as between-subjects factor and
perspective (2 levels: human’s perspective, robot’s perspective)
and learning phase (3 levels: beginning phase, phase after
adding a new gesture, final phase) as within-subjects factors.
Note that the sample size was unequal for learning condition,
since one subject performed only one online experiment
(online dataset) in the cold-start learning condition. For
this reason, the independent variable learning condition was
considered as between-subjects factor in the three-way repeated
measures ANOVA. Dependent variables were robot’s learning
performance (mapping errors), ErrP-classification performance,
e.g., misclassifications (FN ∪ FP), FN, FP, TN, and FP.
For each dependent variable, we separately performed the
three-way repeated measures ANOVA. Greenhouse Geisser

correction was applied if necessary. Three post-hoc analyses
were performed, i.e., pairwise comparisons were performed
at each factor to compare (1) both learning conditions for
each perspective (human’s perspective vs. robot’s perspective),
(2) both perspectives for each learning condition (warm-
start learning vs. cold-start learning), and (3) three learning
phases for each learning condition and each perspective
(beginning phase vs. phase after adding a new gesture
vs. final phase). Bonferroni correction was performed for
pairwise comparisons.

Further, we compared both learning conditions and both
perspectives for all trials to analyze effects of learning condition
and perspective on mapping errors and ErrP-classification
performance in the whole learning phase (see Figures 4A,
6A,C,E,G, a descriptive visualization of the whole learning
phase as an example, see Figure 5). To this end, the results
were pooled from three learning phases for each learning
condition and each perspective. This is equivalent to a two-way
repeated measures ANOVA with learning condition (2 levels:
warm-start learning, cold-start learning) as between-subjects
factor and perspective (2 levels: human’s perspective, robot’s
perspective) as within-subjects factor. Two post-hoc analyses
were performed, i.e., pairwise comparisons were performed
at each factor to compare (1) both learning conditions for
each perspective (human’s perspective vs. robot’s perspective)
and (2) both perspectives for each learning condition (warm-
start learning vs. cold-start learning). Bonferroni correction was
performed for pairwise comparisons.

Finally, we performed three investigations to find out
(a) relationship between robot’s learning performance

FIGURE 4 | Online learning performance of the robot: the average of mapping

errors across all datasets for the whole learning phase (A) and the three

learning phases (B). Mapping errors are presented for both perspectives: the

human and the robot perspective. For each perspective, both learning

conditions are compared: pre-training (yellow) vs. no pre-training (blue).

Frontiers in Robotics and AI | www.frontiersin.org 12 October 2020 | Volume 7 | Article 55853181

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kim et al. Human Interaction Effecting Robot Learning

TABLE 3 | The mean ErrP-classification performance across all subjects and the standard error of the mean for both learning conditions and both perspectives.

Human’s perspective Robot’s perspective

Cold-start learning Warm-start learning Cold-start learning Warm-start learning

Mapping error 31.75 ± 5.79 12.61 ± 1.85 28.26 ± 6.11 7.84 ± 1.35

Gesture error 5.70 ± 1.65 5.88 ± 1.24 5.70 ± 1.65 5.88 ± 1.24

ErrP misclassifications 23.12 ± 4.56 12.81 ± 1.66 23.89 ± 4.54 13.13 ± 1.80

FN 15.33 ± 4.72 3.96 ± 0.73 14.14 ± 4.85 1.73 ± 0.41

FP 7.79 ± 1.82 8.85 ± 1.36 9.74 ± 2.06 11.40 ± 1.60

TP 16.42 ± 2.26 8.66 ± 1.43 14.46 ± 2.22 6.11 ± 1.10

TN 60.45 ± 5.76 78.53 ± 2.75 61.65 ± 5.92 80.76 ± 2.63

FNR (1-TPR) 37.26 ± 5.34 28.80 ± 4.42 34.90 ± 5.71 19.20 ± 3.93

FPR (1-TNR) 13.57 ± 3.28 10.52 ± 1.67 15.45 ± 3.23 12.72 ± 1.88

FNR = FN/(FN+TP), FPR = FP/(FP+TN), ErrP misclassification = FN ∪ FP.

(mapping errors) and ErrP-classification performance (see
Table 4A; a descriptive visualization, see Figure 8A and
Supplementary Figure 1), (b) relationship between robot’s
learning performance (mapping errors) and gesture errors
(see Table 4B; a descriptive visualization, see Figure 8B), and
(c) relationship between gesture errors and ErrP-classification
performance (see Table 4C; a descriptive visualization, see
Figure 8C and Supplementary Figure 2). To this end, we
calculated correlation coefficients for each investigation (a,b,c).
Concerning ErrP-classification performance, we performed
a correlation analysis separately for ErrP misclassifications
(FN ∪ FP), TP, TN, FP, and FN (see Tables 4A,C). All
correlation analyses were performed separately for each
learning condition (warm-start learning, cold-start learning)
and each perspective (human’s perspective, robot’s perspective).
Correlation coefficients and significances were reported for each
correlation analysis (see Table 4).

3. RESULTS

Table 3 shows the overall results of descriptive analysis: the
number of mapping errors (robot’s learning performance),
gesture errors, and ErrP misclassifications including false
positive (FP) and false negative (FN) for both perspectives
and both learning conditions. In addition, false positive rate
(FPR) and false negative rate (FNR) were reported for both
perspectives and both learning conditions. As mentioned earlier,
the number of trials varied between subjects in online test
sets. Thus, we calculated the number of mapping errors,
gesture errors, and ErrP misclassifications in % (details,
see section 2.3).

3.1. Learning Performance of the Robot
In our HRI scenario, the robot learns the mapping between
human gestures and robot’s actions, i.e., correct gesture-
action pairs. Hence, the number of errors in the mapping
between human gestures and robot’s actions (i.e., mapping
errors) was used as performance measure. Table 3 shows the

number of mapping errors for both learning conditions and
both perspectives.

Figure 4A shows the comparison of the total number of
mapping errors (i.e., in the whole learning phase) between
both learning conditions for each perspective. The number
of mapping errors was significantly decreased in the warm-
start learning condition (pre-training) compared to the cold-
start learning condition (no pre-training) in both perspectives
[F1, 35 = 12.29, p < 0.002, human perspective: p < 0.003,
robot perspective: p < 0.002]. For both learning conditions, the
number of mapping errors was reduced in robot’s perspective
compared to human’s perspective for both learning conditions
[F1, 35 = 25.98, p < 0.001, cold-start learning: p < 0.011,
warm-start learning: p < 0.001].

Figure 4B shows the comparison of three different learning
phases in both learning conditions. We divided the whole
learning phase in three learning phases according to the time
point of when a new gesture (changes of human intents)
was added. Different patterns of the learning process were
observed between both learning conditions. The number of
mapping errors was not significantly varied between learning
phases in warm-start learning, whereas a significant reduction of
mapping errors was observed between learning phases in cold-
start learning [F2,70 = 3.63, p < 0.033]. This pattern was
shown for both perspectives. In warm-start learning, the number
of mapping errors was slightly (but not significantly) increased
in the second learning phase (after adding a new gesture) and
slightly (but not significantly) reduced in the third learning phase.
[human’s perspective: start-1/3 vs. 1/3-2/3: p = 0.51, 1/3-2/3
vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p = 1.0; robot’s
perspective: start-1/3 vs. 1/3-2/3: p = 0.41, 1/3-2/3 vs. 2/3-
end: p = 1.0, start-1/3 vs. 2/3-end: p = 1.0]. In cold-start
learning, the number of mapping errors was significantly reduced
in the second learning phase (after adding a new gesture) and
slightly (but not significantly) increased in the third learning
phase [human’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001,
1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p < 0.01;
robot’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001, 1/3-2/3 vs.
2/3-end: p = 1.0, start-1/3 vs. 2/3-end:p < 0.006]. Further, the
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FIGURE 5 | A descriptive visualization of learning progress for both learning conditions in both perspective: (A) cold-start learning (no pre-training) for human’s

perspective, (B) cold-start learning (no pre-training) for robot’s perspective, (C) warm-start learning (pre-training) for human’s perspective, (D) warm-start learning

(pre-training) for robot’s perspective.
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TABLE 4 | Correlation analysis.

Human’s perspective Robot’s perspective

Cold-start learning Warm-start learning Cold-start learning Warm-start learning

(A) Correlation between robot’s learning performance and ErrP-classification performance

ErrP misclassification 0.892** 0.684** 0.888** 0.680**

FN 0.927** 0.715** 0.944** 0.705**

FP −0.172 0.453* −0.262 0.584**

TN −0.950** −0.897** −0.942** −0.869**

TP 0.622** 0.934** 0.693** 0.965**

FNR (1-TPR) 0.707** 0.209 0.745** 0.228

FPR (1-TNR) 0.486* 0.577** 0.395 0.660**

(B) Correlation between robot’s learning performance and gesture errors

Gesture errors −0.089 0.803** −0.274 0.503*

(C) Correlation between ErrP-classification performance and gesture errors

ErrP misclassification −0.221 0.488* −0.090 0.573**

FN −0.190 0.604** −0.248 0.356

FP −0.036 0.272* 0.385 0.533*

TN 0.101 −0.676** 0.150 −0.595**

TP 0.169 0.735** 0.214 0.485*

FNR (1-TPR) 0.075 0.208 0.001 0.037

FPR (1-TNR) 0.153 0.388 0.103 0.595**

(A) Correlation between the robot’s learning performance (mapping errors) and the ErrP-classification performance for both learning conditions and both perspectives. (B) Correlation
between the robot’s learning performance (mapping errors) and gesture errors for both learning conditions and both perspectives. (C) Correlation between the ErrP-classification
performance and gesture errors for both learning conditions and both perspectives. Note that ** stands for significant level of p < 0.01 (2-sided) and * stands for significant level of p <

0.05 (2-sided). TPR = 1-FNR; TNR = 1-FPR. ErrP misclassification: FP ∪ FN.

number of mapping errors was significantly reduced for warm-
start learning compared to cold-start learning in the first learning
phase for both perspectives [warm-start learning vs. cold-start
learning: p < 0.001 for both perspectives]. However, there was
no significant difference between both learning conditions in
the second learning phase [warm-start learning vs. cold-start
learning: p = 0.079 for human’s perspective; p = 0.051 for robot’s
perspective]. In the final learning phase, the number of mapping
errors was again reduced for warm-start learning compared to
cold-start learning [warm-start learning vs. cold-start learning:
p < 0.022 for human’s perspective; p < 0.010 for robot’s
perspective].

Figure 5 shows a descriptive visualization of the learning
progress of the whole learning phase as an example, which
was separately visualized in both learning conditions and both
perspectives. In the beginning of the learning phase, we observed
a high increase ofmapping errors in cold-start learning compared
to warm-start learning. Accordingly, the learning curve in cold
start learning slowly stabilized compared to warm start learning
before a new gesture was added. This learning pattern was shown
for both perspectives. However, once the learning curve had
stabilized, adding a new gesture to cold start learning had less
impact on learning than warm-start learning. In contrast, the
number of mapping errors has been increased immediately after
adding a new gesture for warm-start learning (Figures 5C,D after
30 trials). After the learning curve had stabilized, there was some
variation in both learning conditions. In the late learning phase
(2/3-end) fluctuations were observed, which were caused by FP

especially during warm start learning. In warm-start learning, FP
occurred more frequently in the late learning phase compared
to cold-start learning. This was consistent with the correlation
analysis, according to which FP showed a significant correlation
with mapping errors for the learning condition warm start, but
not for the learning condition cold start (Table 4A, details, see
section 3.3). Note that the class ratio was different depending on
datasets as shown in Figures 5C,D, since the number of correct
and wrong actions depends on the online learning performance
of the robot.

In summary, it can be observed that the total number of
mapping errors of the robot during warm-start learning has been
reduced compared to cold-start learning in both perspectives.
After adding a new gesture, the number of mapping errors in
warm-start learning was slightly increased, while the number of
mapping errors in cold-start learning was reduced after adding
a new gesture. In warm start learning, an earlier stabilization
of the robot’s learning progress was observed than in cold-start
learning at the beginning of the learning phases. That means,
the learning curve was stabilized quickly in warm-start learning
compared to cold-start learning. In other words, the algorithm is
converged in warm-start learning before adding a new gesture,
whereas the convergence was not reached in cold-start learning
before adding a new gesture. However, the difference in mapping
errors between the two learning conditions disappeared in the
second learning phase (after adding a new gesture), because a
slight increase in mapping errors in warm start learning and a
significant reduction in mapping errors in cold start learning
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canceled out the effect of warm start learning on the robot’s
learning performance in the second learning phase. In fact, there
were less fluctuations of learning progress for cold-start learning
condition across all subjects after adding a new gesture compared
to warm-start learning. Note that individual differences were
more clearly observed for cold-start learning compared to warm-
start learning (see Figure 8, details, see section 3.3).

3.2. ErrP-Classification Performance in the
Whole Learning Phase
In our HRI scenario, the results of classifiers trained to recognize
ErrPs were used as a reward in our learning algorithm. To
measure the ErrP classification performance, a confusion matrix
was calculated and the number of FN, FP, TP, and TN was used as
performance metric.

Table 3 shows the number of FN, FP, TP, and TN. The number
of FN was significantly reduced in warm-start learning compared
to cold-start learning. However, the number of FP was slightly
(but not statistically) increased for warm-start learning compared
to cold-start learning. Hence, the number of FN was higher for
FN than FP, whereas the number of FN was lower compared to
FP in warm-start learning.

