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Editorial on the Research Topic

Systems Modeling: Approaches and Applications

INTRODUCTION

Systems Biology, a relatively recent discipline relies on computational modeling as one of its
main tools. Ever appearing computational approaches allow us to raise new hypotheses that were
unfeasible to test a few years ago. Given the broad range of applications of systems biology, we
considered necessary to increase the coverage of tools and their applications in several areas, such
as medicine, biotechnology and engineering.

The main goal of the Research Topic (Systems Modeling: Approaches and Applications) was
to provide an overview covering both research articles and reviews. In this regard, the collection
highlights the impact of computational tools and the usefulness of modeling to decipher the inner
workings of biological systems.

Galán-Vásquez and Perez-Rueda evaluated co-expression networks for 17 bacterial organisms
via weighted gene co-expression network analysis and clustered into modules of genes with similar
expression patterns for each species, to determine relevant modules through a hypergeometric
approach based on a set of transcription factors and enzymes for each genome.

Next, Cortés et al., constructed the regulatory and metabolic networks of the bacterium
Acidithiobacillus thiooxidans, using an in silico semi-automatic genome scale approach. The
authors provide an elegant identification of confident connections between both networks
(V-shapes), identifying a sub-network of transcriptional factors (34 regulators) regulating genes
(61 operons) encoding for proteins involved in biomining-related pathways. In contrast, pathways
involved in iron homeostasis and oxidative stress damage are mainly regulated by unique primary
regulators, conferring Licanantay an efficient, and specific metal resistance response.

In the third article, Khatami et al. make an excellent review describing themodels to characterize
Alzheimer’s Disease. In this context, integrative models can be sorted in hypothetical models and
data-driven models. The latter group split into two subgroups: (i) Models that use traditional
statistical methods such as linear models, (ii) Models that take advantage of more advanced
artificial intelligence approaches such as machine learning. The review highlights advancements
of integrative modeling in the field of AD research.
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Medina-Ortiz et al. explored an approach of unsupervised
learning algorithms, and a new methodology designed to find
optimum partitions within highly non-linear datasets that allow
deconvoluting variables and improve performance metrics in
supervised learning classification or regression models. These
algorithms provide an excellent approach to generate predictive
models for highly non-linear datasets; with not significant human
input, which guarantees a higher usability in the biological,
biomedical, and protein engineering community with no specific
knowledge in the machine learning area.

Finally, Tsirvouli et al. show how a relatively large manually
curated logical model can be efficiently enhanced further by
including components highlighted by amulti-omics data analysis
of data from Consensus Molecular Subtypes covering colorectal
cancer; finding that the approach can benefit in silico experiments
on cancer cell lines.

We believe as Editors of this topic, that the original aims have
been fulfilled. We consider that the five articles (four original
and one review), cover diverse descriptions and proposals to
evaluate the modeling to understand the complexity of the
biological systems.Wemust appreciate the works and authors for
their excellent contributions that allow for inspiration for other
professors in the field.
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Biological systems respond to environmental perturbations and to a large diversity of

compounds through gene interactions, and these genetic factors comprise complex

networks. In particular, a wide variety of gene co-expression networks have been

constructed in recent years thanks to the dramatic increase of experimental information

obtained with techniques, such as microarrays and RNA sequencing. These networks

allow the identification of groups of co-expressed genes that can function in the

same process and, in turn, these networks may be related to biological functions of

industrial, medical and academic interest. In this study, gene co-expression networks

for 17 bacterial organisms from the COLOMBOS database were analyzed via weighted

gene co-expression network analysis and clustered into modules of genes with similar

expression patterns for each species. These networks were analyzed to determine

relevant modules through a hypergeometric approach based on a set of transcription

factors and enzymes for each genome. The richest modules were characterized using

PFAM families and KEGG metabolic maps. Additionally, we conducted a Gene Ontology

analysis for enrichment of biological functions. Finally, we identified modules that shared

similarity through all the studied organisms by using comparative genomics.

Keywords: transcription factors, gene expression, metabolism, gene co-expression networks, WGCNA

INTRODUCTION

Organisms are dynamic systems that respond to intracellular and extracellular signals through
the regulated expression of their genes. In recent years, a large number of experiments utilizing
high-throughput technologies, including microarrays and RNA sequencing (RNA-seq), have been
performed to analyze this differential expression, allowing the identification of genes co-expressed
in a particular condition. Recent approaches have shown that there are underlying properties that
can only be explained by studying organisms as complex systems (Kitano, 2002; Trewavas, 2006).
In this context, a systematic analysis to understand the gene expression in a particular genome is
through Gene Co-expression Networks (GCNs), where the networkG= (V, E) is composed of a set
of nodes (V) that represent the genes and a set of edges (E) that indicate significant co-expression
relationships (Stuart et al., 2003; Junker and Schreiber, 2008). These types of networks maintain
the structural properties of real networks, such as scale-free topology, which means that there are
some highly, connected nodes, namely hubs, and a large number of nodes with a small number of
connections (Van Noort et al., 2004; Tsaparas et al., 2006).
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In this regard, different algorithms have been developed
to reconstruct GCNs; in particular, Weighted Gene Co-
expression Network Analysis (WGCNA) allows the construction
of networks by considering not only the co-expression patterns
between two genes but also the overlapping of neighbor genes
(Zhang and Horvath, 2005). Thus, highly correlated genes are
clustered into large modules based on similarities in their
expression profiles. These modules are often enriched for genes
that share similar biological functions (Mueller et al., 2017; van
Dam et al., 2018). WGCNA also compares different GCNs to
identify conserved modules between species or cell types (Yang
et al., 2014; Bakhtiarizadeh et al., 2018; Hosseinkhan et al.,
2018). GCNs have been used to identify genes with similar
expression patterns in a set of samples, allowing the prediction
of gene functions at the genome level, the functional discovery
of unknown genes and their associations with diseases (Carlson
et al., 2006; Emilsson et al., 2008; Amar et al., 2013).

To date, two highly conserved processes between the
organisms have been identified: metabolism and gene regulation
(McAdams et al., 2004; Peregrín-Alvarez et al., 2009). Both
processes are mediated by specific proteins; on one hand,
for metabolism, enzymes catalyze the transformation of one
compound to another. On the other hand, gene expression at the
transcriptional level is regulated by proteins called transcription
factors (TFs). In recent works, a compendium of TF families for
different organisms has been identified; and other studies have
revealed promiscuity of different enzymes related to metabolism.
Therefore, due to the relevance of these two types of protein-
encoding genes, it is important to evaluate how the gene
expression patterns are distributed in functional modules.

In this study, a gene co-expression network for 17 bacterial
organisms from the COLOMBOS database using WGCNA was
identified. To do this, the genes were clustered into modules with
similar expression patterns. These modules were exhaustively
analyzed considering the repertoire of enzymes and TFs,
suggesting that these proteins are involved in similar functional
processes. Additionally, to determine what functional classes
are overrepresented in the respective modules, an enrichment
analysis was conducted. This study provides insights into
how regulatory proteins and metabolic maps are expressed in
different organisms.

MATERIALS AND METHODS

Datasets
The gene expression dataset was obtained from the COLlections
of Microarrays for Bacterial OrganismS (COLOMBOS) dataset
and included gene expression data for 17 different bacterial
organisms with 31,982 genes and 11,224 contrasts (http://
colombos.net/). In brief, COLOMBOS is a compendium of
data obtained from microarray and RNA-seq experiments
performed under different experimental conditions. These data
are further curated and normalized, considering the following
principles: (1) raw intensities are preferred as data source, (2)
no local background or mismatch probe correction procedures
are performed, (3) quantile normalization for high-density
oligonucleotide experiments are performed, and (4) logratios
are created for single-channel data according to the condition

contrast definitions and combined with the dual channel
measurements (Moretto et al., 2016).

Thus, we analyzed with principal components analysis (PCA)
the microarray compendia of each species to identify outlier
samples, i.e., those samples with a substantial difference in
expression value compared with other samples. In a posterior
step, the dataset results were inspected via the goodSamplesgenes
function of the WGCNA R package to inspect data for missing
value, and for genes with zero variance, the genes and samples
identified as good genes and good samples were conserved
(Largfelder and Holvarth, 2008). Finally, the total number of
genes and samples considered for each organismwere: Ban: 5,027
genes and 53 samples; Bce: 5,200 genes and 159 samples; Bsu:
4,176 genes and 762 samples; Bth: 4,763 genes and 217 samples;
Cac: 3,777 genes and 218 samples; Cje: 1,572 samples and 103
samples; Eco: 4,321 samples, and 2,415 samples; Hpy: 1,600 genes
and 83 samples; Lrh: 2,731 genes and 49 samples; Mtu: 4,068
genes and 709 samples; Pae: 5,564 genes and 375 samples; Stm:
4,466 genes and 74 samples; Sfl: 3,786 genes and 23 samples; Sme:
6,218 genes and 270 samples; Spd: 1,884 genes and 40 samples;
Ttj: 2,173 genes and 303 samples; and Ype: 3,730 genes and 22
samples (Table 1). The gene expression dataset for each organism
is provided as Supplementary S1.

Construction of Co-expression Networks
The gene co-expression networks were constructed with the
WGCNA program, which allow network construction, module
detection, gene selection, calculations of topological properties,
and data simulation, among others (Largfelder and Holvarth,
2008). First, the scale-free topology properties of biological
networks were added by calculating the power (β) using the
pickSoftThereshold function, see Table 1 for the β value per
organism. Then, we constructed an adjacency matrix for each
bacterium, using signed correlation networks, where nodes with
negative correlation are considered unconnected; as well as,
the pairwise biweight midcorrelation coefficients between all
genes. This correlation method was considered because it is
more powerful than the Spearman and Pearson correlation
methods (Song et al., 2012; Bakhtiarizadeh et al., 2018). Then,
the adjacency matrix was transformed into a Topological
Overlap Matrix (TOM), where a higher TOM value allowed
identification of gene modules for each pair of genes with strong
interconnectivity. Therefore, it was used signed correlation
networks, pairwise biweight midcorrelation coefficients and
β value.

Finally, the genes were clustered into modules with
similar expression patterns by using the average linkage
hierarchical clustering algorithm (flashClust function) and
the cutreeDynamic function was used to cut the branches of
the resulting dendrogram that results in the generation of gene
modules. To do this, it was used 1-TOM as a distance matrix with
a minimummodule size equal to 20. Therefore, the modules with
highly correlated eigengenes were merged, based on a minimum
height of 0.25 (mergeCloseModules function). Each module
was identified with a color, where the gray color is reserved for
uncorrelated genes (Horvath, 2011) and discarded; whereas the
rest of modules were renamed with a number (Table S1).
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TABLE 1 | Overview of dataset and co-expression modules in this study.

Organism (KEGG ID) No. of

samples*

No. of modules Avg Size/SD ** No. of ORFs/% of

coverage

No. of TFs in

modules

No. of enzymes

in modules

Power β***

B. anthracis strain Ames

(Ban)

53 6 837.83/849.14 5,508/91.27 (5,027) 333 802 12

B. cereus ATCC 14579

(Bce)

159 26 200/230.77 5,366/97.9 (5,200) 339 811 12

B. subtilis 168 (Bsu) 762 38 109.89/67.52 4,220/98.96 (4,176) 285 759 12

B. thetaiotaomicron

VPI-5482 (Bth)

217 12 396.9/356.56 4,816/98.9 (4,763) 223 660 10

C. acetobutylicum ATCC

824 (Cac)

218 7 539.57/529.80 3,778/99.99 (3,777) 254 611 14

C. jejuni NCTC 11168 (Cje) 103 20 78.6/54.1 1,654/95.0 (1,572) 35 413 10

E. coli K-12 MG1655 (Eco) 2,415 58 74.5/60.49 4,600/93.9 (4,321) 335 892 14

H. pylori 26695 (Hpy) 83 8 200/157.18 1,600/100 (1,600) 19 350 9

L. rhamnosus GG (Lrh) 49 11 248.27/210.82 2,944/92.96 (2,731) 188 507 12

M. tuberculosis H37Rv (Mtu) 709 29 140.27/173.83 4,096/99.3 (4,068) 245 751 10

P. aeruginosa PAO1 (Pae) 375 20 278.2/347.78 5,570/99.9 (5,564) 468 1,002 12

S. enterica LT2 (Stm) 74 20 223.3/251.72 4,548/98.2 (4,466) 328 896 9

S. flexneri 301 (Sfl) 23 5 757.2/505.02 4,313/88.0 (3,786) 271 776 12

S. meliloti 1021 (Sme) 270 15 414.53/649.46 6,218/100 (6,218) 372 797 12

S.pneumoniae D39 (Spd) 40 9 209.33/134.51 1,911/98.59 (1,884) 98 414 8

T. thermophilus HB8 (Ttj) 303 11 197.54/166.66 2,173/100 (2,173) 92 523 12

Y. pestis C092 (Ype) 22 11 339.09/160.73 3,979/94.39 (3,756) 238 739 14

For each species, we show the final number of experiments analyzed after PCA*, the total number of modules identified, the average size of the modules**, the coverage of genes included

in the modules in relation to the total number of ORFs, the total of TFs and enzymes, and the lowest possible power term where topology approximates fits a scale-free network***.

FIGURE 1 | Bacteria co-expression modules. On the x-axis are shown the modules identified with the WGCNA package, identified with a number. The distribution of

modules is represented in decreasing order, where the y-axis represents the number of genes per module. Each module is made up of a set of genes associated with

TFs (orange), metabolic enzymes (blue), and unclassified genes (green).
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FIGURE 2 | Enrichment of TFs and metabolic enzymes. Modules with a –log10 (P-value) >1.5 (corresponding to a P-value <0.05) were selected as enriched and are

indicated by an arrow on the bar. The red bars represent modules enriched with TF families, and the orange bars represent modules enriched with enzymes.

To perform an analysis of hubs on the modules of interest,
these were exported using the exportNetworkToCytoscape
function and we selected the 100 most highly correlated genes
for each module. The hubs were defined as the most highly
connected nodes within the module, so we calculated the degree
of connectivity for each node (K), which is defined as the
number of edges adjacent to each node (Junker and Schreiber,
2008) (Figure S1). A general version of all scripts were included
in Supplementary S2.

Distribution of TFs and Enzymes
For each genome, we associated the Enzyme Commission
number (E.C. number) using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (Kanehisa and Goto, 2000).
Then, each enzyme with an E.C. number was associated with

its respective metabolic map. In a similar manner, for TFs we
used the compendium of TFs predicted by Rivera-Gómez et al.
(2017); assigned from the hiddenMarkovmodel (HMM) profiles.
To determine the abundance and distribution of each dataset, an
incidence rate of the genome and a heatmap for each genome
were determined.

Enrichment Analysis
To evaluate the functional association between the modules and
TFs and enzymes, an enrichment analysis using a hypergeometric
test was conducted. The resulting distribution thus describes the
probability of finding x domains associated with a particular
category in a list of interest k, from a set ofN domains containing
m domains that are associated with the same category. We set
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FIGURE 3 | TF families identified as frequent in the enriched modules. Z-score

hierarchical clustering based on Euclidean distance measure and Ward’s

method for linkage analysis. Each row represents the PFAM and each column

represents the most enriched module for that bacterial species.

statistical significance at a P-value of <0.05. All analyses were
performed in Python (https://www.python.org/).

Similarity Analysis
To determine the similarity degree between the different enriched
modules, orthologous proteins between each pair of genomes
were identified. Orthologs were accepted if they had an e-value
<1e-6, sequence identity >30%, and alignment length >60% of
the individual proteins. Then, the Jaccard index was calculated
for each pair of modules, which is defined as the size of the
intersection that represents the orthologs between each pair of
modules of two organisms, divided by the union size of the
sample sets.

Functional Annotation Analysis
To identify the biological process in each module, we used
the Database for Annotation, Visualization and Integrated
Discovery (DAVID; http://david.abcc.ncifcrf.gov/), which is a
gene functional classification system that integrates a set of
functional annotation tools (Huang et al., 2009).

RESULTS AND DISCUSSION

Construction of Gene Co-expression
Networks
In order to determine which genes share similar co-expression
patterns in bacteria, a set of co-expression networks was inferred
for 17 different bacteria with WGCNA R package (Largfelder
and Holvarth, 2008), based on the information deposited in the
COLOMBOS database (Moretto et al., 2016). We considered
signed networks, because this method takes into account the sign
of the underlying correlation coefficient and it has been shown
that these networks can identify modules with more significant
enrichment of functional groups (Medina and Lubovac-Pilav,
2016; Liu et al., 2018). Based on this approach, the reconstructed
co-expression networks had a coverage of around 90% of the
predicted open reading frames (ORFs) for each of the bacteria
analyzed. In addition, modules inferred showing different sizes,
for instance, Escherichia coli (Eco) contains the highest number
ofmodules with 58, while for Shigella flexneri (Sfl) only 5modules
were identified (see Figure 1 and Table S1 and Figure S2).

It has been described that, i.e., more samples usually lead to
more robust and refined results (Horvath, 2011). However, in
the case of the dataset used in our study, the number of samples
did not reflect the number of Gene Expression Omnibus (GEO)
series used for each bacterium, and this would have influenced
the number of modules identified for each organism, as in the
case of Bacillus anthracis strain Ames (Ban), for which the
samples belonged to 4 GEO series, or Helicobacter pylori 26695
(Hpy), for which the samples belonged to 8 GEO series, while
Salmonella enterica LT2 (Stm) samples came from 16 GEO series.

Highly Enriched Modules in TFs and
Metabolism Terms
Two processes highly conserved between all the organisms are
metabolism and gene regulation, which are mediated by enzymes
that catalyze metabolic reactions and by DNA-binding TFs,
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respectively (Browning and Busby, 2004; Peregrín-Alvarez et al.,
2009). In order to identify if metabolism and regulation-related
genes share similar co-expression patterns, their distributions
into the modules were mapped. Therefore, a collection of TFs,
which were identified by homology from a dataset compendium
of TFs previously characterized together with family-specific
HMM profiles, as well as a compendium of metabolic enzymes
of the KEGG repertoire for each one of the 17 bacteria, was used
to integrate the information for the inferred modules.

We found that both enzymes and TFs are distributed in
almost every co-expression module. This finding is consistent
with previous works onmodules of co-expression of E. coli, where
TFs are distributed in all the modules, which allows them to be
regulated (Sastry et al., 2019). However, there are modules that
have a greater proportion of TFs or enzymes, and this leads us to
think that somemodules may be more relevant than others in the
context of gene regulation or metabolism (Figure 1).

To identify relevant modules that consider those regulatory
mechanisms and metabolism, an analysis of enrichment was
carried out by using a hypergeometric test with the set of TFs
and the enzymes associated with metabolism for each of the
modules (Figure 2 and Figure S3). From this analysis, we found
that most bacteria have an average 2 modules enriched with TFs,
with the exception of E. coli K-12 MG1655 (Eco), which has 11
modules enriched, and S. enterica LT2 (Stm), which does not
contain modules enriched with TFs. On the other hand, bacteria
contain an average of 4 modules enriched for metabolic enzymes;
where E. coli is the only species with more modules, with 17. In
contrast, Yersinia pestis (Ype) does not contain modules enriched
with metabolic enzymes.

The most enriched modules with TFs contain on average
27% of the predicted genes with this function. Meanwhile, the
modules enriched with metabolic enzymes contain on average
19% genes predicted to be related to metabolism in each
organism. Specifically, B. anthracis strain Ames (Ban), H. pylori
26695 (Hpy), and S. flexneri 301 (Sfl) contain around 50% of
all predicted TFs. In the same way, Bacteroides thetaiotaomicron
VPI-5482 (Bth), Clostridium acetobutylicum ATCC824 (Cac),
Lactobacillus rhamnosus GG (Lrh), and Sinorhizobium meliloti
(Sme) modules contain around 30% of the genes associated with
metabolic enzymes.

Based on the modules identified, diverse and interesting
findings emerged, such as the fact that there is at least onemodule
with a high percentage of TFs and enzymes, and this led us
to evaluate if the richer modules also have a preference for a
particular TF family or metabolic maps.

TFs and Metabolism Terms More Abundant
The TFs of each of the highest enrichment modules were
classified using the families described in the PFAM database,
and the z-scores of the frequency of the families were
clustered hierarchically based on Euclidean distance measure
and Ward’s method for linkage analysis. We determined that
the families most frequently present in these modules belong
to Response_reg, LysR (HTH_1), Cro-C1 (HTH_3), TetR_N,
and GntR (Figure 3), and these findings are in agreement with

previous results for families more abundant in bacteria (Perez-
Rueda et al., 2018).

In this regard, the Response_reg family is related to the two-
component systems of bacteria, in which a signal is received
from a sensor protein (i.e., the two components). This family
of regulators allows the organism to adapt to a wide range of
environments, stressors, and growth conditions (Skerker et al.,
2005). Another family identified in the modules corresponds
to TetR_N, which was one of the most abundant within our
study; it is involved in regulating antibiotic resistance, catabolic
pathways, biosynthesis of antibiotics, osmotic stress response and
pathogenicity. These regulators typically function as repressors
(Ramos et al., 2005; Cuthbertson and Nodwell, 2013).

Other families of regulators identified as abundant in the
modules were LysR (HTH_1), a family of TFs involved in
the regulation of a wide variety of processes that includes the
regulation of amino acid biosynthesis and catabolism, stress
responses and cell detoxification (Maddocks and Oyston, 2008);
and Cro-C1 (HTH_3), which is part of the binary switch that
regulates lytic/lysogenic growth of phages by differential binding
to the operator sites (Steinmetzer et al., 2002).

In Bacillus subtilis 168 (Bsu) and Campylobacter jejuni NCTC
11168 (Cje), the abundant families are HxlR, which includes
activators involved in the detoxification of formaldehyde, and
MerR_1, which responds to environmental stimuli, such as
heavy metals, oxidative stress or antibiotics and a subgroup of
transcription activators that respond to metal ions (Brown et al.,
2003). Meanwhile, in B. thetaiotaomicron VPI-5482 (Bth) the
most abundant families are HTH_18, which is related to the
arabinose operon regulatory protein AraC (Gallegos et al., 1993),
and Reg_prop, which is part of a hybrid two-component system
and are a key part of this species’ ability to sense and degrade
complex carbohydrates in the gut (Lowe et al., 2012).

In the same context, the metabolic enzymes were classified
according to the KEGG maps, and the z-scores of the frequency
of each metabolic map were clustered, similar to our groupings
for TF families. In general, we identified that the central
metabolism pathways that includes glycolysis/gluconeogenesis,
the citrate cycle (TCA cycle) and pyruvate metabolism are
expressed independently of the experimental conditions
analyzed, similar to the case for nucleotide metabolism. Another
conserved cluster is related to carbohydrate metabolism
and includes amino sugar and nucleotide sugar metabolism,
starch and sucrose metabolism, galactose metabolism, fructose
and mannose metabolism and pentose and glucuronate
interconversions (Figure 4).

In Figure 4, there are well-defined clusters, such as the
one in B. anthracis str. Ames (Ban) that contains maps
belonging to xenobiotic biodegradation and metabolism of
xenobiotics by cytochrome P450 and to drug metabolism by
cytochrome P450, which is mediated by a class II P450 system
in this organism (De Mot and Parre, 2002). In addition,
in Mycobacterium tuberculosis H37Rv (Mtu) we identified
maps related to glycerolipid metabolism, which is used to
generate glycerols from the host’s fatty acids, the vitamin
B6 metabolic pathway, which is essential for survival and
virulence (Dick et al., 2010), and a nitrogen metabolic pathway
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FIGURE 4 | Metabolic maps more frequent in the enriched modules. Z-score hierarchical clustering based on Euclidean distance measure and Ward’s method for

linkage analysis. Each row represents a metabolic map (KEGG), and each column represents the most enriched module, with E.C. numbers for each species.
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that is essential for growth and virulence of this bacterium
(Gouzy et al., 2014).

In summary, we identified diverse families of TFs and
metabolic maps common to all modules in the organisms
analyzed, suggesting that common regulatory processes
governing a large diversity of metabolic genes expressed under
different conditions, and by consequence the global response
could be similar even when the organisms employ a diverse
repertoire of genes, i.e., not homologous genes. This led us to
evaluate the similarity between these modules.

Metabolism and Similar Regulation
To determine the organisms with similar regulation, we
calculated the Jaccard index between each pair of modules
enriched with TFs, using the number of orthologs shared
between each pair of organisms, additionally each module was
analyzed by means of Gene Ontology using DAVID (Huang
et al., 2009). The Jaccard index matrix was used to build a
circos plot (Figure 5A), showing similar modules between S.
flexneri 301 (Sfl), B. anthracis (Ban), and Y. pestis C092 (Ype),
which are characterized as having genes related to biosynthetic
process, regulation of cellular process and regulation of primary
metabolic processes.

The second group contains Pseudomonas aeruginosa PAO1
(Pae), B. thetaiotaomicronVPI-5482 (Bth),M. tuberculosisH37Rv
(Mtu), Thermus thermophilus HB8 (Ttj), C. acetobutylicum
ATCC824 (Cac), E. coli K-12 MG1655 (Eco), which include gene
related to regulation of cellular and metabolic process, single-
organism localization and cellular process and regulation of
metabolic process. Finally, the third group consists of Bacillus
cereus ATCC14579 (Bce), H. pylori 26695 (Hpy), C. jejuni
NCTC 11168 (Cje), B. subtilis 168 (Bsu), L. rhamnosus GG
(Lrh), Streptococcus pneumoniae D39 (Spd), S. meliloti 1021

(Sme), which have gene related to regulation of cellular process,
single-organism metabolic process and nitrogen compound
metabolic process.

On the other hand, in the modules related to metabolism,
we used the Jaccard index between each pair of modules
enrichment with enzymes to identify the similar modules
(Figure 5B). Based on this approach, we identified that
S. meliloti 1021 (Sme) is a module that contains a high
proportion of orthologs with the other modules, where
genes related to cellular metabolic process, primary metabolic
process, nitrogen compound metabolic process and organism
substance metabolic process were identified. This result could
be associated to the prevalence of genetic redundancy in
this bacterium, an in particular to those genes involved in
a variety of metabolic pathways, including central carbon
metabolism, transport, and amino acid biosynthesis (diCenzo
and Finan, 2015); and the number of genes with some
regulatory mechanisms identified in one of the three replicons,
and the function of regulated genes was found to be in
accordance with the overall replicon functional signature: house-
keeping functions for the chromosome, metabolism for the
chromid, and symbiosis for the megaplasmid (Galardini et al.,
2015).