Figure 6 shows the comparison of ErrP-classification
performance (FN, FP, TP, TN) between both learning conditions
and both perspectives for all trials (Figures 6A,C,E,G). We found
differences between both learning conditions in ErrP-detection
performances. The number of ErrP misclassifications (FN ∪
FP) was reduced for warm-start learning compared to cold-start
learning under both perspectives [F1, 35 = 5.36, p < 0.029,
human perspective: p < 0.031, robot perspective: p < 0.027].
Especially, the number of FN was substantially reduced in
warm-start learning compared to cold-start learning under
both perspectives [F1, 35 = 7.21, p < 0.012, human perspective:
p < 0.015, robot perspective: p < 0.01]. However, the number
of FP was not significantly differed between both learning
conditions. [F1, 35 = 0.034, p < 0.569, human perspective:
p = 0.64, robot perspective: p = 0.53]. The number of TN
was increased for warm-start learning compared to cold-
start learning [F1, 35 = 9.29, p < 0.005, human perspective:
p < 0.006, robot perspective: p < 0.005]. In contrast, the
number of TP was increased for cold-start learning compared
to warm-start learning [F1, 35 = 11.10, p < 0.003, human
perspective: p < 0.006, robot perspective: p < 0.002]. The FNR
was reduced for warm-start learning compared to cold-start
learning in robot’s perspective, but not in human’s perspective
[F1, 35 = 3.81, p = 0.059, human perspective: p = 0.227, robot
perspective: p < 0.027]. The FPR was not significantly reduced
for warm-start learning compared to cold-start learning under
both perspectives [F(1,35) = 0.67, p = 0.420, human perspective:
p = 0.391, robot perspective: p = 0.461].

We also found differences between both perspectives in ErrP-
detection performances. Under both learning conditions, the
number of aberrations in the robot perspective was reduced
compared to the human perspective. [F1, 35 = 25.98, p < 0.001,
cold-start learning: p < 0.010, warm-start learning: p < 0.001].
The number of FN was reduced under the robot perspective

compared to the human perspective for warm start learning, but
not for cold start learning [F1, 35 = 16.89, p < 0.002, cold-
start learning: p = 0.06, warm-start learning: p < 0.001].
In contrast, the number of FP was increased under the robot
perspective compared to the human perspective under both
learning conditions [F1, 35 = 16.30, p < 0.001 cold-start learning:
p < 0.023, warm-start learning: p < 0.003]. Altogether, the
number of ErrP misclassifications (FN ∪ FP) was not differed
between both perspectives [F1, 35 = 0.82, p = 0.372, cold-start
learning: p = 0.39, warm-start learning: p = 0.69]. The number
of TNs was increased from the robot perspective compared to the
human perspective for warm start learning, but not for cold start
learning [F1, 35 = 16.92, p < 0.001, cold-start learning: p = 0.058,
warm-start learning: p < 0.001]. However, the number of TP
from the robot perspective was reduced compared to the human
perspective for both learning conditions [F1, 35 = 16.30, p <

0.001, cold-start learning: p < 0.02, warm-start learning: p <

0.002]. FNR was reduced from the robot perspective compared
to the human perspective in warm start learning, but not in cold
start learning [F1, 35 = 4.34, p < 0.046, cold-start learning: p =
0.058, warm-start learning: p < 0.02]. The FPR was increased
from the robot perspective compared to the human perspective
for both learning conditions [F1, 35 = 12.90, p < 0.002, cold-
start learning: p < 0.032, warm-start learning: p < 0.008].
Note that we have not found any interaction between the three
factors (learning condition, learning phase, perspective). Hence,
the results of pairwise comparisons between levels of factors
could be well-interpreted.

In summary, it can be said that the ErrP classification
performance was influenced by the learning conditions.
Especially wrong classifications of incorrect robot actions
(FN) and correct classifications of correct robot actions (TN)
were strongly influenced by the learning conditions. Correct
classifications of erroneous actions (TP) were also influenced by
the learning condition, but this effect was not higher than TN
or FN.

3.3. Effect of ErrP-Classification
Performance on Learning Performance
Figure 6 shows ErrP-classification performance (FN, FP, TP, TN)
in the three learning phases (Figures 6B,D,F,H). As expected, we
found that the pattern of TP and FN (i.e., correct or incorrect
classifications of erroneous actions of the robot) was coherent
with the pattern of erroneous actions of the robot (i.e., mapping
errors) (Figure 4B vs. Figure 6F; Figure 4B vs. Figure 6B).
However, the pattern of TN (i.e., correct classifications of correct
actions of the robot) was reversed compared to the pattern of
mapping errors (Figure 4B vs. Figure 6H).

3.3.1. Correct Classifications of Erroneous Actions of

the Robot (TP)
Figure 6F shows the number of TP for the three learning phases
and both learning conditions. As expected, the pattern of correct
classifications of erroneous actions of the robot matched with
the pattern of erroneous actions of the robot (mapping errors).
In warm-start learning, the number of TP was slightly (but not
significant) increased in the second learning phase and slightly
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FIGURE 6 | ErrP-classification performance (FN, FP, TP, TN): the average of FN across all datasets, the average of FP across all datasets, the average of TP across all

datasets, the average of TN across all datasets for the whole learning phase (A,C,E,G) and the three learning phases (B,D,F,H) in both perspectives. For each

perspective, both learning conditions are compared: pre-training (yellow) vs. no pre-training (blue).

(but not significant) reduced in the third learning phase [human’s
perspective: start-1/3 vs. 1/3-2/3: p = 0.532, 1/3-2/3 vs. 2/3-end:
p = 1.0, start-1/3 vs. 2/3-end: p = 1.0; robot’s perspective: start-1/3

vs. 1/3-2/3: p = 0.155, 1/3-2/3 vs. 2/3-end: p = 0.556, start-
1/3 vs. 2/3-end: p = 1.0]. In cold-start learning, the number of
TP was significantly reduced in the second learning phase and
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slightly (but not significantly) increased in the third learning
phase [human’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001,
1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p < 0.004;
robot’s perspective: start-1/3 vs. 1/3-2/3: p < 0.001, 1/3-2/3 vs.
2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p < 0.006]. The same
pattern was observed in the learning performance of the robot,
i.e., mapping errors (Figure 4B vs. Figure 6F). Furthermore, the
number of TPs for warm start learning was reduced compared to
cold start learning only for the beginning of the learning phase
for both perspectives [start-1/3: warm-start learning vs. cold-start
learning: p < 0.001 in both perspectives]. After adding a new
gesture, there was no significant difference between both learning
conditions [1/3-2/3: warm-start learning vs. cold-start learning;
p = 0.534 in human’s perspective, p = 0.417 in robot’s perspective;
2/3-end: warm-start learning vs. cold-start learning: p = 0.334
in human’s perspective, p = 0.305 in robot’s perspective]. In
cold-start learning, differences between the two perspectives only
became evident for the final learning phase [human’s perspective
vs. robot’s perspective: p = 0.153 for start-1/3; p = 0.178
for 1/3-2/3; p < 0.012 for 2/3-end]. In warm-start learning,
differences between both perspectives were found in all learning
phases [human’s perspective vs. robot’s perspective: p < 0.007 for
start-1/3; p < 0.010 for 1/3-2/3; p < 0.013 for 2/3-end].

3.3.2. Correct Classifications of Correct Actions of

the Robot (TN)
Figure 6H shows the number of TN for three learning phases
and both learning conditions. As expected, we observed that the
pattern of learning phases in TN was inverse to the pattern of
learning phases in mapping errors (Figure 4B vs. Figure 6H).
In warm-start learning, the number of TN was slightly (but not
significant) reduced in the second learning phase and slightly
(but not significant) increased in the third learning phase for
both perspectives [human’s perspective: start-1/3 vs. 1/3-2/3: p =
0.102, 1/3-2/3 vs. 2/3-end: p = 0.712, start-1/3 vs. 2/3-end:
p = 1.0; robot’s perspective: start-1/3 vs. 1/3-2/3: p = 1.0,
1/3-2/3 vs. 2/3-end: p = 0.251, start-1/3 vs. 2/3-end: p =
1.0]. In contrast, in cold-start learning, the number of TN was
significantly increased in the second learning phase and slightly
(but not significantly) reduced in the third learning phase for
both perspectives [human’s perspective: start-1/3 vs. 1/3-2/3: p <

0.001, 1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end: p <

0.001; robot’s perspective: start-1/3 vs. 1/3-2/3: p < 0.012, 1/3-
2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end:p = 0.321].
In particular, the number of TN for warm start learning was
increased compared to cold start learning. This was only shown
for the initial phase and the end of the learning phase from
both perspectives [start-1/3: p < 0.001 in both perspectives; 1/3-
2/3: p = 0.116 in human’s perspective, p = 0.072 in robot’s
perspective; 2/3-end: p < 0.039 in human’s perspective, p < 0.022
in robot’s perspective]. Further, we found differences between both
perspectives in the second and final learning phase for warm-
start learning and only in the beginning of learning phase in
cold-start learning [warm-start learning: p = 0.055 for start-
1/3; p < 0.002 for 1/3-2/3; p < 0.007 for 2/3-end; cold-start
learning: p < 0.033 for start-1/3; p = 0.190 for 1/3-2/3; p = 0.371
for 2/3-end].

3.3.3. Incorrect Classifications of Correct Actions of

the Robot (FP)
Figure 6D shows the number of FP for the three learning phases
under both learning conditions. We observed no difference
between learning phases and between learning conditions. We
found no significant difference between three learning phases in
both perspective [(a) human’s perspective: warm-start learning:
start-1/3 vs. 1/3-2/3: p = 0.168, 1/3-2/3 vs. 2/3-end: p = 0.216,
start-1/3 vs. 2/3-end: p = 1.0, cold-start learning: start-1/3 vs.
1/3-2/3: p = 0.084; 1/3-2/3 vs. 2/3-end: p = 0.313; start-1/3
vs. 2/3-end: p = 1.0; (b) robot’s perspective: warm-start learning:
start-1/3 vs. 1/3-2/3: p = 1.0, 1/3-2/3 vs. 2/3-end: p = 1.0, start-
1/3 vs. 2/3-end: p = 1.0, cold-start learning: start-1/3 vs. 1/3-2/3:
p = 0.438, 1/3-2/3 vs. 2/3-end: p = 0.917, start-1/3 vs. 2/3-
end: p = 0.438]. Further, we found no differences between both
learning conditions for both perspectives [human’s perspective:
warm-start learning vs. cold-start learning: p = 0.323 for start-1/3,
p = 0.867 for 1/3-2/3, p = 0.891 for 2/3-end; robot’s perspective:
warm-start learning vs. cold-start learning: p = 0.323 for start-
1/3, p = 0.867 for 1/3-2/3, p = 0.891 for 2/3-end]. Further,
we found significant differences between both perspectives for
all learning phases in warm-start learning [human’s perspective
vs. robot’s perspective: p < 0.008 for start-1/3; p < 0.014
for 1/3-2/3: p < 0.011 for 2/3-end]. In cold-start learning,
differences between both perspectives were shown only for the
final learning phase [human’s perspective vs. robot’s perspective:
p = 0.164 for start-1/3; p = 0.067 for 1/3-2/3: p < 0.015
for 2/3-end].

3.3.4. Incorrect Classifications of Erroneous Actions

of the Robot (FN)
Figure 6B shows the number of FN for the three learning phases
under both learning conditions. Only in cold-start learning,
the pattern of FN was coherent with the pattern of mapping
errors. We found no significant difference between three learning
phases for both perspectives [(a) human’s perspective: warm-start
learning: start-1/3 vs. 1/3-2/3: p = 0.964, 1/3-2/3 vs. 2/3-end,
p = 1.0; start-1/3 vs. 2/3-end: p = 1.0; cold-start learning: start-
1/3 vs. 1/3-2/3: p = 0.835, 1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3
vs. 2/3-end: p = 1.0; (b) robot’s perspective: warm-start learning:
start-1/3 vs. 1/3-2/3: p = 1.0, 1/3-2/3 vs. 2/3-end: p = 1.0, start-
1/3 vs. 2/3-end: p = 1.0; cold-start learning: start-1/3 vs. 1/3-2/3:
p = 1.0, 1/3-2/3 vs. 2/3-end: p = 1.0, start-1/3 vs. 2/3-end:
p = 1.0]. Further, the number of FN was reduced for warm-
start learning compared to cold-start learning for the first and the
final learning phase, but not for the second learning phase. This
pattern was shown for both perspectives [human’s perspective:
warm-start learning vs. cold-start learning: p < 0.011 for start-1/3,
p = 0.051 for 1/3-2/3, p < 0.002 for 2/3-end; robot’s perspective:
warm-start learning vs. cold-start learning: p < 0.008 for start-
1/3, p = 0.085 for 1/3-2/3, p = 0.009 for 2/3-end]. Further,
we found significant differences between both perspectives for
the second and the final learning phase, but not for the first
learning phase in warm-start learning [human’s perspective vs.
robot’s perspective: p = 0.060 for start-1/3, p < 0.002 for 1/3-
2/3, p < 0.007 for 2/3-end]. The reversed pattern was shown
in cold-start learning [human’s perspective vs. robot’s perspective:

Frontiers in Robotics and AI | www.frontiersin.org 18 October 2020 | Volume 7 | Article 55853187

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kim et al. Human Interaction Effecting Robot Learning

p < 0.025 for start-1/3, p = 0.135 for 1/3-2/3, p = 0.371
for 2/3-end].

3.3.5. Correlation Between ErrP-Classification

Performance and Mapping Errors
Table 4A shows the correlation between learning performance
of the robot (mapping errors) and ErrP-classification
performance for each learning condition and each perspective,
in which correlations of mapping errors were separately
calculated with ErrP misclassifications (FP∪FN),TP, TN,
FP, and FN (details for statistical analysis, see section
2.5). Note that ∗∗ stands for significant level of p < 0.01
(2-sided) and ∗ stands for significant level of p < 0.05
(2-sided). Figure 8A shows a descriptive visualization of
robot’s learning performance and ErrP misclassification
(more details, see Supplementary Figure 1, which shows a
descriptive visualization of each correlation shown in Table 4A).
An individual dot represents the result of mapping errors
corresponding to ErrP misclassifications (FP ∪ FN), TP, TN,
FP, and FN in each dataset, where different colors (yellow, blue)
represent different learning conditions (warm-start learning,
cold-start learning).

As expected, we observed a high correlation between learning
performance of the robot and ErrP-classification performance
under both learning conditions (see Table 4A). However, a
higher correlation was observed for cold-start learning compared
to warm-start learning. This pattern was more obviously shown
in FN and TN. FN strongly correlated with learning performance
in the cold-start learning condition compared to the warm-start
learning condition [cold-start learning vs. warm-start learning:
r = 0.927 vs. r = 0.715 for human’s perspective; cold-
start learning vs. warm-start learning: r = 0.944 vs. r =
0.705 for robot’s perspective]. Note that we obtained a single
correlation coefficient for each correlation analysis. Hence,
the comparison between learning conditions was descriptively
reported. The same pattern was shown for TN [cold-start learning
vs. warm-start learning: r = −0.950 vs. r = −0.897 for
human’s perspective; cold-start learning vs. warm-start learning:
r = −0.942 vs. r = −0.869 for robot’s perspective]. In
contrast, the reversed pattern was shown for TP, i.e., a higher
correlation was observed for the warm-start learning compared
to cold-start learning [cold-start learning vs. warm-start learning:
r = 0.622 vs. r = 0.934 for human’s perspective; cold-start
learning vs. warm-start learning: r = 0.693 vs. r = 0.965
for robot’s perspective]. For FP, there was no correlation for
cold-start learning [human’s perspective: r = −0.172, robot’s
perspective: r = −0.262].

Further, a descriptive analysis showed that a higher difference
between datasets in robot’s learning performance was observed in
cold-start learning compared to warm-start learning. As shown
in Figure 8A, all datasets of warms-start learning were placed in
the dark green boxes, whereas 5 datasets of cold-start learning
were placed in the light green boxes. The same pattern was
shown in ErrP-detection performance (Figure 8A), which was a
plausible reason for a high correlation between robot’s learning
performance and ErrP-detection performance (Table 4A). Note
again that an individual dot represents the result of mapping

errors corresponding to ErrP misclassifications (FP ∪ FN), TP,
TN, FP, and FN in each dataset and different colors (yellow, blue)
represent different learning conditions (warms-start learning and
cold-start learning).

In summary, FN had a stronger impact on cold-start learning
compared to warm-start learning, whereas FP had a stronger
effect on warm-start learning compared to cold-start learning.
In other words, the learning performance of the robot was
impaired more during cold start learning than during warm
start learning if incorrect robot actions were not detected, i.e.,
ErrPs were not detected if the actions of the robot were wrong.
Further, FN had an effect on learning performance for both
learning conditions, whereas FP had an impact on learning
performance for warm-start learning, but not for cold-start
learning. Consistent with a higher number of mapping errors,
the number of TP was higher in cold-start learning than in
warm-start learning.

3.4. Effect of Gesture Errors on Learning
Performance
As mentioned earlier, we considered wrong recordings of
human gestures as gesture errors, which lead to incoherences
between performed and perceived gestures, i.e., incoherences
between gestures performed by the subjects and gestures
recorded by LeapMotion. The subjects perceived their own
performed gesture and the robot perceived the gesture features
recorded by LeapMotion. Therefore we analyzed the learning
performance of robots and the ErrP classification performance
depending on the two perspectives (robot perspective/
human perspective).

Figure 7 shows differences in learning progress between both
perspectives that are caused by gesture errors. Gestures that were
performed by the subjects are depicted in Figure 7A, whereas
gestures that were recorded by the Leap Motion and perceived
by the robot are depicted in Figure 7B. As shown in Figure 7,
gestures were differently colored depending on perspective, e.g.,
upward (violet point) for human’s perspective and forward (red
point) for robot’s perspective on the same action of the robot in
the trial 69 (Figure 7A vs. Figure 7B, see Table 5D). When there
were no gesture errors, wrong actions of the robot (mapping
errors) were the same for both perspectives (see trial 1, 2, 4, 7,
9, 14 in Figure 7). When gesture errors occurred, the effect of
gesture errors was not clear, which required a further analysis
(details, see Table 5).

Table 5 shows four cases where we observed the interaction
effects of gesture errors on learning performance (the correctness
of robot actions, i.e., mapping errors) with ErrP recognition
performance: (A) No occurrence of gesture errors and correct
actions of the robot for both perspectives, (B) No occurrence
of gesture errors and wrong actions of the robot for both
perspectives, (C) Occurrence of gesture errors and correct
robot actions from the robot’s perspective, but incorrect robot
actions from the human perspective, and (D) Occurrence
of gesture errors and wrong actions of the robot from
both perspectives. Note that the trials that are visualized
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FIGURE 7 | A descriptive analysis of differences in learning progress between both perspectives (A and B) that are caused by gesture errors. A descriptive

visualization of learning progress of both perspectives is shown in the cold-start learning condition (no pre-training) as an example of one subject. The first five

mapping errors (trial 1, 2, 4, 7, 9, 14) and the mapping errors in the trial 69 are the same for both perspectives. Other mapping errors (trial 17, 54, 62, 72, 73, 95, 110,

116) are shown for the human’s perspective, but not for robot’s perspective. Such different perceptions between human and robot due to gesture errors and their

impacts on learning progress are analyzed in consideration of interaction with ErrP-detection performance and summarized in Table 5 (details, see text).

in Figure 7 are equivalent to the trials that are shown
in Table 5.

3.4.1. Correct Actions of the Robot Without Gesture

Errors (Table 5A)
When there were no gesture errors and the robot’s actions
were also correct, ErrP-detection performance had a direct
impact on the learning process (Table 5A). In other words, the
learning performance was affected only by ErrP-classification
performance. Correct classifications, i.e., detections of ErrPs on
wrong gesture-action pairs (TP) and detections of No ErrPs on
correct gesture-action pairs (TN) had a positive impact on the
learning process.

3.4.2. Wrong Actions of the Robot Without Gesture

Errors (Table 5B)
If the robot’s actions were wrong even though there were
no gesture errors, the learning performance was also only
affected by the ErrP recognition performance (Table 5B). Correct
classifications, i.e., detections of ErrPs on wrong gesture-action
pairs (TP) and detections of No ErrPs on correct gesture-action
pairs (TN) had a positive impact on the learning process. In
contrast, wrong classifications, i.e., detections of No ErrPs on

wrong gesture-action pairs (FN) and detections of ErrPs on
correct gesture-action pairs (FP) had a negative effect on the
learning process.

3.4.3. Correct Actions of the Robot With Gesture

Errors (Table 5C)
If the robot’s actions were correct, although gesture errors
occurred, we observed two different effects: (1) Gesture errors
had a negative effect on the learning performance, when ErrP
detection was correct from the human’s perspective (trial 54,
62, 73, 95, 110, 116 in Table 5C) and (2) Negative effects of
gesture errors were canceled out, when ErrP detection were
wrong from the human’s perspective (trial 17, 72 in Table 5C).
For example, when ErrPs were detected on wrong gesture-action
pairs from the human’s perspective (e.g., left-right pair in
trial 54 in Table 5C), ErrP classifications were correct (TP).
In contrast, when the robot perceived correct gesture-action
pairs on the same actions of the robot (e.g., right-right pair
in trial 54 in Table 5C), ErrP classifications were wrong from
the robot’s perspective (FP), which led to negative impacts
on the learning progress. However, such negative effects of
gesture errors on learning performance were canceled out, when
ErrP detections were wrong from the human’s perspective.

Frontiers in Robotics and AI | www.frontiersin.org 20 October 2020 | Volume 7 | Article 55853189

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Kim et al. Human Interaction Effecting Robot Learning

TABLE 5 | Different perceptions between humans and robots due to gesture

errors (9 gesture errors in total in this example, see cases C and D).

Case Trial
Human Recorded Robot’s ErrP Human Robot

gesture gesture action detection CL CL

A 5 Right Right Right No ErrP TN TN

6 Forward Forward Forward No ErrP TN TN

8 Right Right Right No ErrP TN TN

9 Left Left Forward ErrP TP TP

10 Forward Forward Forward No ErrP TN TN

11 Right Right Right No ErrP TN TN

12 Forward Forward Forward No ErrP TN TN

13 Left Left Forward ErrP TP TP

15 Right Right Right No ErrP TN TN

16 Right Right Right No ErrP TN TN

B 1 Forward Forward Right ErrP TP TP

2 Right Right Right No ErrP TN TN

3 Forward Forward Forward No ErrP TN TN

4 Left Left Forward No ErrP FN FN

7 Left Left Forward No ErrP FN FN

14 Forward Forward Left ErrP TP TP

C 17 Left Right Right No ErrP FN TN

54 Left Right Right ErrP TP FP

62 Upward Forward Forward ErrP TP FP

72 Left Right Right No ErrP FN TN

73 Upward Forward Forward ErrP TP FP

95 Left Right Right ErrP TP FP

110 Upward Forward Forward ErrP TP FP

116 Right Left Left ErrP TP FP

D 69 Upward Forward Right ErrP TP TP

The learning progress of this example is shown in Figure 7. Four cases of interaction
between gesture errors and ErrP recognition performance and their effects on learning
progress were observed: (A) No occurrence of gesture errors and correct actions of the
robot from both perspectives, (B) No occurrence of gesture errors and wrong actions of
the robot from both perspectives, (C) occurrence of gesture errors and correct actions
of the robot from the robot’s perspective, but not from the human’s perspective, and
(D) occurrence of gesture errors and wrong actions of the robot from both perspectives.
CL: classification performance. robot CL: ErrP-detection performance from the robot’s
perspective. human CL: ErrP-detection performance from the human’s perspective. Note
that the robot’s perception (robot CL) affects learning progress and the elicitation of
ErrPs is based on the human’s perception (matching between human gesture and robot’s
action). Note that not all trials are described in this example.

For example, ErrP classifications (detections of No ErrP) were
wrong on gesture-action pairs (left-right pairs) from the human’s
perspective, whereas ErrP classifications (detections of No ErrP)
were correct on gesture-action pairs (right-right pairs) from the
robot’s perspective (see trial 17, 72 in Table 5C). In this case,
gesture errors had a positive effect on learning performance
because the ErrPs recognition was incorrect from the
human perspective.

3.4.4. Wrong Actions of the Robot With Gesture

Errors (Table 5D)
When gesture errors occurred and the robot’s actions were
wrong, the learning performance was affected only by ErrP-
detection performance. In this case, gesture-action pairs were
wrong from both perspectives (see trial 69 in Table 5D):

TABLE 6 | Different perceptions between human and robot due to gesture errors

(one gesture error in total in this example, see case D).

Case Trial
Human Recorded Robot’s ErrP Human Robot

gesture gesture action detection CL CL

A 5 Forward Forward Forward No ErrP TN TN

6 Forward Forward Forward No ErrP TN TN

9 Left Left Left No ErrP TN TN

11 Forward Forward Forward No ErrP TN TN

15 Forward Forward Forward No ErrP TN TN

16 Right Right Right Right TN TN

17 Right Right Right Right TN TN

18 Forward Forward Forward Forward TN TN

19 Left Left Left Left TN TN

B 1 Forward Forward Left ErrP TP TP

2 Right Right Left ErrP TP TP

3 Left Left Right No ErrP FN FN

4 Forward Forward Right ErrP TP TP

7 Right Right Forward ErrP TP TP

8 Left Left Right ErrP TP TP

10 Right Right Left ErrP TP TP

12 Left Left Forward ErrP TP TP

13 Right Right Left ErrP TP TP

14 Left Left Forward ErrP TP TP

20 Left Left Forward ErrP TP TP

56 Right Right Upward ErrP TP TP

72 Forward Forward Left ErrP TP TP

102 Forward Forward Upward ErrP TP TP

C – – – – – – –

D 101 Upward Forward Right ErrP TP TP

Learning progress of this example is shown in Figures 5A,B. Four cases of the interaction
between gesture errors and their impacts on learning progress were observed: (A) No
occurrence of gesture errors and correct actions of the robot from both perspectives, (B)
No occurrence of gesture errors and wrong actions of the robot from both perspectives,
(C) occurrence of gesture errors and correct actions of the robot from the robot’s
perspective, but not from the human’s perspective, and (D) occurrence of gesture errors
and wrong actions of the robot from both perspectives. CL: classification performance.
robot CL: ErrP-detection performance from the robot’s perspective. human CL: ErrP-
detection performance from the human’s perspective. Note that the robot’s perception
(robot CL) affects learning progress and the elicitation of ErrPs is based on the human’s
perception (matching between human gesture and robot’s action). Note that not all trials
are described in this example.

upward-right pair for human’s perspective and forward-right pair
for robot’s perspective. Hence, ErrP classifications (detections
of ErrPs) were correct (TP) and learning performance was not
negatively affected.

In general, the number of gesture errors varied between
subjects and sets. We visualized two examples for different
numbers of gesture errors: 9 gesture errors (Figures 7A,B, and
Table 5) vs. one gesture error (Figures 5A,B, and Table 6).