This group include C. jejuni NCTC 11168 (Cje), B.
thetaiotaomicron VPI-5482 (Bth), S. enterica LT2 (Stm), P.
aeruginosa PA01 (Pae), C. acetobutylicum ATCC824 (Cac), H.
pylori 26695 (Hpy), S. flexneri 301 (Sfl), which are characterized
by genes related to cellular metabolic process, single-organism
cellular process, biosynthetic process and organic substance
metabolic process. Finally, this group includes E. coli K-12
MG1655 (Eco), B. anthracis strain Ames (Ban), T. thermophilus
HB8 (Ttj), B. subtilis 168 (Bsu), M. tuberculosis H37Rv (Mtu), B.
cereusATCC 14579 (Bce), L. rhamnosusGG (Lrh), S. pneumoniae

FIGURE 5 | Circos based in Jaccard index. (A) Circos based on TFs; (B) Circos based on metabolic maps.
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D39 (Spd); these species have gene related to catabolic
process, single-organism metabolic process, and establishment
of localization.

In addition, enriched modules were analyzed to determine
those genes with greater connectivity. To this end, we used
the first 100 nodes that most correlate in each module where
the identified genes had the highest connectivity or highest
node degree, which describes the number of interactions or
edges adjacent to the node (Table S2). Many of the most highly
connected nodes are related to nitrogen compound metabolic
process, biosynthetic process, cellular metabolic process, primary

metabolic process, and single-organism metabolic process,
although in some cases the most important hub genes encode
for hypothetical proteins, which would allow future analysis to
determine their functional role.

From this analysis, in the case of the module 2 enriched
with TFs of S. flexneri 301 (Sfl), the most highly connected
genes were SF2819, an activator of the L-fucose operon from the
DeoR family, and SF2545, a polyphosphate kinase [E.C. 2.7.4.1]
involved in the nitrogen compound metabolic process and
biosynthetic process, respectively; in addition, two hypothetical
proteins, SF1784 and SF3500 were also identified as highly

FIGURE 6 | Co-expression network of S. flexneri. The most highly correlated genes were plotted in Cytoscape (Smoot et al., 2010). The size of the modules

corresponds to their degree of connectivity, while the widths of the edges represent the weights of the correlations, gray nodes do not have an assigned function. (A)

TFs; (B) metabolism modules.

FIGURE 7 | Co-expression network of E. coli. The most highly correlated genes were plotted in Cytoscape (Smoot et al., 2010). The sizes of the modules correspond

to their degrees of connectivity, while the widths of the edges represent the weights of the correlations, gray nodes do not have an assigned function. (A) TFs; (B)

metabolism modules.
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connected genes (Figure 6A). In module 4, that was enriched
with enzymes, the genes with the highest connectivity were
SF2911, which encodes a phosphoglycerate kinase [E.C. 2.7.2.3]
involved in nitrogen compound metabolic process; SF0929,
which encodes an aminopeptidase N [E.C. 3.4.11.2] involved
in the Glutathione metabolism; and SF4274, a NAD(P)H
dehydrogenase (quinone) [EC:1.6.5.2] involved in Metabolic
pathways (Figure 6B). This result correlates with the fact that
glutathione and quinone metabolism play a major role in the
defense against redox cycling-derived oxidative stress (Kelly et al.,
2019), reinforcing the notion that common expression patterns
identified in this work correlates with similar protein roles in
the cell.

In the case of module 7 enriched with TFs in E. coli, we
identified the following genes with the highest connectivity:
ydgJ (b1624), a probable D-galactose 1-dehydrogenase, involved
in single-organism metabolic process (Reed et al., 2003); ribC
(b1662) (for riboflavin synthase), which catalyzes the final step
in riboflavin biosynthesis (Eberhardt et al., 1996); ogt (b1335),
which encodes a methyltransferase enzyme for the repair of
alkylated DNA (Taira et al., 2013); and deoR (b0840), which
is involved in the negative expression of genes related to
transport and catabolism of deoxyribonucleoside nucleotides
(Garces et al., 2008). These highly correlated genes are mainly
involved in biosynthetic processes and nitrogen compound
metabolic processes, as shown in Figure 7A. In this regard,
DeoR and regulated genes have been involved in DNA damage
response by drugs, modifying the nucleotide level modulation
(Sangurdekar et al., 2011), suggesting that b1335 and b0840
are functionally closer. Therefore, the other genes identified
in this module could also participate in a similar response,
however further evidence is necessary. On the other hand, in
module 15, which is enriched with enzymes, the genes with
the highest connectivity were sucB (b0727), sucC (b0728), and
sucD (b0729), which are associated with the citrate cycle, an
important aerobic pathway for the final steps of the oxidation of
carbohydrates and fatty acids (Buck et al., 1986); nuoH (b2282),
nuoI (b2281), nuoJ (b2280), and nuoG (b2283), involved in
the oxidative phosphorylation pathway (Bongaerts et al., 1995)
(Figure 7B).

CONCLUSIONS

In this work, we identified and analyzed modules considered
relevant from a metabolic and regulatory point of view
in a set of bacteria, using a weighted gene co-expression
analysis method. Based on this analysis, we identified some
modules enriched with TFs and metabolic enzymes. In the
case of regulation, we identified TFs from the families
Response_reg, TetR_N, LysR, and HTH_3, which are mainly
related to biological processes, such as biosynthetic processes,
cellular metabolic processes, nitrogen compound metabolic
processes and primary metabolic processes. On the other hand,
the modules enriched with enzymes are associated mainly

with primary metabolic, organic substance metabolic, cellular
metabolic and nitrogen compound metabolic processes. Our
approach also identified genes with similar expression patterns
and involved in similar metabolic or regulatory roles, such
as DeoR and Ogt. In summary, this analysis allowed us to
determine that, despite the diversity of experimental information
available for each organism, these mechanisms are similar in
all of the organisms, and this will allow us to address new
experimental results, such as the use of gene expression data in
metagenomic studies.
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Acidithiobacillus thiooxidans is one of the most studied biomining species, highlighting its

ability to oxidize reduced inorganic sulfur compounds, coupled with its elevated capacity

to live under an elevated concentration of heavy metals. In this work, using an in silico

semi-automatic genome scale approach, two biological networks for A. thiooxidans

Licanantay were generated: (i) An affinity transcriptional regulatory network composed of

42 regulatory family genes and 1,501 operons (57% genome coverage) linked through

2,646 putative DNA binding sites (arcs), (ii) A metabolic network reconstruction made of

523 genes and 1,203 reactions (22 pathways related to biomining processes). Through

the identification of confident connections between both networks (V-shapes), it was

possible to identify a sub-network of transcriptional factor (34 regulators) regulating genes

(61 operons) encoding for proteins involved in biomining-related pathways. Network

analysis suggested that transcriptional regulation of biomining genes is organized into

different modules. The topological parameters showed a high hierarchical organization

by levels inside this network (14 layers), highlighting transcription factors CysB, LysR,

and IHF as complex modules with high degree and number of controlled pathways. In

addition, it was possible to identify transcription factor modules named primary regulators

(not controlled by other regulators in the sub-network). Inside this group, CysB was the

main module involved in gene regulation of several bioleaching processes. In particular,

metabolic processes related to energy metabolism (such as sulfur metabolism) showed

a complex integrated regulation, where different primary regulators controlled several

genes. In contrast, pathways involved in iron homeostasis and oxidative stress damage

are mainly regulated by unique primary regulators, conferring Licanantay an efficient,

and specific metal resistance response. This work shows new evidence in terms of

transcriptional regulation at a systems level and broadens the study of bioleaching in

A. thiooxidans species.
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INTRODUCTION

Acidithiobacillus thiooxidans belongs to the Acidithiobacillia
class of proteobacteria (Williams and Kelly, 2013). It is an
autotrophic Gram-negative bacterium that obtains energy from
the oxidation of reduced inorganic sulfur compounds (RISC).
Acidithiobacillus thiooxidans capacity to produce sulfuric acid,
especially during the control of biochemical steps related to
elemental sulfur oxidation pathways and the acidification of the
media (Mohapatra et al., 2008) have positioned this bacterium
as one of the most studied organism in the field of bioleaching
processes (Chen et al., 2015; Yan et al., 2015; Quatrini et al., 2017;
Zhou et al., 2017).

Recently, A. thiooxidans Licanantay was presented as one of
the most relevant participants of a consortium of five natural
copper-bioleaching acidophilic bacteria (Latorre et al., 2016).
This bacterium was isolated directly from a copper mine in
the north of Chile. Its genome sequence revealed an elevated
number of genes associated with RISC oxidation: several HDR
complex genes, two gene copies for the sulfur oxidizing complex
(Sox) and one archaeal type sulfur oxygenase reductase gene
(sor) (Travisany et al., 2014), attributes directly correlated with
its efficiency in copper recovery. In addition, Licanantay has
an elevated capacity to survive under elevated concentrations
of copper, arsenic, and chloride in relation to other biomining
species and produces high quantities of glutathione (Martínez
et al., 2013), a crucial metabolite directly or indirectly related to
iron and RISC oxidation in bioleaching species.

A complete genome comparative analysis between nine draft
genomes of A. thiooxidans postulates that the genetic diversity
of this species might be correlated with geographic location
and geochemical conditions (Zhang et al., 2016). In this study,
the comparison between Licanantay and the reference strain
AT19377 reaffirms the fact that the Chilean bacterium has a
higher number of unique genes, which may confer an adaptive
advantage to extreme environmental conditions for Licanantay
compared to other A. thiooxidans strains.

In addition, a set of environmental resistance elements and
metabolic pathways presumed relevant to its performance in
bioleaching processes have been assigned to this bacterium, most
of them related to the oxidation of RISC, metal resistance,
biofilm formation, and energy production (Latorre et al., 2016).

These results position A. thiooxidans Licanantay as an excellent

model to study genomic and metabolic features in terms of gene
regulation and metabolic pathways related to the adaptation of
this bacterium to the environment of a copper mine.

Using bioinformatics tools in combination with a manual
curation of regulatory patterns, a great amount of information
can be extracted from the genome sequence and further
summarized in an affinity transcriptional regulatory network
(Balleza et al., 2008). These models depict the total set of
statistically significant affinity relations between annotated
transcription factors and their binding sites in promoter
regions of operons. It is important to remark that this affinity
relation does not necessarily imply that the regulatory relation
is effectively used for a given set of conditions. Indeed,
the regulatory process also depends on other factors that

vary depending on the conditions imposed on the cell,
and only expression experiments can confirm such relation
(Potash, 2007). However, the strategy of generating affinity
networks has been widely used in bacterial organisms as a
starting point to identify a global regulatory organization.
Affinity networks provide relevant information about the
topological configuration of gene regulation at a system
level and allows the importance of specific regulatory
elements and its putative gene/operons targets to be identified
(Balázsi et al., 2008; Latorre et al., 2014; Yus et al., 2019).

On the other hand, the study of a metabolic network is key
to gaining insight regarding phenotypic features of an organism.
The reconstruction of metabolic networks at the genome scale,
i.e., incorporating all available information, allows us to have
a global, and comprehensive picture of metabolism. These
genome-scale reconstructions are considered specific knowledge
repositories of studied organisms where information regarding
their metabolism is organized and new data can be later
integrated (Feist et al., 2009). This can be particularly useful
to guide and contribute to the systematic study of less-studied
organisms, as is the case of biomining organisms in general.

In this work, using a systems biology approach, genome-
scale metabolic, and regulatory networks were integrated. The
main objective of this article was to generate information on
the transcriptional mechanism able to control the expression of
elements involved in metabolic pathways related to bioleaching
in A. thiooxidans Licanantay. To this end, the minimal
configuration able to maintain bacterial-relevant functions was
described and we showed that this gene regulatory organization
strongly depended on different types of modules.

RESULTS AND DISCUSSION

A. thiooxidans Licanantay Affinity
Transcriptional Regulatory Network
In order to understand the global transcriptional regulatory
organization in A. thiooxidans Licanantay, a genome-scale
affinity transcriptional regulatory network was generated. The
complete model had a genome coverage of 57% and was
composed of 1,543 nodes (42 corresponding to transcriptional
factor nodes) and 2,646 arcs (putative binding sites) (Figure 1).
The degree distributions (in-degree, out-degree, and total degree)
showed a typical shape in which most nodes have a low
degree and only a few nodes are highly connected (Albert,
2005). This characteristic is typical in power low distributions
observed in other bacterial transcriptional regulatory networks.
In terms of the interconnectivity between transcriptional factors,
the network model contains at least three types of regulators
(Schröder and Tauch, 2010). First, a global set of regulators,
like LysR (global metabolism), and IHF (DNA structural
organization), which are highly interconnected in the network.
As shown in Figure 1, these two regulators present a multi-
level regulation cascade structure, representative of a classical
chain transcriptional regulatory process. Second, a set of master
regulators (moderately connected), such as AtoC (acetoacetate
metabolism) and MerR (metal resistance). Acetoacetate was
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FIGURE 1 | Acidithiobacillus thiooxidans Licanantay affinity transcriptional regulatory network. The figure shows the interconnectivity (black arrows) between

transcriptional factor nodes. Rectangular nodes (dark gray) correspond to transcriptional factors not regulated by others (origons). Oval nodes (light gray) represent

transcriptional factors member of chain regulatory cascades. The number in parenthesis next to each transcriptional factor name is the number of operon targets for

that transcriptional factor in the affinity network.

identified as a biofilm inhibitor (Horne et al., 2018), an important
bacterial process during ore bioleaching (Bellenberg et al.,
2014). The MerR family is highly conserved in other biomining
organisms, including strains of At. ferrooxidans (Hödar et al.,
2012). Finally, the third class corresponded to local regulators,
highlighting the proteins Fur and CueR (also a MerR family
member), controllers of metal homeostasis and oxidative stress
damage, two main cellular processes considering the mining
environment where Licanantay was isolated (Latorre et al., 2016),
during oxidative dissolution, autotrophic organisms are able to
use ferrous iron and reduced sulfur compounds as electron
donors. In addition, the model contained a total of 10 regulators
not controlled by other transcription factors (isolated). This
type of element is called Origons (Balázsi et al., 2005) and
represents topological units of environmental signal processing,
able to directly transduce stimulus into gene expression control
(direct and fast response). Inside this group, Licanantay had the
CusR transcription factor, one of the main regulators of copper
homeostasis in Gram-negative bacteria (Rensing and Franke,
2007). Considering the elevated concentration of copper in the

mine, the presence of the CusR origon gives Licanantay an
efficient and fast control over copper homeostasis, in particular
over the expression of CopA ATPase involved in this metal
efflux (Solioz and Stoyanov, 2003). Finally, the node with
the highest out-degree (275) was CysB, making it one of the
main Hubs inside the network. This regulator is known as
a master regulator of genes encoding for proteins involved
in sulfur metabolism, particularly, its assimilation (van der
Ploeg et al., 2001) and also iron starvation (Imperi et al.,
2010). For A. thiooxidans species, sulfur metabolism plays a
crucial role in the acquisition of electrons for their autotrophic
growth (Wang et al., 2018).

A. thiooxidans Licanantay Metabolic
Network
Efforts have been made to reconstruct the metabolic networks for
a few bioleaching bacteria (Hold et al., 2009; Merino et al., 2010;
Bobadilla Fazzini et al., 2013; Merino Santis et al., 2015). These
reconstructions were developed with the objective of generating
metabolic models that allow the prediction of growth rates in
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different scenarios through metabolic flux analysis. With the
exception of At. ferrooxidans ATCC23270, for which a genome-
scale reconstruction was built (Campodonico et al., 2016),
bioleaching bacterial metabolic reconstructions corresponded to
reduced and simplified representations of their networks in all
cases. This was also the case for A. thiooxidans Licanantay, for
which we previously built a small stoichiometric model used to
predict its growth rate in different media containing different
reduced sulfur compounds for oxidation (Bobadilla Fazzini et al.,
2013). This model incorporates a total of 181 metabolic reactions
associated with RISC oxidation, central metabolism, amino acids,
and nucleotides biosynthesis pathways.

For the work presented here, we revisited the analysis of
A. thiooxidans Licanantay metabolic network, this time aiming
at a global genome-scale reconstruction in order to later link
metabolic genes through the regulatory network of the bacteria.
To do this, we followed a semi-automatic approach starting
by a full genome re-annotation in order to make the most of
the available data. This new annotation resulted in 564 unique
Enzyme Commission (EC) numbers, 20% of which were absent
from our previous annotation and an improved annotation of 81
genes previously identified as hypothetical protein coding genes.

Our current genome-scale metabolic network reconstruction
was made of 1,203 reactions, associated with 523 genes coding for
enzymes and transport proteins. This reconstruction included all
enzymatic reactions incorporated in the previous stoichiometric
model as well as additional relevant reactions and pathways, e.g.,
the biosynthesis of spermidine, a metabolite that has been linked
to sulfur-oxidation in a previous metabolomic study on this
bacterium (Martínez et al., 2013) as well as to pH homeostasis and
oxidative stress management (Samartzidou et al., 2003; Ferrer
et al., 2016).

Interestingly, sulfur metabolism and siderophore biosynthesis
were both highly connected in the metabolic network. Sulfur
metabolism is directly connected to the capacity to produce
cysteine in bacterial species. This amino acid can be used to
synthetize Fe-S clusters, the principal co-factor of the HDR
complex. Competition for iron occurs in acidic environments,
where the capacity to produce and recognized different
siderophores could be an adaption to respond to different
iron concentrations (Bonnefoy and Holmes, 2012). In addition,
biofilm processes in the model are related to routes involved in
lysine degradation. This amino acid inhibits coaggregation and
synergy in biofilm formation (Sharma et al., 2005; Okuda et al.,
2012). The capacity of biomining organisms to produce biofilms
is one of the critical and most studied areas of bioleaching. The
active presence of lysine degradation pathways in Licanantay,
supports the high capacity of this bacterium to recover copper
during the process.

In previous work, a number of metabolic processes were
linked to the bioleaching capacity of a bacterial consortium that
has A. thiooxidans Licanantay as one of its members (Latorre
et al., 2016). These processes included known key bioleaching
steps, such as iron and RISC oxidation as well as related
metabolic features such as sulfur assimilation, biosynthesis of
essential components and precursors, electron transfer and
energy generation, and biofilm formation.

The next step in the current study, was to consider a
subset of these metabolic categories to focus our analysis of A.
thiooxidans regulation on particularly relevant processes related
to bioleaching that could be subject to co-regulation. This
subset was composed of six sub-categories, selected because they
corresponded to well-described bioleaching metabolic pathways
part of the A. thiooxidans metabolic network. Figure 2 shows
these pathways in the context of the A. thiooxidans global
metabolic network. They corresponded to RISC oxidation, sulfur
assimilation, heme, NAD, and spermidine biosynthesis processes.

RISC oxidation (orange pathways in Figure 2) by sulfur-
oxidizing bacteria such as A. thiooxidans is key for bioleaching
operations. It results in the release of sulfuric acid which helps
maintain the acidic condition required for bioleaching to occur.
RISC is the only electron donors utilized by A. thiooxidans.
Thus, sulfur oxidation was strongly linked to general metabolic
pathways related to energy generation (depicted in red in
Figure 2) that involve steps to harness energy through proton
gradient and reducing power generation. Given that NAD(H) is
a main reducing power carrier, its biosynthesis pathway was also
considered in this analysis (blue pathway in Figure 2).

For sulfur oxidizers, as has been previously pointed out for
At. ferrooxidans (Valdés et al., 2003), a balance should take
place in the use of sulfur as an energy source and in the
assimilation processes. Moreover, RISC oxidation is a complex
process whose associatedmetabolic pathways have not being fully
elucidated to date. Different pathways have been proposed for the
Acidithiobacillus species (Wang et al., 2018) including a pathway
that involves the assimilation enzymes APS kinase and PAPS
reductase (Yin et al., 2014). Based on these considerations sulfur
assimilation metabolic pathways were also considered in this
analysis (pink pathways in Figure 2). Spermidine biosynthesis
depicted in light blue in Figure 2, was also included given the
previously mentioned link of this metabolite to sulfur oxidation.

Finally, the biosynthesis of heme was also included in this
pathway selection (green pathways in Figure 2). Heme is an
essential component of several proteins involved in electron
transport chains which are key for A. thiooxidans energy
generation. Heme is also a cofactor of enzymes involved in
oxidative damage protection (Frankenberg et al., 2003). Minerals,
which are abundant in bioleaching environments, are known to
promote the formation of ROS species (Schoonen et al., 2006;
Cárdenas et al., 2012), making protection mechanisms against
them essential for A. thiooxidans survival. Additionally, as an
iron-containing cofactor heme plays a role in iron homeostasis.

Co-regulatory Integrative Network Analysis
As stated above, the affinity transcriptional network represents
the set of all transcriptional regulatory relations between all
transcription factors annotated in the genome and their putative
target operons. Each relation was represented in the network by
a directed arc from the operon coding for the regulator to the
target operon (which can also code for another regulator). Thus,
indirect regulation of the bioleaching sub-category via regulatory
cascades can be defined as paths in the network.

It is important to declare that the set of arcs in the affinity
transcriptional network is considered as an overrepresentation of
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FIGURE 2 | Selected metabolic pathways related to bioleaching in the context of A. thiooxidans Licanantay metabolic network (sub-categories). Six metabolic

processes were selected for this study: RISC oxidation (orange); Sulfur assimilation (violet); Energy generation (red); heme biosynthesis (green); spermidine

biosynthesis (cyan); and NAD biosynthesis (blue). Genes associated to each of these pathways are listed next to the corresponding reactions.

the true transcriptional regulations occurring in the bacterium
(Acuña et al., 2016). There are two main reasons for this
overrepresentation. The first is purely methodological: some
of the relations are simply false positives of the method that
identifies binding sites. The second one is biological: even in
the case that the transcription factors could effectively bind in
a promoter region of a specific operon, bacteria only activate
or repress this regulatory mechanism as required according to
environmental conditions.

Considering these two statements, in order to give a new layer
of likelihood to the regulatory relations effectively occurring in
Licanantay for a given set of conditions, a method that selects
feasible paths (i.e., regulatory cascades) was applied (Acuña et al.,
2016). Under a parsimony principle, the method considers an arc
between a transcription factor and its operon target as confident
when it is part of a topological substructure (called V-shape)
which is useful to coordinate the co-expression of operons in the
same pathway.
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Using this method, sets of confident regulatory relations
to coordinate the co-expression of operons in each one of
the six selected metabolic sub-categories related to bioleaching
processes were identified (see Materials and Methods for
details). The union of these subnetworks can be considered
a (transcriptional) “co-regulatory network” for bioleaching
processes. This co-regulatory network is presented in Figure 3.
The network was composed of 95 nodes, 34 of which were
transcription factor families and 61 were metabolic operons
from the bioleaching sub-categories, and 148 arcs, in which 57
corresponded to regulations between transcription factors and 91
to regulations of metabolic operons.

A first topological analysis of this network showed that it
was almost hierarchical, presenting only a very small number
of cycles (three in total), a classical organization for biological
networks, which confer a directional regulatory collaboration
between the transcription factors to the system. In fact, removing
only two arcs broke every directed cycle in the network (i.e.,
the minimum feedback arc set had a size of two). This fact
showed that the network can be organized into 14 levels with
only two feedback arcs, as showed in Figure 3. The order of levels
depended on which arcs were considered feedback arcs, and the
figure represents only one possible configuration of these levels.

Even if the co-regulatory network was hierarchical (i.e., with
almost no directed cycles inside), its organization was far from
being like a tree graph. Indeed, if we consider only the 57 arcs
between transcription factors, the number of them that need to
be removed to obtain a tree was 24 or 42.1%. This means that the
metabolic consequences of the regulation were not segregated by
network level, having many arcs that cross from one branch to
another or that jump directly to a distant level. This observation
is also consistent with the fact that the regulation of metabolic
operons of each sub-category was not separated by the hierarchy
and, on the contrary, were spread along the entire network. This
implies that the regulation process cannot be viewed as a sum of
independent parts controlled by a central mechanism, but rather
as a complex regulation of the different connectedmodules inside
the network.

Regulatory Bioleaching Modules
As shown in Figure 3, there were eight transcription factors
(dark-gray boxes) that were not controlled by any other regulator
inside the co-regulatory network.We referred to them as primary
regulators in our model, representing the first modular structure
inside the network. For each primary regulator, its potential to
regulate metabolic operons of each bioleaching-related pathway,
either by direct binding or by chain regulatory cascades, was
computed (Table 1). We found no clear exclusive distribution
between primary regulators and metabolic bioleaching sub-
categories.Most of these transcription factors regulate at least one
operon of each sub-category, and, with the exception of primary
regulators CysB and CynR and the energy generation sub-
category, most primary regulators could not regulate an entire
sub-category. These results reinforce the idea that regulation of
bioleaching metabolism has a complex modular structure, where
an important part of operons related to bioleaching processes are
transcriptionally controlled by different primary regulators.

In order to examine this point in depth, we analyze whether
single primary regulators have some specific property to control
an exclusive sub-category. Thus, for each sub-category, we
computed the number of operons that were controlled exclusively
by only one primary regulator (Table 2). The percentage of
operons exclusively regulated by one primary regulator was
slightly greater for the biosynthesis sub-categories (NAD, heme,
and spermidine). In contrast, sulfur assimilation and RISC
oxidation processes were mostly composed by operons regulated
by two or more primary regulators. This observation suggests
that metabolic processes related to bioleaching in Licanantay
present a bias in the transcriptional regulation according to
specific sub-categories. It was possible to identify at least two
regulatory modules. The first one was composed of specific
primary regulators controlling an important number of operons
related to biosynthesis of molecules involved mainly in redox
reactions (NAD) (Gazzaniga et al., 2009) and iron homeostasis
(heme and spermidine) (Bergeron et al., 2001; Quatrini et al.,
2005; Richard et al., 2019). Considering the elevated capacity to
tolerate high amounts of metals and oxidative stress damage by
Licanantay (Latorre et al., 2016), the presence of unique primary
regulators controlling gene expression of resistance mechanisms,
provides the system with a fast and efficient transcriptional
activation. The second module was comprised of several primary
regulators controlling the expression of different energy related
processes. This configuration suggests an important regulatory
redundancy inside this module. The involvement of different
primary regulators grants the system alternatives to produce or
consume energy, ensuring the correct functioning of Licanantay.
This contrasts with the previous module of biosynthesis of
resistance-related molecules, which was highly specific in terms
of transcriptional and metabolic response.

In most cases, primary regulators are not able to control
an entire bioleaching sub-category. Thus, an analysis of the
regulatory capacity of small subsets of regulators was performed
in order to determine the degree of regulation specificity
of each sub-category. This was done by computing sets of
minimum transcription factors able to control an entire sub-
category (Supplementary Table 1). Results showed that, except
for spermidine biosynthesis, there was a unique minimum
set of primary regulators for each sub-category. This analysis
also highlighted the transcriptional factor CysB as the most
represented regulator connecting genes involved in the selected
bioleaching metabolic pathways, appearing in almost all the six
sub-categories inside the group of minimal regulators.