3.4.5. Correlation Between Gesture Errors and

Mapping Errors and Correlation Between Gesture

Errors and ErrP-Classification Performance
Table 4B shows the correlation between gesture errors and
mapping errors for both learning conditions and both
perspectives and its descriptive visualization is shown in
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Figure 8B (more details, see Supplementary Figure 2). We
found a correlation between gesture errors and the robot’s
learning performance for warm-start learning but not for
cold-start learning [cold-start learning vs. warm-start learning:
r = 0.803 vs. r = −0.089 for human’s perspective; cold-start
learning vs. warm-start learning: r = 0.503 vs. r = −0.274 for
robot’s perspective]. Furthermore, the reason why the correlation
between gesture and mapping errors was only shown for
warm start learning can be explained by further correlation
analysis. Table 4C shows the correlation between ErrP-detection
performance and gesture errors for both learning conditions
and both perspectives and its descriptive visualization is shown
in Figure 8C (more details, see Supplementary Figure 2).
For both perspectives, we found a correlation between ErrP
misclassifications and gesture errors for warm-start learning,
but not for cold-start learning [cold-start learning vs. warm-start
learning: r = −0.221 vs. r = 0.488 for human’s perspective;
cold-start learning vs. warm-start learning: r = −0.090 vs.
r = 0.573 for robot’s perspective]. Both correlation analyses
(Tables 4B,C) showed that gesture errors had an impact on
learning performance (mapping errors), only when gesture
errors correlate with ErrP misclassifications (Table 4B vs.
Table 4C, Figure 8B vs. Figure 8C).

In summary, it can be said that gesture errors affected the
learning performance of the robot in other ways. Due to gesture
errors, an incorrect feedback (human evaluation) was sent to
the robot, although the human evaluation itself was correct.
However, such negative effects of gesture errors on robot learning
performance disappeared if the ErrP classification was incorrect.
Furthermore, we could find out afterwards that gesture errors had
no effect on the robot’s learning performance if the robot action
selection was wrong and the ErrP classification was correct.

3.5. Summary of Results
We showed that the robot learned actions that were best assigned
to human gestures based on EEG-based reinforcement signals. In
the proposed HRI scenario, human gestures were not predefined,
i.e., no initial semantics of gestures was given to the robot. Rather,
the robot learned the current meaning of human gesture (i.e.,
the meaning of human gesture that can be changed online). To
this end, we used a contextual bandit approach that maximizes
the expected payoff by updating the current human intention
(human gesture) and the current human feedback (ErrP) after
each action selection of the robot.

Robot learning and its online adaptation were successful for
both warm-start learning and cold-start learning. Only for one
subject robot learning was not successful in cold-start learning
due to a very low detection performance of ErrPs used for
human’s intrinsic feedback (rewards). Further, cold-start learning
required more data to reach a stabilization of the learning curve
compared to warm-start learning before adding a new context
(e.g., before adding a new gesture). However, cold-start learning
was less affected by changes of the current context (e.g., after
adding a new gesture) compared to warm-start learning, which
indicates that cold-start learning was stable for updating of the
learned strategy once learning reached convergence.

Online detection of ErrPs used for rewards in the used
learning algorithm was successful for both learning conditions
except for one subject who showed a very low performance
of ErrP detections in cold-start learning. Our assumption
that the ErrP-classification performance affects robot’s learning
performance was supported by a high correlation between
robot’s learning performance and ErrP-detection performance
in both learning condition (Table 4A). Further, a descriptive
analysis showed a higher variability between datasets in cold-
start learning compared to warm-start learning, which can be
shown in Figure 8. For example, five datasets of cold-start
learning were placed in the light green boxes, whereas all datasets
of warms-start learning were placed in the dark green boxes
(Figure 8). However, correlation coefficients were computed
for each learning condition and the comparison between both
learning conditions (inference statistics) was not possible, since
there was only one coefficient value for each learning condition.

Gesture errors that were not detected online but analyzed
offline had no direct impact on robot’s learning performance.
Rather, gesture errors affected robot’s learning performance only
when gesture errors interacted with ErrP-detection performance.
Especially, we observed a correlation between gesture errors and
ErrP-detection performance in warm-start learning (Table 4C),
which led to a correlation between robot’s learning performance
and gesture errors in warm-start learning (Table 4B). In contrast,
we observed no correlation between gesture errors and ErrP-
detection performance in cold-start learning (Table 4C), which
resulted in no correlation between robot’s learning performance
and gesture errors in cold-start learning (Table 4B).

4. DISCUSSION

In this paper, we analyzed errors that occur in HRI and their
impacts on online learning performance of the robot. Our results
indicate that a little prior knowledge facilitates learning progress
and allows a faster stabilization of the learning curve compared
to learning without prior knowledge. Warm-start learning was
advantaged, since a few trials (i.e., gesture-action pairs) were
pre-trained with the perfect human feedback (correct detections
of ErrP/No ErrP). Further, the reason for the faster learning
can be explained by the higher ErrP classification performance,
i.e., the significant reduction of ErrP misclassifications in warm-
start learning compared to cold-start learning. Especially the role
of the FN, i.e., the absence of robot mistakes (mapping error),
seems to be very important for learning performance both for
learning with prior knowledge and for learning without prior
knowledge. In contrast, false alarm (FP) seems to have a small
overall effect on the robot’s learning performance with a greater
effect on warm-start learning compared to cold-start learning.
This is supported by correlations between FN and mapping
errors in both learning conditions and correlations between
FP and mapping errors shown for warm-start learning but
not for cold-start learning (Table 4A, Supplementary Figure 1).
The reason why FN had a higher influence on the learning
performance of the robot compared to FP can be explained
by the use of different weights of rewards depending on the
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FIGURE 8 | A descriptive visualization of correlation analysis: (A) correlation between mapping errors and ErrP misclassifications, (B) correlation between mapping

errors and gesture errors, and (C) correlation between ErrP misclassifications and gesture errors. A statistical analysis of three types of correlation (A–C) is reported in

Table 4. For each perspective, the comparison between both learning conditions is depicted in different colors: pre-training (yellow) vs. no pre-training (blue). Each dot

represents each dataset (details, see text). A descriptive visualization of further correlation analyses are depicted in Supplementary Figures 1, 2.

results of ErrP classifications (Table 2): our HRI scenario was
designed that the predictions of correct mappings (No ErrP) were
highly rewarded compared to the predictions of wrong mappings
(ErrP), since a correct gesture-action pair should be learned by
the UCB algorithm. Further, our results suggest that not only
ErrP misclassifications (FN, FP) but also correct classifications
of ErrPs/No ErrPs (TP, TN) can have an impact on learning
performance of the robot under both learning conditions. This

is supported by the findings of negative correlations of TN
with mapping errors and positive correlations of TP with
mapping error (Table 4A, Supplementary Figure 1). Further,
the faster stabilization of the learning curve in warm-start
learning seems to cause the lower number of TPs (correct
detections of erroneous actions of the robot) in warm-start
learning compared to cold-start learning, although the number
of TNs (correct detections of correct action of the robot) in
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warm-start learning was higher compared to cold-start learning.
Another possible reason why the ErrP classification performance
was higher for warm-start learning compared to cold-start
learning is that the subjects started always with warm-start
learning before cold-start learning and thus the subjects could
be more tired in cold-start learning compared to warm-start
learning. The effect of tiredness on ErrP expression is relevant
for continuous interaction and learning and will be investigated
in future.

Our results indicate that learning without prior knowledge
requires more trials to stabilize the learning curve compared to
warm-start learning. This can be shown in the learning curve
descriptively (e.g., Figure 5). However, cold-start learning was
less affected by changes of the current context (e.g., after adding
a new gesture) compared to warm-start learning, once learning
reached convergence. This was shown by the result that the
mean number of incorrect robot actions over all subjects was
even statistically reduced during cold-start learning, although
a new gesture was added to online learning (Figure 4). The
reason why the number of erroneous actions of the robot was
increased after adding a new gesture in warm-start learning in
contrast to cold-start learning can be explained in the following
way. For both learning conditions (warm-start learning/cold-
start learning), the new gesture (upwards) was not chosen before
and thus had a high variance, i.e., a high upper confidence
interval (UCI), which leads to a high expected payoff, i.e., a
high upper confidence bound (UCB) accordingly. In cold-start
learning, the expected payoff of the previous learned gesture-
action pairs (left, right, forward) could not be higher compared to
the expected payoff of the new gesture (upwards) before adding
the new gesture. Thus, for example, when the subject adds a new
gesture, the probability that the new gesture is chosen could be
high due to a high expected payoff caused by a high variance.
That means, the transition to the learning of the new gesture
could be very smoothy due to a high UCB caused by a high UCI.
Thus, the algorithm could explore in a natural way. In contrast,
the expected payoff of previous learned gesture-action pairs (left,
right, forward) could be substantially higher compared to a new
gesture-action pair (upwards) in warm-start learning. Hence, the
algorithm could have no soft transition to the learning of the new
gesture-action pair in warm-start learning. In fact, the expected
payoff of three gesture-action pairs (left, right, forward) could be
already high, since the UCB algorithm could reach very quickly
convergence due to pre-training before adding the new gesture.
For this reason, the transition to the learning of a new gesture-
action pair could not be smoothly in warm-start learning, which
could lead to the increased number of erroneous actions of the
robot in warm-start learning immediately after adding a new
gesture (Figure 4).

Our assumption that ErrP-classification performance used as
rewards affects learning performance of the robot was confirmed
by a high correlation between ErrP-classification performance
and robot’s learning performance in both learning conditions.
However, gesture errors had an impact on robot’ learning
performance, only when gesture errors correlated with ErrP-
classification performance. This indicates that gesture errors have
an indirect effect on learning performance of the robot, whereas

ErrP-classification performance has a direct impact on robot’s
learning performance.

Different effects of ErrP-classification performance on robot’s
learning performance between both learning conditions, e.g., the
lower number of learning performance of the robot (mapping
error) and the lower number of ErrP misclassifications in
warm-start learning compared to cold-start learning cannot be
explained by our investigation. One could possibly explain it
by assuming the following: a subject might eventually have
recognized a systematic repetition of wrong assignments of
human gesture and robot’s action, e.g., left-right pairs, the human
can expect the upcoming action of the robot (e.g., right action)
after performing a specific gesture type (left gesture) before
observing the robot’s action. We assume that such an expectation
of the human would affect the online detection of ErrPs. We
further assume that such situations would occur more often in
cold-start learning compared to warm-start learning. The chosen
algorithm is capable of correcting the wrongly learned gesture-
action pairs (relearning). We assumed that more experiences
(i.e., more data) are required for relearning (correction of
wrong assignments) compared to learning in the initial state
(blank state). However, this is a vague interpretation. Thus,
the relearning pattern between both learning condition can be
investigated in the future to analyze different effects of ErrP-
classification performance on learning performance of the robot
between both learning conditions.

Further, the descriptive analysis of learning progress in
individual datasets (i.e., descriptive visualization of 74 datasets)
shows that most subjects showed a stabilization of learning curve
after 30 trials (i.e., after adding a new gesture). However, in
cold-start learning some subjects seem to require considerably
more trials to stabilize the learning curve. This indicates
that the time point of adding a new context (gesture) was
not optimal for some subjects in cold-start learning. Note
that we did not depict all 74 visualizations of learning
progress (learning curve) in this paper (just two datasets
as examples). We analyzed learning progress by performing
inferential statistical analysis, i.e., by statistically comparing
mean differences over all subjects between three learning phases
(Figure 4), since learning progress of individual datasets can
be visualized only descriptively. Note that we visualized 74
learning curves from 74 datasets for each perspective (human’s
perspective/robot’s perspective): 20 datasets × 2 perspectives
= 40 datasets; 17 datasets × 2 perspectives = 34 datasets).
On the other hand, an outlier can be easily interpreted
without explicitly performing an inference statistics as shown
in Figure 8 (light green box in the top right side of the
visualization). Note that Figure 8 descriptively shows variability
between individual datasets in ErrP-classification performance
and learning performance of the robot (mapping errors). This
outlier (one dataset of one subject) had an extremely low learning
performance of the robot and also an extremely low ErrP-
classification performance (especially a high number of FN).
Actually it is reasonable to understand that the robot could
hardly learn correct actions if the ErrP decoder constantly
failed to recognize ErrPs. Future investigations should focus
on the relationship (correlation) between ErrP-classification
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performance and learning progress of the robot per learning
phase, where the determination of learning phase is also a
relevant issue for investigations of interaction errors on robot’s
learning progress.

In general, the number of attempts plays a critical role in
reinforcement learning and the agent updates the policy based on
rewards that are predefined before learning begins. InHRI, on the
other hand, the rewards (human feedback) are generated during
online learning and can therefore be influenced by interactions
with the robot, i.e., the online learning performance of the robot
(e.g., changes in online learning performance during interaction
with humans). Therefore, not only the number of attempts but
also interaction effects of online learning performance on the
generation of human feedback can have an influence on the
robot’s learning performance (mapping error). Assuming that
only the number of trials has an influence on the learning
performance of the robot, our results suggest that for some
subjects in cold start learning more than 90 trials might be
necessary. In practice, it is not always possible to record more
than 90 trials from subjects, and recording large numbers of
trials is not realistic for some subjects and many applications.
One limits oneself to recording a sufficient number of human
examples within a reasonable period of time. Indeed, research
is needed into the interaction effects between the generation of
human feedback and the online learning performance of the
robot. It is known that the number of trials (episodes) has an
influence on the learning performance of the robot. However,
we do not know if increasing the number of trials has a clear
effect on the robot’s learning performance if there is a human-
robot interaction and this interaction influences the generation
of EEG-based human feedback. For example, we do not know
whether the learning curve stabilizes with the increase in the
number of trials (more than 90 tests) for a subject considered
an outlier. In our study we did not investigate the effects of
the online learning performance of robots on the generation of
human feedback, which is very challenging to investigate. As
shown in our investigations, the generation of human feedback
can also be influenced by other interaction components in HRI
(e.g., human gestures). Hence, it is not straightforward to explain
subject variability in online learning performance of the robot.
In this paper we analyzed the interaction effects of two different
interaction components (human feedback and human gesture)
on the robot’s online learning performance. The question of the
interaction effects between the generation of human feedback
and the robot’s online learning performance, i.e., the effects of the
robot’s online learning performance on the generation of human
feedback, can be investigated in the future.