In addition to the analysis of primary regulators inside the
network, it was also possible to classify transcription factors
according to number of connections. Three regulators stand-out
due to their elevated number of connections: CysB with out-
degree 14, LysR with in-degree 9, and IHF with a total degree
of 16 (in-degree 6 and out-degree 10). These transcription factors
had an affinity with operons in different metabolic bioleaching
sub-categories. Asmentioned, CysB directly controlled 4 of them,
IHF 5 and LYSR 3. Thus, CysB, IHF, and LysR were considered
complex regulator modules. In addition, ihf and lysR genes were
controlled by other 6 and 9 transcription factors, respectively.
On the other hand, IHF regulated three other regulators (being
one of them LysR) while LysR could also regulated PuuR. These
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FIGURE 3 | Acidithiobacillus thiooxidans Licanantay bioleaching co-regulatory network. Transcriptional factors in the co-regulatory network are depicted as

rectangular (dark gray) and oval nodes (light gray). Rectangular nodes correspond to primary regulators while oval nodes are transcriptional factors member of chain

regulatory cascades. Leaf nodes are target operons colored according to their metabolic bioleaching sub-categories. Solid arcs represent regulation between

transcriptional factors and dotted arcs represent regulation of metabolic operons. Hierarchical levels are listed at the bottom of the figure. Red circle highlights CysB

transcription factor. Colored arcs (red, green, and light blue) correspond to connections forming directed cycles in the network. There are three directed cycles: a small

one between FLIA and IHF (green arcs) and two larger ones that share the path made by light-blue arcs. Thus, removing any green and light blue pair of arcs breaks all

directed cycles (minimum feedback arc sets).
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TABLE 1 | Transcriptional regulatory representation of each primary regulator over the metabolic bioleaching sub-category.

Operons CysB SMTB CynR ArsR CusR Fur Fis IscR

NAD biosynthesis 3 1 3 1 1 0 0 0 0

Heme biosynthesis 5 5 3 3 3 2 2 1 1

Spermidine biosynthesis 7 5 3 2 3 2 1 2 1

Sulfur assimilation 11 9 8 7 7 4 4 5 5

Energy generation 13 13 10 10 9 9 9 7 5

RISC oxidation 22 17 13 13 12 12 10 11 8

TOTAL 61 50 40 36 35 29 26 26 20

Column Operons corresponds to the total number of operons for each metabolic bioleaching sub-category. The rest of the columns show the number of operons regulated by each

listed primary regulator (transcription factor).

TABLE 2 | Total number of operons for each metabolic bioleaching sub-category regulated by only one primary regulator.

Operons Total CysB SMTB CynR ArsR CusR Fur Fis IscR

NAD biosynthesis 3 2 (67%) 0 2 0 0 0 0 0 0

Heme biosynthesis 5 2 (40%) 2 0 0 0 0 0 0 0

Spermidine biosynthesis 7 3 (43%) 2 0 0 0 1 0 0 0

Sulfur assimilation 11 3 (27%) 1 1 0 0 0 0 0 1

Energy generation 13 1 (8%) 1 0 0 0 0 0 0 0

RISC oxidation 22 7 (32%) 4 1 0 0 1 0 1 0

Total percentage was calculated as the proportion between the operon regulated by only one primary regulator and the total number of operons belonging to each sub-category.

two regulators have been widely studied in other bacteria species,
both controlling central metabolism and general processes in
the cell (Schell, 1993; Lynch et al., 2003). While IHF and LysR
had a high connectivity in the network, neither were central to
maintaining the connectivity of the network (not belonging to
minimal sets of regulators). On the contrary, the transcriptional
regulator CysB in all the topological studies made, and under
all the different analyses was a fundamental module in the
transcriptional regulation of Licanantay. As showed in Figure 3,
CysB also belonged to the first hierarchical level of organization
inside the co-regulatory network, positioning this regulator as the
main module involved in bioleaching processes.

CONCLUSION

The availability of genome sequences has opened an interesting
field in systems biology to study global gene regulatory
organization in bacteria of biotechnological interest. Through
the identification of sets of confident regulatory relations, the
integration of information from two biological network was
achieved: (i) affinity transcriptional regulatory network and
(ii) metabolic network. As a result, the first co-regulatory
network model describing the global transcriptional regulation
of different bioleaching metabolic pathways in the bacterium A.
thiooxidans Licanantay was generated. The topological analysis
of the network indicates that the global transcriptional regulation
is a result of the combination of different specific modules. The
first type corresponds to primary regulators (transcription factors
not controlled by another regulator). Inside this group, CysB
appeared as the most relevant module inside the network, also
classified as the most represented primary regulator controlling

a huge part of the network. Another two types of modules
were identified in terms of bioleaching pathway regulation
distribution. Metabolic processes involved in energy production
demonstrated a complex integrated regulation, where different
primary regulators controlled the expression of several genes
(complex modules). In contrast, bioleaching pathways related
to metal homeostasis and oxidative stress damage were mainly
regulated by unique primary regulators (individual modules).
The presence of both modules showed that at least two types
of regulation were present in the bioleaching bacteria. Complex
modules provide a wide set of alternatives related to energy
requirements of the network. Individual modules on the other
hand, highlight an efficient and specific metal resistance capacity
to survive under the extreme environmental condition present in
mines. These results bring us closer to having an complete view
of A. thiooxidans metabolism and regulation. Moving forward
and applying systems biology methodologies to the study of
additional key bioleaching bacteria can inform and aid the
rational design of effective biomining consortia for bioleaching
processes. Finally, this integrative systems biology strategy should
not be restricted to biomining related bacteria, but can also be
applied to other sequenced bacterial genomes to construct new
co-regulatory networks.

MATERIALS AND METHODS

Genome Annotation and Metabolic
Network Reconstruction
Coding sequences (CDSs) previously identified in A. thiooxidans
Licanantay draft genome (Travisany et al., 2014) were
re-annotated. This was done through Blast searches against
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the nr, KEGG, UNIPROT, and COG databases. A gbk file with
this new annotation was generated and used as the input to
generate an automatic metabolic network reconstruction using
Pathway-Tools v 21.0 (Karp et al., 2002). The cutoff score used
for pathway prediction was 0.4. Additionally, a set of metabolic
pathways previously suggested as relevant in bioleaching
processes (Latorre et al., 2016) as well as central metabolism
pathways were manually curated (Supplementary Table 2).

Affinity Transcriptional Regulatory Network
The generation of the Affinity transcriptional regulatory network
was based on previously reported protocols (Latorre et al.,
2014; DebRoy et al., 2016). Briefly, candidate transcription
factors present in the genome of A. thiooxidans Licanantay
were identified using the following protocol: First, using the
results of genome annotation, each candidate must have at
least a Helix-Turn-Helix domain, previously identified using
HMMER software with Pfam database. Then, when information
from UniProt-KB was available, amino acids in specific
locations were manually searched (Supplementary Table 3).
A position-specific scoring matrix (PSSM) was associated
with each transcription factor candidate that fulfilled the
previous requirements (Supplementary Table 4). Specifically, a
Regprecise (Novichkov et al., 2013) or Prodoric (Münch et al.,
2003) PSSM was downloaded or generated using MEME (Bailey
et al., 2009) with promoter consensus sequences.

Operons and intergenic regions were retrieved from previous
research (Travisany et al., 2014) in the following manner: an
operon was defined as a cluster of co-regulated consecutive genes
that share the same direction such that the maximum intergenic
region between two consecutive genes contained <50 bp. Any
region larger than 50 bp was considered a putative promoter
intergenic region.

In order to identify putative binding sites for the transcription
factor candidates, affinity relations between candidates and
promoter intergenic sequences were obtained. To that end,
individual occurrences of the associated PSSM motifs in the
promoter intergenic sequences were computed using FIMO
(Grant et al., 2011). Thus, an affinity relation between a
transcription factor candidate and an operon was defined when
at least one match (p ≤ 1e−5) of the PSSM associated with the
transcription factor was obtained in the correspondent promoter
region of the operon.

The affinity network is a directed graph that encompasses the
set of all affinity relations. In this network there are two types of
nodes: (a) transcription factor nodes that correspond to families
of transcription factors and (b) operon nodes which are operons
being regulated by transcription factors. Note that when there
are several genes coding for transcription factors of the same
family, there is only a single node representing the family in the
affinity network. There are also two types of arcs: (a) arcs from a
transcription factors node to an operon node, which indicate that
there is an affinity relation between the transcription factors and
the operon; and (b) arcs between two transcription factors nodes
A and B, which indicate that there is an affinity relation between
transcription factor A and an operon containing a gene which
codes for a transcription factor B.

Co-regulation Network
A set of transcriptional regulations was defined as a regulatory
mechanism that coordinates the expression of operons related to
bioleaching in A. thiooxidans Licanantay.

To obtain this set of regulations, metabolic operons from
six pathways previously associated with bioleaching were
selected (Latorre et al., 2016). These pathways are NAD
Biosynthesis, Heme Biosynthesis, Spermidine Biosynthesis,
Sulfur assimilation, Energy generation, and RISC oxidation.
Operons from these pathways that are regulated by at least one
transcription factor were identified in the affinity network.

Under the assumption that the co-expression of operons
belonging to the same metabolic pathway must be coordinated
by a common factor (by directly regulating their expression
or by regulatory cascades of transcription factors) and using
a methodology that maximizes parsimony, arcs that are likely
part of this co-regulation were selected from the affinity network
(Acuña et al., 2016). Following this methodology, arcs in the
affinity network were classified in four groups of the same
size according to the p-value computed for the corresponding
binding (between the transcription factor and the operon target).
Then, weights of 1, 2, 4, and 8 were associated with arcs in
each one of the four categories (a weight of 1 was given to
arcs with lower p-values and a weight of eight to arcs with
higher p-values).

To find common regulators of bioleaching related operons,
the concept of a V-shape was used, which has been previously
defined (Acuña et al., 2016). A V-shape is a subgraph that
connects two given nodes (A and B) in a graph. It is composed
of the union of two directed paths ending, respectively at A
and B and starting at some node C with no other node in
common. If a V-shape exists that connects A and B, then its
starting point is a common regulator candidate. If more than
one V-shape exists, then a parsimonious solution should be a
combination of selecting a V-shape that uses less arcs and a
V-shape having arcs with the smallest p-values. A way to consider
both criteria is to consider V-shapes of minimum total weight
(considering the total weight of a V-shape as the sum of the
weight of its arcs).

According to the method explained, the set of all minimum
weight V-shapes connecting two metabolic operons of the same
metabolic category was computed involving 498 affinity relations,
all of them having an original p < 0.00010. A histogram of
the p-value obtained for the 498 affinity relations showed a
decreasing tendency in the interval [0–0.00008] and a high peak
in the interval [0.00008–0.00010]. In order to assure a confident
set of relations, we applied a correction by removing arcs with
an original p >0.00009 from the network. As a result, a set
of 457 arcs was selected from the affinity network, involving
63 operons coding for transcription factors, and 91 operons
coding for metabolic genes. Operons coding for transcription
factors were annotated according to the family of transcription
factors they belong to, resulting in a total of 34 families. Finally,
the co-regulatory network contained 95 nodes: 34 transcription
factor family nodes and 61 metabolic operon nodes. Arcs in this
network were defined according to selection by V-shapes. That
is, if an arc from a transcription factor A to a target operon B

Frontiers in Molecular Biosciences | www.frontiersin.org 9 January 2020 | Volume 6 | Article 15526

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Cortés et al. Integration of Biological Networks in Acidithiobacillus thiooxidans

was selected from the affinity network, then the co-regulatory
network included an arc from the family of A to B (or to
the family of B, if B itself was also a transcription factor).
Thus, a total of 148 arcs were computed between the 95 nodes
previously defined.
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Dementia-related diseases like Alzheimer’s Disease (AD) have a tremendous social and

economic cost. A deeper understanding of its underlying pathophysiologies may provide

an opportunity for earlier detection and therapeutic intervention. Previous approaches

for characterizing AD were targeted at single aspects of the disease. Yet, due to the

complex nature of AD, the success of these approaches was limited. However, in recent

years, advancements in integrative disease modeling, built on a wide range of AD

biomarkers, have taken a global view on the disease, facilitating more comprehensive

analysis and interpretation. Integrative AD models can be sorted in two primary types,

namely hypothetical models and data-driven models. The latter group split into two

subgroups: (i) Models that use traditional statistical methods such as linear models, (ii)

Models that take advantage of more advanced artificial intelligence approaches such as

machine learning. While many integrative AD models have been published over the last

decade, their impact on clinical practice is limited. There exist major challenges in the

course of integrative AD modeling, namely data missingness and censoring, imprecise

human-involved priori knowledge, model reproducibility, dataset interoperability, dataset

integration, and model interpretability. In this review, we highlight recent advancements

and future possibilities of integrative modeling in the field of AD research, showcase and

discuss the limitations and challenges involved, and finally, propose avenues to address

several of these challenges.

Keywords: Alzheimer’s disease, challenges, integrative disease modeling, hypothetical, data-driven

INTRODUCTION

Alzheimer’s Disease (AD) manifests in a collection of symptoms including the deterioration of
cognition, memory, and behavior which often leads to interference with activities of daily living.
In 2017, AD ranked among the top five causes of death worldwide, with 2.44 million (4.5%) deaths
from AD1,2. Worldwide, there are currently around 50 million people living with AD, and every
3 s a person develops this condition. It is estimated that only a quarter of those living with AD are
diagnosed, and more than 17 million healthcare workers annually invest 18 billion hours of care, at
a cost of more than one trillion US dollars to tackle AD-associated problems3,4. Extrapolating these
statistics to the coming decades suggests the immense socioeconomic impact of AD on all involved

1https://ourworldindata.org/causes-of-death
2https://www.thestreet.com/world/leading-causes-of-death-world-14869811
3https://www.alz.co.uk/research/statistics
4https://ourworldindata.org/causes-of-death
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parties: patients, caregivers, healthcare systems, and indirectly,
the economy. Thus, strategies to reduce the global emotional
and financial burden of AD are of great importance. To develop
such strategies, a deeper understanding of the pathophysiology
underlying AD is necessary and may lead to opportunities for
earlier detection and therapeutic interventions.

In general, AD progression is categorized into three clinical
disease stages: (i) During the pre-symptomatic phase, individuals
may have already developed pathological changes that underlie
AD, but remain cognitively normal, (ii) in the prodromal phase,
often referred to as mild cognitive impairment (MCI), the
first cognitive symptoms, commonly episodic memory deficits,
appear. These symptoms can be acute, but they do not yet meet
the criteria for dementia, (iii) in the dementia stage, impairments
are severe enough to interfere with daily life (Jack et al., 2010).

Understanding of the etiology of AD is complicated due to the
existence of dysregulations at different biological scales, ranging
from genetic mutations to structural and functional alterations
of the brain (Aisen et al., 2017). For this reason, significant efforts
have been made in recent years to discover candidate markers for
disease-related pathological changes throughout all modalities,
including neuro-imaging, cerebrospinal fluid (CSF) samples
and a broad variety of -omics data. Studies have successfully
identified multiple biomarkers for neurodegeneration and AD
(Blennow and Zetterberg, 2018). However, effectively translating
extensive biomarker screenings into clinical application remains
a challenging task, because individual biomarkers can only
provide a highly incomplete view on such a multifactorial
disease (Younesi and Hofmann-Apitius, 2013). For instance,
whilemultiple associations between genetic variants andADhave
been established (Jansen et al., 2019; Kunkle et al., 2019), none of
these associations fully describe disease pathogenesis. As a result,
one of the major challenges in AD research is translating diverse
biomarker signals available into multimodal, multiscale models
of disease pathogenesis.

In recent years, a new translational research paradigm
called “integrative disease modeling” has emerged, to address
this challenge (Younesi and Hofmann-Apitius, 2013). It aims
at modeling heterogeneous measurements across different
biological scales, in order to provide a holistic picture of
biomarker intercorrelations in the disease of study. To this
end, advanced high-throughput technologies and neuroimaging
procedures are being used to collect data from multiple
modalities. These diverse data need to be integrated, that is,
combined in a way that preserves the structure and meaning
in the data, using computational algorithms. Only then
can they provide a solid basis for further analysis such as
reasoning, simulation, and visualization. In order to contribute
to understanding of the complex pathophysiology of the disease,
the results should be actionable and thus must be interpretable.
Integrative disease modeling, by collecting, integrating,
analyzing, and ultimately interpreting the measurements,
facilitates the understanding of the pathophysiology of complex
diseases like AD (Hampel et al., 2017).

Existing integrative models in the context of AD can be
placed in two primary categories, namely hypothetical models
and data-driven models (Table 1). Hypothetical models are

TABLE 1 | Organization of and references for data-driven integrative AD models.

Data-driven integrative AD models References

Traditional Caroli and Frisoni, 2010; Jack

et al., 2011, 2012

Machine

learning

Generative Fonteijn et al., 2012; Chen et al.,

2016; Khanna et al., 2018;

Oxtoby et al., 2018; Basu et al.,

2019; De Jong et al., 2019;

Gootjes-Dreesbach et al., 2019;

Martinez-Murcia et al., 2019

Discriminative
Supervised Hinrichs et al., 2010; Magnin

et al., 2010; Rao et al., 2011;

Zhang et al., 2011; Da et al.,

2013; Li et al., 2013

Unsupervised Nettiksimmons et al., 2014;

Gamberger et al., 2017; Toschi

et al., 2019

We subdivide data-driven integrative AD models which into two subgroups. While the first

group uses simple statistical approaches (e.g., simple linear models), the second group

uses more advanced techniques (e.g., machine learning). The advanced machine learning

models include generative and discriminative models, the latter of which can be classified

as either supervised or unsupervised models.

non-numerical and rely on reasoning over findings of previously
published studies (Jack et al., 2010), rather than large amounts of
data. By including this prior knowledge, these models try to detail
the temporal changes of AD biomarkers relative to each other as
well as to clinical disease stages and trial endpoints.

By contrast, data-driven integrative models take advantage
of developments in computational approaches and big data.
For the sake of this review, we will distinguish between two
subcategories of data-driven models. The first covers traditional
statistical methods of generally lower complexity, such as linear
models. Often, these models are used to estimate biomarker
trajectories by regressing measured data against a prespecified
dependent variable, such as a clinical readout or the disease
stage (Bateman et al., 2012). The second subtype exploits more
advanced artificial intelligence approaches such as machine
learning. Within this subtype, models can be characterized as
discriminative or generative. Discriminative models are designed
to discriminate between groups (e.g., cases and controls)
and can be further described as supervised or unsupervised,
depending on whether they rely on labeled (Hinrichs et al.,
2011; Da et al., 2013) or unlabeled (Toschi et al., 2019)
data. Generative models contribute to disease understanding by
automatically learning the inherent distribution of a dataset and
its feature interdependencies (Oxtoby et al., 2018). An exemplary
application is the extraction of disease progression signatures as
demonstrated by the ensemble of Bayesian networks developed
by Khanna et al. (2018).

Integrative AD modeling faces many challenges. Hypothetical
models, by their nature, are time-intensive to construct and
require specialist knowledge. Their primary role in AD research
is to provide ideas for future experiments. Likewise in data-
driven modeling, several challenges at each step of the
process (i.e., collection, integration, analysis, and interpretation)
must be addressed. Data missingness and data censoring are
significant bottlenecks in data collection as well as analysis and
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interpretation. Meanwhile, the heterogeneity and complexity of
biological data are major impediments to data integration, which
forms the basis for all data-driven approaches. Furthermore, data
mapping, data labels, and biased data are additional barriers
to robust data analysis and interpretation. Finally, insufficient
numbers of subjects restrict the statistical power of data-driven
integrative AD models. These fundamental challenges explain
why, at this point in time, although many integrative AD models
have been published over the last decade, their impact on clinical
practice is limited.

In this review, we highlight recent advancements and future
possibilities of integrative modeling, discuss the limitations and
challenges involved, and finally, propose avenues to address
several of these challenges, in the context of AD research.

INTEGRATIVE AD MODELS

As already mentioned, integrative AD models can be
characterized as either hypothetical or data-driven, each of
which has strengths and weaknesses. In the following, we
compare different models of each type and discuss their
benefits and limitations. Finally, we elaborate on how associated
limitations and challenges could be handled.

Hypothetical Models
In hypothetical modeling, a model is generated about an object
of study, direct knowledge of which is difficult to obtain.
These models provide hypotheses about the object (Gladun,
1997). In integrative AD modeling, researchers develop so-called
cascade models, in which the measurements of a set of
biomarkers are normalized and their trajectories are plotted on
a common time scale, aligned to disease stages (Jack et al.,
2010, 2013). These models are typically developed by reviewing
the available knowledge and reasoning over observations from
previously published studies. They are not directly informed by
measured data.

One of the first hypothetical integrative AD models was
developed by Jack et al. (2013) [revised from a previous
model (Jack et al., 2010)]. This model hypothesized the
temporal changes of the five most studied biomarkers of
AD pathology in relation to estimated years from expected
symptom onset and in relation to other biomarkers. These
biomarkers are CSF amyloid-beta protein (CSF Aβ1−42) and
tau protein (CSF tau) levels, amyloid-beta PET imaging (PET
Aβ), Fluorodeoxyglucose-PET imaging, and structural MRI
readouts. In this cascade model, the authors presumed that
biomarker trajectories should exhibit a sigmoid-shaped curve.
This imposition is a direct result of the limited sensitivity of
measurements at time extremes, which the authors addressed
by taking the floor of the measurements at early timepoints,
and the ceiling of the measurements at late timepoints. The
authors hypothesized that the two amyloid-beta (Aβ) biomarkers
(i.e., CSF Aβ1−42 and PET Aβ imaging) gradually approach an
abnormal state while the subject remains in a cognitively normal
state. After a lag period, the length of which varies from patient to
patient, and in later disease stages, CSF tau, Fluorodeoxyglucose-
PET, and structural MRI biomarkers follow the same pattern

and begin the transition to an abnormal state. Similarly, Frisoni
et al. (2010) established a theoretical progression of cognitive and
biological markers (primarily imaging features) based not only
on the clinical disease stages, but also patient age at AD diagnosis
and time since diagnosis. Although both models captured earliest
detectable changes in amyloid markers, Frisoni et al. (2010)
additionally theorized that these changes plateau by the MCI
stage, when the individuals are no longer cognitively normal.
Furthermore, they suggested that F-fluorodeoxyglucose PET is
abnormal by the MCI stage and continues to change well into
the dementia stage. Structural changes appear later, following
a temporal pattern mirroring tau pathology deposition, which
slightly differs from the Jack et al. models (Jack et al., 2010,
2013).

While hypothetical models cannot be directly applied, they
can be used to suggest directions for future experiments that
themselves would address diagnosis, prediction, or decision
making tasks (Gladun, 1997). However, there are a number of
challenges relating to the construction of hypothetical models. In
the following, we discuss these challenges and propose ways to
address some of them.

Challenges of Hypothetical Models
The exclusive reliance of hypothetical models on literature
presents several challenges. First, relevant literature must be
identified. Second, the scientific knowledge contained in the
literature must be extracted in a meaningful form. Finally, the
knowledge has to be modeled.

In order to build a hypothetical model, a researcher must
identify a set of relevant publications, called a literature corpus,
which accurately reflects AD knowledge. This corpus should
be representative of the relevant aspects of AD, contain the
most up-to-date publications, and not be biased toward subfields
or trends. However, the number of new AD publications has
increased each year since 2005, and there were nearly 15,000
such publications in 2017 alone (Dong et al., 2019). With
such publication rates, it is challenging for researchers to
manually create high quality corpora (Rodriguez-Esteban, 2015),
Moreover, manual generation of these corpora is susceptible to
bias, because researchers may tend to draw more heavily from
authors or subfields with which they are more familiar (Atkins
et al., 1992). The size of a corpus will also be limited by the
time and resources available to the researchers. However, text
mining has been used effectively to automatically classify relevant
literature, based on titles and abstracts (e.g., see Simon et al.,
2018), and to prioritize texts (Singh et al., 2015). Publications
identified by this classification can be directly taken as the corpus
or used as a more manageable set of publications from which
the domain experts can appropriately select. Hypothetical models
are susceptible to biases present in the literature (Boutron and
Ravaud, 2018), but a well-designed, computationally selected
corpus can mitigate the effects of those biases.

Once the corpus has been identified, the challenge of
knowledge extraction remains. The goal here is to recover the
knowledge contained in the publications in a meaningful way.
Conducting this task manually is a time-consuming process that
requires a high degree of domain knowledge. Here, text mining
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poses the opportunity to extract knowledge in a computable
form (Gyori et al., 2017; Lamurias and Couto, 2019). Moreover,
it significantly reduces the amount of time required to read
publications, which enables significantly larger corpora to be used
in the building of hypothetical models.

Finally, in order to build hypothetical models, the information
gleaned from the literature corpus must be organized in a
coherent way. The entities and the relationships between them
should all be represented. Mind maps provide a non-automated
way of generating a knowledge model, driven by domain-
expert knowledge (Kudelic et al., 2011). However, if automated
information extraction strategies were used on the literature
corpus, then knowledge graphs are well-suited for storing the
extracted knowledge (Gyori et al., 2017). A major advantage
of this strategy is that the knowledge graph is computable,
meaning downstream machine learning tasks can be carried
out for knowledge discovery. Furthermore, knowledge graphs
support hypothesis generation by enabling researchers to assess
whether their hypotheses are compatible with existing knowledge
(Humayun et al., 2019).

Automated methods of corpus identification, knowledge
extraction, and knowledge modeling provide a means of
mitigating the challenges of hypothetical modeling. They reduce
the time burden, mitigate the risk of bias in manual methods, and
generate computable knowledge representations. This can yield
more reliable hypothetical AD models.

Hypothetical models are non-numerical and rely exclusively
on qualitative information, gleaned from a review of previous
findings. This limits their usability solely to eliciting hypotheses
for future experiments. They are neither predictive nor can they
be used for analysis of any kind of data. They are meant to
represent a kind of “typical” AD progression, without reflecting
individual deviations from that. Given the broad biological
heterogeneity observed among AD subjects, and the increasing
relevance of personalized medicine (Reitz, 2016), there is a need
for models that are capable of achieving this.

Data-driven models built on data collected in longitudinal
cohort studies can serve to support or challenge hypotheses
generated by hypothetical models (Petrella et al., 2019). Data-
driven models are appropriate for a wide range of tasks that lie
beyond the scope of what hypothetical models are designed for.
For example, using data models can capture individual subject
particularities that hypothetical models cannot (see e.g., Young
et al., 2015). In the following, we discuss data-driven models and
their challenges in depth.

Data-Driven Models
In contrast to hypothetical models, data-driven integrative
models are directly derived from datasets comprising readouts
of multiple biomarkers. Such models can be applied to a broad
variety of tasks ranging from predictive modeling e.g., predicting
patient diagnosis (Ding et al., 2018) or age at disease onset
(Chuang et al., 2016; Peng et al., 2016) to discovering patterns
in the data that shed light on biomarker interdependencies and
disease underlying mechanisms. Since these models use extensive
data, they are not limited by preconceived notions in the way that
hypothetical integrative models are.

Data-driven AD models can be classified into two
primary subtypes based on the statistical approaches and
algorithms applied (Table 1). The first subtype use traditional
statistical methods such as linear modeling, and the second
employs artificial intelligence and more specifically machine
learning approaches.

Traditional Statistical Models
In AD modeling, traditional statistical approaches, such as linear
mixed-effects models, are often used to estimate biomarker
trajectories (Caroli and Frisoni, 2010; Jack et al., 2011, 2012). In
these models, measured data, are regressed against a prespecified
variable, such as disease stage, to detail the temporal changes
of AD biomarkers during the course of disease. Essentially,
these models provide empirical testing of hypothetical multiple
biomarker trajectory plots.

Jack et al. (2012) used linear mixed-effects models to
investigate the shape of five important AD biomarker trajectories
(i.e., Aβ42, tau, amyloid, fluorodeoxyglucose PET, and structural
MRI) as a function of a cognitive test score, the Mini-Mental
State Exam (MMSE). This model parameterization enabled them
to assess within-subject rates of biomarker changes with respect
to changes of the MMSE score. They found that lower baseline
MMSE scores are correlated with worse baseline biomarker
values and that higher rates of biomarker change were associated
with worsening MMSE score. This model constructed the
biomarker trajectories without making any assumptions about
the shapes of the trajectories. This contrasts with the authors’
earlier hypothetical biomarker cascade model, which imposed a
sigmoid trajectory curve.

While the shapes of the trajectories in this data-driven model
agree with the assumptions made in the hypothetical exemplar,
the model has several limitations, pertaining to model design
choices and deficiencies in the data. The authors chose to use the
MMSE score as the independent variable. This choice was made
because the MMSE score provides a linear measure of disease
progression that was available across all datasets. However, this
introduces challenges in the estimation of trajectories in early
disease stages, because MMSE scores in cognitively normal
patients are relatively stable over time (Tombaugh, 2005),
yielding only a narrow range of values. Moreover, especially when
studying early disease stages, the model additionally suffers from
possible absence of information on future disease developments
of a subject. This absence of data on future disease outcome
is related to data censoring, which will be addressed in more
detail later.

In their data-driven model (Jack et al., 2011), Jack et al.
aimed to unravel the temporal order of biomarker trajectories
becoming abnormal, rather than only describing the shape
of their trajectories. They used the prevalence of biomarker
abnormalities at different disease stages to empirically assess
the temporal ordering of their trajectories. They employed
generalized estimating equations, a generalized linear model for
longitudinal data that can deal with correlated observations, to
evaluate and compare the proportion of abnormal observations
per biomarker. The proper choice of a cut-off defining when
biomarker measures are considered to be abnormal is a point
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of debate and making this choice requires critical judgement.
To differentiate between normal and abnormal biomarkers, Jack
et al. (2011) determined a cut-off by looking at an independent
post-mortem cohort. However, since, by construction, results
were highly sensitive to the selected cut-off for each biomarker,
the temporal resolution of the model is limited.

While the proportion of patients with abnormal biomarker
values might seem an unnatural choice for comparing
biomarkers, alternative strategies also have drawbacks. Caroli
and Frisoni (2010) computed Z-scores based on values of
each biomarker and fitted them against Alzheimer’s Disease
Assessment Scale-Cognitive Subscale (ADAS-cog) scores,
comparing linear and sigmoidal fits. Their investigation showed
that a sigmoid curve fit the observed data significantly better
than a linear one for most of the biomarkers, and thereby might
be able to characterize the time course of those biomarkers.
These results were consistent with the hypothetical model
proposed by Jack et al. (2010) and Jack et al. (2013). However,
the biomarker trajectories cannot be directly compared with the
data-driven model developed by Jack et al. (2011), since different
scales were employed in both studies. While standardization of
values by converting them into Z-scores resolves this problem,
it introduces a new one: by definition, the arithmetic mean of
each biomarker will be 0. This makes it impossible to reasonably
compare biomarker distributions based on their means using
standard statistical procedures like, for example, t-tests (Jack
et al., 2011; Moeller, 2015).

The arbitrariness of defining a cut-off for abnormality
of a biomarker will always pose a limitation on statistical
approaches relying on biomarkers. While such cut-offs simplify
the interpretation of the biomarker, there is no universally correct
cut-off for a given biomarker. Rather, appropriate cut-offs heavily
depend on the population, and even the individual, on which
a biomarker will be used. Covariates such as an individual’s
age, genetic risk factors, and family history of AD must be
considered. For these reasons, there is no single optimal cut-
off for any given biomarker (Bartlett et al., 2012; Anne and
Fagan, 2014). To address this, a less rigid technique has been
developed, that designates an intermediate range using two cut-
offs, one permissive and the other conservative (Klunk et al.,
2012; Jack et al., 2016a,b; Bzdok, 2017). The permissive point
can be used for earliest detectable evidence of AD pathologic
changes and the conservative one for high diagnostic certainty.
Moreover, different statistical approaches, like Youden’s index
and the receiver operating characteristic (ROC) curve, can be
applied to help determine an appropriate cut-off.

Linear traditional models are ill-equipped to handle the
increasingly high-dimensional data being collected in AD
studies. Thanks to recent technological advancements, the
granularity of AD datasets with respect to information resolution,
feature size, and complexity of meta-information have increased.
For example, improved neuro-imaging techniques generate
datasets with higher resolution than previously available. This
information distributed over voxels, a 3D imaging unit, is hard
to capture using linear models (Bzdok, 2017). Therefore, more
advanced data-driven models have been developed based on
machine learning. These models are generally more flexible and

compatible with the complex datasets encountered in biology
research (Bzdok, 2017).

Machine Learning Models
Machine learning models can be characterized as generative
or discriminative. As previously mentioned, discriminative
models are designed to differentiate between groups, while
generative models provide better disease understanding
by learning inherent properties from datasets, such as
feature interdependencies.

Generative models
Generative modeling relies on the use of statistics and probability
to extract patterns from data and learn the underlying
distribution. In the following, three types of generative
integrative AD models are reviewed: event-based models,
Bayesian network learning, and autoencoders.

Event-based models. Event-based models estimate the most
probable sequence of events based on the assessment of a
probability density function for a particular event order. Fonteijn
et al. (2012), Chen et al. (2016), and Oxtoby et al. (2018), used this
method to learn the sequence of AD events based on imaging and
non-imaging measurements from a clinical study. The authors
first fitted simple mixture models (e.g., gaussian mixture models)
to individual biomarkers in order to calculate the likelihood of
the normality or abnormality status per biomarker. Given these
likelihoods, by multiplication of the probabilities, the likelihoods
for each possible order of events was calculated. The order
with the highest probability was then selected using a greedy
Markov Chain Monte Carlo algorithm to describe the temporal
correlation of the biomarker trajectories over the course of
AD progression.

The models developed by Fonteijn et al. (2012) and
Chen et al. (2016) simplified the sequence of biomarker
abnormalities over the course of the disease progression by
relying on the assumption that all subjects follow a single
event sequence. However, AD is highly heterogeneous and
includes distinct subgroups (Ferreira et al., 2018). To account
for this, Young et al. (2015) established their event-based
models with two extensions: a Mallows model and a Dirichlet
process mixture of generalized Mallows models. The first
extension allows subjects to deviate from the main event
sequence, and the latter clusters subjects according to different
event sequences.

In principle, the event sequence proposed in the hypothetical
model is similar to that observed using traditional and event-
based models. Changes in CSF measures are the earliest events,
followed by regional brain atrophies and finally succeeded by
diminished cognitive scores. However, the event sequence in
the hypothetical and traditional models is constructed based on
predefined clinical assessments and often imprecise or subjective
cut-offs. By contrast, in generative models, the sequence of
events, as well as the clustering of biomarkers into normal and
abnormal classes, is directly extracted from the data (e.g., the
onset of a new symptom, like memory performance decline).
Thus, event-based models explain the changes without a priori
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biases. Moreover, generative models are able to characterize
uncertainty in the event ordering arising from heterogeneity in
the population and thus, can address individual deviations from
the generic model.

Bayesian network learning. Extensive research efforts have
been made to uncover the relationships between individual
biomarkers and AD. Yet the number of studies that investigated
the interplay between multiple biomarkers themselves is
comparably limited. Khanna et al. (2018) and Ding et al. (2018)
built Bayesian network models covering different biological
scales and time points to uncover the interplay amongst sets
of biomarkers. Ding et al. (2018) considered the ApoE allele,
PET and MRI imaging data, scores from psychological and
functional tests, and the medical history of patients with respect
to neurological diseases. Using a variety of feature selection
metrics, they determined the most relevant features with respect
to the clinical dementia rating and modeled these heterogeneous
measurements using a Bayesian network to determine their
probabilistic interdependencies. However, these models only
capture conditional probabilities between predictor variables
and clinical outcomes. They are unable to provide a causal
mechanistic understanding of an observed phenomenon. Such
hypothesized pathophysiological mechanisms are important
for making reliable predictions and having confidence in
the practical application of data-driven models. To this end,
Khanna et al. (2018) employed a combination of data-driven
probabilistic and knowledge-driven mechanistic approaches.
They modeled clinical variables, genetic variants, pathways,
and neuro-imaging readouts using Bayesian network learning
to estimate dependencies between disease relevant features.
Together with a cause-and-effect knowledge model derived
from scientific literature, they partially reconstructed biological
mechanisms that could play a role in the conversion of
normal/MCI into AD pathology.

Autoencoders. The last type of generative model discussed in
this review is autoencoders. In essence, an autoencoder is a
neural network that aims to encode the input data into a
lower dimensional representation and from that decode it again,
reconstructing the original input. It has successfully been applied
for different tasks on AD cohorts (Basu et al., 2019; Martinez-
Murcia et al., 2019). The two main applications of this approach
in the field consist of classifying patients based on AD diagnosis
(Basu et al., 2019) and clustering of patient trajectories into
subgroups (De Jong et al., 2019). These strategies are especially
interesting for patient classification and stratification tasks in
datasets where information is sparse. However, another novel and
promising task for autoencoders is the generation of synthetic
data from real patient level data (Gootjes-Dreesbach et al., 2019).
This, in turn, could be used to circumvent legal and ethical
constraints that restrict data sharing.

Discriminative models
Discriminative models are a class of models generally used for
classification. Discriminative models that rely on labeled data

are called supervised models, while unsupervised models use
unlabeled data.

Supervised discriminative models. Diverse supervised
discriminative methods such as support vector machines
(SVM; Magnin et al., 2010), and multiple-kernel SVM (MKL;
Hinrichs et al., 2010; Zhang et al., 2011) have been used to classify
AD patients, MCI subjects, and controls. However, studies that
used multiple-kernel SVM reported superior classification
performance, because the use of multiple kernels facilitates
the integration of multimodal biomarker data (Zhang et al.,
2011). Additionally, MKL are well-suited for dealing with very
high dimensional data (Young et al., 2013). MKL also enable
individual weighting of biomarker modalities. This offers more
flexibility for kernel combination and thus, a better integration
of the data. For example Hinrichs et al. (2010), applied MKL
in combination with MRI and PET imaging to differentiate
between AD subjects and controls. Their method showed high
classification performance, achieving 92.4% accuracy. Similarly,
Zhang et al. (2018) combined MRI, PET, and CSF biomarkers
to discriminate between healthy controls and AD/MCI. After
integrating all biomarker data using a MKL, they deployed a
linear SVM for the actual classification task, which resulted in
93.2% accuracy for classifying AD and healthy controls and
76.4% for discriminating between MCI and healthy controls.
Both studies applied a similar method for classification, yet the
latter one achieved a slightly higher accuracy. Comparing the
approaches applied in Zhang et al. (2018) and Hinrichs et al.
(2010) it becomes clear that the major reason for the difference
in performance is the feature selection process. Depending on
the available sample size, other methods might prove more
promising (Liu et al., 2012). Moreover, Zhang et al. (2018)
benefits from employing three biomarker modalities, namely,
CSF measurements and two imaging modalities, compared to
Hinrichs et al. (2010) who only use the two imaging modalities.

While the above kernel-based pattern recognition approaches
yield categorical class decisions, Young et al. (2013) used
gaussian process classification, which is a probabilistic
classification algorithm. This study integrated imaging, CSF,
neuropsychological, and genetic biomarkers to classify MCI
subjects who remained stable and MCI patients who converted
to AD within 3 years. In contrast to MKL, the probabilistic
classification afforded by the gaussian process approach provides
the opportunity to position the subjects according to disease
stage, to stratify patients, and to model the sequence order of
biomarker abnormality.

Another type of discriminative model is disease risk models.
This type of supervised model can be used to predict the time
to AD diagnosis for normal/MCI patients. Multiple approaches
have been used to develop risk models for AD (Da et al.,
2013; Li et al., 2013). Li et al. (2013) used a combination of
cox regression analyses and time-dependent ROC approaches to
evaluate prognostic utility and performance stability of candidate
biomarkers. The authors deduced that both baseline volumetric
MRI and cognitive measures can predict progression from MCI
to AD. However, in participants’ follow-up visits, only cognitive
measurements remained predictive. Da et al. (2013) employed
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the cox proportional hazards models to compare the magnitudes
of the relative association between predictors (patterns of brain
atrophy, cognitive assessments, genetics, and CSF biomarkers)
and time to conversion from MCI to AD. They concluded that
brain atrophy and cognitive assessments in combination offer the
highest predictive power of conversion fromMCI to AD.

Although the results in both studies were similar, the time-
dependent ROC curve used by Li et al. (2013) enabled them
to predict disease risk as a function of time. Thus, this method
provides clear benefit for a progressive disease such as AD,
in which both the disease status and biomarker measurements
change over time (Kamarudin et al., 2017).

The data labeling which enables supervised discriminative
models to determine decision boundaries for distinguishing
classes of interest can also introduce errors. Inaccurate labels
will negatively affect the performance of the classifier. Such
mislabeling is not uncommon in AD, due to the absence of
a clear diagnostic biomarker (Fischer et al., 2017). Instead,
diagnosis is currently made based on symptoms (Schott and
Petersen, 2015) Furthermore, integrative data analysis is further
complicated by the fact that the diagnostic criteria for MCI have
changed over the years, and MCI is not consistently defined
across clinical studies. While one study relies on assessing only
a single cognitive domain for MCI diagnosis, such as speech
or memory, others base their diagnoses on performance on
cognitive tests for multiple domains. Apart from that, there
are multiple pathologies for MCI; AD is just one of them.
Thus, unified clear disease definitions are crucial, since the MCI
classification accuracy can influence outcomes of research and
clinical practice (Jak et al., 2010).

Unsupervised Discriminative Models. Unsupervised
discriminative models use a variety of clustering techniques
on unlabeled data, avoiding the challenges of data label
accuracy. These techniques use properties of each data point
to iteratively form groups, called clusters. This ultimately leads
to a discrimination of the data into several clusters of highly
similar data points. Given the observed biological heterogeneity
among normal control subjects, Nettiksimmons et al. (2014)
hypothesized that different subgroups may also be found among
the MCI subjects. Using agglomerative hierarchical clustering,
they sorted subjects based on MRI volumes, CSF measurements,
and cognitive tests. Next, the resulting clusters were explored
with regard to longitudinal atrophy, conversion time, and
cognitive trajectories. Four clusters with unique biomarker
patterns resulted: (i) a cluster biologically similar to normal
controls. MCI patients from that cluster rarely converted to AD,
(ii) one cluster with early AD pathology characteristics, (iii)
another cluster of subjects with hardly any tau abnormality,
but a high proportion of AD converters, and (iv) and finally
one cluster with pre-AD symptoms wherein almost all subjects
converted to AD. Based on these findings, they hypothesized
that clusters ii and iv reflected the amyloid cascade pattern
(Ricciarelli and Fedele, 2017) since both clusters presented lower
CSF Aβ levels and elevated tau proteins. However, the tau level
in cluster iv was higher, and more severe atrophy as well as
cognitive impairment were detected. The authors concluded that

more tau accumulation may lead to more cognitive decline. One
of the intrinsic limitations of their clustering approach is that
the number of clusters must be predefined. The maximum gap
statistic is one approach to determine this number (Tibshirani
et al., 2001). However, specifying the number of clusters
beforehand will always bias the clustering to some extent, and
choosing a reasonable number is no trivial task given the broad
variety of subtypes found among AD subjects.

Toschi et al. (2019) used Density-Based Spatial Clustering of
Applications with Noise (DBSCAN; Thanh et al., 2013), which
does not require pre-specifying the number of clusters. They
integrated five validated CSF biomarkers in order to cluster a
cohort where symptomatic patients presented diagnoses ranging
from self-perceived cognitive decline (Zhang et al., 2011) to MCI
to AD. In contrast to the previous study, Toschi et al. (2019)
adjusted all biomarker values for age, sex and their interactions
to exclude them as confounders (Pourhoseingholi et al., 2012).
Moreover, Toschi et al. (2019) used t-Distributed Stochastic
Neighbor Embedding (t-SNE) to reduce the dimensionality of
biomarkers space, since defining the distance between the data
points in a high dimensional space of biomarkers is notoriously
difficult (Domingos, 2012). Finally, they applied DBSCANon this
lower dimensional representation. DBSCAN defines a high data
density region based on two parameters: (i) the radius of the
neighborhood, and (ii) the minimum number of points within
the radius. These values are determined by a nearest neighbor
method, in which the distance of each point to their nearest n
points is calculated. Afterwards, results are sorted, plotted and
the value with most pronounced change is selected as the optimal
value. Using DBSCAN, Toschi et al. (2019) characterized five
biological clusters which were not significantly bound to the
original distinct clinically phenotyped diagnostic groups. They
explained that the clusters included all phenotypic groups and
were not homogeneous enough to be considered as a specific
AD pathophysiology. Moreover, contrary to general belief that
Aβ1−42 is linearly associated with the progression of AD and
cognitive decline (Sperling et al., 2011a; Samtani et al., 2013),
their findings suggest that Aβ1−42 is less likely to contribute to
phenotypic discrimination.

The dimensionality reduction technique, t-SNE, used by
Toschi et al. (2019) enabled them to better separate the data and
hence, to enhance cluster identification, in comparison to directly
running a clustering algorithm on a high dimensional data as
Nettiksimmons et al. (2014). However, their main limitation is
that clustering results are highly sensitive to two parameters
necessary for DBSCAN. Moreover, they did not include other
biomarkers, such as imaging and genetics biomarkers, which
could enhance their clustering, as previously reported by Young
et al. (2013, 2018).

Unsupervised clustering algorithms are ideal for identifying
subgroups and non-linear associations between individuals based
on a multidimensional profile, regardless of the individual
labels, in contrast to supervised algorithms. This allows the
grouping of individuals based on shared pathophysiological
drivers and triggers and, possibly, similar longitudinal disease
trajectories. This is an advantage in the AD field due to the
prevalence of unreliable labels stemming from misdiagnosis
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and to the biological heterogeneity of AD subjects. On the
other hand, most unsupervised clustering algorithms perform
better with a larger sample size than is often obtainable in
AD studies (Oxtoby and Alexander, 2017). Therefore, the smaller
size inherent to AD cohorts may lead to clustering instability.

To this point, we have reviewed a broad variety of data-driven
integrative AD models and elaborated on their associated
limitations and challenges. In the following, we enumerate
more general challenges researchers encounter in the course
of data-driven integrative AD modeling and suggest how these
could be addressed.

Challenges of Data-Driven Modeling
Although there exists a wide range of data-driven integrative
modeling approaches, not all of them are well-suited for every
analytic task and each has its own strengths and weaknesses. Still,
there are some challenges which affect all data-driven approaches
to some degree: data collection, reproducibility of findings, and
interpretability of models and results.

Data Collection
Collecting patient level data, the basis for all data-driven
modeling, is a time-consuming and costly process. Additionally,
it is a source of major challenges and limitations of these
models. In particular, data “censoring” and “missingness,” can
impede modeling, bias models, or even make certain modeling
techniques unfeasible.

Data censoring describes the condition in which a particular
event (here AD diagnosis) is not observed for certain study
participants during the study runtime. This censoring can occur
in two ways: if AD diagnosis occurred before the start of
the study; or if the patient drops out of the study, or the
study ends without occurrence of the AD diagnosis event.
A significant number of patients enrolled in clinical studies
have already received a diagnosis before the beginning of the
study, indicating that they are in a progressed stage of the
disease (Ellis et al., 2009). It is therefore not possible to obtain
indications of early disease onset in such patients. The second
form of censoring arises from two sources. First, all observational
cohort studies experience participant dropout for a variety of
reasons, including the participation burden on caregivers or
medical problems (Coley et al., 2008). Second, subjects that
remain healthy throughout study runtime could still develop
the disease after the study ended, meaning they were in a
prodromal disease stage. It is thus impossible to know if or
when the patient would eventually receive an AD diagnosis.
This form of censoring is common in longitudinal AD studies,
because AD is a slow-progressing disease, while the studies are
typically quite short (Lawrence et al., 2017), due to limited
funding (Prabhakaran and Bakshi, 2018).

Disease onset is a critical point for clinical intervention
(Sperling et al., 2011b), so it is subject to extensive research
efforts. It is here, however, where data censoring impedes data
analysis the most. Data censoring can result in over- or under-
sampling of early and advanced disease stages. This, in turn,
leads to models biased toward specific disease stages (Ning et al.,
2010). Various methods, such as complete data analysis (Xiang

et al., 2013), imputation (Fisher et al., 2019), or analysis based on
dichotomized data (Donohue et al., 2011), have been established
to address censored data. Yet all of these methods may introduce
error and impose complexities and biases on other integrative
modeling steps, such as model interpretation, and thus need to
be used with care (Prinja et al., 2010).

The complete absence of a value for variables in the
observation of interest likewise poses a significant challenge to
data-driven modeling. This missing data in AD cohort studies
occurs for several reasons, including unwillingness of patients
to undergo invasive tests like lumbar punctures, and the high
cost of measuring a particular variable, such as imaging scans
(Engelborghs et al., 2017). The implications of such a scenario
include a loss of statistical power of the study and may bias the
conclusions that can be drawn (Hughes et al., 2019). Over the
past decades, novel statistical methods (Molenberghs et al., 2014)
and software (Quartagno and Carpenter, 2016;Moreno-Betancur
et al., 2017) have been developed for analyzing data with missing
values. However, analysis restricted to individuals with complete
data is generally preferred, if feasible.

Despite the challenges in collecting complete and uncensored
data, the value of data in strengthening disease understanding is
clear. Several large-scale AD patient datasets have been collected
for use in a variety of studies (Lawrence et al., 2017) including, for
example, Alzheimer’s Disease Neuroimaging Initiative (ADNI;
Mueller et al., 2005), Australian Imaging Biomarkers and
Lifestyle Study of Aging (AIBL; Ellis et al., 2009), the Dominantly
Inherited Alzheimer Network (DIAN; Moulder et al., 2013), and
European Prevention of Alzheimer’s Dementia (EPAD; Vermunt
et al., 2018). However, these classical observational studies are
subject to bias, resulting from the inclusion and exclusion criteria
used to select participants (Miksad and Abernethy, 2018).

The use of electronic medical records (EMRs) has been
proposed as a potential solution to reduce the bias of classical
clinical trials. They provide an alternative view on patient
measurements (Fröhlich et al., 2018), so, a collection of EMRs
can provide amore representative view on patientmeasurements.
However, EMRs are largely phenotypic: molecular phenomena
such as genomic variants are not reflected in the data. Moreover,
extracting information from EMRs requires natural language
preprocessing, which itself currently remains a difficult and
error-prone process.

Reproducibility
The ability to reproduce the findings of a study using different
subjects is an important part of scientific research. This is
particularly the case in integrative AD modeling, since the
tendency of AD datasets is not to fully reflect the diversity of
AD patients. Inclusion-exclusion criteria in clinical studies can
lead to significant under-representation of some populations. For
example, the landscape of data-driven AD models is currently
dominated by only a few cohorts which are made up largely
of White Caucasians, and, to a lesser extent, are constrained
by geographic location (Lawrence et al., 2017). Since most
observational cohorts are not representative of the general AD
population (Ferreira et al., 2017), it is important to validate the
resulting models with an independent cohort study. While this
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external validation is a necessary step to corroborate findings, it
is complicated by data interoperability and sample size.

Interoperability
The ability to map the data coming from one study to
data from another study is known as data interoperability5.
Each of the major AD clinical studies was established with a
specific sample and feature characterization. Since they might
not be directly interoperable, extensive curation is needed
before the external validation of a model can be carried out.
Otherwise, the training cohort and the validation cohort would
be based on different populations, and would contain different
measurements. Thus, before validation, researchers must map
and assess the “comparability” of both features and subjects.

Feature mapping requires specifying relationships between
data elements from different data models and standardizing the
terms used to represent the features in the two datasets. This
is due to the fact that controlled vocabularies are not used to
annotate the datasets. Thus, even if the same biomarker has been
collected in two studies, it is usually referred to by different terms,
impeding a direct comparison of the datasets. For example,
the hippocampus is one of the earliest sites of AD pathology,
and hippocampal volume is measured in ADNI and EPAD.
However, ADNI identifies this biomarker as “Hippocampus,”
while EPAD refers to it as “lhvr” (right hemisphere) and “lhvl”
(left hemisphere).

Moreover, the subject populations in each study must be
comparable. For instance, if the biological sex distributions in
twoAD studies differ significantly, then the cognitive impairment
scores of the cohorts cannot be directly compared, because
female AD patients have been shown to have greater cognitive
impairment than men in comparable stages of the disease
(Laws et al., 2016).

There are several strategies to overcome the lack of
interoperability between datasets at both feature and subject level.
At the feature level, interoperability can be attained by annotating
datasets according to a standard controlled vocabulary. Several
such vocabularies (e.g., NIFT Iyappan et al., 2017 and PTS
Iyappan et al., 2016) have been established, but significant
improvements in interoperability will only comewith widespread
adoption (Neu et al., 2012). The most prominent example might
be the AD specific standard developed by the Clinical Data
Interchange Standards Consortium (CDISC; Neville et al., 2017).
At the subject level, mapping between training and validation
cohorts can be accomplished by identifying, in the validation
cohort, a subset of subjects that is statistically comparable to
the training cohort. Finally, in order to assess the comparability
of subjects from different studies, techniques such as statistical
matching can be used (Austin, 2011).