In most EEG-based BCIs the robot actions were directly
corrected binary based on ErrP detections [e.g., left (wrong)→
right (correct) or right (wrong)→ left (correct)] (Salazar-Gomez
et al., 2017) or the control policy of robots were learned and
optimized based on online ErrP detections (Iturrate et al., 2015;
Kim et al., 2017). In a recent study, ErrPs were used for co-
adaptation of human and robot (Ehrlich and Cheng, 2018) and
for modeling of co-adaptation of human and robot (Ehrlich and
Cheng, 2019a). In most studies there was only one interaction
component (human feedback, i.e., ErrP) (Iturrate et al., 2015). In
our study we have two interaction components (human feedback

and human gestures) that can separately or jointly influence
the online performance of robots. In this paper, we investigated
individual effects of two interaction components on the learning
performance of a robot and interaction effects of two interaction
components on the learning performance of the robot. Even
if learning in a robot is possible without prior knowledge and
despite errors in the interpretation of gestures or the detection
of ErrP, our results show that it is quite useful to use prior
knowledge. They also show that learning with prior knowledge
regarding the subjects variability is more stable, which should
be investigated more systematically in the future. In general, we
could show that errors in both interaction components have less
impact on the general learning behavior if previous knowledge is
used, whereas false positive results have a greater effect. However,
false negative results, i.e., not recognizing mistakes, should be
considered more critical. We were able to explain our results
partly by the way the learning algorithm used works. However,
there are still open questions. For example, the influence of
humans is a factor that is difficult to model, but has a great
influence on the results. In the future, therefore, the effects of
interactions with the robot (changes in the robot’s online learning
performance) on the online generation of EEG-based human
feedback should be analyzed to study the variability of the robot’s
learning performance depending on the interacting human.
Furthermore, our results indicate that both warm start learning
(fast convergence) and cold start learning (more exploration)
have advantages. For example, it would be possible to give specific
prior knowledge (warm start learning) when a change of state is
not strongly expected, or to let the agent do natural exploration
(cold start learning) to enable the robot to adapt more quickly to
likely state changes.
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The control of arm movements through intracortical brain–machine interfaces (BMIs)
mainly relies on the activities of the primary motor cortex (M1) neurons and mathematical
models that decode their activities. Recent research on decoding process attempts
to not only improve the performance but also simultaneously understand neural and
behavioral relationships. In this study, we propose an efficient decoding algorithm using
a deep canonical correlation analysis (DCCA), which maximizes correlations between
canonical variables with the non-linear approximation of mappings from neuronal to
canonical variables via deep learning. We investigate the effectiveness of using DCCA for
finding a relationship between M1 activities and kinematic information when non-human
primates performed a reaching task with one arm. Then, we examine whether using
neural activity representations from DCCA improves the decoding performance through
linear and non-linear decoders: a linear Kalman filter (LKF) and a long short-term memory
in recurrent neural networks (LSTM-RNN). We found that neural representations of M1
activities estimated by DCCA resulted in more accurate decoding of velocity than those
estimated by linear canonical correlation analysis, principal component analysis, factor
analysis, and linear dynamical system. Decoding with DCCA yielded better performance
than decoding the original FRs using LSTM-RNN (6.6 and 16.0% improvement on
average for each velocity and position, respectively; Wilcoxon rank sum test, p < 0.05).
Thus, DCCA can identify the kinematics-related canonical variables of M1 activities,
thus improving the decoding performance. Our results may help advance the design of
decoding models for intracortical BMIs.

Keywords: primary motor cortex (M1), decoding algorithm, Kalman filter, long short-term memory recurrent
neural network, intracortical brain–machine interface, deep canonical correlation analysis

INTRODUCTION

The primary motor cortex (M1) is robustly linked to the kinematic parameters of the upper limbs
(Humphrey, 1972; Humphrey and Corrie, 1978; Georgopoulos et al., 1982, 1986; Sergio et al., 2005;
Schwartz, 2007; Aggarwal et al., 2008; Vargas-Irwin et al., 2010). This concept provides a basis for
decoding information in an intracortical brain–machine interface (BMI), which often harnesses
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M1 activities to infer continuous movement parameters in order
to enable the neural control of external effectors. Intracortical
BMIs have largely relied on functional relationships between M1
activities and kinematics (Moran and Schwartz, 1999b; Paninski
et al., 2003; Wu et al., 2004; Shanechi et al., 2016; Vaskov et al.,
2018). For instance, a number of BMIs have been developed
based on a finding that a population vector constructed from the
firing activities of a neuronal ensemble can predict the kinematic
variables of arm movements, such as direction, speed, position,
and velocity (Georgopoulos et al., 1986, 1988; Flament and Hore,
1988; Schwartz et al., 1988; Moran and Schwartz, 1999b; Paninski
et al., 2003; Wang et al., 2007). In addition to the population
vector, neural representations capturing the shared variability
in the population’s neural activity have been demonstrated to
be effective in predicting behavioral covariates (Yu et al., 2009;
Shenoy et al., 2013; Cunningham and Yu, 2014; Kao et al.,
2015). These neural representations can be acquired through
unsupervised learning techniques such as principal components
analysis (PCA) (Ames et al., 2014; Kaufman et al., 2014), factor
analysis (FA) (Yu et al., 2009), and a linear dynamical system
(LDS) based latent-state estimation (Kao et al., 2015) and are
known to allow a decoder to guarantee stable outputs (Yu et al.,
2009; Kao et al., 2013). Such neural representations of neural
population activity could help enhance decoding kinematic
variables. Decoding models for intracortical BMIs are broadly
categorized into two categories. The first category is a generative
method that operates based on the generation of neuronal firing
activities from kinematic states described by encoding models.
The second category is a direct method that operates based on
a direct input–output function approximation from neuronal
firing activities to kinematic variables (Chapin et al., 1999; Sussillo
et al., 2012; Dethier et al., 2013; Ahmadi et al., 2019).

Generative decoding methods designed for BMIs include a
population vector algorithm (Georgopoulos et al., 1986; Schwartz
and Moran, 2000; Van Hemmen and Schwartz, 2008), a Kalman
filter (KF) (Wu et al., 2004, 2006; Gilja et al., 2012; Golub
et al., 2014), a point process-based adaptive filter (Wang et al.,
2009; Shanechi et al., 2014), and a particle filter (Gao et al.,
2001), to name a few. These methods infer kinematic information
from observed neuronal activities via encoding models. The
performance of generative decoding methods thus substantially
depends on the assumptions and appropriateness of encoding
models. Furthermore, direct decoding methods designed for
BMIs include the Wiener filter (Chapin et al., 1999; Serruya
et al., 2002; Fagg et al., 2009; Chhatbar and Francis, 2013; Willett
et al., 2013), support vector regression (Kim et al., 2006; Xu
et al., 2011), and artificial neural networks (ANNs) (Wessberg
et al., 2000; Sanchez et al., 2003). Particularly, ANNs can serve
as a direct approximator of a non-linear functional relationship
between M1 activities and kinematic variables. Various types of
ANNs have been suggested to decode M1 activities, including
time-delay neural networks (Kim et al., 2003; Wang et al., 2005),
recurrent neural network (RNN) (Sussillo et al., 2012), and echo-
state network (Rao et al., 2005). Furthermore, owing to recent
breakthroughs in deep learning, using deep neural networks
(DNNs) for decoding M1 activities has become plausible
(Sussillo et al., 2012; Ahmadi et al., 2019). For instance, a long

short-term memory RNN (LSTM-RNN), one of the non-linear
models harnessing temporal information in past neural activities,
outperformed other decoding models for BMIs (Ahmadi et al.,
2019). Despite their high performance, the intricate architectures
of DNNs often require a much larger training data to achieve
a successful decoding process. Furthermore, recent efforts to
record a larger number of neuronal activities (e.g., >1,000 units)
demand effective representational spaces of neuronal ensemble
activities, which will also reduce the burden of training DNNs
(Marblestone et al., 2013).

Considering the advantage of DNNs as a universal non-
linear approximator, in the present study, we propose a novel
approach for decoding M1 activities to estimate limb kinematics
by exploring a joint representational space between M1
activities and kinematics. In this joint space, the representation
variables of a neuronal ensemble and kinematic parameters
are created in a way to maximize coupling between neuronal
and kinematic representation variables. Among the many ways
of doing so, we leveraged methods, such as a canonical
correlation analysis (CCA), to maximize correlations between
these variables. As one of the multivariate statistical methods,
CCA maximizes correlations between joint (canonical) variables.
A conventional linear canonical correlation analysis (LCCA)
builds a linear mapping between a neuronal ensemble and
canonical variables (Hotelling, 1936; Anderson, 1984; Friman
et al., 2007). However, more informative neuronal canonical
variables can be extracted from neuronal ensemble activities
by using a non-linear method. A recently developed deep
canonical correlation analysis (DCCA) allows us to examine
this possibility by approximating a non-linear mapping from
neuronal ensemble activities to canonical variables with a DNN
(Andrew et al., 2013). Previous non-invasive brain–computer
interface (BCI) studies showed the effectiveness of DCCA
as a means of feature extraction from electroencephalogram
associated with various covariates of interest, such as eye
movements and visual stimulus frequencies (Vu et al., 2016; Qiu
et al., 2018; Liu et al., 2019). For example, Vu et al. successfully
improved the performance of the steady-state visual evoked
potential-based BCI using DCCA-based feature extraction (Vu
et al., 2016). Although DCCA suffers from the same difficulty
in interpreting neural activities as DNNs, canonical variables
estimated by DCCA may effectively represent kinematics-
related neuronal ensemble activities. Consequently, decoding
these canonical variables may achieve a similar or superior
performance to decoding original firing rates (FRs) while keeping
a decoding model concise.

Based on this hypothesis, the present study aims to investigate
how hand velocity information is represented in canonical
variables found by LCCA or DCCA and to compare those
representations with other neural representations (PCA, FA, and
LDS) extracted from naïve ensemble FRs (ZE-FR). Moreover, we
aim to investigate the performance of decoding hand velocity
information from the five types of neuronal representations (E-
FR, PCA, FA, LCCA, and DCCA) using one of the two types of
decoders, i.e., LKF and LSTM-RNN. Additionally, we examine
whether DCCA yields better velocity decoding performance
compared to a neural dynamical filter (NDF), which is a linear
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mapping model to predict kinematic variables from LDS-based
latent states (Kao et al., 2015). In this study, we apply various
decoding methods to the data of M1 firing activity and hand
movements in two non-human primates that performed a 2D
reaching task with one arm.

MATERIALS AND METHODS

Datasets
The two datasets used in this study are available on a
neuroscience data depository, called the Collaborative Research
in Computational Neuroscience (Flint et al., 2012; Lawlor et al.,
2018; Perich et al., 2018). Each dataset includes the cortical firing
activity and hand movement recordings, which were acquired
from a non-human primate performing an arm reaching task
on 2D spaces with one arm (see Figure 1A). The dataset
CRT (center-out reaching task) of Flint et al. includes M1
activities for monkeys to perform a center-out reaching task to
acquire eight different targets that were placed at 45◦ intervals
around a circle with their home placed on the center (Flint
et al., 2012). The dataset SRT (sequential reaching task) of
Lawlor et al. (2018) includes M1 and dorsal premotor cortical
activities during a sequential reaching task, where a series
of targets were randomly displayed on 2D spaces (Lawlor
et al., 2018; Perich et al., 2018). All cortical activities were
extracellularly recorded by a 128-channel acquisition system
(Cerebus, Blackrock Microsystems, Inc., Salt Lake City, UT,
United States) through 96-channel silicon microelectrode arrays
chronically implanted in the arm area of M1.

In this study, we analyzed only M1 activities to develop and
test decoders. The spike trains of each neuron were binned with
a non-overlapping window of 50 ms to maximize the mutual
information between neural FRs and kinematics (Paninski et al.,
2003; Suminski et al., 2010). FRs were estimated by spike
counts within the bin divided by its size (i.e., 50 ms). We
also square-root-transformed the FRs in each bin to make
them more normally distributed for linear decoding models
(Schwartz and Moran, 1999). Then, we performed a Gaussian
kernel smoothing process to reduce temporal noise of individual
unit activities, where the kernel standard deviation (SD) was
determined according to Yu et al. (2009) (SD = 80 ms in the
dataset CRT, SD = 140 ms in the dataset SRT). An instantaneous
hand position was converted into the velocity and its absolute
value (speed). This kinematic combination (velocity and speed)
is shown to be appropriate predictors for establishing tuning
models (Rasmussen et al., 2017). Using the velocity and speed,
we calculated the goodness of fit (r2) of a linear tuning model
for each neuron, which was designed based on the cosine
tuning model (Moran and Schwartz, 1999a), expressed by: z (t) =
β0+β1v(t)+ β2v (t)+ ε (t) where z(t) is FRs, β0, β1, and β2
are model coefficients, and v(t) and v (t) denote a vector of
velocity and its norm (speed) at time t, respectively. Then, we
selected the neurons with r2 > 0.01, where the threshold of
r2 (>0.01) was empirically determined. A total of 155 and 63
neurons passed these criteria in the datasets CRT and SRT,
respectively. The datasets CRT and SRT included 175 and

496 successful trials, respectively, in which animals successfully
acquired the targets during the tasks. To build and validate
decoders, the first 75% of the trials were used for training
and the remaining 25% of the trials were used for testing: the
training and testing sets of the dataset CRT contained 131 and
44 trials, respectively, and those of the dataset SRT contained 372
and 124 trials, respectively. Every parameter estimation of the
models built in this study (see below) was performed using the
training set only.