Sample size
The relatively small sample sizes of AD clinical studies also
contributes to the challenge of reproducibility in AD integrative
modeling. Many AD studies contain fewer than a thousand
patients, and the longitudinal follow-up is limited. In addition,

5https://library.ahima.org/doc?oid=65895#.Xdl-iZPYrOQ

typically not all of the subjects were screened for the complete
biomarker set, leading to sparse subsets of patients for whom
the study contains complete data. As a result, models generated
from these studies have a high margin of error and low statistical
power, meaning they struggle to detect small effects.

The integration of different datasets into a larger dataset
can overcome some of the challenges related to small sample
sizes (Gomez-Cabrero et al., 2014). Integrated datasets provide
more comprehensive data, and the resulting models have
greater statistical power. However, current approaches for data
integration were developed for the analysis of single-data-type
datasets, and only subsequently adapted to handle datasets
with multiple data types. For this reason, data integration
methodologies can be ill-suited to manage the computational
challenges arising from the variety of different data sizes, formats,
and dimensionalities present in AD datasets, as well as their
noisiness, complexity, and the level of agreement between
datasets (Gomez-Cabrero et al., 2014; Gligorijević et al., 2015).
Furthermore, even data acquired by analogous technologies
are not necessarily integrable. For example, neuroimaging data
acquired from similar scanners and similar modalities may still
be stored in different formats and have differentmetadata content
(Goble and Stevens, 2008).

Several strategies could be applied to address the
interoperability challenges arising from data integration.
The first strategy is to normalize and standardize data across
all platforms (O’Bryant et al., 2015). However, scientific
independency and freedom for innovation, as well as uniqueness
of databases, must be respected. The second strategy is to
collect a standardized set of biomarkers across different studies.
Finally, the ideal solution would be performing a systematic
longitudinal clinical and -omics follow-up of each individual
in a large and rigorously characterized cohort since this would
provide a statistically sufficient number of measurements in
the context of subjects and variables. The Deep and Frequent
Phenotyping study from Lawson et al. (2017) showed that such
a cohort, in theory, is feasible. Yet, including a sufficient number
of participants in such an ambitious study is costly.

Interpretability
In order for an AD model to have clinical impact, its findings
must be interpretable. There are several barriers to AD model
interpretability. Machine learning models often act as “black
boxes”; it may be impossible to uncover the reasons for the
predictions made by the model (Rudin, 2019). Indeed, as the
number of features and the complexity of the computational
processes used in models increases, this interpretability problem
will worsen. Moreover, data-driven models are not causal and
typically capture non-linear correlations between predictor and
explanatory variables. While prior understanding of cause–effect
relationships and detailed mechanisms might prove helpful to
well-performing models, it is not necessarily required. Lack of
mechanistic explanations for model prediction complicates the
interpretation of data-driven findings and reduces acceptance by
physicians (Fröhlich et al., 2018). Thus, the translation of data-
driven models into a biomedical knowledge context is a major
challenge in integrative AD modeling.
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Combining available mechanistic knowledge with machine
learning-based sub-models, so-called hybrid modeling
could bridge the gap between experimental biological and
computational research by improving interpretability (Fröhlich
et al., 2018). For example, Bayesian networks which built
on causal knowledge graphs constitute such a hybrid model
(Arora et al., 2019). They shed light on interdependencies
across features, which can be on different scales (e.g., clinical,
genetic, and molecular), and allow for predicting the outcome of
purely hypothetical clinical interventions. Similarly, other recent
deep learning methodologies use knowledge-derived biological
networks to define the layers of neural networks in order to
improve interpretability (Fortelny and Bock, 2019).

CONCLUSION

In the era of extensive biomarker profiling, big data, and artificial
intelligence, integrative AD modeling comes with high promises.
By integrating multi-scale, multimodal, and longitudinal patient
data, such modeling approaches aim to provide a holistic picture
of disease pathophysiology and progression. However, as we
have discussed in this review, while integrative models have
generated significant insights, and thus proved to be valuable
in research, existing models do not yet fully describe critical
aspects of AD.

The construction of hypothetical models simultaneously
benefits and suffers from the vast amount of published
knowledge. Prioritization of articles and computational text
mining of literature corpora are reasonable approaches to
identify a greater quantity of relevant knowledge while designing
hypothetical models. In the field of data-driven integrative
AD modeling, we highlighted several major ongoing challenges
throughout the whole modeling process of data collection,
integration of disparate data sources, data analysis, and
model interpretation. Data missingness and data censoring are
major bottlenecks in data collection as well as analysis and
interpretation. Heterogeneity and complexity in biological data
are major impediments to data integration, which is central to
data-driven integrative modeling and validation. Data mapping,

imprecise diagnostic stages, and biased data are barriers that
hamper data analysis and interpretation. Furthermore, there is

an insufficient number of subjects in studies, which restricts the
statistical power of data-driven integrative AD models. Because
of these challenges, to the best of our knowledge, at this point in
time, there are no integrative AD models which have been used
in clinical practice.

While in theory, certain existing integrative models are
capable of predicting AD diagnosis and progression, they are
not used in clinical practice. We see a number of steps
that could bring us closer to the goal of precision medicine
and that could enable patient diagnosis through integrative
disease models in a clinical context. First, we, the AD research
community, need to establish valid, informative biomarkers and
clear criteria for AD diagnosis. This would result in reliable
predictors that could be included in modeling approaches,
as well as fewer diagnostic errors, which in turn reduce the
effect of mislabeled data. Second, a global data schema that
could support the normalization and standardization of data
across measurements would ultimately facilitate improved data
integration. If future cohort studies would adhere to such a
schema, data integration would be straightforward and the
cumulative time saved for researchers working with it would
be enormous. Finally, innovative modeling approaches, such
as causal inference techniques and hybrid modeling, which
go beyond current state-of-the-art data-driven models by
linking prior knowledge with data-driven models, need to be
developed and made more robust. Overall, novel computational
modeling approaches that surmount the current integrative
AD modeling challenges may hold the potential to play
an increasing role in the planning of medical interventions
and practice.
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In highly non-linear datasets, attributes or features do not allow readily finding visual

patterns for identifying common underlying behaviors. Therefore, it is not possible

to achieve classification or regression using linear or mildly non-linear hyperspace

partition functions. Hence, supervised learning models based on the application of

most existing algorithms are limited, and their performance metrics are low. Linear

transformations of variables, such as principal components analysis, cannot avoid the

problem, and even models based on artificial neural networks and deep learning are

unable to improve the metrics. Sometimes, even when features allow classification or

regression in reported cases, performance metrics of supervised learning algorithms

remain unsatisfyingly low. This problem is recurrent in many areas of study as, per

example, the clinical, biotechnological, and protein engineering areas, where many of

the attributes are correlated in an unknown and very non-linear fashion or are categorical

and difficult to relate to a target response variable. In such areas, being able to create

predictive models would dramatically impact the quality of their outcomes, generating

an immediate added value for both the scientific and general public. In this manuscript,

we present RV-Clustering, a library of unsupervised learning algorithms, and a new

methodology designed to find optimum partitions within highly non-linear datasets

that allow deconvoluting variables and notoriously improving performance metrics in

supervised learning classification or regression models. The partitions obtained are

statistically cross-validated, ensuring correct representativity and no over-fitting. We have

successfully tested RV-Clustering in several highly non-linear datasets with different

origins. The approach herein proposed has generated classification and regression

models with high-performance metrics, which further supports its ability to generate

predictive models for highly non-linear datasets. Advantageously, the method does not

require significant human input, which guarantees a higher usability in the biological,

biomedical, and protein engineering community with no specific knowledge in the

machine learning area.

Keywords: highly non-linear datasets, supervised learning algorithms, clustering, statistical techniques, recursive

binary methods
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INTRODUCTION

In the so-called era of Data, Big Data seems to be a common
term. As the name suggests, its determining characteristic is
the amount of information, a quantity so large that it has
required the development of new technologies and algorithms
to obtain useful information from them (Katal et al., 2013;
Sagiroglu and Sinanc, 2013; Gandomi and Haider, 2015). The
above has attracted the interest of various actors, and among
them, the field finds enthusiasts, detractors, and skeptics. In
recent times, academic interest in Big Data revealed by the
number of journals, conferences, and initiatives dedicated to the
subject, has shown a consistently growing trend (Ekbia et al.,
2015; Gandomi and Haider, 2015). From this increase, we can
infer that, in addition to introducing new study directions and
fields, Big Data has changed how research is carried out (Abbasi
et al., 2016). The proliferation of information generators has
created gigantic volumes and great diversity of data, and the
evolution of the methods to analyze, store, transmit, and use
them are radically reforming the scientific computing scenario
(Hu et al., 2014; Asch et al., 2018; Oussous et al., 2018).
Machine Learning (ML) techniques are an example of such
methods (Al-Jarrah et al., 2015; Qiu et al., 2016; Zhou et al.,
2017).

ML operates under the premise that it is possible to learn
from the data and to generate predictions from the trends it
may exhibit. ML, and any learning process in general, first
involves a pattern discrimination stage, which is subsequently
used for conjecturing predictions for new examples. Among
the best-known ML methods, two separate groups can be
drawn: supervised learning (Singh et al., 2016) and unsupervised
learning (Ghahramani, 2003) methods. The first group of
methods, usually associated with the classification and regression
tasks, requires knowledge about a response variable, which is
assumed to be related to and inferred from it. The second
group of methods, generally related to clustering or pattern
recognition tasks, does not require a previously known response
variable since the output is clusters of behaviors that naturally
emerge from the data (Witten et al., 2005). Examples of widely-
used ML techniques are Artificial Neural Networks (ANN),
Decision Trees (DT), Support Vector Machines (SVM), Naïve
Bayes, k-nearest neighbors (KNN), and ensemble methods such
as Boosting or Bagging, among others (Witten et al., 2005;
Kourou et al., 2015). A general weakness of ML techniques,
reported in different tenors, is an intrinsic part of their core:
as they train from limited data, their results depend on their
limited experience and, lacking a theoretical background, they
frequently fail to cast predictions over exotic examples not
present in the training set (Kourou et al., 2015; Michael et al.,
2018). Some researchers commonly classify ML-trained models
as “black boxes,” a term that results quite accurate for the ANN’s
applications (Olden and Jackson, 2002; Qiu and Jensen, 2004).
However, models as DT, SVM, and KNN, for example, actually
do rescue information about the decision-making workflow
in their architecture, giving some insights about the reasons
behind their results. In the area of biomedicine, where the
applications are wide and very promising (Costa, 2014; Greene

et al., 2014; Lee and Yoon, 2017), researchers call for a new
era in the application of ML (Camacho et al., 2018), where
the incorporation of information will be a key feature for
success (Auffray et al., 2016; Michael et al., 2018). For instance,
applications of ML may be found in studies related to cancer
diagnosis and treatment (Kourou et al., 2015; Hinkson et al.,
2017), diabetes research (Kavakiotis et al., 2017), decision support
in critical care (Johnson et al., 2016), genomic medicine (Leung
et al., 2015), among others.

Many times, the datasets do not have information about how
their features interact to generate responses or clusters, which,
added to the noise that datasets usually have, complicates its
treatment. Researchers have pointed out this fact, emphasizing
that it is difficult to bridge the gap between prediction and
reality if the mechanistic background of the phenomenon to
be predicted is not evident (Coveney et al., 2016). Depending
on how complex the underlying relationships between the
features are, classification or prediction models would be trained
more or less smoothly. However, that complexity could also
represent a prohibitive constraint, resulting in unacceptable
performances of the trained models. Consequently, we may
find natural that the success of ML techniques when training
predictive models strongly rely on the data. In this work, we
will call linear datasets those in which ML methods based
on linearity assumptions generate models with outstanding
performance measures. We will refer those datasets in which
this does not happen as non-linear datasets. Some datasets
result too complicated for linear models but may be suitable
for applying mildly non-linear algorithms, such as non-linear
Functional Data Analysis (FDA), Random Forest, AdaBoost,
Gradient Tree Boosting, among others, or after performing a
data pretreatment stage (Kourou et al., 2015). For this work,
we will focus on those datasets in which, even after attempting
to apply non-linear techniques, trained models do not reach
acceptable performance. We will refer to these sets as highly
non-linear datasets.

Previous works handling non-linear biological and
biomedical datasets have used differentMachine Learning-driven
approaches to obtain predictors. Some of them use artificial
neural networks (ANN) because of the high-performance
metrics that these methods might achieve (Almeida, 2002;
Rani, 2011; Shaikhina and Khovanova, 2017). Nevertheless,
such performances can be altered by modifying the network
hyperparameters (such as the number of layers or neuron units),
often on the cost of overfitting the data. Other works have
applied distance-based methods such as KNN (Ahmad et al.,
2017), kernel-driven spatial transforms as SVM (Shi et al., 2013;
Xiang et al., 2017), and variations of Partial Least Squares PLS
(Sun et al., 2017), all after performing a specially tailored data
pretreatment. This non-standard pretreatment results in the
loss of generality of such approaches. Examples of the used data
pretreatment techniques are classical Principal Components
Analysis (PCA) and its variants, Factor Analysis (FA), and
non-linear approaches as the t-distributed Stochastic Neighbor
Embedding (t-SNE), Laplacian Eigenmaps and Locally Linear
Embedding (LEM), and isometric mapping Isomaps (ISO),
among others (Lee et al., 2008; Pandit et al., 2016; Rydzewski
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and Nowak, 2016; Doerr et al., 2017; Tribello and Gasparotto,
2019).

Since highly non-linear datasets are usually obtained while
gathering scientific data, attempts have been performed using
them to somehow develop predictive or interpretative models.
However, these approaches lack generality as they have usually
been developed for particular applications and used bare
algorithms, which were combined with data pretreatment
techniques, as described above, to increase performance metrics.
Some of the examples we will use as study subjects in this
manuscript relate to the fields of protein engineering, specifically
stability assessment on point mutations (Capriotti et al., 2005;
Masso and Vaisman, 2008; Getov et al., 2016) and protein
localization in E. coli (Horton and Nakai, 1997; Zhang and
Ling, 2001; Deshpande and Karypis, 2002; Ratanamahatana and
Gunopulos, 2002), and clinical medicine, such as mammographic
mass evolution (Elter et al., 2007) and thoracic surgery.
Yet, the generation of a general methodology to treat these
(highly) non-linear datasets in order to get predictive models
is still an open problem, which we intend to tackle in the
present manuscript.

Aiming to solve the model training underperformance issue
over highly non-linear datasets, we present RV-Clustering, a
library programmed in Python language, optimized for the
development of predictive models for these datasets. In the
following sections, the different modules implemented in the
library and a new methodology to adequately obtain models in
a highly non-linear dataset are described in detail. Following the
workflow proposed by our methodology, the library implements
different stages of data pretreatment and linearity assessment.
In case the dataset is proven to be highly non-linear, the
recursive binary partition, which is the central point of the
algorithm, is carried out. The idea behind the method is
the following: first, using unsupervised learning methods, a
partition of the input dataset is generated. Afterward, different
predictive models are locally trained in each subset, taking
advantage of similarities among subset members to reach
better performance metrics. After the local models are trained,
they are validated and combined to form a meta-model.
Before casting predictions on new cases, a global classification
model is created to assign them to the subset where they
belong, according to their features. The predictions result
from applying the local meta-model on the new examples.
We have successfully tested the proposed methodology in
several highly non-linear datasets from a broad spectrum of
origins, such as from the biomedical, biotechnology, and protein
engineering areas. The versatility introduced by the proposed
methodology highlights its potential benefits for users from
all areas of knowledge, not only limited only to the fields
mentioned above.

METHODS

Both the source code and the executable elements of
RV-Clustering were implemented under the Python 2.7
programming language (Oliphant, 2007), mainly using the

Scikit-learn (Pedregosa et al., 2011), Python Data Analysis
(Pandas) (McKinney, 2011), and NumPy (Van Der Walt
et al., 2011) libraries. The RV-Clustering library was designed
under the Object-Oriented Programming paradigm (Wegner,
1990), aiming to provide the modularity required to perform
actions separately in the proposed workflow. We tested the
different functionalities of the library through the analysis
of diverse datasets, mainly extracted from bibliographic
reports of specific mutations in proteins and the effect
they have on their properties and stability, and from open
databases, such as BRENDA (Jeske et al., 2018), ProTherm
(Bava et al., 2004), and the UCI Machine Learning repository
(Dua and Graff, 2017).

OVERVIEW OF THE RV-CLUSTERING
METHODOLOGY

RV-Clustering is a Python library, optimized for the creation
and validation of predictive models for highly non-linear
datasets. Its functionalities range from the typical data
pretreatment techniques to the generation of predictive
models for highly non-linear datasets. Our library stands
out from others because of its ease of use, its modularity,
the robustness of the implemented algorithms, and its open-
source access. The details about the different commands
and instructions for installing RV-Clustering in a local
computer are available in the authors’ Github repository
(https://github.com/dMedinaO/nonlinearModels). Without
being specific, RV-Clustering consists of different modules
aiming to:

• Provide data pretreatment techniques.
• Assess the degree of non-linearity of the dataset.
• Create predictive models based on both supervised and

unsupervised learning algorithms.
• Build and train meta-models.
• Generate partitions of the dataset, where models reach high

performances more efficiently while being trained.
• Evaluate performance metrics of the implemented models.

To highlight the motivation behind the proposed library and
methodology, we will explain its different modules as they appear
in the proposed workflow. Briefly, RV-Clustering modules for
the treatment of highly non-linear datasets are based on a
recursive binary partition of the initial dataset and subsequent
training of the predictive models for assigning new examples
to the constitutive subsets. Afterward, RV-Clustering generates
different predictive models within the resulting partition,
generating a battery of local models that predicts examples
inside the subset. When the user wants to evaluate a new
example, RV-Clustering assigns it to one of the subsets within
the partition, and then the local models cast the predictions to
form the output. RV-Clustering also reports the performance
metrics and statistical analyses of the resulting classification
model, the within-the-partition local models, and the
general meta-model.
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Algorithm 1: RV-Clustering methodology

Result: Predictive meta-model for a (highly) non-linear
dataset

xuser : User defined linearity threshold for a performance
metric x;
xmod : Model/meta-model performance metric x;
Assess linearity of the dataset, xlinear;
if xlinear ≤ xuser then

Explore linear and mildly non-linear models within the
dataset, xmod;
if xmod ≤ xuser then

Generate a partition of the dataset and a classification
model within it;
Generate local meta-models in subsets of the
partition;
Couple the classification model with the local
meta-models to create a general model;

Validate the general model, x
gen

mod
;

if x
gen

mod
≤ xuser then

Suggest corrections and restart the algorithm;
else

Accept model;
end

else

Accept model;
end

else

Accept model;
end

RESULTS

RV-Clustering Modules Through the
Proposed Methodology
This section comprises the description of the different modules
implemented in the RV-Clustering command library and the
proposed methodology. Figure 1 represents the workflow of our
method. As an input, RV-Clustering receives the dataset and
configuration parameters for the evaluation of different criteria
such as the minimum percentage of elements in each group, the
kind of model to be trained, and the minimum ratio accepted
for the detection of class imbalance, in the case of classification
models. At this stage, the user also must declare thresholds to
evaluate whether the dataset is considered as linear or non-linear,
and minimum expected performance metrics in the exploratory
stage of predictive models.

Data Preprocessing
RV-Clustering incorporates a dataset preprocessing stage that
allows encoding categorical variables using OneHot Encoder and
assessing the class imbalance, if applicable. Finally, RV-Clustering
standardizes the dataset and divides it into two groups: a training
subset (80% of the original dataset) and a validation subset (the
remaining 20%).

Evaluation of Dataset Linearity
In the first instance, RV-Clustering evaluates whether the dataset
is non-linear according to our definition. To do this, the user
must indicate if the desired model is for or classification. If the
models to be trained are regression models, the tool applies a
linear regression on the dataset based on ordinal least squares and
obtains the coefficient of determination value of the result (R2).
Otherwise, it applies a variation of the Ho-Kashyap algorithm
(Serpico andMoser, 2006), in which different linear classification
methods, based on Support Vector Machines (SVM) and its
variants, are implemented. Finally, we compare the accuracy of
the obtained models with the minimum acceptance threshold
defined by the user. Thus, any dataset that does not meet this
criterion is classified as non-linear and is a candidate to undergo
the process of recursive binary partitions.

Initial Exploration of Predictive Models
RV-Clustering allows the user to perform an exploratory stage
for testing the performance metrics of predictive models based
on supervised learning algorithms. This evaluation receives
as input: (i) the dataset, (ii) the performance measure of
interest, (iii) the minimum performance threshold, (iv) the type
of response (categorical or numerical), and (v) the response
column identifier.

To perform the exploration, the model training module of
our tool applies different supervised learning algorithms to the
dataset, depending on the type of response. After training the
models, we obtain distributions of performancemetrics, selecting
the model with the highest performance according to the user-
input metric. If the performance is higher than the threshold
declared by the user, the tool reports as output the respective
model and all its performance metrics. Otherwise, a message
informing that no model meets the desired requirements will
appear. If that were the case, there are two different actions
to take that may help to reverse the result: (i) reducing the
dimensionality of the dataset by selecting the most informative
attributes or, on the contrary, (ii) adding further information
to the dataset. The first requires knowledge about the available
techniques for dimensionality reduction, while the addition of
information may not be favorable if it is not informative enough
and only serves to increase the noise in the dataset. Finally,
if none of the options works, it is recommended to submit
the dataset to the recursive binary partition stage proposed in
this work.

It is essential to mention that this stage is complementary
to the evaluation of the linearity of the datasets since the
contemplated algorithms are not linear regressions or hyperplane
generation-based. Alternatively, we instead employ probability
distributions (Naïve Bayes and derivatives), evaluation of
characteristics (Decision Trees), or boosting methods (Random
Forest, Adaboost, Bagging, Gradient Tree Boosting) for
model training.

Recursive Binary Partitions
The main objective of the recursive binary partition process is
the generation of subsets from the initial dataset, wherein we
could increase the performance metrics previously obtained in
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FIGURE 1 | Representative scheme of the workflow associated with the methodology proposed to develop predictive models for highly non-linear datasets, based on

the use of the RV-Clustering library.

the exploratory stage of supervised learning models. A binary
search trees-inspired algorithm (Bentley, 1975), where the search
is optimized in the tree path, generate the partitions. In each
iteration, the initial dataset is subjected to an exploration of
different unsupervised learning clustering methods, such as
the Birch, k-Means, and Agglomerative algorithms, conditioned
to the generation of two elements. In the cases of k-
Means and Birch, our algorithm automatically tests different
distance metrics, while for Agglomerative Clustering, the affinity
parameter and linkage methods are automatically varied. Each
proposed partition is evaluated using the silhouette coefficient
and the Calinski-Harabasz index. Subsequently, we evaluate the
number of subset elements of those partitions that have the
highest clustering performance indexes. The number of elements
in each subset should be equal or higher than the minimum
threshold previously selected by the user. Class imbalance
generated by the partition is assessed according to a user-
determined threshold for classification models. Finally, if the
partition in a given iteration meets all the mentioned criteria, it
is accepted, and the recursive division continues for each tree
branch. At the end of the execution, we will have n subsets,
which will be statistically studied to evaluate if each generated
partition is significantly different from the others, if each element
effectively belongs to its corresponding subset, and if all the
features are informative for all subsets, in order to avoid any
redundancy that could affect the model training stage.

Creation of Models to Classify New Examples in the

Generated Partition
In order to classify examples within the generated partition,
different classification models are created, using supervised

learning algorithms. For this, the training dataset, which is
already a subset of the input dataset, is divided into two
sets for training (80%) and validating (20%) the classification
models. The first subset undergoes a model exploratory
stage training with k-cross-validation, with k-values varying
depending on the size of the set. We obtain the accuracy,
recall, precision, and F1 scores for each model, and also
their statistical distributions. From these four distributions of
performance metrics, the models with the maximum values
in these distributions are selected, forming a set of at most
four independent models (one per each performance metric).
These four models are used to generate a weighted meta-
model with a classification criterion obtained by the votation
of the individual models, assigning each element to the subset
pointed by the majority of the individual models. Finally, we
compare the classifications generated by the meta-model with
the actual values of the validation set to obtain the overall
performance metrics.

Model Training
Each subset Ai within the partition generated in the binary
recursive division undergoes a predictive model exploration
stage, and the best j models are selected and combined to form
a local meta-model. The selection criterion is associated with the
maximum value of each metric of interest selected by the user,
which may be accuracy, recall, precision, or F1 for classification
models, or R2, Pearson, Kendall τ , or Spearman rank coefficients
for regression models, hence j ≤ 4. RV-Clustering estimates
an overall performance for the models over the entire dataset,
weighting the individual metrics in the generated partition.
Let xi be a metric of the models’ performance over Ai. The
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corresponding i-weighted performance is given by

x̂i = xi ·
|Ai|

∣

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

∣

, (1)

and the final measure is obtained from the summation of the x̂i,
which corresponds to the probabilistic expected value of x, E (x)
assigning a probability P (Ai) =

|Ai|

|
⋃n

i=1 Ai|
to the subset Ai,

x̂ =

n
∑

i=1

x̂i =

n
∑

i=1

xiP (Ai) = E (x) . (2)

We compare the obtained weighted measure with the
performance values obtained in the initial stage, reporting
them both. Finally, the tool uses the validation set to obtain
the real metrics x

gen

mod
of the general model created, and report

the results associated with the classification or prediction of
new examples. To do this, RV-Clustering uses the classification
model to assign each example to the subset in the partition
where it should belong, and then, using the local meta-model
corresponding to that subset, obtain the predicted value.
We compare this value with the real value and generate the
performance metrics corresponding to the type of model.

An index for assessing over-fitting local meta-models within
the partitions IOF is presented in Equation (3), defined as the
difference between the expected (via Equation 2) and the real
performance metric.

IOF =
x̂− x

gen

mod

x
gen

mod

, IOFi =
xi − x

gen

mod

x
gen

mod

(3)

Similarly to Equation (1), it is possible to obtain a local IOF for
subset i, IOFi. If the IOF or any of the local IOFi values are >5%
or another user-customizable value, the recursive binary partition
algorithm should be repeated, conditioned to producing subsets
with more elements. Negative values of IOF do not have any
implications, as they only show that the performance of the global
model is greater than the expected value, accounting for a synergy
between individual meta-models.

Predicting New Examples
The proposed method creates a partition splitting the input
dataset into n subsets. Hence, as we work independently in each
subset, we obtain n independentmeta-models. In order to classify
new examples within the subsets of the obtained partition, we
train a classification model, which assigns every new example
to the subset where it should belong. For this, RV-Clustering
classifies the new example into a particular subset in the partition,
applying the predictions of local meta-models. We can directly
calculate the improvement of the original result I from the
linearity assessment index and the final performance metric,

I =
x
gen

mod
− xlinear

xlinear
(4)

CASES OF STUDY

The proposed methodology and library modules were tested
with different highly non-linear datasets according to our
previous definition, related to clinical diagnosis, biotechnology,
and protein engineering. Each one of the proposed scenarios is
presented below in three different case studies.

Case Study I: Use of RV-Clustering in
Clinical Datasets
The prediction of the clinical risk associated with mutations
in proteins, the probability of having a disease, or the need
to carry out an invasive or dangerous exam, among others,
are activities of high interest in the biomedical area. Taking
this into consideration, the different points of the methodology
proposed in this article were applied to three highly non-linear
datasets, which represent Mammographic Mass, Heart-Disease,
and Thoracic Surgery. The datasets were extracted from the UCI-
Machine Learning (Dua and Graff, 2017) repository and, in all
cases, the requiredmodels are of the classification type, since their
response is categorical.

When performing the linearity assessment, all the datasets
turned out to be highly non-linear, considering a minimum
threshold of 0.8 for the linearity metrics. This stringent criterion
was selected to impose a high quality of the classification since
false positive and false negative errors should be as low as possible
for a clinical test. The performances obtained in the model
exploration stage using mildly non-linear methods did not reach
the minimum threshold values, so RV-Clustering proceeded
to apply the binary partition methods proposed in this work.
Figure 2 shows the partition generated for each dataset. In each
case, the cardinality of the generated subsets varies as the depth
of the resulting binary tree increases. The performance metrics
obtained for Mammographic Mass and Thoracic Surgery models
applying the proposed methodology is considerably greater
than those obtained in the exploratory stage since accuracy is
improved from 54 to 87% in the first case, and from 71 to 83%
in the second case. In the Heart-Disease Cleveland dataset, no
considerable improvement was achieved. We consider this to
be due to the large number of classes presented by this dataset.
Given this result, as RV-Clustering ensures class balance in each
subset within the partition, the recursive binary partition method
should not be used with datasets whose response categories are
>5, especially when the number of examples is limited, because
it may lead to detriments on the performance metrics initially
achieved. This limitation arises from the lack of information in
the dataset itself, as the generation of regressions or predictions of
high-dimensional responses based on few data examples remains
an open problem.

Case Study II: Use of RV-Clustering in
Biotechnological Datasets
Another approach of a broad interest in the use of data mining
and ML techniques is the development of predictive models
for the optimisation of experimental plans in biotechnological
applications. Through the generated predictive models, it is
possible to reduce the use of economic and human resources
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FIGURE 2 | Representative schemes of the partitions and the flows of divisions generated for the example datasets associated with case study I: Thoracic Surgery

dataset (left), Heart Disease Cleveland dataset (center), and Mamographic Mass dataset (right). The number of final partitions, their cardinality and the performance

measures achieved by the models trained in each case are also presented.

and the duration of the experimental projects dramatically. As
an example, a dataset with information on the classification
of protein localisation sites in E. coli, extracted from the UCI
Machine Learning repository (Dua and Graff, 2017), will be
used. This dataset was subjected to the linearity assessment,
contemplating a minimum acceptance threshold of 0.7 in
linearity metrics. As the highest accuracy achieved was 56%, RV-
Clustering classified this dataset as non-linear. However, when
applying the model exploration module, satisfactory results were
obtained. The distributions presented in Figure 3 show a set of
models that have performance measures greater than those of the
threshold imposed. Hence, it is not necessary to proceed to the
binary recursive partition stage. The best models trained in the
exploration stage are selected to create a weighted meta-model,
whose accuracy and precision reached 88.1 %.

In particular, given the properties of the input dataset, it was
possible to obtain a meta-model with performance metrics above
those imposed as an experimental requirement, only by applying
the exploratory module. This fact highlights the efficiency of RV-
Clustering, always aiming to satisfy the user requirements to
obtain as-good-as-requiredmodels as fast as possible andwithout
incurring in greater trade-offs in quality-time. Using the modules
implemented in RV-Clustering, it was possible to improve the
initial accuracy of 56% to a value of 88.1%, confirming that the
proposed workflow is appropriated. It is crucial to know which
algorithms are the most suitable for a given application, and it is a
great advantage of RV-Clustering to test them in such a way that
all the possibilities are evaluated, without requiring any specific
knowledge on algorithms for getting high-quality results.

Case Study III: Use of RV-Clustering for the
Evaluation of Protein Stability Given Point
Mutations
The evaluation of the effect that point mutations have in protein
stability is one of the most visited topics in protein engineering.
Different approaches have been proposed, considering methods

based on electrostatic potentials, statistics, ML techniques,
among others. The methods mentioned above allow a mutation
to be classified as stable or non-stable or to generate stability
predictions based on the difference in free energy (11G)
caused by the replacement of the residue. Applying the
approach proposed by Capriotti et al. (2005) for describing
mutations and considering three independent descriptors,
thermodynamic, structural and residue-environmental, a dataset
comprising 11 proteins and 2,247 mutations associated was
generated (see Figure 4, left). In the created dataset, the
response column represents the 11G values, associated with
the difference between mutated residue and wild residue.
These values were obtained from the ProTherm (Bava et al.,
2004) database.

The application of the linearity assessment module classified
the dataset as non-linear, since the performance metrics obtained
by applying linear methods did not exceed the threshold of 0.6
for predictive models. Furthermore, as it was not possible to

achieve significantly higher performance measures in the model

exploration stage, the dataset was classified as highly non-linear.

By applying the proposed methodology for binary recursive
partition, nine subsets were obtained (see Figure 4, right), and
different meta-models were developed locally. Intra-partition
over-adjustment was avoided by applying a k-cross-validation,
with k = 10. Subsequently, a meta-model for the classification of
new examples to the different partitions was generated. Finally,
the general metrics of the model were obtained for the validation
set (see Figure 5, left). By comparing the resulting performance
metrics and the initial values obtained in the exploration stage
of predictive models, an average improvement of 40% was
achieved in each measure of interest. For example, the initial
Pearson’s coefficient of 0.58 was improved to 0.92 after applying
the methodology here presented. A scatter plot of the real and
predicted values for the effect of point mutations shows that
the error distribution has a random and bounded behavior
(see Figure 5, right), which corroborates the quality of the
obtained results.
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FIGURE 3 | Histograms of performance metrics obtained in the exploration stage by the RV-Clustering library for the protein location in an E. coli dataset. The highest

values were obtained by methods based on Bagging or Boosting algorithms, accounting for the non-linearity of the dataset.

FIGURE 4 | Representation of the dataset associated with case study III: Distribution of mutations for the considered proteins (left), and Resulting partition after

applying the methodology proposed in this work (right).

DISCUSSION

Improvements on Performance Metrics
The different datasets tested in the cases studies serve to illustrate
the great capacities of the proposed method since it not only
improves the performance measures, but it does so efficiently

from a computational point of view, generating as-good-as-
required models in the shortest time possible. This result is

achieved thanks to the RV-Clustering library modularity and
the structure of the presented methodology, which considers
advancing to the next complexity level only when models
generated so far do not meet user requirements.

Another advantage of this new approach is the transparency
of the results. Model performance metrics, by themselves, may
not be sufficiently informative and mislead to wrong conclusions
about the quality of the predictive outcome; they should always be
analyzed in context. In our work, the different metrics associated
with different elements (models, meta-models, global model) are
analyzed together and combined using the proposed indexes.
This combination of metrics is used both for improvement
evaluation between the initial linear assessment stage and the
final performance and for the evaluation of over-fitting in local
meta-models within the partition. Table 1 presents the results
of the considered cases of study, all of which show a significant
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FIGURE 5 | Results of the generated weighted meta-model, where the predicted values are obtained from the average of the predictions of the individual methods.

As the error seems to have a random distribution around zero, 11G values predicted by the meta-model do not present considerable biases.

TABLE 1 | Evolution of performance (accuracy) of the models generated in

different progressive steps of the proposed methodology.

Dataset xlinear x̂ x
gen
mod Improvement after

applying RV-Clustering’s

methodology (%)

IOF(%)

Mammografic

mass

0.54 0.85 0.87 61.1 −2.3

Thoracic surgery 0.71 0.78 0.87 22.5 −10.3

Protein location in

E. coli
0.56 – 0.88 57.1 –

Protein stability∗ 0.58 0.82 0.92 48.3 −4.7

The performance of the final RV-Clustering generated model is represented by xgenmod, while
xlinear and x̂ are the results of intermediate steps of the method (linear assessment step
and model exploration step, respectively). * Pearson’s coefficient.

improvement in their metrics. No over-fitting of the local meta-
models was observed in the different subgroups of the partition
since all IOF values were negative. The previous discussion also
accounts for synergistic effects between the classification model
and the different meta-models within the partition, since overall
performance metrics are higher than weighted individual ones.
All of the above translates into an average percentage increase of
47.3% in the performancemetrics of the predictive models for the
highly non-linear biological datasets considered, as presented in
Table 1. As the performance metrics increase as the methodology
proceeds, the best model will always be the latest delivered
(except in cases where IOF > 0). To stop at early stages by
imposing lower values of xuser is a decision based on a time-
quality trade-off, as our methodology was thought for delivering
as-good-as-required models.

Table 2 presents the overall improvement in the performance
metrics after applying our methodology, compared to the
values reported in the original works. As our methodology
incorporates most of the best state-of-the-art available algorithms

TABLE 2 | Comparison of reported performance metrics for the studied

experimental datasets.

Dataset Reported by Reported

performance

RV-

Clustering

performance

Protein stability (point

mutations)

Capriotti et al., 2005 0.71 0.92

Classification of protein

location in E. coli

Deshpande and Karypis,

2002

0.73

0.88
Zhang and Ling, 2001 0.84

Horton and Nakai, 1997 0.68

Ratanamahatana and

Gunopulos, 2002

0.84

Mammographic mass Elter et al., 2007 0.87 0.87

Thoracic surgery None None 0.87

and progressively applies them, the worst scenario would always
be better than the original one.

Testing on Artificial Datasets
In order to test the proposed methodology and the robustness
of our library, we generated different artificial datasets with
tailored properties, aiming to evaluate its response against (a)
noise intensity, (b) presence of outliers, (c) degree of non-
linearity of the input dataset, and (d) maximum dimension of
the input dataset, with further recommendations based on the
fitting procedure.

Given that our methodology is very intuitive to understand
when applied to regression models (as discussed in section 3), all
models trained in this section were of the regression type. We
explain each of the cases in the subsections below.

Noise Intensity
To show the influence of noise intensity or experimental errors,
we tested our methodology with two different datasets: an
artificial dataset containing a linear ground truth function,
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and the dataset of Case Study III. We introduced an additive
proportional error to the response variable, characterized by
a variable amplitude α. Adding this error to the experimental
values yexp resulted in the following expression for ynoisei :

ynoisei = yexp(xi)(1+ α(2U − 1)) (5)

where U is a random variable with uniform values in [0, 1].
Equation (5) was selected because of its statistical properties,
given that the expected value of the noisy random variable is its
corresponding experimental value:

E
(

ynoisei

)

= yexp(xi) (1+ α (2E (U) − 1))

= yexp(xi)

(

1+ α

(

�2
1

�2
− 1

))

= yexp(xi).

Aiming to test how heavily the increasing noise impacts the
performance metrics, we considered two scenarios: (a) adding α-
noise to the experimental11G data (Case of Study III), classified
as highly non-linear, with an unknown ground truth function,
and (b) adding α-noise to numerical experiments with known
ground truth y = x, which included a white Gaussian noise with
σ = 5%, in order to resemble real-worldmeasurements. For both

scenarios, we considered α ∈ [5, 10, 20, 30, 40, 50%], as shown
in Figure 6.

In the first case, as the ground truth function is linear, we
set xuser = 0.95 to force our algorithm to move forward
into the second step of our methodology. However, even when
the noise intensity was α = 20%, models generated in the
first step of our methodology (linear assessment stage) still
reached performance metrics over the threshold xlinear >

xuser. When the noise intensity was higher, linear models
did not meet the required performance, but those generated
by DTs and RF did, preventing the algorithm from entering
into the binary splitting stage. Despite the generated models
reaching high-performance measures at every α−noise scenario
(see the left plot in Figure 8), a bifurcation in the quality
of the predictive outcome appears when the nature of the
training algorithms shifts from linear regressions to DTs.
As shown in Figure 7, the scatter plot of predictions and ground
truth (original data without noise) present high dispersion when
α ≥ 40%, even though models reached high performance
metrics, which accounts for models fitting the noisy data rather
than the original trend. The above highlights the need for a
preliminary analysis of the data, as moderate to high noise can
mislead the results and affect the quality of the produced models.
However, a 40% or higher noise level is large by any measure,
and would not be usually considered as simple noise but rather
as a composition of signals. In this sense, the fitting given by our

FIGURE 6 | Simulated dataset with added white noise α. The plots represent simulated (y) vs. ground truth (x) data points (circles), the identity line (continuous line),

and the crude statistical regression of the resulting dataset (discontinuous line). Added noise followed a Gaussian distribution around the expected value y = x, not
affecting the expected value of the distribution, which translates to regression lines very similar to the identity.
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algorithms in the presence of high “noise” points into the right
direction by identifying the data points as coming from a model
different from the linear ground truth function. The outstanding
predictions of the models generated at low α can be explained by
the linear nature of the ground truth.

When the considered dataset was classified as highly non-
linear, added noise had a stronger impact on performance
metrics, as shown in the center graph of Figure 8. In this case,
the range of the y−axis is much wider than in other cases.
Noise levels over α = 20% have a more significant impact over

FIGURE 7 | Model-prediction of the simulated linear dataset with α− induced noise in 100 data points. The plots represent predicted (y) vs. real (ground truth without

noise, x) data points (circles), the identity line (continuous line), and the crude linear statistical regression of the scatter (discontinuous line). Since training datasets for

models included noise, we expect particular discordance between the dispersion of high α scenarios and the predictive outcome of noise-fitting models trained

therein, when compared to the original noise-free dataset.

FIGURE 8 | Evolution of model performance metrics against noise. (Left) Model performance on a linear ground truth function with white noise. (Center) Model

performance on experimental data (Case Study III) with white noise. (Right) Model performance on a linear ground truth function with different number of outliers. In

artificial datasets with linear ground truth functions (left and right images) xuser was set equal to 0.95 to force the algorithm to continue further in the proposed

methodology. When the linear model performance fell under the selected threshold, the algorithm swap to DT models, which rose the performance metrics again,

generating a break in the sloping trends.
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performance metrics, since the slope of the α vs. performance
curve is always decreasing. Such impact can be assessed from the
decrease in the improvement after applying the RV-Clustering
methodology (see the sixth and seventh row of Table 3). Given
that noise levels under α = 20% do not have a severe impact on
the performance metrics of the generated models, we show our
methodology to be robust against low to moderate white noise.

Presence of Outliers
To evaluate the robustness of our methodology and command
library against the presence of outliers in the dataset, we
performed the following numerical experiment. Starting with
data with a known ground truth function, y(x) = x, we added
a white Gaussian noise N1 ∼ N (0, σ1 = 0.25). Hence, our
“experimental” dataset was the collection of random variables
ynoisei ∼ N (xi, σ ). To simulate the existence of n outliers, we
superposed a flat Gaussian distribution N2 ∼ N (0, σ2 ≫ σ1),
as depicted in Figure 9, and applied the method described in
the Algorithm 2.

We simulated different datasets of N = 100 examples, and
turned n of them into “outliers,” with n = {1, 5, 10, 15, 20, 25},
as shown in Figure 10. Noticeably, the added outliers modify

TABLE 3 | Evolution of performance (accuracy) of the models generated in

different progressive steps of the proposed methodology, applied to noisy

variations of the dataset used in Case Study 3.

Induced

noise α[%]

xlinear x̂ x
gen
mod Improvement after

applying RV-Clustering’s

methodology (%)

IOF(%)

0 0.58 0.82 0.92 58.62 −10.87

5 0.57 0.79 0.86 51.86 −7.58

10 0.55 0.78 0.82 48.74 −5.22

20 0.55 0.77 0.80 47.34 −3.86

30 0.54 0.75 0.76 41.04 −1.57

40 0.53 0.69 0.71 33.96 −3.64

50 0.52 0.59 0.63 22.44 −6.32

the nature of the original Gaussian distribution, which is
demonstrated by the drift between the identity and the purely
statistical regression of the data points as more outliers
are added to the dataset. In such sense, those outliers
drift considerably from the expected values of the original
distribution. Nevertheless, the presence of less than ∼10%
outliers does not affect the performance of the final model. Even
when outliers are not symmetric (see examples with 5, 10, and 15
outliers in Figure 10).

As shown in the right plot of Figure 8, the presence of outliers
negatively affects the linearity of the dataset as perceived by
the methodology, since linear models do not meet the required
performance and the RV-clustering workflow would move
forward to DTs and non-linear algorithms. Nevertheless, and
once again because of the linearity of the ground truth function,
DTs would produce models with outstanding performance,
producing a clear break in the sloping trend of the n vs.
performance curve of Figure 8 and preventing the algorithm

Algorithm 2:Numerical experiment with simulated outliers.

Result: Simulated outliers for the numerical experiment
p0 : cumulative probability ofN ∼ (0, σ2), at x = σ1.;
while j ≤ n do

k : random integer between 1 and N;
s = U , and p = (1− p0) · U

′, where U and U ′ take
uniform values in [0, 1];
if s > 0.5 then

s = 1;
p = 1− p;

else

s = −1;
end

ynoise
k

= inverse of the cumulative probability function of

N ′
∼ (xk + 2sσ1, σ2), at probability p.;

j = j+ 1;

end

FIGURE 9 | Scheme of the non-arbitrary and statistical methodology proposed to generate outliers, given a known dataset with random error.
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FIGURE 10 | Simulated linear dataset with n outliers in 100 data points. The added outliers modify the nature of the distribution, as they make the regression

considerably drift from the identity. In such sense, those outliers might not be “pure” in a strict statistical definition (as they depend on the distribution), they drift

considerably from the expected values of the original distribution.

to proceed to the recursive binary splitting stage. When a
high number of outliers are expected within the dataset, we
recommend to directly proceed to probability-based methods by
setting a high xuser threshold.

Degree of Non-linearity of the Input Dataset
To evaluate the robustness of our methodology and command
library against the degree of non-linearity of the ground truth
function, we simulated different points from the 2-D Rosenbrock
function (Rosenbrock, 1960), with parameters a = 5 and b = 2,
over the [0, 3]2 rectangle. Data for the numerical experiment were
randomly extracted from the [0, 3]2 rectangle, and a proportional
white Gaussian noise was added to resemble experimental
conditions. When setting a threshold xuser = 0.9 the dataset
would be classified as non-linear, and the methodology would
proceed to explore non-linear algorithms for training models.
Among the algorithms that produced models with outstanding
performance metrics, we found DTs (0.998), Bagging (0.995),
Random Forest (0.995), KNN (0.98), and Adaboost (0.95),
with an over-fitting assessment of k-cross-validation, k =

10. As expected, given the non-linear nature of the ground
truth function of the dataset, the best performing algorithms
mentioned above are based on feature analysis, bagging, or
boosting. In particular, we expected KNN to be within the
outstanding algorithms, given its distance-based generation of
predictions, although it occupies only the fourth place among the
best predictors.

Visually, we can corroborate that the best models were those
based in DTs, Bagging and Random Forest algorithms (see
Figure 11). All these models are able to predict extreme values of
the function, the local maximum at (0, 3), the valley of minimum
values at (x, x2) and the extreme values around (3, 0). Random
Forest and Bagging model predictions are smoother than other
models and are good to predict function values in sectors with
higher slopes and variability. Smoothness in this frame can be
interpreted as ameasure of themodel insensitivity to noise, which
points to Random Forest models as the best ones in this respect.

Maximum Problem Size, Properties of the Input

Dataset, and Further Recommendations
We tested different cases where the dimensions of the input
dataset were progressively increasing, aiming to determine a
size threshold for the datasets RV-Clustering may process in a
reasonable time. Our exploration found special cases where the
input datasets may produce errors. The maximum dataset size
that can be processed is less than 10, 000 × 1, 000, i.e., 10,000
examples with 1,000 features. In the current implementation of
RV-Clustering, when submitting a dataset with such dimensions,
more than 16 GB of RAM are used, which results in process
abortion. To prevent the situation mentioned above, we suggest
applying a dimension reduction technique prior to using our
methodology, and taking the resulting dataset with fewer features
as the input dataset for RV-Clustering. As maximum execution
time, a dataset with 10,000 examples and 500 features would take

Frontiers in Molecular Biosciences | www.frontiersin.org 13 February 2020 | Volume 7 | Article 1354

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Medina-Ortiz et al. Predictive Models for Highly Non-linear Datasets

FIGURE 11 | Rosenbrock function predictions of each of the different models generated. Direct simulation represents the real ground truth Rosenbrock function.

6 days and 2 h to be processed by a seventh generation Intel Core
i5 processor.

As further recommendations and good practices for using the
RV-Clustering tool, we suggest:

• Standardizing numerical datasets with float size less or equal
than 64.

• Keeping in mind that categorical datasets where the number
of features is >20% the number of examples would be coded
using One Hot Encoder, hence consuming more resources and
taking much more time to be processed.

• Carefully “refining” user datasets before submitting a job
to RV-Clustering. For example, numerical datasets with
alphanumerical entrances would stop the process, and a
warning message would pop-out.

• Especially in the case of regression models (which are not
“protected” with a class balance assessment), procuring that
data is well-distributed and there are no information gaps in
the predictor variables. Not taking care of this situation may
lead to poor fitting of the un-populated zones or filling-in
with erroneous predictions if unattended, respectively. The
first point can be corrected by pre-processing the data to
collapse the populated zones into fewer data points to balance
their weights, or selecting a different performance metric as
the control variable. For the second point, unfortunately, it is
not possible to find an always-working solution: as we do not
know a priori the real values of the data in the unpopulated
zone, the errors in the predictions are unbounded. We can
avoid this fact being a problem for the algorithm by splitting
the dataset in parts, and processing each subset separately, or

forcing the algorithm to proceed to the binary splitting stage.
However, this solution will not give any model prediction for
the unpopulated gap zone in the original data.

CONCLUSIONS

We presented a new methodology for the design and
implementation of classification or regression models for
highly non-linear datasets, together with the RV-Clustering
library, which corresponds to a set of modules implemented
in Python that allow the manipulation of these datasets and
the training of predictive models through supervised learning
algorithms. This new methodology is based on a binary recursive
division of the dataset, in order to generate subsets in which
it would be possible to train predictive models with higher
final performances, taking advantage of similarities between
members. In each subset of the generated partition, models are
trained, and the best ones are combined to form a meta-model.
Separately, a model to classify new examples within the subsets
in the partition is created. Finally, we generate a global model
that assigns new examples to a particular subset using the
classification mentioned above model, and predicts their value
using the local meta-model for each case.

We successfully tested this new method in different non-
linear datasets from different origins in the clinical, biomedical,
biotechnological, and protein engineering fields. On those
datasets, predictive meta-models were created, and high
performance metrics were achieved, far above those obtained
with other methods. The use of numerical experiments helped
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us to test the boundaries of our methodology, controlling
the predictive outcome and the ground truth of the datasets.
A natural relationship appears regarding the metrics for the
linearity assessment: if the number of dimensions is high, the
dataset would likely be classified as non-linear, at least in one of
its dimensions. This does not necessarily imply that mildly non-
linear methods will fail, but if so, our method would recommend
directly applying the binary recursive divisionmethod to increase
the performance measures of predictive models, despite the
higher computational cost.

Our method applies state-of-the-art algorithms in a special
order and following a novel strategy to optimize the results, which
allows generating classification or regression models in general
datasets, especially those addressed in this manuscript as highly-
non linear. However, since ourmethod uses previously developed
ML methods, we are bound by their own limitations, in the sense
that many of the flaws of our method are but a legacy of the
ML algorithms used. Taking this into account, we recommend
the use of the library and the proposed methodology in datasets
with a reduced number of categories in their categorical variables
since the library encodes them using One Hot Encoder. The
recursive binary partition methodology should not be used when
the number of classes is much larger than the available examples,
as it may lead to detriments on the performance metrics because
of the class balance buffer incorporated in the algorithm.

Future work contemplates the development of a web-based
computational tool implementing our methodology, allowing
non-specific users to enjoy the advantages of RV-Clustering,
without the need to invest time gaining the knowledge that would
be required by command-line execution. As the development of

predictive models is common to different areas of application,
we expect our methodology, library, and the future web-based
service, to become a useful tool for the scientific community and
a significant contribution to state of the art.
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Cancer is a heterogeneous and complex disease and one of the leading causes
of death worldwide. The high tumor heterogeneity between individuals affected by
the same cancer type is accompanied by distinct molecular and phenotypic tumor
profiles and variation in drug treatment response. In silico modeling of cancer as
an aberrantly regulated system of interacting signaling molecules provides a basis to
enhance our biological understanding of disease progression, and it offers the means
to use computer simulations to test and optimize drug therapy designs on particular
cancer types and subtypes. This sets the stage for precision medicine: the design of
treatments tailored to individuals or groups of patients based on their tumor-specific
molecular cancer profiles. Here, we show how a relatively large manually curated
logical model can be efficiently enhanced further by including components highlighted
by a multi-omics data analysis of data from Consensus Molecular Subtypes covering
colorectal cancer. The model expansion was performed in a pathway-centric manner,
following a partitioning of the model into functional subsystems, named modules. The
resulting approach constitutes a middle-out modeling strategy enabling a data-driven
expansion of a model from a generic and intermediate level of molecular detail to a
model better covering relevant processes that are affected in specific cancer subtypes,
comprising 183 biological entities and 603 interactions between them, partitioned in
25 functional modules of varying size and structure. We tested this model for its ability
to correctly predict drug combination synergies, against a dataset of experimentally
determined cell growth responses with 18 drugs in all combinations, on eight cancer
cell lines. The results indicate that the extended model had an improved accuracy
for drug synergy prediction for the majority of the experimentally tested cancer cell
lines, although significant improvements of the model’s predictive performance are still
needed. Our study demonstrates how a tumor-data driven middle-out approach toward
refining a logical model of a biological system can further customize a computer model
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to represent specific cancer cell lines and provide a basis for identifying synergistic
effects of drugs targeting specific regulatory proteins. This approach bridges between
preclinical cancer model data and clinical patient data and may thereby ultimately be of
help to develop patient-specific in silico models that can steer treatment decisions in
the clinic.