Neural Representation Extraction via
Supervised Learning Methods
Linear Canonical Correlation Analysis
Canonical correlation analysis is one of the multivariate statistical
methods that extracts joint canonical variables from random
vectors z and x. In this study, z and x correspond to the
FRs [z1, z2, . . . , zM]T

∈ Rm×1 from m neurons and the hand
kinematics [x1, x2, x3]T

∈ R3×1, where x1 and x2 denote the
velocity of the x- and y-coordinates, respectively, and x3 denotes
the speed. An LCCA seeks linear mappings from z and x
to canonical variables by maximizing correlations between
canonical variables (Hotelling, 1936; Anderson, 1984; Friman
et al., 2007). The canonical coefficients {α, β} on these linear
mappings are defined as{

α∗, β∗
}
= argmax

α∗,β∗
ρ
(
αTz, βTx

)
(1)

= argmax
α∗,β∗

αT6ZXβ√
αT6Zα · βT6Xβ

(2)

where ρ(·) denotes a function of the correlation between
canonical variables. 6Z and 6X are the covariance matrices of
centralized data z̄ and x̄, respectively, and 6ZX is the sample
cross-covariance matrix. To make the canonical coefficients
scale-free, the denominator is constrained to have unit variance,
such that {

α∗, β∗
}
= argmax

αT6Zα=βT6Xβ=1
αT6ZXβ (3)

The singular value decomposition is used to derive α∗ and β∗.
Using these variables, the canonical variables of z and x can be
estimated by

ûZ = α∗Tz̄ (4)

ûX = β∗Tx̄ (5)

By using the eigenvectors corresponding to the largest
eigenvalues, we repeatedly computed a pair of canonical
variables, {ûZ, ûX}, until the number of pairs equals m or 3. For
convenience, we call the linear neural (ûZ) and kinematic (ûX)
canonical variables ZLCV and XLCV, respectively.

Deep Canonical Correlation Analysis
A DCCA is one of the advanced CCA methods based on DNNs.
DCCA finds non-linear mappings from z and x to canonical
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FIGURE 1 | Simulation overview for assessing the effects of DCCA on two decoders. (A) Behavioral tasks for each dataset. The left panel denotes a center-out
reaching task which the monkey C performed, and the right panel is a sequential reaching task which the monkey M performed. (B) The schematic diagram depicts
the DCCA between firing rates and kinematic variables. The left inputs (L-input) of the networks indicate the naïve firing rates and the right inputs (R-input) of the
networks denote the kinematic variables: x- and y-velocity, and speed. A dotted-line box between the networks denotes a canonical correlation analysis (CCA)
between the left-canonical variables (ZDCV) and the right-canonical variables (XDCV). (C) The block diagram depicts a simulation paradigm for a comparative study of
decoding. (D) Prediction errors for the state dimensionalities (q) of each dataset. The filled circle denotes proper dimensionality corresponding to the minimum
prediction error for each dimensionality reduction method (Yu et al., 2009). Each color code denotes the dimensionality reduction method.

variables through stacked non-linear transformation layers, as
shown in Figure 1B (Andrew et al., 2013). The non-linear
mappings f lz (z) and f lx (x) are defined as

f lz (z) = σ
(

W(Z)
l u(Z)l−1 + b(Z)l

)
∈ Rm×1 (6)

f lx (x) = σ
(
W(X)

l u(X)l−1 + b(X)l

)
∈ R3×1 (7)

where W(·)
l denotes a matrix of weights at the l-th layer, u(·)l−1 is the

output vector from the (l−1)-th layer, b(·)l is a vector of biases at
the l-th layer, and σ(·) is a non-linear function. A parameter set θ,
which includes W and b, is estimated by maximizing correlations
between functional outputs as follows:

arg max
θ∗Z,θ

∗
X

ρ
(
fZ(z, θZ), fX(x, θX)

)
(8)

To seek θ∗Z and θ∗X, the backpropagation algorithm is used to
optimize parameters W and b based on the gradient of ρ(·).
The parameters in each layer are initialized in advance through a
pretraining process using a denoising autoencoder (Vincent et al.,
2008). The deep neural canonical variables can be computed as
ôZ = fZ(z, θZ), and the deep kinematic canonical variables can
be computed as ôX = fX(x, θX). In that case, we call the deep
neural (ôZ) and kinematic (ôX) canonical variables ZDCV and
XDCV, respectively.

In addition to θ, we also need to optimize the hyperparameters
of DNNs, for which we employed the Bayesian optimization
method (Ahmadi et al., 2019). To optimize the hyperparameters,
we empirically preset the range for each parameter: the number
of nodes in a layer ∈ {24, 25, . . ., 210}, the number of layers
∈ {1, 2, . . ., 4}, an encoder and decoder batch size ∈ {25,
26, . . ., 28}, a learning rate ∈ {1e−5, 1e−4, . . ., 1e−2}, a
regularization parameter for each view ∈ {1e−6, . . ., 1e−1},
a weight decay parameter (or an L2 regularization parameter)
∈ {1e−6, . . ., 1e−1}, and a trade-off parameter ∈ {1e−6, . . .,
1e−1}. While other parameters determine the learning and
architecture of a general DNN, the trade-off parameter is used
for regularizing correlations with a quadratic penalty, uniquely
associated with DCCA. The Bayesian optimization is iteratively
performed 1,000 times to select reliable parameters. Table 1
shows the optimized hyperparameters obtained in this study for
each dataset using the publicly available MATLAB toolbox for the
DCCA (Wang et al., 2015).

Neural Representation Extraction via
Unsupervised Learning Methods
For the purpose of comparison, we also extracted low-
dimensional representations of neural population firing activity
using several methods, including PCA, FA, and LDS, which
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TABLE 1 | Optimized hyperparameters for DCCA with respect to each dataset.

Hyperparameters CRT SRT

Function of Z # nodes (z) 1024 256

# layers (z) 2 2

RCOV (z) 0.04 0.08

Function of X # nodes (x) 1024 64

# layers (x) 3 3

RCOV (x) 0.04 0.04

Common Batch size (encoder, autoencoder) 256/256 128/128

Batch size (decoder, autoencoder) 64/64 512/512

L2 regularization 6.8e−04 3.7e−04

η 0.01 0.01

λ 0.01 0.02

Hidden layer activator is fixed as a sigmoid function.
η, learning rate; λ, trade-off parameter; RCOV, regularization parameter for
the total layers.

are widely used in intracortical BMIs. Below we describe
each method briefly.

Principal Component Analysis
We applied principal component analysis (PCA) to the FR
data of all neuronal units. A Gaussian kernel smoothing
process was used as preprocessing for FRs before applying
PCA to avoid a case where neurons with highly fluctuating
firing rates influenced decoding (Yu et al., 2009). Then, we
extracted principal components (PCs) of FR using PCA from
the training data. Note that PCA was performed on a single
trial basis rather than trial-averaged data in order to focus on
covariance between neuronal units in single trials. To determine
the number of PCs that would be included in the set of
neural representations, we followed the procedure proposed
by Yu et al. (2009). Briefly, using the eigenvectors obtained
from the training set, we extracted all PCs (i.e., as many as
neuronal units) for the testing set, which were then sorted
according to the magnitude of corresponding eigenvalues in
a descending way. Afterward, we selected the first 5 PCs
and reconstructed FRs from them. The mean absolute error
between true FRs and reconstructed FRs was calculated. We
kept adding the next 5 PCs, reconstructing FRs and calculating
error in the same way as above. As a result, the minimum
reconstruction error was achieved with the first 5 PCs for
both datasets of CRT and SRT (Figure 1D), which constituted
neural representations by PCA, denoted as ZPCA. Note that the
smoothing process was applied again to the final set of PCs
before decoding.

Factor Analysis
A factor analysis (FA) allows us to find low-dimensional latent
factors to elucidate shared variability among the population
activities (Santhanam et al., 2009). Again, we performed the
smoothing to FRs before applying FA. To estimate latent factors
from FRs, we adopted the FA method proposed by Yu et al.,
which adjusted FA for neural data (Yu et al., 2009; Kao et al.,
2015). Then, in a similar way to PCA, we determined the number
of factors included in a set of neural representations using the

reconstruction error of the testing set. We found the minimum
error with 20 factors for both CRT and SRT datasets, which
were further used as the set of neural representations by FA,
denoted as ZFA.

Linear Dynamical System for M1 States
Observed neuronal population activity can be interpreted as
a noisy observation of low-dimensional and dynamical neural
states (Shenoy et al., 2013; Kao et al., 2015). Using the LDS-based
neural state estimation approach proposed by Kao et al. (2015),
we estimated dynamic neural latent states from the population
activity. We determined the dimensionality of neural states using
the procedure above based on reconstruction error. We set the
dimensionality to 20 for both CRT and SRT datasets, with which
the minimum reconstruction error was achieved. A vector of
these neural state was used as neural representations by LDS,
denoted as ZLDS. Note that we used a linear filter [formally called
a neural dynamical filter (NDF)] instead of Kalman filter when
decoding ZLDS because ZLDS already represented latent dynamics
of neural activity such that state estimation of Kalman filter might
not be suitable for it.

Neural Representation Analysis
We first examined Pearson correlations between canonical
variables; ρ(ûZ, ûX) or ρ(ôZ, ôZ). Both canonical variables of
neural FRs (ûZ or ôZ) are supposed to adequately represent
kinematic information because they are highly correlated with
the canonical variables of kinematic parameters (ûX or ôX),
provided that the linear or non-linear mappings of LCCA or
DCCA are appropriately built. To validate this assumption, we
performed a tuning analysis of not only the neural canonical
variables but also other neural representations using a linear
regression model, in which the tuning quality of each neural
representation with respect to velocity and speed was analyzed.
The temporal linear regression model of a single neural
representation (z) to the kinematic parameters (x) was given as
z(t) = β0 + βx(t) + ε(t) where β0 and β denote coefficients
and ε(t) is the error term at time t (Schwartz and Moran,
1999, 2000; Paninski et al., 2003; Rasmussen et al., 2017).
The tuning quality of a neural representation was assessed
by the goodness-of-fit (r2) of the tuning model. In addition
to this, we also computed the decoding performance using
each neural representation in the training data with a linear
Kalman filter. The decoding performance was measured by
the mean absolute error between actual and decoded velocity
from the training data. Finally, we assessed the predictive
performance of each of the five neural representations above
during training using both the goodness-of-fit of the tuning
model and the training error.

Decoding Algorithms
Kalman Filter
A linear Kalman filter (LKF) is one of the popular generative
decoding methods based on the linear dynamical system (Wu
et al., 2006). LKF follows a first-order Markov rule, such that a
state vector (velocity and speed) x

t at time t evolves from xt−1
at time t−1. In this study, the state vector corresponds to the
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kinematic parameter vector. The system model, which describes
the state transition, and the observation model, which describes
the generation of observation ot from xt , are given by

xt = Axt−1 + Qt−1 (9)

ot = Hxt + Vt (10)

where A denotes the system model parameter matrix, H is the
observation model parameter matrix, and Q and V are the
process and observation noise following a Gaussian distribution,
respectively. The neural observation vector ot can be either the
ZE-FR vector (zt) or the vector of the other neural representations.
To predict xt , we initialized x0 = 0 at the beginning of every trial

TABLE 2 | Optimized hyperparameters with respect to the representation pairs for LSTM-RNN (CRT/SRT dataset).

ZE-FR ZPCA ZFA ZLDS ZLCV ZDCV

No. nodes 35/40 15/64 15/64 15/15 15/64 35/64

Mini-batch size 128/16 16/256 16/32 128/64 128/32 128/32

RCOV 0.01/0.01 0.05/1e−03 0.02/0.09 0.08/0.09 0.1/0.1 0.1/0.1

η 6e−03/1e−04 0.01/1e−04 0.01/1e−04 1e−04/1e−04 0.01/1e−04 1e−03/1e−04

η, learning rate; RCOV, regularization parameter; no. hidden layers {1}, gradient decay factor {0.95}, squared gradient decay factor {0.95}, and activation function {logistic
sigmoid} are fixed.

FIGURE 2 | Correlations between canonical variables. (A) Correlations between canonical variables extracted by LCCA (ZLCV and XLCV). (B) Correlations between
canonical variables extracted by DCCA (ZDCV and XDCV). The upward-pointing triangles denote the samples per time step of the canonical variables. ρ denotes the
Pearson’s correlation coefficient and p indicates to exist a significant linear regression relationship between X and Z. Each row corresponds to each dimensionality of
the canonical variables. The orange triangles denote the dataset CRT and the blue triangles represent the dataset SRT.
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after converging the Kalman gain to its steady state in advance
(Dethier et al., 2013).