Keywords: logical model simulations, drug synergy prediction, systems medicine, model validation, middle-out
modeling, model curation, cancer cell fate decisions

INTRODUCTION

Computational models that describe biological systems can help
to provide insight into how these systems control regulatory
events at the molecular level (Smolen et al., 2000; Le Novère,
2015). The ability to correctly predict the effects of systems
perturbations by in silico simulations is a good indicator
of how well the computational model represents biological
reality. Indeed, computer models for diseased systems are being
used to simulate drug perturbations and to develop, evaluate
and prioritize putative drugs in silico (Flobak et al., 2015;
Rubio-Perez et al., 2015). Approaches that use quantitative
modeling rely on information including kinetic rate constants
for regulatory components and their interactions, but this type
of detailed quantitative data is only available for a small fraction
of the regulatory interactions that underlie cell fate decision
mechanisms. The much more abundant availability of binary
molecular interactions, also defined as ‘causal statements’ (Touré
et al., 2020) allows the use of the Boolean formalism as a powerful
alternative mathematical framework for in silico simulation
studies. The ability of Boolean models to represent discrete
levels of a system furthermore complies well with the need for
basic representations of cellular states, as these equate to stable
states of regulatory networks that are interconnected through
logical rules that may reach new stable states under different
conditions, e.g., normal, diseased, and drug-perturbed. In
systems medicine efforts to understand cancer, Boolean networks
have been used previously to model biological systems driving
cancer and were found useful for studying tumor progression
and understand cancer signaling mechanisms (Srihari et al.,
2014; Pirkl et al., 2016), predict tumor metastatic capabilities
and therapy resistance (Srinivas, 2015), identify cancer-specific
biomarkers, driver genes, drug targets (Irurzun-Arana et al.,
2017; Sahoo et al., 2018; Qiu et al., 2019), and predict drug
effects (Fumiã and Martins, 2013; Azuaje, 2017), including the
possible synergistic effect of combinations of drugs (Flobak et al.,
2015). Depending on the purpose of computational simulations,
Boolean models can describe either a very specific process, such
as a specific cancer-related signaling pathway (Grieco et al.,
2013), or a collection of processes that together result in a
biological phenomenon, such as the signaling pathways involved
in metastasis. These models can vary in size, but they rarely
comprise more than some tens of components.

In regulatory models based on the Boolean mathematical
framework, a model component, also called ‘node,’ can either be
active or inactive, which in Boolean algebra can be represented as
1 and 0, respectively. The state of a particular node (referred to as

local state) is updated according to logical rules that capture the
regulatory effects (activation or inhibition) of all the regulators
of that node in the network, taking into account their activity
state (Glass and Kauffman, 1973; Thomas, 1973). Logical rules
in Boolean models follow the logical formalism and employ
the operators AND, OR and NOT. Each Boolean model can be
represented as a graph of nodes connected by a set of directed
and signed edges, representing the causal interactions between
the nodes. The same network graph can support multiple Boolean
models, with logical rules specific for the system that the model
should represent. Starting from an initial state, Boolean models
that adequately represent biological systems are able to reach only
a limited set of stable states (often only one), called attractors
(Naldi et al., 2009; Helikar et al., 2012; Naldi et al., 2018), which
can be considered as the mathematical equivalent of cellular
states. Attractors can refer to a single stable state (singleton
attractor), a set of stable states that repeat themselves in sequence
(simple or complex cyclic attractor), or a set of stable states
in which the system randomly oscillates (Wang et al., 2012;
Irurzun-Arana et al., 2017). If a Boolean model can reach a stable
state in which its node activities match experimentally observed
activity states of their biological counterparts (e.g., the results of
biomarker analysis), it indicates that the model captures to some
extent relevant aspects of the biological system.

Boolean modeling toolkits (Gonzalez et al., 2006; Naldi et al.,
2018) provide for a variety of analyses that can be further used to
test, validate and enhance a model. Apart from being descriptive
of a biological system and identifying attractors that comply
with a particular state of a cell, Boolean models can also be
predictive and be explored to simulate cellular behavior under
perturbed conditions (Joo et al., 2018). Perturbation analysis
allows the simulation of a system under different conditions,
similar to knock-out, over-expression, or chemically induced
perturbations in laboratory experiments. Such simulations can be
designed for a variety of purposes, e.g., to analyze the regulatory
system per se and identify critical nodes whose perturbation
leads to significant functional changes in the system, thereby
generating hypotheses as to their biological function in the
system. Attractor analysis is also important to identify trajectories
(a series of states that the network traverses through while
reaching a stable state) in the system’s behavior (Huang et al.,
2005). In the case of gene regulatory networks, attractors are
usually associated with specific phenotypes (Cho et al., 2016;
Yang J. M. et al., 2018). Furthermore, a disruption of the balance
found in these stable states of normal cellular systems can many
times be associated with specific diseases, including cancers,
allowing the mechanistic understanding of cancer development
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and progression (Bachmann et al., 2012), which can provide an
important advantage when designing cancer therapies.

This paper focuses on a specific use of Boolean modeling,
namely its use for computer simulations to identify effective
combinations of targeted drugs that act synergistically in growth
inhibition of a set of cancer cell lines. It is well known that
a combination of drugs can have a higher effect on treated
cells than the individual drugs alone would suggest if their
effect were only additive (Roell et al., 2017). This effect, called
drug synergy, results from systems interactions between the
drugs and may yield a higher treatment efficacy. The use of
synergistic drug combinations may address some of the current
treatment limitations in cancer by reducing the emergence
of drug resistance, which is frequently observed with single-
agent therapies (Al-Lazikani et al., 2012; Gottesman et al.,
2016), and lowering the chance of potential side effects and
toxicity because the individual drugs can be used at lower
dosages (Crystal et al., 2014; Trairatphisan et al., 2016). The
use of drug combinations may serve as a stepping stone
toward precision medicine, in which limitations of single-
agent treatment, such as low response rates and acquired drug
resistance, may be overcome by treatment regimes that use
drug combination therapy optimized for the individual patient
(Madani Tonekaboni et al., 2018). Combinatorial treatment
refers to the targeting of multiple molecular components of a
tumor cell-fate decision network, either by the combination of
two or more targeted drugs or by combining targeted drugs with
other therapies like immunotherapy, antibody-based therapy,
and chemotherapy, with the aim to exploit synthetic lethality
and tumor vulnerabilities and dependencies to treat cancer
(Al-Lazikani et al., 2012).

With the availability of a relatively large number of targeted
drugs (Yu et al., 2019), this may provide for a substantial number
of potentially powerful combinations of drugs, but despite the
availability of automated screening platforms using efficient
high throughput technologies, the testing of combinatorial drug
effects in the laboratory depends on vast amounts of large-
scale dose-response data that is extremely time and resource-
demanding (Pirkl et al., 2016; Joshi and Durden, 2019). The
collection of all possible combinations of the large repertoire of
targeted drugs presents a vast search space, and the number of
possible interactions that need to be screened quickly becomes
unmanageable, especially when taking into account different drug
doses, combinations with more than 2 drugs, timing effects of
drug administration, and the high intratumor, interpatient and
cancer type variability that needs to be replicated in assays.
Consequently, the screening for potential synergy is currently
conducted mainly on compounds with an already known
effect and/or where the combination of specific drugs makes
sense based on empirical observations, significantly limiting the
subspace of possible combinations that are actually tested (Cheng
et al., 2019). In silico methods, therefore, pose an attractive pre-
screening possibility, provided that the computer predictions
can reliably limit the experimental search space (Crystal et al.,
2014; Tolcher et al., 2018). More specifically, this means that
predictive models must accurately predict the cellular response
to medication, reveal the potential synergy between different

drugs, produce few or no false-negative predictions (potentially
powerful drug combinations that would be excluded from
further testing) and preferably also few false positives (drug
combinations that in further testing prove to be ineffective).
Computational models that meet these criteria can alleviate the
screening burden and create insight in the molecular mechanisms
that lead to perturbational synergy (Flobak et al., 2015; Jeon
et al., 2018; Madani Tonekaboni et al., 2018; Cheng et al., 2019;
Tang et al., 2019).

Therefore, it is of high importance to develop high-quality
logical models for predicting drug synergies and validating them
by testing against experimental observations. The construction of
computational models of biological systems can either involve a
top-down approach that uses genome-wide omics data analysis to
reveal the underlying regulatory network structure, or a bottom-
up approach, in which a regulatory network is built from single
entities and their interactions, often based on literature that
describes their detailed analysis in various experimental settings
(Shahzad and Loor, 2012). Bottom-up approaches are usually
based on the manual curation of models, focusing on entities
of interest, such as biological entities that are also drug targets,
or driver genes for cancer. During this manual curation, the
modeler many times confronts a series of subjective decisions
on the relevance of entities, interactions and, more generally, the
specific cellular processes to incorporate in a model, to properly
represent a biological system. For the purpose of assessing the
effect of particular perturbations, there is the additional challenge
to identify and encode multi-level nodes that can be directly
associated with a phenotype and, thus, serve as phenotypic
readouts in the model. These phenotypic output nodes provide
a convenient way to assess and quantify the effect of the drugs
in silico simulations.

Here it is presented how a top-down multi-omics data analysis
can identify candidate genes that should be considered for
addition to an existing model, serving as seed genes that provide
guidance for additional bottom-up modeling. The cell signaling
components used were highlighted by the analysis of multi-
omics data from the Consensus Molecular Subtypes (CMSs)
(Guinney et al., 2015) study of colorectal cancer (CRC), to
expand the generic cancer cell fate decision network CASCADE
2.0 that was built previously by our group (Niederdorfer
et al., 2020). This approach effectively constitutes a middle-
out strategy that allowed the expansion in a pathway-centric
manner, capturing processes that were highlighted as possibly
important for CRC subtype development. Furthermore, the
model was manually partitioned into functional subsystems,
named modules, allowing a continuous switching between
top-down (finding modules and seed genes) and bottom-up
modeling (module completion) during the manual curation of
each module, in order to comprehensively capture cell fate
decision mechanisms. Additionally, modules served as a “binning
principle” of nodes and regulatory relationships, providing an
intermediate network level, placed between the individual binary
interactions and a fully connected network. This allowed for a
multilevel assessment of the system, focusing on the modular
regulatory effect on output nodes, and their perturbational
response to targeted drugs. The evaluation of the performance
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of the model in predicting experimentally validated synergies of
combinations of 18 established cancer drugs in a panel of eight
cancer cell lines revealed that the model performs similarly well
for a majority of carcinoma cell lines in the panel, and not only for
colorectal cancer that it was originally specialized for. Our results
suggest that a middle-out modeling approach may be appropriate
for optimizing the representation of specific cancers or cancer
cell lines, or indeed other disease types for which multi-omics
data is available.

MATERIALS AND METHODS

Tools, Data Standards, and Exchange
Formats
An overview of the software tools and their versions used
in this study can be found in the Supplementary Material.
Genes and proteins were represented with the standard identifier
nomenclature for each entity type, namely HUGO Gene
Nomenclature Committee (HGNC) symbols and UniProt IDs,
respectively. Several files are available at are publicly available at
https://github.com/druglogics/cascade, with information about
the CASCADE 3.0 model: the model’s interactions as a
Simple Interaction File (SIF); a file containing the supporting
evidence for each of the interactions in the model; a file with
information about node translation and module assignment; and
a cytoscape.cys file of the network and its topology as shown in
Figure 3. The github repository also contains information about
other CASCADE models, including the CASCADE 2.0 model
that was used as the basis for this work.

Model Assembly by Manual Curation
Logical models are usually created manually by carefully
screening the literature for evidence that supports the linking
of components and their regulatory relationships in a Prior
Knowledge Network (PKN) that represents a biological system.
The CASCADE 2.0 model is a manually curated logical model,
representative for the most prevalent cancer types (Niederdorfer
et al., 2020). The CASCADE 2.0 model consists of 144 nodes and
366 interactions, including two output nodes called Prosurvival
and Antisurvival. Each node was annotated with its HUGO
gene symbol. In the case of several isoforms, a family-node
representative of all isoforms was used. Family nodes are notated
with a \_f in their name, while protein complexes and genes are
notated with \_c and \_g, respectively.

Niederdorfer et al. (2020) describe several model versions,
including a version in which the model topology was refined
so that it better recapitulates the biological mechanisms of
the analyzed cell lines. In the current analyses, the more
generic cancer model was used. These different models were
all constructed according to the following design principles: (1)
include targets of specific drugs for which the effects should be
simulated; (2) contain entities that are known to be involved in
specific or more general oncogenic processes, and (3) contain
specific nodes that will allow a read-out of the state of the cell
fate (phenotype output nodes): actively dividing (Prosurvival)
or growth-inhibited/apoptotic (Antisurvival). In this study, the

CASCADE 2.0 model was taken as a basis for extending into a
logical model that contains the major components and processes
that can be identified as significantly perturbed in one or more of
the colorectal cancer Consensus Molecular Subtype datasets (see
below), which was named CASCADE 3.0.

Identification of Affected Processes in
Consensus Molecular Subtypes of
Colorectal Cancer
An expression-based classification of the patients in the TCGA-
COAD cohort was performed according to the Consensus
Molecular Subtypes (CMS) classification for colorectal cancer
(CRC), as described in the Supplementary Material. This patient
classification aimed to identify commonalities and differences
between the four subtypes at a genomic, transcriptional and
functional (i.e., pathway) level. All the subsequent analyses were
conducted separately for each CMS class of patients unless stated
otherwise, and p-values were adjusted using the Benjamini–
Hochberg method, to correct for the false discovery rate (FDR)
across multiple tests (Benjamini and Hochberg, 1995).

The omics data used in the current project (i.e., mRNA
expression, somatic copy number variation and mutation data)
were publicly available data published as part of the TCGA-
COAD project (Cancer Genome Atlas Network, 2012). Data from
patients that were not classified into one of the CMS classes were
not used in the analyses, while non-tumorous data from adjacent
tissues of the classified patients were used when needed (further
discussed in the following sections).

Differential Expression Analysis
Using the RNA-sequencing data of TCGA-COAD, a statistical
analysis of differential expression was performed on the
transcriptomes of the tumor samples using the edgeR RNA-Seq
expression analysis package (Robinson et al., 2010). Data from
the same patient, but originating from different vials, portions,
analytes or aliquots, were averaged. RNAs with very low counts
across all libraries (fewer than 6–7 counts) and genes that were
expressed in only one sample were discarded, as they were
deemed not significant. Since the high expression of some genes
in a sample can lead to the under-sampling of the others, a
normalization step to correct for differences in the library sizes
was performed. The same filtering and normalization steps were
performed in available normal tissue samples of TCGA. The
differential expression analysis (DEA) was carried out against
this collection of normal samples, for all the subtypes. Protein-
coding genes with an FDR-adjusted p-value of less than 0.05 and
a logarithmic fold change (logFC) greater than 2 or lower than
−2 were deemed significantly differentially expressed.

Somatic Copy-Number Alterations (SCNV) Analysis
The GISTIC 2.0 tool (Mermel et al., 2011) in the GenePattern
platform (Reich et al., 2006) was used to identify genomic regions
that were significantly amplified or deleted across the different
subtypes, based on the amplitude of the aberrations as well as
their frequency of occurrence across the tumor samples. For
this analysis, masked segment copy number variation data of
TCGA-COAD were retrieved and used. In masked data, segments
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with probes known to contain germline mutations are removed
allowing the identification of the cancer-associated, somatic copy
number variation. The recurrently aberrant regions and their
containing genes were identified with a threshold FDR < 0.01.

Recurrent Somatic Mutation Analysis
The MutSigCV tool (Lawrence et al., 2013) in the GenePattern
platform (Reich et al., 2006) was used to identify recurrent
mutations in the cancer genome of TCGA-COAD patients.
The mutational profile of TCGA-COAD patients containing
information on mutation type, category and its effect, was
used to. Recurrent mutations are identified by calculating the
probability of a non-silent mutation to have happened by
chance compared to the background mutation rate estimated by
silent mutations and other patient-specific and position-based
confounding covariates. A threshold FDR < 0.05 was used.

Functional Analysis by Enrichment
Initially, genes that were found to be either differentially
expressed, located in recurrently aberrant chromosomal regions
or recurrently mutated were considered important for colorectal
cancer cells. To further investigate the functional role of the
affected genes in each subtype, independent enrichment analyses
were performed against the Reactome (Fabregat et al., 2018),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000), and Atlas of Cancer Signaling Networks (ACSN)
(Kuperstein et al., 2015) databases. For KEGG and Reactome
databases the clusterProfiler package was used (Yu et al., 2012)
while the ACSNmineR package (Deveau et al., 2016) was used
for ACSN. Results with FDR-adjusted p-values lower than 0.05
were considered significant. In parallel, similar enrichment
analyses were performed with the CASCADE 2.0 components
(Niederdorfer et al., 2020), to identify the main pathways and
processes represented in this model. A comparison of the results
of these analyses revealed the processes that were affected in the
CMS classes but not significantly represented in the topology of
the CASCADE 2.0 model.

The CASCADE 3.0 Model
Middle-Out Expansion of the Initial Model
The middle-out modeling process was characterized by a
combination of a top-down and bottom-up approach. As
already described, the first steps were governed by the genome-
wide analysis of relevant omics data, a typical approach
in top-down modeling where correlations between genes
or proteins are investigated by deploying various statistical
and bioinformatics analyses. More specifically, the top-down
step and overrepresentation analysis highlighted the affected
processes in the different CMSs, after which the nodes of
CASCADE 2.0 network could be annotated and mapped to these
overrepresented signaling pathways and biological processes.
However, as additional missing process and pathway components
were added during the construction of CASCADE 3.0, the
module assignment for some nodes had to be further refined,
in ways that it better represented the role of these entities in
the modeled system.

When most of the nodes were assigned to modules, four
of the initial modules were divided into two segments: one
containing entities involved in the core signaling pathway and
the other containing the negative regulators of that pathway.
The core signaling pathway included proteins involved in signal
transduction, starting mostly from receptors sensing a signal
and all the signaling proteins (i.e., the positive regulators of
the response and the main effector of the pathway) that enable
the regulatory response to the signal. The negative regulators
were placed in the other module, including entities involved in
negatively regulating the pathway’s main effector, meaning that
they are involved in potential regulatory feedback loops, as seen
for example in the WNT and MAPKs modules.

As a next step, a bottom-up approach was employed to expand
the modules so that they comprehensively represent relevant
pathways. As is common practice in bottom-up approaches,
this step was focused on individual biological entities and their
interactions, using a variety of databases, knowledge bases and
sometimes literature. The expansion of the modules and the
construction of the extended CASCADE 3.0 model was an
iterative process of manual curation: Each module was manually
checked against existing knowledge to comprehensively capture
its intra- and inter-modular regulatory, causal interactions
that would likely contribute to the overall cell fate decision
mechanism that the model should represent. A detailed list of
all the knowledge resources used during the curation processes
is presented in the Supplementary Material. Most of the initial
curation work drew on the cell signaling pathway database Signor
(Perfetto et al., 2016), which, in combination with the primary
modules from the original CASCADE 2.0, guided the addition
of new nodes in each of the pre-existing modules. An important
part of this curation process was the identification of the context
under which an interaction was observed. In order to retain high
confidence in the accuracy with which the model describes the
biology of colorectal cancer cells, only regulatory interactions
relevant for cells of tissues from which CRC subtypes originate
were selected. In case interactions were reported in other tissues,
additional literature was checked to decide whether to include
or discard the interaction. Furthermore, interactions that were
reported for specific biological processes not relevant to the
biological system that the models should capture, for example,
cardiac development, were omitted.

Taking into account the possible cross-talk of signaling
pathways and the multi-functionality of many biological
molecules, all nodes were examined for their potential
participation in several pathways. Because of this, some
nodes, including entities such as adaptor proteins or cytoplasmic
kinases, were functionally attributed to multiple modules, but
are presented and analyzed in CASCADE 3.0 only as members
of one main module. The assignment to these modules was
based on the available knowledge on the functional role of the
nodes and the number of interactions it shared with the other
members of that module.

Logical Modeling
The transformation of the expanded PKN into a Boolean model
was done by the definition of logical rules that describe the overall
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regulatory input that each node receives: for this, the regulatory
effect of each of the input nodes (activating or inhibiting) was
combined with the logical AND, OR and NOT operators. The
local state of each entity depends on the state of the combined
set of nodes that regulate it. As described above, those regulations
are captured in the logical rules that govern the update of the
state of each node. As a point of departure, general logical rules
that assume that an entity is active if any of its activators is active
and none of its inhibitors is active were defined. According to the
general rules, a protein’s activity will be downregulated by any
active inhibitor, regardless of the upregulation input of one or
more activators (Shmulevich et al., 2002).

According to the notation of the logical formalism, the rules of
the nodes’ activities are of the form:

Node X = (Activator A OR Activator B . . . Activator n) AND
NOT (Inhibitor A OR Inhibitor B OR . . . Inhibitor n)

Two additional “phenotype” nodes were added to the model,
representing the two cellular states Prosurvival and Antisurvival.
These nodes were implemented as multivalued nodes (with
possible local states 0, 1, 2, or 3) which serve as cellular state
readout and allow to assess the overall proliferative state of the
system. The global state of the system is computed as the overall
sum of the negative value of Antisurvival and the positive value
of Prosurvival, ranging between−3 and+3.

Drug Synergy Prediction
Drug synergy predictions were performed with a custom-built
modeling pipeline that combines several software modules that
together provide a highly automated computational framework
for logical model assemble and simulations (Flobak et al.,
manuscript in preparation)1. The pipeline can customize a
general logical model to a specific cell line, after which it uses a
collection of models (ensemble) each equally fit to represent a
cell type to predict the effect of a drug perturbation, as well as
their potential synergies in case of drug combinations. Initially,
omics data of a specific cell type are translated into entity
steady state activities (1 or 0). Such omics data can be either
genome-wide or biomarker-specific, and can include among
others proteomics, genomics, and transcriptomics data, either
separately or in combination. The omics data serves to produce
a training set of steady state activities that the network nodes
should display when the logical model reaches a stable state. As
this is dependent on the exact configuration of the overall logical
rules of the model, these logical rules are optimized with the
help of a genetic algorithm that changes sets of logical rules and
analyses the steady state values from the altered model against
this training set.

The genetic algorithm iteratively “mutates” the logical rules of
some nodes each time, by randomly switching between AND and
NOT and then the global stable states of the mutated models are
calculated using the BNReduction tool (Veliz-Cuba et al., 2014).
The mutated models that show the highest fitness (their stable
state node activities better resemble the data in the training set)
are further mutated for a selected number of iterations.

1https://druglogics.github.io/druglogics-doc/index.html

This optimization process results in an ensemble of models,
all having the same topology but with slight differences in their
logical rule structures, each model of an ensemble complying
more or less equally well with the regulatory system that should
be represented. The logical model ensemble is next systematically
subjected to a set of in silico drug perturbations by assessing
the combinatorial effects of drugs on the models as observed
by the combination of states of the phenotype output nodes.
These output nodes are multi-valued (global state ranging from
−3 to +3) and the state of these nodes is defined by the
predicted local states of key nodes that provide ‘regulatory
input’ to these phenotype nodes, such as the cyclins, MYC
and other survival factors that add additively to Prosurvival
and the caspases and other pro-apoptotic entities that add
to Antisurvival. With the global state ranging from −3 (only
activity from anti-survival nodes) to +3 (only activity from pro-
survival nodes), the quantification of the effect of the drugs to
the viability of a system after single and combinatorial drug
simulations was possible. For example, a drug that results in
a global state of −3 has a more prominent effect than a drug
that results in a global state of −2 or −1. The global state of
the combinatorial treatment was then compared to the global
states of the treatment of each individual drug. If the drugs that
together result in a viability (i.e., output nodes’ state) smaller
than the minimum of the viability of each individual drug,
they were scored as synergistic. These predictions were then
compared to observed synergies validated by experimental data
produced by the combination of 19 small molecule inhibitors
and their 171 combinations (Flobak et al., 2019). As discussed
in Niederdorfer et al. (2020), an inhibitor of PTEN (SF-1670)
that was found to be under characterized regarding its off-target
effects and was involved in the majority of synergies was not
included in the analysis, reducing the data used to 18 small
molecule inhibitors and their 153 combinations. The inhibitors
were targeting various modules of the models and were tested in
all eight cell lines used in the simulations. Furthermore, all drugs
used in the screen were subjected to in depth characterization
including an extensive target profiling, in associating the drugs
and their targets with the model’s nodes. The overall performance
of the model with respect to true positive, false positive,
true negative and false negative drug synergy predictions was
assessed using AUC-ROC curves as performance measurement
(Sammut and Webb, 2017).

In this project, three different sets of inferred entity states
were used as training data to the genetic algorithm. Two of the
data sets include activity states inferred from two distinct sets of
omics data, using the Paradigm tool (Vaske et al., 2010), while the
third set contains protein activities inferred from transcription
factor activity information, using the Viper tool (Alvarez et al.,
2016). The first set of activity states from Paradigm, referred as
Combination-based, makes use of cell line specific copy number
variation, gene expression, RPPA for total protein abundance
and RPPA for phosphosites to infer entity states. The second
set of states from Paradigm, referred as mRNA expression-based,
uses only the cell-line specific mRNA expression data. For the
TF activity based, data from “Genomics of Drug Sensitivity in
Cancer” (GDSC) project were used as an input for Viper.
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The model optimization work indicated that larger sized
training sets not necessarily correlated with higher AUC values.
This might be explained by imperfections in the training data:
inferred data, so not experimentally confirmed data, may have
errors in it that limit the “freedom” available to the genetic
algorithm to adequately fit model steady states to the real
biological state of the system. For that reason, the Combination-
based and mRNA expression-based datasets were reduced to only
those nodes for which the smaller data sets also contained a
predicted state. That also allowed a more direct assessment of
training data sets with respect to their ability to correctly serve
as local states that would be observed in biological reality. More
details about the reduction of the training data can be found
in the Supplementary Material. All three training sets were
subsequently used to evaluate how the model performs for eight
cancer cell lines (see Table 1).