Long Short-Term Memory in Recurrent Neural
Networks
An LSTM-RNN based on an RNN architecture has been well
suited in predicting kinematics from neuronal activities (Ahmadi
et al., 2019). The components of LSTM-RNN are enumerated as
follows: c is a memory cell, f is a forget gate, and i and o are
input and output gates, which correspond to Rl, where l denotes
the number of hidden units. LSTM-RNN operates by regulating
the information flow with these gates via the cell. Given W as
a matrix of weights with respect to the recurrent connection or
input/output, h as a vector of the hidden layer, and b as a vector
of biases, each gate can be calculated by

ft = σsigmoid(Wf,zyt +Wf,lht−1 + bf) (11)

it = σsigmoid(Wi,zyt +Wi,lht−1 + bi) (12)

ot = σsigmoid(Wo,zyt +Wo,lht−1 + bo) (13)

where the input vector y is either the ZE-FR vector (zt) or the
vector of the other neural representations at time t and σsigmoid(·)
denotes the sigmoidal activation function. The subscripts indicate
the corresponding gates and their recurrent connection. The
information flow of the cell memory can be updated by

cu = σtanh(Wc,zzt +Wc,lht−1 + bc) (14)

ct = ft ⊗ ct−1 + it ⊗ cu (15)

ht = ot ⊗ σtanh(ct) (16)

where σtanh(·) denotes the hyperbolic tangent function and ⊗
denotes the element-wise product. To train LSTM-RNN, we
utilized the Adam optimizer built-in MATLAB deep learning
toolbox. The hyperparameters of LSTM-RNN were optimized by
the Bayesian optimizer in the same way as DCCA. The Bayesian
optimizer performed an objective function evaluation 500 times.
In our analysis, we set the gradient decay factor as 0.95 and the
squared gradient decay factor as 0.99. Then, the training batches
were shuffled at every epoch for the training efficiency. Table 2
shows the optimized hyperparameters for LSTM-RNN.

Decoding Performance Evaluation
To evaluate the effects of CCA on decoding, we composed three
representations of neuronal activities: ZE-FR, ZPCA, ZFA, ZLDS,
ZLCV, and ZDCV (see Figure 1C). In this study, we performed
decoding to predict the hand velocity XVEL from each neural
representation using LKF and LSTM-RNN.

For the evaluation of the decoding performance, we measured
the decoding error by the Euclidean distance between the actual
and predicted kinematic parameters. The decoding error was
measured for the hand velocity v and hand position p, which
were reconstructed from the cumulated velocity for each trial.
The decoding error of the i-th trial was calculated as

ei =
1
n

n∑
t=1

e(t) (17)

where e(t) is an absolute instantaneous error, e (t) = |v (t)−
v̂ (t) | or e (t) = |p (t)− p̂ (t) | at time t, and n is the number of
samples in the i-th trial. To compare the decoding performance
between the neural representations (ZE-FR, ZPCA, ZFA, ZLDS,
ZLCV, and ZDCV), we applied the Friedman test to evaluate the
effects of decoder inputs in accordance with the types of decoders
(LKF and LSTM-RNN). For the Friedman test, the dependent
variables consist of a decoding error, and the factors include the
decoder input and decoder type. We also performed a post hoc
statistical analysis using the Bonferroni correction (p< 0.05).

FIGURE 3 | Estimation of neural representations by linear velocity tuning
models (testing data). Single traces of the actual neural representations over
time in each trial of the test data (gray lines) are superimposed by the
corresponding estimates by the linear velocity tuning model (red lines). Here,
we present the representative traces of neural representations that were most
accurately estimated by the linear velocity tuning models yielding the highest
r2, where r2 denotes the goodness-of-fit of the linear velocity tuning model.
The top row indicates the estimation of ZE-FR in each dataset (CRT and SRT).
From the second to fourth rows are the estimations of ZPCA, ZFA, and ZLDS in
each dataset. The bottom two rows denote the estimation of ZLCV and ZDCV.
Column (A) and (B) correspond to dataset CRT and SRT, respectively.
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RESULTS

First, we investigated correlations between the neural and
kinematic canonical variables. Figure 2 depicts correlations
between the canonical variables, each extracted from firing rates
(Z) and kinematics (X), respectively. The canonical variables were
obtained from the testing set either by using LCCA or DCCA.
Correlations were calculated between the corresponding pairs of
neural and kinematic canonical variables, where a total of three
pairs were determined by the number of kinematic parameters.
DCCA resulted in higher correlations than LCCA for every
dataset: the correlation coefficients for the dataset CRT ranged
from 0.93 to 0.95 using DCCA and from 0.84 to 0.90 using LCCA
(p< 0.01, Wilcoxon rank sum test), and those for the dataset SRT
ranged from 0.81 to 0.89 using DCCA and from 0.71 to 0.86 using
LCCA (p< 0.01, Wilcoxon rank sum test).

Next, we examined the tuning of neuronal FRs and neural
representations (ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV)

concerning kinematic parameters (XVEL) using the testing set.
The quality of tuning was measured by the r2 of the linear
regression model with XVEL as the regressors (see Section “Neural
Representation Analysis”).

Figure 3 shows the examples of the actual values of ZE-FR,
ZLCV, and ZDCV and the estimated values by the linear velocity
tuning model. For ZE-FR, we selected the neuron whose FRs
was most accurately estimated by the model (i.e., the highest
value of r2). Among the neural representations analyzed here,
the linear model tracked the variation of ZDCV most accurately
yielding the highest r2 (Friedman test, Bonferroni correction,
p < 0.05). Notably, the linear model can estimate even time-
invariant parts of ZDCV (see the bottom row of Figure 3), which
often spanned over multiple trials, even though XVEL varied
during these periods.

Figures 4A,B depict the distributions of r2 for ZE-FR, ZLCV,
and ZDCV in the datasets CRT and SRT, respectively. The mean
values of r2 for ZDCV (0.93 in the dataset CRT and 0.74 in the

FIGURE 4 | Velocity tuning properties of neuronal canonical variables estimated by the neural representations. (A,B) The points denote the linear velocity tuning
quality (r2) for all dimensions of the input variables (ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV). The red horizontal line denotes the averaged r2 of all dimensions. Black
left-pointing pointer denotes a 95% confidence level of each neural representation’s r2. (C,D) Each panel depicts the topographical map of the input variable to the
kinematic variables, such as velocity (v). In this case, each panel corresponds to the best-tuned dimensionality showing high r2.
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dataset SRT) and ZLCV (0.85 in the dataset CRT and 0.67 in the
dataset SRT) were considerably higher than those for ZPCA (0.40
in the dataset CRT and 0.30 in the dataset SRT), ZFA (0.17 in the
dataset CRT and 0.13 in the dataset SRT), and ZLDS (0.14 in the
dataset CRT and 0.17 in the dataset SRT) (Friedman test, multiple
comparison with Bonferroni correction, p < 0.05). Moreover,
the neural canonical variables found by DCCA (ZDCV) was
more tuned to velocity than those by LCCA (ZLCV) (Wilcoxon
rank sum test: p = 0.02 in the dataset CRT, p = 0.04 in the
dataset SRT). Moreover, the neural canonical variables found by
DCCA (ZDCV) was more tuned to velocity than those by LCCA
(ZLCV). Figures 4C,D depict the topographical maps of the neural
canonical variables showing high r2 in the 2D velocity space.
Although ZLCV and ZDCV were created to maximize correlations
with the canonical variables of kinematics, not kinematics per se,
they showed tuning with the actual velocity.

We then examined both the training error and average r2

of each neural representation, as shown in Figure 5. It reveals
that ZDCV yielded not only the highest r2 but also the lowest
training error (0.09 in the dataset CRT, 0.12 in the dataset SRT).
Although we also observed relatively low training error using
neural representations of FA and LDS, the average r2 of them
were not high compared to those of CCA.

The decoding performance was evaluated for each
combination of neural representations and decoders (see
Figure 1). Figure 6 depicts the true and decoded velocity
trajectories for each combination. The results show that
decoding ZDCV produced the most accurate prediction of
velocity (Friedman test with Bonferroni correction, p < 0.05.
See Tables 3, 4). Figure 7 depicts the true and reconstructed
position trajectories in the dataset CRT. When decoding ZE-FR
and ZLCV, LSTM-RNN reconstructed the hand position more
accurately than LKF. However, when decoding ZDCV, there
was no apparent difference between the decoders. ZDCV also
led to the smallest variance of the reconstructed trajectories
[variance, ZE-FR: x-pos = 0.83, y-pos = 0.82; ZPCA: x-pos = 1.00,
y-pos = 1.01; ZFA: x-pos = 0.83, y-pos = 0.80; ZLDS (NDF):
x-pos = 0.71, y-pos = 0.74; ZLCV: x-pos = 0.74, y-pos = 0.80;
ZDCV: x-pos = 0.61, y-pos = 0.62 when using LKF, whereas ZE-FR:
x-pos = 0.87, y-pos = 0.77; ZPCA: x-pos = 0.75, y-pos = 0.79; ZFA:
x-pos = 0.70, y-pos = 0.65; ZLDS: x-pos = 0.78, y-pos = 0.77; ZLCV:
x-pos = 0.60, y-pos = 0.60; ZDCV: x-pos = 0.53, y-pos = 0.53 when
using LSTM-RNN in the dataset CRT]. Decoding ZDCV yielded
the best performance of reconstructing the hand position using
either LKF or LSTM-RNN (Friedman test, multiple comparison
with Bonferroni correction, p < 0.05. See Tables 3, 4). The
standard deviations (STDs) of the actual velocity and position
in the dataset CRT are X = 0.24 and Y = 0.26 for velocity and
X = 1.82, and Y = 1.76 for position, and those in the dataset
SRT are X = 0.21 and Y = 0.20 for velocity and X = 1.66 and
Y = 1.52 for position. For LKF, the decoding error is less than
the STDs of the X- and Y-axes of the actual velocity by 5.7 and
4.2% on overage, respectively. Moreover, the decoding error is
less than the STDs of the actual position by 72.1 and 69.1%. For
LSTM-RNN, the decoding error is less than the STDs of the
actual velocity by 5.7 and 4.6%, and the decoding error is less
than those of the actual position by 72.3 and 70.0%.

FIGURE 5 | The relationship between training error and average r2 of
velocity-tuning for each dimensionality of the neural representations. Each
colored circle corresponds to the mean of r2 and training error for a neural
representation (ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV). The (A) top and (B)
bottom panel correspond to the datasets CRT and SRT.

Figure 8A depicts the comparison of the decoding error
for the hand velocity across different neural representations
and decoders. For the dataset CRT, the one-way Friedman test
revealed the main effect of neural representation (ZFR, ZPCA, ZFA,
ZLDS, ZLCV, and ZDCV) on the decoding error when using LKF
(χ2 = 166.6, p < 0.01) or when using LSTM-RNN (χ2 = 128.1,
p < 0.01). When using LKF, a post hoc multiple comparison
test with Bonferroni correction showed lower decoding error
with ZDCV than other neural representations (ps < 0.01)
except for ZLDS (p = 0.25). When using LSTM-RNN, it also
showed lower decoding error with ZDCV than other neural
representations (ps < 0.01). For the dataset SRT, the Friedman
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FIGURE 6 | Decoded velocity trajectory from each pair of the variables (testing data). Each column denotes the decoded (X- and Y-axis) velocity trajectories
according to the predictors: ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV. The solid gray lines denote the actual velocity, and the solid red and blue lines depict the
outputs of linear model and LSTM-RNN, respectively. For linear model, LKF was used for ZE-FR, ZPCA, ZFA, ZLCV, and ZDCV, whereas NDF (linear filter) was used for
ZLDS. The vertical gray lines denote boundary between trial intervals for the reaching. The top (A) and bottom (B) panel correspond to the datasets CRT and SRT.

TABLE 3 | Correlation coefficients of the decoded velocity (datasets CRT and SRT).

LKF ZE-FR ZPCA ZFA ZLDS* ZLCV ZDCV

CRT

X 0.64 ± 0.25 0.38 ± 0.30 0.72 ± 0.27 0.82 ± 0.21 0.73 ± 0.28 0.77 ± 0.33

Y 0.69 ± 0.18 0.62 ± 0.26 0.71 ± 0.20 0.84 ± 0.13 0.75 ± 0.18 0.84 ± 0.18

SRT

X 0.58 ± 0.29 0.60 ± 0.40 0.66 ± 0.31 0.76 ± 0.24 0.66 ± 0.31 0.71 ± 0.31

Y 0.54 ± 0.29 0.51 ± 0.35 0.62 ± 0.31 0.59 ± 0.28 0.62 ± 0.32 0.64 ± 0.32

LSTM-RNN ZE-FR ZPCA ZFA ZLDS ZLCV ZDCV

CRT

X 0.74 ± 0.26 0.70 ± 0.29 0.80 ± 0.20 0.82 ± 0.25 0.79 ± 0.32 0.80 ± 0.33

Y 0.81 ± 0.16 0.76 ± 0.22 0.83 ± 0.14 0.87 ± 0.14 0.87 ± 0.15 0.91 ± 0.11

SRT

X 0.72 ± 0.31 0.74 ± 0.35 0.79 ± 0.27 0.78 ± 0.31 0.78 ± 0.28 0.79 ± 0.27

Y 0.69 ± 0.28 0.72 ± 0.31 0.73 ± 0.29 0.69 ± 0.36 0.75 ± 0.26 0.75 ± 0.28

Decoding error of ZLDS* corresponds to that of the NDF.

test revealed the main effect of neural representation on the
decoding error when using LKF (χ2 = 75.8, p < 0.01) or
when using LSTM-RNN (χ2 = 25.7, p < 0.01). When using
LKF, the post hoc test showed lower decoding error with
ZDCV than other neural representations (ps < 0.01) except
for ZLDS (p ∼= 1). When using LSTM-RNN, it showed lower
decoding error with ZDCV than ZE-FR (p < 0.01) only, while

showing no difference between ZDCV and other representations
(ps> 0.05).

Figure 8B depicts the comparison of the error between true
and reconstructed hand positions. For the dataset CRT, the
Friedman test revealed the main effect of neural representation
on the position error when using LKF (χ2 = 71.9, p < 0.01)
or when using LSTM-RNN (χ2 = 80.7, p < 0.01). When using
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TABLE 4 | Velocity and position decoding errors (datasets CRT/SRT).

LKF ZE-FR ZPCA ZFA ZLDS* ZLCV ZDCV

Velocity (cm/s)

CRT 0.21 ± 0.04 0.28 ± 0.07 0.21 ± 0.04 0.16 ± 0.05 0.19 ± 0.04 0.13 ± 0.03

SRT 0.16 ± 0.05 0.17 ± 0.05 0.16 ± 0.04 0.15 ± 0.04 0.16 ± 0.05 0.15 ± 0.05

Position (cm)

CRT 0.97 ± 0.36 1.20 ± 0.44 0.99 ± 0.34 0.91 ± 0.55 0.87 ± 0.32 0.57 ± 0.24

SRT 0.95 ± 0.60 1.01 ± 0.53 0.94 ± 0.43 0.90 ± 0.53 0.93 ± 0.48 0.83 ± 0.45

LSTM-RNN ZE-FR ZPCA ZFA ZLDS ZLCV ZDCV

Velocity (cm/s)

CRT 0.18 ± 0.05 0.19 ± 0.05 0.16 ± 0.04 0.14 ± 0.05 0.13 ± 0.03 0.10 ± 0.02

SRT 0.14 ± 0.04 0.13 ± 0.04 0.12 ± 0.04 0.14 ± 0.06 0.12 ± 0.04 0.12 ± 0.05

Position (cm)

CRT 1.15 ± 0.53 1.07 ± 0.43 0.92 ± 0.34 0.93 ± 0.50 0.65 ± 0.32 0.51 ± 0.22

SRT 0.86 ± 0.48 0.88 ± 0.52 0.78 ± 0.41 1.01 ± 0.60 0.82 ± 0.46 0.79 ± 0.46

Decoding error of ZLDS* corresponds to that of the NDF.

LKF, the post hoc test showed lower error with ZDCV than neural
representations (ps < 0.01). When using LSTM-RNN, it showed
lower error with ZDCV than other neural representations except
for ZLCV (p = 0.53). For the dataset SRT, the Friedman test
revealed the main effect of the neural representation on the
position error when using LKF (χ2 = 33.1, p < 0.01) or when
using LSTM-RNN (χ2 = 13.6, p < 0.01). When using LKF, the
post hoc test showed lower error with ZDCV than other neural
representations except for ZLDS (p = 0.06). When using LSTM-
RNN, it showed lower error with ZDCV than ZLDS (p < 0.01),
whereas there was no difference between ZDCV and others.

Moreover, we evaluated the possible interaction effects of
neural representations and decoder types using a two-way
Friedman test (Figure 9). For the dataset CRT, the two-way
Friedman test revealed the main effects of decoder [χ2(1) = 116.9,
p < 0.01] and neural representation [χ2(2) = 261.9, p < 0.01]
on the velocity decoding error (Figure 9A). The post hoc test
with Bonferroni correction showed lower error using LSTM-
RNN than using LKF for all neural representations (p < 0.01).
For all decoders, the decoding error of velocity with ZDCV was
smaller than any other neural representations (ps< 0.01). For the
dataset SRT, the two-way Friedman test revealed the main effect
of decoder [χ2(1) = 175.4, p < 0.01] and neural representation
[χ2(2) = 59.0, p < 0.01]. The post hoc test showed lower error
using LSTM-RNN than using LKF (p < 0.01). For all decoders,
the decoding error of velocity with ZDCV was smaller than ZE-FR
and ZPCA (ps< 0.01).

Figure 9B depicts the same two-way statistical analysis on the
error between true and reconstructed hand positions. For the
dataset CRT, the two-way Friedman test revealed the main effects
of decoder [χ2(1) = 4.4, p < 0.05] and neural representation
[χ2(2) = 143.1, p < 0.01] on the position error. The post hoc
test showed no difference between decoders (p = 0.3). For all
decoders, the position error with ZDCV was smaller than any
other neural representations (ps < 0.01). For the dataset SRT,
it showed the main effects of decoder [χ2(1) = 14.3, p < 0.01]
and neural representation [χ2(2) = 28.2, p < 0.01]. The post hoc

test showed no difference between decoders (p = 0.1). For all
decoders, the position error with ZDCV was smaller than any
other neural representations (ps< 0.05).

DISCUSSION

In this study, we proposed a method to identify low-dimensional
representations of M1 neuronal FR activities using canonical
correlation analyses. Furthermore, we applied those canonical
variables to the decoding models to predict the arm movements
of non-human primates and compared the effect of the
neural representations in terms of decoding performance. As
expected, we confirmed that the canonical variables found by
DCCA were well tuned to the hand velocity. Decoding arm
movement information using canonical variables estimated by
DCCA resulted in a superior performance to either cases using
LCCA-estimated canonical variables or using the other neural
representations regardless of the decoder type, i.e., LKF or LSTM-
RNN. In particular, the performance of LKF was significantly
more improved using DCCA than decoding FRs using LSTM-
RNN. These findings suggest that we can design a simple linear
decoder (LKF) with DCCA while achieving performance as good
as using relatively complex DNNs.

The improvement of decoding M1 activities using LCCA
or DCCA may be partly because canonical variables found
by them showed superior tuning to velocity over the other
neural representations, including individual neuronal FRs
(Figure 3). Therefore, the LKF, drawing heavily on the quality
of observation models, can benefit from the extracted canonical
variables even when LCCA greatly reduced the number of
neural variables. Particularly, DCCA-estimated neural canonical
variables showed better tuning indices (r2) than LCCA-estimated
neural canonical variables, which subsequently led to a better
decoding performance of DCCA. Meanwhile, training error that
directly reflects the learning quality of the decoding model
revealed superior over the other neural representations along
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FIGURE 7 | Reconstructed position trajectory in the dataset CRT (testing
data). Each panel denotes the reconstructed position trajectories according to
the predictors: ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV. Solid gray lines
denote the true position trajectories, red lines denote the position trajectories
reconstructed from the output of linear model, and blue lines denote the
position trajectories from the output of LSTM-RNN. For linear model, LKF was
used for ZE-FR, ZPCA, ZFA, ZLCV, and ZDCV, whereas NDF (linear filter) was
used for ZLDS. The filled yellow circle denotes the home position (0, 0) from
which non-human primates started to move their hands. Solid lines denote
the averaged position trajectories across the trials, and shaded lines denote
the standard errors across 44 trials with respect to each direction.

with r2. This finding indicates that non-linear projections may be
more suitable to extract joint canonical variables between high-
dimensional neural activities and low-dimensional kinematic
parameters. However, DCCA cannot provide direct links between
canonical variables and individual neurons, which LCCA can do.

Besides better characteristics of the canonical variables, there
could be another reason why DCCA improved decoding using
LKF while the other neural representations did not. PCA
is known to have difficulty distinguishing between changes
in the underlying neural state, which becomes limitations to

decoding kinematic information from noisy firing activity (Yu
et al., 2009). Although FA also is a useful frame to extract
independent and shared variability across neurons, it follows
the assumption that the noise variance of an individual neuron
is fixed over time (Yu et al., 2009). Above all, since these
approaches (including LDS) aim to extract the latent states of
population activity without kinematic information, it is difficult
to extract elaborate components related to complex movement.
This could be a reasonable reason why DCCA yielded a better
performance on decoding models than the neural representations
via unsupervised learning methods.

As for decoding methods, a DNN, represented by LSTM-
RNN here, efficiently decoded neuronal population firing
patterns because it can effectively process neuronal temporal
dynamics through memory cells in a relatively concise network
architecture. Furthermore, a state-space model, such as LKF,
shows an advantage of representing temporal dynamics of
kinematics in its system model, but its first-order linear system
model may not be sufficient to elucidate the kinematic dynamics
of arm movements. In addition, a direct decoding model, such
as LSTM-RNN, can be free from any statistical assumption on
data, which is often necessary in a generative model, such as
LKF. Our results showing the superior performance of LSTM-
RNN over LKF are in line with those of previous reports
(e.g., Ahmadi et al., 2019).

In addition to direct mapping to velocity through the
decoders, a more straightforward linear mapping could be
taken into account; for example, we can simply reconstruct
velocity from the canonical kinematic representations (XLCV or
XDCV), which were estimated from the corresponding neural
representations (ZLCV or ZDCV). To test whether how this simple
mapping worked, we attempted to reconstruct velocity only
through LCCA and DCCA without explicit decoders as follows.
First, we estimated XLCV (or XDCV) from ZLCV (or ZDCV) by
linear regression such as

Xk = α0 + α1Zk + e (18)

where Xk and Zk represent the k-th canonical variable,
respectively, e represents residual error and α0 and α1 are
canonical coefficients. Second, we reconstructed velocity from
the estimated XLCV (or XDCV) during testing. For LCCA,
the reconstruction of velocity was straightforward simply by
inverting linear mapping between XLCV and velocity. For DCCA,
velocity was reconstructed by the inverse of activation function
(here, a logit function) and the linear model between the layers,
which was expressed as:

− log
((

βl,l−1XW
−1
l − 1

)−1
)

(19)

where βl,l−1 represents coefficients between the outputs of layer
l and l−1, and W l is a matrix of the weight in l-th layer. We
observed that the reconstructed velocity with this procedure
exhibited lower performance than directly decoding Z (ZLCV or
ZDCV) into velocity using LKF by 9.9% on average (11.4% for
LCCA, and 8.3% for DCCA). Apparently, this analysis verified
that direct reconstruction of velocity through mappings built
by CCA was poorer than those from the proposed decoding
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FIGURE 8 | Comparison of the decoding error for the velocity between the neural representations for each decoder. The mean error of decoding the hand velocity
(A) and reconstructing the hand position (B) from decoded velocity [from six different neural representations (i.e., ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV)] (see the
text for the descriptions of neural representations) using decoders [linear model (orange), and LSTM-RNN (purple)]. For linear model, LKF was used for ZE-FR, ZPCA,
ZFA, ZLCV, and ZDCV, whereas NDF (linear filter) was used for ZLDS. The vertical lines indicate the standard error, and the asterisks denote the significantly different
relationship [∗p < 0.05, ∗∗p < 0.01, Friedman test with the multiple comparisons (with Bonferroni correction)]. The left and right columns correspond to the dataset
CRT and SRT, respectively.

methods to predict velocity from neural representations using
LKF or LSTM-RNN.

We can expect that the dimensionality of neuronal
populations will increase further as the neurotechnology of
large-scale neuronal recordings advances in the near future.
Such a development will raise an issue of how efficiently we
should design a decoder for intracortical BMIs. Our results
suggest that DCCA, along with other dimensionality reduction
techniques, can provide advantages to construct a compact
but informative feature space for effective decoding. Unlike
unsupervised dimensionality reduction techniques without
kinematic information, DCCA can find a low-dimensional space
to maximize correlations with target kinematic parameters,
increasing a chance to improve predicting kinematic parameters
such as velocity from neural activities. It has been well known
that decoding velocity information of a prosthetic device from

neural activity can be useful for BMIs in clinical environments
(Kim et al., 2008; Wodlinger et al., 2015). Therefore, we suggest
that our proposal method can be preferred if one considers the
efficiency and performance of BMIs.

Although this study shows the feasibility of the improvement
of decoding for BMIs using the proposed method, we have
not validated it in an online BMI control paradigm, which
should be conducted in future work. When applying the current
decoding method to online BMIs in humans with tetraplegia,
where the kinematic information of limbs is not available, we
should consider how to extract kinematics of a target prosthetic
device. To address this issue, many previous human BMI studies
employed a training paradigm in which participants imagined
limb movements following the instructed motion of an object
shown on the screen. Then, a decoding algorithm could be
built by associating M1 activities elicited during movement
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FIGURE 9 | Comparison of the decoding error for the velocity and reconstructed position between neural representations for all decoders. The mean error (open
squares) of decoding the hand (A) velocity and (B) position from the six different neural representations (i.e., ZE-FR, ZPCA, ZFA, ZLDS, ZLCV, and ZDCV) (see the text for
descriptions of neural representations) using decoders [linear model (red), and LSTM-RNN (blue)]. For linear model, LKF was used for ZE-FR, ZPCA, ZFA, ZLCV, and
ZDCV, whereas NDF (linear filter) was used for ZLDS. The vertical lines indicate the standard error, and the asterisks denote the significantly different relationship
[∗p < 0.05, ∗∗p < 0.01, a two-way Friedman test with the multiple comparisons (with Bonferroni correction)]. The left and right columns correspond to the dataset
CRT and SRT, respectively.

imagination with the kinematics of the object (Hochberg et al.,
2006; Kim et al., 2008; Aflalo et al., 2015; Jarosiewicz et al., 2015;
Wodlinger et al., 2015). Although there could exist a substantial
gap between the true kinematics and the output of the decoding
algorithm initially built in this way, the BMI performance could
be further increased by repeatedly updating the same decoding
algorithm through “closed-loop” training. Importantly, most
decoding algorithms used in human BMIs have been initially
developed in the preliminary non-human primate studies.
Therefore, we believe that our decoding algorithm based on deep
CCA in non-human primates can benefit human BMIs in a
similar fashion.
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