RESULTS

Identification of Affected Processes
Omics Data Analysis
The candidates for regulatory network inclusion were identified
through a multi-omics data analysis that included transcriptomic
(i.e., gene expression data) and genomic (i.e., somatic mutations
and copy number alterations) profiles of CRC patients, effectively
identifying affected processes and pathways in these patients’
tumors. The differential gene expression analysis identified the
highest number of affected genes and displayed a significant
overlap between the differentially expressed genes in the
subtypes, all involved in fundamentally dysregulated processes in
cancer, such as DNA repair, cell adhesion, and cell cycle control.
The identification of somatic copy number alterations (SCNAs)

corroborated the profiles of the molecular subtypes and revealed
both known and novel aberrant chromosomal regions. CMS2
and CMS4 displayed the highest number of SCNAs, whereas
the two remaining subtypes had a low number of aberrant
regions. Interestingly, a much higher number of genes was
found correlating with deleted peaks than with amplified peaks,
for all the subtypes. Among the 114 unique aberrant regions
across all subtypes, five regions were altered in all subtypes.
Four of those regions (16p13.2, 20p12.1, 5q12.1, and 4q22.1)
showed deletions, while 8p11.21 was amplified in all the subtypes.
The 20p12.1 region has been previously reported as recurrent
in CRC (Davison et al., 2005), but there are no reports for
the presence of known cancer genes in any of the regions.
Some of the identified SCNAs have been previously reported
for their involvement in other cancer types, but not in CRC.
A number of genes located in these chromosomal regions have
been associated with clinical characteristics of cancer patients and
could potentially be investigated as biomarkers or drug targets
for CRC (Coppedè et al., 2014). The somatic mutation analysis
did not show any association between the mutation of specific
pathways and specific subtypes, as the major signaling pathways
known to be altered in CRC tend to be mutated in all the subtypes.
Given its Microsatellite Instability (MSI) status resulting from a
defective DNA mismatch repair machinery, CMS1 patients are
expected to have a predisposition to hypermutability (Yu et al.,
2019). For that reason, CMS1 patients had the highest number of
recurrently mutated genes.

A list of the affected genes was produced for each subtype
and classified as either differentially expressed in comparison to
normal tissue, recurrently mutated, or located in a recurrently
amplified or deleted region with respect to normal copy number.
The total number of affected genes per category in each subtype
is presented in Table 2, and their overlap in Figure 1.

TABLE 1 | Description of the eight cancer cell lines used in the synergy prediction analysis.

Cell line ID Tissue Disease

AGS RRID:CVCL_0139 Stomach Gastric adenocarcinoma

Colo205 RRID:CVCL_0218 Colon; derived from metastatic site: ascites Colon adenocarcinoma

DU145 RRID:CVCL_0105 Prostate; derived from metastatic site: brain Prostate carcinoma

SW620 RRID:CVCL_0547 Colon; derived from metastatic site: lymph node Colon adenocarcinoma

MDA-MB-468 RRID:CVCL_0419 Breast; derived from metastatic site: pleural effusion Breast adenocarcinoma

A498 RRID:CVCL_1056 Kidney Renal cell carcinoma

SF295 RRID:CVCL_1690 Brain Glioblastoma

UACC62 RRID:CVCL_1780 Skin Melanoma

TABLE 2 | Total number of genes that were found to be affected in the omics data analysis.

Subtype Recurrently mutated genes Amplified genes Deleted genes Upregulated genes Downregulated genes

CMS1 55 541 135 1625 1658

CMS2 6 438 2508 1793 1789

CMS3 11 12 2054 1185 1501

CMS4 10 587 3461 2003 919

Affected genes are defined as genes that were either differentially expressed in comparison to normal tissue, amplified or deleted with respect to normal copy number or
recurrently mutated.
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FIGURE 1 | Venn diagram showing the overlap between genes affected in the
four CSMs.

Functional Analysis of CMS Genes by Enrichment
An analysis of the affected genes for their functional enrichment
was performed against the ACSN, Reactome, and KEGG
databases (Kanehisa and Goto, 2000; Kuperstein et al., 2015;
Fabregat et al., 2018). The results are shown in Figure 2 and
are represented as individual, non-redundant, cancer-related
pathways. Non-cancer related pathways and processes mainly
found in cancer-associated cells in the tumor microenvironment,
such as cancer-associated fibroblasts and immune cells, were
not included in the results as the model does not account for
inter-cellular interaction. Since the model aims to represent
regulatory interactions involved in signaling pathways, metabolic
pathways that were found to be deregulated, especially in the
case of the metabolic subtype, could not be represented in the
model and thus were also excluded from the results. A similar
enrichment and aggregation analysis was done for the nodes of
the CASCADE 2.0 model and a comparison with the affected
CMS pathways (see Figure 3) highlights the signaling pathways
that are affected in CRC but were not included in CASCADE 2.0.
The identified missing processes included the Hippo, Hedgehog,
and Notch signaling pathways, as well as DNA repair and
cell adhesion, all with well documented involvement in both
CRC and cancer in general (Wierzbicki and Rybarczyk, 2015;
Vinson et al., 2016; Wu et al., 2017; Boesch et al., 2018;
Mirza-Aghazadeh-Attari et al., 2018).

Construction of the CASCADE 3.0 Model
Manual Extension of the CASCADE 2.0 Model
Guided by the results of the top-down analysis and founded
on prior knowledge from several databases and the literature,
the CASCADE 3.0 model was constructed through the addition
of nodes and edges to describe fundamentally dysregulated
processes in all CRC subtypes. Those processes involved cell fate
controlling processes such as cell cycle progression, regulation
of apoptosis and response to DNA damage, as well as signaling

pathways that were identified to be missing from the CASCADE
2.0. The final network consists of 183 nodes and 605 edges
(see Figure 3). In addition to the inclusion of new nodes and
interactions, small refinements were performed in the model.
Nodes representing genes (notated with _g in CASCADE 2.0) were
removed from the model, and replaced with their gene product
node, including their regulatory interactions. Additionally, the
CK1_f node, containing CSNK1A1, CSNK1D, and CSNK1E
isoforms was split into two nodes, due to the involvement
of the two latter isoforms in a newly added Hippo pathway
module. Finally, in order to more accurately represent the
regulation of the cell cycle by MYC (Bretones et al., 2015),
the edge representing the direct interaction of MYC with the
Prosurvival output node was replaced by an edge representing
the promotion of proliferation through the activation of CCND1.
Finally, in addition to the Prosurvival and Antisurvival output
nodes, a new output node representing Metastasis could be
included, based on the observation that several pathways
were involved in metastasis-related processes (e.g., Epithelial-
to-Mesenchymal transition and cell motility). However, due to
the lack of appropriate screening data for this effect, it was
omitted from the model, but it could be considered in future
extensions of the model.

Topological Comparison of Original and Extended
Models - Final Modules
The 183 nodes of the extended model were grouped into
25 manually curated pathways modules representing altered
pathways or functions in the CMSs of colorectal cancer.
Additionally, four of those modules (WNT, PI3K/AKT, TGFβ,
and JAK/STAT) represent the negative regulators of a specific
pathway and its respective main effector. An example of such a
set of negative regulators is the β-catenin destruction complex.
The components of the complex (i.e., APC, AXIN1, CK1, and
GSK3B), are involved in the WNT pathway, but they negatively
regulate its main effector (β-catenin), so they were assigned to
a separate module (WNT negative regulators module) than the
core signaling pathway (WNT module). The resulting modules
vary in size and structure, and nodes grouped in a module
do not necessarily share interactions with each other. This is
specifically the case for modules with entities exerting similar
regulatory functions (e.g., the Anti-apoptotic module), but do
not necessarily interact with each other to achieve that function.
The modules share numerous interactions with each other,
a reflection of the fact that biological pathways cannot be
delineated as completely independent groups, and perturbations
in one module are likely to affect the behavior of other modules.
In biological systems, module cross-talk can give rise to emerging
functions that differ from their original functions (Lorenz et al.,
2011). This is especially true when cells execute more complex
behaviors, such as invasion in cancer systems, which are often
controlled by many processes and a result of the interaction of
many modules (Koutsogiannouli et al., 2013).

A side-by-side comparison of the topologies of the two
networks is shown in Figure 3, allowing an easy identification
of the added or expanded modules in CASCADE 3.0. Of
the 144 nodes of the CASCADE 2.0, 36 were among the
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FIGURE 2 | Discrete heatmap of the presence or absence of signaling pathways and biological processes that were identified as affected in the Consensus
Molecular Subtypes of colorectal cancer and/or represented in the CASCADE 2.0 model. Blue colored cells represent the enrichment of a process in a subtype
and/or the model.

genes affected in at least one of the molecular subtypes
of CRC and these were assigned to 16 different modules.
These modules represented key oncogenic processes, such as
proliferation-promoting transcription factors, apoptosis, the
JAK/STAT signaling pathway, and MAPK cascades. The majority
of the affected genes present in CASCADE 2.0 was found to be
part of signaling pathways whose dysregulation is considered to
be a driver event in colorectal cancer: the PI3K/AKT, WNT and
Transforming Growth Factor-β signaling pathways (Tiwari et al.,
2018). While only five modules representing missing pathways
identified in the enrichment analysis step were added, all other
modules were expanded either with a few entities or, in some
cases, a substantial number of them. The modules that had the
most nodes added represented processes such as adhesion and
EMT, negative regulation of apoptosis, cell cycle control and
checkpoints, and DNA damage response and repair.

Drug Synergy Prediction
Evaluation of the Model’s Overall Performance
The drug synergy predictions were performed with three sets
of models, each trained with a different set of inferred node
activity states: TF-, Combination-, and mRNA expression-based.
Model optimization and drug synergy scoring was as described in
Methods, and prediction performance was benchmarked against
experimental data obtained for eight cancer cell lines (Flobak
et al., 2019) and evaluated using AUC values that define the ability

of a model to distinguish experimentally validated synergies and
non-synergies (Sammut and Webb, 2017).

The distribution of AUC values between 0.5 (no prediction
efficiency) and 1.0 (optimal model predictions) shows that
the model’s performance depends both on the training data
that was used and the cell line for which predictions were
produced. As shown in Figure 4, models tend to perform better
when trained to the Combination-based training set, and model
performance can be very high for some cell lines, while for
other cell lines drug synergies prove to be difficult to predict
with any training set. The model displayed a (relatively) good
performance for both the colorectal adenocarcinoma (Colo205)
and gastric adenocarcinoma (AGS) cell lines. Synergy predictions
for the prostate carcinoma cell line DU145 were consistently of
moderate accuracy (AUC values ∼0.6–0.7), while predictions for
the melanoma cell line (UACC62) was consistently the poorest,
with an AUC value lower than 0.5 for the TF activity training data
set. Prediction performance for the other cell lines range from
moderate to very high, depending on the training set used. In
order to ensure that the performance of the Combination-based
training set was significantly improved when compared to the
other training data sets, a one-sided t-test was performed. The
comparison of the performance between the Combination- and
TF activity-based training data showed significant improvement
(p-value = 0.024). At the same time, the difference between
the Combination- and mRNA-based training data sets was not
significant (p-value of 0.2671). However, all but two cell lines have
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FIGURE 3 | The CASCADE 3.0 (A) and CASCADE 2.0 (B) models. The nodes are grouped according to pathway modules. The modules are grouped based on
their promotion of apoptosis (blue colored modules), metastasis (green colored modules) or proliferation (red colored modules) when the pathways they represent are
active. The position of a module in the figure displays its proximity to the output node: the smaller the average shortest path of the module to the output node it is
related to, the closer to the output it is placed. Empty slots in the CASCADE 2.0 topology show the individual nodes or complete pathway modules that were added
in the CASCADE 3.0 model. Gray rectangular nodes represent the output nodes.

an improved performance with the Combination-based data and
these data were therefore selected as the one yielding the highest
performance. This variance in performance could indicate the
inability of specific computational tools to correctly infer node
activity states for specific cell lines, the importance of these states
when training the model, or that models for these cell lines
need specific topology optimization in addition to the logical

rule optimization, to make them more stable with respect to
the training data.

As the Combination-based training data set was the most
informative one, this set was used as the basis for a comparison
of the performance between the initial (i.e., CASCADE 2.0)
and the updated (CASCADE 3.0) model. The obtained AUC
scores for each cell line are shown in Figure 5, with the model
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FIGURE 4 | Synergy prediction AUCs per cell line. The plot shows the AUC values of the ROC curves produced for drug synergy prediction performance using
CASCADE 3.0 optimized to three different training sets. Colors represent different cell lines. The AUC values are plotted on the X-axis. The training sets are shown
on the Y-axis.

performances shown side by side. The statistical significance of
the difference between the performances of the two models was
computed by a paired Wilcoxon signed-rank test. The median
AUC of CASCADE 2.0 was found to be significantly less than
the median AUC of CASCADE 3.0 (p-value of 0.03). As seen

in Figure 5, with CASCADE 3.0, there was a considerable
improvement of the performance in all cell lines except the kidney
carcinoma cell line, A498. As mentioned above, CASCADE 3.0’s
improvement was most conspicuous for the Colo205 cell line.
While CASCADE 3.0 overall seems to perform better for almost
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FIGURE 5 | Comparison of the performances of CASCADE 2.0 (left) and CASCADE 3.0 (right) with respect to their ability to predict drug synergies. Performance is
measured in AUC values and presented in the y-axis. On the x-axis, cell lines are grouped based on their tissue of origin and each point of the plot represents a
different cell line.

all cell lines, the range of improvement is most noticeable for
cell lines originating from adenocarcinomas. This may indicate
that the model extensions may better capture processes relevant
to adenocarcinomas in general, rather than those specific for
colorectal cancer and its subtypes.

Analysis of the Individual Predicted Synergies in
Different Cell Lines
The mapping of the interactions between the 18 drugs used
in this project and their target-entities revealed that the 20
entities of the model that serve as a target to those drugs are
members of only 11 of the 25 modules. Two of the 18 drugs
had no experimentally observed involvement in any synergy,
reducing the number of modules involved in drug synergies to
ten. Multiple drugs included in the screening and simulations
were found targeting entities belonging to the same module.
Specifically, four, three and two different drugs were targeting the
PI3K/AKT, JNK/p38, and JAK/STAT modules, respectively. As
many times cancer therapies take advantage of the dependency of
cancer cells on an oncogene and/or loss of a tumor suppressor,
and with the aforementioned pathways being among the most

frequently altered pathways in several types of cancer, it is
expected that multiple drugs have been designed to target these
specific pathways (Thomas et al., 2015; Mayer and Arteaga, 2016;
Martínez-Limón et al., 2020). The remaining seven modules
included only one drug target each.

To visualize potential patterns in the ability of the model
to correctly predict experimentally observed synergies, Figure 6
displays the synergies in a module, represented as connecting
edges between the drug targets, and in a cell line-specific manner.
The Figure 6A shows all experimentally observed synergies, and
Figure 6B shows the observed synergies that were also predicted.
Only predictions obtained with the best performing training data
set (Combination-based) are shown.

Three modules, PI3K/AKT, JNK/p38, and RAC, appear to
be involved in the majority of the observed synergies, with
most of the synergies observed in at least four cell lines.
Additionally, the PI3K/AKT and JNK/p38 modules presented
cases of intra-module synergies, with targeting of two entities
in these individual modules resulting in synergistic response.
Some modules, such as the one composed of the WNT
negative regulators, were involved in synergies observed in
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FIGURE 6 | Network modules and synergy prediction. Network representing the experimentally observed (A) and the predicted and experimentally observed (B)
synergies as edges connecting the drug targets involved. Colored circles represent modules with targeted nodes, while circle size reflects the number of nodes in
each module. The colors of the edges represent the cell line for which a synergy was observed and/or predicted.

only a few cell lines. It is interesting to note that the model
fails to correctly predict drug synergies for the two modules
with drug targets displayed toward the left in Figure 6 (i.e.,
the modules that promote apoptosis when active), for any
of the cell lines.

DISCUSSION

As standard treatment plans for cancer patients are often
thwarted by acquired drug resistance of tumors, or the
adverse effects and toxicities of monoregimen therapies

(DeVita et al., 1975) combinatorial treatment with multiple
chemical agents is being proposed as a solution (Kummar et al.,
2010; Al-Lazikani et al., 2012; Madani Tonekaboni et al., 2018;
Goldman et al., 2019). In silico screening of drug combinations
may be particularly helpful in the pre-clinical stage, as it may
serve to identify large numbers of combinations that need not
be tested because they are unlikely to exhibit synergy (Celebi
et al., 2019). In silico pre-screening may therefore solve many of
the logistical and financial challenges that testing the enormous
combinatorial drug compound space poses for screening
facilities, provided that the computations predictions are of
sufficient quality. Since the testing in the laboratory will only
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include a subset of the possible combinations (Cheng et al., 2019),
it is critical to have a pre-screening procedure that produces
low numbers of false negatives, as any potential blockbuster
combination among them would not be tested.

Several approaches for in silico identification of drug synergies
have been explored, some of them employing the computational
modeling framework (Klinger et al., 2013; Miller et al., 2013;
Flobak et al., 2015; Vitali et al., 2016; Eduati et al., 2017;
Niederdorfer et al., 2020), as the current paper. In addition,
machine learning (Jeon et al., 2018; Preuer et al., 2018; Sidorov
et al., 2019; Yang et al., 2020), graph theory (Li et al., 2018),
and multi-omics integration and analysis (Celebi et al., 2019;
John et al., 2020) have been used. While machine learning
approaches can be both highly flexible and accurate, there are
certain limitations that should be acknowledged, such as the
need to include expensive, hard to obtain training datasets,
and for certain approaches (e.g., neural networks) they offer
limited insights to what features confer predictability. On the
other side, with logical models that make use of the abundantly
available interaction data, synergy predictions can be successfully
obtained from combining a prior knowledge network with
observations, without the need for actual drug synergy training
data, as demonstrated in the current manuscript. However,
in a community effort to assess the computational prediction
approaches (Menden et al., 2019), it was underlined that in silico
synergy prediction remains a challenge even with using training
data, and before such applications reach the clinic certain
obstacles have to be overcome. One of these, the ability to tailor a
computer model to the unique patient-specific molecular profiles,
is key for the development of personalized therapies (Menden
et al., 2019). To overcome this bottleneck, several methods
to integrate patient-specific molecular characteristics have been
proposed, with most of them exploring the use of multi-omics
and perturbation data. As also demonstrated by our paper as well
as others, logical models can be trained to both omics (Silverbush
et al., 2017; Béal et al., 2019) and/or perturbation data (Fey et al.,
2015; Eduati et al., 2020) in order to be further specified to specific
cell lines or even patients.

The main aim of the project was to explore the use of
multi-omics data to further extend and enhance a logical
model that was produced by a manual curation effort. Analysis
of colorectal tumor-derived omics data was used to define
pathway modules representing functionally-related groups of
proteins. Modules relevant for colorectal cancer were obtained
through a workflow that combined multiple omics data to
identify pathways and processes affected in the consensus
molecular subtypes (CMS) of colorectal cancer (CRC). This top-
down approach efficiently revealed CRC-specific processes, all
with well-documented roles either in general tumor formation,
or specific colorectal and/or general adenocarcinoma tumor
ontogenesis. Next, a bottom-up approach was performed to
extend an existing cancer model (CASCADE 2.0) with the new
network nodes together with additional functionally relevant
pathway and module components, to produce CASCADE 3.0.
These approaches together exemplify an efficient middle-out
workflow for cell fate decision network building, combining
the best of well established top-down and bottom-up modeling

approaches (Xavier et al., 2014). The top level results (affected
pathways) were used to set the boundaries regarding the
processes that should be present in the model, while the study of
the individual entities involved in these pathways (bottom level)
was guiding the curation and integration of these entities and
their interacting partners in the system. The main advantage of
this approach is that it provides a direct link between a collection
of clinically relevant molecular phenotypes for very specific
cancer (colorectal cancer subtypes) and a general model scaffold
for cancer-related cell fate decisions. More specifically, it provides
a modeler with very direct guidance for model refinement,
essentially a blueprint of the modules whose inclusion should be
considered. Similar workflows should allow model refinements
for essentially any cellular system, provided that ample genome-
wide information of that biological system is available. The
modeler, however, will still face the responsibility to critically
assess each model extension and guarantee the overall quality of
the final model.

The broad availability of curated pathway resources and the
definition of condition- and context specific modules could
alleviate this workload, but it would be even better if a collection
of reusable and interchangeable modular structures would be
available that could be added or removed according to the
different modeling purposes for different biological systems.
The capacity of modules as building blocks has indeed been
investigated in various types of biological networks (Segal et al.,
2004; Schroeder, 2015), and the interest in building models in a
modular manner is increasing.

To assess the quality of the CASCADE 3.0 model to predict
drug synergies, simulations were performed for eight different
cancer cell lines from various tissue origins, using three training
sets for model configuration. The expectation was that the CMS
extensions to the CASCADE 2.0 model would enhance the
model performance for colorectal cancer. Model predictions were
tested against experimentally observed synergies, and the AUC
values indicated that CASCADE 3.0 had an improved prediction
for Colo205, a colorectal adenocarcinoma cell line. However,
the second adenocarcinoma cell line, SW620, displayed a more
variable performance across the training data, with AUC values
ranging from almost random (∼0.5) to 0.7. Interestingly, a multi-
omics analysis of 34 colorectal adenocarcinoma cell lines (Berg
et al., 2017) classified Colo205 and SW620 to different colorectal
consensus molecular subtypes, as they have significant molecular
differences. Among others, their CNV and gene expression
profiles are quite distinct, causing Colo205 to be classified
as a colon-like cell line, and SW620 as an undifferentiated
cell line. These molecular differences and different subgroup
classifications may indicate different underlying cellular signaling
network activities or even different network topologies of these
seemingly similar colorectal cancer cell lines, which in turn may
explain the difference in CASCADE 3.0 model performance. In
addition to Colo205, other well-performing cell lines include the
gastric and prostate cancer cell lines. Interestingly, Colo205, AGS
and DU145 all originate from the same tissue type, the epithelial,
hinting to a pattern in the model’s performance. By grouping
the cell lines by their tissues of origin, it became evident that
the model had a tendency to perform considerably better for
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the epithelial cancers (i.e., adenocarcinomas and carcinomas),
and not only for the colorectal adenocarcinoma that it was
specified for. Tumors are often classified by the organ they arise
in. However, the molecular profiling of major cancer types has
revealed surprising similarities between the molecular profiles of
tumors arising from the same tissue type, but in different organs
(Lin et al., 2017). For instance, the oncogenic role of the newly
added Hippo, Hedgehog, and Notch modules is well reported
in both prostate cancer (Zhang et al., 2015; Su and Xin, 2016;
Buttyan et al., 2018) and gastric cancer (Kang et al., 2016; Yao
et al., 2017; Akyala and Peppelenbosch, 2018). Together with
the notion that targeted therapy based on molecular features
is more effective (Senft et al., 2017), as practiced in precision
medicine, the observation that CASCADE 3.0 has an overall
better performance on cell lines displaying similar molecular
phenotypes, may provide a handle on further optimizing logical
modules for cancer cell line sets with shared other molecular
profiles. This hypothesis could be further investigated in larger
scale datasets, where the predictions of the model can be tested
against additional drug combination data, as for example the
drug synergy data reported in DrugComb (Zagidullin et al., 2019)
and SYNERGxDB (Seo et al., 2020), and potentially in a broader
set of cell lines.

The combination of proteomics with genomics data has
been proposed as the most effective way to infer the state of
an entity (Senft et al., 2017), corroborating our observation
that models trained to the combined data set tend to perform
generally better. The noticeable variation of the performance with
different training data even for a specific cell line underlines
the importance of correctly assessing the entities’ states before
training a model, which would need careful, high-quality assays
for all proteins represented in the logical model. In most
biological systems, however, it is assumed that the state of only
a specific subset of its nodes is rather sufficient to control
the global state of the system (Gao et al., 2014; Dnyane
et al., 2018; Yang J. M. et al., 2018). Based on this, the
accurate identification of the states of a well-chosen subset
of nodes in the model rather than the majority of its nodes
can be an attractive alternative (Niederdorfer et al., 2020).
However, since the behavior of Boolean networks depends on
multiple node and network features (Kauffman et al., 2004;
Kochi et al., 2014), and often on the combined effect of
those individual features (Kochi et al., 2014), it is essential to
identify which of those features can be best used to assess
the importance of a node for the global state of a system.
Several features, including well-established or novel topology
metrics (e.g., in-degree, out-degree, various path lengths, and
centrality measures) and dynamical characteristics (e.g., bias and
sensitivity of Boolean functions, presence of feedback loops),
have been proposed to identify those nodes (Kochi et al., 2014;
Sheikhahmadi et al., 2015; Wang et al., 2017). These findings
suggest that further work on identifying such ‘high leverage’
nodes, or even complete modules that are critical for a model’s
performance and whose state therefore should be accurately
assessed, is much needed.

Most of the observed synergies that could be predicted
involve one of the PI3K/AKT, JNK/p38, or RAC modules. These

modules play a central regulatory role in both normal and
malignant cells, and many studies have already investigated and
supported the effectiveness of combinatorial over single-agent
treatment targeting these pathways, either in combination with
each other or together with other pathways (Jain et al., 2017;
Pons-Tostivint et al., 2017; Rocca et al., 2018). Alternatively, the
apparent higher success rate for these modules may also be a
consequence of the bias of this study toward drugs targeting
the PI3K/AKT and JNK/p38 modules (seven of the 18 drugs).
The classification of the modules (see Figure 3) based on
whether they promote apoptosis, metastasis or proliferation,
when the pathway they represent is active, revealed that the
model fails to predict synergies for drugs targeting module
combinations from different functional classes (apoptosis and
proliferation), while it could predict most synergies that involved
a combinatorial targeting of proliferation-associated modules.
This observation may indicate a lack of regulatory detail in
specific subparts, namely the apoptosis-related modules, or their
cross-talk with the other parts of the network, especially given
their direct interaction with the Antisurvival phenotype. To
test this, additional curation efforts could be performed in
an iterative way while testing model performance. Additional
reasons that might affect the performance of the model
in drug synergy prediction may be found in the lack of
knowledge about the specificity of some cancer drugs (Rázga
and Némethová, 2017). They may have unforeseen off-target
effects that for a variety of reasons cannot be taken into
account in the perturbed model simulations, which could
seriously affect the model’s performance (Saginc et al., 2017).
For the moment, there are additional frontiers that need to be
crossed before logical model-based therapy design can become
relevant for the clinic.

In summary, this paper illustrates that middle-out model
building provides an efficient approach to extend and optimize
a logical model for specific cancer cell lines, or even individual
patients, for more accurate drug effect simulations. The results
illustrate that guided extensions of models to optimize their
representation of a disease system can provide important
insights and guide experimental design toward the identification
of effective drug combinations. This approach allows the
prioritization of the proposed synergies in a pre-clinical setting,
to facilitate the selection of candidate drugs combinations that
should be experimentally tested on cell lines.
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